xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 46e6acfe3501fa938af9c5bd730f0020235b08a2)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 	[NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" },
141 };
142 
143 static const struct pci_device_id bnxt_pci_tbl[] = {
144 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
186 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
193 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
194 #ifdef CONFIG_BNXT_SRIOV
195 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
196 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
198 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
211 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
215 	{ PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
217 #endif
218 	{ 0 }
219 };
220 
221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
222 
223 static const u16 bnxt_vf_req_snif[] = {
224 	HWRM_FUNC_CFG,
225 	HWRM_FUNC_VF_CFG,
226 	HWRM_PORT_PHY_QCFG,
227 	HWRM_CFA_L2_FILTER_ALLOC,
228 };
229 
230 static const u16 bnxt_async_events_arr[] = {
231 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
232 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
235 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
238 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
239 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
240 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
241 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
242 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
245 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
246 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
247 };
248 
249 static struct workqueue_struct *bnxt_pf_wq;
250 
251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \
252 			       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}
253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}}
254 
255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = {
256 	.ports = {
257 		.src = 0,
258 		.dst = 0,
259 	},
260 	.addrs = {
261 		.v6addrs = {
262 			.src = BNXT_IPV6_MASK_NONE,
263 			.dst = BNXT_IPV6_MASK_NONE,
264 		},
265 	},
266 };
267 
268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = {
269 	.ports = {
270 		.src = cpu_to_be16(0xffff),
271 		.dst = cpu_to_be16(0xffff),
272 	},
273 	.addrs = {
274 		.v6addrs = {
275 			.src = BNXT_IPV6_MASK_ALL,
276 			.dst = BNXT_IPV6_MASK_ALL,
277 		},
278 	},
279 };
280 
281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = {
282 	.ports = {
283 		.src = cpu_to_be16(0xffff),
284 		.dst = cpu_to_be16(0xffff),
285 	},
286 	.addrs = {
287 		.v4addrs = {
288 			.src = cpu_to_be32(0xffffffff),
289 			.dst = cpu_to_be32(0xffffffff),
290 		},
291 	},
292 };
293 
294 static bool bnxt_vf_pciid(enum board_idx idx)
295 {
296 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
297 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
298 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
299 		idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF);
300 }
301 
302 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
303 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
304 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
305 
306 #define BNXT_CP_DB_IRQ_DIS(db)						\
307 		writel(DB_CP_IRQ_DIS_FLAGS, db)
308 
309 #define BNXT_DB_CQ(db, idx)						\
310 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
311 
312 #define BNXT_DB_NQ_P5(db, idx)						\
313 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
314 		    (db)->doorbell)
315 
316 #define BNXT_DB_NQ_P7(db, idx)						\
317 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
318 		    DB_RING_IDX(db, idx), (db)->doorbell)
319 
320 #define BNXT_DB_CQ_ARM(db, idx)						\
321 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
322 
323 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
324 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
325 		    DB_RING_IDX(db, idx), (db)->doorbell)
326 
327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
328 {
329 	if (bp->flags & BNXT_FLAG_CHIP_P7)
330 		BNXT_DB_NQ_P7(db, idx);
331 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
332 		BNXT_DB_NQ_P5(db, idx);
333 	else
334 		BNXT_DB_CQ(db, idx);
335 }
336 
337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
338 {
339 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
340 		BNXT_DB_NQ_ARM_P5(db, idx);
341 	else
342 		BNXT_DB_CQ_ARM(db, idx);
343 }
344 
345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
346 {
347 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
348 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
349 			    DB_RING_IDX(db, idx), db->doorbell);
350 	else
351 		BNXT_DB_CQ(db, idx);
352 }
353 
354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
355 {
356 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
357 		return;
358 
359 	if (BNXT_PF(bp))
360 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
361 	else
362 		schedule_delayed_work(&bp->fw_reset_task, delay);
363 }
364 
365 static void __bnxt_queue_sp_work(struct bnxt *bp)
366 {
367 	if (BNXT_PF(bp))
368 		queue_work(bnxt_pf_wq, &bp->sp_task);
369 	else
370 		schedule_work(&bp->sp_task);
371 }
372 
373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
374 {
375 	set_bit(event, &bp->sp_event);
376 	__bnxt_queue_sp_work(bp);
377 }
378 
379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
380 {
381 	if (!rxr->bnapi->in_reset) {
382 		rxr->bnapi->in_reset = true;
383 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
384 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
385 		else
386 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
387 		__bnxt_queue_sp_work(bp);
388 	}
389 	rxr->rx_next_cons = 0xffff;
390 }
391 
392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
393 			  u16 curr)
394 {
395 	struct bnxt_napi *bnapi = txr->bnapi;
396 
397 	if (bnapi->tx_fault)
398 		return;
399 
400 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
401 		   txr->txq_index, txr->tx_hw_cons,
402 		   txr->tx_cons, txr->tx_prod, curr);
403 	WARN_ON_ONCE(1);
404 	bnapi->tx_fault = 1;
405 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
406 }
407 
408 const u16 bnxt_lhint_arr[] = {
409 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
410 	TX_BD_FLAGS_LHINT_512_TO_1023,
411 	TX_BD_FLAGS_LHINT_1024_TO_2047,
412 	TX_BD_FLAGS_LHINT_1024_TO_2047,
413 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
414 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
415 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
416 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
417 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
418 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
419 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
420 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
421 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
422 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
423 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
424 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
425 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
426 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
427 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
428 };
429 
430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
431 {
432 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
433 
434 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
435 		return 0;
436 
437 	return md_dst->u.port_info.port_id;
438 }
439 
440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
441 			     u16 prod)
442 {
443 	/* Sync BD data before updating doorbell */
444 	wmb();
445 	bnxt_db_write(bp, &txr->tx_db, prod);
446 	txr->kick_pending = 0;
447 }
448 
449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
450 {
451 	struct bnxt *bp = netdev_priv(dev);
452 	struct tx_bd *txbd, *txbd0;
453 	struct tx_bd_ext *txbd1;
454 	struct netdev_queue *txq;
455 	int i;
456 	dma_addr_t mapping;
457 	unsigned int length, pad = 0;
458 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
459 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
460 	struct pci_dev *pdev = bp->pdev;
461 	u16 prod, last_frag, txts_prod;
462 	struct bnxt_tx_ring_info *txr;
463 	struct bnxt_sw_tx_bd *tx_buf;
464 	__le32 lflags = 0;
465 
466 	i = skb_get_queue_mapping(skb);
467 	if (unlikely(i >= bp->tx_nr_rings)) {
468 		dev_kfree_skb_any(skb);
469 		dev_core_stats_tx_dropped_inc(dev);
470 		return NETDEV_TX_OK;
471 	}
472 
473 	txq = netdev_get_tx_queue(dev, i);
474 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
475 	prod = txr->tx_prod;
476 
477 	free_size = bnxt_tx_avail(bp, txr);
478 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
479 		/* We must have raced with NAPI cleanup */
480 		if (net_ratelimit() && txr->kick_pending)
481 			netif_warn(bp, tx_err, dev,
482 				   "bnxt: ring busy w/ flush pending!\n");
483 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
484 					bp->tx_wake_thresh))
485 			return NETDEV_TX_BUSY;
486 	}
487 
488 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
489 		goto tx_free;
490 
491 	length = skb->len;
492 	len = skb_headlen(skb);
493 	last_frag = skb_shinfo(skb)->nr_frags;
494 
495 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
496 
497 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
498 	tx_buf->skb = skb;
499 	tx_buf->nr_frags = last_frag;
500 
501 	vlan_tag_flags = 0;
502 	cfa_action = bnxt_xmit_get_cfa_action(skb);
503 	if (skb_vlan_tag_present(skb)) {
504 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
505 				 skb_vlan_tag_get(skb);
506 		/* Currently supports 8021Q, 8021AD vlan offloads
507 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
508 		 */
509 		if (skb->vlan_proto == htons(ETH_P_8021Q))
510 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
511 	}
512 
513 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp &&
514 	    ptp->tx_tstamp_en) {
515 		if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) {
516 			lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
517 			tx_buf->is_ts_pkt = 1;
518 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
519 		} else if (!skb_is_gso(skb)) {
520 			u16 seq_id, hdr_off;
521 
522 			if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) &&
523 			    !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) {
524 				if (vlan_tag_flags)
525 					hdr_off += VLAN_HLEN;
526 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
527 				tx_buf->is_ts_pkt = 1;
528 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
529 
530 				ptp->txts_req[txts_prod].tx_seqid = seq_id;
531 				ptp->txts_req[txts_prod].tx_hdr_off = hdr_off;
532 				tx_buf->txts_prod = txts_prod;
533 			}
534 		}
535 	}
536 	if (unlikely(skb->no_fcs))
537 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
538 
539 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
540 	    !lflags) {
541 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
542 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
543 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
544 		void __iomem *db = txr->tx_db.doorbell;
545 		void *pdata = tx_push_buf->data;
546 		u64 *end;
547 		int j, push_len;
548 
549 		/* Set COAL_NOW to be ready quickly for the next push */
550 		tx_push->tx_bd_len_flags_type =
551 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
552 					TX_BD_TYPE_LONG_TX_BD |
553 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
554 					TX_BD_FLAGS_COAL_NOW |
555 					TX_BD_FLAGS_PACKET_END |
556 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
557 
558 		if (skb->ip_summed == CHECKSUM_PARTIAL)
559 			tx_push1->tx_bd_hsize_lflags =
560 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
561 		else
562 			tx_push1->tx_bd_hsize_lflags = 0;
563 
564 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
565 		tx_push1->tx_bd_cfa_action =
566 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
567 
568 		end = pdata + length;
569 		end = PTR_ALIGN(end, 8) - 1;
570 		*end = 0;
571 
572 		skb_copy_from_linear_data(skb, pdata, len);
573 		pdata += len;
574 		for (j = 0; j < last_frag; j++) {
575 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
576 			void *fptr;
577 
578 			fptr = skb_frag_address_safe(frag);
579 			if (!fptr)
580 				goto normal_tx;
581 
582 			memcpy(pdata, fptr, skb_frag_size(frag));
583 			pdata += skb_frag_size(frag);
584 		}
585 
586 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
587 		txbd->tx_bd_haddr = txr->data_mapping;
588 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
589 		prod = NEXT_TX(prod);
590 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
591 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
592 		memcpy(txbd, tx_push1, sizeof(*txbd));
593 		prod = NEXT_TX(prod);
594 		tx_push->doorbell =
595 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
596 				    DB_RING_IDX(&txr->tx_db, prod));
597 		WRITE_ONCE(txr->tx_prod, prod);
598 
599 		tx_buf->is_push = 1;
600 		netdev_tx_sent_queue(txq, skb->len);
601 		wmb();	/* Sync is_push and byte queue before pushing data */
602 
603 		push_len = (length + sizeof(*tx_push) + 7) / 8;
604 		if (push_len > 16) {
605 			__iowrite64_copy(db, tx_push_buf, 16);
606 			__iowrite32_copy(db + 4, tx_push_buf + 1,
607 					 (push_len - 16) << 1);
608 		} else {
609 			__iowrite64_copy(db, tx_push_buf, push_len);
610 		}
611 
612 		goto tx_done;
613 	}
614 
615 normal_tx:
616 	if (length < BNXT_MIN_PKT_SIZE) {
617 		pad = BNXT_MIN_PKT_SIZE - length;
618 		if (skb_pad(skb, pad))
619 			/* SKB already freed. */
620 			goto tx_kick_pending;
621 		length = BNXT_MIN_PKT_SIZE;
622 	}
623 
624 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
625 
626 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
627 		goto tx_free;
628 
629 	dma_unmap_addr_set(tx_buf, mapping, mapping);
630 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
631 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
632 
633 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
634 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
635 
636 	prod = NEXT_TX(prod);
637 	txbd1 = (struct tx_bd_ext *)
638 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
639 
640 	txbd1->tx_bd_hsize_lflags = lflags;
641 	if (skb_is_gso(skb)) {
642 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
643 		u32 hdr_len;
644 
645 		if (skb->encapsulation) {
646 			if (udp_gso)
647 				hdr_len = skb_inner_transport_offset(skb) +
648 					  sizeof(struct udphdr);
649 			else
650 				hdr_len = skb_inner_tcp_all_headers(skb);
651 		} else if (udp_gso) {
652 			hdr_len = skb_transport_offset(skb) +
653 				  sizeof(struct udphdr);
654 		} else {
655 			hdr_len = skb_tcp_all_headers(skb);
656 		}
657 
658 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
659 					TX_BD_FLAGS_T_IPID |
660 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
661 		length = skb_shinfo(skb)->gso_size;
662 		txbd1->tx_bd_mss = cpu_to_le32(length);
663 		length += hdr_len;
664 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
665 		txbd1->tx_bd_hsize_lflags |=
666 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
667 		txbd1->tx_bd_mss = 0;
668 	}
669 
670 	length >>= 9;
671 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
672 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
673 				     skb->len);
674 		i = 0;
675 		goto tx_dma_error;
676 	}
677 	flags |= bnxt_lhint_arr[length];
678 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
679 
680 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
681 	txbd1->tx_bd_cfa_action =
682 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
683 	txbd0 = txbd;
684 	for (i = 0; i < last_frag; i++) {
685 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
686 
687 		prod = NEXT_TX(prod);
688 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
689 
690 		len = skb_frag_size(frag);
691 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
692 					   DMA_TO_DEVICE);
693 
694 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
695 			goto tx_dma_error;
696 
697 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
698 		dma_unmap_addr_set(tx_buf, mapping, mapping);
699 
700 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
701 
702 		flags = len << TX_BD_LEN_SHIFT;
703 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
704 	}
705 
706 	flags &= ~TX_BD_LEN;
707 	txbd->tx_bd_len_flags_type =
708 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
709 			    TX_BD_FLAGS_PACKET_END);
710 
711 	netdev_tx_sent_queue(txq, skb->len);
712 
713 	skb_tx_timestamp(skb);
714 
715 	prod = NEXT_TX(prod);
716 	WRITE_ONCE(txr->tx_prod, prod);
717 
718 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
719 		bnxt_txr_db_kick(bp, txr, prod);
720 	} else {
721 		if (free_size >= bp->tx_wake_thresh)
722 			txbd0->tx_bd_len_flags_type |=
723 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
724 		txr->kick_pending = 1;
725 	}
726 
727 tx_done:
728 
729 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
730 		if (netdev_xmit_more() && !tx_buf->is_push) {
731 			txbd0->tx_bd_len_flags_type &=
732 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
733 			bnxt_txr_db_kick(bp, txr, prod);
734 		}
735 
736 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
737 				   bp->tx_wake_thresh);
738 	}
739 	return NETDEV_TX_OK;
740 
741 tx_dma_error:
742 	last_frag = i;
743 
744 	/* start back at beginning and unmap skb */
745 	prod = txr->tx_prod;
746 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
747 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
748 			 skb_headlen(skb), DMA_TO_DEVICE);
749 	prod = NEXT_TX(prod);
750 
751 	/* unmap remaining mapped pages */
752 	for (i = 0; i < last_frag; i++) {
753 		prod = NEXT_TX(prod);
754 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
755 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
756 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
757 			       DMA_TO_DEVICE);
758 	}
759 
760 tx_free:
761 	dev_kfree_skb_any(skb);
762 tx_kick_pending:
763 	if (BNXT_TX_PTP_IS_SET(lflags)) {
764 		txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0;
765 		atomic64_inc(&bp->ptp_cfg->stats.ts_err);
766 		if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
767 			/* set SKB to err so PTP worker will clean up */
768 			ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO);
769 	}
770 	if (txr->kick_pending)
771 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
772 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
773 	dev_core_stats_tx_dropped_inc(dev);
774 	return NETDEV_TX_OK;
775 }
776 
777 /* Returns true if some remaining TX packets not processed. */
778 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
779 			  int budget)
780 {
781 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
782 	struct pci_dev *pdev = bp->pdev;
783 	u16 hw_cons = txr->tx_hw_cons;
784 	unsigned int tx_bytes = 0;
785 	u16 cons = txr->tx_cons;
786 	int tx_pkts = 0;
787 	bool rc = false;
788 
789 	while (RING_TX(bp, cons) != hw_cons) {
790 		struct bnxt_sw_tx_bd *tx_buf;
791 		struct sk_buff *skb;
792 		bool is_ts_pkt;
793 		int j, last;
794 
795 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
796 		skb = tx_buf->skb;
797 
798 		if (unlikely(!skb)) {
799 			bnxt_sched_reset_txr(bp, txr, cons);
800 			return rc;
801 		}
802 
803 		is_ts_pkt = tx_buf->is_ts_pkt;
804 		if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) {
805 			rc = true;
806 			break;
807 		}
808 
809 		cons = NEXT_TX(cons);
810 		tx_pkts++;
811 		tx_bytes += skb->len;
812 		tx_buf->skb = NULL;
813 		tx_buf->is_ts_pkt = 0;
814 
815 		if (tx_buf->is_push) {
816 			tx_buf->is_push = 0;
817 			goto next_tx_int;
818 		}
819 
820 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
821 				 skb_headlen(skb), DMA_TO_DEVICE);
822 		last = tx_buf->nr_frags;
823 
824 		for (j = 0; j < last; j++) {
825 			cons = NEXT_TX(cons);
826 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
827 			dma_unmap_page(
828 				&pdev->dev,
829 				dma_unmap_addr(tx_buf, mapping),
830 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
831 				DMA_TO_DEVICE);
832 		}
833 		if (unlikely(is_ts_pkt)) {
834 			if (BNXT_CHIP_P5(bp)) {
835 				/* PTP worker takes ownership of the skb */
836 				bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod);
837 				skb = NULL;
838 			}
839 		}
840 
841 next_tx_int:
842 		cons = NEXT_TX(cons);
843 
844 		dev_consume_skb_any(skb);
845 	}
846 
847 	WRITE_ONCE(txr->tx_cons, cons);
848 
849 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
850 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
851 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
852 
853 	return rc;
854 }
855 
856 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
857 {
858 	struct bnxt_tx_ring_info *txr;
859 	bool more = false;
860 	int i;
861 
862 	bnxt_for_each_napi_tx(i, bnapi, txr) {
863 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
864 			more |= __bnxt_tx_int(bp, txr, budget);
865 	}
866 	if (!more)
867 		bnapi->events &= ~BNXT_TX_CMP_EVENT;
868 }
869 
870 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
871 					 struct bnxt_rx_ring_info *rxr,
872 					 unsigned int *offset,
873 					 gfp_t gfp)
874 {
875 	struct page *page;
876 
877 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
878 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
879 						BNXT_RX_PAGE_SIZE);
880 	} else {
881 		page = page_pool_dev_alloc_pages(rxr->page_pool);
882 		*offset = 0;
883 	}
884 	if (!page)
885 		return NULL;
886 
887 	*mapping = page_pool_get_dma_addr(page) + *offset;
888 	return page;
889 }
890 
891 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
892 				       gfp_t gfp)
893 {
894 	u8 *data;
895 	struct pci_dev *pdev = bp->pdev;
896 
897 	if (gfp == GFP_ATOMIC)
898 		data = napi_alloc_frag(bp->rx_buf_size);
899 	else
900 		data = netdev_alloc_frag(bp->rx_buf_size);
901 	if (!data)
902 		return NULL;
903 
904 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
905 					bp->rx_buf_use_size, bp->rx_dir,
906 					DMA_ATTR_WEAK_ORDERING);
907 
908 	if (dma_mapping_error(&pdev->dev, *mapping)) {
909 		skb_free_frag(data);
910 		data = NULL;
911 	}
912 	return data;
913 }
914 
915 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
916 		       u16 prod, gfp_t gfp)
917 {
918 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
919 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
920 	dma_addr_t mapping;
921 
922 	if (BNXT_RX_PAGE_MODE(bp)) {
923 		unsigned int offset;
924 		struct page *page =
925 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
926 
927 		if (!page)
928 			return -ENOMEM;
929 
930 		mapping += bp->rx_dma_offset;
931 		rx_buf->data = page;
932 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
933 	} else {
934 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
935 
936 		if (!data)
937 			return -ENOMEM;
938 
939 		rx_buf->data = data;
940 		rx_buf->data_ptr = data + bp->rx_offset;
941 	}
942 	rx_buf->mapping = mapping;
943 
944 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
945 	return 0;
946 }
947 
948 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
949 {
950 	u16 prod = rxr->rx_prod;
951 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
952 	struct bnxt *bp = rxr->bnapi->bp;
953 	struct rx_bd *cons_bd, *prod_bd;
954 
955 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
956 	cons_rx_buf = &rxr->rx_buf_ring[cons];
957 
958 	prod_rx_buf->data = data;
959 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
960 
961 	prod_rx_buf->mapping = cons_rx_buf->mapping;
962 
963 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
964 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
965 
966 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
967 }
968 
969 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
970 {
971 	u16 next, max = rxr->rx_agg_bmap_size;
972 
973 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
974 	if (next >= max)
975 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
976 	return next;
977 }
978 
979 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
980 				     struct bnxt_rx_ring_info *rxr,
981 				     u16 prod, gfp_t gfp)
982 {
983 	struct rx_bd *rxbd =
984 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
985 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
986 	struct page *page;
987 	dma_addr_t mapping;
988 	u16 sw_prod = rxr->rx_sw_agg_prod;
989 	unsigned int offset = 0;
990 
991 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
992 
993 	if (!page)
994 		return -ENOMEM;
995 
996 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
997 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
998 
999 	__set_bit(sw_prod, rxr->rx_agg_bmap);
1000 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
1001 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1002 
1003 	rx_agg_buf->page = page;
1004 	rx_agg_buf->offset = offset;
1005 	rx_agg_buf->mapping = mapping;
1006 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
1007 	rxbd->rx_bd_opaque = sw_prod;
1008 	return 0;
1009 }
1010 
1011 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
1012 				       struct bnxt_cp_ring_info *cpr,
1013 				       u16 cp_cons, u16 curr)
1014 {
1015 	struct rx_agg_cmp *agg;
1016 
1017 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
1018 	agg = (struct rx_agg_cmp *)
1019 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1020 	return agg;
1021 }
1022 
1023 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
1024 					      struct bnxt_rx_ring_info *rxr,
1025 					      u16 agg_id, u16 curr)
1026 {
1027 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
1028 
1029 	return &tpa_info->agg_arr[curr];
1030 }
1031 
1032 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
1033 				   u16 start, u32 agg_bufs, bool tpa)
1034 {
1035 	struct bnxt_napi *bnapi = cpr->bnapi;
1036 	struct bnxt *bp = bnapi->bp;
1037 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1038 	u16 prod = rxr->rx_agg_prod;
1039 	u16 sw_prod = rxr->rx_sw_agg_prod;
1040 	bool p5_tpa = false;
1041 	u32 i;
1042 
1043 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1044 		p5_tpa = true;
1045 
1046 	for (i = 0; i < agg_bufs; i++) {
1047 		u16 cons;
1048 		struct rx_agg_cmp *agg;
1049 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
1050 		struct rx_bd *prod_bd;
1051 		struct page *page;
1052 
1053 		if (p5_tpa)
1054 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
1055 		else
1056 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
1057 		cons = agg->rx_agg_cmp_opaque;
1058 		__clear_bit(cons, rxr->rx_agg_bmap);
1059 
1060 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1061 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1062 
1063 		__set_bit(sw_prod, rxr->rx_agg_bmap);
1064 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
1065 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1066 
1067 		/* It is possible for sw_prod to be equal to cons, so
1068 		 * set cons_rx_buf->page to NULL first.
1069 		 */
1070 		page = cons_rx_buf->page;
1071 		cons_rx_buf->page = NULL;
1072 		prod_rx_buf->page = page;
1073 		prod_rx_buf->offset = cons_rx_buf->offset;
1074 
1075 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1076 
1077 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1078 
1079 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1080 		prod_bd->rx_bd_opaque = sw_prod;
1081 
1082 		prod = NEXT_RX_AGG(prod);
1083 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1084 	}
1085 	rxr->rx_agg_prod = prod;
1086 	rxr->rx_sw_agg_prod = sw_prod;
1087 }
1088 
1089 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1090 					      struct bnxt_rx_ring_info *rxr,
1091 					      u16 cons, void *data, u8 *data_ptr,
1092 					      dma_addr_t dma_addr,
1093 					      unsigned int offset_and_len)
1094 {
1095 	unsigned int len = offset_and_len & 0xffff;
1096 	struct page *page = data;
1097 	u16 prod = rxr->rx_prod;
1098 	struct sk_buff *skb;
1099 	int err;
1100 
1101 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1102 	if (unlikely(err)) {
1103 		bnxt_reuse_rx_data(rxr, cons, data);
1104 		return NULL;
1105 	}
1106 	dma_addr -= bp->rx_dma_offset;
1107 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1108 				bp->rx_dir);
1109 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1110 	if (!skb) {
1111 		page_pool_recycle_direct(rxr->page_pool, page);
1112 		return NULL;
1113 	}
1114 	skb_mark_for_recycle(skb);
1115 	skb_reserve(skb, bp->rx_offset);
1116 	__skb_put(skb, len);
1117 
1118 	return skb;
1119 }
1120 
1121 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1122 					struct bnxt_rx_ring_info *rxr,
1123 					u16 cons, void *data, u8 *data_ptr,
1124 					dma_addr_t dma_addr,
1125 					unsigned int offset_and_len)
1126 {
1127 	unsigned int payload = offset_and_len >> 16;
1128 	unsigned int len = offset_and_len & 0xffff;
1129 	skb_frag_t *frag;
1130 	struct page *page = data;
1131 	u16 prod = rxr->rx_prod;
1132 	struct sk_buff *skb;
1133 	int off, err;
1134 
1135 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1136 	if (unlikely(err)) {
1137 		bnxt_reuse_rx_data(rxr, cons, data);
1138 		return NULL;
1139 	}
1140 	dma_addr -= bp->rx_dma_offset;
1141 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1142 				bp->rx_dir);
1143 
1144 	if (unlikely(!payload))
1145 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1146 
1147 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1148 	if (!skb) {
1149 		page_pool_recycle_direct(rxr->page_pool, page);
1150 		return NULL;
1151 	}
1152 
1153 	skb_mark_for_recycle(skb);
1154 	off = (void *)data_ptr - page_address(page);
1155 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1156 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1157 	       payload + NET_IP_ALIGN);
1158 
1159 	frag = &skb_shinfo(skb)->frags[0];
1160 	skb_frag_size_sub(frag, payload);
1161 	skb_frag_off_add(frag, payload);
1162 	skb->data_len -= payload;
1163 	skb->tail += payload;
1164 
1165 	return skb;
1166 }
1167 
1168 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1169 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1170 				   void *data, u8 *data_ptr,
1171 				   dma_addr_t dma_addr,
1172 				   unsigned int offset_and_len)
1173 {
1174 	u16 prod = rxr->rx_prod;
1175 	struct sk_buff *skb;
1176 	int err;
1177 
1178 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1179 	if (unlikely(err)) {
1180 		bnxt_reuse_rx_data(rxr, cons, data);
1181 		return NULL;
1182 	}
1183 
1184 	skb = napi_build_skb(data, bp->rx_buf_size);
1185 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1186 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1187 	if (!skb) {
1188 		skb_free_frag(data);
1189 		return NULL;
1190 	}
1191 
1192 	skb_reserve(skb, bp->rx_offset);
1193 	skb_put(skb, offset_and_len & 0xffff);
1194 	return skb;
1195 }
1196 
1197 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1198 			       struct bnxt_cp_ring_info *cpr,
1199 			       struct skb_shared_info *shinfo,
1200 			       u16 idx, u32 agg_bufs, bool tpa,
1201 			       struct xdp_buff *xdp)
1202 {
1203 	struct bnxt_napi *bnapi = cpr->bnapi;
1204 	struct pci_dev *pdev = bp->pdev;
1205 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1206 	u16 prod = rxr->rx_agg_prod;
1207 	u32 i, total_frag_len = 0;
1208 	bool p5_tpa = false;
1209 
1210 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1211 		p5_tpa = true;
1212 
1213 	for (i = 0; i < agg_bufs; i++) {
1214 		skb_frag_t *frag = &shinfo->frags[i];
1215 		u16 cons, frag_len;
1216 		struct rx_agg_cmp *agg;
1217 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1218 		struct page *page;
1219 		dma_addr_t mapping;
1220 
1221 		if (p5_tpa)
1222 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1223 		else
1224 			agg = bnxt_get_agg(bp, cpr, idx, i);
1225 		cons = agg->rx_agg_cmp_opaque;
1226 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1227 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1228 
1229 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1230 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1231 					cons_rx_buf->offset, frag_len);
1232 		shinfo->nr_frags = i + 1;
1233 		__clear_bit(cons, rxr->rx_agg_bmap);
1234 
1235 		/* It is possible for bnxt_alloc_rx_page() to allocate
1236 		 * a sw_prod index that equals the cons index, so we
1237 		 * need to clear the cons entry now.
1238 		 */
1239 		mapping = cons_rx_buf->mapping;
1240 		page = cons_rx_buf->page;
1241 		cons_rx_buf->page = NULL;
1242 
1243 		if (xdp && page_is_pfmemalloc(page))
1244 			xdp_buff_set_frag_pfmemalloc(xdp);
1245 
1246 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1247 			--shinfo->nr_frags;
1248 			cons_rx_buf->page = page;
1249 
1250 			/* Update prod since possibly some pages have been
1251 			 * allocated already.
1252 			 */
1253 			rxr->rx_agg_prod = prod;
1254 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1255 			return 0;
1256 		}
1257 
1258 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1259 					bp->rx_dir);
1260 
1261 		total_frag_len += frag_len;
1262 		prod = NEXT_RX_AGG(prod);
1263 	}
1264 	rxr->rx_agg_prod = prod;
1265 	return total_frag_len;
1266 }
1267 
1268 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1269 					     struct bnxt_cp_ring_info *cpr,
1270 					     struct sk_buff *skb, u16 idx,
1271 					     u32 agg_bufs, bool tpa)
1272 {
1273 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1274 	u32 total_frag_len = 0;
1275 
1276 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1277 					     agg_bufs, tpa, NULL);
1278 	if (!total_frag_len) {
1279 		skb_mark_for_recycle(skb);
1280 		dev_kfree_skb(skb);
1281 		return NULL;
1282 	}
1283 
1284 	skb->data_len += total_frag_len;
1285 	skb->len += total_frag_len;
1286 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1287 	return skb;
1288 }
1289 
1290 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1291 				 struct bnxt_cp_ring_info *cpr,
1292 				 struct xdp_buff *xdp, u16 idx,
1293 				 u32 agg_bufs, bool tpa)
1294 {
1295 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1296 	u32 total_frag_len = 0;
1297 
1298 	if (!xdp_buff_has_frags(xdp))
1299 		shinfo->nr_frags = 0;
1300 
1301 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1302 					     idx, agg_bufs, tpa, xdp);
1303 	if (total_frag_len) {
1304 		xdp_buff_set_frags_flag(xdp);
1305 		shinfo->nr_frags = agg_bufs;
1306 		shinfo->xdp_frags_size = total_frag_len;
1307 	}
1308 	return total_frag_len;
1309 }
1310 
1311 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1312 			       u8 agg_bufs, u32 *raw_cons)
1313 {
1314 	u16 last;
1315 	struct rx_agg_cmp *agg;
1316 
1317 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1318 	last = RING_CMP(*raw_cons);
1319 	agg = (struct rx_agg_cmp *)
1320 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1321 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1322 }
1323 
1324 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data,
1325 				      unsigned int len,
1326 				      dma_addr_t mapping)
1327 {
1328 	struct bnxt *bp = bnapi->bp;
1329 	struct pci_dev *pdev = bp->pdev;
1330 	struct sk_buff *skb;
1331 
1332 	skb = napi_alloc_skb(&bnapi->napi, len);
1333 	if (!skb)
1334 		return NULL;
1335 
1336 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1337 				bp->rx_dir);
1338 
1339 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1340 	       len + NET_IP_ALIGN);
1341 
1342 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1343 				   bp->rx_dir);
1344 
1345 	skb_put(skb, len);
1346 
1347 	return skb;
1348 }
1349 
1350 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1351 				     unsigned int len,
1352 				     dma_addr_t mapping)
1353 {
1354 	return bnxt_copy_data(bnapi, data, len, mapping);
1355 }
1356 
1357 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi,
1358 				     struct xdp_buff *xdp,
1359 				     unsigned int len,
1360 				     dma_addr_t mapping)
1361 {
1362 	unsigned int metasize = 0;
1363 	u8 *data = xdp->data;
1364 	struct sk_buff *skb;
1365 
1366 	len = xdp->data_end - xdp->data_meta;
1367 	metasize = xdp->data - xdp->data_meta;
1368 	data = xdp->data_meta;
1369 
1370 	skb = bnxt_copy_data(bnapi, data, len, mapping);
1371 	if (!skb)
1372 		return skb;
1373 
1374 	if (metasize) {
1375 		skb_metadata_set(skb, metasize);
1376 		__skb_pull(skb, metasize);
1377 	}
1378 
1379 	return skb;
1380 }
1381 
1382 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1383 			   u32 *raw_cons, void *cmp)
1384 {
1385 	struct rx_cmp *rxcmp = cmp;
1386 	u32 tmp_raw_cons = *raw_cons;
1387 	u8 cmp_type, agg_bufs = 0;
1388 
1389 	cmp_type = RX_CMP_TYPE(rxcmp);
1390 
1391 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1392 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1393 			    RX_CMP_AGG_BUFS) >>
1394 			   RX_CMP_AGG_BUFS_SHIFT;
1395 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1396 		struct rx_tpa_end_cmp *tpa_end = cmp;
1397 
1398 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1399 			return 0;
1400 
1401 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1402 	}
1403 
1404 	if (agg_bufs) {
1405 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1406 			return -EBUSY;
1407 	}
1408 	*raw_cons = tmp_raw_cons;
1409 	return 0;
1410 }
1411 
1412 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1413 {
1414 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1415 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1416 
1417 	if (test_bit(idx, map->agg_idx_bmap))
1418 		idx = find_first_zero_bit(map->agg_idx_bmap,
1419 					  BNXT_AGG_IDX_BMAP_SIZE);
1420 	__set_bit(idx, map->agg_idx_bmap);
1421 	map->agg_id_tbl[agg_id] = idx;
1422 	return idx;
1423 }
1424 
1425 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1426 {
1427 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1428 
1429 	__clear_bit(idx, map->agg_idx_bmap);
1430 }
1431 
1432 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1433 {
1434 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1435 
1436 	return map->agg_id_tbl[agg_id];
1437 }
1438 
1439 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1440 			      struct rx_tpa_start_cmp *tpa_start,
1441 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1442 {
1443 	tpa_info->cfa_code_valid = 1;
1444 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1445 	tpa_info->vlan_valid = 0;
1446 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1447 		tpa_info->vlan_valid = 1;
1448 		tpa_info->metadata =
1449 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1450 	}
1451 }
1452 
1453 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1454 				 struct rx_tpa_start_cmp *tpa_start,
1455 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1456 {
1457 	tpa_info->vlan_valid = 0;
1458 	if (TPA_START_VLAN_VALID(tpa_start)) {
1459 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1460 		u32 vlan_proto = ETH_P_8021Q;
1461 
1462 		tpa_info->vlan_valid = 1;
1463 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1464 			vlan_proto = ETH_P_8021AD;
1465 		tpa_info->metadata = vlan_proto << 16 |
1466 				     TPA_START_METADATA0_TCI(tpa_start1);
1467 	}
1468 }
1469 
1470 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1471 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1472 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1473 {
1474 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1475 	struct bnxt_tpa_info *tpa_info;
1476 	u16 cons, prod, agg_id;
1477 	struct rx_bd *prod_bd;
1478 	dma_addr_t mapping;
1479 
1480 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1481 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1482 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1483 	} else {
1484 		agg_id = TPA_START_AGG_ID(tpa_start);
1485 	}
1486 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1487 	prod = rxr->rx_prod;
1488 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1489 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1490 	tpa_info = &rxr->rx_tpa[agg_id];
1491 
1492 	if (unlikely(cons != rxr->rx_next_cons ||
1493 		     TPA_START_ERROR(tpa_start))) {
1494 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1495 			    cons, rxr->rx_next_cons,
1496 			    TPA_START_ERROR_CODE(tpa_start1));
1497 		bnxt_sched_reset_rxr(bp, rxr);
1498 		return;
1499 	}
1500 	prod_rx_buf->data = tpa_info->data;
1501 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1502 
1503 	mapping = tpa_info->mapping;
1504 	prod_rx_buf->mapping = mapping;
1505 
1506 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1507 
1508 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1509 
1510 	tpa_info->data = cons_rx_buf->data;
1511 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1512 	cons_rx_buf->data = NULL;
1513 	tpa_info->mapping = cons_rx_buf->mapping;
1514 
1515 	tpa_info->len =
1516 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1517 				RX_TPA_START_CMP_LEN_SHIFT;
1518 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1519 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1520 		tpa_info->gso_type = SKB_GSO_TCPV4;
1521 		if (TPA_START_IS_IPV6(tpa_start1))
1522 			tpa_info->gso_type = SKB_GSO_TCPV6;
1523 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1524 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1525 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1526 			tpa_info->gso_type = SKB_GSO_TCPV6;
1527 		tpa_info->rss_hash =
1528 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1529 	} else {
1530 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1531 		tpa_info->gso_type = 0;
1532 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1533 	}
1534 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1535 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1536 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1537 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1538 	else
1539 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1540 	tpa_info->agg_count = 0;
1541 
1542 	rxr->rx_prod = NEXT_RX(prod);
1543 	cons = RING_RX(bp, NEXT_RX(cons));
1544 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1545 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1546 
1547 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1548 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1549 	cons_rx_buf->data = NULL;
1550 }
1551 
1552 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1553 {
1554 	if (agg_bufs)
1555 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1556 }
1557 
1558 #ifdef CONFIG_INET
1559 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1560 {
1561 	struct udphdr *uh = NULL;
1562 
1563 	if (ip_proto == htons(ETH_P_IP)) {
1564 		struct iphdr *iph = (struct iphdr *)skb->data;
1565 
1566 		if (iph->protocol == IPPROTO_UDP)
1567 			uh = (struct udphdr *)(iph + 1);
1568 	} else {
1569 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1570 
1571 		if (iph->nexthdr == IPPROTO_UDP)
1572 			uh = (struct udphdr *)(iph + 1);
1573 	}
1574 	if (uh) {
1575 		if (uh->check)
1576 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1577 		else
1578 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1579 	}
1580 }
1581 #endif
1582 
1583 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1584 					   int payload_off, int tcp_ts,
1585 					   struct sk_buff *skb)
1586 {
1587 #ifdef CONFIG_INET
1588 	struct tcphdr *th;
1589 	int len, nw_off;
1590 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1591 	u32 hdr_info = tpa_info->hdr_info;
1592 	bool loopback = false;
1593 
1594 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1595 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1596 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1597 
1598 	/* If the packet is an internal loopback packet, the offsets will
1599 	 * have an extra 4 bytes.
1600 	 */
1601 	if (inner_mac_off == 4) {
1602 		loopback = true;
1603 	} else if (inner_mac_off > 4) {
1604 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1605 					    ETH_HLEN - 2));
1606 
1607 		/* We only support inner iPv4/ipv6.  If we don't see the
1608 		 * correct protocol ID, it must be a loopback packet where
1609 		 * the offsets are off by 4.
1610 		 */
1611 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1612 			loopback = true;
1613 	}
1614 	if (loopback) {
1615 		/* internal loopback packet, subtract all offsets by 4 */
1616 		inner_ip_off -= 4;
1617 		inner_mac_off -= 4;
1618 		outer_ip_off -= 4;
1619 	}
1620 
1621 	nw_off = inner_ip_off - ETH_HLEN;
1622 	skb_set_network_header(skb, nw_off);
1623 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1624 		struct ipv6hdr *iph = ipv6_hdr(skb);
1625 
1626 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1627 		len = skb->len - skb_transport_offset(skb);
1628 		th = tcp_hdr(skb);
1629 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1630 	} else {
1631 		struct iphdr *iph = ip_hdr(skb);
1632 
1633 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1634 		len = skb->len - skb_transport_offset(skb);
1635 		th = tcp_hdr(skb);
1636 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1637 	}
1638 
1639 	if (inner_mac_off) { /* tunnel */
1640 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1641 					    ETH_HLEN - 2));
1642 
1643 		bnxt_gro_tunnel(skb, proto);
1644 	}
1645 #endif
1646 	return skb;
1647 }
1648 
1649 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1650 					   int payload_off, int tcp_ts,
1651 					   struct sk_buff *skb)
1652 {
1653 #ifdef CONFIG_INET
1654 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1655 	u32 hdr_info = tpa_info->hdr_info;
1656 	int iphdr_len, nw_off;
1657 
1658 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1659 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1660 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1661 
1662 	nw_off = inner_ip_off - ETH_HLEN;
1663 	skb_set_network_header(skb, nw_off);
1664 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1665 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1666 	skb_set_transport_header(skb, nw_off + iphdr_len);
1667 
1668 	if (inner_mac_off) { /* tunnel */
1669 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1670 					    ETH_HLEN - 2));
1671 
1672 		bnxt_gro_tunnel(skb, proto);
1673 	}
1674 #endif
1675 	return skb;
1676 }
1677 
1678 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1679 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1680 
1681 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1682 					   int payload_off, int tcp_ts,
1683 					   struct sk_buff *skb)
1684 {
1685 #ifdef CONFIG_INET
1686 	struct tcphdr *th;
1687 	int len, nw_off, tcp_opt_len = 0;
1688 
1689 	if (tcp_ts)
1690 		tcp_opt_len = 12;
1691 
1692 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1693 		struct iphdr *iph;
1694 
1695 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1696 			 ETH_HLEN;
1697 		skb_set_network_header(skb, nw_off);
1698 		iph = ip_hdr(skb);
1699 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1700 		len = skb->len - skb_transport_offset(skb);
1701 		th = tcp_hdr(skb);
1702 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1703 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1704 		struct ipv6hdr *iph;
1705 
1706 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1707 			 ETH_HLEN;
1708 		skb_set_network_header(skb, nw_off);
1709 		iph = ipv6_hdr(skb);
1710 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1711 		len = skb->len - skb_transport_offset(skb);
1712 		th = tcp_hdr(skb);
1713 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1714 	} else {
1715 		dev_kfree_skb_any(skb);
1716 		return NULL;
1717 	}
1718 
1719 	if (nw_off) /* tunnel */
1720 		bnxt_gro_tunnel(skb, skb->protocol);
1721 #endif
1722 	return skb;
1723 }
1724 
1725 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1726 					   struct bnxt_tpa_info *tpa_info,
1727 					   struct rx_tpa_end_cmp *tpa_end,
1728 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1729 					   struct sk_buff *skb)
1730 {
1731 #ifdef CONFIG_INET
1732 	int payload_off;
1733 	u16 segs;
1734 
1735 	segs = TPA_END_TPA_SEGS(tpa_end);
1736 	if (segs == 1)
1737 		return skb;
1738 
1739 	NAPI_GRO_CB(skb)->count = segs;
1740 	skb_shinfo(skb)->gso_size =
1741 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1742 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1743 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1744 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1745 	else
1746 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1747 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1748 	if (likely(skb))
1749 		tcp_gro_complete(skb);
1750 #endif
1751 	return skb;
1752 }
1753 
1754 /* Given the cfa_code of a received packet determine which
1755  * netdev (vf-rep or PF) the packet is destined to.
1756  */
1757 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1758 {
1759 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1760 
1761 	/* if vf-rep dev is NULL, the must belongs to the PF */
1762 	return dev ? dev : bp->dev;
1763 }
1764 
1765 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1766 					   struct bnxt_cp_ring_info *cpr,
1767 					   u32 *raw_cons,
1768 					   struct rx_tpa_end_cmp *tpa_end,
1769 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1770 					   u8 *event)
1771 {
1772 	struct bnxt_napi *bnapi = cpr->bnapi;
1773 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1774 	struct net_device *dev = bp->dev;
1775 	u8 *data_ptr, agg_bufs;
1776 	unsigned int len;
1777 	struct bnxt_tpa_info *tpa_info;
1778 	dma_addr_t mapping;
1779 	struct sk_buff *skb;
1780 	u16 idx = 0, agg_id;
1781 	void *data;
1782 	bool gro;
1783 
1784 	if (unlikely(bnapi->in_reset)) {
1785 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1786 
1787 		if (rc < 0)
1788 			return ERR_PTR(-EBUSY);
1789 		return NULL;
1790 	}
1791 
1792 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1793 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1794 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1795 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1796 		tpa_info = &rxr->rx_tpa[agg_id];
1797 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1798 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1799 				    agg_bufs, tpa_info->agg_count);
1800 			agg_bufs = tpa_info->agg_count;
1801 		}
1802 		tpa_info->agg_count = 0;
1803 		*event |= BNXT_AGG_EVENT;
1804 		bnxt_free_agg_idx(rxr, agg_id);
1805 		idx = agg_id;
1806 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1807 	} else {
1808 		agg_id = TPA_END_AGG_ID(tpa_end);
1809 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1810 		tpa_info = &rxr->rx_tpa[agg_id];
1811 		idx = RING_CMP(*raw_cons);
1812 		if (agg_bufs) {
1813 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1814 				return ERR_PTR(-EBUSY);
1815 
1816 			*event |= BNXT_AGG_EVENT;
1817 			idx = NEXT_CMP(idx);
1818 		}
1819 		gro = !!TPA_END_GRO(tpa_end);
1820 	}
1821 	data = tpa_info->data;
1822 	data_ptr = tpa_info->data_ptr;
1823 	prefetch(data_ptr);
1824 	len = tpa_info->len;
1825 	mapping = tpa_info->mapping;
1826 
1827 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1828 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1829 		if (agg_bufs > MAX_SKB_FRAGS)
1830 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1831 				    agg_bufs, (int)MAX_SKB_FRAGS);
1832 		return NULL;
1833 	}
1834 
1835 	if (len <= bp->rx_copy_thresh) {
1836 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1837 		if (!skb) {
1838 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1839 			cpr->sw_stats->rx.rx_oom_discards += 1;
1840 			return NULL;
1841 		}
1842 	} else {
1843 		u8 *new_data;
1844 		dma_addr_t new_mapping;
1845 
1846 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1847 		if (!new_data) {
1848 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1849 			cpr->sw_stats->rx.rx_oom_discards += 1;
1850 			return NULL;
1851 		}
1852 
1853 		tpa_info->data = new_data;
1854 		tpa_info->data_ptr = new_data + bp->rx_offset;
1855 		tpa_info->mapping = new_mapping;
1856 
1857 		skb = napi_build_skb(data, bp->rx_buf_size);
1858 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1859 				       bp->rx_buf_use_size, bp->rx_dir,
1860 				       DMA_ATTR_WEAK_ORDERING);
1861 
1862 		if (!skb) {
1863 			skb_free_frag(data);
1864 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1865 			cpr->sw_stats->rx.rx_oom_discards += 1;
1866 			return NULL;
1867 		}
1868 		skb_reserve(skb, bp->rx_offset);
1869 		skb_put(skb, len);
1870 	}
1871 
1872 	if (agg_bufs) {
1873 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1874 		if (!skb) {
1875 			/* Page reuse already handled by bnxt_rx_pages(). */
1876 			cpr->sw_stats->rx.rx_oom_discards += 1;
1877 			return NULL;
1878 		}
1879 	}
1880 
1881 	if (tpa_info->cfa_code_valid)
1882 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1883 	skb->protocol = eth_type_trans(skb, dev);
1884 
1885 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1886 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1887 
1888 	if (tpa_info->vlan_valid &&
1889 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1890 		__be16 vlan_proto = htons(tpa_info->metadata >>
1891 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1892 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1893 
1894 		if (eth_type_vlan(vlan_proto)) {
1895 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1896 		} else {
1897 			dev_kfree_skb(skb);
1898 			return NULL;
1899 		}
1900 	}
1901 
1902 	skb_checksum_none_assert(skb);
1903 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1904 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1905 		skb->csum_level =
1906 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1907 	}
1908 
1909 	if (gro)
1910 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1911 
1912 	return skb;
1913 }
1914 
1915 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1916 			 struct rx_agg_cmp *rx_agg)
1917 {
1918 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1919 	struct bnxt_tpa_info *tpa_info;
1920 
1921 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1922 	tpa_info = &rxr->rx_tpa[agg_id];
1923 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1924 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1925 }
1926 
1927 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1928 			     struct sk_buff *skb)
1929 {
1930 	skb_mark_for_recycle(skb);
1931 
1932 	if (skb->dev != bp->dev) {
1933 		/* this packet belongs to a vf-rep */
1934 		bnxt_vf_rep_rx(bp, skb);
1935 		return;
1936 	}
1937 	skb_record_rx_queue(skb, bnapi->index);
1938 	napi_gro_receive(&bnapi->napi, skb);
1939 }
1940 
1941 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1942 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1943 {
1944 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1945 
1946 	if (BNXT_PTP_RX_TS_VALID(flags))
1947 		goto ts_valid;
1948 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1949 		return false;
1950 
1951 ts_valid:
1952 	*cmpl_ts = ts;
1953 	return true;
1954 }
1955 
1956 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1957 				    struct rx_cmp *rxcmp,
1958 				    struct rx_cmp_ext *rxcmp1)
1959 {
1960 	__be16 vlan_proto;
1961 	u16 vtag;
1962 
1963 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1964 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1965 		u32 meta_data;
1966 
1967 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1968 			return skb;
1969 
1970 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1971 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1972 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1973 		if (eth_type_vlan(vlan_proto))
1974 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1975 		else
1976 			goto vlan_err;
1977 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1978 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1979 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1980 
1981 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1982 				vlan_proto = htons(ETH_P_8021Q);
1983 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1984 				vlan_proto = htons(ETH_P_8021AD);
1985 			else
1986 				goto vlan_err;
1987 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1988 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1989 		}
1990 	}
1991 	return skb;
1992 vlan_err:
1993 	dev_kfree_skb(skb);
1994 	return NULL;
1995 }
1996 
1997 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1998 					   struct rx_cmp *rxcmp)
1999 {
2000 	u8 ext_op;
2001 
2002 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
2003 	switch (ext_op) {
2004 	case EXT_OP_INNER_4:
2005 	case EXT_OP_OUTER_4:
2006 	case EXT_OP_INNFL_3:
2007 	case EXT_OP_OUTFL_3:
2008 		return PKT_HASH_TYPE_L4;
2009 	default:
2010 		return PKT_HASH_TYPE_L3;
2011 	}
2012 }
2013 
2014 /* returns the following:
2015  * 1       - 1 packet successfully received
2016  * 0       - successful TPA_START, packet not completed yet
2017  * -EBUSY  - completion ring does not have all the agg buffers yet
2018  * -ENOMEM - packet aborted due to out of memory
2019  * -EIO    - packet aborted due to hw error indicated in BD
2020  */
2021 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2022 		       u32 *raw_cons, u8 *event)
2023 {
2024 	struct bnxt_napi *bnapi = cpr->bnapi;
2025 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2026 	struct net_device *dev = bp->dev;
2027 	struct rx_cmp *rxcmp;
2028 	struct rx_cmp_ext *rxcmp1;
2029 	u32 tmp_raw_cons = *raw_cons;
2030 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
2031 	struct bnxt_sw_rx_bd *rx_buf;
2032 	unsigned int len;
2033 	u8 *data_ptr, agg_bufs, cmp_type;
2034 	bool xdp_active = false;
2035 	dma_addr_t dma_addr;
2036 	struct sk_buff *skb;
2037 	struct xdp_buff xdp;
2038 	u32 flags, misc;
2039 	u32 cmpl_ts;
2040 	void *data;
2041 	int rc = 0;
2042 
2043 	rxcmp = (struct rx_cmp *)
2044 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2045 
2046 	cmp_type = RX_CMP_TYPE(rxcmp);
2047 
2048 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
2049 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
2050 		goto next_rx_no_prod_no_len;
2051 	}
2052 
2053 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2054 	cp_cons = RING_CMP(tmp_raw_cons);
2055 	rxcmp1 = (struct rx_cmp_ext *)
2056 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2057 
2058 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2059 		return -EBUSY;
2060 
2061 	/* The valid test of the entry must be done first before
2062 	 * reading any further.
2063 	 */
2064 	dma_rmb();
2065 	prod = rxr->rx_prod;
2066 
2067 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
2068 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2069 		bnxt_tpa_start(bp, rxr, cmp_type,
2070 			       (struct rx_tpa_start_cmp *)rxcmp,
2071 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
2072 
2073 		*event |= BNXT_RX_EVENT;
2074 		goto next_rx_no_prod_no_len;
2075 
2076 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2077 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
2078 				   (struct rx_tpa_end_cmp *)rxcmp,
2079 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
2080 
2081 		if (IS_ERR(skb))
2082 			return -EBUSY;
2083 
2084 		rc = -ENOMEM;
2085 		if (likely(skb)) {
2086 			bnxt_deliver_skb(bp, bnapi, skb);
2087 			rc = 1;
2088 		}
2089 		*event |= BNXT_RX_EVENT;
2090 		goto next_rx_no_prod_no_len;
2091 	}
2092 
2093 	cons = rxcmp->rx_cmp_opaque;
2094 	if (unlikely(cons != rxr->rx_next_cons)) {
2095 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
2096 
2097 		/* 0xffff is forced error, don't print it */
2098 		if (rxr->rx_next_cons != 0xffff)
2099 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
2100 				    cons, rxr->rx_next_cons);
2101 		bnxt_sched_reset_rxr(bp, rxr);
2102 		if (rc1)
2103 			return rc1;
2104 		goto next_rx_no_prod_no_len;
2105 	}
2106 	rx_buf = &rxr->rx_buf_ring[cons];
2107 	data = rx_buf->data;
2108 	data_ptr = rx_buf->data_ptr;
2109 	prefetch(data_ptr);
2110 
2111 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2112 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2113 
2114 	if (agg_bufs) {
2115 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2116 			return -EBUSY;
2117 
2118 		cp_cons = NEXT_CMP(cp_cons);
2119 		*event |= BNXT_AGG_EVENT;
2120 	}
2121 	*event |= BNXT_RX_EVENT;
2122 
2123 	rx_buf->data = NULL;
2124 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2125 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2126 
2127 		bnxt_reuse_rx_data(rxr, cons, data);
2128 		if (agg_bufs)
2129 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2130 					       false);
2131 
2132 		rc = -EIO;
2133 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2134 			bnapi->cp_ring.sw_stats->rx.rx_buf_errors++;
2135 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2136 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2137 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2138 						 rx_err);
2139 				bnxt_sched_reset_rxr(bp, rxr);
2140 			}
2141 		}
2142 		goto next_rx_no_len;
2143 	}
2144 
2145 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2146 	len = flags >> RX_CMP_LEN_SHIFT;
2147 	dma_addr = rx_buf->mapping;
2148 
2149 	if (bnxt_xdp_attached(bp, rxr)) {
2150 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2151 		if (agg_bufs) {
2152 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2153 							     cp_cons, agg_bufs,
2154 							     false);
2155 			if (!frag_len)
2156 				goto oom_next_rx;
2157 		}
2158 		xdp_active = true;
2159 	}
2160 
2161 	if (xdp_active) {
2162 		if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) {
2163 			rc = 1;
2164 			goto next_rx;
2165 		}
2166 	}
2167 
2168 	if (len <= bp->rx_copy_thresh) {
2169 		if (!xdp_active)
2170 			skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2171 		else
2172 			skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr);
2173 		bnxt_reuse_rx_data(rxr, cons, data);
2174 		if (!skb) {
2175 			if (agg_bufs) {
2176 				if (!xdp_active)
2177 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2178 							       agg_bufs, false);
2179 				else
2180 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2181 			}
2182 			goto oom_next_rx;
2183 		}
2184 	} else {
2185 		u32 payload;
2186 
2187 		if (rx_buf->data_ptr == data_ptr)
2188 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2189 		else
2190 			payload = 0;
2191 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2192 				      payload | len);
2193 		if (!skb)
2194 			goto oom_next_rx;
2195 	}
2196 
2197 	if (agg_bufs) {
2198 		if (!xdp_active) {
2199 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2200 			if (!skb)
2201 				goto oom_next_rx;
2202 		} else {
2203 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2204 			if (!skb) {
2205 				/* we should be able to free the old skb here */
2206 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2207 				goto oom_next_rx;
2208 			}
2209 		}
2210 	}
2211 
2212 	if (RX_CMP_HASH_VALID(rxcmp)) {
2213 		enum pkt_hash_types type;
2214 
2215 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2216 			type = bnxt_rss_ext_op(bp, rxcmp);
2217 		} else {
2218 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2219 
2220 			/* RSS profiles 1 and 3 with extract code 0 for inner
2221 			 * 4-tuple
2222 			 */
2223 			if (hash_type != 1 && hash_type != 3)
2224 				type = PKT_HASH_TYPE_L3;
2225 			else
2226 				type = PKT_HASH_TYPE_L4;
2227 		}
2228 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2229 	}
2230 
2231 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2232 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2233 	skb->protocol = eth_type_trans(skb, dev);
2234 
2235 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2236 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2237 		if (!skb)
2238 			goto next_rx;
2239 	}
2240 
2241 	skb_checksum_none_assert(skb);
2242 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2243 		if (dev->features & NETIF_F_RXCSUM) {
2244 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2245 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2246 		}
2247 	} else {
2248 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2249 			if (dev->features & NETIF_F_RXCSUM)
2250 				bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++;
2251 		}
2252 	}
2253 
2254 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2255 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2256 			u64 ns, ts;
2257 
2258 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2259 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2260 
2261 				spin_lock_bh(&ptp->ptp_lock);
2262 				ns = timecounter_cyc2time(&ptp->tc, ts);
2263 				spin_unlock_bh(&ptp->ptp_lock);
2264 				memset(skb_hwtstamps(skb), 0,
2265 				       sizeof(*skb_hwtstamps(skb)));
2266 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2267 			}
2268 		}
2269 	}
2270 	bnxt_deliver_skb(bp, bnapi, skb);
2271 	rc = 1;
2272 
2273 next_rx:
2274 	cpr->rx_packets += 1;
2275 	cpr->rx_bytes += len;
2276 
2277 next_rx_no_len:
2278 	rxr->rx_prod = NEXT_RX(prod);
2279 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2280 
2281 next_rx_no_prod_no_len:
2282 	*raw_cons = tmp_raw_cons;
2283 
2284 	return rc;
2285 
2286 oom_next_rx:
2287 	cpr->sw_stats->rx.rx_oom_discards += 1;
2288 	rc = -ENOMEM;
2289 	goto next_rx;
2290 }
2291 
2292 /* In netpoll mode, if we are using a combined completion ring, we need to
2293  * discard the rx packets and recycle the buffers.
2294  */
2295 static int bnxt_force_rx_discard(struct bnxt *bp,
2296 				 struct bnxt_cp_ring_info *cpr,
2297 				 u32 *raw_cons, u8 *event)
2298 {
2299 	u32 tmp_raw_cons = *raw_cons;
2300 	struct rx_cmp_ext *rxcmp1;
2301 	struct rx_cmp *rxcmp;
2302 	u16 cp_cons;
2303 	u8 cmp_type;
2304 	int rc;
2305 
2306 	cp_cons = RING_CMP(tmp_raw_cons);
2307 	rxcmp = (struct rx_cmp *)
2308 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2309 
2310 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2311 	cp_cons = RING_CMP(tmp_raw_cons);
2312 	rxcmp1 = (struct rx_cmp_ext *)
2313 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2314 
2315 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2316 		return -EBUSY;
2317 
2318 	/* The valid test of the entry must be done first before
2319 	 * reading any further.
2320 	 */
2321 	dma_rmb();
2322 	cmp_type = RX_CMP_TYPE(rxcmp);
2323 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2324 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2325 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2326 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2327 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2328 		struct rx_tpa_end_cmp_ext *tpa_end1;
2329 
2330 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2331 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2332 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2333 	}
2334 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2335 	if (rc && rc != -EBUSY)
2336 		cpr->sw_stats->rx.rx_netpoll_discards += 1;
2337 	return rc;
2338 }
2339 
2340 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2341 {
2342 	struct bnxt_fw_health *fw_health = bp->fw_health;
2343 	u32 reg = fw_health->regs[reg_idx];
2344 	u32 reg_type, reg_off, val = 0;
2345 
2346 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2347 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2348 	switch (reg_type) {
2349 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2350 		pci_read_config_dword(bp->pdev, reg_off, &val);
2351 		break;
2352 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2353 		reg_off = fw_health->mapped_regs[reg_idx];
2354 		fallthrough;
2355 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2356 		val = readl(bp->bar0 + reg_off);
2357 		break;
2358 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2359 		val = readl(bp->bar1 + reg_off);
2360 		break;
2361 	}
2362 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2363 		val &= fw_health->fw_reset_inprog_reg_mask;
2364 	return val;
2365 }
2366 
2367 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2368 {
2369 	int i;
2370 
2371 	for (i = 0; i < bp->rx_nr_rings; i++) {
2372 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2373 		struct bnxt_ring_grp_info *grp_info;
2374 
2375 		grp_info = &bp->grp_info[grp_idx];
2376 		if (grp_info->agg_fw_ring_id == ring_id)
2377 			return grp_idx;
2378 	}
2379 	return INVALID_HW_RING_ID;
2380 }
2381 
2382 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2383 {
2384 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2385 
2386 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2387 		return link_info->force_link_speed2;
2388 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2389 		return link_info->force_pam4_link_speed;
2390 	return link_info->force_link_speed;
2391 }
2392 
2393 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2394 {
2395 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2396 
2397 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2398 		link_info->req_link_speed = link_info->force_link_speed2;
2399 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2400 		switch (link_info->req_link_speed) {
2401 		case BNXT_LINK_SPEED_50GB_PAM4:
2402 		case BNXT_LINK_SPEED_100GB_PAM4:
2403 		case BNXT_LINK_SPEED_200GB_PAM4:
2404 		case BNXT_LINK_SPEED_400GB_PAM4:
2405 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2406 			break;
2407 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2408 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2409 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2410 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2411 			break;
2412 		default:
2413 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2414 		}
2415 		return;
2416 	}
2417 	link_info->req_link_speed = link_info->force_link_speed;
2418 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2419 	if (link_info->force_pam4_link_speed) {
2420 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2421 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2422 	}
2423 }
2424 
2425 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2426 {
2427 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2428 
2429 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2430 		link_info->advertising = link_info->auto_link_speeds2;
2431 		return;
2432 	}
2433 	link_info->advertising = link_info->auto_link_speeds;
2434 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2435 }
2436 
2437 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2438 {
2439 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2440 
2441 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2442 		if (link_info->req_link_speed != link_info->force_link_speed2)
2443 			return true;
2444 		return false;
2445 	}
2446 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2447 	    link_info->req_link_speed != link_info->force_link_speed)
2448 		return true;
2449 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2450 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2451 		return true;
2452 	return false;
2453 }
2454 
2455 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2456 {
2457 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2458 
2459 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2460 		if (link_info->advertising != link_info->auto_link_speeds2)
2461 			return true;
2462 		return false;
2463 	}
2464 	if (link_info->advertising != link_info->auto_link_speeds ||
2465 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2466 		return true;
2467 	return false;
2468 }
2469 
2470 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2471 	((data2) &							\
2472 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2473 
2474 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2475 	(((data2) &							\
2476 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2477 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2478 
2479 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2480 	((data1) &							\
2481 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2482 
2483 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2484 	(((data1) &							\
2485 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2486 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2487 
2488 /* Return true if the workqueue has to be scheduled */
2489 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2490 {
2491 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2492 
2493 	switch (err_type) {
2494 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2495 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2496 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2497 		break;
2498 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2499 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2500 		break;
2501 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2502 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2503 		break;
2504 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2505 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2506 		char *threshold_type;
2507 		bool notify = false;
2508 		char *dir_str;
2509 
2510 		switch (type) {
2511 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2512 			threshold_type = "warning";
2513 			break;
2514 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2515 			threshold_type = "critical";
2516 			break;
2517 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2518 			threshold_type = "fatal";
2519 			break;
2520 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2521 			threshold_type = "shutdown";
2522 			break;
2523 		default:
2524 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2525 			return false;
2526 		}
2527 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2528 			dir_str = "above";
2529 			notify = true;
2530 		} else {
2531 			dir_str = "below";
2532 		}
2533 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2534 			    dir_str, threshold_type);
2535 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2536 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2537 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2538 		if (notify) {
2539 			bp->thermal_threshold_type = type;
2540 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2541 			return true;
2542 		}
2543 		return false;
2544 	}
2545 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED:
2546 		netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n");
2547 		break;
2548 	default:
2549 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2550 			   err_type);
2551 		break;
2552 	}
2553 	return false;
2554 }
2555 
2556 #define BNXT_GET_EVENT_PORT(data)	\
2557 	((data) &			\
2558 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2559 
2560 #define BNXT_EVENT_RING_TYPE(data2)	\
2561 	((data2) &			\
2562 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2563 
2564 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2565 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2566 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2567 
2568 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2569 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2570 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2571 
2572 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2573 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2574 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2575 
2576 #define BNXT_PHC_BITS	48
2577 
2578 static int bnxt_async_event_process(struct bnxt *bp,
2579 				    struct hwrm_async_event_cmpl *cmpl)
2580 {
2581 	u16 event_id = le16_to_cpu(cmpl->event_id);
2582 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2583 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2584 
2585 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2586 		   event_id, data1, data2);
2587 
2588 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2589 	switch (event_id) {
2590 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2591 		struct bnxt_link_info *link_info = &bp->link_info;
2592 
2593 		if (BNXT_VF(bp))
2594 			goto async_event_process_exit;
2595 
2596 		/* print unsupported speed warning in forced speed mode only */
2597 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2598 		    (data1 & 0x20000)) {
2599 			u16 fw_speed = bnxt_get_force_speed(link_info);
2600 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2601 
2602 			if (speed != SPEED_UNKNOWN)
2603 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2604 					    speed);
2605 		}
2606 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2607 	}
2608 		fallthrough;
2609 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2610 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2611 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2612 		fallthrough;
2613 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2614 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2615 		break;
2616 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2617 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2618 		break;
2619 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2620 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2621 
2622 		if (BNXT_VF(bp))
2623 			break;
2624 
2625 		if (bp->pf.port_id != port_id)
2626 			break;
2627 
2628 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2629 		break;
2630 	}
2631 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2632 		if (BNXT_PF(bp))
2633 			goto async_event_process_exit;
2634 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2635 		break;
2636 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2637 		char *type_str = "Solicited";
2638 
2639 		if (!bp->fw_health)
2640 			goto async_event_process_exit;
2641 
2642 		bp->fw_reset_timestamp = jiffies;
2643 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2644 		if (!bp->fw_reset_min_dsecs)
2645 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2646 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2647 		if (!bp->fw_reset_max_dsecs)
2648 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2649 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2650 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2651 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2652 			type_str = "Fatal";
2653 			bp->fw_health->fatalities++;
2654 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2655 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2656 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2657 			type_str = "Non-fatal";
2658 			bp->fw_health->survivals++;
2659 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2660 		}
2661 		netif_warn(bp, hw, bp->dev,
2662 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2663 			   type_str, data1, data2,
2664 			   bp->fw_reset_min_dsecs * 100,
2665 			   bp->fw_reset_max_dsecs * 100);
2666 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2667 		break;
2668 	}
2669 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2670 		struct bnxt_fw_health *fw_health = bp->fw_health;
2671 		char *status_desc = "healthy";
2672 		u32 status;
2673 
2674 		if (!fw_health)
2675 			goto async_event_process_exit;
2676 
2677 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2678 			fw_health->enabled = false;
2679 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2680 			break;
2681 		}
2682 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2683 		fw_health->tmr_multiplier =
2684 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2685 				     bp->current_interval * 10);
2686 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2687 		if (!fw_health->enabled)
2688 			fw_health->last_fw_heartbeat =
2689 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2690 		fw_health->last_fw_reset_cnt =
2691 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2692 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2693 		if (status != BNXT_FW_STATUS_HEALTHY)
2694 			status_desc = "unhealthy";
2695 		netif_info(bp, drv, bp->dev,
2696 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2697 			   fw_health->primary ? "primary" : "backup", status,
2698 			   status_desc, fw_health->last_fw_reset_cnt);
2699 		if (!fw_health->enabled) {
2700 			/* Make sure tmr_counter is set and visible to
2701 			 * bnxt_health_check() before setting enabled to true.
2702 			 */
2703 			smp_wmb();
2704 			fw_health->enabled = true;
2705 		}
2706 		goto async_event_process_exit;
2707 	}
2708 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2709 		netif_notice(bp, hw, bp->dev,
2710 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2711 			     data1, data2);
2712 		goto async_event_process_exit;
2713 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2714 		struct bnxt_rx_ring_info *rxr;
2715 		u16 grp_idx;
2716 
2717 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2718 			goto async_event_process_exit;
2719 
2720 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2721 			    BNXT_EVENT_RING_TYPE(data2), data1);
2722 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2723 			goto async_event_process_exit;
2724 
2725 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2726 		if (grp_idx == INVALID_HW_RING_ID) {
2727 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2728 				    data1);
2729 			goto async_event_process_exit;
2730 		}
2731 		rxr = bp->bnapi[grp_idx]->rx_ring;
2732 		bnxt_sched_reset_rxr(bp, rxr);
2733 		goto async_event_process_exit;
2734 	}
2735 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2736 		struct bnxt_fw_health *fw_health = bp->fw_health;
2737 
2738 		netif_notice(bp, hw, bp->dev,
2739 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2740 			     data1, data2);
2741 		if (fw_health) {
2742 			fw_health->echo_req_data1 = data1;
2743 			fw_health->echo_req_data2 = data2;
2744 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2745 			break;
2746 		}
2747 		goto async_event_process_exit;
2748 	}
2749 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2750 		bnxt_ptp_pps_event(bp, data1, data2);
2751 		goto async_event_process_exit;
2752 	}
2753 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2754 		if (bnxt_event_error_report(bp, data1, data2))
2755 			break;
2756 		goto async_event_process_exit;
2757 	}
2758 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2759 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2760 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2761 			if (BNXT_PTP_USE_RTC(bp)) {
2762 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2763 				u64 ns;
2764 
2765 				if (!ptp)
2766 					goto async_event_process_exit;
2767 
2768 				spin_lock_bh(&ptp->ptp_lock);
2769 				bnxt_ptp_update_current_time(bp);
2770 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2771 				       BNXT_PHC_BITS) | ptp->current_time);
2772 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2773 				spin_unlock_bh(&ptp->ptp_lock);
2774 			}
2775 			break;
2776 		}
2777 		goto async_event_process_exit;
2778 	}
2779 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2780 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2781 
2782 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2783 		goto async_event_process_exit;
2784 	}
2785 	default:
2786 		goto async_event_process_exit;
2787 	}
2788 	__bnxt_queue_sp_work(bp);
2789 async_event_process_exit:
2790 	return 0;
2791 }
2792 
2793 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2794 {
2795 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2796 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2797 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2798 				(struct hwrm_fwd_req_cmpl *)txcmp;
2799 
2800 	switch (cmpl_type) {
2801 	case CMPL_BASE_TYPE_HWRM_DONE:
2802 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2803 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2804 		break;
2805 
2806 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2807 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2808 
2809 		if ((vf_id < bp->pf.first_vf_id) ||
2810 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2811 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2812 				   vf_id);
2813 			return -EINVAL;
2814 		}
2815 
2816 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2817 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2818 		break;
2819 
2820 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2821 		bnxt_async_event_process(bp,
2822 					 (struct hwrm_async_event_cmpl *)txcmp);
2823 		break;
2824 
2825 	default:
2826 		break;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2833 {
2834 	struct bnxt_napi *bnapi = dev_instance;
2835 	struct bnxt *bp = bnapi->bp;
2836 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2837 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2838 
2839 	cpr->event_ctr++;
2840 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2841 	napi_schedule(&bnapi->napi);
2842 	return IRQ_HANDLED;
2843 }
2844 
2845 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2846 {
2847 	u32 raw_cons = cpr->cp_raw_cons;
2848 	u16 cons = RING_CMP(raw_cons);
2849 	struct tx_cmp *txcmp;
2850 
2851 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2852 
2853 	return TX_CMP_VALID(txcmp, raw_cons);
2854 }
2855 
2856 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2857 {
2858 	struct bnxt_napi *bnapi = dev_instance;
2859 	struct bnxt *bp = bnapi->bp;
2860 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2861 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2862 	u32 int_status;
2863 
2864 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2865 
2866 	if (!bnxt_has_work(bp, cpr)) {
2867 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2868 		/* return if erroneous interrupt */
2869 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2870 			return IRQ_NONE;
2871 	}
2872 
2873 	/* disable ring IRQ */
2874 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2875 
2876 	/* Return here if interrupt is shared and is disabled. */
2877 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2878 		return IRQ_HANDLED;
2879 
2880 	napi_schedule(&bnapi->napi);
2881 	return IRQ_HANDLED;
2882 }
2883 
2884 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2885 			    int budget)
2886 {
2887 	struct bnxt_napi *bnapi = cpr->bnapi;
2888 	u32 raw_cons = cpr->cp_raw_cons;
2889 	u32 cons;
2890 	int rx_pkts = 0;
2891 	u8 event = 0;
2892 	struct tx_cmp *txcmp;
2893 
2894 	cpr->has_more_work = 0;
2895 	cpr->had_work_done = 1;
2896 	while (1) {
2897 		u8 cmp_type;
2898 		int rc;
2899 
2900 		cons = RING_CMP(raw_cons);
2901 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2902 
2903 		if (!TX_CMP_VALID(txcmp, raw_cons))
2904 			break;
2905 
2906 		/* The valid test of the entry must be done first before
2907 		 * reading any further.
2908 		 */
2909 		dma_rmb();
2910 		cmp_type = TX_CMP_TYPE(txcmp);
2911 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2912 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2913 			u32 opaque = txcmp->tx_cmp_opaque;
2914 			struct bnxt_tx_ring_info *txr;
2915 			u16 tx_freed;
2916 
2917 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2918 			event |= BNXT_TX_CMP_EVENT;
2919 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2920 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2921 			else
2922 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2923 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2924 				   bp->tx_ring_mask;
2925 			/* return full budget so NAPI will complete. */
2926 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2927 				rx_pkts = budget;
2928 				raw_cons = NEXT_RAW_CMP(raw_cons);
2929 				if (budget)
2930 					cpr->has_more_work = 1;
2931 				break;
2932 			}
2933 		} else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) {
2934 			bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp);
2935 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2936 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2937 			if (likely(budget))
2938 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2939 			else
2940 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2941 							   &event);
2942 			if (likely(rc >= 0))
2943 				rx_pkts += rc;
2944 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2945 			 * the NAPI budget.  Otherwise, we may potentially loop
2946 			 * here forever if we consistently cannot allocate
2947 			 * buffers.
2948 			 */
2949 			else if (rc == -ENOMEM && budget)
2950 				rx_pkts++;
2951 			else if (rc == -EBUSY)	/* partial completion */
2952 				break;
2953 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2954 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2955 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2956 			bnxt_hwrm_handler(bp, txcmp);
2957 		}
2958 		raw_cons = NEXT_RAW_CMP(raw_cons);
2959 
2960 		if (rx_pkts && rx_pkts == budget) {
2961 			cpr->has_more_work = 1;
2962 			break;
2963 		}
2964 	}
2965 
2966 	if (event & BNXT_REDIRECT_EVENT) {
2967 		xdp_do_flush();
2968 		event &= ~BNXT_REDIRECT_EVENT;
2969 	}
2970 
2971 	if (event & BNXT_TX_EVENT) {
2972 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2973 		u16 prod = txr->tx_prod;
2974 
2975 		/* Sync BD data before updating doorbell */
2976 		wmb();
2977 
2978 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2979 		event &= ~BNXT_TX_EVENT;
2980 	}
2981 
2982 	cpr->cp_raw_cons = raw_cons;
2983 	bnapi->events |= event;
2984 	return rx_pkts;
2985 }
2986 
2987 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2988 				  int budget)
2989 {
2990 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2991 		bnapi->tx_int(bp, bnapi, budget);
2992 
2993 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2994 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2995 
2996 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2997 		bnapi->events &= ~BNXT_RX_EVENT;
2998 	}
2999 	if (bnapi->events & BNXT_AGG_EVENT) {
3000 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3001 
3002 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3003 		bnapi->events &= ~BNXT_AGG_EVENT;
3004 	}
3005 }
3006 
3007 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
3008 			  int budget)
3009 {
3010 	struct bnxt_napi *bnapi = cpr->bnapi;
3011 	int rx_pkts;
3012 
3013 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
3014 
3015 	/* ACK completion ring before freeing tx ring and producing new
3016 	 * buffers in rx/agg rings to prevent overflowing the completion
3017 	 * ring.
3018 	 */
3019 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3020 
3021 	__bnxt_poll_work_done(bp, bnapi, budget);
3022 	return rx_pkts;
3023 }
3024 
3025 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
3026 {
3027 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3028 	struct bnxt *bp = bnapi->bp;
3029 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3030 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3031 	struct tx_cmp *txcmp;
3032 	struct rx_cmp_ext *rxcmp1;
3033 	u32 cp_cons, tmp_raw_cons;
3034 	u32 raw_cons = cpr->cp_raw_cons;
3035 	bool flush_xdp = false;
3036 	u32 rx_pkts = 0;
3037 	u8 event = 0;
3038 
3039 	while (1) {
3040 		int rc;
3041 
3042 		cp_cons = RING_CMP(raw_cons);
3043 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3044 
3045 		if (!TX_CMP_VALID(txcmp, raw_cons))
3046 			break;
3047 
3048 		/* The valid test of the entry must be done first before
3049 		 * reading any further.
3050 		 */
3051 		dma_rmb();
3052 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
3053 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
3054 			cp_cons = RING_CMP(tmp_raw_cons);
3055 			rxcmp1 = (struct rx_cmp_ext *)
3056 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3057 
3058 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
3059 				break;
3060 
3061 			/* force an error to recycle the buffer */
3062 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
3063 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
3064 
3065 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
3066 			if (likely(rc == -EIO) && budget)
3067 				rx_pkts++;
3068 			else if (rc == -EBUSY)	/* partial completion */
3069 				break;
3070 			if (event & BNXT_REDIRECT_EVENT)
3071 				flush_xdp = true;
3072 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
3073 				    CMPL_BASE_TYPE_HWRM_DONE)) {
3074 			bnxt_hwrm_handler(bp, txcmp);
3075 		} else {
3076 			netdev_err(bp->dev,
3077 				   "Invalid completion received on special ring\n");
3078 		}
3079 		raw_cons = NEXT_RAW_CMP(raw_cons);
3080 
3081 		if (rx_pkts == budget)
3082 			break;
3083 	}
3084 
3085 	cpr->cp_raw_cons = raw_cons;
3086 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
3087 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3088 
3089 	if (event & BNXT_AGG_EVENT)
3090 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3091 	if (flush_xdp)
3092 		xdp_do_flush();
3093 
3094 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
3095 		napi_complete_done(napi, rx_pkts);
3096 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3097 	}
3098 	return rx_pkts;
3099 }
3100 
3101 static int bnxt_poll(struct napi_struct *napi, int budget)
3102 {
3103 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3104 	struct bnxt *bp = bnapi->bp;
3105 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3106 	int work_done = 0;
3107 
3108 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3109 		napi_complete(napi);
3110 		return 0;
3111 	}
3112 	while (1) {
3113 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3114 
3115 		if (work_done >= budget) {
3116 			if (!budget)
3117 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3118 			break;
3119 		}
3120 
3121 		if (!bnxt_has_work(bp, cpr)) {
3122 			if (napi_complete_done(napi, work_done))
3123 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3124 			break;
3125 		}
3126 	}
3127 	if (bp->flags & BNXT_FLAG_DIM) {
3128 		struct dim_sample dim_sample = {};
3129 
3130 		dim_update_sample(cpr->event_ctr,
3131 				  cpr->rx_packets,
3132 				  cpr->rx_bytes,
3133 				  &dim_sample);
3134 		net_dim(&cpr->dim, dim_sample);
3135 	}
3136 	return work_done;
3137 }
3138 
3139 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3140 {
3141 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3142 	int i, work_done = 0;
3143 
3144 	for (i = 0; i < cpr->cp_ring_count; i++) {
3145 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3146 
3147 		if (cpr2->had_nqe_notify) {
3148 			work_done += __bnxt_poll_work(bp, cpr2,
3149 						      budget - work_done);
3150 			cpr->has_more_work |= cpr2->has_more_work;
3151 		}
3152 	}
3153 	return work_done;
3154 }
3155 
3156 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3157 				 u64 dbr_type, int budget)
3158 {
3159 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3160 	int i;
3161 
3162 	for (i = 0; i < cpr->cp_ring_count; i++) {
3163 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3164 		struct bnxt_db_info *db;
3165 
3166 		if (cpr2->had_work_done) {
3167 			u32 tgl = 0;
3168 
3169 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3170 				cpr2->had_nqe_notify = 0;
3171 				tgl = cpr2->toggle;
3172 			}
3173 			db = &cpr2->cp_db;
3174 			bnxt_writeq(bp,
3175 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3176 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3177 				    db->doorbell);
3178 			cpr2->had_work_done = 0;
3179 		}
3180 	}
3181 	__bnxt_poll_work_done(bp, bnapi, budget);
3182 }
3183 
3184 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3185 {
3186 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3187 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3188 	struct bnxt_cp_ring_info *cpr_rx;
3189 	u32 raw_cons = cpr->cp_raw_cons;
3190 	struct bnxt *bp = bnapi->bp;
3191 	struct nqe_cn *nqcmp;
3192 	int work_done = 0;
3193 	u32 cons;
3194 
3195 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3196 		napi_complete(napi);
3197 		return 0;
3198 	}
3199 	if (cpr->has_more_work) {
3200 		cpr->has_more_work = 0;
3201 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3202 	}
3203 	while (1) {
3204 		u16 type;
3205 
3206 		cons = RING_CMP(raw_cons);
3207 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3208 
3209 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3210 			if (cpr->has_more_work)
3211 				break;
3212 
3213 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3214 					     budget);
3215 			cpr->cp_raw_cons = raw_cons;
3216 			if (napi_complete_done(napi, work_done))
3217 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3218 						  cpr->cp_raw_cons);
3219 			goto poll_done;
3220 		}
3221 
3222 		/* The valid test of the entry must be done first before
3223 		 * reading any further.
3224 		 */
3225 		dma_rmb();
3226 
3227 		type = le16_to_cpu(nqcmp->type);
3228 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3229 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3230 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3231 			struct bnxt_cp_ring_info *cpr2;
3232 
3233 			/* No more budget for RX work */
3234 			if (budget && work_done >= budget &&
3235 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3236 				break;
3237 
3238 			idx = BNXT_NQ_HDL_IDX(idx);
3239 			cpr2 = &cpr->cp_ring_arr[idx];
3240 			cpr2->had_nqe_notify = 1;
3241 			cpr2->toggle = NQE_CN_TOGGLE(type);
3242 			work_done += __bnxt_poll_work(bp, cpr2,
3243 						      budget - work_done);
3244 			cpr->has_more_work |= cpr2->has_more_work;
3245 		} else {
3246 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3247 		}
3248 		raw_cons = NEXT_RAW_CMP(raw_cons);
3249 	}
3250 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3251 	if (raw_cons != cpr->cp_raw_cons) {
3252 		cpr->cp_raw_cons = raw_cons;
3253 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3254 	}
3255 poll_done:
3256 	cpr_rx = &cpr->cp_ring_arr[0];
3257 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3258 	    (bp->flags & BNXT_FLAG_DIM)) {
3259 		struct dim_sample dim_sample = {};
3260 
3261 		dim_update_sample(cpr->event_ctr,
3262 				  cpr_rx->rx_packets,
3263 				  cpr_rx->rx_bytes,
3264 				  &dim_sample);
3265 		net_dim(&cpr->dim, dim_sample);
3266 	}
3267 	return work_done;
3268 }
3269 
3270 static void bnxt_free_tx_skbs(struct bnxt *bp)
3271 {
3272 	int i, max_idx;
3273 	struct pci_dev *pdev = bp->pdev;
3274 
3275 	if (!bp->tx_ring)
3276 		return;
3277 
3278 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3279 	for (i = 0; i < bp->tx_nr_rings; i++) {
3280 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3281 		int j;
3282 
3283 		if (!txr->tx_buf_ring)
3284 			continue;
3285 
3286 		for (j = 0; j < max_idx;) {
3287 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3288 			struct sk_buff *skb;
3289 			int k, last;
3290 
3291 			if (i < bp->tx_nr_rings_xdp &&
3292 			    tx_buf->action == XDP_REDIRECT) {
3293 				dma_unmap_single(&pdev->dev,
3294 					dma_unmap_addr(tx_buf, mapping),
3295 					dma_unmap_len(tx_buf, len),
3296 					DMA_TO_DEVICE);
3297 				xdp_return_frame(tx_buf->xdpf);
3298 				tx_buf->action = 0;
3299 				tx_buf->xdpf = NULL;
3300 				j++;
3301 				continue;
3302 			}
3303 
3304 			skb = tx_buf->skb;
3305 			if (!skb) {
3306 				j++;
3307 				continue;
3308 			}
3309 
3310 			tx_buf->skb = NULL;
3311 
3312 			if (tx_buf->is_push) {
3313 				dev_kfree_skb(skb);
3314 				j += 2;
3315 				continue;
3316 			}
3317 
3318 			dma_unmap_single(&pdev->dev,
3319 					 dma_unmap_addr(tx_buf, mapping),
3320 					 skb_headlen(skb),
3321 					 DMA_TO_DEVICE);
3322 
3323 			last = tx_buf->nr_frags;
3324 			j += 2;
3325 			for (k = 0; k < last; k++, j++) {
3326 				int ring_idx = j & bp->tx_ring_mask;
3327 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3328 
3329 				tx_buf = &txr->tx_buf_ring[ring_idx];
3330 				dma_unmap_page(
3331 					&pdev->dev,
3332 					dma_unmap_addr(tx_buf, mapping),
3333 					skb_frag_size(frag), DMA_TO_DEVICE);
3334 			}
3335 			dev_kfree_skb(skb);
3336 		}
3337 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3338 	}
3339 }
3340 
3341 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3342 {
3343 	struct pci_dev *pdev = bp->pdev;
3344 	int i, max_idx;
3345 
3346 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3347 
3348 	for (i = 0; i < max_idx; i++) {
3349 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3350 		dma_addr_t mapping = rx_buf->mapping;
3351 		void *data = rx_buf->data;
3352 
3353 		if (!data)
3354 			continue;
3355 
3356 		rx_buf->data = NULL;
3357 		if (BNXT_RX_PAGE_MODE(bp)) {
3358 			page_pool_recycle_direct(rxr->page_pool, data);
3359 		} else {
3360 			dma_unmap_single_attrs(&pdev->dev, mapping,
3361 					       bp->rx_buf_use_size, bp->rx_dir,
3362 					       DMA_ATTR_WEAK_ORDERING);
3363 			skb_free_frag(data);
3364 		}
3365 	}
3366 }
3367 
3368 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3369 {
3370 	int i, max_idx;
3371 
3372 	max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3373 
3374 	for (i = 0; i < max_idx; i++) {
3375 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3376 		struct page *page = rx_agg_buf->page;
3377 
3378 		if (!page)
3379 			continue;
3380 
3381 		rx_agg_buf->page = NULL;
3382 		__clear_bit(i, rxr->rx_agg_bmap);
3383 
3384 		page_pool_recycle_direct(rxr->page_pool, page);
3385 	}
3386 }
3387 
3388 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3389 {
3390 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3391 	struct pci_dev *pdev = bp->pdev;
3392 	struct bnxt_tpa_idx_map *map;
3393 	int i;
3394 
3395 	if (!rxr->rx_tpa)
3396 		goto skip_rx_tpa_free;
3397 
3398 	for (i = 0; i < bp->max_tpa; i++) {
3399 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3400 		u8 *data = tpa_info->data;
3401 
3402 		if (!data)
3403 			continue;
3404 
3405 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3406 				       bp->rx_buf_use_size, bp->rx_dir,
3407 				       DMA_ATTR_WEAK_ORDERING);
3408 
3409 		tpa_info->data = NULL;
3410 
3411 		skb_free_frag(data);
3412 	}
3413 
3414 skip_rx_tpa_free:
3415 	if (!rxr->rx_buf_ring)
3416 		goto skip_rx_buf_free;
3417 
3418 	bnxt_free_one_rx_ring(bp, rxr);
3419 
3420 skip_rx_buf_free:
3421 	if (!rxr->rx_agg_ring)
3422 		goto skip_rx_agg_free;
3423 
3424 	bnxt_free_one_rx_agg_ring(bp, rxr);
3425 
3426 skip_rx_agg_free:
3427 	map = rxr->rx_tpa_idx_map;
3428 	if (map)
3429 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3430 }
3431 
3432 static void bnxt_free_rx_skbs(struct bnxt *bp)
3433 {
3434 	int i;
3435 
3436 	if (!bp->rx_ring)
3437 		return;
3438 
3439 	for (i = 0; i < bp->rx_nr_rings; i++)
3440 		bnxt_free_one_rx_ring_skbs(bp, i);
3441 }
3442 
3443 static void bnxt_free_skbs(struct bnxt *bp)
3444 {
3445 	bnxt_free_tx_skbs(bp);
3446 	bnxt_free_rx_skbs(bp);
3447 }
3448 
3449 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3450 {
3451 	u8 init_val = ctxm->init_value;
3452 	u16 offset = ctxm->init_offset;
3453 	u8 *p2 = p;
3454 	int i;
3455 
3456 	if (!init_val)
3457 		return;
3458 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3459 		memset(p, init_val, len);
3460 		return;
3461 	}
3462 	for (i = 0; i < len; i += ctxm->entry_size)
3463 		*(p2 + i + offset) = init_val;
3464 }
3465 
3466 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3467 {
3468 	struct pci_dev *pdev = bp->pdev;
3469 	int i;
3470 
3471 	if (!rmem->pg_arr)
3472 		goto skip_pages;
3473 
3474 	for (i = 0; i < rmem->nr_pages; i++) {
3475 		if (!rmem->pg_arr[i])
3476 			continue;
3477 
3478 		dma_free_coherent(&pdev->dev, rmem->page_size,
3479 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3480 
3481 		rmem->pg_arr[i] = NULL;
3482 	}
3483 skip_pages:
3484 	if (rmem->pg_tbl) {
3485 		size_t pg_tbl_size = rmem->nr_pages * 8;
3486 
3487 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3488 			pg_tbl_size = rmem->page_size;
3489 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3490 				  rmem->pg_tbl, rmem->pg_tbl_map);
3491 		rmem->pg_tbl = NULL;
3492 	}
3493 	if (rmem->vmem_size && *rmem->vmem) {
3494 		vfree(*rmem->vmem);
3495 		*rmem->vmem = NULL;
3496 	}
3497 }
3498 
3499 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3500 {
3501 	struct pci_dev *pdev = bp->pdev;
3502 	u64 valid_bit = 0;
3503 	int i;
3504 
3505 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3506 		valid_bit = PTU_PTE_VALID;
3507 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3508 		size_t pg_tbl_size = rmem->nr_pages * 8;
3509 
3510 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3511 			pg_tbl_size = rmem->page_size;
3512 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3513 						  &rmem->pg_tbl_map,
3514 						  GFP_KERNEL);
3515 		if (!rmem->pg_tbl)
3516 			return -ENOMEM;
3517 	}
3518 
3519 	for (i = 0; i < rmem->nr_pages; i++) {
3520 		u64 extra_bits = valid_bit;
3521 
3522 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3523 						     rmem->page_size,
3524 						     &rmem->dma_arr[i],
3525 						     GFP_KERNEL);
3526 		if (!rmem->pg_arr[i])
3527 			return -ENOMEM;
3528 
3529 		if (rmem->ctx_mem)
3530 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3531 					  rmem->page_size);
3532 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3533 			if (i == rmem->nr_pages - 2 &&
3534 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3535 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3536 			else if (i == rmem->nr_pages - 1 &&
3537 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3538 				extra_bits |= PTU_PTE_LAST;
3539 			rmem->pg_tbl[i] =
3540 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3541 		}
3542 	}
3543 
3544 	if (rmem->vmem_size) {
3545 		*rmem->vmem = vzalloc(rmem->vmem_size);
3546 		if (!(*rmem->vmem))
3547 			return -ENOMEM;
3548 	}
3549 	return 0;
3550 }
3551 
3552 static void bnxt_free_tpa_info(struct bnxt *bp)
3553 {
3554 	int i, j;
3555 
3556 	for (i = 0; i < bp->rx_nr_rings; i++) {
3557 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3558 
3559 		kfree(rxr->rx_tpa_idx_map);
3560 		rxr->rx_tpa_idx_map = NULL;
3561 		if (rxr->rx_tpa) {
3562 			for (j = 0; j < bp->max_tpa; j++) {
3563 				kfree(rxr->rx_tpa[j].agg_arr);
3564 				rxr->rx_tpa[j].agg_arr = NULL;
3565 			}
3566 		}
3567 		kfree(rxr->rx_tpa);
3568 		rxr->rx_tpa = NULL;
3569 	}
3570 }
3571 
3572 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3573 {
3574 	int i, j;
3575 
3576 	bp->max_tpa = MAX_TPA;
3577 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3578 		if (!bp->max_tpa_v2)
3579 			return 0;
3580 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3581 	}
3582 
3583 	for (i = 0; i < bp->rx_nr_rings; i++) {
3584 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3585 		struct rx_agg_cmp *agg;
3586 
3587 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3588 				      GFP_KERNEL);
3589 		if (!rxr->rx_tpa)
3590 			return -ENOMEM;
3591 
3592 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3593 			continue;
3594 		for (j = 0; j < bp->max_tpa; j++) {
3595 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3596 			if (!agg)
3597 				return -ENOMEM;
3598 			rxr->rx_tpa[j].agg_arr = agg;
3599 		}
3600 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3601 					      GFP_KERNEL);
3602 		if (!rxr->rx_tpa_idx_map)
3603 			return -ENOMEM;
3604 	}
3605 	return 0;
3606 }
3607 
3608 static void bnxt_free_rx_rings(struct bnxt *bp)
3609 {
3610 	int i;
3611 
3612 	if (!bp->rx_ring)
3613 		return;
3614 
3615 	bnxt_free_tpa_info(bp);
3616 	for (i = 0; i < bp->rx_nr_rings; i++) {
3617 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3618 		struct bnxt_ring_struct *ring;
3619 
3620 		if (rxr->xdp_prog)
3621 			bpf_prog_put(rxr->xdp_prog);
3622 
3623 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3624 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3625 
3626 		page_pool_destroy(rxr->page_pool);
3627 		rxr->page_pool = NULL;
3628 
3629 		kfree(rxr->rx_agg_bmap);
3630 		rxr->rx_agg_bmap = NULL;
3631 
3632 		ring = &rxr->rx_ring_struct;
3633 		bnxt_free_ring(bp, &ring->ring_mem);
3634 
3635 		ring = &rxr->rx_agg_ring_struct;
3636 		bnxt_free_ring(bp, &ring->ring_mem);
3637 	}
3638 }
3639 
3640 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3641 				   struct bnxt_rx_ring_info *rxr,
3642 				   int numa_node)
3643 {
3644 	struct page_pool_params pp = { 0 };
3645 
3646 	pp.pool_size = bp->rx_agg_ring_size;
3647 	if (BNXT_RX_PAGE_MODE(bp))
3648 		pp.pool_size += bp->rx_ring_size;
3649 	pp.nid = numa_node;
3650 	pp.napi = &rxr->bnapi->napi;
3651 	pp.netdev = bp->dev;
3652 	pp.dev = &bp->pdev->dev;
3653 	pp.dma_dir = bp->rx_dir;
3654 	pp.max_len = PAGE_SIZE;
3655 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3656 
3657 	rxr->page_pool = page_pool_create(&pp);
3658 	if (IS_ERR(rxr->page_pool)) {
3659 		int err = PTR_ERR(rxr->page_pool);
3660 
3661 		rxr->page_pool = NULL;
3662 		return err;
3663 	}
3664 	return 0;
3665 }
3666 
3667 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3668 {
3669 	int numa_node = dev_to_node(&bp->pdev->dev);
3670 	int i, rc = 0, agg_rings = 0, cpu;
3671 
3672 	if (!bp->rx_ring)
3673 		return -ENOMEM;
3674 
3675 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3676 		agg_rings = 1;
3677 
3678 	for (i = 0; i < bp->rx_nr_rings; i++) {
3679 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3680 		struct bnxt_ring_struct *ring;
3681 		int cpu_node;
3682 
3683 		ring = &rxr->rx_ring_struct;
3684 
3685 		cpu = cpumask_local_spread(i, numa_node);
3686 		cpu_node = cpu_to_node(cpu);
3687 		netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n",
3688 			   i, cpu_node);
3689 		rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node);
3690 		if (rc)
3691 			return rc;
3692 
3693 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3694 		if (rc < 0)
3695 			return rc;
3696 
3697 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3698 						MEM_TYPE_PAGE_POOL,
3699 						rxr->page_pool);
3700 		if (rc) {
3701 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3702 			return rc;
3703 		}
3704 
3705 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3706 		if (rc)
3707 			return rc;
3708 
3709 		ring->grp_idx = i;
3710 		if (agg_rings) {
3711 			u16 mem_size;
3712 
3713 			ring = &rxr->rx_agg_ring_struct;
3714 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3715 			if (rc)
3716 				return rc;
3717 
3718 			ring->grp_idx = i;
3719 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3720 			mem_size = rxr->rx_agg_bmap_size / 8;
3721 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3722 			if (!rxr->rx_agg_bmap)
3723 				return -ENOMEM;
3724 		}
3725 	}
3726 	if (bp->flags & BNXT_FLAG_TPA)
3727 		rc = bnxt_alloc_tpa_info(bp);
3728 	return rc;
3729 }
3730 
3731 static void bnxt_free_tx_rings(struct bnxt *bp)
3732 {
3733 	int i;
3734 	struct pci_dev *pdev = bp->pdev;
3735 
3736 	if (!bp->tx_ring)
3737 		return;
3738 
3739 	for (i = 0; i < bp->tx_nr_rings; i++) {
3740 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3741 		struct bnxt_ring_struct *ring;
3742 
3743 		if (txr->tx_push) {
3744 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3745 					  txr->tx_push, txr->tx_push_mapping);
3746 			txr->tx_push = NULL;
3747 		}
3748 
3749 		ring = &txr->tx_ring_struct;
3750 
3751 		bnxt_free_ring(bp, &ring->ring_mem);
3752 	}
3753 }
3754 
3755 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3756 	((tc) * (bp)->tx_nr_rings_per_tc)
3757 
3758 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3759 	((tx) % (bp)->tx_nr_rings_per_tc)
3760 
3761 #define BNXT_RING_TO_TC(bp, tx)		\
3762 	((tx) / (bp)->tx_nr_rings_per_tc)
3763 
3764 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3765 {
3766 	int i, j, rc;
3767 	struct pci_dev *pdev = bp->pdev;
3768 
3769 	bp->tx_push_size = 0;
3770 	if (bp->tx_push_thresh) {
3771 		int push_size;
3772 
3773 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3774 					bp->tx_push_thresh);
3775 
3776 		if (push_size > 256) {
3777 			push_size = 0;
3778 			bp->tx_push_thresh = 0;
3779 		}
3780 
3781 		bp->tx_push_size = push_size;
3782 	}
3783 
3784 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3785 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3786 		struct bnxt_ring_struct *ring;
3787 		u8 qidx;
3788 
3789 		ring = &txr->tx_ring_struct;
3790 
3791 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3792 		if (rc)
3793 			return rc;
3794 
3795 		ring->grp_idx = txr->bnapi->index;
3796 		if (bp->tx_push_size) {
3797 			dma_addr_t mapping;
3798 
3799 			/* One pre-allocated DMA buffer to backup
3800 			 * TX push operation
3801 			 */
3802 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3803 						bp->tx_push_size,
3804 						&txr->tx_push_mapping,
3805 						GFP_KERNEL);
3806 
3807 			if (!txr->tx_push)
3808 				return -ENOMEM;
3809 
3810 			mapping = txr->tx_push_mapping +
3811 				sizeof(struct tx_push_bd);
3812 			txr->data_mapping = cpu_to_le64(mapping);
3813 		}
3814 		qidx = bp->tc_to_qidx[j];
3815 		ring->queue_id = bp->q_info[qidx].queue_id;
3816 		spin_lock_init(&txr->xdp_tx_lock);
3817 		if (i < bp->tx_nr_rings_xdp)
3818 			continue;
3819 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3820 			j++;
3821 	}
3822 	return 0;
3823 }
3824 
3825 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3826 {
3827 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3828 
3829 	kfree(cpr->cp_desc_ring);
3830 	cpr->cp_desc_ring = NULL;
3831 	ring->ring_mem.pg_arr = NULL;
3832 	kfree(cpr->cp_desc_mapping);
3833 	cpr->cp_desc_mapping = NULL;
3834 	ring->ring_mem.dma_arr = NULL;
3835 }
3836 
3837 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3838 {
3839 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3840 	if (!cpr->cp_desc_ring)
3841 		return -ENOMEM;
3842 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3843 				       GFP_KERNEL);
3844 	if (!cpr->cp_desc_mapping)
3845 		return -ENOMEM;
3846 	return 0;
3847 }
3848 
3849 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3850 {
3851 	int i;
3852 
3853 	if (!bp->bnapi)
3854 		return;
3855 	for (i = 0; i < bp->cp_nr_rings; i++) {
3856 		struct bnxt_napi *bnapi = bp->bnapi[i];
3857 
3858 		if (!bnapi)
3859 			continue;
3860 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3861 	}
3862 }
3863 
3864 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3865 {
3866 	int i, n = bp->cp_nr_pages;
3867 
3868 	for (i = 0; i < bp->cp_nr_rings; i++) {
3869 		struct bnxt_napi *bnapi = bp->bnapi[i];
3870 		int rc;
3871 
3872 		if (!bnapi)
3873 			continue;
3874 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3875 		if (rc)
3876 			return rc;
3877 	}
3878 	return 0;
3879 }
3880 
3881 static void bnxt_free_cp_rings(struct bnxt *bp)
3882 {
3883 	int i;
3884 
3885 	if (!bp->bnapi)
3886 		return;
3887 
3888 	for (i = 0; i < bp->cp_nr_rings; i++) {
3889 		struct bnxt_napi *bnapi = bp->bnapi[i];
3890 		struct bnxt_cp_ring_info *cpr;
3891 		struct bnxt_ring_struct *ring;
3892 		int j;
3893 
3894 		if (!bnapi)
3895 			continue;
3896 
3897 		cpr = &bnapi->cp_ring;
3898 		ring = &cpr->cp_ring_struct;
3899 
3900 		bnxt_free_ring(bp, &ring->ring_mem);
3901 
3902 		if (!cpr->cp_ring_arr)
3903 			continue;
3904 
3905 		for (j = 0; j < cpr->cp_ring_count; j++) {
3906 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3907 
3908 			ring = &cpr2->cp_ring_struct;
3909 			bnxt_free_ring(bp, &ring->ring_mem);
3910 			bnxt_free_cp_arrays(cpr2);
3911 		}
3912 		kfree(cpr->cp_ring_arr);
3913 		cpr->cp_ring_arr = NULL;
3914 		cpr->cp_ring_count = 0;
3915 	}
3916 }
3917 
3918 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3919 				  struct bnxt_cp_ring_info *cpr)
3920 {
3921 	struct bnxt_ring_mem_info *rmem;
3922 	struct bnxt_ring_struct *ring;
3923 	int rc;
3924 
3925 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3926 	if (rc) {
3927 		bnxt_free_cp_arrays(cpr);
3928 		return -ENOMEM;
3929 	}
3930 	ring = &cpr->cp_ring_struct;
3931 	rmem = &ring->ring_mem;
3932 	rmem->nr_pages = bp->cp_nr_pages;
3933 	rmem->page_size = HW_CMPD_RING_SIZE;
3934 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3935 	rmem->dma_arr = cpr->cp_desc_mapping;
3936 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3937 	rc = bnxt_alloc_ring(bp, rmem);
3938 	if (rc) {
3939 		bnxt_free_ring(bp, rmem);
3940 		bnxt_free_cp_arrays(cpr);
3941 	}
3942 	return rc;
3943 }
3944 
3945 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3946 {
3947 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3948 	int i, j, rc, ulp_msix;
3949 	int tcs = bp->num_tc;
3950 
3951 	if (!tcs)
3952 		tcs = 1;
3953 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3954 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3955 		struct bnxt_napi *bnapi = bp->bnapi[i];
3956 		struct bnxt_cp_ring_info *cpr, *cpr2;
3957 		struct bnxt_ring_struct *ring;
3958 		int cp_count = 0, k;
3959 		int rx = 0, tx = 0;
3960 
3961 		if (!bnapi)
3962 			continue;
3963 
3964 		cpr = &bnapi->cp_ring;
3965 		cpr->bnapi = bnapi;
3966 		ring = &cpr->cp_ring_struct;
3967 
3968 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3969 		if (rc)
3970 			return rc;
3971 
3972 		ring->map_idx = ulp_msix + i;
3973 
3974 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3975 			continue;
3976 
3977 		if (i < bp->rx_nr_rings) {
3978 			cp_count++;
3979 			rx = 1;
3980 		}
3981 		if (i < bp->tx_nr_rings_xdp) {
3982 			cp_count++;
3983 			tx = 1;
3984 		} else if ((sh && i < bp->tx_nr_rings) ||
3985 			 (!sh && i >= bp->rx_nr_rings)) {
3986 			cp_count += tcs;
3987 			tx = 1;
3988 		}
3989 
3990 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3991 					   GFP_KERNEL);
3992 		if (!cpr->cp_ring_arr)
3993 			return -ENOMEM;
3994 		cpr->cp_ring_count = cp_count;
3995 
3996 		for (k = 0; k < cp_count; k++) {
3997 			cpr2 = &cpr->cp_ring_arr[k];
3998 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3999 			if (rc)
4000 				return rc;
4001 			cpr2->bnapi = bnapi;
4002 			cpr2->sw_stats = cpr->sw_stats;
4003 			cpr2->cp_idx = k;
4004 			if (!k && rx) {
4005 				bp->rx_ring[i].rx_cpr = cpr2;
4006 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
4007 			} else {
4008 				int n, tc = k - rx;
4009 
4010 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
4011 				bp->tx_ring[n].tx_cpr = cpr2;
4012 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
4013 			}
4014 		}
4015 		if (tx)
4016 			j++;
4017 	}
4018 	return 0;
4019 }
4020 
4021 static void bnxt_init_rx_ring_struct(struct bnxt *bp,
4022 				     struct bnxt_rx_ring_info *rxr)
4023 {
4024 	struct bnxt_ring_mem_info *rmem;
4025 	struct bnxt_ring_struct *ring;
4026 
4027 	ring = &rxr->rx_ring_struct;
4028 	rmem = &ring->ring_mem;
4029 	rmem->nr_pages = bp->rx_nr_pages;
4030 	rmem->page_size = HW_RXBD_RING_SIZE;
4031 	rmem->pg_arr = (void **)rxr->rx_desc_ring;
4032 	rmem->dma_arr = rxr->rx_desc_mapping;
4033 	rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4034 	rmem->vmem = (void **)&rxr->rx_buf_ring;
4035 
4036 	ring = &rxr->rx_agg_ring_struct;
4037 	rmem = &ring->ring_mem;
4038 	rmem->nr_pages = bp->rx_agg_nr_pages;
4039 	rmem->page_size = HW_RXBD_RING_SIZE;
4040 	rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4041 	rmem->dma_arr = rxr->rx_agg_desc_mapping;
4042 	rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4043 	rmem->vmem = (void **)&rxr->rx_agg_ring;
4044 }
4045 
4046 static void bnxt_reset_rx_ring_struct(struct bnxt *bp,
4047 				      struct bnxt_rx_ring_info *rxr)
4048 {
4049 	struct bnxt_ring_mem_info *rmem;
4050 	struct bnxt_ring_struct *ring;
4051 	int i;
4052 
4053 	rxr->page_pool->p.napi = NULL;
4054 	rxr->page_pool = NULL;
4055 	memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info));
4056 
4057 	ring = &rxr->rx_ring_struct;
4058 	rmem = &ring->ring_mem;
4059 	rmem->pg_tbl = NULL;
4060 	rmem->pg_tbl_map = 0;
4061 	for (i = 0; i < rmem->nr_pages; i++) {
4062 		rmem->pg_arr[i] = NULL;
4063 		rmem->dma_arr[i] = 0;
4064 	}
4065 	*rmem->vmem = NULL;
4066 
4067 	ring = &rxr->rx_agg_ring_struct;
4068 	rmem = &ring->ring_mem;
4069 	rmem->pg_tbl = NULL;
4070 	rmem->pg_tbl_map = 0;
4071 	for (i = 0; i < rmem->nr_pages; i++) {
4072 		rmem->pg_arr[i] = NULL;
4073 		rmem->dma_arr[i] = 0;
4074 	}
4075 	*rmem->vmem = NULL;
4076 }
4077 
4078 static void bnxt_init_ring_struct(struct bnxt *bp)
4079 {
4080 	int i, j;
4081 
4082 	for (i = 0; i < bp->cp_nr_rings; i++) {
4083 		struct bnxt_napi *bnapi = bp->bnapi[i];
4084 		struct bnxt_ring_mem_info *rmem;
4085 		struct bnxt_cp_ring_info *cpr;
4086 		struct bnxt_rx_ring_info *rxr;
4087 		struct bnxt_tx_ring_info *txr;
4088 		struct bnxt_ring_struct *ring;
4089 
4090 		if (!bnapi)
4091 			continue;
4092 
4093 		cpr = &bnapi->cp_ring;
4094 		ring = &cpr->cp_ring_struct;
4095 		rmem = &ring->ring_mem;
4096 		rmem->nr_pages = bp->cp_nr_pages;
4097 		rmem->page_size = HW_CMPD_RING_SIZE;
4098 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
4099 		rmem->dma_arr = cpr->cp_desc_mapping;
4100 		rmem->vmem_size = 0;
4101 
4102 		rxr = bnapi->rx_ring;
4103 		if (!rxr)
4104 			goto skip_rx;
4105 
4106 		ring = &rxr->rx_ring_struct;
4107 		rmem = &ring->ring_mem;
4108 		rmem->nr_pages = bp->rx_nr_pages;
4109 		rmem->page_size = HW_RXBD_RING_SIZE;
4110 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
4111 		rmem->dma_arr = rxr->rx_desc_mapping;
4112 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4113 		rmem->vmem = (void **)&rxr->rx_buf_ring;
4114 
4115 		ring = &rxr->rx_agg_ring_struct;
4116 		rmem = &ring->ring_mem;
4117 		rmem->nr_pages = bp->rx_agg_nr_pages;
4118 		rmem->page_size = HW_RXBD_RING_SIZE;
4119 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4120 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
4121 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4122 		rmem->vmem = (void **)&rxr->rx_agg_ring;
4123 
4124 skip_rx:
4125 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4126 			ring = &txr->tx_ring_struct;
4127 			rmem = &ring->ring_mem;
4128 			rmem->nr_pages = bp->tx_nr_pages;
4129 			rmem->page_size = HW_TXBD_RING_SIZE;
4130 			rmem->pg_arr = (void **)txr->tx_desc_ring;
4131 			rmem->dma_arr = txr->tx_desc_mapping;
4132 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
4133 			rmem->vmem = (void **)&txr->tx_buf_ring;
4134 		}
4135 	}
4136 }
4137 
4138 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
4139 {
4140 	int i;
4141 	u32 prod;
4142 	struct rx_bd **rx_buf_ring;
4143 
4144 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
4145 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
4146 		int j;
4147 		struct rx_bd *rxbd;
4148 
4149 		rxbd = rx_buf_ring[i];
4150 		if (!rxbd)
4151 			continue;
4152 
4153 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
4154 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
4155 			rxbd->rx_bd_opaque = prod;
4156 		}
4157 	}
4158 }
4159 
4160 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp,
4161 				       struct bnxt_rx_ring_info *rxr,
4162 				       int ring_nr)
4163 {
4164 	u32 prod;
4165 	int i;
4166 
4167 	prod = rxr->rx_prod;
4168 	for (i = 0; i < bp->rx_ring_size; i++) {
4169 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
4170 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
4171 				    ring_nr, i, bp->rx_ring_size);
4172 			break;
4173 		}
4174 		prod = NEXT_RX(prod);
4175 	}
4176 	rxr->rx_prod = prod;
4177 }
4178 
4179 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp,
4180 					struct bnxt_rx_ring_info *rxr,
4181 					int ring_nr)
4182 {
4183 	u32 prod;
4184 	int i;
4185 
4186 	prod = rxr->rx_agg_prod;
4187 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4188 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4189 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n",
4190 				    ring_nr, i, bp->rx_ring_size);
4191 			break;
4192 		}
4193 		prod = NEXT_RX_AGG(prod);
4194 	}
4195 	rxr->rx_agg_prod = prod;
4196 }
4197 
4198 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
4199 {
4200 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
4201 	int i;
4202 
4203 	bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr);
4204 
4205 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
4206 		return 0;
4207 
4208 	bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr);
4209 
4210 	if (rxr->rx_tpa) {
4211 		dma_addr_t mapping;
4212 		u8 *data;
4213 
4214 		for (i = 0; i < bp->max_tpa; i++) {
4215 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4216 			if (!data)
4217 				return -ENOMEM;
4218 
4219 			rxr->rx_tpa[i].data = data;
4220 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4221 			rxr->rx_tpa[i].mapping = mapping;
4222 		}
4223 	}
4224 	return 0;
4225 }
4226 
4227 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp,
4228 				       struct bnxt_rx_ring_info *rxr)
4229 {
4230 	struct bnxt_ring_struct *ring;
4231 	u32 type;
4232 
4233 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4234 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4235 
4236 	if (NET_IP_ALIGN == 2)
4237 		type |= RX_BD_FLAGS_SOP;
4238 
4239 	ring = &rxr->rx_ring_struct;
4240 	bnxt_init_rxbd_pages(ring, type);
4241 	ring->fw_ring_id = INVALID_HW_RING_ID;
4242 }
4243 
4244 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp,
4245 					   struct bnxt_rx_ring_info *rxr)
4246 {
4247 	struct bnxt_ring_struct *ring;
4248 	u32 type;
4249 
4250 	ring = &rxr->rx_agg_ring_struct;
4251 	ring->fw_ring_id = INVALID_HW_RING_ID;
4252 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4253 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4254 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4255 
4256 		bnxt_init_rxbd_pages(ring, type);
4257 	}
4258 }
4259 
4260 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4261 {
4262 	struct bnxt_rx_ring_info *rxr;
4263 
4264 	rxr = &bp->rx_ring[ring_nr];
4265 	bnxt_init_one_rx_ring_rxbd(bp, rxr);
4266 
4267 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4268 			     &rxr->bnapi->napi);
4269 
4270 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4271 		bpf_prog_add(bp->xdp_prog, 1);
4272 		rxr->xdp_prog = bp->xdp_prog;
4273 	}
4274 
4275 	bnxt_init_one_rx_agg_ring_rxbd(bp, rxr);
4276 
4277 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4278 }
4279 
4280 static void bnxt_init_cp_rings(struct bnxt *bp)
4281 {
4282 	int i, j;
4283 
4284 	for (i = 0; i < bp->cp_nr_rings; i++) {
4285 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4286 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4287 
4288 		ring->fw_ring_id = INVALID_HW_RING_ID;
4289 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4290 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4291 		if (!cpr->cp_ring_arr)
4292 			continue;
4293 		for (j = 0; j < cpr->cp_ring_count; j++) {
4294 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4295 
4296 			ring = &cpr2->cp_ring_struct;
4297 			ring->fw_ring_id = INVALID_HW_RING_ID;
4298 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4299 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4300 		}
4301 	}
4302 }
4303 
4304 static int bnxt_init_rx_rings(struct bnxt *bp)
4305 {
4306 	int i, rc = 0;
4307 
4308 	if (BNXT_RX_PAGE_MODE(bp)) {
4309 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4310 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4311 	} else {
4312 		bp->rx_offset = BNXT_RX_OFFSET;
4313 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4314 	}
4315 
4316 	for (i = 0; i < bp->rx_nr_rings; i++) {
4317 		rc = bnxt_init_one_rx_ring(bp, i);
4318 		if (rc)
4319 			break;
4320 	}
4321 
4322 	return rc;
4323 }
4324 
4325 static int bnxt_init_tx_rings(struct bnxt *bp)
4326 {
4327 	u16 i;
4328 
4329 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4330 				   BNXT_MIN_TX_DESC_CNT);
4331 
4332 	for (i = 0; i < bp->tx_nr_rings; i++) {
4333 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4334 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4335 
4336 		ring->fw_ring_id = INVALID_HW_RING_ID;
4337 
4338 		if (i >= bp->tx_nr_rings_xdp)
4339 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4340 					     NETDEV_QUEUE_TYPE_TX,
4341 					     &txr->bnapi->napi);
4342 	}
4343 
4344 	return 0;
4345 }
4346 
4347 static void bnxt_free_ring_grps(struct bnxt *bp)
4348 {
4349 	kfree(bp->grp_info);
4350 	bp->grp_info = NULL;
4351 }
4352 
4353 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4354 {
4355 	int i;
4356 
4357 	if (irq_re_init) {
4358 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4359 				       sizeof(struct bnxt_ring_grp_info),
4360 				       GFP_KERNEL);
4361 		if (!bp->grp_info)
4362 			return -ENOMEM;
4363 	}
4364 	for (i = 0; i < bp->cp_nr_rings; i++) {
4365 		if (irq_re_init)
4366 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4367 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4368 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4369 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4370 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4371 	}
4372 	return 0;
4373 }
4374 
4375 static void bnxt_free_vnics(struct bnxt *bp)
4376 {
4377 	kfree(bp->vnic_info);
4378 	bp->vnic_info = NULL;
4379 	bp->nr_vnics = 0;
4380 }
4381 
4382 static int bnxt_alloc_vnics(struct bnxt *bp)
4383 {
4384 	int num_vnics = 1;
4385 
4386 #ifdef CONFIG_RFS_ACCEL
4387 	if (bp->flags & BNXT_FLAG_RFS) {
4388 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
4389 			num_vnics++;
4390 		else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4391 			num_vnics += bp->rx_nr_rings;
4392 	}
4393 #endif
4394 
4395 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4396 		num_vnics++;
4397 
4398 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4399 				GFP_KERNEL);
4400 	if (!bp->vnic_info)
4401 		return -ENOMEM;
4402 
4403 	bp->nr_vnics = num_vnics;
4404 	return 0;
4405 }
4406 
4407 static void bnxt_init_vnics(struct bnxt *bp)
4408 {
4409 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
4410 	int i;
4411 
4412 	for (i = 0; i < bp->nr_vnics; i++) {
4413 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4414 		int j;
4415 
4416 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4417 		vnic->vnic_id = i;
4418 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4419 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4420 
4421 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4422 
4423 		if (bp->vnic_info[i].rss_hash_key) {
4424 			if (i == BNXT_VNIC_DEFAULT) {
4425 				u8 *key = (void *)vnic->rss_hash_key;
4426 				int k;
4427 
4428 				if (!bp->rss_hash_key_valid &&
4429 				    !bp->rss_hash_key_updated) {
4430 					get_random_bytes(bp->rss_hash_key,
4431 							 HW_HASH_KEY_SIZE);
4432 					bp->rss_hash_key_updated = true;
4433 				}
4434 
4435 				memcpy(vnic->rss_hash_key, bp->rss_hash_key,
4436 				       HW_HASH_KEY_SIZE);
4437 
4438 				if (!bp->rss_hash_key_updated)
4439 					continue;
4440 
4441 				bp->rss_hash_key_updated = false;
4442 				bp->rss_hash_key_valid = true;
4443 
4444 				bp->toeplitz_prefix = 0;
4445 				for (k = 0; k < 8; k++) {
4446 					bp->toeplitz_prefix <<= 8;
4447 					bp->toeplitz_prefix |= key[k];
4448 				}
4449 			} else {
4450 				memcpy(vnic->rss_hash_key, vnic0->rss_hash_key,
4451 				       HW_HASH_KEY_SIZE);
4452 			}
4453 		}
4454 	}
4455 }
4456 
4457 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4458 {
4459 	int pages;
4460 
4461 	pages = ring_size / desc_per_pg;
4462 
4463 	if (!pages)
4464 		return 1;
4465 
4466 	pages++;
4467 
4468 	while (pages & (pages - 1))
4469 		pages++;
4470 
4471 	return pages;
4472 }
4473 
4474 void bnxt_set_tpa_flags(struct bnxt *bp)
4475 {
4476 	bp->flags &= ~BNXT_FLAG_TPA;
4477 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4478 		return;
4479 	if (bp->dev->features & NETIF_F_LRO)
4480 		bp->flags |= BNXT_FLAG_LRO;
4481 	else if (bp->dev->features & NETIF_F_GRO_HW)
4482 		bp->flags |= BNXT_FLAG_GRO;
4483 }
4484 
4485 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4486  * be set on entry.
4487  */
4488 void bnxt_set_ring_params(struct bnxt *bp)
4489 {
4490 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4491 	u32 agg_factor = 0, agg_ring_size = 0;
4492 
4493 	/* 8 for CRC and VLAN */
4494 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4495 
4496 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4497 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4498 
4499 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4500 	ring_size = bp->rx_ring_size;
4501 	bp->rx_agg_ring_size = 0;
4502 	bp->rx_agg_nr_pages = 0;
4503 
4504 	if (bp->flags & BNXT_FLAG_TPA)
4505 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4506 
4507 	bp->flags &= ~BNXT_FLAG_JUMBO;
4508 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4509 		u32 jumbo_factor;
4510 
4511 		bp->flags |= BNXT_FLAG_JUMBO;
4512 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4513 		if (jumbo_factor > agg_factor)
4514 			agg_factor = jumbo_factor;
4515 	}
4516 	if (agg_factor) {
4517 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4518 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4519 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4520 				    bp->rx_ring_size, ring_size);
4521 			bp->rx_ring_size = ring_size;
4522 		}
4523 		agg_ring_size = ring_size * agg_factor;
4524 
4525 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4526 							RX_DESC_CNT);
4527 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4528 			u32 tmp = agg_ring_size;
4529 
4530 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4531 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4532 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4533 				    tmp, agg_ring_size);
4534 		}
4535 		bp->rx_agg_ring_size = agg_ring_size;
4536 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4537 
4538 		if (BNXT_RX_PAGE_MODE(bp)) {
4539 			rx_space = PAGE_SIZE;
4540 			rx_size = PAGE_SIZE -
4541 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4542 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4543 		} else {
4544 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4545 			rx_space = rx_size + NET_SKB_PAD +
4546 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4547 		}
4548 	}
4549 
4550 	bp->rx_buf_use_size = rx_size;
4551 	bp->rx_buf_size = rx_space;
4552 
4553 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4554 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4555 
4556 	ring_size = bp->tx_ring_size;
4557 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4558 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4559 
4560 	max_rx_cmpl = bp->rx_ring_size;
4561 	/* MAX TPA needs to be added because TPA_START completions are
4562 	 * immediately recycled, so the TPA completions are not bound by
4563 	 * the RX ring size.
4564 	 */
4565 	if (bp->flags & BNXT_FLAG_TPA)
4566 		max_rx_cmpl += bp->max_tpa;
4567 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4568 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4569 	bp->cp_ring_size = ring_size;
4570 
4571 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4572 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4573 		bp->cp_nr_pages = MAX_CP_PAGES;
4574 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4575 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4576 			    ring_size, bp->cp_ring_size);
4577 	}
4578 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4579 	bp->cp_ring_mask = bp->cp_bit - 1;
4580 }
4581 
4582 /* Changing allocation mode of RX rings.
4583  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4584  */
4585 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4586 {
4587 	struct net_device *dev = bp->dev;
4588 
4589 	if (page_mode) {
4590 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4591 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4592 
4593 		if (bp->xdp_prog->aux->xdp_has_frags)
4594 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4595 		else
4596 			dev->max_mtu =
4597 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4598 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4599 			bp->flags |= BNXT_FLAG_JUMBO;
4600 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4601 		} else {
4602 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4603 			bp->rx_skb_func = bnxt_rx_page_skb;
4604 		}
4605 		bp->rx_dir = DMA_BIDIRECTIONAL;
4606 		/* Disable LRO or GRO_HW */
4607 		netdev_update_features(dev);
4608 	} else {
4609 		dev->max_mtu = bp->max_mtu;
4610 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4611 		bp->rx_dir = DMA_FROM_DEVICE;
4612 		bp->rx_skb_func = bnxt_rx_skb;
4613 	}
4614 	return 0;
4615 }
4616 
4617 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4618 {
4619 	int i;
4620 	struct bnxt_vnic_info *vnic;
4621 	struct pci_dev *pdev = bp->pdev;
4622 
4623 	if (!bp->vnic_info)
4624 		return;
4625 
4626 	for (i = 0; i < bp->nr_vnics; i++) {
4627 		vnic = &bp->vnic_info[i];
4628 
4629 		kfree(vnic->fw_grp_ids);
4630 		vnic->fw_grp_ids = NULL;
4631 
4632 		kfree(vnic->uc_list);
4633 		vnic->uc_list = NULL;
4634 
4635 		if (vnic->mc_list) {
4636 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4637 					  vnic->mc_list, vnic->mc_list_mapping);
4638 			vnic->mc_list = NULL;
4639 		}
4640 
4641 		if (vnic->rss_table) {
4642 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4643 					  vnic->rss_table,
4644 					  vnic->rss_table_dma_addr);
4645 			vnic->rss_table = NULL;
4646 		}
4647 
4648 		vnic->rss_hash_key = NULL;
4649 		vnic->flags = 0;
4650 	}
4651 }
4652 
4653 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4654 {
4655 	int i, rc = 0, size;
4656 	struct bnxt_vnic_info *vnic;
4657 	struct pci_dev *pdev = bp->pdev;
4658 	int max_rings;
4659 
4660 	for (i = 0; i < bp->nr_vnics; i++) {
4661 		vnic = &bp->vnic_info[i];
4662 
4663 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4664 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4665 
4666 			if (mem_size > 0) {
4667 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4668 				if (!vnic->uc_list) {
4669 					rc = -ENOMEM;
4670 					goto out;
4671 				}
4672 			}
4673 		}
4674 
4675 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4676 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4677 			vnic->mc_list =
4678 				dma_alloc_coherent(&pdev->dev,
4679 						   vnic->mc_list_size,
4680 						   &vnic->mc_list_mapping,
4681 						   GFP_KERNEL);
4682 			if (!vnic->mc_list) {
4683 				rc = -ENOMEM;
4684 				goto out;
4685 			}
4686 		}
4687 
4688 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4689 			goto vnic_skip_grps;
4690 
4691 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4692 			max_rings = bp->rx_nr_rings;
4693 		else
4694 			max_rings = 1;
4695 
4696 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4697 		if (!vnic->fw_grp_ids) {
4698 			rc = -ENOMEM;
4699 			goto out;
4700 		}
4701 vnic_skip_grps:
4702 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4703 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4704 			continue;
4705 
4706 		/* Allocate rss table and hash key */
4707 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4708 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4709 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4710 
4711 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4712 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4713 						     vnic->rss_table_size,
4714 						     &vnic->rss_table_dma_addr,
4715 						     GFP_KERNEL);
4716 		if (!vnic->rss_table) {
4717 			rc = -ENOMEM;
4718 			goto out;
4719 		}
4720 
4721 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4722 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4723 	}
4724 	return 0;
4725 
4726 out:
4727 	return rc;
4728 }
4729 
4730 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4731 {
4732 	struct bnxt_hwrm_wait_token *token;
4733 
4734 	dma_pool_destroy(bp->hwrm_dma_pool);
4735 	bp->hwrm_dma_pool = NULL;
4736 
4737 	rcu_read_lock();
4738 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4739 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4740 	rcu_read_unlock();
4741 }
4742 
4743 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4744 {
4745 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4746 					    BNXT_HWRM_DMA_SIZE,
4747 					    BNXT_HWRM_DMA_ALIGN, 0);
4748 	if (!bp->hwrm_dma_pool)
4749 		return -ENOMEM;
4750 
4751 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4752 
4753 	return 0;
4754 }
4755 
4756 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4757 {
4758 	kfree(stats->hw_masks);
4759 	stats->hw_masks = NULL;
4760 	kfree(stats->sw_stats);
4761 	stats->sw_stats = NULL;
4762 	if (stats->hw_stats) {
4763 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4764 				  stats->hw_stats_map);
4765 		stats->hw_stats = NULL;
4766 	}
4767 }
4768 
4769 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4770 				bool alloc_masks)
4771 {
4772 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4773 					     &stats->hw_stats_map, GFP_KERNEL);
4774 	if (!stats->hw_stats)
4775 		return -ENOMEM;
4776 
4777 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4778 	if (!stats->sw_stats)
4779 		goto stats_mem_err;
4780 
4781 	if (alloc_masks) {
4782 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4783 		if (!stats->hw_masks)
4784 			goto stats_mem_err;
4785 	}
4786 	return 0;
4787 
4788 stats_mem_err:
4789 	bnxt_free_stats_mem(bp, stats);
4790 	return -ENOMEM;
4791 }
4792 
4793 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4794 {
4795 	int i;
4796 
4797 	for (i = 0; i < count; i++)
4798 		mask_arr[i] = mask;
4799 }
4800 
4801 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4802 {
4803 	int i;
4804 
4805 	for (i = 0; i < count; i++)
4806 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4807 }
4808 
4809 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4810 				    struct bnxt_stats_mem *stats)
4811 {
4812 	struct hwrm_func_qstats_ext_output *resp;
4813 	struct hwrm_func_qstats_ext_input *req;
4814 	__le64 *hw_masks;
4815 	int rc;
4816 
4817 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4818 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4819 		return -EOPNOTSUPP;
4820 
4821 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4822 	if (rc)
4823 		return rc;
4824 
4825 	req->fid = cpu_to_le16(0xffff);
4826 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4827 
4828 	resp = hwrm_req_hold(bp, req);
4829 	rc = hwrm_req_send(bp, req);
4830 	if (!rc) {
4831 		hw_masks = &resp->rx_ucast_pkts;
4832 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4833 	}
4834 	hwrm_req_drop(bp, req);
4835 	return rc;
4836 }
4837 
4838 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4839 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4840 
4841 static void bnxt_init_stats(struct bnxt *bp)
4842 {
4843 	struct bnxt_napi *bnapi = bp->bnapi[0];
4844 	struct bnxt_cp_ring_info *cpr;
4845 	struct bnxt_stats_mem *stats;
4846 	__le64 *rx_stats, *tx_stats;
4847 	int rc, rx_count, tx_count;
4848 	u64 *rx_masks, *tx_masks;
4849 	u64 mask;
4850 	u8 flags;
4851 
4852 	cpr = &bnapi->cp_ring;
4853 	stats = &cpr->stats;
4854 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4855 	if (rc) {
4856 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4857 			mask = (1ULL << 48) - 1;
4858 		else
4859 			mask = -1ULL;
4860 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4861 	}
4862 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4863 		stats = &bp->port_stats;
4864 		rx_stats = stats->hw_stats;
4865 		rx_masks = stats->hw_masks;
4866 		rx_count = sizeof(struct rx_port_stats) / 8;
4867 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4868 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4869 		tx_count = sizeof(struct tx_port_stats) / 8;
4870 
4871 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4872 		rc = bnxt_hwrm_port_qstats(bp, flags);
4873 		if (rc) {
4874 			mask = (1ULL << 40) - 1;
4875 
4876 			bnxt_fill_masks(rx_masks, mask, rx_count);
4877 			bnxt_fill_masks(tx_masks, mask, tx_count);
4878 		} else {
4879 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4880 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4881 			bnxt_hwrm_port_qstats(bp, 0);
4882 		}
4883 	}
4884 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4885 		stats = &bp->rx_port_stats_ext;
4886 		rx_stats = stats->hw_stats;
4887 		rx_masks = stats->hw_masks;
4888 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4889 		stats = &bp->tx_port_stats_ext;
4890 		tx_stats = stats->hw_stats;
4891 		tx_masks = stats->hw_masks;
4892 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4893 
4894 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4895 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4896 		if (rc) {
4897 			mask = (1ULL << 40) - 1;
4898 
4899 			bnxt_fill_masks(rx_masks, mask, rx_count);
4900 			if (tx_stats)
4901 				bnxt_fill_masks(tx_masks, mask, tx_count);
4902 		} else {
4903 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4904 			if (tx_stats)
4905 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4906 						   tx_count);
4907 			bnxt_hwrm_port_qstats_ext(bp, 0);
4908 		}
4909 	}
4910 }
4911 
4912 static void bnxt_free_port_stats(struct bnxt *bp)
4913 {
4914 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4915 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4916 
4917 	bnxt_free_stats_mem(bp, &bp->port_stats);
4918 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4919 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4920 }
4921 
4922 static void bnxt_free_ring_stats(struct bnxt *bp)
4923 {
4924 	int i;
4925 
4926 	if (!bp->bnapi)
4927 		return;
4928 
4929 	for (i = 0; i < bp->cp_nr_rings; i++) {
4930 		struct bnxt_napi *bnapi = bp->bnapi[i];
4931 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4932 
4933 		bnxt_free_stats_mem(bp, &cpr->stats);
4934 
4935 		kfree(cpr->sw_stats);
4936 		cpr->sw_stats = NULL;
4937 	}
4938 }
4939 
4940 static int bnxt_alloc_stats(struct bnxt *bp)
4941 {
4942 	u32 size, i;
4943 	int rc;
4944 
4945 	size = bp->hw_ring_stats_size;
4946 
4947 	for (i = 0; i < bp->cp_nr_rings; i++) {
4948 		struct bnxt_napi *bnapi = bp->bnapi[i];
4949 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4950 
4951 		cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL);
4952 		if (!cpr->sw_stats)
4953 			return -ENOMEM;
4954 
4955 		cpr->stats.len = size;
4956 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4957 		if (rc)
4958 			return rc;
4959 
4960 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4961 	}
4962 
4963 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4964 		return 0;
4965 
4966 	if (bp->port_stats.hw_stats)
4967 		goto alloc_ext_stats;
4968 
4969 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4970 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4971 	if (rc)
4972 		return rc;
4973 
4974 	bp->flags |= BNXT_FLAG_PORT_STATS;
4975 
4976 alloc_ext_stats:
4977 	/* Display extended statistics only if FW supports it */
4978 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4979 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4980 			return 0;
4981 
4982 	if (bp->rx_port_stats_ext.hw_stats)
4983 		goto alloc_tx_ext_stats;
4984 
4985 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4986 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4987 	/* Extended stats are optional */
4988 	if (rc)
4989 		return 0;
4990 
4991 alloc_tx_ext_stats:
4992 	if (bp->tx_port_stats_ext.hw_stats)
4993 		return 0;
4994 
4995 	if (bp->hwrm_spec_code >= 0x10902 ||
4996 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4997 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4998 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4999 		/* Extended stats are optional */
5000 		if (rc)
5001 			return 0;
5002 	}
5003 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
5004 	return 0;
5005 }
5006 
5007 static void bnxt_clear_ring_indices(struct bnxt *bp)
5008 {
5009 	int i, j;
5010 
5011 	if (!bp->bnapi)
5012 		return;
5013 
5014 	for (i = 0; i < bp->cp_nr_rings; i++) {
5015 		struct bnxt_napi *bnapi = bp->bnapi[i];
5016 		struct bnxt_cp_ring_info *cpr;
5017 		struct bnxt_rx_ring_info *rxr;
5018 		struct bnxt_tx_ring_info *txr;
5019 
5020 		if (!bnapi)
5021 			continue;
5022 
5023 		cpr = &bnapi->cp_ring;
5024 		cpr->cp_raw_cons = 0;
5025 
5026 		bnxt_for_each_napi_tx(j, bnapi, txr) {
5027 			txr->tx_prod = 0;
5028 			txr->tx_cons = 0;
5029 			txr->tx_hw_cons = 0;
5030 		}
5031 
5032 		rxr = bnapi->rx_ring;
5033 		if (rxr) {
5034 			rxr->rx_prod = 0;
5035 			rxr->rx_agg_prod = 0;
5036 			rxr->rx_sw_agg_prod = 0;
5037 			rxr->rx_next_cons = 0;
5038 		}
5039 		bnapi->events = 0;
5040 	}
5041 }
5042 
5043 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5044 {
5045 	u8 type = fltr->type, flags = fltr->flags;
5046 
5047 	INIT_LIST_HEAD(&fltr->list);
5048 	if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) ||
5049 	    (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING))
5050 		list_add_tail(&fltr->list, &bp->usr_fltr_list);
5051 }
5052 
5053 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5054 {
5055 	if (!list_empty(&fltr->list))
5056 		list_del_init(&fltr->list);
5057 }
5058 
5059 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all)
5060 {
5061 	struct bnxt_filter_base *usr_fltr, *tmp;
5062 
5063 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
5064 		if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2)
5065 			continue;
5066 		bnxt_del_one_usr_fltr(bp, usr_fltr);
5067 	}
5068 }
5069 
5070 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5071 {
5072 	hlist_del(&fltr->hash);
5073 	bnxt_del_one_usr_fltr(bp, fltr);
5074 	if (fltr->flags) {
5075 		clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5076 		bp->ntp_fltr_count--;
5077 	}
5078 	kfree(fltr);
5079 }
5080 
5081 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
5082 {
5083 	int i;
5084 
5085 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
5086 	 * safe to delete the hash table.
5087 	 */
5088 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5089 		struct hlist_head *head;
5090 		struct hlist_node *tmp;
5091 		struct bnxt_ntuple_filter *fltr;
5092 
5093 		head = &bp->ntp_fltr_hash_tbl[i];
5094 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5095 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
5096 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5097 				     !list_empty(&fltr->base.list)))
5098 				continue;
5099 			bnxt_del_fltr(bp, &fltr->base);
5100 		}
5101 	}
5102 	if (!all)
5103 		return;
5104 
5105 	bitmap_free(bp->ntp_fltr_bmap);
5106 	bp->ntp_fltr_bmap = NULL;
5107 	bp->ntp_fltr_count = 0;
5108 }
5109 
5110 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
5111 {
5112 	int i, rc = 0;
5113 
5114 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
5115 		return 0;
5116 
5117 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
5118 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
5119 
5120 	bp->ntp_fltr_count = 0;
5121 	bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL);
5122 
5123 	if (!bp->ntp_fltr_bmap)
5124 		rc = -ENOMEM;
5125 
5126 	return rc;
5127 }
5128 
5129 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
5130 {
5131 	int i;
5132 
5133 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
5134 		struct hlist_head *head;
5135 		struct hlist_node *tmp;
5136 		struct bnxt_l2_filter *fltr;
5137 
5138 		head = &bp->l2_fltr_hash_tbl[i];
5139 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5140 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5141 				     !list_empty(&fltr->base.list)))
5142 				continue;
5143 			bnxt_del_fltr(bp, &fltr->base);
5144 		}
5145 	}
5146 }
5147 
5148 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
5149 {
5150 	int i;
5151 
5152 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
5153 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
5154 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
5155 }
5156 
5157 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
5158 {
5159 	bnxt_free_vnic_attributes(bp);
5160 	bnxt_free_tx_rings(bp);
5161 	bnxt_free_rx_rings(bp);
5162 	bnxt_free_cp_rings(bp);
5163 	bnxt_free_all_cp_arrays(bp);
5164 	bnxt_free_ntp_fltrs(bp, false);
5165 	bnxt_free_l2_filters(bp, false);
5166 	if (irq_re_init) {
5167 		bnxt_free_ring_stats(bp);
5168 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
5169 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
5170 			bnxt_free_port_stats(bp);
5171 		bnxt_free_ring_grps(bp);
5172 		bnxt_free_vnics(bp);
5173 		kfree(bp->tx_ring_map);
5174 		bp->tx_ring_map = NULL;
5175 		kfree(bp->tx_ring);
5176 		bp->tx_ring = NULL;
5177 		kfree(bp->rx_ring);
5178 		bp->rx_ring = NULL;
5179 		kfree(bp->bnapi);
5180 		bp->bnapi = NULL;
5181 	} else {
5182 		bnxt_clear_ring_indices(bp);
5183 	}
5184 }
5185 
5186 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
5187 {
5188 	int i, j, rc, size, arr_size;
5189 	void *bnapi;
5190 
5191 	if (irq_re_init) {
5192 		/* Allocate bnapi mem pointer array and mem block for
5193 		 * all queues
5194 		 */
5195 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
5196 				bp->cp_nr_rings);
5197 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
5198 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
5199 		if (!bnapi)
5200 			return -ENOMEM;
5201 
5202 		bp->bnapi = bnapi;
5203 		bnapi += arr_size;
5204 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
5205 			bp->bnapi[i] = bnapi;
5206 			bp->bnapi[i]->index = i;
5207 			bp->bnapi[i]->bp = bp;
5208 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5209 				struct bnxt_cp_ring_info *cpr =
5210 					&bp->bnapi[i]->cp_ring;
5211 
5212 				cpr->cp_ring_struct.ring_mem.flags =
5213 					BNXT_RMEM_RING_PTE_FLAG;
5214 			}
5215 		}
5216 
5217 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
5218 				      sizeof(struct bnxt_rx_ring_info),
5219 				      GFP_KERNEL);
5220 		if (!bp->rx_ring)
5221 			return -ENOMEM;
5222 
5223 		for (i = 0; i < bp->rx_nr_rings; i++) {
5224 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5225 
5226 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5227 				rxr->rx_ring_struct.ring_mem.flags =
5228 					BNXT_RMEM_RING_PTE_FLAG;
5229 				rxr->rx_agg_ring_struct.ring_mem.flags =
5230 					BNXT_RMEM_RING_PTE_FLAG;
5231 			} else {
5232 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
5233 			}
5234 			rxr->bnapi = bp->bnapi[i];
5235 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
5236 		}
5237 
5238 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
5239 				      sizeof(struct bnxt_tx_ring_info),
5240 				      GFP_KERNEL);
5241 		if (!bp->tx_ring)
5242 			return -ENOMEM;
5243 
5244 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
5245 					  GFP_KERNEL);
5246 
5247 		if (!bp->tx_ring_map)
5248 			return -ENOMEM;
5249 
5250 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5251 			j = 0;
5252 		else
5253 			j = bp->rx_nr_rings;
5254 
5255 		for (i = 0; i < bp->tx_nr_rings; i++) {
5256 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5257 			struct bnxt_napi *bnapi2;
5258 
5259 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5260 				txr->tx_ring_struct.ring_mem.flags =
5261 					BNXT_RMEM_RING_PTE_FLAG;
5262 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
5263 			if (i >= bp->tx_nr_rings_xdp) {
5264 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
5265 
5266 				bnapi2 = bp->bnapi[k];
5267 				txr->txq_index = i - bp->tx_nr_rings_xdp;
5268 				txr->tx_napi_idx =
5269 					BNXT_RING_TO_TC(bp, txr->txq_index);
5270 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
5271 				bnapi2->tx_int = bnxt_tx_int;
5272 			} else {
5273 				bnapi2 = bp->bnapi[j];
5274 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5275 				bnapi2->tx_ring[0] = txr;
5276 				bnapi2->tx_int = bnxt_tx_int_xdp;
5277 				j++;
5278 			}
5279 			txr->bnapi = bnapi2;
5280 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5281 				txr->tx_cpr = &bnapi2->cp_ring;
5282 		}
5283 
5284 		rc = bnxt_alloc_stats(bp);
5285 		if (rc)
5286 			goto alloc_mem_err;
5287 		bnxt_init_stats(bp);
5288 
5289 		rc = bnxt_alloc_ntp_fltrs(bp);
5290 		if (rc)
5291 			goto alloc_mem_err;
5292 
5293 		rc = bnxt_alloc_vnics(bp);
5294 		if (rc)
5295 			goto alloc_mem_err;
5296 	}
5297 
5298 	rc = bnxt_alloc_all_cp_arrays(bp);
5299 	if (rc)
5300 		goto alloc_mem_err;
5301 
5302 	bnxt_init_ring_struct(bp);
5303 
5304 	rc = bnxt_alloc_rx_rings(bp);
5305 	if (rc)
5306 		goto alloc_mem_err;
5307 
5308 	rc = bnxt_alloc_tx_rings(bp);
5309 	if (rc)
5310 		goto alloc_mem_err;
5311 
5312 	rc = bnxt_alloc_cp_rings(bp);
5313 	if (rc)
5314 		goto alloc_mem_err;
5315 
5316 	bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG |
5317 						  BNXT_VNIC_MCAST_FLAG |
5318 						  BNXT_VNIC_UCAST_FLAG;
5319 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS))
5320 		bp->vnic_info[BNXT_VNIC_NTUPLE].flags |=
5321 			BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG;
5322 
5323 	rc = bnxt_alloc_vnic_attributes(bp);
5324 	if (rc)
5325 		goto alloc_mem_err;
5326 	return 0;
5327 
5328 alloc_mem_err:
5329 	bnxt_free_mem(bp, true);
5330 	return rc;
5331 }
5332 
5333 static void bnxt_disable_int(struct bnxt *bp)
5334 {
5335 	int i;
5336 
5337 	if (!bp->bnapi)
5338 		return;
5339 
5340 	for (i = 0; i < bp->cp_nr_rings; i++) {
5341 		struct bnxt_napi *bnapi = bp->bnapi[i];
5342 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5343 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5344 
5345 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5346 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5347 	}
5348 }
5349 
5350 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5351 {
5352 	struct bnxt_napi *bnapi = bp->bnapi[n];
5353 	struct bnxt_cp_ring_info *cpr;
5354 
5355 	cpr = &bnapi->cp_ring;
5356 	return cpr->cp_ring_struct.map_idx;
5357 }
5358 
5359 static void bnxt_disable_int_sync(struct bnxt *bp)
5360 {
5361 	int i;
5362 
5363 	if (!bp->irq_tbl)
5364 		return;
5365 
5366 	atomic_inc(&bp->intr_sem);
5367 
5368 	bnxt_disable_int(bp);
5369 	for (i = 0; i < bp->cp_nr_rings; i++) {
5370 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5371 
5372 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5373 	}
5374 }
5375 
5376 static void bnxt_enable_int(struct bnxt *bp)
5377 {
5378 	int i;
5379 
5380 	atomic_set(&bp->intr_sem, 0);
5381 	for (i = 0; i < bp->cp_nr_rings; i++) {
5382 		struct bnxt_napi *bnapi = bp->bnapi[i];
5383 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5384 
5385 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5386 	}
5387 }
5388 
5389 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5390 			    bool async_only)
5391 {
5392 	DECLARE_BITMAP(async_events_bmap, 256);
5393 	u32 *events = (u32 *)async_events_bmap;
5394 	struct hwrm_func_drv_rgtr_output *resp;
5395 	struct hwrm_func_drv_rgtr_input *req;
5396 	u32 flags;
5397 	int rc, i;
5398 
5399 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5400 	if (rc)
5401 		return rc;
5402 
5403 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5404 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5405 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5406 
5407 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5408 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5409 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5410 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5411 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5412 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5413 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5414 	req->flags = cpu_to_le32(flags);
5415 	req->ver_maj_8b = DRV_VER_MAJ;
5416 	req->ver_min_8b = DRV_VER_MIN;
5417 	req->ver_upd_8b = DRV_VER_UPD;
5418 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5419 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5420 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5421 
5422 	if (BNXT_PF(bp)) {
5423 		u32 data[8];
5424 		int i;
5425 
5426 		memset(data, 0, sizeof(data));
5427 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5428 			u16 cmd = bnxt_vf_req_snif[i];
5429 			unsigned int bit, idx;
5430 
5431 			idx = cmd / 32;
5432 			bit = cmd % 32;
5433 			data[idx] |= 1 << bit;
5434 		}
5435 
5436 		for (i = 0; i < 8; i++)
5437 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5438 
5439 		req->enables |=
5440 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5441 	}
5442 
5443 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5444 		req->flags |= cpu_to_le32(
5445 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5446 
5447 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5448 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5449 		u16 event_id = bnxt_async_events_arr[i];
5450 
5451 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5452 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5453 			continue;
5454 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5455 		    !bp->ptp_cfg)
5456 			continue;
5457 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5458 	}
5459 	if (bmap && bmap_size) {
5460 		for (i = 0; i < bmap_size; i++) {
5461 			if (test_bit(i, bmap))
5462 				__set_bit(i, async_events_bmap);
5463 		}
5464 	}
5465 	for (i = 0; i < 8; i++)
5466 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5467 
5468 	if (async_only)
5469 		req->enables =
5470 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5471 
5472 	resp = hwrm_req_hold(bp, req);
5473 	rc = hwrm_req_send(bp, req);
5474 	if (!rc) {
5475 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5476 		if (resp->flags &
5477 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5478 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5479 	}
5480 	hwrm_req_drop(bp, req);
5481 	return rc;
5482 }
5483 
5484 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5485 {
5486 	struct hwrm_func_drv_unrgtr_input *req;
5487 	int rc;
5488 
5489 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5490 		return 0;
5491 
5492 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5493 	if (rc)
5494 		return rc;
5495 	return hwrm_req_send(bp, req);
5496 }
5497 
5498 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5499 
5500 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5501 {
5502 	struct hwrm_tunnel_dst_port_free_input *req;
5503 	int rc;
5504 
5505 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5506 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5507 		return 0;
5508 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5509 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5510 		return 0;
5511 
5512 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5513 	if (rc)
5514 		return rc;
5515 
5516 	req->tunnel_type = tunnel_type;
5517 
5518 	switch (tunnel_type) {
5519 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5520 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5521 		bp->vxlan_port = 0;
5522 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5523 		break;
5524 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5525 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5526 		bp->nge_port = 0;
5527 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5528 		break;
5529 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5530 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5531 		bp->vxlan_gpe_port = 0;
5532 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5533 		break;
5534 	default:
5535 		break;
5536 	}
5537 
5538 	rc = hwrm_req_send(bp, req);
5539 	if (rc)
5540 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5541 			   rc);
5542 	if (bp->flags & BNXT_FLAG_TPA)
5543 		bnxt_set_tpa(bp, true);
5544 	return rc;
5545 }
5546 
5547 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5548 					   u8 tunnel_type)
5549 {
5550 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5551 	struct hwrm_tunnel_dst_port_alloc_input *req;
5552 	int rc;
5553 
5554 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5555 	if (rc)
5556 		return rc;
5557 
5558 	req->tunnel_type = tunnel_type;
5559 	req->tunnel_dst_port_val = port;
5560 
5561 	resp = hwrm_req_hold(bp, req);
5562 	rc = hwrm_req_send(bp, req);
5563 	if (rc) {
5564 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5565 			   rc);
5566 		goto err_out;
5567 	}
5568 
5569 	switch (tunnel_type) {
5570 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5571 		bp->vxlan_port = port;
5572 		bp->vxlan_fw_dst_port_id =
5573 			le16_to_cpu(resp->tunnel_dst_port_id);
5574 		break;
5575 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5576 		bp->nge_port = port;
5577 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5578 		break;
5579 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5580 		bp->vxlan_gpe_port = port;
5581 		bp->vxlan_gpe_fw_dst_port_id =
5582 			le16_to_cpu(resp->tunnel_dst_port_id);
5583 		break;
5584 	default:
5585 		break;
5586 	}
5587 	if (bp->flags & BNXT_FLAG_TPA)
5588 		bnxt_set_tpa(bp, true);
5589 
5590 err_out:
5591 	hwrm_req_drop(bp, req);
5592 	return rc;
5593 }
5594 
5595 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5596 {
5597 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5598 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5599 	int rc;
5600 
5601 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5602 	if (rc)
5603 		return rc;
5604 
5605 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5606 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5607 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5608 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5609 	}
5610 	req->mask = cpu_to_le32(vnic->rx_mask);
5611 	return hwrm_req_send_silent(bp, req);
5612 }
5613 
5614 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5615 {
5616 	if (!atomic_dec_and_test(&fltr->refcnt))
5617 		return;
5618 	spin_lock_bh(&bp->ntp_fltr_lock);
5619 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5620 		spin_unlock_bh(&bp->ntp_fltr_lock);
5621 		return;
5622 	}
5623 	hlist_del_rcu(&fltr->base.hash);
5624 	bnxt_del_one_usr_fltr(bp, &fltr->base);
5625 	if (fltr->base.flags) {
5626 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5627 		bp->ntp_fltr_count--;
5628 	}
5629 	spin_unlock_bh(&bp->ntp_fltr_lock);
5630 	kfree_rcu(fltr, base.rcu);
5631 }
5632 
5633 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5634 						      struct bnxt_l2_key *key,
5635 						      u32 idx)
5636 {
5637 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5638 	struct bnxt_l2_filter *fltr;
5639 
5640 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5641 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5642 
5643 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5644 		    l2_key->vlan == key->vlan)
5645 			return fltr;
5646 	}
5647 	return NULL;
5648 }
5649 
5650 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5651 						    struct bnxt_l2_key *key,
5652 						    u32 idx)
5653 {
5654 	struct bnxt_l2_filter *fltr = NULL;
5655 
5656 	rcu_read_lock();
5657 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5658 	if (fltr)
5659 		atomic_inc(&fltr->refcnt);
5660 	rcu_read_unlock();
5661 	return fltr;
5662 }
5663 
5664 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5665 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5666 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5667 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5668 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5669 
5670 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5671 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5672 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5673 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5674 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5675 
5676 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5677 {
5678 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5679 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5680 			return sizeof(fkeys->addrs.v4addrs) +
5681 			       sizeof(fkeys->ports);
5682 
5683 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5684 			return sizeof(fkeys->addrs.v4addrs);
5685 	}
5686 
5687 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5688 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5689 			return sizeof(fkeys->addrs.v6addrs) +
5690 			       sizeof(fkeys->ports);
5691 
5692 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5693 			return sizeof(fkeys->addrs.v6addrs);
5694 	}
5695 
5696 	return 0;
5697 }
5698 
5699 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5700 			 const unsigned char *key)
5701 {
5702 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5703 	struct bnxt_ipv4_tuple tuple4;
5704 	struct bnxt_ipv6_tuple tuple6;
5705 	int i, j, len = 0;
5706 	u8 *four_tuple;
5707 
5708 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5709 	if (!len)
5710 		return 0;
5711 
5712 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5713 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5714 		tuple4.ports = fkeys->ports;
5715 		four_tuple = (unsigned char *)&tuple4;
5716 	} else {
5717 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5718 		tuple6.ports = fkeys->ports;
5719 		four_tuple = (unsigned char *)&tuple6;
5720 	}
5721 
5722 	for (i = 0, j = 8; i < len; i++, j++) {
5723 		u8 byte = four_tuple[i];
5724 		int bit;
5725 
5726 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5727 			if (byte & 0x80)
5728 				hash ^= prefix;
5729 		}
5730 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5731 	}
5732 
5733 	/* The valid part of the hash is in the upper 32 bits. */
5734 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5735 }
5736 
5737 #ifdef CONFIG_RFS_ACCEL
5738 static struct bnxt_l2_filter *
5739 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5740 {
5741 	struct bnxt_l2_filter *fltr;
5742 	u32 idx;
5743 
5744 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5745 	      BNXT_L2_FLTR_HASH_MASK;
5746 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5747 	return fltr;
5748 }
5749 #endif
5750 
5751 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5752 			       struct bnxt_l2_key *key, u32 idx)
5753 {
5754 	struct hlist_head *head;
5755 
5756 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5757 	fltr->l2_key.vlan = key->vlan;
5758 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5759 	if (fltr->base.flags) {
5760 		int bit_id;
5761 
5762 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5763 						 bp->max_fltr, 0);
5764 		if (bit_id < 0)
5765 			return -ENOMEM;
5766 		fltr->base.sw_id = (u16)bit_id;
5767 		bp->ntp_fltr_count++;
5768 	}
5769 	head = &bp->l2_fltr_hash_tbl[idx];
5770 	hlist_add_head_rcu(&fltr->base.hash, head);
5771 	bnxt_insert_usr_fltr(bp, &fltr->base);
5772 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5773 	atomic_set(&fltr->refcnt, 1);
5774 	return 0;
5775 }
5776 
5777 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5778 						   struct bnxt_l2_key *key,
5779 						   gfp_t gfp)
5780 {
5781 	struct bnxt_l2_filter *fltr;
5782 	u32 idx;
5783 	int rc;
5784 
5785 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5786 	      BNXT_L2_FLTR_HASH_MASK;
5787 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5788 	if (fltr)
5789 		return fltr;
5790 
5791 	fltr = kzalloc(sizeof(*fltr), gfp);
5792 	if (!fltr)
5793 		return ERR_PTR(-ENOMEM);
5794 	spin_lock_bh(&bp->ntp_fltr_lock);
5795 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5796 	spin_unlock_bh(&bp->ntp_fltr_lock);
5797 	if (rc) {
5798 		bnxt_del_l2_filter(bp, fltr);
5799 		fltr = ERR_PTR(rc);
5800 	}
5801 	return fltr;
5802 }
5803 
5804 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp,
5805 						struct bnxt_l2_key *key,
5806 						u16 flags)
5807 {
5808 	struct bnxt_l2_filter *fltr;
5809 	u32 idx;
5810 	int rc;
5811 
5812 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5813 	      BNXT_L2_FLTR_HASH_MASK;
5814 	spin_lock_bh(&bp->ntp_fltr_lock);
5815 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5816 	if (fltr) {
5817 		fltr = ERR_PTR(-EEXIST);
5818 		goto l2_filter_exit;
5819 	}
5820 	fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC);
5821 	if (!fltr) {
5822 		fltr = ERR_PTR(-ENOMEM);
5823 		goto l2_filter_exit;
5824 	}
5825 	fltr->base.flags = flags;
5826 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5827 	if (rc) {
5828 		spin_unlock_bh(&bp->ntp_fltr_lock);
5829 		bnxt_del_l2_filter(bp, fltr);
5830 		return ERR_PTR(rc);
5831 	}
5832 
5833 l2_filter_exit:
5834 	spin_unlock_bh(&bp->ntp_fltr_lock);
5835 	return fltr;
5836 }
5837 
5838 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5839 {
5840 #ifdef CONFIG_BNXT_SRIOV
5841 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5842 
5843 	return vf->fw_fid;
5844 #else
5845 	return INVALID_HW_RING_ID;
5846 #endif
5847 }
5848 
5849 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5850 {
5851 	struct hwrm_cfa_l2_filter_free_input *req;
5852 	u16 target_id = 0xffff;
5853 	int rc;
5854 
5855 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5856 		struct bnxt_pf_info *pf = &bp->pf;
5857 
5858 		if (fltr->base.vf_idx >= pf->active_vfs)
5859 			return -EINVAL;
5860 
5861 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5862 		if (target_id == INVALID_HW_RING_ID)
5863 			return -EINVAL;
5864 	}
5865 
5866 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5867 	if (rc)
5868 		return rc;
5869 
5870 	req->target_id = cpu_to_le16(target_id);
5871 	req->l2_filter_id = fltr->base.filter_id;
5872 	return hwrm_req_send(bp, req);
5873 }
5874 
5875 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5876 {
5877 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5878 	struct hwrm_cfa_l2_filter_alloc_input *req;
5879 	u16 target_id = 0xffff;
5880 	int rc;
5881 
5882 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5883 		struct bnxt_pf_info *pf = &bp->pf;
5884 
5885 		if (fltr->base.vf_idx >= pf->active_vfs)
5886 			return -EINVAL;
5887 
5888 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5889 	}
5890 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5891 	if (rc)
5892 		return rc;
5893 
5894 	req->target_id = cpu_to_le16(target_id);
5895 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5896 
5897 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5898 		req->flags |=
5899 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5900 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5901 	req->enables =
5902 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5903 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5904 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5905 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5906 	eth_broadcast_addr(req->l2_addr_mask);
5907 
5908 	if (fltr->l2_key.vlan) {
5909 		req->enables |=
5910 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5911 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5912 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5913 		req->num_vlans = 1;
5914 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5915 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5916 	}
5917 
5918 	resp = hwrm_req_hold(bp, req);
5919 	rc = hwrm_req_send(bp, req);
5920 	if (!rc) {
5921 		fltr->base.filter_id = resp->l2_filter_id;
5922 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5923 	}
5924 	hwrm_req_drop(bp, req);
5925 	return rc;
5926 }
5927 
5928 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5929 				     struct bnxt_ntuple_filter *fltr)
5930 {
5931 	struct hwrm_cfa_ntuple_filter_free_input *req;
5932 	int rc;
5933 
5934 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5935 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5936 	if (rc)
5937 		return rc;
5938 
5939 	req->ntuple_filter_id = fltr->base.filter_id;
5940 	return hwrm_req_send(bp, req);
5941 }
5942 
5943 #define BNXT_NTP_FLTR_FLAGS					\
5944 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5945 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5946 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5947 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5948 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5957 
5958 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5959 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5960 
5961 void bnxt_fill_ipv6_mask(__be32 mask[4])
5962 {
5963 	int i;
5964 
5965 	for (i = 0; i < 4; i++)
5966 		mask[i] = cpu_to_be32(~0);
5967 }
5968 
5969 static void
5970 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp,
5971 			  struct hwrm_cfa_ntuple_filter_alloc_input *req,
5972 			  struct bnxt_ntuple_filter *fltr)
5973 {
5974 	u16 rxq = fltr->base.rxq;
5975 
5976 	if (fltr->base.flags & BNXT_ACT_RSS_CTX) {
5977 		struct ethtool_rxfh_context *ctx;
5978 		struct bnxt_rss_ctx *rss_ctx;
5979 		struct bnxt_vnic_info *vnic;
5980 
5981 		ctx = xa_load(&bp->dev->ethtool->rss_ctx,
5982 			      fltr->base.fw_vnic_id);
5983 		if (ctx) {
5984 			rss_ctx = ethtool_rxfh_context_priv(ctx);
5985 			vnic = &rss_ctx->vnic;
5986 
5987 			req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5988 		}
5989 		return;
5990 	}
5991 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
5992 		struct bnxt_vnic_info *vnic;
5993 		u32 enables;
5994 
5995 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
5996 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5997 		enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
5998 		req->enables |= cpu_to_le32(enables);
5999 		req->rfs_ring_tbl_idx = cpu_to_le16(rxq);
6000 	} else {
6001 		u32 flags;
6002 
6003 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
6004 		req->flags |= cpu_to_le32(flags);
6005 		req->dst_id = cpu_to_le16(rxq);
6006 	}
6007 }
6008 
6009 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
6010 				      struct bnxt_ntuple_filter *fltr)
6011 {
6012 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
6013 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
6014 	struct bnxt_flow_masks *masks = &fltr->fmasks;
6015 	struct flow_keys *keys = &fltr->fkeys;
6016 	struct bnxt_l2_filter *l2_fltr;
6017 	struct bnxt_vnic_info *vnic;
6018 	int rc;
6019 
6020 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
6021 	if (rc)
6022 		return rc;
6023 
6024 	l2_fltr = fltr->l2_fltr;
6025 	req->l2_filter_id = l2_fltr->base.filter_id;
6026 
6027 	if (fltr->base.flags & BNXT_ACT_DROP) {
6028 		req->flags =
6029 			cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP);
6030 	} else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
6031 		bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr);
6032 	} else {
6033 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
6034 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6035 	}
6036 	req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
6037 
6038 	req->ethertype = htons(ETH_P_IP);
6039 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
6040 	req->ip_protocol = keys->basic.ip_proto;
6041 
6042 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
6043 		req->ethertype = htons(ETH_P_IPV6);
6044 		req->ip_addr_type =
6045 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
6046 		*(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src;
6047 		*(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src;
6048 		*(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst;
6049 		*(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst;
6050 	} else {
6051 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
6052 		req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src;
6053 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
6054 		req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst;
6055 	}
6056 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
6057 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
6058 		req->tunnel_type =
6059 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
6060 	}
6061 
6062 	req->src_port = keys->ports.src;
6063 	req->src_port_mask = masks->ports.src;
6064 	req->dst_port = keys->ports.dst;
6065 	req->dst_port_mask = masks->ports.dst;
6066 
6067 	resp = hwrm_req_hold(bp, req);
6068 	rc = hwrm_req_send(bp, req);
6069 	if (!rc)
6070 		fltr->base.filter_id = resp->ntuple_filter_id;
6071 	hwrm_req_drop(bp, req);
6072 	return rc;
6073 }
6074 
6075 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
6076 				     const u8 *mac_addr)
6077 {
6078 	struct bnxt_l2_filter *fltr;
6079 	struct bnxt_l2_key key;
6080 	int rc;
6081 
6082 	ether_addr_copy(key.dst_mac_addr, mac_addr);
6083 	key.vlan = 0;
6084 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
6085 	if (IS_ERR(fltr))
6086 		return PTR_ERR(fltr);
6087 
6088 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
6089 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
6090 	if (rc)
6091 		bnxt_del_l2_filter(bp, fltr);
6092 	else
6093 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
6094 	return rc;
6095 }
6096 
6097 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
6098 {
6099 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
6100 
6101 	/* Any associated ntuple filters will also be cleared by firmware. */
6102 	for (i = 0; i < num_of_vnics; i++) {
6103 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6104 
6105 		for (j = 0; j < vnic->uc_filter_count; j++) {
6106 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
6107 
6108 			bnxt_hwrm_l2_filter_free(bp, fltr);
6109 			bnxt_del_l2_filter(bp, fltr);
6110 		}
6111 		vnic->uc_filter_count = 0;
6112 	}
6113 }
6114 
6115 #define BNXT_DFLT_TUNL_TPA_BMAP				\
6116 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
6117 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
6118 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
6119 
6120 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
6121 					   struct hwrm_vnic_tpa_cfg_input *req)
6122 {
6123 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
6124 
6125 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
6126 		return;
6127 
6128 	if (bp->vxlan_port)
6129 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
6130 	if (bp->vxlan_gpe_port)
6131 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
6132 	if (bp->nge_port)
6133 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
6134 
6135 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
6136 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
6137 }
6138 
6139 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6140 			   u32 tpa_flags)
6141 {
6142 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
6143 	struct hwrm_vnic_tpa_cfg_input *req;
6144 	int rc;
6145 
6146 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
6147 		return 0;
6148 
6149 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
6150 	if (rc)
6151 		return rc;
6152 
6153 	if (tpa_flags) {
6154 		u16 mss = bp->dev->mtu - 40;
6155 		u32 nsegs, n, segs = 0, flags;
6156 
6157 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
6158 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
6159 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
6160 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
6161 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
6162 		if (tpa_flags & BNXT_FLAG_GRO)
6163 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
6164 
6165 		req->flags = cpu_to_le32(flags);
6166 
6167 		req->enables =
6168 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
6169 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
6170 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
6171 
6172 		/* Number of segs are log2 units, and first packet is not
6173 		 * included as part of this units.
6174 		 */
6175 		if (mss <= BNXT_RX_PAGE_SIZE) {
6176 			n = BNXT_RX_PAGE_SIZE / mss;
6177 			nsegs = (MAX_SKB_FRAGS - 1) * n;
6178 		} else {
6179 			n = mss / BNXT_RX_PAGE_SIZE;
6180 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
6181 				n++;
6182 			nsegs = (MAX_SKB_FRAGS - n) / n;
6183 		}
6184 
6185 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6186 			segs = MAX_TPA_SEGS_P5;
6187 			max_aggs = bp->max_tpa;
6188 		} else {
6189 			segs = ilog2(nsegs);
6190 		}
6191 		req->max_agg_segs = cpu_to_le16(segs);
6192 		req->max_aggs = cpu_to_le16(max_aggs);
6193 
6194 		req->min_agg_len = cpu_to_le32(512);
6195 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
6196 	}
6197 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6198 
6199 	return hwrm_req_send(bp, req);
6200 }
6201 
6202 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
6203 {
6204 	struct bnxt_ring_grp_info *grp_info;
6205 
6206 	grp_info = &bp->grp_info[ring->grp_idx];
6207 	return grp_info->cp_fw_ring_id;
6208 }
6209 
6210 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
6211 {
6212 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6213 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
6214 	else
6215 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
6216 }
6217 
6218 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
6219 {
6220 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6221 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
6222 	else
6223 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
6224 }
6225 
6226 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
6227 {
6228 	int entries;
6229 
6230 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6231 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
6232 	else
6233 		entries = HW_HASH_INDEX_SIZE;
6234 
6235 	bp->rss_indir_tbl_entries = entries;
6236 	bp->rss_indir_tbl =
6237 		kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL);
6238 	if (!bp->rss_indir_tbl)
6239 		return -ENOMEM;
6240 
6241 	return 0;
6242 }
6243 
6244 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp,
6245 				 struct ethtool_rxfh_context *rss_ctx)
6246 {
6247 	u16 max_rings, max_entries, pad, i;
6248 	u32 *rss_indir_tbl;
6249 
6250 	if (!bp->rx_nr_rings)
6251 		return;
6252 
6253 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6254 		max_rings = bp->rx_nr_rings - 1;
6255 	else
6256 		max_rings = bp->rx_nr_rings;
6257 
6258 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
6259 	if (rss_ctx)
6260 		rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx);
6261 	else
6262 		rss_indir_tbl = &bp->rss_indir_tbl[0];
6263 
6264 	for (i = 0; i < max_entries; i++)
6265 		rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
6266 
6267 	pad = bp->rss_indir_tbl_entries - max_entries;
6268 	if (pad)
6269 		memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl));
6270 }
6271 
6272 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
6273 {
6274 	u32 i, tbl_size, max_ring = 0;
6275 
6276 	if (!bp->rss_indir_tbl)
6277 		return 0;
6278 
6279 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6280 	for (i = 0; i < tbl_size; i++)
6281 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
6282 	return max_ring;
6283 }
6284 
6285 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
6286 {
6287 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6288 		if (!rx_rings)
6289 			return 0;
6290 		return bnxt_calc_nr_ring_pages(rx_rings - 1,
6291 					       BNXT_RSS_TABLE_ENTRIES_P5);
6292 	}
6293 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6294 		return 2;
6295 	return 1;
6296 }
6297 
6298 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6299 {
6300 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
6301 	u16 i, j;
6302 
6303 	/* Fill the RSS indirection table with ring group ids */
6304 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
6305 		if (!no_rss)
6306 			j = bp->rss_indir_tbl[i];
6307 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
6308 	}
6309 }
6310 
6311 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
6312 				    struct bnxt_vnic_info *vnic)
6313 {
6314 	__le16 *ring_tbl = vnic->rss_table;
6315 	struct bnxt_rx_ring_info *rxr;
6316 	u16 tbl_size, i;
6317 
6318 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6319 
6320 	for (i = 0; i < tbl_size; i++) {
6321 		u16 ring_id, j;
6322 
6323 		if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG)
6324 			j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings);
6325 		else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG)
6326 			j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i];
6327 		else
6328 			j = bp->rss_indir_tbl[i];
6329 		rxr = &bp->rx_ring[j];
6330 
6331 		ring_id = rxr->rx_ring_struct.fw_ring_id;
6332 		*ring_tbl++ = cpu_to_le16(ring_id);
6333 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6334 		*ring_tbl++ = cpu_to_le16(ring_id);
6335 	}
6336 }
6337 
6338 static void
6339 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
6340 			 struct bnxt_vnic_info *vnic)
6341 {
6342 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6343 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
6344 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6345 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT;
6346 	} else {
6347 		bnxt_fill_hw_rss_tbl(bp, vnic);
6348 	}
6349 
6350 	if (bp->rss_hash_delta) {
6351 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
6352 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
6353 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
6354 		else
6355 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
6356 	} else {
6357 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6358 	}
6359 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6360 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6361 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6362 }
6363 
6364 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6365 				  bool set_rss)
6366 {
6367 	struct hwrm_vnic_rss_cfg_input *req;
6368 	int rc;
6369 
6370 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6371 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6372 		return 0;
6373 
6374 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6375 	if (rc)
6376 		return rc;
6377 
6378 	if (set_rss)
6379 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6380 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6381 	return hwrm_req_send(bp, req);
6382 }
6383 
6384 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp,
6385 				     struct bnxt_vnic_info *vnic, bool set_rss)
6386 {
6387 	struct hwrm_vnic_rss_cfg_input *req;
6388 	dma_addr_t ring_tbl_map;
6389 	u32 i, nr_ctxs;
6390 	int rc;
6391 
6392 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6393 	if (rc)
6394 		return rc;
6395 
6396 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6397 	if (!set_rss)
6398 		return hwrm_req_send(bp, req);
6399 
6400 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6401 	ring_tbl_map = vnic->rss_table_dma_addr;
6402 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6403 
6404 	hwrm_req_hold(bp, req);
6405 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6406 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6407 		req->ring_table_pair_index = i;
6408 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6409 		rc = hwrm_req_send(bp, req);
6410 		if (rc)
6411 			goto exit;
6412 	}
6413 
6414 exit:
6415 	hwrm_req_drop(bp, req);
6416 	return rc;
6417 }
6418 
6419 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6420 {
6421 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6422 	struct hwrm_vnic_rss_qcfg_output *resp;
6423 	struct hwrm_vnic_rss_qcfg_input *req;
6424 
6425 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6426 		return;
6427 
6428 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6429 	/* all contexts configured to same hash_type, zero always exists */
6430 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6431 	resp = hwrm_req_hold(bp, req);
6432 	if (!hwrm_req_send(bp, req)) {
6433 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6434 		bp->rss_hash_delta = 0;
6435 	}
6436 	hwrm_req_drop(bp, req);
6437 }
6438 
6439 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6440 {
6441 	struct hwrm_vnic_plcmodes_cfg_input *req;
6442 	int rc;
6443 
6444 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6445 	if (rc)
6446 		return rc;
6447 
6448 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6449 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6450 
6451 	if (BNXT_RX_PAGE_MODE(bp)) {
6452 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6453 	} else {
6454 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6455 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6456 		req->enables |=
6457 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6458 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6459 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6460 	}
6461 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6462 	return hwrm_req_send(bp, req);
6463 }
6464 
6465 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp,
6466 					struct bnxt_vnic_info *vnic,
6467 					u16 ctx_idx)
6468 {
6469 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6470 
6471 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6472 		return;
6473 
6474 	req->rss_cos_lb_ctx_id =
6475 		cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]);
6476 
6477 	hwrm_req_send(bp, req);
6478 	vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6479 }
6480 
6481 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6482 {
6483 	int i, j;
6484 
6485 	for (i = 0; i < bp->nr_vnics; i++) {
6486 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6487 
6488 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6489 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6490 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j);
6491 		}
6492 	}
6493 	bp->rsscos_nr_ctxs = 0;
6494 }
6495 
6496 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp,
6497 				    struct bnxt_vnic_info *vnic, u16 ctx_idx)
6498 {
6499 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6500 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6501 	int rc;
6502 
6503 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6504 	if (rc)
6505 		return rc;
6506 
6507 	resp = hwrm_req_hold(bp, req);
6508 	rc = hwrm_req_send(bp, req);
6509 	if (!rc)
6510 		vnic->fw_rss_cos_lb_ctx[ctx_idx] =
6511 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6512 	hwrm_req_drop(bp, req);
6513 
6514 	return rc;
6515 }
6516 
6517 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6518 {
6519 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6520 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6521 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6522 }
6523 
6524 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6525 {
6526 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6527 	struct hwrm_vnic_cfg_input *req;
6528 	unsigned int ring = 0, grp_idx;
6529 	u16 def_vlan = 0;
6530 	int rc;
6531 
6532 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6533 	if (rc)
6534 		return rc;
6535 
6536 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6537 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6538 
6539 		req->default_rx_ring_id =
6540 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6541 		req->default_cmpl_ring_id =
6542 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6543 		req->enables =
6544 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6545 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6546 		goto vnic_mru;
6547 	}
6548 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6549 	/* Only RSS support for now TBD: COS & LB */
6550 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6551 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6552 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6553 					   VNIC_CFG_REQ_ENABLES_MRU);
6554 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6555 		req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]);
6556 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6557 					   VNIC_CFG_REQ_ENABLES_MRU);
6558 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6559 	} else {
6560 		req->rss_rule = cpu_to_le16(0xffff);
6561 	}
6562 
6563 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6564 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6565 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6566 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6567 	} else {
6568 		req->cos_rule = cpu_to_le16(0xffff);
6569 	}
6570 
6571 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6572 		ring = 0;
6573 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6574 		ring = vnic->vnic_id - 1;
6575 	else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6576 		ring = bp->rx_nr_rings - 1;
6577 
6578 	grp_idx = bp->rx_ring[ring].bnapi->index;
6579 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6580 	req->lb_rule = cpu_to_le16(0xffff);
6581 vnic_mru:
6582 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
6583 
6584 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6585 #ifdef CONFIG_BNXT_SRIOV
6586 	if (BNXT_VF(bp))
6587 		def_vlan = bp->vf.vlan;
6588 #endif
6589 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6590 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6591 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev))
6592 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6593 
6594 	return hwrm_req_send(bp, req);
6595 }
6596 
6597 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp,
6598 				    struct bnxt_vnic_info *vnic)
6599 {
6600 	if (vnic->fw_vnic_id != INVALID_HW_RING_ID) {
6601 		struct hwrm_vnic_free_input *req;
6602 
6603 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6604 			return;
6605 
6606 		req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6607 
6608 		hwrm_req_send(bp, req);
6609 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
6610 	}
6611 }
6612 
6613 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6614 {
6615 	u16 i;
6616 
6617 	for (i = 0; i < bp->nr_vnics; i++)
6618 		bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]);
6619 }
6620 
6621 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6622 			 unsigned int start_rx_ring_idx,
6623 			 unsigned int nr_rings)
6624 {
6625 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6626 	struct hwrm_vnic_alloc_output *resp;
6627 	struct hwrm_vnic_alloc_input *req;
6628 	int rc;
6629 
6630 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6631 	if (rc)
6632 		return rc;
6633 
6634 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6635 		goto vnic_no_ring_grps;
6636 
6637 	/* map ring groups to this vnic */
6638 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6639 		grp_idx = bp->rx_ring[i].bnapi->index;
6640 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6641 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6642 				   j, nr_rings);
6643 			break;
6644 		}
6645 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6646 	}
6647 
6648 vnic_no_ring_grps:
6649 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6650 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6651 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT)
6652 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6653 
6654 	resp = hwrm_req_hold(bp, req);
6655 	rc = hwrm_req_send(bp, req);
6656 	if (!rc)
6657 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6658 	hwrm_req_drop(bp, req);
6659 	return rc;
6660 }
6661 
6662 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6663 {
6664 	struct hwrm_vnic_qcaps_output *resp;
6665 	struct hwrm_vnic_qcaps_input *req;
6666 	int rc;
6667 
6668 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6669 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6670 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6671 	if (bp->hwrm_spec_code < 0x10600)
6672 		return 0;
6673 
6674 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6675 	if (rc)
6676 		return rc;
6677 
6678 	resp = hwrm_req_hold(bp, req);
6679 	rc = hwrm_req_send(bp, req);
6680 	if (!rc) {
6681 		u32 flags = le32_to_cpu(resp->flags);
6682 
6683 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6684 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6685 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6686 		if (flags &
6687 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6688 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6689 
6690 		/* Older P5 fw before EXT_HW_STATS support did not set
6691 		 * VLAN_STRIP_CAP properly.
6692 		 */
6693 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6694 		    (BNXT_CHIP_P5(bp) &&
6695 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6696 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6697 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6698 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6699 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6700 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6701 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6702 		if (bp->max_tpa_v2) {
6703 			if (BNXT_CHIP_P5(bp))
6704 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6705 			else
6706 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6707 		}
6708 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6709 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6710 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP)
6711 			bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP;
6712 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP)
6713 			bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP;
6714 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP)
6715 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP;
6716 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP)
6717 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP;
6718 	}
6719 	hwrm_req_drop(bp, req);
6720 	return rc;
6721 }
6722 
6723 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6724 {
6725 	struct hwrm_ring_grp_alloc_output *resp;
6726 	struct hwrm_ring_grp_alloc_input *req;
6727 	int rc;
6728 	u16 i;
6729 
6730 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6731 		return 0;
6732 
6733 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6734 	if (rc)
6735 		return rc;
6736 
6737 	resp = hwrm_req_hold(bp, req);
6738 	for (i = 0; i < bp->rx_nr_rings; i++) {
6739 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6740 
6741 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6742 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6743 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6744 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6745 
6746 		rc = hwrm_req_send(bp, req);
6747 
6748 		if (rc)
6749 			break;
6750 
6751 		bp->grp_info[grp_idx].fw_grp_id =
6752 			le32_to_cpu(resp->ring_group_id);
6753 	}
6754 	hwrm_req_drop(bp, req);
6755 	return rc;
6756 }
6757 
6758 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6759 {
6760 	struct hwrm_ring_grp_free_input *req;
6761 	u16 i;
6762 
6763 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6764 		return;
6765 
6766 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6767 		return;
6768 
6769 	hwrm_req_hold(bp, req);
6770 	for (i = 0; i < bp->cp_nr_rings; i++) {
6771 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6772 			continue;
6773 		req->ring_group_id =
6774 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6775 
6776 		hwrm_req_send(bp, req);
6777 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6778 	}
6779 	hwrm_req_drop(bp, req);
6780 }
6781 
6782 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6783 				    struct bnxt_ring_struct *ring,
6784 				    u32 ring_type, u32 map_index)
6785 {
6786 	struct hwrm_ring_alloc_output *resp;
6787 	struct hwrm_ring_alloc_input *req;
6788 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6789 	struct bnxt_ring_grp_info *grp_info;
6790 	int rc, err = 0;
6791 	u16 ring_id;
6792 
6793 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6794 	if (rc)
6795 		goto exit;
6796 
6797 	req->enables = 0;
6798 	if (rmem->nr_pages > 1) {
6799 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6800 		/* Page size is in log2 units */
6801 		req->page_size = BNXT_PAGE_SHIFT;
6802 		req->page_tbl_depth = 1;
6803 	} else {
6804 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6805 	}
6806 	req->fbo = 0;
6807 	/* Association of ring index with doorbell index and MSIX number */
6808 	req->logical_id = cpu_to_le16(map_index);
6809 
6810 	switch (ring_type) {
6811 	case HWRM_RING_ALLOC_TX: {
6812 		struct bnxt_tx_ring_info *txr;
6813 		u16 flags = 0;
6814 
6815 		txr = container_of(ring, struct bnxt_tx_ring_info,
6816 				   tx_ring_struct);
6817 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6818 		/* Association of transmit ring with completion ring */
6819 		grp_info = &bp->grp_info[ring->grp_idx];
6820 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6821 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6822 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6823 		req->queue_id = cpu_to_le16(ring->queue_id);
6824 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6825 			req->cmpl_coal_cnt =
6826 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6827 		if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg)
6828 			flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE;
6829 		req->flags = cpu_to_le16(flags);
6830 		break;
6831 	}
6832 	case HWRM_RING_ALLOC_RX:
6833 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6834 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6835 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6836 			u16 flags = 0;
6837 
6838 			/* Association of rx ring with stats context */
6839 			grp_info = &bp->grp_info[ring->grp_idx];
6840 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6841 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6842 			req->enables |= cpu_to_le32(
6843 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6844 			if (NET_IP_ALIGN == 2)
6845 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6846 			req->flags = cpu_to_le16(flags);
6847 		}
6848 		break;
6849 	case HWRM_RING_ALLOC_AGG:
6850 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6851 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6852 			/* Association of agg ring with rx ring */
6853 			grp_info = &bp->grp_info[ring->grp_idx];
6854 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6855 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6856 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6857 			req->enables |= cpu_to_le32(
6858 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6859 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6860 		} else {
6861 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6862 		}
6863 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6864 		break;
6865 	case HWRM_RING_ALLOC_CMPL:
6866 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6867 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6868 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6869 			/* Association of cp ring with nq */
6870 			grp_info = &bp->grp_info[map_index];
6871 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6872 			req->cq_handle = cpu_to_le64(ring->handle);
6873 			req->enables |= cpu_to_le32(
6874 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6875 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6876 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6877 		}
6878 		break;
6879 	case HWRM_RING_ALLOC_NQ:
6880 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6881 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6882 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6883 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6884 		break;
6885 	default:
6886 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6887 			   ring_type);
6888 		return -1;
6889 	}
6890 
6891 	resp = hwrm_req_hold(bp, req);
6892 	rc = hwrm_req_send(bp, req);
6893 	err = le16_to_cpu(resp->error_code);
6894 	ring_id = le16_to_cpu(resp->ring_id);
6895 	hwrm_req_drop(bp, req);
6896 
6897 exit:
6898 	if (rc || err) {
6899 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6900 			   ring_type, rc, err);
6901 		return -EIO;
6902 	}
6903 	ring->fw_ring_id = ring_id;
6904 	return rc;
6905 }
6906 
6907 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6908 {
6909 	int rc;
6910 
6911 	if (BNXT_PF(bp)) {
6912 		struct hwrm_func_cfg_input *req;
6913 
6914 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6915 		if (rc)
6916 			return rc;
6917 
6918 		req->fid = cpu_to_le16(0xffff);
6919 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6920 		req->async_event_cr = cpu_to_le16(idx);
6921 		return hwrm_req_send(bp, req);
6922 	} else {
6923 		struct hwrm_func_vf_cfg_input *req;
6924 
6925 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6926 		if (rc)
6927 			return rc;
6928 
6929 		req->enables =
6930 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6931 		req->async_event_cr = cpu_to_le16(idx);
6932 		return hwrm_req_send(bp, req);
6933 	}
6934 }
6935 
6936 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6937 			     u32 ring_type)
6938 {
6939 	switch (ring_type) {
6940 	case HWRM_RING_ALLOC_TX:
6941 		db->db_ring_mask = bp->tx_ring_mask;
6942 		break;
6943 	case HWRM_RING_ALLOC_RX:
6944 		db->db_ring_mask = bp->rx_ring_mask;
6945 		break;
6946 	case HWRM_RING_ALLOC_AGG:
6947 		db->db_ring_mask = bp->rx_agg_ring_mask;
6948 		break;
6949 	case HWRM_RING_ALLOC_CMPL:
6950 	case HWRM_RING_ALLOC_NQ:
6951 		db->db_ring_mask = bp->cp_ring_mask;
6952 		break;
6953 	}
6954 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6955 		db->db_epoch_mask = db->db_ring_mask + 1;
6956 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6957 	}
6958 }
6959 
6960 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6961 			u32 map_idx, u32 xid)
6962 {
6963 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6964 		switch (ring_type) {
6965 		case HWRM_RING_ALLOC_TX:
6966 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6967 			break;
6968 		case HWRM_RING_ALLOC_RX:
6969 		case HWRM_RING_ALLOC_AGG:
6970 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6971 			break;
6972 		case HWRM_RING_ALLOC_CMPL:
6973 			db->db_key64 = DBR_PATH_L2;
6974 			break;
6975 		case HWRM_RING_ALLOC_NQ:
6976 			db->db_key64 = DBR_PATH_L2;
6977 			break;
6978 		}
6979 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6980 
6981 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6982 			db->db_key64 |= DBR_VALID;
6983 
6984 		db->doorbell = bp->bar1 + bp->db_offset;
6985 	} else {
6986 		db->doorbell = bp->bar1 + map_idx * 0x80;
6987 		switch (ring_type) {
6988 		case HWRM_RING_ALLOC_TX:
6989 			db->db_key32 = DB_KEY_TX;
6990 			break;
6991 		case HWRM_RING_ALLOC_RX:
6992 		case HWRM_RING_ALLOC_AGG:
6993 			db->db_key32 = DB_KEY_RX;
6994 			break;
6995 		case HWRM_RING_ALLOC_CMPL:
6996 			db->db_key32 = DB_KEY_CP;
6997 			break;
6998 		}
6999 	}
7000 	bnxt_set_db_mask(bp, db, ring_type);
7001 }
7002 
7003 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp,
7004 				   struct bnxt_rx_ring_info *rxr)
7005 {
7006 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7007 	struct bnxt_napi *bnapi = rxr->bnapi;
7008 	u32 type = HWRM_RING_ALLOC_RX;
7009 	u32 map_idx = bnapi->index;
7010 	int rc;
7011 
7012 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7013 	if (rc)
7014 		return rc;
7015 
7016 	bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
7017 	bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
7018 
7019 	return 0;
7020 }
7021 
7022 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp,
7023 				       struct bnxt_rx_ring_info *rxr)
7024 {
7025 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7026 	u32 type = HWRM_RING_ALLOC_AGG;
7027 	u32 grp_idx = ring->grp_idx;
7028 	u32 map_idx;
7029 	int rc;
7030 
7031 	map_idx = grp_idx + bp->rx_nr_rings;
7032 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7033 	if (rc)
7034 		return rc;
7035 
7036 	bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
7037 		    ring->fw_ring_id);
7038 	bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
7039 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7040 	bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
7041 
7042 	return 0;
7043 }
7044 
7045 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
7046 {
7047 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
7048 	int i, rc = 0;
7049 	u32 type;
7050 
7051 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7052 		type = HWRM_RING_ALLOC_NQ;
7053 	else
7054 		type = HWRM_RING_ALLOC_CMPL;
7055 	for (i = 0; i < bp->cp_nr_rings; i++) {
7056 		struct bnxt_napi *bnapi = bp->bnapi[i];
7057 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7058 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
7059 		u32 map_idx = ring->map_idx;
7060 		unsigned int vector;
7061 
7062 		vector = bp->irq_tbl[map_idx].vector;
7063 		disable_irq_nosync(vector);
7064 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7065 		if (rc) {
7066 			enable_irq(vector);
7067 			goto err_out;
7068 		}
7069 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
7070 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
7071 		enable_irq(vector);
7072 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
7073 
7074 		if (!i) {
7075 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
7076 			if (rc)
7077 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
7078 		}
7079 	}
7080 
7081 	type = HWRM_RING_ALLOC_TX;
7082 	for (i = 0; i < bp->tx_nr_rings; i++) {
7083 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7084 		struct bnxt_ring_struct *ring;
7085 		u32 map_idx;
7086 
7087 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7088 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
7089 			struct bnxt_napi *bnapi = txr->bnapi;
7090 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7091 
7092 			ring = &cpr2->cp_ring_struct;
7093 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7094 			map_idx = bnapi->index;
7095 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7096 			if (rc)
7097 				goto err_out;
7098 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7099 				    ring->fw_ring_id);
7100 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7101 		}
7102 		ring = &txr->tx_ring_struct;
7103 		map_idx = i;
7104 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7105 		if (rc)
7106 			goto err_out;
7107 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
7108 	}
7109 
7110 	for (i = 0; i < bp->rx_nr_rings; i++) {
7111 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
7112 
7113 		rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
7114 		if (rc)
7115 			goto err_out;
7116 		/* If we have agg rings, post agg buffers first. */
7117 		if (!agg_rings)
7118 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7119 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7120 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
7121 			struct bnxt_napi *bnapi = rxr->bnapi;
7122 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7123 			struct bnxt_ring_struct *ring;
7124 			u32 map_idx = bnapi->index;
7125 
7126 			ring = &cpr2->cp_ring_struct;
7127 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7128 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7129 			if (rc)
7130 				goto err_out;
7131 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7132 				    ring->fw_ring_id);
7133 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7134 		}
7135 	}
7136 
7137 	if (agg_rings) {
7138 		for (i = 0; i < bp->rx_nr_rings; i++) {
7139 			rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]);
7140 			if (rc)
7141 				goto err_out;
7142 		}
7143 	}
7144 err_out:
7145 	return rc;
7146 }
7147 
7148 static int hwrm_ring_free_send_msg(struct bnxt *bp,
7149 				   struct bnxt_ring_struct *ring,
7150 				   u32 ring_type, int cmpl_ring_id)
7151 {
7152 	struct hwrm_ring_free_output *resp;
7153 	struct hwrm_ring_free_input *req;
7154 	u16 error_code = 0;
7155 	int rc;
7156 
7157 	if (BNXT_NO_FW_ACCESS(bp))
7158 		return 0;
7159 
7160 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
7161 	if (rc)
7162 		goto exit;
7163 
7164 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
7165 	req->ring_type = ring_type;
7166 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
7167 
7168 	resp = hwrm_req_hold(bp, req);
7169 	rc = hwrm_req_send(bp, req);
7170 	error_code = le16_to_cpu(resp->error_code);
7171 	hwrm_req_drop(bp, req);
7172 exit:
7173 	if (rc || error_code) {
7174 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
7175 			   ring_type, rc, error_code);
7176 		return -EIO;
7177 	}
7178 	return 0;
7179 }
7180 
7181 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp,
7182 				   struct bnxt_rx_ring_info *rxr,
7183 				   bool close_path)
7184 {
7185 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7186 	u32 grp_idx = rxr->bnapi->index;
7187 	u32 cmpl_ring_id;
7188 
7189 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7190 		return;
7191 
7192 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7193 	hwrm_ring_free_send_msg(bp, ring,
7194 				RING_FREE_REQ_RING_TYPE_RX,
7195 				close_path ? cmpl_ring_id :
7196 				INVALID_HW_RING_ID);
7197 	ring->fw_ring_id = INVALID_HW_RING_ID;
7198 	bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID;
7199 }
7200 
7201 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp,
7202 				       struct bnxt_rx_ring_info *rxr,
7203 				       bool close_path)
7204 {
7205 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7206 	u32 grp_idx = rxr->bnapi->index;
7207 	u32 type, cmpl_ring_id;
7208 
7209 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7210 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
7211 	else
7212 		type = RING_FREE_REQ_RING_TYPE_RX;
7213 
7214 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7215 		return;
7216 
7217 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7218 	hwrm_ring_free_send_msg(bp, ring, type,
7219 				close_path ? cmpl_ring_id :
7220 				INVALID_HW_RING_ID);
7221 	ring->fw_ring_id = INVALID_HW_RING_ID;
7222 	bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID;
7223 }
7224 
7225 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
7226 {
7227 	u32 type;
7228 	int i;
7229 
7230 	if (!bp->bnapi)
7231 		return;
7232 
7233 	for (i = 0; i < bp->tx_nr_rings; i++) {
7234 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7235 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
7236 
7237 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7238 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
7239 
7240 			hwrm_ring_free_send_msg(bp, ring,
7241 						RING_FREE_REQ_RING_TYPE_TX,
7242 						close_path ? cmpl_ring_id :
7243 						INVALID_HW_RING_ID);
7244 			ring->fw_ring_id = INVALID_HW_RING_ID;
7245 		}
7246 	}
7247 
7248 	for (i = 0; i < bp->rx_nr_rings; i++) {
7249 		bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path);
7250 		bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path);
7251 	}
7252 
7253 	/* The completion rings are about to be freed.  After that the
7254 	 * IRQ doorbell will not work anymore.  So we need to disable
7255 	 * IRQ here.
7256 	 */
7257 	bnxt_disable_int_sync(bp);
7258 
7259 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7260 		type = RING_FREE_REQ_RING_TYPE_NQ;
7261 	else
7262 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
7263 	for (i = 0; i < bp->cp_nr_rings; i++) {
7264 		struct bnxt_napi *bnapi = bp->bnapi[i];
7265 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7266 		struct bnxt_ring_struct *ring;
7267 		int j;
7268 
7269 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
7270 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
7271 
7272 			ring = &cpr2->cp_ring_struct;
7273 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
7274 				continue;
7275 			hwrm_ring_free_send_msg(bp, ring,
7276 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
7277 						INVALID_HW_RING_ID);
7278 			ring->fw_ring_id = INVALID_HW_RING_ID;
7279 		}
7280 		ring = &cpr->cp_ring_struct;
7281 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7282 			hwrm_ring_free_send_msg(bp, ring, type,
7283 						INVALID_HW_RING_ID);
7284 			ring->fw_ring_id = INVALID_HW_RING_ID;
7285 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
7286 		}
7287 	}
7288 }
7289 
7290 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7291 			     bool shared);
7292 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7293 			   bool shared);
7294 
7295 static int bnxt_hwrm_get_rings(struct bnxt *bp)
7296 {
7297 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7298 	struct hwrm_func_qcfg_output *resp;
7299 	struct hwrm_func_qcfg_input *req;
7300 	int rc;
7301 
7302 	if (bp->hwrm_spec_code < 0x10601)
7303 		return 0;
7304 
7305 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7306 	if (rc)
7307 		return rc;
7308 
7309 	req->fid = cpu_to_le16(0xffff);
7310 	resp = hwrm_req_hold(bp, req);
7311 	rc = hwrm_req_send(bp, req);
7312 	if (rc) {
7313 		hwrm_req_drop(bp, req);
7314 		return rc;
7315 	}
7316 
7317 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7318 	if (BNXT_NEW_RM(bp)) {
7319 		u16 cp, stats;
7320 
7321 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
7322 		hw_resc->resv_hw_ring_grps =
7323 			le32_to_cpu(resp->alloc_hw_ring_grps);
7324 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
7325 		hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx);
7326 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
7327 		stats = le16_to_cpu(resp->alloc_stat_ctx);
7328 		hw_resc->resv_irqs = cp;
7329 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7330 			int rx = hw_resc->resv_rx_rings;
7331 			int tx = hw_resc->resv_tx_rings;
7332 
7333 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
7334 				rx >>= 1;
7335 			if (cp < (rx + tx)) {
7336 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
7337 				if (rc)
7338 					goto get_rings_exit;
7339 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
7340 					rx <<= 1;
7341 				hw_resc->resv_rx_rings = rx;
7342 				hw_resc->resv_tx_rings = tx;
7343 			}
7344 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
7345 			hw_resc->resv_hw_ring_grps = rx;
7346 		}
7347 		hw_resc->resv_cp_rings = cp;
7348 		hw_resc->resv_stat_ctxs = stats;
7349 	}
7350 get_rings_exit:
7351 	hwrm_req_drop(bp, req);
7352 	return rc;
7353 }
7354 
7355 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
7356 {
7357 	struct hwrm_func_qcfg_output *resp;
7358 	struct hwrm_func_qcfg_input *req;
7359 	int rc;
7360 
7361 	if (bp->hwrm_spec_code < 0x10601)
7362 		return 0;
7363 
7364 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7365 	if (rc)
7366 		return rc;
7367 
7368 	req->fid = cpu_to_le16(fid);
7369 	resp = hwrm_req_hold(bp, req);
7370 	rc = hwrm_req_send(bp, req);
7371 	if (!rc)
7372 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7373 
7374 	hwrm_req_drop(bp, req);
7375 	return rc;
7376 }
7377 
7378 static bool bnxt_rfs_supported(struct bnxt *bp);
7379 
7380 static struct hwrm_func_cfg_input *
7381 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7382 {
7383 	struct hwrm_func_cfg_input *req;
7384 	u32 enables = 0;
7385 
7386 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
7387 		return NULL;
7388 
7389 	req->fid = cpu_to_le16(0xffff);
7390 	enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7391 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7392 	if (BNXT_NEW_RM(bp)) {
7393 		enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
7394 		enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7395 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7396 			enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
7397 			enables |= hwr->cp_p5 ?
7398 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7399 		} else {
7400 			enables |= hwr->cp ?
7401 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7402 			enables |= hwr->grp ?
7403 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7404 		}
7405 		enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7406 		enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS :
7407 					  0;
7408 		req->num_rx_rings = cpu_to_le16(hwr->rx);
7409 		req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7410 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7411 			req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7412 			req->num_msix = cpu_to_le16(hwr->cp);
7413 		} else {
7414 			req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7415 			req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7416 		}
7417 		req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7418 		req->num_vnics = cpu_to_le16(hwr->vnic);
7419 	}
7420 	req->enables = cpu_to_le32(enables);
7421 	return req;
7422 }
7423 
7424 static struct hwrm_func_vf_cfg_input *
7425 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7426 {
7427 	struct hwrm_func_vf_cfg_input *req;
7428 	u32 enables = 0;
7429 
7430 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7431 		return NULL;
7432 
7433 	enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7434 	enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7435 			     FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7436 	enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7437 	enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7438 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7439 		enables |= hwr->cp_p5 ?
7440 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7441 	} else {
7442 		enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7443 		enables |= hwr->grp ?
7444 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7445 	}
7446 	enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7447 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7448 
7449 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7450 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7451 	req->num_rx_rings = cpu_to_le16(hwr->rx);
7452 	req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7453 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7454 		req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7455 	} else {
7456 		req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7457 		req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7458 	}
7459 	req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7460 	req->num_vnics = cpu_to_le16(hwr->vnic);
7461 
7462 	req->enables = cpu_to_le32(enables);
7463 	return req;
7464 }
7465 
7466 static int
7467 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7468 {
7469 	struct hwrm_func_cfg_input *req;
7470 	int rc;
7471 
7472 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7473 	if (!req)
7474 		return -ENOMEM;
7475 
7476 	if (!req->enables) {
7477 		hwrm_req_drop(bp, req);
7478 		return 0;
7479 	}
7480 
7481 	rc = hwrm_req_send(bp, req);
7482 	if (rc)
7483 		return rc;
7484 
7485 	if (bp->hwrm_spec_code < 0x10601)
7486 		bp->hw_resc.resv_tx_rings = hwr->tx;
7487 
7488 	return bnxt_hwrm_get_rings(bp);
7489 }
7490 
7491 static int
7492 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7493 {
7494 	struct hwrm_func_vf_cfg_input *req;
7495 	int rc;
7496 
7497 	if (!BNXT_NEW_RM(bp)) {
7498 		bp->hw_resc.resv_tx_rings = hwr->tx;
7499 		return 0;
7500 	}
7501 
7502 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7503 	if (!req)
7504 		return -ENOMEM;
7505 
7506 	rc = hwrm_req_send(bp, req);
7507 	if (rc)
7508 		return rc;
7509 
7510 	return bnxt_hwrm_get_rings(bp);
7511 }
7512 
7513 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7514 {
7515 	if (BNXT_PF(bp))
7516 		return bnxt_hwrm_reserve_pf_rings(bp, hwr);
7517 	else
7518 		return bnxt_hwrm_reserve_vf_rings(bp, hwr);
7519 }
7520 
7521 int bnxt_nq_rings_in_use(struct bnxt *bp)
7522 {
7523 	return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp);
7524 }
7525 
7526 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7527 {
7528 	int cp;
7529 
7530 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7531 		return bnxt_nq_rings_in_use(bp);
7532 
7533 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7534 	return cp;
7535 }
7536 
7537 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7538 {
7539 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
7540 }
7541 
7542 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7543 {
7544 	if (!hwr->grp)
7545 		return 0;
7546 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7547 		int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp);
7548 
7549 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7550 			rss_ctx *= hwr->vnic;
7551 		return rss_ctx;
7552 	}
7553 	if (BNXT_VF(bp))
7554 		return BNXT_VF_MAX_RSS_CTX;
7555 	if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp))
7556 		return hwr->grp + 1;
7557 	return 1;
7558 }
7559 
7560 /* Check if a default RSS map needs to be setup.  This function is only
7561  * used on older firmware that does not require reserving RX rings.
7562  */
7563 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7564 {
7565 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7566 
7567 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7568 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7569 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7570 		if (!netif_is_rxfh_configured(bp->dev))
7571 			bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7572 	}
7573 }
7574 
7575 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings)
7576 {
7577 	if (bp->flags & BNXT_FLAG_RFS) {
7578 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7579 			return 2 + bp->num_rss_ctx;
7580 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7581 			return rx_rings + 1;
7582 	}
7583 	return 1;
7584 }
7585 
7586 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7587 {
7588 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7589 	int cp = bnxt_cp_rings_in_use(bp);
7590 	int nq = bnxt_nq_rings_in_use(bp);
7591 	int rx = bp->rx_nr_rings, stat;
7592 	int vnic, grp = rx;
7593 
7594 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7595 	    bp->hwrm_spec_code >= 0x10601)
7596 		return true;
7597 
7598 	/* Old firmware does not need RX ring reservations but we still
7599 	 * need to setup a default RSS map when needed.  With new firmware
7600 	 * we go through RX ring reservations first and then set up the
7601 	 * RSS map for the successfully reserved RX rings when needed.
7602 	 */
7603 	if (!BNXT_NEW_RM(bp)) {
7604 		bnxt_check_rss_tbl_no_rmgr(bp);
7605 		return false;
7606 	}
7607 
7608 	vnic = bnxt_get_total_vnics(bp, rx);
7609 
7610 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7611 		rx <<= 1;
7612 	stat = bnxt_get_func_stat_ctxs(bp);
7613 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7614 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7615 	    (hw_resc->resv_hw_ring_grps != grp &&
7616 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7617 		return true;
7618 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7619 	    hw_resc->resv_irqs != nq)
7620 		return true;
7621 	return false;
7622 }
7623 
7624 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7625 {
7626 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7627 
7628 	hwr->tx = hw_resc->resv_tx_rings;
7629 	if (BNXT_NEW_RM(bp)) {
7630 		hwr->rx = hw_resc->resv_rx_rings;
7631 		hwr->cp = hw_resc->resv_irqs;
7632 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7633 			hwr->cp_p5 = hw_resc->resv_cp_rings;
7634 		hwr->grp = hw_resc->resv_hw_ring_grps;
7635 		hwr->vnic = hw_resc->resv_vnics;
7636 		hwr->stat = hw_resc->resv_stat_ctxs;
7637 		hwr->rss_ctx = hw_resc->resv_rsscos_ctxs;
7638 	}
7639 }
7640 
7641 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7642 {
7643 	return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic &&
7644 	       hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS));
7645 }
7646 
7647 static int bnxt_get_avail_msix(struct bnxt *bp, int num);
7648 
7649 static int __bnxt_reserve_rings(struct bnxt *bp)
7650 {
7651 	struct bnxt_hw_rings hwr = {0};
7652 	int rx_rings, old_rx_rings, rc;
7653 	int cp = bp->cp_nr_rings;
7654 	int ulp_msix = 0;
7655 	bool sh = false;
7656 	int tx_cp;
7657 
7658 	if (!bnxt_need_reserve_rings(bp))
7659 		return 0;
7660 
7661 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
7662 		ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
7663 		if (!ulp_msix)
7664 			bnxt_set_ulp_stat_ctxs(bp, 0);
7665 
7666 		if (ulp_msix > bp->ulp_num_msix_want)
7667 			ulp_msix = bp->ulp_num_msix_want;
7668 		hwr.cp = cp + ulp_msix;
7669 	} else {
7670 		hwr.cp = bnxt_nq_rings_in_use(bp);
7671 	}
7672 
7673 	hwr.tx = bp->tx_nr_rings;
7674 	hwr.rx = bp->rx_nr_rings;
7675 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7676 		sh = true;
7677 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7678 		hwr.cp_p5 = hwr.rx + hwr.tx;
7679 
7680 	hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx);
7681 
7682 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7683 		hwr.rx <<= 1;
7684 	hwr.grp = bp->rx_nr_rings;
7685 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
7686 	hwr.stat = bnxt_get_func_stat_ctxs(bp);
7687 	old_rx_rings = bp->hw_resc.resv_rx_rings;
7688 
7689 	rc = bnxt_hwrm_reserve_rings(bp, &hwr);
7690 	if (rc)
7691 		return rc;
7692 
7693 	bnxt_copy_reserved_rings(bp, &hwr);
7694 
7695 	rx_rings = hwr.rx;
7696 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7697 		if (hwr.rx >= 2) {
7698 			rx_rings = hwr.rx >> 1;
7699 		} else {
7700 			if (netif_running(bp->dev))
7701 				return -ENOMEM;
7702 
7703 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7704 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7705 			bp->dev->hw_features &= ~NETIF_F_LRO;
7706 			bp->dev->features &= ~NETIF_F_LRO;
7707 			bnxt_set_ring_params(bp);
7708 		}
7709 	}
7710 	rx_rings = min_t(int, rx_rings, hwr.grp);
7711 	hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings);
7712 	if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp))
7713 		hwr.stat -= bnxt_get_ulp_stat_ctxs(bp);
7714 	hwr.cp = min_t(int, hwr.cp, hwr.stat);
7715 	rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh);
7716 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7717 		hwr.rx = rx_rings << 1;
7718 	tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx);
7719 	hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7720 	bp->tx_nr_rings = hwr.tx;
7721 
7722 	/* If we cannot reserve all the RX rings, reset the RSS map only
7723 	 * if absolutely necessary
7724 	 */
7725 	if (rx_rings != bp->rx_nr_rings) {
7726 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7727 			    rx_rings, bp->rx_nr_rings);
7728 		if (netif_is_rxfh_configured(bp->dev) &&
7729 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7730 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7731 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7732 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7733 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7734 		}
7735 	}
7736 	bp->rx_nr_rings = rx_rings;
7737 	bp->cp_nr_rings = hwr.cp;
7738 
7739 	if (!bnxt_rings_ok(bp, &hwr))
7740 		return -ENOMEM;
7741 
7742 	if (old_rx_rings != bp->hw_resc.resv_rx_rings &&
7743 	    !netif_is_rxfh_configured(bp->dev))
7744 		bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7745 
7746 	if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) {
7747 		int resv_msix, resv_ctx, ulp_ctxs;
7748 		struct bnxt_hw_resc *hw_resc;
7749 
7750 		hw_resc = &bp->hw_resc;
7751 		resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings;
7752 		ulp_msix = min_t(int, resv_msix, ulp_msix);
7753 		bnxt_set_ulp_msix_num(bp, ulp_msix);
7754 		resv_ctx = hw_resc->resv_stat_ctxs  - bp->cp_nr_rings;
7755 		ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp));
7756 		bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs);
7757 	}
7758 
7759 	return rc;
7760 }
7761 
7762 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7763 {
7764 	struct hwrm_func_vf_cfg_input *req;
7765 	u32 flags;
7766 
7767 	if (!BNXT_NEW_RM(bp))
7768 		return 0;
7769 
7770 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7771 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7772 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7773 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7774 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7775 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7776 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7777 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7778 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7779 
7780 	req->flags = cpu_to_le32(flags);
7781 	return hwrm_req_send_silent(bp, req);
7782 }
7783 
7784 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7785 {
7786 	struct hwrm_func_cfg_input *req;
7787 	u32 flags;
7788 
7789 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7790 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7791 	if (BNXT_NEW_RM(bp)) {
7792 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7793 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7794 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7795 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7796 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7797 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7798 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7799 		else
7800 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7801 	}
7802 
7803 	req->flags = cpu_to_le32(flags);
7804 	return hwrm_req_send_silent(bp, req);
7805 }
7806 
7807 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7808 {
7809 	if (bp->hwrm_spec_code < 0x10801)
7810 		return 0;
7811 
7812 	if (BNXT_PF(bp))
7813 		return bnxt_hwrm_check_pf_rings(bp, hwr);
7814 
7815 	return bnxt_hwrm_check_vf_rings(bp, hwr);
7816 }
7817 
7818 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7819 {
7820 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7821 	struct hwrm_ring_aggint_qcaps_output *resp;
7822 	struct hwrm_ring_aggint_qcaps_input *req;
7823 	int rc;
7824 
7825 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7826 	coal_cap->num_cmpl_dma_aggr_max = 63;
7827 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7828 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7829 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7830 	coal_cap->int_lat_tmr_min_max = 65535;
7831 	coal_cap->int_lat_tmr_max_max = 65535;
7832 	coal_cap->num_cmpl_aggr_int_max = 65535;
7833 	coal_cap->timer_units = 80;
7834 
7835 	if (bp->hwrm_spec_code < 0x10902)
7836 		return;
7837 
7838 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7839 		return;
7840 
7841 	resp = hwrm_req_hold(bp, req);
7842 	rc = hwrm_req_send_silent(bp, req);
7843 	if (!rc) {
7844 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7845 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7846 		coal_cap->num_cmpl_dma_aggr_max =
7847 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7848 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7849 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7850 		coal_cap->cmpl_aggr_dma_tmr_max =
7851 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7852 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7853 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7854 		coal_cap->int_lat_tmr_min_max =
7855 			le16_to_cpu(resp->int_lat_tmr_min_max);
7856 		coal_cap->int_lat_tmr_max_max =
7857 			le16_to_cpu(resp->int_lat_tmr_max_max);
7858 		coal_cap->num_cmpl_aggr_int_max =
7859 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7860 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7861 	}
7862 	hwrm_req_drop(bp, req);
7863 }
7864 
7865 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7866 {
7867 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7868 
7869 	return usec * 1000 / coal_cap->timer_units;
7870 }
7871 
7872 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7873 	struct bnxt_coal *hw_coal,
7874 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7875 {
7876 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7877 	u16 val, tmr, max, flags = hw_coal->flags;
7878 	u32 cmpl_params = coal_cap->cmpl_params;
7879 
7880 	max = hw_coal->bufs_per_record * 128;
7881 	if (hw_coal->budget)
7882 		max = hw_coal->bufs_per_record * hw_coal->budget;
7883 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7884 
7885 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7886 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7887 
7888 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7889 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7890 
7891 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7892 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7893 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7894 
7895 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7896 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7897 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7898 
7899 	/* min timer set to 1/2 of interrupt timer */
7900 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7901 		val = tmr / 2;
7902 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7903 		req->int_lat_tmr_min = cpu_to_le16(val);
7904 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7905 	}
7906 
7907 	/* buf timer set to 1/4 of interrupt timer */
7908 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7909 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7910 
7911 	if (cmpl_params &
7912 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7913 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7914 		val = clamp_t(u16, tmr, 1,
7915 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7916 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7917 		req->enables |=
7918 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7919 	}
7920 
7921 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7922 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7923 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7924 	req->flags = cpu_to_le16(flags);
7925 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7926 }
7927 
7928 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7929 				   struct bnxt_coal *hw_coal)
7930 {
7931 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7932 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7933 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7934 	u32 nq_params = coal_cap->nq_params;
7935 	u16 tmr;
7936 	int rc;
7937 
7938 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7939 		return 0;
7940 
7941 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7942 	if (rc)
7943 		return rc;
7944 
7945 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7946 	req->flags =
7947 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7948 
7949 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7950 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7951 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7952 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7953 	return hwrm_req_send(bp, req);
7954 }
7955 
7956 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7957 {
7958 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7959 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7960 	struct bnxt_coal coal;
7961 	int rc;
7962 
7963 	/* Tick values in micro seconds.
7964 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7965 	 */
7966 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7967 
7968 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7969 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7970 
7971 	if (!bnapi->rx_ring)
7972 		return -ENODEV;
7973 
7974 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7975 	if (rc)
7976 		return rc;
7977 
7978 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7979 
7980 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7981 
7982 	return hwrm_req_send(bp, req_rx);
7983 }
7984 
7985 static int
7986 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7987 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7988 {
7989 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7990 
7991 	req->ring_id = cpu_to_le16(ring_id);
7992 	return hwrm_req_send(bp, req);
7993 }
7994 
7995 static int
7996 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7997 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7998 {
7999 	struct bnxt_tx_ring_info *txr;
8000 	int i, rc;
8001 
8002 	bnxt_for_each_napi_tx(i, bnapi, txr) {
8003 		u16 ring_id;
8004 
8005 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
8006 		req->ring_id = cpu_to_le16(ring_id);
8007 		rc = hwrm_req_send(bp, req);
8008 		if (rc)
8009 			return rc;
8010 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8011 			return 0;
8012 	}
8013 	return 0;
8014 }
8015 
8016 int bnxt_hwrm_set_coal(struct bnxt *bp)
8017 {
8018 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
8019 	int i, rc;
8020 
8021 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8022 	if (rc)
8023 		return rc;
8024 
8025 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8026 	if (rc) {
8027 		hwrm_req_drop(bp, req_rx);
8028 		return rc;
8029 	}
8030 
8031 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
8032 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
8033 
8034 	hwrm_req_hold(bp, req_rx);
8035 	hwrm_req_hold(bp, req_tx);
8036 	for (i = 0; i < bp->cp_nr_rings; i++) {
8037 		struct bnxt_napi *bnapi = bp->bnapi[i];
8038 		struct bnxt_coal *hw_coal;
8039 
8040 		if (!bnapi->rx_ring)
8041 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8042 		else
8043 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
8044 		if (rc)
8045 			break;
8046 
8047 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8048 			continue;
8049 
8050 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
8051 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8052 			if (rc)
8053 				break;
8054 		}
8055 		if (bnapi->rx_ring)
8056 			hw_coal = &bp->rx_coal;
8057 		else
8058 			hw_coal = &bp->tx_coal;
8059 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
8060 	}
8061 	hwrm_req_drop(bp, req_rx);
8062 	hwrm_req_drop(bp, req_tx);
8063 	return rc;
8064 }
8065 
8066 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
8067 {
8068 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
8069 	struct hwrm_stat_ctx_free_input *req;
8070 	int i;
8071 
8072 	if (!bp->bnapi)
8073 		return;
8074 
8075 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8076 		return;
8077 
8078 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
8079 		return;
8080 	if (BNXT_FW_MAJ(bp) <= 20) {
8081 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
8082 			hwrm_req_drop(bp, req);
8083 			return;
8084 		}
8085 		hwrm_req_hold(bp, req0);
8086 	}
8087 	hwrm_req_hold(bp, req);
8088 	for (i = 0; i < bp->cp_nr_rings; i++) {
8089 		struct bnxt_napi *bnapi = bp->bnapi[i];
8090 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8091 
8092 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
8093 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
8094 			if (req0) {
8095 				req0->stat_ctx_id = req->stat_ctx_id;
8096 				hwrm_req_send(bp, req0);
8097 			}
8098 			hwrm_req_send(bp, req);
8099 
8100 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
8101 		}
8102 	}
8103 	hwrm_req_drop(bp, req);
8104 	if (req0)
8105 		hwrm_req_drop(bp, req0);
8106 }
8107 
8108 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
8109 {
8110 	struct hwrm_stat_ctx_alloc_output *resp;
8111 	struct hwrm_stat_ctx_alloc_input *req;
8112 	int rc, i;
8113 
8114 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8115 		return 0;
8116 
8117 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
8118 	if (rc)
8119 		return rc;
8120 
8121 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
8122 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
8123 
8124 	resp = hwrm_req_hold(bp, req);
8125 	for (i = 0; i < bp->cp_nr_rings; i++) {
8126 		struct bnxt_napi *bnapi = bp->bnapi[i];
8127 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8128 
8129 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
8130 
8131 		rc = hwrm_req_send(bp, req);
8132 		if (rc)
8133 			break;
8134 
8135 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
8136 
8137 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
8138 	}
8139 	hwrm_req_drop(bp, req);
8140 	return rc;
8141 }
8142 
8143 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
8144 {
8145 	struct hwrm_func_qcfg_output *resp;
8146 	struct hwrm_func_qcfg_input *req;
8147 	u16 flags;
8148 	int rc;
8149 
8150 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
8151 	if (rc)
8152 		return rc;
8153 
8154 	req->fid = cpu_to_le16(0xffff);
8155 	resp = hwrm_req_hold(bp, req);
8156 	rc = hwrm_req_send(bp, req);
8157 	if (rc)
8158 		goto func_qcfg_exit;
8159 
8160 #ifdef CONFIG_BNXT_SRIOV
8161 	if (BNXT_VF(bp)) {
8162 		struct bnxt_vf_info *vf = &bp->vf;
8163 
8164 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
8165 	} else {
8166 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
8167 	}
8168 #endif
8169 	flags = le16_to_cpu(resp->flags);
8170 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
8171 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
8172 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
8173 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
8174 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
8175 	}
8176 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
8177 		bp->flags |= BNXT_FLAG_MULTI_HOST;
8178 
8179 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
8180 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
8181 
8182 	switch (resp->port_partition_type) {
8183 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
8184 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
8185 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
8186 		bp->port_partition_type = resp->port_partition_type;
8187 		break;
8188 	}
8189 	if (bp->hwrm_spec_code < 0x10707 ||
8190 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
8191 		bp->br_mode = BRIDGE_MODE_VEB;
8192 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
8193 		bp->br_mode = BRIDGE_MODE_VEPA;
8194 	else
8195 		bp->br_mode = BRIDGE_MODE_UNDEF;
8196 
8197 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
8198 	if (!bp->max_mtu)
8199 		bp->max_mtu = BNXT_MAX_MTU;
8200 
8201 	if (bp->db_size)
8202 		goto func_qcfg_exit;
8203 
8204 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
8205 	if (BNXT_CHIP_P5(bp)) {
8206 		if (BNXT_PF(bp))
8207 			bp->db_offset = DB_PF_OFFSET_P5;
8208 		else
8209 			bp->db_offset = DB_VF_OFFSET_P5;
8210 	}
8211 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
8212 				 1024);
8213 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
8214 	    bp->db_size <= bp->db_offset)
8215 		bp->db_size = pci_resource_len(bp->pdev, 2);
8216 
8217 func_qcfg_exit:
8218 	hwrm_req_drop(bp, req);
8219 	return rc;
8220 }
8221 
8222 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
8223 				      u8 init_val, u8 init_offset,
8224 				      bool init_mask_set)
8225 {
8226 	ctxm->init_value = init_val;
8227 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
8228 	if (init_mask_set)
8229 		ctxm->init_offset = init_offset * 4;
8230 	else
8231 		ctxm->init_value = 0;
8232 }
8233 
8234 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
8235 {
8236 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8237 	u16 type;
8238 
8239 	for (type = 0; type < ctx_max; type++) {
8240 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8241 		int n = 1;
8242 
8243 		if (!ctxm->max_entries)
8244 			continue;
8245 
8246 		if (ctxm->instance_bmap)
8247 			n = hweight32(ctxm->instance_bmap);
8248 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
8249 		if (!ctxm->pg_info)
8250 			return -ENOMEM;
8251 	}
8252 	return 0;
8253 }
8254 
8255 #define BNXT_CTX_INIT_VALID(flags)	\
8256 	(!!((flags) &			\
8257 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
8258 
8259 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
8260 {
8261 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
8262 	struct hwrm_func_backing_store_qcaps_v2_input *req;
8263 	struct bnxt_ctx_mem_info *ctx;
8264 	u16 type;
8265 	int rc;
8266 
8267 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
8268 	if (rc)
8269 		return rc;
8270 
8271 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8272 	if (!ctx)
8273 		return -ENOMEM;
8274 	bp->ctx = ctx;
8275 
8276 	resp = hwrm_req_hold(bp, req);
8277 
8278 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
8279 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8280 		u8 init_val, init_off, i;
8281 		__le32 *p;
8282 		u32 flags;
8283 
8284 		req->type = cpu_to_le16(type);
8285 		rc = hwrm_req_send(bp, req);
8286 		if (rc)
8287 			goto ctx_done;
8288 		flags = le32_to_cpu(resp->flags);
8289 		type = le16_to_cpu(resp->next_valid_type);
8290 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
8291 			continue;
8292 
8293 		ctxm->type = le16_to_cpu(resp->type);
8294 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
8295 		ctxm->flags = flags;
8296 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
8297 		ctxm->entry_multiple = resp->entry_multiple;
8298 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
8299 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
8300 		init_val = resp->ctx_init_value;
8301 		init_off = resp->ctx_init_offset;
8302 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
8303 					  BNXT_CTX_INIT_VALID(flags));
8304 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
8305 					      BNXT_MAX_SPLIT_ENTRY);
8306 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
8307 		     i++, p++)
8308 			ctxm->split[i] = le32_to_cpu(*p);
8309 	}
8310 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
8311 
8312 ctx_done:
8313 	hwrm_req_drop(bp, req);
8314 	return rc;
8315 }
8316 
8317 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
8318 {
8319 	struct hwrm_func_backing_store_qcaps_output *resp;
8320 	struct hwrm_func_backing_store_qcaps_input *req;
8321 	int rc;
8322 
8323 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
8324 		return 0;
8325 
8326 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8327 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
8328 
8329 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
8330 	if (rc)
8331 		return rc;
8332 
8333 	resp = hwrm_req_hold(bp, req);
8334 	rc = hwrm_req_send_silent(bp, req);
8335 	if (!rc) {
8336 		struct bnxt_ctx_mem_type *ctxm;
8337 		struct bnxt_ctx_mem_info *ctx;
8338 		u8 init_val, init_idx = 0;
8339 		u16 init_mask;
8340 
8341 		ctx = bp->ctx;
8342 		if (!ctx) {
8343 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8344 			if (!ctx) {
8345 				rc = -ENOMEM;
8346 				goto ctx_err;
8347 			}
8348 			bp->ctx = ctx;
8349 		}
8350 		init_val = resp->ctx_kind_initializer;
8351 		init_mask = le16_to_cpu(resp->ctx_init_mask);
8352 
8353 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8354 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
8355 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
8356 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
8357 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
8358 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
8359 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
8360 					  (init_mask & (1 << init_idx++)) != 0);
8361 
8362 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8363 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
8364 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
8365 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
8366 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
8367 					  (init_mask & (1 << init_idx++)) != 0);
8368 
8369 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8370 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
8371 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
8372 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
8373 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
8374 					  (init_mask & (1 << init_idx++)) != 0);
8375 
8376 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8377 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
8378 		ctxm->max_entries = ctxm->vnic_entries +
8379 			le16_to_cpu(resp->vnic_max_ring_table_entries);
8380 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
8381 		bnxt_init_ctx_initializer(ctxm, init_val,
8382 					  resp->vnic_init_offset,
8383 					  (init_mask & (1 << init_idx++)) != 0);
8384 
8385 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8386 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
8387 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
8388 		bnxt_init_ctx_initializer(ctxm, init_val,
8389 					  resp->stat_init_offset,
8390 					  (init_mask & (1 << init_idx++)) != 0);
8391 
8392 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8393 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
8394 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
8395 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
8396 		ctxm->entry_multiple = resp->tqm_entries_multiple;
8397 		if (!ctxm->entry_multiple)
8398 			ctxm->entry_multiple = 1;
8399 
8400 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
8401 
8402 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8403 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
8404 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
8405 		ctxm->mrav_num_entries_units =
8406 			le16_to_cpu(resp->mrav_num_entries_units);
8407 		bnxt_init_ctx_initializer(ctxm, init_val,
8408 					  resp->mrav_init_offset,
8409 					  (init_mask & (1 << init_idx++)) != 0);
8410 
8411 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8412 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
8413 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
8414 
8415 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
8416 		if (!ctx->tqm_fp_rings_count)
8417 			ctx->tqm_fp_rings_count = bp->max_q;
8418 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
8419 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
8420 
8421 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8422 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
8423 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
8424 
8425 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
8426 	} else {
8427 		rc = 0;
8428 	}
8429 ctx_err:
8430 	hwrm_req_drop(bp, req);
8431 	return rc;
8432 }
8433 
8434 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
8435 				  __le64 *pg_dir)
8436 {
8437 	if (!rmem->nr_pages)
8438 		return;
8439 
8440 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8441 	if (rmem->depth >= 1) {
8442 		if (rmem->depth == 2)
8443 			*pg_attr |= 2;
8444 		else
8445 			*pg_attr |= 1;
8446 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8447 	} else {
8448 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8449 	}
8450 }
8451 
8452 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8453 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8454 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8455 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8456 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8457 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8458 
8459 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8460 {
8461 	struct hwrm_func_backing_store_cfg_input *req;
8462 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8463 	struct bnxt_ctx_pg_info *ctx_pg;
8464 	struct bnxt_ctx_mem_type *ctxm;
8465 	void **__req = (void **)&req;
8466 	u32 req_len = sizeof(*req);
8467 	__le32 *num_entries;
8468 	__le64 *pg_dir;
8469 	u32 flags = 0;
8470 	u8 *pg_attr;
8471 	u32 ena;
8472 	int rc;
8473 	int i;
8474 
8475 	if (!ctx)
8476 		return 0;
8477 
8478 	if (req_len > bp->hwrm_max_ext_req_len)
8479 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8480 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8481 	if (rc)
8482 		return rc;
8483 
8484 	req->enables = cpu_to_le32(enables);
8485 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8486 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8487 		ctx_pg = ctxm->pg_info;
8488 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8489 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8490 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8491 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8492 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8493 				      &req->qpc_pg_size_qpc_lvl,
8494 				      &req->qpc_page_dir);
8495 
8496 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8497 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8498 	}
8499 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8500 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8501 		ctx_pg = ctxm->pg_info;
8502 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8503 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8504 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8505 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8506 				      &req->srq_pg_size_srq_lvl,
8507 				      &req->srq_page_dir);
8508 	}
8509 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8510 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8511 		ctx_pg = ctxm->pg_info;
8512 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8513 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8514 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8515 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8516 				      &req->cq_pg_size_cq_lvl,
8517 				      &req->cq_page_dir);
8518 	}
8519 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8520 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8521 		ctx_pg = ctxm->pg_info;
8522 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8523 		req->vnic_num_ring_table_entries =
8524 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8525 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8526 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8527 				      &req->vnic_pg_size_vnic_lvl,
8528 				      &req->vnic_page_dir);
8529 	}
8530 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8531 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8532 		ctx_pg = ctxm->pg_info;
8533 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8534 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8535 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8536 				      &req->stat_pg_size_stat_lvl,
8537 				      &req->stat_page_dir);
8538 	}
8539 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8540 		u32 units;
8541 
8542 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8543 		ctx_pg = ctxm->pg_info;
8544 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8545 		units = ctxm->mrav_num_entries_units;
8546 		if (units) {
8547 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8548 			u32 entries;
8549 
8550 			num_mr = ctx_pg->entries - num_ah;
8551 			entries = ((num_mr / units) << 16) | (num_ah / units);
8552 			req->mrav_num_entries = cpu_to_le32(entries);
8553 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8554 		}
8555 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8556 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8557 				      &req->mrav_pg_size_mrav_lvl,
8558 				      &req->mrav_page_dir);
8559 	}
8560 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8561 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8562 		ctx_pg = ctxm->pg_info;
8563 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8564 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8565 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8566 				      &req->tim_pg_size_tim_lvl,
8567 				      &req->tim_page_dir);
8568 	}
8569 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8570 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8571 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8572 	     pg_dir = &req->tqm_sp_page_dir,
8573 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8574 	     ctx_pg = ctxm->pg_info;
8575 	     i < BNXT_MAX_TQM_RINGS;
8576 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8577 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8578 		if (!(enables & ena))
8579 			continue;
8580 
8581 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8582 		*num_entries = cpu_to_le32(ctx_pg->entries);
8583 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8584 	}
8585 	req->flags = cpu_to_le32(flags);
8586 	return hwrm_req_send(bp, req);
8587 }
8588 
8589 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8590 				  struct bnxt_ctx_pg_info *ctx_pg)
8591 {
8592 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8593 
8594 	rmem->page_size = BNXT_PAGE_SIZE;
8595 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8596 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8597 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8598 	if (rmem->depth >= 1)
8599 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8600 	return bnxt_alloc_ring(bp, rmem);
8601 }
8602 
8603 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8604 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8605 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8606 {
8607 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8608 	int rc;
8609 
8610 	if (!mem_size)
8611 		return -EINVAL;
8612 
8613 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8614 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8615 		ctx_pg->nr_pages = 0;
8616 		return -EINVAL;
8617 	}
8618 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8619 		int nr_tbls, i;
8620 
8621 		rmem->depth = 2;
8622 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8623 					     GFP_KERNEL);
8624 		if (!ctx_pg->ctx_pg_tbl)
8625 			return -ENOMEM;
8626 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8627 		rmem->nr_pages = nr_tbls;
8628 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8629 		if (rc)
8630 			return rc;
8631 		for (i = 0; i < nr_tbls; i++) {
8632 			struct bnxt_ctx_pg_info *pg_tbl;
8633 
8634 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8635 			if (!pg_tbl)
8636 				return -ENOMEM;
8637 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8638 			rmem = &pg_tbl->ring_mem;
8639 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8640 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8641 			rmem->depth = 1;
8642 			rmem->nr_pages = MAX_CTX_PAGES;
8643 			rmem->ctx_mem = ctxm;
8644 			if (i == (nr_tbls - 1)) {
8645 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8646 
8647 				if (rem)
8648 					rmem->nr_pages = rem;
8649 			}
8650 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8651 			if (rc)
8652 				break;
8653 		}
8654 	} else {
8655 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8656 		if (rmem->nr_pages > 1 || depth)
8657 			rmem->depth = 1;
8658 		rmem->ctx_mem = ctxm;
8659 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8660 	}
8661 	return rc;
8662 }
8663 
8664 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8665 				  struct bnxt_ctx_pg_info *ctx_pg)
8666 {
8667 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8668 
8669 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8670 	    ctx_pg->ctx_pg_tbl) {
8671 		int i, nr_tbls = rmem->nr_pages;
8672 
8673 		for (i = 0; i < nr_tbls; i++) {
8674 			struct bnxt_ctx_pg_info *pg_tbl;
8675 			struct bnxt_ring_mem_info *rmem2;
8676 
8677 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8678 			if (!pg_tbl)
8679 				continue;
8680 			rmem2 = &pg_tbl->ring_mem;
8681 			bnxt_free_ring(bp, rmem2);
8682 			ctx_pg->ctx_pg_arr[i] = NULL;
8683 			kfree(pg_tbl);
8684 			ctx_pg->ctx_pg_tbl[i] = NULL;
8685 		}
8686 		kfree(ctx_pg->ctx_pg_tbl);
8687 		ctx_pg->ctx_pg_tbl = NULL;
8688 	}
8689 	bnxt_free_ring(bp, rmem);
8690 	ctx_pg->nr_pages = 0;
8691 }
8692 
8693 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8694 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8695 				   u8 pg_lvl)
8696 {
8697 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8698 	int i, rc = 0, n = 1;
8699 	u32 mem_size;
8700 
8701 	if (!ctxm->entry_size || !ctx_pg)
8702 		return -EINVAL;
8703 	if (ctxm->instance_bmap)
8704 		n = hweight32(ctxm->instance_bmap);
8705 	if (ctxm->entry_multiple)
8706 		entries = roundup(entries, ctxm->entry_multiple);
8707 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8708 	mem_size = entries * ctxm->entry_size;
8709 	for (i = 0; i < n && !rc; i++) {
8710 		ctx_pg[i].entries = entries;
8711 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8712 					    ctxm->init_value ? ctxm : NULL);
8713 	}
8714 	return rc;
8715 }
8716 
8717 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8718 					       struct bnxt_ctx_mem_type *ctxm,
8719 					       bool last)
8720 {
8721 	struct hwrm_func_backing_store_cfg_v2_input *req;
8722 	u32 instance_bmap = ctxm->instance_bmap;
8723 	int i, j, rc = 0, n = 1;
8724 	__le32 *p;
8725 
8726 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8727 		return 0;
8728 
8729 	if (instance_bmap)
8730 		n = hweight32(ctxm->instance_bmap);
8731 	else
8732 		instance_bmap = 1;
8733 
8734 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8735 	if (rc)
8736 		return rc;
8737 	hwrm_req_hold(bp, req);
8738 	req->type = cpu_to_le16(ctxm->type);
8739 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8740 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8741 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8742 		p[i] = cpu_to_le32(ctxm->split[i]);
8743 	for (i = 0, j = 0; j < n && !rc; i++) {
8744 		struct bnxt_ctx_pg_info *ctx_pg;
8745 
8746 		if (!(instance_bmap & (1 << i)))
8747 			continue;
8748 		req->instance = cpu_to_le16(i);
8749 		ctx_pg = &ctxm->pg_info[j++];
8750 		if (!ctx_pg->entries)
8751 			continue;
8752 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8753 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8754 				      &req->page_size_pbl_level,
8755 				      &req->page_dir);
8756 		if (last && j == n)
8757 			req->flags =
8758 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8759 		rc = hwrm_req_send(bp, req);
8760 	}
8761 	hwrm_req_drop(bp, req);
8762 	return rc;
8763 }
8764 
8765 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8766 {
8767 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8768 	struct bnxt_ctx_mem_type *ctxm;
8769 	u16 last_type;
8770 	int rc = 0;
8771 	u16 type;
8772 
8773 	if (!ena)
8774 		return 0;
8775 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8776 		last_type = BNXT_CTX_MAX - 1;
8777 	else
8778 		last_type = BNXT_CTX_L2_MAX - 1;
8779 	ctx->ctx_arr[last_type].last = 1;
8780 
8781 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8782 		ctxm = &ctx->ctx_arr[type];
8783 
8784 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8785 		if (rc)
8786 			return rc;
8787 	}
8788 	return 0;
8789 }
8790 
8791 void bnxt_free_ctx_mem(struct bnxt *bp)
8792 {
8793 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8794 	u16 type;
8795 
8796 	if (!ctx)
8797 		return;
8798 
8799 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8800 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8801 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8802 		int i, n = 1;
8803 
8804 		if (!ctx_pg)
8805 			continue;
8806 		if (ctxm->instance_bmap)
8807 			n = hweight32(ctxm->instance_bmap);
8808 		for (i = 0; i < n; i++)
8809 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8810 
8811 		kfree(ctx_pg);
8812 		ctxm->pg_info = NULL;
8813 	}
8814 
8815 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8816 	kfree(ctx);
8817 	bp->ctx = NULL;
8818 }
8819 
8820 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8821 {
8822 	struct bnxt_ctx_mem_type *ctxm;
8823 	struct bnxt_ctx_mem_info *ctx;
8824 	u32 l2_qps, qp1_qps, max_qps;
8825 	u32 ena, entries_sp, entries;
8826 	u32 srqs, max_srqs, min;
8827 	u32 num_mr, num_ah;
8828 	u32 extra_srqs = 0;
8829 	u32 extra_qps = 0;
8830 	u32 fast_qpmd_qps;
8831 	u8 pg_lvl = 1;
8832 	int i, rc;
8833 
8834 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8835 	if (rc) {
8836 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8837 			   rc);
8838 		return rc;
8839 	}
8840 	ctx = bp->ctx;
8841 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8842 		return 0;
8843 
8844 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8845 	l2_qps = ctxm->qp_l2_entries;
8846 	qp1_qps = ctxm->qp_qp1_entries;
8847 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8848 	max_qps = ctxm->max_entries;
8849 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8850 	srqs = ctxm->srq_l2_entries;
8851 	max_srqs = ctxm->max_entries;
8852 	ena = 0;
8853 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8854 		pg_lvl = 2;
8855 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8856 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8857 		extra_qps += fast_qpmd_qps;
8858 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8859 		if (fast_qpmd_qps)
8860 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8861 	}
8862 
8863 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8864 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8865 				     pg_lvl);
8866 	if (rc)
8867 		return rc;
8868 
8869 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8870 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8871 	if (rc)
8872 		return rc;
8873 
8874 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8875 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8876 				     extra_qps * 2, pg_lvl);
8877 	if (rc)
8878 		return rc;
8879 
8880 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8881 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8882 	if (rc)
8883 		return rc;
8884 
8885 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8886 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8887 	if (rc)
8888 		return rc;
8889 
8890 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8891 		goto skip_rdma;
8892 
8893 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8894 	/* 128K extra is needed to accommodate static AH context
8895 	 * allocation by f/w.
8896 	 */
8897 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8898 	num_ah = min_t(u32, num_mr, 1024 * 128);
8899 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8900 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8901 		ctxm->mrav_av_entries = num_ah;
8902 
8903 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8904 	if (rc)
8905 		return rc;
8906 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8907 
8908 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8909 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8910 	if (rc)
8911 		return rc;
8912 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8913 
8914 skip_rdma:
8915 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8916 	min = ctxm->min_entries;
8917 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8918 		     2 * (extra_qps + qp1_qps) + min;
8919 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8920 	if (rc)
8921 		return rc;
8922 
8923 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8924 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8925 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8926 	if (rc)
8927 		return rc;
8928 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8929 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8930 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8931 
8932 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8933 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8934 	else
8935 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8936 	if (rc) {
8937 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8938 			   rc);
8939 		return rc;
8940 	}
8941 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8942 	return 0;
8943 }
8944 
8945 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8946 {
8947 	struct hwrm_func_resource_qcaps_output *resp;
8948 	struct hwrm_func_resource_qcaps_input *req;
8949 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8950 	int rc;
8951 
8952 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8953 	if (rc)
8954 		return rc;
8955 
8956 	req->fid = cpu_to_le16(0xffff);
8957 	resp = hwrm_req_hold(bp, req);
8958 	rc = hwrm_req_send_silent(bp, req);
8959 	if (rc)
8960 		goto hwrm_func_resc_qcaps_exit;
8961 
8962 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8963 	if (!all)
8964 		goto hwrm_func_resc_qcaps_exit;
8965 
8966 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8967 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8968 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8969 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8970 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8971 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8972 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8973 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8974 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8975 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8976 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8977 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8978 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8979 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8980 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8981 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8982 
8983 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8984 		u16 max_msix = le16_to_cpu(resp->max_msix);
8985 
8986 		hw_resc->max_nqs = max_msix;
8987 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8988 	}
8989 
8990 	if (BNXT_PF(bp)) {
8991 		struct bnxt_pf_info *pf = &bp->pf;
8992 
8993 		pf->vf_resv_strategy =
8994 			le16_to_cpu(resp->vf_reservation_strategy);
8995 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8996 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8997 	}
8998 hwrm_func_resc_qcaps_exit:
8999 	hwrm_req_drop(bp, req);
9000 	return rc;
9001 }
9002 
9003 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
9004 {
9005 	struct hwrm_port_mac_ptp_qcfg_output *resp;
9006 	struct hwrm_port_mac_ptp_qcfg_input *req;
9007 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
9008 	bool phc_cfg;
9009 	u8 flags;
9010 	int rc;
9011 
9012 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) {
9013 		rc = -ENODEV;
9014 		goto no_ptp;
9015 	}
9016 
9017 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
9018 	if (rc)
9019 		goto no_ptp;
9020 
9021 	req->port_id = cpu_to_le16(bp->pf.port_id);
9022 	resp = hwrm_req_hold(bp, req);
9023 	rc = hwrm_req_send(bp, req);
9024 	if (rc)
9025 		goto exit;
9026 
9027 	flags = resp->flags;
9028 	if (BNXT_CHIP_P5_AND_MINUS(bp) &&
9029 	    !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
9030 		rc = -ENODEV;
9031 		goto exit;
9032 	}
9033 	if (!ptp) {
9034 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
9035 		if (!ptp) {
9036 			rc = -ENOMEM;
9037 			goto exit;
9038 		}
9039 		ptp->bp = bp;
9040 		bp->ptp_cfg = ptp;
9041 	}
9042 
9043 	if (flags &
9044 	    (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK |
9045 	     PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) {
9046 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
9047 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
9048 	} else if (BNXT_CHIP_P5(bp)) {
9049 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
9050 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
9051 	} else {
9052 		rc = -ENODEV;
9053 		goto exit;
9054 	}
9055 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
9056 	rc = bnxt_ptp_init(bp, phc_cfg);
9057 	if (rc)
9058 		netdev_warn(bp->dev, "PTP initialization failed.\n");
9059 exit:
9060 	hwrm_req_drop(bp, req);
9061 	if (!rc)
9062 		return 0;
9063 
9064 no_ptp:
9065 	bnxt_ptp_clear(bp);
9066 	kfree(ptp);
9067 	bp->ptp_cfg = NULL;
9068 	return rc;
9069 }
9070 
9071 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
9072 {
9073 	struct hwrm_func_qcaps_output *resp;
9074 	struct hwrm_func_qcaps_input *req;
9075 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9076 	u32 flags, flags_ext, flags_ext2;
9077 	int rc;
9078 
9079 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
9080 	if (rc)
9081 		return rc;
9082 
9083 	req->fid = cpu_to_le16(0xffff);
9084 	resp = hwrm_req_hold(bp, req);
9085 	rc = hwrm_req_send(bp, req);
9086 	if (rc)
9087 		goto hwrm_func_qcaps_exit;
9088 
9089 	flags = le32_to_cpu(resp->flags);
9090 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
9091 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
9092 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
9093 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
9094 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
9095 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
9096 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
9097 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
9098 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
9099 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
9100 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
9101 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
9102 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
9103 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
9104 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
9105 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
9106 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
9107 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
9108 
9109 	flags_ext = le32_to_cpu(resp->flags_ext);
9110 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
9111 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
9112 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
9113 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
9114 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
9115 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
9116 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
9117 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
9118 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
9119 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
9120 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
9121 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
9122 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
9123 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
9124 
9125 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
9126 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
9127 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
9128 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
9129 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
9130 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED)
9131 		bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP;
9132 
9133 	bp->tx_push_thresh = 0;
9134 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
9135 	    BNXT_FW_MAJ(bp) > 217)
9136 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
9137 
9138 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9139 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9140 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9141 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9142 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
9143 	if (!hw_resc->max_hw_ring_grps)
9144 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
9145 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9146 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9147 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9148 
9149 	hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records);
9150 	hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records);
9151 	hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
9152 	hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
9153 	hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
9154 	hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
9155 
9156 	if (BNXT_PF(bp)) {
9157 		struct bnxt_pf_info *pf = &bp->pf;
9158 
9159 		pf->fw_fid = le16_to_cpu(resp->fid);
9160 		pf->port_id = le16_to_cpu(resp->port_id);
9161 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
9162 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
9163 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
9164 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
9165 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
9166 			bp->flags |= BNXT_FLAG_WOL_CAP;
9167 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
9168 			bp->fw_cap |= BNXT_FW_CAP_PTP;
9169 		} else {
9170 			bnxt_ptp_clear(bp);
9171 			kfree(bp->ptp_cfg);
9172 			bp->ptp_cfg = NULL;
9173 		}
9174 	} else {
9175 #ifdef CONFIG_BNXT_SRIOV
9176 		struct bnxt_vf_info *vf = &bp->vf;
9177 
9178 		vf->fw_fid = le16_to_cpu(resp->fid);
9179 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
9180 #endif
9181 	}
9182 	bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs);
9183 
9184 hwrm_func_qcaps_exit:
9185 	hwrm_req_drop(bp, req);
9186 	return rc;
9187 }
9188 
9189 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
9190 {
9191 	struct hwrm_dbg_qcaps_output *resp;
9192 	struct hwrm_dbg_qcaps_input *req;
9193 	int rc;
9194 
9195 	bp->fw_dbg_cap = 0;
9196 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
9197 		return;
9198 
9199 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
9200 	if (rc)
9201 		return;
9202 
9203 	req->fid = cpu_to_le16(0xffff);
9204 	resp = hwrm_req_hold(bp, req);
9205 	rc = hwrm_req_send(bp, req);
9206 	if (rc)
9207 		goto hwrm_dbg_qcaps_exit;
9208 
9209 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
9210 
9211 hwrm_dbg_qcaps_exit:
9212 	hwrm_req_drop(bp, req);
9213 }
9214 
9215 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
9216 
9217 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
9218 {
9219 	int rc;
9220 
9221 	rc = __bnxt_hwrm_func_qcaps(bp);
9222 	if (rc)
9223 		return rc;
9224 
9225 	bnxt_hwrm_dbg_qcaps(bp);
9226 
9227 	rc = bnxt_hwrm_queue_qportcfg(bp);
9228 	if (rc) {
9229 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
9230 		return rc;
9231 	}
9232 	if (bp->hwrm_spec_code >= 0x10803) {
9233 		rc = bnxt_alloc_ctx_mem(bp);
9234 		if (rc)
9235 			return rc;
9236 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9237 		if (!rc)
9238 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
9239 	}
9240 	return 0;
9241 }
9242 
9243 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
9244 {
9245 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
9246 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
9247 	u32 flags;
9248 	int rc;
9249 
9250 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
9251 		return 0;
9252 
9253 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
9254 	if (rc)
9255 		return rc;
9256 
9257 	resp = hwrm_req_hold(bp, req);
9258 	rc = hwrm_req_send(bp, req);
9259 	if (rc)
9260 		goto hwrm_cfa_adv_qcaps_exit;
9261 
9262 	flags = le32_to_cpu(resp->flags);
9263 	if (flags &
9264 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
9265 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
9266 
9267 	if (flags &
9268 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED)
9269 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3;
9270 
9271 	if (flags &
9272 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED)
9273 		bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO;
9274 
9275 hwrm_cfa_adv_qcaps_exit:
9276 	hwrm_req_drop(bp, req);
9277 	return rc;
9278 }
9279 
9280 static int __bnxt_alloc_fw_health(struct bnxt *bp)
9281 {
9282 	if (bp->fw_health)
9283 		return 0;
9284 
9285 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
9286 	if (!bp->fw_health)
9287 		return -ENOMEM;
9288 
9289 	mutex_init(&bp->fw_health->lock);
9290 	return 0;
9291 }
9292 
9293 static int bnxt_alloc_fw_health(struct bnxt *bp)
9294 {
9295 	int rc;
9296 
9297 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
9298 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9299 		return 0;
9300 
9301 	rc = __bnxt_alloc_fw_health(bp);
9302 	if (rc) {
9303 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
9304 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9305 		return rc;
9306 	}
9307 
9308 	return 0;
9309 }
9310 
9311 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
9312 {
9313 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
9314 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
9315 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
9316 }
9317 
9318 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
9319 {
9320 	struct bnxt_fw_health *fw_health = bp->fw_health;
9321 	u32 reg_type;
9322 
9323 	if (!fw_health)
9324 		return;
9325 
9326 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
9327 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9328 		fw_health->status_reliable = false;
9329 
9330 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
9331 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9332 		fw_health->resets_reliable = false;
9333 }
9334 
9335 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
9336 {
9337 	void __iomem *hs;
9338 	u32 status_loc;
9339 	u32 reg_type;
9340 	u32 sig;
9341 
9342 	if (bp->fw_health)
9343 		bp->fw_health->status_reliable = false;
9344 
9345 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
9346 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
9347 
9348 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
9349 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
9350 		if (!bp->chip_num) {
9351 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
9352 			bp->chip_num = readl(bp->bar0 +
9353 					     BNXT_FW_HEALTH_WIN_BASE +
9354 					     BNXT_GRC_REG_CHIP_NUM);
9355 		}
9356 		if (!BNXT_CHIP_P5_PLUS(bp))
9357 			return;
9358 
9359 		status_loc = BNXT_GRC_REG_STATUS_P5 |
9360 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
9361 	} else {
9362 		status_loc = readl(hs + offsetof(struct hcomm_status,
9363 						 fw_status_loc));
9364 	}
9365 
9366 	if (__bnxt_alloc_fw_health(bp)) {
9367 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
9368 		return;
9369 	}
9370 
9371 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
9372 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
9373 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
9374 		__bnxt_map_fw_health_reg(bp, status_loc);
9375 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
9376 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
9377 	}
9378 
9379 	bp->fw_health->status_reliable = true;
9380 }
9381 
9382 static int bnxt_map_fw_health_regs(struct bnxt *bp)
9383 {
9384 	struct bnxt_fw_health *fw_health = bp->fw_health;
9385 	u32 reg_base = 0xffffffff;
9386 	int i;
9387 
9388 	bp->fw_health->status_reliable = false;
9389 	bp->fw_health->resets_reliable = false;
9390 	/* Only pre-map the monitoring GRC registers using window 3 */
9391 	for (i = 0; i < 4; i++) {
9392 		u32 reg = fw_health->regs[i];
9393 
9394 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
9395 			continue;
9396 		if (reg_base == 0xffffffff)
9397 			reg_base = reg & BNXT_GRC_BASE_MASK;
9398 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
9399 			return -ERANGE;
9400 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
9401 	}
9402 	bp->fw_health->status_reliable = true;
9403 	bp->fw_health->resets_reliable = true;
9404 	if (reg_base == 0xffffffff)
9405 		return 0;
9406 
9407 	__bnxt_map_fw_health_reg(bp, reg_base);
9408 	return 0;
9409 }
9410 
9411 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
9412 {
9413 	if (!bp->fw_health)
9414 		return;
9415 
9416 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
9417 		bp->fw_health->status_reliable = true;
9418 		bp->fw_health->resets_reliable = true;
9419 	} else {
9420 		bnxt_try_map_fw_health_reg(bp);
9421 	}
9422 }
9423 
9424 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
9425 {
9426 	struct bnxt_fw_health *fw_health = bp->fw_health;
9427 	struct hwrm_error_recovery_qcfg_output *resp;
9428 	struct hwrm_error_recovery_qcfg_input *req;
9429 	int rc, i;
9430 
9431 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9432 		return 0;
9433 
9434 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
9435 	if (rc)
9436 		return rc;
9437 
9438 	resp = hwrm_req_hold(bp, req);
9439 	rc = hwrm_req_send(bp, req);
9440 	if (rc)
9441 		goto err_recovery_out;
9442 	fw_health->flags = le32_to_cpu(resp->flags);
9443 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
9444 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
9445 		rc = -EINVAL;
9446 		goto err_recovery_out;
9447 	}
9448 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
9449 	fw_health->master_func_wait_dsecs =
9450 		le32_to_cpu(resp->master_func_wait_period);
9451 	fw_health->normal_func_wait_dsecs =
9452 		le32_to_cpu(resp->normal_func_wait_period);
9453 	fw_health->post_reset_wait_dsecs =
9454 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9455 	fw_health->post_reset_max_wait_dsecs =
9456 		le32_to_cpu(resp->max_bailout_time_after_reset);
9457 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9458 		le32_to_cpu(resp->fw_health_status_reg);
9459 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9460 		le32_to_cpu(resp->fw_heartbeat_reg);
9461 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9462 		le32_to_cpu(resp->fw_reset_cnt_reg);
9463 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9464 		le32_to_cpu(resp->reset_inprogress_reg);
9465 	fw_health->fw_reset_inprog_reg_mask =
9466 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9467 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9468 	if (fw_health->fw_reset_seq_cnt >= 16) {
9469 		rc = -EINVAL;
9470 		goto err_recovery_out;
9471 	}
9472 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9473 		fw_health->fw_reset_seq_regs[i] =
9474 			le32_to_cpu(resp->reset_reg[i]);
9475 		fw_health->fw_reset_seq_vals[i] =
9476 			le32_to_cpu(resp->reset_reg_val[i]);
9477 		fw_health->fw_reset_seq_delay_msec[i] =
9478 			resp->delay_after_reset[i];
9479 	}
9480 err_recovery_out:
9481 	hwrm_req_drop(bp, req);
9482 	if (!rc)
9483 		rc = bnxt_map_fw_health_regs(bp);
9484 	if (rc)
9485 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9486 	return rc;
9487 }
9488 
9489 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9490 {
9491 	struct hwrm_func_reset_input *req;
9492 	int rc;
9493 
9494 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9495 	if (rc)
9496 		return rc;
9497 
9498 	req->enables = 0;
9499 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9500 	return hwrm_req_send(bp, req);
9501 }
9502 
9503 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9504 {
9505 	struct hwrm_nvm_get_dev_info_output nvm_info;
9506 
9507 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9508 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9509 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9510 			 nvm_info.nvm_cfg_ver_upd);
9511 }
9512 
9513 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9514 {
9515 	struct hwrm_queue_qportcfg_output *resp;
9516 	struct hwrm_queue_qportcfg_input *req;
9517 	u8 i, j, *qptr;
9518 	bool no_rdma;
9519 	int rc = 0;
9520 
9521 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9522 	if (rc)
9523 		return rc;
9524 
9525 	resp = hwrm_req_hold(bp, req);
9526 	rc = hwrm_req_send(bp, req);
9527 	if (rc)
9528 		goto qportcfg_exit;
9529 
9530 	if (!resp->max_configurable_queues) {
9531 		rc = -EINVAL;
9532 		goto qportcfg_exit;
9533 	}
9534 	bp->max_tc = resp->max_configurable_queues;
9535 	bp->max_lltc = resp->max_configurable_lossless_queues;
9536 	if (bp->max_tc > BNXT_MAX_QUEUE)
9537 		bp->max_tc = BNXT_MAX_QUEUE;
9538 
9539 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9540 	qptr = &resp->queue_id0;
9541 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9542 		bp->q_info[j].queue_id = *qptr;
9543 		bp->q_ids[i] = *qptr++;
9544 		bp->q_info[j].queue_profile = *qptr++;
9545 		bp->tc_to_qidx[j] = j;
9546 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9547 		    (no_rdma && BNXT_PF(bp)))
9548 			j++;
9549 	}
9550 	bp->max_q = bp->max_tc;
9551 	bp->max_tc = max_t(u8, j, 1);
9552 
9553 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9554 		bp->max_tc = 1;
9555 
9556 	if (bp->max_lltc > bp->max_tc)
9557 		bp->max_lltc = bp->max_tc;
9558 
9559 qportcfg_exit:
9560 	hwrm_req_drop(bp, req);
9561 	return rc;
9562 }
9563 
9564 static int bnxt_hwrm_poll(struct bnxt *bp)
9565 {
9566 	struct hwrm_ver_get_input *req;
9567 	int rc;
9568 
9569 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9570 	if (rc)
9571 		return rc;
9572 
9573 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9574 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9575 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9576 
9577 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9578 	rc = hwrm_req_send(bp, req);
9579 	return rc;
9580 }
9581 
9582 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9583 {
9584 	struct hwrm_ver_get_output *resp;
9585 	struct hwrm_ver_get_input *req;
9586 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9587 	u32 dev_caps_cfg, hwrm_ver;
9588 	int rc, len;
9589 
9590 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9591 	if (rc)
9592 		return rc;
9593 
9594 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9595 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9596 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9597 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9598 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9599 
9600 	resp = hwrm_req_hold(bp, req);
9601 	rc = hwrm_req_send(bp, req);
9602 	if (rc)
9603 		goto hwrm_ver_get_exit;
9604 
9605 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9606 
9607 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9608 			     resp->hwrm_intf_min_8b << 8 |
9609 			     resp->hwrm_intf_upd_8b;
9610 	if (resp->hwrm_intf_maj_8b < 1) {
9611 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9612 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9613 			    resp->hwrm_intf_upd_8b);
9614 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9615 	}
9616 
9617 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9618 			HWRM_VERSION_UPDATE;
9619 
9620 	if (bp->hwrm_spec_code > hwrm_ver)
9621 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9622 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9623 			 HWRM_VERSION_UPDATE);
9624 	else
9625 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9626 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9627 			 resp->hwrm_intf_upd_8b);
9628 
9629 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9630 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9631 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9632 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9633 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9634 		len = FW_VER_STR_LEN;
9635 	} else {
9636 		fw_maj = resp->hwrm_fw_maj_8b;
9637 		fw_min = resp->hwrm_fw_min_8b;
9638 		fw_bld = resp->hwrm_fw_bld_8b;
9639 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9640 		len = BC_HWRM_STR_LEN;
9641 	}
9642 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9643 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9644 		 fw_rsv);
9645 
9646 	if (strlen(resp->active_pkg_name)) {
9647 		int fw_ver_len = strlen(bp->fw_ver_str);
9648 
9649 		snprintf(bp->fw_ver_str + fw_ver_len,
9650 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9651 			 resp->active_pkg_name);
9652 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9653 	}
9654 
9655 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9656 	if (!bp->hwrm_cmd_timeout)
9657 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9658 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9659 	if (!bp->hwrm_cmd_max_timeout)
9660 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9661 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9662 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9663 			    bp->hwrm_cmd_max_timeout / 1000);
9664 
9665 	if (resp->hwrm_intf_maj_8b >= 1) {
9666 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9667 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9668 	}
9669 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9670 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9671 
9672 	bp->chip_num = le16_to_cpu(resp->chip_num);
9673 	bp->chip_rev = resp->chip_rev;
9674 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9675 	    !resp->chip_metal)
9676 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9677 
9678 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9679 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9680 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9681 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9682 
9683 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9684 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9685 
9686 	if (dev_caps_cfg &
9687 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9688 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9689 
9690 	if (dev_caps_cfg &
9691 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9692 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9693 
9694 	if (dev_caps_cfg &
9695 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9696 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9697 
9698 hwrm_ver_get_exit:
9699 	hwrm_req_drop(bp, req);
9700 	return rc;
9701 }
9702 
9703 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9704 {
9705 	struct hwrm_fw_set_time_input *req;
9706 	struct tm tm;
9707 	time64_t now = ktime_get_real_seconds();
9708 	int rc;
9709 
9710 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9711 	    bp->hwrm_spec_code < 0x10400)
9712 		return -EOPNOTSUPP;
9713 
9714 	time64_to_tm(now, 0, &tm);
9715 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9716 	if (rc)
9717 		return rc;
9718 
9719 	req->year = cpu_to_le16(1900 + tm.tm_year);
9720 	req->month = 1 + tm.tm_mon;
9721 	req->day = tm.tm_mday;
9722 	req->hour = tm.tm_hour;
9723 	req->minute = tm.tm_min;
9724 	req->second = tm.tm_sec;
9725 	return hwrm_req_send(bp, req);
9726 }
9727 
9728 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9729 {
9730 	u64 sw_tmp;
9731 
9732 	hw &= mask;
9733 	sw_tmp = (*sw & ~mask) | hw;
9734 	if (hw < (*sw & mask))
9735 		sw_tmp += mask + 1;
9736 	WRITE_ONCE(*sw, sw_tmp);
9737 }
9738 
9739 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9740 				    int count, bool ignore_zero)
9741 {
9742 	int i;
9743 
9744 	for (i = 0; i < count; i++) {
9745 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9746 
9747 		if (ignore_zero && !hw)
9748 			continue;
9749 
9750 		if (masks[i] == -1ULL)
9751 			sw_stats[i] = hw;
9752 		else
9753 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9754 	}
9755 }
9756 
9757 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9758 {
9759 	if (!stats->hw_stats)
9760 		return;
9761 
9762 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9763 				stats->hw_masks, stats->len / 8, false);
9764 }
9765 
9766 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9767 {
9768 	struct bnxt_stats_mem *ring0_stats;
9769 	bool ignore_zero = false;
9770 	int i;
9771 
9772 	/* Chip bug.  Counter intermittently becomes 0. */
9773 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9774 		ignore_zero = true;
9775 
9776 	for (i = 0; i < bp->cp_nr_rings; i++) {
9777 		struct bnxt_napi *bnapi = bp->bnapi[i];
9778 		struct bnxt_cp_ring_info *cpr;
9779 		struct bnxt_stats_mem *stats;
9780 
9781 		cpr = &bnapi->cp_ring;
9782 		stats = &cpr->stats;
9783 		if (!i)
9784 			ring0_stats = stats;
9785 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9786 					ring0_stats->hw_masks,
9787 					ring0_stats->len / 8, ignore_zero);
9788 	}
9789 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9790 		struct bnxt_stats_mem *stats = &bp->port_stats;
9791 		__le64 *hw_stats = stats->hw_stats;
9792 		u64 *sw_stats = stats->sw_stats;
9793 		u64 *masks = stats->hw_masks;
9794 		int cnt;
9795 
9796 		cnt = sizeof(struct rx_port_stats) / 8;
9797 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9798 
9799 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9800 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9801 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9802 		cnt = sizeof(struct tx_port_stats) / 8;
9803 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9804 	}
9805 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9806 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9807 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9808 	}
9809 }
9810 
9811 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9812 {
9813 	struct hwrm_port_qstats_input *req;
9814 	struct bnxt_pf_info *pf = &bp->pf;
9815 	int rc;
9816 
9817 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9818 		return 0;
9819 
9820 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9821 		return -EOPNOTSUPP;
9822 
9823 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9824 	if (rc)
9825 		return rc;
9826 
9827 	req->flags = flags;
9828 	req->port_id = cpu_to_le16(pf->port_id);
9829 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9830 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9831 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9832 	return hwrm_req_send(bp, req);
9833 }
9834 
9835 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9836 {
9837 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9838 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9839 	struct hwrm_port_qstats_ext_output *resp_qs;
9840 	struct hwrm_port_qstats_ext_input *req_qs;
9841 	struct bnxt_pf_info *pf = &bp->pf;
9842 	u32 tx_stat_size;
9843 	int rc;
9844 
9845 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9846 		return 0;
9847 
9848 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9849 		return -EOPNOTSUPP;
9850 
9851 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9852 	if (rc)
9853 		return rc;
9854 
9855 	req_qs->flags = flags;
9856 	req_qs->port_id = cpu_to_le16(pf->port_id);
9857 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9858 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9859 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9860 		       sizeof(struct tx_port_stats_ext) : 0;
9861 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9862 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9863 	resp_qs = hwrm_req_hold(bp, req_qs);
9864 	rc = hwrm_req_send(bp, req_qs);
9865 	if (!rc) {
9866 		bp->fw_rx_stats_ext_size =
9867 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9868 		if (BNXT_FW_MAJ(bp) < 220 &&
9869 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9870 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9871 
9872 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9873 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9874 	} else {
9875 		bp->fw_rx_stats_ext_size = 0;
9876 		bp->fw_tx_stats_ext_size = 0;
9877 	}
9878 	hwrm_req_drop(bp, req_qs);
9879 
9880 	if (flags)
9881 		return rc;
9882 
9883 	if (bp->fw_tx_stats_ext_size <=
9884 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9885 		bp->pri2cos_valid = 0;
9886 		return rc;
9887 	}
9888 
9889 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9890 	if (rc)
9891 		return rc;
9892 
9893 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9894 
9895 	resp_qc = hwrm_req_hold(bp, req_qc);
9896 	rc = hwrm_req_send(bp, req_qc);
9897 	if (!rc) {
9898 		u8 *pri2cos;
9899 		int i, j;
9900 
9901 		pri2cos = &resp_qc->pri0_cos_queue_id;
9902 		for (i = 0; i < 8; i++) {
9903 			u8 queue_id = pri2cos[i];
9904 			u8 queue_idx;
9905 
9906 			/* Per port queue IDs start from 0, 10, 20, etc */
9907 			queue_idx = queue_id % 10;
9908 			if (queue_idx > BNXT_MAX_QUEUE) {
9909 				bp->pri2cos_valid = false;
9910 				hwrm_req_drop(bp, req_qc);
9911 				return rc;
9912 			}
9913 			for (j = 0; j < bp->max_q; j++) {
9914 				if (bp->q_ids[j] == queue_id)
9915 					bp->pri2cos_idx[i] = queue_idx;
9916 			}
9917 		}
9918 		bp->pri2cos_valid = true;
9919 	}
9920 	hwrm_req_drop(bp, req_qc);
9921 
9922 	return rc;
9923 }
9924 
9925 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9926 {
9927 	bnxt_hwrm_tunnel_dst_port_free(bp,
9928 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9929 	bnxt_hwrm_tunnel_dst_port_free(bp,
9930 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9931 }
9932 
9933 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9934 {
9935 	int rc, i;
9936 	u32 tpa_flags = 0;
9937 
9938 	if (set_tpa)
9939 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9940 	else if (BNXT_NO_FW_ACCESS(bp))
9941 		return 0;
9942 	for (i = 0; i < bp->nr_vnics; i++) {
9943 		rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags);
9944 		if (rc) {
9945 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9946 				   i, rc);
9947 			return rc;
9948 		}
9949 	}
9950 	return 0;
9951 }
9952 
9953 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9954 {
9955 	int i;
9956 
9957 	for (i = 0; i < bp->nr_vnics; i++)
9958 		bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false);
9959 }
9960 
9961 static void bnxt_clear_vnic(struct bnxt *bp)
9962 {
9963 	if (!bp->vnic_info)
9964 		return;
9965 
9966 	bnxt_hwrm_clear_vnic_filter(bp);
9967 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9968 		/* clear all RSS setting before free vnic ctx */
9969 		bnxt_hwrm_clear_vnic_rss(bp);
9970 		bnxt_hwrm_vnic_ctx_free(bp);
9971 	}
9972 	/* before free the vnic, undo the vnic tpa settings */
9973 	if (bp->flags & BNXT_FLAG_TPA)
9974 		bnxt_set_tpa(bp, false);
9975 	bnxt_hwrm_vnic_free(bp);
9976 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9977 		bnxt_hwrm_vnic_ctx_free(bp);
9978 }
9979 
9980 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9981 				    bool irq_re_init)
9982 {
9983 	bnxt_clear_vnic(bp);
9984 	bnxt_hwrm_ring_free(bp, close_path);
9985 	bnxt_hwrm_ring_grp_free(bp);
9986 	if (irq_re_init) {
9987 		bnxt_hwrm_stat_ctx_free(bp);
9988 		bnxt_hwrm_free_tunnel_ports(bp);
9989 	}
9990 }
9991 
9992 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9993 {
9994 	struct hwrm_func_cfg_input *req;
9995 	u8 evb_mode;
9996 	int rc;
9997 
9998 	if (br_mode == BRIDGE_MODE_VEB)
9999 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
10000 	else if (br_mode == BRIDGE_MODE_VEPA)
10001 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
10002 	else
10003 		return -EINVAL;
10004 
10005 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10006 	if (rc)
10007 		return rc;
10008 
10009 	req->fid = cpu_to_le16(0xffff);
10010 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
10011 	req->evb_mode = evb_mode;
10012 	return hwrm_req_send(bp, req);
10013 }
10014 
10015 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
10016 {
10017 	struct hwrm_func_cfg_input *req;
10018 	int rc;
10019 
10020 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
10021 		return 0;
10022 
10023 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10024 	if (rc)
10025 		return rc;
10026 
10027 	req->fid = cpu_to_le16(0xffff);
10028 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
10029 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
10030 	if (size == 128)
10031 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
10032 
10033 	return hwrm_req_send(bp, req);
10034 }
10035 
10036 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10037 {
10038 	int rc;
10039 
10040 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
10041 		goto skip_rss_ctx;
10042 
10043 	/* allocate context for vnic */
10044 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0);
10045 	if (rc) {
10046 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10047 			   vnic->vnic_id, rc);
10048 		goto vnic_setup_err;
10049 	}
10050 	bp->rsscos_nr_ctxs++;
10051 
10052 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10053 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1);
10054 		if (rc) {
10055 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
10056 				   vnic->vnic_id, rc);
10057 			goto vnic_setup_err;
10058 		}
10059 		bp->rsscos_nr_ctxs++;
10060 	}
10061 
10062 skip_rss_ctx:
10063 	/* configure default vnic, ring grp */
10064 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10065 	if (rc) {
10066 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10067 			   vnic->vnic_id, rc);
10068 		goto vnic_setup_err;
10069 	}
10070 
10071 	/* Enable RSS hashing on vnic */
10072 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true);
10073 	if (rc) {
10074 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
10075 			   vnic->vnic_id, rc);
10076 		goto vnic_setup_err;
10077 	}
10078 
10079 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10080 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10081 		if (rc) {
10082 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10083 				   vnic->vnic_id, rc);
10084 		}
10085 	}
10086 
10087 vnic_setup_err:
10088 	return rc;
10089 }
10090 
10091 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10092 {
10093 	int rc;
10094 
10095 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true);
10096 	if (rc) {
10097 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
10098 			   vnic->vnic_id, rc);
10099 		return rc;
10100 	}
10101 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10102 	if (rc)
10103 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10104 			   vnic->vnic_id, rc);
10105 	return rc;
10106 }
10107 
10108 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10109 {
10110 	int rc, i, nr_ctxs;
10111 
10112 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
10113 	for (i = 0; i < nr_ctxs; i++) {
10114 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i);
10115 		if (rc) {
10116 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
10117 				   vnic->vnic_id, i, rc);
10118 			break;
10119 		}
10120 		bp->rsscos_nr_ctxs++;
10121 	}
10122 	if (i < nr_ctxs)
10123 		return -ENOMEM;
10124 
10125 	rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic);
10126 	if (rc)
10127 		return rc;
10128 
10129 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10130 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10131 		if (rc) {
10132 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10133 				   vnic->vnic_id, rc);
10134 		}
10135 	}
10136 	return rc;
10137 }
10138 
10139 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10140 {
10141 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10142 		return __bnxt_setup_vnic_p5(bp, vnic);
10143 	else
10144 		return __bnxt_setup_vnic(bp, vnic);
10145 }
10146 
10147 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp,
10148 				     struct bnxt_vnic_info *vnic,
10149 				     u16 start_rx_ring_idx, int rx_rings)
10150 {
10151 	int rc;
10152 
10153 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings);
10154 	if (rc) {
10155 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10156 			   vnic->vnic_id, rc);
10157 		return rc;
10158 	}
10159 	return bnxt_setup_vnic(bp, vnic);
10160 }
10161 
10162 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
10163 {
10164 	struct bnxt_vnic_info *vnic;
10165 	int i, rc = 0;
10166 
10167 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
10168 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
10169 		return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings);
10170 	}
10171 
10172 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10173 		return 0;
10174 
10175 	for (i = 0; i < bp->rx_nr_rings; i++) {
10176 		u16 vnic_id = i + 1;
10177 		u16 ring_id = i;
10178 
10179 		if (vnic_id >= bp->nr_vnics)
10180 			break;
10181 
10182 		vnic = &bp->vnic_info[vnic_id];
10183 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
10184 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
10185 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
10186 		if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1))
10187 			break;
10188 	}
10189 	return rc;
10190 }
10191 
10192 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx,
10193 			  bool all)
10194 {
10195 	struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10196 	struct bnxt_filter_base *usr_fltr, *tmp;
10197 	struct bnxt_ntuple_filter *ntp_fltr;
10198 	int i;
10199 
10200 	if (netif_running(bp->dev)) {
10201 		bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic);
10202 		for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) {
10203 			if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID)
10204 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i);
10205 		}
10206 	}
10207 	if (!all)
10208 		return;
10209 
10210 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
10211 		if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) &&
10212 		    usr_fltr->fw_vnic_id == rss_ctx->index) {
10213 			ntp_fltr = container_of(usr_fltr,
10214 						struct bnxt_ntuple_filter,
10215 						base);
10216 			bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr);
10217 			bnxt_del_ntp_filter(bp, ntp_fltr);
10218 			bnxt_del_one_usr_fltr(bp, usr_fltr);
10219 		}
10220 	}
10221 
10222 	if (vnic->rss_table)
10223 		dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size,
10224 				  vnic->rss_table,
10225 				  vnic->rss_table_dma_addr);
10226 	bp->num_rss_ctx--;
10227 }
10228 
10229 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp)
10230 {
10231 	bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA);
10232 	struct ethtool_rxfh_context *ctx;
10233 	unsigned long context;
10234 
10235 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10236 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10237 		struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10238 
10239 		if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) ||
10240 		    bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) ||
10241 		    __bnxt_setup_vnic_p5(bp, vnic)) {
10242 			netdev_err(bp->dev, "Failed to restore RSS ctx %d\n",
10243 				   rss_ctx->index);
10244 			bnxt_del_one_rss_ctx(bp, rss_ctx, true);
10245 			ethtool_rxfh_context_lost(bp->dev, rss_ctx->index);
10246 		}
10247 	}
10248 }
10249 
10250 void bnxt_clear_rss_ctxs(struct bnxt *bp)
10251 {
10252 	struct ethtool_rxfh_context *ctx;
10253 	unsigned long context;
10254 
10255 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10256 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10257 
10258 		bnxt_del_one_rss_ctx(bp, rss_ctx, false);
10259 	}
10260 }
10261 
10262 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
10263 static bool bnxt_promisc_ok(struct bnxt *bp)
10264 {
10265 #ifdef CONFIG_BNXT_SRIOV
10266 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
10267 		return false;
10268 #endif
10269 	return true;
10270 }
10271 
10272 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
10273 {
10274 	struct bnxt_vnic_info *vnic = &bp->vnic_info[1];
10275 	unsigned int rc = 0;
10276 
10277 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1);
10278 	if (rc) {
10279 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10280 			   rc);
10281 		return rc;
10282 	}
10283 
10284 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10285 	if (rc) {
10286 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10287 			   rc);
10288 		return rc;
10289 	}
10290 	return rc;
10291 }
10292 
10293 static int bnxt_cfg_rx_mode(struct bnxt *);
10294 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
10295 
10296 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
10297 {
10298 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
10299 	int rc = 0;
10300 	unsigned int rx_nr_rings = bp->rx_nr_rings;
10301 
10302 	if (irq_re_init) {
10303 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
10304 		if (rc) {
10305 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
10306 				   rc);
10307 			goto err_out;
10308 		}
10309 	}
10310 
10311 	rc = bnxt_hwrm_ring_alloc(bp);
10312 	if (rc) {
10313 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
10314 		goto err_out;
10315 	}
10316 
10317 	rc = bnxt_hwrm_ring_grp_alloc(bp);
10318 	if (rc) {
10319 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
10320 		goto err_out;
10321 	}
10322 
10323 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10324 		rx_nr_rings--;
10325 
10326 	/* default vnic 0 */
10327 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings);
10328 	if (rc) {
10329 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
10330 		goto err_out;
10331 	}
10332 
10333 	if (BNXT_VF(bp))
10334 		bnxt_hwrm_func_qcfg(bp);
10335 
10336 	rc = bnxt_setup_vnic(bp, vnic);
10337 	if (rc)
10338 		goto err_out;
10339 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
10340 		bnxt_hwrm_update_rss_hash_cfg(bp);
10341 
10342 	if (bp->flags & BNXT_FLAG_RFS) {
10343 		rc = bnxt_alloc_rfs_vnics(bp);
10344 		if (rc)
10345 			goto err_out;
10346 	}
10347 
10348 	if (bp->flags & BNXT_FLAG_TPA) {
10349 		rc = bnxt_set_tpa(bp, true);
10350 		if (rc)
10351 			goto err_out;
10352 	}
10353 
10354 	if (BNXT_VF(bp))
10355 		bnxt_update_vf_mac(bp);
10356 
10357 	/* Filter for default vnic 0 */
10358 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
10359 	if (rc) {
10360 		if (BNXT_VF(bp) && rc == -ENODEV)
10361 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
10362 		else
10363 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10364 		goto err_out;
10365 	}
10366 	vnic->uc_filter_count = 1;
10367 
10368 	vnic->rx_mask = 0;
10369 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
10370 		goto skip_rx_mask;
10371 
10372 	if (bp->dev->flags & IFF_BROADCAST)
10373 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10374 
10375 	if (bp->dev->flags & IFF_PROMISC)
10376 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10377 
10378 	if (bp->dev->flags & IFF_ALLMULTI) {
10379 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10380 		vnic->mc_list_count = 0;
10381 	} else if (bp->dev->flags & IFF_MULTICAST) {
10382 		u32 mask = 0;
10383 
10384 		bnxt_mc_list_updated(bp, &mask);
10385 		vnic->rx_mask |= mask;
10386 	}
10387 
10388 	rc = bnxt_cfg_rx_mode(bp);
10389 	if (rc)
10390 		goto err_out;
10391 
10392 skip_rx_mask:
10393 	rc = bnxt_hwrm_set_coal(bp);
10394 	if (rc)
10395 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
10396 				rc);
10397 
10398 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10399 		rc = bnxt_setup_nitroa0_vnic(bp);
10400 		if (rc)
10401 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
10402 				   rc);
10403 	}
10404 
10405 	if (BNXT_VF(bp)) {
10406 		bnxt_hwrm_func_qcfg(bp);
10407 		netdev_update_features(bp->dev);
10408 	}
10409 
10410 	return 0;
10411 
10412 err_out:
10413 	bnxt_hwrm_resource_free(bp, 0, true);
10414 
10415 	return rc;
10416 }
10417 
10418 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
10419 {
10420 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
10421 	return 0;
10422 }
10423 
10424 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
10425 {
10426 	bnxt_init_cp_rings(bp);
10427 	bnxt_init_rx_rings(bp);
10428 	bnxt_init_tx_rings(bp);
10429 	bnxt_init_ring_grps(bp, irq_re_init);
10430 	bnxt_init_vnics(bp);
10431 
10432 	return bnxt_init_chip(bp, irq_re_init);
10433 }
10434 
10435 static int bnxt_set_real_num_queues(struct bnxt *bp)
10436 {
10437 	int rc;
10438 	struct net_device *dev = bp->dev;
10439 
10440 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
10441 					  bp->tx_nr_rings_xdp);
10442 	if (rc)
10443 		return rc;
10444 
10445 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
10446 	if (rc)
10447 		return rc;
10448 
10449 #ifdef CONFIG_RFS_ACCEL
10450 	if (bp->flags & BNXT_FLAG_RFS)
10451 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
10452 #endif
10453 
10454 	return rc;
10455 }
10456 
10457 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10458 			     bool shared)
10459 {
10460 	int _rx = *rx, _tx = *tx;
10461 
10462 	if (shared) {
10463 		*rx = min_t(int, _rx, max);
10464 		*tx = min_t(int, _tx, max);
10465 	} else {
10466 		if (max < 2)
10467 			return -ENOMEM;
10468 
10469 		while (_rx + _tx > max) {
10470 			if (_rx > _tx && _rx > 1)
10471 				_rx--;
10472 			else if (_tx > 1)
10473 				_tx--;
10474 		}
10475 		*rx = _rx;
10476 		*tx = _tx;
10477 	}
10478 	return 0;
10479 }
10480 
10481 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
10482 {
10483 	return (tx - tx_xdp) / tx_sets + tx_xdp;
10484 }
10485 
10486 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
10487 {
10488 	int tcs = bp->num_tc;
10489 
10490 	if (!tcs)
10491 		tcs = 1;
10492 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
10493 }
10494 
10495 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
10496 {
10497 	int tcs = bp->num_tc;
10498 
10499 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
10500 	       bp->tx_nr_rings_xdp;
10501 }
10502 
10503 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10504 			   bool sh)
10505 {
10506 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
10507 
10508 	if (tx_cp != *tx) {
10509 		int tx_saved = tx_cp, rc;
10510 
10511 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
10512 		if (rc)
10513 			return rc;
10514 		if (tx_cp != tx_saved)
10515 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
10516 		return 0;
10517 	}
10518 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
10519 }
10520 
10521 static void bnxt_setup_msix(struct bnxt *bp)
10522 {
10523 	const int len = sizeof(bp->irq_tbl[0].name);
10524 	struct net_device *dev = bp->dev;
10525 	int tcs, i;
10526 
10527 	tcs = bp->num_tc;
10528 	if (tcs) {
10529 		int i, off, count;
10530 
10531 		for (i = 0; i < tcs; i++) {
10532 			count = bp->tx_nr_rings_per_tc;
10533 			off = BNXT_TC_TO_RING_BASE(bp, i);
10534 			netdev_set_tc_queue(dev, i, count, off);
10535 		}
10536 	}
10537 
10538 	for (i = 0; i < bp->cp_nr_rings; i++) {
10539 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10540 		char *attr;
10541 
10542 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10543 			attr = "TxRx";
10544 		else if (i < bp->rx_nr_rings)
10545 			attr = "rx";
10546 		else
10547 			attr = "tx";
10548 
10549 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10550 			 attr, i);
10551 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10552 	}
10553 }
10554 
10555 static void bnxt_setup_inta(struct bnxt *bp)
10556 {
10557 	const int len = sizeof(bp->irq_tbl[0].name);
10558 
10559 	if (bp->num_tc) {
10560 		netdev_reset_tc(bp->dev);
10561 		bp->num_tc = 0;
10562 	}
10563 
10564 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
10565 		 0);
10566 	bp->irq_tbl[0].handler = bnxt_inta;
10567 }
10568 
10569 static int bnxt_init_int_mode(struct bnxt *bp);
10570 
10571 static int bnxt_setup_int_mode(struct bnxt *bp)
10572 {
10573 	int rc;
10574 
10575 	if (!bp->irq_tbl) {
10576 		rc = bnxt_init_int_mode(bp);
10577 		if (rc || !bp->irq_tbl)
10578 			return rc ?: -ENODEV;
10579 	}
10580 
10581 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10582 		bnxt_setup_msix(bp);
10583 	else
10584 		bnxt_setup_inta(bp);
10585 
10586 	rc = bnxt_set_real_num_queues(bp);
10587 	return rc;
10588 }
10589 
10590 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10591 {
10592 	return bp->hw_resc.max_rsscos_ctxs;
10593 }
10594 
10595 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10596 {
10597 	return bp->hw_resc.max_vnics;
10598 }
10599 
10600 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10601 {
10602 	return bp->hw_resc.max_stat_ctxs;
10603 }
10604 
10605 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10606 {
10607 	return bp->hw_resc.max_cp_rings;
10608 }
10609 
10610 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10611 {
10612 	unsigned int cp = bp->hw_resc.max_cp_rings;
10613 
10614 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10615 		cp -= bnxt_get_ulp_msix_num(bp);
10616 
10617 	return cp;
10618 }
10619 
10620 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10621 {
10622 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10623 
10624 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10625 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10626 
10627 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10628 }
10629 
10630 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10631 {
10632 	bp->hw_resc.max_irqs = max_irqs;
10633 }
10634 
10635 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10636 {
10637 	unsigned int cp;
10638 
10639 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10640 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10641 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10642 	else
10643 		return cp - bp->cp_nr_rings;
10644 }
10645 
10646 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10647 {
10648 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10649 }
10650 
10651 static int bnxt_get_avail_msix(struct bnxt *bp, int num)
10652 {
10653 	int max_irq = bnxt_get_max_func_irqs(bp);
10654 	int total_req = bp->cp_nr_rings + num;
10655 
10656 	if (max_irq < total_req) {
10657 		num = max_irq - bp->cp_nr_rings;
10658 		if (num <= 0)
10659 			return 0;
10660 	}
10661 	return num;
10662 }
10663 
10664 static int bnxt_get_num_msix(struct bnxt *bp)
10665 {
10666 	if (!BNXT_NEW_RM(bp))
10667 		return bnxt_get_max_func_irqs(bp);
10668 
10669 	return bnxt_nq_rings_in_use(bp);
10670 }
10671 
10672 static int bnxt_init_msix(struct bnxt *bp)
10673 {
10674 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
10675 	struct msix_entry *msix_ent;
10676 
10677 	total_vecs = bnxt_get_num_msix(bp);
10678 	max = bnxt_get_max_func_irqs(bp);
10679 	if (total_vecs > max)
10680 		total_vecs = max;
10681 
10682 	if (!total_vecs)
10683 		return 0;
10684 
10685 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
10686 	if (!msix_ent)
10687 		return -ENOMEM;
10688 
10689 	for (i = 0; i < total_vecs; i++) {
10690 		msix_ent[i].entry = i;
10691 		msix_ent[i].vector = 0;
10692 	}
10693 
10694 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10695 		min = 2;
10696 
10697 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
10698 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10699 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10700 		rc = -ENODEV;
10701 		goto msix_setup_exit;
10702 	}
10703 
10704 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
10705 	if (bp->irq_tbl) {
10706 		for (i = 0; i < total_vecs; i++)
10707 			bp->irq_tbl[i].vector = msix_ent[i].vector;
10708 
10709 		bp->total_irqs = total_vecs;
10710 		/* Trim rings based upon num of vectors allocated */
10711 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10712 				     total_vecs - ulp_msix, min == 1);
10713 		if (rc)
10714 			goto msix_setup_exit;
10715 
10716 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10717 		bp->cp_nr_rings = (min == 1) ?
10718 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10719 				  tx_cp + bp->rx_nr_rings;
10720 
10721 	} else {
10722 		rc = -ENOMEM;
10723 		goto msix_setup_exit;
10724 	}
10725 	bp->flags |= BNXT_FLAG_USING_MSIX;
10726 	kfree(msix_ent);
10727 	return 0;
10728 
10729 msix_setup_exit:
10730 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
10731 	kfree(bp->irq_tbl);
10732 	bp->irq_tbl = NULL;
10733 	pci_disable_msix(bp->pdev);
10734 	kfree(msix_ent);
10735 	return rc;
10736 }
10737 
10738 static int bnxt_init_inta(struct bnxt *bp)
10739 {
10740 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
10741 	if (!bp->irq_tbl)
10742 		return -ENOMEM;
10743 
10744 	bp->total_irqs = 1;
10745 	bp->rx_nr_rings = 1;
10746 	bp->tx_nr_rings = 1;
10747 	bp->cp_nr_rings = 1;
10748 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
10749 	bp->irq_tbl[0].vector = bp->pdev->irq;
10750 	return 0;
10751 }
10752 
10753 static int bnxt_init_int_mode(struct bnxt *bp)
10754 {
10755 	int rc = -ENODEV;
10756 
10757 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
10758 		rc = bnxt_init_msix(bp);
10759 
10760 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
10761 		/* fallback to INTA */
10762 		rc = bnxt_init_inta(bp);
10763 	}
10764 	return rc;
10765 }
10766 
10767 static void bnxt_clear_int_mode(struct bnxt *bp)
10768 {
10769 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10770 		pci_disable_msix(bp->pdev);
10771 
10772 	kfree(bp->irq_tbl);
10773 	bp->irq_tbl = NULL;
10774 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
10775 }
10776 
10777 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10778 {
10779 	bool irq_cleared = false;
10780 	int tcs = bp->num_tc;
10781 	int irqs_required;
10782 	int rc;
10783 
10784 	if (!bnxt_need_reserve_rings(bp))
10785 		return 0;
10786 
10787 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
10788 		int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
10789 
10790 		if (ulp_msix > bp->ulp_num_msix_want)
10791 			ulp_msix = bp->ulp_num_msix_want;
10792 		irqs_required = ulp_msix + bp->cp_nr_rings;
10793 	} else {
10794 		irqs_required = bnxt_get_num_msix(bp);
10795 	}
10796 
10797 	if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) {
10798 		bnxt_ulp_irq_stop(bp);
10799 		bnxt_clear_int_mode(bp);
10800 		irq_cleared = true;
10801 	}
10802 	rc = __bnxt_reserve_rings(bp);
10803 	if (irq_cleared) {
10804 		if (!rc)
10805 			rc = bnxt_init_int_mode(bp);
10806 		bnxt_ulp_irq_restart(bp, rc);
10807 	}
10808 	if (rc) {
10809 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10810 		return rc;
10811 	}
10812 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10813 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10814 		netdev_err(bp->dev, "tx ring reservation failure\n");
10815 		netdev_reset_tc(bp->dev);
10816 		bp->num_tc = 0;
10817 		if (bp->tx_nr_rings_xdp)
10818 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10819 		else
10820 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10821 		return -ENOMEM;
10822 	}
10823 	return 0;
10824 }
10825 
10826 static void bnxt_free_irq(struct bnxt *bp)
10827 {
10828 	struct bnxt_irq *irq;
10829 	int i;
10830 
10831 #ifdef CONFIG_RFS_ACCEL
10832 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10833 	bp->dev->rx_cpu_rmap = NULL;
10834 #endif
10835 	if (!bp->irq_tbl || !bp->bnapi)
10836 		return;
10837 
10838 	for (i = 0; i < bp->cp_nr_rings; i++) {
10839 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10840 
10841 		irq = &bp->irq_tbl[map_idx];
10842 		if (irq->requested) {
10843 			if (irq->have_cpumask) {
10844 				irq_set_affinity_hint(irq->vector, NULL);
10845 				free_cpumask_var(irq->cpu_mask);
10846 				irq->have_cpumask = 0;
10847 			}
10848 			free_irq(irq->vector, bp->bnapi[i]);
10849 		}
10850 
10851 		irq->requested = 0;
10852 	}
10853 }
10854 
10855 static int bnxt_request_irq(struct bnxt *bp)
10856 {
10857 	int i, j, rc = 0;
10858 	unsigned long flags = 0;
10859 #ifdef CONFIG_RFS_ACCEL
10860 	struct cpu_rmap *rmap;
10861 #endif
10862 
10863 	rc = bnxt_setup_int_mode(bp);
10864 	if (rc) {
10865 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10866 			   rc);
10867 		return rc;
10868 	}
10869 #ifdef CONFIG_RFS_ACCEL
10870 	rmap = bp->dev->rx_cpu_rmap;
10871 #endif
10872 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
10873 		flags = IRQF_SHARED;
10874 
10875 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10876 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10877 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10878 
10879 #ifdef CONFIG_RFS_ACCEL
10880 		if (rmap && bp->bnapi[i]->rx_ring) {
10881 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10882 			if (rc)
10883 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10884 					    j);
10885 			j++;
10886 		}
10887 #endif
10888 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10889 				 bp->bnapi[i]);
10890 		if (rc)
10891 			break;
10892 
10893 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10894 		irq->requested = 1;
10895 
10896 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10897 			int numa_node = dev_to_node(&bp->pdev->dev);
10898 
10899 			irq->have_cpumask = 1;
10900 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10901 					irq->cpu_mask);
10902 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10903 			if (rc) {
10904 				netdev_warn(bp->dev,
10905 					    "Set affinity failed, IRQ = %d\n",
10906 					    irq->vector);
10907 				break;
10908 			}
10909 		}
10910 	}
10911 	return rc;
10912 }
10913 
10914 static void bnxt_del_napi(struct bnxt *bp)
10915 {
10916 	int i;
10917 
10918 	if (!bp->bnapi)
10919 		return;
10920 
10921 	for (i = 0; i < bp->rx_nr_rings; i++)
10922 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10923 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10924 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10925 
10926 	for (i = 0; i < bp->cp_nr_rings; i++) {
10927 		struct bnxt_napi *bnapi = bp->bnapi[i];
10928 
10929 		__netif_napi_del(&bnapi->napi);
10930 	}
10931 	/* We called __netif_napi_del(), we need
10932 	 * to respect an RCU grace period before freeing napi structures.
10933 	 */
10934 	synchronize_net();
10935 }
10936 
10937 static void bnxt_init_napi(struct bnxt *bp)
10938 {
10939 	int i;
10940 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10941 	struct bnxt_napi *bnapi;
10942 
10943 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
10944 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10945 
10946 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10947 			poll_fn = bnxt_poll_p5;
10948 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10949 			cp_nr_rings--;
10950 		for (i = 0; i < cp_nr_rings; i++) {
10951 			bnapi = bp->bnapi[i];
10952 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10953 		}
10954 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10955 			bnapi = bp->bnapi[cp_nr_rings];
10956 			netif_napi_add(bp->dev, &bnapi->napi,
10957 				       bnxt_poll_nitroa0);
10958 		}
10959 	} else {
10960 		bnapi = bp->bnapi[0];
10961 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10962 	}
10963 }
10964 
10965 static void bnxt_disable_napi(struct bnxt *bp)
10966 {
10967 	int i;
10968 
10969 	if (!bp->bnapi ||
10970 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10971 		return;
10972 
10973 	for (i = 0; i < bp->cp_nr_rings; i++) {
10974 		struct bnxt_napi *bnapi = bp->bnapi[i];
10975 		struct bnxt_cp_ring_info *cpr;
10976 
10977 		cpr = &bnapi->cp_ring;
10978 		if (bnapi->tx_fault)
10979 			cpr->sw_stats->tx.tx_resets++;
10980 		if (bnapi->in_reset)
10981 			cpr->sw_stats->rx.rx_resets++;
10982 		napi_disable(&bnapi->napi);
10983 		if (bnapi->rx_ring)
10984 			cancel_work_sync(&cpr->dim.work);
10985 	}
10986 }
10987 
10988 static void bnxt_enable_napi(struct bnxt *bp)
10989 {
10990 	int i;
10991 
10992 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
10993 	for (i = 0; i < bp->cp_nr_rings; i++) {
10994 		struct bnxt_napi *bnapi = bp->bnapi[i];
10995 		struct bnxt_cp_ring_info *cpr;
10996 
10997 		bnapi->tx_fault = 0;
10998 
10999 		cpr = &bnapi->cp_ring;
11000 		bnapi->in_reset = false;
11001 
11002 		if (bnapi->rx_ring) {
11003 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
11004 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
11005 		}
11006 		napi_enable(&bnapi->napi);
11007 	}
11008 }
11009 
11010 void bnxt_tx_disable(struct bnxt *bp)
11011 {
11012 	int i;
11013 	struct bnxt_tx_ring_info *txr;
11014 
11015 	if (bp->tx_ring) {
11016 		for (i = 0; i < bp->tx_nr_rings; i++) {
11017 			txr = &bp->tx_ring[i];
11018 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
11019 		}
11020 	}
11021 	/* Make sure napi polls see @dev_state change */
11022 	synchronize_net();
11023 	/* Drop carrier first to prevent TX timeout */
11024 	netif_carrier_off(bp->dev);
11025 	/* Stop all TX queues */
11026 	netif_tx_disable(bp->dev);
11027 }
11028 
11029 void bnxt_tx_enable(struct bnxt *bp)
11030 {
11031 	int i;
11032 	struct bnxt_tx_ring_info *txr;
11033 
11034 	for (i = 0; i < bp->tx_nr_rings; i++) {
11035 		txr = &bp->tx_ring[i];
11036 		WRITE_ONCE(txr->dev_state, 0);
11037 	}
11038 	/* Make sure napi polls see @dev_state change */
11039 	synchronize_net();
11040 	netif_tx_wake_all_queues(bp->dev);
11041 	if (BNXT_LINK_IS_UP(bp))
11042 		netif_carrier_on(bp->dev);
11043 }
11044 
11045 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
11046 {
11047 	u8 active_fec = link_info->active_fec_sig_mode &
11048 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
11049 
11050 	switch (active_fec) {
11051 	default:
11052 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
11053 		return "None";
11054 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
11055 		return "Clause 74 BaseR";
11056 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
11057 		return "Clause 91 RS(528,514)";
11058 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
11059 		return "Clause 91 RS544_1XN";
11060 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
11061 		return "Clause 91 RS(544,514)";
11062 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
11063 		return "Clause 91 RS272_1XN";
11064 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
11065 		return "Clause 91 RS(272,257)";
11066 	}
11067 }
11068 
11069 void bnxt_report_link(struct bnxt *bp)
11070 {
11071 	if (BNXT_LINK_IS_UP(bp)) {
11072 		const char *signal = "";
11073 		const char *flow_ctrl;
11074 		const char *duplex;
11075 		u32 speed;
11076 		u16 fec;
11077 
11078 		netif_carrier_on(bp->dev);
11079 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
11080 		if (speed == SPEED_UNKNOWN) {
11081 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
11082 			return;
11083 		}
11084 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
11085 			duplex = "full";
11086 		else
11087 			duplex = "half";
11088 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
11089 			flow_ctrl = "ON - receive & transmit";
11090 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
11091 			flow_ctrl = "ON - transmit";
11092 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
11093 			flow_ctrl = "ON - receive";
11094 		else
11095 			flow_ctrl = "none";
11096 		if (bp->link_info.phy_qcfg_resp.option_flags &
11097 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
11098 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
11099 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
11100 			switch (sig_mode) {
11101 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
11102 				signal = "(NRZ) ";
11103 				break;
11104 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
11105 				signal = "(PAM4 56Gbps) ";
11106 				break;
11107 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
11108 				signal = "(PAM4 112Gbps) ";
11109 				break;
11110 			default:
11111 				break;
11112 			}
11113 		}
11114 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
11115 			    speed, signal, duplex, flow_ctrl);
11116 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
11117 			netdev_info(bp->dev, "EEE is %s\n",
11118 				    bp->eee.eee_active ? "active" :
11119 							 "not active");
11120 		fec = bp->link_info.fec_cfg;
11121 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
11122 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
11123 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
11124 				    bnxt_report_fec(&bp->link_info));
11125 	} else {
11126 		netif_carrier_off(bp->dev);
11127 		netdev_err(bp->dev, "NIC Link is Down\n");
11128 	}
11129 }
11130 
11131 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
11132 {
11133 	if (!resp->supported_speeds_auto_mode &&
11134 	    !resp->supported_speeds_force_mode &&
11135 	    !resp->supported_pam4_speeds_auto_mode &&
11136 	    !resp->supported_pam4_speeds_force_mode &&
11137 	    !resp->supported_speeds2_auto_mode &&
11138 	    !resp->supported_speeds2_force_mode)
11139 		return true;
11140 	return false;
11141 }
11142 
11143 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
11144 {
11145 	struct bnxt_link_info *link_info = &bp->link_info;
11146 	struct hwrm_port_phy_qcaps_output *resp;
11147 	struct hwrm_port_phy_qcaps_input *req;
11148 	int rc = 0;
11149 
11150 	if (bp->hwrm_spec_code < 0x10201)
11151 		return 0;
11152 
11153 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
11154 	if (rc)
11155 		return rc;
11156 
11157 	resp = hwrm_req_hold(bp, req);
11158 	rc = hwrm_req_send(bp, req);
11159 	if (rc)
11160 		goto hwrm_phy_qcaps_exit;
11161 
11162 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
11163 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
11164 		struct ethtool_keee *eee = &bp->eee;
11165 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
11166 
11167 		_bnxt_fw_to_linkmode(eee->supported, fw_speeds);
11168 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
11169 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
11170 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
11171 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
11172 	}
11173 
11174 	if (bp->hwrm_spec_code >= 0x10a01) {
11175 		if (bnxt_phy_qcaps_no_speed(resp)) {
11176 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
11177 			netdev_warn(bp->dev, "Ethernet link disabled\n");
11178 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
11179 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
11180 			netdev_info(bp->dev, "Ethernet link enabled\n");
11181 			/* Phy re-enabled, reprobe the speeds */
11182 			link_info->support_auto_speeds = 0;
11183 			link_info->support_pam4_auto_speeds = 0;
11184 			link_info->support_auto_speeds2 = 0;
11185 		}
11186 	}
11187 	if (resp->supported_speeds_auto_mode)
11188 		link_info->support_auto_speeds =
11189 			le16_to_cpu(resp->supported_speeds_auto_mode);
11190 	if (resp->supported_pam4_speeds_auto_mode)
11191 		link_info->support_pam4_auto_speeds =
11192 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
11193 	if (resp->supported_speeds2_auto_mode)
11194 		link_info->support_auto_speeds2 =
11195 			le16_to_cpu(resp->supported_speeds2_auto_mode);
11196 
11197 	bp->port_count = resp->port_cnt;
11198 
11199 hwrm_phy_qcaps_exit:
11200 	hwrm_req_drop(bp, req);
11201 	return rc;
11202 }
11203 
11204 static bool bnxt_support_dropped(u16 advertising, u16 supported)
11205 {
11206 	u16 diff = advertising ^ supported;
11207 
11208 	return ((supported | diff) != supported);
11209 }
11210 
11211 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
11212 {
11213 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
11214 
11215 	/* Check if any advertised speeds are no longer supported. The caller
11216 	 * holds the link_lock mutex, so we can modify link_info settings.
11217 	 */
11218 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11219 		if (bnxt_support_dropped(link_info->advertising,
11220 					 link_info->support_auto_speeds2)) {
11221 			link_info->advertising = link_info->support_auto_speeds2;
11222 			return true;
11223 		}
11224 		return false;
11225 	}
11226 	if (bnxt_support_dropped(link_info->advertising,
11227 				 link_info->support_auto_speeds)) {
11228 		link_info->advertising = link_info->support_auto_speeds;
11229 		return true;
11230 	}
11231 	if (bnxt_support_dropped(link_info->advertising_pam4,
11232 				 link_info->support_pam4_auto_speeds)) {
11233 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
11234 		return true;
11235 	}
11236 	return false;
11237 }
11238 
11239 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
11240 {
11241 	struct bnxt_link_info *link_info = &bp->link_info;
11242 	struct hwrm_port_phy_qcfg_output *resp;
11243 	struct hwrm_port_phy_qcfg_input *req;
11244 	u8 link_state = link_info->link_state;
11245 	bool support_changed;
11246 	int rc;
11247 
11248 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
11249 	if (rc)
11250 		return rc;
11251 
11252 	resp = hwrm_req_hold(bp, req);
11253 	rc = hwrm_req_send(bp, req);
11254 	if (rc) {
11255 		hwrm_req_drop(bp, req);
11256 		if (BNXT_VF(bp) && rc == -ENODEV) {
11257 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
11258 			rc = 0;
11259 		}
11260 		return rc;
11261 	}
11262 
11263 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
11264 	link_info->phy_link_status = resp->link;
11265 	link_info->duplex = resp->duplex_cfg;
11266 	if (bp->hwrm_spec_code >= 0x10800)
11267 		link_info->duplex = resp->duplex_state;
11268 	link_info->pause = resp->pause;
11269 	link_info->auto_mode = resp->auto_mode;
11270 	link_info->auto_pause_setting = resp->auto_pause;
11271 	link_info->lp_pause = resp->link_partner_adv_pause;
11272 	link_info->force_pause_setting = resp->force_pause;
11273 	link_info->duplex_setting = resp->duplex_cfg;
11274 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
11275 		link_info->link_speed = le16_to_cpu(resp->link_speed);
11276 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
11277 			link_info->active_lanes = resp->active_lanes;
11278 	} else {
11279 		link_info->link_speed = 0;
11280 		link_info->active_lanes = 0;
11281 	}
11282 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
11283 	link_info->force_pam4_link_speed =
11284 		le16_to_cpu(resp->force_pam4_link_speed);
11285 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
11286 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
11287 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
11288 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
11289 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
11290 	link_info->auto_pam4_link_speeds =
11291 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
11292 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
11293 	link_info->lp_auto_link_speeds =
11294 		le16_to_cpu(resp->link_partner_adv_speeds);
11295 	link_info->lp_auto_pam4_link_speeds =
11296 		resp->link_partner_pam4_adv_speeds;
11297 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
11298 	link_info->phy_ver[0] = resp->phy_maj;
11299 	link_info->phy_ver[1] = resp->phy_min;
11300 	link_info->phy_ver[2] = resp->phy_bld;
11301 	link_info->media_type = resp->media_type;
11302 	link_info->phy_type = resp->phy_type;
11303 	link_info->transceiver = resp->xcvr_pkg_type;
11304 	link_info->phy_addr = resp->eee_config_phy_addr &
11305 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
11306 	link_info->module_status = resp->module_status;
11307 
11308 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
11309 		struct ethtool_keee *eee = &bp->eee;
11310 		u16 fw_speeds;
11311 
11312 		eee->eee_active = 0;
11313 		if (resp->eee_config_phy_addr &
11314 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
11315 			eee->eee_active = 1;
11316 			fw_speeds = le16_to_cpu(
11317 				resp->link_partner_adv_eee_link_speed_mask);
11318 			_bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds);
11319 		}
11320 
11321 		/* Pull initial EEE config */
11322 		if (!chng_link_state) {
11323 			if (resp->eee_config_phy_addr &
11324 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
11325 				eee->eee_enabled = 1;
11326 
11327 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
11328 			_bnxt_fw_to_linkmode(eee->advertised, fw_speeds);
11329 
11330 			if (resp->eee_config_phy_addr &
11331 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
11332 				__le32 tmr;
11333 
11334 				eee->tx_lpi_enabled = 1;
11335 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
11336 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
11337 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
11338 			}
11339 		}
11340 	}
11341 
11342 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
11343 	if (bp->hwrm_spec_code >= 0x10504) {
11344 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
11345 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
11346 	}
11347 	/* TODO: need to add more logic to report VF link */
11348 	if (chng_link_state) {
11349 		if (link_info->phy_link_status == BNXT_LINK_LINK)
11350 			link_info->link_state = BNXT_LINK_STATE_UP;
11351 		else
11352 			link_info->link_state = BNXT_LINK_STATE_DOWN;
11353 		if (link_state != link_info->link_state)
11354 			bnxt_report_link(bp);
11355 	} else {
11356 		/* always link down if not require to update link state */
11357 		link_info->link_state = BNXT_LINK_STATE_DOWN;
11358 	}
11359 	hwrm_req_drop(bp, req);
11360 
11361 	if (!BNXT_PHY_CFG_ABLE(bp))
11362 		return 0;
11363 
11364 	support_changed = bnxt_support_speed_dropped(link_info);
11365 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
11366 		bnxt_hwrm_set_link_setting(bp, true, false);
11367 	return 0;
11368 }
11369 
11370 static void bnxt_get_port_module_status(struct bnxt *bp)
11371 {
11372 	struct bnxt_link_info *link_info = &bp->link_info;
11373 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
11374 	u8 module_status;
11375 
11376 	if (bnxt_update_link(bp, true))
11377 		return;
11378 
11379 	module_status = link_info->module_status;
11380 	switch (module_status) {
11381 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
11382 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
11383 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
11384 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
11385 			    bp->pf.port_id);
11386 		if (bp->hwrm_spec_code >= 0x10201) {
11387 			netdev_warn(bp->dev, "Module part number %s\n",
11388 				    resp->phy_vendor_partnumber);
11389 		}
11390 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
11391 			netdev_warn(bp->dev, "TX is disabled\n");
11392 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
11393 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
11394 	}
11395 }
11396 
11397 static void
11398 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11399 {
11400 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
11401 		if (bp->hwrm_spec_code >= 0x10201)
11402 			req->auto_pause =
11403 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
11404 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11405 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
11406 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11407 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
11408 		req->enables |=
11409 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11410 	} else {
11411 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11412 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
11413 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11414 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
11415 		req->enables |=
11416 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
11417 		if (bp->hwrm_spec_code >= 0x10201) {
11418 			req->auto_pause = req->force_pause;
11419 			req->enables |= cpu_to_le32(
11420 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11421 		}
11422 	}
11423 }
11424 
11425 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11426 {
11427 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
11428 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
11429 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11430 			req->enables |=
11431 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
11432 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
11433 		} else if (bp->link_info.advertising) {
11434 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
11435 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
11436 		}
11437 		if (bp->link_info.advertising_pam4) {
11438 			req->enables |=
11439 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
11440 			req->auto_link_pam4_speed_mask =
11441 				cpu_to_le16(bp->link_info.advertising_pam4);
11442 		}
11443 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
11444 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
11445 	} else {
11446 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
11447 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11448 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
11449 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
11450 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
11451 				   (u32)bp->link_info.req_link_speed);
11452 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
11453 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11454 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
11455 		} else {
11456 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11457 		}
11458 	}
11459 
11460 	/* tell chimp that the setting takes effect immediately */
11461 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
11462 }
11463 
11464 int bnxt_hwrm_set_pause(struct bnxt *bp)
11465 {
11466 	struct hwrm_port_phy_cfg_input *req;
11467 	int rc;
11468 
11469 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11470 	if (rc)
11471 		return rc;
11472 
11473 	bnxt_hwrm_set_pause_common(bp, req);
11474 
11475 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
11476 	    bp->link_info.force_link_chng)
11477 		bnxt_hwrm_set_link_common(bp, req);
11478 
11479 	rc = hwrm_req_send(bp, req);
11480 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
11481 		/* since changing of pause setting doesn't trigger any link
11482 		 * change event, the driver needs to update the current pause
11483 		 * result upon successfully return of the phy_cfg command
11484 		 */
11485 		bp->link_info.pause =
11486 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
11487 		bp->link_info.auto_pause_setting = 0;
11488 		if (!bp->link_info.force_link_chng)
11489 			bnxt_report_link(bp);
11490 	}
11491 	bp->link_info.force_link_chng = false;
11492 	return rc;
11493 }
11494 
11495 static void bnxt_hwrm_set_eee(struct bnxt *bp,
11496 			      struct hwrm_port_phy_cfg_input *req)
11497 {
11498 	struct ethtool_keee *eee = &bp->eee;
11499 
11500 	if (eee->eee_enabled) {
11501 		u16 eee_speeds;
11502 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
11503 
11504 		if (eee->tx_lpi_enabled)
11505 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
11506 		else
11507 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
11508 
11509 		req->flags |= cpu_to_le32(flags);
11510 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
11511 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
11512 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
11513 	} else {
11514 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
11515 	}
11516 }
11517 
11518 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
11519 {
11520 	struct hwrm_port_phy_cfg_input *req;
11521 	int rc;
11522 
11523 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11524 	if (rc)
11525 		return rc;
11526 
11527 	if (set_pause)
11528 		bnxt_hwrm_set_pause_common(bp, req);
11529 
11530 	bnxt_hwrm_set_link_common(bp, req);
11531 
11532 	if (set_eee)
11533 		bnxt_hwrm_set_eee(bp, req);
11534 	return hwrm_req_send(bp, req);
11535 }
11536 
11537 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
11538 {
11539 	struct hwrm_port_phy_cfg_input *req;
11540 	int rc;
11541 
11542 	if (!BNXT_SINGLE_PF(bp))
11543 		return 0;
11544 
11545 	if (pci_num_vf(bp->pdev) &&
11546 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11547 		return 0;
11548 
11549 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11550 	if (rc)
11551 		return rc;
11552 
11553 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11554 	rc = hwrm_req_send(bp, req);
11555 	if (!rc) {
11556 		mutex_lock(&bp->link_lock);
11557 		/* Device is not obliged link down in certain scenarios, even
11558 		 * when forced. Setting the state unknown is consistent with
11559 		 * driver startup and will force link state to be reported
11560 		 * during subsequent open based on PORT_PHY_QCFG.
11561 		 */
11562 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11563 		mutex_unlock(&bp->link_lock);
11564 	}
11565 	return rc;
11566 }
11567 
11568 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11569 {
11570 #ifdef CONFIG_TEE_BNXT_FW
11571 	int rc = tee_bnxt_fw_load();
11572 
11573 	if (rc)
11574 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11575 
11576 	return rc;
11577 #else
11578 	netdev_err(bp->dev, "OP-TEE not supported\n");
11579 	return -ENODEV;
11580 #endif
11581 }
11582 
11583 static int bnxt_try_recover_fw(struct bnxt *bp)
11584 {
11585 	if (bp->fw_health && bp->fw_health->status_reliable) {
11586 		int retry = 0, rc;
11587 		u32 sts;
11588 
11589 		do {
11590 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11591 			rc = bnxt_hwrm_poll(bp);
11592 			if (!BNXT_FW_IS_BOOTING(sts) &&
11593 			    !BNXT_FW_IS_RECOVERING(sts))
11594 				break;
11595 			retry++;
11596 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11597 
11598 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11599 			netdev_err(bp->dev,
11600 				   "Firmware not responding, status: 0x%x\n",
11601 				   sts);
11602 			rc = -ENODEV;
11603 		}
11604 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11605 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11606 			return bnxt_fw_reset_via_optee(bp);
11607 		}
11608 		return rc;
11609 	}
11610 
11611 	return -ENODEV;
11612 }
11613 
11614 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11615 {
11616 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11617 
11618 	if (!BNXT_NEW_RM(bp))
11619 		return; /* no resource reservations required */
11620 
11621 	hw_resc->resv_cp_rings = 0;
11622 	hw_resc->resv_stat_ctxs = 0;
11623 	hw_resc->resv_irqs = 0;
11624 	hw_resc->resv_tx_rings = 0;
11625 	hw_resc->resv_rx_rings = 0;
11626 	hw_resc->resv_hw_ring_grps = 0;
11627 	hw_resc->resv_vnics = 0;
11628 	hw_resc->resv_rsscos_ctxs = 0;
11629 	if (!fw_reset) {
11630 		bp->tx_nr_rings = 0;
11631 		bp->rx_nr_rings = 0;
11632 	}
11633 }
11634 
11635 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11636 {
11637 	int rc;
11638 
11639 	if (!BNXT_NEW_RM(bp))
11640 		return 0; /* no resource reservations required */
11641 
11642 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11643 	if (rc)
11644 		netdev_err(bp->dev, "resc_qcaps failed\n");
11645 
11646 	bnxt_clear_reservations(bp, fw_reset);
11647 
11648 	return rc;
11649 }
11650 
11651 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11652 {
11653 	struct hwrm_func_drv_if_change_output *resp;
11654 	struct hwrm_func_drv_if_change_input *req;
11655 	bool fw_reset = !bp->irq_tbl;
11656 	bool resc_reinit = false;
11657 	int rc, retry = 0;
11658 	u32 flags = 0;
11659 
11660 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11661 		return 0;
11662 
11663 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11664 	if (rc)
11665 		return rc;
11666 
11667 	if (up)
11668 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11669 	resp = hwrm_req_hold(bp, req);
11670 
11671 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11672 	while (retry < BNXT_FW_IF_RETRY) {
11673 		rc = hwrm_req_send(bp, req);
11674 		if (rc != -EAGAIN)
11675 			break;
11676 
11677 		msleep(50);
11678 		retry++;
11679 	}
11680 
11681 	if (rc == -EAGAIN) {
11682 		hwrm_req_drop(bp, req);
11683 		return rc;
11684 	} else if (!rc) {
11685 		flags = le32_to_cpu(resp->flags);
11686 	} else if (up) {
11687 		rc = bnxt_try_recover_fw(bp);
11688 		fw_reset = true;
11689 	}
11690 	hwrm_req_drop(bp, req);
11691 	if (rc)
11692 		return rc;
11693 
11694 	if (!up) {
11695 		bnxt_inv_fw_health_reg(bp);
11696 		return 0;
11697 	}
11698 
11699 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11700 		resc_reinit = true;
11701 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11702 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11703 		fw_reset = true;
11704 	else
11705 		bnxt_remap_fw_health_regs(bp);
11706 
11707 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11708 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11709 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11710 		return -ENODEV;
11711 	}
11712 	if (resc_reinit || fw_reset) {
11713 		if (fw_reset) {
11714 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11715 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11716 				bnxt_ulp_irq_stop(bp);
11717 			bnxt_free_ctx_mem(bp);
11718 			bnxt_dcb_free(bp);
11719 			rc = bnxt_fw_init_one(bp);
11720 			if (rc) {
11721 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11722 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11723 				return rc;
11724 			}
11725 			bnxt_clear_int_mode(bp);
11726 			rc = bnxt_init_int_mode(bp);
11727 			if (rc) {
11728 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11729 				netdev_err(bp->dev, "init int mode failed\n");
11730 				return rc;
11731 			}
11732 		}
11733 		rc = bnxt_cancel_reservations(bp, fw_reset);
11734 	}
11735 	return rc;
11736 }
11737 
11738 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11739 {
11740 	struct hwrm_port_led_qcaps_output *resp;
11741 	struct hwrm_port_led_qcaps_input *req;
11742 	struct bnxt_pf_info *pf = &bp->pf;
11743 	int rc;
11744 
11745 	bp->num_leds = 0;
11746 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11747 		return 0;
11748 
11749 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11750 	if (rc)
11751 		return rc;
11752 
11753 	req->port_id = cpu_to_le16(pf->port_id);
11754 	resp = hwrm_req_hold(bp, req);
11755 	rc = hwrm_req_send(bp, req);
11756 	if (rc) {
11757 		hwrm_req_drop(bp, req);
11758 		return rc;
11759 	}
11760 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11761 		int i;
11762 
11763 		bp->num_leds = resp->num_leds;
11764 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11765 						 bp->num_leds);
11766 		for (i = 0; i < bp->num_leds; i++) {
11767 			struct bnxt_led_info *led = &bp->leds[i];
11768 			__le16 caps = led->led_state_caps;
11769 
11770 			if (!led->led_group_id ||
11771 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11772 				bp->num_leds = 0;
11773 				break;
11774 			}
11775 		}
11776 	}
11777 	hwrm_req_drop(bp, req);
11778 	return 0;
11779 }
11780 
11781 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11782 {
11783 	struct hwrm_wol_filter_alloc_output *resp;
11784 	struct hwrm_wol_filter_alloc_input *req;
11785 	int rc;
11786 
11787 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11788 	if (rc)
11789 		return rc;
11790 
11791 	req->port_id = cpu_to_le16(bp->pf.port_id);
11792 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11793 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11794 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11795 
11796 	resp = hwrm_req_hold(bp, req);
11797 	rc = hwrm_req_send(bp, req);
11798 	if (!rc)
11799 		bp->wol_filter_id = resp->wol_filter_id;
11800 	hwrm_req_drop(bp, req);
11801 	return rc;
11802 }
11803 
11804 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11805 {
11806 	struct hwrm_wol_filter_free_input *req;
11807 	int rc;
11808 
11809 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11810 	if (rc)
11811 		return rc;
11812 
11813 	req->port_id = cpu_to_le16(bp->pf.port_id);
11814 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11815 	req->wol_filter_id = bp->wol_filter_id;
11816 
11817 	return hwrm_req_send(bp, req);
11818 }
11819 
11820 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11821 {
11822 	struct hwrm_wol_filter_qcfg_output *resp;
11823 	struct hwrm_wol_filter_qcfg_input *req;
11824 	u16 next_handle = 0;
11825 	int rc;
11826 
11827 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11828 	if (rc)
11829 		return rc;
11830 
11831 	req->port_id = cpu_to_le16(bp->pf.port_id);
11832 	req->handle = cpu_to_le16(handle);
11833 	resp = hwrm_req_hold(bp, req);
11834 	rc = hwrm_req_send(bp, req);
11835 	if (!rc) {
11836 		next_handle = le16_to_cpu(resp->next_handle);
11837 		if (next_handle != 0) {
11838 			if (resp->wol_type ==
11839 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11840 				bp->wol = 1;
11841 				bp->wol_filter_id = resp->wol_filter_id;
11842 			}
11843 		}
11844 	}
11845 	hwrm_req_drop(bp, req);
11846 	return next_handle;
11847 }
11848 
11849 static void bnxt_get_wol_settings(struct bnxt *bp)
11850 {
11851 	u16 handle = 0;
11852 
11853 	bp->wol = 0;
11854 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11855 		return;
11856 
11857 	do {
11858 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11859 	} while (handle && handle != 0xffff);
11860 }
11861 
11862 static bool bnxt_eee_config_ok(struct bnxt *bp)
11863 {
11864 	struct ethtool_keee *eee = &bp->eee;
11865 	struct bnxt_link_info *link_info = &bp->link_info;
11866 
11867 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11868 		return true;
11869 
11870 	if (eee->eee_enabled) {
11871 		__ETHTOOL_DECLARE_LINK_MODE_MASK(advertising);
11872 		__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp);
11873 
11874 		_bnxt_fw_to_linkmode(advertising, link_info->advertising);
11875 
11876 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11877 			eee->eee_enabled = 0;
11878 			return false;
11879 		}
11880 		if (linkmode_andnot(tmp, eee->advertised, advertising)) {
11881 			linkmode_and(eee->advertised, advertising,
11882 				     eee->supported);
11883 			return false;
11884 		}
11885 	}
11886 	return true;
11887 }
11888 
11889 static int bnxt_update_phy_setting(struct bnxt *bp)
11890 {
11891 	int rc;
11892 	bool update_link = false;
11893 	bool update_pause = false;
11894 	bool update_eee = false;
11895 	struct bnxt_link_info *link_info = &bp->link_info;
11896 
11897 	rc = bnxt_update_link(bp, true);
11898 	if (rc) {
11899 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11900 			   rc);
11901 		return rc;
11902 	}
11903 	if (!BNXT_SINGLE_PF(bp))
11904 		return 0;
11905 
11906 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11907 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11908 	    link_info->req_flow_ctrl)
11909 		update_pause = true;
11910 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11911 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11912 		update_pause = true;
11913 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11914 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11915 			update_link = true;
11916 		if (bnxt_force_speed_updated(link_info))
11917 			update_link = true;
11918 		if (link_info->req_duplex != link_info->duplex_setting)
11919 			update_link = true;
11920 	} else {
11921 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11922 			update_link = true;
11923 		if (bnxt_auto_speed_updated(link_info))
11924 			update_link = true;
11925 	}
11926 
11927 	/* The last close may have shutdown the link, so need to call
11928 	 * PHY_CFG to bring it back up.
11929 	 */
11930 	if (!BNXT_LINK_IS_UP(bp))
11931 		update_link = true;
11932 
11933 	if (!bnxt_eee_config_ok(bp))
11934 		update_eee = true;
11935 
11936 	if (update_link)
11937 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11938 	else if (update_pause)
11939 		rc = bnxt_hwrm_set_pause(bp);
11940 	if (rc) {
11941 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11942 			   rc);
11943 		return rc;
11944 	}
11945 
11946 	return rc;
11947 }
11948 
11949 /* Common routine to pre-map certain register block to different GRC window.
11950  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
11951  * in PF and 3 windows in VF that can be customized to map in different
11952  * register blocks.
11953  */
11954 static void bnxt_preset_reg_win(struct bnxt *bp)
11955 {
11956 	if (BNXT_PF(bp)) {
11957 		/* CAG registers map to GRC window #4 */
11958 		writel(BNXT_CAG_REG_BASE,
11959 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11960 	}
11961 }
11962 
11963 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11964 
11965 static int bnxt_reinit_after_abort(struct bnxt *bp)
11966 {
11967 	int rc;
11968 
11969 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11970 		return -EBUSY;
11971 
11972 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11973 		return -ENODEV;
11974 
11975 	rc = bnxt_fw_init_one(bp);
11976 	if (!rc) {
11977 		bnxt_clear_int_mode(bp);
11978 		rc = bnxt_init_int_mode(bp);
11979 		if (!rc) {
11980 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11981 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11982 		}
11983 	}
11984 	return rc;
11985 }
11986 
11987 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
11988 {
11989 	struct bnxt_ntuple_filter *ntp_fltr;
11990 	struct bnxt_l2_filter *l2_fltr;
11991 
11992 	if (list_empty(&fltr->list))
11993 		return;
11994 
11995 	if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) {
11996 		ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base);
11997 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
11998 		atomic_inc(&l2_fltr->refcnt);
11999 		ntp_fltr->l2_fltr = l2_fltr;
12000 		if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) {
12001 			bnxt_del_ntp_filter(bp, ntp_fltr);
12002 			netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n",
12003 				   fltr->sw_id);
12004 		}
12005 	} else if (fltr->type == BNXT_FLTR_TYPE_L2) {
12006 		l2_fltr = container_of(fltr, struct bnxt_l2_filter, base);
12007 		if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) {
12008 			bnxt_del_l2_filter(bp, l2_fltr);
12009 			netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n",
12010 				   fltr->sw_id);
12011 		}
12012 	}
12013 }
12014 
12015 static void bnxt_cfg_usr_fltrs(struct bnxt *bp)
12016 {
12017 	struct bnxt_filter_base *usr_fltr, *tmp;
12018 
12019 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list)
12020 		bnxt_cfg_one_usr_fltr(bp, usr_fltr);
12021 }
12022 
12023 static int bnxt_set_xps_mapping(struct bnxt *bp)
12024 {
12025 	int numa_node = dev_to_node(&bp->pdev->dev);
12026 	unsigned int q_idx, map_idx, cpu, i;
12027 	const struct cpumask *cpu_mask_ptr;
12028 	int nr_cpus = num_online_cpus();
12029 	cpumask_t *q_map;
12030 	int rc = 0;
12031 
12032 	q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL);
12033 	if (!q_map)
12034 		return -ENOMEM;
12035 
12036 	/* Create CPU mask for all TX queues across MQPRIO traffic classes.
12037 	 * Each TC has the same number of TX queues. The nth TX queue for each
12038 	 * TC will have the same CPU mask.
12039 	 */
12040 	for (i = 0; i < nr_cpus; i++) {
12041 		map_idx = i % bp->tx_nr_rings_per_tc;
12042 		cpu = cpumask_local_spread(i, numa_node);
12043 		cpu_mask_ptr = get_cpu_mask(cpu);
12044 		cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr);
12045 	}
12046 
12047 	/* Register CPU mask for each TX queue except the ones marked for XDP */
12048 	for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) {
12049 		map_idx = q_idx % bp->tx_nr_rings_per_tc;
12050 		rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx);
12051 		if (rc) {
12052 			netdev_warn(bp->dev, "Error setting XPS for q:%d\n",
12053 				    q_idx);
12054 			break;
12055 		}
12056 	}
12057 
12058 	kfree(q_map);
12059 
12060 	return rc;
12061 }
12062 
12063 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12064 {
12065 	int rc = 0;
12066 
12067 	bnxt_preset_reg_win(bp);
12068 	netif_carrier_off(bp->dev);
12069 	if (irq_re_init) {
12070 		/* Reserve rings now if none were reserved at driver probe. */
12071 		rc = bnxt_init_dflt_ring_mode(bp);
12072 		if (rc) {
12073 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
12074 			return rc;
12075 		}
12076 	}
12077 	rc = bnxt_reserve_rings(bp, irq_re_init);
12078 	if (rc)
12079 		return rc;
12080 	if ((bp->flags & BNXT_FLAG_RFS) &&
12081 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
12082 		/* disable RFS if falling back to INTA */
12083 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
12084 		bp->flags &= ~BNXT_FLAG_RFS;
12085 	}
12086 
12087 	rc = bnxt_alloc_mem(bp, irq_re_init);
12088 	if (rc) {
12089 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12090 		goto open_err_free_mem;
12091 	}
12092 
12093 	if (irq_re_init) {
12094 		bnxt_init_napi(bp);
12095 		rc = bnxt_request_irq(bp);
12096 		if (rc) {
12097 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
12098 			goto open_err_irq;
12099 		}
12100 	}
12101 
12102 	rc = bnxt_init_nic(bp, irq_re_init);
12103 	if (rc) {
12104 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12105 		goto open_err_irq;
12106 	}
12107 
12108 	bnxt_enable_napi(bp);
12109 	bnxt_debug_dev_init(bp);
12110 
12111 	if (link_re_init) {
12112 		mutex_lock(&bp->link_lock);
12113 		rc = bnxt_update_phy_setting(bp);
12114 		mutex_unlock(&bp->link_lock);
12115 		if (rc) {
12116 			netdev_warn(bp->dev, "failed to update phy settings\n");
12117 			if (BNXT_SINGLE_PF(bp)) {
12118 				bp->link_info.phy_retry = true;
12119 				bp->link_info.phy_retry_expires =
12120 					jiffies + 5 * HZ;
12121 			}
12122 		}
12123 	}
12124 
12125 	if (irq_re_init) {
12126 		udp_tunnel_nic_reset_ntf(bp->dev);
12127 		rc = bnxt_set_xps_mapping(bp);
12128 		if (rc)
12129 			netdev_warn(bp->dev, "failed to set xps mapping\n");
12130 	}
12131 
12132 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
12133 		if (!static_key_enabled(&bnxt_xdp_locking_key))
12134 			static_branch_enable(&bnxt_xdp_locking_key);
12135 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
12136 		static_branch_disable(&bnxt_xdp_locking_key);
12137 	}
12138 	set_bit(BNXT_STATE_OPEN, &bp->state);
12139 	bnxt_enable_int(bp);
12140 	/* Enable TX queues */
12141 	bnxt_tx_enable(bp);
12142 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12143 	/* Poll link status and check for SFP+ module status */
12144 	mutex_lock(&bp->link_lock);
12145 	bnxt_get_port_module_status(bp);
12146 	mutex_unlock(&bp->link_lock);
12147 
12148 	/* VF-reps may need to be re-opened after the PF is re-opened */
12149 	if (BNXT_PF(bp))
12150 		bnxt_vf_reps_open(bp);
12151 	if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
12152 		WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS);
12153 	bnxt_ptp_init_rtc(bp, true);
12154 	bnxt_ptp_cfg_tstamp_filters(bp);
12155 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12156 		bnxt_hwrm_realloc_rss_ctx_vnic(bp);
12157 	bnxt_cfg_usr_fltrs(bp);
12158 	return 0;
12159 
12160 open_err_irq:
12161 	bnxt_del_napi(bp);
12162 
12163 open_err_free_mem:
12164 	bnxt_free_skbs(bp);
12165 	bnxt_free_irq(bp);
12166 	bnxt_free_mem(bp, true);
12167 	return rc;
12168 }
12169 
12170 /* rtnl_lock held */
12171 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12172 {
12173 	int rc = 0;
12174 
12175 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
12176 		rc = -EIO;
12177 	if (!rc)
12178 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
12179 	if (rc) {
12180 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
12181 		dev_close(bp->dev);
12182 	}
12183 	return rc;
12184 }
12185 
12186 /* rtnl_lock held, open the NIC half way by allocating all resources, but
12187  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
12188  * self tests.
12189  */
12190 int bnxt_half_open_nic(struct bnxt *bp)
12191 {
12192 	int rc = 0;
12193 
12194 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12195 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
12196 		rc = -ENODEV;
12197 		goto half_open_err;
12198 	}
12199 
12200 	rc = bnxt_alloc_mem(bp, true);
12201 	if (rc) {
12202 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12203 		goto half_open_err;
12204 	}
12205 	bnxt_init_napi(bp);
12206 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12207 	rc = bnxt_init_nic(bp, true);
12208 	if (rc) {
12209 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12210 		bnxt_del_napi(bp);
12211 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12212 		goto half_open_err;
12213 	}
12214 	return 0;
12215 
12216 half_open_err:
12217 	bnxt_free_skbs(bp);
12218 	bnxt_free_mem(bp, true);
12219 	dev_close(bp->dev);
12220 	return rc;
12221 }
12222 
12223 /* rtnl_lock held, this call can only be made after a previous successful
12224  * call to bnxt_half_open_nic().
12225  */
12226 void bnxt_half_close_nic(struct bnxt *bp)
12227 {
12228 	bnxt_hwrm_resource_free(bp, false, true);
12229 	bnxt_del_napi(bp);
12230 	bnxt_free_skbs(bp);
12231 	bnxt_free_mem(bp, true);
12232 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12233 }
12234 
12235 void bnxt_reenable_sriov(struct bnxt *bp)
12236 {
12237 	if (BNXT_PF(bp)) {
12238 		struct bnxt_pf_info *pf = &bp->pf;
12239 		int n = pf->active_vfs;
12240 
12241 		if (n)
12242 			bnxt_cfg_hw_sriov(bp, &n, true);
12243 	}
12244 }
12245 
12246 static int bnxt_open(struct net_device *dev)
12247 {
12248 	struct bnxt *bp = netdev_priv(dev);
12249 	int rc;
12250 
12251 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12252 		rc = bnxt_reinit_after_abort(bp);
12253 		if (rc) {
12254 			if (rc == -EBUSY)
12255 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
12256 			else
12257 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
12258 			return -ENODEV;
12259 		}
12260 	}
12261 
12262 	rc = bnxt_hwrm_if_change(bp, true);
12263 	if (rc)
12264 		return rc;
12265 
12266 	rc = __bnxt_open_nic(bp, true, true);
12267 	if (rc) {
12268 		bnxt_hwrm_if_change(bp, false);
12269 	} else {
12270 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
12271 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12272 				bnxt_queue_sp_work(bp,
12273 						   BNXT_RESTART_ULP_SP_EVENT);
12274 		}
12275 	}
12276 
12277 	return rc;
12278 }
12279 
12280 static bool bnxt_drv_busy(struct bnxt *bp)
12281 {
12282 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
12283 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
12284 }
12285 
12286 static void bnxt_get_ring_stats(struct bnxt *bp,
12287 				struct rtnl_link_stats64 *stats);
12288 
12289 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
12290 			     bool link_re_init)
12291 {
12292 	/* Close the VF-reps before closing PF */
12293 	if (BNXT_PF(bp))
12294 		bnxt_vf_reps_close(bp);
12295 
12296 	/* Change device state to avoid TX queue wake up's */
12297 	bnxt_tx_disable(bp);
12298 
12299 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12300 	smp_mb__after_atomic();
12301 	while (bnxt_drv_busy(bp))
12302 		msleep(20);
12303 
12304 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12305 		bnxt_clear_rss_ctxs(bp);
12306 	/* Flush rings and disable interrupts */
12307 	bnxt_shutdown_nic(bp, irq_re_init);
12308 
12309 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
12310 
12311 	bnxt_debug_dev_exit(bp);
12312 	bnxt_disable_napi(bp);
12313 	del_timer_sync(&bp->timer);
12314 	bnxt_free_skbs(bp);
12315 
12316 	/* Save ring stats before shutdown */
12317 	if (bp->bnapi && irq_re_init) {
12318 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
12319 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
12320 	}
12321 	if (irq_re_init) {
12322 		bnxt_free_irq(bp);
12323 		bnxt_del_napi(bp);
12324 	}
12325 	bnxt_free_mem(bp, irq_re_init);
12326 }
12327 
12328 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12329 {
12330 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12331 		/* If we get here, it means firmware reset is in progress
12332 		 * while we are trying to close.  We can safely proceed with
12333 		 * the close because we are holding rtnl_lock().  Some firmware
12334 		 * messages may fail as we proceed to close.  We set the
12335 		 * ABORT_ERR flag here so that the FW reset thread will later
12336 		 * abort when it gets the rtnl_lock() and sees the flag.
12337 		 */
12338 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
12339 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12340 	}
12341 
12342 #ifdef CONFIG_BNXT_SRIOV
12343 	if (bp->sriov_cfg) {
12344 		int rc;
12345 
12346 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
12347 						      !bp->sriov_cfg,
12348 						      BNXT_SRIOV_CFG_WAIT_TMO);
12349 		if (!rc)
12350 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
12351 		else if (rc < 0)
12352 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
12353 	}
12354 #endif
12355 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
12356 }
12357 
12358 static int bnxt_close(struct net_device *dev)
12359 {
12360 	struct bnxt *bp = netdev_priv(dev);
12361 
12362 	bnxt_close_nic(bp, true, true);
12363 	bnxt_hwrm_shutdown_link(bp);
12364 	bnxt_hwrm_if_change(bp, false);
12365 	return 0;
12366 }
12367 
12368 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
12369 				   u16 *val)
12370 {
12371 	struct hwrm_port_phy_mdio_read_output *resp;
12372 	struct hwrm_port_phy_mdio_read_input *req;
12373 	int rc;
12374 
12375 	if (bp->hwrm_spec_code < 0x10a00)
12376 		return -EOPNOTSUPP;
12377 
12378 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
12379 	if (rc)
12380 		return rc;
12381 
12382 	req->port_id = cpu_to_le16(bp->pf.port_id);
12383 	req->phy_addr = phy_addr;
12384 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12385 	if (mdio_phy_id_is_c45(phy_addr)) {
12386 		req->cl45_mdio = 1;
12387 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12388 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12389 		req->reg_addr = cpu_to_le16(reg);
12390 	}
12391 
12392 	resp = hwrm_req_hold(bp, req);
12393 	rc = hwrm_req_send(bp, req);
12394 	if (!rc)
12395 		*val = le16_to_cpu(resp->reg_data);
12396 	hwrm_req_drop(bp, req);
12397 	return rc;
12398 }
12399 
12400 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
12401 				    u16 val)
12402 {
12403 	struct hwrm_port_phy_mdio_write_input *req;
12404 	int rc;
12405 
12406 	if (bp->hwrm_spec_code < 0x10a00)
12407 		return -EOPNOTSUPP;
12408 
12409 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
12410 	if (rc)
12411 		return rc;
12412 
12413 	req->port_id = cpu_to_le16(bp->pf.port_id);
12414 	req->phy_addr = phy_addr;
12415 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12416 	if (mdio_phy_id_is_c45(phy_addr)) {
12417 		req->cl45_mdio = 1;
12418 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12419 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12420 		req->reg_addr = cpu_to_le16(reg);
12421 	}
12422 	req->reg_data = cpu_to_le16(val);
12423 
12424 	return hwrm_req_send(bp, req);
12425 }
12426 
12427 /* rtnl_lock held */
12428 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12429 {
12430 	struct mii_ioctl_data *mdio = if_mii(ifr);
12431 	struct bnxt *bp = netdev_priv(dev);
12432 	int rc;
12433 
12434 	switch (cmd) {
12435 	case SIOCGMIIPHY:
12436 		mdio->phy_id = bp->link_info.phy_addr;
12437 
12438 		fallthrough;
12439 	case SIOCGMIIREG: {
12440 		u16 mii_regval = 0;
12441 
12442 		if (!netif_running(dev))
12443 			return -EAGAIN;
12444 
12445 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
12446 					     &mii_regval);
12447 		mdio->val_out = mii_regval;
12448 		return rc;
12449 	}
12450 
12451 	case SIOCSMIIREG:
12452 		if (!netif_running(dev))
12453 			return -EAGAIN;
12454 
12455 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
12456 						mdio->val_in);
12457 
12458 	case SIOCSHWTSTAMP:
12459 		return bnxt_hwtstamp_set(dev, ifr);
12460 
12461 	case SIOCGHWTSTAMP:
12462 		return bnxt_hwtstamp_get(dev, ifr);
12463 
12464 	default:
12465 		/* do nothing */
12466 		break;
12467 	}
12468 	return -EOPNOTSUPP;
12469 }
12470 
12471 static void bnxt_get_ring_stats(struct bnxt *bp,
12472 				struct rtnl_link_stats64 *stats)
12473 {
12474 	int i;
12475 
12476 	for (i = 0; i < bp->cp_nr_rings; i++) {
12477 		struct bnxt_napi *bnapi = bp->bnapi[i];
12478 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12479 		u64 *sw = cpr->stats.sw_stats;
12480 
12481 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
12482 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12483 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
12484 
12485 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
12486 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
12487 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
12488 
12489 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
12490 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
12491 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
12492 
12493 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
12494 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
12495 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
12496 
12497 		stats->rx_missed_errors +=
12498 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
12499 
12500 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12501 
12502 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
12503 
12504 		stats->rx_dropped +=
12505 			cpr->sw_stats->rx.rx_netpoll_discards +
12506 			cpr->sw_stats->rx.rx_oom_discards;
12507 	}
12508 }
12509 
12510 static void bnxt_add_prev_stats(struct bnxt *bp,
12511 				struct rtnl_link_stats64 *stats)
12512 {
12513 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
12514 
12515 	stats->rx_packets += prev_stats->rx_packets;
12516 	stats->tx_packets += prev_stats->tx_packets;
12517 	stats->rx_bytes += prev_stats->rx_bytes;
12518 	stats->tx_bytes += prev_stats->tx_bytes;
12519 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
12520 	stats->multicast += prev_stats->multicast;
12521 	stats->rx_dropped += prev_stats->rx_dropped;
12522 	stats->tx_dropped += prev_stats->tx_dropped;
12523 }
12524 
12525 static void
12526 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
12527 {
12528 	struct bnxt *bp = netdev_priv(dev);
12529 
12530 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
12531 	/* Make sure bnxt_close_nic() sees that we are reading stats before
12532 	 * we check the BNXT_STATE_OPEN flag.
12533 	 */
12534 	smp_mb__after_atomic();
12535 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12536 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12537 		*stats = bp->net_stats_prev;
12538 		return;
12539 	}
12540 
12541 	bnxt_get_ring_stats(bp, stats);
12542 	bnxt_add_prev_stats(bp, stats);
12543 
12544 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
12545 		u64 *rx = bp->port_stats.sw_stats;
12546 		u64 *tx = bp->port_stats.sw_stats +
12547 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
12548 
12549 		stats->rx_crc_errors =
12550 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
12551 		stats->rx_frame_errors =
12552 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
12553 		stats->rx_length_errors =
12554 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
12555 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
12556 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
12557 		stats->rx_errors =
12558 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
12559 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
12560 		stats->collisions =
12561 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
12562 		stats->tx_fifo_errors =
12563 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
12564 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
12565 	}
12566 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12567 }
12568 
12569 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
12570 					struct bnxt_total_ring_err_stats *stats,
12571 					struct bnxt_cp_ring_info *cpr)
12572 {
12573 	struct bnxt_sw_stats *sw_stats = cpr->sw_stats;
12574 	u64 *hw_stats = cpr->stats.sw_stats;
12575 
12576 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
12577 	stats->rx_total_resets += sw_stats->rx.rx_resets;
12578 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
12579 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
12580 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
12581 	stats->rx_total_ring_discards +=
12582 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
12583 	stats->tx_total_resets += sw_stats->tx.tx_resets;
12584 	stats->tx_total_ring_discards +=
12585 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
12586 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
12587 }
12588 
12589 void bnxt_get_ring_err_stats(struct bnxt *bp,
12590 			     struct bnxt_total_ring_err_stats *stats)
12591 {
12592 	int i;
12593 
12594 	for (i = 0; i < bp->cp_nr_rings; i++)
12595 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
12596 }
12597 
12598 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
12599 {
12600 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12601 	struct net_device *dev = bp->dev;
12602 	struct netdev_hw_addr *ha;
12603 	u8 *haddr;
12604 	int mc_count = 0;
12605 	bool update = false;
12606 	int off = 0;
12607 
12608 	netdev_for_each_mc_addr(ha, dev) {
12609 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
12610 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12611 			vnic->mc_list_count = 0;
12612 			return false;
12613 		}
12614 		haddr = ha->addr;
12615 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
12616 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
12617 			update = true;
12618 		}
12619 		off += ETH_ALEN;
12620 		mc_count++;
12621 	}
12622 	if (mc_count)
12623 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12624 
12625 	if (mc_count != vnic->mc_list_count) {
12626 		vnic->mc_list_count = mc_count;
12627 		update = true;
12628 	}
12629 	return update;
12630 }
12631 
12632 static bool bnxt_uc_list_updated(struct bnxt *bp)
12633 {
12634 	struct net_device *dev = bp->dev;
12635 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12636 	struct netdev_hw_addr *ha;
12637 	int off = 0;
12638 
12639 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12640 		return true;
12641 
12642 	netdev_for_each_uc_addr(ha, dev) {
12643 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12644 			return true;
12645 
12646 		off += ETH_ALEN;
12647 	}
12648 	return false;
12649 }
12650 
12651 static void bnxt_set_rx_mode(struct net_device *dev)
12652 {
12653 	struct bnxt *bp = netdev_priv(dev);
12654 	struct bnxt_vnic_info *vnic;
12655 	bool mc_update = false;
12656 	bool uc_update;
12657 	u32 mask;
12658 
12659 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12660 		return;
12661 
12662 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12663 	mask = vnic->rx_mask;
12664 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12665 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12666 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12667 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12668 
12669 	if (dev->flags & IFF_PROMISC)
12670 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12671 
12672 	uc_update = bnxt_uc_list_updated(bp);
12673 
12674 	if (dev->flags & IFF_BROADCAST)
12675 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12676 	if (dev->flags & IFF_ALLMULTI) {
12677 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12678 		vnic->mc_list_count = 0;
12679 	} else if (dev->flags & IFF_MULTICAST) {
12680 		mc_update = bnxt_mc_list_updated(bp, &mask);
12681 	}
12682 
12683 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12684 		vnic->rx_mask = mask;
12685 
12686 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12687 	}
12688 }
12689 
12690 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12691 {
12692 	struct net_device *dev = bp->dev;
12693 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12694 	struct netdev_hw_addr *ha;
12695 	int i, off = 0, rc;
12696 	bool uc_update;
12697 
12698 	netif_addr_lock_bh(dev);
12699 	uc_update = bnxt_uc_list_updated(bp);
12700 	netif_addr_unlock_bh(dev);
12701 
12702 	if (!uc_update)
12703 		goto skip_uc;
12704 
12705 	for (i = 1; i < vnic->uc_filter_count; i++) {
12706 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12707 
12708 		bnxt_hwrm_l2_filter_free(bp, fltr);
12709 		bnxt_del_l2_filter(bp, fltr);
12710 	}
12711 
12712 	vnic->uc_filter_count = 1;
12713 
12714 	netif_addr_lock_bh(dev);
12715 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12716 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12717 	} else {
12718 		netdev_for_each_uc_addr(ha, dev) {
12719 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12720 			off += ETH_ALEN;
12721 			vnic->uc_filter_count++;
12722 		}
12723 	}
12724 	netif_addr_unlock_bh(dev);
12725 
12726 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12727 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12728 		if (rc) {
12729 			if (BNXT_VF(bp) && rc == -ENODEV) {
12730 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12731 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12732 				else
12733 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12734 				rc = 0;
12735 			} else {
12736 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12737 			}
12738 			vnic->uc_filter_count = i;
12739 			return rc;
12740 		}
12741 	}
12742 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12743 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12744 
12745 skip_uc:
12746 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12747 	    !bnxt_promisc_ok(bp))
12748 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12749 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12750 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12751 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12752 			    rc);
12753 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12754 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12755 		vnic->mc_list_count = 0;
12756 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12757 	}
12758 	if (rc)
12759 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12760 			   rc);
12761 
12762 	return rc;
12763 }
12764 
12765 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12766 {
12767 #ifdef CONFIG_BNXT_SRIOV
12768 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12769 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12770 
12771 		/* No minimum rings were provisioned by the PF.  Don't
12772 		 * reserve rings by default when device is down.
12773 		 */
12774 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12775 			return true;
12776 
12777 		if (!netif_running(bp->dev))
12778 			return false;
12779 	}
12780 #endif
12781 	return true;
12782 }
12783 
12784 /* If the chip and firmware supports RFS */
12785 static bool bnxt_rfs_supported(struct bnxt *bp)
12786 {
12787 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12788 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12789 			return true;
12790 		return false;
12791 	}
12792 	/* 212 firmware is broken for aRFS */
12793 	if (BNXT_FW_MAJ(bp) == 212)
12794 		return false;
12795 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12796 		return true;
12797 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12798 		return true;
12799 	return false;
12800 }
12801 
12802 /* If runtime conditions support RFS */
12803 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx)
12804 {
12805 	struct bnxt_hw_rings hwr = {0};
12806 	int max_vnics, max_rss_ctxs;
12807 
12808 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12809 	    !BNXT_SUPPORTS_NTUPLE_VNIC(bp))
12810 		return bnxt_rfs_supported(bp);
12811 
12812 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12813 		return false;
12814 
12815 	hwr.grp = bp->rx_nr_rings;
12816 	hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings);
12817 	if (new_rss_ctx)
12818 		hwr.vnic++;
12819 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
12820 	max_vnics = bnxt_get_max_func_vnics(bp);
12821 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12822 
12823 	if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) {
12824 		if (bp->rx_nr_rings > 1)
12825 			netdev_warn(bp->dev,
12826 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12827 				    min(max_rss_ctxs - 1, max_vnics - 1));
12828 		return false;
12829 	}
12830 
12831 	if (!BNXT_NEW_RM(bp))
12832 		return true;
12833 
12834 	/* Do not reduce VNIC and RSS ctx reservations.  There is a FW
12835 	 * issue that will mess up the default VNIC if we reduce the
12836 	 * reservations.
12837 	 */
12838 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12839 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12840 		return true;
12841 
12842 	bnxt_hwrm_reserve_rings(bp, &hwr);
12843 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12844 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12845 		return true;
12846 
12847 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12848 	hwr.vnic = 1;
12849 	hwr.rss_ctx = 0;
12850 	bnxt_hwrm_reserve_rings(bp, &hwr);
12851 	return false;
12852 }
12853 
12854 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12855 					   netdev_features_t features)
12856 {
12857 	struct bnxt *bp = netdev_priv(dev);
12858 	netdev_features_t vlan_features;
12859 
12860 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false))
12861 		features &= ~NETIF_F_NTUPLE;
12862 
12863 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12864 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12865 
12866 	if (!(features & NETIF_F_GRO))
12867 		features &= ~NETIF_F_GRO_HW;
12868 
12869 	if (features & NETIF_F_GRO_HW)
12870 		features &= ~NETIF_F_LRO;
12871 
12872 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12873 	 * turned on or off together.
12874 	 */
12875 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12876 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12877 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12878 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12879 		else if (vlan_features)
12880 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12881 	}
12882 #ifdef CONFIG_BNXT_SRIOV
12883 	if (BNXT_VF(bp) && bp->vf.vlan)
12884 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12885 #endif
12886 	return features;
12887 }
12888 
12889 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init,
12890 				bool link_re_init, u32 flags, bool update_tpa)
12891 {
12892 	bnxt_close_nic(bp, irq_re_init, link_re_init);
12893 	bp->flags = flags;
12894 	if (update_tpa)
12895 		bnxt_set_ring_params(bp);
12896 	return bnxt_open_nic(bp, irq_re_init, link_re_init);
12897 }
12898 
12899 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12900 {
12901 	bool update_tpa = false, update_ntuple = false;
12902 	struct bnxt *bp = netdev_priv(dev);
12903 	u32 flags = bp->flags;
12904 	u32 changes;
12905 	int rc = 0;
12906 	bool re_init = false;
12907 
12908 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12909 	if (features & NETIF_F_GRO_HW)
12910 		flags |= BNXT_FLAG_GRO;
12911 	else if (features & NETIF_F_LRO)
12912 		flags |= BNXT_FLAG_LRO;
12913 
12914 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12915 		flags &= ~BNXT_FLAG_TPA;
12916 
12917 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12918 		flags |= BNXT_FLAG_STRIP_VLAN;
12919 
12920 	if (features & NETIF_F_NTUPLE)
12921 		flags |= BNXT_FLAG_RFS;
12922 	else
12923 		bnxt_clear_usr_fltrs(bp, true);
12924 
12925 	changes = flags ^ bp->flags;
12926 	if (changes & BNXT_FLAG_TPA) {
12927 		update_tpa = true;
12928 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12929 		    (flags & BNXT_FLAG_TPA) == 0 ||
12930 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12931 			re_init = true;
12932 	}
12933 
12934 	if (changes & ~BNXT_FLAG_TPA)
12935 		re_init = true;
12936 
12937 	if (changes & BNXT_FLAG_RFS)
12938 		update_ntuple = true;
12939 
12940 	if (flags != bp->flags) {
12941 		u32 old_flags = bp->flags;
12942 
12943 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12944 			bp->flags = flags;
12945 			if (update_tpa)
12946 				bnxt_set_ring_params(bp);
12947 			return rc;
12948 		}
12949 
12950 		if (update_ntuple)
12951 			return bnxt_reinit_features(bp, true, false, flags, update_tpa);
12952 
12953 		if (re_init)
12954 			return bnxt_reinit_features(bp, false, false, flags, update_tpa);
12955 
12956 		if (update_tpa) {
12957 			bp->flags = flags;
12958 			rc = bnxt_set_tpa(bp,
12959 					  (flags & BNXT_FLAG_TPA) ?
12960 					  true : false);
12961 			if (rc)
12962 				bp->flags = old_flags;
12963 		}
12964 	}
12965 	return rc;
12966 }
12967 
12968 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12969 			      u8 **nextp)
12970 {
12971 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12972 	struct hop_jumbo_hdr *jhdr;
12973 	int hdr_count = 0;
12974 	u8 *nexthdr;
12975 	int start;
12976 
12977 	/* Check that there are at most 2 IPv6 extension headers, no
12978 	 * fragment header, and each is <= 64 bytes.
12979 	 */
12980 	start = nw_off + sizeof(*ip6h);
12981 	nexthdr = &ip6h->nexthdr;
12982 	while (ipv6_ext_hdr(*nexthdr)) {
12983 		struct ipv6_opt_hdr *hp;
12984 		int hdrlen;
12985 
12986 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
12987 		    *nexthdr == NEXTHDR_FRAGMENT)
12988 			return false;
12989 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
12990 					  skb_headlen(skb), NULL);
12991 		if (!hp)
12992 			return false;
12993 		if (*nexthdr == NEXTHDR_AUTH)
12994 			hdrlen = ipv6_authlen(hp);
12995 		else
12996 			hdrlen = ipv6_optlen(hp);
12997 
12998 		if (hdrlen > 64)
12999 			return false;
13000 
13001 		/* The ext header may be a hop-by-hop header inserted for
13002 		 * big TCP purposes. This will be removed before sending
13003 		 * from NIC, so do not count it.
13004 		 */
13005 		if (*nexthdr == NEXTHDR_HOP) {
13006 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
13007 				goto increment_hdr;
13008 
13009 			jhdr = (struct hop_jumbo_hdr *)hp;
13010 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
13011 			    jhdr->nexthdr != IPPROTO_TCP)
13012 				goto increment_hdr;
13013 
13014 			goto next_hdr;
13015 		}
13016 increment_hdr:
13017 		hdr_count++;
13018 next_hdr:
13019 		nexthdr = &hp->nexthdr;
13020 		start += hdrlen;
13021 	}
13022 	if (nextp) {
13023 		/* Caller will check inner protocol */
13024 		if (skb->encapsulation) {
13025 			*nextp = nexthdr;
13026 			return true;
13027 		}
13028 		*nextp = NULL;
13029 	}
13030 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
13031 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
13032 }
13033 
13034 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
13035 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
13036 {
13037 	struct udphdr *uh = udp_hdr(skb);
13038 	__be16 udp_port = uh->dest;
13039 
13040 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
13041 	    udp_port != bp->vxlan_gpe_port)
13042 		return false;
13043 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
13044 		struct ethhdr *eh = inner_eth_hdr(skb);
13045 
13046 		switch (eh->h_proto) {
13047 		case htons(ETH_P_IP):
13048 			return true;
13049 		case htons(ETH_P_IPV6):
13050 			return bnxt_exthdr_check(bp, skb,
13051 						 skb_inner_network_offset(skb),
13052 						 NULL);
13053 		}
13054 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
13055 		return true;
13056 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
13057 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13058 					 NULL);
13059 	}
13060 	return false;
13061 }
13062 
13063 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
13064 {
13065 	switch (l4_proto) {
13066 	case IPPROTO_UDP:
13067 		return bnxt_udp_tunl_check(bp, skb);
13068 	case IPPROTO_IPIP:
13069 		return true;
13070 	case IPPROTO_GRE: {
13071 		switch (skb->inner_protocol) {
13072 		default:
13073 			return false;
13074 		case htons(ETH_P_IP):
13075 			return true;
13076 		case htons(ETH_P_IPV6):
13077 			fallthrough;
13078 		}
13079 	}
13080 	case IPPROTO_IPV6:
13081 		/* Check ext headers of inner ipv6 */
13082 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13083 					 NULL);
13084 	}
13085 	return false;
13086 }
13087 
13088 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
13089 					     struct net_device *dev,
13090 					     netdev_features_t features)
13091 {
13092 	struct bnxt *bp = netdev_priv(dev);
13093 	u8 *l4_proto;
13094 
13095 	features = vlan_features_check(skb, features);
13096 	switch (vlan_get_protocol(skb)) {
13097 	case htons(ETH_P_IP):
13098 		if (!skb->encapsulation)
13099 			return features;
13100 		l4_proto = &ip_hdr(skb)->protocol;
13101 		if (bnxt_tunl_check(bp, skb, *l4_proto))
13102 			return features;
13103 		break;
13104 	case htons(ETH_P_IPV6):
13105 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
13106 				       &l4_proto))
13107 			break;
13108 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
13109 			return features;
13110 		break;
13111 	}
13112 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13113 }
13114 
13115 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
13116 			 u32 *reg_buf)
13117 {
13118 	struct hwrm_dbg_read_direct_output *resp;
13119 	struct hwrm_dbg_read_direct_input *req;
13120 	__le32 *dbg_reg_buf;
13121 	dma_addr_t mapping;
13122 	int rc, i;
13123 
13124 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
13125 	if (rc)
13126 		return rc;
13127 
13128 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
13129 					 &mapping);
13130 	if (!dbg_reg_buf) {
13131 		rc = -ENOMEM;
13132 		goto dbg_rd_reg_exit;
13133 	}
13134 
13135 	req->host_dest_addr = cpu_to_le64(mapping);
13136 
13137 	resp = hwrm_req_hold(bp, req);
13138 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
13139 	req->read_len32 = cpu_to_le32(num_words);
13140 
13141 	rc = hwrm_req_send(bp, req);
13142 	if (rc || resp->error_code) {
13143 		rc = -EIO;
13144 		goto dbg_rd_reg_exit;
13145 	}
13146 	for (i = 0; i < num_words; i++)
13147 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
13148 
13149 dbg_rd_reg_exit:
13150 	hwrm_req_drop(bp, req);
13151 	return rc;
13152 }
13153 
13154 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
13155 				       u32 ring_id, u32 *prod, u32 *cons)
13156 {
13157 	struct hwrm_dbg_ring_info_get_output *resp;
13158 	struct hwrm_dbg_ring_info_get_input *req;
13159 	int rc;
13160 
13161 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
13162 	if (rc)
13163 		return rc;
13164 
13165 	req->ring_type = ring_type;
13166 	req->fw_ring_id = cpu_to_le32(ring_id);
13167 	resp = hwrm_req_hold(bp, req);
13168 	rc = hwrm_req_send(bp, req);
13169 	if (!rc) {
13170 		*prod = le32_to_cpu(resp->producer_index);
13171 		*cons = le32_to_cpu(resp->consumer_index);
13172 	}
13173 	hwrm_req_drop(bp, req);
13174 	return rc;
13175 }
13176 
13177 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
13178 {
13179 	struct bnxt_tx_ring_info *txr;
13180 	int i = bnapi->index, j;
13181 
13182 	bnxt_for_each_napi_tx(j, bnapi, txr)
13183 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
13184 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
13185 			    txr->tx_cons);
13186 }
13187 
13188 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
13189 {
13190 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
13191 	int i = bnapi->index;
13192 
13193 	if (!rxr)
13194 		return;
13195 
13196 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
13197 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
13198 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
13199 		    rxr->rx_sw_agg_prod);
13200 }
13201 
13202 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
13203 {
13204 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
13205 	int i = bnapi->index;
13206 
13207 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
13208 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
13209 }
13210 
13211 static void bnxt_dbg_dump_states(struct bnxt *bp)
13212 {
13213 	int i;
13214 	struct bnxt_napi *bnapi;
13215 
13216 	for (i = 0; i < bp->cp_nr_rings; i++) {
13217 		bnapi = bp->bnapi[i];
13218 		if (netif_msg_drv(bp)) {
13219 			bnxt_dump_tx_sw_state(bnapi);
13220 			bnxt_dump_rx_sw_state(bnapi);
13221 			bnxt_dump_cp_sw_state(bnapi);
13222 		}
13223 	}
13224 }
13225 
13226 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
13227 {
13228 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
13229 	struct hwrm_ring_reset_input *req;
13230 	struct bnxt_napi *bnapi = rxr->bnapi;
13231 	struct bnxt_cp_ring_info *cpr;
13232 	u16 cp_ring_id;
13233 	int rc;
13234 
13235 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
13236 	if (rc)
13237 		return rc;
13238 
13239 	cpr = &bnapi->cp_ring;
13240 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
13241 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
13242 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
13243 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
13244 	return hwrm_req_send_silent(bp, req);
13245 }
13246 
13247 static void bnxt_reset_task(struct bnxt *bp, bool silent)
13248 {
13249 	if (!silent)
13250 		bnxt_dbg_dump_states(bp);
13251 	if (netif_running(bp->dev)) {
13252 		bnxt_close_nic(bp, !silent, false);
13253 		bnxt_open_nic(bp, !silent, false);
13254 	}
13255 }
13256 
13257 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
13258 {
13259 	struct bnxt *bp = netdev_priv(dev);
13260 
13261 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
13262 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
13263 }
13264 
13265 static void bnxt_fw_health_check(struct bnxt *bp)
13266 {
13267 	struct bnxt_fw_health *fw_health = bp->fw_health;
13268 	struct pci_dev *pdev = bp->pdev;
13269 	u32 val;
13270 
13271 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13272 		return;
13273 
13274 	/* Make sure it is enabled before checking the tmr_counter. */
13275 	smp_rmb();
13276 	if (fw_health->tmr_counter) {
13277 		fw_health->tmr_counter--;
13278 		return;
13279 	}
13280 
13281 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13282 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
13283 		fw_health->arrests++;
13284 		goto fw_reset;
13285 	}
13286 
13287 	fw_health->last_fw_heartbeat = val;
13288 
13289 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13290 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
13291 		fw_health->discoveries++;
13292 		goto fw_reset;
13293 	}
13294 
13295 	fw_health->tmr_counter = fw_health->tmr_multiplier;
13296 	return;
13297 
13298 fw_reset:
13299 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
13300 }
13301 
13302 static void bnxt_timer(struct timer_list *t)
13303 {
13304 	struct bnxt *bp = from_timer(bp, t, timer);
13305 	struct net_device *dev = bp->dev;
13306 
13307 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
13308 		return;
13309 
13310 	if (atomic_read(&bp->intr_sem) != 0)
13311 		goto bnxt_restart_timer;
13312 
13313 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
13314 		bnxt_fw_health_check(bp);
13315 
13316 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
13317 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
13318 
13319 	if (bnxt_tc_flower_enabled(bp))
13320 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
13321 
13322 #ifdef CONFIG_RFS_ACCEL
13323 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
13324 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13325 #endif /*CONFIG_RFS_ACCEL*/
13326 
13327 	if (bp->link_info.phy_retry) {
13328 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
13329 			bp->link_info.phy_retry = false;
13330 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
13331 		} else {
13332 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
13333 		}
13334 	}
13335 
13336 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
13337 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
13338 
13339 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
13340 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
13341 
13342 bnxt_restart_timer:
13343 	mod_timer(&bp->timer, jiffies + bp->current_interval);
13344 }
13345 
13346 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
13347 {
13348 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
13349 	 * set.  If the device is being closed, bnxt_close() may be holding
13350 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
13351 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
13352 	 */
13353 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13354 	rtnl_lock();
13355 }
13356 
13357 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
13358 {
13359 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13360 	rtnl_unlock();
13361 }
13362 
13363 /* Only called from bnxt_sp_task() */
13364 static void bnxt_reset(struct bnxt *bp, bool silent)
13365 {
13366 	bnxt_rtnl_lock_sp(bp);
13367 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
13368 		bnxt_reset_task(bp, silent);
13369 	bnxt_rtnl_unlock_sp(bp);
13370 }
13371 
13372 /* Only called from bnxt_sp_task() */
13373 static void bnxt_rx_ring_reset(struct bnxt *bp)
13374 {
13375 	int i;
13376 
13377 	bnxt_rtnl_lock_sp(bp);
13378 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13379 		bnxt_rtnl_unlock_sp(bp);
13380 		return;
13381 	}
13382 	/* Disable and flush TPA before resetting the RX ring */
13383 	if (bp->flags & BNXT_FLAG_TPA)
13384 		bnxt_set_tpa(bp, false);
13385 	for (i = 0; i < bp->rx_nr_rings; i++) {
13386 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
13387 		struct bnxt_cp_ring_info *cpr;
13388 		int rc;
13389 
13390 		if (!rxr->bnapi->in_reset)
13391 			continue;
13392 
13393 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
13394 		if (rc) {
13395 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
13396 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
13397 			else
13398 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
13399 					    rc);
13400 			bnxt_reset_task(bp, true);
13401 			break;
13402 		}
13403 		bnxt_free_one_rx_ring_skbs(bp, i);
13404 		rxr->rx_prod = 0;
13405 		rxr->rx_agg_prod = 0;
13406 		rxr->rx_sw_agg_prod = 0;
13407 		rxr->rx_next_cons = 0;
13408 		rxr->bnapi->in_reset = false;
13409 		bnxt_alloc_one_rx_ring(bp, i);
13410 		cpr = &rxr->bnapi->cp_ring;
13411 		cpr->sw_stats->rx.rx_resets++;
13412 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
13413 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
13414 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
13415 	}
13416 	if (bp->flags & BNXT_FLAG_TPA)
13417 		bnxt_set_tpa(bp, true);
13418 	bnxt_rtnl_unlock_sp(bp);
13419 }
13420 
13421 static void bnxt_fw_fatal_close(struct bnxt *bp)
13422 {
13423 	bnxt_tx_disable(bp);
13424 	bnxt_disable_napi(bp);
13425 	bnxt_disable_int_sync(bp);
13426 	bnxt_free_irq(bp);
13427 	bnxt_clear_int_mode(bp);
13428 	pci_disable_device(bp->pdev);
13429 }
13430 
13431 static void bnxt_fw_reset_close(struct bnxt *bp)
13432 {
13433 	/* When firmware is in fatal state, quiesce device and disable
13434 	 * bus master to prevent any potential bad DMAs before freeing
13435 	 * kernel memory.
13436 	 */
13437 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
13438 		u16 val = 0;
13439 
13440 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13441 		if (val == 0xffff)
13442 			bp->fw_reset_min_dsecs = 0;
13443 		bnxt_fw_fatal_close(bp);
13444 	}
13445 	__bnxt_close_nic(bp, true, false);
13446 	bnxt_vf_reps_free(bp);
13447 	bnxt_clear_int_mode(bp);
13448 	bnxt_hwrm_func_drv_unrgtr(bp);
13449 	if (pci_is_enabled(bp->pdev))
13450 		pci_disable_device(bp->pdev);
13451 	bnxt_free_ctx_mem(bp);
13452 }
13453 
13454 static bool is_bnxt_fw_ok(struct bnxt *bp)
13455 {
13456 	struct bnxt_fw_health *fw_health = bp->fw_health;
13457 	bool no_heartbeat = false, has_reset = false;
13458 	u32 val;
13459 
13460 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13461 	if (val == fw_health->last_fw_heartbeat)
13462 		no_heartbeat = true;
13463 
13464 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13465 	if (val != fw_health->last_fw_reset_cnt)
13466 		has_reset = true;
13467 
13468 	if (!no_heartbeat && has_reset)
13469 		return true;
13470 
13471 	return false;
13472 }
13473 
13474 /* rtnl_lock is acquired before calling this function */
13475 static void bnxt_force_fw_reset(struct bnxt *bp)
13476 {
13477 	struct bnxt_fw_health *fw_health = bp->fw_health;
13478 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13479 	u32 wait_dsecs;
13480 
13481 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
13482 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13483 		return;
13484 
13485 	if (ptp) {
13486 		spin_lock_bh(&ptp->ptp_lock);
13487 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13488 		spin_unlock_bh(&ptp->ptp_lock);
13489 	} else {
13490 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13491 	}
13492 	bnxt_fw_reset_close(bp);
13493 	wait_dsecs = fw_health->master_func_wait_dsecs;
13494 	if (fw_health->primary) {
13495 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
13496 			wait_dsecs = 0;
13497 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13498 	} else {
13499 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
13500 		wait_dsecs = fw_health->normal_func_wait_dsecs;
13501 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13502 	}
13503 
13504 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
13505 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
13506 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13507 }
13508 
13509 void bnxt_fw_exception(struct bnxt *bp)
13510 {
13511 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
13512 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13513 	bnxt_ulp_stop(bp);
13514 	bnxt_rtnl_lock_sp(bp);
13515 	bnxt_force_fw_reset(bp);
13516 	bnxt_rtnl_unlock_sp(bp);
13517 }
13518 
13519 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
13520  * < 0 on error.
13521  */
13522 static int bnxt_get_registered_vfs(struct bnxt *bp)
13523 {
13524 #ifdef CONFIG_BNXT_SRIOV
13525 	int rc;
13526 
13527 	if (!BNXT_PF(bp))
13528 		return 0;
13529 
13530 	rc = bnxt_hwrm_func_qcfg(bp);
13531 	if (rc) {
13532 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
13533 		return rc;
13534 	}
13535 	if (bp->pf.registered_vfs)
13536 		return bp->pf.registered_vfs;
13537 	if (bp->sriov_cfg)
13538 		return 1;
13539 #endif
13540 	return 0;
13541 }
13542 
13543 void bnxt_fw_reset(struct bnxt *bp)
13544 {
13545 	bnxt_ulp_stop(bp);
13546 	bnxt_rtnl_lock_sp(bp);
13547 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
13548 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13549 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13550 		int n = 0, tmo;
13551 
13552 		if (ptp) {
13553 			spin_lock_bh(&ptp->ptp_lock);
13554 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13555 			spin_unlock_bh(&ptp->ptp_lock);
13556 		} else {
13557 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13558 		}
13559 		if (bp->pf.active_vfs &&
13560 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
13561 			n = bnxt_get_registered_vfs(bp);
13562 		if (n < 0) {
13563 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
13564 				   n);
13565 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13566 			dev_close(bp->dev);
13567 			goto fw_reset_exit;
13568 		} else if (n > 0) {
13569 			u16 vf_tmo_dsecs = n * 10;
13570 
13571 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
13572 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
13573 			bp->fw_reset_state =
13574 				BNXT_FW_RESET_STATE_POLL_VF;
13575 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13576 			goto fw_reset_exit;
13577 		}
13578 		bnxt_fw_reset_close(bp);
13579 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13580 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13581 			tmo = HZ / 10;
13582 		} else {
13583 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13584 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13585 		}
13586 		bnxt_queue_fw_reset_work(bp, tmo);
13587 	}
13588 fw_reset_exit:
13589 	bnxt_rtnl_unlock_sp(bp);
13590 }
13591 
13592 static void bnxt_chk_missed_irq(struct bnxt *bp)
13593 {
13594 	int i;
13595 
13596 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13597 		return;
13598 
13599 	for (i = 0; i < bp->cp_nr_rings; i++) {
13600 		struct bnxt_napi *bnapi = bp->bnapi[i];
13601 		struct bnxt_cp_ring_info *cpr;
13602 		u32 fw_ring_id;
13603 		int j;
13604 
13605 		if (!bnapi)
13606 			continue;
13607 
13608 		cpr = &bnapi->cp_ring;
13609 		for (j = 0; j < cpr->cp_ring_count; j++) {
13610 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
13611 			u32 val[2];
13612 
13613 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
13614 				continue;
13615 
13616 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
13617 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
13618 				continue;
13619 			}
13620 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
13621 			bnxt_dbg_hwrm_ring_info_get(bp,
13622 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
13623 				fw_ring_id, &val[0], &val[1]);
13624 			cpr->sw_stats->cmn.missed_irqs++;
13625 		}
13626 	}
13627 }
13628 
13629 static void bnxt_cfg_ntp_filters(struct bnxt *);
13630 
13631 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
13632 {
13633 	struct bnxt_link_info *link_info = &bp->link_info;
13634 
13635 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
13636 		link_info->autoneg = BNXT_AUTONEG_SPEED;
13637 		if (bp->hwrm_spec_code >= 0x10201) {
13638 			if (link_info->auto_pause_setting &
13639 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
13640 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13641 		} else {
13642 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13643 		}
13644 		bnxt_set_auto_speed(link_info);
13645 	} else {
13646 		bnxt_set_force_speed(link_info);
13647 		link_info->req_duplex = link_info->duplex_setting;
13648 	}
13649 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
13650 		link_info->req_flow_ctrl =
13651 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
13652 	else
13653 		link_info->req_flow_ctrl = link_info->force_pause_setting;
13654 }
13655 
13656 static void bnxt_fw_echo_reply(struct bnxt *bp)
13657 {
13658 	struct bnxt_fw_health *fw_health = bp->fw_health;
13659 	struct hwrm_func_echo_response_input *req;
13660 	int rc;
13661 
13662 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13663 	if (rc)
13664 		return;
13665 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13666 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13667 	hwrm_req_send(bp, req);
13668 }
13669 
13670 static void bnxt_ulp_restart(struct bnxt *bp)
13671 {
13672 	bnxt_ulp_stop(bp);
13673 	bnxt_ulp_start(bp, 0);
13674 }
13675 
13676 static void bnxt_sp_task(struct work_struct *work)
13677 {
13678 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13679 
13680 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13681 	smp_mb__after_atomic();
13682 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13683 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13684 		return;
13685 	}
13686 
13687 	if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) {
13688 		bnxt_ulp_restart(bp);
13689 		bnxt_reenable_sriov(bp);
13690 	}
13691 
13692 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13693 		bnxt_cfg_rx_mode(bp);
13694 
13695 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13696 		bnxt_cfg_ntp_filters(bp);
13697 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13698 		bnxt_hwrm_exec_fwd_req(bp);
13699 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13700 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13701 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13702 		bnxt_hwrm_port_qstats(bp, 0);
13703 		bnxt_hwrm_port_qstats_ext(bp, 0);
13704 		bnxt_accumulate_all_stats(bp);
13705 	}
13706 
13707 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13708 		int rc;
13709 
13710 		mutex_lock(&bp->link_lock);
13711 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13712 				       &bp->sp_event))
13713 			bnxt_hwrm_phy_qcaps(bp);
13714 
13715 		rc = bnxt_update_link(bp, true);
13716 		if (rc)
13717 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13718 				   rc);
13719 
13720 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13721 				       &bp->sp_event))
13722 			bnxt_init_ethtool_link_settings(bp);
13723 		mutex_unlock(&bp->link_lock);
13724 	}
13725 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13726 		int rc;
13727 
13728 		mutex_lock(&bp->link_lock);
13729 		rc = bnxt_update_phy_setting(bp);
13730 		mutex_unlock(&bp->link_lock);
13731 		if (rc) {
13732 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13733 		} else {
13734 			bp->link_info.phy_retry = false;
13735 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13736 		}
13737 	}
13738 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13739 		mutex_lock(&bp->link_lock);
13740 		bnxt_get_port_module_status(bp);
13741 		mutex_unlock(&bp->link_lock);
13742 	}
13743 
13744 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13745 		bnxt_tc_flow_stats_work(bp);
13746 
13747 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13748 		bnxt_chk_missed_irq(bp);
13749 
13750 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13751 		bnxt_fw_echo_reply(bp);
13752 
13753 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13754 		bnxt_hwmon_notify_event(bp);
13755 
13756 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13757 	 * must be the last functions to be called before exiting.
13758 	 */
13759 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13760 		bnxt_reset(bp, false);
13761 
13762 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13763 		bnxt_reset(bp, true);
13764 
13765 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13766 		bnxt_rx_ring_reset(bp);
13767 
13768 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13769 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13770 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13771 			bnxt_devlink_health_fw_report(bp);
13772 		else
13773 			bnxt_fw_reset(bp);
13774 	}
13775 
13776 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13777 		if (!is_bnxt_fw_ok(bp))
13778 			bnxt_devlink_health_fw_report(bp);
13779 	}
13780 
13781 	smp_mb__before_atomic();
13782 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13783 }
13784 
13785 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13786 				int *max_cp);
13787 
13788 /* Under rtnl_lock */
13789 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13790 		     int tx_xdp)
13791 {
13792 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13793 	struct bnxt_hw_rings hwr = {0};
13794 	int rx_rings = rx;
13795 
13796 	if (tcs)
13797 		tx_sets = tcs;
13798 
13799 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13800 
13801 	if (max_rx < rx_rings)
13802 		return -ENOMEM;
13803 
13804 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13805 		rx_rings <<= 1;
13806 
13807 	hwr.rx = rx_rings;
13808 	hwr.tx = tx * tx_sets + tx_xdp;
13809 	if (max_tx < hwr.tx)
13810 		return -ENOMEM;
13811 
13812 	hwr.vnic = bnxt_get_total_vnics(bp, rx);
13813 
13814 	tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp);
13815 	hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13816 	if (max_cp < hwr.cp)
13817 		return -ENOMEM;
13818 	hwr.stat = hwr.cp;
13819 	if (BNXT_NEW_RM(bp)) {
13820 		hwr.cp += bnxt_get_ulp_msix_num_in_use(bp);
13821 		hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp);
13822 		hwr.grp = rx;
13823 		hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
13824 	}
13825 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
13826 		hwr.cp_p5 = hwr.tx + rx;
13827 	return bnxt_hwrm_check_rings(bp, &hwr);
13828 }
13829 
13830 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13831 {
13832 	if (bp->bar2) {
13833 		pci_iounmap(pdev, bp->bar2);
13834 		bp->bar2 = NULL;
13835 	}
13836 
13837 	if (bp->bar1) {
13838 		pci_iounmap(pdev, bp->bar1);
13839 		bp->bar1 = NULL;
13840 	}
13841 
13842 	if (bp->bar0) {
13843 		pci_iounmap(pdev, bp->bar0);
13844 		bp->bar0 = NULL;
13845 	}
13846 }
13847 
13848 static void bnxt_cleanup_pci(struct bnxt *bp)
13849 {
13850 	bnxt_unmap_bars(bp, bp->pdev);
13851 	pci_release_regions(bp->pdev);
13852 	if (pci_is_enabled(bp->pdev))
13853 		pci_disable_device(bp->pdev);
13854 }
13855 
13856 static void bnxt_init_dflt_coal(struct bnxt *bp)
13857 {
13858 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13859 	struct bnxt_coal *coal;
13860 	u16 flags = 0;
13861 
13862 	if (coal_cap->cmpl_params &
13863 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13864 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13865 
13866 	/* Tick values in micro seconds.
13867 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13868 	 */
13869 	coal = &bp->rx_coal;
13870 	coal->coal_ticks = 10;
13871 	coal->coal_bufs = 30;
13872 	coal->coal_ticks_irq = 1;
13873 	coal->coal_bufs_irq = 2;
13874 	coal->idle_thresh = 50;
13875 	coal->bufs_per_record = 2;
13876 	coal->budget = 64;		/* NAPI budget */
13877 	coal->flags = flags;
13878 
13879 	coal = &bp->tx_coal;
13880 	coal->coal_ticks = 28;
13881 	coal->coal_bufs = 30;
13882 	coal->coal_ticks_irq = 2;
13883 	coal->coal_bufs_irq = 2;
13884 	coal->bufs_per_record = 1;
13885 	coal->flags = flags;
13886 
13887 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13888 }
13889 
13890 /* FW that pre-reserves 1 VNIC per function */
13891 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13892 {
13893 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13894 
13895 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13896 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13897 		return true;
13898 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13899 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13900 		return true;
13901 	return false;
13902 }
13903 
13904 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13905 {
13906 	int rc;
13907 
13908 	bp->fw_cap = 0;
13909 	rc = bnxt_hwrm_ver_get(bp);
13910 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
13911 	 * so wait before continuing with recovery.
13912 	 */
13913 	if (rc)
13914 		msleep(100);
13915 	bnxt_try_map_fw_health_reg(bp);
13916 	if (rc) {
13917 		rc = bnxt_try_recover_fw(bp);
13918 		if (rc)
13919 			return rc;
13920 		rc = bnxt_hwrm_ver_get(bp);
13921 		if (rc)
13922 			return rc;
13923 	}
13924 
13925 	bnxt_nvm_cfg_ver_get(bp);
13926 
13927 	rc = bnxt_hwrm_func_reset(bp);
13928 	if (rc)
13929 		return -ENODEV;
13930 
13931 	bnxt_hwrm_fw_set_time(bp);
13932 	return 0;
13933 }
13934 
13935 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13936 {
13937 	int rc;
13938 
13939 	/* Get the MAX capabilities for this function */
13940 	rc = bnxt_hwrm_func_qcaps(bp);
13941 	if (rc) {
13942 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13943 			   rc);
13944 		return -ENODEV;
13945 	}
13946 
13947 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13948 	if (rc)
13949 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13950 			    rc);
13951 
13952 	if (bnxt_alloc_fw_health(bp)) {
13953 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13954 	} else {
13955 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13956 		if (rc)
13957 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13958 				    rc);
13959 	}
13960 
13961 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13962 	if (rc)
13963 		return -ENODEV;
13964 
13965 	if (bnxt_fw_pre_resv_vnics(bp))
13966 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
13967 
13968 	bnxt_hwrm_func_qcfg(bp);
13969 	bnxt_hwrm_vnic_qcaps(bp);
13970 	bnxt_hwrm_port_led_qcaps(bp);
13971 	bnxt_ethtool_init(bp);
13972 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
13973 		__bnxt_hwrm_ptp_qcfg(bp);
13974 	bnxt_dcb_init(bp);
13975 	bnxt_hwmon_init(bp);
13976 	return 0;
13977 }
13978 
13979 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
13980 {
13981 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
13982 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
13983 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
13984 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
13985 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
13986 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
13987 		bp->rss_hash_delta = bp->rss_hash_cfg;
13988 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
13989 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
13990 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
13991 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
13992 	}
13993 }
13994 
13995 static void bnxt_set_dflt_rfs(struct bnxt *bp)
13996 {
13997 	struct net_device *dev = bp->dev;
13998 
13999 	dev->hw_features &= ~NETIF_F_NTUPLE;
14000 	dev->features &= ~NETIF_F_NTUPLE;
14001 	bp->flags &= ~BNXT_FLAG_RFS;
14002 	if (bnxt_rfs_supported(bp)) {
14003 		dev->hw_features |= NETIF_F_NTUPLE;
14004 		if (bnxt_rfs_capable(bp, false)) {
14005 			bp->flags |= BNXT_FLAG_RFS;
14006 			dev->features |= NETIF_F_NTUPLE;
14007 		}
14008 	}
14009 }
14010 
14011 static void bnxt_fw_init_one_p3(struct bnxt *bp)
14012 {
14013 	struct pci_dev *pdev = bp->pdev;
14014 
14015 	bnxt_set_dflt_rss_hash_type(bp);
14016 	bnxt_set_dflt_rfs(bp);
14017 
14018 	bnxt_get_wol_settings(bp);
14019 	if (bp->flags & BNXT_FLAG_WOL_CAP)
14020 		device_set_wakeup_enable(&pdev->dev, bp->wol);
14021 	else
14022 		device_set_wakeup_capable(&pdev->dev, false);
14023 
14024 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
14025 	bnxt_hwrm_coal_params_qcaps(bp);
14026 }
14027 
14028 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
14029 
14030 int bnxt_fw_init_one(struct bnxt *bp)
14031 {
14032 	int rc;
14033 
14034 	rc = bnxt_fw_init_one_p1(bp);
14035 	if (rc) {
14036 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
14037 		return rc;
14038 	}
14039 	rc = bnxt_fw_init_one_p2(bp);
14040 	if (rc) {
14041 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
14042 		return rc;
14043 	}
14044 	rc = bnxt_probe_phy(bp, false);
14045 	if (rc)
14046 		return rc;
14047 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
14048 	if (rc)
14049 		return rc;
14050 
14051 	bnxt_fw_init_one_p3(bp);
14052 	return 0;
14053 }
14054 
14055 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
14056 {
14057 	struct bnxt_fw_health *fw_health = bp->fw_health;
14058 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
14059 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
14060 	u32 reg_type, reg_off, delay_msecs;
14061 
14062 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
14063 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
14064 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
14065 	switch (reg_type) {
14066 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
14067 		pci_write_config_dword(bp->pdev, reg_off, val);
14068 		break;
14069 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
14070 		writel(reg_off & BNXT_GRC_BASE_MASK,
14071 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
14072 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
14073 		fallthrough;
14074 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
14075 		writel(val, bp->bar0 + reg_off);
14076 		break;
14077 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
14078 		writel(val, bp->bar1 + reg_off);
14079 		break;
14080 	}
14081 	if (delay_msecs) {
14082 		pci_read_config_dword(bp->pdev, 0, &val);
14083 		msleep(delay_msecs);
14084 	}
14085 }
14086 
14087 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
14088 {
14089 	struct hwrm_func_qcfg_output *resp;
14090 	struct hwrm_func_qcfg_input *req;
14091 	bool result = true; /* firmware will enforce if unknown */
14092 
14093 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
14094 		return result;
14095 
14096 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
14097 		return result;
14098 
14099 	req->fid = cpu_to_le16(0xffff);
14100 	resp = hwrm_req_hold(bp, req);
14101 	if (!hwrm_req_send(bp, req))
14102 		result = !!(le16_to_cpu(resp->flags) &
14103 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
14104 	hwrm_req_drop(bp, req);
14105 	return result;
14106 }
14107 
14108 static void bnxt_reset_all(struct bnxt *bp)
14109 {
14110 	struct bnxt_fw_health *fw_health = bp->fw_health;
14111 	int i, rc;
14112 
14113 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14114 		bnxt_fw_reset_via_optee(bp);
14115 		bp->fw_reset_timestamp = jiffies;
14116 		return;
14117 	}
14118 
14119 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
14120 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
14121 			bnxt_fw_reset_writel(bp, i);
14122 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
14123 		struct hwrm_fw_reset_input *req;
14124 
14125 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
14126 		if (!rc) {
14127 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
14128 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
14129 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
14130 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
14131 			rc = hwrm_req_send(bp, req);
14132 		}
14133 		if (rc != -ENODEV)
14134 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
14135 	}
14136 	bp->fw_reset_timestamp = jiffies;
14137 }
14138 
14139 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
14140 {
14141 	return time_after(jiffies, bp->fw_reset_timestamp +
14142 			  (bp->fw_reset_max_dsecs * HZ / 10));
14143 }
14144 
14145 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
14146 {
14147 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14148 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
14149 		bnxt_dl_health_fw_status_update(bp, false);
14150 	bp->fw_reset_state = 0;
14151 	dev_close(bp->dev);
14152 }
14153 
14154 static void bnxt_fw_reset_task(struct work_struct *work)
14155 {
14156 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
14157 	int rc = 0;
14158 
14159 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
14160 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
14161 		return;
14162 	}
14163 
14164 	switch (bp->fw_reset_state) {
14165 	case BNXT_FW_RESET_STATE_POLL_VF: {
14166 		int n = bnxt_get_registered_vfs(bp);
14167 		int tmo;
14168 
14169 		if (n < 0) {
14170 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
14171 				   n, jiffies_to_msecs(jiffies -
14172 				   bp->fw_reset_timestamp));
14173 			goto fw_reset_abort;
14174 		} else if (n > 0) {
14175 			if (bnxt_fw_reset_timeout(bp)) {
14176 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14177 				bp->fw_reset_state = 0;
14178 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
14179 					   n);
14180 				goto ulp_start;
14181 			}
14182 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14183 			return;
14184 		}
14185 		bp->fw_reset_timestamp = jiffies;
14186 		rtnl_lock();
14187 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
14188 			bnxt_fw_reset_abort(bp, rc);
14189 			rtnl_unlock();
14190 			goto ulp_start;
14191 		}
14192 		bnxt_fw_reset_close(bp);
14193 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14194 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
14195 			tmo = HZ / 10;
14196 		} else {
14197 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14198 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
14199 		}
14200 		rtnl_unlock();
14201 		bnxt_queue_fw_reset_work(bp, tmo);
14202 		return;
14203 	}
14204 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
14205 		u32 val;
14206 
14207 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14208 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
14209 		    !bnxt_fw_reset_timeout(bp)) {
14210 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14211 			return;
14212 		}
14213 
14214 		if (!bp->fw_health->primary) {
14215 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
14216 
14217 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14218 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
14219 			return;
14220 		}
14221 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
14222 	}
14223 		fallthrough;
14224 	case BNXT_FW_RESET_STATE_RESET_FW:
14225 		bnxt_reset_all(bp);
14226 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14227 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
14228 		return;
14229 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
14230 		bnxt_inv_fw_health_reg(bp);
14231 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
14232 		    !bp->fw_reset_min_dsecs) {
14233 			u16 val;
14234 
14235 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
14236 			if (val == 0xffff) {
14237 				if (bnxt_fw_reset_timeout(bp)) {
14238 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
14239 					rc = -ETIMEDOUT;
14240 					goto fw_reset_abort;
14241 				}
14242 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
14243 				return;
14244 			}
14245 		}
14246 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
14247 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
14248 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
14249 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
14250 			bnxt_dl_remote_reload(bp);
14251 		if (pci_enable_device(bp->pdev)) {
14252 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
14253 			rc = -ENODEV;
14254 			goto fw_reset_abort;
14255 		}
14256 		pci_set_master(bp->pdev);
14257 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
14258 		fallthrough;
14259 	case BNXT_FW_RESET_STATE_POLL_FW:
14260 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
14261 		rc = bnxt_hwrm_poll(bp);
14262 		if (rc) {
14263 			if (bnxt_fw_reset_timeout(bp)) {
14264 				netdev_err(bp->dev, "Firmware reset aborted\n");
14265 				goto fw_reset_abort_status;
14266 			}
14267 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14268 			return;
14269 		}
14270 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
14271 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
14272 		fallthrough;
14273 	case BNXT_FW_RESET_STATE_OPENING:
14274 		while (!rtnl_trylock()) {
14275 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14276 			return;
14277 		}
14278 		rc = bnxt_open(bp->dev);
14279 		if (rc) {
14280 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
14281 			bnxt_fw_reset_abort(bp, rc);
14282 			rtnl_unlock();
14283 			goto ulp_start;
14284 		}
14285 
14286 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
14287 		    bp->fw_health->enabled) {
14288 			bp->fw_health->last_fw_reset_cnt =
14289 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
14290 		}
14291 		bp->fw_reset_state = 0;
14292 		/* Make sure fw_reset_state is 0 before clearing the flag */
14293 		smp_mb__before_atomic();
14294 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14295 		bnxt_ptp_reapply_pps(bp);
14296 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
14297 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
14298 			bnxt_dl_health_fw_recovery_done(bp);
14299 			bnxt_dl_health_fw_status_update(bp, true);
14300 		}
14301 		rtnl_unlock();
14302 		bnxt_ulp_start(bp, 0);
14303 		bnxt_reenable_sriov(bp);
14304 		rtnl_lock();
14305 		bnxt_vf_reps_alloc(bp);
14306 		bnxt_vf_reps_open(bp);
14307 		rtnl_unlock();
14308 		break;
14309 	}
14310 	return;
14311 
14312 fw_reset_abort_status:
14313 	if (bp->fw_health->status_reliable ||
14314 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
14315 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14316 
14317 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
14318 	}
14319 fw_reset_abort:
14320 	rtnl_lock();
14321 	bnxt_fw_reset_abort(bp, rc);
14322 	rtnl_unlock();
14323 ulp_start:
14324 	bnxt_ulp_start(bp, rc);
14325 }
14326 
14327 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
14328 {
14329 	int rc;
14330 	struct bnxt *bp = netdev_priv(dev);
14331 
14332 	SET_NETDEV_DEV(dev, &pdev->dev);
14333 
14334 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
14335 	rc = pci_enable_device(pdev);
14336 	if (rc) {
14337 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
14338 		goto init_err;
14339 	}
14340 
14341 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
14342 		dev_err(&pdev->dev,
14343 			"Cannot find PCI device base address, aborting\n");
14344 		rc = -ENODEV;
14345 		goto init_err_disable;
14346 	}
14347 
14348 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
14349 	if (rc) {
14350 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
14351 		goto init_err_disable;
14352 	}
14353 
14354 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
14355 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
14356 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
14357 		rc = -EIO;
14358 		goto init_err_release;
14359 	}
14360 
14361 	pci_set_master(pdev);
14362 
14363 	bp->dev = dev;
14364 	bp->pdev = pdev;
14365 
14366 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
14367 	 * determines the BAR size.
14368 	 */
14369 	bp->bar0 = pci_ioremap_bar(pdev, 0);
14370 	if (!bp->bar0) {
14371 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
14372 		rc = -ENOMEM;
14373 		goto init_err_release;
14374 	}
14375 
14376 	bp->bar2 = pci_ioremap_bar(pdev, 4);
14377 	if (!bp->bar2) {
14378 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
14379 		rc = -ENOMEM;
14380 		goto init_err_release;
14381 	}
14382 
14383 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
14384 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
14385 
14386 	spin_lock_init(&bp->ntp_fltr_lock);
14387 #if BITS_PER_LONG == 32
14388 	spin_lock_init(&bp->db_lock);
14389 #endif
14390 
14391 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
14392 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
14393 
14394 	timer_setup(&bp->timer, bnxt_timer, 0);
14395 	bp->current_interval = BNXT_TIMER_INTERVAL;
14396 
14397 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
14398 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
14399 
14400 	clear_bit(BNXT_STATE_OPEN, &bp->state);
14401 	return 0;
14402 
14403 init_err_release:
14404 	bnxt_unmap_bars(bp, pdev);
14405 	pci_release_regions(pdev);
14406 
14407 init_err_disable:
14408 	pci_disable_device(pdev);
14409 
14410 init_err:
14411 	return rc;
14412 }
14413 
14414 /* rtnl_lock held */
14415 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
14416 {
14417 	struct sockaddr *addr = p;
14418 	struct bnxt *bp = netdev_priv(dev);
14419 	int rc = 0;
14420 
14421 	if (!is_valid_ether_addr(addr->sa_data))
14422 		return -EADDRNOTAVAIL;
14423 
14424 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
14425 		return 0;
14426 
14427 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
14428 	if (rc)
14429 		return rc;
14430 
14431 	eth_hw_addr_set(dev, addr->sa_data);
14432 	bnxt_clear_usr_fltrs(bp, true);
14433 	if (netif_running(dev)) {
14434 		bnxt_close_nic(bp, false, false);
14435 		rc = bnxt_open_nic(bp, false, false);
14436 	}
14437 
14438 	return rc;
14439 }
14440 
14441 /* rtnl_lock held */
14442 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
14443 {
14444 	struct bnxt *bp = netdev_priv(dev);
14445 
14446 	if (netif_running(dev))
14447 		bnxt_close_nic(bp, true, false);
14448 
14449 	WRITE_ONCE(dev->mtu, new_mtu);
14450 	bnxt_set_ring_params(bp);
14451 
14452 	if (netif_running(dev))
14453 		return bnxt_open_nic(bp, true, false);
14454 
14455 	return 0;
14456 }
14457 
14458 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
14459 {
14460 	struct bnxt *bp = netdev_priv(dev);
14461 	bool sh = false;
14462 	int rc, tx_cp;
14463 
14464 	if (tc > bp->max_tc) {
14465 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
14466 			   tc, bp->max_tc);
14467 		return -EINVAL;
14468 	}
14469 
14470 	if (bp->num_tc == tc)
14471 		return 0;
14472 
14473 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
14474 		sh = true;
14475 
14476 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
14477 			      sh, tc, bp->tx_nr_rings_xdp);
14478 	if (rc)
14479 		return rc;
14480 
14481 	/* Needs to close the device and do hw resource re-allocations */
14482 	if (netif_running(bp->dev))
14483 		bnxt_close_nic(bp, true, false);
14484 
14485 	if (tc) {
14486 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
14487 		netdev_set_num_tc(dev, tc);
14488 		bp->num_tc = tc;
14489 	} else {
14490 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14491 		netdev_reset_tc(dev);
14492 		bp->num_tc = 0;
14493 	}
14494 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
14495 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
14496 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
14497 			       tx_cp + bp->rx_nr_rings;
14498 
14499 	if (netif_running(bp->dev))
14500 		return bnxt_open_nic(bp, true, false);
14501 
14502 	return 0;
14503 }
14504 
14505 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
14506 				  void *cb_priv)
14507 {
14508 	struct bnxt *bp = cb_priv;
14509 
14510 	if (!bnxt_tc_flower_enabled(bp) ||
14511 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
14512 		return -EOPNOTSUPP;
14513 
14514 	switch (type) {
14515 	case TC_SETUP_CLSFLOWER:
14516 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
14517 	default:
14518 		return -EOPNOTSUPP;
14519 	}
14520 }
14521 
14522 LIST_HEAD(bnxt_block_cb_list);
14523 
14524 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
14525 			 void *type_data)
14526 {
14527 	struct bnxt *bp = netdev_priv(dev);
14528 
14529 	switch (type) {
14530 	case TC_SETUP_BLOCK:
14531 		return flow_block_cb_setup_simple(type_data,
14532 						  &bnxt_block_cb_list,
14533 						  bnxt_setup_tc_block_cb,
14534 						  bp, bp, true);
14535 	case TC_SETUP_QDISC_MQPRIO: {
14536 		struct tc_mqprio_qopt *mqprio = type_data;
14537 
14538 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
14539 
14540 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
14541 	}
14542 	default:
14543 		return -EOPNOTSUPP;
14544 	}
14545 }
14546 
14547 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
14548 			    const struct sk_buff *skb)
14549 {
14550 	struct bnxt_vnic_info *vnic;
14551 
14552 	if (skb)
14553 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
14554 
14555 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
14556 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
14557 }
14558 
14559 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
14560 			   u32 idx)
14561 {
14562 	struct hlist_head *head;
14563 	int bit_id;
14564 
14565 	spin_lock_bh(&bp->ntp_fltr_lock);
14566 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0);
14567 	if (bit_id < 0) {
14568 		spin_unlock_bh(&bp->ntp_fltr_lock);
14569 		return -ENOMEM;
14570 	}
14571 
14572 	fltr->base.sw_id = (u16)bit_id;
14573 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
14574 	fltr->base.flags |= BNXT_ACT_RING_DST;
14575 	head = &bp->ntp_fltr_hash_tbl[idx];
14576 	hlist_add_head_rcu(&fltr->base.hash, head);
14577 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
14578 	bnxt_insert_usr_fltr(bp, &fltr->base);
14579 	bp->ntp_fltr_count++;
14580 	spin_unlock_bh(&bp->ntp_fltr_lock);
14581 	return 0;
14582 }
14583 
14584 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
14585 			    struct bnxt_ntuple_filter *f2)
14586 {
14587 	struct bnxt_flow_masks *masks1 = &f1->fmasks;
14588 	struct bnxt_flow_masks *masks2 = &f2->fmasks;
14589 	struct flow_keys *keys1 = &f1->fkeys;
14590 	struct flow_keys *keys2 = &f2->fkeys;
14591 
14592 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
14593 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
14594 		return false;
14595 
14596 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
14597 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
14598 		    masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src ||
14599 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst ||
14600 		    masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst)
14601 			return false;
14602 	} else {
14603 		if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src,
14604 				     &keys2->addrs.v6addrs.src) ||
14605 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.src,
14606 				     &masks2->addrs.v6addrs.src) ||
14607 		    !ipv6_addr_equal(&keys1->addrs.v6addrs.dst,
14608 				     &keys2->addrs.v6addrs.dst) ||
14609 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.dst,
14610 				     &masks2->addrs.v6addrs.dst))
14611 			return false;
14612 	}
14613 
14614 	return keys1->ports.src == keys2->ports.src &&
14615 	       masks1->ports.src == masks2->ports.src &&
14616 	       keys1->ports.dst == keys2->ports.dst &&
14617 	       masks1->ports.dst == masks2->ports.dst &&
14618 	       keys1->control.flags == keys2->control.flags &&
14619 	       f1->l2_fltr == f2->l2_fltr;
14620 }
14621 
14622 struct bnxt_ntuple_filter *
14623 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
14624 				struct bnxt_ntuple_filter *fltr, u32 idx)
14625 {
14626 	struct bnxt_ntuple_filter *f;
14627 	struct hlist_head *head;
14628 
14629 	head = &bp->ntp_fltr_hash_tbl[idx];
14630 	hlist_for_each_entry_rcu(f, head, base.hash) {
14631 		if (bnxt_fltr_match(f, fltr))
14632 			return f;
14633 	}
14634 	return NULL;
14635 }
14636 
14637 #ifdef CONFIG_RFS_ACCEL
14638 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
14639 			      u16 rxq_index, u32 flow_id)
14640 {
14641 	struct bnxt *bp = netdev_priv(dev);
14642 	struct bnxt_ntuple_filter *fltr, *new_fltr;
14643 	struct flow_keys *fkeys;
14644 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
14645 	struct bnxt_l2_filter *l2_fltr;
14646 	int rc = 0, idx;
14647 	u32 flags;
14648 
14649 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
14650 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
14651 		atomic_inc(&l2_fltr->refcnt);
14652 	} else {
14653 		struct bnxt_l2_key key;
14654 
14655 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
14656 		key.vlan = 0;
14657 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
14658 		if (!l2_fltr)
14659 			return -EINVAL;
14660 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
14661 			bnxt_del_l2_filter(bp, l2_fltr);
14662 			return -EINVAL;
14663 		}
14664 	}
14665 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
14666 	if (!new_fltr) {
14667 		bnxt_del_l2_filter(bp, l2_fltr);
14668 		return -ENOMEM;
14669 	}
14670 
14671 	fkeys = &new_fltr->fkeys;
14672 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
14673 		rc = -EPROTONOSUPPORT;
14674 		goto err_free;
14675 	}
14676 
14677 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
14678 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14679 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14680 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14681 		rc = -EPROTONOSUPPORT;
14682 		goto err_free;
14683 	}
14684 	new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL;
14685 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
14686 		if (bp->hwrm_spec_code < 0x10601) {
14687 			rc = -EPROTONOSUPPORT;
14688 			goto err_free;
14689 		}
14690 		new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL;
14691 	}
14692 	flags = fkeys->control.flags;
14693 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14694 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14695 		rc = -EPROTONOSUPPORT;
14696 		goto err_free;
14697 	}
14698 	new_fltr->l2_fltr = l2_fltr;
14699 
14700 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14701 	rcu_read_lock();
14702 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14703 	if (fltr) {
14704 		rc = fltr->base.sw_id;
14705 		rcu_read_unlock();
14706 		goto err_free;
14707 	}
14708 	rcu_read_unlock();
14709 
14710 	new_fltr->flow_id = flow_id;
14711 	new_fltr->base.rxq = rxq_index;
14712 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14713 	if (!rc) {
14714 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14715 		return new_fltr->base.sw_id;
14716 	}
14717 
14718 err_free:
14719 	bnxt_del_l2_filter(bp, l2_fltr);
14720 	kfree(new_fltr);
14721 	return rc;
14722 }
14723 #endif
14724 
14725 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14726 {
14727 	spin_lock_bh(&bp->ntp_fltr_lock);
14728 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14729 		spin_unlock_bh(&bp->ntp_fltr_lock);
14730 		return;
14731 	}
14732 	hlist_del_rcu(&fltr->base.hash);
14733 	bnxt_del_one_usr_fltr(bp, &fltr->base);
14734 	bp->ntp_fltr_count--;
14735 	spin_unlock_bh(&bp->ntp_fltr_lock);
14736 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14737 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14738 	kfree_rcu(fltr, base.rcu);
14739 }
14740 
14741 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14742 {
14743 #ifdef CONFIG_RFS_ACCEL
14744 	int i;
14745 
14746 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14747 		struct hlist_head *head;
14748 		struct hlist_node *tmp;
14749 		struct bnxt_ntuple_filter *fltr;
14750 		int rc;
14751 
14752 		head = &bp->ntp_fltr_hash_tbl[i];
14753 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14754 			bool del = false;
14755 
14756 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14757 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14758 					continue;
14759 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14760 							fltr->flow_id,
14761 							fltr->base.sw_id)) {
14762 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14763 									 fltr);
14764 					del = true;
14765 				}
14766 			} else {
14767 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14768 								       fltr);
14769 				if (rc)
14770 					del = true;
14771 				else
14772 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14773 			}
14774 
14775 			if (del)
14776 				bnxt_del_ntp_filter(bp, fltr);
14777 		}
14778 	}
14779 #endif
14780 }
14781 
14782 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14783 				    unsigned int entry, struct udp_tunnel_info *ti)
14784 {
14785 	struct bnxt *bp = netdev_priv(netdev);
14786 	unsigned int cmd;
14787 
14788 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14789 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14790 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14791 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14792 	else
14793 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14794 
14795 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14796 }
14797 
14798 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14799 				      unsigned int entry, struct udp_tunnel_info *ti)
14800 {
14801 	struct bnxt *bp = netdev_priv(netdev);
14802 	unsigned int cmd;
14803 
14804 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14805 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14806 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14807 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14808 	else
14809 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14810 
14811 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14812 }
14813 
14814 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14815 	.set_port	= bnxt_udp_tunnel_set_port,
14816 	.unset_port	= bnxt_udp_tunnel_unset_port,
14817 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14818 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14819 	.tables		= {
14820 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14821 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14822 	},
14823 }, bnxt_udp_tunnels_p7 = {
14824 	.set_port	= bnxt_udp_tunnel_set_port,
14825 	.unset_port	= bnxt_udp_tunnel_unset_port,
14826 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14827 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14828 	.tables		= {
14829 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14830 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14831 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14832 	},
14833 };
14834 
14835 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14836 			       struct net_device *dev, u32 filter_mask,
14837 			       int nlflags)
14838 {
14839 	struct bnxt *bp = netdev_priv(dev);
14840 
14841 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14842 				       nlflags, filter_mask, NULL);
14843 }
14844 
14845 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14846 			       u16 flags, struct netlink_ext_ack *extack)
14847 {
14848 	struct bnxt *bp = netdev_priv(dev);
14849 	struct nlattr *attr, *br_spec;
14850 	int rem, rc = 0;
14851 
14852 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14853 		return -EOPNOTSUPP;
14854 
14855 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14856 	if (!br_spec)
14857 		return -EINVAL;
14858 
14859 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
14860 		u16 mode;
14861 
14862 		mode = nla_get_u16(attr);
14863 		if (mode == bp->br_mode)
14864 			break;
14865 
14866 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14867 		if (!rc)
14868 			bp->br_mode = mode;
14869 		break;
14870 	}
14871 	return rc;
14872 }
14873 
14874 int bnxt_get_port_parent_id(struct net_device *dev,
14875 			    struct netdev_phys_item_id *ppid)
14876 {
14877 	struct bnxt *bp = netdev_priv(dev);
14878 
14879 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14880 		return -EOPNOTSUPP;
14881 
14882 	/* The PF and it's VF-reps only support the switchdev framework */
14883 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14884 		return -EOPNOTSUPP;
14885 
14886 	ppid->id_len = sizeof(bp->dsn);
14887 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14888 
14889 	return 0;
14890 }
14891 
14892 static const struct net_device_ops bnxt_netdev_ops = {
14893 	.ndo_open		= bnxt_open,
14894 	.ndo_start_xmit		= bnxt_start_xmit,
14895 	.ndo_stop		= bnxt_close,
14896 	.ndo_get_stats64	= bnxt_get_stats64,
14897 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14898 	.ndo_eth_ioctl		= bnxt_ioctl,
14899 	.ndo_validate_addr	= eth_validate_addr,
14900 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14901 	.ndo_change_mtu		= bnxt_change_mtu,
14902 	.ndo_fix_features	= bnxt_fix_features,
14903 	.ndo_set_features	= bnxt_set_features,
14904 	.ndo_features_check	= bnxt_features_check,
14905 	.ndo_tx_timeout		= bnxt_tx_timeout,
14906 #ifdef CONFIG_BNXT_SRIOV
14907 	.ndo_get_vf_config	= bnxt_get_vf_config,
14908 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14909 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14910 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14911 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14912 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14913 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14914 #endif
14915 	.ndo_setup_tc           = bnxt_setup_tc,
14916 #ifdef CONFIG_RFS_ACCEL
14917 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14918 #endif
14919 	.ndo_bpf		= bnxt_xdp,
14920 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14921 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14922 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14923 };
14924 
14925 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i,
14926 				    struct netdev_queue_stats_rx *stats)
14927 {
14928 	struct bnxt *bp = netdev_priv(dev);
14929 	struct bnxt_cp_ring_info *cpr;
14930 	u64 *sw;
14931 
14932 	cpr = &bp->bnapi[i]->cp_ring;
14933 	sw = cpr->stats.sw_stats;
14934 
14935 	stats->packets = 0;
14936 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
14937 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
14938 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
14939 
14940 	stats->bytes = 0;
14941 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
14942 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
14943 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
14944 
14945 	stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards;
14946 }
14947 
14948 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i,
14949 				    struct netdev_queue_stats_tx *stats)
14950 {
14951 	struct bnxt *bp = netdev_priv(dev);
14952 	struct bnxt_napi *bnapi;
14953 	u64 *sw;
14954 
14955 	bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi;
14956 	sw = bnapi->cp_ring.stats.sw_stats;
14957 
14958 	stats->packets = 0;
14959 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
14960 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
14961 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
14962 
14963 	stats->bytes = 0;
14964 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
14965 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
14966 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
14967 }
14968 
14969 static void bnxt_get_base_stats(struct net_device *dev,
14970 				struct netdev_queue_stats_rx *rx,
14971 				struct netdev_queue_stats_tx *tx)
14972 {
14973 	struct bnxt *bp = netdev_priv(dev);
14974 
14975 	rx->packets = bp->net_stats_prev.rx_packets;
14976 	rx->bytes = bp->net_stats_prev.rx_bytes;
14977 	rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards;
14978 
14979 	tx->packets = bp->net_stats_prev.tx_packets;
14980 	tx->bytes = bp->net_stats_prev.tx_bytes;
14981 }
14982 
14983 static const struct netdev_stat_ops bnxt_stat_ops = {
14984 	.get_queue_stats_rx	= bnxt_get_queue_stats_rx,
14985 	.get_queue_stats_tx	= bnxt_get_queue_stats_tx,
14986 	.get_base_stats		= bnxt_get_base_stats,
14987 };
14988 
14989 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
14990 {
14991 	u16 mem_size;
14992 
14993 	rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
14994 	mem_size = rxr->rx_agg_bmap_size / 8;
14995 	rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
14996 	if (!rxr->rx_agg_bmap)
14997 		return -ENOMEM;
14998 
14999 	return 0;
15000 }
15001 
15002 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx)
15003 {
15004 	struct bnxt_rx_ring_info *rxr, *clone;
15005 	struct bnxt *bp = netdev_priv(dev);
15006 	struct bnxt_ring_struct *ring;
15007 	int rc;
15008 
15009 	rxr = &bp->rx_ring[idx];
15010 	clone = qmem;
15011 	memcpy(clone, rxr, sizeof(*rxr));
15012 	bnxt_init_rx_ring_struct(bp, clone);
15013 	bnxt_reset_rx_ring_struct(bp, clone);
15014 
15015 	clone->rx_prod = 0;
15016 	clone->rx_agg_prod = 0;
15017 	clone->rx_sw_agg_prod = 0;
15018 	clone->rx_next_cons = 0;
15019 
15020 	rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid);
15021 	if (rc)
15022 		return rc;
15023 
15024 	rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0);
15025 	if (rc < 0)
15026 		goto err_page_pool_destroy;
15027 
15028 	rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq,
15029 					MEM_TYPE_PAGE_POOL,
15030 					clone->page_pool);
15031 	if (rc)
15032 		goto err_rxq_info_unreg;
15033 
15034 	ring = &clone->rx_ring_struct;
15035 	rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15036 	if (rc)
15037 		goto err_free_rx_ring;
15038 
15039 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
15040 		ring = &clone->rx_agg_ring_struct;
15041 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15042 		if (rc)
15043 			goto err_free_rx_agg_ring;
15044 
15045 		rc = bnxt_alloc_rx_agg_bmap(bp, clone);
15046 		if (rc)
15047 			goto err_free_rx_agg_ring;
15048 	}
15049 
15050 	bnxt_init_one_rx_ring_rxbd(bp, clone);
15051 	bnxt_init_one_rx_agg_ring_rxbd(bp, clone);
15052 
15053 	bnxt_alloc_one_rx_ring_skb(bp, clone, idx);
15054 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15055 		bnxt_alloc_one_rx_ring_page(bp, clone, idx);
15056 
15057 	return 0;
15058 
15059 err_free_rx_agg_ring:
15060 	bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem);
15061 err_free_rx_ring:
15062 	bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem);
15063 err_rxq_info_unreg:
15064 	xdp_rxq_info_unreg(&clone->xdp_rxq);
15065 err_page_pool_destroy:
15066 	clone->page_pool->p.napi = NULL;
15067 	page_pool_destroy(clone->page_pool);
15068 	clone->page_pool = NULL;
15069 	return rc;
15070 }
15071 
15072 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem)
15073 {
15074 	struct bnxt_rx_ring_info *rxr = qmem;
15075 	struct bnxt *bp = netdev_priv(dev);
15076 	struct bnxt_ring_struct *ring;
15077 
15078 	bnxt_free_one_rx_ring(bp, rxr);
15079 	bnxt_free_one_rx_agg_ring(bp, rxr);
15080 
15081 	xdp_rxq_info_unreg(&rxr->xdp_rxq);
15082 
15083 	page_pool_destroy(rxr->page_pool);
15084 	rxr->page_pool = NULL;
15085 
15086 	ring = &rxr->rx_ring_struct;
15087 	bnxt_free_ring(bp, &ring->ring_mem);
15088 
15089 	ring = &rxr->rx_agg_ring_struct;
15090 	bnxt_free_ring(bp, &ring->ring_mem);
15091 
15092 	kfree(rxr->rx_agg_bmap);
15093 	rxr->rx_agg_bmap = NULL;
15094 }
15095 
15096 static void bnxt_copy_rx_ring(struct bnxt *bp,
15097 			      struct bnxt_rx_ring_info *dst,
15098 			      struct bnxt_rx_ring_info *src)
15099 {
15100 	struct bnxt_ring_mem_info *dst_rmem, *src_rmem;
15101 	struct bnxt_ring_struct *dst_ring, *src_ring;
15102 	int i;
15103 
15104 	dst_ring = &dst->rx_ring_struct;
15105 	dst_rmem = &dst_ring->ring_mem;
15106 	src_ring = &src->rx_ring_struct;
15107 	src_rmem = &src_ring->ring_mem;
15108 
15109 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15110 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15111 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15112 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15113 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15114 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15115 
15116 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15117 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15118 	*dst_rmem->vmem = *src_rmem->vmem;
15119 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15120 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15121 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15122 	}
15123 
15124 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
15125 		return;
15126 
15127 	dst_ring = &dst->rx_agg_ring_struct;
15128 	dst_rmem = &dst_ring->ring_mem;
15129 	src_ring = &src->rx_agg_ring_struct;
15130 	src_rmem = &src_ring->ring_mem;
15131 
15132 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15133 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15134 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15135 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15136 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15137 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15138 	WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size);
15139 
15140 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15141 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15142 	*dst_rmem->vmem = *src_rmem->vmem;
15143 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15144 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15145 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15146 	}
15147 
15148 	dst->rx_agg_bmap = src->rx_agg_bmap;
15149 }
15150 
15151 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx)
15152 {
15153 	struct bnxt *bp = netdev_priv(dev);
15154 	struct bnxt_rx_ring_info *rxr, *clone;
15155 	struct bnxt_cp_ring_info *cpr;
15156 	int rc;
15157 
15158 	rxr = &bp->rx_ring[idx];
15159 	clone = qmem;
15160 
15161 	rxr->rx_prod = clone->rx_prod;
15162 	rxr->rx_agg_prod = clone->rx_agg_prod;
15163 	rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod;
15164 	rxr->rx_next_cons = clone->rx_next_cons;
15165 	rxr->page_pool = clone->page_pool;
15166 	rxr->xdp_rxq = clone->xdp_rxq;
15167 
15168 	bnxt_copy_rx_ring(bp, rxr, clone);
15169 
15170 	rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
15171 	if (rc)
15172 		return rc;
15173 	rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr);
15174 	if (rc)
15175 		goto err_free_hwrm_rx_ring;
15176 
15177 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
15178 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15179 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
15180 
15181 	napi_enable(&rxr->bnapi->napi);
15182 
15183 	cpr = &rxr->bnapi->cp_ring;
15184 	cpr->sw_stats->rx.rx_resets++;
15185 
15186 	return 0;
15187 
15188 err_free_hwrm_rx_ring:
15189 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15190 	return rc;
15191 }
15192 
15193 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx)
15194 {
15195 	struct bnxt *bp = netdev_priv(dev);
15196 	struct bnxt_rx_ring_info *rxr;
15197 
15198 	rxr = &bp->rx_ring[idx];
15199 	napi_disable(&rxr->bnapi->napi);
15200 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15201 	bnxt_hwrm_rx_agg_ring_free(bp, rxr, false);
15202 	rxr->rx_next_cons = 0;
15203 	page_pool_disable_direct_recycling(rxr->page_pool);
15204 
15205 	memcpy(qmem, rxr, sizeof(*rxr));
15206 	bnxt_init_rx_ring_struct(bp, qmem);
15207 
15208 	return 0;
15209 }
15210 
15211 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = {
15212 	.ndo_queue_mem_size	= sizeof(struct bnxt_rx_ring_info),
15213 	.ndo_queue_mem_alloc	= bnxt_queue_mem_alloc,
15214 	.ndo_queue_mem_free	= bnxt_queue_mem_free,
15215 	.ndo_queue_start	= bnxt_queue_start,
15216 	.ndo_queue_stop		= bnxt_queue_stop,
15217 };
15218 
15219 static void bnxt_remove_one(struct pci_dev *pdev)
15220 {
15221 	struct net_device *dev = pci_get_drvdata(pdev);
15222 	struct bnxt *bp = netdev_priv(dev);
15223 
15224 	if (BNXT_PF(bp))
15225 		bnxt_sriov_disable(bp);
15226 
15227 	bnxt_rdma_aux_device_del(bp);
15228 
15229 	bnxt_ptp_clear(bp);
15230 	unregister_netdev(dev);
15231 
15232 	bnxt_rdma_aux_device_uninit(bp);
15233 
15234 	bnxt_free_l2_filters(bp, true);
15235 	bnxt_free_ntp_fltrs(bp, true);
15236 	WARN_ON(bp->num_rss_ctx);
15237 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
15238 	/* Flush any pending tasks */
15239 	cancel_work_sync(&bp->sp_task);
15240 	cancel_delayed_work_sync(&bp->fw_reset_task);
15241 	bp->sp_event = 0;
15242 
15243 	bnxt_dl_fw_reporters_destroy(bp);
15244 	bnxt_dl_unregister(bp);
15245 	bnxt_shutdown_tc(bp);
15246 
15247 	bnxt_clear_int_mode(bp);
15248 	bnxt_hwrm_func_drv_unrgtr(bp);
15249 	bnxt_free_hwrm_resources(bp);
15250 	bnxt_hwmon_uninit(bp);
15251 	bnxt_ethtool_free(bp);
15252 	bnxt_dcb_free(bp);
15253 	kfree(bp->ptp_cfg);
15254 	bp->ptp_cfg = NULL;
15255 	kfree(bp->fw_health);
15256 	bp->fw_health = NULL;
15257 	bnxt_cleanup_pci(bp);
15258 	bnxt_free_ctx_mem(bp);
15259 	kfree(bp->rss_indir_tbl);
15260 	bp->rss_indir_tbl = NULL;
15261 	bnxt_free_port_stats(bp);
15262 	free_netdev(dev);
15263 }
15264 
15265 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
15266 {
15267 	int rc = 0;
15268 	struct bnxt_link_info *link_info = &bp->link_info;
15269 
15270 	bp->phy_flags = 0;
15271 	rc = bnxt_hwrm_phy_qcaps(bp);
15272 	if (rc) {
15273 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
15274 			   rc);
15275 		return rc;
15276 	}
15277 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
15278 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
15279 	else
15280 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
15281 	if (!fw_dflt)
15282 		return 0;
15283 
15284 	mutex_lock(&bp->link_lock);
15285 	rc = bnxt_update_link(bp, false);
15286 	if (rc) {
15287 		mutex_unlock(&bp->link_lock);
15288 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
15289 			   rc);
15290 		return rc;
15291 	}
15292 
15293 	/* Older firmware does not have supported_auto_speeds, so assume
15294 	 * that all supported speeds can be autonegotiated.
15295 	 */
15296 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
15297 		link_info->support_auto_speeds = link_info->support_speeds;
15298 
15299 	bnxt_init_ethtool_link_settings(bp);
15300 	mutex_unlock(&bp->link_lock);
15301 	return 0;
15302 }
15303 
15304 static int bnxt_get_max_irq(struct pci_dev *pdev)
15305 {
15306 	u16 ctrl;
15307 
15308 	if (!pdev->msix_cap)
15309 		return 1;
15310 
15311 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
15312 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
15313 }
15314 
15315 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15316 				int *max_cp)
15317 {
15318 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
15319 	int max_ring_grps = 0, max_irq;
15320 
15321 	*max_tx = hw_resc->max_tx_rings;
15322 	*max_rx = hw_resc->max_rx_rings;
15323 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
15324 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
15325 			bnxt_get_ulp_msix_num_in_use(bp),
15326 			hw_resc->max_stat_ctxs -
15327 			bnxt_get_ulp_stat_ctxs_in_use(bp));
15328 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
15329 		*max_cp = min_t(int, *max_cp, max_irq);
15330 	max_ring_grps = hw_resc->max_hw_ring_grps;
15331 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
15332 		*max_cp -= 1;
15333 		*max_rx -= 2;
15334 	}
15335 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15336 		*max_rx >>= 1;
15337 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
15338 		int rc;
15339 
15340 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
15341 		if (rc) {
15342 			*max_rx = 0;
15343 			*max_tx = 0;
15344 		}
15345 		/* On P5 chips, max_cp output param should be available NQs */
15346 		*max_cp = max_irq;
15347 	}
15348 	*max_rx = min_t(int, *max_rx, max_ring_grps);
15349 }
15350 
15351 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
15352 {
15353 	int rx, tx, cp;
15354 
15355 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
15356 	*max_rx = rx;
15357 	*max_tx = tx;
15358 	if (!rx || !tx || !cp)
15359 		return -ENOMEM;
15360 
15361 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
15362 }
15363 
15364 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15365 			       bool shared)
15366 {
15367 	int rc;
15368 
15369 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15370 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
15371 		/* Not enough rings, try disabling agg rings. */
15372 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
15373 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15374 		if (rc) {
15375 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
15376 			bp->flags |= BNXT_FLAG_AGG_RINGS;
15377 			return rc;
15378 		}
15379 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
15380 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15381 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15382 		bnxt_set_ring_params(bp);
15383 	}
15384 
15385 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
15386 		int max_cp, max_stat, max_irq;
15387 
15388 		/* Reserve minimum resources for RoCE */
15389 		max_cp = bnxt_get_max_func_cp_rings(bp);
15390 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
15391 		max_irq = bnxt_get_max_func_irqs(bp);
15392 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
15393 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
15394 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
15395 			return 0;
15396 
15397 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
15398 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
15399 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
15400 		max_cp = min_t(int, max_cp, max_irq);
15401 		max_cp = min_t(int, max_cp, max_stat);
15402 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
15403 		if (rc)
15404 			rc = 0;
15405 	}
15406 	return rc;
15407 }
15408 
15409 /* In initial default shared ring setting, each shared ring must have a
15410  * RX/TX ring pair.
15411  */
15412 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
15413 {
15414 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
15415 	bp->rx_nr_rings = bp->cp_nr_rings;
15416 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
15417 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15418 }
15419 
15420 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
15421 {
15422 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
15423 	int avail_msix;
15424 
15425 	if (!bnxt_can_reserve_rings(bp))
15426 		return 0;
15427 
15428 	if (sh)
15429 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
15430 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
15431 	/* Reduce default rings on multi-port cards so that total default
15432 	 * rings do not exceed CPU count.
15433 	 */
15434 	if (bp->port_count > 1) {
15435 		int max_rings =
15436 			max_t(int, num_online_cpus() / bp->port_count, 1);
15437 
15438 		dflt_rings = min_t(int, dflt_rings, max_rings);
15439 	}
15440 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
15441 	if (rc)
15442 		return rc;
15443 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
15444 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
15445 	if (sh)
15446 		bnxt_trim_dflt_sh_rings(bp);
15447 	else
15448 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
15449 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15450 
15451 	avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings;
15452 	if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) {
15453 		int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want);
15454 
15455 		bnxt_set_ulp_msix_num(bp, ulp_num_msix);
15456 		bnxt_set_dflt_ulp_stat_ctxs(bp);
15457 	}
15458 
15459 	rc = __bnxt_reserve_rings(bp);
15460 	if (rc && rc != -ENODEV)
15461 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
15462 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15463 	if (sh)
15464 		bnxt_trim_dflt_sh_rings(bp);
15465 
15466 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
15467 	if (bnxt_need_reserve_rings(bp)) {
15468 		rc = __bnxt_reserve_rings(bp);
15469 		if (rc && rc != -ENODEV)
15470 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
15471 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15472 	}
15473 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
15474 		bp->rx_nr_rings++;
15475 		bp->cp_nr_rings++;
15476 	}
15477 	if (rc) {
15478 		bp->tx_nr_rings = 0;
15479 		bp->rx_nr_rings = 0;
15480 	}
15481 	return rc;
15482 }
15483 
15484 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
15485 {
15486 	int rc;
15487 
15488 	if (bp->tx_nr_rings)
15489 		return 0;
15490 
15491 	bnxt_ulp_irq_stop(bp);
15492 	bnxt_clear_int_mode(bp);
15493 	rc = bnxt_set_dflt_rings(bp, true);
15494 	if (rc) {
15495 		if (BNXT_VF(bp) && rc == -ENODEV)
15496 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15497 		else
15498 			netdev_err(bp->dev, "Not enough rings available.\n");
15499 		goto init_dflt_ring_err;
15500 	}
15501 	rc = bnxt_init_int_mode(bp);
15502 	if (rc)
15503 		goto init_dflt_ring_err;
15504 
15505 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15506 
15507 	bnxt_set_dflt_rfs(bp);
15508 
15509 init_dflt_ring_err:
15510 	bnxt_ulp_irq_restart(bp, rc);
15511 	return rc;
15512 }
15513 
15514 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
15515 {
15516 	int rc;
15517 
15518 	ASSERT_RTNL();
15519 	bnxt_hwrm_func_qcaps(bp);
15520 
15521 	if (netif_running(bp->dev))
15522 		__bnxt_close_nic(bp, true, false);
15523 
15524 	bnxt_ulp_irq_stop(bp);
15525 	bnxt_clear_int_mode(bp);
15526 	rc = bnxt_init_int_mode(bp);
15527 	bnxt_ulp_irq_restart(bp, rc);
15528 
15529 	if (netif_running(bp->dev)) {
15530 		if (rc)
15531 			dev_close(bp->dev);
15532 		else
15533 			rc = bnxt_open_nic(bp, true, false);
15534 	}
15535 
15536 	return rc;
15537 }
15538 
15539 static int bnxt_init_mac_addr(struct bnxt *bp)
15540 {
15541 	int rc = 0;
15542 
15543 	if (BNXT_PF(bp)) {
15544 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
15545 	} else {
15546 #ifdef CONFIG_BNXT_SRIOV
15547 		struct bnxt_vf_info *vf = &bp->vf;
15548 		bool strict_approval = true;
15549 
15550 		if (is_valid_ether_addr(vf->mac_addr)) {
15551 			/* overwrite netdev dev_addr with admin VF MAC */
15552 			eth_hw_addr_set(bp->dev, vf->mac_addr);
15553 			/* Older PF driver or firmware may not approve this
15554 			 * correctly.
15555 			 */
15556 			strict_approval = false;
15557 		} else {
15558 			eth_hw_addr_random(bp->dev);
15559 		}
15560 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
15561 #endif
15562 	}
15563 	return rc;
15564 }
15565 
15566 static void bnxt_vpd_read_info(struct bnxt *bp)
15567 {
15568 	struct pci_dev *pdev = bp->pdev;
15569 	unsigned int vpd_size, kw_len;
15570 	int pos, size;
15571 	u8 *vpd_data;
15572 
15573 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
15574 	if (IS_ERR(vpd_data)) {
15575 		pci_warn(pdev, "Unable to read VPD\n");
15576 		return;
15577 	}
15578 
15579 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15580 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
15581 	if (pos < 0)
15582 		goto read_sn;
15583 
15584 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15585 	memcpy(bp->board_partno, &vpd_data[pos], size);
15586 
15587 read_sn:
15588 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15589 					   PCI_VPD_RO_KEYWORD_SERIALNO,
15590 					   &kw_len);
15591 	if (pos < 0)
15592 		goto exit;
15593 
15594 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15595 	memcpy(bp->board_serialno, &vpd_data[pos], size);
15596 exit:
15597 	kfree(vpd_data);
15598 }
15599 
15600 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
15601 {
15602 	struct pci_dev *pdev = bp->pdev;
15603 	u64 qword;
15604 
15605 	qword = pci_get_dsn(pdev);
15606 	if (!qword) {
15607 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
15608 		return -EOPNOTSUPP;
15609 	}
15610 
15611 	put_unaligned_le64(qword, dsn);
15612 
15613 	bp->flags |= BNXT_FLAG_DSN_VALID;
15614 	return 0;
15615 }
15616 
15617 static int bnxt_map_db_bar(struct bnxt *bp)
15618 {
15619 	if (!bp->db_size)
15620 		return -ENODEV;
15621 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
15622 	if (!bp->bar1)
15623 		return -ENOMEM;
15624 	return 0;
15625 }
15626 
15627 void bnxt_print_device_info(struct bnxt *bp)
15628 {
15629 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
15630 		    board_info[bp->board_idx].name,
15631 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
15632 
15633 	pcie_print_link_status(bp->pdev);
15634 }
15635 
15636 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
15637 {
15638 	struct bnxt_hw_resc *hw_resc;
15639 	struct net_device *dev;
15640 	struct bnxt *bp;
15641 	int rc, max_irqs;
15642 
15643 	if (pci_is_bridge(pdev))
15644 		return -ENODEV;
15645 
15646 	/* Clear any pending DMA transactions from crash kernel
15647 	 * while loading driver in capture kernel.
15648 	 */
15649 	if (is_kdump_kernel()) {
15650 		pci_clear_master(pdev);
15651 		pcie_flr(pdev);
15652 	}
15653 
15654 	max_irqs = bnxt_get_max_irq(pdev);
15655 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
15656 				 max_irqs);
15657 	if (!dev)
15658 		return -ENOMEM;
15659 
15660 	bp = netdev_priv(dev);
15661 	bp->board_idx = ent->driver_data;
15662 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
15663 	bnxt_set_max_func_irqs(bp, max_irqs);
15664 
15665 	if (bnxt_vf_pciid(bp->board_idx))
15666 		bp->flags |= BNXT_FLAG_VF;
15667 
15668 	/* No devlink port registration in case of a VF */
15669 	if (BNXT_PF(bp))
15670 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
15671 
15672 	if (pdev->msix_cap)
15673 		bp->flags |= BNXT_FLAG_MSIX_CAP;
15674 
15675 	rc = bnxt_init_board(pdev, dev);
15676 	if (rc < 0)
15677 		goto init_err_free;
15678 
15679 	dev->netdev_ops = &bnxt_netdev_ops;
15680 	dev->stat_ops = &bnxt_stat_ops;
15681 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
15682 	dev->ethtool_ops = &bnxt_ethtool_ops;
15683 	dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops;
15684 	pci_set_drvdata(pdev, dev);
15685 
15686 	rc = bnxt_alloc_hwrm_resources(bp);
15687 	if (rc)
15688 		goto init_err_pci_clean;
15689 
15690 	mutex_init(&bp->hwrm_cmd_lock);
15691 	mutex_init(&bp->link_lock);
15692 
15693 	rc = bnxt_fw_init_one_p1(bp);
15694 	if (rc)
15695 		goto init_err_pci_clean;
15696 
15697 	if (BNXT_PF(bp))
15698 		bnxt_vpd_read_info(bp);
15699 
15700 	if (BNXT_CHIP_P5_PLUS(bp)) {
15701 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
15702 		if (BNXT_CHIP_P7(bp))
15703 			bp->flags |= BNXT_FLAG_CHIP_P7;
15704 	}
15705 
15706 	rc = bnxt_alloc_rss_indir_tbl(bp);
15707 	if (rc)
15708 		goto init_err_pci_clean;
15709 
15710 	rc = bnxt_fw_init_one_p2(bp);
15711 	if (rc)
15712 		goto init_err_pci_clean;
15713 
15714 	rc = bnxt_map_db_bar(bp);
15715 	if (rc) {
15716 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
15717 			rc);
15718 		goto init_err_pci_clean;
15719 	}
15720 
15721 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15722 			   NETIF_F_TSO | NETIF_F_TSO6 |
15723 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15724 			   NETIF_F_GSO_IPXIP4 |
15725 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15726 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
15727 			   NETIF_F_RXCSUM | NETIF_F_GRO;
15728 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15729 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
15730 
15731 	if (BNXT_SUPPORTS_TPA(bp))
15732 		dev->hw_features |= NETIF_F_LRO;
15733 
15734 	dev->hw_enc_features =
15735 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15736 			NETIF_F_TSO | NETIF_F_TSO6 |
15737 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15738 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15739 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
15740 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15741 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
15742 	if (bp->flags & BNXT_FLAG_CHIP_P7)
15743 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
15744 	else
15745 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
15746 
15747 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
15748 				    NETIF_F_GSO_GRE_CSUM;
15749 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
15750 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
15751 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
15752 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
15753 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
15754 	if (BNXT_SUPPORTS_TPA(bp))
15755 		dev->hw_features |= NETIF_F_GRO_HW;
15756 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
15757 	if (dev->features & NETIF_F_GRO_HW)
15758 		dev->features &= ~NETIF_F_LRO;
15759 	dev->priv_flags |= IFF_UNICAST_FLT;
15760 
15761 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
15762 	if (bp->tso_max_segs)
15763 		netif_set_tso_max_segs(dev, bp->tso_max_segs);
15764 
15765 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
15766 			    NETDEV_XDP_ACT_RX_SG;
15767 
15768 #ifdef CONFIG_BNXT_SRIOV
15769 	init_waitqueue_head(&bp->sriov_cfg_wait);
15770 #endif
15771 	if (BNXT_SUPPORTS_TPA(bp)) {
15772 		bp->gro_func = bnxt_gro_func_5730x;
15773 		if (BNXT_CHIP_P4(bp))
15774 			bp->gro_func = bnxt_gro_func_5731x;
15775 		else if (BNXT_CHIP_P5_PLUS(bp))
15776 			bp->gro_func = bnxt_gro_func_5750x;
15777 	}
15778 	if (!BNXT_CHIP_P4_PLUS(bp))
15779 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
15780 
15781 	rc = bnxt_init_mac_addr(bp);
15782 	if (rc) {
15783 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
15784 		rc = -EADDRNOTAVAIL;
15785 		goto init_err_pci_clean;
15786 	}
15787 
15788 	if (BNXT_PF(bp)) {
15789 		/* Read the adapter's DSN to use as the eswitch switch_id */
15790 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
15791 	}
15792 
15793 	/* MTU range: 60 - FW defined max */
15794 	dev->min_mtu = ETH_ZLEN;
15795 	dev->max_mtu = bp->max_mtu;
15796 
15797 	rc = bnxt_probe_phy(bp, true);
15798 	if (rc)
15799 		goto init_err_pci_clean;
15800 
15801 	hw_resc = &bp->hw_resc;
15802 	bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows +
15803 		       BNXT_L2_FLTR_MAX_FLTR;
15804 	/* Older firmware may not report these filters properly */
15805 	if (bp->max_fltr < BNXT_MAX_FLTR)
15806 		bp->max_fltr = BNXT_MAX_FLTR;
15807 	bnxt_init_l2_fltr_tbl(bp);
15808 	bnxt_set_rx_skb_mode(bp, false);
15809 	bnxt_set_tpa_flags(bp);
15810 	bnxt_set_ring_params(bp);
15811 	bnxt_rdma_aux_device_init(bp);
15812 	rc = bnxt_set_dflt_rings(bp, true);
15813 	if (rc) {
15814 		if (BNXT_VF(bp) && rc == -ENODEV) {
15815 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15816 		} else {
15817 			netdev_err(bp->dev, "Not enough rings available.\n");
15818 			rc = -ENOMEM;
15819 		}
15820 		goto init_err_pci_clean;
15821 	}
15822 
15823 	bnxt_fw_init_one_p3(bp);
15824 
15825 	bnxt_init_dflt_coal(bp);
15826 
15827 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
15828 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
15829 
15830 	rc = bnxt_init_int_mode(bp);
15831 	if (rc)
15832 		goto init_err_pci_clean;
15833 
15834 	/* No TC has been set yet and rings may have been trimmed due to
15835 	 * limited MSIX, so we re-initialize the TX rings per TC.
15836 	 */
15837 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15838 
15839 	if (BNXT_PF(bp)) {
15840 		if (!bnxt_pf_wq) {
15841 			bnxt_pf_wq =
15842 				create_singlethread_workqueue("bnxt_pf_wq");
15843 			if (!bnxt_pf_wq) {
15844 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
15845 				rc = -ENOMEM;
15846 				goto init_err_pci_clean;
15847 			}
15848 		}
15849 		rc = bnxt_init_tc(bp);
15850 		if (rc)
15851 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
15852 				   rc);
15853 	}
15854 
15855 	bnxt_inv_fw_health_reg(bp);
15856 	rc = bnxt_dl_register(bp);
15857 	if (rc)
15858 		goto init_err_dl;
15859 
15860 	INIT_LIST_HEAD(&bp->usr_fltr_list);
15861 
15862 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
15863 		bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX;
15864 
15865 	rc = register_netdev(dev);
15866 	if (rc)
15867 		goto init_err_cleanup;
15868 
15869 	bnxt_dl_fw_reporters_create(bp);
15870 
15871 	bnxt_rdma_aux_device_add(bp);
15872 
15873 	bnxt_print_device_info(bp);
15874 
15875 	pci_save_state(pdev);
15876 
15877 	return 0;
15878 init_err_cleanup:
15879 	bnxt_rdma_aux_device_uninit(bp);
15880 	bnxt_dl_unregister(bp);
15881 init_err_dl:
15882 	bnxt_shutdown_tc(bp);
15883 	bnxt_clear_int_mode(bp);
15884 
15885 init_err_pci_clean:
15886 	bnxt_hwrm_func_drv_unrgtr(bp);
15887 	bnxt_free_hwrm_resources(bp);
15888 	bnxt_hwmon_uninit(bp);
15889 	bnxt_ethtool_free(bp);
15890 	bnxt_ptp_clear(bp);
15891 	kfree(bp->ptp_cfg);
15892 	bp->ptp_cfg = NULL;
15893 	kfree(bp->fw_health);
15894 	bp->fw_health = NULL;
15895 	bnxt_cleanup_pci(bp);
15896 	bnxt_free_ctx_mem(bp);
15897 	kfree(bp->rss_indir_tbl);
15898 	bp->rss_indir_tbl = NULL;
15899 
15900 init_err_free:
15901 	free_netdev(dev);
15902 	return rc;
15903 }
15904 
15905 static void bnxt_shutdown(struct pci_dev *pdev)
15906 {
15907 	struct net_device *dev = pci_get_drvdata(pdev);
15908 	struct bnxt *bp;
15909 
15910 	if (!dev)
15911 		return;
15912 
15913 	rtnl_lock();
15914 	bp = netdev_priv(dev);
15915 	if (!bp)
15916 		goto shutdown_exit;
15917 
15918 	if (netif_running(dev))
15919 		dev_close(dev);
15920 
15921 	bnxt_clear_int_mode(bp);
15922 	pci_disable_device(pdev);
15923 
15924 	if (system_state == SYSTEM_POWER_OFF) {
15925 		pci_wake_from_d3(pdev, bp->wol);
15926 		pci_set_power_state(pdev, PCI_D3hot);
15927 	}
15928 
15929 shutdown_exit:
15930 	rtnl_unlock();
15931 }
15932 
15933 #ifdef CONFIG_PM_SLEEP
15934 static int bnxt_suspend(struct device *device)
15935 {
15936 	struct net_device *dev = dev_get_drvdata(device);
15937 	struct bnxt *bp = netdev_priv(dev);
15938 	int rc = 0;
15939 
15940 	bnxt_ulp_stop(bp);
15941 
15942 	rtnl_lock();
15943 	if (netif_running(dev)) {
15944 		netif_device_detach(dev);
15945 		rc = bnxt_close(dev);
15946 	}
15947 	bnxt_hwrm_func_drv_unrgtr(bp);
15948 	pci_disable_device(bp->pdev);
15949 	bnxt_free_ctx_mem(bp);
15950 	rtnl_unlock();
15951 	return rc;
15952 }
15953 
15954 static int bnxt_resume(struct device *device)
15955 {
15956 	struct net_device *dev = dev_get_drvdata(device);
15957 	struct bnxt *bp = netdev_priv(dev);
15958 	int rc = 0;
15959 
15960 	rtnl_lock();
15961 	rc = pci_enable_device(bp->pdev);
15962 	if (rc) {
15963 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
15964 			   rc);
15965 		goto resume_exit;
15966 	}
15967 	pci_set_master(bp->pdev);
15968 	if (bnxt_hwrm_ver_get(bp)) {
15969 		rc = -ENODEV;
15970 		goto resume_exit;
15971 	}
15972 	rc = bnxt_hwrm_func_reset(bp);
15973 	if (rc) {
15974 		rc = -EBUSY;
15975 		goto resume_exit;
15976 	}
15977 
15978 	rc = bnxt_hwrm_func_qcaps(bp);
15979 	if (rc)
15980 		goto resume_exit;
15981 
15982 	bnxt_clear_reservations(bp, true);
15983 
15984 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
15985 		rc = -ENODEV;
15986 		goto resume_exit;
15987 	}
15988 
15989 	bnxt_get_wol_settings(bp);
15990 	if (netif_running(dev)) {
15991 		rc = bnxt_open(dev);
15992 		if (!rc)
15993 			netif_device_attach(dev);
15994 	}
15995 
15996 resume_exit:
15997 	rtnl_unlock();
15998 	bnxt_ulp_start(bp, rc);
15999 	if (!rc)
16000 		bnxt_reenable_sriov(bp);
16001 	return rc;
16002 }
16003 
16004 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
16005 #define BNXT_PM_OPS (&bnxt_pm_ops)
16006 
16007 #else
16008 
16009 #define BNXT_PM_OPS NULL
16010 
16011 #endif /* CONFIG_PM_SLEEP */
16012 
16013 /**
16014  * bnxt_io_error_detected - called when PCI error is detected
16015  * @pdev: Pointer to PCI device
16016  * @state: The current pci connection state
16017  *
16018  * This function is called after a PCI bus error affecting
16019  * this device has been detected.
16020  */
16021 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
16022 					       pci_channel_state_t state)
16023 {
16024 	struct net_device *netdev = pci_get_drvdata(pdev);
16025 	struct bnxt *bp = netdev_priv(netdev);
16026 	bool abort = false;
16027 
16028 	netdev_info(netdev, "PCI I/O error detected\n");
16029 
16030 	bnxt_ulp_stop(bp);
16031 
16032 	rtnl_lock();
16033 	netif_device_detach(netdev);
16034 
16035 	if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
16036 		netdev_err(bp->dev, "Firmware reset already in progress\n");
16037 		abort = true;
16038 	}
16039 
16040 	if (abort || state == pci_channel_io_perm_failure) {
16041 		rtnl_unlock();
16042 		return PCI_ERS_RESULT_DISCONNECT;
16043 	}
16044 
16045 	/* Link is not reliable anymore if state is pci_channel_io_frozen
16046 	 * so we disable bus master to prevent any potential bad DMAs before
16047 	 * freeing kernel memory.
16048 	 */
16049 	if (state == pci_channel_io_frozen) {
16050 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
16051 		bnxt_fw_fatal_close(bp);
16052 	}
16053 
16054 	if (netif_running(netdev))
16055 		__bnxt_close_nic(bp, true, true);
16056 
16057 	if (pci_is_enabled(pdev))
16058 		pci_disable_device(pdev);
16059 	bnxt_free_ctx_mem(bp);
16060 	rtnl_unlock();
16061 
16062 	/* Request a slot slot reset. */
16063 	return PCI_ERS_RESULT_NEED_RESET;
16064 }
16065 
16066 /**
16067  * bnxt_io_slot_reset - called after the pci bus has been reset.
16068  * @pdev: Pointer to PCI device
16069  *
16070  * Restart the card from scratch, as if from a cold-boot.
16071  * At this point, the card has exprienced a hard reset,
16072  * followed by fixups by BIOS, and has its config space
16073  * set up identically to what it was at cold boot.
16074  */
16075 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
16076 {
16077 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
16078 	struct net_device *netdev = pci_get_drvdata(pdev);
16079 	struct bnxt *bp = netdev_priv(netdev);
16080 	int retry = 0;
16081 	int err = 0;
16082 	int off;
16083 
16084 	netdev_info(bp->dev, "PCI Slot Reset\n");
16085 
16086 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
16087 	    test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state))
16088 		msleep(900);
16089 
16090 	rtnl_lock();
16091 
16092 	if (pci_enable_device(pdev)) {
16093 		dev_err(&pdev->dev,
16094 			"Cannot re-enable PCI device after reset.\n");
16095 	} else {
16096 		pci_set_master(pdev);
16097 		/* Upon fatal error, our device internal logic that latches to
16098 		 * BAR value is getting reset and will restore only upon
16099 		 * rewritting the BARs.
16100 		 *
16101 		 * As pci_restore_state() does not re-write the BARs if the
16102 		 * value is same as saved value earlier, driver needs to
16103 		 * write the BARs to 0 to force restore, in case of fatal error.
16104 		 */
16105 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
16106 				       &bp->state)) {
16107 			for (off = PCI_BASE_ADDRESS_0;
16108 			     off <= PCI_BASE_ADDRESS_5; off += 4)
16109 				pci_write_config_dword(bp->pdev, off, 0);
16110 		}
16111 		pci_restore_state(pdev);
16112 		pci_save_state(pdev);
16113 
16114 		bnxt_inv_fw_health_reg(bp);
16115 		bnxt_try_map_fw_health_reg(bp);
16116 
16117 		/* In some PCIe AER scenarios, firmware may take up to
16118 		 * 10 seconds to become ready in the worst case.
16119 		 */
16120 		do {
16121 			err = bnxt_try_recover_fw(bp);
16122 			if (!err)
16123 				break;
16124 			retry++;
16125 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
16126 
16127 		if (err) {
16128 			dev_err(&pdev->dev, "Firmware not ready\n");
16129 			goto reset_exit;
16130 		}
16131 
16132 		err = bnxt_hwrm_func_reset(bp);
16133 		if (!err)
16134 			result = PCI_ERS_RESULT_RECOVERED;
16135 
16136 		bnxt_ulp_irq_stop(bp);
16137 		bnxt_clear_int_mode(bp);
16138 		err = bnxt_init_int_mode(bp);
16139 		bnxt_ulp_irq_restart(bp, err);
16140 	}
16141 
16142 reset_exit:
16143 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
16144 	bnxt_clear_reservations(bp, true);
16145 	rtnl_unlock();
16146 
16147 	return result;
16148 }
16149 
16150 /**
16151  * bnxt_io_resume - called when traffic can start flowing again.
16152  * @pdev: Pointer to PCI device
16153  *
16154  * This callback is called when the error recovery driver tells
16155  * us that its OK to resume normal operation.
16156  */
16157 static void bnxt_io_resume(struct pci_dev *pdev)
16158 {
16159 	struct net_device *netdev = pci_get_drvdata(pdev);
16160 	struct bnxt *bp = netdev_priv(netdev);
16161 	int err;
16162 
16163 	netdev_info(bp->dev, "PCI Slot Resume\n");
16164 	rtnl_lock();
16165 
16166 	err = bnxt_hwrm_func_qcaps(bp);
16167 	if (!err && netif_running(netdev))
16168 		err = bnxt_open(netdev);
16169 
16170 	if (!err)
16171 		netif_device_attach(netdev);
16172 
16173 	rtnl_unlock();
16174 	bnxt_ulp_start(bp, err);
16175 	if (!err)
16176 		bnxt_reenable_sriov(bp);
16177 }
16178 
16179 static const struct pci_error_handlers bnxt_err_handler = {
16180 	.error_detected	= bnxt_io_error_detected,
16181 	.slot_reset	= bnxt_io_slot_reset,
16182 	.resume		= bnxt_io_resume
16183 };
16184 
16185 static struct pci_driver bnxt_pci_driver = {
16186 	.name		= DRV_MODULE_NAME,
16187 	.id_table	= bnxt_pci_tbl,
16188 	.probe		= bnxt_init_one,
16189 	.remove		= bnxt_remove_one,
16190 	.shutdown	= bnxt_shutdown,
16191 	.driver.pm	= BNXT_PM_OPS,
16192 	.err_handler	= &bnxt_err_handler,
16193 #if defined(CONFIG_BNXT_SRIOV)
16194 	.sriov_configure = bnxt_sriov_configure,
16195 #endif
16196 };
16197 
16198 static int __init bnxt_init(void)
16199 {
16200 	int err;
16201 
16202 	bnxt_debug_init();
16203 	err = pci_register_driver(&bnxt_pci_driver);
16204 	if (err) {
16205 		bnxt_debug_exit();
16206 		return err;
16207 	}
16208 
16209 	return 0;
16210 }
16211 
16212 static void __exit bnxt_exit(void)
16213 {
16214 	pci_unregister_driver(&bnxt_pci_driver);
16215 	if (bnxt_pf_wq)
16216 		destroy_workqueue(bnxt_pf_wq);
16217 	bnxt_debug_exit();
16218 }
16219 
16220 module_init(bnxt_init);
16221 module_exit(bnxt_exit);
16222