1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/aer.h> 52 #include <linux/bitmap.h> 53 #include <linux/cpu_rmap.h> 54 #include <linux/cpumask.h> 55 #include <net/pkt_cls.h> 56 #include <linux/hwmon.h> 57 #include <linux/hwmon-sysfs.h> 58 #include <net/page_pool.h> 59 60 #include "bnxt_hsi.h" 61 #include "bnxt.h" 62 #include "bnxt_hwrm.h" 63 #include "bnxt_ulp.h" 64 #include "bnxt_sriov.h" 65 #include "bnxt_ethtool.h" 66 #include "bnxt_dcb.h" 67 #include "bnxt_xdp.h" 68 #include "bnxt_ptp.h" 69 #include "bnxt_vfr.h" 70 #include "bnxt_tc.h" 71 #include "bnxt_devlink.h" 72 #include "bnxt_debugfs.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 124 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 125 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 126 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 127 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 128 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 129 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 130 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 131 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 132 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 133 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 134 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 135 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 136 }; 137 138 static const struct pci_device_id bnxt_pci_tbl[] = { 139 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 140 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 141 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 142 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 143 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 144 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 145 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 146 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 148 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 149 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 150 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 154 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 159 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 160 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 161 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 162 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 163 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 167 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 173 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 174 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 175 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 176 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 177 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 183 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 184 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 185 #ifdef CONFIG_BNXT_SRIOV 186 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 187 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 188 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 189 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 190 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 191 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 192 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 193 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 207 #endif 208 { 0 } 209 }; 210 211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 212 213 static const u16 bnxt_vf_req_snif[] = { 214 HWRM_FUNC_CFG, 215 HWRM_FUNC_VF_CFG, 216 HWRM_PORT_PHY_QCFG, 217 HWRM_CFA_L2_FILTER_ALLOC, 218 }; 219 220 static const u16 bnxt_async_events_arr[] = { 221 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 222 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 223 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 224 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 225 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 226 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 228 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 229 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 230 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 231 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 232 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 233 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 234 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 235 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 236 }; 237 238 static struct workqueue_struct *bnxt_pf_wq; 239 240 static bool bnxt_vf_pciid(enum board_idx idx) 241 { 242 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 243 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 244 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 245 idx == NETXTREME_E_P5_VF_HV); 246 } 247 248 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 249 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 250 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 251 252 #define BNXT_CP_DB_IRQ_DIS(db) \ 253 writel(DB_CP_IRQ_DIS_FLAGS, db) 254 255 #define BNXT_DB_CQ(db, idx) \ 256 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 257 258 #define BNXT_DB_NQ_P5(db, idx) \ 259 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 260 (db)->doorbell) 261 262 #define BNXT_DB_CQ_ARM(db, idx) \ 263 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 264 265 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 266 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 267 (db)->doorbell) 268 269 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 270 { 271 if (bp->flags & BNXT_FLAG_CHIP_P5) 272 BNXT_DB_NQ_P5(db, idx); 273 else 274 BNXT_DB_CQ(db, idx); 275 } 276 277 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 278 { 279 if (bp->flags & BNXT_FLAG_CHIP_P5) 280 BNXT_DB_NQ_ARM_P5(db, idx); 281 else 282 BNXT_DB_CQ_ARM(db, idx); 283 } 284 285 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 286 { 287 if (bp->flags & BNXT_FLAG_CHIP_P5) 288 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 289 RING_CMP(idx), db->doorbell); 290 else 291 BNXT_DB_CQ(db, idx); 292 } 293 294 const u16 bnxt_lhint_arr[] = { 295 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 296 TX_BD_FLAGS_LHINT_512_TO_1023, 297 TX_BD_FLAGS_LHINT_1024_TO_2047, 298 TX_BD_FLAGS_LHINT_1024_TO_2047, 299 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 300 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 301 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 302 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 303 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 304 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 305 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 306 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 307 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 308 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 309 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 310 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 311 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 312 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 313 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 314 }; 315 316 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 317 { 318 struct metadata_dst *md_dst = skb_metadata_dst(skb); 319 320 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 321 return 0; 322 323 return md_dst->u.port_info.port_id; 324 } 325 326 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 327 u16 prod) 328 { 329 bnxt_db_write(bp, &txr->tx_db, prod); 330 txr->kick_pending = 0; 331 } 332 333 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 334 struct bnxt_tx_ring_info *txr, 335 struct netdev_queue *txq) 336 { 337 netif_tx_stop_queue(txq); 338 339 /* netif_tx_stop_queue() must be done before checking 340 * tx index in bnxt_tx_avail() below, because in 341 * bnxt_tx_int(), we update tx index before checking for 342 * netif_tx_queue_stopped(). 343 */ 344 smp_mb(); 345 if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) { 346 netif_tx_wake_queue(txq); 347 return false; 348 } 349 350 return true; 351 } 352 353 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 354 { 355 struct bnxt *bp = netdev_priv(dev); 356 struct tx_bd *txbd; 357 struct tx_bd_ext *txbd1; 358 struct netdev_queue *txq; 359 int i; 360 dma_addr_t mapping; 361 unsigned int length, pad = 0; 362 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 363 u16 prod, last_frag; 364 struct pci_dev *pdev = bp->pdev; 365 struct bnxt_tx_ring_info *txr; 366 struct bnxt_sw_tx_bd *tx_buf; 367 __le32 lflags = 0; 368 369 i = skb_get_queue_mapping(skb); 370 if (unlikely(i >= bp->tx_nr_rings)) { 371 dev_kfree_skb_any(skb); 372 atomic_long_inc(&dev->tx_dropped); 373 return NETDEV_TX_OK; 374 } 375 376 txq = netdev_get_tx_queue(dev, i); 377 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 378 prod = txr->tx_prod; 379 380 free_size = bnxt_tx_avail(bp, txr); 381 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 382 /* We must have raced with NAPI cleanup */ 383 if (net_ratelimit() && txr->kick_pending) 384 netif_warn(bp, tx_err, dev, 385 "bnxt: ring busy w/ flush pending!\n"); 386 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 387 return NETDEV_TX_BUSY; 388 } 389 390 length = skb->len; 391 len = skb_headlen(skb); 392 last_frag = skb_shinfo(skb)->nr_frags; 393 394 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 395 396 txbd->tx_bd_opaque = prod; 397 398 tx_buf = &txr->tx_buf_ring[prod]; 399 tx_buf->skb = skb; 400 tx_buf->nr_frags = last_frag; 401 402 vlan_tag_flags = 0; 403 cfa_action = bnxt_xmit_get_cfa_action(skb); 404 if (skb_vlan_tag_present(skb)) { 405 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 406 skb_vlan_tag_get(skb); 407 /* Currently supports 8021Q, 8021AD vlan offloads 408 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 409 */ 410 if (skb->vlan_proto == htons(ETH_P_8021Q)) 411 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 412 } 413 414 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 415 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 416 417 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 418 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 419 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 420 &ptp->tx_hdr_off)) { 421 if (vlan_tag_flags) 422 ptp->tx_hdr_off += VLAN_HLEN; 423 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 424 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 425 } else { 426 atomic_inc(&bp->ptp_cfg->tx_avail); 427 } 428 } 429 } 430 431 if (unlikely(skb->no_fcs)) 432 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 433 434 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 435 !lflags) { 436 struct tx_push_buffer *tx_push_buf = txr->tx_push; 437 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 438 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 439 void __iomem *db = txr->tx_db.doorbell; 440 void *pdata = tx_push_buf->data; 441 u64 *end; 442 int j, push_len; 443 444 /* Set COAL_NOW to be ready quickly for the next push */ 445 tx_push->tx_bd_len_flags_type = 446 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 447 TX_BD_TYPE_LONG_TX_BD | 448 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 449 TX_BD_FLAGS_COAL_NOW | 450 TX_BD_FLAGS_PACKET_END | 451 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 452 453 if (skb->ip_summed == CHECKSUM_PARTIAL) 454 tx_push1->tx_bd_hsize_lflags = 455 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 456 else 457 tx_push1->tx_bd_hsize_lflags = 0; 458 459 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 460 tx_push1->tx_bd_cfa_action = 461 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 462 463 end = pdata + length; 464 end = PTR_ALIGN(end, 8) - 1; 465 *end = 0; 466 467 skb_copy_from_linear_data(skb, pdata, len); 468 pdata += len; 469 for (j = 0; j < last_frag; j++) { 470 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 471 void *fptr; 472 473 fptr = skb_frag_address_safe(frag); 474 if (!fptr) 475 goto normal_tx; 476 477 memcpy(pdata, fptr, skb_frag_size(frag)); 478 pdata += skb_frag_size(frag); 479 } 480 481 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 482 txbd->tx_bd_haddr = txr->data_mapping; 483 prod = NEXT_TX(prod); 484 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 485 memcpy(txbd, tx_push1, sizeof(*txbd)); 486 prod = NEXT_TX(prod); 487 tx_push->doorbell = 488 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 489 txr->tx_prod = prod; 490 491 tx_buf->is_push = 1; 492 netdev_tx_sent_queue(txq, skb->len); 493 wmb(); /* Sync is_push and byte queue before pushing data */ 494 495 push_len = (length + sizeof(*tx_push) + 7) / 8; 496 if (push_len > 16) { 497 __iowrite64_copy(db, tx_push_buf, 16); 498 __iowrite32_copy(db + 4, tx_push_buf + 1, 499 (push_len - 16) << 1); 500 } else { 501 __iowrite64_copy(db, tx_push_buf, push_len); 502 } 503 504 goto tx_done; 505 } 506 507 normal_tx: 508 if (length < BNXT_MIN_PKT_SIZE) { 509 pad = BNXT_MIN_PKT_SIZE - length; 510 if (skb_pad(skb, pad)) 511 /* SKB already freed. */ 512 goto tx_kick_pending; 513 length = BNXT_MIN_PKT_SIZE; 514 } 515 516 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 517 518 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 519 goto tx_free; 520 521 dma_unmap_addr_set(tx_buf, mapping, mapping); 522 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 523 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 524 525 txbd->tx_bd_haddr = cpu_to_le64(mapping); 526 527 prod = NEXT_TX(prod); 528 txbd1 = (struct tx_bd_ext *) 529 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 530 531 txbd1->tx_bd_hsize_lflags = lflags; 532 if (skb_is_gso(skb)) { 533 u32 hdr_len; 534 535 if (skb->encapsulation) 536 hdr_len = skb_inner_network_offset(skb) + 537 skb_inner_network_header_len(skb) + 538 inner_tcp_hdrlen(skb); 539 else 540 hdr_len = skb_transport_offset(skb) + 541 tcp_hdrlen(skb); 542 543 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 544 TX_BD_FLAGS_T_IPID | 545 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 546 length = skb_shinfo(skb)->gso_size; 547 txbd1->tx_bd_mss = cpu_to_le32(length); 548 length += hdr_len; 549 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 550 txbd1->tx_bd_hsize_lflags |= 551 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 552 txbd1->tx_bd_mss = 0; 553 } 554 555 length >>= 9; 556 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 557 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 558 skb->len); 559 i = 0; 560 goto tx_dma_error; 561 } 562 flags |= bnxt_lhint_arr[length]; 563 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 564 565 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 566 txbd1->tx_bd_cfa_action = 567 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 568 for (i = 0; i < last_frag; i++) { 569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 570 571 prod = NEXT_TX(prod); 572 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 573 574 len = skb_frag_size(frag); 575 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 576 DMA_TO_DEVICE); 577 578 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 579 goto tx_dma_error; 580 581 tx_buf = &txr->tx_buf_ring[prod]; 582 dma_unmap_addr_set(tx_buf, mapping, mapping); 583 584 txbd->tx_bd_haddr = cpu_to_le64(mapping); 585 586 flags = len << TX_BD_LEN_SHIFT; 587 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 588 } 589 590 flags &= ~TX_BD_LEN; 591 txbd->tx_bd_len_flags_type = 592 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 593 TX_BD_FLAGS_PACKET_END); 594 595 netdev_tx_sent_queue(txq, skb->len); 596 597 skb_tx_timestamp(skb); 598 599 /* Sync BD data before updating doorbell */ 600 wmb(); 601 602 prod = NEXT_TX(prod); 603 txr->tx_prod = prod; 604 605 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 606 bnxt_txr_db_kick(bp, txr, prod); 607 else 608 txr->kick_pending = 1; 609 610 tx_done: 611 612 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 613 if (netdev_xmit_more() && !tx_buf->is_push) 614 bnxt_txr_db_kick(bp, txr, prod); 615 616 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 617 } 618 return NETDEV_TX_OK; 619 620 tx_dma_error: 621 if (BNXT_TX_PTP_IS_SET(lflags)) 622 atomic_inc(&bp->ptp_cfg->tx_avail); 623 624 last_frag = i; 625 626 /* start back at beginning and unmap skb */ 627 prod = txr->tx_prod; 628 tx_buf = &txr->tx_buf_ring[prod]; 629 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 630 skb_headlen(skb), DMA_TO_DEVICE); 631 prod = NEXT_TX(prod); 632 633 /* unmap remaining mapped pages */ 634 for (i = 0; i < last_frag; i++) { 635 prod = NEXT_TX(prod); 636 tx_buf = &txr->tx_buf_ring[prod]; 637 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 638 skb_frag_size(&skb_shinfo(skb)->frags[i]), 639 DMA_TO_DEVICE); 640 } 641 642 tx_free: 643 dev_kfree_skb_any(skb); 644 tx_kick_pending: 645 if (txr->kick_pending) 646 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 647 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 648 atomic_long_inc(&dev->tx_dropped); 649 return NETDEV_TX_OK; 650 } 651 652 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 653 { 654 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 655 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 656 u16 cons = txr->tx_cons; 657 struct pci_dev *pdev = bp->pdev; 658 int i; 659 unsigned int tx_bytes = 0; 660 661 for (i = 0; i < nr_pkts; i++) { 662 struct bnxt_sw_tx_bd *tx_buf; 663 bool compl_deferred = false; 664 struct sk_buff *skb; 665 int j, last; 666 667 tx_buf = &txr->tx_buf_ring[cons]; 668 cons = NEXT_TX(cons); 669 skb = tx_buf->skb; 670 tx_buf->skb = NULL; 671 672 if (tx_buf->is_push) { 673 tx_buf->is_push = 0; 674 goto next_tx_int; 675 } 676 677 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 678 skb_headlen(skb), DMA_TO_DEVICE); 679 last = tx_buf->nr_frags; 680 681 for (j = 0; j < last; j++) { 682 cons = NEXT_TX(cons); 683 tx_buf = &txr->tx_buf_ring[cons]; 684 dma_unmap_page( 685 &pdev->dev, 686 dma_unmap_addr(tx_buf, mapping), 687 skb_frag_size(&skb_shinfo(skb)->frags[j]), 688 DMA_TO_DEVICE); 689 } 690 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 691 if (bp->flags & BNXT_FLAG_CHIP_P5) { 692 if (!bnxt_get_tx_ts_p5(bp, skb)) 693 compl_deferred = true; 694 else 695 atomic_inc(&bp->ptp_cfg->tx_avail); 696 } 697 } 698 699 next_tx_int: 700 cons = NEXT_TX(cons); 701 702 tx_bytes += skb->len; 703 if (!compl_deferred) 704 dev_kfree_skb_any(skb); 705 } 706 707 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 708 txr->tx_cons = cons; 709 710 /* Need to make the tx_cons update visible to bnxt_start_xmit() 711 * before checking for netif_tx_queue_stopped(). Without the 712 * memory barrier, there is a small possibility that bnxt_start_xmit() 713 * will miss it and cause the queue to be stopped forever. 714 */ 715 smp_mb(); 716 717 if (unlikely(netif_tx_queue_stopped(txq)) && 718 bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh && 719 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 720 netif_tx_wake_queue(txq); 721 } 722 723 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 724 struct bnxt_rx_ring_info *rxr, 725 gfp_t gfp) 726 { 727 struct device *dev = &bp->pdev->dev; 728 struct page *page; 729 730 page = page_pool_dev_alloc_pages(rxr->page_pool); 731 if (!page) 732 return NULL; 733 734 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 735 DMA_ATTR_WEAK_ORDERING); 736 if (dma_mapping_error(dev, *mapping)) { 737 page_pool_recycle_direct(rxr->page_pool, page); 738 return NULL; 739 } 740 *mapping += bp->rx_dma_offset; 741 return page; 742 } 743 744 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 745 gfp_t gfp) 746 { 747 u8 *data; 748 struct pci_dev *pdev = bp->pdev; 749 750 data = kmalloc(bp->rx_buf_size, gfp); 751 if (!data) 752 return NULL; 753 754 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 755 bp->rx_buf_use_size, bp->rx_dir, 756 DMA_ATTR_WEAK_ORDERING); 757 758 if (dma_mapping_error(&pdev->dev, *mapping)) { 759 kfree(data); 760 data = NULL; 761 } 762 return data; 763 } 764 765 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 766 u16 prod, gfp_t gfp) 767 { 768 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 769 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 770 dma_addr_t mapping; 771 772 if (BNXT_RX_PAGE_MODE(bp)) { 773 struct page *page = 774 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 775 776 if (!page) 777 return -ENOMEM; 778 779 rx_buf->data = page; 780 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 781 } else { 782 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 783 784 if (!data) 785 return -ENOMEM; 786 787 rx_buf->data = data; 788 rx_buf->data_ptr = data + bp->rx_offset; 789 } 790 rx_buf->mapping = mapping; 791 792 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 793 return 0; 794 } 795 796 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 797 { 798 u16 prod = rxr->rx_prod; 799 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 800 struct rx_bd *cons_bd, *prod_bd; 801 802 prod_rx_buf = &rxr->rx_buf_ring[prod]; 803 cons_rx_buf = &rxr->rx_buf_ring[cons]; 804 805 prod_rx_buf->data = data; 806 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 807 808 prod_rx_buf->mapping = cons_rx_buf->mapping; 809 810 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 811 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 812 813 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 814 } 815 816 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 817 { 818 u16 next, max = rxr->rx_agg_bmap_size; 819 820 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 821 if (next >= max) 822 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 823 return next; 824 } 825 826 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 827 struct bnxt_rx_ring_info *rxr, 828 u16 prod, gfp_t gfp) 829 { 830 struct rx_bd *rxbd = 831 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 832 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 833 struct pci_dev *pdev = bp->pdev; 834 struct page *page; 835 dma_addr_t mapping; 836 u16 sw_prod = rxr->rx_sw_agg_prod; 837 unsigned int offset = 0; 838 839 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 840 page = rxr->rx_page; 841 if (!page) { 842 page = alloc_page(gfp); 843 if (!page) 844 return -ENOMEM; 845 rxr->rx_page = page; 846 rxr->rx_page_offset = 0; 847 } 848 offset = rxr->rx_page_offset; 849 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 850 if (rxr->rx_page_offset == PAGE_SIZE) 851 rxr->rx_page = NULL; 852 else 853 get_page(page); 854 } else { 855 page = alloc_page(gfp); 856 if (!page) 857 return -ENOMEM; 858 } 859 860 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 861 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 862 DMA_ATTR_WEAK_ORDERING); 863 if (dma_mapping_error(&pdev->dev, mapping)) { 864 __free_page(page); 865 return -EIO; 866 } 867 868 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 869 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 870 871 __set_bit(sw_prod, rxr->rx_agg_bmap); 872 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 873 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 874 875 rx_agg_buf->page = page; 876 rx_agg_buf->offset = offset; 877 rx_agg_buf->mapping = mapping; 878 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 879 rxbd->rx_bd_opaque = sw_prod; 880 return 0; 881 } 882 883 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 884 struct bnxt_cp_ring_info *cpr, 885 u16 cp_cons, u16 curr) 886 { 887 struct rx_agg_cmp *agg; 888 889 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 890 agg = (struct rx_agg_cmp *) 891 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 892 return agg; 893 } 894 895 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 896 struct bnxt_rx_ring_info *rxr, 897 u16 agg_id, u16 curr) 898 { 899 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 900 901 return &tpa_info->agg_arr[curr]; 902 } 903 904 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 905 u16 start, u32 agg_bufs, bool tpa) 906 { 907 struct bnxt_napi *bnapi = cpr->bnapi; 908 struct bnxt *bp = bnapi->bp; 909 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 910 u16 prod = rxr->rx_agg_prod; 911 u16 sw_prod = rxr->rx_sw_agg_prod; 912 bool p5_tpa = false; 913 u32 i; 914 915 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 916 p5_tpa = true; 917 918 for (i = 0; i < agg_bufs; i++) { 919 u16 cons; 920 struct rx_agg_cmp *agg; 921 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 922 struct rx_bd *prod_bd; 923 struct page *page; 924 925 if (p5_tpa) 926 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 927 else 928 agg = bnxt_get_agg(bp, cpr, idx, start + i); 929 cons = agg->rx_agg_cmp_opaque; 930 __clear_bit(cons, rxr->rx_agg_bmap); 931 932 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 933 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 934 935 __set_bit(sw_prod, rxr->rx_agg_bmap); 936 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 937 cons_rx_buf = &rxr->rx_agg_ring[cons]; 938 939 /* It is possible for sw_prod to be equal to cons, so 940 * set cons_rx_buf->page to NULL first. 941 */ 942 page = cons_rx_buf->page; 943 cons_rx_buf->page = NULL; 944 prod_rx_buf->page = page; 945 prod_rx_buf->offset = cons_rx_buf->offset; 946 947 prod_rx_buf->mapping = cons_rx_buf->mapping; 948 949 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 950 951 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 952 prod_bd->rx_bd_opaque = sw_prod; 953 954 prod = NEXT_RX_AGG(prod); 955 sw_prod = NEXT_RX_AGG(sw_prod); 956 } 957 rxr->rx_agg_prod = prod; 958 rxr->rx_sw_agg_prod = sw_prod; 959 } 960 961 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 962 struct bnxt_rx_ring_info *rxr, 963 u16 cons, void *data, u8 *data_ptr, 964 dma_addr_t dma_addr, 965 unsigned int offset_and_len) 966 { 967 unsigned int payload = offset_and_len >> 16; 968 unsigned int len = offset_and_len & 0xffff; 969 skb_frag_t *frag; 970 struct page *page = data; 971 u16 prod = rxr->rx_prod; 972 struct sk_buff *skb; 973 int off, err; 974 975 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 976 if (unlikely(err)) { 977 bnxt_reuse_rx_data(rxr, cons, data); 978 return NULL; 979 } 980 dma_addr -= bp->rx_dma_offset; 981 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 982 DMA_ATTR_WEAK_ORDERING); 983 page_pool_release_page(rxr->page_pool, page); 984 985 if (unlikely(!payload)) 986 payload = eth_get_headlen(bp->dev, data_ptr, len); 987 988 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 989 if (!skb) { 990 __free_page(page); 991 return NULL; 992 } 993 994 off = (void *)data_ptr - page_address(page); 995 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 996 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 997 payload + NET_IP_ALIGN); 998 999 frag = &skb_shinfo(skb)->frags[0]; 1000 skb_frag_size_sub(frag, payload); 1001 skb_frag_off_add(frag, payload); 1002 skb->data_len -= payload; 1003 skb->tail += payload; 1004 1005 return skb; 1006 } 1007 1008 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1009 struct bnxt_rx_ring_info *rxr, u16 cons, 1010 void *data, u8 *data_ptr, 1011 dma_addr_t dma_addr, 1012 unsigned int offset_and_len) 1013 { 1014 u16 prod = rxr->rx_prod; 1015 struct sk_buff *skb; 1016 int err; 1017 1018 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1019 if (unlikely(err)) { 1020 bnxt_reuse_rx_data(rxr, cons, data); 1021 return NULL; 1022 } 1023 1024 skb = build_skb(data, 0); 1025 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1026 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1027 if (!skb) { 1028 kfree(data); 1029 return NULL; 1030 } 1031 1032 skb_reserve(skb, bp->rx_offset); 1033 skb_put(skb, offset_and_len & 0xffff); 1034 return skb; 1035 } 1036 1037 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1038 struct bnxt_cp_ring_info *cpr, 1039 struct sk_buff *skb, u16 idx, 1040 u32 agg_bufs, bool tpa) 1041 { 1042 struct bnxt_napi *bnapi = cpr->bnapi; 1043 struct pci_dev *pdev = bp->pdev; 1044 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1045 u16 prod = rxr->rx_agg_prod; 1046 bool p5_tpa = false; 1047 u32 i; 1048 1049 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1050 p5_tpa = true; 1051 1052 for (i = 0; i < agg_bufs; i++) { 1053 u16 cons, frag_len; 1054 struct rx_agg_cmp *agg; 1055 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1056 struct page *page; 1057 dma_addr_t mapping; 1058 1059 if (p5_tpa) 1060 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1061 else 1062 agg = bnxt_get_agg(bp, cpr, idx, i); 1063 cons = agg->rx_agg_cmp_opaque; 1064 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1065 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1066 1067 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1068 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1069 cons_rx_buf->offset, frag_len); 1070 __clear_bit(cons, rxr->rx_agg_bmap); 1071 1072 /* It is possible for bnxt_alloc_rx_page() to allocate 1073 * a sw_prod index that equals the cons index, so we 1074 * need to clear the cons entry now. 1075 */ 1076 mapping = cons_rx_buf->mapping; 1077 page = cons_rx_buf->page; 1078 cons_rx_buf->page = NULL; 1079 1080 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1081 struct skb_shared_info *shinfo; 1082 unsigned int nr_frags; 1083 1084 shinfo = skb_shinfo(skb); 1085 nr_frags = --shinfo->nr_frags; 1086 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1087 1088 dev_kfree_skb(skb); 1089 1090 cons_rx_buf->page = page; 1091 1092 /* Update prod since possibly some pages have been 1093 * allocated already. 1094 */ 1095 rxr->rx_agg_prod = prod; 1096 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1097 return NULL; 1098 } 1099 1100 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1101 DMA_FROM_DEVICE, 1102 DMA_ATTR_WEAK_ORDERING); 1103 1104 skb->data_len += frag_len; 1105 skb->len += frag_len; 1106 skb->truesize += PAGE_SIZE; 1107 1108 prod = NEXT_RX_AGG(prod); 1109 } 1110 rxr->rx_agg_prod = prod; 1111 return skb; 1112 } 1113 1114 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1115 u8 agg_bufs, u32 *raw_cons) 1116 { 1117 u16 last; 1118 struct rx_agg_cmp *agg; 1119 1120 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1121 last = RING_CMP(*raw_cons); 1122 agg = (struct rx_agg_cmp *) 1123 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1124 return RX_AGG_CMP_VALID(agg, *raw_cons); 1125 } 1126 1127 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1128 unsigned int len, 1129 dma_addr_t mapping) 1130 { 1131 struct bnxt *bp = bnapi->bp; 1132 struct pci_dev *pdev = bp->pdev; 1133 struct sk_buff *skb; 1134 1135 skb = napi_alloc_skb(&bnapi->napi, len); 1136 if (!skb) 1137 return NULL; 1138 1139 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1140 bp->rx_dir); 1141 1142 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1143 len + NET_IP_ALIGN); 1144 1145 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1146 bp->rx_dir); 1147 1148 skb_put(skb, len); 1149 return skb; 1150 } 1151 1152 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1153 u32 *raw_cons, void *cmp) 1154 { 1155 struct rx_cmp *rxcmp = cmp; 1156 u32 tmp_raw_cons = *raw_cons; 1157 u8 cmp_type, agg_bufs = 0; 1158 1159 cmp_type = RX_CMP_TYPE(rxcmp); 1160 1161 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1162 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1163 RX_CMP_AGG_BUFS) >> 1164 RX_CMP_AGG_BUFS_SHIFT; 1165 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1166 struct rx_tpa_end_cmp *tpa_end = cmp; 1167 1168 if (bp->flags & BNXT_FLAG_CHIP_P5) 1169 return 0; 1170 1171 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1172 } 1173 1174 if (agg_bufs) { 1175 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1176 return -EBUSY; 1177 } 1178 *raw_cons = tmp_raw_cons; 1179 return 0; 1180 } 1181 1182 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1183 { 1184 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1185 return; 1186 1187 if (BNXT_PF(bp)) 1188 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1189 else 1190 schedule_delayed_work(&bp->fw_reset_task, delay); 1191 } 1192 1193 static void bnxt_queue_sp_work(struct bnxt *bp) 1194 { 1195 if (BNXT_PF(bp)) 1196 queue_work(bnxt_pf_wq, &bp->sp_task); 1197 else 1198 schedule_work(&bp->sp_task); 1199 } 1200 1201 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1202 { 1203 if (!rxr->bnapi->in_reset) { 1204 rxr->bnapi->in_reset = true; 1205 if (bp->flags & BNXT_FLAG_CHIP_P5) 1206 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1207 else 1208 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1209 bnxt_queue_sp_work(bp); 1210 } 1211 rxr->rx_next_cons = 0xffff; 1212 } 1213 1214 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1215 { 1216 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1217 u16 idx = agg_id & MAX_TPA_P5_MASK; 1218 1219 if (test_bit(idx, map->agg_idx_bmap)) 1220 idx = find_first_zero_bit(map->agg_idx_bmap, 1221 BNXT_AGG_IDX_BMAP_SIZE); 1222 __set_bit(idx, map->agg_idx_bmap); 1223 map->agg_id_tbl[agg_id] = idx; 1224 return idx; 1225 } 1226 1227 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1228 { 1229 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1230 1231 __clear_bit(idx, map->agg_idx_bmap); 1232 } 1233 1234 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1235 { 1236 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1237 1238 return map->agg_id_tbl[agg_id]; 1239 } 1240 1241 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1242 struct rx_tpa_start_cmp *tpa_start, 1243 struct rx_tpa_start_cmp_ext *tpa_start1) 1244 { 1245 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1246 struct bnxt_tpa_info *tpa_info; 1247 u16 cons, prod, agg_id; 1248 struct rx_bd *prod_bd; 1249 dma_addr_t mapping; 1250 1251 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1252 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1253 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1254 } else { 1255 agg_id = TPA_START_AGG_ID(tpa_start); 1256 } 1257 cons = tpa_start->rx_tpa_start_cmp_opaque; 1258 prod = rxr->rx_prod; 1259 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1260 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1261 tpa_info = &rxr->rx_tpa[agg_id]; 1262 1263 if (unlikely(cons != rxr->rx_next_cons || 1264 TPA_START_ERROR(tpa_start))) { 1265 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1266 cons, rxr->rx_next_cons, 1267 TPA_START_ERROR_CODE(tpa_start1)); 1268 bnxt_sched_reset(bp, rxr); 1269 return; 1270 } 1271 /* Store cfa_code in tpa_info to use in tpa_end 1272 * completion processing. 1273 */ 1274 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1275 prod_rx_buf->data = tpa_info->data; 1276 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1277 1278 mapping = tpa_info->mapping; 1279 prod_rx_buf->mapping = mapping; 1280 1281 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1282 1283 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1284 1285 tpa_info->data = cons_rx_buf->data; 1286 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1287 cons_rx_buf->data = NULL; 1288 tpa_info->mapping = cons_rx_buf->mapping; 1289 1290 tpa_info->len = 1291 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1292 RX_TPA_START_CMP_LEN_SHIFT; 1293 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1294 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1295 1296 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1297 tpa_info->gso_type = SKB_GSO_TCPV4; 1298 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1299 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1300 tpa_info->gso_type = SKB_GSO_TCPV6; 1301 tpa_info->rss_hash = 1302 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1303 } else { 1304 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1305 tpa_info->gso_type = 0; 1306 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1307 } 1308 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1309 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1310 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1311 tpa_info->agg_count = 0; 1312 1313 rxr->rx_prod = NEXT_RX(prod); 1314 cons = NEXT_RX(cons); 1315 rxr->rx_next_cons = NEXT_RX(cons); 1316 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1317 1318 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1319 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1320 cons_rx_buf->data = NULL; 1321 } 1322 1323 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1324 { 1325 if (agg_bufs) 1326 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1327 } 1328 1329 #ifdef CONFIG_INET 1330 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1331 { 1332 struct udphdr *uh = NULL; 1333 1334 if (ip_proto == htons(ETH_P_IP)) { 1335 struct iphdr *iph = (struct iphdr *)skb->data; 1336 1337 if (iph->protocol == IPPROTO_UDP) 1338 uh = (struct udphdr *)(iph + 1); 1339 } else { 1340 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1341 1342 if (iph->nexthdr == IPPROTO_UDP) 1343 uh = (struct udphdr *)(iph + 1); 1344 } 1345 if (uh) { 1346 if (uh->check) 1347 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1348 else 1349 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1350 } 1351 } 1352 #endif 1353 1354 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1355 int payload_off, int tcp_ts, 1356 struct sk_buff *skb) 1357 { 1358 #ifdef CONFIG_INET 1359 struct tcphdr *th; 1360 int len, nw_off; 1361 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1362 u32 hdr_info = tpa_info->hdr_info; 1363 bool loopback = false; 1364 1365 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1366 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1367 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1368 1369 /* If the packet is an internal loopback packet, the offsets will 1370 * have an extra 4 bytes. 1371 */ 1372 if (inner_mac_off == 4) { 1373 loopback = true; 1374 } else if (inner_mac_off > 4) { 1375 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1376 ETH_HLEN - 2)); 1377 1378 /* We only support inner iPv4/ipv6. If we don't see the 1379 * correct protocol ID, it must be a loopback packet where 1380 * the offsets are off by 4. 1381 */ 1382 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1383 loopback = true; 1384 } 1385 if (loopback) { 1386 /* internal loopback packet, subtract all offsets by 4 */ 1387 inner_ip_off -= 4; 1388 inner_mac_off -= 4; 1389 outer_ip_off -= 4; 1390 } 1391 1392 nw_off = inner_ip_off - ETH_HLEN; 1393 skb_set_network_header(skb, nw_off); 1394 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1395 struct ipv6hdr *iph = ipv6_hdr(skb); 1396 1397 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1398 len = skb->len - skb_transport_offset(skb); 1399 th = tcp_hdr(skb); 1400 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1401 } else { 1402 struct iphdr *iph = ip_hdr(skb); 1403 1404 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1405 len = skb->len - skb_transport_offset(skb); 1406 th = tcp_hdr(skb); 1407 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1408 } 1409 1410 if (inner_mac_off) { /* tunnel */ 1411 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1412 ETH_HLEN - 2)); 1413 1414 bnxt_gro_tunnel(skb, proto); 1415 } 1416 #endif 1417 return skb; 1418 } 1419 1420 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1421 int payload_off, int tcp_ts, 1422 struct sk_buff *skb) 1423 { 1424 #ifdef CONFIG_INET 1425 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1426 u32 hdr_info = tpa_info->hdr_info; 1427 int iphdr_len, nw_off; 1428 1429 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1430 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1431 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1432 1433 nw_off = inner_ip_off - ETH_HLEN; 1434 skb_set_network_header(skb, nw_off); 1435 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1436 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1437 skb_set_transport_header(skb, nw_off + iphdr_len); 1438 1439 if (inner_mac_off) { /* tunnel */ 1440 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1441 ETH_HLEN - 2)); 1442 1443 bnxt_gro_tunnel(skb, proto); 1444 } 1445 #endif 1446 return skb; 1447 } 1448 1449 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1450 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1451 1452 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1453 int payload_off, int tcp_ts, 1454 struct sk_buff *skb) 1455 { 1456 #ifdef CONFIG_INET 1457 struct tcphdr *th; 1458 int len, nw_off, tcp_opt_len = 0; 1459 1460 if (tcp_ts) 1461 tcp_opt_len = 12; 1462 1463 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1464 struct iphdr *iph; 1465 1466 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1467 ETH_HLEN; 1468 skb_set_network_header(skb, nw_off); 1469 iph = ip_hdr(skb); 1470 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1471 len = skb->len - skb_transport_offset(skb); 1472 th = tcp_hdr(skb); 1473 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1474 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1475 struct ipv6hdr *iph; 1476 1477 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1478 ETH_HLEN; 1479 skb_set_network_header(skb, nw_off); 1480 iph = ipv6_hdr(skb); 1481 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1482 len = skb->len - skb_transport_offset(skb); 1483 th = tcp_hdr(skb); 1484 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1485 } else { 1486 dev_kfree_skb_any(skb); 1487 return NULL; 1488 } 1489 1490 if (nw_off) /* tunnel */ 1491 bnxt_gro_tunnel(skb, skb->protocol); 1492 #endif 1493 return skb; 1494 } 1495 1496 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1497 struct bnxt_tpa_info *tpa_info, 1498 struct rx_tpa_end_cmp *tpa_end, 1499 struct rx_tpa_end_cmp_ext *tpa_end1, 1500 struct sk_buff *skb) 1501 { 1502 #ifdef CONFIG_INET 1503 int payload_off; 1504 u16 segs; 1505 1506 segs = TPA_END_TPA_SEGS(tpa_end); 1507 if (segs == 1) 1508 return skb; 1509 1510 NAPI_GRO_CB(skb)->count = segs; 1511 skb_shinfo(skb)->gso_size = 1512 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1513 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1514 if (bp->flags & BNXT_FLAG_CHIP_P5) 1515 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1516 else 1517 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1518 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1519 if (likely(skb)) 1520 tcp_gro_complete(skb); 1521 #endif 1522 return skb; 1523 } 1524 1525 /* Given the cfa_code of a received packet determine which 1526 * netdev (vf-rep or PF) the packet is destined to. 1527 */ 1528 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1529 { 1530 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1531 1532 /* if vf-rep dev is NULL, the must belongs to the PF */ 1533 return dev ? dev : bp->dev; 1534 } 1535 1536 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1537 struct bnxt_cp_ring_info *cpr, 1538 u32 *raw_cons, 1539 struct rx_tpa_end_cmp *tpa_end, 1540 struct rx_tpa_end_cmp_ext *tpa_end1, 1541 u8 *event) 1542 { 1543 struct bnxt_napi *bnapi = cpr->bnapi; 1544 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1545 u8 *data_ptr, agg_bufs; 1546 unsigned int len; 1547 struct bnxt_tpa_info *tpa_info; 1548 dma_addr_t mapping; 1549 struct sk_buff *skb; 1550 u16 idx = 0, agg_id; 1551 void *data; 1552 bool gro; 1553 1554 if (unlikely(bnapi->in_reset)) { 1555 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1556 1557 if (rc < 0) 1558 return ERR_PTR(-EBUSY); 1559 return NULL; 1560 } 1561 1562 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1563 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1564 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1565 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1566 tpa_info = &rxr->rx_tpa[agg_id]; 1567 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1568 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1569 agg_bufs, tpa_info->agg_count); 1570 agg_bufs = tpa_info->agg_count; 1571 } 1572 tpa_info->agg_count = 0; 1573 *event |= BNXT_AGG_EVENT; 1574 bnxt_free_agg_idx(rxr, agg_id); 1575 idx = agg_id; 1576 gro = !!(bp->flags & BNXT_FLAG_GRO); 1577 } else { 1578 agg_id = TPA_END_AGG_ID(tpa_end); 1579 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1580 tpa_info = &rxr->rx_tpa[agg_id]; 1581 idx = RING_CMP(*raw_cons); 1582 if (agg_bufs) { 1583 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1584 return ERR_PTR(-EBUSY); 1585 1586 *event |= BNXT_AGG_EVENT; 1587 idx = NEXT_CMP(idx); 1588 } 1589 gro = !!TPA_END_GRO(tpa_end); 1590 } 1591 data = tpa_info->data; 1592 data_ptr = tpa_info->data_ptr; 1593 prefetch(data_ptr); 1594 len = tpa_info->len; 1595 mapping = tpa_info->mapping; 1596 1597 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1598 bnxt_abort_tpa(cpr, idx, agg_bufs); 1599 if (agg_bufs > MAX_SKB_FRAGS) 1600 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1601 agg_bufs, (int)MAX_SKB_FRAGS); 1602 return NULL; 1603 } 1604 1605 if (len <= bp->rx_copy_thresh) { 1606 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1607 if (!skb) { 1608 bnxt_abort_tpa(cpr, idx, agg_bufs); 1609 cpr->sw_stats.rx.rx_oom_discards += 1; 1610 return NULL; 1611 } 1612 } else { 1613 u8 *new_data; 1614 dma_addr_t new_mapping; 1615 1616 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1617 if (!new_data) { 1618 bnxt_abort_tpa(cpr, idx, agg_bufs); 1619 cpr->sw_stats.rx.rx_oom_discards += 1; 1620 return NULL; 1621 } 1622 1623 tpa_info->data = new_data; 1624 tpa_info->data_ptr = new_data + bp->rx_offset; 1625 tpa_info->mapping = new_mapping; 1626 1627 skb = build_skb(data, 0); 1628 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1629 bp->rx_buf_use_size, bp->rx_dir, 1630 DMA_ATTR_WEAK_ORDERING); 1631 1632 if (!skb) { 1633 kfree(data); 1634 bnxt_abort_tpa(cpr, idx, agg_bufs); 1635 cpr->sw_stats.rx.rx_oom_discards += 1; 1636 return NULL; 1637 } 1638 skb_reserve(skb, bp->rx_offset); 1639 skb_put(skb, len); 1640 } 1641 1642 if (agg_bufs) { 1643 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1644 if (!skb) { 1645 /* Page reuse already handled by bnxt_rx_pages(). */ 1646 cpr->sw_stats.rx.rx_oom_discards += 1; 1647 return NULL; 1648 } 1649 } 1650 1651 skb->protocol = 1652 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1653 1654 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1655 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1656 1657 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1658 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1659 __be16 vlan_proto = htons(tpa_info->metadata >> 1660 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1661 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1662 1663 if (eth_type_vlan(vlan_proto)) { 1664 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1665 } else { 1666 dev_kfree_skb(skb); 1667 return NULL; 1668 } 1669 } 1670 1671 skb_checksum_none_assert(skb); 1672 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1673 skb->ip_summed = CHECKSUM_UNNECESSARY; 1674 skb->csum_level = 1675 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1676 } 1677 1678 if (gro) 1679 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1680 1681 return skb; 1682 } 1683 1684 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1685 struct rx_agg_cmp *rx_agg) 1686 { 1687 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1688 struct bnxt_tpa_info *tpa_info; 1689 1690 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1691 tpa_info = &rxr->rx_tpa[agg_id]; 1692 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1693 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1694 } 1695 1696 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1697 struct sk_buff *skb) 1698 { 1699 if (skb->dev != bp->dev) { 1700 /* this packet belongs to a vf-rep */ 1701 bnxt_vf_rep_rx(bp, skb); 1702 return; 1703 } 1704 skb_record_rx_queue(skb, bnapi->index); 1705 napi_gro_receive(&bnapi->napi, skb); 1706 } 1707 1708 /* returns the following: 1709 * 1 - 1 packet successfully received 1710 * 0 - successful TPA_START, packet not completed yet 1711 * -EBUSY - completion ring does not have all the agg buffers yet 1712 * -ENOMEM - packet aborted due to out of memory 1713 * -EIO - packet aborted due to hw error indicated in BD 1714 */ 1715 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1716 u32 *raw_cons, u8 *event) 1717 { 1718 struct bnxt_napi *bnapi = cpr->bnapi; 1719 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1720 struct net_device *dev = bp->dev; 1721 struct rx_cmp *rxcmp; 1722 struct rx_cmp_ext *rxcmp1; 1723 u32 tmp_raw_cons = *raw_cons; 1724 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1725 struct bnxt_sw_rx_bd *rx_buf; 1726 unsigned int len; 1727 u8 *data_ptr, agg_bufs, cmp_type; 1728 dma_addr_t dma_addr; 1729 struct sk_buff *skb; 1730 u32 flags, misc; 1731 void *data; 1732 int rc = 0; 1733 1734 rxcmp = (struct rx_cmp *) 1735 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1736 1737 cmp_type = RX_CMP_TYPE(rxcmp); 1738 1739 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1740 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1741 goto next_rx_no_prod_no_len; 1742 } 1743 1744 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1745 cp_cons = RING_CMP(tmp_raw_cons); 1746 rxcmp1 = (struct rx_cmp_ext *) 1747 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1748 1749 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1750 return -EBUSY; 1751 1752 /* The valid test of the entry must be done first before 1753 * reading any further. 1754 */ 1755 dma_rmb(); 1756 prod = rxr->rx_prod; 1757 1758 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1759 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1760 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1761 1762 *event |= BNXT_RX_EVENT; 1763 goto next_rx_no_prod_no_len; 1764 1765 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1766 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1767 (struct rx_tpa_end_cmp *)rxcmp, 1768 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1769 1770 if (IS_ERR(skb)) 1771 return -EBUSY; 1772 1773 rc = -ENOMEM; 1774 if (likely(skb)) { 1775 bnxt_deliver_skb(bp, bnapi, skb); 1776 rc = 1; 1777 } 1778 *event |= BNXT_RX_EVENT; 1779 goto next_rx_no_prod_no_len; 1780 } 1781 1782 cons = rxcmp->rx_cmp_opaque; 1783 if (unlikely(cons != rxr->rx_next_cons)) { 1784 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1785 1786 /* 0xffff is forced error, don't print it */ 1787 if (rxr->rx_next_cons != 0xffff) 1788 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1789 cons, rxr->rx_next_cons); 1790 bnxt_sched_reset(bp, rxr); 1791 if (rc1) 1792 return rc1; 1793 goto next_rx_no_prod_no_len; 1794 } 1795 rx_buf = &rxr->rx_buf_ring[cons]; 1796 data = rx_buf->data; 1797 data_ptr = rx_buf->data_ptr; 1798 prefetch(data_ptr); 1799 1800 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1801 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1802 1803 if (agg_bufs) { 1804 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1805 return -EBUSY; 1806 1807 cp_cons = NEXT_CMP(cp_cons); 1808 *event |= BNXT_AGG_EVENT; 1809 } 1810 *event |= BNXT_RX_EVENT; 1811 1812 rx_buf->data = NULL; 1813 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1814 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1815 1816 bnxt_reuse_rx_data(rxr, cons, data); 1817 if (agg_bufs) 1818 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1819 false); 1820 1821 rc = -EIO; 1822 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1823 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1824 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1825 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1826 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1827 rx_err); 1828 bnxt_sched_reset(bp, rxr); 1829 } 1830 } 1831 goto next_rx_no_len; 1832 } 1833 1834 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1835 len = flags >> RX_CMP_LEN_SHIFT; 1836 dma_addr = rx_buf->mapping; 1837 1838 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1839 rc = 1; 1840 goto next_rx; 1841 } 1842 1843 if (len <= bp->rx_copy_thresh) { 1844 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1845 bnxt_reuse_rx_data(rxr, cons, data); 1846 if (!skb) { 1847 if (agg_bufs) 1848 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1849 agg_bufs, false); 1850 cpr->sw_stats.rx.rx_oom_discards += 1; 1851 rc = -ENOMEM; 1852 goto next_rx; 1853 } 1854 } else { 1855 u32 payload; 1856 1857 if (rx_buf->data_ptr == data_ptr) 1858 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1859 else 1860 payload = 0; 1861 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1862 payload | len); 1863 if (!skb) { 1864 cpr->sw_stats.rx.rx_oom_discards += 1; 1865 rc = -ENOMEM; 1866 goto next_rx; 1867 } 1868 } 1869 1870 if (agg_bufs) { 1871 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1872 if (!skb) { 1873 cpr->sw_stats.rx.rx_oom_discards += 1; 1874 rc = -ENOMEM; 1875 goto next_rx; 1876 } 1877 } 1878 1879 if (RX_CMP_HASH_VALID(rxcmp)) { 1880 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1881 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1882 1883 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1884 if (hash_type != 1 && hash_type != 3) 1885 type = PKT_HASH_TYPE_L3; 1886 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1887 } 1888 1889 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1890 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1891 1892 if ((rxcmp1->rx_cmp_flags2 & 1893 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1894 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1895 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1896 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1897 __be16 vlan_proto = htons(meta_data >> 1898 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1899 1900 if (eth_type_vlan(vlan_proto)) { 1901 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1902 } else { 1903 dev_kfree_skb(skb); 1904 goto next_rx; 1905 } 1906 } 1907 1908 skb_checksum_none_assert(skb); 1909 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1910 if (dev->features & NETIF_F_RXCSUM) { 1911 skb->ip_summed = CHECKSUM_UNNECESSARY; 1912 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1913 } 1914 } else { 1915 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1916 if (dev->features & NETIF_F_RXCSUM) 1917 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1918 } 1919 } 1920 1921 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1922 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1923 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1924 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1925 u64 ns, ts; 1926 1927 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1928 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1929 1930 spin_lock_bh(&ptp->ptp_lock); 1931 ns = timecounter_cyc2time(&ptp->tc, ts); 1932 spin_unlock_bh(&ptp->ptp_lock); 1933 memset(skb_hwtstamps(skb), 0, 1934 sizeof(*skb_hwtstamps(skb))); 1935 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1936 } 1937 } 1938 } 1939 bnxt_deliver_skb(bp, bnapi, skb); 1940 rc = 1; 1941 1942 next_rx: 1943 cpr->rx_packets += 1; 1944 cpr->rx_bytes += len; 1945 1946 next_rx_no_len: 1947 rxr->rx_prod = NEXT_RX(prod); 1948 rxr->rx_next_cons = NEXT_RX(cons); 1949 1950 next_rx_no_prod_no_len: 1951 *raw_cons = tmp_raw_cons; 1952 1953 return rc; 1954 } 1955 1956 /* In netpoll mode, if we are using a combined completion ring, we need to 1957 * discard the rx packets and recycle the buffers. 1958 */ 1959 static int bnxt_force_rx_discard(struct bnxt *bp, 1960 struct bnxt_cp_ring_info *cpr, 1961 u32 *raw_cons, u8 *event) 1962 { 1963 u32 tmp_raw_cons = *raw_cons; 1964 struct rx_cmp_ext *rxcmp1; 1965 struct rx_cmp *rxcmp; 1966 u16 cp_cons; 1967 u8 cmp_type; 1968 int rc; 1969 1970 cp_cons = RING_CMP(tmp_raw_cons); 1971 rxcmp = (struct rx_cmp *) 1972 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1973 1974 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1975 cp_cons = RING_CMP(tmp_raw_cons); 1976 rxcmp1 = (struct rx_cmp_ext *) 1977 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1978 1979 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1980 return -EBUSY; 1981 1982 /* The valid test of the entry must be done first before 1983 * reading any further. 1984 */ 1985 dma_rmb(); 1986 cmp_type = RX_CMP_TYPE(rxcmp); 1987 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1988 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1989 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1990 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1991 struct rx_tpa_end_cmp_ext *tpa_end1; 1992 1993 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1994 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1995 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 1996 } 1997 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 1998 if (rc && rc != -EBUSY) 1999 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2000 return rc; 2001 } 2002 2003 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2004 { 2005 struct bnxt_fw_health *fw_health = bp->fw_health; 2006 u32 reg = fw_health->regs[reg_idx]; 2007 u32 reg_type, reg_off, val = 0; 2008 2009 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2010 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2011 switch (reg_type) { 2012 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2013 pci_read_config_dword(bp->pdev, reg_off, &val); 2014 break; 2015 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2016 reg_off = fw_health->mapped_regs[reg_idx]; 2017 fallthrough; 2018 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2019 val = readl(bp->bar0 + reg_off); 2020 break; 2021 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2022 val = readl(bp->bar1 + reg_off); 2023 break; 2024 } 2025 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2026 val &= fw_health->fw_reset_inprog_reg_mask; 2027 return val; 2028 } 2029 2030 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2031 { 2032 int i; 2033 2034 for (i = 0; i < bp->rx_nr_rings; i++) { 2035 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2036 struct bnxt_ring_grp_info *grp_info; 2037 2038 grp_info = &bp->grp_info[grp_idx]; 2039 if (grp_info->agg_fw_ring_id == ring_id) 2040 return grp_idx; 2041 } 2042 return INVALID_HW_RING_ID; 2043 } 2044 2045 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2046 { 2047 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2048 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2049 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2050 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2051 break; 2052 default: 2053 netdev_err(bp->dev, "FW reported unknown error type\n"); 2054 break; 2055 } 2056 } 2057 2058 #define BNXT_GET_EVENT_PORT(data) \ 2059 ((data) & \ 2060 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2061 2062 #define BNXT_EVENT_RING_TYPE(data2) \ 2063 ((data2) & \ 2064 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2065 2066 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2067 (BNXT_EVENT_RING_TYPE(data2) == \ 2068 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2069 2070 static int bnxt_async_event_process(struct bnxt *bp, 2071 struct hwrm_async_event_cmpl *cmpl) 2072 { 2073 u16 event_id = le16_to_cpu(cmpl->event_id); 2074 u32 data1 = le32_to_cpu(cmpl->event_data1); 2075 u32 data2 = le32_to_cpu(cmpl->event_data2); 2076 2077 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2078 switch (event_id) { 2079 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2080 struct bnxt_link_info *link_info = &bp->link_info; 2081 2082 if (BNXT_VF(bp)) 2083 goto async_event_process_exit; 2084 2085 /* print unsupported speed warning in forced speed mode only */ 2086 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2087 (data1 & 0x20000)) { 2088 u16 fw_speed = link_info->force_link_speed; 2089 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2090 2091 if (speed != SPEED_UNKNOWN) 2092 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2093 speed); 2094 } 2095 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2096 } 2097 fallthrough; 2098 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2099 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2100 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2101 fallthrough; 2102 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2103 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2104 break; 2105 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2106 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2107 break; 2108 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2109 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2110 2111 if (BNXT_VF(bp)) 2112 break; 2113 2114 if (bp->pf.port_id != port_id) 2115 break; 2116 2117 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2118 break; 2119 } 2120 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2121 if (BNXT_PF(bp)) 2122 goto async_event_process_exit; 2123 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2124 break; 2125 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2126 char *type_str = "Solicited"; 2127 2128 if (!bp->fw_health) 2129 goto async_event_process_exit; 2130 2131 bp->fw_reset_timestamp = jiffies; 2132 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2133 if (!bp->fw_reset_min_dsecs) 2134 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2135 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2136 if (!bp->fw_reset_max_dsecs) 2137 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2138 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2139 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2140 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2141 type_str = "Fatal"; 2142 bp->fw_health->fatalities++; 2143 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2144 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2145 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2146 type_str = "Non-fatal"; 2147 bp->fw_health->survivals++; 2148 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2149 } 2150 netif_warn(bp, hw, bp->dev, 2151 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2152 type_str, data1, data2, 2153 bp->fw_reset_min_dsecs * 100, 2154 bp->fw_reset_max_dsecs * 100); 2155 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2156 break; 2157 } 2158 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2159 struct bnxt_fw_health *fw_health = bp->fw_health; 2160 char *status_desc = "healthy"; 2161 u32 status; 2162 2163 if (!fw_health) 2164 goto async_event_process_exit; 2165 2166 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2167 fw_health->enabled = false; 2168 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2169 break; 2170 } 2171 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2172 fw_health->tmr_multiplier = 2173 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2174 bp->current_interval * 10); 2175 fw_health->tmr_counter = fw_health->tmr_multiplier; 2176 if (!fw_health->enabled) 2177 fw_health->last_fw_heartbeat = 2178 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2179 fw_health->last_fw_reset_cnt = 2180 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2181 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2182 if (status != BNXT_FW_STATUS_HEALTHY) 2183 status_desc = "unhealthy"; 2184 netif_info(bp, drv, bp->dev, 2185 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2186 fw_health->primary ? "primary" : "backup", status, 2187 status_desc, fw_health->last_fw_reset_cnt); 2188 if (!fw_health->enabled) { 2189 /* Make sure tmr_counter is set and visible to 2190 * bnxt_health_check() before setting enabled to true. 2191 */ 2192 smp_wmb(); 2193 fw_health->enabled = true; 2194 } 2195 goto async_event_process_exit; 2196 } 2197 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2198 netif_notice(bp, hw, bp->dev, 2199 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2200 data1, data2); 2201 goto async_event_process_exit; 2202 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2203 struct bnxt_rx_ring_info *rxr; 2204 u16 grp_idx; 2205 2206 if (bp->flags & BNXT_FLAG_CHIP_P5) 2207 goto async_event_process_exit; 2208 2209 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2210 BNXT_EVENT_RING_TYPE(data2), data1); 2211 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2212 goto async_event_process_exit; 2213 2214 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2215 if (grp_idx == INVALID_HW_RING_ID) { 2216 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2217 data1); 2218 goto async_event_process_exit; 2219 } 2220 rxr = bp->bnapi[grp_idx]->rx_ring; 2221 bnxt_sched_reset(bp, rxr); 2222 goto async_event_process_exit; 2223 } 2224 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2225 struct bnxt_fw_health *fw_health = bp->fw_health; 2226 2227 netif_notice(bp, hw, bp->dev, 2228 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2229 data1, data2); 2230 if (fw_health) { 2231 fw_health->echo_req_data1 = data1; 2232 fw_health->echo_req_data2 = data2; 2233 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2234 break; 2235 } 2236 goto async_event_process_exit; 2237 } 2238 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2239 bnxt_ptp_pps_event(bp, data1, data2); 2240 goto async_event_process_exit; 2241 } 2242 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2243 bnxt_event_error_report(bp, data1, data2); 2244 goto async_event_process_exit; 2245 } 2246 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2247 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2248 2249 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2250 goto async_event_process_exit; 2251 } 2252 default: 2253 goto async_event_process_exit; 2254 } 2255 bnxt_queue_sp_work(bp); 2256 async_event_process_exit: 2257 bnxt_ulp_async_events(bp, cmpl); 2258 return 0; 2259 } 2260 2261 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2262 { 2263 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2264 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2265 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2266 (struct hwrm_fwd_req_cmpl *)txcmp; 2267 2268 switch (cmpl_type) { 2269 case CMPL_BASE_TYPE_HWRM_DONE: 2270 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2271 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2272 break; 2273 2274 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2275 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2276 2277 if ((vf_id < bp->pf.first_vf_id) || 2278 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2279 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2280 vf_id); 2281 return -EINVAL; 2282 } 2283 2284 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2285 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2286 bnxt_queue_sp_work(bp); 2287 break; 2288 2289 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2290 bnxt_async_event_process(bp, 2291 (struct hwrm_async_event_cmpl *)txcmp); 2292 break; 2293 2294 default: 2295 break; 2296 } 2297 2298 return 0; 2299 } 2300 2301 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2302 { 2303 struct bnxt_napi *bnapi = dev_instance; 2304 struct bnxt *bp = bnapi->bp; 2305 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2306 u32 cons = RING_CMP(cpr->cp_raw_cons); 2307 2308 cpr->event_ctr++; 2309 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2310 napi_schedule(&bnapi->napi); 2311 return IRQ_HANDLED; 2312 } 2313 2314 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2315 { 2316 u32 raw_cons = cpr->cp_raw_cons; 2317 u16 cons = RING_CMP(raw_cons); 2318 struct tx_cmp *txcmp; 2319 2320 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2321 2322 return TX_CMP_VALID(txcmp, raw_cons); 2323 } 2324 2325 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2326 { 2327 struct bnxt_napi *bnapi = dev_instance; 2328 struct bnxt *bp = bnapi->bp; 2329 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2330 u32 cons = RING_CMP(cpr->cp_raw_cons); 2331 u32 int_status; 2332 2333 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2334 2335 if (!bnxt_has_work(bp, cpr)) { 2336 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2337 /* return if erroneous interrupt */ 2338 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2339 return IRQ_NONE; 2340 } 2341 2342 /* disable ring IRQ */ 2343 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2344 2345 /* Return here if interrupt is shared and is disabled. */ 2346 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2347 return IRQ_HANDLED; 2348 2349 napi_schedule(&bnapi->napi); 2350 return IRQ_HANDLED; 2351 } 2352 2353 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2354 int budget) 2355 { 2356 struct bnxt_napi *bnapi = cpr->bnapi; 2357 u32 raw_cons = cpr->cp_raw_cons; 2358 u32 cons; 2359 int tx_pkts = 0; 2360 int rx_pkts = 0; 2361 u8 event = 0; 2362 struct tx_cmp *txcmp; 2363 2364 cpr->has_more_work = 0; 2365 cpr->had_work_done = 1; 2366 while (1) { 2367 int rc; 2368 2369 cons = RING_CMP(raw_cons); 2370 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2371 2372 if (!TX_CMP_VALID(txcmp, raw_cons)) 2373 break; 2374 2375 /* The valid test of the entry must be done first before 2376 * reading any further. 2377 */ 2378 dma_rmb(); 2379 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2380 tx_pkts++; 2381 /* return full budget so NAPI will complete. */ 2382 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2383 rx_pkts = budget; 2384 raw_cons = NEXT_RAW_CMP(raw_cons); 2385 if (budget) 2386 cpr->has_more_work = 1; 2387 break; 2388 } 2389 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2390 if (likely(budget)) 2391 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2392 else 2393 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2394 &event); 2395 if (likely(rc >= 0)) 2396 rx_pkts += rc; 2397 /* Increment rx_pkts when rc is -ENOMEM to count towards 2398 * the NAPI budget. Otherwise, we may potentially loop 2399 * here forever if we consistently cannot allocate 2400 * buffers. 2401 */ 2402 else if (rc == -ENOMEM && budget) 2403 rx_pkts++; 2404 else if (rc == -EBUSY) /* partial completion */ 2405 break; 2406 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2407 CMPL_BASE_TYPE_HWRM_DONE) || 2408 (TX_CMP_TYPE(txcmp) == 2409 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2410 (TX_CMP_TYPE(txcmp) == 2411 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2412 bnxt_hwrm_handler(bp, txcmp); 2413 } 2414 raw_cons = NEXT_RAW_CMP(raw_cons); 2415 2416 if (rx_pkts && rx_pkts == budget) { 2417 cpr->has_more_work = 1; 2418 break; 2419 } 2420 } 2421 2422 if (event & BNXT_REDIRECT_EVENT) 2423 xdp_do_flush_map(); 2424 2425 if (event & BNXT_TX_EVENT) { 2426 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2427 u16 prod = txr->tx_prod; 2428 2429 /* Sync BD data before updating doorbell */ 2430 wmb(); 2431 2432 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2433 } 2434 2435 cpr->cp_raw_cons = raw_cons; 2436 bnapi->tx_pkts += tx_pkts; 2437 bnapi->events |= event; 2438 return rx_pkts; 2439 } 2440 2441 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2442 { 2443 if (bnapi->tx_pkts) { 2444 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2445 bnapi->tx_pkts = 0; 2446 } 2447 2448 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2449 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2450 2451 if (bnapi->events & BNXT_AGG_EVENT) 2452 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2453 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2454 } 2455 bnapi->events = 0; 2456 } 2457 2458 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2459 int budget) 2460 { 2461 struct bnxt_napi *bnapi = cpr->bnapi; 2462 int rx_pkts; 2463 2464 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2465 2466 /* ACK completion ring before freeing tx ring and producing new 2467 * buffers in rx/agg rings to prevent overflowing the completion 2468 * ring. 2469 */ 2470 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2471 2472 __bnxt_poll_work_done(bp, bnapi); 2473 return rx_pkts; 2474 } 2475 2476 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2477 { 2478 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2479 struct bnxt *bp = bnapi->bp; 2480 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2481 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2482 struct tx_cmp *txcmp; 2483 struct rx_cmp_ext *rxcmp1; 2484 u32 cp_cons, tmp_raw_cons; 2485 u32 raw_cons = cpr->cp_raw_cons; 2486 u32 rx_pkts = 0; 2487 u8 event = 0; 2488 2489 while (1) { 2490 int rc; 2491 2492 cp_cons = RING_CMP(raw_cons); 2493 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2494 2495 if (!TX_CMP_VALID(txcmp, raw_cons)) 2496 break; 2497 2498 /* The valid test of the entry must be done first before 2499 * reading any further. 2500 */ 2501 dma_rmb(); 2502 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2503 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2504 cp_cons = RING_CMP(tmp_raw_cons); 2505 rxcmp1 = (struct rx_cmp_ext *) 2506 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2507 2508 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2509 break; 2510 2511 /* force an error to recycle the buffer */ 2512 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2513 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2514 2515 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2516 if (likely(rc == -EIO) && budget) 2517 rx_pkts++; 2518 else if (rc == -EBUSY) /* partial completion */ 2519 break; 2520 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2521 CMPL_BASE_TYPE_HWRM_DONE)) { 2522 bnxt_hwrm_handler(bp, txcmp); 2523 } else { 2524 netdev_err(bp->dev, 2525 "Invalid completion received on special ring\n"); 2526 } 2527 raw_cons = NEXT_RAW_CMP(raw_cons); 2528 2529 if (rx_pkts == budget) 2530 break; 2531 } 2532 2533 cpr->cp_raw_cons = raw_cons; 2534 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2535 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2536 2537 if (event & BNXT_AGG_EVENT) 2538 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2539 2540 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2541 napi_complete_done(napi, rx_pkts); 2542 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2543 } 2544 return rx_pkts; 2545 } 2546 2547 static int bnxt_poll(struct napi_struct *napi, int budget) 2548 { 2549 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2550 struct bnxt *bp = bnapi->bp; 2551 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2552 int work_done = 0; 2553 2554 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2555 napi_complete(napi); 2556 return 0; 2557 } 2558 while (1) { 2559 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2560 2561 if (work_done >= budget) { 2562 if (!budget) 2563 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2564 break; 2565 } 2566 2567 if (!bnxt_has_work(bp, cpr)) { 2568 if (napi_complete_done(napi, work_done)) 2569 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2570 break; 2571 } 2572 } 2573 if (bp->flags & BNXT_FLAG_DIM) { 2574 struct dim_sample dim_sample = {}; 2575 2576 dim_update_sample(cpr->event_ctr, 2577 cpr->rx_packets, 2578 cpr->rx_bytes, 2579 &dim_sample); 2580 net_dim(&cpr->dim, dim_sample); 2581 } 2582 return work_done; 2583 } 2584 2585 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2586 { 2587 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2588 int i, work_done = 0; 2589 2590 for (i = 0; i < 2; i++) { 2591 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2592 2593 if (cpr2) { 2594 work_done += __bnxt_poll_work(bp, cpr2, 2595 budget - work_done); 2596 cpr->has_more_work |= cpr2->has_more_work; 2597 } 2598 } 2599 return work_done; 2600 } 2601 2602 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2603 u64 dbr_type) 2604 { 2605 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2606 int i; 2607 2608 for (i = 0; i < 2; i++) { 2609 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2610 struct bnxt_db_info *db; 2611 2612 if (cpr2 && cpr2->had_work_done) { 2613 db = &cpr2->cp_db; 2614 bnxt_writeq(bp, db->db_key64 | dbr_type | 2615 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2616 cpr2->had_work_done = 0; 2617 } 2618 } 2619 __bnxt_poll_work_done(bp, bnapi); 2620 } 2621 2622 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2623 { 2624 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2625 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2626 u32 raw_cons = cpr->cp_raw_cons; 2627 struct bnxt *bp = bnapi->bp; 2628 struct nqe_cn *nqcmp; 2629 int work_done = 0; 2630 u32 cons; 2631 2632 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2633 napi_complete(napi); 2634 return 0; 2635 } 2636 if (cpr->has_more_work) { 2637 cpr->has_more_work = 0; 2638 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2639 } 2640 while (1) { 2641 cons = RING_CMP(raw_cons); 2642 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2643 2644 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2645 if (cpr->has_more_work) 2646 break; 2647 2648 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2649 cpr->cp_raw_cons = raw_cons; 2650 if (napi_complete_done(napi, work_done)) 2651 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2652 cpr->cp_raw_cons); 2653 return work_done; 2654 } 2655 2656 /* The valid test of the entry must be done first before 2657 * reading any further. 2658 */ 2659 dma_rmb(); 2660 2661 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2662 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2663 struct bnxt_cp_ring_info *cpr2; 2664 2665 cpr2 = cpr->cp_ring_arr[idx]; 2666 work_done += __bnxt_poll_work(bp, cpr2, 2667 budget - work_done); 2668 cpr->has_more_work |= cpr2->has_more_work; 2669 } else { 2670 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2671 } 2672 raw_cons = NEXT_RAW_CMP(raw_cons); 2673 } 2674 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2675 if (raw_cons != cpr->cp_raw_cons) { 2676 cpr->cp_raw_cons = raw_cons; 2677 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2678 } 2679 return work_done; 2680 } 2681 2682 static void bnxt_free_tx_skbs(struct bnxt *bp) 2683 { 2684 int i, max_idx; 2685 struct pci_dev *pdev = bp->pdev; 2686 2687 if (!bp->tx_ring) 2688 return; 2689 2690 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2691 for (i = 0; i < bp->tx_nr_rings; i++) { 2692 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2693 int j; 2694 2695 if (!txr->tx_buf_ring) 2696 continue; 2697 2698 for (j = 0; j < max_idx;) { 2699 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2700 struct sk_buff *skb; 2701 int k, last; 2702 2703 if (i < bp->tx_nr_rings_xdp && 2704 tx_buf->action == XDP_REDIRECT) { 2705 dma_unmap_single(&pdev->dev, 2706 dma_unmap_addr(tx_buf, mapping), 2707 dma_unmap_len(tx_buf, len), 2708 DMA_TO_DEVICE); 2709 xdp_return_frame(tx_buf->xdpf); 2710 tx_buf->action = 0; 2711 tx_buf->xdpf = NULL; 2712 j++; 2713 continue; 2714 } 2715 2716 skb = tx_buf->skb; 2717 if (!skb) { 2718 j++; 2719 continue; 2720 } 2721 2722 tx_buf->skb = NULL; 2723 2724 if (tx_buf->is_push) { 2725 dev_kfree_skb(skb); 2726 j += 2; 2727 continue; 2728 } 2729 2730 dma_unmap_single(&pdev->dev, 2731 dma_unmap_addr(tx_buf, mapping), 2732 skb_headlen(skb), 2733 DMA_TO_DEVICE); 2734 2735 last = tx_buf->nr_frags; 2736 j += 2; 2737 for (k = 0; k < last; k++, j++) { 2738 int ring_idx = j & bp->tx_ring_mask; 2739 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2740 2741 tx_buf = &txr->tx_buf_ring[ring_idx]; 2742 dma_unmap_page( 2743 &pdev->dev, 2744 dma_unmap_addr(tx_buf, mapping), 2745 skb_frag_size(frag), DMA_TO_DEVICE); 2746 } 2747 dev_kfree_skb(skb); 2748 } 2749 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2750 } 2751 } 2752 2753 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2754 { 2755 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2756 struct pci_dev *pdev = bp->pdev; 2757 struct bnxt_tpa_idx_map *map; 2758 int i, max_idx, max_agg_idx; 2759 2760 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2761 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2762 if (!rxr->rx_tpa) 2763 goto skip_rx_tpa_free; 2764 2765 for (i = 0; i < bp->max_tpa; i++) { 2766 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2767 u8 *data = tpa_info->data; 2768 2769 if (!data) 2770 continue; 2771 2772 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2773 bp->rx_buf_use_size, bp->rx_dir, 2774 DMA_ATTR_WEAK_ORDERING); 2775 2776 tpa_info->data = NULL; 2777 2778 kfree(data); 2779 } 2780 2781 skip_rx_tpa_free: 2782 if (!rxr->rx_buf_ring) 2783 goto skip_rx_buf_free; 2784 2785 for (i = 0; i < max_idx; i++) { 2786 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2787 dma_addr_t mapping = rx_buf->mapping; 2788 void *data = rx_buf->data; 2789 2790 if (!data) 2791 continue; 2792 2793 rx_buf->data = NULL; 2794 if (BNXT_RX_PAGE_MODE(bp)) { 2795 mapping -= bp->rx_dma_offset; 2796 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2797 bp->rx_dir, 2798 DMA_ATTR_WEAK_ORDERING); 2799 page_pool_recycle_direct(rxr->page_pool, data); 2800 } else { 2801 dma_unmap_single_attrs(&pdev->dev, mapping, 2802 bp->rx_buf_use_size, bp->rx_dir, 2803 DMA_ATTR_WEAK_ORDERING); 2804 kfree(data); 2805 } 2806 } 2807 2808 skip_rx_buf_free: 2809 if (!rxr->rx_agg_ring) 2810 goto skip_rx_agg_free; 2811 2812 for (i = 0; i < max_agg_idx; i++) { 2813 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2814 struct page *page = rx_agg_buf->page; 2815 2816 if (!page) 2817 continue; 2818 2819 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2820 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2821 DMA_ATTR_WEAK_ORDERING); 2822 2823 rx_agg_buf->page = NULL; 2824 __clear_bit(i, rxr->rx_agg_bmap); 2825 2826 __free_page(page); 2827 } 2828 2829 skip_rx_agg_free: 2830 if (rxr->rx_page) { 2831 __free_page(rxr->rx_page); 2832 rxr->rx_page = NULL; 2833 } 2834 map = rxr->rx_tpa_idx_map; 2835 if (map) 2836 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2837 } 2838 2839 static void bnxt_free_rx_skbs(struct bnxt *bp) 2840 { 2841 int i; 2842 2843 if (!bp->rx_ring) 2844 return; 2845 2846 for (i = 0; i < bp->rx_nr_rings; i++) 2847 bnxt_free_one_rx_ring_skbs(bp, i); 2848 } 2849 2850 static void bnxt_free_skbs(struct bnxt *bp) 2851 { 2852 bnxt_free_tx_skbs(bp); 2853 bnxt_free_rx_skbs(bp); 2854 } 2855 2856 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2857 { 2858 u8 init_val = mem_init->init_val; 2859 u16 offset = mem_init->offset; 2860 u8 *p2 = p; 2861 int i; 2862 2863 if (!init_val) 2864 return; 2865 if (offset == BNXT_MEM_INVALID_OFFSET) { 2866 memset(p, init_val, len); 2867 return; 2868 } 2869 for (i = 0; i < len; i += mem_init->size) 2870 *(p2 + i + offset) = init_val; 2871 } 2872 2873 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2874 { 2875 struct pci_dev *pdev = bp->pdev; 2876 int i; 2877 2878 if (!rmem->pg_arr) 2879 goto skip_pages; 2880 2881 for (i = 0; i < rmem->nr_pages; i++) { 2882 if (!rmem->pg_arr[i]) 2883 continue; 2884 2885 dma_free_coherent(&pdev->dev, rmem->page_size, 2886 rmem->pg_arr[i], rmem->dma_arr[i]); 2887 2888 rmem->pg_arr[i] = NULL; 2889 } 2890 skip_pages: 2891 if (rmem->pg_tbl) { 2892 size_t pg_tbl_size = rmem->nr_pages * 8; 2893 2894 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2895 pg_tbl_size = rmem->page_size; 2896 dma_free_coherent(&pdev->dev, pg_tbl_size, 2897 rmem->pg_tbl, rmem->pg_tbl_map); 2898 rmem->pg_tbl = NULL; 2899 } 2900 if (rmem->vmem_size && *rmem->vmem) { 2901 vfree(*rmem->vmem); 2902 *rmem->vmem = NULL; 2903 } 2904 } 2905 2906 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2907 { 2908 struct pci_dev *pdev = bp->pdev; 2909 u64 valid_bit = 0; 2910 int i; 2911 2912 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2913 valid_bit = PTU_PTE_VALID; 2914 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2915 size_t pg_tbl_size = rmem->nr_pages * 8; 2916 2917 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2918 pg_tbl_size = rmem->page_size; 2919 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2920 &rmem->pg_tbl_map, 2921 GFP_KERNEL); 2922 if (!rmem->pg_tbl) 2923 return -ENOMEM; 2924 } 2925 2926 for (i = 0; i < rmem->nr_pages; i++) { 2927 u64 extra_bits = valid_bit; 2928 2929 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2930 rmem->page_size, 2931 &rmem->dma_arr[i], 2932 GFP_KERNEL); 2933 if (!rmem->pg_arr[i]) 2934 return -ENOMEM; 2935 2936 if (rmem->mem_init) 2937 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2938 rmem->page_size); 2939 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2940 if (i == rmem->nr_pages - 2 && 2941 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2942 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2943 else if (i == rmem->nr_pages - 1 && 2944 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2945 extra_bits |= PTU_PTE_LAST; 2946 rmem->pg_tbl[i] = 2947 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2948 } 2949 } 2950 2951 if (rmem->vmem_size) { 2952 *rmem->vmem = vzalloc(rmem->vmem_size); 2953 if (!(*rmem->vmem)) 2954 return -ENOMEM; 2955 } 2956 return 0; 2957 } 2958 2959 static void bnxt_free_tpa_info(struct bnxt *bp) 2960 { 2961 int i; 2962 2963 for (i = 0; i < bp->rx_nr_rings; i++) { 2964 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2965 2966 kfree(rxr->rx_tpa_idx_map); 2967 rxr->rx_tpa_idx_map = NULL; 2968 if (rxr->rx_tpa) { 2969 kfree(rxr->rx_tpa[0].agg_arr); 2970 rxr->rx_tpa[0].agg_arr = NULL; 2971 } 2972 kfree(rxr->rx_tpa); 2973 rxr->rx_tpa = NULL; 2974 } 2975 } 2976 2977 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2978 { 2979 int i, j, total_aggs = 0; 2980 2981 bp->max_tpa = MAX_TPA; 2982 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2983 if (!bp->max_tpa_v2) 2984 return 0; 2985 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2986 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2987 } 2988 2989 for (i = 0; i < bp->rx_nr_rings; i++) { 2990 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2991 struct rx_agg_cmp *agg; 2992 2993 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2994 GFP_KERNEL); 2995 if (!rxr->rx_tpa) 2996 return -ENOMEM; 2997 2998 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2999 continue; 3000 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3001 rxr->rx_tpa[0].agg_arr = agg; 3002 if (!agg) 3003 return -ENOMEM; 3004 for (j = 1; j < bp->max_tpa; j++) 3005 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3006 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3007 GFP_KERNEL); 3008 if (!rxr->rx_tpa_idx_map) 3009 return -ENOMEM; 3010 } 3011 return 0; 3012 } 3013 3014 static void bnxt_free_rx_rings(struct bnxt *bp) 3015 { 3016 int i; 3017 3018 if (!bp->rx_ring) 3019 return; 3020 3021 bnxt_free_tpa_info(bp); 3022 for (i = 0; i < bp->rx_nr_rings; i++) { 3023 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3024 struct bnxt_ring_struct *ring; 3025 3026 if (rxr->xdp_prog) 3027 bpf_prog_put(rxr->xdp_prog); 3028 3029 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3030 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3031 3032 page_pool_destroy(rxr->page_pool); 3033 rxr->page_pool = NULL; 3034 3035 kfree(rxr->rx_agg_bmap); 3036 rxr->rx_agg_bmap = NULL; 3037 3038 ring = &rxr->rx_ring_struct; 3039 bnxt_free_ring(bp, &ring->ring_mem); 3040 3041 ring = &rxr->rx_agg_ring_struct; 3042 bnxt_free_ring(bp, &ring->ring_mem); 3043 } 3044 } 3045 3046 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3047 struct bnxt_rx_ring_info *rxr) 3048 { 3049 struct page_pool_params pp = { 0 }; 3050 3051 pp.pool_size = bp->rx_ring_size; 3052 pp.nid = dev_to_node(&bp->pdev->dev); 3053 pp.dev = &bp->pdev->dev; 3054 pp.dma_dir = DMA_BIDIRECTIONAL; 3055 3056 rxr->page_pool = page_pool_create(&pp); 3057 if (IS_ERR(rxr->page_pool)) { 3058 int err = PTR_ERR(rxr->page_pool); 3059 3060 rxr->page_pool = NULL; 3061 return err; 3062 } 3063 return 0; 3064 } 3065 3066 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3067 { 3068 int i, rc = 0, agg_rings = 0; 3069 3070 if (!bp->rx_ring) 3071 return -ENOMEM; 3072 3073 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3074 agg_rings = 1; 3075 3076 for (i = 0; i < bp->rx_nr_rings; i++) { 3077 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3078 struct bnxt_ring_struct *ring; 3079 3080 ring = &rxr->rx_ring_struct; 3081 3082 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3083 if (rc) 3084 return rc; 3085 3086 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3087 if (rc < 0) 3088 return rc; 3089 3090 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3091 MEM_TYPE_PAGE_POOL, 3092 rxr->page_pool); 3093 if (rc) { 3094 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3095 return rc; 3096 } 3097 3098 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3099 if (rc) 3100 return rc; 3101 3102 ring->grp_idx = i; 3103 if (agg_rings) { 3104 u16 mem_size; 3105 3106 ring = &rxr->rx_agg_ring_struct; 3107 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3108 if (rc) 3109 return rc; 3110 3111 ring->grp_idx = i; 3112 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3113 mem_size = rxr->rx_agg_bmap_size / 8; 3114 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3115 if (!rxr->rx_agg_bmap) 3116 return -ENOMEM; 3117 } 3118 } 3119 if (bp->flags & BNXT_FLAG_TPA) 3120 rc = bnxt_alloc_tpa_info(bp); 3121 return rc; 3122 } 3123 3124 static void bnxt_free_tx_rings(struct bnxt *bp) 3125 { 3126 int i; 3127 struct pci_dev *pdev = bp->pdev; 3128 3129 if (!bp->tx_ring) 3130 return; 3131 3132 for (i = 0; i < bp->tx_nr_rings; i++) { 3133 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3134 struct bnxt_ring_struct *ring; 3135 3136 if (txr->tx_push) { 3137 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3138 txr->tx_push, txr->tx_push_mapping); 3139 txr->tx_push = NULL; 3140 } 3141 3142 ring = &txr->tx_ring_struct; 3143 3144 bnxt_free_ring(bp, &ring->ring_mem); 3145 } 3146 } 3147 3148 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3149 { 3150 int i, j, rc; 3151 struct pci_dev *pdev = bp->pdev; 3152 3153 bp->tx_push_size = 0; 3154 if (bp->tx_push_thresh) { 3155 int push_size; 3156 3157 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3158 bp->tx_push_thresh); 3159 3160 if (push_size > 256) { 3161 push_size = 0; 3162 bp->tx_push_thresh = 0; 3163 } 3164 3165 bp->tx_push_size = push_size; 3166 } 3167 3168 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3169 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3170 struct bnxt_ring_struct *ring; 3171 u8 qidx; 3172 3173 ring = &txr->tx_ring_struct; 3174 3175 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3176 if (rc) 3177 return rc; 3178 3179 ring->grp_idx = txr->bnapi->index; 3180 if (bp->tx_push_size) { 3181 dma_addr_t mapping; 3182 3183 /* One pre-allocated DMA buffer to backup 3184 * TX push operation 3185 */ 3186 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3187 bp->tx_push_size, 3188 &txr->tx_push_mapping, 3189 GFP_KERNEL); 3190 3191 if (!txr->tx_push) 3192 return -ENOMEM; 3193 3194 mapping = txr->tx_push_mapping + 3195 sizeof(struct tx_push_bd); 3196 txr->data_mapping = cpu_to_le64(mapping); 3197 } 3198 qidx = bp->tc_to_qidx[j]; 3199 ring->queue_id = bp->q_info[qidx].queue_id; 3200 if (i < bp->tx_nr_rings_xdp) 3201 continue; 3202 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3203 j++; 3204 } 3205 return 0; 3206 } 3207 3208 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3209 { 3210 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3211 3212 kfree(cpr->cp_desc_ring); 3213 cpr->cp_desc_ring = NULL; 3214 ring->ring_mem.pg_arr = NULL; 3215 kfree(cpr->cp_desc_mapping); 3216 cpr->cp_desc_mapping = NULL; 3217 ring->ring_mem.dma_arr = NULL; 3218 } 3219 3220 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3221 { 3222 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3223 if (!cpr->cp_desc_ring) 3224 return -ENOMEM; 3225 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3226 GFP_KERNEL); 3227 if (!cpr->cp_desc_mapping) 3228 return -ENOMEM; 3229 return 0; 3230 } 3231 3232 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3233 { 3234 int i; 3235 3236 if (!bp->bnapi) 3237 return; 3238 for (i = 0; i < bp->cp_nr_rings; i++) { 3239 struct bnxt_napi *bnapi = bp->bnapi[i]; 3240 3241 if (!bnapi) 3242 continue; 3243 bnxt_free_cp_arrays(&bnapi->cp_ring); 3244 } 3245 } 3246 3247 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3248 { 3249 int i, n = bp->cp_nr_pages; 3250 3251 for (i = 0; i < bp->cp_nr_rings; i++) { 3252 struct bnxt_napi *bnapi = bp->bnapi[i]; 3253 int rc; 3254 3255 if (!bnapi) 3256 continue; 3257 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3258 if (rc) 3259 return rc; 3260 } 3261 return 0; 3262 } 3263 3264 static void bnxt_free_cp_rings(struct bnxt *bp) 3265 { 3266 int i; 3267 3268 if (!bp->bnapi) 3269 return; 3270 3271 for (i = 0; i < bp->cp_nr_rings; i++) { 3272 struct bnxt_napi *bnapi = bp->bnapi[i]; 3273 struct bnxt_cp_ring_info *cpr; 3274 struct bnxt_ring_struct *ring; 3275 int j; 3276 3277 if (!bnapi) 3278 continue; 3279 3280 cpr = &bnapi->cp_ring; 3281 ring = &cpr->cp_ring_struct; 3282 3283 bnxt_free_ring(bp, &ring->ring_mem); 3284 3285 for (j = 0; j < 2; j++) { 3286 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3287 3288 if (cpr2) { 3289 ring = &cpr2->cp_ring_struct; 3290 bnxt_free_ring(bp, &ring->ring_mem); 3291 bnxt_free_cp_arrays(cpr2); 3292 kfree(cpr2); 3293 cpr->cp_ring_arr[j] = NULL; 3294 } 3295 } 3296 } 3297 } 3298 3299 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3300 { 3301 struct bnxt_ring_mem_info *rmem; 3302 struct bnxt_ring_struct *ring; 3303 struct bnxt_cp_ring_info *cpr; 3304 int rc; 3305 3306 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3307 if (!cpr) 3308 return NULL; 3309 3310 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3311 if (rc) { 3312 bnxt_free_cp_arrays(cpr); 3313 kfree(cpr); 3314 return NULL; 3315 } 3316 ring = &cpr->cp_ring_struct; 3317 rmem = &ring->ring_mem; 3318 rmem->nr_pages = bp->cp_nr_pages; 3319 rmem->page_size = HW_CMPD_RING_SIZE; 3320 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3321 rmem->dma_arr = cpr->cp_desc_mapping; 3322 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3323 rc = bnxt_alloc_ring(bp, rmem); 3324 if (rc) { 3325 bnxt_free_ring(bp, rmem); 3326 bnxt_free_cp_arrays(cpr); 3327 kfree(cpr); 3328 cpr = NULL; 3329 } 3330 return cpr; 3331 } 3332 3333 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3334 { 3335 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3336 int i, rc, ulp_base_vec, ulp_msix; 3337 3338 ulp_msix = bnxt_get_ulp_msix_num(bp); 3339 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3340 for (i = 0; i < bp->cp_nr_rings; i++) { 3341 struct bnxt_napi *bnapi = bp->bnapi[i]; 3342 struct bnxt_cp_ring_info *cpr; 3343 struct bnxt_ring_struct *ring; 3344 3345 if (!bnapi) 3346 continue; 3347 3348 cpr = &bnapi->cp_ring; 3349 cpr->bnapi = bnapi; 3350 ring = &cpr->cp_ring_struct; 3351 3352 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3353 if (rc) 3354 return rc; 3355 3356 if (ulp_msix && i >= ulp_base_vec) 3357 ring->map_idx = i + ulp_msix; 3358 else 3359 ring->map_idx = i; 3360 3361 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3362 continue; 3363 3364 if (i < bp->rx_nr_rings) { 3365 struct bnxt_cp_ring_info *cpr2 = 3366 bnxt_alloc_cp_sub_ring(bp); 3367 3368 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3369 if (!cpr2) 3370 return -ENOMEM; 3371 cpr2->bnapi = bnapi; 3372 } 3373 if ((sh && i < bp->tx_nr_rings) || 3374 (!sh && i >= bp->rx_nr_rings)) { 3375 struct bnxt_cp_ring_info *cpr2 = 3376 bnxt_alloc_cp_sub_ring(bp); 3377 3378 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3379 if (!cpr2) 3380 return -ENOMEM; 3381 cpr2->bnapi = bnapi; 3382 } 3383 } 3384 return 0; 3385 } 3386 3387 static void bnxt_init_ring_struct(struct bnxt *bp) 3388 { 3389 int i; 3390 3391 for (i = 0; i < bp->cp_nr_rings; i++) { 3392 struct bnxt_napi *bnapi = bp->bnapi[i]; 3393 struct bnxt_ring_mem_info *rmem; 3394 struct bnxt_cp_ring_info *cpr; 3395 struct bnxt_rx_ring_info *rxr; 3396 struct bnxt_tx_ring_info *txr; 3397 struct bnxt_ring_struct *ring; 3398 3399 if (!bnapi) 3400 continue; 3401 3402 cpr = &bnapi->cp_ring; 3403 ring = &cpr->cp_ring_struct; 3404 rmem = &ring->ring_mem; 3405 rmem->nr_pages = bp->cp_nr_pages; 3406 rmem->page_size = HW_CMPD_RING_SIZE; 3407 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3408 rmem->dma_arr = cpr->cp_desc_mapping; 3409 rmem->vmem_size = 0; 3410 3411 rxr = bnapi->rx_ring; 3412 if (!rxr) 3413 goto skip_rx; 3414 3415 ring = &rxr->rx_ring_struct; 3416 rmem = &ring->ring_mem; 3417 rmem->nr_pages = bp->rx_nr_pages; 3418 rmem->page_size = HW_RXBD_RING_SIZE; 3419 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3420 rmem->dma_arr = rxr->rx_desc_mapping; 3421 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3422 rmem->vmem = (void **)&rxr->rx_buf_ring; 3423 3424 ring = &rxr->rx_agg_ring_struct; 3425 rmem = &ring->ring_mem; 3426 rmem->nr_pages = bp->rx_agg_nr_pages; 3427 rmem->page_size = HW_RXBD_RING_SIZE; 3428 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3429 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3430 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3431 rmem->vmem = (void **)&rxr->rx_agg_ring; 3432 3433 skip_rx: 3434 txr = bnapi->tx_ring; 3435 if (!txr) 3436 continue; 3437 3438 ring = &txr->tx_ring_struct; 3439 rmem = &ring->ring_mem; 3440 rmem->nr_pages = bp->tx_nr_pages; 3441 rmem->page_size = HW_RXBD_RING_SIZE; 3442 rmem->pg_arr = (void **)txr->tx_desc_ring; 3443 rmem->dma_arr = txr->tx_desc_mapping; 3444 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3445 rmem->vmem = (void **)&txr->tx_buf_ring; 3446 } 3447 } 3448 3449 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3450 { 3451 int i; 3452 u32 prod; 3453 struct rx_bd **rx_buf_ring; 3454 3455 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3456 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3457 int j; 3458 struct rx_bd *rxbd; 3459 3460 rxbd = rx_buf_ring[i]; 3461 if (!rxbd) 3462 continue; 3463 3464 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3465 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3466 rxbd->rx_bd_opaque = prod; 3467 } 3468 } 3469 } 3470 3471 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3472 { 3473 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3474 struct net_device *dev = bp->dev; 3475 u32 prod; 3476 int i; 3477 3478 prod = rxr->rx_prod; 3479 for (i = 0; i < bp->rx_ring_size; i++) { 3480 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3481 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3482 ring_nr, i, bp->rx_ring_size); 3483 break; 3484 } 3485 prod = NEXT_RX(prod); 3486 } 3487 rxr->rx_prod = prod; 3488 3489 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3490 return 0; 3491 3492 prod = rxr->rx_agg_prod; 3493 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3494 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3495 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3496 ring_nr, i, bp->rx_ring_size); 3497 break; 3498 } 3499 prod = NEXT_RX_AGG(prod); 3500 } 3501 rxr->rx_agg_prod = prod; 3502 3503 if (rxr->rx_tpa) { 3504 dma_addr_t mapping; 3505 u8 *data; 3506 3507 for (i = 0; i < bp->max_tpa; i++) { 3508 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3509 if (!data) 3510 return -ENOMEM; 3511 3512 rxr->rx_tpa[i].data = data; 3513 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3514 rxr->rx_tpa[i].mapping = mapping; 3515 } 3516 } 3517 return 0; 3518 } 3519 3520 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3521 { 3522 struct bnxt_rx_ring_info *rxr; 3523 struct bnxt_ring_struct *ring; 3524 u32 type; 3525 3526 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3527 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3528 3529 if (NET_IP_ALIGN == 2) 3530 type |= RX_BD_FLAGS_SOP; 3531 3532 rxr = &bp->rx_ring[ring_nr]; 3533 ring = &rxr->rx_ring_struct; 3534 bnxt_init_rxbd_pages(ring, type); 3535 3536 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3537 bpf_prog_add(bp->xdp_prog, 1); 3538 rxr->xdp_prog = bp->xdp_prog; 3539 } 3540 ring->fw_ring_id = INVALID_HW_RING_ID; 3541 3542 ring = &rxr->rx_agg_ring_struct; 3543 ring->fw_ring_id = INVALID_HW_RING_ID; 3544 3545 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3546 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3547 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3548 3549 bnxt_init_rxbd_pages(ring, type); 3550 } 3551 3552 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3553 } 3554 3555 static void bnxt_init_cp_rings(struct bnxt *bp) 3556 { 3557 int i, j; 3558 3559 for (i = 0; i < bp->cp_nr_rings; i++) { 3560 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3561 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3562 3563 ring->fw_ring_id = INVALID_HW_RING_ID; 3564 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3565 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3566 for (j = 0; j < 2; j++) { 3567 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3568 3569 if (!cpr2) 3570 continue; 3571 3572 ring = &cpr2->cp_ring_struct; 3573 ring->fw_ring_id = INVALID_HW_RING_ID; 3574 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3575 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3576 } 3577 } 3578 } 3579 3580 static int bnxt_init_rx_rings(struct bnxt *bp) 3581 { 3582 int i, rc = 0; 3583 3584 if (BNXT_RX_PAGE_MODE(bp)) { 3585 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3586 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3587 } else { 3588 bp->rx_offset = BNXT_RX_OFFSET; 3589 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3590 } 3591 3592 for (i = 0; i < bp->rx_nr_rings; i++) { 3593 rc = bnxt_init_one_rx_ring(bp, i); 3594 if (rc) 3595 break; 3596 } 3597 3598 return rc; 3599 } 3600 3601 static int bnxt_init_tx_rings(struct bnxt *bp) 3602 { 3603 u16 i; 3604 3605 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3606 BNXT_MIN_TX_DESC_CNT); 3607 3608 for (i = 0; i < bp->tx_nr_rings; i++) { 3609 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3610 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3611 3612 ring->fw_ring_id = INVALID_HW_RING_ID; 3613 } 3614 3615 return 0; 3616 } 3617 3618 static void bnxt_free_ring_grps(struct bnxt *bp) 3619 { 3620 kfree(bp->grp_info); 3621 bp->grp_info = NULL; 3622 } 3623 3624 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3625 { 3626 int i; 3627 3628 if (irq_re_init) { 3629 bp->grp_info = kcalloc(bp->cp_nr_rings, 3630 sizeof(struct bnxt_ring_grp_info), 3631 GFP_KERNEL); 3632 if (!bp->grp_info) 3633 return -ENOMEM; 3634 } 3635 for (i = 0; i < bp->cp_nr_rings; i++) { 3636 if (irq_re_init) 3637 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3638 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3639 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3640 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3641 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3642 } 3643 return 0; 3644 } 3645 3646 static void bnxt_free_vnics(struct bnxt *bp) 3647 { 3648 kfree(bp->vnic_info); 3649 bp->vnic_info = NULL; 3650 bp->nr_vnics = 0; 3651 } 3652 3653 static int bnxt_alloc_vnics(struct bnxt *bp) 3654 { 3655 int num_vnics = 1; 3656 3657 #ifdef CONFIG_RFS_ACCEL 3658 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3659 num_vnics += bp->rx_nr_rings; 3660 #endif 3661 3662 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3663 num_vnics++; 3664 3665 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3666 GFP_KERNEL); 3667 if (!bp->vnic_info) 3668 return -ENOMEM; 3669 3670 bp->nr_vnics = num_vnics; 3671 return 0; 3672 } 3673 3674 static void bnxt_init_vnics(struct bnxt *bp) 3675 { 3676 int i; 3677 3678 for (i = 0; i < bp->nr_vnics; i++) { 3679 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3680 int j; 3681 3682 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3683 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3684 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3685 3686 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3687 3688 if (bp->vnic_info[i].rss_hash_key) { 3689 if (i == 0) 3690 prandom_bytes(vnic->rss_hash_key, 3691 HW_HASH_KEY_SIZE); 3692 else 3693 memcpy(vnic->rss_hash_key, 3694 bp->vnic_info[0].rss_hash_key, 3695 HW_HASH_KEY_SIZE); 3696 } 3697 } 3698 } 3699 3700 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3701 { 3702 int pages; 3703 3704 pages = ring_size / desc_per_pg; 3705 3706 if (!pages) 3707 return 1; 3708 3709 pages++; 3710 3711 while (pages & (pages - 1)) 3712 pages++; 3713 3714 return pages; 3715 } 3716 3717 void bnxt_set_tpa_flags(struct bnxt *bp) 3718 { 3719 bp->flags &= ~BNXT_FLAG_TPA; 3720 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3721 return; 3722 if (bp->dev->features & NETIF_F_LRO) 3723 bp->flags |= BNXT_FLAG_LRO; 3724 else if (bp->dev->features & NETIF_F_GRO_HW) 3725 bp->flags |= BNXT_FLAG_GRO; 3726 } 3727 3728 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3729 * be set on entry. 3730 */ 3731 void bnxt_set_ring_params(struct bnxt *bp) 3732 { 3733 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3734 u32 agg_factor = 0, agg_ring_size = 0; 3735 3736 /* 8 for CRC and VLAN */ 3737 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3738 3739 rx_space = rx_size + NET_SKB_PAD + 3740 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3741 3742 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3743 ring_size = bp->rx_ring_size; 3744 bp->rx_agg_ring_size = 0; 3745 bp->rx_agg_nr_pages = 0; 3746 3747 if (bp->flags & BNXT_FLAG_TPA) 3748 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3749 3750 bp->flags &= ~BNXT_FLAG_JUMBO; 3751 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3752 u32 jumbo_factor; 3753 3754 bp->flags |= BNXT_FLAG_JUMBO; 3755 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3756 if (jumbo_factor > agg_factor) 3757 agg_factor = jumbo_factor; 3758 } 3759 if (agg_factor) { 3760 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3761 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3762 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3763 bp->rx_ring_size, ring_size); 3764 bp->rx_ring_size = ring_size; 3765 } 3766 agg_ring_size = ring_size * agg_factor; 3767 3768 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3769 RX_DESC_CNT); 3770 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3771 u32 tmp = agg_ring_size; 3772 3773 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3774 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3775 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3776 tmp, agg_ring_size); 3777 } 3778 bp->rx_agg_ring_size = agg_ring_size; 3779 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3780 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3781 rx_space = rx_size + NET_SKB_PAD + 3782 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3783 } 3784 3785 bp->rx_buf_use_size = rx_size; 3786 bp->rx_buf_size = rx_space; 3787 3788 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3789 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3790 3791 ring_size = bp->tx_ring_size; 3792 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3793 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3794 3795 max_rx_cmpl = bp->rx_ring_size; 3796 /* MAX TPA needs to be added because TPA_START completions are 3797 * immediately recycled, so the TPA completions are not bound by 3798 * the RX ring size. 3799 */ 3800 if (bp->flags & BNXT_FLAG_TPA) 3801 max_rx_cmpl += bp->max_tpa; 3802 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3803 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3804 bp->cp_ring_size = ring_size; 3805 3806 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3807 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3808 bp->cp_nr_pages = MAX_CP_PAGES; 3809 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3810 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3811 ring_size, bp->cp_ring_size); 3812 } 3813 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3814 bp->cp_ring_mask = bp->cp_bit - 1; 3815 } 3816 3817 /* Changing allocation mode of RX rings. 3818 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3819 */ 3820 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3821 { 3822 if (page_mode) { 3823 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3824 return -EOPNOTSUPP; 3825 bp->dev->max_mtu = 3826 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3827 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3828 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3829 bp->rx_dir = DMA_BIDIRECTIONAL; 3830 bp->rx_skb_func = bnxt_rx_page_skb; 3831 /* Disable LRO or GRO_HW */ 3832 netdev_update_features(bp->dev); 3833 } else { 3834 bp->dev->max_mtu = bp->max_mtu; 3835 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3836 bp->rx_dir = DMA_FROM_DEVICE; 3837 bp->rx_skb_func = bnxt_rx_skb; 3838 } 3839 return 0; 3840 } 3841 3842 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3843 { 3844 int i; 3845 struct bnxt_vnic_info *vnic; 3846 struct pci_dev *pdev = bp->pdev; 3847 3848 if (!bp->vnic_info) 3849 return; 3850 3851 for (i = 0; i < bp->nr_vnics; i++) { 3852 vnic = &bp->vnic_info[i]; 3853 3854 kfree(vnic->fw_grp_ids); 3855 vnic->fw_grp_ids = NULL; 3856 3857 kfree(vnic->uc_list); 3858 vnic->uc_list = NULL; 3859 3860 if (vnic->mc_list) { 3861 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3862 vnic->mc_list, vnic->mc_list_mapping); 3863 vnic->mc_list = NULL; 3864 } 3865 3866 if (vnic->rss_table) { 3867 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3868 vnic->rss_table, 3869 vnic->rss_table_dma_addr); 3870 vnic->rss_table = NULL; 3871 } 3872 3873 vnic->rss_hash_key = NULL; 3874 vnic->flags = 0; 3875 } 3876 } 3877 3878 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3879 { 3880 int i, rc = 0, size; 3881 struct bnxt_vnic_info *vnic; 3882 struct pci_dev *pdev = bp->pdev; 3883 int max_rings; 3884 3885 for (i = 0; i < bp->nr_vnics; i++) { 3886 vnic = &bp->vnic_info[i]; 3887 3888 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3889 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3890 3891 if (mem_size > 0) { 3892 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3893 if (!vnic->uc_list) { 3894 rc = -ENOMEM; 3895 goto out; 3896 } 3897 } 3898 } 3899 3900 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3901 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3902 vnic->mc_list = 3903 dma_alloc_coherent(&pdev->dev, 3904 vnic->mc_list_size, 3905 &vnic->mc_list_mapping, 3906 GFP_KERNEL); 3907 if (!vnic->mc_list) { 3908 rc = -ENOMEM; 3909 goto out; 3910 } 3911 } 3912 3913 if (bp->flags & BNXT_FLAG_CHIP_P5) 3914 goto vnic_skip_grps; 3915 3916 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3917 max_rings = bp->rx_nr_rings; 3918 else 3919 max_rings = 1; 3920 3921 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3922 if (!vnic->fw_grp_ids) { 3923 rc = -ENOMEM; 3924 goto out; 3925 } 3926 vnic_skip_grps: 3927 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3928 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3929 continue; 3930 3931 /* Allocate rss table and hash key */ 3932 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3933 if (bp->flags & BNXT_FLAG_CHIP_P5) 3934 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3935 3936 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3937 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3938 vnic->rss_table_size, 3939 &vnic->rss_table_dma_addr, 3940 GFP_KERNEL); 3941 if (!vnic->rss_table) { 3942 rc = -ENOMEM; 3943 goto out; 3944 } 3945 3946 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3947 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3948 } 3949 return 0; 3950 3951 out: 3952 return rc; 3953 } 3954 3955 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3956 { 3957 struct bnxt_hwrm_wait_token *token; 3958 3959 dma_pool_destroy(bp->hwrm_dma_pool); 3960 bp->hwrm_dma_pool = NULL; 3961 3962 rcu_read_lock(); 3963 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 3964 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 3965 rcu_read_unlock(); 3966 } 3967 3968 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3969 { 3970 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 3971 BNXT_HWRM_DMA_SIZE, 3972 BNXT_HWRM_DMA_ALIGN, 0); 3973 if (!bp->hwrm_dma_pool) 3974 return -ENOMEM; 3975 3976 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 3977 3978 return 0; 3979 } 3980 3981 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3982 { 3983 kfree(stats->hw_masks); 3984 stats->hw_masks = NULL; 3985 kfree(stats->sw_stats); 3986 stats->sw_stats = NULL; 3987 if (stats->hw_stats) { 3988 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3989 stats->hw_stats_map); 3990 stats->hw_stats = NULL; 3991 } 3992 } 3993 3994 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 3995 bool alloc_masks) 3996 { 3997 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 3998 &stats->hw_stats_map, GFP_KERNEL); 3999 if (!stats->hw_stats) 4000 return -ENOMEM; 4001 4002 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4003 if (!stats->sw_stats) 4004 goto stats_mem_err; 4005 4006 if (alloc_masks) { 4007 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4008 if (!stats->hw_masks) 4009 goto stats_mem_err; 4010 } 4011 return 0; 4012 4013 stats_mem_err: 4014 bnxt_free_stats_mem(bp, stats); 4015 return -ENOMEM; 4016 } 4017 4018 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4019 { 4020 int i; 4021 4022 for (i = 0; i < count; i++) 4023 mask_arr[i] = mask; 4024 } 4025 4026 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4027 { 4028 int i; 4029 4030 for (i = 0; i < count; i++) 4031 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4032 } 4033 4034 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4035 struct bnxt_stats_mem *stats) 4036 { 4037 struct hwrm_func_qstats_ext_output *resp; 4038 struct hwrm_func_qstats_ext_input *req; 4039 __le64 *hw_masks; 4040 int rc; 4041 4042 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4043 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4044 return -EOPNOTSUPP; 4045 4046 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4047 if (rc) 4048 return rc; 4049 4050 req->fid = cpu_to_le16(0xffff); 4051 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4052 4053 resp = hwrm_req_hold(bp, req); 4054 rc = hwrm_req_send(bp, req); 4055 if (!rc) { 4056 hw_masks = &resp->rx_ucast_pkts; 4057 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4058 } 4059 hwrm_req_drop(bp, req); 4060 return rc; 4061 } 4062 4063 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4064 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4065 4066 static void bnxt_init_stats(struct bnxt *bp) 4067 { 4068 struct bnxt_napi *bnapi = bp->bnapi[0]; 4069 struct bnxt_cp_ring_info *cpr; 4070 struct bnxt_stats_mem *stats; 4071 __le64 *rx_stats, *tx_stats; 4072 int rc, rx_count, tx_count; 4073 u64 *rx_masks, *tx_masks; 4074 u64 mask; 4075 u8 flags; 4076 4077 cpr = &bnapi->cp_ring; 4078 stats = &cpr->stats; 4079 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4080 if (rc) { 4081 if (bp->flags & BNXT_FLAG_CHIP_P5) 4082 mask = (1ULL << 48) - 1; 4083 else 4084 mask = -1ULL; 4085 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4086 } 4087 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4088 stats = &bp->port_stats; 4089 rx_stats = stats->hw_stats; 4090 rx_masks = stats->hw_masks; 4091 rx_count = sizeof(struct rx_port_stats) / 8; 4092 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4093 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4094 tx_count = sizeof(struct tx_port_stats) / 8; 4095 4096 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4097 rc = bnxt_hwrm_port_qstats(bp, flags); 4098 if (rc) { 4099 mask = (1ULL << 40) - 1; 4100 4101 bnxt_fill_masks(rx_masks, mask, rx_count); 4102 bnxt_fill_masks(tx_masks, mask, tx_count); 4103 } else { 4104 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4105 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4106 bnxt_hwrm_port_qstats(bp, 0); 4107 } 4108 } 4109 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4110 stats = &bp->rx_port_stats_ext; 4111 rx_stats = stats->hw_stats; 4112 rx_masks = stats->hw_masks; 4113 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4114 stats = &bp->tx_port_stats_ext; 4115 tx_stats = stats->hw_stats; 4116 tx_masks = stats->hw_masks; 4117 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4118 4119 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4120 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4121 if (rc) { 4122 mask = (1ULL << 40) - 1; 4123 4124 bnxt_fill_masks(rx_masks, mask, rx_count); 4125 if (tx_stats) 4126 bnxt_fill_masks(tx_masks, mask, tx_count); 4127 } else { 4128 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4129 if (tx_stats) 4130 bnxt_copy_hw_masks(tx_masks, tx_stats, 4131 tx_count); 4132 bnxt_hwrm_port_qstats_ext(bp, 0); 4133 } 4134 } 4135 } 4136 4137 static void bnxt_free_port_stats(struct bnxt *bp) 4138 { 4139 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4140 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4141 4142 bnxt_free_stats_mem(bp, &bp->port_stats); 4143 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4144 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4145 } 4146 4147 static void bnxt_free_ring_stats(struct bnxt *bp) 4148 { 4149 int i; 4150 4151 if (!bp->bnapi) 4152 return; 4153 4154 for (i = 0; i < bp->cp_nr_rings; i++) { 4155 struct bnxt_napi *bnapi = bp->bnapi[i]; 4156 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4157 4158 bnxt_free_stats_mem(bp, &cpr->stats); 4159 } 4160 } 4161 4162 static int bnxt_alloc_stats(struct bnxt *bp) 4163 { 4164 u32 size, i; 4165 int rc; 4166 4167 size = bp->hw_ring_stats_size; 4168 4169 for (i = 0; i < bp->cp_nr_rings; i++) { 4170 struct bnxt_napi *bnapi = bp->bnapi[i]; 4171 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4172 4173 cpr->stats.len = size; 4174 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4175 if (rc) 4176 return rc; 4177 4178 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4179 } 4180 4181 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4182 return 0; 4183 4184 if (bp->port_stats.hw_stats) 4185 goto alloc_ext_stats; 4186 4187 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4188 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4189 if (rc) 4190 return rc; 4191 4192 bp->flags |= BNXT_FLAG_PORT_STATS; 4193 4194 alloc_ext_stats: 4195 /* Display extended statistics only if FW supports it */ 4196 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4197 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4198 return 0; 4199 4200 if (bp->rx_port_stats_ext.hw_stats) 4201 goto alloc_tx_ext_stats; 4202 4203 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4204 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4205 /* Extended stats are optional */ 4206 if (rc) 4207 return 0; 4208 4209 alloc_tx_ext_stats: 4210 if (bp->tx_port_stats_ext.hw_stats) 4211 return 0; 4212 4213 if (bp->hwrm_spec_code >= 0x10902 || 4214 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4215 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4216 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4217 /* Extended stats are optional */ 4218 if (rc) 4219 return 0; 4220 } 4221 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4222 return 0; 4223 } 4224 4225 static void bnxt_clear_ring_indices(struct bnxt *bp) 4226 { 4227 int i; 4228 4229 if (!bp->bnapi) 4230 return; 4231 4232 for (i = 0; i < bp->cp_nr_rings; i++) { 4233 struct bnxt_napi *bnapi = bp->bnapi[i]; 4234 struct bnxt_cp_ring_info *cpr; 4235 struct bnxt_rx_ring_info *rxr; 4236 struct bnxt_tx_ring_info *txr; 4237 4238 if (!bnapi) 4239 continue; 4240 4241 cpr = &bnapi->cp_ring; 4242 cpr->cp_raw_cons = 0; 4243 4244 txr = bnapi->tx_ring; 4245 if (txr) { 4246 txr->tx_prod = 0; 4247 txr->tx_cons = 0; 4248 } 4249 4250 rxr = bnapi->rx_ring; 4251 if (rxr) { 4252 rxr->rx_prod = 0; 4253 rxr->rx_agg_prod = 0; 4254 rxr->rx_sw_agg_prod = 0; 4255 rxr->rx_next_cons = 0; 4256 } 4257 } 4258 } 4259 4260 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4261 { 4262 #ifdef CONFIG_RFS_ACCEL 4263 int i; 4264 4265 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4266 * safe to delete the hash table. 4267 */ 4268 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4269 struct hlist_head *head; 4270 struct hlist_node *tmp; 4271 struct bnxt_ntuple_filter *fltr; 4272 4273 head = &bp->ntp_fltr_hash_tbl[i]; 4274 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4275 hlist_del(&fltr->hash); 4276 kfree(fltr); 4277 } 4278 } 4279 if (irq_reinit) { 4280 kfree(bp->ntp_fltr_bmap); 4281 bp->ntp_fltr_bmap = NULL; 4282 } 4283 bp->ntp_fltr_count = 0; 4284 #endif 4285 } 4286 4287 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4288 { 4289 #ifdef CONFIG_RFS_ACCEL 4290 int i, rc = 0; 4291 4292 if (!(bp->flags & BNXT_FLAG_RFS)) 4293 return 0; 4294 4295 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4296 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4297 4298 bp->ntp_fltr_count = 0; 4299 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4300 sizeof(long), 4301 GFP_KERNEL); 4302 4303 if (!bp->ntp_fltr_bmap) 4304 rc = -ENOMEM; 4305 4306 return rc; 4307 #else 4308 return 0; 4309 #endif 4310 } 4311 4312 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4313 { 4314 bnxt_free_vnic_attributes(bp); 4315 bnxt_free_tx_rings(bp); 4316 bnxt_free_rx_rings(bp); 4317 bnxt_free_cp_rings(bp); 4318 bnxt_free_all_cp_arrays(bp); 4319 bnxt_free_ntp_fltrs(bp, irq_re_init); 4320 if (irq_re_init) { 4321 bnxt_free_ring_stats(bp); 4322 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4323 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4324 bnxt_free_port_stats(bp); 4325 bnxt_free_ring_grps(bp); 4326 bnxt_free_vnics(bp); 4327 kfree(bp->tx_ring_map); 4328 bp->tx_ring_map = NULL; 4329 kfree(bp->tx_ring); 4330 bp->tx_ring = NULL; 4331 kfree(bp->rx_ring); 4332 bp->rx_ring = NULL; 4333 kfree(bp->bnapi); 4334 bp->bnapi = NULL; 4335 } else { 4336 bnxt_clear_ring_indices(bp); 4337 } 4338 } 4339 4340 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4341 { 4342 int i, j, rc, size, arr_size; 4343 void *bnapi; 4344 4345 if (irq_re_init) { 4346 /* Allocate bnapi mem pointer array and mem block for 4347 * all queues 4348 */ 4349 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4350 bp->cp_nr_rings); 4351 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4352 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4353 if (!bnapi) 4354 return -ENOMEM; 4355 4356 bp->bnapi = bnapi; 4357 bnapi += arr_size; 4358 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4359 bp->bnapi[i] = bnapi; 4360 bp->bnapi[i]->index = i; 4361 bp->bnapi[i]->bp = bp; 4362 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4363 struct bnxt_cp_ring_info *cpr = 4364 &bp->bnapi[i]->cp_ring; 4365 4366 cpr->cp_ring_struct.ring_mem.flags = 4367 BNXT_RMEM_RING_PTE_FLAG; 4368 } 4369 } 4370 4371 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4372 sizeof(struct bnxt_rx_ring_info), 4373 GFP_KERNEL); 4374 if (!bp->rx_ring) 4375 return -ENOMEM; 4376 4377 for (i = 0; i < bp->rx_nr_rings; i++) { 4378 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4379 4380 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4381 rxr->rx_ring_struct.ring_mem.flags = 4382 BNXT_RMEM_RING_PTE_FLAG; 4383 rxr->rx_agg_ring_struct.ring_mem.flags = 4384 BNXT_RMEM_RING_PTE_FLAG; 4385 } 4386 rxr->bnapi = bp->bnapi[i]; 4387 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4388 } 4389 4390 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4391 sizeof(struct bnxt_tx_ring_info), 4392 GFP_KERNEL); 4393 if (!bp->tx_ring) 4394 return -ENOMEM; 4395 4396 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4397 GFP_KERNEL); 4398 4399 if (!bp->tx_ring_map) 4400 return -ENOMEM; 4401 4402 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4403 j = 0; 4404 else 4405 j = bp->rx_nr_rings; 4406 4407 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4408 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4409 4410 if (bp->flags & BNXT_FLAG_CHIP_P5) 4411 txr->tx_ring_struct.ring_mem.flags = 4412 BNXT_RMEM_RING_PTE_FLAG; 4413 txr->bnapi = bp->bnapi[j]; 4414 bp->bnapi[j]->tx_ring = txr; 4415 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4416 if (i >= bp->tx_nr_rings_xdp) { 4417 txr->txq_index = i - bp->tx_nr_rings_xdp; 4418 bp->bnapi[j]->tx_int = bnxt_tx_int; 4419 } else { 4420 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4421 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4422 } 4423 } 4424 4425 rc = bnxt_alloc_stats(bp); 4426 if (rc) 4427 goto alloc_mem_err; 4428 bnxt_init_stats(bp); 4429 4430 rc = bnxt_alloc_ntp_fltrs(bp); 4431 if (rc) 4432 goto alloc_mem_err; 4433 4434 rc = bnxt_alloc_vnics(bp); 4435 if (rc) 4436 goto alloc_mem_err; 4437 } 4438 4439 rc = bnxt_alloc_all_cp_arrays(bp); 4440 if (rc) 4441 goto alloc_mem_err; 4442 4443 bnxt_init_ring_struct(bp); 4444 4445 rc = bnxt_alloc_rx_rings(bp); 4446 if (rc) 4447 goto alloc_mem_err; 4448 4449 rc = bnxt_alloc_tx_rings(bp); 4450 if (rc) 4451 goto alloc_mem_err; 4452 4453 rc = bnxt_alloc_cp_rings(bp); 4454 if (rc) 4455 goto alloc_mem_err; 4456 4457 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4458 BNXT_VNIC_UCAST_FLAG; 4459 rc = bnxt_alloc_vnic_attributes(bp); 4460 if (rc) 4461 goto alloc_mem_err; 4462 return 0; 4463 4464 alloc_mem_err: 4465 bnxt_free_mem(bp, true); 4466 return rc; 4467 } 4468 4469 static void bnxt_disable_int(struct bnxt *bp) 4470 { 4471 int i; 4472 4473 if (!bp->bnapi) 4474 return; 4475 4476 for (i = 0; i < bp->cp_nr_rings; i++) { 4477 struct bnxt_napi *bnapi = bp->bnapi[i]; 4478 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4479 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4480 4481 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4482 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4483 } 4484 } 4485 4486 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4487 { 4488 struct bnxt_napi *bnapi = bp->bnapi[n]; 4489 struct bnxt_cp_ring_info *cpr; 4490 4491 cpr = &bnapi->cp_ring; 4492 return cpr->cp_ring_struct.map_idx; 4493 } 4494 4495 static void bnxt_disable_int_sync(struct bnxt *bp) 4496 { 4497 int i; 4498 4499 if (!bp->irq_tbl) 4500 return; 4501 4502 atomic_inc(&bp->intr_sem); 4503 4504 bnxt_disable_int(bp); 4505 for (i = 0; i < bp->cp_nr_rings; i++) { 4506 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4507 4508 synchronize_irq(bp->irq_tbl[map_idx].vector); 4509 } 4510 } 4511 4512 static void bnxt_enable_int(struct bnxt *bp) 4513 { 4514 int i; 4515 4516 atomic_set(&bp->intr_sem, 0); 4517 for (i = 0; i < bp->cp_nr_rings; i++) { 4518 struct bnxt_napi *bnapi = bp->bnapi[i]; 4519 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4520 4521 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4522 } 4523 } 4524 4525 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4526 bool async_only) 4527 { 4528 DECLARE_BITMAP(async_events_bmap, 256); 4529 u32 *events = (u32 *)async_events_bmap; 4530 struct hwrm_func_drv_rgtr_output *resp; 4531 struct hwrm_func_drv_rgtr_input *req; 4532 u32 flags; 4533 int rc, i; 4534 4535 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4536 if (rc) 4537 return rc; 4538 4539 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4540 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4541 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4542 4543 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4544 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4545 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4546 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4547 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4548 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4549 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4550 req->flags = cpu_to_le32(flags); 4551 req->ver_maj_8b = DRV_VER_MAJ; 4552 req->ver_min_8b = DRV_VER_MIN; 4553 req->ver_upd_8b = DRV_VER_UPD; 4554 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4555 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4556 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4557 4558 if (BNXT_PF(bp)) { 4559 u32 data[8]; 4560 int i; 4561 4562 memset(data, 0, sizeof(data)); 4563 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4564 u16 cmd = bnxt_vf_req_snif[i]; 4565 unsigned int bit, idx; 4566 4567 idx = cmd / 32; 4568 bit = cmd % 32; 4569 data[idx] |= 1 << bit; 4570 } 4571 4572 for (i = 0; i < 8; i++) 4573 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4574 4575 req->enables |= 4576 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4577 } 4578 4579 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4580 req->flags |= cpu_to_le32( 4581 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4582 4583 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4584 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4585 u16 event_id = bnxt_async_events_arr[i]; 4586 4587 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4588 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4589 continue; 4590 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4591 } 4592 if (bmap && bmap_size) { 4593 for (i = 0; i < bmap_size; i++) { 4594 if (test_bit(i, bmap)) 4595 __set_bit(i, async_events_bmap); 4596 } 4597 } 4598 for (i = 0; i < 8; i++) 4599 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4600 4601 if (async_only) 4602 req->enables = 4603 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4604 4605 resp = hwrm_req_hold(bp, req); 4606 rc = hwrm_req_send(bp, req); 4607 if (!rc) { 4608 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4609 if (resp->flags & 4610 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4611 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4612 } 4613 hwrm_req_drop(bp, req); 4614 return rc; 4615 } 4616 4617 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4618 { 4619 struct hwrm_func_drv_unrgtr_input *req; 4620 int rc; 4621 4622 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4623 return 0; 4624 4625 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4626 if (rc) 4627 return rc; 4628 return hwrm_req_send(bp, req); 4629 } 4630 4631 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4632 { 4633 struct hwrm_tunnel_dst_port_free_input *req; 4634 int rc; 4635 4636 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4637 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4638 return 0; 4639 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4640 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4641 return 0; 4642 4643 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4644 if (rc) 4645 return rc; 4646 4647 req->tunnel_type = tunnel_type; 4648 4649 switch (tunnel_type) { 4650 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4651 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4652 bp->vxlan_port = 0; 4653 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4654 break; 4655 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4656 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4657 bp->nge_port = 0; 4658 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4659 break; 4660 default: 4661 break; 4662 } 4663 4664 rc = hwrm_req_send(bp, req); 4665 if (rc) 4666 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4667 rc); 4668 return rc; 4669 } 4670 4671 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4672 u8 tunnel_type) 4673 { 4674 struct hwrm_tunnel_dst_port_alloc_output *resp; 4675 struct hwrm_tunnel_dst_port_alloc_input *req; 4676 int rc; 4677 4678 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4679 if (rc) 4680 return rc; 4681 4682 req->tunnel_type = tunnel_type; 4683 req->tunnel_dst_port_val = port; 4684 4685 resp = hwrm_req_hold(bp, req); 4686 rc = hwrm_req_send(bp, req); 4687 if (rc) { 4688 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4689 rc); 4690 goto err_out; 4691 } 4692 4693 switch (tunnel_type) { 4694 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4695 bp->vxlan_port = port; 4696 bp->vxlan_fw_dst_port_id = 4697 le16_to_cpu(resp->tunnel_dst_port_id); 4698 break; 4699 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4700 bp->nge_port = port; 4701 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4702 break; 4703 default: 4704 break; 4705 } 4706 4707 err_out: 4708 hwrm_req_drop(bp, req); 4709 return rc; 4710 } 4711 4712 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4713 { 4714 struct hwrm_cfa_l2_set_rx_mask_input *req; 4715 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4716 int rc; 4717 4718 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4719 if (rc) 4720 return rc; 4721 4722 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4723 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4724 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4725 req->mask = cpu_to_le32(vnic->rx_mask); 4726 return hwrm_req_send_silent(bp, req); 4727 } 4728 4729 #ifdef CONFIG_RFS_ACCEL 4730 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4731 struct bnxt_ntuple_filter *fltr) 4732 { 4733 struct hwrm_cfa_ntuple_filter_free_input *req; 4734 int rc; 4735 4736 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4737 if (rc) 4738 return rc; 4739 4740 req->ntuple_filter_id = fltr->filter_id; 4741 return hwrm_req_send(bp, req); 4742 } 4743 4744 #define BNXT_NTP_FLTR_FLAGS \ 4745 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4746 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4747 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4748 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4749 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4750 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4751 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4752 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4753 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4754 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4755 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4756 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4757 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4758 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4759 4760 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4761 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4762 4763 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4764 struct bnxt_ntuple_filter *fltr) 4765 { 4766 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4767 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4768 struct flow_keys *keys = &fltr->fkeys; 4769 struct bnxt_vnic_info *vnic; 4770 u32 flags = 0; 4771 int rc; 4772 4773 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4774 if (rc) 4775 return rc; 4776 4777 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4778 4779 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4780 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4781 req->dst_id = cpu_to_le16(fltr->rxq); 4782 } else { 4783 vnic = &bp->vnic_info[fltr->rxq + 1]; 4784 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4785 } 4786 req->flags = cpu_to_le32(flags); 4787 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4788 4789 req->ethertype = htons(ETH_P_IP); 4790 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4791 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4792 req->ip_protocol = keys->basic.ip_proto; 4793 4794 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4795 int i; 4796 4797 req->ethertype = htons(ETH_P_IPV6); 4798 req->ip_addr_type = 4799 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4800 *(struct in6_addr *)&req->src_ipaddr[0] = 4801 keys->addrs.v6addrs.src; 4802 *(struct in6_addr *)&req->dst_ipaddr[0] = 4803 keys->addrs.v6addrs.dst; 4804 for (i = 0; i < 4; i++) { 4805 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4806 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4807 } 4808 } else { 4809 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 4810 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4811 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4812 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4813 } 4814 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4815 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4816 req->tunnel_type = 4817 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4818 } 4819 4820 req->src_port = keys->ports.src; 4821 req->src_port_mask = cpu_to_be16(0xffff); 4822 req->dst_port = keys->ports.dst; 4823 req->dst_port_mask = cpu_to_be16(0xffff); 4824 4825 resp = hwrm_req_hold(bp, req); 4826 rc = hwrm_req_send(bp, req); 4827 if (!rc) 4828 fltr->filter_id = resp->ntuple_filter_id; 4829 hwrm_req_drop(bp, req); 4830 return rc; 4831 } 4832 #endif 4833 4834 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4835 const u8 *mac_addr) 4836 { 4837 struct hwrm_cfa_l2_filter_alloc_output *resp; 4838 struct hwrm_cfa_l2_filter_alloc_input *req; 4839 int rc; 4840 4841 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 4842 if (rc) 4843 return rc; 4844 4845 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4846 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4847 req->flags |= 4848 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4849 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4850 req->enables = 4851 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4852 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4853 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4854 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 4855 req->l2_addr_mask[0] = 0xff; 4856 req->l2_addr_mask[1] = 0xff; 4857 req->l2_addr_mask[2] = 0xff; 4858 req->l2_addr_mask[3] = 0xff; 4859 req->l2_addr_mask[4] = 0xff; 4860 req->l2_addr_mask[5] = 0xff; 4861 4862 resp = hwrm_req_hold(bp, req); 4863 rc = hwrm_req_send(bp, req); 4864 if (!rc) 4865 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4866 resp->l2_filter_id; 4867 hwrm_req_drop(bp, req); 4868 return rc; 4869 } 4870 4871 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4872 { 4873 struct hwrm_cfa_l2_filter_free_input *req; 4874 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4875 int rc; 4876 4877 /* Any associated ntuple filters will also be cleared by firmware. */ 4878 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 4879 if (rc) 4880 return rc; 4881 hwrm_req_hold(bp, req); 4882 for (i = 0; i < num_of_vnics; i++) { 4883 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4884 4885 for (j = 0; j < vnic->uc_filter_count; j++) { 4886 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 4887 4888 rc = hwrm_req_send(bp, req); 4889 } 4890 vnic->uc_filter_count = 0; 4891 } 4892 hwrm_req_drop(bp, req); 4893 return rc; 4894 } 4895 4896 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4897 { 4898 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4899 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4900 struct hwrm_vnic_tpa_cfg_input *req; 4901 int rc; 4902 4903 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4904 return 0; 4905 4906 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 4907 if (rc) 4908 return rc; 4909 4910 if (tpa_flags) { 4911 u16 mss = bp->dev->mtu - 40; 4912 u32 nsegs, n, segs = 0, flags; 4913 4914 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4915 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4916 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4917 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4918 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4919 if (tpa_flags & BNXT_FLAG_GRO) 4920 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4921 4922 req->flags = cpu_to_le32(flags); 4923 4924 req->enables = 4925 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4926 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4927 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4928 4929 /* Number of segs are log2 units, and first packet is not 4930 * included as part of this units. 4931 */ 4932 if (mss <= BNXT_RX_PAGE_SIZE) { 4933 n = BNXT_RX_PAGE_SIZE / mss; 4934 nsegs = (MAX_SKB_FRAGS - 1) * n; 4935 } else { 4936 n = mss / BNXT_RX_PAGE_SIZE; 4937 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4938 n++; 4939 nsegs = (MAX_SKB_FRAGS - n) / n; 4940 } 4941 4942 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4943 segs = MAX_TPA_SEGS_P5; 4944 max_aggs = bp->max_tpa; 4945 } else { 4946 segs = ilog2(nsegs); 4947 } 4948 req->max_agg_segs = cpu_to_le16(segs); 4949 req->max_aggs = cpu_to_le16(max_aggs); 4950 4951 req->min_agg_len = cpu_to_le32(512); 4952 } 4953 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4954 4955 return hwrm_req_send(bp, req); 4956 } 4957 4958 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4959 { 4960 struct bnxt_ring_grp_info *grp_info; 4961 4962 grp_info = &bp->grp_info[ring->grp_idx]; 4963 return grp_info->cp_fw_ring_id; 4964 } 4965 4966 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 4967 { 4968 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4969 struct bnxt_napi *bnapi = rxr->bnapi; 4970 struct bnxt_cp_ring_info *cpr; 4971 4972 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 4973 return cpr->cp_ring_struct.fw_ring_id; 4974 } else { 4975 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 4976 } 4977 } 4978 4979 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 4980 { 4981 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4982 struct bnxt_napi *bnapi = txr->bnapi; 4983 struct bnxt_cp_ring_info *cpr; 4984 4985 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 4986 return cpr->cp_ring_struct.fw_ring_id; 4987 } else { 4988 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 4989 } 4990 } 4991 4992 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 4993 { 4994 int entries; 4995 4996 if (bp->flags & BNXT_FLAG_CHIP_P5) 4997 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 4998 else 4999 entries = HW_HASH_INDEX_SIZE; 5000 5001 bp->rss_indir_tbl_entries = entries; 5002 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5003 GFP_KERNEL); 5004 if (!bp->rss_indir_tbl) 5005 return -ENOMEM; 5006 return 0; 5007 } 5008 5009 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5010 { 5011 u16 max_rings, max_entries, pad, i; 5012 5013 if (!bp->rx_nr_rings) 5014 return; 5015 5016 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5017 max_rings = bp->rx_nr_rings - 1; 5018 else 5019 max_rings = bp->rx_nr_rings; 5020 5021 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5022 5023 for (i = 0; i < max_entries; i++) 5024 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5025 5026 pad = bp->rss_indir_tbl_entries - max_entries; 5027 if (pad) 5028 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5029 } 5030 5031 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5032 { 5033 u16 i, tbl_size, max_ring = 0; 5034 5035 if (!bp->rss_indir_tbl) 5036 return 0; 5037 5038 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5039 for (i = 0; i < tbl_size; i++) 5040 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5041 return max_ring; 5042 } 5043 5044 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5045 { 5046 if (bp->flags & BNXT_FLAG_CHIP_P5) 5047 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5048 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5049 return 2; 5050 return 1; 5051 } 5052 5053 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5054 { 5055 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5056 u16 i, j; 5057 5058 /* Fill the RSS indirection table with ring group ids */ 5059 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5060 if (!no_rss) 5061 j = bp->rss_indir_tbl[i]; 5062 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5063 } 5064 } 5065 5066 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5067 struct bnxt_vnic_info *vnic) 5068 { 5069 __le16 *ring_tbl = vnic->rss_table; 5070 struct bnxt_rx_ring_info *rxr; 5071 u16 tbl_size, i; 5072 5073 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5074 5075 for (i = 0; i < tbl_size; i++) { 5076 u16 ring_id, j; 5077 5078 j = bp->rss_indir_tbl[i]; 5079 rxr = &bp->rx_ring[j]; 5080 5081 ring_id = rxr->rx_ring_struct.fw_ring_id; 5082 *ring_tbl++ = cpu_to_le16(ring_id); 5083 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5084 *ring_tbl++ = cpu_to_le16(ring_id); 5085 } 5086 } 5087 5088 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5089 { 5090 if (bp->flags & BNXT_FLAG_CHIP_P5) 5091 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5092 else 5093 __bnxt_fill_hw_rss_tbl(bp, vnic); 5094 } 5095 5096 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5097 { 5098 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5099 struct hwrm_vnic_rss_cfg_input *req; 5100 int rc; 5101 5102 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5103 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5104 return 0; 5105 5106 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5107 if (rc) 5108 return rc; 5109 5110 if (set_rss) { 5111 bnxt_fill_hw_rss_tbl(bp, vnic); 5112 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5113 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5114 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5115 req->hash_key_tbl_addr = 5116 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5117 } 5118 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5119 return hwrm_req_send(bp, req); 5120 } 5121 5122 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5123 { 5124 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5125 struct hwrm_vnic_rss_cfg_input *req; 5126 dma_addr_t ring_tbl_map; 5127 u32 i, nr_ctxs; 5128 int rc; 5129 5130 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5131 if (rc) 5132 return rc; 5133 5134 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5135 if (!set_rss) 5136 return hwrm_req_send(bp, req); 5137 5138 bnxt_fill_hw_rss_tbl(bp, vnic); 5139 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5140 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5141 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5142 ring_tbl_map = vnic->rss_table_dma_addr; 5143 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5144 5145 hwrm_req_hold(bp, req); 5146 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5147 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5148 req->ring_table_pair_index = i; 5149 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5150 rc = hwrm_req_send(bp, req); 5151 if (rc) 5152 goto exit; 5153 } 5154 5155 exit: 5156 hwrm_req_drop(bp, req); 5157 return rc; 5158 } 5159 5160 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5161 { 5162 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5163 struct hwrm_vnic_plcmodes_cfg_input *req; 5164 int rc; 5165 5166 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5167 if (rc) 5168 return rc; 5169 5170 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5171 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5172 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5173 req->enables = 5174 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5175 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5176 /* thresholds not implemented in firmware yet */ 5177 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5178 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5179 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5180 return hwrm_req_send(bp, req); 5181 } 5182 5183 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5184 u16 ctx_idx) 5185 { 5186 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5187 5188 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5189 return; 5190 5191 req->rss_cos_lb_ctx_id = 5192 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5193 5194 hwrm_req_send(bp, req); 5195 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5196 } 5197 5198 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5199 { 5200 int i, j; 5201 5202 for (i = 0; i < bp->nr_vnics; i++) { 5203 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5204 5205 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5206 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5207 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5208 } 5209 } 5210 bp->rsscos_nr_ctxs = 0; 5211 } 5212 5213 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5214 { 5215 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5216 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5217 int rc; 5218 5219 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5220 if (rc) 5221 return rc; 5222 5223 resp = hwrm_req_hold(bp, req); 5224 rc = hwrm_req_send(bp, req); 5225 if (!rc) 5226 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5227 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5228 hwrm_req_drop(bp, req); 5229 5230 return rc; 5231 } 5232 5233 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5234 { 5235 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5236 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5237 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5238 } 5239 5240 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5241 { 5242 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5243 struct hwrm_vnic_cfg_input *req; 5244 unsigned int ring = 0, grp_idx; 5245 u16 def_vlan = 0; 5246 int rc; 5247 5248 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5249 if (rc) 5250 return rc; 5251 5252 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5253 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5254 5255 req->default_rx_ring_id = 5256 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5257 req->default_cmpl_ring_id = 5258 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5259 req->enables = 5260 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5261 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5262 goto vnic_mru; 5263 } 5264 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5265 /* Only RSS support for now TBD: COS & LB */ 5266 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5267 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5268 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5269 VNIC_CFG_REQ_ENABLES_MRU); 5270 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5271 req->rss_rule = 5272 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5273 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5274 VNIC_CFG_REQ_ENABLES_MRU); 5275 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5276 } else { 5277 req->rss_rule = cpu_to_le16(0xffff); 5278 } 5279 5280 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5281 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5282 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5283 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5284 } else { 5285 req->cos_rule = cpu_to_le16(0xffff); 5286 } 5287 5288 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5289 ring = 0; 5290 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5291 ring = vnic_id - 1; 5292 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5293 ring = bp->rx_nr_rings - 1; 5294 5295 grp_idx = bp->rx_ring[ring].bnapi->index; 5296 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5297 req->lb_rule = cpu_to_le16(0xffff); 5298 vnic_mru: 5299 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5300 5301 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5302 #ifdef CONFIG_BNXT_SRIOV 5303 if (BNXT_VF(bp)) 5304 def_vlan = bp->vf.vlan; 5305 #endif 5306 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5307 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5308 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5309 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5310 5311 return hwrm_req_send(bp, req); 5312 } 5313 5314 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5315 { 5316 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5317 struct hwrm_vnic_free_input *req; 5318 5319 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5320 return; 5321 5322 req->vnic_id = 5323 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5324 5325 hwrm_req_send(bp, req); 5326 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5327 } 5328 } 5329 5330 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5331 { 5332 u16 i; 5333 5334 for (i = 0; i < bp->nr_vnics; i++) 5335 bnxt_hwrm_vnic_free_one(bp, i); 5336 } 5337 5338 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5339 unsigned int start_rx_ring_idx, 5340 unsigned int nr_rings) 5341 { 5342 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5343 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5344 struct hwrm_vnic_alloc_output *resp; 5345 struct hwrm_vnic_alloc_input *req; 5346 int rc; 5347 5348 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5349 if (rc) 5350 return rc; 5351 5352 if (bp->flags & BNXT_FLAG_CHIP_P5) 5353 goto vnic_no_ring_grps; 5354 5355 /* map ring groups to this vnic */ 5356 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5357 grp_idx = bp->rx_ring[i].bnapi->index; 5358 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5359 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5360 j, nr_rings); 5361 break; 5362 } 5363 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5364 } 5365 5366 vnic_no_ring_grps: 5367 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5368 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5369 if (vnic_id == 0) 5370 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5371 5372 resp = hwrm_req_hold(bp, req); 5373 rc = hwrm_req_send(bp, req); 5374 if (!rc) 5375 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5376 hwrm_req_drop(bp, req); 5377 return rc; 5378 } 5379 5380 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5381 { 5382 struct hwrm_vnic_qcaps_output *resp; 5383 struct hwrm_vnic_qcaps_input *req; 5384 int rc; 5385 5386 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5387 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5388 if (bp->hwrm_spec_code < 0x10600) 5389 return 0; 5390 5391 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5392 if (rc) 5393 return rc; 5394 5395 resp = hwrm_req_hold(bp, req); 5396 rc = hwrm_req_send(bp, req); 5397 if (!rc) { 5398 u32 flags = le32_to_cpu(resp->flags); 5399 5400 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5401 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5402 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5403 if (flags & 5404 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5405 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5406 5407 /* Older P5 fw before EXT_HW_STATS support did not set 5408 * VLAN_STRIP_CAP properly. 5409 */ 5410 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5411 (BNXT_CHIP_P5_THOR(bp) && 5412 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5413 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5414 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5415 if (bp->max_tpa_v2) { 5416 if (BNXT_CHIP_P5_THOR(bp)) 5417 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5418 else 5419 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5420 } 5421 } 5422 hwrm_req_drop(bp, req); 5423 return rc; 5424 } 5425 5426 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5427 { 5428 struct hwrm_ring_grp_alloc_output *resp; 5429 struct hwrm_ring_grp_alloc_input *req; 5430 int rc; 5431 u16 i; 5432 5433 if (bp->flags & BNXT_FLAG_CHIP_P5) 5434 return 0; 5435 5436 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5437 if (rc) 5438 return rc; 5439 5440 resp = hwrm_req_hold(bp, req); 5441 for (i = 0; i < bp->rx_nr_rings; i++) { 5442 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5443 5444 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5445 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5446 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5447 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5448 5449 rc = hwrm_req_send(bp, req); 5450 5451 if (rc) 5452 break; 5453 5454 bp->grp_info[grp_idx].fw_grp_id = 5455 le32_to_cpu(resp->ring_group_id); 5456 } 5457 hwrm_req_drop(bp, req); 5458 return rc; 5459 } 5460 5461 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5462 { 5463 struct hwrm_ring_grp_free_input *req; 5464 u16 i; 5465 5466 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5467 return; 5468 5469 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5470 return; 5471 5472 hwrm_req_hold(bp, req); 5473 for (i = 0; i < bp->cp_nr_rings; i++) { 5474 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5475 continue; 5476 req->ring_group_id = 5477 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5478 5479 hwrm_req_send(bp, req); 5480 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5481 } 5482 hwrm_req_drop(bp, req); 5483 } 5484 5485 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5486 struct bnxt_ring_struct *ring, 5487 u32 ring_type, u32 map_index) 5488 { 5489 struct hwrm_ring_alloc_output *resp; 5490 struct hwrm_ring_alloc_input *req; 5491 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5492 struct bnxt_ring_grp_info *grp_info; 5493 int rc, err = 0; 5494 u16 ring_id; 5495 5496 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5497 if (rc) 5498 goto exit; 5499 5500 req->enables = 0; 5501 if (rmem->nr_pages > 1) { 5502 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5503 /* Page size is in log2 units */ 5504 req->page_size = BNXT_PAGE_SHIFT; 5505 req->page_tbl_depth = 1; 5506 } else { 5507 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5508 } 5509 req->fbo = 0; 5510 /* Association of ring index with doorbell index and MSIX number */ 5511 req->logical_id = cpu_to_le16(map_index); 5512 5513 switch (ring_type) { 5514 case HWRM_RING_ALLOC_TX: { 5515 struct bnxt_tx_ring_info *txr; 5516 5517 txr = container_of(ring, struct bnxt_tx_ring_info, 5518 tx_ring_struct); 5519 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5520 /* Association of transmit ring with completion ring */ 5521 grp_info = &bp->grp_info[ring->grp_idx]; 5522 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5523 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5524 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5525 req->queue_id = cpu_to_le16(ring->queue_id); 5526 break; 5527 } 5528 case HWRM_RING_ALLOC_RX: 5529 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5530 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5531 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5532 u16 flags = 0; 5533 5534 /* Association of rx ring with stats context */ 5535 grp_info = &bp->grp_info[ring->grp_idx]; 5536 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5537 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5538 req->enables |= cpu_to_le32( 5539 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5540 if (NET_IP_ALIGN == 2) 5541 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5542 req->flags = cpu_to_le16(flags); 5543 } 5544 break; 5545 case HWRM_RING_ALLOC_AGG: 5546 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5547 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5548 /* Association of agg ring with rx ring */ 5549 grp_info = &bp->grp_info[ring->grp_idx]; 5550 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5551 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5552 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5553 req->enables |= cpu_to_le32( 5554 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5555 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5556 } else { 5557 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5558 } 5559 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5560 break; 5561 case HWRM_RING_ALLOC_CMPL: 5562 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5563 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5564 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5565 /* Association of cp ring with nq */ 5566 grp_info = &bp->grp_info[map_index]; 5567 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5568 req->cq_handle = cpu_to_le64(ring->handle); 5569 req->enables |= cpu_to_le32( 5570 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5571 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5572 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5573 } 5574 break; 5575 case HWRM_RING_ALLOC_NQ: 5576 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5577 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5578 if (bp->flags & BNXT_FLAG_USING_MSIX) 5579 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5580 break; 5581 default: 5582 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5583 ring_type); 5584 return -1; 5585 } 5586 5587 resp = hwrm_req_hold(bp, req); 5588 rc = hwrm_req_send(bp, req); 5589 err = le16_to_cpu(resp->error_code); 5590 ring_id = le16_to_cpu(resp->ring_id); 5591 hwrm_req_drop(bp, req); 5592 5593 exit: 5594 if (rc || err) { 5595 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5596 ring_type, rc, err); 5597 return -EIO; 5598 } 5599 ring->fw_ring_id = ring_id; 5600 return rc; 5601 } 5602 5603 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5604 { 5605 int rc; 5606 5607 if (BNXT_PF(bp)) { 5608 struct hwrm_func_cfg_input *req; 5609 5610 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5611 if (rc) 5612 return rc; 5613 5614 req->fid = cpu_to_le16(0xffff); 5615 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5616 req->async_event_cr = cpu_to_le16(idx); 5617 return hwrm_req_send(bp, req); 5618 } else { 5619 struct hwrm_func_vf_cfg_input *req; 5620 5621 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5622 if (rc) 5623 return rc; 5624 5625 req->enables = 5626 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5627 req->async_event_cr = cpu_to_le16(idx); 5628 return hwrm_req_send(bp, req); 5629 } 5630 } 5631 5632 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5633 u32 map_idx, u32 xid) 5634 { 5635 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5636 if (BNXT_PF(bp)) 5637 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5638 else 5639 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5640 switch (ring_type) { 5641 case HWRM_RING_ALLOC_TX: 5642 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5643 break; 5644 case HWRM_RING_ALLOC_RX: 5645 case HWRM_RING_ALLOC_AGG: 5646 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5647 break; 5648 case HWRM_RING_ALLOC_CMPL: 5649 db->db_key64 = DBR_PATH_L2; 5650 break; 5651 case HWRM_RING_ALLOC_NQ: 5652 db->db_key64 = DBR_PATH_L2; 5653 break; 5654 } 5655 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5656 } else { 5657 db->doorbell = bp->bar1 + map_idx * 0x80; 5658 switch (ring_type) { 5659 case HWRM_RING_ALLOC_TX: 5660 db->db_key32 = DB_KEY_TX; 5661 break; 5662 case HWRM_RING_ALLOC_RX: 5663 case HWRM_RING_ALLOC_AGG: 5664 db->db_key32 = DB_KEY_RX; 5665 break; 5666 case HWRM_RING_ALLOC_CMPL: 5667 db->db_key32 = DB_KEY_CP; 5668 break; 5669 } 5670 } 5671 } 5672 5673 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5674 { 5675 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5676 int i, rc = 0; 5677 u32 type; 5678 5679 if (bp->flags & BNXT_FLAG_CHIP_P5) 5680 type = HWRM_RING_ALLOC_NQ; 5681 else 5682 type = HWRM_RING_ALLOC_CMPL; 5683 for (i = 0; i < bp->cp_nr_rings; i++) { 5684 struct bnxt_napi *bnapi = bp->bnapi[i]; 5685 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5686 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5687 u32 map_idx = ring->map_idx; 5688 unsigned int vector; 5689 5690 vector = bp->irq_tbl[map_idx].vector; 5691 disable_irq_nosync(vector); 5692 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5693 if (rc) { 5694 enable_irq(vector); 5695 goto err_out; 5696 } 5697 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5698 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5699 enable_irq(vector); 5700 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5701 5702 if (!i) { 5703 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5704 if (rc) 5705 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5706 } 5707 } 5708 5709 type = HWRM_RING_ALLOC_TX; 5710 for (i = 0; i < bp->tx_nr_rings; i++) { 5711 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5712 struct bnxt_ring_struct *ring; 5713 u32 map_idx; 5714 5715 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5716 struct bnxt_napi *bnapi = txr->bnapi; 5717 struct bnxt_cp_ring_info *cpr, *cpr2; 5718 u32 type2 = HWRM_RING_ALLOC_CMPL; 5719 5720 cpr = &bnapi->cp_ring; 5721 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5722 ring = &cpr2->cp_ring_struct; 5723 ring->handle = BNXT_TX_HDL; 5724 map_idx = bnapi->index; 5725 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5726 if (rc) 5727 goto err_out; 5728 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5729 ring->fw_ring_id); 5730 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5731 } 5732 ring = &txr->tx_ring_struct; 5733 map_idx = i; 5734 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5735 if (rc) 5736 goto err_out; 5737 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5738 } 5739 5740 type = HWRM_RING_ALLOC_RX; 5741 for (i = 0; i < bp->rx_nr_rings; i++) { 5742 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5743 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5744 struct bnxt_napi *bnapi = rxr->bnapi; 5745 u32 map_idx = bnapi->index; 5746 5747 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5748 if (rc) 5749 goto err_out; 5750 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5751 /* If we have agg rings, post agg buffers first. */ 5752 if (!agg_rings) 5753 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5754 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5755 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5756 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5757 u32 type2 = HWRM_RING_ALLOC_CMPL; 5758 struct bnxt_cp_ring_info *cpr2; 5759 5760 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5761 ring = &cpr2->cp_ring_struct; 5762 ring->handle = BNXT_RX_HDL; 5763 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5764 if (rc) 5765 goto err_out; 5766 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5767 ring->fw_ring_id); 5768 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5769 } 5770 } 5771 5772 if (agg_rings) { 5773 type = HWRM_RING_ALLOC_AGG; 5774 for (i = 0; i < bp->rx_nr_rings; i++) { 5775 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5776 struct bnxt_ring_struct *ring = 5777 &rxr->rx_agg_ring_struct; 5778 u32 grp_idx = ring->grp_idx; 5779 u32 map_idx = grp_idx + bp->rx_nr_rings; 5780 5781 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5782 if (rc) 5783 goto err_out; 5784 5785 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5786 ring->fw_ring_id); 5787 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5788 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5789 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5790 } 5791 } 5792 err_out: 5793 return rc; 5794 } 5795 5796 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5797 struct bnxt_ring_struct *ring, 5798 u32 ring_type, int cmpl_ring_id) 5799 { 5800 struct hwrm_ring_free_output *resp; 5801 struct hwrm_ring_free_input *req; 5802 u16 error_code = 0; 5803 int rc; 5804 5805 if (BNXT_NO_FW_ACCESS(bp)) 5806 return 0; 5807 5808 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 5809 if (rc) 5810 goto exit; 5811 5812 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 5813 req->ring_type = ring_type; 5814 req->ring_id = cpu_to_le16(ring->fw_ring_id); 5815 5816 resp = hwrm_req_hold(bp, req); 5817 rc = hwrm_req_send(bp, req); 5818 error_code = le16_to_cpu(resp->error_code); 5819 hwrm_req_drop(bp, req); 5820 exit: 5821 if (rc || error_code) { 5822 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5823 ring_type, rc, error_code); 5824 return -EIO; 5825 } 5826 return 0; 5827 } 5828 5829 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5830 { 5831 u32 type; 5832 int i; 5833 5834 if (!bp->bnapi) 5835 return; 5836 5837 for (i = 0; i < bp->tx_nr_rings; i++) { 5838 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5839 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5840 5841 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5842 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5843 5844 hwrm_ring_free_send_msg(bp, ring, 5845 RING_FREE_REQ_RING_TYPE_TX, 5846 close_path ? cmpl_ring_id : 5847 INVALID_HW_RING_ID); 5848 ring->fw_ring_id = INVALID_HW_RING_ID; 5849 } 5850 } 5851 5852 for (i = 0; i < bp->rx_nr_rings; i++) { 5853 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5854 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5855 u32 grp_idx = rxr->bnapi->index; 5856 5857 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5858 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5859 5860 hwrm_ring_free_send_msg(bp, ring, 5861 RING_FREE_REQ_RING_TYPE_RX, 5862 close_path ? cmpl_ring_id : 5863 INVALID_HW_RING_ID); 5864 ring->fw_ring_id = INVALID_HW_RING_ID; 5865 bp->grp_info[grp_idx].rx_fw_ring_id = 5866 INVALID_HW_RING_ID; 5867 } 5868 } 5869 5870 if (bp->flags & BNXT_FLAG_CHIP_P5) 5871 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5872 else 5873 type = RING_FREE_REQ_RING_TYPE_RX; 5874 for (i = 0; i < bp->rx_nr_rings; i++) { 5875 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5876 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5877 u32 grp_idx = rxr->bnapi->index; 5878 5879 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5880 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5881 5882 hwrm_ring_free_send_msg(bp, ring, type, 5883 close_path ? cmpl_ring_id : 5884 INVALID_HW_RING_ID); 5885 ring->fw_ring_id = INVALID_HW_RING_ID; 5886 bp->grp_info[grp_idx].agg_fw_ring_id = 5887 INVALID_HW_RING_ID; 5888 } 5889 } 5890 5891 /* The completion rings are about to be freed. After that the 5892 * IRQ doorbell will not work anymore. So we need to disable 5893 * IRQ here. 5894 */ 5895 bnxt_disable_int_sync(bp); 5896 5897 if (bp->flags & BNXT_FLAG_CHIP_P5) 5898 type = RING_FREE_REQ_RING_TYPE_NQ; 5899 else 5900 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5901 for (i = 0; i < bp->cp_nr_rings; i++) { 5902 struct bnxt_napi *bnapi = bp->bnapi[i]; 5903 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5904 struct bnxt_ring_struct *ring; 5905 int j; 5906 5907 for (j = 0; j < 2; j++) { 5908 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5909 5910 if (cpr2) { 5911 ring = &cpr2->cp_ring_struct; 5912 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5913 continue; 5914 hwrm_ring_free_send_msg(bp, ring, 5915 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5916 INVALID_HW_RING_ID); 5917 ring->fw_ring_id = INVALID_HW_RING_ID; 5918 } 5919 } 5920 ring = &cpr->cp_ring_struct; 5921 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5922 hwrm_ring_free_send_msg(bp, ring, type, 5923 INVALID_HW_RING_ID); 5924 ring->fw_ring_id = INVALID_HW_RING_ID; 5925 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5926 } 5927 } 5928 } 5929 5930 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5931 bool shared); 5932 5933 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5934 { 5935 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5936 struct hwrm_func_qcfg_output *resp; 5937 struct hwrm_func_qcfg_input *req; 5938 int rc; 5939 5940 if (bp->hwrm_spec_code < 0x10601) 5941 return 0; 5942 5943 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5944 if (rc) 5945 return rc; 5946 5947 req->fid = cpu_to_le16(0xffff); 5948 resp = hwrm_req_hold(bp, req); 5949 rc = hwrm_req_send(bp, req); 5950 if (rc) { 5951 hwrm_req_drop(bp, req); 5952 return rc; 5953 } 5954 5955 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5956 if (BNXT_NEW_RM(bp)) { 5957 u16 cp, stats; 5958 5959 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5960 hw_resc->resv_hw_ring_grps = 5961 le32_to_cpu(resp->alloc_hw_ring_grps); 5962 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 5963 cp = le16_to_cpu(resp->alloc_cmpl_rings); 5964 stats = le16_to_cpu(resp->alloc_stat_ctx); 5965 hw_resc->resv_irqs = cp; 5966 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5967 int rx = hw_resc->resv_rx_rings; 5968 int tx = hw_resc->resv_tx_rings; 5969 5970 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5971 rx >>= 1; 5972 if (cp < (rx + tx)) { 5973 bnxt_trim_rings(bp, &rx, &tx, cp, false); 5974 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5975 rx <<= 1; 5976 hw_resc->resv_rx_rings = rx; 5977 hw_resc->resv_tx_rings = tx; 5978 } 5979 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 5980 hw_resc->resv_hw_ring_grps = rx; 5981 } 5982 hw_resc->resv_cp_rings = cp; 5983 hw_resc->resv_stat_ctxs = stats; 5984 } 5985 hwrm_req_drop(bp, req); 5986 return 0; 5987 } 5988 5989 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 5990 { 5991 struct hwrm_func_qcfg_output *resp; 5992 struct hwrm_func_qcfg_input *req; 5993 int rc; 5994 5995 if (bp->hwrm_spec_code < 0x10601) 5996 return 0; 5997 5998 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5999 if (rc) 6000 return rc; 6001 6002 req->fid = cpu_to_le16(fid); 6003 resp = hwrm_req_hold(bp, req); 6004 rc = hwrm_req_send(bp, req); 6005 if (!rc) 6006 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6007 6008 hwrm_req_drop(bp, req); 6009 return rc; 6010 } 6011 6012 static bool bnxt_rfs_supported(struct bnxt *bp); 6013 6014 static struct hwrm_func_cfg_input * 6015 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6016 int ring_grps, int cp_rings, int stats, int vnics) 6017 { 6018 struct hwrm_func_cfg_input *req; 6019 u32 enables = 0; 6020 6021 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6022 return NULL; 6023 6024 req->fid = cpu_to_le16(0xffff); 6025 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6026 req->num_tx_rings = cpu_to_le16(tx_rings); 6027 if (BNXT_NEW_RM(bp)) { 6028 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6029 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6030 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6031 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6032 enables |= tx_rings + ring_grps ? 6033 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6034 enables |= rx_rings ? 6035 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6036 } else { 6037 enables |= cp_rings ? 6038 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6039 enables |= ring_grps ? 6040 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6041 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6042 } 6043 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6044 6045 req->num_rx_rings = cpu_to_le16(rx_rings); 6046 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6047 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6048 req->num_msix = cpu_to_le16(cp_rings); 6049 req->num_rsscos_ctxs = 6050 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6051 } else { 6052 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6053 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6054 req->num_rsscos_ctxs = cpu_to_le16(1); 6055 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6056 bnxt_rfs_supported(bp)) 6057 req->num_rsscos_ctxs = 6058 cpu_to_le16(ring_grps + 1); 6059 } 6060 req->num_stat_ctxs = cpu_to_le16(stats); 6061 req->num_vnics = cpu_to_le16(vnics); 6062 } 6063 req->enables = cpu_to_le32(enables); 6064 return req; 6065 } 6066 6067 static struct hwrm_func_vf_cfg_input * 6068 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6069 int ring_grps, int cp_rings, int stats, int vnics) 6070 { 6071 struct hwrm_func_vf_cfg_input *req; 6072 u32 enables = 0; 6073 6074 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6075 return NULL; 6076 6077 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6078 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6079 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6080 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6081 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6082 enables |= tx_rings + ring_grps ? 6083 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6084 } else { 6085 enables |= cp_rings ? 6086 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6087 enables |= ring_grps ? 6088 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6089 } 6090 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6091 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6092 6093 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6094 req->num_tx_rings = cpu_to_le16(tx_rings); 6095 req->num_rx_rings = cpu_to_le16(rx_rings); 6096 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6097 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6098 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6099 } else { 6100 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6101 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6102 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6103 } 6104 req->num_stat_ctxs = cpu_to_le16(stats); 6105 req->num_vnics = cpu_to_le16(vnics); 6106 6107 req->enables = cpu_to_le32(enables); 6108 return req; 6109 } 6110 6111 static int 6112 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6113 int ring_grps, int cp_rings, int stats, int vnics) 6114 { 6115 struct hwrm_func_cfg_input *req; 6116 int rc; 6117 6118 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6119 cp_rings, stats, vnics); 6120 if (!req) 6121 return -ENOMEM; 6122 6123 if (!req->enables) { 6124 hwrm_req_drop(bp, req); 6125 return 0; 6126 } 6127 6128 rc = hwrm_req_send(bp, req); 6129 if (rc) 6130 return rc; 6131 6132 if (bp->hwrm_spec_code < 0x10601) 6133 bp->hw_resc.resv_tx_rings = tx_rings; 6134 6135 return bnxt_hwrm_get_rings(bp); 6136 } 6137 6138 static int 6139 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6140 int ring_grps, int cp_rings, int stats, int vnics) 6141 { 6142 struct hwrm_func_vf_cfg_input *req; 6143 int rc; 6144 6145 if (!BNXT_NEW_RM(bp)) { 6146 bp->hw_resc.resv_tx_rings = tx_rings; 6147 return 0; 6148 } 6149 6150 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6151 cp_rings, stats, vnics); 6152 if (!req) 6153 return -ENOMEM; 6154 6155 rc = hwrm_req_send(bp, req); 6156 if (rc) 6157 return rc; 6158 6159 return bnxt_hwrm_get_rings(bp); 6160 } 6161 6162 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6163 int cp, int stat, int vnic) 6164 { 6165 if (BNXT_PF(bp)) 6166 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6167 vnic); 6168 else 6169 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6170 vnic); 6171 } 6172 6173 int bnxt_nq_rings_in_use(struct bnxt *bp) 6174 { 6175 int cp = bp->cp_nr_rings; 6176 int ulp_msix, ulp_base; 6177 6178 ulp_msix = bnxt_get_ulp_msix_num(bp); 6179 if (ulp_msix) { 6180 ulp_base = bnxt_get_ulp_msix_base(bp); 6181 cp += ulp_msix; 6182 if ((ulp_base + ulp_msix) > cp) 6183 cp = ulp_base + ulp_msix; 6184 } 6185 return cp; 6186 } 6187 6188 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6189 { 6190 int cp; 6191 6192 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6193 return bnxt_nq_rings_in_use(bp); 6194 6195 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6196 return cp; 6197 } 6198 6199 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6200 { 6201 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6202 int cp = bp->cp_nr_rings; 6203 6204 if (!ulp_stat) 6205 return cp; 6206 6207 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6208 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6209 6210 return cp + ulp_stat; 6211 } 6212 6213 /* Check if a default RSS map needs to be setup. This function is only 6214 * used on older firmware that does not require reserving RX rings. 6215 */ 6216 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6217 { 6218 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6219 6220 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6221 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6222 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6223 if (!netif_is_rxfh_configured(bp->dev)) 6224 bnxt_set_dflt_rss_indir_tbl(bp); 6225 } 6226 } 6227 6228 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6229 { 6230 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6231 int cp = bnxt_cp_rings_in_use(bp); 6232 int nq = bnxt_nq_rings_in_use(bp); 6233 int rx = bp->rx_nr_rings, stat; 6234 int vnic = 1, grp = rx; 6235 6236 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6237 bp->hwrm_spec_code >= 0x10601) 6238 return true; 6239 6240 /* Old firmware does not need RX ring reservations but we still 6241 * need to setup a default RSS map when needed. With new firmware 6242 * we go through RX ring reservations first and then set up the 6243 * RSS map for the successfully reserved RX rings when needed. 6244 */ 6245 if (!BNXT_NEW_RM(bp)) { 6246 bnxt_check_rss_tbl_no_rmgr(bp); 6247 return false; 6248 } 6249 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6250 vnic = rx + 1; 6251 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6252 rx <<= 1; 6253 stat = bnxt_get_func_stat_ctxs(bp); 6254 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6255 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6256 (hw_resc->resv_hw_ring_grps != grp && 6257 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6258 return true; 6259 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6260 hw_resc->resv_irqs != nq) 6261 return true; 6262 return false; 6263 } 6264 6265 static int __bnxt_reserve_rings(struct bnxt *bp) 6266 { 6267 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6268 int cp = bnxt_nq_rings_in_use(bp); 6269 int tx = bp->tx_nr_rings; 6270 int rx = bp->rx_nr_rings; 6271 int grp, rx_rings, rc; 6272 int vnic = 1, stat; 6273 bool sh = false; 6274 6275 if (!bnxt_need_reserve_rings(bp)) 6276 return 0; 6277 6278 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6279 sh = true; 6280 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6281 vnic = rx + 1; 6282 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6283 rx <<= 1; 6284 grp = bp->rx_nr_rings; 6285 stat = bnxt_get_func_stat_ctxs(bp); 6286 6287 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6288 if (rc) 6289 return rc; 6290 6291 tx = hw_resc->resv_tx_rings; 6292 if (BNXT_NEW_RM(bp)) { 6293 rx = hw_resc->resv_rx_rings; 6294 cp = hw_resc->resv_irqs; 6295 grp = hw_resc->resv_hw_ring_grps; 6296 vnic = hw_resc->resv_vnics; 6297 stat = hw_resc->resv_stat_ctxs; 6298 } 6299 6300 rx_rings = rx; 6301 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6302 if (rx >= 2) { 6303 rx_rings = rx >> 1; 6304 } else { 6305 if (netif_running(bp->dev)) 6306 return -ENOMEM; 6307 6308 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6309 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6310 bp->dev->hw_features &= ~NETIF_F_LRO; 6311 bp->dev->features &= ~NETIF_F_LRO; 6312 bnxt_set_ring_params(bp); 6313 } 6314 } 6315 rx_rings = min_t(int, rx_rings, grp); 6316 cp = min_t(int, cp, bp->cp_nr_rings); 6317 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6318 stat -= bnxt_get_ulp_stat_ctxs(bp); 6319 cp = min_t(int, cp, stat); 6320 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6321 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6322 rx = rx_rings << 1; 6323 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6324 bp->tx_nr_rings = tx; 6325 6326 /* If we cannot reserve all the RX rings, reset the RSS map only 6327 * if absolutely necessary 6328 */ 6329 if (rx_rings != bp->rx_nr_rings) { 6330 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6331 rx_rings, bp->rx_nr_rings); 6332 if (netif_is_rxfh_configured(bp->dev) && 6333 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6334 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6335 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6336 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6337 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6338 } 6339 } 6340 bp->rx_nr_rings = rx_rings; 6341 bp->cp_nr_rings = cp; 6342 6343 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6344 return -ENOMEM; 6345 6346 if (!netif_is_rxfh_configured(bp->dev)) 6347 bnxt_set_dflt_rss_indir_tbl(bp); 6348 6349 return rc; 6350 } 6351 6352 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6353 int ring_grps, int cp_rings, int stats, 6354 int vnics) 6355 { 6356 struct hwrm_func_vf_cfg_input *req; 6357 u32 flags; 6358 6359 if (!BNXT_NEW_RM(bp)) 6360 return 0; 6361 6362 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6363 cp_rings, stats, vnics); 6364 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6365 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6366 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6367 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6368 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6369 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6370 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6371 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6372 6373 req->flags = cpu_to_le32(flags); 6374 return hwrm_req_send_silent(bp, req); 6375 } 6376 6377 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6378 int ring_grps, int cp_rings, int stats, 6379 int vnics) 6380 { 6381 struct hwrm_func_cfg_input *req; 6382 u32 flags; 6383 6384 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6385 cp_rings, stats, vnics); 6386 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6387 if (BNXT_NEW_RM(bp)) { 6388 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6389 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6390 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6391 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6392 if (bp->flags & BNXT_FLAG_CHIP_P5) 6393 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6394 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6395 else 6396 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6397 } 6398 6399 req->flags = cpu_to_le32(flags); 6400 return hwrm_req_send_silent(bp, req); 6401 } 6402 6403 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6404 int ring_grps, int cp_rings, int stats, 6405 int vnics) 6406 { 6407 if (bp->hwrm_spec_code < 0x10801) 6408 return 0; 6409 6410 if (BNXT_PF(bp)) 6411 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6412 ring_grps, cp_rings, stats, 6413 vnics); 6414 6415 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6416 cp_rings, stats, vnics); 6417 } 6418 6419 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6420 { 6421 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6422 struct hwrm_ring_aggint_qcaps_output *resp; 6423 struct hwrm_ring_aggint_qcaps_input *req; 6424 int rc; 6425 6426 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6427 coal_cap->num_cmpl_dma_aggr_max = 63; 6428 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6429 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6430 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6431 coal_cap->int_lat_tmr_min_max = 65535; 6432 coal_cap->int_lat_tmr_max_max = 65535; 6433 coal_cap->num_cmpl_aggr_int_max = 65535; 6434 coal_cap->timer_units = 80; 6435 6436 if (bp->hwrm_spec_code < 0x10902) 6437 return; 6438 6439 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6440 return; 6441 6442 resp = hwrm_req_hold(bp, req); 6443 rc = hwrm_req_send_silent(bp, req); 6444 if (!rc) { 6445 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6446 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6447 coal_cap->num_cmpl_dma_aggr_max = 6448 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6449 coal_cap->num_cmpl_dma_aggr_during_int_max = 6450 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6451 coal_cap->cmpl_aggr_dma_tmr_max = 6452 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6453 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6454 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6455 coal_cap->int_lat_tmr_min_max = 6456 le16_to_cpu(resp->int_lat_tmr_min_max); 6457 coal_cap->int_lat_tmr_max_max = 6458 le16_to_cpu(resp->int_lat_tmr_max_max); 6459 coal_cap->num_cmpl_aggr_int_max = 6460 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6461 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6462 } 6463 hwrm_req_drop(bp, req); 6464 } 6465 6466 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6467 { 6468 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6469 6470 return usec * 1000 / coal_cap->timer_units; 6471 } 6472 6473 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6474 struct bnxt_coal *hw_coal, 6475 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6476 { 6477 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6478 u32 cmpl_params = coal_cap->cmpl_params; 6479 u16 val, tmr, max, flags = 0; 6480 6481 max = hw_coal->bufs_per_record * 128; 6482 if (hw_coal->budget) 6483 max = hw_coal->bufs_per_record * hw_coal->budget; 6484 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6485 6486 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6487 req->num_cmpl_aggr_int = cpu_to_le16(val); 6488 6489 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6490 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6491 6492 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6493 coal_cap->num_cmpl_dma_aggr_during_int_max); 6494 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6495 6496 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6497 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6498 req->int_lat_tmr_max = cpu_to_le16(tmr); 6499 6500 /* min timer set to 1/2 of interrupt timer */ 6501 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6502 val = tmr / 2; 6503 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6504 req->int_lat_tmr_min = cpu_to_le16(val); 6505 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6506 } 6507 6508 /* buf timer set to 1/4 of interrupt timer */ 6509 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6510 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6511 6512 if (cmpl_params & 6513 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6514 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6515 val = clamp_t(u16, tmr, 1, 6516 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6517 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6518 req->enables |= 6519 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6520 } 6521 6522 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6523 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6524 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6525 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6526 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6527 req->flags = cpu_to_le16(flags); 6528 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6529 } 6530 6531 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6532 struct bnxt_coal *hw_coal) 6533 { 6534 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6535 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6536 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6537 u32 nq_params = coal_cap->nq_params; 6538 u16 tmr; 6539 int rc; 6540 6541 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6542 return 0; 6543 6544 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6545 if (rc) 6546 return rc; 6547 6548 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6549 req->flags = 6550 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6551 6552 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6553 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6554 req->int_lat_tmr_min = cpu_to_le16(tmr); 6555 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6556 return hwrm_req_send(bp, req); 6557 } 6558 6559 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6560 { 6561 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6562 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6563 struct bnxt_coal coal; 6564 int rc; 6565 6566 /* Tick values in micro seconds. 6567 * 1 coal_buf x bufs_per_record = 1 completion record. 6568 */ 6569 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6570 6571 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6572 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6573 6574 if (!bnapi->rx_ring) 6575 return -ENODEV; 6576 6577 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6578 if (rc) 6579 return rc; 6580 6581 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6582 6583 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6584 6585 return hwrm_req_send(bp, req_rx); 6586 } 6587 6588 int bnxt_hwrm_set_coal(struct bnxt *bp) 6589 { 6590 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6591 *req; 6592 int i, rc; 6593 6594 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6595 if (rc) 6596 return rc; 6597 6598 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6599 if (rc) { 6600 hwrm_req_drop(bp, req_rx); 6601 return rc; 6602 } 6603 6604 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6605 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6606 6607 hwrm_req_hold(bp, req_rx); 6608 hwrm_req_hold(bp, req_tx); 6609 for (i = 0; i < bp->cp_nr_rings; i++) { 6610 struct bnxt_napi *bnapi = bp->bnapi[i]; 6611 struct bnxt_coal *hw_coal; 6612 u16 ring_id; 6613 6614 req = req_rx; 6615 if (!bnapi->rx_ring) { 6616 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6617 req = req_tx; 6618 } else { 6619 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6620 } 6621 req->ring_id = cpu_to_le16(ring_id); 6622 6623 rc = hwrm_req_send(bp, req); 6624 if (rc) 6625 break; 6626 6627 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6628 continue; 6629 6630 if (bnapi->rx_ring && bnapi->tx_ring) { 6631 req = req_tx; 6632 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6633 req->ring_id = cpu_to_le16(ring_id); 6634 rc = hwrm_req_send(bp, req); 6635 if (rc) 6636 break; 6637 } 6638 if (bnapi->rx_ring) 6639 hw_coal = &bp->rx_coal; 6640 else 6641 hw_coal = &bp->tx_coal; 6642 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6643 } 6644 hwrm_req_drop(bp, req_rx); 6645 hwrm_req_drop(bp, req_tx); 6646 return rc; 6647 } 6648 6649 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6650 { 6651 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6652 struct hwrm_stat_ctx_free_input *req; 6653 int i; 6654 6655 if (!bp->bnapi) 6656 return; 6657 6658 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6659 return; 6660 6661 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6662 return; 6663 if (BNXT_FW_MAJ(bp) <= 20) { 6664 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6665 hwrm_req_drop(bp, req); 6666 return; 6667 } 6668 hwrm_req_hold(bp, req0); 6669 } 6670 hwrm_req_hold(bp, req); 6671 for (i = 0; i < bp->cp_nr_rings; i++) { 6672 struct bnxt_napi *bnapi = bp->bnapi[i]; 6673 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6674 6675 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6676 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6677 if (req0) { 6678 req0->stat_ctx_id = req->stat_ctx_id; 6679 hwrm_req_send(bp, req0); 6680 } 6681 hwrm_req_send(bp, req); 6682 6683 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6684 } 6685 } 6686 hwrm_req_drop(bp, req); 6687 if (req0) 6688 hwrm_req_drop(bp, req0); 6689 } 6690 6691 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6692 { 6693 struct hwrm_stat_ctx_alloc_output *resp; 6694 struct hwrm_stat_ctx_alloc_input *req; 6695 int rc, i; 6696 6697 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6698 return 0; 6699 6700 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6701 if (rc) 6702 return rc; 6703 6704 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6705 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6706 6707 resp = hwrm_req_hold(bp, req); 6708 for (i = 0; i < bp->cp_nr_rings; i++) { 6709 struct bnxt_napi *bnapi = bp->bnapi[i]; 6710 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6711 6712 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6713 6714 rc = hwrm_req_send(bp, req); 6715 if (rc) 6716 break; 6717 6718 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6719 6720 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6721 } 6722 hwrm_req_drop(bp, req); 6723 return rc; 6724 } 6725 6726 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6727 { 6728 struct hwrm_func_qcfg_output *resp; 6729 struct hwrm_func_qcfg_input *req; 6730 u32 min_db_offset = 0; 6731 u16 flags; 6732 int rc; 6733 6734 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6735 if (rc) 6736 return rc; 6737 6738 req->fid = cpu_to_le16(0xffff); 6739 resp = hwrm_req_hold(bp, req); 6740 rc = hwrm_req_send(bp, req); 6741 if (rc) 6742 goto func_qcfg_exit; 6743 6744 #ifdef CONFIG_BNXT_SRIOV 6745 if (BNXT_VF(bp)) { 6746 struct bnxt_vf_info *vf = &bp->vf; 6747 6748 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6749 } else { 6750 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6751 } 6752 #endif 6753 flags = le16_to_cpu(resp->flags); 6754 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6755 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6756 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6757 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6758 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6759 } 6760 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6761 bp->flags |= BNXT_FLAG_MULTI_HOST; 6762 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6763 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6764 6765 switch (resp->port_partition_type) { 6766 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6767 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6768 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6769 bp->port_partition_type = resp->port_partition_type; 6770 break; 6771 } 6772 if (bp->hwrm_spec_code < 0x10707 || 6773 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6774 bp->br_mode = BRIDGE_MODE_VEB; 6775 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6776 bp->br_mode = BRIDGE_MODE_VEPA; 6777 else 6778 bp->br_mode = BRIDGE_MODE_UNDEF; 6779 6780 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6781 if (!bp->max_mtu) 6782 bp->max_mtu = BNXT_MAX_MTU; 6783 6784 if (bp->db_size) 6785 goto func_qcfg_exit; 6786 6787 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6788 if (BNXT_PF(bp)) 6789 min_db_offset = DB_PF_OFFSET_P5; 6790 else 6791 min_db_offset = DB_VF_OFFSET_P5; 6792 } 6793 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6794 1024); 6795 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6796 bp->db_size <= min_db_offset) 6797 bp->db_size = pci_resource_len(bp->pdev, 2); 6798 6799 func_qcfg_exit: 6800 hwrm_req_drop(bp, req); 6801 return rc; 6802 } 6803 6804 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6805 struct hwrm_func_backing_store_qcaps_output *resp) 6806 { 6807 struct bnxt_mem_init *mem_init; 6808 u16 init_mask; 6809 u8 init_val; 6810 u8 *offset; 6811 int i; 6812 6813 init_val = resp->ctx_kind_initializer; 6814 init_mask = le16_to_cpu(resp->ctx_init_mask); 6815 offset = &resp->qp_init_offset; 6816 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6817 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6818 mem_init->init_val = init_val; 6819 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6820 if (!init_mask) 6821 continue; 6822 if (i == BNXT_CTX_MEM_INIT_STAT) 6823 offset = &resp->stat_init_offset; 6824 if (init_mask & (1 << i)) 6825 mem_init->offset = *offset * 4; 6826 else 6827 mem_init->init_val = 0; 6828 } 6829 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6830 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6831 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6832 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6833 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6834 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6835 } 6836 6837 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6838 { 6839 struct hwrm_func_backing_store_qcaps_output *resp; 6840 struct hwrm_func_backing_store_qcaps_input *req; 6841 int rc; 6842 6843 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6844 return 0; 6845 6846 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 6847 if (rc) 6848 return rc; 6849 6850 resp = hwrm_req_hold(bp, req); 6851 rc = hwrm_req_send_silent(bp, req); 6852 if (!rc) { 6853 struct bnxt_ctx_pg_info *ctx_pg; 6854 struct bnxt_ctx_mem_info *ctx; 6855 int i, tqm_rings; 6856 6857 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6858 if (!ctx) { 6859 rc = -ENOMEM; 6860 goto ctx_err; 6861 } 6862 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6863 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6864 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6865 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6866 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6867 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6868 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6869 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6870 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6871 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6872 ctx->vnic_max_vnic_entries = 6873 le16_to_cpu(resp->vnic_max_vnic_entries); 6874 ctx->vnic_max_ring_table_entries = 6875 le16_to_cpu(resp->vnic_max_ring_table_entries); 6876 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6877 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6878 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6879 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6880 ctx->tqm_min_entries_per_ring = 6881 le32_to_cpu(resp->tqm_min_entries_per_ring); 6882 ctx->tqm_max_entries_per_ring = 6883 le32_to_cpu(resp->tqm_max_entries_per_ring); 6884 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6885 if (!ctx->tqm_entries_multiple) 6886 ctx->tqm_entries_multiple = 1; 6887 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6888 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6889 ctx->mrav_num_entries_units = 6890 le16_to_cpu(resp->mrav_num_entries_units); 6891 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6892 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6893 6894 bnxt_init_ctx_initializer(ctx, resp); 6895 6896 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6897 if (!ctx->tqm_fp_rings_count) 6898 ctx->tqm_fp_rings_count = bp->max_q; 6899 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6900 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6901 6902 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6903 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6904 if (!ctx_pg) { 6905 kfree(ctx); 6906 rc = -ENOMEM; 6907 goto ctx_err; 6908 } 6909 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6910 ctx->tqm_mem[i] = ctx_pg; 6911 bp->ctx = ctx; 6912 } else { 6913 rc = 0; 6914 } 6915 ctx_err: 6916 hwrm_req_drop(bp, req); 6917 return rc; 6918 } 6919 6920 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6921 __le64 *pg_dir) 6922 { 6923 if (!rmem->nr_pages) 6924 return; 6925 6926 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 6927 if (rmem->depth >= 1) { 6928 if (rmem->depth == 2) 6929 *pg_attr |= 2; 6930 else 6931 *pg_attr |= 1; 6932 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6933 } else { 6934 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6935 } 6936 } 6937 6938 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6939 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6940 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6941 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6942 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6943 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6944 6945 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6946 { 6947 struct hwrm_func_backing_store_cfg_input *req; 6948 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6949 struct bnxt_ctx_pg_info *ctx_pg; 6950 void **__req = (void **)&req; 6951 u32 req_len = sizeof(*req); 6952 __le32 *num_entries; 6953 __le64 *pg_dir; 6954 u32 flags = 0; 6955 u8 *pg_attr; 6956 u32 ena; 6957 int rc; 6958 int i; 6959 6960 if (!ctx) 6961 return 0; 6962 6963 if (req_len > bp->hwrm_max_ext_req_len) 6964 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 6965 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 6966 if (rc) 6967 return rc; 6968 6969 req->enables = cpu_to_le32(enables); 6970 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6971 ctx_pg = &ctx->qp_mem; 6972 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 6973 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6974 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6975 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6976 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6977 &req->qpc_pg_size_qpc_lvl, 6978 &req->qpc_page_dir); 6979 } 6980 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6981 ctx_pg = &ctx->srq_mem; 6982 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 6983 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 6984 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 6985 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6986 &req->srq_pg_size_srq_lvl, 6987 &req->srq_page_dir); 6988 } 6989 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 6990 ctx_pg = &ctx->cq_mem; 6991 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 6992 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 6993 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 6994 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6995 &req->cq_pg_size_cq_lvl, 6996 &req->cq_page_dir); 6997 } 6998 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 6999 ctx_pg = &ctx->vnic_mem; 7000 req->vnic_num_vnic_entries = 7001 cpu_to_le16(ctx->vnic_max_vnic_entries); 7002 req->vnic_num_ring_table_entries = 7003 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7004 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7005 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7006 &req->vnic_pg_size_vnic_lvl, 7007 &req->vnic_page_dir); 7008 } 7009 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7010 ctx_pg = &ctx->stat_mem; 7011 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7012 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7013 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7014 &req->stat_pg_size_stat_lvl, 7015 &req->stat_page_dir); 7016 } 7017 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7018 ctx_pg = &ctx->mrav_mem; 7019 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7020 if (ctx->mrav_num_entries_units) 7021 flags |= 7022 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7023 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7024 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7025 &req->mrav_pg_size_mrav_lvl, 7026 &req->mrav_page_dir); 7027 } 7028 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7029 ctx_pg = &ctx->tim_mem; 7030 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7031 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7032 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7033 &req->tim_pg_size_tim_lvl, 7034 &req->tim_page_dir); 7035 } 7036 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7037 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7038 pg_dir = &req->tqm_sp_page_dir, 7039 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7040 i < BNXT_MAX_TQM_RINGS; 7041 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7042 if (!(enables & ena)) 7043 continue; 7044 7045 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7046 ctx_pg = ctx->tqm_mem[i]; 7047 *num_entries = cpu_to_le32(ctx_pg->entries); 7048 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7049 } 7050 req->flags = cpu_to_le32(flags); 7051 return hwrm_req_send(bp, req); 7052 } 7053 7054 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7055 struct bnxt_ctx_pg_info *ctx_pg) 7056 { 7057 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7058 7059 rmem->page_size = BNXT_PAGE_SIZE; 7060 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7061 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7062 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7063 if (rmem->depth >= 1) 7064 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7065 return bnxt_alloc_ring(bp, rmem); 7066 } 7067 7068 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7069 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7070 u8 depth, struct bnxt_mem_init *mem_init) 7071 { 7072 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7073 int rc; 7074 7075 if (!mem_size) 7076 return -EINVAL; 7077 7078 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7079 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7080 ctx_pg->nr_pages = 0; 7081 return -EINVAL; 7082 } 7083 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7084 int nr_tbls, i; 7085 7086 rmem->depth = 2; 7087 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7088 GFP_KERNEL); 7089 if (!ctx_pg->ctx_pg_tbl) 7090 return -ENOMEM; 7091 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7092 rmem->nr_pages = nr_tbls; 7093 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7094 if (rc) 7095 return rc; 7096 for (i = 0; i < nr_tbls; i++) { 7097 struct bnxt_ctx_pg_info *pg_tbl; 7098 7099 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7100 if (!pg_tbl) 7101 return -ENOMEM; 7102 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7103 rmem = &pg_tbl->ring_mem; 7104 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7105 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7106 rmem->depth = 1; 7107 rmem->nr_pages = MAX_CTX_PAGES; 7108 rmem->mem_init = mem_init; 7109 if (i == (nr_tbls - 1)) { 7110 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7111 7112 if (rem) 7113 rmem->nr_pages = rem; 7114 } 7115 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7116 if (rc) 7117 break; 7118 } 7119 } else { 7120 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7121 if (rmem->nr_pages > 1 || depth) 7122 rmem->depth = 1; 7123 rmem->mem_init = mem_init; 7124 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7125 } 7126 return rc; 7127 } 7128 7129 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7130 struct bnxt_ctx_pg_info *ctx_pg) 7131 { 7132 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7133 7134 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7135 ctx_pg->ctx_pg_tbl) { 7136 int i, nr_tbls = rmem->nr_pages; 7137 7138 for (i = 0; i < nr_tbls; i++) { 7139 struct bnxt_ctx_pg_info *pg_tbl; 7140 struct bnxt_ring_mem_info *rmem2; 7141 7142 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7143 if (!pg_tbl) 7144 continue; 7145 rmem2 = &pg_tbl->ring_mem; 7146 bnxt_free_ring(bp, rmem2); 7147 ctx_pg->ctx_pg_arr[i] = NULL; 7148 kfree(pg_tbl); 7149 ctx_pg->ctx_pg_tbl[i] = NULL; 7150 } 7151 kfree(ctx_pg->ctx_pg_tbl); 7152 ctx_pg->ctx_pg_tbl = NULL; 7153 } 7154 bnxt_free_ring(bp, rmem); 7155 ctx_pg->nr_pages = 0; 7156 } 7157 7158 void bnxt_free_ctx_mem(struct bnxt *bp) 7159 { 7160 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7161 int i; 7162 7163 if (!ctx) 7164 return; 7165 7166 if (ctx->tqm_mem[0]) { 7167 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7168 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7169 kfree(ctx->tqm_mem[0]); 7170 ctx->tqm_mem[0] = NULL; 7171 } 7172 7173 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7174 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7175 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7176 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7177 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7178 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7179 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7180 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7181 } 7182 7183 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7184 { 7185 struct bnxt_ctx_pg_info *ctx_pg; 7186 struct bnxt_ctx_mem_info *ctx; 7187 struct bnxt_mem_init *init; 7188 u32 mem_size, ena, entries; 7189 u32 entries_sp, min; 7190 u32 num_mr, num_ah; 7191 u32 extra_srqs = 0; 7192 u32 extra_qps = 0; 7193 u8 pg_lvl = 1; 7194 int i, rc; 7195 7196 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7197 if (rc) { 7198 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7199 rc); 7200 return rc; 7201 } 7202 ctx = bp->ctx; 7203 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7204 return 0; 7205 7206 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7207 pg_lvl = 2; 7208 extra_qps = 65536; 7209 extra_srqs = 8192; 7210 } 7211 7212 ctx_pg = &ctx->qp_mem; 7213 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7214 extra_qps; 7215 if (ctx->qp_entry_size) { 7216 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7217 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7218 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7219 if (rc) 7220 return rc; 7221 } 7222 7223 ctx_pg = &ctx->srq_mem; 7224 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7225 if (ctx->srq_entry_size) { 7226 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7227 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7228 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7229 if (rc) 7230 return rc; 7231 } 7232 7233 ctx_pg = &ctx->cq_mem; 7234 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7235 if (ctx->cq_entry_size) { 7236 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7237 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7238 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7239 if (rc) 7240 return rc; 7241 } 7242 7243 ctx_pg = &ctx->vnic_mem; 7244 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7245 ctx->vnic_max_ring_table_entries; 7246 if (ctx->vnic_entry_size) { 7247 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7248 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7249 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7250 if (rc) 7251 return rc; 7252 } 7253 7254 ctx_pg = &ctx->stat_mem; 7255 ctx_pg->entries = ctx->stat_max_entries; 7256 if (ctx->stat_entry_size) { 7257 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7258 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7259 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7260 if (rc) 7261 return rc; 7262 } 7263 7264 ena = 0; 7265 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7266 goto skip_rdma; 7267 7268 ctx_pg = &ctx->mrav_mem; 7269 /* 128K extra is needed to accommodate static AH context 7270 * allocation by f/w. 7271 */ 7272 num_mr = 1024 * 256; 7273 num_ah = 1024 * 128; 7274 ctx_pg->entries = num_mr + num_ah; 7275 if (ctx->mrav_entry_size) { 7276 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7277 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7278 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7279 if (rc) 7280 return rc; 7281 } 7282 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7283 if (ctx->mrav_num_entries_units) 7284 ctx_pg->entries = 7285 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7286 (num_ah / ctx->mrav_num_entries_units); 7287 7288 ctx_pg = &ctx->tim_mem; 7289 ctx_pg->entries = ctx->qp_mem.entries; 7290 if (ctx->tim_entry_size) { 7291 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7292 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7293 if (rc) 7294 return rc; 7295 } 7296 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7297 7298 skip_rdma: 7299 min = ctx->tqm_min_entries_per_ring; 7300 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7301 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7302 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7303 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7304 entries = roundup(entries, ctx->tqm_entries_multiple); 7305 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7306 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7307 ctx_pg = ctx->tqm_mem[i]; 7308 ctx_pg->entries = i ? entries : entries_sp; 7309 if (ctx->tqm_entry_size) { 7310 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7311 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7312 NULL); 7313 if (rc) 7314 return rc; 7315 } 7316 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7317 } 7318 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7319 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7320 if (rc) { 7321 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7322 rc); 7323 return rc; 7324 } 7325 ctx->flags |= BNXT_CTX_FLAG_INITED; 7326 return 0; 7327 } 7328 7329 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7330 { 7331 struct hwrm_func_resource_qcaps_output *resp; 7332 struct hwrm_func_resource_qcaps_input *req; 7333 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7334 int rc; 7335 7336 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7337 if (rc) 7338 return rc; 7339 7340 req->fid = cpu_to_le16(0xffff); 7341 resp = hwrm_req_hold(bp, req); 7342 rc = hwrm_req_send_silent(bp, req); 7343 if (rc) 7344 goto hwrm_func_resc_qcaps_exit; 7345 7346 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7347 if (!all) 7348 goto hwrm_func_resc_qcaps_exit; 7349 7350 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7351 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7352 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7353 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7354 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7355 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7356 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7357 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7358 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7359 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7360 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7361 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7362 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7363 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7364 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7365 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7366 7367 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7368 u16 max_msix = le16_to_cpu(resp->max_msix); 7369 7370 hw_resc->max_nqs = max_msix; 7371 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7372 } 7373 7374 if (BNXT_PF(bp)) { 7375 struct bnxt_pf_info *pf = &bp->pf; 7376 7377 pf->vf_resv_strategy = 7378 le16_to_cpu(resp->vf_reservation_strategy); 7379 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7380 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7381 } 7382 hwrm_func_resc_qcaps_exit: 7383 hwrm_req_drop(bp, req); 7384 return rc; 7385 } 7386 7387 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7388 { 7389 struct hwrm_port_mac_ptp_qcfg_output *resp; 7390 struct hwrm_port_mac_ptp_qcfg_input *req; 7391 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7392 u8 flags; 7393 int rc; 7394 7395 if (bp->hwrm_spec_code < 0x10801) { 7396 rc = -ENODEV; 7397 goto no_ptp; 7398 } 7399 7400 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7401 if (rc) 7402 goto no_ptp; 7403 7404 req->port_id = cpu_to_le16(bp->pf.port_id); 7405 resp = hwrm_req_hold(bp, req); 7406 rc = hwrm_req_send(bp, req); 7407 if (rc) 7408 goto exit; 7409 7410 flags = resp->flags; 7411 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7412 rc = -ENODEV; 7413 goto exit; 7414 } 7415 if (!ptp) { 7416 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7417 if (!ptp) { 7418 rc = -ENOMEM; 7419 goto exit; 7420 } 7421 ptp->bp = bp; 7422 bp->ptp_cfg = ptp; 7423 } 7424 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7425 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7426 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7427 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7428 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7429 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7430 } else { 7431 rc = -ENODEV; 7432 goto exit; 7433 } 7434 rc = bnxt_ptp_init(bp); 7435 if (rc) 7436 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7437 exit: 7438 hwrm_req_drop(bp, req); 7439 if (!rc) 7440 return 0; 7441 7442 no_ptp: 7443 bnxt_ptp_clear(bp); 7444 kfree(ptp); 7445 bp->ptp_cfg = NULL; 7446 return rc; 7447 } 7448 7449 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7450 { 7451 struct hwrm_func_qcaps_output *resp; 7452 struct hwrm_func_qcaps_input *req; 7453 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7454 u32 flags, flags_ext; 7455 int rc; 7456 7457 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7458 if (rc) 7459 return rc; 7460 7461 req->fid = cpu_to_le16(0xffff); 7462 resp = hwrm_req_hold(bp, req); 7463 rc = hwrm_req_send(bp, req); 7464 if (rc) 7465 goto hwrm_func_qcaps_exit; 7466 7467 flags = le32_to_cpu(resp->flags); 7468 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7469 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7470 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7471 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7472 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7473 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7474 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7475 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7476 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7477 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7478 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7479 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7480 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7481 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7482 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7483 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7484 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7485 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7486 7487 flags_ext = le32_to_cpu(resp->flags_ext); 7488 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7489 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7490 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7491 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7492 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7493 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7494 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7495 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7496 7497 bp->tx_push_thresh = 0; 7498 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7499 BNXT_FW_MAJ(bp) > 217) 7500 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7501 7502 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7503 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7504 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7505 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7506 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7507 if (!hw_resc->max_hw_ring_grps) 7508 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7509 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7510 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7511 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7512 7513 if (BNXT_PF(bp)) { 7514 struct bnxt_pf_info *pf = &bp->pf; 7515 7516 pf->fw_fid = le16_to_cpu(resp->fid); 7517 pf->port_id = le16_to_cpu(resp->port_id); 7518 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7519 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7520 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7521 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7522 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7523 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7524 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7525 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7526 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7527 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7528 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7529 bp->flags |= BNXT_FLAG_WOL_CAP; 7530 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7531 __bnxt_hwrm_ptp_qcfg(bp); 7532 } else { 7533 bnxt_ptp_clear(bp); 7534 kfree(bp->ptp_cfg); 7535 bp->ptp_cfg = NULL; 7536 } 7537 } else { 7538 #ifdef CONFIG_BNXT_SRIOV 7539 struct bnxt_vf_info *vf = &bp->vf; 7540 7541 vf->fw_fid = le16_to_cpu(resp->fid); 7542 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7543 #endif 7544 } 7545 7546 hwrm_func_qcaps_exit: 7547 hwrm_req_drop(bp, req); 7548 return rc; 7549 } 7550 7551 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7552 { 7553 struct hwrm_dbg_qcaps_output *resp; 7554 struct hwrm_dbg_qcaps_input *req; 7555 int rc; 7556 7557 bp->fw_dbg_cap = 0; 7558 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7559 return; 7560 7561 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7562 if (rc) 7563 return; 7564 7565 req->fid = cpu_to_le16(0xffff); 7566 resp = hwrm_req_hold(bp, req); 7567 rc = hwrm_req_send(bp, req); 7568 if (rc) 7569 goto hwrm_dbg_qcaps_exit; 7570 7571 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7572 7573 hwrm_dbg_qcaps_exit: 7574 hwrm_req_drop(bp, req); 7575 } 7576 7577 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7578 7579 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7580 { 7581 int rc; 7582 7583 rc = __bnxt_hwrm_func_qcaps(bp); 7584 if (rc) 7585 return rc; 7586 7587 bnxt_hwrm_dbg_qcaps(bp); 7588 7589 rc = bnxt_hwrm_queue_qportcfg(bp); 7590 if (rc) { 7591 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7592 return rc; 7593 } 7594 if (bp->hwrm_spec_code >= 0x10803) { 7595 rc = bnxt_alloc_ctx_mem(bp); 7596 if (rc) 7597 return rc; 7598 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7599 if (!rc) 7600 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7601 } 7602 return 0; 7603 } 7604 7605 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7606 { 7607 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7608 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7609 u32 flags; 7610 int rc; 7611 7612 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7613 return 0; 7614 7615 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7616 if (rc) 7617 return rc; 7618 7619 resp = hwrm_req_hold(bp, req); 7620 rc = hwrm_req_send(bp, req); 7621 if (rc) 7622 goto hwrm_cfa_adv_qcaps_exit; 7623 7624 flags = le32_to_cpu(resp->flags); 7625 if (flags & 7626 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7627 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7628 7629 hwrm_cfa_adv_qcaps_exit: 7630 hwrm_req_drop(bp, req); 7631 return rc; 7632 } 7633 7634 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7635 { 7636 if (bp->fw_health) 7637 return 0; 7638 7639 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7640 if (!bp->fw_health) 7641 return -ENOMEM; 7642 7643 mutex_init(&bp->fw_health->lock); 7644 return 0; 7645 } 7646 7647 static int bnxt_alloc_fw_health(struct bnxt *bp) 7648 { 7649 int rc; 7650 7651 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7652 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7653 return 0; 7654 7655 rc = __bnxt_alloc_fw_health(bp); 7656 if (rc) { 7657 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7658 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7659 return rc; 7660 } 7661 7662 return 0; 7663 } 7664 7665 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7666 { 7667 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7668 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7669 BNXT_FW_HEALTH_WIN_MAP_OFF); 7670 } 7671 7672 bool bnxt_is_fw_healthy(struct bnxt *bp) 7673 { 7674 if (bp->fw_health && bp->fw_health->status_reliable) { 7675 u32 fw_status; 7676 7677 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7678 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7679 return false; 7680 } 7681 7682 return true; 7683 } 7684 7685 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7686 { 7687 struct bnxt_fw_health *fw_health = bp->fw_health; 7688 u32 reg_type; 7689 7690 if (!fw_health) 7691 return; 7692 7693 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7694 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7695 fw_health->status_reliable = false; 7696 7697 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 7698 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7699 fw_health->resets_reliable = false; 7700 } 7701 7702 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7703 { 7704 void __iomem *hs; 7705 u32 status_loc; 7706 u32 reg_type; 7707 u32 sig; 7708 7709 if (bp->fw_health) 7710 bp->fw_health->status_reliable = false; 7711 7712 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7713 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7714 7715 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7716 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7717 if (!bp->chip_num) { 7718 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7719 bp->chip_num = readl(bp->bar0 + 7720 BNXT_FW_HEALTH_WIN_BASE + 7721 BNXT_GRC_REG_CHIP_NUM); 7722 } 7723 if (!BNXT_CHIP_P5(bp)) 7724 return; 7725 7726 status_loc = BNXT_GRC_REG_STATUS_P5 | 7727 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7728 } else { 7729 status_loc = readl(hs + offsetof(struct hcomm_status, 7730 fw_status_loc)); 7731 } 7732 7733 if (__bnxt_alloc_fw_health(bp)) { 7734 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7735 return; 7736 } 7737 7738 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7739 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7740 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7741 __bnxt_map_fw_health_reg(bp, status_loc); 7742 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7743 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7744 } 7745 7746 bp->fw_health->status_reliable = true; 7747 } 7748 7749 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7750 { 7751 struct bnxt_fw_health *fw_health = bp->fw_health; 7752 u32 reg_base = 0xffffffff; 7753 int i; 7754 7755 bp->fw_health->status_reliable = false; 7756 bp->fw_health->resets_reliable = false; 7757 /* Only pre-map the monitoring GRC registers using window 3 */ 7758 for (i = 0; i < 4; i++) { 7759 u32 reg = fw_health->regs[i]; 7760 7761 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7762 continue; 7763 if (reg_base == 0xffffffff) 7764 reg_base = reg & BNXT_GRC_BASE_MASK; 7765 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7766 return -ERANGE; 7767 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7768 } 7769 bp->fw_health->status_reliable = true; 7770 bp->fw_health->resets_reliable = true; 7771 if (reg_base == 0xffffffff) 7772 return 0; 7773 7774 __bnxt_map_fw_health_reg(bp, reg_base); 7775 return 0; 7776 } 7777 7778 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7779 { 7780 struct bnxt_fw_health *fw_health = bp->fw_health; 7781 struct hwrm_error_recovery_qcfg_output *resp; 7782 struct hwrm_error_recovery_qcfg_input *req; 7783 int rc, i; 7784 7785 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7786 return 0; 7787 7788 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 7789 if (rc) 7790 return rc; 7791 7792 resp = hwrm_req_hold(bp, req); 7793 rc = hwrm_req_send(bp, req); 7794 if (rc) 7795 goto err_recovery_out; 7796 fw_health->flags = le32_to_cpu(resp->flags); 7797 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7798 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7799 rc = -EINVAL; 7800 goto err_recovery_out; 7801 } 7802 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7803 fw_health->master_func_wait_dsecs = 7804 le32_to_cpu(resp->master_func_wait_period); 7805 fw_health->normal_func_wait_dsecs = 7806 le32_to_cpu(resp->normal_func_wait_period); 7807 fw_health->post_reset_wait_dsecs = 7808 le32_to_cpu(resp->master_func_wait_period_after_reset); 7809 fw_health->post_reset_max_wait_dsecs = 7810 le32_to_cpu(resp->max_bailout_time_after_reset); 7811 fw_health->regs[BNXT_FW_HEALTH_REG] = 7812 le32_to_cpu(resp->fw_health_status_reg); 7813 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7814 le32_to_cpu(resp->fw_heartbeat_reg); 7815 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7816 le32_to_cpu(resp->fw_reset_cnt_reg); 7817 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7818 le32_to_cpu(resp->reset_inprogress_reg); 7819 fw_health->fw_reset_inprog_reg_mask = 7820 le32_to_cpu(resp->reset_inprogress_reg_mask); 7821 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7822 if (fw_health->fw_reset_seq_cnt >= 16) { 7823 rc = -EINVAL; 7824 goto err_recovery_out; 7825 } 7826 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7827 fw_health->fw_reset_seq_regs[i] = 7828 le32_to_cpu(resp->reset_reg[i]); 7829 fw_health->fw_reset_seq_vals[i] = 7830 le32_to_cpu(resp->reset_reg_val[i]); 7831 fw_health->fw_reset_seq_delay_msec[i] = 7832 resp->delay_after_reset[i]; 7833 } 7834 err_recovery_out: 7835 hwrm_req_drop(bp, req); 7836 if (!rc) 7837 rc = bnxt_map_fw_health_regs(bp); 7838 if (rc) 7839 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7840 return rc; 7841 } 7842 7843 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7844 { 7845 struct hwrm_func_reset_input *req; 7846 int rc; 7847 7848 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 7849 if (rc) 7850 return rc; 7851 7852 req->enables = 0; 7853 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 7854 return hwrm_req_send(bp, req); 7855 } 7856 7857 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7858 { 7859 struct hwrm_nvm_get_dev_info_output nvm_info; 7860 7861 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7862 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7863 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7864 nvm_info.nvm_cfg_ver_upd); 7865 } 7866 7867 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7868 { 7869 struct hwrm_queue_qportcfg_output *resp; 7870 struct hwrm_queue_qportcfg_input *req; 7871 u8 i, j, *qptr; 7872 bool no_rdma; 7873 int rc = 0; 7874 7875 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 7876 if (rc) 7877 return rc; 7878 7879 resp = hwrm_req_hold(bp, req); 7880 rc = hwrm_req_send(bp, req); 7881 if (rc) 7882 goto qportcfg_exit; 7883 7884 if (!resp->max_configurable_queues) { 7885 rc = -EINVAL; 7886 goto qportcfg_exit; 7887 } 7888 bp->max_tc = resp->max_configurable_queues; 7889 bp->max_lltc = resp->max_configurable_lossless_queues; 7890 if (bp->max_tc > BNXT_MAX_QUEUE) 7891 bp->max_tc = BNXT_MAX_QUEUE; 7892 7893 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7894 qptr = &resp->queue_id0; 7895 for (i = 0, j = 0; i < bp->max_tc; i++) { 7896 bp->q_info[j].queue_id = *qptr; 7897 bp->q_ids[i] = *qptr++; 7898 bp->q_info[j].queue_profile = *qptr++; 7899 bp->tc_to_qidx[j] = j; 7900 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7901 (no_rdma && BNXT_PF(bp))) 7902 j++; 7903 } 7904 bp->max_q = bp->max_tc; 7905 bp->max_tc = max_t(u8, j, 1); 7906 7907 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7908 bp->max_tc = 1; 7909 7910 if (bp->max_lltc > bp->max_tc) 7911 bp->max_lltc = bp->max_tc; 7912 7913 qportcfg_exit: 7914 hwrm_req_drop(bp, req); 7915 return rc; 7916 } 7917 7918 static int bnxt_hwrm_poll(struct bnxt *bp) 7919 { 7920 struct hwrm_ver_get_input *req; 7921 int rc; 7922 7923 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7924 if (rc) 7925 return rc; 7926 7927 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7928 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7929 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7930 7931 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 7932 rc = hwrm_req_send(bp, req); 7933 return rc; 7934 } 7935 7936 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7937 { 7938 struct hwrm_ver_get_output *resp; 7939 struct hwrm_ver_get_input *req; 7940 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7941 u32 dev_caps_cfg, hwrm_ver; 7942 int rc, len; 7943 7944 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7945 if (rc) 7946 return rc; 7947 7948 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 7949 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7950 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7951 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7952 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7953 7954 resp = hwrm_req_hold(bp, req); 7955 rc = hwrm_req_send(bp, req); 7956 if (rc) 7957 goto hwrm_ver_get_exit; 7958 7959 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7960 7961 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7962 resp->hwrm_intf_min_8b << 8 | 7963 resp->hwrm_intf_upd_8b; 7964 if (resp->hwrm_intf_maj_8b < 1) { 7965 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7966 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7967 resp->hwrm_intf_upd_8b); 7968 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7969 } 7970 7971 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7972 HWRM_VERSION_UPDATE; 7973 7974 if (bp->hwrm_spec_code > hwrm_ver) 7975 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7976 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7977 HWRM_VERSION_UPDATE); 7978 else 7979 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7980 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7981 resp->hwrm_intf_upd_8b); 7982 7983 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7984 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7985 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7986 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7987 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7988 len = FW_VER_STR_LEN; 7989 } else { 7990 fw_maj = resp->hwrm_fw_maj_8b; 7991 fw_min = resp->hwrm_fw_min_8b; 7992 fw_bld = resp->hwrm_fw_bld_8b; 7993 fw_rsv = resp->hwrm_fw_rsvd_8b; 7994 len = BC_HWRM_STR_LEN; 7995 } 7996 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7997 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7998 fw_rsv); 7999 8000 if (strlen(resp->active_pkg_name)) { 8001 int fw_ver_len = strlen(bp->fw_ver_str); 8002 8003 snprintf(bp->fw_ver_str + fw_ver_len, 8004 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8005 resp->active_pkg_name); 8006 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8007 } 8008 8009 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8010 if (!bp->hwrm_cmd_timeout) 8011 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8012 8013 if (resp->hwrm_intf_maj_8b >= 1) { 8014 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8015 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8016 } 8017 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8018 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8019 8020 bp->chip_num = le16_to_cpu(resp->chip_num); 8021 bp->chip_rev = resp->chip_rev; 8022 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8023 !resp->chip_metal) 8024 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8025 8026 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8027 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8028 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8029 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8030 8031 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8032 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8033 8034 if (dev_caps_cfg & 8035 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8036 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8037 8038 if (dev_caps_cfg & 8039 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8040 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8041 8042 if (dev_caps_cfg & 8043 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8044 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8045 8046 hwrm_ver_get_exit: 8047 hwrm_req_drop(bp, req); 8048 return rc; 8049 } 8050 8051 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8052 { 8053 struct hwrm_fw_set_time_input *req; 8054 struct tm tm; 8055 time64_t now = ktime_get_real_seconds(); 8056 int rc; 8057 8058 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8059 bp->hwrm_spec_code < 0x10400) 8060 return -EOPNOTSUPP; 8061 8062 time64_to_tm(now, 0, &tm); 8063 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8064 if (rc) 8065 return rc; 8066 8067 req->year = cpu_to_le16(1900 + tm.tm_year); 8068 req->month = 1 + tm.tm_mon; 8069 req->day = tm.tm_mday; 8070 req->hour = tm.tm_hour; 8071 req->minute = tm.tm_min; 8072 req->second = tm.tm_sec; 8073 return hwrm_req_send(bp, req); 8074 } 8075 8076 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8077 { 8078 u64 sw_tmp; 8079 8080 hw &= mask; 8081 sw_tmp = (*sw & ~mask) | hw; 8082 if (hw < (*sw & mask)) 8083 sw_tmp += mask + 1; 8084 WRITE_ONCE(*sw, sw_tmp); 8085 } 8086 8087 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8088 int count, bool ignore_zero) 8089 { 8090 int i; 8091 8092 for (i = 0; i < count; i++) { 8093 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8094 8095 if (ignore_zero && !hw) 8096 continue; 8097 8098 if (masks[i] == -1ULL) 8099 sw_stats[i] = hw; 8100 else 8101 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8102 } 8103 } 8104 8105 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8106 { 8107 if (!stats->hw_stats) 8108 return; 8109 8110 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8111 stats->hw_masks, stats->len / 8, false); 8112 } 8113 8114 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8115 { 8116 struct bnxt_stats_mem *ring0_stats; 8117 bool ignore_zero = false; 8118 int i; 8119 8120 /* Chip bug. Counter intermittently becomes 0. */ 8121 if (bp->flags & BNXT_FLAG_CHIP_P5) 8122 ignore_zero = true; 8123 8124 for (i = 0; i < bp->cp_nr_rings; i++) { 8125 struct bnxt_napi *bnapi = bp->bnapi[i]; 8126 struct bnxt_cp_ring_info *cpr; 8127 struct bnxt_stats_mem *stats; 8128 8129 cpr = &bnapi->cp_ring; 8130 stats = &cpr->stats; 8131 if (!i) 8132 ring0_stats = stats; 8133 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8134 ring0_stats->hw_masks, 8135 ring0_stats->len / 8, ignore_zero); 8136 } 8137 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8138 struct bnxt_stats_mem *stats = &bp->port_stats; 8139 __le64 *hw_stats = stats->hw_stats; 8140 u64 *sw_stats = stats->sw_stats; 8141 u64 *masks = stats->hw_masks; 8142 int cnt; 8143 8144 cnt = sizeof(struct rx_port_stats) / 8; 8145 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8146 8147 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8148 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8149 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8150 cnt = sizeof(struct tx_port_stats) / 8; 8151 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8152 } 8153 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8154 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8155 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8156 } 8157 } 8158 8159 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8160 { 8161 struct hwrm_port_qstats_input *req; 8162 struct bnxt_pf_info *pf = &bp->pf; 8163 int rc; 8164 8165 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8166 return 0; 8167 8168 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8169 return -EOPNOTSUPP; 8170 8171 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8172 if (rc) 8173 return rc; 8174 8175 req->flags = flags; 8176 req->port_id = cpu_to_le16(pf->port_id); 8177 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8178 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8179 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8180 return hwrm_req_send(bp, req); 8181 } 8182 8183 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8184 { 8185 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8186 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8187 struct hwrm_port_qstats_ext_output *resp_qs; 8188 struct hwrm_port_qstats_ext_input *req_qs; 8189 struct bnxt_pf_info *pf = &bp->pf; 8190 u32 tx_stat_size; 8191 int rc; 8192 8193 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8194 return 0; 8195 8196 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8197 return -EOPNOTSUPP; 8198 8199 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8200 if (rc) 8201 return rc; 8202 8203 req_qs->flags = flags; 8204 req_qs->port_id = cpu_to_le16(pf->port_id); 8205 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8206 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8207 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8208 sizeof(struct tx_port_stats_ext) : 0; 8209 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8210 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8211 resp_qs = hwrm_req_hold(bp, req_qs); 8212 rc = hwrm_req_send(bp, req_qs); 8213 if (!rc) { 8214 bp->fw_rx_stats_ext_size = 8215 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8216 if (BNXT_FW_MAJ(bp) < 220 && 8217 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8218 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8219 8220 bp->fw_tx_stats_ext_size = tx_stat_size ? 8221 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8222 } else { 8223 bp->fw_rx_stats_ext_size = 0; 8224 bp->fw_tx_stats_ext_size = 0; 8225 } 8226 hwrm_req_drop(bp, req_qs); 8227 8228 if (flags) 8229 return rc; 8230 8231 if (bp->fw_tx_stats_ext_size <= 8232 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8233 bp->pri2cos_valid = 0; 8234 return rc; 8235 } 8236 8237 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8238 if (rc) 8239 return rc; 8240 8241 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8242 8243 resp_qc = hwrm_req_hold(bp, req_qc); 8244 rc = hwrm_req_send(bp, req_qc); 8245 if (!rc) { 8246 u8 *pri2cos; 8247 int i, j; 8248 8249 pri2cos = &resp_qc->pri0_cos_queue_id; 8250 for (i = 0; i < 8; i++) { 8251 u8 queue_id = pri2cos[i]; 8252 u8 queue_idx; 8253 8254 /* Per port queue IDs start from 0, 10, 20, etc */ 8255 queue_idx = queue_id % 10; 8256 if (queue_idx > BNXT_MAX_QUEUE) { 8257 bp->pri2cos_valid = false; 8258 hwrm_req_drop(bp, req_qc); 8259 return rc; 8260 } 8261 for (j = 0; j < bp->max_q; j++) { 8262 if (bp->q_ids[j] == queue_id) 8263 bp->pri2cos_idx[i] = queue_idx; 8264 } 8265 } 8266 bp->pri2cos_valid = true; 8267 } 8268 hwrm_req_drop(bp, req_qc); 8269 8270 return rc; 8271 } 8272 8273 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8274 { 8275 bnxt_hwrm_tunnel_dst_port_free(bp, 8276 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8277 bnxt_hwrm_tunnel_dst_port_free(bp, 8278 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8279 } 8280 8281 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8282 { 8283 int rc, i; 8284 u32 tpa_flags = 0; 8285 8286 if (set_tpa) 8287 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8288 else if (BNXT_NO_FW_ACCESS(bp)) 8289 return 0; 8290 for (i = 0; i < bp->nr_vnics; i++) { 8291 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8292 if (rc) { 8293 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8294 i, rc); 8295 return rc; 8296 } 8297 } 8298 return 0; 8299 } 8300 8301 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8302 { 8303 int i; 8304 8305 for (i = 0; i < bp->nr_vnics; i++) 8306 bnxt_hwrm_vnic_set_rss(bp, i, false); 8307 } 8308 8309 static void bnxt_clear_vnic(struct bnxt *bp) 8310 { 8311 if (!bp->vnic_info) 8312 return; 8313 8314 bnxt_hwrm_clear_vnic_filter(bp); 8315 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8316 /* clear all RSS setting before free vnic ctx */ 8317 bnxt_hwrm_clear_vnic_rss(bp); 8318 bnxt_hwrm_vnic_ctx_free(bp); 8319 } 8320 /* before free the vnic, undo the vnic tpa settings */ 8321 if (bp->flags & BNXT_FLAG_TPA) 8322 bnxt_set_tpa(bp, false); 8323 bnxt_hwrm_vnic_free(bp); 8324 if (bp->flags & BNXT_FLAG_CHIP_P5) 8325 bnxt_hwrm_vnic_ctx_free(bp); 8326 } 8327 8328 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8329 bool irq_re_init) 8330 { 8331 bnxt_clear_vnic(bp); 8332 bnxt_hwrm_ring_free(bp, close_path); 8333 bnxt_hwrm_ring_grp_free(bp); 8334 if (irq_re_init) { 8335 bnxt_hwrm_stat_ctx_free(bp); 8336 bnxt_hwrm_free_tunnel_ports(bp); 8337 } 8338 } 8339 8340 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8341 { 8342 struct hwrm_func_cfg_input *req; 8343 u8 evb_mode; 8344 int rc; 8345 8346 if (br_mode == BRIDGE_MODE_VEB) 8347 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8348 else if (br_mode == BRIDGE_MODE_VEPA) 8349 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8350 else 8351 return -EINVAL; 8352 8353 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8354 if (rc) 8355 return rc; 8356 8357 req->fid = cpu_to_le16(0xffff); 8358 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8359 req->evb_mode = evb_mode; 8360 return hwrm_req_send(bp, req); 8361 } 8362 8363 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8364 { 8365 struct hwrm_func_cfg_input *req; 8366 int rc; 8367 8368 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8369 return 0; 8370 8371 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8372 if (rc) 8373 return rc; 8374 8375 req->fid = cpu_to_le16(0xffff); 8376 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8377 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8378 if (size == 128) 8379 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8380 8381 return hwrm_req_send(bp, req); 8382 } 8383 8384 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8385 { 8386 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8387 int rc; 8388 8389 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8390 goto skip_rss_ctx; 8391 8392 /* allocate context for vnic */ 8393 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8394 if (rc) { 8395 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8396 vnic_id, rc); 8397 goto vnic_setup_err; 8398 } 8399 bp->rsscos_nr_ctxs++; 8400 8401 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8402 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8403 if (rc) { 8404 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8405 vnic_id, rc); 8406 goto vnic_setup_err; 8407 } 8408 bp->rsscos_nr_ctxs++; 8409 } 8410 8411 skip_rss_ctx: 8412 /* configure default vnic, ring grp */ 8413 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8414 if (rc) { 8415 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8416 vnic_id, rc); 8417 goto vnic_setup_err; 8418 } 8419 8420 /* Enable RSS hashing on vnic */ 8421 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8422 if (rc) { 8423 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8424 vnic_id, rc); 8425 goto vnic_setup_err; 8426 } 8427 8428 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8429 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8430 if (rc) { 8431 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8432 vnic_id, rc); 8433 } 8434 } 8435 8436 vnic_setup_err: 8437 return rc; 8438 } 8439 8440 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8441 { 8442 int rc, i, nr_ctxs; 8443 8444 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8445 for (i = 0; i < nr_ctxs; i++) { 8446 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8447 if (rc) { 8448 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8449 vnic_id, i, rc); 8450 break; 8451 } 8452 bp->rsscos_nr_ctxs++; 8453 } 8454 if (i < nr_ctxs) 8455 return -ENOMEM; 8456 8457 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8458 if (rc) { 8459 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8460 vnic_id, rc); 8461 return rc; 8462 } 8463 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8464 if (rc) { 8465 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8466 vnic_id, rc); 8467 return rc; 8468 } 8469 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8470 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8471 if (rc) { 8472 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8473 vnic_id, rc); 8474 } 8475 } 8476 return rc; 8477 } 8478 8479 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8480 { 8481 if (bp->flags & BNXT_FLAG_CHIP_P5) 8482 return __bnxt_setup_vnic_p5(bp, vnic_id); 8483 else 8484 return __bnxt_setup_vnic(bp, vnic_id); 8485 } 8486 8487 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8488 { 8489 #ifdef CONFIG_RFS_ACCEL 8490 int i, rc = 0; 8491 8492 if (bp->flags & BNXT_FLAG_CHIP_P5) 8493 return 0; 8494 8495 for (i = 0; i < bp->rx_nr_rings; i++) { 8496 struct bnxt_vnic_info *vnic; 8497 u16 vnic_id = i + 1; 8498 u16 ring_id = i; 8499 8500 if (vnic_id >= bp->nr_vnics) 8501 break; 8502 8503 vnic = &bp->vnic_info[vnic_id]; 8504 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8505 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8506 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8507 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8508 if (rc) { 8509 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8510 vnic_id, rc); 8511 break; 8512 } 8513 rc = bnxt_setup_vnic(bp, vnic_id); 8514 if (rc) 8515 break; 8516 } 8517 return rc; 8518 #else 8519 return 0; 8520 #endif 8521 } 8522 8523 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8524 static bool bnxt_promisc_ok(struct bnxt *bp) 8525 { 8526 #ifdef CONFIG_BNXT_SRIOV 8527 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8528 return false; 8529 #endif 8530 return true; 8531 } 8532 8533 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8534 { 8535 unsigned int rc = 0; 8536 8537 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8538 if (rc) { 8539 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8540 rc); 8541 return rc; 8542 } 8543 8544 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8545 if (rc) { 8546 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8547 rc); 8548 return rc; 8549 } 8550 return rc; 8551 } 8552 8553 static int bnxt_cfg_rx_mode(struct bnxt *); 8554 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8555 8556 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8557 { 8558 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8559 int rc = 0; 8560 unsigned int rx_nr_rings = bp->rx_nr_rings; 8561 8562 if (irq_re_init) { 8563 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8564 if (rc) { 8565 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8566 rc); 8567 goto err_out; 8568 } 8569 } 8570 8571 rc = bnxt_hwrm_ring_alloc(bp); 8572 if (rc) { 8573 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8574 goto err_out; 8575 } 8576 8577 rc = bnxt_hwrm_ring_grp_alloc(bp); 8578 if (rc) { 8579 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8580 goto err_out; 8581 } 8582 8583 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8584 rx_nr_rings--; 8585 8586 /* default vnic 0 */ 8587 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8588 if (rc) { 8589 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8590 goto err_out; 8591 } 8592 8593 rc = bnxt_setup_vnic(bp, 0); 8594 if (rc) 8595 goto err_out; 8596 8597 if (bp->flags & BNXT_FLAG_RFS) { 8598 rc = bnxt_alloc_rfs_vnics(bp); 8599 if (rc) 8600 goto err_out; 8601 } 8602 8603 if (bp->flags & BNXT_FLAG_TPA) { 8604 rc = bnxt_set_tpa(bp, true); 8605 if (rc) 8606 goto err_out; 8607 } 8608 8609 if (BNXT_VF(bp)) 8610 bnxt_update_vf_mac(bp); 8611 8612 /* Filter for default vnic 0 */ 8613 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8614 if (rc) { 8615 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8616 goto err_out; 8617 } 8618 vnic->uc_filter_count = 1; 8619 8620 vnic->rx_mask = 0; 8621 if (bp->dev->flags & IFF_BROADCAST) 8622 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8623 8624 if (bp->dev->flags & IFF_PROMISC) 8625 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8626 8627 if (bp->dev->flags & IFF_ALLMULTI) { 8628 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8629 vnic->mc_list_count = 0; 8630 } else { 8631 u32 mask = 0; 8632 8633 bnxt_mc_list_updated(bp, &mask); 8634 vnic->rx_mask |= mask; 8635 } 8636 8637 rc = bnxt_cfg_rx_mode(bp); 8638 if (rc) 8639 goto err_out; 8640 8641 rc = bnxt_hwrm_set_coal(bp); 8642 if (rc) 8643 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8644 rc); 8645 8646 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8647 rc = bnxt_setup_nitroa0_vnic(bp); 8648 if (rc) 8649 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8650 rc); 8651 } 8652 8653 if (BNXT_VF(bp)) { 8654 bnxt_hwrm_func_qcfg(bp); 8655 netdev_update_features(bp->dev); 8656 } 8657 8658 return 0; 8659 8660 err_out: 8661 bnxt_hwrm_resource_free(bp, 0, true); 8662 8663 return rc; 8664 } 8665 8666 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8667 { 8668 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8669 return 0; 8670 } 8671 8672 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8673 { 8674 bnxt_init_cp_rings(bp); 8675 bnxt_init_rx_rings(bp); 8676 bnxt_init_tx_rings(bp); 8677 bnxt_init_ring_grps(bp, irq_re_init); 8678 bnxt_init_vnics(bp); 8679 8680 return bnxt_init_chip(bp, irq_re_init); 8681 } 8682 8683 static int bnxt_set_real_num_queues(struct bnxt *bp) 8684 { 8685 int rc; 8686 struct net_device *dev = bp->dev; 8687 8688 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8689 bp->tx_nr_rings_xdp); 8690 if (rc) 8691 return rc; 8692 8693 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8694 if (rc) 8695 return rc; 8696 8697 #ifdef CONFIG_RFS_ACCEL 8698 if (bp->flags & BNXT_FLAG_RFS) 8699 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8700 #endif 8701 8702 return rc; 8703 } 8704 8705 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8706 bool shared) 8707 { 8708 int _rx = *rx, _tx = *tx; 8709 8710 if (shared) { 8711 *rx = min_t(int, _rx, max); 8712 *tx = min_t(int, _tx, max); 8713 } else { 8714 if (max < 2) 8715 return -ENOMEM; 8716 8717 while (_rx + _tx > max) { 8718 if (_rx > _tx && _rx > 1) 8719 _rx--; 8720 else if (_tx > 1) 8721 _tx--; 8722 } 8723 *rx = _rx; 8724 *tx = _tx; 8725 } 8726 return 0; 8727 } 8728 8729 static void bnxt_setup_msix(struct bnxt *bp) 8730 { 8731 const int len = sizeof(bp->irq_tbl[0].name); 8732 struct net_device *dev = bp->dev; 8733 int tcs, i; 8734 8735 tcs = netdev_get_num_tc(dev); 8736 if (tcs) { 8737 int i, off, count; 8738 8739 for (i = 0; i < tcs; i++) { 8740 count = bp->tx_nr_rings_per_tc; 8741 off = i * count; 8742 netdev_set_tc_queue(dev, i, count, off); 8743 } 8744 } 8745 8746 for (i = 0; i < bp->cp_nr_rings; i++) { 8747 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8748 char *attr; 8749 8750 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8751 attr = "TxRx"; 8752 else if (i < bp->rx_nr_rings) 8753 attr = "rx"; 8754 else 8755 attr = "tx"; 8756 8757 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8758 attr, i); 8759 bp->irq_tbl[map_idx].handler = bnxt_msix; 8760 } 8761 } 8762 8763 static void bnxt_setup_inta(struct bnxt *bp) 8764 { 8765 const int len = sizeof(bp->irq_tbl[0].name); 8766 8767 if (netdev_get_num_tc(bp->dev)) 8768 netdev_reset_tc(bp->dev); 8769 8770 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8771 0); 8772 bp->irq_tbl[0].handler = bnxt_inta; 8773 } 8774 8775 static int bnxt_init_int_mode(struct bnxt *bp); 8776 8777 static int bnxt_setup_int_mode(struct bnxt *bp) 8778 { 8779 int rc; 8780 8781 if (!bp->irq_tbl) { 8782 rc = bnxt_init_int_mode(bp); 8783 if (rc || !bp->irq_tbl) 8784 return rc ?: -ENODEV; 8785 } 8786 8787 if (bp->flags & BNXT_FLAG_USING_MSIX) 8788 bnxt_setup_msix(bp); 8789 else 8790 bnxt_setup_inta(bp); 8791 8792 rc = bnxt_set_real_num_queues(bp); 8793 return rc; 8794 } 8795 8796 #ifdef CONFIG_RFS_ACCEL 8797 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8798 { 8799 return bp->hw_resc.max_rsscos_ctxs; 8800 } 8801 8802 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8803 { 8804 return bp->hw_resc.max_vnics; 8805 } 8806 #endif 8807 8808 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8809 { 8810 return bp->hw_resc.max_stat_ctxs; 8811 } 8812 8813 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8814 { 8815 return bp->hw_resc.max_cp_rings; 8816 } 8817 8818 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8819 { 8820 unsigned int cp = bp->hw_resc.max_cp_rings; 8821 8822 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8823 cp -= bnxt_get_ulp_msix_num(bp); 8824 8825 return cp; 8826 } 8827 8828 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8829 { 8830 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8831 8832 if (bp->flags & BNXT_FLAG_CHIP_P5) 8833 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8834 8835 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8836 } 8837 8838 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8839 { 8840 bp->hw_resc.max_irqs = max_irqs; 8841 } 8842 8843 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8844 { 8845 unsigned int cp; 8846 8847 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8848 if (bp->flags & BNXT_FLAG_CHIP_P5) 8849 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8850 else 8851 return cp - bp->cp_nr_rings; 8852 } 8853 8854 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8855 { 8856 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8857 } 8858 8859 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8860 { 8861 int max_cp = bnxt_get_max_func_cp_rings(bp); 8862 int max_irq = bnxt_get_max_func_irqs(bp); 8863 int total_req = bp->cp_nr_rings + num; 8864 int max_idx, avail_msix; 8865 8866 max_idx = bp->total_irqs; 8867 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8868 max_idx = min_t(int, bp->total_irqs, max_cp); 8869 avail_msix = max_idx - bp->cp_nr_rings; 8870 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8871 return avail_msix; 8872 8873 if (max_irq < total_req) { 8874 num = max_irq - bp->cp_nr_rings; 8875 if (num <= 0) 8876 return 0; 8877 } 8878 return num; 8879 } 8880 8881 static int bnxt_get_num_msix(struct bnxt *bp) 8882 { 8883 if (!BNXT_NEW_RM(bp)) 8884 return bnxt_get_max_func_irqs(bp); 8885 8886 return bnxt_nq_rings_in_use(bp); 8887 } 8888 8889 static int bnxt_init_msix(struct bnxt *bp) 8890 { 8891 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8892 struct msix_entry *msix_ent; 8893 8894 total_vecs = bnxt_get_num_msix(bp); 8895 max = bnxt_get_max_func_irqs(bp); 8896 if (total_vecs > max) 8897 total_vecs = max; 8898 8899 if (!total_vecs) 8900 return 0; 8901 8902 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8903 if (!msix_ent) 8904 return -ENOMEM; 8905 8906 for (i = 0; i < total_vecs; i++) { 8907 msix_ent[i].entry = i; 8908 msix_ent[i].vector = 0; 8909 } 8910 8911 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8912 min = 2; 8913 8914 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8915 ulp_msix = bnxt_get_ulp_msix_num(bp); 8916 if (total_vecs < 0 || total_vecs < ulp_msix) { 8917 rc = -ENODEV; 8918 goto msix_setup_exit; 8919 } 8920 8921 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8922 if (bp->irq_tbl) { 8923 for (i = 0; i < total_vecs; i++) 8924 bp->irq_tbl[i].vector = msix_ent[i].vector; 8925 8926 bp->total_irqs = total_vecs; 8927 /* Trim rings based upon num of vectors allocated */ 8928 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8929 total_vecs - ulp_msix, min == 1); 8930 if (rc) 8931 goto msix_setup_exit; 8932 8933 bp->cp_nr_rings = (min == 1) ? 8934 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8935 bp->tx_nr_rings + bp->rx_nr_rings; 8936 8937 } else { 8938 rc = -ENOMEM; 8939 goto msix_setup_exit; 8940 } 8941 bp->flags |= BNXT_FLAG_USING_MSIX; 8942 kfree(msix_ent); 8943 return 0; 8944 8945 msix_setup_exit: 8946 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8947 kfree(bp->irq_tbl); 8948 bp->irq_tbl = NULL; 8949 pci_disable_msix(bp->pdev); 8950 kfree(msix_ent); 8951 return rc; 8952 } 8953 8954 static int bnxt_init_inta(struct bnxt *bp) 8955 { 8956 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8957 if (!bp->irq_tbl) 8958 return -ENOMEM; 8959 8960 bp->total_irqs = 1; 8961 bp->rx_nr_rings = 1; 8962 bp->tx_nr_rings = 1; 8963 bp->cp_nr_rings = 1; 8964 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8965 bp->irq_tbl[0].vector = bp->pdev->irq; 8966 return 0; 8967 } 8968 8969 static int bnxt_init_int_mode(struct bnxt *bp) 8970 { 8971 int rc = -ENODEV; 8972 8973 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8974 rc = bnxt_init_msix(bp); 8975 8976 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8977 /* fallback to INTA */ 8978 rc = bnxt_init_inta(bp); 8979 } 8980 return rc; 8981 } 8982 8983 static void bnxt_clear_int_mode(struct bnxt *bp) 8984 { 8985 if (bp->flags & BNXT_FLAG_USING_MSIX) 8986 pci_disable_msix(bp->pdev); 8987 8988 kfree(bp->irq_tbl); 8989 bp->irq_tbl = NULL; 8990 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8991 } 8992 8993 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8994 { 8995 int tcs = netdev_get_num_tc(bp->dev); 8996 bool irq_cleared = false; 8997 int rc; 8998 8999 if (!bnxt_need_reserve_rings(bp)) 9000 return 0; 9001 9002 if (irq_re_init && BNXT_NEW_RM(bp) && 9003 bnxt_get_num_msix(bp) != bp->total_irqs) { 9004 bnxt_ulp_irq_stop(bp); 9005 bnxt_clear_int_mode(bp); 9006 irq_cleared = true; 9007 } 9008 rc = __bnxt_reserve_rings(bp); 9009 if (irq_cleared) { 9010 if (!rc) 9011 rc = bnxt_init_int_mode(bp); 9012 bnxt_ulp_irq_restart(bp, rc); 9013 } 9014 if (rc) { 9015 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9016 return rc; 9017 } 9018 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9019 netdev_err(bp->dev, "tx ring reservation failure\n"); 9020 netdev_reset_tc(bp->dev); 9021 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9022 return -ENOMEM; 9023 } 9024 return 0; 9025 } 9026 9027 static void bnxt_free_irq(struct bnxt *bp) 9028 { 9029 struct bnxt_irq *irq; 9030 int i; 9031 9032 #ifdef CONFIG_RFS_ACCEL 9033 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9034 bp->dev->rx_cpu_rmap = NULL; 9035 #endif 9036 if (!bp->irq_tbl || !bp->bnapi) 9037 return; 9038 9039 for (i = 0; i < bp->cp_nr_rings; i++) { 9040 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9041 9042 irq = &bp->irq_tbl[map_idx]; 9043 if (irq->requested) { 9044 if (irq->have_cpumask) { 9045 irq_set_affinity_hint(irq->vector, NULL); 9046 free_cpumask_var(irq->cpu_mask); 9047 irq->have_cpumask = 0; 9048 } 9049 free_irq(irq->vector, bp->bnapi[i]); 9050 } 9051 9052 irq->requested = 0; 9053 } 9054 } 9055 9056 static int bnxt_request_irq(struct bnxt *bp) 9057 { 9058 int i, j, rc = 0; 9059 unsigned long flags = 0; 9060 #ifdef CONFIG_RFS_ACCEL 9061 struct cpu_rmap *rmap; 9062 #endif 9063 9064 rc = bnxt_setup_int_mode(bp); 9065 if (rc) { 9066 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9067 rc); 9068 return rc; 9069 } 9070 #ifdef CONFIG_RFS_ACCEL 9071 rmap = bp->dev->rx_cpu_rmap; 9072 #endif 9073 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9074 flags = IRQF_SHARED; 9075 9076 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9077 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9078 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9079 9080 #ifdef CONFIG_RFS_ACCEL 9081 if (rmap && bp->bnapi[i]->rx_ring) { 9082 rc = irq_cpu_rmap_add(rmap, irq->vector); 9083 if (rc) 9084 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9085 j); 9086 j++; 9087 } 9088 #endif 9089 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9090 bp->bnapi[i]); 9091 if (rc) 9092 break; 9093 9094 irq->requested = 1; 9095 9096 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9097 int numa_node = dev_to_node(&bp->pdev->dev); 9098 9099 irq->have_cpumask = 1; 9100 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9101 irq->cpu_mask); 9102 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9103 if (rc) { 9104 netdev_warn(bp->dev, 9105 "Set affinity failed, IRQ = %d\n", 9106 irq->vector); 9107 break; 9108 } 9109 } 9110 } 9111 return rc; 9112 } 9113 9114 static void bnxt_del_napi(struct bnxt *bp) 9115 { 9116 int i; 9117 9118 if (!bp->bnapi) 9119 return; 9120 9121 for (i = 0; i < bp->cp_nr_rings; i++) { 9122 struct bnxt_napi *bnapi = bp->bnapi[i]; 9123 9124 __netif_napi_del(&bnapi->napi); 9125 } 9126 /* We called __netif_napi_del(), we need 9127 * to respect an RCU grace period before freeing napi structures. 9128 */ 9129 synchronize_net(); 9130 } 9131 9132 static void bnxt_init_napi(struct bnxt *bp) 9133 { 9134 int i; 9135 unsigned int cp_nr_rings = bp->cp_nr_rings; 9136 struct bnxt_napi *bnapi; 9137 9138 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9139 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9140 9141 if (bp->flags & BNXT_FLAG_CHIP_P5) 9142 poll_fn = bnxt_poll_p5; 9143 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9144 cp_nr_rings--; 9145 for (i = 0; i < cp_nr_rings; i++) { 9146 bnapi = bp->bnapi[i]; 9147 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9148 } 9149 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9150 bnapi = bp->bnapi[cp_nr_rings]; 9151 netif_napi_add(bp->dev, &bnapi->napi, 9152 bnxt_poll_nitroa0, 64); 9153 } 9154 } else { 9155 bnapi = bp->bnapi[0]; 9156 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9157 } 9158 } 9159 9160 static void bnxt_disable_napi(struct bnxt *bp) 9161 { 9162 int i; 9163 9164 if (!bp->bnapi || 9165 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9166 return; 9167 9168 for (i = 0; i < bp->cp_nr_rings; i++) { 9169 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9170 9171 napi_disable(&bp->bnapi[i]->napi); 9172 if (bp->bnapi[i]->rx_ring) 9173 cancel_work_sync(&cpr->dim.work); 9174 } 9175 } 9176 9177 static void bnxt_enable_napi(struct bnxt *bp) 9178 { 9179 int i; 9180 9181 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9182 for (i = 0; i < bp->cp_nr_rings; i++) { 9183 struct bnxt_napi *bnapi = bp->bnapi[i]; 9184 struct bnxt_cp_ring_info *cpr; 9185 9186 cpr = &bnapi->cp_ring; 9187 if (bnapi->in_reset) 9188 cpr->sw_stats.rx.rx_resets++; 9189 bnapi->in_reset = false; 9190 9191 if (bnapi->rx_ring) { 9192 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9193 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9194 } 9195 napi_enable(&bnapi->napi); 9196 } 9197 } 9198 9199 void bnxt_tx_disable(struct bnxt *bp) 9200 { 9201 int i; 9202 struct bnxt_tx_ring_info *txr; 9203 9204 if (bp->tx_ring) { 9205 for (i = 0; i < bp->tx_nr_rings; i++) { 9206 txr = &bp->tx_ring[i]; 9207 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9208 } 9209 } 9210 /* Make sure napi polls see @dev_state change */ 9211 synchronize_net(); 9212 /* Drop carrier first to prevent TX timeout */ 9213 netif_carrier_off(bp->dev); 9214 /* Stop all TX queues */ 9215 netif_tx_disable(bp->dev); 9216 } 9217 9218 void bnxt_tx_enable(struct bnxt *bp) 9219 { 9220 int i; 9221 struct bnxt_tx_ring_info *txr; 9222 9223 for (i = 0; i < bp->tx_nr_rings; i++) { 9224 txr = &bp->tx_ring[i]; 9225 WRITE_ONCE(txr->dev_state, 0); 9226 } 9227 /* Make sure napi polls see @dev_state change */ 9228 synchronize_net(); 9229 netif_tx_wake_all_queues(bp->dev); 9230 if (bp->link_info.link_up) 9231 netif_carrier_on(bp->dev); 9232 } 9233 9234 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9235 { 9236 u8 active_fec = link_info->active_fec_sig_mode & 9237 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9238 9239 switch (active_fec) { 9240 default: 9241 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9242 return "None"; 9243 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9244 return "Clause 74 BaseR"; 9245 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9246 return "Clause 91 RS(528,514)"; 9247 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9248 return "Clause 91 RS544_1XN"; 9249 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9250 return "Clause 91 RS(544,514)"; 9251 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9252 return "Clause 91 RS272_1XN"; 9253 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9254 return "Clause 91 RS(272,257)"; 9255 } 9256 } 9257 9258 void bnxt_report_link(struct bnxt *bp) 9259 { 9260 if (bp->link_info.link_up) { 9261 const char *signal = ""; 9262 const char *flow_ctrl; 9263 const char *duplex; 9264 u32 speed; 9265 u16 fec; 9266 9267 netif_carrier_on(bp->dev); 9268 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9269 if (speed == SPEED_UNKNOWN) { 9270 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9271 return; 9272 } 9273 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9274 duplex = "full"; 9275 else 9276 duplex = "half"; 9277 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9278 flow_ctrl = "ON - receive & transmit"; 9279 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9280 flow_ctrl = "ON - transmit"; 9281 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9282 flow_ctrl = "ON - receive"; 9283 else 9284 flow_ctrl = "none"; 9285 if (bp->link_info.phy_qcfg_resp.option_flags & 9286 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9287 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9288 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9289 switch (sig_mode) { 9290 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9291 signal = "(NRZ) "; 9292 break; 9293 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9294 signal = "(PAM4) "; 9295 break; 9296 default: 9297 break; 9298 } 9299 } 9300 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9301 speed, signal, duplex, flow_ctrl); 9302 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9303 netdev_info(bp->dev, "EEE is %s\n", 9304 bp->eee.eee_active ? "active" : 9305 "not active"); 9306 fec = bp->link_info.fec_cfg; 9307 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9308 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9309 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9310 bnxt_report_fec(&bp->link_info)); 9311 } else { 9312 netif_carrier_off(bp->dev); 9313 netdev_err(bp->dev, "NIC Link is Down\n"); 9314 } 9315 } 9316 9317 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9318 { 9319 if (!resp->supported_speeds_auto_mode && 9320 !resp->supported_speeds_force_mode && 9321 !resp->supported_pam4_speeds_auto_mode && 9322 !resp->supported_pam4_speeds_force_mode) 9323 return true; 9324 return false; 9325 } 9326 9327 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9328 { 9329 struct bnxt_link_info *link_info = &bp->link_info; 9330 struct hwrm_port_phy_qcaps_output *resp; 9331 struct hwrm_port_phy_qcaps_input *req; 9332 int rc = 0; 9333 9334 if (bp->hwrm_spec_code < 0x10201) 9335 return 0; 9336 9337 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9338 if (rc) 9339 return rc; 9340 9341 resp = hwrm_req_hold(bp, req); 9342 rc = hwrm_req_send(bp, req); 9343 if (rc) 9344 goto hwrm_phy_qcaps_exit; 9345 9346 bp->phy_flags = resp->flags; 9347 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9348 struct ethtool_eee *eee = &bp->eee; 9349 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9350 9351 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9352 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9353 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9354 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9355 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9356 } 9357 9358 if (bp->hwrm_spec_code >= 0x10a01) { 9359 if (bnxt_phy_qcaps_no_speed(resp)) { 9360 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9361 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9362 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9363 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9364 netdev_info(bp->dev, "Ethernet link enabled\n"); 9365 /* Phy re-enabled, reprobe the speeds */ 9366 link_info->support_auto_speeds = 0; 9367 link_info->support_pam4_auto_speeds = 0; 9368 } 9369 } 9370 if (resp->supported_speeds_auto_mode) 9371 link_info->support_auto_speeds = 9372 le16_to_cpu(resp->supported_speeds_auto_mode); 9373 if (resp->supported_pam4_speeds_auto_mode) 9374 link_info->support_pam4_auto_speeds = 9375 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9376 9377 bp->port_count = resp->port_cnt; 9378 9379 hwrm_phy_qcaps_exit: 9380 hwrm_req_drop(bp, req); 9381 return rc; 9382 } 9383 9384 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9385 { 9386 u16 diff = advertising ^ supported; 9387 9388 return ((supported | diff) != supported); 9389 } 9390 9391 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9392 { 9393 struct bnxt_link_info *link_info = &bp->link_info; 9394 struct hwrm_port_phy_qcfg_output *resp; 9395 struct hwrm_port_phy_qcfg_input *req; 9396 u8 link_up = link_info->link_up; 9397 bool support_changed = false; 9398 int rc; 9399 9400 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9401 if (rc) 9402 return rc; 9403 9404 resp = hwrm_req_hold(bp, req); 9405 rc = hwrm_req_send(bp, req); 9406 if (rc) { 9407 hwrm_req_drop(bp, req); 9408 return rc; 9409 } 9410 9411 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9412 link_info->phy_link_status = resp->link; 9413 link_info->duplex = resp->duplex_cfg; 9414 if (bp->hwrm_spec_code >= 0x10800) 9415 link_info->duplex = resp->duplex_state; 9416 link_info->pause = resp->pause; 9417 link_info->auto_mode = resp->auto_mode; 9418 link_info->auto_pause_setting = resp->auto_pause; 9419 link_info->lp_pause = resp->link_partner_adv_pause; 9420 link_info->force_pause_setting = resp->force_pause; 9421 link_info->duplex_setting = resp->duplex_cfg; 9422 if (link_info->phy_link_status == BNXT_LINK_LINK) 9423 link_info->link_speed = le16_to_cpu(resp->link_speed); 9424 else 9425 link_info->link_speed = 0; 9426 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9427 link_info->force_pam4_link_speed = 9428 le16_to_cpu(resp->force_pam4_link_speed); 9429 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9430 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9431 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9432 link_info->auto_pam4_link_speeds = 9433 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9434 link_info->lp_auto_link_speeds = 9435 le16_to_cpu(resp->link_partner_adv_speeds); 9436 link_info->lp_auto_pam4_link_speeds = 9437 resp->link_partner_pam4_adv_speeds; 9438 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9439 link_info->phy_ver[0] = resp->phy_maj; 9440 link_info->phy_ver[1] = resp->phy_min; 9441 link_info->phy_ver[2] = resp->phy_bld; 9442 link_info->media_type = resp->media_type; 9443 link_info->phy_type = resp->phy_type; 9444 link_info->transceiver = resp->xcvr_pkg_type; 9445 link_info->phy_addr = resp->eee_config_phy_addr & 9446 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9447 link_info->module_status = resp->module_status; 9448 9449 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9450 struct ethtool_eee *eee = &bp->eee; 9451 u16 fw_speeds; 9452 9453 eee->eee_active = 0; 9454 if (resp->eee_config_phy_addr & 9455 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9456 eee->eee_active = 1; 9457 fw_speeds = le16_to_cpu( 9458 resp->link_partner_adv_eee_link_speed_mask); 9459 eee->lp_advertised = 9460 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9461 } 9462 9463 /* Pull initial EEE config */ 9464 if (!chng_link_state) { 9465 if (resp->eee_config_phy_addr & 9466 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9467 eee->eee_enabled = 1; 9468 9469 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9470 eee->advertised = 9471 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9472 9473 if (resp->eee_config_phy_addr & 9474 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9475 __le32 tmr; 9476 9477 eee->tx_lpi_enabled = 1; 9478 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9479 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9480 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9481 } 9482 } 9483 } 9484 9485 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9486 if (bp->hwrm_spec_code >= 0x10504) { 9487 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9488 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9489 } 9490 /* TODO: need to add more logic to report VF link */ 9491 if (chng_link_state) { 9492 if (link_info->phy_link_status == BNXT_LINK_LINK) 9493 link_info->link_up = 1; 9494 else 9495 link_info->link_up = 0; 9496 if (link_up != link_info->link_up) 9497 bnxt_report_link(bp); 9498 } else { 9499 /* alwasy link down if not require to update link state */ 9500 link_info->link_up = 0; 9501 } 9502 hwrm_req_drop(bp, req); 9503 9504 if (!BNXT_PHY_CFG_ABLE(bp)) 9505 return 0; 9506 9507 /* Check if any advertised speeds are no longer supported. The caller 9508 * holds the link_lock mutex, so we can modify link_info settings. 9509 */ 9510 if (bnxt_support_dropped(link_info->advertising, 9511 link_info->support_auto_speeds)) { 9512 link_info->advertising = link_info->support_auto_speeds; 9513 support_changed = true; 9514 } 9515 if (bnxt_support_dropped(link_info->advertising_pam4, 9516 link_info->support_pam4_auto_speeds)) { 9517 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9518 support_changed = true; 9519 } 9520 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9521 bnxt_hwrm_set_link_setting(bp, true, false); 9522 return 0; 9523 } 9524 9525 static void bnxt_get_port_module_status(struct bnxt *bp) 9526 { 9527 struct bnxt_link_info *link_info = &bp->link_info; 9528 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9529 u8 module_status; 9530 9531 if (bnxt_update_link(bp, true)) 9532 return; 9533 9534 module_status = link_info->module_status; 9535 switch (module_status) { 9536 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9537 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9538 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9539 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9540 bp->pf.port_id); 9541 if (bp->hwrm_spec_code >= 0x10201) { 9542 netdev_warn(bp->dev, "Module part number %s\n", 9543 resp->phy_vendor_partnumber); 9544 } 9545 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9546 netdev_warn(bp->dev, "TX is disabled\n"); 9547 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9548 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9549 } 9550 } 9551 9552 static void 9553 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9554 { 9555 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9556 if (bp->hwrm_spec_code >= 0x10201) 9557 req->auto_pause = 9558 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9559 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9560 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9561 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9562 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9563 req->enables |= 9564 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9565 } else { 9566 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9567 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9568 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9569 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9570 req->enables |= 9571 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9572 if (bp->hwrm_spec_code >= 0x10201) { 9573 req->auto_pause = req->force_pause; 9574 req->enables |= cpu_to_le32( 9575 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9576 } 9577 } 9578 } 9579 9580 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9581 { 9582 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9583 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9584 if (bp->link_info.advertising) { 9585 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9586 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9587 } 9588 if (bp->link_info.advertising_pam4) { 9589 req->enables |= 9590 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9591 req->auto_link_pam4_speed_mask = 9592 cpu_to_le16(bp->link_info.advertising_pam4); 9593 } 9594 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9595 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9596 } else { 9597 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9598 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9599 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9600 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9601 } else { 9602 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9603 } 9604 } 9605 9606 /* tell chimp that the setting takes effect immediately */ 9607 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9608 } 9609 9610 int bnxt_hwrm_set_pause(struct bnxt *bp) 9611 { 9612 struct hwrm_port_phy_cfg_input *req; 9613 int rc; 9614 9615 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9616 if (rc) 9617 return rc; 9618 9619 bnxt_hwrm_set_pause_common(bp, req); 9620 9621 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9622 bp->link_info.force_link_chng) 9623 bnxt_hwrm_set_link_common(bp, req); 9624 9625 rc = hwrm_req_send(bp, req); 9626 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9627 /* since changing of pause setting doesn't trigger any link 9628 * change event, the driver needs to update the current pause 9629 * result upon successfully return of the phy_cfg command 9630 */ 9631 bp->link_info.pause = 9632 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9633 bp->link_info.auto_pause_setting = 0; 9634 if (!bp->link_info.force_link_chng) 9635 bnxt_report_link(bp); 9636 } 9637 bp->link_info.force_link_chng = false; 9638 return rc; 9639 } 9640 9641 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9642 struct hwrm_port_phy_cfg_input *req) 9643 { 9644 struct ethtool_eee *eee = &bp->eee; 9645 9646 if (eee->eee_enabled) { 9647 u16 eee_speeds; 9648 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9649 9650 if (eee->tx_lpi_enabled) 9651 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9652 else 9653 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9654 9655 req->flags |= cpu_to_le32(flags); 9656 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9657 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9658 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9659 } else { 9660 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9661 } 9662 } 9663 9664 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9665 { 9666 struct hwrm_port_phy_cfg_input *req; 9667 int rc; 9668 9669 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9670 if (rc) 9671 return rc; 9672 9673 if (set_pause) 9674 bnxt_hwrm_set_pause_common(bp, req); 9675 9676 bnxt_hwrm_set_link_common(bp, req); 9677 9678 if (set_eee) 9679 bnxt_hwrm_set_eee(bp, req); 9680 return hwrm_req_send(bp, req); 9681 } 9682 9683 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9684 { 9685 struct hwrm_port_phy_cfg_input *req; 9686 int rc; 9687 9688 if (!BNXT_SINGLE_PF(bp)) 9689 return 0; 9690 9691 if (pci_num_vf(bp->pdev) && 9692 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9693 return 0; 9694 9695 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9696 if (rc) 9697 return rc; 9698 9699 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9700 return hwrm_req_send(bp, req); 9701 } 9702 9703 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9704 { 9705 #ifdef CONFIG_TEE_BNXT_FW 9706 int rc = tee_bnxt_fw_load(); 9707 9708 if (rc) 9709 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9710 9711 return rc; 9712 #else 9713 netdev_err(bp->dev, "OP-TEE not supported\n"); 9714 return -ENODEV; 9715 #endif 9716 } 9717 9718 static int bnxt_try_recover_fw(struct bnxt *bp) 9719 { 9720 if (bp->fw_health && bp->fw_health->status_reliable) { 9721 int retry = 0, rc; 9722 u32 sts; 9723 9724 do { 9725 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9726 rc = bnxt_hwrm_poll(bp); 9727 if (!BNXT_FW_IS_BOOTING(sts) && 9728 !BNXT_FW_IS_RECOVERING(sts)) 9729 break; 9730 retry++; 9731 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9732 9733 if (!BNXT_FW_IS_HEALTHY(sts)) { 9734 netdev_err(bp->dev, 9735 "Firmware not responding, status: 0x%x\n", 9736 sts); 9737 rc = -ENODEV; 9738 } 9739 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9740 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9741 return bnxt_fw_reset_via_optee(bp); 9742 } 9743 return rc; 9744 } 9745 9746 return -ENODEV; 9747 } 9748 9749 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 9750 { 9751 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9752 int rc; 9753 9754 if (!BNXT_NEW_RM(bp)) 9755 return 0; /* no resource reservations required */ 9756 9757 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9758 if (rc) 9759 netdev_err(bp->dev, "resc_qcaps failed\n"); 9760 9761 hw_resc->resv_cp_rings = 0; 9762 hw_resc->resv_stat_ctxs = 0; 9763 hw_resc->resv_irqs = 0; 9764 hw_resc->resv_tx_rings = 0; 9765 hw_resc->resv_rx_rings = 0; 9766 hw_resc->resv_hw_ring_grps = 0; 9767 hw_resc->resv_vnics = 0; 9768 if (!fw_reset) { 9769 bp->tx_nr_rings = 0; 9770 bp->rx_nr_rings = 0; 9771 } 9772 9773 return rc; 9774 } 9775 9776 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9777 { 9778 struct hwrm_func_drv_if_change_output *resp; 9779 struct hwrm_func_drv_if_change_input *req; 9780 bool fw_reset = !bp->irq_tbl; 9781 bool resc_reinit = false; 9782 int rc, retry = 0; 9783 u32 flags = 0; 9784 9785 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9786 return 0; 9787 9788 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 9789 if (rc) 9790 return rc; 9791 9792 if (up) 9793 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9794 resp = hwrm_req_hold(bp, req); 9795 9796 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9797 while (retry < BNXT_FW_IF_RETRY) { 9798 rc = hwrm_req_send(bp, req); 9799 if (rc != -EAGAIN) 9800 break; 9801 9802 msleep(50); 9803 retry++; 9804 } 9805 9806 if (rc == -EAGAIN) { 9807 hwrm_req_drop(bp, req); 9808 return rc; 9809 } else if (!rc) { 9810 flags = le32_to_cpu(resp->flags); 9811 } else if (up) { 9812 rc = bnxt_try_recover_fw(bp); 9813 fw_reset = true; 9814 } 9815 hwrm_req_drop(bp, req); 9816 if (rc) 9817 return rc; 9818 9819 if (!up) { 9820 bnxt_inv_fw_health_reg(bp); 9821 return 0; 9822 } 9823 9824 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9825 resc_reinit = true; 9826 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9827 fw_reset = true; 9828 else if (bp->fw_health && !bp->fw_health->status_reliable) 9829 bnxt_try_map_fw_health_reg(bp); 9830 9831 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9832 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9833 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9834 return -ENODEV; 9835 } 9836 if (resc_reinit || fw_reset) { 9837 if (fw_reset) { 9838 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9839 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9840 bnxt_ulp_stop(bp); 9841 bnxt_free_ctx_mem(bp); 9842 kfree(bp->ctx); 9843 bp->ctx = NULL; 9844 bnxt_dcb_free(bp); 9845 rc = bnxt_fw_init_one(bp); 9846 if (rc) { 9847 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9848 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9849 return rc; 9850 } 9851 bnxt_clear_int_mode(bp); 9852 rc = bnxt_init_int_mode(bp); 9853 if (rc) { 9854 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9855 netdev_err(bp->dev, "init int mode failed\n"); 9856 return rc; 9857 } 9858 } 9859 rc = bnxt_cancel_reservations(bp, fw_reset); 9860 } 9861 return rc; 9862 } 9863 9864 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9865 { 9866 struct hwrm_port_led_qcaps_output *resp; 9867 struct hwrm_port_led_qcaps_input *req; 9868 struct bnxt_pf_info *pf = &bp->pf; 9869 int rc; 9870 9871 bp->num_leds = 0; 9872 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9873 return 0; 9874 9875 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 9876 if (rc) 9877 return rc; 9878 9879 req->port_id = cpu_to_le16(pf->port_id); 9880 resp = hwrm_req_hold(bp, req); 9881 rc = hwrm_req_send(bp, req); 9882 if (rc) { 9883 hwrm_req_drop(bp, req); 9884 return rc; 9885 } 9886 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9887 int i; 9888 9889 bp->num_leds = resp->num_leds; 9890 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9891 bp->num_leds); 9892 for (i = 0; i < bp->num_leds; i++) { 9893 struct bnxt_led_info *led = &bp->leds[i]; 9894 __le16 caps = led->led_state_caps; 9895 9896 if (!led->led_group_id || 9897 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9898 bp->num_leds = 0; 9899 break; 9900 } 9901 } 9902 } 9903 hwrm_req_drop(bp, req); 9904 return 0; 9905 } 9906 9907 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9908 { 9909 struct hwrm_wol_filter_alloc_output *resp; 9910 struct hwrm_wol_filter_alloc_input *req; 9911 int rc; 9912 9913 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 9914 if (rc) 9915 return rc; 9916 9917 req->port_id = cpu_to_le16(bp->pf.port_id); 9918 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9919 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9920 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 9921 9922 resp = hwrm_req_hold(bp, req); 9923 rc = hwrm_req_send(bp, req); 9924 if (!rc) 9925 bp->wol_filter_id = resp->wol_filter_id; 9926 hwrm_req_drop(bp, req); 9927 return rc; 9928 } 9929 9930 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9931 { 9932 struct hwrm_wol_filter_free_input *req; 9933 int rc; 9934 9935 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 9936 if (rc) 9937 return rc; 9938 9939 req->port_id = cpu_to_le16(bp->pf.port_id); 9940 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9941 req->wol_filter_id = bp->wol_filter_id; 9942 9943 return hwrm_req_send(bp, req); 9944 } 9945 9946 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9947 { 9948 struct hwrm_wol_filter_qcfg_output *resp; 9949 struct hwrm_wol_filter_qcfg_input *req; 9950 u16 next_handle = 0; 9951 int rc; 9952 9953 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 9954 if (rc) 9955 return rc; 9956 9957 req->port_id = cpu_to_le16(bp->pf.port_id); 9958 req->handle = cpu_to_le16(handle); 9959 resp = hwrm_req_hold(bp, req); 9960 rc = hwrm_req_send(bp, req); 9961 if (!rc) { 9962 next_handle = le16_to_cpu(resp->next_handle); 9963 if (next_handle != 0) { 9964 if (resp->wol_type == 9965 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9966 bp->wol = 1; 9967 bp->wol_filter_id = resp->wol_filter_id; 9968 } 9969 } 9970 } 9971 hwrm_req_drop(bp, req); 9972 return next_handle; 9973 } 9974 9975 static void bnxt_get_wol_settings(struct bnxt *bp) 9976 { 9977 u16 handle = 0; 9978 9979 bp->wol = 0; 9980 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9981 return; 9982 9983 do { 9984 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9985 } while (handle && handle != 0xffff); 9986 } 9987 9988 #ifdef CONFIG_BNXT_HWMON 9989 static ssize_t bnxt_show_temp(struct device *dev, 9990 struct device_attribute *devattr, char *buf) 9991 { 9992 struct hwrm_temp_monitor_query_output *resp; 9993 struct hwrm_temp_monitor_query_input *req; 9994 struct bnxt *bp = dev_get_drvdata(dev); 9995 u32 len = 0; 9996 int rc; 9997 9998 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9999 if (rc) 10000 return rc; 10001 resp = hwrm_req_hold(bp, req); 10002 rc = hwrm_req_send(bp, req); 10003 if (!rc) 10004 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10005 hwrm_req_drop(bp, req); 10006 if (rc) 10007 return rc; 10008 return len; 10009 } 10010 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10011 10012 static struct attribute *bnxt_attrs[] = { 10013 &sensor_dev_attr_temp1_input.dev_attr.attr, 10014 NULL 10015 }; 10016 ATTRIBUTE_GROUPS(bnxt); 10017 10018 static void bnxt_hwmon_close(struct bnxt *bp) 10019 { 10020 if (bp->hwmon_dev) { 10021 hwmon_device_unregister(bp->hwmon_dev); 10022 bp->hwmon_dev = NULL; 10023 } 10024 } 10025 10026 static void bnxt_hwmon_open(struct bnxt *bp) 10027 { 10028 struct hwrm_temp_monitor_query_input *req; 10029 struct pci_dev *pdev = bp->pdev; 10030 int rc; 10031 10032 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10033 if (!rc) 10034 rc = hwrm_req_send_silent(bp, req); 10035 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10036 bnxt_hwmon_close(bp); 10037 return; 10038 } 10039 10040 if (bp->hwmon_dev) 10041 return; 10042 10043 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10044 DRV_MODULE_NAME, bp, 10045 bnxt_groups); 10046 if (IS_ERR(bp->hwmon_dev)) { 10047 bp->hwmon_dev = NULL; 10048 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10049 } 10050 } 10051 #else 10052 static void bnxt_hwmon_close(struct bnxt *bp) 10053 { 10054 } 10055 10056 static void bnxt_hwmon_open(struct bnxt *bp) 10057 { 10058 } 10059 #endif 10060 10061 static bool bnxt_eee_config_ok(struct bnxt *bp) 10062 { 10063 struct ethtool_eee *eee = &bp->eee; 10064 struct bnxt_link_info *link_info = &bp->link_info; 10065 10066 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10067 return true; 10068 10069 if (eee->eee_enabled) { 10070 u32 advertising = 10071 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10072 10073 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10074 eee->eee_enabled = 0; 10075 return false; 10076 } 10077 if (eee->advertised & ~advertising) { 10078 eee->advertised = advertising & eee->supported; 10079 return false; 10080 } 10081 } 10082 return true; 10083 } 10084 10085 static int bnxt_update_phy_setting(struct bnxt *bp) 10086 { 10087 int rc; 10088 bool update_link = false; 10089 bool update_pause = false; 10090 bool update_eee = false; 10091 struct bnxt_link_info *link_info = &bp->link_info; 10092 10093 rc = bnxt_update_link(bp, true); 10094 if (rc) { 10095 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10096 rc); 10097 return rc; 10098 } 10099 if (!BNXT_SINGLE_PF(bp)) 10100 return 0; 10101 10102 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10103 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10104 link_info->req_flow_ctrl) 10105 update_pause = true; 10106 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10107 link_info->force_pause_setting != link_info->req_flow_ctrl) 10108 update_pause = true; 10109 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10110 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10111 update_link = true; 10112 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10113 link_info->req_link_speed != link_info->force_link_speed) 10114 update_link = true; 10115 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10116 link_info->req_link_speed != link_info->force_pam4_link_speed) 10117 update_link = true; 10118 if (link_info->req_duplex != link_info->duplex_setting) 10119 update_link = true; 10120 } else { 10121 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10122 update_link = true; 10123 if (link_info->advertising != link_info->auto_link_speeds || 10124 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10125 update_link = true; 10126 } 10127 10128 /* The last close may have shutdown the link, so need to call 10129 * PHY_CFG to bring it back up. 10130 */ 10131 if (!bp->link_info.link_up) 10132 update_link = true; 10133 10134 if (!bnxt_eee_config_ok(bp)) 10135 update_eee = true; 10136 10137 if (update_link) 10138 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10139 else if (update_pause) 10140 rc = bnxt_hwrm_set_pause(bp); 10141 if (rc) { 10142 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10143 rc); 10144 return rc; 10145 } 10146 10147 return rc; 10148 } 10149 10150 /* Common routine to pre-map certain register block to different GRC window. 10151 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10152 * in PF and 3 windows in VF that can be customized to map in different 10153 * register blocks. 10154 */ 10155 static void bnxt_preset_reg_win(struct bnxt *bp) 10156 { 10157 if (BNXT_PF(bp)) { 10158 /* CAG registers map to GRC window #4 */ 10159 writel(BNXT_CAG_REG_BASE, 10160 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10161 } 10162 } 10163 10164 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10165 10166 static int bnxt_reinit_after_abort(struct bnxt *bp) 10167 { 10168 int rc; 10169 10170 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10171 return -EBUSY; 10172 10173 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10174 return -ENODEV; 10175 10176 rc = bnxt_fw_init_one(bp); 10177 if (!rc) { 10178 bnxt_clear_int_mode(bp); 10179 rc = bnxt_init_int_mode(bp); 10180 if (!rc) { 10181 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10182 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10183 } 10184 } 10185 return rc; 10186 } 10187 10188 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10189 { 10190 int rc = 0; 10191 10192 bnxt_preset_reg_win(bp); 10193 netif_carrier_off(bp->dev); 10194 if (irq_re_init) { 10195 /* Reserve rings now if none were reserved at driver probe. */ 10196 rc = bnxt_init_dflt_ring_mode(bp); 10197 if (rc) { 10198 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10199 return rc; 10200 } 10201 } 10202 rc = bnxt_reserve_rings(bp, irq_re_init); 10203 if (rc) 10204 return rc; 10205 if ((bp->flags & BNXT_FLAG_RFS) && 10206 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10207 /* disable RFS if falling back to INTA */ 10208 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10209 bp->flags &= ~BNXT_FLAG_RFS; 10210 } 10211 10212 rc = bnxt_alloc_mem(bp, irq_re_init); 10213 if (rc) { 10214 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10215 goto open_err_free_mem; 10216 } 10217 10218 if (irq_re_init) { 10219 bnxt_init_napi(bp); 10220 rc = bnxt_request_irq(bp); 10221 if (rc) { 10222 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10223 goto open_err_irq; 10224 } 10225 } 10226 10227 rc = bnxt_init_nic(bp, irq_re_init); 10228 if (rc) { 10229 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10230 goto open_err_irq; 10231 } 10232 10233 bnxt_enable_napi(bp); 10234 bnxt_debug_dev_init(bp); 10235 10236 if (link_re_init) { 10237 mutex_lock(&bp->link_lock); 10238 rc = bnxt_update_phy_setting(bp); 10239 mutex_unlock(&bp->link_lock); 10240 if (rc) { 10241 netdev_warn(bp->dev, "failed to update phy settings\n"); 10242 if (BNXT_SINGLE_PF(bp)) { 10243 bp->link_info.phy_retry = true; 10244 bp->link_info.phy_retry_expires = 10245 jiffies + 5 * HZ; 10246 } 10247 } 10248 } 10249 10250 if (irq_re_init) 10251 udp_tunnel_nic_reset_ntf(bp->dev); 10252 10253 set_bit(BNXT_STATE_OPEN, &bp->state); 10254 bnxt_enable_int(bp); 10255 /* Enable TX queues */ 10256 bnxt_tx_enable(bp); 10257 mod_timer(&bp->timer, jiffies + bp->current_interval); 10258 /* Poll link status and check for SFP+ module status */ 10259 mutex_lock(&bp->link_lock); 10260 bnxt_get_port_module_status(bp); 10261 mutex_unlock(&bp->link_lock); 10262 10263 /* VF-reps may need to be re-opened after the PF is re-opened */ 10264 if (BNXT_PF(bp)) 10265 bnxt_vf_reps_open(bp); 10266 return 0; 10267 10268 open_err_irq: 10269 bnxt_del_napi(bp); 10270 10271 open_err_free_mem: 10272 bnxt_free_skbs(bp); 10273 bnxt_free_irq(bp); 10274 bnxt_free_mem(bp, true); 10275 return rc; 10276 } 10277 10278 /* rtnl_lock held */ 10279 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10280 { 10281 int rc = 0; 10282 10283 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10284 rc = -EIO; 10285 if (!rc) 10286 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10287 if (rc) { 10288 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10289 dev_close(bp->dev); 10290 } 10291 return rc; 10292 } 10293 10294 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10295 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10296 * self tests. 10297 */ 10298 int bnxt_half_open_nic(struct bnxt *bp) 10299 { 10300 int rc = 0; 10301 10302 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10303 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10304 rc = -ENODEV; 10305 goto half_open_err; 10306 } 10307 10308 rc = bnxt_alloc_mem(bp, false); 10309 if (rc) { 10310 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10311 goto half_open_err; 10312 } 10313 rc = bnxt_init_nic(bp, false); 10314 if (rc) { 10315 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10316 goto half_open_err; 10317 } 10318 return 0; 10319 10320 half_open_err: 10321 bnxt_free_skbs(bp); 10322 bnxt_free_mem(bp, false); 10323 dev_close(bp->dev); 10324 return rc; 10325 } 10326 10327 /* rtnl_lock held, this call can only be made after a previous successful 10328 * call to bnxt_half_open_nic(). 10329 */ 10330 void bnxt_half_close_nic(struct bnxt *bp) 10331 { 10332 bnxt_hwrm_resource_free(bp, false, false); 10333 bnxt_free_skbs(bp); 10334 bnxt_free_mem(bp, false); 10335 } 10336 10337 void bnxt_reenable_sriov(struct bnxt *bp) 10338 { 10339 if (BNXT_PF(bp)) { 10340 struct bnxt_pf_info *pf = &bp->pf; 10341 int n = pf->active_vfs; 10342 10343 if (n) 10344 bnxt_cfg_hw_sriov(bp, &n, true); 10345 } 10346 } 10347 10348 static int bnxt_open(struct net_device *dev) 10349 { 10350 struct bnxt *bp = netdev_priv(dev); 10351 int rc; 10352 10353 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10354 rc = bnxt_reinit_after_abort(bp); 10355 if (rc) { 10356 if (rc == -EBUSY) 10357 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10358 else 10359 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10360 return -ENODEV; 10361 } 10362 } 10363 10364 rc = bnxt_hwrm_if_change(bp, true); 10365 if (rc) 10366 return rc; 10367 10368 rc = __bnxt_open_nic(bp, true, true); 10369 if (rc) { 10370 bnxt_hwrm_if_change(bp, false); 10371 } else { 10372 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10373 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10374 bnxt_ulp_start(bp, 0); 10375 bnxt_reenable_sriov(bp); 10376 } 10377 } 10378 bnxt_hwmon_open(bp); 10379 } 10380 10381 return rc; 10382 } 10383 10384 static bool bnxt_drv_busy(struct bnxt *bp) 10385 { 10386 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10387 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10388 } 10389 10390 static void bnxt_get_ring_stats(struct bnxt *bp, 10391 struct rtnl_link_stats64 *stats); 10392 10393 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10394 bool link_re_init) 10395 { 10396 /* Close the VF-reps before closing PF */ 10397 if (BNXT_PF(bp)) 10398 bnxt_vf_reps_close(bp); 10399 10400 /* Change device state to avoid TX queue wake up's */ 10401 bnxt_tx_disable(bp); 10402 10403 clear_bit(BNXT_STATE_OPEN, &bp->state); 10404 smp_mb__after_atomic(); 10405 while (bnxt_drv_busy(bp)) 10406 msleep(20); 10407 10408 /* Flush rings and and disable interrupts */ 10409 bnxt_shutdown_nic(bp, irq_re_init); 10410 10411 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10412 10413 bnxt_debug_dev_exit(bp); 10414 bnxt_disable_napi(bp); 10415 del_timer_sync(&bp->timer); 10416 bnxt_free_skbs(bp); 10417 10418 /* Save ring stats before shutdown */ 10419 if (bp->bnapi && irq_re_init) 10420 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10421 if (irq_re_init) { 10422 bnxt_free_irq(bp); 10423 bnxt_del_napi(bp); 10424 } 10425 bnxt_free_mem(bp, irq_re_init); 10426 } 10427 10428 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10429 { 10430 int rc = 0; 10431 10432 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10433 /* If we get here, it means firmware reset is in progress 10434 * while we are trying to close. We can safely proceed with 10435 * the close because we are holding rtnl_lock(). Some firmware 10436 * messages may fail as we proceed to close. We set the 10437 * ABORT_ERR flag here so that the FW reset thread will later 10438 * abort when it gets the rtnl_lock() and sees the flag. 10439 */ 10440 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10441 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10442 } 10443 10444 #ifdef CONFIG_BNXT_SRIOV 10445 if (bp->sriov_cfg) { 10446 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10447 !bp->sriov_cfg, 10448 BNXT_SRIOV_CFG_WAIT_TMO); 10449 if (rc) 10450 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10451 } 10452 #endif 10453 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10454 return rc; 10455 } 10456 10457 static int bnxt_close(struct net_device *dev) 10458 { 10459 struct bnxt *bp = netdev_priv(dev); 10460 10461 bnxt_hwmon_close(bp); 10462 bnxt_close_nic(bp, true, true); 10463 bnxt_hwrm_shutdown_link(bp); 10464 bnxt_hwrm_if_change(bp, false); 10465 return 0; 10466 } 10467 10468 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10469 u16 *val) 10470 { 10471 struct hwrm_port_phy_mdio_read_output *resp; 10472 struct hwrm_port_phy_mdio_read_input *req; 10473 int rc; 10474 10475 if (bp->hwrm_spec_code < 0x10a00) 10476 return -EOPNOTSUPP; 10477 10478 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10479 if (rc) 10480 return rc; 10481 10482 req->port_id = cpu_to_le16(bp->pf.port_id); 10483 req->phy_addr = phy_addr; 10484 req->reg_addr = cpu_to_le16(reg & 0x1f); 10485 if (mdio_phy_id_is_c45(phy_addr)) { 10486 req->cl45_mdio = 1; 10487 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10488 req->dev_addr = mdio_phy_id_devad(phy_addr); 10489 req->reg_addr = cpu_to_le16(reg); 10490 } 10491 10492 resp = hwrm_req_hold(bp, req); 10493 rc = hwrm_req_send(bp, req); 10494 if (!rc) 10495 *val = le16_to_cpu(resp->reg_data); 10496 hwrm_req_drop(bp, req); 10497 return rc; 10498 } 10499 10500 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10501 u16 val) 10502 { 10503 struct hwrm_port_phy_mdio_write_input *req; 10504 int rc; 10505 10506 if (bp->hwrm_spec_code < 0x10a00) 10507 return -EOPNOTSUPP; 10508 10509 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10510 if (rc) 10511 return rc; 10512 10513 req->port_id = cpu_to_le16(bp->pf.port_id); 10514 req->phy_addr = phy_addr; 10515 req->reg_addr = cpu_to_le16(reg & 0x1f); 10516 if (mdio_phy_id_is_c45(phy_addr)) { 10517 req->cl45_mdio = 1; 10518 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10519 req->dev_addr = mdio_phy_id_devad(phy_addr); 10520 req->reg_addr = cpu_to_le16(reg); 10521 } 10522 req->reg_data = cpu_to_le16(val); 10523 10524 return hwrm_req_send(bp, req); 10525 } 10526 10527 /* rtnl_lock held */ 10528 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10529 { 10530 struct mii_ioctl_data *mdio = if_mii(ifr); 10531 struct bnxt *bp = netdev_priv(dev); 10532 int rc; 10533 10534 switch (cmd) { 10535 case SIOCGMIIPHY: 10536 mdio->phy_id = bp->link_info.phy_addr; 10537 10538 fallthrough; 10539 case SIOCGMIIREG: { 10540 u16 mii_regval = 0; 10541 10542 if (!netif_running(dev)) 10543 return -EAGAIN; 10544 10545 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10546 &mii_regval); 10547 mdio->val_out = mii_regval; 10548 return rc; 10549 } 10550 10551 case SIOCSMIIREG: 10552 if (!netif_running(dev)) 10553 return -EAGAIN; 10554 10555 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10556 mdio->val_in); 10557 10558 case SIOCSHWTSTAMP: 10559 return bnxt_hwtstamp_set(dev, ifr); 10560 10561 case SIOCGHWTSTAMP: 10562 return bnxt_hwtstamp_get(dev, ifr); 10563 10564 default: 10565 /* do nothing */ 10566 break; 10567 } 10568 return -EOPNOTSUPP; 10569 } 10570 10571 static void bnxt_get_ring_stats(struct bnxt *bp, 10572 struct rtnl_link_stats64 *stats) 10573 { 10574 int i; 10575 10576 for (i = 0; i < bp->cp_nr_rings; i++) { 10577 struct bnxt_napi *bnapi = bp->bnapi[i]; 10578 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10579 u64 *sw = cpr->stats.sw_stats; 10580 10581 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10582 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10583 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10584 10585 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10586 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10587 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10588 10589 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10590 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10591 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10592 10593 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10594 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10595 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10596 10597 stats->rx_missed_errors += 10598 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10599 10600 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10601 10602 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10603 10604 stats->rx_dropped += 10605 cpr->sw_stats.rx.rx_netpoll_discards + 10606 cpr->sw_stats.rx.rx_oom_discards; 10607 } 10608 } 10609 10610 static void bnxt_add_prev_stats(struct bnxt *bp, 10611 struct rtnl_link_stats64 *stats) 10612 { 10613 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10614 10615 stats->rx_packets += prev_stats->rx_packets; 10616 stats->tx_packets += prev_stats->tx_packets; 10617 stats->rx_bytes += prev_stats->rx_bytes; 10618 stats->tx_bytes += prev_stats->tx_bytes; 10619 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10620 stats->multicast += prev_stats->multicast; 10621 stats->rx_dropped += prev_stats->rx_dropped; 10622 stats->tx_dropped += prev_stats->tx_dropped; 10623 } 10624 10625 static void 10626 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10627 { 10628 struct bnxt *bp = netdev_priv(dev); 10629 10630 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10631 /* Make sure bnxt_close_nic() sees that we are reading stats before 10632 * we check the BNXT_STATE_OPEN flag. 10633 */ 10634 smp_mb__after_atomic(); 10635 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10636 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10637 *stats = bp->net_stats_prev; 10638 return; 10639 } 10640 10641 bnxt_get_ring_stats(bp, stats); 10642 bnxt_add_prev_stats(bp, stats); 10643 10644 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10645 u64 *rx = bp->port_stats.sw_stats; 10646 u64 *tx = bp->port_stats.sw_stats + 10647 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10648 10649 stats->rx_crc_errors = 10650 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10651 stats->rx_frame_errors = 10652 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10653 stats->rx_length_errors = 10654 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10655 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10656 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10657 stats->rx_errors = 10658 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10659 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10660 stats->collisions = 10661 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10662 stats->tx_fifo_errors = 10663 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10664 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10665 } 10666 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10667 } 10668 10669 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10670 { 10671 struct net_device *dev = bp->dev; 10672 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10673 struct netdev_hw_addr *ha; 10674 u8 *haddr; 10675 int mc_count = 0; 10676 bool update = false; 10677 int off = 0; 10678 10679 netdev_for_each_mc_addr(ha, dev) { 10680 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10681 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10682 vnic->mc_list_count = 0; 10683 return false; 10684 } 10685 haddr = ha->addr; 10686 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10687 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10688 update = true; 10689 } 10690 off += ETH_ALEN; 10691 mc_count++; 10692 } 10693 if (mc_count) 10694 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10695 10696 if (mc_count != vnic->mc_list_count) { 10697 vnic->mc_list_count = mc_count; 10698 update = true; 10699 } 10700 return update; 10701 } 10702 10703 static bool bnxt_uc_list_updated(struct bnxt *bp) 10704 { 10705 struct net_device *dev = bp->dev; 10706 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10707 struct netdev_hw_addr *ha; 10708 int off = 0; 10709 10710 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10711 return true; 10712 10713 netdev_for_each_uc_addr(ha, dev) { 10714 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10715 return true; 10716 10717 off += ETH_ALEN; 10718 } 10719 return false; 10720 } 10721 10722 static void bnxt_set_rx_mode(struct net_device *dev) 10723 { 10724 struct bnxt *bp = netdev_priv(dev); 10725 struct bnxt_vnic_info *vnic; 10726 bool mc_update = false; 10727 bool uc_update; 10728 u32 mask; 10729 10730 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10731 return; 10732 10733 vnic = &bp->vnic_info[0]; 10734 mask = vnic->rx_mask; 10735 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10736 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10737 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10738 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10739 10740 if (dev->flags & IFF_PROMISC) 10741 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10742 10743 uc_update = bnxt_uc_list_updated(bp); 10744 10745 if (dev->flags & IFF_BROADCAST) 10746 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10747 if (dev->flags & IFF_ALLMULTI) { 10748 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10749 vnic->mc_list_count = 0; 10750 } else { 10751 mc_update = bnxt_mc_list_updated(bp, &mask); 10752 } 10753 10754 if (mask != vnic->rx_mask || uc_update || mc_update) { 10755 vnic->rx_mask = mask; 10756 10757 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10758 bnxt_queue_sp_work(bp); 10759 } 10760 } 10761 10762 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10763 { 10764 struct net_device *dev = bp->dev; 10765 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10766 struct hwrm_cfa_l2_filter_free_input *req; 10767 struct netdev_hw_addr *ha; 10768 int i, off = 0, rc; 10769 bool uc_update; 10770 10771 netif_addr_lock_bh(dev); 10772 uc_update = bnxt_uc_list_updated(bp); 10773 netif_addr_unlock_bh(dev); 10774 10775 if (!uc_update) 10776 goto skip_uc; 10777 10778 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 10779 if (rc) 10780 return rc; 10781 hwrm_req_hold(bp, req); 10782 for (i = 1; i < vnic->uc_filter_count; i++) { 10783 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 10784 10785 rc = hwrm_req_send(bp, req); 10786 } 10787 hwrm_req_drop(bp, req); 10788 10789 vnic->uc_filter_count = 1; 10790 10791 netif_addr_lock_bh(dev); 10792 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10793 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10794 } else { 10795 netdev_for_each_uc_addr(ha, dev) { 10796 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10797 off += ETH_ALEN; 10798 vnic->uc_filter_count++; 10799 } 10800 } 10801 netif_addr_unlock_bh(dev); 10802 10803 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10804 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10805 if (rc) { 10806 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10807 rc); 10808 vnic->uc_filter_count = i; 10809 return rc; 10810 } 10811 } 10812 10813 skip_uc: 10814 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10815 !bnxt_promisc_ok(bp)) 10816 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10817 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10818 if (rc && vnic->mc_list_count) { 10819 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10820 rc); 10821 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10822 vnic->mc_list_count = 0; 10823 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10824 } 10825 if (rc) 10826 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10827 rc); 10828 10829 return rc; 10830 } 10831 10832 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10833 { 10834 #ifdef CONFIG_BNXT_SRIOV 10835 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10836 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10837 10838 /* No minimum rings were provisioned by the PF. Don't 10839 * reserve rings by default when device is down. 10840 */ 10841 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10842 return true; 10843 10844 if (!netif_running(bp->dev)) 10845 return false; 10846 } 10847 #endif 10848 return true; 10849 } 10850 10851 /* If the chip and firmware supports RFS */ 10852 static bool bnxt_rfs_supported(struct bnxt *bp) 10853 { 10854 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10855 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10856 return true; 10857 return false; 10858 } 10859 /* 212 firmware is broken for aRFS */ 10860 if (BNXT_FW_MAJ(bp) == 212) 10861 return false; 10862 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10863 return true; 10864 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10865 return true; 10866 return false; 10867 } 10868 10869 /* If runtime conditions support RFS */ 10870 static bool bnxt_rfs_capable(struct bnxt *bp) 10871 { 10872 #ifdef CONFIG_RFS_ACCEL 10873 int vnics, max_vnics, max_rss_ctxs; 10874 10875 if (bp->flags & BNXT_FLAG_CHIP_P5) 10876 return bnxt_rfs_supported(bp); 10877 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10878 return false; 10879 10880 vnics = 1 + bp->rx_nr_rings; 10881 max_vnics = bnxt_get_max_func_vnics(bp); 10882 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10883 10884 /* RSS contexts not a limiting factor */ 10885 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10886 max_rss_ctxs = max_vnics; 10887 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10888 if (bp->rx_nr_rings > 1) 10889 netdev_warn(bp->dev, 10890 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10891 min(max_rss_ctxs - 1, max_vnics - 1)); 10892 return false; 10893 } 10894 10895 if (!BNXT_NEW_RM(bp)) 10896 return true; 10897 10898 if (vnics == bp->hw_resc.resv_vnics) 10899 return true; 10900 10901 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10902 if (vnics <= bp->hw_resc.resv_vnics) 10903 return true; 10904 10905 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10906 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10907 return false; 10908 #else 10909 return false; 10910 #endif 10911 } 10912 10913 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10914 netdev_features_t features) 10915 { 10916 struct bnxt *bp = netdev_priv(dev); 10917 netdev_features_t vlan_features; 10918 10919 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10920 features &= ~NETIF_F_NTUPLE; 10921 10922 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10923 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10924 10925 if (!(features & NETIF_F_GRO)) 10926 features &= ~NETIF_F_GRO_HW; 10927 10928 if (features & NETIF_F_GRO_HW) 10929 features &= ~NETIF_F_LRO; 10930 10931 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10932 * turned on or off together. 10933 */ 10934 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10935 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10936 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10937 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10938 else if (vlan_features) 10939 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10940 } 10941 #ifdef CONFIG_BNXT_SRIOV 10942 if (BNXT_VF(bp) && bp->vf.vlan) 10943 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10944 #endif 10945 return features; 10946 } 10947 10948 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10949 { 10950 struct bnxt *bp = netdev_priv(dev); 10951 u32 flags = bp->flags; 10952 u32 changes; 10953 int rc = 0; 10954 bool re_init = false; 10955 bool update_tpa = false; 10956 10957 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10958 if (features & NETIF_F_GRO_HW) 10959 flags |= BNXT_FLAG_GRO; 10960 else if (features & NETIF_F_LRO) 10961 flags |= BNXT_FLAG_LRO; 10962 10963 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10964 flags &= ~BNXT_FLAG_TPA; 10965 10966 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10967 flags |= BNXT_FLAG_STRIP_VLAN; 10968 10969 if (features & NETIF_F_NTUPLE) 10970 flags |= BNXT_FLAG_RFS; 10971 10972 changes = flags ^ bp->flags; 10973 if (changes & BNXT_FLAG_TPA) { 10974 update_tpa = true; 10975 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10976 (flags & BNXT_FLAG_TPA) == 0 || 10977 (bp->flags & BNXT_FLAG_CHIP_P5)) 10978 re_init = true; 10979 } 10980 10981 if (changes & ~BNXT_FLAG_TPA) 10982 re_init = true; 10983 10984 if (flags != bp->flags) { 10985 u32 old_flags = bp->flags; 10986 10987 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10988 bp->flags = flags; 10989 if (update_tpa) 10990 bnxt_set_ring_params(bp); 10991 return rc; 10992 } 10993 10994 if (re_init) { 10995 bnxt_close_nic(bp, false, false); 10996 bp->flags = flags; 10997 if (update_tpa) 10998 bnxt_set_ring_params(bp); 10999 11000 return bnxt_open_nic(bp, false, false); 11001 } 11002 if (update_tpa) { 11003 bp->flags = flags; 11004 rc = bnxt_set_tpa(bp, 11005 (flags & BNXT_FLAG_TPA) ? 11006 true : false); 11007 if (rc) 11008 bp->flags = old_flags; 11009 } 11010 } 11011 return rc; 11012 } 11013 11014 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11015 u8 **nextp) 11016 { 11017 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11018 int hdr_count = 0; 11019 u8 *nexthdr; 11020 int start; 11021 11022 /* Check that there are at most 2 IPv6 extension headers, no 11023 * fragment header, and each is <= 64 bytes. 11024 */ 11025 start = nw_off + sizeof(*ip6h); 11026 nexthdr = &ip6h->nexthdr; 11027 while (ipv6_ext_hdr(*nexthdr)) { 11028 struct ipv6_opt_hdr *hp; 11029 int hdrlen; 11030 11031 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11032 *nexthdr == NEXTHDR_FRAGMENT) 11033 return false; 11034 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11035 skb_headlen(skb), NULL); 11036 if (!hp) 11037 return false; 11038 if (*nexthdr == NEXTHDR_AUTH) 11039 hdrlen = ipv6_authlen(hp); 11040 else 11041 hdrlen = ipv6_optlen(hp); 11042 11043 if (hdrlen > 64) 11044 return false; 11045 nexthdr = &hp->nexthdr; 11046 start += hdrlen; 11047 hdr_count++; 11048 } 11049 if (nextp) { 11050 /* Caller will check inner protocol */ 11051 if (skb->encapsulation) { 11052 *nextp = nexthdr; 11053 return true; 11054 } 11055 *nextp = NULL; 11056 } 11057 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11058 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11059 } 11060 11061 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11062 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11063 { 11064 struct udphdr *uh = udp_hdr(skb); 11065 __be16 udp_port = uh->dest; 11066 11067 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11068 return false; 11069 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11070 struct ethhdr *eh = inner_eth_hdr(skb); 11071 11072 switch (eh->h_proto) { 11073 case htons(ETH_P_IP): 11074 return true; 11075 case htons(ETH_P_IPV6): 11076 return bnxt_exthdr_check(bp, skb, 11077 skb_inner_network_offset(skb), 11078 NULL); 11079 } 11080 } 11081 return false; 11082 } 11083 11084 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11085 { 11086 switch (l4_proto) { 11087 case IPPROTO_UDP: 11088 return bnxt_udp_tunl_check(bp, skb); 11089 case IPPROTO_IPIP: 11090 return true; 11091 case IPPROTO_GRE: { 11092 switch (skb->inner_protocol) { 11093 default: 11094 return false; 11095 case htons(ETH_P_IP): 11096 return true; 11097 case htons(ETH_P_IPV6): 11098 fallthrough; 11099 } 11100 } 11101 case IPPROTO_IPV6: 11102 /* Check ext headers of inner ipv6 */ 11103 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11104 NULL); 11105 } 11106 return false; 11107 } 11108 11109 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11110 struct net_device *dev, 11111 netdev_features_t features) 11112 { 11113 struct bnxt *bp = netdev_priv(dev); 11114 u8 *l4_proto; 11115 11116 features = vlan_features_check(skb, features); 11117 switch (vlan_get_protocol(skb)) { 11118 case htons(ETH_P_IP): 11119 if (!skb->encapsulation) 11120 return features; 11121 l4_proto = &ip_hdr(skb)->protocol; 11122 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11123 return features; 11124 break; 11125 case htons(ETH_P_IPV6): 11126 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11127 &l4_proto)) 11128 break; 11129 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11130 return features; 11131 break; 11132 } 11133 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11134 } 11135 11136 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11137 u32 *reg_buf) 11138 { 11139 struct hwrm_dbg_read_direct_output *resp; 11140 struct hwrm_dbg_read_direct_input *req; 11141 __le32 *dbg_reg_buf; 11142 dma_addr_t mapping; 11143 int rc, i; 11144 11145 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11146 if (rc) 11147 return rc; 11148 11149 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11150 &mapping); 11151 if (!dbg_reg_buf) { 11152 rc = -ENOMEM; 11153 goto dbg_rd_reg_exit; 11154 } 11155 11156 req->host_dest_addr = cpu_to_le64(mapping); 11157 11158 resp = hwrm_req_hold(bp, req); 11159 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11160 req->read_len32 = cpu_to_le32(num_words); 11161 11162 rc = hwrm_req_send(bp, req); 11163 if (rc || resp->error_code) { 11164 rc = -EIO; 11165 goto dbg_rd_reg_exit; 11166 } 11167 for (i = 0; i < num_words; i++) 11168 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11169 11170 dbg_rd_reg_exit: 11171 hwrm_req_drop(bp, req); 11172 return rc; 11173 } 11174 11175 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11176 u32 ring_id, u32 *prod, u32 *cons) 11177 { 11178 struct hwrm_dbg_ring_info_get_output *resp; 11179 struct hwrm_dbg_ring_info_get_input *req; 11180 int rc; 11181 11182 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11183 if (rc) 11184 return rc; 11185 11186 req->ring_type = ring_type; 11187 req->fw_ring_id = cpu_to_le32(ring_id); 11188 resp = hwrm_req_hold(bp, req); 11189 rc = hwrm_req_send(bp, req); 11190 if (!rc) { 11191 *prod = le32_to_cpu(resp->producer_index); 11192 *cons = le32_to_cpu(resp->consumer_index); 11193 } 11194 hwrm_req_drop(bp, req); 11195 return rc; 11196 } 11197 11198 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11199 { 11200 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11201 int i = bnapi->index; 11202 11203 if (!txr) 11204 return; 11205 11206 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11207 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11208 txr->tx_cons); 11209 } 11210 11211 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11212 { 11213 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11214 int i = bnapi->index; 11215 11216 if (!rxr) 11217 return; 11218 11219 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11220 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11221 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11222 rxr->rx_sw_agg_prod); 11223 } 11224 11225 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11226 { 11227 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11228 int i = bnapi->index; 11229 11230 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11231 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11232 } 11233 11234 static void bnxt_dbg_dump_states(struct bnxt *bp) 11235 { 11236 int i; 11237 struct bnxt_napi *bnapi; 11238 11239 for (i = 0; i < bp->cp_nr_rings; i++) { 11240 bnapi = bp->bnapi[i]; 11241 if (netif_msg_drv(bp)) { 11242 bnxt_dump_tx_sw_state(bnapi); 11243 bnxt_dump_rx_sw_state(bnapi); 11244 bnxt_dump_cp_sw_state(bnapi); 11245 } 11246 } 11247 } 11248 11249 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11250 { 11251 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11252 struct hwrm_ring_reset_input *req; 11253 struct bnxt_napi *bnapi = rxr->bnapi; 11254 struct bnxt_cp_ring_info *cpr; 11255 u16 cp_ring_id; 11256 int rc; 11257 11258 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11259 if (rc) 11260 return rc; 11261 11262 cpr = &bnapi->cp_ring; 11263 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11264 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11265 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11266 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11267 return hwrm_req_send_silent(bp, req); 11268 } 11269 11270 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11271 { 11272 if (!silent) 11273 bnxt_dbg_dump_states(bp); 11274 if (netif_running(bp->dev)) { 11275 int rc; 11276 11277 if (silent) { 11278 bnxt_close_nic(bp, false, false); 11279 bnxt_open_nic(bp, false, false); 11280 } else { 11281 bnxt_ulp_stop(bp); 11282 bnxt_close_nic(bp, true, false); 11283 rc = bnxt_open_nic(bp, true, false); 11284 bnxt_ulp_start(bp, rc); 11285 } 11286 } 11287 } 11288 11289 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11290 { 11291 struct bnxt *bp = netdev_priv(dev); 11292 11293 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11294 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11295 bnxt_queue_sp_work(bp); 11296 } 11297 11298 static void bnxt_fw_health_check(struct bnxt *bp) 11299 { 11300 struct bnxt_fw_health *fw_health = bp->fw_health; 11301 u32 val; 11302 11303 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11304 return; 11305 11306 /* Make sure it is enabled before checking the tmr_counter. */ 11307 smp_rmb(); 11308 if (fw_health->tmr_counter) { 11309 fw_health->tmr_counter--; 11310 return; 11311 } 11312 11313 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11314 if (val == fw_health->last_fw_heartbeat) { 11315 fw_health->arrests++; 11316 goto fw_reset; 11317 } 11318 11319 fw_health->last_fw_heartbeat = val; 11320 11321 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11322 if (val != fw_health->last_fw_reset_cnt) { 11323 fw_health->discoveries++; 11324 goto fw_reset; 11325 } 11326 11327 fw_health->tmr_counter = fw_health->tmr_multiplier; 11328 return; 11329 11330 fw_reset: 11331 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11332 bnxt_queue_sp_work(bp); 11333 } 11334 11335 static void bnxt_timer(struct timer_list *t) 11336 { 11337 struct bnxt *bp = from_timer(bp, t, timer); 11338 struct net_device *dev = bp->dev; 11339 11340 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11341 return; 11342 11343 if (atomic_read(&bp->intr_sem) != 0) 11344 goto bnxt_restart_timer; 11345 11346 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11347 bnxt_fw_health_check(bp); 11348 11349 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11350 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11351 bnxt_queue_sp_work(bp); 11352 } 11353 11354 if (bnxt_tc_flower_enabled(bp)) { 11355 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11356 bnxt_queue_sp_work(bp); 11357 } 11358 11359 #ifdef CONFIG_RFS_ACCEL 11360 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11361 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11362 bnxt_queue_sp_work(bp); 11363 } 11364 #endif /*CONFIG_RFS_ACCEL*/ 11365 11366 if (bp->link_info.phy_retry) { 11367 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11368 bp->link_info.phy_retry = false; 11369 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11370 } else { 11371 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11372 bnxt_queue_sp_work(bp); 11373 } 11374 } 11375 11376 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11377 netif_carrier_ok(dev)) { 11378 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11379 bnxt_queue_sp_work(bp); 11380 } 11381 bnxt_restart_timer: 11382 mod_timer(&bp->timer, jiffies + bp->current_interval); 11383 } 11384 11385 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11386 { 11387 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11388 * set. If the device is being closed, bnxt_close() may be holding 11389 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11390 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11391 */ 11392 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11393 rtnl_lock(); 11394 } 11395 11396 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11397 { 11398 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11399 rtnl_unlock(); 11400 } 11401 11402 /* Only called from bnxt_sp_task() */ 11403 static void bnxt_reset(struct bnxt *bp, bool silent) 11404 { 11405 bnxt_rtnl_lock_sp(bp); 11406 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11407 bnxt_reset_task(bp, silent); 11408 bnxt_rtnl_unlock_sp(bp); 11409 } 11410 11411 /* Only called from bnxt_sp_task() */ 11412 static void bnxt_rx_ring_reset(struct bnxt *bp) 11413 { 11414 int i; 11415 11416 bnxt_rtnl_lock_sp(bp); 11417 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11418 bnxt_rtnl_unlock_sp(bp); 11419 return; 11420 } 11421 /* Disable and flush TPA before resetting the RX ring */ 11422 if (bp->flags & BNXT_FLAG_TPA) 11423 bnxt_set_tpa(bp, false); 11424 for (i = 0; i < bp->rx_nr_rings; i++) { 11425 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11426 struct bnxt_cp_ring_info *cpr; 11427 int rc; 11428 11429 if (!rxr->bnapi->in_reset) 11430 continue; 11431 11432 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11433 if (rc) { 11434 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11435 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11436 else 11437 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11438 rc); 11439 bnxt_reset_task(bp, true); 11440 break; 11441 } 11442 bnxt_free_one_rx_ring_skbs(bp, i); 11443 rxr->rx_prod = 0; 11444 rxr->rx_agg_prod = 0; 11445 rxr->rx_sw_agg_prod = 0; 11446 rxr->rx_next_cons = 0; 11447 rxr->bnapi->in_reset = false; 11448 bnxt_alloc_one_rx_ring(bp, i); 11449 cpr = &rxr->bnapi->cp_ring; 11450 cpr->sw_stats.rx.rx_resets++; 11451 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11452 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11453 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11454 } 11455 if (bp->flags & BNXT_FLAG_TPA) 11456 bnxt_set_tpa(bp, true); 11457 bnxt_rtnl_unlock_sp(bp); 11458 } 11459 11460 static void bnxt_fw_reset_close(struct bnxt *bp) 11461 { 11462 bnxt_ulp_stop(bp); 11463 /* When firmware is in fatal state, quiesce device and disable 11464 * bus master to prevent any potential bad DMAs before freeing 11465 * kernel memory. 11466 */ 11467 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11468 u16 val = 0; 11469 11470 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11471 if (val == 0xffff) 11472 bp->fw_reset_min_dsecs = 0; 11473 bnxt_tx_disable(bp); 11474 bnxt_disable_napi(bp); 11475 bnxt_disable_int_sync(bp); 11476 bnxt_free_irq(bp); 11477 bnxt_clear_int_mode(bp); 11478 pci_disable_device(bp->pdev); 11479 } 11480 __bnxt_close_nic(bp, true, false); 11481 bnxt_vf_reps_free(bp); 11482 bnxt_clear_int_mode(bp); 11483 bnxt_hwrm_func_drv_unrgtr(bp); 11484 if (pci_is_enabled(bp->pdev)) 11485 pci_disable_device(bp->pdev); 11486 bnxt_free_ctx_mem(bp); 11487 kfree(bp->ctx); 11488 bp->ctx = NULL; 11489 } 11490 11491 static bool is_bnxt_fw_ok(struct bnxt *bp) 11492 { 11493 struct bnxt_fw_health *fw_health = bp->fw_health; 11494 bool no_heartbeat = false, has_reset = false; 11495 u32 val; 11496 11497 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11498 if (val == fw_health->last_fw_heartbeat) 11499 no_heartbeat = true; 11500 11501 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11502 if (val != fw_health->last_fw_reset_cnt) 11503 has_reset = true; 11504 11505 if (!no_heartbeat && has_reset) 11506 return true; 11507 11508 return false; 11509 } 11510 11511 /* rtnl_lock is acquired before calling this function */ 11512 static void bnxt_force_fw_reset(struct bnxt *bp) 11513 { 11514 struct bnxt_fw_health *fw_health = bp->fw_health; 11515 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11516 u32 wait_dsecs; 11517 11518 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11519 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11520 return; 11521 11522 if (ptp) { 11523 spin_lock_bh(&ptp->ptp_lock); 11524 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11525 spin_unlock_bh(&ptp->ptp_lock); 11526 } else { 11527 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11528 } 11529 bnxt_fw_reset_close(bp); 11530 wait_dsecs = fw_health->master_func_wait_dsecs; 11531 if (fw_health->primary) { 11532 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11533 wait_dsecs = 0; 11534 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11535 } else { 11536 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11537 wait_dsecs = fw_health->normal_func_wait_dsecs; 11538 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11539 } 11540 11541 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11542 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11543 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11544 } 11545 11546 void bnxt_fw_exception(struct bnxt *bp) 11547 { 11548 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11549 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11550 bnxt_rtnl_lock_sp(bp); 11551 bnxt_force_fw_reset(bp); 11552 bnxt_rtnl_unlock_sp(bp); 11553 } 11554 11555 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11556 * < 0 on error. 11557 */ 11558 static int bnxt_get_registered_vfs(struct bnxt *bp) 11559 { 11560 #ifdef CONFIG_BNXT_SRIOV 11561 int rc; 11562 11563 if (!BNXT_PF(bp)) 11564 return 0; 11565 11566 rc = bnxt_hwrm_func_qcfg(bp); 11567 if (rc) { 11568 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11569 return rc; 11570 } 11571 if (bp->pf.registered_vfs) 11572 return bp->pf.registered_vfs; 11573 if (bp->sriov_cfg) 11574 return 1; 11575 #endif 11576 return 0; 11577 } 11578 11579 void bnxt_fw_reset(struct bnxt *bp) 11580 { 11581 bnxt_rtnl_lock_sp(bp); 11582 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11583 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11584 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11585 int n = 0, tmo; 11586 11587 if (ptp) { 11588 spin_lock_bh(&ptp->ptp_lock); 11589 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11590 spin_unlock_bh(&ptp->ptp_lock); 11591 } else { 11592 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11593 } 11594 if (bp->pf.active_vfs && 11595 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11596 n = bnxt_get_registered_vfs(bp); 11597 if (n < 0) { 11598 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11599 n); 11600 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11601 dev_close(bp->dev); 11602 goto fw_reset_exit; 11603 } else if (n > 0) { 11604 u16 vf_tmo_dsecs = n * 10; 11605 11606 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11607 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11608 bp->fw_reset_state = 11609 BNXT_FW_RESET_STATE_POLL_VF; 11610 bnxt_queue_fw_reset_work(bp, HZ / 10); 11611 goto fw_reset_exit; 11612 } 11613 bnxt_fw_reset_close(bp); 11614 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11615 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11616 tmo = HZ / 10; 11617 } else { 11618 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11619 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11620 } 11621 bnxt_queue_fw_reset_work(bp, tmo); 11622 } 11623 fw_reset_exit: 11624 bnxt_rtnl_unlock_sp(bp); 11625 } 11626 11627 static void bnxt_chk_missed_irq(struct bnxt *bp) 11628 { 11629 int i; 11630 11631 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11632 return; 11633 11634 for (i = 0; i < bp->cp_nr_rings; i++) { 11635 struct bnxt_napi *bnapi = bp->bnapi[i]; 11636 struct bnxt_cp_ring_info *cpr; 11637 u32 fw_ring_id; 11638 int j; 11639 11640 if (!bnapi) 11641 continue; 11642 11643 cpr = &bnapi->cp_ring; 11644 for (j = 0; j < 2; j++) { 11645 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11646 u32 val[2]; 11647 11648 if (!cpr2 || cpr2->has_more_work || 11649 !bnxt_has_work(bp, cpr2)) 11650 continue; 11651 11652 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11653 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11654 continue; 11655 } 11656 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11657 bnxt_dbg_hwrm_ring_info_get(bp, 11658 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11659 fw_ring_id, &val[0], &val[1]); 11660 cpr->sw_stats.cmn.missed_irqs++; 11661 } 11662 } 11663 } 11664 11665 static void bnxt_cfg_ntp_filters(struct bnxt *); 11666 11667 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11668 { 11669 struct bnxt_link_info *link_info = &bp->link_info; 11670 11671 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11672 link_info->autoneg = BNXT_AUTONEG_SPEED; 11673 if (bp->hwrm_spec_code >= 0x10201) { 11674 if (link_info->auto_pause_setting & 11675 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11676 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11677 } else { 11678 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11679 } 11680 link_info->advertising = link_info->auto_link_speeds; 11681 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11682 } else { 11683 link_info->req_link_speed = link_info->force_link_speed; 11684 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11685 if (link_info->force_pam4_link_speed) { 11686 link_info->req_link_speed = 11687 link_info->force_pam4_link_speed; 11688 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11689 } 11690 link_info->req_duplex = link_info->duplex_setting; 11691 } 11692 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11693 link_info->req_flow_ctrl = 11694 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11695 else 11696 link_info->req_flow_ctrl = link_info->force_pause_setting; 11697 } 11698 11699 static void bnxt_fw_echo_reply(struct bnxt *bp) 11700 { 11701 struct bnxt_fw_health *fw_health = bp->fw_health; 11702 struct hwrm_func_echo_response_input *req; 11703 int rc; 11704 11705 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11706 if (rc) 11707 return; 11708 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11709 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11710 hwrm_req_send(bp, req); 11711 } 11712 11713 static void bnxt_sp_task(struct work_struct *work) 11714 { 11715 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11716 11717 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11718 smp_mb__after_atomic(); 11719 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11720 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11721 return; 11722 } 11723 11724 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11725 bnxt_cfg_rx_mode(bp); 11726 11727 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11728 bnxt_cfg_ntp_filters(bp); 11729 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11730 bnxt_hwrm_exec_fwd_req(bp); 11731 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11732 bnxt_hwrm_port_qstats(bp, 0); 11733 bnxt_hwrm_port_qstats_ext(bp, 0); 11734 bnxt_accumulate_all_stats(bp); 11735 } 11736 11737 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11738 int rc; 11739 11740 mutex_lock(&bp->link_lock); 11741 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11742 &bp->sp_event)) 11743 bnxt_hwrm_phy_qcaps(bp); 11744 11745 rc = bnxt_update_link(bp, true); 11746 if (rc) 11747 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11748 rc); 11749 11750 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11751 &bp->sp_event)) 11752 bnxt_init_ethtool_link_settings(bp); 11753 mutex_unlock(&bp->link_lock); 11754 } 11755 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11756 int rc; 11757 11758 mutex_lock(&bp->link_lock); 11759 rc = bnxt_update_phy_setting(bp); 11760 mutex_unlock(&bp->link_lock); 11761 if (rc) { 11762 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11763 } else { 11764 bp->link_info.phy_retry = false; 11765 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11766 } 11767 } 11768 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11769 mutex_lock(&bp->link_lock); 11770 bnxt_get_port_module_status(bp); 11771 mutex_unlock(&bp->link_lock); 11772 } 11773 11774 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11775 bnxt_tc_flow_stats_work(bp); 11776 11777 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11778 bnxt_chk_missed_irq(bp); 11779 11780 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11781 bnxt_fw_echo_reply(bp); 11782 11783 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11784 * must be the last functions to be called before exiting. 11785 */ 11786 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11787 bnxt_reset(bp, false); 11788 11789 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11790 bnxt_reset(bp, true); 11791 11792 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11793 bnxt_rx_ring_reset(bp); 11794 11795 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 11796 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 11797 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 11798 bnxt_devlink_health_fw_report(bp); 11799 else 11800 bnxt_fw_reset(bp); 11801 } 11802 11803 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11804 if (!is_bnxt_fw_ok(bp)) 11805 bnxt_devlink_health_fw_report(bp); 11806 } 11807 11808 smp_mb__before_atomic(); 11809 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11810 } 11811 11812 /* Under rtnl_lock */ 11813 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11814 int tx_xdp) 11815 { 11816 int max_rx, max_tx, tx_sets = 1; 11817 int tx_rings_needed, stats; 11818 int rx_rings = rx; 11819 int cp, vnics, rc; 11820 11821 if (tcs) 11822 tx_sets = tcs; 11823 11824 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11825 if (rc) 11826 return rc; 11827 11828 if (max_rx < rx) 11829 return -ENOMEM; 11830 11831 tx_rings_needed = tx * tx_sets + tx_xdp; 11832 if (max_tx < tx_rings_needed) 11833 return -ENOMEM; 11834 11835 vnics = 1; 11836 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11837 vnics += rx_rings; 11838 11839 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11840 rx_rings <<= 1; 11841 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11842 stats = cp; 11843 if (BNXT_NEW_RM(bp)) { 11844 cp += bnxt_get_ulp_msix_num(bp); 11845 stats += bnxt_get_ulp_stat_ctxs(bp); 11846 } 11847 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11848 stats, vnics); 11849 } 11850 11851 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11852 { 11853 if (bp->bar2) { 11854 pci_iounmap(pdev, bp->bar2); 11855 bp->bar2 = NULL; 11856 } 11857 11858 if (bp->bar1) { 11859 pci_iounmap(pdev, bp->bar1); 11860 bp->bar1 = NULL; 11861 } 11862 11863 if (bp->bar0) { 11864 pci_iounmap(pdev, bp->bar0); 11865 bp->bar0 = NULL; 11866 } 11867 } 11868 11869 static void bnxt_cleanup_pci(struct bnxt *bp) 11870 { 11871 bnxt_unmap_bars(bp, bp->pdev); 11872 pci_release_regions(bp->pdev); 11873 if (pci_is_enabled(bp->pdev)) 11874 pci_disable_device(bp->pdev); 11875 } 11876 11877 static void bnxt_init_dflt_coal(struct bnxt *bp) 11878 { 11879 struct bnxt_coal *coal; 11880 11881 /* Tick values in micro seconds. 11882 * 1 coal_buf x bufs_per_record = 1 completion record. 11883 */ 11884 coal = &bp->rx_coal; 11885 coal->coal_ticks = 10; 11886 coal->coal_bufs = 30; 11887 coal->coal_ticks_irq = 1; 11888 coal->coal_bufs_irq = 2; 11889 coal->idle_thresh = 50; 11890 coal->bufs_per_record = 2; 11891 coal->budget = 64; /* NAPI budget */ 11892 11893 coal = &bp->tx_coal; 11894 coal->coal_ticks = 28; 11895 coal->coal_bufs = 30; 11896 coal->coal_ticks_irq = 2; 11897 coal->coal_bufs_irq = 2; 11898 coal->bufs_per_record = 1; 11899 11900 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11901 } 11902 11903 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11904 { 11905 int rc; 11906 11907 bp->fw_cap = 0; 11908 rc = bnxt_hwrm_ver_get(bp); 11909 bnxt_try_map_fw_health_reg(bp); 11910 if (rc) { 11911 rc = bnxt_try_recover_fw(bp); 11912 if (rc) 11913 return rc; 11914 rc = bnxt_hwrm_ver_get(bp); 11915 if (rc) 11916 return rc; 11917 } 11918 11919 bnxt_nvm_cfg_ver_get(bp); 11920 11921 rc = bnxt_hwrm_func_reset(bp); 11922 if (rc) 11923 return -ENODEV; 11924 11925 bnxt_hwrm_fw_set_time(bp); 11926 return 0; 11927 } 11928 11929 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11930 { 11931 int rc; 11932 11933 /* Get the MAX capabilities for this function */ 11934 rc = bnxt_hwrm_func_qcaps(bp); 11935 if (rc) { 11936 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11937 rc); 11938 return -ENODEV; 11939 } 11940 11941 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11942 if (rc) 11943 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11944 rc); 11945 11946 if (bnxt_alloc_fw_health(bp)) { 11947 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11948 } else { 11949 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11950 if (rc) 11951 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11952 rc); 11953 } 11954 11955 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11956 if (rc) 11957 return -ENODEV; 11958 11959 bnxt_hwrm_func_qcfg(bp); 11960 bnxt_hwrm_vnic_qcaps(bp); 11961 bnxt_hwrm_port_led_qcaps(bp); 11962 bnxt_ethtool_init(bp); 11963 bnxt_dcb_init(bp); 11964 return 0; 11965 } 11966 11967 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11968 { 11969 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11970 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11971 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11972 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11973 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11974 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11975 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11976 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11977 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11978 } 11979 } 11980 11981 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11982 { 11983 struct net_device *dev = bp->dev; 11984 11985 dev->hw_features &= ~NETIF_F_NTUPLE; 11986 dev->features &= ~NETIF_F_NTUPLE; 11987 bp->flags &= ~BNXT_FLAG_RFS; 11988 if (bnxt_rfs_supported(bp)) { 11989 dev->hw_features |= NETIF_F_NTUPLE; 11990 if (bnxt_rfs_capable(bp)) { 11991 bp->flags |= BNXT_FLAG_RFS; 11992 dev->features |= NETIF_F_NTUPLE; 11993 } 11994 } 11995 } 11996 11997 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11998 { 11999 struct pci_dev *pdev = bp->pdev; 12000 12001 bnxt_set_dflt_rss_hash_type(bp); 12002 bnxt_set_dflt_rfs(bp); 12003 12004 bnxt_get_wol_settings(bp); 12005 if (bp->flags & BNXT_FLAG_WOL_CAP) 12006 device_set_wakeup_enable(&pdev->dev, bp->wol); 12007 else 12008 device_set_wakeup_capable(&pdev->dev, false); 12009 12010 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12011 bnxt_hwrm_coal_params_qcaps(bp); 12012 } 12013 12014 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12015 12016 int bnxt_fw_init_one(struct bnxt *bp) 12017 { 12018 int rc; 12019 12020 rc = bnxt_fw_init_one_p1(bp); 12021 if (rc) { 12022 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12023 return rc; 12024 } 12025 rc = bnxt_fw_init_one_p2(bp); 12026 if (rc) { 12027 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12028 return rc; 12029 } 12030 rc = bnxt_probe_phy(bp, false); 12031 if (rc) 12032 return rc; 12033 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12034 if (rc) 12035 return rc; 12036 12037 /* In case fw capabilities have changed, destroy the unneeded 12038 * reporters and create newly capable ones. 12039 */ 12040 bnxt_dl_fw_reporters_destroy(bp, false); 12041 bnxt_dl_fw_reporters_create(bp); 12042 bnxt_fw_init_one_p3(bp); 12043 return 0; 12044 } 12045 12046 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12047 { 12048 struct bnxt_fw_health *fw_health = bp->fw_health; 12049 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12050 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12051 u32 reg_type, reg_off, delay_msecs; 12052 12053 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12054 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12055 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12056 switch (reg_type) { 12057 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12058 pci_write_config_dword(bp->pdev, reg_off, val); 12059 break; 12060 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12061 writel(reg_off & BNXT_GRC_BASE_MASK, 12062 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12063 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12064 fallthrough; 12065 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12066 writel(val, bp->bar0 + reg_off); 12067 break; 12068 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12069 writel(val, bp->bar1 + reg_off); 12070 break; 12071 } 12072 if (delay_msecs) { 12073 pci_read_config_dword(bp->pdev, 0, &val); 12074 msleep(delay_msecs); 12075 } 12076 } 12077 12078 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12079 { 12080 struct hwrm_func_qcfg_output *resp; 12081 struct hwrm_func_qcfg_input *req; 12082 bool result = true; /* firmware will enforce if unknown */ 12083 12084 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12085 return result; 12086 12087 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12088 return result; 12089 12090 req->fid = cpu_to_le16(0xffff); 12091 resp = hwrm_req_hold(bp, req); 12092 if (!hwrm_req_send(bp, req)) 12093 result = !!(le16_to_cpu(resp->flags) & 12094 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12095 hwrm_req_drop(bp, req); 12096 return result; 12097 } 12098 12099 static void bnxt_reset_all(struct bnxt *bp) 12100 { 12101 struct bnxt_fw_health *fw_health = bp->fw_health; 12102 int i, rc; 12103 12104 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12105 bnxt_fw_reset_via_optee(bp); 12106 bp->fw_reset_timestamp = jiffies; 12107 return; 12108 } 12109 12110 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12111 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12112 bnxt_fw_reset_writel(bp, i); 12113 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12114 struct hwrm_fw_reset_input *req; 12115 12116 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12117 if (!rc) { 12118 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12119 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12120 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12121 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12122 rc = hwrm_req_send(bp, req); 12123 } 12124 if (rc != -ENODEV) 12125 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12126 } 12127 bp->fw_reset_timestamp = jiffies; 12128 } 12129 12130 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12131 { 12132 return time_after(jiffies, bp->fw_reset_timestamp + 12133 (bp->fw_reset_max_dsecs * HZ / 10)); 12134 } 12135 12136 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12137 { 12138 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12139 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12140 bnxt_ulp_start(bp, rc); 12141 bnxt_dl_health_fw_status_update(bp, false); 12142 } 12143 bp->fw_reset_state = 0; 12144 dev_close(bp->dev); 12145 } 12146 12147 static void bnxt_fw_reset_task(struct work_struct *work) 12148 { 12149 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12150 int rc = 0; 12151 12152 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12153 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12154 return; 12155 } 12156 12157 switch (bp->fw_reset_state) { 12158 case BNXT_FW_RESET_STATE_POLL_VF: { 12159 int n = bnxt_get_registered_vfs(bp); 12160 int tmo; 12161 12162 if (n < 0) { 12163 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12164 n, jiffies_to_msecs(jiffies - 12165 bp->fw_reset_timestamp)); 12166 goto fw_reset_abort; 12167 } else if (n > 0) { 12168 if (bnxt_fw_reset_timeout(bp)) { 12169 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12170 bp->fw_reset_state = 0; 12171 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12172 n); 12173 return; 12174 } 12175 bnxt_queue_fw_reset_work(bp, HZ / 10); 12176 return; 12177 } 12178 bp->fw_reset_timestamp = jiffies; 12179 rtnl_lock(); 12180 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12181 bnxt_fw_reset_abort(bp, rc); 12182 rtnl_unlock(); 12183 return; 12184 } 12185 bnxt_fw_reset_close(bp); 12186 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12187 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12188 tmo = HZ / 10; 12189 } else { 12190 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12191 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12192 } 12193 rtnl_unlock(); 12194 bnxt_queue_fw_reset_work(bp, tmo); 12195 return; 12196 } 12197 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12198 u32 val; 12199 12200 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12201 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12202 !bnxt_fw_reset_timeout(bp)) { 12203 bnxt_queue_fw_reset_work(bp, HZ / 5); 12204 return; 12205 } 12206 12207 if (!bp->fw_health->primary) { 12208 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12209 12210 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12211 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12212 return; 12213 } 12214 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12215 } 12216 fallthrough; 12217 case BNXT_FW_RESET_STATE_RESET_FW: 12218 bnxt_reset_all(bp); 12219 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12220 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12221 return; 12222 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12223 bnxt_inv_fw_health_reg(bp); 12224 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12225 !bp->fw_reset_min_dsecs) { 12226 u16 val; 12227 12228 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12229 if (val == 0xffff) { 12230 if (bnxt_fw_reset_timeout(bp)) { 12231 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12232 rc = -ETIMEDOUT; 12233 goto fw_reset_abort; 12234 } 12235 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12236 return; 12237 } 12238 } 12239 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12240 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12241 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12242 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12243 bnxt_dl_remote_reload(bp); 12244 if (pci_enable_device(bp->pdev)) { 12245 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12246 rc = -ENODEV; 12247 goto fw_reset_abort; 12248 } 12249 pci_set_master(bp->pdev); 12250 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12251 fallthrough; 12252 case BNXT_FW_RESET_STATE_POLL_FW: 12253 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12254 rc = bnxt_hwrm_poll(bp); 12255 if (rc) { 12256 if (bnxt_fw_reset_timeout(bp)) { 12257 netdev_err(bp->dev, "Firmware reset aborted\n"); 12258 goto fw_reset_abort_status; 12259 } 12260 bnxt_queue_fw_reset_work(bp, HZ / 5); 12261 return; 12262 } 12263 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12264 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12265 fallthrough; 12266 case BNXT_FW_RESET_STATE_OPENING: 12267 while (!rtnl_trylock()) { 12268 bnxt_queue_fw_reset_work(bp, HZ / 10); 12269 return; 12270 } 12271 rc = bnxt_open(bp->dev); 12272 if (rc) { 12273 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12274 bnxt_fw_reset_abort(bp, rc); 12275 rtnl_unlock(); 12276 return; 12277 } 12278 12279 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12280 bp->fw_health->enabled) { 12281 bp->fw_health->last_fw_reset_cnt = 12282 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12283 } 12284 bp->fw_reset_state = 0; 12285 /* Make sure fw_reset_state is 0 before clearing the flag */ 12286 smp_mb__before_atomic(); 12287 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12288 bnxt_ulp_start(bp, 0); 12289 bnxt_reenable_sriov(bp); 12290 bnxt_vf_reps_alloc(bp); 12291 bnxt_vf_reps_open(bp); 12292 bnxt_ptp_reapply_pps(bp); 12293 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12294 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12295 bnxt_dl_health_fw_recovery_done(bp); 12296 bnxt_dl_health_fw_status_update(bp, true); 12297 } 12298 rtnl_unlock(); 12299 break; 12300 } 12301 return; 12302 12303 fw_reset_abort_status: 12304 if (bp->fw_health->status_reliable || 12305 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12306 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12307 12308 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12309 } 12310 fw_reset_abort: 12311 rtnl_lock(); 12312 bnxt_fw_reset_abort(bp, rc); 12313 rtnl_unlock(); 12314 } 12315 12316 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12317 { 12318 int rc; 12319 struct bnxt *bp = netdev_priv(dev); 12320 12321 SET_NETDEV_DEV(dev, &pdev->dev); 12322 12323 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12324 rc = pci_enable_device(pdev); 12325 if (rc) { 12326 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12327 goto init_err; 12328 } 12329 12330 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12331 dev_err(&pdev->dev, 12332 "Cannot find PCI device base address, aborting\n"); 12333 rc = -ENODEV; 12334 goto init_err_disable; 12335 } 12336 12337 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12338 if (rc) { 12339 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12340 goto init_err_disable; 12341 } 12342 12343 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12344 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12345 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12346 rc = -EIO; 12347 goto init_err_release; 12348 } 12349 12350 pci_set_master(pdev); 12351 12352 bp->dev = dev; 12353 bp->pdev = pdev; 12354 12355 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12356 * determines the BAR size. 12357 */ 12358 bp->bar0 = pci_ioremap_bar(pdev, 0); 12359 if (!bp->bar0) { 12360 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12361 rc = -ENOMEM; 12362 goto init_err_release; 12363 } 12364 12365 bp->bar2 = pci_ioremap_bar(pdev, 4); 12366 if (!bp->bar2) { 12367 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12368 rc = -ENOMEM; 12369 goto init_err_release; 12370 } 12371 12372 pci_enable_pcie_error_reporting(pdev); 12373 12374 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12375 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12376 12377 spin_lock_init(&bp->ntp_fltr_lock); 12378 #if BITS_PER_LONG == 32 12379 spin_lock_init(&bp->db_lock); 12380 #endif 12381 12382 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12383 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12384 12385 bnxt_init_dflt_coal(bp); 12386 12387 timer_setup(&bp->timer, bnxt_timer, 0); 12388 bp->current_interval = BNXT_TIMER_INTERVAL; 12389 12390 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12391 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12392 12393 clear_bit(BNXT_STATE_OPEN, &bp->state); 12394 return 0; 12395 12396 init_err_release: 12397 bnxt_unmap_bars(bp, pdev); 12398 pci_release_regions(pdev); 12399 12400 init_err_disable: 12401 pci_disable_device(pdev); 12402 12403 init_err: 12404 return rc; 12405 } 12406 12407 /* rtnl_lock held */ 12408 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12409 { 12410 struct sockaddr *addr = p; 12411 struct bnxt *bp = netdev_priv(dev); 12412 int rc = 0; 12413 12414 if (!is_valid_ether_addr(addr->sa_data)) 12415 return -EADDRNOTAVAIL; 12416 12417 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12418 return 0; 12419 12420 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12421 if (rc) 12422 return rc; 12423 12424 eth_hw_addr_set(dev, addr->sa_data); 12425 if (netif_running(dev)) { 12426 bnxt_close_nic(bp, false, false); 12427 rc = bnxt_open_nic(bp, false, false); 12428 } 12429 12430 return rc; 12431 } 12432 12433 /* rtnl_lock held */ 12434 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12435 { 12436 struct bnxt *bp = netdev_priv(dev); 12437 12438 if (netif_running(dev)) 12439 bnxt_close_nic(bp, true, false); 12440 12441 dev->mtu = new_mtu; 12442 bnxt_set_ring_params(bp); 12443 12444 if (netif_running(dev)) 12445 return bnxt_open_nic(bp, true, false); 12446 12447 return 0; 12448 } 12449 12450 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12451 { 12452 struct bnxt *bp = netdev_priv(dev); 12453 bool sh = false; 12454 int rc; 12455 12456 if (tc > bp->max_tc) { 12457 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12458 tc, bp->max_tc); 12459 return -EINVAL; 12460 } 12461 12462 if (netdev_get_num_tc(dev) == tc) 12463 return 0; 12464 12465 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12466 sh = true; 12467 12468 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12469 sh, tc, bp->tx_nr_rings_xdp); 12470 if (rc) 12471 return rc; 12472 12473 /* Needs to close the device and do hw resource re-allocations */ 12474 if (netif_running(bp->dev)) 12475 bnxt_close_nic(bp, true, false); 12476 12477 if (tc) { 12478 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12479 netdev_set_num_tc(dev, tc); 12480 } else { 12481 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12482 netdev_reset_tc(dev); 12483 } 12484 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12485 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12486 bp->tx_nr_rings + bp->rx_nr_rings; 12487 12488 if (netif_running(bp->dev)) 12489 return bnxt_open_nic(bp, true, false); 12490 12491 return 0; 12492 } 12493 12494 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12495 void *cb_priv) 12496 { 12497 struct bnxt *bp = cb_priv; 12498 12499 if (!bnxt_tc_flower_enabled(bp) || 12500 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12501 return -EOPNOTSUPP; 12502 12503 switch (type) { 12504 case TC_SETUP_CLSFLOWER: 12505 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12506 default: 12507 return -EOPNOTSUPP; 12508 } 12509 } 12510 12511 LIST_HEAD(bnxt_block_cb_list); 12512 12513 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12514 void *type_data) 12515 { 12516 struct bnxt *bp = netdev_priv(dev); 12517 12518 switch (type) { 12519 case TC_SETUP_BLOCK: 12520 return flow_block_cb_setup_simple(type_data, 12521 &bnxt_block_cb_list, 12522 bnxt_setup_tc_block_cb, 12523 bp, bp, true); 12524 case TC_SETUP_QDISC_MQPRIO: { 12525 struct tc_mqprio_qopt *mqprio = type_data; 12526 12527 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12528 12529 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12530 } 12531 default: 12532 return -EOPNOTSUPP; 12533 } 12534 } 12535 12536 #ifdef CONFIG_RFS_ACCEL 12537 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12538 struct bnxt_ntuple_filter *f2) 12539 { 12540 struct flow_keys *keys1 = &f1->fkeys; 12541 struct flow_keys *keys2 = &f2->fkeys; 12542 12543 if (keys1->basic.n_proto != keys2->basic.n_proto || 12544 keys1->basic.ip_proto != keys2->basic.ip_proto) 12545 return false; 12546 12547 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12548 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12549 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12550 return false; 12551 } else { 12552 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12553 sizeof(keys1->addrs.v6addrs.src)) || 12554 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12555 sizeof(keys1->addrs.v6addrs.dst))) 12556 return false; 12557 } 12558 12559 if (keys1->ports.ports == keys2->ports.ports && 12560 keys1->control.flags == keys2->control.flags && 12561 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12562 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12563 return true; 12564 12565 return false; 12566 } 12567 12568 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12569 u16 rxq_index, u32 flow_id) 12570 { 12571 struct bnxt *bp = netdev_priv(dev); 12572 struct bnxt_ntuple_filter *fltr, *new_fltr; 12573 struct flow_keys *fkeys; 12574 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12575 int rc = 0, idx, bit_id, l2_idx = 0; 12576 struct hlist_head *head; 12577 u32 flags; 12578 12579 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12580 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12581 int off = 0, j; 12582 12583 netif_addr_lock_bh(dev); 12584 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12585 if (ether_addr_equal(eth->h_dest, 12586 vnic->uc_list + off)) { 12587 l2_idx = j + 1; 12588 break; 12589 } 12590 } 12591 netif_addr_unlock_bh(dev); 12592 if (!l2_idx) 12593 return -EINVAL; 12594 } 12595 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12596 if (!new_fltr) 12597 return -ENOMEM; 12598 12599 fkeys = &new_fltr->fkeys; 12600 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12601 rc = -EPROTONOSUPPORT; 12602 goto err_free; 12603 } 12604 12605 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12606 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12607 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12608 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12609 rc = -EPROTONOSUPPORT; 12610 goto err_free; 12611 } 12612 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12613 bp->hwrm_spec_code < 0x10601) { 12614 rc = -EPROTONOSUPPORT; 12615 goto err_free; 12616 } 12617 flags = fkeys->control.flags; 12618 if (((flags & FLOW_DIS_ENCAPSULATION) && 12619 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12620 rc = -EPROTONOSUPPORT; 12621 goto err_free; 12622 } 12623 12624 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12625 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12626 12627 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12628 head = &bp->ntp_fltr_hash_tbl[idx]; 12629 rcu_read_lock(); 12630 hlist_for_each_entry_rcu(fltr, head, hash) { 12631 if (bnxt_fltr_match(fltr, new_fltr)) { 12632 rcu_read_unlock(); 12633 rc = 0; 12634 goto err_free; 12635 } 12636 } 12637 rcu_read_unlock(); 12638 12639 spin_lock_bh(&bp->ntp_fltr_lock); 12640 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12641 BNXT_NTP_FLTR_MAX_FLTR, 0); 12642 if (bit_id < 0) { 12643 spin_unlock_bh(&bp->ntp_fltr_lock); 12644 rc = -ENOMEM; 12645 goto err_free; 12646 } 12647 12648 new_fltr->sw_id = (u16)bit_id; 12649 new_fltr->flow_id = flow_id; 12650 new_fltr->l2_fltr_idx = l2_idx; 12651 new_fltr->rxq = rxq_index; 12652 hlist_add_head_rcu(&new_fltr->hash, head); 12653 bp->ntp_fltr_count++; 12654 spin_unlock_bh(&bp->ntp_fltr_lock); 12655 12656 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12657 bnxt_queue_sp_work(bp); 12658 12659 return new_fltr->sw_id; 12660 12661 err_free: 12662 kfree(new_fltr); 12663 return rc; 12664 } 12665 12666 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12667 { 12668 int i; 12669 12670 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12671 struct hlist_head *head; 12672 struct hlist_node *tmp; 12673 struct bnxt_ntuple_filter *fltr; 12674 int rc; 12675 12676 head = &bp->ntp_fltr_hash_tbl[i]; 12677 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12678 bool del = false; 12679 12680 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12681 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12682 fltr->flow_id, 12683 fltr->sw_id)) { 12684 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12685 fltr); 12686 del = true; 12687 } 12688 } else { 12689 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12690 fltr); 12691 if (rc) 12692 del = true; 12693 else 12694 set_bit(BNXT_FLTR_VALID, &fltr->state); 12695 } 12696 12697 if (del) { 12698 spin_lock_bh(&bp->ntp_fltr_lock); 12699 hlist_del_rcu(&fltr->hash); 12700 bp->ntp_fltr_count--; 12701 spin_unlock_bh(&bp->ntp_fltr_lock); 12702 synchronize_rcu(); 12703 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12704 kfree(fltr); 12705 } 12706 } 12707 } 12708 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12709 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12710 } 12711 12712 #else 12713 12714 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12715 { 12716 } 12717 12718 #endif /* CONFIG_RFS_ACCEL */ 12719 12720 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12721 { 12722 struct bnxt *bp = netdev_priv(netdev); 12723 struct udp_tunnel_info ti; 12724 unsigned int cmd; 12725 12726 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12727 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 12728 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12729 else 12730 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12731 12732 if (ti.port) 12733 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12734 12735 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12736 } 12737 12738 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12739 .sync_table = bnxt_udp_tunnel_sync, 12740 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12741 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12742 .tables = { 12743 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12744 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12745 }, 12746 }; 12747 12748 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12749 struct net_device *dev, u32 filter_mask, 12750 int nlflags) 12751 { 12752 struct bnxt *bp = netdev_priv(dev); 12753 12754 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12755 nlflags, filter_mask, NULL); 12756 } 12757 12758 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12759 u16 flags, struct netlink_ext_ack *extack) 12760 { 12761 struct bnxt *bp = netdev_priv(dev); 12762 struct nlattr *attr, *br_spec; 12763 int rem, rc = 0; 12764 12765 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12766 return -EOPNOTSUPP; 12767 12768 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12769 if (!br_spec) 12770 return -EINVAL; 12771 12772 nla_for_each_nested(attr, br_spec, rem) { 12773 u16 mode; 12774 12775 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12776 continue; 12777 12778 if (nla_len(attr) < sizeof(mode)) 12779 return -EINVAL; 12780 12781 mode = nla_get_u16(attr); 12782 if (mode == bp->br_mode) 12783 break; 12784 12785 rc = bnxt_hwrm_set_br_mode(bp, mode); 12786 if (!rc) 12787 bp->br_mode = mode; 12788 break; 12789 } 12790 return rc; 12791 } 12792 12793 int bnxt_get_port_parent_id(struct net_device *dev, 12794 struct netdev_phys_item_id *ppid) 12795 { 12796 struct bnxt *bp = netdev_priv(dev); 12797 12798 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12799 return -EOPNOTSUPP; 12800 12801 /* The PF and it's VF-reps only support the switchdev framework */ 12802 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12803 return -EOPNOTSUPP; 12804 12805 ppid->id_len = sizeof(bp->dsn); 12806 memcpy(ppid->id, bp->dsn, ppid->id_len); 12807 12808 return 0; 12809 } 12810 12811 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12812 { 12813 struct bnxt *bp = netdev_priv(dev); 12814 12815 return &bp->dl_port; 12816 } 12817 12818 static const struct net_device_ops bnxt_netdev_ops = { 12819 .ndo_open = bnxt_open, 12820 .ndo_start_xmit = bnxt_start_xmit, 12821 .ndo_stop = bnxt_close, 12822 .ndo_get_stats64 = bnxt_get_stats64, 12823 .ndo_set_rx_mode = bnxt_set_rx_mode, 12824 .ndo_eth_ioctl = bnxt_ioctl, 12825 .ndo_validate_addr = eth_validate_addr, 12826 .ndo_set_mac_address = bnxt_change_mac_addr, 12827 .ndo_change_mtu = bnxt_change_mtu, 12828 .ndo_fix_features = bnxt_fix_features, 12829 .ndo_set_features = bnxt_set_features, 12830 .ndo_features_check = bnxt_features_check, 12831 .ndo_tx_timeout = bnxt_tx_timeout, 12832 #ifdef CONFIG_BNXT_SRIOV 12833 .ndo_get_vf_config = bnxt_get_vf_config, 12834 .ndo_set_vf_mac = bnxt_set_vf_mac, 12835 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12836 .ndo_set_vf_rate = bnxt_set_vf_bw, 12837 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12838 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12839 .ndo_set_vf_trust = bnxt_set_vf_trust, 12840 #endif 12841 .ndo_setup_tc = bnxt_setup_tc, 12842 #ifdef CONFIG_RFS_ACCEL 12843 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12844 #endif 12845 .ndo_bpf = bnxt_xdp, 12846 .ndo_xdp_xmit = bnxt_xdp_xmit, 12847 .ndo_bridge_getlink = bnxt_bridge_getlink, 12848 .ndo_bridge_setlink = bnxt_bridge_setlink, 12849 .ndo_get_devlink_port = bnxt_get_devlink_port, 12850 }; 12851 12852 static void bnxt_remove_one(struct pci_dev *pdev) 12853 { 12854 struct net_device *dev = pci_get_drvdata(pdev); 12855 struct bnxt *bp = netdev_priv(dev); 12856 12857 if (BNXT_PF(bp)) 12858 bnxt_sriov_disable(bp); 12859 12860 if (BNXT_PF(bp)) 12861 devlink_port_type_clear(&bp->dl_port); 12862 12863 bnxt_ptp_clear(bp); 12864 pci_disable_pcie_error_reporting(pdev); 12865 unregister_netdev(dev); 12866 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12867 /* Flush any pending tasks */ 12868 cancel_work_sync(&bp->sp_task); 12869 cancel_delayed_work_sync(&bp->fw_reset_task); 12870 bp->sp_event = 0; 12871 12872 bnxt_dl_fw_reporters_destroy(bp, true); 12873 bnxt_dl_unregister(bp); 12874 bnxt_shutdown_tc(bp); 12875 12876 bnxt_clear_int_mode(bp); 12877 bnxt_hwrm_func_drv_unrgtr(bp); 12878 bnxt_free_hwrm_resources(bp); 12879 bnxt_ethtool_free(bp); 12880 bnxt_dcb_free(bp); 12881 kfree(bp->edev); 12882 bp->edev = NULL; 12883 kfree(bp->ptp_cfg); 12884 bp->ptp_cfg = NULL; 12885 kfree(bp->fw_health); 12886 bp->fw_health = NULL; 12887 bnxt_cleanup_pci(bp); 12888 bnxt_free_ctx_mem(bp); 12889 kfree(bp->ctx); 12890 bp->ctx = NULL; 12891 kfree(bp->rss_indir_tbl); 12892 bp->rss_indir_tbl = NULL; 12893 bnxt_free_port_stats(bp); 12894 free_netdev(dev); 12895 } 12896 12897 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12898 { 12899 int rc = 0; 12900 struct bnxt_link_info *link_info = &bp->link_info; 12901 12902 bp->phy_flags = 0; 12903 rc = bnxt_hwrm_phy_qcaps(bp); 12904 if (rc) { 12905 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12906 rc); 12907 return rc; 12908 } 12909 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12910 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12911 else 12912 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12913 if (!fw_dflt) 12914 return 0; 12915 12916 mutex_lock(&bp->link_lock); 12917 rc = bnxt_update_link(bp, false); 12918 if (rc) { 12919 mutex_unlock(&bp->link_lock); 12920 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12921 rc); 12922 return rc; 12923 } 12924 12925 /* Older firmware does not have supported_auto_speeds, so assume 12926 * that all supported speeds can be autonegotiated. 12927 */ 12928 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12929 link_info->support_auto_speeds = link_info->support_speeds; 12930 12931 bnxt_init_ethtool_link_settings(bp); 12932 mutex_unlock(&bp->link_lock); 12933 return 0; 12934 } 12935 12936 static int bnxt_get_max_irq(struct pci_dev *pdev) 12937 { 12938 u16 ctrl; 12939 12940 if (!pdev->msix_cap) 12941 return 1; 12942 12943 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12944 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12945 } 12946 12947 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12948 int *max_cp) 12949 { 12950 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12951 int max_ring_grps = 0, max_irq; 12952 12953 *max_tx = hw_resc->max_tx_rings; 12954 *max_rx = hw_resc->max_rx_rings; 12955 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12956 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12957 bnxt_get_ulp_msix_num(bp), 12958 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12959 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12960 *max_cp = min_t(int, *max_cp, max_irq); 12961 max_ring_grps = hw_resc->max_hw_ring_grps; 12962 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12963 *max_cp -= 1; 12964 *max_rx -= 2; 12965 } 12966 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12967 *max_rx >>= 1; 12968 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12969 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12970 /* On P5 chips, max_cp output param should be available NQs */ 12971 *max_cp = max_irq; 12972 } 12973 *max_rx = min_t(int, *max_rx, max_ring_grps); 12974 } 12975 12976 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12977 { 12978 int rx, tx, cp; 12979 12980 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12981 *max_rx = rx; 12982 *max_tx = tx; 12983 if (!rx || !tx || !cp) 12984 return -ENOMEM; 12985 12986 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12987 } 12988 12989 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12990 bool shared) 12991 { 12992 int rc; 12993 12994 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12995 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12996 /* Not enough rings, try disabling agg rings. */ 12997 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12998 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12999 if (rc) { 13000 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13001 bp->flags |= BNXT_FLAG_AGG_RINGS; 13002 return rc; 13003 } 13004 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13005 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13006 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13007 bnxt_set_ring_params(bp); 13008 } 13009 13010 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13011 int max_cp, max_stat, max_irq; 13012 13013 /* Reserve minimum resources for RoCE */ 13014 max_cp = bnxt_get_max_func_cp_rings(bp); 13015 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13016 max_irq = bnxt_get_max_func_irqs(bp); 13017 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13018 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13019 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13020 return 0; 13021 13022 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13023 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13024 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13025 max_cp = min_t(int, max_cp, max_irq); 13026 max_cp = min_t(int, max_cp, max_stat); 13027 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13028 if (rc) 13029 rc = 0; 13030 } 13031 return rc; 13032 } 13033 13034 /* In initial default shared ring setting, each shared ring must have a 13035 * RX/TX ring pair. 13036 */ 13037 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13038 { 13039 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13040 bp->rx_nr_rings = bp->cp_nr_rings; 13041 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13042 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13043 } 13044 13045 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13046 { 13047 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13048 13049 if (!bnxt_can_reserve_rings(bp)) 13050 return 0; 13051 13052 if (sh) 13053 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13054 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13055 /* Reduce default rings on multi-port cards so that total default 13056 * rings do not exceed CPU count. 13057 */ 13058 if (bp->port_count > 1) { 13059 int max_rings = 13060 max_t(int, num_online_cpus() / bp->port_count, 1); 13061 13062 dflt_rings = min_t(int, dflt_rings, max_rings); 13063 } 13064 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13065 if (rc) 13066 return rc; 13067 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13068 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13069 if (sh) 13070 bnxt_trim_dflt_sh_rings(bp); 13071 else 13072 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13073 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13074 13075 rc = __bnxt_reserve_rings(bp); 13076 if (rc) 13077 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13078 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13079 if (sh) 13080 bnxt_trim_dflt_sh_rings(bp); 13081 13082 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13083 if (bnxt_need_reserve_rings(bp)) { 13084 rc = __bnxt_reserve_rings(bp); 13085 if (rc) 13086 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13087 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13088 } 13089 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13090 bp->rx_nr_rings++; 13091 bp->cp_nr_rings++; 13092 } 13093 if (rc) { 13094 bp->tx_nr_rings = 0; 13095 bp->rx_nr_rings = 0; 13096 } 13097 return rc; 13098 } 13099 13100 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13101 { 13102 int rc; 13103 13104 if (bp->tx_nr_rings) 13105 return 0; 13106 13107 bnxt_ulp_irq_stop(bp); 13108 bnxt_clear_int_mode(bp); 13109 rc = bnxt_set_dflt_rings(bp, true); 13110 if (rc) { 13111 netdev_err(bp->dev, "Not enough rings available.\n"); 13112 goto init_dflt_ring_err; 13113 } 13114 rc = bnxt_init_int_mode(bp); 13115 if (rc) 13116 goto init_dflt_ring_err; 13117 13118 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13119 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13120 bp->flags |= BNXT_FLAG_RFS; 13121 bp->dev->features |= NETIF_F_NTUPLE; 13122 } 13123 init_dflt_ring_err: 13124 bnxt_ulp_irq_restart(bp, rc); 13125 return rc; 13126 } 13127 13128 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13129 { 13130 int rc; 13131 13132 ASSERT_RTNL(); 13133 bnxt_hwrm_func_qcaps(bp); 13134 13135 if (netif_running(bp->dev)) 13136 __bnxt_close_nic(bp, true, false); 13137 13138 bnxt_ulp_irq_stop(bp); 13139 bnxt_clear_int_mode(bp); 13140 rc = bnxt_init_int_mode(bp); 13141 bnxt_ulp_irq_restart(bp, rc); 13142 13143 if (netif_running(bp->dev)) { 13144 if (rc) 13145 dev_close(bp->dev); 13146 else 13147 rc = bnxt_open_nic(bp, true, false); 13148 } 13149 13150 return rc; 13151 } 13152 13153 static int bnxt_init_mac_addr(struct bnxt *bp) 13154 { 13155 int rc = 0; 13156 13157 if (BNXT_PF(bp)) { 13158 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13159 } else { 13160 #ifdef CONFIG_BNXT_SRIOV 13161 struct bnxt_vf_info *vf = &bp->vf; 13162 bool strict_approval = true; 13163 13164 if (is_valid_ether_addr(vf->mac_addr)) { 13165 /* overwrite netdev dev_addr with admin VF MAC */ 13166 eth_hw_addr_set(bp->dev, vf->mac_addr); 13167 /* Older PF driver or firmware may not approve this 13168 * correctly. 13169 */ 13170 strict_approval = false; 13171 } else { 13172 eth_hw_addr_random(bp->dev); 13173 } 13174 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13175 #endif 13176 } 13177 return rc; 13178 } 13179 13180 static void bnxt_vpd_read_info(struct bnxt *bp) 13181 { 13182 struct pci_dev *pdev = bp->pdev; 13183 unsigned int vpd_size, kw_len; 13184 int pos, size; 13185 u8 *vpd_data; 13186 13187 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13188 if (IS_ERR(vpd_data)) { 13189 pci_warn(pdev, "Unable to read VPD\n"); 13190 return; 13191 } 13192 13193 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13194 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13195 if (pos < 0) 13196 goto read_sn; 13197 13198 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13199 memcpy(bp->board_partno, &vpd_data[pos], size); 13200 13201 read_sn: 13202 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13203 PCI_VPD_RO_KEYWORD_SERIALNO, 13204 &kw_len); 13205 if (pos < 0) 13206 goto exit; 13207 13208 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13209 memcpy(bp->board_serialno, &vpd_data[pos], size); 13210 exit: 13211 kfree(vpd_data); 13212 } 13213 13214 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13215 { 13216 struct pci_dev *pdev = bp->pdev; 13217 u64 qword; 13218 13219 qword = pci_get_dsn(pdev); 13220 if (!qword) { 13221 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13222 return -EOPNOTSUPP; 13223 } 13224 13225 put_unaligned_le64(qword, dsn); 13226 13227 bp->flags |= BNXT_FLAG_DSN_VALID; 13228 return 0; 13229 } 13230 13231 static int bnxt_map_db_bar(struct bnxt *bp) 13232 { 13233 if (!bp->db_size) 13234 return -ENODEV; 13235 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13236 if (!bp->bar1) 13237 return -ENOMEM; 13238 return 0; 13239 } 13240 13241 void bnxt_print_device_info(struct bnxt *bp) 13242 { 13243 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13244 board_info[bp->board_idx].name, 13245 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13246 13247 pcie_print_link_status(bp->pdev); 13248 } 13249 13250 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13251 { 13252 struct net_device *dev; 13253 struct bnxt *bp; 13254 int rc, max_irqs; 13255 13256 if (pci_is_bridge(pdev)) 13257 return -ENODEV; 13258 13259 /* Clear any pending DMA transactions from crash kernel 13260 * while loading driver in capture kernel. 13261 */ 13262 if (is_kdump_kernel()) { 13263 pci_clear_master(pdev); 13264 pcie_flr(pdev); 13265 } 13266 13267 max_irqs = bnxt_get_max_irq(pdev); 13268 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13269 if (!dev) 13270 return -ENOMEM; 13271 13272 bp = netdev_priv(dev); 13273 bp->board_idx = ent->driver_data; 13274 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13275 bnxt_set_max_func_irqs(bp, max_irqs); 13276 13277 if (bnxt_vf_pciid(bp->board_idx)) 13278 bp->flags |= BNXT_FLAG_VF; 13279 13280 if (pdev->msix_cap) 13281 bp->flags |= BNXT_FLAG_MSIX_CAP; 13282 13283 rc = bnxt_init_board(pdev, dev); 13284 if (rc < 0) 13285 goto init_err_free; 13286 13287 dev->netdev_ops = &bnxt_netdev_ops; 13288 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13289 dev->ethtool_ops = &bnxt_ethtool_ops; 13290 pci_set_drvdata(pdev, dev); 13291 13292 rc = bnxt_alloc_hwrm_resources(bp); 13293 if (rc) 13294 goto init_err_pci_clean; 13295 13296 mutex_init(&bp->hwrm_cmd_lock); 13297 mutex_init(&bp->link_lock); 13298 13299 rc = bnxt_fw_init_one_p1(bp); 13300 if (rc) 13301 goto init_err_pci_clean; 13302 13303 if (BNXT_PF(bp)) 13304 bnxt_vpd_read_info(bp); 13305 13306 if (BNXT_CHIP_P5(bp)) { 13307 bp->flags |= BNXT_FLAG_CHIP_P5; 13308 if (BNXT_CHIP_SR2(bp)) 13309 bp->flags |= BNXT_FLAG_CHIP_SR2; 13310 } 13311 13312 rc = bnxt_alloc_rss_indir_tbl(bp); 13313 if (rc) 13314 goto init_err_pci_clean; 13315 13316 rc = bnxt_fw_init_one_p2(bp); 13317 if (rc) 13318 goto init_err_pci_clean; 13319 13320 rc = bnxt_map_db_bar(bp); 13321 if (rc) { 13322 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13323 rc); 13324 goto init_err_pci_clean; 13325 } 13326 13327 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13328 NETIF_F_TSO | NETIF_F_TSO6 | 13329 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13330 NETIF_F_GSO_IPXIP4 | 13331 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13332 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13333 NETIF_F_RXCSUM | NETIF_F_GRO; 13334 13335 if (BNXT_SUPPORTS_TPA(bp)) 13336 dev->hw_features |= NETIF_F_LRO; 13337 13338 dev->hw_enc_features = 13339 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13340 NETIF_F_TSO | NETIF_F_TSO6 | 13341 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13342 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13343 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13344 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13345 13346 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13347 NETIF_F_GSO_GRE_CSUM; 13348 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13349 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13350 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13351 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13352 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13353 if (BNXT_SUPPORTS_TPA(bp)) 13354 dev->hw_features |= NETIF_F_GRO_HW; 13355 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13356 if (dev->features & NETIF_F_GRO_HW) 13357 dev->features &= ~NETIF_F_LRO; 13358 dev->priv_flags |= IFF_UNICAST_FLT; 13359 13360 #ifdef CONFIG_BNXT_SRIOV 13361 init_waitqueue_head(&bp->sriov_cfg_wait); 13362 mutex_init(&bp->sriov_lock); 13363 #endif 13364 if (BNXT_SUPPORTS_TPA(bp)) { 13365 bp->gro_func = bnxt_gro_func_5730x; 13366 if (BNXT_CHIP_P4(bp)) 13367 bp->gro_func = bnxt_gro_func_5731x; 13368 else if (BNXT_CHIP_P5(bp)) 13369 bp->gro_func = bnxt_gro_func_5750x; 13370 } 13371 if (!BNXT_CHIP_P4_PLUS(bp)) 13372 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13373 13374 rc = bnxt_init_mac_addr(bp); 13375 if (rc) { 13376 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13377 rc = -EADDRNOTAVAIL; 13378 goto init_err_pci_clean; 13379 } 13380 13381 if (BNXT_PF(bp)) { 13382 /* Read the adapter's DSN to use as the eswitch switch_id */ 13383 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13384 } 13385 13386 /* MTU range: 60 - FW defined max */ 13387 dev->min_mtu = ETH_ZLEN; 13388 dev->max_mtu = bp->max_mtu; 13389 13390 rc = bnxt_probe_phy(bp, true); 13391 if (rc) 13392 goto init_err_pci_clean; 13393 13394 bnxt_set_rx_skb_mode(bp, false); 13395 bnxt_set_tpa_flags(bp); 13396 bnxt_set_ring_params(bp); 13397 rc = bnxt_set_dflt_rings(bp, true); 13398 if (rc) { 13399 netdev_err(bp->dev, "Not enough rings available.\n"); 13400 rc = -ENOMEM; 13401 goto init_err_pci_clean; 13402 } 13403 13404 bnxt_fw_init_one_p3(bp); 13405 13406 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13407 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13408 13409 rc = bnxt_init_int_mode(bp); 13410 if (rc) 13411 goto init_err_pci_clean; 13412 13413 /* No TC has been set yet and rings may have been trimmed due to 13414 * limited MSIX, so we re-initialize the TX rings per TC. 13415 */ 13416 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13417 13418 if (BNXT_PF(bp)) { 13419 if (!bnxt_pf_wq) { 13420 bnxt_pf_wq = 13421 create_singlethread_workqueue("bnxt_pf_wq"); 13422 if (!bnxt_pf_wq) { 13423 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13424 rc = -ENOMEM; 13425 goto init_err_pci_clean; 13426 } 13427 } 13428 rc = bnxt_init_tc(bp); 13429 if (rc) 13430 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13431 rc); 13432 } 13433 13434 bnxt_inv_fw_health_reg(bp); 13435 rc = bnxt_dl_register(bp); 13436 if (rc) 13437 goto init_err_dl; 13438 13439 rc = register_netdev(dev); 13440 if (rc) 13441 goto init_err_cleanup; 13442 13443 if (BNXT_PF(bp)) 13444 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13445 bnxt_dl_fw_reporters_create(bp); 13446 13447 bnxt_print_device_info(bp); 13448 13449 pci_save_state(pdev); 13450 return 0; 13451 13452 init_err_cleanup: 13453 bnxt_dl_unregister(bp); 13454 init_err_dl: 13455 bnxt_shutdown_tc(bp); 13456 bnxt_clear_int_mode(bp); 13457 13458 init_err_pci_clean: 13459 bnxt_hwrm_func_drv_unrgtr(bp); 13460 bnxt_free_hwrm_resources(bp); 13461 bnxt_ethtool_free(bp); 13462 bnxt_ptp_clear(bp); 13463 kfree(bp->ptp_cfg); 13464 bp->ptp_cfg = NULL; 13465 kfree(bp->fw_health); 13466 bp->fw_health = NULL; 13467 bnxt_cleanup_pci(bp); 13468 bnxt_free_ctx_mem(bp); 13469 kfree(bp->ctx); 13470 bp->ctx = NULL; 13471 kfree(bp->rss_indir_tbl); 13472 bp->rss_indir_tbl = NULL; 13473 13474 init_err_free: 13475 free_netdev(dev); 13476 return rc; 13477 } 13478 13479 static void bnxt_shutdown(struct pci_dev *pdev) 13480 { 13481 struct net_device *dev = pci_get_drvdata(pdev); 13482 struct bnxt *bp; 13483 13484 if (!dev) 13485 return; 13486 13487 rtnl_lock(); 13488 bp = netdev_priv(dev); 13489 if (!bp) 13490 goto shutdown_exit; 13491 13492 if (netif_running(dev)) 13493 dev_close(dev); 13494 13495 bnxt_ulp_shutdown(bp); 13496 bnxt_clear_int_mode(bp); 13497 pci_disable_device(pdev); 13498 13499 if (system_state == SYSTEM_POWER_OFF) { 13500 pci_wake_from_d3(pdev, bp->wol); 13501 pci_set_power_state(pdev, PCI_D3hot); 13502 } 13503 13504 shutdown_exit: 13505 rtnl_unlock(); 13506 } 13507 13508 #ifdef CONFIG_PM_SLEEP 13509 static int bnxt_suspend(struct device *device) 13510 { 13511 struct net_device *dev = dev_get_drvdata(device); 13512 struct bnxt *bp = netdev_priv(dev); 13513 int rc = 0; 13514 13515 rtnl_lock(); 13516 bnxt_ulp_stop(bp); 13517 if (netif_running(dev)) { 13518 netif_device_detach(dev); 13519 rc = bnxt_close(dev); 13520 } 13521 bnxt_hwrm_func_drv_unrgtr(bp); 13522 pci_disable_device(bp->pdev); 13523 bnxt_free_ctx_mem(bp); 13524 kfree(bp->ctx); 13525 bp->ctx = NULL; 13526 rtnl_unlock(); 13527 return rc; 13528 } 13529 13530 static int bnxt_resume(struct device *device) 13531 { 13532 struct net_device *dev = dev_get_drvdata(device); 13533 struct bnxt *bp = netdev_priv(dev); 13534 int rc = 0; 13535 13536 rtnl_lock(); 13537 rc = pci_enable_device(bp->pdev); 13538 if (rc) { 13539 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13540 rc); 13541 goto resume_exit; 13542 } 13543 pci_set_master(bp->pdev); 13544 if (bnxt_hwrm_ver_get(bp)) { 13545 rc = -ENODEV; 13546 goto resume_exit; 13547 } 13548 rc = bnxt_hwrm_func_reset(bp); 13549 if (rc) { 13550 rc = -EBUSY; 13551 goto resume_exit; 13552 } 13553 13554 rc = bnxt_hwrm_func_qcaps(bp); 13555 if (rc) 13556 goto resume_exit; 13557 13558 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13559 rc = -ENODEV; 13560 goto resume_exit; 13561 } 13562 13563 bnxt_get_wol_settings(bp); 13564 if (netif_running(dev)) { 13565 rc = bnxt_open(dev); 13566 if (!rc) 13567 netif_device_attach(dev); 13568 } 13569 13570 resume_exit: 13571 bnxt_ulp_start(bp, rc); 13572 if (!rc) 13573 bnxt_reenable_sriov(bp); 13574 rtnl_unlock(); 13575 return rc; 13576 } 13577 13578 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13579 #define BNXT_PM_OPS (&bnxt_pm_ops) 13580 13581 #else 13582 13583 #define BNXT_PM_OPS NULL 13584 13585 #endif /* CONFIG_PM_SLEEP */ 13586 13587 /** 13588 * bnxt_io_error_detected - called when PCI error is detected 13589 * @pdev: Pointer to PCI device 13590 * @state: The current pci connection state 13591 * 13592 * This function is called after a PCI bus error affecting 13593 * this device has been detected. 13594 */ 13595 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13596 pci_channel_state_t state) 13597 { 13598 struct net_device *netdev = pci_get_drvdata(pdev); 13599 struct bnxt *bp = netdev_priv(netdev); 13600 13601 netdev_info(netdev, "PCI I/O error detected\n"); 13602 13603 rtnl_lock(); 13604 netif_device_detach(netdev); 13605 13606 bnxt_ulp_stop(bp); 13607 13608 if (state == pci_channel_io_perm_failure) { 13609 rtnl_unlock(); 13610 return PCI_ERS_RESULT_DISCONNECT; 13611 } 13612 13613 if (state == pci_channel_io_frozen) 13614 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13615 13616 if (netif_running(netdev)) 13617 bnxt_close(netdev); 13618 13619 if (pci_is_enabled(pdev)) 13620 pci_disable_device(pdev); 13621 bnxt_free_ctx_mem(bp); 13622 kfree(bp->ctx); 13623 bp->ctx = NULL; 13624 rtnl_unlock(); 13625 13626 /* Request a slot slot reset. */ 13627 return PCI_ERS_RESULT_NEED_RESET; 13628 } 13629 13630 /** 13631 * bnxt_io_slot_reset - called after the pci bus has been reset. 13632 * @pdev: Pointer to PCI device 13633 * 13634 * Restart the card from scratch, as if from a cold-boot. 13635 * At this point, the card has exprienced a hard reset, 13636 * followed by fixups by BIOS, and has its config space 13637 * set up identically to what it was at cold boot. 13638 */ 13639 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13640 { 13641 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13642 struct net_device *netdev = pci_get_drvdata(pdev); 13643 struct bnxt *bp = netdev_priv(netdev); 13644 int err = 0, off; 13645 13646 netdev_info(bp->dev, "PCI Slot Reset\n"); 13647 13648 rtnl_lock(); 13649 13650 if (pci_enable_device(pdev)) { 13651 dev_err(&pdev->dev, 13652 "Cannot re-enable PCI device after reset.\n"); 13653 } else { 13654 pci_set_master(pdev); 13655 /* Upon fatal error, our device internal logic that latches to 13656 * BAR value is getting reset and will restore only upon 13657 * rewritting the BARs. 13658 * 13659 * As pci_restore_state() does not re-write the BARs if the 13660 * value is same as saved value earlier, driver needs to 13661 * write the BARs to 0 to force restore, in case of fatal error. 13662 */ 13663 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13664 &bp->state)) { 13665 for (off = PCI_BASE_ADDRESS_0; 13666 off <= PCI_BASE_ADDRESS_5; off += 4) 13667 pci_write_config_dword(bp->pdev, off, 0); 13668 } 13669 pci_restore_state(pdev); 13670 pci_save_state(pdev); 13671 13672 err = bnxt_hwrm_func_reset(bp); 13673 if (!err) 13674 result = PCI_ERS_RESULT_RECOVERED; 13675 } 13676 13677 rtnl_unlock(); 13678 13679 return result; 13680 } 13681 13682 /** 13683 * bnxt_io_resume - called when traffic can start flowing again. 13684 * @pdev: Pointer to PCI device 13685 * 13686 * This callback is called when the error recovery driver tells 13687 * us that its OK to resume normal operation. 13688 */ 13689 static void bnxt_io_resume(struct pci_dev *pdev) 13690 { 13691 struct net_device *netdev = pci_get_drvdata(pdev); 13692 struct bnxt *bp = netdev_priv(netdev); 13693 int err; 13694 13695 netdev_info(bp->dev, "PCI Slot Resume\n"); 13696 rtnl_lock(); 13697 13698 err = bnxt_hwrm_func_qcaps(bp); 13699 if (!err && netif_running(netdev)) 13700 err = bnxt_open(netdev); 13701 13702 bnxt_ulp_start(bp, err); 13703 if (!err) { 13704 bnxt_reenable_sriov(bp); 13705 netif_device_attach(netdev); 13706 } 13707 13708 rtnl_unlock(); 13709 } 13710 13711 static const struct pci_error_handlers bnxt_err_handler = { 13712 .error_detected = bnxt_io_error_detected, 13713 .slot_reset = bnxt_io_slot_reset, 13714 .resume = bnxt_io_resume 13715 }; 13716 13717 static struct pci_driver bnxt_pci_driver = { 13718 .name = DRV_MODULE_NAME, 13719 .id_table = bnxt_pci_tbl, 13720 .probe = bnxt_init_one, 13721 .remove = bnxt_remove_one, 13722 .shutdown = bnxt_shutdown, 13723 .driver.pm = BNXT_PM_OPS, 13724 .err_handler = &bnxt_err_handler, 13725 #if defined(CONFIG_BNXT_SRIOV) 13726 .sriov_configure = bnxt_sriov_configure, 13727 #endif 13728 }; 13729 13730 static int __init bnxt_init(void) 13731 { 13732 bnxt_debug_init(); 13733 return pci_register_driver(&bnxt_pci_driver); 13734 } 13735 13736 static void __exit bnxt_exit(void) 13737 { 13738 pci_unregister_driver(&bnxt_pci_driver); 13739 if (bnxt_pf_wq) 13740 destroy_workqueue(bnxt_pf_wq); 13741 bnxt_debug_exit(); 13742 } 13743 13744 module_init(bnxt_init); 13745 module_exit(bnxt_exit); 13746