1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 141 }; 142 143 static const struct pci_device_id bnxt_pci_tbl[] = { 144 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 147 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 149 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 150 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 151 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 153 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 154 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 159 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 164 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 166 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 178 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 179 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 180 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 181 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 182 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 183 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 184 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 185 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 186 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 193 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 194 #ifdef CONFIG_BNXT_SRIOV 195 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 196 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 200 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 211 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 216 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 217 #endif 218 { 0 } 219 }; 220 221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 222 223 static const u16 bnxt_vf_req_snif[] = { 224 HWRM_FUNC_CFG, 225 HWRM_FUNC_VF_CFG, 226 HWRM_PORT_PHY_QCFG, 227 HWRM_CFA_L2_FILTER_ALLOC, 228 }; 229 230 static const u16 bnxt_async_events_arr[] = { 231 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 234 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 235 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 239 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 240 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 243 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 244 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 246 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 247 }; 248 249 static struct workqueue_struct *bnxt_pf_wq; 250 251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 252 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 254 255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 256 .ports = { 257 .src = 0, 258 .dst = 0, 259 }, 260 .addrs = { 261 .v6addrs = { 262 .src = BNXT_IPV6_MASK_NONE, 263 .dst = BNXT_IPV6_MASK_NONE, 264 }, 265 }, 266 }; 267 268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 269 .ports = { 270 .src = cpu_to_be16(0xffff), 271 .dst = cpu_to_be16(0xffff), 272 }, 273 .addrs = { 274 .v6addrs = { 275 .src = BNXT_IPV6_MASK_ALL, 276 .dst = BNXT_IPV6_MASK_ALL, 277 }, 278 }, 279 }; 280 281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 282 .ports = { 283 .src = cpu_to_be16(0xffff), 284 .dst = cpu_to_be16(0xffff), 285 }, 286 .addrs = { 287 .v4addrs = { 288 .src = cpu_to_be32(0xffffffff), 289 .dst = cpu_to_be32(0xffffffff), 290 }, 291 }, 292 }; 293 294 static bool bnxt_vf_pciid(enum board_idx idx) 295 { 296 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 297 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 298 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 299 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 300 } 301 302 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 303 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 304 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 305 306 #define BNXT_CP_DB_IRQ_DIS(db) \ 307 writel(DB_CP_IRQ_DIS_FLAGS, db) 308 309 #define BNXT_DB_CQ(db, idx) \ 310 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 311 312 #define BNXT_DB_NQ_P5(db, idx) \ 313 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 314 (db)->doorbell) 315 316 #define BNXT_DB_NQ_P7(db, idx) \ 317 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 318 DB_RING_IDX(db, idx), (db)->doorbell) 319 320 #define BNXT_DB_CQ_ARM(db, idx) \ 321 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 322 323 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 324 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 325 DB_RING_IDX(db, idx), (db)->doorbell) 326 327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 328 { 329 if (bp->flags & BNXT_FLAG_CHIP_P7) 330 BNXT_DB_NQ_P7(db, idx); 331 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 332 BNXT_DB_NQ_P5(db, idx); 333 else 334 BNXT_DB_CQ(db, idx); 335 } 336 337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 338 { 339 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 340 BNXT_DB_NQ_ARM_P5(db, idx); 341 else 342 BNXT_DB_CQ_ARM(db, idx); 343 } 344 345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 346 { 347 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 348 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 349 DB_RING_IDX(db, idx), db->doorbell); 350 else 351 BNXT_DB_CQ(db, idx); 352 } 353 354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 355 { 356 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 357 return; 358 359 if (BNXT_PF(bp)) 360 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 361 else 362 schedule_delayed_work(&bp->fw_reset_task, delay); 363 } 364 365 static void __bnxt_queue_sp_work(struct bnxt *bp) 366 { 367 if (BNXT_PF(bp)) 368 queue_work(bnxt_pf_wq, &bp->sp_task); 369 else 370 schedule_work(&bp->sp_task); 371 } 372 373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 374 { 375 set_bit(event, &bp->sp_event); 376 __bnxt_queue_sp_work(bp); 377 } 378 379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 380 { 381 if (!rxr->bnapi->in_reset) { 382 rxr->bnapi->in_reset = true; 383 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 384 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 385 else 386 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 387 __bnxt_queue_sp_work(bp); 388 } 389 rxr->rx_next_cons = 0xffff; 390 } 391 392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 393 u16 curr) 394 { 395 struct bnxt_napi *bnapi = txr->bnapi; 396 397 if (bnapi->tx_fault) 398 return; 399 400 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 401 txr->txq_index, txr->tx_hw_cons, 402 txr->tx_cons, txr->tx_prod, curr); 403 WARN_ON_ONCE(1); 404 bnapi->tx_fault = 1; 405 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 406 } 407 408 const u16 bnxt_lhint_arr[] = { 409 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 410 TX_BD_FLAGS_LHINT_512_TO_1023, 411 TX_BD_FLAGS_LHINT_1024_TO_2047, 412 TX_BD_FLAGS_LHINT_1024_TO_2047, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 }; 429 430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 431 { 432 struct metadata_dst *md_dst = skb_metadata_dst(skb); 433 434 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 435 return 0; 436 437 return md_dst->u.port_info.port_id; 438 } 439 440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 441 u16 prod) 442 { 443 /* Sync BD data before updating doorbell */ 444 wmb(); 445 bnxt_db_write(bp, &txr->tx_db, prod); 446 txr->kick_pending = 0; 447 } 448 449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 450 { 451 struct bnxt *bp = netdev_priv(dev); 452 struct tx_bd *txbd, *txbd0; 453 struct tx_bd_ext *txbd1; 454 struct netdev_queue *txq; 455 int i; 456 dma_addr_t mapping; 457 unsigned int length, pad = 0; 458 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 459 u16 prod, last_frag; 460 struct pci_dev *pdev = bp->pdev; 461 struct bnxt_tx_ring_info *txr; 462 struct bnxt_sw_tx_bd *tx_buf; 463 __le32 lflags = 0; 464 465 i = skb_get_queue_mapping(skb); 466 if (unlikely(i >= bp->tx_nr_rings)) { 467 dev_kfree_skb_any(skb); 468 dev_core_stats_tx_dropped_inc(dev); 469 return NETDEV_TX_OK; 470 } 471 472 txq = netdev_get_tx_queue(dev, i); 473 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 474 prod = txr->tx_prod; 475 476 free_size = bnxt_tx_avail(bp, txr); 477 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 478 /* We must have raced with NAPI cleanup */ 479 if (net_ratelimit() && txr->kick_pending) 480 netif_warn(bp, tx_err, dev, 481 "bnxt: ring busy w/ flush pending!\n"); 482 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 483 bp->tx_wake_thresh)) 484 return NETDEV_TX_BUSY; 485 } 486 487 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 488 goto tx_free; 489 490 length = skb->len; 491 len = skb_headlen(skb); 492 last_frag = skb_shinfo(skb)->nr_frags; 493 494 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 495 496 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 497 tx_buf->skb = skb; 498 tx_buf->nr_frags = last_frag; 499 500 vlan_tag_flags = 0; 501 cfa_action = bnxt_xmit_get_cfa_action(skb); 502 if (skb_vlan_tag_present(skb)) { 503 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 504 skb_vlan_tag_get(skb); 505 /* Currently supports 8021Q, 8021AD vlan offloads 506 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 507 */ 508 if (skb->vlan_proto == htons(ETH_P_8021Q)) 509 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 510 } 511 512 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 513 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 514 515 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 516 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 517 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 518 &ptp->tx_hdr_off)) { 519 if (vlan_tag_flags) 520 ptp->tx_hdr_off += VLAN_HLEN; 521 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 522 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 523 } else { 524 atomic_inc(&bp->ptp_cfg->tx_avail); 525 } 526 } 527 } 528 529 if (unlikely(skb->no_fcs)) 530 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 531 532 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 533 !lflags) { 534 struct tx_push_buffer *tx_push_buf = txr->tx_push; 535 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 536 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 537 void __iomem *db = txr->tx_db.doorbell; 538 void *pdata = tx_push_buf->data; 539 u64 *end; 540 int j, push_len; 541 542 /* Set COAL_NOW to be ready quickly for the next push */ 543 tx_push->tx_bd_len_flags_type = 544 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 545 TX_BD_TYPE_LONG_TX_BD | 546 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 547 TX_BD_FLAGS_COAL_NOW | 548 TX_BD_FLAGS_PACKET_END | 549 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 550 551 if (skb->ip_summed == CHECKSUM_PARTIAL) 552 tx_push1->tx_bd_hsize_lflags = 553 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 554 else 555 tx_push1->tx_bd_hsize_lflags = 0; 556 557 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 558 tx_push1->tx_bd_cfa_action = 559 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 560 561 end = pdata + length; 562 end = PTR_ALIGN(end, 8) - 1; 563 *end = 0; 564 565 skb_copy_from_linear_data(skb, pdata, len); 566 pdata += len; 567 for (j = 0; j < last_frag; j++) { 568 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 569 void *fptr; 570 571 fptr = skb_frag_address_safe(frag); 572 if (!fptr) 573 goto normal_tx; 574 575 memcpy(pdata, fptr, skb_frag_size(frag)); 576 pdata += skb_frag_size(frag); 577 } 578 579 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 580 txbd->tx_bd_haddr = txr->data_mapping; 581 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 582 prod = NEXT_TX(prod); 583 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 584 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 585 memcpy(txbd, tx_push1, sizeof(*txbd)); 586 prod = NEXT_TX(prod); 587 tx_push->doorbell = 588 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 589 DB_RING_IDX(&txr->tx_db, prod)); 590 WRITE_ONCE(txr->tx_prod, prod); 591 592 tx_buf->is_push = 1; 593 netdev_tx_sent_queue(txq, skb->len); 594 wmb(); /* Sync is_push and byte queue before pushing data */ 595 596 push_len = (length + sizeof(*tx_push) + 7) / 8; 597 if (push_len > 16) { 598 __iowrite64_copy(db, tx_push_buf, 16); 599 __iowrite32_copy(db + 4, tx_push_buf + 1, 600 (push_len - 16) << 1); 601 } else { 602 __iowrite64_copy(db, tx_push_buf, push_len); 603 } 604 605 goto tx_done; 606 } 607 608 normal_tx: 609 if (length < BNXT_MIN_PKT_SIZE) { 610 pad = BNXT_MIN_PKT_SIZE - length; 611 if (skb_pad(skb, pad)) 612 /* SKB already freed. */ 613 goto tx_kick_pending; 614 length = BNXT_MIN_PKT_SIZE; 615 } 616 617 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 618 619 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 620 goto tx_free; 621 622 dma_unmap_addr_set(tx_buf, mapping, mapping); 623 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 624 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 625 626 txbd->tx_bd_haddr = cpu_to_le64(mapping); 627 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 628 629 prod = NEXT_TX(prod); 630 txbd1 = (struct tx_bd_ext *) 631 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 632 633 txbd1->tx_bd_hsize_lflags = lflags; 634 if (skb_is_gso(skb)) { 635 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 636 u32 hdr_len; 637 638 if (skb->encapsulation) { 639 if (udp_gso) 640 hdr_len = skb_inner_transport_offset(skb) + 641 sizeof(struct udphdr); 642 else 643 hdr_len = skb_inner_tcp_all_headers(skb); 644 } else if (udp_gso) { 645 hdr_len = skb_transport_offset(skb) + 646 sizeof(struct udphdr); 647 } else { 648 hdr_len = skb_tcp_all_headers(skb); 649 } 650 651 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 652 TX_BD_FLAGS_T_IPID | 653 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 654 length = skb_shinfo(skb)->gso_size; 655 txbd1->tx_bd_mss = cpu_to_le32(length); 656 length += hdr_len; 657 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 658 txbd1->tx_bd_hsize_lflags |= 659 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 660 txbd1->tx_bd_mss = 0; 661 } 662 663 length >>= 9; 664 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 665 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 666 skb->len); 667 i = 0; 668 goto tx_dma_error; 669 } 670 flags |= bnxt_lhint_arr[length]; 671 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 672 673 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 674 txbd1->tx_bd_cfa_action = 675 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 676 txbd0 = txbd; 677 for (i = 0; i < last_frag; i++) { 678 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 679 680 prod = NEXT_TX(prod); 681 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 682 683 len = skb_frag_size(frag); 684 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 685 DMA_TO_DEVICE); 686 687 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 688 goto tx_dma_error; 689 690 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 691 dma_unmap_addr_set(tx_buf, mapping, mapping); 692 693 txbd->tx_bd_haddr = cpu_to_le64(mapping); 694 695 flags = len << TX_BD_LEN_SHIFT; 696 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 697 } 698 699 flags &= ~TX_BD_LEN; 700 txbd->tx_bd_len_flags_type = 701 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 702 TX_BD_FLAGS_PACKET_END); 703 704 netdev_tx_sent_queue(txq, skb->len); 705 706 skb_tx_timestamp(skb); 707 708 prod = NEXT_TX(prod); 709 WRITE_ONCE(txr->tx_prod, prod); 710 711 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 712 bnxt_txr_db_kick(bp, txr, prod); 713 } else { 714 if (free_size >= bp->tx_wake_thresh) 715 txbd0->tx_bd_len_flags_type |= 716 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 717 txr->kick_pending = 1; 718 } 719 720 tx_done: 721 722 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 723 if (netdev_xmit_more() && !tx_buf->is_push) { 724 txbd0->tx_bd_len_flags_type &= 725 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 726 bnxt_txr_db_kick(bp, txr, prod); 727 } 728 729 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 730 bp->tx_wake_thresh); 731 } 732 return NETDEV_TX_OK; 733 734 tx_dma_error: 735 last_frag = i; 736 737 /* start back at beginning and unmap skb */ 738 prod = txr->tx_prod; 739 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 740 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 741 skb_headlen(skb), DMA_TO_DEVICE); 742 prod = NEXT_TX(prod); 743 744 /* unmap remaining mapped pages */ 745 for (i = 0; i < last_frag; i++) { 746 prod = NEXT_TX(prod); 747 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 748 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 749 skb_frag_size(&skb_shinfo(skb)->frags[i]), 750 DMA_TO_DEVICE); 751 } 752 753 tx_free: 754 dev_kfree_skb_any(skb); 755 tx_kick_pending: 756 if (BNXT_TX_PTP_IS_SET(lflags)) 757 atomic_inc(&bp->ptp_cfg->tx_avail); 758 if (txr->kick_pending) 759 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 760 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 761 dev_core_stats_tx_dropped_inc(dev); 762 return NETDEV_TX_OK; 763 } 764 765 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 766 int budget) 767 { 768 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 769 struct pci_dev *pdev = bp->pdev; 770 u16 hw_cons = txr->tx_hw_cons; 771 unsigned int tx_bytes = 0; 772 u16 cons = txr->tx_cons; 773 int tx_pkts = 0; 774 775 while (RING_TX(bp, cons) != hw_cons) { 776 struct bnxt_sw_tx_bd *tx_buf; 777 struct sk_buff *skb; 778 int j, last; 779 780 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 781 cons = NEXT_TX(cons); 782 skb = tx_buf->skb; 783 tx_buf->skb = NULL; 784 785 if (unlikely(!skb)) { 786 bnxt_sched_reset_txr(bp, txr, cons); 787 return; 788 } 789 790 tx_pkts++; 791 tx_bytes += skb->len; 792 793 if (tx_buf->is_push) { 794 tx_buf->is_push = 0; 795 goto next_tx_int; 796 } 797 798 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 799 skb_headlen(skb), DMA_TO_DEVICE); 800 last = tx_buf->nr_frags; 801 802 for (j = 0; j < last; j++) { 803 cons = NEXT_TX(cons); 804 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 805 dma_unmap_page( 806 &pdev->dev, 807 dma_unmap_addr(tx_buf, mapping), 808 skb_frag_size(&skb_shinfo(skb)->frags[j]), 809 DMA_TO_DEVICE); 810 } 811 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 812 if (BNXT_CHIP_P5(bp)) { 813 /* PTP worker takes ownership of the skb */ 814 if (!bnxt_get_tx_ts_p5(bp, skb)) 815 skb = NULL; 816 else 817 atomic_inc(&bp->ptp_cfg->tx_avail); 818 } 819 } 820 821 next_tx_int: 822 cons = NEXT_TX(cons); 823 824 dev_consume_skb_any(skb); 825 } 826 827 WRITE_ONCE(txr->tx_cons, cons); 828 829 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 830 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 831 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 832 } 833 834 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 835 { 836 struct bnxt_tx_ring_info *txr; 837 int i; 838 839 bnxt_for_each_napi_tx(i, bnapi, txr) { 840 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 841 __bnxt_tx_int(bp, txr, budget); 842 } 843 bnapi->events &= ~BNXT_TX_CMP_EVENT; 844 } 845 846 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 847 struct bnxt_rx_ring_info *rxr, 848 unsigned int *offset, 849 gfp_t gfp) 850 { 851 struct page *page; 852 853 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 854 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 855 BNXT_RX_PAGE_SIZE); 856 } else { 857 page = page_pool_dev_alloc_pages(rxr->page_pool); 858 *offset = 0; 859 } 860 if (!page) 861 return NULL; 862 863 *mapping = page_pool_get_dma_addr(page) + *offset; 864 return page; 865 } 866 867 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 868 gfp_t gfp) 869 { 870 u8 *data; 871 struct pci_dev *pdev = bp->pdev; 872 873 if (gfp == GFP_ATOMIC) 874 data = napi_alloc_frag(bp->rx_buf_size); 875 else 876 data = netdev_alloc_frag(bp->rx_buf_size); 877 if (!data) 878 return NULL; 879 880 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 881 bp->rx_buf_use_size, bp->rx_dir, 882 DMA_ATTR_WEAK_ORDERING); 883 884 if (dma_mapping_error(&pdev->dev, *mapping)) { 885 skb_free_frag(data); 886 data = NULL; 887 } 888 return data; 889 } 890 891 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 892 u16 prod, gfp_t gfp) 893 { 894 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 895 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 896 dma_addr_t mapping; 897 898 if (BNXT_RX_PAGE_MODE(bp)) { 899 unsigned int offset; 900 struct page *page = 901 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 902 903 if (!page) 904 return -ENOMEM; 905 906 mapping += bp->rx_dma_offset; 907 rx_buf->data = page; 908 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 909 } else { 910 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 911 912 if (!data) 913 return -ENOMEM; 914 915 rx_buf->data = data; 916 rx_buf->data_ptr = data + bp->rx_offset; 917 } 918 rx_buf->mapping = mapping; 919 920 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 921 return 0; 922 } 923 924 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 925 { 926 u16 prod = rxr->rx_prod; 927 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 928 struct bnxt *bp = rxr->bnapi->bp; 929 struct rx_bd *cons_bd, *prod_bd; 930 931 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 932 cons_rx_buf = &rxr->rx_buf_ring[cons]; 933 934 prod_rx_buf->data = data; 935 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 936 937 prod_rx_buf->mapping = cons_rx_buf->mapping; 938 939 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 940 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 941 942 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 943 } 944 945 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 946 { 947 u16 next, max = rxr->rx_agg_bmap_size; 948 949 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 950 if (next >= max) 951 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 952 return next; 953 } 954 955 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 956 struct bnxt_rx_ring_info *rxr, 957 u16 prod, gfp_t gfp) 958 { 959 struct rx_bd *rxbd = 960 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 961 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 962 struct page *page; 963 dma_addr_t mapping; 964 u16 sw_prod = rxr->rx_sw_agg_prod; 965 unsigned int offset = 0; 966 967 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 968 969 if (!page) 970 return -ENOMEM; 971 972 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 973 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 974 975 __set_bit(sw_prod, rxr->rx_agg_bmap); 976 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 977 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 978 979 rx_agg_buf->page = page; 980 rx_agg_buf->offset = offset; 981 rx_agg_buf->mapping = mapping; 982 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 983 rxbd->rx_bd_opaque = sw_prod; 984 return 0; 985 } 986 987 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 988 struct bnxt_cp_ring_info *cpr, 989 u16 cp_cons, u16 curr) 990 { 991 struct rx_agg_cmp *agg; 992 993 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 994 agg = (struct rx_agg_cmp *) 995 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 996 return agg; 997 } 998 999 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1000 struct bnxt_rx_ring_info *rxr, 1001 u16 agg_id, u16 curr) 1002 { 1003 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1004 1005 return &tpa_info->agg_arr[curr]; 1006 } 1007 1008 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1009 u16 start, u32 agg_bufs, bool tpa) 1010 { 1011 struct bnxt_napi *bnapi = cpr->bnapi; 1012 struct bnxt *bp = bnapi->bp; 1013 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1014 u16 prod = rxr->rx_agg_prod; 1015 u16 sw_prod = rxr->rx_sw_agg_prod; 1016 bool p5_tpa = false; 1017 u32 i; 1018 1019 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1020 p5_tpa = true; 1021 1022 for (i = 0; i < agg_bufs; i++) { 1023 u16 cons; 1024 struct rx_agg_cmp *agg; 1025 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1026 struct rx_bd *prod_bd; 1027 struct page *page; 1028 1029 if (p5_tpa) 1030 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1031 else 1032 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1033 cons = agg->rx_agg_cmp_opaque; 1034 __clear_bit(cons, rxr->rx_agg_bmap); 1035 1036 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1037 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1038 1039 __set_bit(sw_prod, rxr->rx_agg_bmap); 1040 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1041 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1042 1043 /* It is possible for sw_prod to be equal to cons, so 1044 * set cons_rx_buf->page to NULL first. 1045 */ 1046 page = cons_rx_buf->page; 1047 cons_rx_buf->page = NULL; 1048 prod_rx_buf->page = page; 1049 prod_rx_buf->offset = cons_rx_buf->offset; 1050 1051 prod_rx_buf->mapping = cons_rx_buf->mapping; 1052 1053 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1054 1055 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1056 prod_bd->rx_bd_opaque = sw_prod; 1057 1058 prod = NEXT_RX_AGG(prod); 1059 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1060 } 1061 rxr->rx_agg_prod = prod; 1062 rxr->rx_sw_agg_prod = sw_prod; 1063 } 1064 1065 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1066 struct bnxt_rx_ring_info *rxr, 1067 u16 cons, void *data, u8 *data_ptr, 1068 dma_addr_t dma_addr, 1069 unsigned int offset_and_len) 1070 { 1071 unsigned int len = offset_and_len & 0xffff; 1072 struct page *page = data; 1073 u16 prod = rxr->rx_prod; 1074 struct sk_buff *skb; 1075 int err; 1076 1077 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1078 if (unlikely(err)) { 1079 bnxt_reuse_rx_data(rxr, cons, data); 1080 return NULL; 1081 } 1082 dma_addr -= bp->rx_dma_offset; 1083 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1084 bp->rx_dir); 1085 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1086 if (!skb) { 1087 page_pool_recycle_direct(rxr->page_pool, page); 1088 return NULL; 1089 } 1090 skb_mark_for_recycle(skb); 1091 skb_reserve(skb, bp->rx_offset); 1092 __skb_put(skb, len); 1093 1094 return skb; 1095 } 1096 1097 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1098 struct bnxt_rx_ring_info *rxr, 1099 u16 cons, void *data, u8 *data_ptr, 1100 dma_addr_t dma_addr, 1101 unsigned int offset_and_len) 1102 { 1103 unsigned int payload = offset_and_len >> 16; 1104 unsigned int len = offset_and_len & 0xffff; 1105 skb_frag_t *frag; 1106 struct page *page = data; 1107 u16 prod = rxr->rx_prod; 1108 struct sk_buff *skb; 1109 int off, err; 1110 1111 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1112 if (unlikely(err)) { 1113 bnxt_reuse_rx_data(rxr, cons, data); 1114 return NULL; 1115 } 1116 dma_addr -= bp->rx_dma_offset; 1117 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1118 bp->rx_dir); 1119 1120 if (unlikely(!payload)) 1121 payload = eth_get_headlen(bp->dev, data_ptr, len); 1122 1123 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1124 if (!skb) { 1125 page_pool_recycle_direct(rxr->page_pool, page); 1126 return NULL; 1127 } 1128 1129 skb_mark_for_recycle(skb); 1130 off = (void *)data_ptr - page_address(page); 1131 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1132 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1133 payload + NET_IP_ALIGN); 1134 1135 frag = &skb_shinfo(skb)->frags[0]; 1136 skb_frag_size_sub(frag, payload); 1137 skb_frag_off_add(frag, payload); 1138 skb->data_len -= payload; 1139 skb->tail += payload; 1140 1141 return skb; 1142 } 1143 1144 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1145 struct bnxt_rx_ring_info *rxr, u16 cons, 1146 void *data, u8 *data_ptr, 1147 dma_addr_t dma_addr, 1148 unsigned int offset_and_len) 1149 { 1150 u16 prod = rxr->rx_prod; 1151 struct sk_buff *skb; 1152 int err; 1153 1154 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1155 if (unlikely(err)) { 1156 bnxt_reuse_rx_data(rxr, cons, data); 1157 return NULL; 1158 } 1159 1160 skb = napi_build_skb(data, bp->rx_buf_size); 1161 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1162 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1163 if (!skb) { 1164 skb_free_frag(data); 1165 return NULL; 1166 } 1167 1168 skb_reserve(skb, bp->rx_offset); 1169 skb_put(skb, offset_and_len & 0xffff); 1170 return skb; 1171 } 1172 1173 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1174 struct bnxt_cp_ring_info *cpr, 1175 struct skb_shared_info *shinfo, 1176 u16 idx, u32 agg_bufs, bool tpa, 1177 struct xdp_buff *xdp) 1178 { 1179 struct bnxt_napi *bnapi = cpr->bnapi; 1180 struct pci_dev *pdev = bp->pdev; 1181 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1182 u16 prod = rxr->rx_agg_prod; 1183 u32 i, total_frag_len = 0; 1184 bool p5_tpa = false; 1185 1186 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1187 p5_tpa = true; 1188 1189 for (i = 0; i < agg_bufs; i++) { 1190 skb_frag_t *frag = &shinfo->frags[i]; 1191 u16 cons, frag_len; 1192 struct rx_agg_cmp *agg; 1193 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1194 struct page *page; 1195 dma_addr_t mapping; 1196 1197 if (p5_tpa) 1198 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1199 else 1200 agg = bnxt_get_agg(bp, cpr, idx, i); 1201 cons = agg->rx_agg_cmp_opaque; 1202 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1203 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1204 1205 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1206 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1207 cons_rx_buf->offset, frag_len); 1208 shinfo->nr_frags = i + 1; 1209 __clear_bit(cons, rxr->rx_agg_bmap); 1210 1211 /* It is possible for bnxt_alloc_rx_page() to allocate 1212 * a sw_prod index that equals the cons index, so we 1213 * need to clear the cons entry now. 1214 */ 1215 mapping = cons_rx_buf->mapping; 1216 page = cons_rx_buf->page; 1217 cons_rx_buf->page = NULL; 1218 1219 if (xdp && page_is_pfmemalloc(page)) 1220 xdp_buff_set_frag_pfmemalloc(xdp); 1221 1222 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1223 --shinfo->nr_frags; 1224 cons_rx_buf->page = page; 1225 1226 /* Update prod since possibly some pages have been 1227 * allocated already. 1228 */ 1229 rxr->rx_agg_prod = prod; 1230 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1231 return 0; 1232 } 1233 1234 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1235 bp->rx_dir); 1236 1237 total_frag_len += frag_len; 1238 prod = NEXT_RX_AGG(prod); 1239 } 1240 rxr->rx_agg_prod = prod; 1241 return total_frag_len; 1242 } 1243 1244 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1245 struct bnxt_cp_ring_info *cpr, 1246 struct sk_buff *skb, u16 idx, 1247 u32 agg_bufs, bool tpa) 1248 { 1249 struct skb_shared_info *shinfo = skb_shinfo(skb); 1250 u32 total_frag_len = 0; 1251 1252 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1253 agg_bufs, tpa, NULL); 1254 if (!total_frag_len) { 1255 skb_mark_for_recycle(skb); 1256 dev_kfree_skb(skb); 1257 return NULL; 1258 } 1259 1260 skb->data_len += total_frag_len; 1261 skb->len += total_frag_len; 1262 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1263 return skb; 1264 } 1265 1266 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1267 struct bnxt_cp_ring_info *cpr, 1268 struct xdp_buff *xdp, u16 idx, 1269 u32 agg_bufs, bool tpa) 1270 { 1271 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1272 u32 total_frag_len = 0; 1273 1274 if (!xdp_buff_has_frags(xdp)) 1275 shinfo->nr_frags = 0; 1276 1277 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1278 idx, agg_bufs, tpa, xdp); 1279 if (total_frag_len) { 1280 xdp_buff_set_frags_flag(xdp); 1281 shinfo->nr_frags = agg_bufs; 1282 shinfo->xdp_frags_size = total_frag_len; 1283 } 1284 return total_frag_len; 1285 } 1286 1287 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1288 u8 agg_bufs, u32 *raw_cons) 1289 { 1290 u16 last; 1291 struct rx_agg_cmp *agg; 1292 1293 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1294 last = RING_CMP(*raw_cons); 1295 agg = (struct rx_agg_cmp *) 1296 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1297 return RX_AGG_CMP_VALID(agg, *raw_cons); 1298 } 1299 1300 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1301 unsigned int len, 1302 dma_addr_t mapping) 1303 { 1304 struct bnxt *bp = bnapi->bp; 1305 struct pci_dev *pdev = bp->pdev; 1306 struct sk_buff *skb; 1307 1308 skb = napi_alloc_skb(&bnapi->napi, len); 1309 if (!skb) 1310 return NULL; 1311 1312 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1313 bp->rx_dir); 1314 1315 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1316 len + NET_IP_ALIGN); 1317 1318 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1319 bp->rx_dir); 1320 1321 skb_put(skb, len); 1322 1323 return skb; 1324 } 1325 1326 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1327 unsigned int len, 1328 dma_addr_t mapping) 1329 { 1330 return bnxt_copy_data(bnapi, data, len, mapping); 1331 } 1332 1333 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1334 struct xdp_buff *xdp, 1335 unsigned int len, 1336 dma_addr_t mapping) 1337 { 1338 unsigned int metasize = 0; 1339 u8 *data = xdp->data; 1340 struct sk_buff *skb; 1341 1342 len = xdp->data_end - xdp->data_meta; 1343 metasize = xdp->data - xdp->data_meta; 1344 data = xdp->data_meta; 1345 1346 skb = bnxt_copy_data(bnapi, data, len, mapping); 1347 if (!skb) 1348 return skb; 1349 1350 if (metasize) { 1351 skb_metadata_set(skb, metasize); 1352 __skb_pull(skb, metasize); 1353 } 1354 1355 return skb; 1356 } 1357 1358 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1359 u32 *raw_cons, void *cmp) 1360 { 1361 struct rx_cmp *rxcmp = cmp; 1362 u32 tmp_raw_cons = *raw_cons; 1363 u8 cmp_type, agg_bufs = 0; 1364 1365 cmp_type = RX_CMP_TYPE(rxcmp); 1366 1367 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1368 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1369 RX_CMP_AGG_BUFS) >> 1370 RX_CMP_AGG_BUFS_SHIFT; 1371 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1372 struct rx_tpa_end_cmp *tpa_end = cmp; 1373 1374 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1375 return 0; 1376 1377 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1378 } 1379 1380 if (agg_bufs) { 1381 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1382 return -EBUSY; 1383 } 1384 *raw_cons = tmp_raw_cons; 1385 return 0; 1386 } 1387 1388 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1389 { 1390 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1391 u16 idx = agg_id & MAX_TPA_P5_MASK; 1392 1393 if (test_bit(idx, map->agg_idx_bmap)) 1394 idx = find_first_zero_bit(map->agg_idx_bmap, 1395 BNXT_AGG_IDX_BMAP_SIZE); 1396 __set_bit(idx, map->agg_idx_bmap); 1397 map->agg_id_tbl[agg_id] = idx; 1398 return idx; 1399 } 1400 1401 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1402 { 1403 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1404 1405 __clear_bit(idx, map->agg_idx_bmap); 1406 } 1407 1408 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1409 { 1410 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1411 1412 return map->agg_id_tbl[agg_id]; 1413 } 1414 1415 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1416 struct rx_tpa_start_cmp *tpa_start, 1417 struct rx_tpa_start_cmp_ext *tpa_start1) 1418 { 1419 tpa_info->cfa_code_valid = 1; 1420 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1421 tpa_info->vlan_valid = 0; 1422 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1423 tpa_info->vlan_valid = 1; 1424 tpa_info->metadata = 1425 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1426 } 1427 } 1428 1429 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1430 struct rx_tpa_start_cmp *tpa_start, 1431 struct rx_tpa_start_cmp_ext *tpa_start1) 1432 { 1433 tpa_info->vlan_valid = 0; 1434 if (TPA_START_VLAN_VALID(tpa_start)) { 1435 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1436 u32 vlan_proto = ETH_P_8021Q; 1437 1438 tpa_info->vlan_valid = 1; 1439 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1440 vlan_proto = ETH_P_8021AD; 1441 tpa_info->metadata = vlan_proto << 16 | 1442 TPA_START_METADATA0_TCI(tpa_start1); 1443 } 1444 } 1445 1446 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1447 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1448 struct rx_tpa_start_cmp_ext *tpa_start1) 1449 { 1450 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1451 struct bnxt_tpa_info *tpa_info; 1452 u16 cons, prod, agg_id; 1453 struct rx_bd *prod_bd; 1454 dma_addr_t mapping; 1455 1456 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1457 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1458 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1459 } else { 1460 agg_id = TPA_START_AGG_ID(tpa_start); 1461 } 1462 cons = tpa_start->rx_tpa_start_cmp_opaque; 1463 prod = rxr->rx_prod; 1464 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1465 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1466 tpa_info = &rxr->rx_tpa[agg_id]; 1467 1468 if (unlikely(cons != rxr->rx_next_cons || 1469 TPA_START_ERROR(tpa_start))) { 1470 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1471 cons, rxr->rx_next_cons, 1472 TPA_START_ERROR_CODE(tpa_start1)); 1473 bnxt_sched_reset_rxr(bp, rxr); 1474 return; 1475 } 1476 prod_rx_buf->data = tpa_info->data; 1477 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1478 1479 mapping = tpa_info->mapping; 1480 prod_rx_buf->mapping = mapping; 1481 1482 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1483 1484 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1485 1486 tpa_info->data = cons_rx_buf->data; 1487 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1488 cons_rx_buf->data = NULL; 1489 tpa_info->mapping = cons_rx_buf->mapping; 1490 1491 tpa_info->len = 1492 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1493 RX_TPA_START_CMP_LEN_SHIFT; 1494 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1495 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1496 tpa_info->gso_type = SKB_GSO_TCPV4; 1497 if (TPA_START_IS_IPV6(tpa_start1)) 1498 tpa_info->gso_type = SKB_GSO_TCPV6; 1499 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1500 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1501 TPA_START_HASH_TYPE(tpa_start) == 3) 1502 tpa_info->gso_type = SKB_GSO_TCPV6; 1503 tpa_info->rss_hash = 1504 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1505 } else { 1506 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1507 tpa_info->gso_type = 0; 1508 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1509 } 1510 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1511 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1512 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1513 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1514 else 1515 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1516 tpa_info->agg_count = 0; 1517 1518 rxr->rx_prod = NEXT_RX(prod); 1519 cons = RING_RX(bp, NEXT_RX(cons)); 1520 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1521 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1522 1523 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1524 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1525 cons_rx_buf->data = NULL; 1526 } 1527 1528 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1529 { 1530 if (agg_bufs) 1531 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1532 } 1533 1534 #ifdef CONFIG_INET 1535 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1536 { 1537 struct udphdr *uh = NULL; 1538 1539 if (ip_proto == htons(ETH_P_IP)) { 1540 struct iphdr *iph = (struct iphdr *)skb->data; 1541 1542 if (iph->protocol == IPPROTO_UDP) 1543 uh = (struct udphdr *)(iph + 1); 1544 } else { 1545 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1546 1547 if (iph->nexthdr == IPPROTO_UDP) 1548 uh = (struct udphdr *)(iph + 1); 1549 } 1550 if (uh) { 1551 if (uh->check) 1552 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1553 else 1554 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1555 } 1556 } 1557 #endif 1558 1559 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1560 int payload_off, int tcp_ts, 1561 struct sk_buff *skb) 1562 { 1563 #ifdef CONFIG_INET 1564 struct tcphdr *th; 1565 int len, nw_off; 1566 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1567 u32 hdr_info = tpa_info->hdr_info; 1568 bool loopback = false; 1569 1570 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1571 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1572 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1573 1574 /* If the packet is an internal loopback packet, the offsets will 1575 * have an extra 4 bytes. 1576 */ 1577 if (inner_mac_off == 4) { 1578 loopback = true; 1579 } else if (inner_mac_off > 4) { 1580 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1581 ETH_HLEN - 2)); 1582 1583 /* We only support inner iPv4/ipv6. If we don't see the 1584 * correct protocol ID, it must be a loopback packet where 1585 * the offsets are off by 4. 1586 */ 1587 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1588 loopback = true; 1589 } 1590 if (loopback) { 1591 /* internal loopback packet, subtract all offsets by 4 */ 1592 inner_ip_off -= 4; 1593 inner_mac_off -= 4; 1594 outer_ip_off -= 4; 1595 } 1596 1597 nw_off = inner_ip_off - ETH_HLEN; 1598 skb_set_network_header(skb, nw_off); 1599 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1600 struct ipv6hdr *iph = ipv6_hdr(skb); 1601 1602 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1603 len = skb->len - skb_transport_offset(skb); 1604 th = tcp_hdr(skb); 1605 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1606 } else { 1607 struct iphdr *iph = ip_hdr(skb); 1608 1609 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1610 len = skb->len - skb_transport_offset(skb); 1611 th = tcp_hdr(skb); 1612 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1613 } 1614 1615 if (inner_mac_off) { /* tunnel */ 1616 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1617 ETH_HLEN - 2)); 1618 1619 bnxt_gro_tunnel(skb, proto); 1620 } 1621 #endif 1622 return skb; 1623 } 1624 1625 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1626 int payload_off, int tcp_ts, 1627 struct sk_buff *skb) 1628 { 1629 #ifdef CONFIG_INET 1630 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1631 u32 hdr_info = tpa_info->hdr_info; 1632 int iphdr_len, nw_off; 1633 1634 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1635 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1636 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1637 1638 nw_off = inner_ip_off - ETH_HLEN; 1639 skb_set_network_header(skb, nw_off); 1640 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1641 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1642 skb_set_transport_header(skb, nw_off + iphdr_len); 1643 1644 if (inner_mac_off) { /* tunnel */ 1645 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1646 ETH_HLEN - 2)); 1647 1648 bnxt_gro_tunnel(skb, proto); 1649 } 1650 #endif 1651 return skb; 1652 } 1653 1654 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1655 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1656 1657 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1658 int payload_off, int tcp_ts, 1659 struct sk_buff *skb) 1660 { 1661 #ifdef CONFIG_INET 1662 struct tcphdr *th; 1663 int len, nw_off, tcp_opt_len = 0; 1664 1665 if (tcp_ts) 1666 tcp_opt_len = 12; 1667 1668 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1669 struct iphdr *iph; 1670 1671 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1672 ETH_HLEN; 1673 skb_set_network_header(skb, nw_off); 1674 iph = ip_hdr(skb); 1675 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1676 len = skb->len - skb_transport_offset(skb); 1677 th = tcp_hdr(skb); 1678 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1679 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1680 struct ipv6hdr *iph; 1681 1682 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1683 ETH_HLEN; 1684 skb_set_network_header(skb, nw_off); 1685 iph = ipv6_hdr(skb); 1686 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1687 len = skb->len - skb_transport_offset(skb); 1688 th = tcp_hdr(skb); 1689 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1690 } else { 1691 dev_kfree_skb_any(skb); 1692 return NULL; 1693 } 1694 1695 if (nw_off) /* tunnel */ 1696 bnxt_gro_tunnel(skb, skb->protocol); 1697 #endif 1698 return skb; 1699 } 1700 1701 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1702 struct bnxt_tpa_info *tpa_info, 1703 struct rx_tpa_end_cmp *tpa_end, 1704 struct rx_tpa_end_cmp_ext *tpa_end1, 1705 struct sk_buff *skb) 1706 { 1707 #ifdef CONFIG_INET 1708 int payload_off; 1709 u16 segs; 1710 1711 segs = TPA_END_TPA_SEGS(tpa_end); 1712 if (segs == 1) 1713 return skb; 1714 1715 NAPI_GRO_CB(skb)->count = segs; 1716 skb_shinfo(skb)->gso_size = 1717 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1718 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1719 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1720 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1721 else 1722 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1723 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1724 if (likely(skb)) 1725 tcp_gro_complete(skb); 1726 #endif 1727 return skb; 1728 } 1729 1730 /* Given the cfa_code of a received packet determine which 1731 * netdev (vf-rep or PF) the packet is destined to. 1732 */ 1733 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1734 { 1735 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1736 1737 /* if vf-rep dev is NULL, the must belongs to the PF */ 1738 return dev ? dev : bp->dev; 1739 } 1740 1741 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1742 struct bnxt_cp_ring_info *cpr, 1743 u32 *raw_cons, 1744 struct rx_tpa_end_cmp *tpa_end, 1745 struct rx_tpa_end_cmp_ext *tpa_end1, 1746 u8 *event) 1747 { 1748 struct bnxt_napi *bnapi = cpr->bnapi; 1749 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1750 struct net_device *dev = bp->dev; 1751 u8 *data_ptr, agg_bufs; 1752 unsigned int len; 1753 struct bnxt_tpa_info *tpa_info; 1754 dma_addr_t mapping; 1755 struct sk_buff *skb; 1756 u16 idx = 0, agg_id; 1757 void *data; 1758 bool gro; 1759 1760 if (unlikely(bnapi->in_reset)) { 1761 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1762 1763 if (rc < 0) 1764 return ERR_PTR(-EBUSY); 1765 return NULL; 1766 } 1767 1768 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1769 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1770 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1771 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1772 tpa_info = &rxr->rx_tpa[agg_id]; 1773 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1774 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1775 agg_bufs, tpa_info->agg_count); 1776 agg_bufs = tpa_info->agg_count; 1777 } 1778 tpa_info->agg_count = 0; 1779 *event |= BNXT_AGG_EVENT; 1780 bnxt_free_agg_idx(rxr, agg_id); 1781 idx = agg_id; 1782 gro = !!(bp->flags & BNXT_FLAG_GRO); 1783 } else { 1784 agg_id = TPA_END_AGG_ID(tpa_end); 1785 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1786 tpa_info = &rxr->rx_tpa[agg_id]; 1787 idx = RING_CMP(*raw_cons); 1788 if (agg_bufs) { 1789 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1790 return ERR_PTR(-EBUSY); 1791 1792 *event |= BNXT_AGG_EVENT; 1793 idx = NEXT_CMP(idx); 1794 } 1795 gro = !!TPA_END_GRO(tpa_end); 1796 } 1797 data = tpa_info->data; 1798 data_ptr = tpa_info->data_ptr; 1799 prefetch(data_ptr); 1800 len = tpa_info->len; 1801 mapping = tpa_info->mapping; 1802 1803 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1804 bnxt_abort_tpa(cpr, idx, agg_bufs); 1805 if (agg_bufs > MAX_SKB_FRAGS) 1806 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1807 agg_bufs, (int)MAX_SKB_FRAGS); 1808 return NULL; 1809 } 1810 1811 if (len <= bp->rx_copy_thresh) { 1812 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1813 if (!skb) { 1814 bnxt_abort_tpa(cpr, idx, agg_bufs); 1815 cpr->sw_stats->rx.rx_oom_discards += 1; 1816 return NULL; 1817 } 1818 } else { 1819 u8 *new_data; 1820 dma_addr_t new_mapping; 1821 1822 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1823 if (!new_data) { 1824 bnxt_abort_tpa(cpr, idx, agg_bufs); 1825 cpr->sw_stats->rx.rx_oom_discards += 1; 1826 return NULL; 1827 } 1828 1829 tpa_info->data = new_data; 1830 tpa_info->data_ptr = new_data + bp->rx_offset; 1831 tpa_info->mapping = new_mapping; 1832 1833 skb = napi_build_skb(data, bp->rx_buf_size); 1834 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1835 bp->rx_buf_use_size, bp->rx_dir, 1836 DMA_ATTR_WEAK_ORDERING); 1837 1838 if (!skb) { 1839 skb_free_frag(data); 1840 bnxt_abort_tpa(cpr, idx, agg_bufs); 1841 cpr->sw_stats->rx.rx_oom_discards += 1; 1842 return NULL; 1843 } 1844 skb_reserve(skb, bp->rx_offset); 1845 skb_put(skb, len); 1846 } 1847 1848 if (agg_bufs) { 1849 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1850 if (!skb) { 1851 /* Page reuse already handled by bnxt_rx_pages(). */ 1852 cpr->sw_stats->rx.rx_oom_discards += 1; 1853 return NULL; 1854 } 1855 } 1856 1857 if (tpa_info->cfa_code_valid) 1858 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1859 skb->protocol = eth_type_trans(skb, dev); 1860 1861 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1862 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1863 1864 if (tpa_info->vlan_valid && 1865 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1866 __be16 vlan_proto = htons(tpa_info->metadata >> 1867 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1868 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1869 1870 if (eth_type_vlan(vlan_proto)) { 1871 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1872 } else { 1873 dev_kfree_skb(skb); 1874 return NULL; 1875 } 1876 } 1877 1878 skb_checksum_none_assert(skb); 1879 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1880 skb->ip_summed = CHECKSUM_UNNECESSARY; 1881 skb->csum_level = 1882 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1883 } 1884 1885 if (gro) 1886 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1887 1888 return skb; 1889 } 1890 1891 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1892 struct rx_agg_cmp *rx_agg) 1893 { 1894 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1895 struct bnxt_tpa_info *tpa_info; 1896 1897 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1898 tpa_info = &rxr->rx_tpa[agg_id]; 1899 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1900 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1901 } 1902 1903 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1904 struct sk_buff *skb) 1905 { 1906 skb_mark_for_recycle(skb); 1907 1908 if (skb->dev != bp->dev) { 1909 /* this packet belongs to a vf-rep */ 1910 bnxt_vf_rep_rx(bp, skb); 1911 return; 1912 } 1913 skb_record_rx_queue(skb, bnapi->index); 1914 napi_gro_receive(&bnapi->napi, skb); 1915 } 1916 1917 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1918 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1919 { 1920 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1921 1922 if (BNXT_PTP_RX_TS_VALID(flags)) 1923 goto ts_valid; 1924 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1925 return false; 1926 1927 ts_valid: 1928 *cmpl_ts = ts; 1929 return true; 1930 } 1931 1932 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1933 struct rx_cmp *rxcmp, 1934 struct rx_cmp_ext *rxcmp1) 1935 { 1936 __be16 vlan_proto; 1937 u16 vtag; 1938 1939 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1940 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1941 u32 meta_data; 1942 1943 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1944 return skb; 1945 1946 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1947 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1948 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1949 if (eth_type_vlan(vlan_proto)) 1950 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1951 else 1952 goto vlan_err; 1953 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1954 if (RX_CMP_VLAN_VALID(rxcmp)) { 1955 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1956 1957 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1958 vlan_proto = htons(ETH_P_8021Q); 1959 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1960 vlan_proto = htons(ETH_P_8021AD); 1961 else 1962 goto vlan_err; 1963 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1964 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1965 } 1966 } 1967 return skb; 1968 vlan_err: 1969 dev_kfree_skb(skb); 1970 return NULL; 1971 } 1972 1973 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1974 struct rx_cmp *rxcmp) 1975 { 1976 u8 ext_op; 1977 1978 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 1979 switch (ext_op) { 1980 case EXT_OP_INNER_4: 1981 case EXT_OP_OUTER_4: 1982 case EXT_OP_INNFL_3: 1983 case EXT_OP_OUTFL_3: 1984 return PKT_HASH_TYPE_L4; 1985 default: 1986 return PKT_HASH_TYPE_L3; 1987 } 1988 } 1989 1990 /* returns the following: 1991 * 1 - 1 packet successfully received 1992 * 0 - successful TPA_START, packet not completed yet 1993 * -EBUSY - completion ring does not have all the agg buffers yet 1994 * -ENOMEM - packet aborted due to out of memory 1995 * -EIO - packet aborted due to hw error indicated in BD 1996 */ 1997 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1998 u32 *raw_cons, u8 *event) 1999 { 2000 struct bnxt_napi *bnapi = cpr->bnapi; 2001 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2002 struct net_device *dev = bp->dev; 2003 struct rx_cmp *rxcmp; 2004 struct rx_cmp_ext *rxcmp1; 2005 u32 tmp_raw_cons = *raw_cons; 2006 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2007 struct bnxt_sw_rx_bd *rx_buf; 2008 unsigned int len; 2009 u8 *data_ptr, agg_bufs, cmp_type; 2010 bool xdp_active = false; 2011 dma_addr_t dma_addr; 2012 struct sk_buff *skb; 2013 struct xdp_buff xdp; 2014 u32 flags, misc; 2015 u32 cmpl_ts; 2016 void *data; 2017 int rc = 0; 2018 2019 rxcmp = (struct rx_cmp *) 2020 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2021 2022 cmp_type = RX_CMP_TYPE(rxcmp); 2023 2024 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2025 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2026 goto next_rx_no_prod_no_len; 2027 } 2028 2029 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2030 cp_cons = RING_CMP(tmp_raw_cons); 2031 rxcmp1 = (struct rx_cmp_ext *) 2032 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2033 2034 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2035 return -EBUSY; 2036 2037 /* The valid test of the entry must be done first before 2038 * reading any further. 2039 */ 2040 dma_rmb(); 2041 prod = rxr->rx_prod; 2042 2043 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2044 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2045 bnxt_tpa_start(bp, rxr, cmp_type, 2046 (struct rx_tpa_start_cmp *)rxcmp, 2047 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2048 2049 *event |= BNXT_RX_EVENT; 2050 goto next_rx_no_prod_no_len; 2051 2052 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2053 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2054 (struct rx_tpa_end_cmp *)rxcmp, 2055 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2056 2057 if (IS_ERR(skb)) 2058 return -EBUSY; 2059 2060 rc = -ENOMEM; 2061 if (likely(skb)) { 2062 bnxt_deliver_skb(bp, bnapi, skb); 2063 rc = 1; 2064 } 2065 *event |= BNXT_RX_EVENT; 2066 goto next_rx_no_prod_no_len; 2067 } 2068 2069 cons = rxcmp->rx_cmp_opaque; 2070 if (unlikely(cons != rxr->rx_next_cons)) { 2071 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2072 2073 /* 0xffff is forced error, don't print it */ 2074 if (rxr->rx_next_cons != 0xffff) 2075 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2076 cons, rxr->rx_next_cons); 2077 bnxt_sched_reset_rxr(bp, rxr); 2078 if (rc1) 2079 return rc1; 2080 goto next_rx_no_prod_no_len; 2081 } 2082 rx_buf = &rxr->rx_buf_ring[cons]; 2083 data = rx_buf->data; 2084 data_ptr = rx_buf->data_ptr; 2085 prefetch(data_ptr); 2086 2087 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2088 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2089 2090 if (agg_bufs) { 2091 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2092 return -EBUSY; 2093 2094 cp_cons = NEXT_CMP(cp_cons); 2095 *event |= BNXT_AGG_EVENT; 2096 } 2097 *event |= BNXT_RX_EVENT; 2098 2099 rx_buf->data = NULL; 2100 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2101 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2102 2103 bnxt_reuse_rx_data(rxr, cons, data); 2104 if (agg_bufs) 2105 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2106 false); 2107 2108 rc = -EIO; 2109 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2110 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2111 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2112 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2113 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2114 rx_err); 2115 bnxt_sched_reset_rxr(bp, rxr); 2116 } 2117 } 2118 goto next_rx_no_len; 2119 } 2120 2121 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2122 len = flags >> RX_CMP_LEN_SHIFT; 2123 dma_addr = rx_buf->mapping; 2124 2125 if (bnxt_xdp_attached(bp, rxr)) { 2126 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2127 if (agg_bufs) { 2128 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2129 cp_cons, agg_bufs, 2130 false); 2131 if (!frag_len) 2132 goto oom_next_rx; 2133 } 2134 xdp_active = true; 2135 } 2136 2137 if (xdp_active) { 2138 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2139 rc = 1; 2140 goto next_rx; 2141 } 2142 } 2143 2144 if (len <= bp->rx_copy_thresh) { 2145 if (!xdp_active) 2146 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2147 else 2148 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2149 bnxt_reuse_rx_data(rxr, cons, data); 2150 if (!skb) { 2151 if (agg_bufs) { 2152 if (!xdp_active) 2153 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2154 agg_bufs, false); 2155 else 2156 bnxt_xdp_buff_frags_free(rxr, &xdp); 2157 } 2158 goto oom_next_rx; 2159 } 2160 } else { 2161 u32 payload; 2162 2163 if (rx_buf->data_ptr == data_ptr) 2164 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2165 else 2166 payload = 0; 2167 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2168 payload | len); 2169 if (!skb) 2170 goto oom_next_rx; 2171 } 2172 2173 if (agg_bufs) { 2174 if (!xdp_active) { 2175 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2176 if (!skb) 2177 goto oom_next_rx; 2178 } else { 2179 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2180 if (!skb) { 2181 /* we should be able to free the old skb here */ 2182 bnxt_xdp_buff_frags_free(rxr, &xdp); 2183 goto oom_next_rx; 2184 } 2185 } 2186 } 2187 2188 if (RX_CMP_HASH_VALID(rxcmp)) { 2189 enum pkt_hash_types type; 2190 2191 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2192 type = bnxt_rss_ext_op(bp, rxcmp); 2193 } else { 2194 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2195 2196 /* RSS profiles 1 and 3 with extract code 0 for inner 2197 * 4-tuple 2198 */ 2199 if (hash_type != 1 && hash_type != 3) 2200 type = PKT_HASH_TYPE_L3; 2201 else 2202 type = PKT_HASH_TYPE_L4; 2203 } 2204 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2205 } 2206 2207 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2208 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2209 skb->protocol = eth_type_trans(skb, dev); 2210 2211 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2212 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2213 if (!skb) 2214 goto next_rx; 2215 } 2216 2217 skb_checksum_none_assert(skb); 2218 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2219 if (dev->features & NETIF_F_RXCSUM) { 2220 skb->ip_summed = CHECKSUM_UNNECESSARY; 2221 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2222 } 2223 } else { 2224 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2225 if (dev->features & NETIF_F_RXCSUM) 2226 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2227 } 2228 } 2229 2230 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2231 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2232 u64 ns, ts; 2233 2234 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2235 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2236 2237 spin_lock_bh(&ptp->ptp_lock); 2238 ns = timecounter_cyc2time(&ptp->tc, ts); 2239 spin_unlock_bh(&ptp->ptp_lock); 2240 memset(skb_hwtstamps(skb), 0, 2241 sizeof(*skb_hwtstamps(skb))); 2242 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2243 } 2244 } 2245 } 2246 bnxt_deliver_skb(bp, bnapi, skb); 2247 rc = 1; 2248 2249 next_rx: 2250 cpr->rx_packets += 1; 2251 cpr->rx_bytes += len; 2252 2253 next_rx_no_len: 2254 rxr->rx_prod = NEXT_RX(prod); 2255 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2256 2257 next_rx_no_prod_no_len: 2258 *raw_cons = tmp_raw_cons; 2259 2260 return rc; 2261 2262 oom_next_rx: 2263 cpr->sw_stats->rx.rx_oom_discards += 1; 2264 rc = -ENOMEM; 2265 goto next_rx; 2266 } 2267 2268 /* In netpoll mode, if we are using a combined completion ring, we need to 2269 * discard the rx packets and recycle the buffers. 2270 */ 2271 static int bnxt_force_rx_discard(struct bnxt *bp, 2272 struct bnxt_cp_ring_info *cpr, 2273 u32 *raw_cons, u8 *event) 2274 { 2275 u32 tmp_raw_cons = *raw_cons; 2276 struct rx_cmp_ext *rxcmp1; 2277 struct rx_cmp *rxcmp; 2278 u16 cp_cons; 2279 u8 cmp_type; 2280 int rc; 2281 2282 cp_cons = RING_CMP(tmp_raw_cons); 2283 rxcmp = (struct rx_cmp *) 2284 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2285 2286 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2287 cp_cons = RING_CMP(tmp_raw_cons); 2288 rxcmp1 = (struct rx_cmp_ext *) 2289 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2290 2291 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2292 return -EBUSY; 2293 2294 /* The valid test of the entry must be done first before 2295 * reading any further. 2296 */ 2297 dma_rmb(); 2298 cmp_type = RX_CMP_TYPE(rxcmp); 2299 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2300 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2301 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2302 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2303 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2304 struct rx_tpa_end_cmp_ext *tpa_end1; 2305 2306 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2307 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2308 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2309 } 2310 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2311 if (rc && rc != -EBUSY) 2312 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2313 return rc; 2314 } 2315 2316 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2317 { 2318 struct bnxt_fw_health *fw_health = bp->fw_health; 2319 u32 reg = fw_health->regs[reg_idx]; 2320 u32 reg_type, reg_off, val = 0; 2321 2322 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2323 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2324 switch (reg_type) { 2325 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2326 pci_read_config_dword(bp->pdev, reg_off, &val); 2327 break; 2328 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2329 reg_off = fw_health->mapped_regs[reg_idx]; 2330 fallthrough; 2331 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2332 val = readl(bp->bar0 + reg_off); 2333 break; 2334 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2335 val = readl(bp->bar1 + reg_off); 2336 break; 2337 } 2338 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2339 val &= fw_health->fw_reset_inprog_reg_mask; 2340 return val; 2341 } 2342 2343 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2344 { 2345 int i; 2346 2347 for (i = 0; i < bp->rx_nr_rings; i++) { 2348 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2349 struct bnxt_ring_grp_info *grp_info; 2350 2351 grp_info = &bp->grp_info[grp_idx]; 2352 if (grp_info->agg_fw_ring_id == ring_id) 2353 return grp_idx; 2354 } 2355 return INVALID_HW_RING_ID; 2356 } 2357 2358 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2359 { 2360 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2361 2362 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2363 return link_info->force_link_speed2; 2364 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2365 return link_info->force_pam4_link_speed; 2366 return link_info->force_link_speed; 2367 } 2368 2369 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2370 { 2371 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2372 2373 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2374 link_info->req_link_speed = link_info->force_link_speed2; 2375 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2376 switch (link_info->req_link_speed) { 2377 case BNXT_LINK_SPEED_50GB_PAM4: 2378 case BNXT_LINK_SPEED_100GB_PAM4: 2379 case BNXT_LINK_SPEED_200GB_PAM4: 2380 case BNXT_LINK_SPEED_400GB_PAM4: 2381 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2382 break; 2383 case BNXT_LINK_SPEED_100GB_PAM4_112: 2384 case BNXT_LINK_SPEED_200GB_PAM4_112: 2385 case BNXT_LINK_SPEED_400GB_PAM4_112: 2386 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2387 break; 2388 default: 2389 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2390 } 2391 return; 2392 } 2393 link_info->req_link_speed = link_info->force_link_speed; 2394 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2395 if (link_info->force_pam4_link_speed) { 2396 link_info->req_link_speed = link_info->force_pam4_link_speed; 2397 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2398 } 2399 } 2400 2401 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2402 { 2403 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2404 2405 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2406 link_info->advertising = link_info->auto_link_speeds2; 2407 return; 2408 } 2409 link_info->advertising = link_info->auto_link_speeds; 2410 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2411 } 2412 2413 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2414 { 2415 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2416 2417 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2418 if (link_info->req_link_speed != link_info->force_link_speed2) 2419 return true; 2420 return false; 2421 } 2422 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2423 link_info->req_link_speed != link_info->force_link_speed) 2424 return true; 2425 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2426 link_info->req_link_speed != link_info->force_pam4_link_speed) 2427 return true; 2428 return false; 2429 } 2430 2431 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2432 { 2433 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2434 2435 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2436 if (link_info->advertising != link_info->auto_link_speeds2) 2437 return true; 2438 return false; 2439 } 2440 if (link_info->advertising != link_info->auto_link_speeds || 2441 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2442 return true; 2443 return false; 2444 } 2445 2446 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2447 ((data2) & \ 2448 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2449 2450 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2451 (((data2) & \ 2452 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2453 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2454 2455 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2456 ((data1) & \ 2457 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2458 2459 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2460 (((data1) & \ 2461 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2462 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2463 2464 /* Return true if the workqueue has to be scheduled */ 2465 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2466 { 2467 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2468 2469 switch (err_type) { 2470 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2471 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2472 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2473 break; 2474 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2475 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2476 break; 2477 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2478 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2479 break; 2480 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2481 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2482 char *threshold_type; 2483 bool notify = false; 2484 char *dir_str; 2485 2486 switch (type) { 2487 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2488 threshold_type = "warning"; 2489 break; 2490 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2491 threshold_type = "critical"; 2492 break; 2493 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2494 threshold_type = "fatal"; 2495 break; 2496 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2497 threshold_type = "shutdown"; 2498 break; 2499 default: 2500 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2501 return false; 2502 } 2503 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2504 dir_str = "above"; 2505 notify = true; 2506 } else { 2507 dir_str = "below"; 2508 } 2509 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2510 dir_str, threshold_type); 2511 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2512 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2513 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2514 if (notify) { 2515 bp->thermal_threshold_type = type; 2516 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2517 return true; 2518 } 2519 return false; 2520 } 2521 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2522 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2523 break; 2524 default: 2525 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2526 err_type); 2527 break; 2528 } 2529 return false; 2530 } 2531 2532 #define BNXT_GET_EVENT_PORT(data) \ 2533 ((data) & \ 2534 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2535 2536 #define BNXT_EVENT_RING_TYPE(data2) \ 2537 ((data2) & \ 2538 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2539 2540 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2541 (BNXT_EVENT_RING_TYPE(data2) == \ 2542 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2543 2544 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2545 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2546 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2547 2548 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2549 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2550 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2551 2552 #define BNXT_PHC_BITS 48 2553 2554 static int bnxt_async_event_process(struct bnxt *bp, 2555 struct hwrm_async_event_cmpl *cmpl) 2556 { 2557 u16 event_id = le16_to_cpu(cmpl->event_id); 2558 u32 data1 = le32_to_cpu(cmpl->event_data1); 2559 u32 data2 = le32_to_cpu(cmpl->event_data2); 2560 2561 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2562 event_id, data1, data2); 2563 2564 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2565 switch (event_id) { 2566 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2567 struct bnxt_link_info *link_info = &bp->link_info; 2568 2569 if (BNXT_VF(bp)) 2570 goto async_event_process_exit; 2571 2572 /* print unsupported speed warning in forced speed mode only */ 2573 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2574 (data1 & 0x20000)) { 2575 u16 fw_speed = bnxt_get_force_speed(link_info); 2576 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2577 2578 if (speed != SPEED_UNKNOWN) 2579 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2580 speed); 2581 } 2582 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2583 } 2584 fallthrough; 2585 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2586 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2587 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2588 fallthrough; 2589 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2590 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2591 break; 2592 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2593 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2594 break; 2595 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2596 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2597 2598 if (BNXT_VF(bp)) 2599 break; 2600 2601 if (bp->pf.port_id != port_id) 2602 break; 2603 2604 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2605 break; 2606 } 2607 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2608 if (BNXT_PF(bp)) 2609 goto async_event_process_exit; 2610 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2611 break; 2612 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2613 char *type_str = "Solicited"; 2614 2615 if (!bp->fw_health) 2616 goto async_event_process_exit; 2617 2618 bp->fw_reset_timestamp = jiffies; 2619 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2620 if (!bp->fw_reset_min_dsecs) 2621 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2622 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2623 if (!bp->fw_reset_max_dsecs) 2624 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2625 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2626 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2627 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2628 type_str = "Fatal"; 2629 bp->fw_health->fatalities++; 2630 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2631 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2632 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2633 type_str = "Non-fatal"; 2634 bp->fw_health->survivals++; 2635 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2636 } 2637 netif_warn(bp, hw, bp->dev, 2638 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2639 type_str, data1, data2, 2640 bp->fw_reset_min_dsecs * 100, 2641 bp->fw_reset_max_dsecs * 100); 2642 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2643 break; 2644 } 2645 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2646 struct bnxt_fw_health *fw_health = bp->fw_health; 2647 char *status_desc = "healthy"; 2648 u32 status; 2649 2650 if (!fw_health) 2651 goto async_event_process_exit; 2652 2653 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2654 fw_health->enabled = false; 2655 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2656 break; 2657 } 2658 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2659 fw_health->tmr_multiplier = 2660 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2661 bp->current_interval * 10); 2662 fw_health->tmr_counter = fw_health->tmr_multiplier; 2663 if (!fw_health->enabled) 2664 fw_health->last_fw_heartbeat = 2665 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2666 fw_health->last_fw_reset_cnt = 2667 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2668 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2669 if (status != BNXT_FW_STATUS_HEALTHY) 2670 status_desc = "unhealthy"; 2671 netif_info(bp, drv, bp->dev, 2672 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2673 fw_health->primary ? "primary" : "backup", status, 2674 status_desc, fw_health->last_fw_reset_cnt); 2675 if (!fw_health->enabled) { 2676 /* Make sure tmr_counter is set and visible to 2677 * bnxt_health_check() before setting enabled to true. 2678 */ 2679 smp_wmb(); 2680 fw_health->enabled = true; 2681 } 2682 goto async_event_process_exit; 2683 } 2684 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2685 netif_notice(bp, hw, bp->dev, 2686 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2687 data1, data2); 2688 goto async_event_process_exit; 2689 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2690 struct bnxt_rx_ring_info *rxr; 2691 u16 grp_idx; 2692 2693 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2694 goto async_event_process_exit; 2695 2696 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2697 BNXT_EVENT_RING_TYPE(data2), data1); 2698 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2699 goto async_event_process_exit; 2700 2701 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2702 if (grp_idx == INVALID_HW_RING_ID) { 2703 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2704 data1); 2705 goto async_event_process_exit; 2706 } 2707 rxr = bp->bnapi[grp_idx]->rx_ring; 2708 bnxt_sched_reset_rxr(bp, rxr); 2709 goto async_event_process_exit; 2710 } 2711 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2712 struct bnxt_fw_health *fw_health = bp->fw_health; 2713 2714 netif_notice(bp, hw, bp->dev, 2715 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2716 data1, data2); 2717 if (fw_health) { 2718 fw_health->echo_req_data1 = data1; 2719 fw_health->echo_req_data2 = data2; 2720 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2721 break; 2722 } 2723 goto async_event_process_exit; 2724 } 2725 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2726 bnxt_ptp_pps_event(bp, data1, data2); 2727 goto async_event_process_exit; 2728 } 2729 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2730 if (bnxt_event_error_report(bp, data1, data2)) 2731 break; 2732 goto async_event_process_exit; 2733 } 2734 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2735 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2736 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2737 if (BNXT_PTP_USE_RTC(bp)) { 2738 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2739 u64 ns; 2740 2741 if (!ptp) 2742 goto async_event_process_exit; 2743 2744 spin_lock_bh(&ptp->ptp_lock); 2745 bnxt_ptp_update_current_time(bp); 2746 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2747 BNXT_PHC_BITS) | ptp->current_time); 2748 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2749 spin_unlock_bh(&ptp->ptp_lock); 2750 } 2751 break; 2752 } 2753 goto async_event_process_exit; 2754 } 2755 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2756 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2757 2758 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2759 goto async_event_process_exit; 2760 } 2761 default: 2762 goto async_event_process_exit; 2763 } 2764 __bnxt_queue_sp_work(bp); 2765 async_event_process_exit: 2766 return 0; 2767 } 2768 2769 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2770 { 2771 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2772 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2773 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2774 (struct hwrm_fwd_req_cmpl *)txcmp; 2775 2776 switch (cmpl_type) { 2777 case CMPL_BASE_TYPE_HWRM_DONE: 2778 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2779 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2780 break; 2781 2782 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2783 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2784 2785 if ((vf_id < bp->pf.first_vf_id) || 2786 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2787 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2788 vf_id); 2789 return -EINVAL; 2790 } 2791 2792 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2793 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2794 break; 2795 2796 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2797 bnxt_async_event_process(bp, 2798 (struct hwrm_async_event_cmpl *)txcmp); 2799 break; 2800 2801 default: 2802 break; 2803 } 2804 2805 return 0; 2806 } 2807 2808 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2809 { 2810 struct bnxt_napi *bnapi = dev_instance; 2811 struct bnxt *bp = bnapi->bp; 2812 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2813 u32 cons = RING_CMP(cpr->cp_raw_cons); 2814 2815 cpr->event_ctr++; 2816 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2817 napi_schedule(&bnapi->napi); 2818 return IRQ_HANDLED; 2819 } 2820 2821 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2822 { 2823 u32 raw_cons = cpr->cp_raw_cons; 2824 u16 cons = RING_CMP(raw_cons); 2825 struct tx_cmp *txcmp; 2826 2827 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2828 2829 return TX_CMP_VALID(txcmp, raw_cons); 2830 } 2831 2832 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2833 { 2834 struct bnxt_napi *bnapi = dev_instance; 2835 struct bnxt *bp = bnapi->bp; 2836 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2837 u32 cons = RING_CMP(cpr->cp_raw_cons); 2838 u32 int_status; 2839 2840 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2841 2842 if (!bnxt_has_work(bp, cpr)) { 2843 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2844 /* return if erroneous interrupt */ 2845 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2846 return IRQ_NONE; 2847 } 2848 2849 /* disable ring IRQ */ 2850 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2851 2852 /* Return here if interrupt is shared and is disabled. */ 2853 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2854 return IRQ_HANDLED; 2855 2856 napi_schedule(&bnapi->napi); 2857 return IRQ_HANDLED; 2858 } 2859 2860 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2861 int budget) 2862 { 2863 struct bnxt_napi *bnapi = cpr->bnapi; 2864 u32 raw_cons = cpr->cp_raw_cons; 2865 u32 cons; 2866 int rx_pkts = 0; 2867 u8 event = 0; 2868 struct tx_cmp *txcmp; 2869 2870 cpr->has_more_work = 0; 2871 cpr->had_work_done = 1; 2872 while (1) { 2873 u8 cmp_type; 2874 int rc; 2875 2876 cons = RING_CMP(raw_cons); 2877 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2878 2879 if (!TX_CMP_VALID(txcmp, raw_cons)) 2880 break; 2881 2882 /* The valid test of the entry must be done first before 2883 * reading any further. 2884 */ 2885 dma_rmb(); 2886 cmp_type = TX_CMP_TYPE(txcmp); 2887 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2888 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2889 u32 opaque = txcmp->tx_cmp_opaque; 2890 struct bnxt_tx_ring_info *txr; 2891 u16 tx_freed; 2892 2893 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2894 event |= BNXT_TX_CMP_EVENT; 2895 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2896 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2897 else 2898 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2899 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2900 bp->tx_ring_mask; 2901 /* return full budget so NAPI will complete. */ 2902 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2903 rx_pkts = budget; 2904 raw_cons = NEXT_RAW_CMP(raw_cons); 2905 if (budget) 2906 cpr->has_more_work = 1; 2907 break; 2908 } 2909 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2910 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2911 if (likely(budget)) 2912 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2913 else 2914 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2915 &event); 2916 if (likely(rc >= 0)) 2917 rx_pkts += rc; 2918 /* Increment rx_pkts when rc is -ENOMEM to count towards 2919 * the NAPI budget. Otherwise, we may potentially loop 2920 * here forever if we consistently cannot allocate 2921 * buffers. 2922 */ 2923 else if (rc == -ENOMEM && budget) 2924 rx_pkts++; 2925 else if (rc == -EBUSY) /* partial completion */ 2926 break; 2927 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2928 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2929 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2930 bnxt_hwrm_handler(bp, txcmp); 2931 } 2932 raw_cons = NEXT_RAW_CMP(raw_cons); 2933 2934 if (rx_pkts && rx_pkts == budget) { 2935 cpr->has_more_work = 1; 2936 break; 2937 } 2938 } 2939 2940 if (event & BNXT_REDIRECT_EVENT) 2941 xdp_do_flush(); 2942 2943 if (event & BNXT_TX_EVENT) { 2944 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2945 u16 prod = txr->tx_prod; 2946 2947 /* Sync BD data before updating doorbell */ 2948 wmb(); 2949 2950 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2951 } 2952 2953 cpr->cp_raw_cons = raw_cons; 2954 bnapi->events |= event; 2955 return rx_pkts; 2956 } 2957 2958 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2959 int budget) 2960 { 2961 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2962 bnapi->tx_int(bp, bnapi, budget); 2963 2964 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2965 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2966 2967 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2968 } 2969 if (bnapi->events & BNXT_AGG_EVENT) { 2970 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2971 2972 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2973 } 2974 bnapi->events &= BNXT_TX_CMP_EVENT; 2975 } 2976 2977 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2978 int budget) 2979 { 2980 struct bnxt_napi *bnapi = cpr->bnapi; 2981 int rx_pkts; 2982 2983 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2984 2985 /* ACK completion ring before freeing tx ring and producing new 2986 * buffers in rx/agg rings to prevent overflowing the completion 2987 * ring. 2988 */ 2989 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2990 2991 __bnxt_poll_work_done(bp, bnapi, budget); 2992 return rx_pkts; 2993 } 2994 2995 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2996 { 2997 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2998 struct bnxt *bp = bnapi->bp; 2999 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3000 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3001 struct tx_cmp *txcmp; 3002 struct rx_cmp_ext *rxcmp1; 3003 u32 cp_cons, tmp_raw_cons; 3004 u32 raw_cons = cpr->cp_raw_cons; 3005 bool flush_xdp = false; 3006 u32 rx_pkts = 0; 3007 u8 event = 0; 3008 3009 while (1) { 3010 int rc; 3011 3012 cp_cons = RING_CMP(raw_cons); 3013 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3014 3015 if (!TX_CMP_VALID(txcmp, raw_cons)) 3016 break; 3017 3018 /* The valid test of the entry must be done first before 3019 * reading any further. 3020 */ 3021 dma_rmb(); 3022 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3023 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3024 cp_cons = RING_CMP(tmp_raw_cons); 3025 rxcmp1 = (struct rx_cmp_ext *) 3026 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3027 3028 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3029 break; 3030 3031 /* force an error to recycle the buffer */ 3032 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3033 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3034 3035 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3036 if (likely(rc == -EIO) && budget) 3037 rx_pkts++; 3038 else if (rc == -EBUSY) /* partial completion */ 3039 break; 3040 if (event & BNXT_REDIRECT_EVENT) 3041 flush_xdp = true; 3042 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3043 CMPL_BASE_TYPE_HWRM_DONE)) { 3044 bnxt_hwrm_handler(bp, txcmp); 3045 } else { 3046 netdev_err(bp->dev, 3047 "Invalid completion received on special ring\n"); 3048 } 3049 raw_cons = NEXT_RAW_CMP(raw_cons); 3050 3051 if (rx_pkts == budget) 3052 break; 3053 } 3054 3055 cpr->cp_raw_cons = raw_cons; 3056 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3057 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3058 3059 if (event & BNXT_AGG_EVENT) 3060 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3061 if (flush_xdp) 3062 xdp_do_flush(); 3063 3064 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3065 napi_complete_done(napi, rx_pkts); 3066 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3067 } 3068 return rx_pkts; 3069 } 3070 3071 static int bnxt_poll(struct napi_struct *napi, int budget) 3072 { 3073 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3074 struct bnxt *bp = bnapi->bp; 3075 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3076 int work_done = 0; 3077 3078 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3079 napi_complete(napi); 3080 return 0; 3081 } 3082 while (1) { 3083 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3084 3085 if (work_done >= budget) { 3086 if (!budget) 3087 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3088 break; 3089 } 3090 3091 if (!bnxt_has_work(bp, cpr)) { 3092 if (napi_complete_done(napi, work_done)) 3093 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3094 break; 3095 } 3096 } 3097 if (bp->flags & BNXT_FLAG_DIM) { 3098 struct dim_sample dim_sample = {}; 3099 3100 dim_update_sample(cpr->event_ctr, 3101 cpr->rx_packets, 3102 cpr->rx_bytes, 3103 &dim_sample); 3104 net_dim(&cpr->dim, dim_sample); 3105 } 3106 return work_done; 3107 } 3108 3109 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3110 { 3111 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3112 int i, work_done = 0; 3113 3114 for (i = 0; i < cpr->cp_ring_count; i++) { 3115 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3116 3117 if (cpr2->had_nqe_notify) { 3118 work_done += __bnxt_poll_work(bp, cpr2, 3119 budget - work_done); 3120 cpr->has_more_work |= cpr2->has_more_work; 3121 } 3122 } 3123 return work_done; 3124 } 3125 3126 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3127 u64 dbr_type, int budget) 3128 { 3129 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3130 int i; 3131 3132 for (i = 0; i < cpr->cp_ring_count; i++) { 3133 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3134 struct bnxt_db_info *db; 3135 3136 if (cpr2->had_work_done) { 3137 u32 tgl = 0; 3138 3139 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3140 cpr2->had_nqe_notify = 0; 3141 tgl = cpr2->toggle; 3142 } 3143 db = &cpr2->cp_db; 3144 bnxt_writeq(bp, 3145 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3146 DB_RING_IDX(db, cpr2->cp_raw_cons), 3147 db->doorbell); 3148 cpr2->had_work_done = 0; 3149 } 3150 } 3151 __bnxt_poll_work_done(bp, bnapi, budget); 3152 } 3153 3154 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3155 { 3156 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3157 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3158 struct bnxt_cp_ring_info *cpr_rx; 3159 u32 raw_cons = cpr->cp_raw_cons; 3160 struct bnxt *bp = bnapi->bp; 3161 struct nqe_cn *nqcmp; 3162 int work_done = 0; 3163 u32 cons; 3164 3165 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3166 napi_complete(napi); 3167 return 0; 3168 } 3169 if (cpr->has_more_work) { 3170 cpr->has_more_work = 0; 3171 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3172 } 3173 while (1) { 3174 u16 type; 3175 3176 cons = RING_CMP(raw_cons); 3177 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3178 3179 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3180 if (cpr->has_more_work) 3181 break; 3182 3183 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3184 budget); 3185 cpr->cp_raw_cons = raw_cons; 3186 if (napi_complete_done(napi, work_done)) 3187 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3188 cpr->cp_raw_cons); 3189 goto poll_done; 3190 } 3191 3192 /* The valid test of the entry must be done first before 3193 * reading any further. 3194 */ 3195 dma_rmb(); 3196 3197 type = le16_to_cpu(nqcmp->type); 3198 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3199 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3200 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3201 struct bnxt_cp_ring_info *cpr2; 3202 3203 /* No more budget for RX work */ 3204 if (budget && work_done >= budget && 3205 cq_type == BNXT_NQ_HDL_TYPE_RX) 3206 break; 3207 3208 idx = BNXT_NQ_HDL_IDX(idx); 3209 cpr2 = &cpr->cp_ring_arr[idx]; 3210 cpr2->had_nqe_notify = 1; 3211 cpr2->toggle = NQE_CN_TOGGLE(type); 3212 work_done += __bnxt_poll_work(bp, cpr2, 3213 budget - work_done); 3214 cpr->has_more_work |= cpr2->has_more_work; 3215 } else { 3216 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3217 } 3218 raw_cons = NEXT_RAW_CMP(raw_cons); 3219 } 3220 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3221 if (raw_cons != cpr->cp_raw_cons) { 3222 cpr->cp_raw_cons = raw_cons; 3223 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3224 } 3225 poll_done: 3226 cpr_rx = &cpr->cp_ring_arr[0]; 3227 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3228 (bp->flags & BNXT_FLAG_DIM)) { 3229 struct dim_sample dim_sample = {}; 3230 3231 dim_update_sample(cpr->event_ctr, 3232 cpr_rx->rx_packets, 3233 cpr_rx->rx_bytes, 3234 &dim_sample); 3235 net_dim(&cpr->dim, dim_sample); 3236 } 3237 return work_done; 3238 } 3239 3240 static void bnxt_free_tx_skbs(struct bnxt *bp) 3241 { 3242 int i, max_idx; 3243 struct pci_dev *pdev = bp->pdev; 3244 3245 if (!bp->tx_ring) 3246 return; 3247 3248 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3249 for (i = 0; i < bp->tx_nr_rings; i++) { 3250 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3251 int j; 3252 3253 if (!txr->tx_buf_ring) 3254 continue; 3255 3256 for (j = 0; j < max_idx;) { 3257 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3258 struct sk_buff *skb; 3259 int k, last; 3260 3261 if (i < bp->tx_nr_rings_xdp && 3262 tx_buf->action == XDP_REDIRECT) { 3263 dma_unmap_single(&pdev->dev, 3264 dma_unmap_addr(tx_buf, mapping), 3265 dma_unmap_len(tx_buf, len), 3266 DMA_TO_DEVICE); 3267 xdp_return_frame(tx_buf->xdpf); 3268 tx_buf->action = 0; 3269 tx_buf->xdpf = NULL; 3270 j++; 3271 continue; 3272 } 3273 3274 skb = tx_buf->skb; 3275 if (!skb) { 3276 j++; 3277 continue; 3278 } 3279 3280 tx_buf->skb = NULL; 3281 3282 if (tx_buf->is_push) { 3283 dev_kfree_skb(skb); 3284 j += 2; 3285 continue; 3286 } 3287 3288 dma_unmap_single(&pdev->dev, 3289 dma_unmap_addr(tx_buf, mapping), 3290 skb_headlen(skb), 3291 DMA_TO_DEVICE); 3292 3293 last = tx_buf->nr_frags; 3294 j += 2; 3295 for (k = 0; k < last; k++, j++) { 3296 int ring_idx = j & bp->tx_ring_mask; 3297 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3298 3299 tx_buf = &txr->tx_buf_ring[ring_idx]; 3300 dma_unmap_page( 3301 &pdev->dev, 3302 dma_unmap_addr(tx_buf, mapping), 3303 skb_frag_size(frag), DMA_TO_DEVICE); 3304 } 3305 dev_kfree_skb(skb); 3306 } 3307 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3308 } 3309 } 3310 3311 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3312 { 3313 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3314 struct pci_dev *pdev = bp->pdev; 3315 struct bnxt_tpa_idx_map *map; 3316 int i, max_idx, max_agg_idx; 3317 3318 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3319 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3320 if (!rxr->rx_tpa) 3321 goto skip_rx_tpa_free; 3322 3323 for (i = 0; i < bp->max_tpa; i++) { 3324 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3325 u8 *data = tpa_info->data; 3326 3327 if (!data) 3328 continue; 3329 3330 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3331 bp->rx_buf_use_size, bp->rx_dir, 3332 DMA_ATTR_WEAK_ORDERING); 3333 3334 tpa_info->data = NULL; 3335 3336 skb_free_frag(data); 3337 } 3338 3339 skip_rx_tpa_free: 3340 if (!rxr->rx_buf_ring) 3341 goto skip_rx_buf_free; 3342 3343 for (i = 0; i < max_idx; i++) { 3344 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3345 dma_addr_t mapping = rx_buf->mapping; 3346 void *data = rx_buf->data; 3347 3348 if (!data) 3349 continue; 3350 3351 rx_buf->data = NULL; 3352 if (BNXT_RX_PAGE_MODE(bp)) { 3353 page_pool_recycle_direct(rxr->page_pool, data); 3354 } else { 3355 dma_unmap_single_attrs(&pdev->dev, mapping, 3356 bp->rx_buf_use_size, bp->rx_dir, 3357 DMA_ATTR_WEAK_ORDERING); 3358 skb_free_frag(data); 3359 } 3360 } 3361 3362 skip_rx_buf_free: 3363 if (!rxr->rx_agg_ring) 3364 goto skip_rx_agg_free; 3365 3366 for (i = 0; i < max_agg_idx; i++) { 3367 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3368 struct page *page = rx_agg_buf->page; 3369 3370 if (!page) 3371 continue; 3372 3373 rx_agg_buf->page = NULL; 3374 __clear_bit(i, rxr->rx_agg_bmap); 3375 3376 page_pool_recycle_direct(rxr->page_pool, page); 3377 } 3378 3379 skip_rx_agg_free: 3380 map = rxr->rx_tpa_idx_map; 3381 if (map) 3382 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3383 } 3384 3385 static void bnxt_free_rx_skbs(struct bnxt *bp) 3386 { 3387 int i; 3388 3389 if (!bp->rx_ring) 3390 return; 3391 3392 for (i = 0; i < bp->rx_nr_rings; i++) 3393 bnxt_free_one_rx_ring_skbs(bp, i); 3394 } 3395 3396 static void bnxt_free_skbs(struct bnxt *bp) 3397 { 3398 bnxt_free_tx_skbs(bp); 3399 bnxt_free_rx_skbs(bp); 3400 } 3401 3402 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3403 { 3404 u8 init_val = ctxm->init_value; 3405 u16 offset = ctxm->init_offset; 3406 u8 *p2 = p; 3407 int i; 3408 3409 if (!init_val) 3410 return; 3411 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3412 memset(p, init_val, len); 3413 return; 3414 } 3415 for (i = 0; i < len; i += ctxm->entry_size) 3416 *(p2 + i + offset) = init_val; 3417 } 3418 3419 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3420 { 3421 struct pci_dev *pdev = bp->pdev; 3422 int i; 3423 3424 if (!rmem->pg_arr) 3425 goto skip_pages; 3426 3427 for (i = 0; i < rmem->nr_pages; i++) { 3428 if (!rmem->pg_arr[i]) 3429 continue; 3430 3431 dma_free_coherent(&pdev->dev, rmem->page_size, 3432 rmem->pg_arr[i], rmem->dma_arr[i]); 3433 3434 rmem->pg_arr[i] = NULL; 3435 } 3436 skip_pages: 3437 if (rmem->pg_tbl) { 3438 size_t pg_tbl_size = rmem->nr_pages * 8; 3439 3440 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3441 pg_tbl_size = rmem->page_size; 3442 dma_free_coherent(&pdev->dev, pg_tbl_size, 3443 rmem->pg_tbl, rmem->pg_tbl_map); 3444 rmem->pg_tbl = NULL; 3445 } 3446 if (rmem->vmem_size && *rmem->vmem) { 3447 vfree(*rmem->vmem); 3448 *rmem->vmem = NULL; 3449 } 3450 } 3451 3452 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3453 { 3454 struct pci_dev *pdev = bp->pdev; 3455 u64 valid_bit = 0; 3456 int i; 3457 3458 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3459 valid_bit = PTU_PTE_VALID; 3460 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3461 size_t pg_tbl_size = rmem->nr_pages * 8; 3462 3463 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3464 pg_tbl_size = rmem->page_size; 3465 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3466 &rmem->pg_tbl_map, 3467 GFP_KERNEL); 3468 if (!rmem->pg_tbl) 3469 return -ENOMEM; 3470 } 3471 3472 for (i = 0; i < rmem->nr_pages; i++) { 3473 u64 extra_bits = valid_bit; 3474 3475 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3476 rmem->page_size, 3477 &rmem->dma_arr[i], 3478 GFP_KERNEL); 3479 if (!rmem->pg_arr[i]) 3480 return -ENOMEM; 3481 3482 if (rmem->ctx_mem) 3483 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3484 rmem->page_size); 3485 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3486 if (i == rmem->nr_pages - 2 && 3487 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3488 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3489 else if (i == rmem->nr_pages - 1 && 3490 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3491 extra_bits |= PTU_PTE_LAST; 3492 rmem->pg_tbl[i] = 3493 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3494 } 3495 } 3496 3497 if (rmem->vmem_size) { 3498 *rmem->vmem = vzalloc(rmem->vmem_size); 3499 if (!(*rmem->vmem)) 3500 return -ENOMEM; 3501 } 3502 return 0; 3503 } 3504 3505 static void bnxt_free_tpa_info(struct bnxt *bp) 3506 { 3507 int i, j; 3508 3509 for (i = 0; i < bp->rx_nr_rings; i++) { 3510 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3511 3512 kfree(rxr->rx_tpa_idx_map); 3513 rxr->rx_tpa_idx_map = NULL; 3514 if (rxr->rx_tpa) { 3515 for (j = 0; j < bp->max_tpa; j++) { 3516 kfree(rxr->rx_tpa[j].agg_arr); 3517 rxr->rx_tpa[j].agg_arr = NULL; 3518 } 3519 } 3520 kfree(rxr->rx_tpa); 3521 rxr->rx_tpa = NULL; 3522 } 3523 } 3524 3525 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3526 { 3527 int i, j; 3528 3529 bp->max_tpa = MAX_TPA; 3530 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3531 if (!bp->max_tpa_v2) 3532 return 0; 3533 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3534 } 3535 3536 for (i = 0; i < bp->rx_nr_rings; i++) { 3537 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3538 struct rx_agg_cmp *agg; 3539 3540 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3541 GFP_KERNEL); 3542 if (!rxr->rx_tpa) 3543 return -ENOMEM; 3544 3545 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3546 continue; 3547 for (j = 0; j < bp->max_tpa; j++) { 3548 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3549 if (!agg) 3550 return -ENOMEM; 3551 rxr->rx_tpa[j].agg_arr = agg; 3552 } 3553 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3554 GFP_KERNEL); 3555 if (!rxr->rx_tpa_idx_map) 3556 return -ENOMEM; 3557 } 3558 return 0; 3559 } 3560 3561 static void bnxt_free_rx_rings(struct bnxt *bp) 3562 { 3563 int i; 3564 3565 if (!bp->rx_ring) 3566 return; 3567 3568 bnxt_free_tpa_info(bp); 3569 for (i = 0; i < bp->rx_nr_rings; i++) { 3570 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3571 struct bnxt_ring_struct *ring; 3572 3573 if (rxr->xdp_prog) 3574 bpf_prog_put(rxr->xdp_prog); 3575 3576 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3577 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3578 3579 page_pool_destroy(rxr->page_pool); 3580 rxr->page_pool = NULL; 3581 3582 kfree(rxr->rx_agg_bmap); 3583 rxr->rx_agg_bmap = NULL; 3584 3585 ring = &rxr->rx_ring_struct; 3586 bnxt_free_ring(bp, &ring->ring_mem); 3587 3588 ring = &rxr->rx_agg_ring_struct; 3589 bnxt_free_ring(bp, &ring->ring_mem); 3590 } 3591 } 3592 3593 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3594 struct bnxt_rx_ring_info *rxr, 3595 int numa_node) 3596 { 3597 struct page_pool_params pp = { 0 }; 3598 3599 pp.pool_size = bp->rx_agg_ring_size; 3600 if (BNXT_RX_PAGE_MODE(bp)) 3601 pp.pool_size += bp->rx_ring_size; 3602 pp.nid = numa_node; 3603 pp.napi = &rxr->bnapi->napi; 3604 pp.netdev = bp->dev; 3605 pp.dev = &bp->pdev->dev; 3606 pp.dma_dir = bp->rx_dir; 3607 pp.max_len = PAGE_SIZE; 3608 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3609 3610 rxr->page_pool = page_pool_create(&pp); 3611 if (IS_ERR(rxr->page_pool)) { 3612 int err = PTR_ERR(rxr->page_pool); 3613 3614 rxr->page_pool = NULL; 3615 return err; 3616 } 3617 return 0; 3618 } 3619 3620 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3621 { 3622 int numa_node = dev_to_node(&bp->pdev->dev); 3623 int i, rc = 0, agg_rings = 0, cpu; 3624 3625 if (!bp->rx_ring) 3626 return -ENOMEM; 3627 3628 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3629 agg_rings = 1; 3630 3631 for (i = 0; i < bp->rx_nr_rings; i++) { 3632 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3633 struct bnxt_ring_struct *ring; 3634 int cpu_node; 3635 3636 ring = &rxr->rx_ring_struct; 3637 3638 cpu = cpumask_local_spread(i, numa_node); 3639 cpu_node = cpu_to_node(cpu); 3640 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3641 i, cpu_node); 3642 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3643 if (rc) 3644 return rc; 3645 3646 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3647 if (rc < 0) 3648 return rc; 3649 3650 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3651 MEM_TYPE_PAGE_POOL, 3652 rxr->page_pool); 3653 if (rc) { 3654 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3655 return rc; 3656 } 3657 3658 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3659 if (rc) 3660 return rc; 3661 3662 ring->grp_idx = i; 3663 if (agg_rings) { 3664 u16 mem_size; 3665 3666 ring = &rxr->rx_agg_ring_struct; 3667 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3668 if (rc) 3669 return rc; 3670 3671 ring->grp_idx = i; 3672 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3673 mem_size = rxr->rx_agg_bmap_size / 8; 3674 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3675 if (!rxr->rx_agg_bmap) 3676 return -ENOMEM; 3677 } 3678 } 3679 if (bp->flags & BNXT_FLAG_TPA) 3680 rc = bnxt_alloc_tpa_info(bp); 3681 return rc; 3682 } 3683 3684 static void bnxt_free_tx_rings(struct bnxt *bp) 3685 { 3686 int i; 3687 struct pci_dev *pdev = bp->pdev; 3688 3689 if (!bp->tx_ring) 3690 return; 3691 3692 for (i = 0; i < bp->tx_nr_rings; i++) { 3693 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3694 struct bnxt_ring_struct *ring; 3695 3696 if (txr->tx_push) { 3697 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3698 txr->tx_push, txr->tx_push_mapping); 3699 txr->tx_push = NULL; 3700 } 3701 3702 ring = &txr->tx_ring_struct; 3703 3704 bnxt_free_ring(bp, &ring->ring_mem); 3705 } 3706 } 3707 3708 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3709 ((tc) * (bp)->tx_nr_rings_per_tc) 3710 3711 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3712 ((tx) % (bp)->tx_nr_rings_per_tc) 3713 3714 #define BNXT_RING_TO_TC(bp, tx) \ 3715 ((tx) / (bp)->tx_nr_rings_per_tc) 3716 3717 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3718 { 3719 int i, j, rc; 3720 struct pci_dev *pdev = bp->pdev; 3721 3722 bp->tx_push_size = 0; 3723 if (bp->tx_push_thresh) { 3724 int push_size; 3725 3726 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3727 bp->tx_push_thresh); 3728 3729 if (push_size > 256) { 3730 push_size = 0; 3731 bp->tx_push_thresh = 0; 3732 } 3733 3734 bp->tx_push_size = push_size; 3735 } 3736 3737 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3738 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3739 struct bnxt_ring_struct *ring; 3740 u8 qidx; 3741 3742 ring = &txr->tx_ring_struct; 3743 3744 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3745 if (rc) 3746 return rc; 3747 3748 ring->grp_idx = txr->bnapi->index; 3749 if (bp->tx_push_size) { 3750 dma_addr_t mapping; 3751 3752 /* One pre-allocated DMA buffer to backup 3753 * TX push operation 3754 */ 3755 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3756 bp->tx_push_size, 3757 &txr->tx_push_mapping, 3758 GFP_KERNEL); 3759 3760 if (!txr->tx_push) 3761 return -ENOMEM; 3762 3763 mapping = txr->tx_push_mapping + 3764 sizeof(struct tx_push_bd); 3765 txr->data_mapping = cpu_to_le64(mapping); 3766 } 3767 qidx = bp->tc_to_qidx[j]; 3768 ring->queue_id = bp->q_info[qidx].queue_id; 3769 spin_lock_init(&txr->xdp_tx_lock); 3770 if (i < bp->tx_nr_rings_xdp) 3771 continue; 3772 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3773 j++; 3774 } 3775 return 0; 3776 } 3777 3778 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3779 { 3780 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3781 3782 kfree(cpr->cp_desc_ring); 3783 cpr->cp_desc_ring = NULL; 3784 ring->ring_mem.pg_arr = NULL; 3785 kfree(cpr->cp_desc_mapping); 3786 cpr->cp_desc_mapping = NULL; 3787 ring->ring_mem.dma_arr = NULL; 3788 } 3789 3790 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3791 { 3792 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3793 if (!cpr->cp_desc_ring) 3794 return -ENOMEM; 3795 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3796 GFP_KERNEL); 3797 if (!cpr->cp_desc_mapping) 3798 return -ENOMEM; 3799 return 0; 3800 } 3801 3802 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3803 { 3804 int i; 3805 3806 if (!bp->bnapi) 3807 return; 3808 for (i = 0; i < bp->cp_nr_rings; i++) { 3809 struct bnxt_napi *bnapi = bp->bnapi[i]; 3810 3811 if (!bnapi) 3812 continue; 3813 bnxt_free_cp_arrays(&bnapi->cp_ring); 3814 } 3815 } 3816 3817 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3818 { 3819 int i, n = bp->cp_nr_pages; 3820 3821 for (i = 0; i < bp->cp_nr_rings; i++) { 3822 struct bnxt_napi *bnapi = bp->bnapi[i]; 3823 int rc; 3824 3825 if (!bnapi) 3826 continue; 3827 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3828 if (rc) 3829 return rc; 3830 } 3831 return 0; 3832 } 3833 3834 static void bnxt_free_cp_rings(struct bnxt *bp) 3835 { 3836 int i; 3837 3838 if (!bp->bnapi) 3839 return; 3840 3841 for (i = 0; i < bp->cp_nr_rings; i++) { 3842 struct bnxt_napi *bnapi = bp->bnapi[i]; 3843 struct bnxt_cp_ring_info *cpr; 3844 struct bnxt_ring_struct *ring; 3845 int j; 3846 3847 if (!bnapi) 3848 continue; 3849 3850 cpr = &bnapi->cp_ring; 3851 ring = &cpr->cp_ring_struct; 3852 3853 bnxt_free_ring(bp, &ring->ring_mem); 3854 3855 if (!cpr->cp_ring_arr) 3856 continue; 3857 3858 for (j = 0; j < cpr->cp_ring_count; j++) { 3859 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3860 3861 ring = &cpr2->cp_ring_struct; 3862 bnxt_free_ring(bp, &ring->ring_mem); 3863 bnxt_free_cp_arrays(cpr2); 3864 } 3865 kfree(cpr->cp_ring_arr); 3866 cpr->cp_ring_arr = NULL; 3867 cpr->cp_ring_count = 0; 3868 } 3869 } 3870 3871 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3872 struct bnxt_cp_ring_info *cpr) 3873 { 3874 struct bnxt_ring_mem_info *rmem; 3875 struct bnxt_ring_struct *ring; 3876 int rc; 3877 3878 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3879 if (rc) { 3880 bnxt_free_cp_arrays(cpr); 3881 return -ENOMEM; 3882 } 3883 ring = &cpr->cp_ring_struct; 3884 rmem = &ring->ring_mem; 3885 rmem->nr_pages = bp->cp_nr_pages; 3886 rmem->page_size = HW_CMPD_RING_SIZE; 3887 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3888 rmem->dma_arr = cpr->cp_desc_mapping; 3889 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3890 rc = bnxt_alloc_ring(bp, rmem); 3891 if (rc) { 3892 bnxt_free_ring(bp, rmem); 3893 bnxt_free_cp_arrays(cpr); 3894 } 3895 return rc; 3896 } 3897 3898 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3899 { 3900 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3901 int i, j, rc, ulp_msix; 3902 int tcs = bp->num_tc; 3903 3904 if (!tcs) 3905 tcs = 1; 3906 ulp_msix = bnxt_get_ulp_msix_num(bp); 3907 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3908 struct bnxt_napi *bnapi = bp->bnapi[i]; 3909 struct bnxt_cp_ring_info *cpr, *cpr2; 3910 struct bnxt_ring_struct *ring; 3911 int cp_count = 0, k; 3912 int rx = 0, tx = 0; 3913 3914 if (!bnapi) 3915 continue; 3916 3917 cpr = &bnapi->cp_ring; 3918 cpr->bnapi = bnapi; 3919 ring = &cpr->cp_ring_struct; 3920 3921 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3922 if (rc) 3923 return rc; 3924 3925 ring->map_idx = ulp_msix + i; 3926 3927 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3928 continue; 3929 3930 if (i < bp->rx_nr_rings) { 3931 cp_count++; 3932 rx = 1; 3933 } 3934 if (i < bp->tx_nr_rings_xdp) { 3935 cp_count++; 3936 tx = 1; 3937 } else if ((sh && i < bp->tx_nr_rings) || 3938 (!sh && i >= bp->rx_nr_rings)) { 3939 cp_count += tcs; 3940 tx = 1; 3941 } 3942 3943 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3944 GFP_KERNEL); 3945 if (!cpr->cp_ring_arr) 3946 return -ENOMEM; 3947 cpr->cp_ring_count = cp_count; 3948 3949 for (k = 0; k < cp_count; k++) { 3950 cpr2 = &cpr->cp_ring_arr[k]; 3951 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3952 if (rc) 3953 return rc; 3954 cpr2->bnapi = bnapi; 3955 cpr2->sw_stats = cpr->sw_stats; 3956 cpr2->cp_idx = k; 3957 if (!k && rx) { 3958 bp->rx_ring[i].rx_cpr = cpr2; 3959 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 3960 } else { 3961 int n, tc = k - rx; 3962 3963 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 3964 bp->tx_ring[n].tx_cpr = cpr2; 3965 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 3966 } 3967 } 3968 if (tx) 3969 j++; 3970 } 3971 return 0; 3972 } 3973 3974 static void bnxt_init_ring_struct(struct bnxt *bp) 3975 { 3976 int i, j; 3977 3978 for (i = 0; i < bp->cp_nr_rings; i++) { 3979 struct bnxt_napi *bnapi = bp->bnapi[i]; 3980 struct bnxt_ring_mem_info *rmem; 3981 struct bnxt_cp_ring_info *cpr; 3982 struct bnxt_rx_ring_info *rxr; 3983 struct bnxt_tx_ring_info *txr; 3984 struct bnxt_ring_struct *ring; 3985 3986 if (!bnapi) 3987 continue; 3988 3989 cpr = &bnapi->cp_ring; 3990 ring = &cpr->cp_ring_struct; 3991 rmem = &ring->ring_mem; 3992 rmem->nr_pages = bp->cp_nr_pages; 3993 rmem->page_size = HW_CMPD_RING_SIZE; 3994 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3995 rmem->dma_arr = cpr->cp_desc_mapping; 3996 rmem->vmem_size = 0; 3997 3998 rxr = bnapi->rx_ring; 3999 if (!rxr) 4000 goto skip_rx; 4001 4002 ring = &rxr->rx_ring_struct; 4003 rmem = &ring->ring_mem; 4004 rmem->nr_pages = bp->rx_nr_pages; 4005 rmem->page_size = HW_RXBD_RING_SIZE; 4006 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4007 rmem->dma_arr = rxr->rx_desc_mapping; 4008 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4009 rmem->vmem = (void **)&rxr->rx_buf_ring; 4010 4011 ring = &rxr->rx_agg_ring_struct; 4012 rmem = &ring->ring_mem; 4013 rmem->nr_pages = bp->rx_agg_nr_pages; 4014 rmem->page_size = HW_RXBD_RING_SIZE; 4015 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4016 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4017 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4018 rmem->vmem = (void **)&rxr->rx_agg_ring; 4019 4020 skip_rx: 4021 bnxt_for_each_napi_tx(j, bnapi, txr) { 4022 ring = &txr->tx_ring_struct; 4023 rmem = &ring->ring_mem; 4024 rmem->nr_pages = bp->tx_nr_pages; 4025 rmem->page_size = HW_TXBD_RING_SIZE; 4026 rmem->pg_arr = (void **)txr->tx_desc_ring; 4027 rmem->dma_arr = txr->tx_desc_mapping; 4028 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4029 rmem->vmem = (void **)&txr->tx_buf_ring; 4030 } 4031 } 4032 } 4033 4034 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4035 { 4036 int i; 4037 u32 prod; 4038 struct rx_bd **rx_buf_ring; 4039 4040 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4041 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4042 int j; 4043 struct rx_bd *rxbd; 4044 4045 rxbd = rx_buf_ring[i]; 4046 if (!rxbd) 4047 continue; 4048 4049 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4050 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4051 rxbd->rx_bd_opaque = prod; 4052 } 4053 } 4054 } 4055 4056 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4057 { 4058 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4059 struct net_device *dev = bp->dev; 4060 u32 prod; 4061 int i; 4062 4063 prod = rxr->rx_prod; 4064 for (i = 0; i < bp->rx_ring_size; i++) { 4065 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4066 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 4067 ring_nr, i, bp->rx_ring_size); 4068 break; 4069 } 4070 prod = NEXT_RX(prod); 4071 } 4072 rxr->rx_prod = prod; 4073 4074 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4075 return 0; 4076 4077 prod = rxr->rx_agg_prod; 4078 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4079 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4080 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 4081 ring_nr, i, bp->rx_ring_size); 4082 break; 4083 } 4084 prod = NEXT_RX_AGG(prod); 4085 } 4086 rxr->rx_agg_prod = prod; 4087 4088 if (rxr->rx_tpa) { 4089 dma_addr_t mapping; 4090 u8 *data; 4091 4092 for (i = 0; i < bp->max_tpa; i++) { 4093 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4094 if (!data) 4095 return -ENOMEM; 4096 4097 rxr->rx_tpa[i].data = data; 4098 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4099 rxr->rx_tpa[i].mapping = mapping; 4100 } 4101 } 4102 return 0; 4103 } 4104 4105 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4106 { 4107 struct bnxt_rx_ring_info *rxr; 4108 struct bnxt_ring_struct *ring; 4109 u32 type; 4110 4111 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4112 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4113 4114 if (NET_IP_ALIGN == 2) 4115 type |= RX_BD_FLAGS_SOP; 4116 4117 rxr = &bp->rx_ring[ring_nr]; 4118 ring = &rxr->rx_ring_struct; 4119 bnxt_init_rxbd_pages(ring, type); 4120 4121 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4122 &rxr->bnapi->napi); 4123 4124 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4125 bpf_prog_add(bp->xdp_prog, 1); 4126 rxr->xdp_prog = bp->xdp_prog; 4127 } 4128 ring->fw_ring_id = INVALID_HW_RING_ID; 4129 4130 ring = &rxr->rx_agg_ring_struct; 4131 ring->fw_ring_id = INVALID_HW_RING_ID; 4132 4133 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4134 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4135 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4136 4137 bnxt_init_rxbd_pages(ring, type); 4138 } 4139 4140 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4141 } 4142 4143 static void bnxt_init_cp_rings(struct bnxt *bp) 4144 { 4145 int i, j; 4146 4147 for (i = 0; i < bp->cp_nr_rings; i++) { 4148 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4149 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4150 4151 ring->fw_ring_id = INVALID_HW_RING_ID; 4152 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4153 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4154 if (!cpr->cp_ring_arr) 4155 continue; 4156 for (j = 0; j < cpr->cp_ring_count; j++) { 4157 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4158 4159 ring = &cpr2->cp_ring_struct; 4160 ring->fw_ring_id = INVALID_HW_RING_ID; 4161 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4162 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4163 } 4164 } 4165 } 4166 4167 static int bnxt_init_rx_rings(struct bnxt *bp) 4168 { 4169 int i, rc = 0; 4170 4171 if (BNXT_RX_PAGE_MODE(bp)) { 4172 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4173 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4174 } else { 4175 bp->rx_offset = BNXT_RX_OFFSET; 4176 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4177 } 4178 4179 for (i = 0; i < bp->rx_nr_rings; i++) { 4180 rc = bnxt_init_one_rx_ring(bp, i); 4181 if (rc) 4182 break; 4183 } 4184 4185 return rc; 4186 } 4187 4188 static int bnxt_init_tx_rings(struct bnxt *bp) 4189 { 4190 u16 i; 4191 4192 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4193 BNXT_MIN_TX_DESC_CNT); 4194 4195 for (i = 0; i < bp->tx_nr_rings; i++) { 4196 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4197 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4198 4199 ring->fw_ring_id = INVALID_HW_RING_ID; 4200 4201 if (i >= bp->tx_nr_rings_xdp) 4202 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4203 NETDEV_QUEUE_TYPE_TX, 4204 &txr->bnapi->napi); 4205 } 4206 4207 return 0; 4208 } 4209 4210 static void bnxt_free_ring_grps(struct bnxt *bp) 4211 { 4212 kfree(bp->grp_info); 4213 bp->grp_info = NULL; 4214 } 4215 4216 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4217 { 4218 int i; 4219 4220 if (irq_re_init) { 4221 bp->grp_info = kcalloc(bp->cp_nr_rings, 4222 sizeof(struct bnxt_ring_grp_info), 4223 GFP_KERNEL); 4224 if (!bp->grp_info) 4225 return -ENOMEM; 4226 } 4227 for (i = 0; i < bp->cp_nr_rings; i++) { 4228 if (irq_re_init) 4229 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4230 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4231 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4232 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4233 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4234 } 4235 return 0; 4236 } 4237 4238 static void bnxt_free_vnics(struct bnxt *bp) 4239 { 4240 kfree(bp->vnic_info); 4241 bp->vnic_info = NULL; 4242 bp->nr_vnics = 0; 4243 } 4244 4245 static int bnxt_alloc_vnics(struct bnxt *bp) 4246 { 4247 int num_vnics = 1; 4248 4249 #ifdef CONFIG_RFS_ACCEL 4250 if (bp->flags & BNXT_FLAG_RFS) { 4251 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4252 num_vnics++; 4253 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4254 num_vnics += bp->rx_nr_rings; 4255 } 4256 #endif 4257 4258 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4259 num_vnics++; 4260 4261 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4262 GFP_KERNEL); 4263 if (!bp->vnic_info) 4264 return -ENOMEM; 4265 4266 bp->nr_vnics = num_vnics; 4267 return 0; 4268 } 4269 4270 static void bnxt_init_vnics(struct bnxt *bp) 4271 { 4272 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4273 int i; 4274 4275 for (i = 0; i < bp->nr_vnics; i++) { 4276 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4277 int j; 4278 4279 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4280 vnic->vnic_id = i; 4281 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4282 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4283 4284 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4285 4286 if (bp->vnic_info[i].rss_hash_key) { 4287 if (i == BNXT_VNIC_DEFAULT) { 4288 u8 *key = (void *)vnic->rss_hash_key; 4289 int k; 4290 4291 if (!bp->rss_hash_key_valid && 4292 !bp->rss_hash_key_updated) { 4293 get_random_bytes(bp->rss_hash_key, 4294 HW_HASH_KEY_SIZE); 4295 bp->rss_hash_key_updated = true; 4296 } 4297 4298 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4299 HW_HASH_KEY_SIZE); 4300 4301 if (!bp->rss_hash_key_updated) 4302 continue; 4303 4304 bp->rss_hash_key_updated = false; 4305 bp->rss_hash_key_valid = true; 4306 4307 bp->toeplitz_prefix = 0; 4308 for (k = 0; k < 8; k++) { 4309 bp->toeplitz_prefix <<= 8; 4310 bp->toeplitz_prefix |= key[k]; 4311 } 4312 } else { 4313 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4314 HW_HASH_KEY_SIZE); 4315 } 4316 } 4317 } 4318 } 4319 4320 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4321 { 4322 int pages; 4323 4324 pages = ring_size / desc_per_pg; 4325 4326 if (!pages) 4327 return 1; 4328 4329 pages++; 4330 4331 while (pages & (pages - 1)) 4332 pages++; 4333 4334 return pages; 4335 } 4336 4337 void bnxt_set_tpa_flags(struct bnxt *bp) 4338 { 4339 bp->flags &= ~BNXT_FLAG_TPA; 4340 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4341 return; 4342 if (bp->dev->features & NETIF_F_LRO) 4343 bp->flags |= BNXT_FLAG_LRO; 4344 else if (bp->dev->features & NETIF_F_GRO_HW) 4345 bp->flags |= BNXT_FLAG_GRO; 4346 } 4347 4348 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4349 * be set on entry. 4350 */ 4351 void bnxt_set_ring_params(struct bnxt *bp) 4352 { 4353 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4354 u32 agg_factor = 0, agg_ring_size = 0; 4355 4356 /* 8 for CRC and VLAN */ 4357 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4358 4359 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4360 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4361 4362 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4363 ring_size = bp->rx_ring_size; 4364 bp->rx_agg_ring_size = 0; 4365 bp->rx_agg_nr_pages = 0; 4366 4367 if (bp->flags & BNXT_FLAG_TPA) 4368 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4369 4370 bp->flags &= ~BNXT_FLAG_JUMBO; 4371 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4372 u32 jumbo_factor; 4373 4374 bp->flags |= BNXT_FLAG_JUMBO; 4375 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4376 if (jumbo_factor > agg_factor) 4377 agg_factor = jumbo_factor; 4378 } 4379 if (agg_factor) { 4380 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4381 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4382 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4383 bp->rx_ring_size, ring_size); 4384 bp->rx_ring_size = ring_size; 4385 } 4386 agg_ring_size = ring_size * agg_factor; 4387 4388 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4389 RX_DESC_CNT); 4390 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4391 u32 tmp = agg_ring_size; 4392 4393 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4394 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4395 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4396 tmp, agg_ring_size); 4397 } 4398 bp->rx_agg_ring_size = agg_ring_size; 4399 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4400 4401 if (BNXT_RX_PAGE_MODE(bp)) { 4402 rx_space = PAGE_SIZE; 4403 rx_size = PAGE_SIZE - 4404 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4405 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4406 } else { 4407 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4408 rx_space = rx_size + NET_SKB_PAD + 4409 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4410 } 4411 } 4412 4413 bp->rx_buf_use_size = rx_size; 4414 bp->rx_buf_size = rx_space; 4415 4416 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4417 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4418 4419 ring_size = bp->tx_ring_size; 4420 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4421 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4422 4423 max_rx_cmpl = bp->rx_ring_size; 4424 /* MAX TPA needs to be added because TPA_START completions are 4425 * immediately recycled, so the TPA completions are not bound by 4426 * the RX ring size. 4427 */ 4428 if (bp->flags & BNXT_FLAG_TPA) 4429 max_rx_cmpl += bp->max_tpa; 4430 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4431 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4432 bp->cp_ring_size = ring_size; 4433 4434 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4435 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4436 bp->cp_nr_pages = MAX_CP_PAGES; 4437 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4438 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4439 ring_size, bp->cp_ring_size); 4440 } 4441 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4442 bp->cp_ring_mask = bp->cp_bit - 1; 4443 } 4444 4445 /* Changing allocation mode of RX rings. 4446 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4447 */ 4448 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4449 { 4450 struct net_device *dev = bp->dev; 4451 4452 if (page_mode) { 4453 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4454 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4455 4456 if (bp->xdp_prog->aux->xdp_has_frags) 4457 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4458 else 4459 dev->max_mtu = 4460 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4461 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4462 bp->flags |= BNXT_FLAG_JUMBO; 4463 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4464 } else { 4465 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4466 bp->rx_skb_func = bnxt_rx_page_skb; 4467 } 4468 bp->rx_dir = DMA_BIDIRECTIONAL; 4469 /* Disable LRO or GRO_HW */ 4470 netdev_update_features(dev); 4471 } else { 4472 dev->max_mtu = bp->max_mtu; 4473 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4474 bp->rx_dir = DMA_FROM_DEVICE; 4475 bp->rx_skb_func = bnxt_rx_skb; 4476 } 4477 return 0; 4478 } 4479 4480 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4481 { 4482 int i; 4483 struct bnxt_vnic_info *vnic; 4484 struct pci_dev *pdev = bp->pdev; 4485 4486 if (!bp->vnic_info) 4487 return; 4488 4489 for (i = 0; i < bp->nr_vnics; i++) { 4490 vnic = &bp->vnic_info[i]; 4491 4492 kfree(vnic->fw_grp_ids); 4493 vnic->fw_grp_ids = NULL; 4494 4495 kfree(vnic->uc_list); 4496 vnic->uc_list = NULL; 4497 4498 if (vnic->mc_list) { 4499 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4500 vnic->mc_list, vnic->mc_list_mapping); 4501 vnic->mc_list = NULL; 4502 } 4503 4504 if (vnic->rss_table) { 4505 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4506 vnic->rss_table, 4507 vnic->rss_table_dma_addr); 4508 vnic->rss_table = NULL; 4509 } 4510 4511 vnic->rss_hash_key = NULL; 4512 vnic->flags = 0; 4513 } 4514 } 4515 4516 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4517 { 4518 int i, rc = 0, size; 4519 struct bnxt_vnic_info *vnic; 4520 struct pci_dev *pdev = bp->pdev; 4521 int max_rings; 4522 4523 for (i = 0; i < bp->nr_vnics; i++) { 4524 vnic = &bp->vnic_info[i]; 4525 4526 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4527 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4528 4529 if (mem_size > 0) { 4530 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4531 if (!vnic->uc_list) { 4532 rc = -ENOMEM; 4533 goto out; 4534 } 4535 } 4536 } 4537 4538 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4539 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4540 vnic->mc_list = 4541 dma_alloc_coherent(&pdev->dev, 4542 vnic->mc_list_size, 4543 &vnic->mc_list_mapping, 4544 GFP_KERNEL); 4545 if (!vnic->mc_list) { 4546 rc = -ENOMEM; 4547 goto out; 4548 } 4549 } 4550 4551 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4552 goto vnic_skip_grps; 4553 4554 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4555 max_rings = bp->rx_nr_rings; 4556 else 4557 max_rings = 1; 4558 4559 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4560 if (!vnic->fw_grp_ids) { 4561 rc = -ENOMEM; 4562 goto out; 4563 } 4564 vnic_skip_grps: 4565 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4566 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4567 continue; 4568 4569 /* Allocate rss table and hash key */ 4570 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4571 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4572 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4573 4574 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4575 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4576 vnic->rss_table_size, 4577 &vnic->rss_table_dma_addr, 4578 GFP_KERNEL); 4579 if (!vnic->rss_table) { 4580 rc = -ENOMEM; 4581 goto out; 4582 } 4583 4584 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4585 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4586 } 4587 return 0; 4588 4589 out: 4590 return rc; 4591 } 4592 4593 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4594 { 4595 struct bnxt_hwrm_wait_token *token; 4596 4597 dma_pool_destroy(bp->hwrm_dma_pool); 4598 bp->hwrm_dma_pool = NULL; 4599 4600 rcu_read_lock(); 4601 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4602 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4603 rcu_read_unlock(); 4604 } 4605 4606 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4607 { 4608 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4609 BNXT_HWRM_DMA_SIZE, 4610 BNXT_HWRM_DMA_ALIGN, 0); 4611 if (!bp->hwrm_dma_pool) 4612 return -ENOMEM; 4613 4614 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4615 4616 return 0; 4617 } 4618 4619 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4620 { 4621 kfree(stats->hw_masks); 4622 stats->hw_masks = NULL; 4623 kfree(stats->sw_stats); 4624 stats->sw_stats = NULL; 4625 if (stats->hw_stats) { 4626 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4627 stats->hw_stats_map); 4628 stats->hw_stats = NULL; 4629 } 4630 } 4631 4632 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4633 bool alloc_masks) 4634 { 4635 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4636 &stats->hw_stats_map, GFP_KERNEL); 4637 if (!stats->hw_stats) 4638 return -ENOMEM; 4639 4640 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4641 if (!stats->sw_stats) 4642 goto stats_mem_err; 4643 4644 if (alloc_masks) { 4645 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4646 if (!stats->hw_masks) 4647 goto stats_mem_err; 4648 } 4649 return 0; 4650 4651 stats_mem_err: 4652 bnxt_free_stats_mem(bp, stats); 4653 return -ENOMEM; 4654 } 4655 4656 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4657 { 4658 int i; 4659 4660 for (i = 0; i < count; i++) 4661 mask_arr[i] = mask; 4662 } 4663 4664 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4665 { 4666 int i; 4667 4668 for (i = 0; i < count; i++) 4669 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4670 } 4671 4672 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4673 struct bnxt_stats_mem *stats) 4674 { 4675 struct hwrm_func_qstats_ext_output *resp; 4676 struct hwrm_func_qstats_ext_input *req; 4677 __le64 *hw_masks; 4678 int rc; 4679 4680 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4681 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4682 return -EOPNOTSUPP; 4683 4684 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4685 if (rc) 4686 return rc; 4687 4688 req->fid = cpu_to_le16(0xffff); 4689 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4690 4691 resp = hwrm_req_hold(bp, req); 4692 rc = hwrm_req_send(bp, req); 4693 if (!rc) { 4694 hw_masks = &resp->rx_ucast_pkts; 4695 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4696 } 4697 hwrm_req_drop(bp, req); 4698 return rc; 4699 } 4700 4701 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4702 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4703 4704 static void bnxt_init_stats(struct bnxt *bp) 4705 { 4706 struct bnxt_napi *bnapi = bp->bnapi[0]; 4707 struct bnxt_cp_ring_info *cpr; 4708 struct bnxt_stats_mem *stats; 4709 __le64 *rx_stats, *tx_stats; 4710 int rc, rx_count, tx_count; 4711 u64 *rx_masks, *tx_masks; 4712 u64 mask; 4713 u8 flags; 4714 4715 cpr = &bnapi->cp_ring; 4716 stats = &cpr->stats; 4717 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4718 if (rc) { 4719 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4720 mask = (1ULL << 48) - 1; 4721 else 4722 mask = -1ULL; 4723 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4724 } 4725 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4726 stats = &bp->port_stats; 4727 rx_stats = stats->hw_stats; 4728 rx_masks = stats->hw_masks; 4729 rx_count = sizeof(struct rx_port_stats) / 8; 4730 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4731 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4732 tx_count = sizeof(struct tx_port_stats) / 8; 4733 4734 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4735 rc = bnxt_hwrm_port_qstats(bp, flags); 4736 if (rc) { 4737 mask = (1ULL << 40) - 1; 4738 4739 bnxt_fill_masks(rx_masks, mask, rx_count); 4740 bnxt_fill_masks(tx_masks, mask, tx_count); 4741 } else { 4742 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4743 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4744 bnxt_hwrm_port_qstats(bp, 0); 4745 } 4746 } 4747 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4748 stats = &bp->rx_port_stats_ext; 4749 rx_stats = stats->hw_stats; 4750 rx_masks = stats->hw_masks; 4751 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4752 stats = &bp->tx_port_stats_ext; 4753 tx_stats = stats->hw_stats; 4754 tx_masks = stats->hw_masks; 4755 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4756 4757 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4758 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4759 if (rc) { 4760 mask = (1ULL << 40) - 1; 4761 4762 bnxt_fill_masks(rx_masks, mask, rx_count); 4763 if (tx_stats) 4764 bnxt_fill_masks(tx_masks, mask, tx_count); 4765 } else { 4766 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4767 if (tx_stats) 4768 bnxt_copy_hw_masks(tx_masks, tx_stats, 4769 tx_count); 4770 bnxt_hwrm_port_qstats_ext(bp, 0); 4771 } 4772 } 4773 } 4774 4775 static void bnxt_free_port_stats(struct bnxt *bp) 4776 { 4777 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4778 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4779 4780 bnxt_free_stats_mem(bp, &bp->port_stats); 4781 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4782 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4783 } 4784 4785 static void bnxt_free_ring_stats(struct bnxt *bp) 4786 { 4787 int i; 4788 4789 if (!bp->bnapi) 4790 return; 4791 4792 for (i = 0; i < bp->cp_nr_rings; i++) { 4793 struct bnxt_napi *bnapi = bp->bnapi[i]; 4794 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4795 4796 bnxt_free_stats_mem(bp, &cpr->stats); 4797 4798 kfree(cpr->sw_stats); 4799 cpr->sw_stats = NULL; 4800 } 4801 } 4802 4803 static int bnxt_alloc_stats(struct bnxt *bp) 4804 { 4805 u32 size, i; 4806 int rc; 4807 4808 size = bp->hw_ring_stats_size; 4809 4810 for (i = 0; i < bp->cp_nr_rings; i++) { 4811 struct bnxt_napi *bnapi = bp->bnapi[i]; 4812 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4813 4814 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 4815 if (!cpr->sw_stats) 4816 return -ENOMEM; 4817 4818 cpr->stats.len = size; 4819 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4820 if (rc) 4821 return rc; 4822 4823 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4824 } 4825 4826 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4827 return 0; 4828 4829 if (bp->port_stats.hw_stats) 4830 goto alloc_ext_stats; 4831 4832 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4833 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4834 if (rc) 4835 return rc; 4836 4837 bp->flags |= BNXT_FLAG_PORT_STATS; 4838 4839 alloc_ext_stats: 4840 /* Display extended statistics only if FW supports it */ 4841 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4842 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4843 return 0; 4844 4845 if (bp->rx_port_stats_ext.hw_stats) 4846 goto alloc_tx_ext_stats; 4847 4848 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4849 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4850 /* Extended stats are optional */ 4851 if (rc) 4852 return 0; 4853 4854 alloc_tx_ext_stats: 4855 if (bp->tx_port_stats_ext.hw_stats) 4856 return 0; 4857 4858 if (bp->hwrm_spec_code >= 0x10902 || 4859 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4860 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4861 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4862 /* Extended stats are optional */ 4863 if (rc) 4864 return 0; 4865 } 4866 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4867 return 0; 4868 } 4869 4870 static void bnxt_clear_ring_indices(struct bnxt *bp) 4871 { 4872 int i, j; 4873 4874 if (!bp->bnapi) 4875 return; 4876 4877 for (i = 0; i < bp->cp_nr_rings; i++) { 4878 struct bnxt_napi *bnapi = bp->bnapi[i]; 4879 struct bnxt_cp_ring_info *cpr; 4880 struct bnxt_rx_ring_info *rxr; 4881 struct bnxt_tx_ring_info *txr; 4882 4883 if (!bnapi) 4884 continue; 4885 4886 cpr = &bnapi->cp_ring; 4887 cpr->cp_raw_cons = 0; 4888 4889 bnxt_for_each_napi_tx(j, bnapi, txr) { 4890 txr->tx_prod = 0; 4891 txr->tx_cons = 0; 4892 txr->tx_hw_cons = 0; 4893 } 4894 4895 rxr = bnapi->rx_ring; 4896 if (rxr) { 4897 rxr->rx_prod = 0; 4898 rxr->rx_agg_prod = 0; 4899 rxr->rx_sw_agg_prod = 0; 4900 rxr->rx_next_cons = 0; 4901 } 4902 bnapi->events = 0; 4903 } 4904 } 4905 4906 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4907 { 4908 u8 type = fltr->type, flags = fltr->flags; 4909 4910 INIT_LIST_HEAD(&fltr->list); 4911 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 4912 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 4913 list_add_tail(&fltr->list, &bp->usr_fltr_list); 4914 } 4915 4916 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4917 { 4918 if (!list_empty(&fltr->list)) 4919 list_del_init(&fltr->list); 4920 } 4921 4922 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 4923 { 4924 struct bnxt_filter_base *usr_fltr, *tmp; 4925 4926 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 4927 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 4928 continue; 4929 bnxt_del_one_usr_fltr(bp, usr_fltr); 4930 } 4931 } 4932 4933 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4934 { 4935 hlist_del(&fltr->hash); 4936 bnxt_del_one_usr_fltr(bp, fltr); 4937 if (fltr->flags) { 4938 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 4939 bp->ntp_fltr_count--; 4940 } 4941 kfree(fltr); 4942 } 4943 4944 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 4945 { 4946 int i; 4947 4948 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4949 * safe to delete the hash table. 4950 */ 4951 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4952 struct hlist_head *head; 4953 struct hlist_node *tmp; 4954 struct bnxt_ntuple_filter *fltr; 4955 4956 head = &bp->ntp_fltr_hash_tbl[i]; 4957 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 4958 bnxt_del_l2_filter(bp, fltr->l2_fltr); 4959 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 4960 !list_empty(&fltr->base.list))) 4961 continue; 4962 bnxt_del_fltr(bp, &fltr->base); 4963 } 4964 } 4965 if (!all) 4966 return; 4967 4968 bitmap_free(bp->ntp_fltr_bmap); 4969 bp->ntp_fltr_bmap = NULL; 4970 bp->ntp_fltr_count = 0; 4971 } 4972 4973 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4974 { 4975 int i, rc = 0; 4976 4977 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 4978 return 0; 4979 4980 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4981 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4982 4983 bp->ntp_fltr_count = 0; 4984 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 4985 4986 if (!bp->ntp_fltr_bmap) 4987 rc = -ENOMEM; 4988 4989 return rc; 4990 } 4991 4992 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 4993 { 4994 int i; 4995 4996 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 4997 struct hlist_head *head; 4998 struct hlist_node *tmp; 4999 struct bnxt_l2_filter *fltr; 5000 5001 head = &bp->l2_fltr_hash_tbl[i]; 5002 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5003 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5004 !list_empty(&fltr->base.list))) 5005 continue; 5006 bnxt_del_fltr(bp, &fltr->base); 5007 } 5008 } 5009 } 5010 5011 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5012 { 5013 int i; 5014 5015 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5016 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5017 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5018 } 5019 5020 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5021 { 5022 bnxt_free_vnic_attributes(bp); 5023 bnxt_free_tx_rings(bp); 5024 bnxt_free_rx_rings(bp); 5025 bnxt_free_cp_rings(bp); 5026 bnxt_free_all_cp_arrays(bp); 5027 bnxt_free_ntp_fltrs(bp, false); 5028 bnxt_free_l2_filters(bp, false); 5029 if (irq_re_init) { 5030 bnxt_free_ring_stats(bp); 5031 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5032 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5033 bnxt_free_port_stats(bp); 5034 bnxt_free_ring_grps(bp); 5035 bnxt_free_vnics(bp); 5036 kfree(bp->tx_ring_map); 5037 bp->tx_ring_map = NULL; 5038 kfree(bp->tx_ring); 5039 bp->tx_ring = NULL; 5040 kfree(bp->rx_ring); 5041 bp->rx_ring = NULL; 5042 kfree(bp->bnapi); 5043 bp->bnapi = NULL; 5044 } else { 5045 bnxt_clear_ring_indices(bp); 5046 } 5047 } 5048 5049 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5050 { 5051 int i, j, rc, size, arr_size; 5052 void *bnapi; 5053 5054 if (irq_re_init) { 5055 /* Allocate bnapi mem pointer array and mem block for 5056 * all queues 5057 */ 5058 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5059 bp->cp_nr_rings); 5060 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5061 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5062 if (!bnapi) 5063 return -ENOMEM; 5064 5065 bp->bnapi = bnapi; 5066 bnapi += arr_size; 5067 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5068 bp->bnapi[i] = bnapi; 5069 bp->bnapi[i]->index = i; 5070 bp->bnapi[i]->bp = bp; 5071 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5072 struct bnxt_cp_ring_info *cpr = 5073 &bp->bnapi[i]->cp_ring; 5074 5075 cpr->cp_ring_struct.ring_mem.flags = 5076 BNXT_RMEM_RING_PTE_FLAG; 5077 } 5078 } 5079 5080 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5081 sizeof(struct bnxt_rx_ring_info), 5082 GFP_KERNEL); 5083 if (!bp->rx_ring) 5084 return -ENOMEM; 5085 5086 for (i = 0; i < bp->rx_nr_rings; i++) { 5087 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5088 5089 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5090 rxr->rx_ring_struct.ring_mem.flags = 5091 BNXT_RMEM_RING_PTE_FLAG; 5092 rxr->rx_agg_ring_struct.ring_mem.flags = 5093 BNXT_RMEM_RING_PTE_FLAG; 5094 } else { 5095 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5096 } 5097 rxr->bnapi = bp->bnapi[i]; 5098 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5099 } 5100 5101 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5102 sizeof(struct bnxt_tx_ring_info), 5103 GFP_KERNEL); 5104 if (!bp->tx_ring) 5105 return -ENOMEM; 5106 5107 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5108 GFP_KERNEL); 5109 5110 if (!bp->tx_ring_map) 5111 return -ENOMEM; 5112 5113 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5114 j = 0; 5115 else 5116 j = bp->rx_nr_rings; 5117 5118 for (i = 0; i < bp->tx_nr_rings; i++) { 5119 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5120 struct bnxt_napi *bnapi2; 5121 5122 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5123 txr->tx_ring_struct.ring_mem.flags = 5124 BNXT_RMEM_RING_PTE_FLAG; 5125 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5126 if (i >= bp->tx_nr_rings_xdp) { 5127 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5128 5129 bnapi2 = bp->bnapi[k]; 5130 txr->txq_index = i - bp->tx_nr_rings_xdp; 5131 txr->tx_napi_idx = 5132 BNXT_RING_TO_TC(bp, txr->txq_index); 5133 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5134 bnapi2->tx_int = bnxt_tx_int; 5135 } else { 5136 bnapi2 = bp->bnapi[j]; 5137 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5138 bnapi2->tx_ring[0] = txr; 5139 bnapi2->tx_int = bnxt_tx_int_xdp; 5140 j++; 5141 } 5142 txr->bnapi = bnapi2; 5143 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5144 txr->tx_cpr = &bnapi2->cp_ring; 5145 } 5146 5147 rc = bnxt_alloc_stats(bp); 5148 if (rc) 5149 goto alloc_mem_err; 5150 bnxt_init_stats(bp); 5151 5152 rc = bnxt_alloc_ntp_fltrs(bp); 5153 if (rc) 5154 goto alloc_mem_err; 5155 5156 rc = bnxt_alloc_vnics(bp); 5157 if (rc) 5158 goto alloc_mem_err; 5159 } 5160 5161 rc = bnxt_alloc_all_cp_arrays(bp); 5162 if (rc) 5163 goto alloc_mem_err; 5164 5165 bnxt_init_ring_struct(bp); 5166 5167 rc = bnxt_alloc_rx_rings(bp); 5168 if (rc) 5169 goto alloc_mem_err; 5170 5171 rc = bnxt_alloc_tx_rings(bp); 5172 if (rc) 5173 goto alloc_mem_err; 5174 5175 rc = bnxt_alloc_cp_rings(bp); 5176 if (rc) 5177 goto alloc_mem_err; 5178 5179 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5180 BNXT_VNIC_MCAST_FLAG | 5181 BNXT_VNIC_UCAST_FLAG; 5182 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5183 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5184 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5185 5186 rc = bnxt_alloc_vnic_attributes(bp); 5187 if (rc) 5188 goto alloc_mem_err; 5189 return 0; 5190 5191 alloc_mem_err: 5192 bnxt_free_mem(bp, true); 5193 return rc; 5194 } 5195 5196 static void bnxt_disable_int(struct bnxt *bp) 5197 { 5198 int i; 5199 5200 if (!bp->bnapi) 5201 return; 5202 5203 for (i = 0; i < bp->cp_nr_rings; i++) { 5204 struct bnxt_napi *bnapi = bp->bnapi[i]; 5205 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5206 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5207 5208 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5209 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5210 } 5211 } 5212 5213 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5214 { 5215 struct bnxt_napi *bnapi = bp->bnapi[n]; 5216 struct bnxt_cp_ring_info *cpr; 5217 5218 cpr = &bnapi->cp_ring; 5219 return cpr->cp_ring_struct.map_idx; 5220 } 5221 5222 static void bnxt_disable_int_sync(struct bnxt *bp) 5223 { 5224 int i; 5225 5226 if (!bp->irq_tbl) 5227 return; 5228 5229 atomic_inc(&bp->intr_sem); 5230 5231 bnxt_disable_int(bp); 5232 for (i = 0; i < bp->cp_nr_rings; i++) { 5233 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5234 5235 synchronize_irq(bp->irq_tbl[map_idx].vector); 5236 } 5237 } 5238 5239 static void bnxt_enable_int(struct bnxt *bp) 5240 { 5241 int i; 5242 5243 atomic_set(&bp->intr_sem, 0); 5244 for (i = 0; i < bp->cp_nr_rings; i++) { 5245 struct bnxt_napi *bnapi = bp->bnapi[i]; 5246 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5247 5248 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5249 } 5250 } 5251 5252 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5253 bool async_only) 5254 { 5255 DECLARE_BITMAP(async_events_bmap, 256); 5256 u32 *events = (u32 *)async_events_bmap; 5257 struct hwrm_func_drv_rgtr_output *resp; 5258 struct hwrm_func_drv_rgtr_input *req; 5259 u32 flags; 5260 int rc, i; 5261 5262 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5263 if (rc) 5264 return rc; 5265 5266 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5267 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5268 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5269 5270 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5271 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5272 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5273 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5274 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5275 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5276 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5277 req->flags = cpu_to_le32(flags); 5278 req->ver_maj_8b = DRV_VER_MAJ; 5279 req->ver_min_8b = DRV_VER_MIN; 5280 req->ver_upd_8b = DRV_VER_UPD; 5281 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5282 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5283 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5284 5285 if (BNXT_PF(bp)) { 5286 u32 data[8]; 5287 int i; 5288 5289 memset(data, 0, sizeof(data)); 5290 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5291 u16 cmd = bnxt_vf_req_snif[i]; 5292 unsigned int bit, idx; 5293 5294 idx = cmd / 32; 5295 bit = cmd % 32; 5296 data[idx] |= 1 << bit; 5297 } 5298 5299 for (i = 0; i < 8; i++) 5300 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5301 5302 req->enables |= 5303 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5304 } 5305 5306 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5307 req->flags |= cpu_to_le32( 5308 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5309 5310 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5311 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5312 u16 event_id = bnxt_async_events_arr[i]; 5313 5314 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5315 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5316 continue; 5317 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5318 !bp->ptp_cfg) 5319 continue; 5320 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5321 } 5322 if (bmap && bmap_size) { 5323 for (i = 0; i < bmap_size; i++) { 5324 if (test_bit(i, bmap)) 5325 __set_bit(i, async_events_bmap); 5326 } 5327 } 5328 for (i = 0; i < 8; i++) 5329 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5330 5331 if (async_only) 5332 req->enables = 5333 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5334 5335 resp = hwrm_req_hold(bp, req); 5336 rc = hwrm_req_send(bp, req); 5337 if (!rc) { 5338 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5339 if (resp->flags & 5340 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5341 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5342 } 5343 hwrm_req_drop(bp, req); 5344 return rc; 5345 } 5346 5347 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5348 { 5349 struct hwrm_func_drv_unrgtr_input *req; 5350 int rc; 5351 5352 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5353 return 0; 5354 5355 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5356 if (rc) 5357 return rc; 5358 return hwrm_req_send(bp, req); 5359 } 5360 5361 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5362 5363 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5364 { 5365 struct hwrm_tunnel_dst_port_free_input *req; 5366 int rc; 5367 5368 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5369 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5370 return 0; 5371 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5372 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5373 return 0; 5374 5375 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5376 if (rc) 5377 return rc; 5378 5379 req->tunnel_type = tunnel_type; 5380 5381 switch (tunnel_type) { 5382 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5383 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5384 bp->vxlan_port = 0; 5385 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5386 break; 5387 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5388 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5389 bp->nge_port = 0; 5390 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5391 break; 5392 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5393 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5394 bp->vxlan_gpe_port = 0; 5395 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5396 break; 5397 default: 5398 break; 5399 } 5400 5401 rc = hwrm_req_send(bp, req); 5402 if (rc) 5403 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5404 rc); 5405 if (bp->flags & BNXT_FLAG_TPA) 5406 bnxt_set_tpa(bp, true); 5407 return rc; 5408 } 5409 5410 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5411 u8 tunnel_type) 5412 { 5413 struct hwrm_tunnel_dst_port_alloc_output *resp; 5414 struct hwrm_tunnel_dst_port_alloc_input *req; 5415 int rc; 5416 5417 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5418 if (rc) 5419 return rc; 5420 5421 req->tunnel_type = tunnel_type; 5422 req->tunnel_dst_port_val = port; 5423 5424 resp = hwrm_req_hold(bp, req); 5425 rc = hwrm_req_send(bp, req); 5426 if (rc) { 5427 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5428 rc); 5429 goto err_out; 5430 } 5431 5432 switch (tunnel_type) { 5433 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5434 bp->vxlan_port = port; 5435 bp->vxlan_fw_dst_port_id = 5436 le16_to_cpu(resp->tunnel_dst_port_id); 5437 break; 5438 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5439 bp->nge_port = port; 5440 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5441 break; 5442 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5443 bp->vxlan_gpe_port = port; 5444 bp->vxlan_gpe_fw_dst_port_id = 5445 le16_to_cpu(resp->tunnel_dst_port_id); 5446 break; 5447 default: 5448 break; 5449 } 5450 if (bp->flags & BNXT_FLAG_TPA) 5451 bnxt_set_tpa(bp, true); 5452 5453 err_out: 5454 hwrm_req_drop(bp, req); 5455 return rc; 5456 } 5457 5458 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5459 { 5460 struct hwrm_cfa_l2_set_rx_mask_input *req; 5461 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5462 int rc; 5463 5464 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5465 if (rc) 5466 return rc; 5467 5468 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5469 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5470 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5471 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5472 } 5473 req->mask = cpu_to_le32(vnic->rx_mask); 5474 return hwrm_req_send_silent(bp, req); 5475 } 5476 5477 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5478 { 5479 if (!atomic_dec_and_test(&fltr->refcnt)) 5480 return; 5481 spin_lock_bh(&bp->ntp_fltr_lock); 5482 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5483 spin_unlock_bh(&bp->ntp_fltr_lock); 5484 return; 5485 } 5486 hlist_del_rcu(&fltr->base.hash); 5487 bnxt_del_one_usr_fltr(bp, &fltr->base); 5488 if (fltr->base.flags) { 5489 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5490 bp->ntp_fltr_count--; 5491 } 5492 spin_unlock_bh(&bp->ntp_fltr_lock); 5493 kfree_rcu(fltr, base.rcu); 5494 } 5495 5496 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5497 struct bnxt_l2_key *key, 5498 u32 idx) 5499 { 5500 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5501 struct bnxt_l2_filter *fltr; 5502 5503 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5504 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5505 5506 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5507 l2_key->vlan == key->vlan) 5508 return fltr; 5509 } 5510 return NULL; 5511 } 5512 5513 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5514 struct bnxt_l2_key *key, 5515 u32 idx) 5516 { 5517 struct bnxt_l2_filter *fltr = NULL; 5518 5519 rcu_read_lock(); 5520 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5521 if (fltr) 5522 atomic_inc(&fltr->refcnt); 5523 rcu_read_unlock(); 5524 return fltr; 5525 } 5526 5527 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5528 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5529 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5530 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5531 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5532 5533 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5534 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5535 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5536 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5537 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5538 5539 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5540 { 5541 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5542 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5543 return sizeof(fkeys->addrs.v4addrs) + 5544 sizeof(fkeys->ports); 5545 5546 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5547 return sizeof(fkeys->addrs.v4addrs); 5548 } 5549 5550 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5551 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5552 return sizeof(fkeys->addrs.v6addrs) + 5553 sizeof(fkeys->ports); 5554 5555 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5556 return sizeof(fkeys->addrs.v6addrs); 5557 } 5558 5559 return 0; 5560 } 5561 5562 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5563 const unsigned char *key) 5564 { 5565 u64 prefix = bp->toeplitz_prefix, hash = 0; 5566 struct bnxt_ipv4_tuple tuple4; 5567 struct bnxt_ipv6_tuple tuple6; 5568 int i, j, len = 0; 5569 u8 *four_tuple; 5570 5571 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5572 if (!len) 5573 return 0; 5574 5575 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5576 tuple4.v4addrs = fkeys->addrs.v4addrs; 5577 tuple4.ports = fkeys->ports; 5578 four_tuple = (unsigned char *)&tuple4; 5579 } else { 5580 tuple6.v6addrs = fkeys->addrs.v6addrs; 5581 tuple6.ports = fkeys->ports; 5582 four_tuple = (unsigned char *)&tuple6; 5583 } 5584 5585 for (i = 0, j = 8; i < len; i++, j++) { 5586 u8 byte = four_tuple[i]; 5587 int bit; 5588 5589 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5590 if (byte & 0x80) 5591 hash ^= prefix; 5592 } 5593 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5594 } 5595 5596 /* The valid part of the hash is in the upper 32 bits. */ 5597 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5598 } 5599 5600 #ifdef CONFIG_RFS_ACCEL 5601 static struct bnxt_l2_filter * 5602 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5603 { 5604 struct bnxt_l2_filter *fltr; 5605 u32 idx; 5606 5607 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5608 BNXT_L2_FLTR_HASH_MASK; 5609 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5610 return fltr; 5611 } 5612 #endif 5613 5614 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5615 struct bnxt_l2_key *key, u32 idx) 5616 { 5617 struct hlist_head *head; 5618 5619 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5620 fltr->l2_key.vlan = key->vlan; 5621 fltr->base.type = BNXT_FLTR_TYPE_L2; 5622 if (fltr->base.flags) { 5623 int bit_id; 5624 5625 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5626 bp->max_fltr, 0); 5627 if (bit_id < 0) 5628 return -ENOMEM; 5629 fltr->base.sw_id = (u16)bit_id; 5630 bp->ntp_fltr_count++; 5631 } 5632 head = &bp->l2_fltr_hash_tbl[idx]; 5633 hlist_add_head_rcu(&fltr->base.hash, head); 5634 bnxt_insert_usr_fltr(bp, &fltr->base); 5635 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5636 atomic_set(&fltr->refcnt, 1); 5637 return 0; 5638 } 5639 5640 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5641 struct bnxt_l2_key *key, 5642 gfp_t gfp) 5643 { 5644 struct bnxt_l2_filter *fltr; 5645 u32 idx; 5646 int rc; 5647 5648 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5649 BNXT_L2_FLTR_HASH_MASK; 5650 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5651 if (fltr) 5652 return fltr; 5653 5654 fltr = kzalloc(sizeof(*fltr), gfp); 5655 if (!fltr) 5656 return ERR_PTR(-ENOMEM); 5657 spin_lock_bh(&bp->ntp_fltr_lock); 5658 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5659 spin_unlock_bh(&bp->ntp_fltr_lock); 5660 if (rc) { 5661 bnxt_del_l2_filter(bp, fltr); 5662 fltr = ERR_PTR(rc); 5663 } 5664 return fltr; 5665 } 5666 5667 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5668 struct bnxt_l2_key *key, 5669 u16 flags) 5670 { 5671 struct bnxt_l2_filter *fltr; 5672 u32 idx; 5673 int rc; 5674 5675 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5676 BNXT_L2_FLTR_HASH_MASK; 5677 spin_lock_bh(&bp->ntp_fltr_lock); 5678 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5679 if (fltr) { 5680 fltr = ERR_PTR(-EEXIST); 5681 goto l2_filter_exit; 5682 } 5683 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5684 if (!fltr) { 5685 fltr = ERR_PTR(-ENOMEM); 5686 goto l2_filter_exit; 5687 } 5688 fltr->base.flags = flags; 5689 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5690 if (rc) { 5691 spin_unlock_bh(&bp->ntp_fltr_lock); 5692 bnxt_del_l2_filter(bp, fltr); 5693 return ERR_PTR(rc); 5694 } 5695 5696 l2_filter_exit: 5697 spin_unlock_bh(&bp->ntp_fltr_lock); 5698 return fltr; 5699 } 5700 5701 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5702 { 5703 #ifdef CONFIG_BNXT_SRIOV 5704 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5705 5706 return vf->fw_fid; 5707 #else 5708 return INVALID_HW_RING_ID; 5709 #endif 5710 } 5711 5712 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5713 { 5714 struct hwrm_cfa_l2_filter_free_input *req; 5715 u16 target_id = 0xffff; 5716 int rc; 5717 5718 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5719 struct bnxt_pf_info *pf = &bp->pf; 5720 5721 if (fltr->base.vf_idx >= pf->active_vfs) 5722 return -EINVAL; 5723 5724 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5725 if (target_id == INVALID_HW_RING_ID) 5726 return -EINVAL; 5727 } 5728 5729 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5730 if (rc) 5731 return rc; 5732 5733 req->target_id = cpu_to_le16(target_id); 5734 req->l2_filter_id = fltr->base.filter_id; 5735 return hwrm_req_send(bp, req); 5736 } 5737 5738 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5739 { 5740 struct hwrm_cfa_l2_filter_alloc_output *resp; 5741 struct hwrm_cfa_l2_filter_alloc_input *req; 5742 u16 target_id = 0xffff; 5743 int rc; 5744 5745 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5746 struct bnxt_pf_info *pf = &bp->pf; 5747 5748 if (fltr->base.vf_idx >= pf->active_vfs) 5749 return -EINVAL; 5750 5751 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5752 } 5753 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5754 if (rc) 5755 return rc; 5756 5757 req->target_id = cpu_to_le16(target_id); 5758 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5759 5760 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5761 req->flags |= 5762 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5763 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5764 req->enables = 5765 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5766 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5767 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5768 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5769 eth_broadcast_addr(req->l2_addr_mask); 5770 5771 if (fltr->l2_key.vlan) { 5772 req->enables |= 5773 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5774 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5775 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5776 req->num_vlans = 1; 5777 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5778 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5779 } 5780 5781 resp = hwrm_req_hold(bp, req); 5782 rc = hwrm_req_send(bp, req); 5783 if (!rc) { 5784 fltr->base.filter_id = resp->l2_filter_id; 5785 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5786 } 5787 hwrm_req_drop(bp, req); 5788 return rc; 5789 } 5790 5791 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5792 struct bnxt_ntuple_filter *fltr) 5793 { 5794 struct hwrm_cfa_ntuple_filter_free_input *req; 5795 int rc; 5796 5797 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5798 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5799 if (rc) 5800 return rc; 5801 5802 req->ntuple_filter_id = fltr->base.filter_id; 5803 return hwrm_req_send(bp, req); 5804 } 5805 5806 #define BNXT_NTP_FLTR_FLAGS \ 5807 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5808 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5809 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5810 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5811 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5812 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5813 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5814 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5815 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5816 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5817 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5818 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5819 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5820 5821 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5822 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5823 5824 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5825 { 5826 int i; 5827 5828 for (i = 0; i < 4; i++) 5829 mask[i] = cpu_to_be32(~0); 5830 } 5831 5832 static void 5833 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5834 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5835 struct bnxt_ntuple_filter *fltr) 5836 { 5837 struct bnxt_rss_ctx *rss_ctx, *tmp; 5838 u16 rxq = fltr->base.rxq; 5839 5840 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 5841 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 5842 if (rss_ctx->index == fltr->base.fw_vnic_id) { 5843 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 5844 5845 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5846 break; 5847 } 5848 } 5849 return; 5850 } 5851 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5852 struct bnxt_vnic_info *vnic; 5853 u32 enables; 5854 5855 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5856 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5857 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5858 req->enables |= cpu_to_le32(enables); 5859 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 5860 } else { 5861 u32 flags; 5862 5863 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5864 req->flags |= cpu_to_le32(flags); 5865 req->dst_id = cpu_to_le16(rxq); 5866 } 5867 } 5868 5869 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5870 struct bnxt_ntuple_filter *fltr) 5871 { 5872 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5873 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5874 struct bnxt_flow_masks *masks = &fltr->fmasks; 5875 struct flow_keys *keys = &fltr->fkeys; 5876 struct bnxt_l2_filter *l2_fltr; 5877 struct bnxt_vnic_info *vnic; 5878 int rc; 5879 5880 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5881 if (rc) 5882 return rc; 5883 5884 l2_fltr = fltr->l2_fltr; 5885 req->l2_filter_id = l2_fltr->base.filter_id; 5886 5887 if (fltr->base.flags & BNXT_ACT_DROP) { 5888 req->flags = 5889 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 5890 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5891 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 5892 } else { 5893 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 5894 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5895 } 5896 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5897 5898 req->ethertype = htons(ETH_P_IP); 5899 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5900 req->ip_protocol = keys->basic.ip_proto; 5901 5902 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5903 req->ethertype = htons(ETH_P_IPV6); 5904 req->ip_addr_type = 5905 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5906 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 5907 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 5908 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 5909 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 5910 } else { 5911 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5912 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 5913 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5914 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 5915 } 5916 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5917 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5918 req->tunnel_type = 5919 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5920 } 5921 5922 req->src_port = keys->ports.src; 5923 req->src_port_mask = masks->ports.src; 5924 req->dst_port = keys->ports.dst; 5925 req->dst_port_mask = masks->ports.dst; 5926 5927 resp = hwrm_req_hold(bp, req); 5928 rc = hwrm_req_send(bp, req); 5929 if (!rc) 5930 fltr->base.filter_id = resp->ntuple_filter_id; 5931 hwrm_req_drop(bp, req); 5932 return rc; 5933 } 5934 5935 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5936 const u8 *mac_addr) 5937 { 5938 struct bnxt_l2_filter *fltr; 5939 struct bnxt_l2_key key; 5940 int rc; 5941 5942 ether_addr_copy(key.dst_mac_addr, mac_addr); 5943 key.vlan = 0; 5944 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 5945 if (IS_ERR(fltr)) 5946 return PTR_ERR(fltr); 5947 5948 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 5949 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 5950 if (rc) 5951 bnxt_del_l2_filter(bp, fltr); 5952 else 5953 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 5954 return rc; 5955 } 5956 5957 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5958 { 5959 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5960 5961 /* Any associated ntuple filters will also be cleared by firmware. */ 5962 for (i = 0; i < num_of_vnics; i++) { 5963 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5964 5965 for (j = 0; j < vnic->uc_filter_count; j++) { 5966 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 5967 5968 bnxt_hwrm_l2_filter_free(bp, fltr); 5969 bnxt_del_l2_filter(bp, fltr); 5970 } 5971 vnic->uc_filter_count = 0; 5972 } 5973 } 5974 5975 #define BNXT_DFLT_TUNL_TPA_BMAP \ 5976 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 5977 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 5978 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 5979 5980 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 5981 struct hwrm_vnic_tpa_cfg_input *req) 5982 { 5983 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 5984 5985 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 5986 return; 5987 5988 if (bp->vxlan_port) 5989 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 5990 if (bp->vxlan_gpe_port) 5991 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 5992 if (bp->nge_port) 5993 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 5994 5995 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 5996 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 5997 } 5998 5999 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6000 u32 tpa_flags) 6001 { 6002 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6003 struct hwrm_vnic_tpa_cfg_input *req; 6004 int rc; 6005 6006 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6007 return 0; 6008 6009 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6010 if (rc) 6011 return rc; 6012 6013 if (tpa_flags) { 6014 u16 mss = bp->dev->mtu - 40; 6015 u32 nsegs, n, segs = 0, flags; 6016 6017 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6018 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6019 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6020 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6021 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6022 if (tpa_flags & BNXT_FLAG_GRO) 6023 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6024 6025 req->flags = cpu_to_le32(flags); 6026 6027 req->enables = 6028 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6029 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6030 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6031 6032 /* Number of segs are log2 units, and first packet is not 6033 * included as part of this units. 6034 */ 6035 if (mss <= BNXT_RX_PAGE_SIZE) { 6036 n = BNXT_RX_PAGE_SIZE / mss; 6037 nsegs = (MAX_SKB_FRAGS - 1) * n; 6038 } else { 6039 n = mss / BNXT_RX_PAGE_SIZE; 6040 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6041 n++; 6042 nsegs = (MAX_SKB_FRAGS - n) / n; 6043 } 6044 6045 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6046 segs = MAX_TPA_SEGS_P5; 6047 max_aggs = bp->max_tpa; 6048 } else { 6049 segs = ilog2(nsegs); 6050 } 6051 req->max_agg_segs = cpu_to_le16(segs); 6052 req->max_aggs = cpu_to_le16(max_aggs); 6053 6054 req->min_agg_len = cpu_to_le32(512); 6055 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6056 } 6057 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6058 6059 return hwrm_req_send(bp, req); 6060 } 6061 6062 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6063 { 6064 struct bnxt_ring_grp_info *grp_info; 6065 6066 grp_info = &bp->grp_info[ring->grp_idx]; 6067 return grp_info->cp_fw_ring_id; 6068 } 6069 6070 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6071 { 6072 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6073 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6074 else 6075 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6076 } 6077 6078 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6079 { 6080 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6081 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6082 else 6083 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6084 } 6085 6086 int bnxt_alloc_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6087 { 6088 int entries; 6089 u16 *tbl; 6090 6091 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6092 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6093 else 6094 entries = HW_HASH_INDEX_SIZE; 6095 6096 bp->rss_indir_tbl_entries = entries; 6097 tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6098 if (!tbl) 6099 return -ENOMEM; 6100 6101 if (rss_ctx) 6102 rss_ctx->rss_indir_tbl = tbl; 6103 else 6104 bp->rss_indir_tbl = tbl; 6105 6106 return 0; 6107 } 6108 6109 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6110 { 6111 u16 max_rings, max_entries, pad, i; 6112 u16 *rss_indir_tbl; 6113 6114 if (!bp->rx_nr_rings) 6115 return; 6116 6117 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6118 max_rings = bp->rx_nr_rings - 1; 6119 else 6120 max_rings = bp->rx_nr_rings; 6121 6122 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6123 if (rss_ctx) 6124 rss_indir_tbl = &rss_ctx->rss_indir_tbl[0]; 6125 else 6126 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6127 6128 for (i = 0; i < max_entries; i++) 6129 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6130 6131 pad = bp->rss_indir_tbl_entries - max_entries; 6132 if (pad) 6133 memset(&rss_indir_tbl[i], 0, pad * sizeof(u16)); 6134 } 6135 6136 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6137 { 6138 u16 i, tbl_size, max_ring = 0; 6139 6140 if (!bp->rss_indir_tbl) 6141 return 0; 6142 6143 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6144 for (i = 0; i < tbl_size; i++) 6145 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6146 return max_ring; 6147 } 6148 6149 u16 bnxt_get_max_rss_ctx_ring(struct bnxt *bp) 6150 { 6151 u16 i, tbl_size, max_ring = 0; 6152 struct bnxt_rss_ctx *rss_ctx; 6153 6154 if (!BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 6155 return 0; 6156 6157 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6158 6159 list_for_each_entry(rss_ctx, &bp->rss_ctx_list, list) { 6160 for (i = 0; i < tbl_size; i++) 6161 max_ring = max(max_ring, rss_ctx->rss_indir_tbl[i]); 6162 } 6163 6164 return max_ring; 6165 } 6166 6167 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6168 { 6169 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6170 if (!rx_rings) 6171 return 0; 6172 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6173 BNXT_RSS_TABLE_ENTRIES_P5); 6174 } 6175 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6176 return 2; 6177 return 1; 6178 } 6179 6180 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6181 { 6182 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6183 u16 i, j; 6184 6185 /* Fill the RSS indirection table with ring group ids */ 6186 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6187 if (!no_rss) 6188 j = bp->rss_indir_tbl[i]; 6189 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6190 } 6191 } 6192 6193 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6194 struct bnxt_vnic_info *vnic) 6195 { 6196 __le16 *ring_tbl = vnic->rss_table; 6197 struct bnxt_rx_ring_info *rxr; 6198 u16 tbl_size, i; 6199 6200 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6201 6202 for (i = 0; i < tbl_size; i++) { 6203 u16 ring_id, j; 6204 6205 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6206 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6207 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6208 j = vnic->rss_ctx->rss_indir_tbl[i]; 6209 else 6210 j = bp->rss_indir_tbl[i]; 6211 rxr = &bp->rx_ring[j]; 6212 6213 ring_id = rxr->rx_ring_struct.fw_ring_id; 6214 *ring_tbl++ = cpu_to_le16(ring_id); 6215 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6216 *ring_tbl++ = cpu_to_le16(ring_id); 6217 } 6218 } 6219 6220 static void 6221 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6222 struct bnxt_vnic_info *vnic) 6223 { 6224 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6225 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6226 if (bp->flags & BNXT_FLAG_CHIP_P7) 6227 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6228 } else { 6229 bnxt_fill_hw_rss_tbl(bp, vnic); 6230 } 6231 6232 if (bp->rss_hash_delta) { 6233 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6234 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6235 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6236 else 6237 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6238 } else { 6239 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6240 } 6241 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6242 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6243 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6244 } 6245 6246 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6247 bool set_rss) 6248 { 6249 struct hwrm_vnic_rss_cfg_input *req; 6250 int rc; 6251 6252 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6253 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6254 return 0; 6255 6256 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6257 if (rc) 6258 return rc; 6259 6260 if (set_rss) 6261 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6262 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6263 return hwrm_req_send(bp, req); 6264 } 6265 6266 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6267 struct bnxt_vnic_info *vnic, bool set_rss) 6268 { 6269 struct hwrm_vnic_rss_cfg_input *req; 6270 dma_addr_t ring_tbl_map; 6271 u32 i, nr_ctxs; 6272 int rc; 6273 6274 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6275 if (rc) 6276 return rc; 6277 6278 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6279 if (!set_rss) 6280 return hwrm_req_send(bp, req); 6281 6282 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6283 ring_tbl_map = vnic->rss_table_dma_addr; 6284 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6285 6286 hwrm_req_hold(bp, req); 6287 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6288 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6289 req->ring_table_pair_index = i; 6290 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6291 rc = hwrm_req_send(bp, req); 6292 if (rc) 6293 goto exit; 6294 } 6295 6296 exit: 6297 hwrm_req_drop(bp, req); 6298 return rc; 6299 } 6300 6301 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6302 { 6303 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6304 struct hwrm_vnic_rss_qcfg_output *resp; 6305 struct hwrm_vnic_rss_qcfg_input *req; 6306 6307 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6308 return; 6309 6310 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6311 /* all contexts configured to same hash_type, zero always exists */ 6312 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6313 resp = hwrm_req_hold(bp, req); 6314 if (!hwrm_req_send(bp, req)) { 6315 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6316 bp->rss_hash_delta = 0; 6317 } 6318 hwrm_req_drop(bp, req); 6319 } 6320 6321 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6322 { 6323 struct hwrm_vnic_plcmodes_cfg_input *req; 6324 int rc; 6325 6326 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6327 if (rc) 6328 return rc; 6329 6330 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6331 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6332 6333 if (BNXT_RX_PAGE_MODE(bp)) { 6334 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6335 } else { 6336 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6337 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6338 req->enables |= 6339 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6340 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6341 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6342 } 6343 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6344 return hwrm_req_send(bp, req); 6345 } 6346 6347 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6348 struct bnxt_vnic_info *vnic, 6349 u16 ctx_idx) 6350 { 6351 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6352 6353 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6354 return; 6355 6356 req->rss_cos_lb_ctx_id = 6357 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6358 6359 hwrm_req_send(bp, req); 6360 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6361 } 6362 6363 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6364 { 6365 int i, j; 6366 6367 for (i = 0; i < bp->nr_vnics; i++) { 6368 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6369 6370 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6371 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6372 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6373 } 6374 } 6375 bp->rsscos_nr_ctxs = 0; 6376 } 6377 6378 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6379 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6380 { 6381 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6382 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6383 int rc; 6384 6385 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6386 if (rc) 6387 return rc; 6388 6389 resp = hwrm_req_hold(bp, req); 6390 rc = hwrm_req_send(bp, req); 6391 if (!rc) 6392 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6393 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6394 hwrm_req_drop(bp, req); 6395 6396 return rc; 6397 } 6398 6399 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6400 { 6401 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6402 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6403 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6404 } 6405 6406 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6407 { 6408 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6409 struct hwrm_vnic_cfg_input *req; 6410 unsigned int ring = 0, grp_idx; 6411 u16 def_vlan = 0; 6412 int rc; 6413 6414 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6415 if (rc) 6416 return rc; 6417 6418 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6419 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6420 6421 req->default_rx_ring_id = 6422 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6423 req->default_cmpl_ring_id = 6424 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6425 req->enables = 6426 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6427 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6428 goto vnic_mru; 6429 } 6430 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6431 /* Only RSS support for now TBD: COS & LB */ 6432 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6433 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6434 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6435 VNIC_CFG_REQ_ENABLES_MRU); 6436 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6437 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6438 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6439 VNIC_CFG_REQ_ENABLES_MRU); 6440 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6441 } else { 6442 req->rss_rule = cpu_to_le16(0xffff); 6443 } 6444 6445 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6446 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6447 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6448 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6449 } else { 6450 req->cos_rule = cpu_to_le16(0xffff); 6451 } 6452 6453 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6454 ring = 0; 6455 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6456 ring = vnic->vnic_id - 1; 6457 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6458 ring = bp->rx_nr_rings - 1; 6459 6460 grp_idx = bp->rx_ring[ring].bnapi->index; 6461 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6462 req->lb_rule = cpu_to_le16(0xffff); 6463 vnic_mru: 6464 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6465 6466 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6467 #ifdef CONFIG_BNXT_SRIOV 6468 if (BNXT_VF(bp)) 6469 def_vlan = bp->vf.vlan; 6470 #endif 6471 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6472 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6473 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6474 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6475 6476 return hwrm_req_send(bp, req); 6477 } 6478 6479 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6480 struct bnxt_vnic_info *vnic) 6481 { 6482 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6483 struct hwrm_vnic_free_input *req; 6484 6485 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6486 return; 6487 6488 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6489 6490 hwrm_req_send(bp, req); 6491 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6492 } 6493 } 6494 6495 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6496 { 6497 u16 i; 6498 6499 for (i = 0; i < bp->nr_vnics; i++) 6500 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6501 } 6502 6503 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6504 unsigned int start_rx_ring_idx, 6505 unsigned int nr_rings) 6506 { 6507 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6508 struct hwrm_vnic_alloc_output *resp; 6509 struct hwrm_vnic_alloc_input *req; 6510 int rc; 6511 6512 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6513 if (rc) 6514 return rc; 6515 6516 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6517 goto vnic_no_ring_grps; 6518 6519 /* map ring groups to this vnic */ 6520 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6521 grp_idx = bp->rx_ring[i].bnapi->index; 6522 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6523 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6524 j, nr_rings); 6525 break; 6526 } 6527 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6528 } 6529 6530 vnic_no_ring_grps: 6531 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6532 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6533 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6534 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6535 6536 resp = hwrm_req_hold(bp, req); 6537 rc = hwrm_req_send(bp, req); 6538 if (!rc) 6539 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6540 hwrm_req_drop(bp, req); 6541 return rc; 6542 } 6543 6544 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6545 { 6546 struct hwrm_vnic_qcaps_output *resp; 6547 struct hwrm_vnic_qcaps_input *req; 6548 int rc; 6549 6550 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6551 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6552 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6553 if (bp->hwrm_spec_code < 0x10600) 6554 return 0; 6555 6556 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6557 if (rc) 6558 return rc; 6559 6560 resp = hwrm_req_hold(bp, req); 6561 rc = hwrm_req_send(bp, req); 6562 if (!rc) { 6563 u32 flags = le32_to_cpu(resp->flags); 6564 6565 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6566 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6567 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6568 if (flags & 6569 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6570 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6571 6572 /* Older P5 fw before EXT_HW_STATS support did not set 6573 * VLAN_STRIP_CAP properly. 6574 */ 6575 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6576 (BNXT_CHIP_P5(bp) && 6577 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6578 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6579 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6580 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6581 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6582 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6583 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6584 if (bp->max_tpa_v2) { 6585 if (BNXT_CHIP_P5(bp)) 6586 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6587 else 6588 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6589 } 6590 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6591 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6592 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6593 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6594 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6595 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6596 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6597 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6598 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6599 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6600 } 6601 hwrm_req_drop(bp, req); 6602 return rc; 6603 } 6604 6605 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6606 { 6607 struct hwrm_ring_grp_alloc_output *resp; 6608 struct hwrm_ring_grp_alloc_input *req; 6609 int rc; 6610 u16 i; 6611 6612 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6613 return 0; 6614 6615 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6616 if (rc) 6617 return rc; 6618 6619 resp = hwrm_req_hold(bp, req); 6620 for (i = 0; i < bp->rx_nr_rings; i++) { 6621 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6622 6623 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6624 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6625 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6626 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6627 6628 rc = hwrm_req_send(bp, req); 6629 6630 if (rc) 6631 break; 6632 6633 bp->grp_info[grp_idx].fw_grp_id = 6634 le32_to_cpu(resp->ring_group_id); 6635 } 6636 hwrm_req_drop(bp, req); 6637 return rc; 6638 } 6639 6640 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6641 { 6642 struct hwrm_ring_grp_free_input *req; 6643 u16 i; 6644 6645 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6646 return; 6647 6648 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6649 return; 6650 6651 hwrm_req_hold(bp, req); 6652 for (i = 0; i < bp->cp_nr_rings; i++) { 6653 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6654 continue; 6655 req->ring_group_id = 6656 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6657 6658 hwrm_req_send(bp, req); 6659 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6660 } 6661 hwrm_req_drop(bp, req); 6662 } 6663 6664 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6665 struct bnxt_ring_struct *ring, 6666 u32 ring_type, u32 map_index) 6667 { 6668 struct hwrm_ring_alloc_output *resp; 6669 struct hwrm_ring_alloc_input *req; 6670 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6671 struct bnxt_ring_grp_info *grp_info; 6672 int rc, err = 0; 6673 u16 ring_id; 6674 6675 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6676 if (rc) 6677 goto exit; 6678 6679 req->enables = 0; 6680 if (rmem->nr_pages > 1) { 6681 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6682 /* Page size is in log2 units */ 6683 req->page_size = BNXT_PAGE_SHIFT; 6684 req->page_tbl_depth = 1; 6685 } else { 6686 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6687 } 6688 req->fbo = 0; 6689 /* Association of ring index with doorbell index and MSIX number */ 6690 req->logical_id = cpu_to_le16(map_index); 6691 6692 switch (ring_type) { 6693 case HWRM_RING_ALLOC_TX: { 6694 struct bnxt_tx_ring_info *txr; 6695 6696 txr = container_of(ring, struct bnxt_tx_ring_info, 6697 tx_ring_struct); 6698 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6699 /* Association of transmit ring with completion ring */ 6700 grp_info = &bp->grp_info[ring->grp_idx]; 6701 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6702 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6703 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6704 req->queue_id = cpu_to_le16(ring->queue_id); 6705 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6706 req->cmpl_coal_cnt = 6707 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6708 break; 6709 } 6710 case HWRM_RING_ALLOC_RX: 6711 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6712 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6713 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6714 u16 flags = 0; 6715 6716 /* Association of rx ring with stats context */ 6717 grp_info = &bp->grp_info[ring->grp_idx]; 6718 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6719 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6720 req->enables |= cpu_to_le32( 6721 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6722 if (NET_IP_ALIGN == 2) 6723 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6724 req->flags = cpu_to_le16(flags); 6725 } 6726 break; 6727 case HWRM_RING_ALLOC_AGG: 6728 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6729 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6730 /* Association of agg ring with rx ring */ 6731 grp_info = &bp->grp_info[ring->grp_idx]; 6732 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6733 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6734 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6735 req->enables |= cpu_to_le32( 6736 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6737 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6738 } else { 6739 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6740 } 6741 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6742 break; 6743 case HWRM_RING_ALLOC_CMPL: 6744 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6745 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6746 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6747 /* Association of cp ring with nq */ 6748 grp_info = &bp->grp_info[map_index]; 6749 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6750 req->cq_handle = cpu_to_le64(ring->handle); 6751 req->enables |= cpu_to_le32( 6752 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6753 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6754 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6755 } 6756 break; 6757 case HWRM_RING_ALLOC_NQ: 6758 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6759 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6760 if (bp->flags & BNXT_FLAG_USING_MSIX) 6761 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6762 break; 6763 default: 6764 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6765 ring_type); 6766 return -1; 6767 } 6768 6769 resp = hwrm_req_hold(bp, req); 6770 rc = hwrm_req_send(bp, req); 6771 err = le16_to_cpu(resp->error_code); 6772 ring_id = le16_to_cpu(resp->ring_id); 6773 hwrm_req_drop(bp, req); 6774 6775 exit: 6776 if (rc || err) { 6777 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6778 ring_type, rc, err); 6779 return -EIO; 6780 } 6781 ring->fw_ring_id = ring_id; 6782 return rc; 6783 } 6784 6785 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6786 { 6787 int rc; 6788 6789 if (BNXT_PF(bp)) { 6790 struct hwrm_func_cfg_input *req; 6791 6792 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6793 if (rc) 6794 return rc; 6795 6796 req->fid = cpu_to_le16(0xffff); 6797 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6798 req->async_event_cr = cpu_to_le16(idx); 6799 return hwrm_req_send(bp, req); 6800 } else { 6801 struct hwrm_func_vf_cfg_input *req; 6802 6803 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6804 if (rc) 6805 return rc; 6806 6807 req->enables = 6808 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6809 req->async_event_cr = cpu_to_le16(idx); 6810 return hwrm_req_send(bp, req); 6811 } 6812 } 6813 6814 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6815 u32 ring_type) 6816 { 6817 switch (ring_type) { 6818 case HWRM_RING_ALLOC_TX: 6819 db->db_ring_mask = bp->tx_ring_mask; 6820 break; 6821 case HWRM_RING_ALLOC_RX: 6822 db->db_ring_mask = bp->rx_ring_mask; 6823 break; 6824 case HWRM_RING_ALLOC_AGG: 6825 db->db_ring_mask = bp->rx_agg_ring_mask; 6826 break; 6827 case HWRM_RING_ALLOC_CMPL: 6828 case HWRM_RING_ALLOC_NQ: 6829 db->db_ring_mask = bp->cp_ring_mask; 6830 break; 6831 } 6832 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6833 db->db_epoch_mask = db->db_ring_mask + 1; 6834 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6835 } 6836 } 6837 6838 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6839 u32 map_idx, u32 xid) 6840 { 6841 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6842 switch (ring_type) { 6843 case HWRM_RING_ALLOC_TX: 6844 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6845 break; 6846 case HWRM_RING_ALLOC_RX: 6847 case HWRM_RING_ALLOC_AGG: 6848 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6849 break; 6850 case HWRM_RING_ALLOC_CMPL: 6851 db->db_key64 = DBR_PATH_L2; 6852 break; 6853 case HWRM_RING_ALLOC_NQ: 6854 db->db_key64 = DBR_PATH_L2; 6855 break; 6856 } 6857 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6858 6859 if (bp->flags & BNXT_FLAG_CHIP_P7) 6860 db->db_key64 |= DBR_VALID; 6861 6862 db->doorbell = bp->bar1 + bp->db_offset; 6863 } else { 6864 db->doorbell = bp->bar1 + map_idx * 0x80; 6865 switch (ring_type) { 6866 case HWRM_RING_ALLOC_TX: 6867 db->db_key32 = DB_KEY_TX; 6868 break; 6869 case HWRM_RING_ALLOC_RX: 6870 case HWRM_RING_ALLOC_AGG: 6871 db->db_key32 = DB_KEY_RX; 6872 break; 6873 case HWRM_RING_ALLOC_CMPL: 6874 db->db_key32 = DB_KEY_CP; 6875 break; 6876 } 6877 } 6878 bnxt_set_db_mask(bp, db, ring_type); 6879 } 6880 6881 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 6882 { 6883 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 6884 int i, rc = 0; 6885 u32 type; 6886 6887 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6888 type = HWRM_RING_ALLOC_NQ; 6889 else 6890 type = HWRM_RING_ALLOC_CMPL; 6891 for (i = 0; i < bp->cp_nr_rings; i++) { 6892 struct bnxt_napi *bnapi = bp->bnapi[i]; 6893 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6894 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 6895 u32 map_idx = ring->map_idx; 6896 unsigned int vector; 6897 6898 vector = bp->irq_tbl[map_idx].vector; 6899 disable_irq_nosync(vector); 6900 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6901 if (rc) { 6902 enable_irq(vector); 6903 goto err_out; 6904 } 6905 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 6906 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 6907 enable_irq(vector); 6908 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 6909 6910 if (!i) { 6911 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 6912 if (rc) 6913 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 6914 } 6915 } 6916 6917 type = HWRM_RING_ALLOC_TX; 6918 for (i = 0; i < bp->tx_nr_rings; i++) { 6919 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6920 struct bnxt_ring_struct *ring; 6921 u32 map_idx; 6922 6923 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6924 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 6925 struct bnxt_napi *bnapi = txr->bnapi; 6926 u32 type2 = HWRM_RING_ALLOC_CMPL; 6927 6928 ring = &cpr2->cp_ring_struct; 6929 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6930 map_idx = bnapi->index; 6931 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6932 if (rc) 6933 goto err_out; 6934 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6935 ring->fw_ring_id); 6936 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6937 } 6938 ring = &txr->tx_ring_struct; 6939 map_idx = i; 6940 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6941 if (rc) 6942 goto err_out; 6943 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 6944 } 6945 6946 type = HWRM_RING_ALLOC_RX; 6947 for (i = 0; i < bp->rx_nr_rings; i++) { 6948 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6949 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6950 struct bnxt_napi *bnapi = rxr->bnapi; 6951 u32 map_idx = bnapi->index; 6952 6953 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6954 if (rc) 6955 goto err_out; 6956 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6957 /* If we have agg rings, post agg buffers first. */ 6958 if (!agg_rings) 6959 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6960 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6961 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6962 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 6963 u32 type2 = HWRM_RING_ALLOC_CMPL; 6964 6965 ring = &cpr2->cp_ring_struct; 6966 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6967 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6968 if (rc) 6969 goto err_out; 6970 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6971 ring->fw_ring_id); 6972 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6973 } 6974 } 6975 6976 if (agg_rings) { 6977 type = HWRM_RING_ALLOC_AGG; 6978 for (i = 0; i < bp->rx_nr_rings; i++) { 6979 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6980 struct bnxt_ring_struct *ring = 6981 &rxr->rx_agg_ring_struct; 6982 u32 grp_idx = ring->grp_idx; 6983 u32 map_idx = grp_idx + bp->rx_nr_rings; 6984 6985 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6986 if (rc) 6987 goto err_out; 6988 6989 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6990 ring->fw_ring_id); 6991 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6992 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6993 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6994 } 6995 } 6996 err_out: 6997 return rc; 6998 } 6999 7000 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7001 struct bnxt_ring_struct *ring, 7002 u32 ring_type, int cmpl_ring_id) 7003 { 7004 struct hwrm_ring_free_output *resp; 7005 struct hwrm_ring_free_input *req; 7006 u16 error_code = 0; 7007 int rc; 7008 7009 if (BNXT_NO_FW_ACCESS(bp)) 7010 return 0; 7011 7012 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7013 if (rc) 7014 goto exit; 7015 7016 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7017 req->ring_type = ring_type; 7018 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7019 7020 resp = hwrm_req_hold(bp, req); 7021 rc = hwrm_req_send(bp, req); 7022 error_code = le16_to_cpu(resp->error_code); 7023 hwrm_req_drop(bp, req); 7024 exit: 7025 if (rc || error_code) { 7026 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7027 ring_type, rc, error_code); 7028 return -EIO; 7029 } 7030 return 0; 7031 } 7032 7033 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7034 { 7035 u32 type; 7036 int i; 7037 7038 if (!bp->bnapi) 7039 return; 7040 7041 for (i = 0; i < bp->tx_nr_rings; i++) { 7042 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7043 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7044 7045 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7046 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7047 7048 hwrm_ring_free_send_msg(bp, ring, 7049 RING_FREE_REQ_RING_TYPE_TX, 7050 close_path ? cmpl_ring_id : 7051 INVALID_HW_RING_ID); 7052 ring->fw_ring_id = INVALID_HW_RING_ID; 7053 } 7054 } 7055 7056 for (i = 0; i < bp->rx_nr_rings; i++) { 7057 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7058 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7059 u32 grp_idx = rxr->bnapi->index; 7060 7061 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7062 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7063 7064 hwrm_ring_free_send_msg(bp, ring, 7065 RING_FREE_REQ_RING_TYPE_RX, 7066 close_path ? cmpl_ring_id : 7067 INVALID_HW_RING_ID); 7068 ring->fw_ring_id = INVALID_HW_RING_ID; 7069 bp->grp_info[grp_idx].rx_fw_ring_id = 7070 INVALID_HW_RING_ID; 7071 } 7072 } 7073 7074 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7075 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7076 else 7077 type = RING_FREE_REQ_RING_TYPE_RX; 7078 for (i = 0; i < bp->rx_nr_rings; i++) { 7079 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7080 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7081 u32 grp_idx = rxr->bnapi->index; 7082 7083 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7084 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7085 7086 hwrm_ring_free_send_msg(bp, ring, type, 7087 close_path ? cmpl_ring_id : 7088 INVALID_HW_RING_ID); 7089 ring->fw_ring_id = INVALID_HW_RING_ID; 7090 bp->grp_info[grp_idx].agg_fw_ring_id = 7091 INVALID_HW_RING_ID; 7092 } 7093 } 7094 7095 /* The completion rings are about to be freed. After that the 7096 * IRQ doorbell will not work anymore. So we need to disable 7097 * IRQ here. 7098 */ 7099 bnxt_disable_int_sync(bp); 7100 7101 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7102 type = RING_FREE_REQ_RING_TYPE_NQ; 7103 else 7104 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7105 for (i = 0; i < bp->cp_nr_rings; i++) { 7106 struct bnxt_napi *bnapi = bp->bnapi[i]; 7107 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7108 struct bnxt_ring_struct *ring; 7109 int j; 7110 7111 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7112 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7113 7114 ring = &cpr2->cp_ring_struct; 7115 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7116 continue; 7117 hwrm_ring_free_send_msg(bp, ring, 7118 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7119 INVALID_HW_RING_ID); 7120 ring->fw_ring_id = INVALID_HW_RING_ID; 7121 } 7122 ring = &cpr->cp_ring_struct; 7123 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7124 hwrm_ring_free_send_msg(bp, ring, type, 7125 INVALID_HW_RING_ID); 7126 ring->fw_ring_id = INVALID_HW_RING_ID; 7127 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7128 } 7129 } 7130 } 7131 7132 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7133 bool shared); 7134 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7135 bool shared); 7136 7137 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7138 { 7139 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7140 struct hwrm_func_qcfg_output *resp; 7141 struct hwrm_func_qcfg_input *req; 7142 int rc; 7143 7144 if (bp->hwrm_spec_code < 0x10601) 7145 return 0; 7146 7147 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7148 if (rc) 7149 return rc; 7150 7151 req->fid = cpu_to_le16(0xffff); 7152 resp = hwrm_req_hold(bp, req); 7153 rc = hwrm_req_send(bp, req); 7154 if (rc) { 7155 hwrm_req_drop(bp, req); 7156 return rc; 7157 } 7158 7159 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7160 if (BNXT_NEW_RM(bp)) { 7161 u16 cp, stats; 7162 7163 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7164 hw_resc->resv_hw_ring_grps = 7165 le32_to_cpu(resp->alloc_hw_ring_grps); 7166 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7167 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7168 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7169 stats = le16_to_cpu(resp->alloc_stat_ctx); 7170 hw_resc->resv_irqs = cp; 7171 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7172 int rx = hw_resc->resv_rx_rings; 7173 int tx = hw_resc->resv_tx_rings; 7174 7175 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7176 rx >>= 1; 7177 if (cp < (rx + tx)) { 7178 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7179 if (rc) 7180 goto get_rings_exit; 7181 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7182 rx <<= 1; 7183 hw_resc->resv_rx_rings = rx; 7184 hw_resc->resv_tx_rings = tx; 7185 } 7186 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7187 hw_resc->resv_hw_ring_grps = rx; 7188 } 7189 hw_resc->resv_cp_rings = cp; 7190 hw_resc->resv_stat_ctxs = stats; 7191 } 7192 get_rings_exit: 7193 hwrm_req_drop(bp, req); 7194 return rc; 7195 } 7196 7197 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7198 { 7199 struct hwrm_func_qcfg_output *resp; 7200 struct hwrm_func_qcfg_input *req; 7201 int rc; 7202 7203 if (bp->hwrm_spec_code < 0x10601) 7204 return 0; 7205 7206 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7207 if (rc) 7208 return rc; 7209 7210 req->fid = cpu_to_le16(fid); 7211 resp = hwrm_req_hold(bp, req); 7212 rc = hwrm_req_send(bp, req); 7213 if (!rc) 7214 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7215 7216 hwrm_req_drop(bp, req); 7217 return rc; 7218 } 7219 7220 static bool bnxt_rfs_supported(struct bnxt *bp); 7221 7222 static struct hwrm_func_cfg_input * 7223 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7224 { 7225 struct hwrm_func_cfg_input *req; 7226 u32 enables = 0; 7227 7228 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7229 return NULL; 7230 7231 req->fid = cpu_to_le16(0xffff); 7232 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7233 req->num_tx_rings = cpu_to_le16(hwr->tx); 7234 if (BNXT_NEW_RM(bp)) { 7235 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7236 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7237 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7238 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7239 enables |= hwr->cp_p5 ? 7240 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7241 } else { 7242 enables |= hwr->cp ? 7243 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7244 enables |= hwr->grp ? 7245 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7246 } 7247 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7248 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7249 0; 7250 req->num_rx_rings = cpu_to_le16(hwr->rx); 7251 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7252 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7253 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7254 req->num_msix = cpu_to_le16(hwr->cp); 7255 } else { 7256 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7257 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7258 } 7259 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7260 req->num_vnics = cpu_to_le16(hwr->vnic); 7261 } 7262 req->enables = cpu_to_le32(enables); 7263 return req; 7264 } 7265 7266 static struct hwrm_func_vf_cfg_input * 7267 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7268 { 7269 struct hwrm_func_vf_cfg_input *req; 7270 u32 enables = 0; 7271 7272 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7273 return NULL; 7274 7275 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7276 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7277 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7278 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7279 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7280 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7281 enables |= hwr->cp_p5 ? 7282 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7283 } else { 7284 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7285 enables |= hwr->grp ? 7286 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7287 } 7288 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7289 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7290 7291 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7292 req->num_tx_rings = cpu_to_le16(hwr->tx); 7293 req->num_rx_rings = cpu_to_le16(hwr->rx); 7294 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7295 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7296 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7297 } else { 7298 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7299 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7300 } 7301 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7302 req->num_vnics = cpu_to_le16(hwr->vnic); 7303 7304 req->enables = cpu_to_le32(enables); 7305 return req; 7306 } 7307 7308 static int 7309 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7310 { 7311 struct hwrm_func_cfg_input *req; 7312 int rc; 7313 7314 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7315 if (!req) 7316 return -ENOMEM; 7317 7318 if (!req->enables) { 7319 hwrm_req_drop(bp, req); 7320 return 0; 7321 } 7322 7323 rc = hwrm_req_send(bp, req); 7324 if (rc) 7325 return rc; 7326 7327 if (bp->hwrm_spec_code < 0x10601) 7328 bp->hw_resc.resv_tx_rings = hwr->tx; 7329 7330 return bnxt_hwrm_get_rings(bp); 7331 } 7332 7333 static int 7334 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7335 { 7336 struct hwrm_func_vf_cfg_input *req; 7337 int rc; 7338 7339 if (!BNXT_NEW_RM(bp)) { 7340 bp->hw_resc.resv_tx_rings = hwr->tx; 7341 return 0; 7342 } 7343 7344 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7345 if (!req) 7346 return -ENOMEM; 7347 7348 rc = hwrm_req_send(bp, req); 7349 if (rc) 7350 return rc; 7351 7352 return bnxt_hwrm_get_rings(bp); 7353 } 7354 7355 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7356 { 7357 if (BNXT_PF(bp)) 7358 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7359 else 7360 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7361 } 7362 7363 int bnxt_nq_rings_in_use(struct bnxt *bp) 7364 { 7365 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7366 } 7367 7368 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7369 { 7370 int cp; 7371 7372 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7373 return bnxt_nq_rings_in_use(bp); 7374 7375 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7376 return cp; 7377 } 7378 7379 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7380 { 7381 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7382 } 7383 7384 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7385 { 7386 if (!hwr->grp) 7387 return 0; 7388 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7389 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7390 7391 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7392 rss_ctx *= hwr->vnic; 7393 return rss_ctx; 7394 } 7395 if (BNXT_VF(bp)) 7396 return BNXT_VF_MAX_RSS_CTX; 7397 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7398 return hwr->grp + 1; 7399 return 1; 7400 } 7401 7402 /* Check if a default RSS map needs to be setup. This function is only 7403 * used on older firmware that does not require reserving RX rings. 7404 */ 7405 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7406 { 7407 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7408 7409 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7410 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7411 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7412 if (!netif_is_rxfh_configured(bp->dev)) 7413 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7414 } 7415 } 7416 7417 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7418 { 7419 if (bp->flags & BNXT_FLAG_RFS) { 7420 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7421 return 2 + bp->num_rss_ctx; 7422 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7423 return rx_rings + 1; 7424 } 7425 return 1; 7426 } 7427 7428 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7429 { 7430 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7431 int cp = bnxt_cp_rings_in_use(bp); 7432 int nq = bnxt_nq_rings_in_use(bp); 7433 int rx = bp->rx_nr_rings, stat; 7434 int vnic, grp = rx; 7435 7436 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7437 bp->hwrm_spec_code >= 0x10601) 7438 return true; 7439 7440 /* Old firmware does not need RX ring reservations but we still 7441 * need to setup a default RSS map when needed. With new firmware 7442 * we go through RX ring reservations first and then set up the 7443 * RSS map for the successfully reserved RX rings when needed. 7444 */ 7445 if (!BNXT_NEW_RM(bp)) { 7446 bnxt_check_rss_tbl_no_rmgr(bp); 7447 return false; 7448 } 7449 7450 vnic = bnxt_get_total_vnics(bp, rx); 7451 7452 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7453 rx <<= 1; 7454 stat = bnxt_get_func_stat_ctxs(bp); 7455 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7456 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7457 (hw_resc->resv_hw_ring_grps != grp && 7458 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7459 return true; 7460 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7461 hw_resc->resv_irqs != nq) 7462 return true; 7463 return false; 7464 } 7465 7466 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7467 { 7468 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7469 7470 hwr->tx = hw_resc->resv_tx_rings; 7471 if (BNXT_NEW_RM(bp)) { 7472 hwr->rx = hw_resc->resv_rx_rings; 7473 hwr->cp = hw_resc->resv_irqs; 7474 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7475 hwr->cp_p5 = hw_resc->resv_cp_rings; 7476 hwr->grp = hw_resc->resv_hw_ring_grps; 7477 hwr->vnic = hw_resc->resv_vnics; 7478 hwr->stat = hw_resc->resv_stat_ctxs; 7479 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7480 } 7481 } 7482 7483 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7484 { 7485 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7486 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7487 } 7488 7489 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7490 7491 static int __bnxt_reserve_rings(struct bnxt *bp) 7492 { 7493 struct bnxt_hw_rings hwr = {0}; 7494 int cp = bp->cp_nr_rings; 7495 int rx_rings, rc; 7496 int ulp_msix = 0; 7497 bool sh = false; 7498 int tx_cp; 7499 7500 if (!bnxt_need_reserve_rings(bp)) 7501 return 0; 7502 7503 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7504 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7505 if (!ulp_msix) 7506 bnxt_set_ulp_stat_ctxs(bp, 0); 7507 7508 if (ulp_msix > bp->ulp_num_msix_want) 7509 ulp_msix = bp->ulp_num_msix_want; 7510 hwr.cp = cp + ulp_msix; 7511 } else { 7512 hwr.cp = bnxt_nq_rings_in_use(bp); 7513 } 7514 7515 hwr.tx = bp->tx_nr_rings; 7516 hwr.rx = bp->rx_nr_rings; 7517 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7518 sh = true; 7519 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7520 hwr.cp_p5 = hwr.rx + hwr.tx; 7521 7522 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7523 7524 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7525 hwr.rx <<= 1; 7526 hwr.grp = bp->rx_nr_rings; 7527 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7528 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7529 7530 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7531 if (rc) 7532 return rc; 7533 7534 bnxt_copy_reserved_rings(bp, &hwr); 7535 7536 rx_rings = hwr.rx; 7537 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7538 if (hwr.rx >= 2) { 7539 rx_rings = hwr.rx >> 1; 7540 } else { 7541 if (netif_running(bp->dev)) 7542 return -ENOMEM; 7543 7544 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7545 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7546 bp->dev->hw_features &= ~NETIF_F_LRO; 7547 bp->dev->features &= ~NETIF_F_LRO; 7548 bnxt_set_ring_params(bp); 7549 } 7550 } 7551 rx_rings = min_t(int, rx_rings, hwr.grp); 7552 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7553 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7554 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7555 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7556 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7557 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7558 hwr.rx = rx_rings << 1; 7559 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7560 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7561 bp->tx_nr_rings = hwr.tx; 7562 7563 /* If we cannot reserve all the RX rings, reset the RSS map only 7564 * if absolutely necessary 7565 */ 7566 if (rx_rings != bp->rx_nr_rings) { 7567 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7568 rx_rings, bp->rx_nr_rings); 7569 if (netif_is_rxfh_configured(bp->dev) && 7570 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7571 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7572 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7573 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7574 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7575 } 7576 } 7577 bp->rx_nr_rings = rx_rings; 7578 bp->cp_nr_rings = hwr.cp; 7579 7580 if (!bnxt_rings_ok(bp, &hwr)) 7581 return -ENOMEM; 7582 7583 if (!netif_is_rxfh_configured(bp->dev)) 7584 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7585 7586 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7587 int resv_msix, resv_ctx, ulp_ctxs; 7588 struct bnxt_hw_resc *hw_resc; 7589 7590 hw_resc = &bp->hw_resc; 7591 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7592 ulp_msix = min_t(int, resv_msix, ulp_msix); 7593 bnxt_set_ulp_msix_num(bp, ulp_msix); 7594 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7595 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7596 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7597 } 7598 7599 return rc; 7600 } 7601 7602 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7603 { 7604 struct hwrm_func_vf_cfg_input *req; 7605 u32 flags; 7606 7607 if (!BNXT_NEW_RM(bp)) 7608 return 0; 7609 7610 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7611 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7612 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7613 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7614 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7615 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7616 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7617 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7618 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7619 7620 req->flags = cpu_to_le32(flags); 7621 return hwrm_req_send_silent(bp, req); 7622 } 7623 7624 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7625 { 7626 struct hwrm_func_cfg_input *req; 7627 u32 flags; 7628 7629 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7630 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7631 if (BNXT_NEW_RM(bp)) { 7632 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7633 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7634 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7635 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7636 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7637 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7638 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7639 else 7640 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7641 } 7642 7643 req->flags = cpu_to_le32(flags); 7644 return hwrm_req_send_silent(bp, req); 7645 } 7646 7647 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7648 { 7649 if (bp->hwrm_spec_code < 0x10801) 7650 return 0; 7651 7652 if (BNXT_PF(bp)) 7653 return bnxt_hwrm_check_pf_rings(bp, hwr); 7654 7655 return bnxt_hwrm_check_vf_rings(bp, hwr); 7656 } 7657 7658 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7659 { 7660 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7661 struct hwrm_ring_aggint_qcaps_output *resp; 7662 struct hwrm_ring_aggint_qcaps_input *req; 7663 int rc; 7664 7665 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7666 coal_cap->num_cmpl_dma_aggr_max = 63; 7667 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7668 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7669 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7670 coal_cap->int_lat_tmr_min_max = 65535; 7671 coal_cap->int_lat_tmr_max_max = 65535; 7672 coal_cap->num_cmpl_aggr_int_max = 65535; 7673 coal_cap->timer_units = 80; 7674 7675 if (bp->hwrm_spec_code < 0x10902) 7676 return; 7677 7678 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7679 return; 7680 7681 resp = hwrm_req_hold(bp, req); 7682 rc = hwrm_req_send_silent(bp, req); 7683 if (!rc) { 7684 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7685 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7686 coal_cap->num_cmpl_dma_aggr_max = 7687 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7688 coal_cap->num_cmpl_dma_aggr_during_int_max = 7689 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7690 coal_cap->cmpl_aggr_dma_tmr_max = 7691 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7692 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7693 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7694 coal_cap->int_lat_tmr_min_max = 7695 le16_to_cpu(resp->int_lat_tmr_min_max); 7696 coal_cap->int_lat_tmr_max_max = 7697 le16_to_cpu(resp->int_lat_tmr_max_max); 7698 coal_cap->num_cmpl_aggr_int_max = 7699 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7700 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7701 } 7702 hwrm_req_drop(bp, req); 7703 } 7704 7705 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7706 { 7707 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7708 7709 return usec * 1000 / coal_cap->timer_units; 7710 } 7711 7712 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7713 struct bnxt_coal *hw_coal, 7714 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7715 { 7716 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7717 u16 val, tmr, max, flags = hw_coal->flags; 7718 u32 cmpl_params = coal_cap->cmpl_params; 7719 7720 max = hw_coal->bufs_per_record * 128; 7721 if (hw_coal->budget) 7722 max = hw_coal->bufs_per_record * hw_coal->budget; 7723 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7724 7725 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7726 req->num_cmpl_aggr_int = cpu_to_le16(val); 7727 7728 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7729 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7730 7731 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7732 coal_cap->num_cmpl_dma_aggr_during_int_max); 7733 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7734 7735 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7736 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7737 req->int_lat_tmr_max = cpu_to_le16(tmr); 7738 7739 /* min timer set to 1/2 of interrupt timer */ 7740 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7741 val = tmr / 2; 7742 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7743 req->int_lat_tmr_min = cpu_to_le16(val); 7744 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7745 } 7746 7747 /* buf timer set to 1/4 of interrupt timer */ 7748 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7749 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7750 7751 if (cmpl_params & 7752 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7753 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7754 val = clamp_t(u16, tmr, 1, 7755 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7756 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7757 req->enables |= 7758 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7759 } 7760 7761 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7762 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7763 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7764 req->flags = cpu_to_le16(flags); 7765 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7766 } 7767 7768 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7769 struct bnxt_coal *hw_coal) 7770 { 7771 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7772 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7773 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7774 u32 nq_params = coal_cap->nq_params; 7775 u16 tmr; 7776 int rc; 7777 7778 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7779 return 0; 7780 7781 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7782 if (rc) 7783 return rc; 7784 7785 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7786 req->flags = 7787 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7788 7789 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7790 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7791 req->int_lat_tmr_min = cpu_to_le16(tmr); 7792 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7793 return hwrm_req_send(bp, req); 7794 } 7795 7796 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7797 { 7798 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7799 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7800 struct bnxt_coal coal; 7801 int rc; 7802 7803 /* Tick values in micro seconds. 7804 * 1 coal_buf x bufs_per_record = 1 completion record. 7805 */ 7806 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7807 7808 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7809 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7810 7811 if (!bnapi->rx_ring) 7812 return -ENODEV; 7813 7814 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7815 if (rc) 7816 return rc; 7817 7818 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7819 7820 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7821 7822 return hwrm_req_send(bp, req_rx); 7823 } 7824 7825 static int 7826 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7827 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7828 { 7829 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7830 7831 req->ring_id = cpu_to_le16(ring_id); 7832 return hwrm_req_send(bp, req); 7833 } 7834 7835 static int 7836 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7837 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7838 { 7839 struct bnxt_tx_ring_info *txr; 7840 int i, rc; 7841 7842 bnxt_for_each_napi_tx(i, bnapi, txr) { 7843 u16 ring_id; 7844 7845 ring_id = bnxt_cp_ring_for_tx(bp, txr); 7846 req->ring_id = cpu_to_le16(ring_id); 7847 rc = hwrm_req_send(bp, req); 7848 if (rc) 7849 return rc; 7850 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7851 return 0; 7852 } 7853 return 0; 7854 } 7855 7856 int bnxt_hwrm_set_coal(struct bnxt *bp) 7857 { 7858 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 7859 int i, rc; 7860 7861 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7862 if (rc) 7863 return rc; 7864 7865 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7866 if (rc) { 7867 hwrm_req_drop(bp, req_rx); 7868 return rc; 7869 } 7870 7871 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 7872 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 7873 7874 hwrm_req_hold(bp, req_rx); 7875 hwrm_req_hold(bp, req_tx); 7876 for (i = 0; i < bp->cp_nr_rings; i++) { 7877 struct bnxt_napi *bnapi = bp->bnapi[i]; 7878 struct bnxt_coal *hw_coal; 7879 7880 if (!bnapi->rx_ring) 7881 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7882 else 7883 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 7884 if (rc) 7885 break; 7886 7887 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7888 continue; 7889 7890 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 7891 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7892 if (rc) 7893 break; 7894 } 7895 if (bnapi->rx_ring) 7896 hw_coal = &bp->rx_coal; 7897 else 7898 hw_coal = &bp->tx_coal; 7899 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 7900 } 7901 hwrm_req_drop(bp, req_rx); 7902 hwrm_req_drop(bp, req_tx); 7903 return rc; 7904 } 7905 7906 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 7907 { 7908 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 7909 struct hwrm_stat_ctx_free_input *req; 7910 int i; 7911 7912 if (!bp->bnapi) 7913 return; 7914 7915 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7916 return; 7917 7918 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 7919 return; 7920 if (BNXT_FW_MAJ(bp) <= 20) { 7921 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 7922 hwrm_req_drop(bp, req); 7923 return; 7924 } 7925 hwrm_req_hold(bp, req0); 7926 } 7927 hwrm_req_hold(bp, req); 7928 for (i = 0; i < bp->cp_nr_rings; i++) { 7929 struct bnxt_napi *bnapi = bp->bnapi[i]; 7930 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7931 7932 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 7933 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 7934 if (req0) { 7935 req0->stat_ctx_id = req->stat_ctx_id; 7936 hwrm_req_send(bp, req0); 7937 } 7938 hwrm_req_send(bp, req); 7939 7940 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 7941 } 7942 } 7943 hwrm_req_drop(bp, req); 7944 if (req0) 7945 hwrm_req_drop(bp, req0); 7946 } 7947 7948 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 7949 { 7950 struct hwrm_stat_ctx_alloc_output *resp; 7951 struct hwrm_stat_ctx_alloc_input *req; 7952 int rc, i; 7953 7954 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7955 return 0; 7956 7957 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 7958 if (rc) 7959 return rc; 7960 7961 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 7962 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 7963 7964 resp = hwrm_req_hold(bp, req); 7965 for (i = 0; i < bp->cp_nr_rings; i++) { 7966 struct bnxt_napi *bnapi = bp->bnapi[i]; 7967 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7968 7969 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 7970 7971 rc = hwrm_req_send(bp, req); 7972 if (rc) 7973 break; 7974 7975 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 7976 7977 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 7978 } 7979 hwrm_req_drop(bp, req); 7980 return rc; 7981 } 7982 7983 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 7984 { 7985 struct hwrm_func_qcfg_output *resp; 7986 struct hwrm_func_qcfg_input *req; 7987 u16 flags; 7988 int rc; 7989 7990 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7991 if (rc) 7992 return rc; 7993 7994 req->fid = cpu_to_le16(0xffff); 7995 resp = hwrm_req_hold(bp, req); 7996 rc = hwrm_req_send(bp, req); 7997 if (rc) 7998 goto func_qcfg_exit; 7999 8000 #ifdef CONFIG_BNXT_SRIOV 8001 if (BNXT_VF(bp)) { 8002 struct bnxt_vf_info *vf = &bp->vf; 8003 8004 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8005 } else { 8006 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8007 } 8008 #endif 8009 flags = le16_to_cpu(resp->flags); 8010 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8011 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8012 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8013 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8014 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8015 } 8016 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8017 bp->flags |= BNXT_FLAG_MULTI_HOST; 8018 8019 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8020 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8021 8022 switch (resp->port_partition_type) { 8023 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8024 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8025 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8026 bp->port_partition_type = resp->port_partition_type; 8027 break; 8028 } 8029 if (bp->hwrm_spec_code < 0x10707 || 8030 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8031 bp->br_mode = BRIDGE_MODE_VEB; 8032 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8033 bp->br_mode = BRIDGE_MODE_VEPA; 8034 else 8035 bp->br_mode = BRIDGE_MODE_UNDEF; 8036 8037 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8038 if (!bp->max_mtu) 8039 bp->max_mtu = BNXT_MAX_MTU; 8040 8041 if (bp->db_size) 8042 goto func_qcfg_exit; 8043 8044 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8045 if (BNXT_CHIP_P5(bp)) { 8046 if (BNXT_PF(bp)) 8047 bp->db_offset = DB_PF_OFFSET_P5; 8048 else 8049 bp->db_offset = DB_VF_OFFSET_P5; 8050 } 8051 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8052 1024); 8053 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8054 bp->db_size <= bp->db_offset) 8055 bp->db_size = pci_resource_len(bp->pdev, 2); 8056 8057 func_qcfg_exit: 8058 hwrm_req_drop(bp, req); 8059 return rc; 8060 } 8061 8062 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8063 u8 init_val, u8 init_offset, 8064 bool init_mask_set) 8065 { 8066 ctxm->init_value = init_val; 8067 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8068 if (init_mask_set) 8069 ctxm->init_offset = init_offset * 4; 8070 else 8071 ctxm->init_value = 0; 8072 } 8073 8074 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8075 { 8076 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8077 u16 type; 8078 8079 for (type = 0; type < ctx_max; type++) { 8080 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8081 int n = 1; 8082 8083 if (!ctxm->max_entries) 8084 continue; 8085 8086 if (ctxm->instance_bmap) 8087 n = hweight32(ctxm->instance_bmap); 8088 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8089 if (!ctxm->pg_info) 8090 return -ENOMEM; 8091 } 8092 return 0; 8093 } 8094 8095 #define BNXT_CTX_INIT_VALID(flags) \ 8096 (!!((flags) & \ 8097 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8098 8099 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8100 { 8101 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8102 struct hwrm_func_backing_store_qcaps_v2_input *req; 8103 struct bnxt_ctx_mem_info *ctx; 8104 u16 type; 8105 int rc; 8106 8107 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8108 if (rc) 8109 return rc; 8110 8111 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8112 if (!ctx) 8113 return -ENOMEM; 8114 bp->ctx = ctx; 8115 8116 resp = hwrm_req_hold(bp, req); 8117 8118 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8119 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8120 u8 init_val, init_off, i; 8121 __le32 *p; 8122 u32 flags; 8123 8124 req->type = cpu_to_le16(type); 8125 rc = hwrm_req_send(bp, req); 8126 if (rc) 8127 goto ctx_done; 8128 flags = le32_to_cpu(resp->flags); 8129 type = le16_to_cpu(resp->next_valid_type); 8130 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8131 continue; 8132 8133 ctxm->type = le16_to_cpu(resp->type); 8134 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8135 ctxm->flags = flags; 8136 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8137 ctxm->entry_multiple = resp->entry_multiple; 8138 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8139 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8140 init_val = resp->ctx_init_value; 8141 init_off = resp->ctx_init_offset; 8142 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8143 BNXT_CTX_INIT_VALID(flags)); 8144 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8145 BNXT_MAX_SPLIT_ENTRY); 8146 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8147 i++, p++) 8148 ctxm->split[i] = le32_to_cpu(*p); 8149 } 8150 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8151 8152 ctx_done: 8153 hwrm_req_drop(bp, req); 8154 return rc; 8155 } 8156 8157 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8158 { 8159 struct hwrm_func_backing_store_qcaps_output *resp; 8160 struct hwrm_func_backing_store_qcaps_input *req; 8161 int rc; 8162 8163 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8164 return 0; 8165 8166 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8167 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8168 8169 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8170 if (rc) 8171 return rc; 8172 8173 resp = hwrm_req_hold(bp, req); 8174 rc = hwrm_req_send_silent(bp, req); 8175 if (!rc) { 8176 struct bnxt_ctx_mem_type *ctxm; 8177 struct bnxt_ctx_mem_info *ctx; 8178 u8 init_val, init_idx = 0; 8179 u16 init_mask; 8180 8181 ctx = bp->ctx; 8182 if (!ctx) { 8183 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8184 if (!ctx) { 8185 rc = -ENOMEM; 8186 goto ctx_err; 8187 } 8188 bp->ctx = ctx; 8189 } 8190 init_val = resp->ctx_kind_initializer; 8191 init_mask = le16_to_cpu(resp->ctx_init_mask); 8192 8193 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8194 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8195 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8196 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8197 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8198 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8199 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8200 (init_mask & (1 << init_idx++)) != 0); 8201 8202 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8203 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8204 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8205 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8206 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8207 (init_mask & (1 << init_idx++)) != 0); 8208 8209 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8210 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8211 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8212 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8213 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8214 (init_mask & (1 << init_idx++)) != 0); 8215 8216 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8217 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8218 ctxm->max_entries = ctxm->vnic_entries + 8219 le16_to_cpu(resp->vnic_max_ring_table_entries); 8220 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8221 bnxt_init_ctx_initializer(ctxm, init_val, 8222 resp->vnic_init_offset, 8223 (init_mask & (1 << init_idx++)) != 0); 8224 8225 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8226 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8227 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8228 bnxt_init_ctx_initializer(ctxm, init_val, 8229 resp->stat_init_offset, 8230 (init_mask & (1 << init_idx++)) != 0); 8231 8232 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8233 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8234 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8235 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8236 ctxm->entry_multiple = resp->tqm_entries_multiple; 8237 if (!ctxm->entry_multiple) 8238 ctxm->entry_multiple = 1; 8239 8240 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8241 8242 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8243 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8244 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8245 ctxm->mrav_num_entries_units = 8246 le16_to_cpu(resp->mrav_num_entries_units); 8247 bnxt_init_ctx_initializer(ctxm, init_val, 8248 resp->mrav_init_offset, 8249 (init_mask & (1 << init_idx++)) != 0); 8250 8251 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8252 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8253 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8254 8255 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8256 if (!ctx->tqm_fp_rings_count) 8257 ctx->tqm_fp_rings_count = bp->max_q; 8258 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8259 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8260 8261 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8262 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8263 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8264 8265 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8266 } else { 8267 rc = 0; 8268 } 8269 ctx_err: 8270 hwrm_req_drop(bp, req); 8271 return rc; 8272 } 8273 8274 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8275 __le64 *pg_dir) 8276 { 8277 if (!rmem->nr_pages) 8278 return; 8279 8280 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8281 if (rmem->depth >= 1) { 8282 if (rmem->depth == 2) 8283 *pg_attr |= 2; 8284 else 8285 *pg_attr |= 1; 8286 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8287 } else { 8288 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8289 } 8290 } 8291 8292 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8293 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8294 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8295 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8296 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8297 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8298 8299 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8300 { 8301 struct hwrm_func_backing_store_cfg_input *req; 8302 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8303 struct bnxt_ctx_pg_info *ctx_pg; 8304 struct bnxt_ctx_mem_type *ctxm; 8305 void **__req = (void **)&req; 8306 u32 req_len = sizeof(*req); 8307 __le32 *num_entries; 8308 __le64 *pg_dir; 8309 u32 flags = 0; 8310 u8 *pg_attr; 8311 u32 ena; 8312 int rc; 8313 int i; 8314 8315 if (!ctx) 8316 return 0; 8317 8318 if (req_len > bp->hwrm_max_ext_req_len) 8319 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8320 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8321 if (rc) 8322 return rc; 8323 8324 req->enables = cpu_to_le32(enables); 8325 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8326 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8327 ctx_pg = ctxm->pg_info; 8328 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8329 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8330 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8331 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8332 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8333 &req->qpc_pg_size_qpc_lvl, 8334 &req->qpc_page_dir); 8335 8336 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8337 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8338 } 8339 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8340 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8341 ctx_pg = ctxm->pg_info; 8342 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8343 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8344 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8345 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8346 &req->srq_pg_size_srq_lvl, 8347 &req->srq_page_dir); 8348 } 8349 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8350 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8351 ctx_pg = ctxm->pg_info; 8352 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8353 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8354 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8355 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8356 &req->cq_pg_size_cq_lvl, 8357 &req->cq_page_dir); 8358 } 8359 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8360 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8361 ctx_pg = ctxm->pg_info; 8362 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8363 req->vnic_num_ring_table_entries = 8364 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8365 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8366 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8367 &req->vnic_pg_size_vnic_lvl, 8368 &req->vnic_page_dir); 8369 } 8370 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8371 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8372 ctx_pg = ctxm->pg_info; 8373 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8374 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8375 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8376 &req->stat_pg_size_stat_lvl, 8377 &req->stat_page_dir); 8378 } 8379 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8380 u32 units; 8381 8382 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8383 ctx_pg = ctxm->pg_info; 8384 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8385 units = ctxm->mrav_num_entries_units; 8386 if (units) { 8387 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8388 u32 entries; 8389 8390 num_mr = ctx_pg->entries - num_ah; 8391 entries = ((num_mr / units) << 16) | (num_ah / units); 8392 req->mrav_num_entries = cpu_to_le32(entries); 8393 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8394 } 8395 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8396 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8397 &req->mrav_pg_size_mrav_lvl, 8398 &req->mrav_page_dir); 8399 } 8400 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8401 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8402 ctx_pg = ctxm->pg_info; 8403 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8404 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8405 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8406 &req->tim_pg_size_tim_lvl, 8407 &req->tim_page_dir); 8408 } 8409 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8410 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8411 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8412 pg_dir = &req->tqm_sp_page_dir, 8413 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8414 ctx_pg = ctxm->pg_info; 8415 i < BNXT_MAX_TQM_RINGS; 8416 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8417 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8418 if (!(enables & ena)) 8419 continue; 8420 8421 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8422 *num_entries = cpu_to_le32(ctx_pg->entries); 8423 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8424 } 8425 req->flags = cpu_to_le32(flags); 8426 return hwrm_req_send(bp, req); 8427 } 8428 8429 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8430 struct bnxt_ctx_pg_info *ctx_pg) 8431 { 8432 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8433 8434 rmem->page_size = BNXT_PAGE_SIZE; 8435 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8436 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8437 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8438 if (rmem->depth >= 1) 8439 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8440 return bnxt_alloc_ring(bp, rmem); 8441 } 8442 8443 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8444 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8445 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8446 { 8447 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8448 int rc; 8449 8450 if (!mem_size) 8451 return -EINVAL; 8452 8453 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8454 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8455 ctx_pg->nr_pages = 0; 8456 return -EINVAL; 8457 } 8458 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8459 int nr_tbls, i; 8460 8461 rmem->depth = 2; 8462 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8463 GFP_KERNEL); 8464 if (!ctx_pg->ctx_pg_tbl) 8465 return -ENOMEM; 8466 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8467 rmem->nr_pages = nr_tbls; 8468 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8469 if (rc) 8470 return rc; 8471 for (i = 0; i < nr_tbls; i++) { 8472 struct bnxt_ctx_pg_info *pg_tbl; 8473 8474 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8475 if (!pg_tbl) 8476 return -ENOMEM; 8477 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8478 rmem = &pg_tbl->ring_mem; 8479 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8480 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8481 rmem->depth = 1; 8482 rmem->nr_pages = MAX_CTX_PAGES; 8483 rmem->ctx_mem = ctxm; 8484 if (i == (nr_tbls - 1)) { 8485 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8486 8487 if (rem) 8488 rmem->nr_pages = rem; 8489 } 8490 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8491 if (rc) 8492 break; 8493 } 8494 } else { 8495 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8496 if (rmem->nr_pages > 1 || depth) 8497 rmem->depth = 1; 8498 rmem->ctx_mem = ctxm; 8499 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8500 } 8501 return rc; 8502 } 8503 8504 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8505 struct bnxt_ctx_pg_info *ctx_pg) 8506 { 8507 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8508 8509 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8510 ctx_pg->ctx_pg_tbl) { 8511 int i, nr_tbls = rmem->nr_pages; 8512 8513 for (i = 0; i < nr_tbls; i++) { 8514 struct bnxt_ctx_pg_info *pg_tbl; 8515 struct bnxt_ring_mem_info *rmem2; 8516 8517 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8518 if (!pg_tbl) 8519 continue; 8520 rmem2 = &pg_tbl->ring_mem; 8521 bnxt_free_ring(bp, rmem2); 8522 ctx_pg->ctx_pg_arr[i] = NULL; 8523 kfree(pg_tbl); 8524 ctx_pg->ctx_pg_tbl[i] = NULL; 8525 } 8526 kfree(ctx_pg->ctx_pg_tbl); 8527 ctx_pg->ctx_pg_tbl = NULL; 8528 } 8529 bnxt_free_ring(bp, rmem); 8530 ctx_pg->nr_pages = 0; 8531 } 8532 8533 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8534 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8535 u8 pg_lvl) 8536 { 8537 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8538 int i, rc = 0, n = 1; 8539 u32 mem_size; 8540 8541 if (!ctxm->entry_size || !ctx_pg) 8542 return -EINVAL; 8543 if (ctxm->instance_bmap) 8544 n = hweight32(ctxm->instance_bmap); 8545 if (ctxm->entry_multiple) 8546 entries = roundup(entries, ctxm->entry_multiple); 8547 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8548 mem_size = entries * ctxm->entry_size; 8549 for (i = 0; i < n && !rc; i++) { 8550 ctx_pg[i].entries = entries; 8551 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8552 ctxm->init_value ? ctxm : NULL); 8553 } 8554 return rc; 8555 } 8556 8557 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8558 struct bnxt_ctx_mem_type *ctxm, 8559 bool last) 8560 { 8561 struct hwrm_func_backing_store_cfg_v2_input *req; 8562 u32 instance_bmap = ctxm->instance_bmap; 8563 int i, j, rc = 0, n = 1; 8564 __le32 *p; 8565 8566 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8567 return 0; 8568 8569 if (instance_bmap) 8570 n = hweight32(ctxm->instance_bmap); 8571 else 8572 instance_bmap = 1; 8573 8574 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8575 if (rc) 8576 return rc; 8577 hwrm_req_hold(bp, req); 8578 req->type = cpu_to_le16(ctxm->type); 8579 req->entry_size = cpu_to_le16(ctxm->entry_size); 8580 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8581 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8582 p[i] = cpu_to_le32(ctxm->split[i]); 8583 for (i = 0, j = 0; j < n && !rc; i++) { 8584 struct bnxt_ctx_pg_info *ctx_pg; 8585 8586 if (!(instance_bmap & (1 << i))) 8587 continue; 8588 req->instance = cpu_to_le16(i); 8589 ctx_pg = &ctxm->pg_info[j++]; 8590 if (!ctx_pg->entries) 8591 continue; 8592 req->num_entries = cpu_to_le32(ctx_pg->entries); 8593 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8594 &req->page_size_pbl_level, 8595 &req->page_dir); 8596 if (last && j == n) 8597 req->flags = 8598 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8599 rc = hwrm_req_send(bp, req); 8600 } 8601 hwrm_req_drop(bp, req); 8602 return rc; 8603 } 8604 8605 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8606 { 8607 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8608 struct bnxt_ctx_mem_type *ctxm; 8609 u16 last_type; 8610 int rc = 0; 8611 u16 type; 8612 8613 if (!ena) 8614 return 0; 8615 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8616 last_type = BNXT_CTX_MAX - 1; 8617 else 8618 last_type = BNXT_CTX_L2_MAX - 1; 8619 ctx->ctx_arr[last_type].last = 1; 8620 8621 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8622 ctxm = &ctx->ctx_arr[type]; 8623 8624 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8625 if (rc) 8626 return rc; 8627 } 8628 return 0; 8629 } 8630 8631 void bnxt_free_ctx_mem(struct bnxt *bp) 8632 { 8633 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8634 u16 type; 8635 8636 if (!ctx) 8637 return; 8638 8639 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8640 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8641 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8642 int i, n = 1; 8643 8644 if (!ctx_pg) 8645 continue; 8646 if (ctxm->instance_bmap) 8647 n = hweight32(ctxm->instance_bmap); 8648 for (i = 0; i < n; i++) 8649 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8650 8651 kfree(ctx_pg); 8652 ctxm->pg_info = NULL; 8653 } 8654 8655 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8656 kfree(ctx); 8657 bp->ctx = NULL; 8658 } 8659 8660 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8661 { 8662 struct bnxt_ctx_mem_type *ctxm; 8663 struct bnxt_ctx_mem_info *ctx; 8664 u32 l2_qps, qp1_qps, max_qps; 8665 u32 ena, entries_sp, entries; 8666 u32 srqs, max_srqs, min; 8667 u32 num_mr, num_ah; 8668 u32 extra_srqs = 0; 8669 u32 extra_qps = 0; 8670 u32 fast_qpmd_qps; 8671 u8 pg_lvl = 1; 8672 int i, rc; 8673 8674 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8675 if (rc) { 8676 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8677 rc); 8678 return rc; 8679 } 8680 ctx = bp->ctx; 8681 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8682 return 0; 8683 8684 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8685 l2_qps = ctxm->qp_l2_entries; 8686 qp1_qps = ctxm->qp_qp1_entries; 8687 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8688 max_qps = ctxm->max_entries; 8689 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8690 srqs = ctxm->srq_l2_entries; 8691 max_srqs = ctxm->max_entries; 8692 ena = 0; 8693 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8694 pg_lvl = 2; 8695 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8696 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8697 extra_qps += fast_qpmd_qps; 8698 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8699 if (fast_qpmd_qps) 8700 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8701 } 8702 8703 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8704 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8705 pg_lvl); 8706 if (rc) 8707 return rc; 8708 8709 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8710 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8711 if (rc) 8712 return rc; 8713 8714 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8715 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8716 extra_qps * 2, pg_lvl); 8717 if (rc) 8718 return rc; 8719 8720 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8721 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8722 if (rc) 8723 return rc; 8724 8725 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8726 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8727 if (rc) 8728 return rc; 8729 8730 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8731 goto skip_rdma; 8732 8733 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8734 /* 128K extra is needed to accommodate static AH context 8735 * allocation by f/w. 8736 */ 8737 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8738 num_ah = min_t(u32, num_mr, 1024 * 128); 8739 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8740 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8741 ctxm->mrav_av_entries = num_ah; 8742 8743 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8744 if (rc) 8745 return rc; 8746 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8747 8748 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8749 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8750 if (rc) 8751 return rc; 8752 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8753 8754 skip_rdma: 8755 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8756 min = ctxm->min_entries; 8757 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8758 2 * (extra_qps + qp1_qps) + min; 8759 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8760 if (rc) 8761 return rc; 8762 8763 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8764 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8765 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8766 if (rc) 8767 return rc; 8768 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8769 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8770 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8771 8772 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8773 rc = bnxt_backing_store_cfg_v2(bp, ena); 8774 else 8775 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8776 if (rc) { 8777 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8778 rc); 8779 return rc; 8780 } 8781 ctx->flags |= BNXT_CTX_FLAG_INITED; 8782 return 0; 8783 } 8784 8785 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8786 { 8787 struct hwrm_func_resource_qcaps_output *resp; 8788 struct hwrm_func_resource_qcaps_input *req; 8789 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8790 int rc; 8791 8792 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8793 if (rc) 8794 return rc; 8795 8796 req->fid = cpu_to_le16(0xffff); 8797 resp = hwrm_req_hold(bp, req); 8798 rc = hwrm_req_send_silent(bp, req); 8799 if (rc) 8800 goto hwrm_func_resc_qcaps_exit; 8801 8802 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8803 if (!all) 8804 goto hwrm_func_resc_qcaps_exit; 8805 8806 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8807 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8808 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8809 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8810 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8811 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8812 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8813 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8814 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8815 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8816 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8817 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8818 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8819 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8820 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8821 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8822 8823 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8824 u16 max_msix = le16_to_cpu(resp->max_msix); 8825 8826 hw_resc->max_nqs = max_msix; 8827 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8828 } 8829 8830 if (BNXT_PF(bp)) { 8831 struct bnxt_pf_info *pf = &bp->pf; 8832 8833 pf->vf_resv_strategy = 8834 le16_to_cpu(resp->vf_reservation_strategy); 8835 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8836 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8837 } 8838 hwrm_func_resc_qcaps_exit: 8839 hwrm_req_drop(bp, req); 8840 return rc; 8841 } 8842 8843 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 8844 { 8845 struct hwrm_port_mac_ptp_qcfg_output *resp; 8846 struct hwrm_port_mac_ptp_qcfg_input *req; 8847 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 8848 bool phc_cfg; 8849 u8 flags; 8850 int rc; 8851 8852 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) { 8853 rc = -ENODEV; 8854 goto no_ptp; 8855 } 8856 8857 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 8858 if (rc) 8859 goto no_ptp; 8860 8861 req->port_id = cpu_to_le16(bp->pf.port_id); 8862 resp = hwrm_req_hold(bp, req); 8863 rc = hwrm_req_send(bp, req); 8864 if (rc) 8865 goto exit; 8866 8867 flags = resp->flags; 8868 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 8869 rc = -ENODEV; 8870 goto exit; 8871 } 8872 if (!ptp) { 8873 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 8874 if (!ptp) { 8875 rc = -ENOMEM; 8876 goto exit; 8877 } 8878 ptp->bp = bp; 8879 bp->ptp_cfg = ptp; 8880 } 8881 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 8882 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 8883 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 8884 } else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8885 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 8886 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 8887 } else { 8888 rc = -ENODEV; 8889 goto exit; 8890 } 8891 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 8892 rc = bnxt_ptp_init(bp, phc_cfg); 8893 if (rc) 8894 netdev_warn(bp->dev, "PTP initialization failed.\n"); 8895 exit: 8896 hwrm_req_drop(bp, req); 8897 if (!rc) 8898 return 0; 8899 8900 no_ptp: 8901 bnxt_ptp_clear(bp); 8902 kfree(ptp); 8903 bp->ptp_cfg = NULL; 8904 return rc; 8905 } 8906 8907 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 8908 { 8909 struct hwrm_func_qcaps_output *resp; 8910 struct hwrm_func_qcaps_input *req; 8911 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8912 u32 flags, flags_ext, flags_ext2; 8913 int rc; 8914 8915 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 8916 if (rc) 8917 return rc; 8918 8919 req->fid = cpu_to_le16(0xffff); 8920 resp = hwrm_req_hold(bp, req); 8921 rc = hwrm_req_send(bp, req); 8922 if (rc) 8923 goto hwrm_func_qcaps_exit; 8924 8925 flags = le32_to_cpu(resp->flags); 8926 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 8927 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 8928 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 8929 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 8930 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 8931 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 8932 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 8933 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 8934 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 8935 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 8936 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 8937 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 8938 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 8939 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 8940 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 8941 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 8942 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 8943 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 8944 8945 flags_ext = le32_to_cpu(resp->flags_ext); 8946 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 8947 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 8948 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 8949 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 8950 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 8951 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 8952 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 8953 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 8954 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 8955 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 8956 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 8957 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 8958 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 8959 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 8960 8961 flags_ext2 = le32_to_cpu(resp->flags_ext2); 8962 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 8963 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 8964 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 8965 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 8966 8967 bp->tx_push_thresh = 0; 8968 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 8969 BNXT_FW_MAJ(bp) > 217) 8970 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 8971 8972 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8973 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8974 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8975 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8976 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 8977 if (!hw_resc->max_hw_ring_grps) 8978 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 8979 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8980 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8981 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8982 8983 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 8984 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 8985 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 8986 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 8987 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 8988 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 8989 8990 if (BNXT_PF(bp)) { 8991 struct bnxt_pf_info *pf = &bp->pf; 8992 8993 pf->fw_fid = le16_to_cpu(resp->fid); 8994 pf->port_id = le16_to_cpu(resp->port_id); 8995 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 8996 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 8997 pf->max_vfs = le16_to_cpu(resp->max_vfs); 8998 bp->flags &= ~BNXT_FLAG_WOL_CAP; 8999 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9000 bp->flags |= BNXT_FLAG_WOL_CAP; 9001 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9002 bp->fw_cap |= BNXT_FW_CAP_PTP; 9003 } else { 9004 bnxt_ptp_clear(bp); 9005 kfree(bp->ptp_cfg); 9006 bp->ptp_cfg = NULL; 9007 } 9008 } else { 9009 #ifdef CONFIG_BNXT_SRIOV 9010 struct bnxt_vf_info *vf = &bp->vf; 9011 9012 vf->fw_fid = le16_to_cpu(resp->fid); 9013 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9014 #endif 9015 } 9016 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9017 9018 hwrm_func_qcaps_exit: 9019 hwrm_req_drop(bp, req); 9020 return rc; 9021 } 9022 9023 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9024 { 9025 struct hwrm_dbg_qcaps_output *resp; 9026 struct hwrm_dbg_qcaps_input *req; 9027 int rc; 9028 9029 bp->fw_dbg_cap = 0; 9030 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9031 return; 9032 9033 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9034 if (rc) 9035 return; 9036 9037 req->fid = cpu_to_le16(0xffff); 9038 resp = hwrm_req_hold(bp, req); 9039 rc = hwrm_req_send(bp, req); 9040 if (rc) 9041 goto hwrm_dbg_qcaps_exit; 9042 9043 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9044 9045 hwrm_dbg_qcaps_exit: 9046 hwrm_req_drop(bp, req); 9047 } 9048 9049 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9050 9051 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9052 { 9053 int rc; 9054 9055 rc = __bnxt_hwrm_func_qcaps(bp); 9056 if (rc) 9057 return rc; 9058 9059 bnxt_hwrm_dbg_qcaps(bp); 9060 9061 rc = bnxt_hwrm_queue_qportcfg(bp); 9062 if (rc) { 9063 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9064 return rc; 9065 } 9066 if (bp->hwrm_spec_code >= 0x10803) { 9067 rc = bnxt_alloc_ctx_mem(bp); 9068 if (rc) 9069 return rc; 9070 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9071 if (!rc) 9072 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9073 } 9074 return 0; 9075 } 9076 9077 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9078 { 9079 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9080 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9081 u32 flags; 9082 int rc; 9083 9084 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9085 return 0; 9086 9087 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9088 if (rc) 9089 return rc; 9090 9091 resp = hwrm_req_hold(bp, req); 9092 rc = hwrm_req_send(bp, req); 9093 if (rc) 9094 goto hwrm_cfa_adv_qcaps_exit; 9095 9096 flags = le32_to_cpu(resp->flags); 9097 if (flags & 9098 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9099 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9100 9101 if (flags & 9102 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9103 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9104 9105 if (flags & 9106 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9107 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9108 9109 hwrm_cfa_adv_qcaps_exit: 9110 hwrm_req_drop(bp, req); 9111 return rc; 9112 } 9113 9114 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9115 { 9116 if (bp->fw_health) 9117 return 0; 9118 9119 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9120 if (!bp->fw_health) 9121 return -ENOMEM; 9122 9123 mutex_init(&bp->fw_health->lock); 9124 return 0; 9125 } 9126 9127 static int bnxt_alloc_fw_health(struct bnxt *bp) 9128 { 9129 int rc; 9130 9131 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9132 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9133 return 0; 9134 9135 rc = __bnxt_alloc_fw_health(bp); 9136 if (rc) { 9137 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9138 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9139 return rc; 9140 } 9141 9142 return 0; 9143 } 9144 9145 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9146 { 9147 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9148 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9149 BNXT_FW_HEALTH_WIN_MAP_OFF); 9150 } 9151 9152 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9153 { 9154 struct bnxt_fw_health *fw_health = bp->fw_health; 9155 u32 reg_type; 9156 9157 if (!fw_health) 9158 return; 9159 9160 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9161 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9162 fw_health->status_reliable = false; 9163 9164 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9165 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9166 fw_health->resets_reliable = false; 9167 } 9168 9169 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9170 { 9171 void __iomem *hs; 9172 u32 status_loc; 9173 u32 reg_type; 9174 u32 sig; 9175 9176 if (bp->fw_health) 9177 bp->fw_health->status_reliable = false; 9178 9179 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9180 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9181 9182 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9183 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9184 if (!bp->chip_num) { 9185 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9186 bp->chip_num = readl(bp->bar0 + 9187 BNXT_FW_HEALTH_WIN_BASE + 9188 BNXT_GRC_REG_CHIP_NUM); 9189 } 9190 if (!BNXT_CHIP_P5_PLUS(bp)) 9191 return; 9192 9193 status_loc = BNXT_GRC_REG_STATUS_P5 | 9194 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9195 } else { 9196 status_loc = readl(hs + offsetof(struct hcomm_status, 9197 fw_status_loc)); 9198 } 9199 9200 if (__bnxt_alloc_fw_health(bp)) { 9201 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9202 return; 9203 } 9204 9205 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9206 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9207 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9208 __bnxt_map_fw_health_reg(bp, status_loc); 9209 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9210 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9211 } 9212 9213 bp->fw_health->status_reliable = true; 9214 } 9215 9216 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9217 { 9218 struct bnxt_fw_health *fw_health = bp->fw_health; 9219 u32 reg_base = 0xffffffff; 9220 int i; 9221 9222 bp->fw_health->status_reliable = false; 9223 bp->fw_health->resets_reliable = false; 9224 /* Only pre-map the monitoring GRC registers using window 3 */ 9225 for (i = 0; i < 4; i++) { 9226 u32 reg = fw_health->regs[i]; 9227 9228 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9229 continue; 9230 if (reg_base == 0xffffffff) 9231 reg_base = reg & BNXT_GRC_BASE_MASK; 9232 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9233 return -ERANGE; 9234 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9235 } 9236 bp->fw_health->status_reliable = true; 9237 bp->fw_health->resets_reliable = true; 9238 if (reg_base == 0xffffffff) 9239 return 0; 9240 9241 __bnxt_map_fw_health_reg(bp, reg_base); 9242 return 0; 9243 } 9244 9245 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9246 { 9247 if (!bp->fw_health) 9248 return; 9249 9250 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9251 bp->fw_health->status_reliable = true; 9252 bp->fw_health->resets_reliable = true; 9253 } else { 9254 bnxt_try_map_fw_health_reg(bp); 9255 } 9256 } 9257 9258 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9259 { 9260 struct bnxt_fw_health *fw_health = bp->fw_health; 9261 struct hwrm_error_recovery_qcfg_output *resp; 9262 struct hwrm_error_recovery_qcfg_input *req; 9263 int rc, i; 9264 9265 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9266 return 0; 9267 9268 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9269 if (rc) 9270 return rc; 9271 9272 resp = hwrm_req_hold(bp, req); 9273 rc = hwrm_req_send(bp, req); 9274 if (rc) 9275 goto err_recovery_out; 9276 fw_health->flags = le32_to_cpu(resp->flags); 9277 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9278 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9279 rc = -EINVAL; 9280 goto err_recovery_out; 9281 } 9282 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9283 fw_health->master_func_wait_dsecs = 9284 le32_to_cpu(resp->master_func_wait_period); 9285 fw_health->normal_func_wait_dsecs = 9286 le32_to_cpu(resp->normal_func_wait_period); 9287 fw_health->post_reset_wait_dsecs = 9288 le32_to_cpu(resp->master_func_wait_period_after_reset); 9289 fw_health->post_reset_max_wait_dsecs = 9290 le32_to_cpu(resp->max_bailout_time_after_reset); 9291 fw_health->regs[BNXT_FW_HEALTH_REG] = 9292 le32_to_cpu(resp->fw_health_status_reg); 9293 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9294 le32_to_cpu(resp->fw_heartbeat_reg); 9295 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9296 le32_to_cpu(resp->fw_reset_cnt_reg); 9297 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9298 le32_to_cpu(resp->reset_inprogress_reg); 9299 fw_health->fw_reset_inprog_reg_mask = 9300 le32_to_cpu(resp->reset_inprogress_reg_mask); 9301 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9302 if (fw_health->fw_reset_seq_cnt >= 16) { 9303 rc = -EINVAL; 9304 goto err_recovery_out; 9305 } 9306 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9307 fw_health->fw_reset_seq_regs[i] = 9308 le32_to_cpu(resp->reset_reg[i]); 9309 fw_health->fw_reset_seq_vals[i] = 9310 le32_to_cpu(resp->reset_reg_val[i]); 9311 fw_health->fw_reset_seq_delay_msec[i] = 9312 resp->delay_after_reset[i]; 9313 } 9314 err_recovery_out: 9315 hwrm_req_drop(bp, req); 9316 if (!rc) 9317 rc = bnxt_map_fw_health_regs(bp); 9318 if (rc) 9319 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9320 return rc; 9321 } 9322 9323 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9324 { 9325 struct hwrm_func_reset_input *req; 9326 int rc; 9327 9328 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9329 if (rc) 9330 return rc; 9331 9332 req->enables = 0; 9333 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9334 return hwrm_req_send(bp, req); 9335 } 9336 9337 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9338 { 9339 struct hwrm_nvm_get_dev_info_output nvm_info; 9340 9341 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9342 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9343 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9344 nvm_info.nvm_cfg_ver_upd); 9345 } 9346 9347 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9348 { 9349 struct hwrm_queue_qportcfg_output *resp; 9350 struct hwrm_queue_qportcfg_input *req; 9351 u8 i, j, *qptr; 9352 bool no_rdma; 9353 int rc = 0; 9354 9355 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9356 if (rc) 9357 return rc; 9358 9359 resp = hwrm_req_hold(bp, req); 9360 rc = hwrm_req_send(bp, req); 9361 if (rc) 9362 goto qportcfg_exit; 9363 9364 if (!resp->max_configurable_queues) { 9365 rc = -EINVAL; 9366 goto qportcfg_exit; 9367 } 9368 bp->max_tc = resp->max_configurable_queues; 9369 bp->max_lltc = resp->max_configurable_lossless_queues; 9370 if (bp->max_tc > BNXT_MAX_QUEUE) 9371 bp->max_tc = BNXT_MAX_QUEUE; 9372 9373 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9374 qptr = &resp->queue_id0; 9375 for (i = 0, j = 0; i < bp->max_tc; i++) { 9376 bp->q_info[j].queue_id = *qptr; 9377 bp->q_ids[i] = *qptr++; 9378 bp->q_info[j].queue_profile = *qptr++; 9379 bp->tc_to_qidx[j] = j; 9380 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9381 (no_rdma && BNXT_PF(bp))) 9382 j++; 9383 } 9384 bp->max_q = bp->max_tc; 9385 bp->max_tc = max_t(u8, j, 1); 9386 9387 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9388 bp->max_tc = 1; 9389 9390 if (bp->max_lltc > bp->max_tc) 9391 bp->max_lltc = bp->max_tc; 9392 9393 qportcfg_exit: 9394 hwrm_req_drop(bp, req); 9395 return rc; 9396 } 9397 9398 static int bnxt_hwrm_poll(struct bnxt *bp) 9399 { 9400 struct hwrm_ver_get_input *req; 9401 int rc; 9402 9403 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9404 if (rc) 9405 return rc; 9406 9407 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9408 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9409 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9410 9411 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9412 rc = hwrm_req_send(bp, req); 9413 return rc; 9414 } 9415 9416 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9417 { 9418 struct hwrm_ver_get_output *resp; 9419 struct hwrm_ver_get_input *req; 9420 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9421 u32 dev_caps_cfg, hwrm_ver; 9422 int rc, len; 9423 9424 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9425 if (rc) 9426 return rc; 9427 9428 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9429 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9430 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9431 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9432 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9433 9434 resp = hwrm_req_hold(bp, req); 9435 rc = hwrm_req_send(bp, req); 9436 if (rc) 9437 goto hwrm_ver_get_exit; 9438 9439 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9440 9441 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9442 resp->hwrm_intf_min_8b << 8 | 9443 resp->hwrm_intf_upd_8b; 9444 if (resp->hwrm_intf_maj_8b < 1) { 9445 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9446 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9447 resp->hwrm_intf_upd_8b); 9448 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9449 } 9450 9451 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9452 HWRM_VERSION_UPDATE; 9453 9454 if (bp->hwrm_spec_code > hwrm_ver) 9455 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9456 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9457 HWRM_VERSION_UPDATE); 9458 else 9459 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9460 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9461 resp->hwrm_intf_upd_8b); 9462 9463 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9464 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9465 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9466 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9467 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9468 len = FW_VER_STR_LEN; 9469 } else { 9470 fw_maj = resp->hwrm_fw_maj_8b; 9471 fw_min = resp->hwrm_fw_min_8b; 9472 fw_bld = resp->hwrm_fw_bld_8b; 9473 fw_rsv = resp->hwrm_fw_rsvd_8b; 9474 len = BC_HWRM_STR_LEN; 9475 } 9476 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9477 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9478 fw_rsv); 9479 9480 if (strlen(resp->active_pkg_name)) { 9481 int fw_ver_len = strlen(bp->fw_ver_str); 9482 9483 snprintf(bp->fw_ver_str + fw_ver_len, 9484 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9485 resp->active_pkg_name); 9486 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9487 } 9488 9489 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9490 if (!bp->hwrm_cmd_timeout) 9491 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9492 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9493 if (!bp->hwrm_cmd_max_timeout) 9494 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9495 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9496 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9497 bp->hwrm_cmd_max_timeout / 1000); 9498 9499 if (resp->hwrm_intf_maj_8b >= 1) { 9500 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9501 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9502 } 9503 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9504 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9505 9506 bp->chip_num = le16_to_cpu(resp->chip_num); 9507 bp->chip_rev = resp->chip_rev; 9508 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9509 !resp->chip_metal) 9510 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9511 9512 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9513 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9514 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9515 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9516 9517 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9518 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9519 9520 if (dev_caps_cfg & 9521 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9522 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9523 9524 if (dev_caps_cfg & 9525 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9526 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9527 9528 if (dev_caps_cfg & 9529 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9530 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9531 9532 hwrm_ver_get_exit: 9533 hwrm_req_drop(bp, req); 9534 return rc; 9535 } 9536 9537 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9538 { 9539 struct hwrm_fw_set_time_input *req; 9540 struct tm tm; 9541 time64_t now = ktime_get_real_seconds(); 9542 int rc; 9543 9544 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9545 bp->hwrm_spec_code < 0x10400) 9546 return -EOPNOTSUPP; 9547 9548 time64_to_tm(now, 0, &tm); 9549 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9550 if (rc) 9551 return rc; 9552 9553 req->year = cpu_to_le16(1900 + tm.tm_year); 9554 req->month = 1 + tm.tm_mon; 9555 req->day = tm.tm_mday; 9556 req->hour = tm.tm_hour; 9557 req->minute = tm.tm_min; 9558 req->second = tm.tm_sec; 9559 return hwrm_req_send(bp, req); 9560 } 9561 9562 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9563 { 9564 u64 sw_tmp; 9565 9566 hw &= mask; 9567 sw_tmp = (*sw & ~mask) | hw; 9568 if (hw < (*sw & mask)) 9569 sw_tmp += mask + 1; 9570 WRITE_ONCE(*sw, sw_tmp); 9571 } 9572 9573 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9574 int count, bool ignore_zero) 9575 { 9576 int i; 9577 9578 for (i = 0; i < count; i++) { 9579 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9580 9581 if (ignore_zero && !hw) 9582 continue; 9583 9584 if (masks[i] == -1ULL) 9585 sw_stats[i] = hw; 9586 else 9587 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9588 } 9589 } 9590 9591 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9592 { 9593 if (!stats->hw_stats) 9594 return; 9595 9596 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9597 stats->hw_masks, stats->len / 8, false); 9598 } 9599 9600 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9601 { 9602 struct bnxt_stats_mem *ring0_stats; 9603 bool ignore_zero = false; 9604 int i; 9605 9606 /* Chip bug. Counter intermittently becomes 0. */ 9607 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9608 ignore_zero = true; 9609 9610 for (i = 0; i < bp->cp_nr_rings; i++) { 9611 struct bnxt_napi *bnapi = bp->bnapi[i]; 9612 struct bnxt_cp_ring_info *cpr; 9613 struct bnxt_stats_mem *stats; 9614 9615 cpr = &bnapi->cp_ring; 9616 stats = &cpr->stats; 9617 if (!i) 9618 ring0_stats = stats; 9619 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9620 ring0_stats->hw_masks, 9621 ring0_stats->len / 8, ignore_zero); 9622 } 9623 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9624 struct bnxt_stats_mem *stats = &bp->port_stats; 9625 __le64 *hw_stats = stats->hw_stats; 9626 u64 *sw_stats = stats->sw_stats; 9627 u64 *masks = stats->hw_masks; 9628 int cnt; 9629 9630 cnt = sizeof(struct rx_port_stats) / 8; 9631 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9632 9633 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9634 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9635 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9636 cnt = sizeof(struct tx_port_stats) / 8; 9637 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9638 } 9639 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9640 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9641 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9642 } 9643 } 9644 9645 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9646 { 9647 struct hwrm_port_qstats_input *req; 9648 struct bnxt_pf_info *pf = &bp->pf; 9649 int rc; 9650 9651 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9652 return 0; 9653 9654 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9655 return -EOPNOTSUPP; 9656 9657 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9658 if (rc) 9659 return rc; 9660 9661 req->flags = flags; 9662 req->port_id = cpu_to_le16(pf->port_id); 9663 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9664 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9665 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9666 return hwrm_req_send(bp, req); 9667 } 9668 9669 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9670 { 9671 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9672 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9673 struct hwrm_port_qstats_ext_output *resp_qs; 9674 struct hwrm_port_qstats_ext_input *req_qs; 9675 struct bnxt_pf_info *pf = &bp->pf; 9676 u32 tx_stat_size; 9677 int rc; 9678 9679 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9680 return 0; 9681 9682 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9683 return -EOPNOTSUPP; 9684 9685 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9686 if (rc) 9687 return rc; 9688 9689 req_qs->flags = flags; 9690 req_qs->port_id = cpu_to_le16(pf->port_id); 9691 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9692 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9693 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9694 sizeof(struct tx_port_stats_ext) : 0; 9695 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9696 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9697 resp_qs = hwrm_req_hold(bp, req_qs); 9698 rc = hwrm_req_send(bp, req_qs); 9699 if (!rc) { 9700 bp->fw_rx_stats_ext_size = 9701 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9702 if (BNXT_FW_MAJ(bp) < 220 && 9703 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9704 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9705 9706 bp->fw_tx_stats_ext_size = tx_stat_size ? 9707 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9708 } else { 9709 bp->fw_rx_stats_ext_size = 0; 9710 bp->fw_tx_stats_ext_size = 0; 9711 } 9712 hwrm_req_drop(bp, req_qs); 9713 9714 if (flags) 9715 return rc; 9716 9717 if (bp->fw_tx_stats_ext_size <= 9718 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9719 bp->pri2cos_valid = 0; 9720 return rc; 9721 } 9722 9723 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9724 if (rc) 9725 return rc; 9726 9727 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9728 9729 resp_qc = hwrm_req_hold(bp, req_qc); 9730 rc = hwrm_req_send(bp, req_qc); 9731 if (!rc) { 9732 u8 *pri2cos; 9733 int i, j; 9734 9735 pri2cos = &resp_qc->pri0_cos_queue_id; 9736 for (i = 0; i < 8; i++) { 9737 u8 queue_id = pri2cos[i]; 9738 u8 queue_idx; 9739 9740 /* Per port queue IDs start from 0, 10, 20, etc */ 9741 queue_idx = queue_id % 10; 9742 if (queue_idx > BNXT_MAX_QUEUE) { 9743 bp->pri2cos_valid = false; 9744 hwrm_req_drop(bp, req_qc); 9745 return rc; 9746 } 9747 for (j = 0; j < bp->max_q; j++) { 9748 if (bp->q_ids[j] == queue_id) 9749 bp->pri2cos_idx[i] = queue_idx; 9750 } 9751 } 9752 bp->pri2cos_valid = true; 9753 } 9754 hwrm_req_drop(bp, req_qc); 9755 9756 return rc; 9757 } 9758 9759 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9760 { 9761 bnxt_hwrm_tunnel_dst_port_free(bp, 9762 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9763 bnxt_hwrm_tunnel_dst_port_free(bp, 9764 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9765 } 9766 9767 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9768 { 9769 int rc, i; 9770 u32 tpa_flags = 0; 9771 9772 if (set_tpa) 9773 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9774 else if (BNXT_NO_FW_ACCESS(bp)) 9775 return 0; 9776 for (i = 0; i < bp->nr_vnics; i++) { 9777 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 9778 if (rc) { 9779 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9780 i, rc); 9781 return rc; 9782 } 9783 } 9784 return 0; 9785 } 9786 9787 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9788 { 9789 int i; 9790 9791 for (i = 0; i < bp->nr_vnics; i++) 9792 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 9793 } 9794 9795 static void bnxt_clear_vnic(struct bnxt *bp) 9796 { 9797 if (!bp->vnic_info) 9798 return; 9799 9800 bnxt_hwrm_clear_vnic_filter(bp); 9801 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9802 /* clear all RSS setting before free vnic ctx */ 9803 bnxt_hwrm_clear_vnic_rss(bp); 9804 bnxt_hwrm_vnic_ctx_free(bp); 9805 } 9806 /* before free the vnic, undo the vnic tpa settings */ 9807 if (bp->flags & BNXT_FLAG_TPA) 9808 bnxt_set_tpa(bp, false); 9809 bnxt_hwrm_vnic_free(bp); 9810 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9811 bnxt_hwrm_vnic_ctx_free(bp); 9812 } 9813 9814 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9815 bool irq_re_init) 9816 { 9817 bnxt_clear_vnic(bp); 9818 bnxt_hwrm_ring_free(bp, close_path); 9819 bnxt_hwrm_ring_grp_free(bp); 9820 if (irq_re_init) { 9821 bnxt_hwrm_stat_ctx_free(bp); 9822 bnxt_hwrm_free_tunnel_ports(bp); 9823 } 9824 } 9825 9826 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9827 { 9828 struct hwrm_func_cfg_input *req; 9829 u8 evb_mode; 9830 int rc; 9831 9832 if (br_mode == BRIDGE_MODE_VEB) 9833 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9834 else if (br_mode == BRIDGE_MODE_VEPA) 9835 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 9836 else 9837 return -EINVAL; 9838 9839 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9840 if (rc) 9841 return rc; 9842 9843 req->fid = cpu_to_le16(0xffff); 9844 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 9845 req->evb_mode = evb_mode; 9846 return hwrm_req_send(bp, req); 9847 } 9848 9849 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 9850 { 9851 struct hwrm_func_cfg_input *req; 9852 int rc; 9853 9854 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 9855 return 0; 9856 9857 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9858 if (rc) 9859 return rc; 9860 9861 req->fid = cpu_to_le16(0xffff); 9862 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 9863 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 9864 if (size == 128) 9865 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 9866 9867 return hwrm_req_send(bp, req); 9868 } 9869 9870 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9871 { 9872 int rc; 9873 9874 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 9875 goto skip_rss_ctx; 9876 9877 /* allocate context for vnic */ 9878 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 9879 if (rc) { 9880 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9881 vnic->vnic_id, rc); 9882 goto vnic_setup_err; 9883 } 9884 bp->rsscos_nr_ctxs++; 9885 9886 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9887 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 9888 if (rc) { 9889 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 9890 vnic->vnic_id, rc); 9891 goto vnic_setup_err; 9892 } 9893 bp->rsscos_nr_ctxs++; 9894 } 9895 9896 skip_rss_ctx: 9897 /* configure default vnic, ring grp */ 9898 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 9899 if (rc) { 9900 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9901 vnic->vnic_id, rc); 9902 goto vnic_setup_err; 9903 } 9904 9905 /* Enable RSS hashing on vnic */ 9906 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 9907 if (rc) { 9908 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 9909 vnic->vnic_id, rc); 9910 goto vnic_setup_err; 9911 } 9912 9913 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9914 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 9915 if (rc) { 9916 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9917 vnic->vnic_id, rc); 9918 } 9919 } 9920 9921 vnic_setup_err: 9922 return rc; 9923 } 9924 9925 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9926 { 9927 int rc; 9928 9929 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 9930 if (rc) { 9931 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 9932 vnic->vnic_id, rc); 9933 return rc; 9934 } 9935 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 9936 if (rc) 9937 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9938 vnic->vnic_id, rc); 9939 return rc; 9940 } 9941 9942 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9943 { 9944 int rc, i, nr_ctxs; 9945 9946 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 9947 for (i = 0; i < nr_ctxs; i++) { 9948 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 9949 if (rc) { 9950 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 9951 vnic->vnic_id, i, rc); 9952 break; 9953 } 9954 bp->rsscos_nr_ctxs++; 9955 } 9956 if (i < nr_ctxs) 9957 return -ENOMEM; 9958 9959 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 9960 if (rc) 9961 return rc; 9962 9963 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9964 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 9965 if (rc) { 9966 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9967 vnic->vnic_id, rc); 9968 } 9969 } 9970 return rc; 9971 } 9972 9973 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9974 { 9975 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9976 return __bnxt_setup_vnic_p5(bp, vnic); 9977 else 9978 return __bnxt_setup_vnic(bp, vnic); 9979 } 9980 9981 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 9982 struct bnxt_vnic_info *vnic, 9983 u16 start_rx_ring_idx, int rx_rings) 9984 { 9985 int rc; 9986 9987 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 9988 if (rc) { 9989 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9990 vnic->vnic_id, rc); 9991 return rc; 9992 } 9993 return bnxt_setup_vnic(bp, vnic); 9994 } 9995 9996 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 9997 { 9998 struct bnxt_vnic_info *vnic; 9999 int i, rc = 0; 10000 10001 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10002 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10003 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10004 } 10005 10006 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10007 return 0; 10008 10009 for (i = 0; i < bp->rx_nr_rings; i++) { 10010 u16 vnic_id = i + 1; 10011 u16 ring_id = i; 10012 10013 if (vnic_id >= bp->nr_vnics) 10014 break; 10015 10016 vnic = &bp->vnic_info[vnic_id]; 10017 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10018 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10019 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10020 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10021 break; 10022 } 10023 return rc; 10024 } 10025 10026 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10027 bool all) 10028 { 10029 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10030 struct bnxt_filter_base *usr_fltr, *tmp; 10031 struct bnxt_ntuple_filter *ntp_fltr; 10032 int i; 10033 10034 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10035 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10036 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10037 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10038 } 10039 if (!all) 10040 return; 10041 10042 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10043 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10044 usr_fltr->fw_vnic_id == rss_ctx->index) { 10045 ntp_fltr = container_of(usr_fltr, 10046 struct bnxt_ntuple_filter, 10047 base); 10048 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10049 bnxt_del_ntp_filter(bp, ntp_fltr); 10050 bnxt_del_one_usr_fltr(bp, usr_fltr); 10051 } 10052 } 10053 10054 if (vnic->rss_table) 10055 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10056 vnic->rss_table, 10057 vnic->rss_table_dma_addr); 10058 kfree(rss_ctx->rss_indir_tbl); 10059 list_del(&rss_ctx->list); 10060 bp->num_rss_ctx--; 10061 clear_bit(rss_ctx->index, bp->rss_ctx_bmap); 10062 kfree(rss_ctx); 10063 } 10064 10065 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10066 { 10067 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10068 struct bnxt_rss_ctx *rss_ctx, *tmp; 10069 10070 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 10071 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10072 10073 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10074 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10075 __bnxt_setup_vnic_p5(bp, vnic)) { 10076 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10077 rss_ctx->index); 10078 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10079 } 10080 } 10081 } 10082 10083 struct bnxt_rss_ctx *bnxt_alloc_rss_ctx(struct bnxt *bp) 10084 { 10085 struct bnxt_rss_ctx *rss_ctx = NULL; 10086 10087 rss_ctx = kzalloc(sizeof(*rss_ctx), GFP_KERNEL); 10088 if (rss_ctx) { 10089 rss_ctx->vnic.rss_ctx = rss_ctx; 10090 list_add_tail(&rss_ctx->list, &bp->rss_ctx_list); 10091 bp->num_rss_ctx++; 10092 } 10093 return rss_ctx; 10094 } 10095 10096 void bnxt_clear_rss_ctxs(struct bnxt *bp, bool all) 10097 { 10098 struct bnxt_rss_ctx *rss_ctx, *tmp; 10099 10100 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) 10101 bnxt_del_one_rss_ctx(bp, rss_ctx, all); 10102 10103 if (all) 10104 bitmap_free(bp->rss_ctx_bmap); 10105 } 10106 10107 static void bnxt_init_multi_rss_ctx(struct bnxt *bp) 10108 { 10109 bp->rss_ctx_bmap = bitmap_zalloc(BNXT_RSS_CTX_BMAP_LEN, GFP_KERNEL); 10110 if (bp->rss_ctx_bmap) { 10111 /* burn index 0 since we cannot have context 0 */ 10112 __set_bit(0, bp->rss_ctx_bmap); 10113 INIT_LIST_HEAD(&bp->rss_ctx_list); 10114 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 10115 } 10116 } 10117 10118 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10119 static bool bnxt_promisc_ok(struct bnxt *bp) 10120 { 10121 #ifdef CONFIG_BNXT_SRIOV 10122 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10123 return false; 10124 #endif 10125 return true; 10126 } 10127 10128 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10129 { 10130 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10131 unsigned int rc = 0; 10132 10133 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10134 if (rc) { 10135 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10136 rc); 10137 return rc; 10138 } 10139 10140 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10141 if (rc) { 10142 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10143 rc); 10144 return rc; 10145 } 10146 return rc; 10147 } 10148 10149 static int bnxt_cfg_rx_mode(struct bnxt *); 10150 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10151 10152 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10153 { 10154 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10155 int rc = 0; 10156 unsigned int rx_nr_rings = bp->rx_nr_rings; 10157 10158 if (irq_re_init) { 10159 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10160 if (rc) { 10161 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10162 rc); 10163 goto err_out; 10164 } 10165 } 10166 10167 rc = bnxt_hwrm_ring_alloc(bp); 10168 if (rc) { 10169 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10170 goto err_out; 10171 } 10172 10173 rc = bnxt_hwrm_ring_grp_alloc(bp); 10174 if (rc) { 10175 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10176 goto err_out; 10177 } 10178 10179 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10180 rx_nr_rings--; 10181 10182 /* default vnic 0 */ 10183 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10184 if (rc) { 10185 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10186 goto err_out; 10187 } 10188 10189 if (BNXT_VF(bp)) 10190 bnxt_hwrm_func_qcfg(bp); 10191 10192 rc = bnxt_setup_vnic(bp, vnic); 10193 if (rc) 10194 goto err_out; 10195 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10196 bnxt_hwrm_update_rss_hash_cfg(bp); 10197 10198 if (bp->flags & BNXT_FLAG_RFS) { 10199 rc = bnxt_alloc_rfs_vnics(bp); 10200 if (rc) 10201 goto err_out; 10202 } 10203 10204 if (bp->flags & BNXT_FLAG_TPA) { 10205 rc = bnxt_set_tpa(bp, true); 10206 if (rc) 10207 goto err_out; 10208 } 10209 10210 if (BNXT_VF(bp)) 10211 bnxt_update_vf_mac(bp); 10212 10213 /* Filter for default vnic 0 */ 10214 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10215 if (rc) { 10216 if (BNXT_VF(bp) && rc == -ENODEV) 10217 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10218 else 10219 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10220 goto err_out; 10221 } 10222 vnic->uc_filter_count = 1; 10223 10224 vnic->rx_mask = 0; 10225 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10226 goto skip_rx_mask; 10227 10228 if (bp->dev->flags & IFF_BROADCAST) 10229 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10230 10231 if (bp->dev->flags & IFF_PROMISC) 10232 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10233 10234 if (bp->dev->flags & IFF_ALLMULTI) { 10235 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10236 vnic->mc_list_count = 0; 10237 } else if (bp->dev->flags & IFF_MULTICAST) { 10238 u32 mask = 0; 10239 10240 bnxt_mc_list_updated(bp, &mask); 10241 vnic->rx_mask |= mask; 10242 } 10243 10244 rc = bnxt_cfg_rx_mode(bp); 10245 if (rc) 10246 goto err_out; 10247 10248 skip_rx_mask: 10249 rc = bnxt_hwrm_set_coal(bp); 10250 if (rc) 10251 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10252 rc); 10253 10254 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10255 rc = bnxt_setup_nitroa0_vnic(bp); 10256 if (rc) 10257 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10258 rc); 10259 } 10260 10261 if (BNXT_VF(bp)) { 10262 bnxt_hwrm_func_qcfg(bp); 10263 netdev_update_features(bp->dev); 10264 } 10265 10266 return 0; 10267 10268 err_out: 10269 bnxt_hwrm_resource_free(bp, 0, true); 10270 10271 return rc; 10272 } 10273 10274 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10275 { 10276 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10277 return 0; 10278 } 10279 10280 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10281 { 10282 bnxt_init_cp_rings(bp); 10283 bnxt_init_rx_rings(bp); 10284 bnxt_init_tx_rings(bp); 10285 bnxt_init_ring_grps(bp, irq_re_init); 10286 bnxt_init_vnics(bp); 10287 10288 return bnxt_init_chip(bp, irq_re_init); 10289 } 10290 10291 static int bnxt_set_real_num_queues(struct bnxt *bp) 10292 { 10293 int rc; 10294 struct net_device *dev = bp->dev; 10295 10296 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10297 bp->tx_nr_rings_xdp); 10298 if (rc) 10299 return rc; 10300 10301 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10302 if (rc) 10303 return rc; 10304 10305 #ifdef CONFIG_RFS_ACCEL 10306 if (bp->flags & BNXT_FLAG_RFS) 10307 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10308 #endif 10309 10310 return rc; 10311 } 10312 10313 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10314 bool shared) 10315 { 10316 int _rx = *rx, _tx = *tx; 10317 10318 if (shared) { 10319 *rx = min_t(int, _rx, max); 10320 *tx = min_t(int, _tx, max); 10321 } else { 10322 if (max < 2) 10323 return -ENOMEM; 10324 10325 while (_rx + _tx > max) { 10326 if (_rx > _tx && _rx > 1) 10327 _rx--; 10328 else if (_tx > 1) 10329 _tx--; 10330 } 10331 *rx = _rx; 10332 *tx = _tx; 10333 } 10334 return 0; 10335 } 10336 10337 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10338 { 10339 return (tx - tx_xdp) / tx_sets + tx_xdp; 10340 } 10341 10342 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10343 { 10344 int tcs = bp->num_tc; 10345 10346 if (!tcs) 10347 tcs = 1; 10348 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10349 } 10350 10351 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10352 { 10353 int tcs = bp->num_tc; 10354 10355 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10356 bp->tx_nr_rings_xdp; 10357 } 10358 10359 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10360 bool sh) 10361 { 10362 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10363 10364 if (tx_cp != *tx) { 10365 int tx_saved = tx_cp, rc; 10366 10367 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10368 if (rc) 10369 return rc; 10370 if (tx_cp != tx_saved) 10371 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10372 return 0; 10373 } 10374 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10375 } 10376 10377 static void bnxt_setup_msix(struct bnxt *bp) 10378 { 10379 const int len = sizeof(bp->irq_tbl[0].name); 10380 struct net_device *dev = bp->dev; 10381 int tcs, i; 10382 10383 tcs = bp->num_tc; 10384 if (tcs) { 10385 int i, off, count; 10386 10387 for (i = 0; i < tcs; i++) { 10388 count = bp->tx_nr_rings_per_tc; 10389 off = BNXT_TC_TO_RING_BASE(bp, i); 10390 netdev_set_tc_queue(dev, i, count, off); 10391 } 10392 } 10393 10394 for (i = 0; i < bp->cp_nr_rings; i++) { 10395 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10396 char *attr; 10397 10398 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10399 attr = "TxRx"; 10400 else if (i < bp->rx_nr_rings) 10401 attr = "rx"; 10402 else 10403 attr = "tx"; 10404 10405 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10406 attr, i); 10407 bp->irq_tbl[map_idx].handler = bnxt_msix; 10408 } 10409 } 10410 10411 static void bnxt_setup_inta(struct bnxt *bp) 10412 { 10413 const int len = sizeof(bp->irq_tbl[0].name); 10414 10415 if (bp->num_tc) { 10416 netdev_reset_tc(bp->dev); 10417 bp->num_tc = 0; 10418 } 10419 10420 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10421 0); 10422 bp->irq_tbl[0].handler = bnxt_inta; 10423 } 10424 10425 static int bnxt_init_int_mode(struct bnxt *bp); 10426 10427 static int bnxt_setup_int_mode(struct bnxt *bp) 10428 { 10429 int rc; 10430 10431 if (!bp->irq_tbl) { 10432 rc = bnxt_init_int_mode(bp); 10433 if (rc || !bp->irq_tbl) 10434 return rc ?: -ENODEV; 10435 } 10436 10437 if (bp->flags & BNXT_FLAG_USING_MSIX) 10438 bnxt_setup_msix(bp); 10439 else 10440 bnxt_setup_inta(bp); 10441 10442 rc = bnxt_set_real_num_queues(bp); 10443 return rc; 10444 } 10445 10446 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10447 { 10448 return bp->hw_resc.max_rsscos_ctxs; 10449 } 10450 10451 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10452 { 10453 return bp->hw_resc.max_vnics; 10454 } 10455 10456 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10457 { 10458 return bp->hw_resc.max_stat_ctxs; 10459 } 10460 10461 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10462 { 10463 return bp->hw_resc.max_cp_rings; 10464 } 10465 10466 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10467 { 10468 unsigned int cp = bp->hw_resc.max_cp_rings; 10469 10470 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10471 cp -= bnxt_get_ulp_msix_num(bp); 10472 10473 return cp; 10474 } 10475 10476 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10477 { 10478 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10479 10480 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10481 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10482 10483 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10484 } 10485 10486 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10487 { 10488 bp->hw_resc.max_irqs = max_irqs; 10489 } 10490 10491 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10492 { 10493 unsigned int cp; 10494 10495 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10496 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10497 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10498 else 10499 return cp - bp->cp_nr_rings; 10500 } 10501 10502 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10503 { 10504 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10505 } 10506 10507 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 10508 { 10509 int max_irq = bnxt_get_max_func_irqs(bp); 10510 int total_req = bp->cp_nr_rings + num; 10511 10512 if (max_irq < total_req) { 10513 num = max_irq - bp->cp_nr_rings; 10514 if (num <= 0) 10515 return 0; 10516 } 10517 return num; 10518 } 10519 10520 static int bnxt_get_num_msix(struct bnxt *bp) 10521 { 10522 if (!BNXT_NEW_RM(bp)) 10523 return bnxt_get_max_func_irqs(bp); 10524 10525 return bnxt_nq_rings_in_use(bp); 10526 } 10527 10528 static int bnxt_init_msix(struct bnxt *bp) 10529 { 10530 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10531 struct msix_entry *msix_ent; 10532 10533 total_vecs = bnxt_get_num_msix(bp); 10534 max = bnxt_get_max_func_irqs(bp); 10535 if (total_vecs > max) 10536 total_vecs = max; 10537 10538 if (!total_vecs) 10539 return 0; 10540 10541 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10542 if (!msix_ent) 10543 return -ENOMEM; 10544 10545 for (i = 0; i < total_vecs; i++) { 10546 msix_ent[i].entry = i; 10547 msix_ent[i].vector = 0; 10548 } 10549 10550 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10551 min = 2; 10552 10553 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10554 ulp_msix = bnxt_get_ulp_msix_num(bp); 10555 if (total_vecs < 0 || total_vecs < ulp_msix) { 10556 rc = -ENODEV; 10557 goto msix_setup_exit; 10558 } 10559 10560 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10561 if (bp->irq_tbl) { 10562 for (i = 0; i < total_vecs; i++) 10563 bp->irq_tbl[i].vector = msix_ent[i].vector; 10564 10565 bp->total_irqs = total_vecs; 10566 /* Trim rings based upon num of vectors allocated */ 10567 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10568 total_vecs - ulp_msix, min == 1); 10569 if (rc) 10570 goto msix_setup_exit; 10571 10572 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10573 bp->cp_nr_rings = (min == 1) ? 10574 max_t(int, tx_cp, bp->rx_nr_rings) : 10575 tx_cp + bp->rx_nr_rings; 10576 10577 } else { 10578 rc = -ENOMEM; 10579 goto msix_setup_exit; 10580 } 10581 bp->flags |= BNXT_FLAG_USING_MSIX; 10582 kfree(msix_ent); 10583 return 0; 10584 10585 msix_setup_exit: 10586 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10587 kfree(bp->irq_tbl); 10588 bp->irq_tbl = NULL; 10589 pci_disable_msix(bp->pdev); 10590 kfree(msix_ent); 10591 return rc; 10592 } 10593 10594 static int bnxt_init_inta(struct bnxt *bp) 10595 { 10596 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10597 if (!bp->irq_tbl) 10598 return -ENOMEM; 10599 10600 bp->total_irqs = 1; 10601 bp->rx_nr_rings = 1; 10602 bp->tx_nr_rings = 1; 10603 bp->cp_nr_rings = 1; 10604 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10605 bp->irq_tbl[0].vector = bp->pdev->irq; 10606 return 0; 10607 } 10608 10609 static int bnxt_init_int_mode(struct bnxt *bp) 10610 { 10611 int rc = -ENODEV; 10612 10613 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10614 rc = bnxt_init_msix(bp); 10615 10616 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10617 /* fallback to INTA */ 10618 rc = bnxt_init_inta(bp); 10619 } 10620 return rc; 10621 } 10622 10623 static void bnxt_clear_int_mode(struct bnxt *bp) 10624 { 10625 if (bp->flags & BNXT_FLAG_USING_MSIX) 10626 pci_disable_msix(bp->pdev); 10627 10628 kfree(bp->irq_tbl); 10629 bp->irq_tbl = NULL; 10630 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10631 } 10632 10633 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10634 { 10635 bool irq_cleared = false; 10636 int tcs = bp->num_tc; 10637 int irqs_required; 10638 int rc; 10639 10640 if (!bnxt_need_reserve_rings(bp)) 10641 return 0; 10642 10643 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 10644 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 10645 10646 if (ulp_msix > bp->ulp_num_msix_want) 10647 ulp_msix = bp->ulp_num_msix_want; 10648 irqs_required = ulp_msix + bp->cp_nr_rings; 10649 } else { 10650 irqs_required = bnxt_get_num_msix(bp); 10651 } 10652 10653 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 10654 bnxt_ulp_irq_stop(bp); 10655 bnxt_clear_int_mode(bp); 10656 irq_cleared = true; 10657 } 10658 rc = __bnxt_reserve_rings(bp); 10659 if (irq_cleared) { 10660 if (!rc) 10661 rc = bnxt_init_int_mode(bp); 10662 bnxt_ulp_irq_restart(bp, rc); 10663 } 10664 if (rc) { 10665 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10666 return rc; 10667 } 10668 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10669 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10670 netdev_err(bp->dev, "tx ring reservation failure\n"); 10671 netdev_reset_tc(bp->dev); 10672 bp->num_tc = 0; 10673 if (bp->tx_nr_rings_xdp) 10674 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10675 else 10676 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10677 return -ENOMEM; 10678 } 10679 return 0; 10680 } 10681 10682 static void bnxt_free_irq(struct bnxt *bp) 10683 { 10684 struct bnxt_irq *irq; 10685 int i; 10686 10687 #ifdef CONFIG_RFS_ACCEL 10688 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10689 bp->dev->rx_cpu_rmap = NULL; 10690 #endif 10691 if (!bp->irq_tbl || !bp->bnapi) 10692 return; 10693 10694 for (i = 0; i < bp->cp_nr_rings; i++) { 10695 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10696 10697 irq = &bp->irq_tbl[map_idx]; 10698 if (irq->requested) { 10699 if (irq->have_cpumask) { 10700 irq_set_affinity_hint(irq->vector, NULL); 10701 free_cpumask_var(irq->cpu_mask); 10702 irq->have_cpumask = 0; 10703 } 10704 free_irq(irq->vector, bp->bnapi[i]); 10705 } 10706 10707 irq->requested = 0; 10708 } 10709 } 10710 10711 static int bnxt_request_irq(struct bnxt *bp) 10712 { 10713 int i, j, rc = 0; 10714 unsigned long flags = 0; 10715 #ifdef CONFIG_RFS_ACCEL 10716 struct cpu_rmap *rmap; 10717 #endif 10718 10719 rc = bnxt_setup_int_mode(bp); 10720 if (rc) { 10721 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10722 rc); 10723 return rc; 10724 } 10725 #ifdef CONFIG_RFS_ACCEL 10726 rmap = bp->dev->rx_cpu_rmap; 10727 #endif 10728 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10729 flags = IRQF_SHARED; 10730 10731 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10732 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10733 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10734 10735 #ifdef CONFIG_RFS_ACCEL 10736 if (rmap && bp->bnapi[i]->rx_ring) { 10737 rc = irq_cpu_rmap_add(rmap, irq->vector); 10738 if (rc) 10739 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10740 j); 10741 j++; 10742 } 10743 #endif 10744 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10745 bp->bnapi[i]); 10746 if (rc) 10747 break; 10748 10749 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10750 irq->requested = 1; 10751 10752 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10753 int numa_node = dev_to_node(&bp->pdev->dev); 10754 10755 irq->have_cpumask = 1; 10756 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10757 irq->cpu_mask); 10758 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10759 if (rc) { 10760 netdev_warn(bp->dev, 10761 "Set affinity failed, IRQ = %d\n", 10762 irq->vector); 10763 break; 10764 } 10765 } 10766 } 10767 return rc; 10768 } 10769 10770 static void bnxt_del_napi(struct bnxt *bp) 10771 { 10772 int i; 10773 10774 if (!bp->bnapi) 10775 return; 10776 10777 for (i = 0; i < bp->rx_nr_rings; i++) 10778 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10779 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10780 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10781 10782 for (i = 0; i < bp->cp_nr_rings; i++) { 10783 struct bnxt_napi *bnapi = bp->bnapi[i]; 10784 10785 __netif_napi_del(&bnapi->napi); 10786 } 10787 /* We called __netif_napi_del(), we need 10788 * to respect an RCU grace period before freeing napi structures. 10789 */ 10790 synchronize_net(); 10791 } 10792 10793 static void bnxt_init_napi(struct bnxt *bp) 10794 { 10795 int i; 10796 unsigned int cp_nr_rings = bp->cp_nr_rings; 10797 struct bnxt_napi *bnapi; 10798 10799 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10800 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10801 10802 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10803 poll_fn = bnxt_poll_p5; 10804 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10805 cp_nr_rings--; 10806 for (i = 0; i < cp_nr_rings; i++) { 10807 bnapi = bp->bnapi[i]; 10808 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10809 } 10810 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10811 bnapi = bp->bnapi[cp_nr_rings]; 10812 netif_napi_add(bp->dev, &bnapi->napi, 10813 bnxt_poll_nitroa0); 10814 } 10815 } else { 10816 bnapi = bp->bnapi[0]; 10817 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10818 } 10819 } 10820 10821 static void bnxt_disable_napi(struct bnxt *bp) 10822 { 10823 int i; 10824 10825 if (!bp->bnapi || 10826 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10827 return; 10828 10829 for (i = 0; i < bp->cp_nr_rings; i++) { 10830 struct bnxt_napi *bnapi = bp->bnapi[i]; 10831 struct bnxt_cp_ring_info *cpr; 10832 10833 cpr = &bnapi->cp_ring; 10834 if (bnapi->tx_fault) 10835 cpr->sw_stats->tx.tx_resets++; 10836 if (bnapi->in_reset) 10837 cpr->sw_stats->rx.rx_resets++; 10838 napi_disable(&bnapi->napi); 10839 if (bnapi->rx_ring) 10840 cancel_work_sync(&cpr->dim.work); 10841 } 10842 } 10843 10844 static void bnxt_enable_napi(struct bnxt *bp) 10845 { 10846 int i; 10847 10848 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10849 for (i = 0; i < bp->cp_nr_rings; i++) { 10850 struct bnxt_napi *bnapi = bp->bnapi[i]; 10851 struct bnxt_cp_ring_info *cpr; 10852 10853 bnapi->tx_fault = 0; 10854 10855 cpr = &bnapi->cp_ring; 10856 bnapi->in_reset = false; 10857 10858 if (bnapi->rx_ring) { 10859 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 10860 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 10861 } 10862 napi_enable(&bnapi->napi); 10863 } 10864 } 10865 10866 void bnxt_tx_disable(struct bnxt *bp) 10867 { 10868 int i; 10869 struct bnxt_tx_ring_info *txr; 10870 10871 if (bp->tx_ring) { 10872 for (i = 0; i < bp->tx_nr_rings; i++) { 10873 txr = &bp->tx_ring[i]; 10874 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 10875 } 10876 } 10877 /* Make sure napi polls see @dev_state change */ 10878 synchronize_net(); 10879 /* Drop carrier first to prevent TX timeout */ 10880 netif_carrier_off(bp->dev); 10881 /* Stop all TX queues */ 10882 netif_tx_disable(bp->dev); 10883 } 10884 10885 void bnxt_tx_enable(struct bnxt *bp) 10886 { 10887 int i; 10888 struct bnxt_tx_ring_info *txr; 10889 10890 for (i = 0; i < bp->tx_nr_rings; i++) { 10891 txr = &bp->tx_ring[i]; 10892 WRITE_ONCE(txr->dev_state, 0); 10893 } 10894 /* Make sure napi polls see @dev_state change */ 10895 synchronize_net(); 10896 netif_tx_wake_all_queues(bp->dev); 10897 if (BNXT_LINK_IS_UP(bp)) 10898 netif_carrier_on(bp->dev); 10899 } 10900 10901 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 10902 { 10903 u8 active_fec = link_info->active_fec_sig_mode & 10904 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 10905 10906 switch (active_fec) { 10907 default: 10908 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 10909 return "None"; 10910 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 10911 return "Clause 74 BaseR"; 10912 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 10913 return "Clause 91 RS(528,514)"; 10914 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 10915 return "Clause 91 RS544_1XN"; 10916 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 10917 return "Clause 91 RS(544,514)"; 10918 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 10919 return "Clause 91 RS272_1XN"; 10920 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 10921 return "Clause 91 RS(272,257)"; 10922 } 10923 } 10924 10925 void bnxt_report_link(struct bnxt *bp) 10926 { 10927 if (BNXT_LINK_IS_UP(bp)) { 10928 const char *signal = ""; 10929 const char *flow_ctrl; 10930 const char *duplex; 10931 u32 speed; 10932 u16 fec; 10933 10934 netif_carrier_on(bp->dev); 10935 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 10936 if (speed == SPEED_UNKNOWN) { 10937 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 10938 return; 10939 } 10940 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 10941 duplex = "full"; 10942 else 10943 duplex = "half"; 10944 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 10945 flow_ctrl = "ON - receive & transmit"; 10946 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 10947 flow_ctrl = "ON - transmit"; 10948 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 10949 flow_ctrl = "ON - receive"; 10950 else 10951 flow_ctrl = "none"; 10952 if (bp->link_info.phy_qcfg_resp.option_flags & 10953 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 10954 u8 sig_mode = bp->link_info.active_fec_sig_mode & 10955 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 10956 switch (sig_mode) { 10957 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 10958 signal = "(NRZ) "; 10959 break; 10960 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 10961 signal = "(PAM4 56Gbps) "; 10962 break; 10963 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 10964 signal = "(PAM4 112Gbps) "; 10965 break; 10966 default: 10967 break; 10968 } 10969 } 10970 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 10971 speed, signal, duplex, flow_ctrl); 10972 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 10973 netdev_info(bp->dev, "EEE is %s\n", 10974 bp->eee.eee_active ? "active" : 10975 "not active"); 10976 fec = bp->link_info.fec_cfg; 10977 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 10978 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 10979 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 10980 bnxt_report_fec(&bp->link_info)); 10981 } else { 10982 netif_carrier_off(bp->dev); 10983 netdev_err(bp->dev, "NIC Link is Down\n"); 10984 } 10985 } 10986 10987 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 10988 { 10989 if (!resp->supported_speeds_auto_mode && 10990 !resp->supported_speeds_force_mode && 10991 !resp->supported_pam4_speeds_auto_mode && 10992 !resp->supported_pam4_speeds_force_mode && 10993 !resp->supported_speeds2_auto_mode && 10994 !resp->supported_speeds2_force_mode) 10995 return true; 10996 return false; 10997 } 10998 10999 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11000 { 11001 struct bnxt_link_info *link_info = &bp->link_info; 11002 struct hwrm_port_phy_qcaps_output *resp; 11003 struct hwrm_port_phy_qcaps_input *req; 11004 int rc = 0; 11005 11006 if (bp->hwrm_spec_code < 0x10201) 11007 return 0; 11008 11009 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11010 if (rc) 11011 return rc; 11012 11013 resp = hwrm_req_hold(bp, req); 11014 rc = hwrm_req_send(bp, req); 11015 if (rc) 11016 goto hwrm_phy_qcaps_exit; 11017 11018 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11019 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11020 struct ethtool_keee *eee = &bp->eee; 11021 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11022 11023 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11024 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11025 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11026 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11027 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11028 } 11029 11030 if (bp->hwrm_spec_code >= 0x10a01) { 11031 if (bnxt_phy_qcaps_no_speed(resp)) { 11032 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11033 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11034 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11035 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11036 netdev_info(bp->dev, "Ethernet link enabled\n"); 11037 /* Phy re-enabled, reprobe the speeds */ 11038 link_info->support_auto_speeds = 0; 11039 link_info->support_pam4_auto_speeds = 0; 11040 link_info->support_auto_speeds2 = 0; 11041 } 11042 } 11043 if (resp->supported_speeds_auto_mode) 11044 link_info->support_auto_speeds = 11045 le16_to_cpu(resp->supported_speeds_auto_mode); 11046 if (resp->supported_pam4_speeds_auto_mode) 11047 link_info->support_pam4_auto_speeds = 11048 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11049 if (resp->supported_speeds2_auto_mode) 11050 link_info->support_auto_speeds2 = 11051 le16_to_cpu(resp->supported_speeds2_auto_mode); 11052 11053 bp->port_count = resp->port_cnt; 11054 11055 hwrm_phy_qcaps_exit: 11056 hwrm_req_drop(bp, req); 11057 return rc; 11058 } 11059 11060 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11061 { 11062 u16 diff = advertising ^ supported; 11063 11064 return ((supported | diff) != supported); 11065 } 11066 11067 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11068 { 11069 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11070 11071 /* Check if any advertised speeds are no longer supported. The caller 11072 * holds the link_lock mutex, so we can modify link_info settings. 11073 */ 11074 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11075 if (bnxt_support_dropped(link_info->advertising, 11076 link_info->support_auto_speeds2)) { 11077 link_info->advertising = link_info->support_auto_speeds2; 11078 return true; 11079 } 11080 return false; 11081 } 11082 if (bnxt_support_dropped(link_info->advertising, 11083 link_info->support_auto_speeds)) { 11084 link_info->advertising = link_info->support_auto_speeds; 11085 return true; 11086 } 11087 if (bnxt_support_dropped(link_info->advertising_pam4, 11088 link_info->support_pam4_auto_speeds)) { 11089 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11090 return true; 11091 } 11092 return false; 11093 } 11094 11095 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11096 { 11097 struct bnxt_link_info *link_info = &bp->link_info; 11098 struct hwrm_port_phy_qcfg_output *resp; 11099 struct hwrm_port_phy_qcfg_input *req; 11100 u8 link_state = link_info->link_state; 11101 bool support_changed; 11102 int rc; 11103 11104 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11105 if (rc) 11106 return rc; 11107 11108 resp = hwrm_req_hold(bp, req); 11109 rc = hwrm_req_send(bp, req); 11110 if (rc) { 11111 hwrm_req_drop(bp, req); 11112 if (BNXT_VF(bp) && rc == -ENODEV) { 11113 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11114 rc = 0; 11115 } 11116 return rc; 11117 } 11118 11119 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11120 link_info->phy_link_status = resp->link; 11121 link_info->duplex = resp->duplex_cfg; 11122 if (bp->hwrm_spec_code >= 0x10800) 11123 link_info->duplex = resp->duplex_state; 11124 link_info->pause = resp->pause; 11125 link_info->auto_mode = resp->auto_mode; 11126 link_info->auto_pause_setting = resp->auto_pause; 11127 link_info->lp_pause = resp->link_partner_adv_pause; 11128 link_info->force_pause_setting = resp->force_pause; 11129 link_info->duplex_setting = resp->duplex_cfg; 11130 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11131 link_info->link_speed = le16_to_cpu(resp->link_speed); 11132 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11133 link_info->active_lanes = resp->active_lanes; 11134 } else { 11135 link_info->link_speed = 0; 11136 link_info->active_lanes = 0; 11137 } 11138 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11139 link_info->force_pam4_link_speed = 11140 le16_to_cpu(resp->force_pam4_link_speed); 11141 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11142 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11143 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11144 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11145 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11146 link_info->auto_pam4_link_speeds = 11147 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11148 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11149 link_info->lp_auto_link_speeds = 11150 le16_to_cpu(resp->link_partner_adv_speeds); 11151 link_info->lp_auto_pam4_link_speeds = 11152 resp->link_partner_pam4_adv_speeds; 11153 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11154 link_info->phy_ver[0] = resp->phy_maj; 11155 link_info->phy_ver[1] = resp->phy_min; 11156 link_info->phy_ver[2] = resp->phy_bld; 11157 link_info->media_type = resp->media_type; 11158 link_info->phy_type = resp->phy_type; 11159 link_info->transceiver = resp->xcvr_pkg_type; 11160 link_info->phy_addr = resp->eee_config_phy_addr & 11161 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11162 link_info->module_status = resp->module_status; 11163 11164 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11165 struct ethtool_keee *eee = &bp->eee; 11166 u16 fw_speeds; 11167 11168 eee->eee_active = 0; 11169 if (resp->eee_config_phy_addr & 11170 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11171 eee->eee_active = 1; 11172 fw_speeds = le16_to_cpu( 11173 resp->link_partner_adv_eee_link_speed_mask); 11174 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11175 } 11176 11177 /* Pull initial EEE config */ 11178 if (!chng_link_state) { 11179 if (resp->eee_config_phy_addr & 11180 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11181 eee->eee_enabled = 1; 11182 11183 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11184 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11185 11186 if (resp->eee_config_phy_addr & 11187 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11188 __le32 tmr; 11189 11190 eee->tx_lpi_enabled = 1; 11191 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11192 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11193 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11194 } 11195 } 11196 } 11197 11198 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11199 if (bp->hwrm_spec_code >= 0x10504) { 11200 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11201 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11202 } 11203 /* TODO: need to add more logic to report VF link */ 11204 if (chng_link_state) { 11205 if (link_info->phy_link_status == BNXT_LINK_LINK) 11206 link_info->link_state = BNXT_LINK_STATE_UP; 11207 else 11208 link_info->link_state = BNXT_LINK_STATE_DOWN; 11209 if (link_state != link_info->link_state) 11210 bnxt_report_link(bp); 11211 } else { 11212 /* always link down if not require to update link state */ 11213 link_info->link_state = BNXT_LINK_STATE_DOWN; 11214 } 11215 hwrm_req_drop(bp, req); 11216 11217 if (!BNXT_PHY_CFG_ABLE(bp)) 11218 return 0; 11219 11220 support_changed = bnxt_support_speed_dropped(link_info); 11221 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11222 bnxt_hwrm_set_link_setting(bp, true, false); 11223 return 0; 11224 } 11225 11226 static void bnxt_get_port_module_status(struct bnxt *bp) 11227 { 11228 struct bnxt_link_info *link_info = &bp->link_info; 11229 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11230 u8 module_status; 11231 11232 if (bnxt_update_link(bp, true)) 11233 return; 11234 11235 module_status = link_info->module_status; 11236 switch (module_status) { 11237 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11238 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11239 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11240 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11241 bp->pf.port_id); 11242 if (bp->hwrm_spec_code >= 0x10201) { 11243 netdev_warn(bp->dev, "Module part number %s\n", 11244 resp->phy_vendor_partnumber); 11245 } 11246 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11247 netdev_warn(bp->dev, "TX is disabled\n"); 11248 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11249 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11250 } 11251 } 11252 11253 static void 11254 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11255 { 11256 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11257 if (bp->hwrm_spec_code >= 0x10201) 11258 req->auto_pause = 11259 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11260 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11261 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11262 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11263 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11264 req->enables |= 11265 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11266 } else { 11267 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11268 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11269 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11270 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11271 req->enables |= 11272 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11273 if (bp->hwrm_spec_code >= 0x10201) { 11274 req->auto_pause = req->force_pause; 11275 req->enables |= cpu_to_le32( 11276 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11277 } 11278 } 11279 } 11280 11281 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11282 { 11283 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11284 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11285 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11286 req->enables |= 11287 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11288 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11289 } else if (bp->link_info.advertising) { 11290 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11291 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11292 } 11293 if (bp->link_info.advertising_pam4) { 11294 req->enables |= 11295 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11296 req->auto_link_pam4_speed_mask = 11297 cpu_to_le16(bp->link_info.advertising_pam4); 11298 } 11299 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11300 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11301 } else { 11302 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11303 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11304 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11305 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11306 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11307 (u32)bp->link_info.req_link_speed); 11308 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11309 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11310 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11311 } else { 11312 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11313 } 11314 } 11315 11316 /* tell chimp that the setting takes effect immediately */ 11317 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11318 } 11319 11320 int bnxt_hwrm_set_pause(struct bnxt *bp) 11321 { 11322 struct hwrm_port_phy_cfg_input *req; 11323 int rc; 11324 11325 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11326 if (rc) 11327 return rc; 11328 11329 bnxt_hwrm_set_pause_common(bp, req); 11330 11331 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11332 bp->link_info.force_link_chng) 11333 bnxt_hwrm_set_link_common(bp, req); 11334 11335 rc = hwrm_req_send(bp, req); 11336 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11337 /* since changing of pause setting doesn't trigger any link 11338 * change event, the driver needs to update the current pause 11339 * result upon successfully return of the phy_cfg command 11340 */ 11341 bp->link_info.pause = 11342 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11343 bp->link_info.auto_pause_setting = 0; 11344 if (!bp->link_info.force_link_chng) 11345 bnxt_report_link(bp); 11346 } 11347 bp->link_info.force_link_chng = false; 11348 return rc; 11349 } 11350 11351 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11352 struct hwrm_port_phy_cfg_input *req) 11353 { 11354 struct ethtool_keee *eee = &bp->eee; 11355 11356 if (eee->eee_enabled) { 11357 u16 eee_speeds; 11358 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11359 11360 if (eee->tx_lpi_enabled) 11361 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11362 else 11363 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11364 11365 req->flags |= cpu_to_le32(flags); 11366 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11367 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11368 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11369 } else { 11370 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11371 } 11372 } 11373 11374 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11375 { 11376 struct hwrm_port_phy_cfg_input *req; 11377 int rc; 11378 11379 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11380 if (rc) 11381 return rc; 11382 11383 if (set_pause) 11384 bnxt_hwrm_set_pause_common(bp, req); 11385 11386 bnxt_hwrm_set_link_common(bp, req); 11387 11388 if (set_eee) 11389 bnxt_hwrm_set_eee(bp, req); 11390 return hwrm_req_send(bp, req); 11391 } 11392 11393 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11394 { 11395 struct hwrm_port_phy_cfg_input *req; 11396 int rc; 11397 11398 if (!BNXT_SINGLE_PF(bp)) 11399 return 0; 11400 11401 if (pci_num_vf(bp->pdev) && 11402 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11403 return 0; 11404 11405 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11406 if (rc) 11407 return rc; 11408 11409 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11410 rc = hwrm_req_send(bp, req); 11411 if (!rc) { 11412 mutex_lock(&bp->link_lock); 11413 /* Device is not obliged link down in certain scenarios, even 11414 * when forced. Setting the state unknown is consistent with 11415 * driver startup and will force link state to be reported 11416 * during subsequent open based on PORT_PHY_QCFG. 11417 */ 11418 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11419 mutex_unlock(&bp->link_lock); 11420 } 11421 return rc; 11422 } 11423 11424 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11425 { 11426 #ifdef CONFIG_TEE_BNXT_FW 11427 int rc = tee_bnxt_fw_load(); 11428 11429 if (rc) 11430 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11431 11432 return rc; 11433 #else 11434 netdev_err(bp->dev, "OP-TEE not supported\n"); 11435 return -ENODEV; 11436 #endif 11437 } 11438 11439 static int bnxt_try_recover_fw(struct bnxt *bp) 11440 { 11441 if (bp->fw_health && bp->fw_health->status_reliable) { 11442 int retry = 0, rc; 11443 u32 sts; 11444 11445 do { 11446 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11447 rc = bnxt_hwrm_poll(bp); 11448 if (!BNXT_FW_IS_BOOTING(sts) && 11449 !BNXT_FW_IS_RECOVERING(sts)) 11450 break; 11451 retry++; 11452 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11453 11454 if (!BNXT_FW_IS_HEALTHY(sts)) { 11455 netdev_err(bp->dev, 11456 "Firmware not responding, status: 0x%x\n", 11457 sts); 11458 rc = -ENODEV; 11459 } 11460 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11461 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11462 return bnxt_fw_reset_via_optee(bp); 11463 } 11464 return rc; 11465 } 11466 11467 return -ENODEV; 11468 } 11469 11470 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11471 { 11472 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11473 11474 if (!BNXT_NEW_RM(bp)) 11475 return; /* no resource reservations required */ 11476 11477 hw_resc->resv_cp_rings = 0; 11478 hw_resc->resv_stat_ctxs = 0; 11479 hw_resc->resv_irqs = 0; 11480 hw_resc->resv_tx_rings = 0; 11481 hw_resc->resv_rx_rings = 0; 11482 hw_resc->resv_hw_ring_grps = 0; 11483 hw_resc->resv_vnics = 0; 11484 hw_resc->resv_rsscos_ctxs = 0; 11485 if (!fw_reset) { 11486 bp->tx_nr_rings = 0; 11487 bp->rx_nr_rings = 0; 11488 } 11489 } 11490 11491 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11492 { 11493 int rc; 11494 11495 if (!BNXT_NEW_RM(bp)) 11496 return 0; /* no resource reservations required */ 11497 11498 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11499 if (rc) 11500 netdev_err(bp->dev, "resc_qcaps failed\n"); 11501 11502 bnxt_clear_reservations(bp, fw_reset); 11503 11504 return rc; 11505 } 11506 11507 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11508 { 11509 struct hwrm_func_drv_if_change_output *resp; 11510 struct hwrm_func_drv_if_change_input *req; 11511 bool fw_reset = !bp->irq_tbl; 11512 bool resc_reinit = false; 11513 int rc, retry = 0; 11514 u32 flags = 0; 11515 11516 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11517 return 0; 11518 11519 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11520 if (rc) 11521 return rc; 11522 11523 if (up) 11524 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11525 resp = hwrm_req_hold(bp, req); 11526 11527 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11528 while (retry < BNXT_FW_IF_RETRY) { 11529 rc = hwrm_req_send(bp, req); 11530 if (rc != -EAGAIN) 11531 break; 11532 11533 msleep(50); 11534 retry++; 11535 } 11536 11537 if (rc == -EAGAIN) { 11538 hwrm_req_drop(bp, req); 11539 return rc; 11540 } else if (!rc) { 11541 flags = le32_to_cpu(resp->flags); 11542 } else if (up) { 11543 rc = bnxt_try_recover_fw(bp); 11544 fw_reset = true; 11545 } 11546 hwrm_req_drop(bp, req); 11547 if (rc) 11548 return rc; 11549 11550 if (!up) { 11551 bnxt_inv_fw_health_reg(bp); 11552 return 0; 11553 } 11554 11555 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11556 resc_reinit = true; 11557 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11558 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11559 fw_reset = true; 11560 else 11561 bnxt_remap_fw_health_regs(bp); 11562 11563 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11564 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11565 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11566 return -ENODEV; 11567 } 11568 if (resc_reinit || fw_reset) { 11569 if (fw_reset) { 11570 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11571 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11572 bnxt_ulp_irq_stop(bp); 11573 bnxt_free_ctx_mem(bp); 11574 bnxt_dcb_free(bp); 11575 rc = bnxt_fw_init_one(bp); 11576 if (rc) { 11577 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11578 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11579 return rc; 11580 } 11581 bnxt_clear_int_mode(bp); 11582 rc = bnxt_init_int_mode(bp); 11583 if (rc) { 11584 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11585 netdev_err(bp->dev, "init int mode failed\n"); 11586 return rc; 11587 } 11588 } 11589 rc = bnxt_cancel_reservations(bp, fw_reset); 11590 } 11591 return rc; 11592 } 11593 11594 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11595 { 11596 struct hwrm_port_led_qcaps_output *resp; 11597 struct hwrm_port_led_qcaps_input *req; 11598 struct bnxt_pf_info *pf = &bp->pf; 11599 int rc; 11600 11601 bp->num_leds = 0; 11602 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11603 return 0; 11604 11605 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11606 if (rc) 11607 return rc; 11608 11609 req->port_id = cpu_to_le16(pf->port_id); 11610 resp = hwrm_req_hold(bp, req); 11611 rc = hwrm_req_send(bp, req); 11612 if (rc) { 11613 hwrm_req_drop(bp, req); 11614 return rc; 11615 } 11616 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11617 int i; 11618 11619 bp->num_leds = resp->num_leds; 11620 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11621 bp->num_leds); 11622 for (i = 0; i < bp->num_leds; i++) { 11623 struct bnxt_led_info *led = &bp->leds[i]; 11624 __le16 caps = led->led_state_caps; 11625 11626 if (!led->led_group_id || 11627 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11628 bp->num_leds = 0; 11629 break; 11630 } 11631 } 11632 } 11633 hwrm_req_drop(bp, req); 11634 return 0; 11635 } 11636 11637 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11638 { 11639 struct hwrm_wol_filter_alloc_output *resp; 11640 struct hwrm_wol_filter_alloc_input *req; 11641 int rc; 11642 11643 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11644 if (rc) 11645 return rc; 11646 11647 req->port_id = cpu_to_le16(bp->pf.port_id); 11648 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11649 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11650 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11651 11652 resp = hwrm_req_hold(bp, req); 11653 rc = hwrm_req_send(bp, req); 11654 if (!rc) 11655 bp->wol_filter_id = resp->wol_filter_id; 11656 hwrm_req_drop(bp, req); 11657 return rc; 11658 } 11659 11660 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11661 { 11662 struct hwrm_wol_filter_free_input *req; 11663 int rc; 11664 11665 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11666 if (rc) 11667 return rc; 11668 11669 req->port_id = cpu_to_le16(bp->pf.port_id); 11670 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11671 req->wol_filter_id = bp->wol_filter_id; 11672 11673 return hwrm_req_send(bp, req); 11674 } 11675 11676 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11677 { 11678 struct hwrm_wol_filter_qcfg_output *resp; 11679 struct hwrm_wol_filter_qcfg_input *req; 11680 u16 next_handle = 0; 11681 int rc; 11682 11683 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11684 if (rc) 11685 return rc; 11686 11687 req->port_id = cpu_to_le16(bp->pf.port_id); 11688 req->handle = cpu_to_le16(handle); 11689 resp = hwrm_req_hold(bp, req); 11690 rc = hwrm_req_send(bp, req); 11691 if (!rc) { 11692 next_handle = le16_to_cpu(resp->next_handle); 11693 if (next_handle != 0) { 11694 if (resp->wol_type == 11695 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11696 bp->wol = 1; 11697 bp->wol_filter_id = resp->wol_filter_id; 11698 } 11699 } 11700 } 11701 hwrm_req_drop(bp, req); 11702 return next_handle; 11703 } 11704 11705 static void bnxt_get_wol_settings(struct bnxt *bp) 11706 { 11707 u16 handle = 0; 11708 11709 bp->wol = 0; 11710 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11711 return; 11712 11713 do { 11714 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11715 } while (handle && handle != 0xffff); 11716 } 11717 11718 static bool bnxt_eee_config_ok(struct bnxt *bp) 11719 { 11720 struct ethtool_keee *eee = &bp->eee; 11721 struct bnxt_link_info *link_info = &bp->link_info; 11722 11723 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11724 return true; 11725 11726 if (eee->eee_enabled) { 11727 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11728 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11729 11730 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11731 11732 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11733 eee->eee_enabled = 0; 11734 return false; 11735 } 11736 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11737 linkmode_and(eee->advertised, advertising, 11738 eee->supported); 11739 return false; 11740 } 11741 } 11742 return true; 11743 } 11744 11745 static int bnxt_update_phy_setting(struct bnxt *bp) 11746 { 11747 int rc; 11748 bool update_link = false; 11749 bool update_pause = false; 11750 bool update_eee = false; 11751 struct bnxt_link_info *link_info = &bp->link_info; 11752 11753 rc = bnxt_update_link(bp, true); 11754 if (rc) { 11755 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11756 rc); 11757 return rc; 11758 } 11759 if (!BNXT_SINGLE_PF(bp)) 11760 return 0; 11761 11762 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11763 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11764 link_info->req_flow_ctrl) 11765 update_pause = true; 11766 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11767 link_info->force_pause_setting != link_info->req_flow_ctrl) 11768 update_pause = true; 11769 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11770 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11771 update_link = true; 11772 if (bnxt_force_speed_updated(link_info)) 11773 update_link = true; 11774 if (link_info->req_duplex != link_info->duplex_setting) 11775 update_link = true; 11776 } else { 11777 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11778 update_link = true; 11779 if (bnxt_auto_speed_updated(link_info)) 11780 update_link = true; 11781 } 11782 11783 /* The last close may have shutdown the link, so need to call 11784 * PHY_CFG to bring it back up. 11785 */ 11786 if (!BNXT_LINK_IS_UP(bp)) 11787 update_link = true; 11788 11789 if (!bnxt_eee_config_ok(bp)) 11790 update_eee = true; 11791 11792 if (update_link) 11793 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11794 else if (update_pause) 11795 rc = bnxt_hwrm_set_pause(bp); 11796 if (rc) { 11797 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11798 rc); 11799 return rc; 11800 } 11801 11802 return rc; 11803 } 11804 11805 /* Common routine to pre-map certain register block to different GRC window. 11806 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11807 * in PF and 3 windows in VF that can be customized to map in different 11808 * register blocks. 11809 */ 11810 static void bnxt_preset_reg_win(struct bnxt *bp) 11811 { 11812 if (BNXT_PF(bp)) { 11813 /* CAG registers map to GRC window #4 */ 11814 writel(BNXT_CAG_REG_BASE, 11815 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11816 } 11817 } 11818 11819 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11820 11821 static int bnxt_reinit_after_abort(struct bnxt *bp) 11822 { 11823 int rc; 11824 11825 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11826 return -EBUSY; 11827 11828 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11829 return -ENODEV; 11830 11831 rc = bnxt_fw_init_one(bp); 11832 if (!rc) { 11833 bnxt_clear_int_mode(bp); 11834 rc = bnxt_init_int_mode(bp); 11835 if (!rc) { 11836 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11837 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11838 } 11839 } 11840 return rc; 11841 } 11842 11843 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 11844 { 11845 struct bnxt_ntuple_filter *ntp_fltr; 11846 struct bnxt_l2_filter *l2_fltr; 11847 11848 if (list_empty(&fltr->list)) 11849 return; 11850 11851 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 11852 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 11853 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 11854 atomic_inc(&l2_fltr->refcnt); 11855 ntp_fltr->l2_fltr = l2_fltr; 11856 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 11857 bnxt_del_ntp_filter(bp, ntp_fltr); 11858 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 11859 fltr->sw_id); 11860 } 11861 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 11862 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 11863 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 11864 bnxt_del_l2_filter(bp, l2_fltr); 11865 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 11866 fltr->sw_id); 11867 } 11868 } 11869 } 11870 11871 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 11872 { 11873 struct bnxt_filter_base *usr_fltr, *tmp; 11874 11875 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 11876 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 11877 } 11878 11879 static int bnxt_set_xps_mapping(struct bnxt *bp) 11880 { 11881 int numa_node = dev_to_node(&bp->pdev->dev); 11882 unsigned int q_idx, map_idx, cpu, i; 11883 const struct cpumask *cpu_mask_ptr; 11884 int nr_cpus = num_online_cpus(); 11885 cpumask_t *q_map; 11886 int rc = 0; 11887 11888 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 11889 if (!q_map) 11890 return -ENOMEM; 11891 11892 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 11893 * Each TC has the same number of TX queues. The nth TX queue for each 11894 * TC will have the same CPU mask. 11895 */ 11896 for (i = 0; i < nr_cpus; i++) { 11897 map_idx = i % bp->tx_nr_rings_per_tc; 11898 cpu = cpumask_local_spread(i, numa_node); 11899 cpu_mask_ptr = get_cpu_mask(cpu); 11900 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 11901 } 11902 11903 /* Register CPU mask for each TX queue except the ones marked for XDP */ 11904 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 11905 map_idx = q_idx % bp->tx_nr_rings_per_tc; 11906 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 11907 if (rc) { 11908 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 11909 q_idx); 11910 break; 11911 } 11912 } 11913 11914 kfree(q_map); 11915 11916 return rc; 11917 } 11918 11919 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11920 { 11921 int rc = 0; 11922 11923 bnxt_preset_reg_win(bp); 11924 netif_carrier_off(bp->dev); 11925 if (irq_re_init) { 11926 /* Reserve rings now if none were reserved at driver probe. */ 11927 rc = bnxt_init_dflt_ring_mode(bp); 11928 if (rc) { 11929 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 11930 return rc; 11931 } 11932 } 11933 rc = bnxt_reserve_rings(bp, irq_re_init); 11934 if (rc) 11935 return rc; 11936 if ((bp->flags & BNXT_FLAG_RFS) && 11937 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 11938 /* disable RFS if falling back to INTA */ 11939 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 11940 bp->flags &= ~BNXT_FLAG_RFS; 11941 } 11942 11943 rc = bnxt_alloc_mem(bp, irq_re_init); 11944 if (rc) { 11945 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 11946 goto open_err_free_mem; 11947 } 11948 11949 if (irq_re_init) { 11950 bnxt_init_napi(bp); 11951 rc = bnxt_request_irq(bp); 11952 if (rc) { 11953 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 11954 goto open_err_irq; 11955 } 11956 } 11957 11958 rc = bnxt_init_nic(bp, irq_re_init); 11959 if (rc) { 11960 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 11961 goto open_err_irq; 11962 } 11963 11964 bnxt_enable_napi(bp); 11965 bnxt_debug_dev_init(bp); 11966 11967 if (link_re_init) { 11968 mutex_lock(&bp->link_lock); 11969 rc = bnxt_update_phy_setting(bp); 11970 mutex_unlock(&bp->link_lock); 11971 if (rc) { 11972 netdev_warn(bp->dev, "failed to update phy settings\n"); 11973 if (BNXT_SINGLE_PF(bp)) { 11974 bp->link_info.phy_retry = true; 11975 bp->link_info.phy_retry_expires = 11976 jiffies + 5 * HZ; 11977 } 11978 } 11979 } 11980 11981 if (irq_re_init) { 11982 udp_tunnel_nic_reset_ntf(bp->dev); 11983 rc = bnxt_set_xps_mapping(bp); 11984 if (rc) 11985 netdev_warn(bp->dev, "failed to set xps mapping\n"); 11986 } 11987 11988 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 11989 if (!static_key_enabled(&bnxt_xdp_locking_key)) 11990 static_branch_enable(&bnxt_xdp_locking_key); 11991 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 11992 static_branch_disable(&bnxt_xdp_locking_key); 11993 } 11994 set_bit(BNXT_STATE_OPEN, &bp->state); 11995 bnxt_enable_int(bp); 11996 /* Enable TX queues */ 11997 bnxt_tx_enable(bp); 11998 mod_timer(&bp->timer, jiffies + bp->current_interval); 11999 /* Poll link status and check for SFP+ module status */ 12000 mutex_lock(&bp->link_lock); 12001 bnxt_get_port_module_status(bp); 12002 mutex_unlock(&bp->link_lock); 12003 12004 /* VF-reps may need to be re-opened after the PF is re-opened */ 12005 if (BNXT_PF(bp)) 12006 bnxt_vf_reps_open(bp); 12007 if (bp->ptp_cfg) 12008 atomic_set(&bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12009 bnxt_ptp_init_rtc(bp, true); 12010 bnxt_ptp_cfg_tstamp_filters(bp); 12011 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12012 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12013 bnxt_cfg_usr_fltrs(bp); 12014 return 0; 12015 12016 open_err_irq: 12017 bnxt_del_napi(bp); 12018 12019 open_err_free_mem: 12020 bnxt_free_skbs(bp); 12021 bnxt_free_irq(bp); 12022 bnxt_free_mem(bp, true); 12023 return rc; 12024 } 12025 12026 /* rtnl_lock held */ 12027 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12028 { 12029 int rc = 0; 12030 12031 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12032 rc = -EIO; 12033 if (!rc) 12034 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12035 if (rc) { 12036 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12037 dev_close(bp->dev); 12038 } 12039 return rc; 12040 } 12041 12042 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12043 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12044 * self tests. 12045 */ 12046 int bnxt_half_open_nic(struct bnxt *bp) 12047 { 12048 int rc = 0; 12049 12050 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12051 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12052 rc = -ENODEV; 12053 goto half_open_err; 12054 } 12055 12056 rc = bnxt_alloc_mem(bp, true); 12057 if (rc) { 12058 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12059 goto half_open_err; 12060 } 12061 bnxt_init_napi(bp); 12062 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12063 rc = bnxt_init_nic(bp, true); 12064 if (rc) { 12065 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12066 bnxt_del_napi(bp); 12067 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12068 goto half_open_err; 12069 } 12070 return 0; 12071 12072 half_open_err: 12073 bnxt_free_skbs(bp); 12074 bnxt_free_mem(bp, true); 12075 dev_close(bp->dev); 12076 return rc; 12077 } 12078 12079 /* rtnl_lock held, this call can only be made after a previous successful 12080 * call to bnxt_half_open_nic(). 12081 */ 12082 void bnxt_half_close_nic(struct bnxt *bp) 12083 { 12084 bnxt_hwrm_resource_free(bp, false, true); 12085 bnxt_del_napi(bp); 12086 bnxt_free_skbs(bp); 12087 bnxt_free_mem(bp, true); 12088 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12089 } 12090 12091 void bnxt_reenable_sriov(struct bnxt *bp) 12092 { 12093 if (BNXT_PF(bp)) { 12094 struct bnxt_pf_info *pf = &bp->pf; 12095 int n = pf->active_vfs; 12096 12097 if (n) 12098 bnxt_cfg_hw_sriov(bp, &n, true); 12099 } 12100 } 12101 12102 static int bnxt_open(struct net_device *dev) 12103 { 12104 struct bnxt *bp = netdev_priv(dev); 12105 int rc; 12106 12107 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12108 rc = bnxt_reinit_after_abort(bp); 12109 if (rc) { 12110 if (rc == -EBUSY) 12111 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12112 else 12113 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12114 return -ENODEV; 12115 } 12116 } 12117 12118 rc = bnxt_hwrm_if_change(bp, true); 12119 if (rc) 12120 return rc; 12121 12122 rc = __bnxt_open_nic(bp, true, true); 12123 if (rc) { 12124 bnxt_hwrm_if_change(bp, false); 12125 } else { 12126 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12127 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12128 bnxt_queue_sp_work(bp, 12129 BNXT_RESTART_ULP_SP_EVENT); 12130 } 12131 } 12132 12133 return rc; 12134 } 12135 12136 static bool bnxt_drv_busy(struct bnxt *bp) 12137 { 12138 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12139 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12140 } 12141 12142 static void bnxt_get_ring_stats(struct bnxt *bp, 12143 struct rtnl_link_stats64 *stats); 12144 12145 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12146 bool link_re_init) 12147 { 12148 /* Close the VF-reps before closing PF */ 12149 if (BNXT_PF(bp)) 12150 bnxt_vf_reps_close(bp); 12151 12152 /* Change device state to avoid TX queue wake up's */ 12153 bnxt_tx_disable(bp); 12154 12155 clear_bit(BNXT_STATE_OPEN, &bp->state); 12156 smp_mb__after_atomic(); 12157 while (bnxt_drv_busy(bp)) 12158 msleep(20); 12159 12160 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12161 bnxt_clear_rss_ctxs(bp, false); 12162 /* Flush rings and disable interrupts */ 12163 bnxt_shutdown_nic(bp, irq_re_init); 12164 12165 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12166 12167 bnxt_debug_dev_exit(bp); 12168 bnxt_disable_napi(bp); 12169 del_timer_sync(&bp->timer); 12170 bnxt_free_skbs(bp); 12171 12172 /* Save ring stats before shutdown */ 12173 if (bp->bnapi && irq_re_init) { 12174 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12175 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12176 } 12177 if (irq_re_init) { 12178 bnxt_free_irq(bp); 12179 bnxt_del_napi(bp); 12180 } 12181 bnxt_free_mem(bp, irq_re_init); 12182 } 12183 12184 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12185 { 12186 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12187 /* If we get here, it means firmware reset is in progress 12188 * while we are trying to close. We can safely proceed with 12189 * the close because we are holding rtnl_lock(). Some firmware 12190 * messages may fail as we proceed to close. We set the 12191 * ABORT_ERR flag here so that the FW reset thread will later 12192 * abort when it gets the rtnl_lock() and sees the flag. 12193 */ 12194 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12195 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12196 } 12197 12198 #ifdef CONFIG_BNXT_SRIOV 12199 if (bp->sriov_cfg) { 12200 int rc; 12201 12202 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12203 !bp->sriov_cfg, 12204 BNXT_SRIOV_CFG_WAIT_TMO); 12205 if (!rc) 12206 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12207 else if (rc < 0) 12208 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12209 } 12210 #endif 12211 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12212 } 12213 12214 static int bnxt_close(struct net_device *dev) 12215 { 12216 struct bnxt *bp = netdev_priv(dev); 12217 12218 bnxt_close_nic(bp, true, true); 12219 bnxt_hwrm_shutdown_link(bp); 12220 bnxt_hwrm_if_change(bp, false); 12221 return 0; 12222 } 12223 12224 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12225 u16 *val) 12226 { 12227 struct hwrm_port_phy_mdio_read_output *resp; 12228 struct hwrm_port_phy_mdio_read_input *req; 12229 int rc; 12230 12231 if (bp->hwrm_spec_code < 0x10a00) 12232 return -EOPNOTSUPP; 12233 12234 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12235 if (rc) 12236 return rc; 12237 12238 req->port_id = cpu_to_le16(bp->pf.port_id); 12239 req->phy_addr = phy_addr; 12240 req->reg_addr = cpu_to_le16(reg & 0x1f); 12241 if (mdio_phy_id_is_c45(phy_addr)) { 12242 req->cl45_mdio = 1; 12243 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12244 req->dev_addr = mdio_phy_id_devad(phy_addr); 12245 req->reg_addr = cpu_to_le16(reg); 12246 } 12247 12248 resp = hwrm_req_hold(bp, req); 12249 rc = hwrm_req_send(bp, req); 12250 if (!rc) 12251 *val = le16_to_cpu(resp->reg_data); 12252 hwrm_req_drop(bp, req); 12253 return rc; 12254 } 12255 12256 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12257 u16 val) 12258 { 12259 struct hwrm_port_phy_mdio_write_input *req; 12260 int rc; 12261 12262 if (bp->hwrm_spec_code < 0x10a00) 12263 return -EOPNOTSUPP; 12264 12265 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12266 if (rc) 12267 return rc; 12268 12269 req->port_id = cpu_to_le16(bp->pf.port_id); 12270 req->phy_addr = phy_addr; 12271 req->reg_addr = cpu_to_le16(reg & 0x1f); 12272 if (mdio_phy_id_is_c45(phy_addr)) { 12273 req->cl45_mdio = 1; 12274 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12275 req->dev_addr = mdio_phy_id_devad(phy_addr); 12276 req->reg_addr = cpu_to_le16(reg); 12277 } 12278 req->reg_data = cpu_to_le16(val); 12279 12280 return hwrm_req_send(bp, req); 12281 } 12282 12283 /* rtnl_lock held */ 12284 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12285 { 12286 struct mii_ioctl_data *mdio = if_mii(ifr); 12287 struct bnxt *bp = netdev_priv(dev); 12288 int rc; 12289 12290 switch (cmd) { 12291 case SIOCGMIIPHY: 12292 mdio->phy_id = bp->link_info.phy_addr; 12293 12294 fallthrough; 12295 case SIOCGMIIREG: { 12296 u16 mii_regval = 0; 12297 12298 if (!netif_running(dev)) 12299 return -EAGAIN; 12300 12301 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12302 &mii_regval); 12303 mdio->val_out = mii_regval; 12304 return rc; 12305 } 12306 12307 case SIOCSMIIREG: 12308 if (!netif_running(dev)) 12309 return -EAGAIN; 12310 12311 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12312 mdio->val_in); 12313 12314 case SIOCSHWTSTAMP: 12315 return bnxt_hwtstamp_set(dev, ifr); 12316 12317 case SIOCGHWTSTAMP: 12318 return bnxt_hwtstamp_get(dev, ifr); 12319 12320 default: 12321 /* do nothing */ 12322 break; 12323 } 12324 return -EOPNOTSUPP; 12325 } 12326 12327 static void bnxt_get_ring_stats(struct bnxt *bp, 12328 struct rtnl_link_stats64 *stats) 12329 { 12330 int i; 12331 12332 for (i = 0; i < bp->cp_nr_rings; i++) { 12333 struct bnxt_napi *bnapi = bp->bnapi[i]; 12334 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12335 u64 *sw = cpr->stats.sw_stats; 12336 12337 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12338 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12339 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12340 12341 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12342 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12343 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12344 12345 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12346 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12347 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12348 12349 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12350 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12351 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12352 12353 stats->rx_missed_errors += 12354 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12355 12356 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12357 12358 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12359 12360 stats->rx_dropped += 12361 cpr->sw_stats->rx.rx_netpoll_discards + 12362 cpr->sw_stats->rx.rx_oom_discards; 12363 } 12364 } 12365 12366 static void bnxt_add_prev_stats(struct bnxt *bp, 12367 struct rtnl_link_stats64 *stats) 12368 { 12369 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12370 12371 stats->rx_packets += prev_stats->rx_packets; 12372 stats->tx_packets += prev_stats->tx_packets; 12373 stats->rx_bytes += prev_stats->rx_bytes; 12374 stats->tx_bytes += prev_stats->tx_bytes; 12375 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12376 stats->multicast += prev_stats->multicast; 12377 stats->rx_dropped += prev_stats->rx_dropped; 12378 stats->tx_dropped += prev_stats->tx_dropped; 12379 } 12380 12381 static void 12382 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12383 { 12384 struct bnxt *bp = netdev_priv(dev); 12385 12386 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12387 /* Make sure bnxt_close_nic() sees that we are reading stats before 12388 * we check the BNXT_STATE_OPEN flag. 12389 */ 12390 smp_mb__after_atomic(); 12391 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12392 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12393 *stats = bp->net_stats_prev; 12394 return; 12395 } 12396 12397 bnxt_get_ring_stats(bp, stats); 12398 bnxt_add_prev_stats(bp, stats); 12399 12400 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12401 u64 *rx = bp->port_stats.sw_stats; 12402 u64 *tx = bp->port_stats.sw_stats + 12403 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12404 12405 stats->rx_crc_errors = 12406 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12407 stats->rx_frame_errors = 12408 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12409 stats->rx_length_errors = 12410 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12411 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12412 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12413 stats->rx_errors = 12414 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12415 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12416 stats->collisions = 12417 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12418 stats->tx_fifo_errors = 12419 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12420 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12421 } 12422 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12423 } 12424 12425 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12426 struct bnxt_total_ring_err_stats *stats, 12427 struct bnxt_cp_ring_info *cpr) 12428 { 12429 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12430 u64 *hw_stats = cpr->stats.sw_stats; 12431 12432 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12433 stats->rx_total_resets += sw_stats->rx.rx_resets; 12434 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12435 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12436 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12437 stats->rx_total_ring_discards += 12438 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12439 stats->tx_total_resets += sw_stats->tx.tx_resets; 12440 stats->tx_total_ring_discards += 12441 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12442 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12443 } 12444 12445 void bnxt_get_ring_err_stats(struct bnxt *bp, 12446 struct bnxt_total_ring_err_stats *stats) 12447 { 12448 int i; 12449 12450 for (i = 0; i < bp->cp_nr_rings; i++) 12451 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12452 } 12453 12454 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12455 { 12456 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12457 struct net_device *dev = bp->dev; 12458 struct netdev_hw_addr *ha; 12459 u8 *haddr; 12460 int mc_count = 0; 12461 bool update = false; 12462 int off = 0; 12463 12464 netdev_for_each_mc_addr(ha, dev) { 12465 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12466 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12467 vnic->mc_list_count = 0; 12468 return false; 12469 } 12470 haddr = ha->addr; 12471 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12472 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12473 update = true; 12474 } 12475 off += ETH_ALEN; 12476 mc_count++; 12477 } 12478 if (mc_count) 12479 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12480 12481 if (mc_count != vnic->mc_list_count) { 12482 vnic->mc_list_count = mc_count; 12483 update = true; 12484 } 12485 return update; 12486 } 12487 12488 static bool bnxt_uc_list_updated(struct bnxt *bp) 12489 { 12490 struct net_device *dev = bp->dev; 12491 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12492 struct netdev_hw_addr *ha; 12493 int off = 0; 12494 12495 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12496 return true; 12497 12498 netdev_for_each_uc_addr(ha, dev) { 12499 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12500 return true; 12501 12502 off += ETH_ALEN; 12503 } 12504 return false; 12505 } 12506 12507 static void bnxt_set_rx_mode(struct net_device *dev) 12508 { 12509 struct bnxt *bp = netdev_priv(dev); 12510 struct bnxt_vnic_info *vnic; 12511 bool mc_update = false; 12512 bool uc_update; 12513 u32 mask; 12514 12515 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12516 return; 12517 12518 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12519 mask = vnic->rx_mask; 12520 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12521 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12522 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12523 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12524 12525 if (dev->flags & IFF_PROMISC) 12526 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12527 12528 uc_update = bnxt_uc_list_updated(bp); 12529 12530 if (dev->flags & IFF_BROADCAST) 12531 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12532 if (dev->flags & IFF_ALLMULTI) { 12533 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12534 vnic->mc_list_count = 0; 12535 } else if (dev->flags & IFF_MULTICAST) { 12536 mc_update = bnxt_mc_list_updated(bp, &mask); 12537 } 12538 12539 if (mask != vnic->rx_mask || uc_update || mc_update) { 12540 vnic->rx_mask = mask; 12541 12542 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12543 } 12544 } 12545 12546 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12547 { 12548 struct net_device *dev = bp->dev; 12549 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12550 struct netdev_hw_addr *ha; 12551 int i, off = 0, rc; 12552 bool uc_update; 12553 12554 netif_addr_lock_bh(dev); 12555 uc_update = bnxt_uc_list_updated(bp); 12556 netif_addr_unlock_bh(dev); 12557 12558 if (!uc_update) 12559 goto skip_uc; 12560 12561 for (i = 1; i < vnic->uc_filter_count; i++) { 12562 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12563 12564 bnxt_hwrm_l2_filter_free(bp, fltr); 12565 bnxt_del_l2_filter(bp, fltr); 12566 } 12567 12568 vnic->uc_filter_count = 1; 12569 12570 netif_addr_lock_bh(dev); 12571 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12572 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12573 } else { 12574 netdev_for_each_uc_addr(ha, dev) { 12575 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12576 off += ETH_ALEN; 12577 vnic->uc_filter_count++; 12578 } 12579 } 12580 netif_addr_unlock_bh(dev); 12581 12582 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12583 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12584 if (rc) { 12585 if (BNXT_VF(bp) && rc == -ENODEV) { 12586 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12587 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12588 else 12589 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12590 rc = 0; 12591 } else { 12592 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12593 } 12594 vnic->uc_filter_count = i; 12595 return rc; 12596 } 12597 } 12598 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12599 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12600 12601 skip_uc: 12602 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12603 !bnxt_promisc_ok(bp)) 12604 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12605 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12606 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12607 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12608 rc); 12609 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12610 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12611 vnic->mc_list_count = 0; 12612 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12613 } 12614 if (rc) 12615 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12616 rc); 12617 12618 return rc; 12619 } 12620 12621 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12622 { 12623 #ifdef CONFIG_BNXT_SRIOV 12624 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12625 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12626 12627 /* No minimum rings were provisioned by the PF. Don't 12628 * reserve rings by default when device is down. 12629 */ 12630 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12631 return true; 12632 12633 if (!netif_running(bp->dev)) 12634 return false; 12635 } 12636 #endif 12637 return true; 12638 } 12639 12640 /* If the chip and firmware supports RFS */ 12641 static bool bnxt_rfs_supported(struct bnxt *bp) 12642 { 12643 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12644 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12645 return true; 12646 return false; 12647 } 12648 /* 212 firmware is broken for aRFS */ 12649 if (BNXT_FW_MAJ(bp) == 212) 12650 return false; 12651 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12652 return true; 12653 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12654 return true; 12655 return false; 12656 } 12657 12658 /* If runtime conditions support RFS */ 12659 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 12660 { 12661 struct bnxt_hw_rings hwr = {0}; 12662 int max_vnics, max_rss_ctxs; 12663 12664 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12665 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 12666 return bnxt_rfs_supported(bp); 12667 12668 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12669 return false; 12670 12671 hwr.grp = bp->rx_nr_rings; 12672 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 12673 if (new_rss_ctx) 12674 hwr.vnic++; 12675 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 12676 max_vnics = bnxt_get_max_func_vnics(bp); 12677 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12678 12679 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12680 if (bp->rx_nr_rings > 1) 12681 netdev_warn(bp->dev, 12682 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12683 min(max_rss_ctxs - 1, max_vnics - 1)); 12684 return false; 12685 } 12686 12687 if (!BNXT_NEW_RM(bp)) 12688 return true; 12689 12690 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 12691 * issue that will mess up the default VNIC if we reduce the 12692 * reservations. 12693 */ 12694 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12695 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12696 return true; 12697 12698 bnxt_hwrm_reserve_rings(bp, &hwr); 12699 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12700 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12701 return true; 12702 12703 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12704 hwr.vnic = 1; 12705 hwr.rss_ctx = 0; 12706 bnxt_hwrm_reserve_rings(bp, &hwr); 12707 return false; 12708 } 12709 12710 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12711 netdev_features_t features) 12712 { 12713 struct bnxt *bp = netdev_priv(dev); 12714 netdev_features_t vlan_features; 12715 12716 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 12717 features &= ~NETIF_F_NTUPLE; 12718 12719 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12720 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12721 12722 if (!(features & NETIF_F_GRO)) 12723 features &= ~NETIF_F_GRO_HW; 12724 12725 if (features & NETIF_F_GRO_HW) 12726 features &= ~NETIF_F_LRO; 12727 12728 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12729 * turned on or off together. 12730 */ 12731 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12732 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12733 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12734 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12735 else if (vlan_features) 12736 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12737 } 12738 #ifdef CONFIG_BNXT_SRIOV 12739 if (BNXT_VF(bp) && bp->vf.vlan) 12740 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12741 #endif 12742 return features; 12743 } 12744 12745 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12746 bool link_re_init, u32 flags, bool update_tpa) 12747 { 12748 bnxt_close_nic(bp, irq_re_init, link_re_init); 12749 bp->flags = flags; 12750 if (update_tpa) 12751 bnxt_set_ring_params(bp); 12752 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12753 } 12754 12755 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12756 { 12757 bool update_tpa = false, update_ntuple = false; 12758 struct bnxt *bp = netdev_priv(dev); 12759 u32 flags = bp->flags; 12760 u32 changes; 12761 int rc = 0; 12762 bool re_init = false; 12763 12764 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12765 if (features & NETIF_F_GRO_HW) 12766 flags |= BNXT_FLAG_GRO; 12767 else if (features & NETIF_F_LRO) 12768 flags |= BNXT_FLAG_LRO; 12769 12770 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12771 flags &= ~BNXT_FLAG_TPA; 12772 12773 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12774 flags |= BNXT_FLAG_STRIP_VLAN; 12775 12776 if (features & NETIF_F_NTUPLE) 12777 flags |= BNXT_FLAG_RFS; 12778 else 12779 bnxt_clear_usr_fltrs(bp, true); 12780 12781 changes = flags ^ bp->flags; 12782 if (changes & BNXT_FLAG_TPA) { 12783 update_tpa = true; 12784 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12785 (flags & BNXT_FLAG_TPA) == 0 || 12786 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12787 re_init = true; 12788 } 12789 12790 if (changes & ~BNXT_FLAG_TPA) 12791 re_init = true; 12792 12793 if (changes & BNXT_FLAG_RFS) 12794 update_ntuple = true; 12795 12796 if (flags != bp->flags) { 12797 u32 old_flags = bp->flags; 12798 12799 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12800 bp->flags = flags; 12801 if (update_tpa) 12802 bnxt_set_ring_params(bp); 12803 return rc; 12804 } 12805 12806 if (update_ntuple) 12807 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12808 12809 if (re_init) 12810 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12811 12812 if (update_tpa) { 12813 bp->flags = flags; 12814 rc = bnxt_set_tpa(bp, 12815 (flags & BNXT_FLAG_TPA) ? 12816 true : false); 12817 if (rc) 12818 bp->flags = old_flags; 12819 } 12820 } 12821 return rc; 12822 } 12823 12824 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12825 u8 **nextp) 12826 { 12827 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12828 struct hop_jumbo_hdr *jhdr; 12829 int hdr_count = 0; 12830 u8 *nexthdr; 12831 int start; 12832 12833 /* Check that there are at most 2 IPv6 extension headers, no 12834 * fragment header, and each is <= 64 bytes. 12835 */ 12836 start = nw_off + sizeof(*ip6h); 12837 nexthdr = &ip6h->nexthdr; 12838 while (ipv6_ext_hdr(*nexthdr)) { 12839 struct ipv6_opt_hdr *hp; 12840 int hdrlen; 12841 12842 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12843 *nexthdr == NEXTHDR_FRAGMENT) 12844 return false; 12845 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12846 skb_headlen(skb), NULL); 12847 if (!hp) 12848 return false; 12849 if (*nexthdr == NEXTHDR_AUTH) 12850 hdrlen = ipv6_authlen(hp); 12851 else 12852 hdrlen = ipv6_optlen(hp); 12853 12854 if (hdrlen > 64) 12855 return false; 12856 12857 /* The ext header may be a hop-by-hop header inserted for 12858 * big TCP purposes. This will be removed before sending 12859 * from NIC, so do not count it. 12860 */ 12861 if (*nexthdr == NEXTHDR_HOP) { 12862 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 12863 goto increment_hdr; 12864 12865 jhdr = (struct hop_jumbo_hdr *)hp; 12866 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 12867 jhdr->nexthdr != IPPROTO_TCP) 12868 goto increment_hdr; 12869 12870 goto next_hdr; 12871 } 12872 increment_hdr: 12873 hdr_count++; 12874 next_hdr: 12875 nexthdr = &hp->nexthdr; 12876 start += hdrlen; 12877 } 12878 if (nextp) { 12879 /* Caller will check inner protocol */ 12880 if (skb->encapsulation) { 12881 *nextp = nexthdr; 12882 return true; 12883 } 12884 *nextp = NULL; 12885 } 12886 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 12887 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 12888 } 12889 12890 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 12891 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 12892 { 12893 struct udphdr *uh = udp_hdr(skb); 12894 __be16 udp_port = uh->dest; 12895 12896 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 12897 udp_port != bp->vxlan_gpe_port) 12898 return false; 12899 if (skb->inner_protocol == htons(ETH_P_TEB)) { 12900 struct ethhdr *eh = inner_eth_hdr(skb); 12901 12902 switch (eh->h_proto) { 12903 case htons(ETH_P_IP): 12904 return true; 12905 case htons(ETH_P_IPV6): 12906 return bnxt_exthdr_check(bp, skb, 12907 skb_inner_network_offset(skb), 12908 NULL); 12909 } 12910 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 12911 return true; 12912 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 12913 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12914 NULL); 12915 } 12916 return false; 12917 } 12918 12919 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 12920 { 12921 switch (l4_proto) { 12922 case IPPROTO_UDP: 12923 return bnxt_udp_tunl_check(bp, skb); 12924 case IPPROTO_IPIP: 12925 return true; 12926 case IPPROTO_GRE: { 12927 switch (skb->inner_protocol) { 12928 default: 12929 return false; 12930 case htons(ETH_P_IP): 12931 return true; 12932 case htons(ETH_P_IPV6): 12933 fallthrough; 12934 } 12935 } 12936 case IPPROTO_IPV6: 12937 /* Check ext headers of inner ipv6 */ 12938 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12939 NULL); 12940 } 12941 return false; 12942 } 12943 12944 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 12945 struct net_device *dev, 12946 netdev_features_t features) 12947 { 12948 struct bnxt *bp = netdev_priv(dev); 12949 u8 *l4_proto; 12950 12951 features = vlan_features_check(skb, features); 12952 switch (vlan_get_protocol(skb)) { 12953 case htons(ETH_P_IP): 12954 if (!skb->encapsulation) 12955 return features; 12956 l4_proto = &ip_hdr(skb)->protocol; 12957 if (bnxt_tunl_check(bp, skb, *l4_proto)) 12958 return features; 12959 break; 12960 case htons(ETH_P_IPV6): 12961 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 12962 &l4_proto)) 12963 break; 12964 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 12965 return features; 12966 break; 12967 } 12968 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12969 } 12970 12971 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 12972 u32 *reg_buf) 12973 { 12974 struct hwrm_dbg_read_direct_output *resp; 12975 struct hwrm_dbg_read_direct_input *req; 12976 __le32 *dbg_reg_buf; 12977 dma_addr_t mapping; 12978 int rc, i; 12979 12980 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 12981 if (rc) 12982 return rc; 12983 12984 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 12985 &mapping); 12986 if (!dbg_reg_buf) { 12987 rc = -ENOMEM; 12988 goto dbg_rd_reg_exit; 12989 } 12990 12991 req->host_dest_addr = cpu_to_le64(mapping); 12992 12993 resp = hwrm_req_hold(bp, req); 12994 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 12995 req->read_len32 = cpu_to_le32(num_words); 12996 12997 rc = hwrm_req_send(bp, req); 12998 if (rc || resp->error_code) { 12999 rc = -EIO; 13000 goto dbg_rd_reg_exit; 13001 } 13002 for (i = 0; i < num_words; i++) 13003 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13004 13005 dbg_rd_reg_exit: 13006 hwrm_req_drop(bp, req); 13007 return rc; 13008 } 13009 13010 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13011 u32 ring_id, u32 *prod, u32 *cons) 13012 { 13013 struct hwrm_dbg_ring_info_get_output *resp; 13014 struct hwrm_dbg_ring_info_get_input *req; 13015 int rc; 13016 13017 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13018 if (rc) 13019 return rc; 13020 13021 req->ring_type = ring_type; 13022 req->fw_ring_id = cpu_to_le32(ring_id); 13023 resp = hwrm_req_hold(bp, req); 13024 rc = hwrm_req_send(bp, req); 13025 if (!rc) { 13026 *prod = le32_to_cpu(resp->producer_index); 13027 *cons = le32_to_cpu(resp->consumer_index); 13028 } 13029 hwrm_req_drop(bp, req); 13030 return rc; 13031 } 13032 13033 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13034 { 13035 struct bnxt_tx_ring_info *txr; 13036 int i = bnapi->index, j; 13037 13038 bnxt_for_each_napi_tx(j, bnapi, txr) 13039 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13040 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13041 txr->tx_cons); 13042 } 13043 13044 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13045 { 13046 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13047 int i = bnapi->index; 13048 13049 if (!rxr) 13050 return; 13051 13052 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13053 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13054 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13055 rxr->rx_sw_agg_prod); 13056 } 13057 13058 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13059 { 13060 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13061 int i = bnapi->index; 13062 13063 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13064 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13065 } 13066 13067 static void bnxt_dbg_dump_states(struct bnxt *bp) 13068 { 13069 int i; 13070 struct bnxt_napi *bnapi; 13071 13072 for (i = 0; i < bp->cp_nr_rings; i++) { 13073 bnapi = bp->bnapi[i]; 13074 if (netif_msg_drv(bp)) { 13075 bnxt_dump_tx_sw_state(bnapi); 13076 bnxt_dump_rx_sw_state(bnapi); 13077 bnxt_dump_cp_sw_state(bnapi); 13078 } 13079 } 13080 } 13081 13082 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13083 { 13084 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13085 struct hwrm_ring_reset_input *req; 13086 struct bnxt_napi *bnapi = rxr->bnapi; 13087 struct bnxt_cp_ring_info *cpr; 13088 u16 cp_ring_id; 13089 int rc; 13090 13091 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13092 if (rc) 13093 return rc; 13094 13095 cpr = &bnapi->cp_ring; 13096 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13097 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13098 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13099 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13100 return hwrm_req_send_silent(bp, req); 13101 } 13102 13103 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13104 { 13105 if (!silent) 13106 bnxt_dbg_dump_states(bp); 13107 if (netif_running(bp->dev)) { 13108 bnxt_close_nic(bp, !silent, false); 13109 bnxt_open_nic(bp, !silent, false); 13110 } 13111 } 13112 13113 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13114 { 13115 struct bnxt *bp = netdev_priv(dev); 13116 13117 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13118 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13119 } 13120 13121 static void bnxt_fw_health_check(struct bnxt *bp) 13122 { 13123 struct bnxt_fw_health *fw_health = bp->fw_health; 13124 struct pci_dev *pdev = bp->pdev; 13125 u32 val; 13126 13127 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13128 return; 13129 13130 /* Make sure it is enabled before checking the tmr_counter. */ 13131 smp_rmb(); 13132 if (fw_health->tmr_counter) { 13133 fw_health->tmr_counter--; 13134 return; 13135 } 13136 13137 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13138 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13139 fw_health->arrests++; 13140 goto fw_reset; 13141 } 13142 13143 fw_health->last_fw_heartbeat = val; 13144 13145 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13146 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13147 fw_health->discoveries++; 13148 goto fw_reset; 13149 } 13150 13151 fw_health->tmr_counter = fw_health->tmr_multiplier; 13152 return; 13153 13154 fw_reset: 13155 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13156 } 13157 13158 static void bnxt_timer(struct timer_list *t) 13159 { 13160 struct bnxt *bp = from_timer(bp, t, timer); 13161 struct net_device *dev = bp->dev; 13162 13163 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13164 return; 13165 13166 if (atomic_read(&bp->intr_sem) != 0) 13167 goto bnxt_restart_timer; 13168 13169 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13170 bnxt_fw_health_check(bp); 13171 13172 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13173 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13174 13175 if (bnxt_tc_flower_enabled(bp)) 13176 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13177 13178 #ifdef CONFIG_RFS_ACCEL 13179 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13180 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13181 #endif /*CONFIG_RFS_ACCEL*/ 13182 13183 if (bp->link_info.phy_retry) { 13184 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13185 bp->link_info.phy_retry = false; 13186 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13187 } else { 13188 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13189 } 13190 } 13191 13192 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13193 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13194 13195 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13196 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13197 13198 bnxt_restart_timer: 13199 mod_timer(&bp->timer, jiffies + bp->current_interval); 13200 } 13201 13202 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13203 { 13204 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13205 * set. If the device is being closed, bnxt_close() may be holding 13206 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13207 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13208 */ 13209 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13210 rtnl_lock(); 13211 } 13212 13213 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13214 { 13215 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13216 rtnl_unlock(); 13217 } 13218 13219 /* Only called from bnxt_sp_task() */ 13220 static void bnxt_reset(struct bnxt *bp, bool silent) 13221 { 13222 bnxt_rtnl_lock_sp(bp); 13223 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13224 bnxt_reset_task(bp, silent); 13225 bnxt_rtnl_unlock_sp(bp); 13226 } 13227 13228 /* Only called from bnxt_sp_task() */ 13229 static void bnxt_rx_ring_reset(struct bnxt *bp) 13230 { 13231 int i; 13232 13233 bnxt_rtnl_lock_sp(bp); 13234 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13235 bnxt_rtnl_unlock_sp(bp); 13236 return; 13237 } 13238 /* Disable and flush TPA before resetting the RX ring */ 13239 if (bp->flags & BNXT_FLAG_TPA) 13240 bnxt_set_tpa(bp, false); 13241 for (i = 0; i < bp->rx_nr_rings; i++) { 13242 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13243 struct bnxt_cp_ring_info *cpr; 13244 int rc; 13245 13246 if (!rxr->bnapi->in_reset) 13247 continue; 13248 13249 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13250 if (rc) { 13251 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13252 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13253 else 13254 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13255 rc); 13256 bnxt_reset_task(bp, true); 13257 break; 13258 } 13259 bnxt_free_one_rx_ring_skbs(bp, i); 13260 rxr->rx_prod = 0; 13261 rxr->rx_agg_prod = 0; 13262 rxr->rx_sw_agg_prod = 0; 13263 rxr->rx_next_cons = 0; 13264 rxr->bnapi->in_reset = false; 13265 bnxt_alloc_one_rx_ring(bp, i); 13266 cpr = &rxr->bnapi->cp_ring; 13267 cpr->sw_stats->rx.rx_resets++; 13268 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13269 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13270 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13271 } 13272 if (bp->flags & BNXT_FLAG_TPA) 13273 bnxt_set_tpa(bp, true); 13274 bnxt_rtnl_unlock_sp(bp); 13275 } 13276 13277 static void bnxt_fw_fatal_close(struct bnxt *bp) 13278 { 13279 bnxt_tx_disable(bp); 13280 bnxt_disable_napi(bp); 13281 bnxt_disable_int_sync(bp); 13282 bnxt_free_irq(bp); 13283 bnxt_clear_int_mode(bp); 13284 pci_disable_device(bp->pdev); 13285 } 13286 13287 static void bnxt_fw_reset_close(struct bnxt *bp) 13288 { 13289 /* When firmware is in fatal state, quiesce device and disable 13290 * bus master to prevent any potential bad DMAs before freeing 13291 * kernel memory. 13292 */ 13293 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13294 u16 val = 0; 13295 13296 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13297 if (val == 0xffff) 13298 bp->fw_reset_min_dsecs = 0; 13299 bnxt_fw_fatal_close(bp); 13300 } 13301 __bnxt_close_nic(bp, true, false); 13302 bnxt_vf_reps_free(bp); 13303 bnxt_clear_int_mode(bp); 13304 bnxt_hwrm_func_drv_unrgtr(bp); 13305 if (pci_is_enabled(bp->pdev)) 13306 pci_disable_device(bp->pdev); 13307 bnxt_free_ctx_mem(bp); 13308 } 13309 13310 static bool is_bnxt_fw_ok(struct bnxt *bp) 13311 { 13312 struct bnxt_fw_health *fw_health = bp->fw_health; 13313 bool no_heartbeat = false, has_reset = false; 13314 u32 val; 13315 13316 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13317 if (val == fw_health->last_fw_heartbeat) 13318 no_heartbeat = true; 13319 13320 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13321 if (val != fw_health->last_fw_reset_cnt) 13322 has_reset = true; 13323 13324 if (!no_heartbeat && has_reset) 13325 return true; 13326 13327 return false; 13328 } 13329 13330 /* rtnl_lock is acquired before calling this function */ 13331 static void bnxt_force_fw_reset(struct bnxt *bp) 13332 { 13333 struct bnxt_fw_health *fw_health = bp->fw_health; 13334 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13335 u32 wait_dsecs; 13336 13337 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13338 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13339 return; 13340 13341 if (ptp) { 13342 spin_lock_bh(&ptp->ptp_lock); 13343 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13344 spin_unlock_bh(&ptp->ptp_lock); 13345 } else { 13346 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13347 } 13348 bnxt_fw_reset_close(bp); 13349 wait_dsecs = fw_health->master_func_wait_dsecs; 13350 if (fw_health->primary) { 13351 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13352 wait_dsecs = 0; 13353 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13354 } else { 13355 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13356 wait_dsecs = fw_health->normal_func_wait_dsecs; 13357 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13358 } 13359 13360 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13361 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13362 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13363 } 13364 13365 void bnxt_fw_exception(struct bnxt *bp) 13366 { 13367 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13368 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13369 bnxt_ulp_stop(bp); 13370 bnxt_rtnl_lock_sp(bp); 13371 bnxt_force_fw_reset(bp); 13372 bnxt_rtnl_unlock_sp(bp); 13373 } 13374 13375 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13376 * < 0 on error. 13377 */ 13378 static int bnxt_get_registered_vfs(struct bnxt *bp) 13379 { 13380 #ifdef CONFIG_BNXT_SRIOV 13381 int rc; 13382 13383 if (!BNXT_PF(bp)) 13384 return 0; 13385 13386 rc = bnxt_hwrm_func_qcfg(bp); 13387 if (rc) { 13388 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13389 return rc; 13390 } 13391 if (bp->pf.registered_vfs) 13392 return bp->pf.registered_vfs; 13393 if (bp->sriov_cfg) 13394 return 1; 13395 #endif 13396 return 0; 13397 } 13398 13399 void bnxt_fw_reset(struct bnxt *bp) 13400 { 13401 bnxt_ulp_stop(bp); 13402 bnxt_rtnl_lock_sp(bp); 13403 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13404 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13405 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13406 int n = 0, tmo; 13407 13408 if (ptp) { 13409 spin_lock_bh(&ptp->ptp_lock); 13410 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13411 spin_unlock_bh(&ptp->ptp_lock); 13412 } else { 13413 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13414 } 13415 if (bp->pf.active_vfs && 13416 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13417 n = bnxt_get_registered_vfs(bp); 13418 if (n < 0) { 13419 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13420 n); 13421 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13422 dev_close(bp->dev); 13423 goto fw_reset_exit; 13424 } else if (n > 0) { 13425 u16 vf_tmo_dsecs = n * 10; 13426 13427 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13428 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13429 bp->fw_reset_state = 13430 BNXT_FW_RESET_STATE_POLL_VF; 13431 bnxt_queue_fw_reset_work(bp, HZ / 10); 13432 goto fw_reset_exit; 13433 } 13434 bnxt_fw_reset_close(bp); 13435 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13436 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13437 tmo = HZ / 10; 13438 } else { 13439 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13440 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13441 } 13442 bnxt_queue_fw_reset_work(bp, tmo); 13443 } 13444 fw_reset_exit: 13445 bnxt_rtnl_unlock_sp(bp); 13446 } 13447 13448 static void bnxt_chk_missed_irq(struct bnxt *bp) 13449 { 13450 int i; 13451 13452 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13453 return; 13454 13455 for (i = 0; i < bp->cp_nr_rings; i++) { 13456 struct bnxt_napi *bnapi = bp->bnapi[i]; 13457 struct bnxt_cp_ring_info *cpr; 13458 u32 fw_ring_id; 13459 int j; 13460 13461 if (!bnapi) 13462 continue; 13463 13464 cpr = &bnapi->cp_ring; 13465 for (j = 0; j < cpr->cp_ring_count; j++) { 13466 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13467 u32 val[2]; 13468 13469 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13470 continue; 13471 13472 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13473 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13474 continue; 13475 } 13476 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13477 bnxt_dbg_hwrm_ring_info_get(bp, 13478 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13479 fw_ring_id, &val[0], &val[1]); 13480 cpr->sw_stats->cmn.missed_irqs++; 13481 } 13482 } 13483 } 13484 13485 static void bnxt_cfg_ntp_filters(struct bnxt *); 13486 13487 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13488 { 13489 struct bnxt_link_info *link_info = &bp->link_info; 13490 13491 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13492 link_info->autoneg = BNXT_AUTONEG_SPEED; 13493 if (bp->hwrm_spec_code >= 0x10201) { 13494 if (link_info->auto_pause_setting & 13495 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13496 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13497 } else { 13498 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13499 } 13500 bnxt_set_auto_speed(link_info); 13501 } else { 13502 bnxt_set_force_speed(link_info); 13503 link_info->req_duplex = link_info->duplex_setting; 13504 } 13505 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13506 link_info->req_flow_ctrl = 13507 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13508 else 13509 link_info->req_flow_ctrl = link_info->force_pause_setting; 13510 } 13511 13512 static void bnxt_fw_echo_reply(struct bnxt *bp) 13513 { 13514 struct bnxt_fw_health *fw_health = bp->fw_health; 13515 struct hwrm_func_echo_response_input *req; 13516 int rc; 13517 13518 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13519 if (rc) 13520 return; 13521 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13522 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13523 hwrm_req_send(bp, req); 13524 } 13525 13526 static void bnxt_ulp_restart(struct bnxt *bp) 13527 { 13528 bnxt_ulp_stop(bp); 13529 bnxt_ulp_start(bp, 0); 13530 } 13531 13532 static void bnxt_sp_task(struct work_struct *work) 13533 { 13534 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13535 13536 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13537 smp_mb__after_atomic(); 13538 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13539 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13540 return; 13541 } 13542 13543 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 13544 bnxt_ulp_restart(bp); 13545 bnxt_reenable_sriov(bp); 13546 } 13547 13548 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13549 bnxt_cfg_rx_mode(bp); 13550 13551 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13552 bnxt_cfg_ntp_filters(bp); 13553 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13554 bnxt_hwrm_exec_fwd_req(bp); 13555 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13556 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13557 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13558 bnxt_hwrm_port_qstats(bp, 0); 13559 bnxt_hwrm_port_qstats_ext(bp, 0); 13560 bnxt_accumulate_all_stats(bp); 13561 } 13562 13563 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13564 int rc; 13565 13566 mutex_lock(&bp->link_lock); 13567 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13568 &bp->sp_event)) 13569 bnxt_hwrm_phy_qcaps(bp); 13570 13571 rc = bnxt_update_link(bp, true); 13572 if (rc) 13573 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13574 rc); 13575 13576 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13577 &bp->sp_event)) 13578 bnxt_init_ethtool_link_settings(bp); 13579 mutex_unlock(&bp->link_lock); 13580 } 13581 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13582 int rc; 13583 13584 mutex_lock(&bp->link_lock); 13585 rc = bnxt_update_phy_setting(bp); 13586 mutex_unlock(&bp->link_lock); 13587 if (rc) { 13588 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13589 } else { 13590 bp->link_info.phy_retry = false; 13591 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13592 } 13593 } 13594 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13595 mutex_lock(&bp->link_lock); 13596 bnxt_get_port_module_status(bp); 13597 mutex_unlock(&bp->link_lock); 13598 } 13599 13600 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13601 bnxt_tc_flow_stats_work(bp); 13602 13603 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13604 bnxt_chk_missed_irq(bp); 13605 13606 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13607 bnxt_fw_echo_reply(bp); 13608 13609 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13610 bnxt_hwmon_notify_event(bp); 13611 13612 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13613 * must be the last functions to be called before exiting. 13614 */ 13615 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13616 bnxt_reset(bp, false); 13617 13618 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13619 bnxt_reset(bp, true); 13620 13621 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13622 bnxt_rx_ring_reset(bp); 13623 13624 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13625 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13626 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13627 bnxt_devlink_health_fw_report(bp); 13628 else 13629 bnxt_fw_reset(bp); 13630 } 13631 13632 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13633 if (!is_bnxt_fw_ok(bp)) 13634 bnxt_devlink_health_fw_report(bp); 13635 } 13636 13637 smp_mb__before_atomic(); 13638 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13639 } 13640 13641 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13642 int *max_cp); 13643 13644 /* Under rtnl_lock */ 13645 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13646 int tx_xdp) 13647 { 13648 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13649 struct bnxt_hw_rings hwr = {0}; 13650 int rx_rings = rx; 13651 13652 if (tcs) 13653 tx_sets = tcs; 13654 13655 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13656 13657 if (max_rx < rx_rings) 13658 return -ENOMEM; 13659 13660 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13661 rx_rings <<= 1; 13662 13663 hwr.rx = rx_rings; 13664 hwr.tx = tx * tx_sets + tx_xdp; 13665 if (max_tx < hwr.tx) 13666 return -ENOMEM; 13667 13668 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13669 13670 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13671 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13672 if (max_cp < hwr.cp) 13673 return -ENOMEM; 13674 hwr.stat = hwr.cp; 13675 if (BNXT_NEW_RM(bp)) { 13676 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 13677 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 13678 hwr.grp = rx; 13679 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13680 } 13681 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13682 hwr.cp_p5 = hwr.tx + rx; 13683 return bnxt_hwrm_check_rings(bp, &hwr); 13684 } 13685 13686 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13687 { 13688 if (bp->bar2) { 13689 pci_iounmap(pdev, bp->bar2); 13690 bp->bar2 = NULL; 13691 } 13692 13693 if (bp->bar1) { 13694 pci_iounmap(pdev, bp->bar1); 13695 bp->bar1 = NULL; 13696 } 13697 13698 if (bp->bar0) { 13699 pci_iounmap(pdev, bp->bar0); 13700 bp->bar0 = NULL; 13701 } 13702 } 13703 13704 static void bnxt_cleanup_pci(struct bnxt *bp) 13705 { 13706 bnxt_unmap_bars(bp, bp->pdev); 13707 pci_release_regions(bp->pdev); 13708 if (pci_is_enabled(bp->pdev)) 13709 pci_disable_device(bp->pdev); 13710 } 13711 13712 static void bnxt_init_dflt_coal(struct bnxt *bp) 13713 { 13714 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13715 struct bnxt_coal *coal; 13716 u16 flags = 0; 13717 13718 if (coal_cap->cmpl_params & 13719 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13720 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13721 13722 /* Tick values in micro seconds. 13723 * 1 coal_buf x bufs_per_record = 1 completion record. 13724 */ 13725 coal = &bp->rx_coal; 13726 coal->coal_ticks = 10; 13727 coal->coal_bufs = 30; 13728 coal->coal_ticks_irq = 1; 13729 coal->coal_bufs_irq = 2; 13730 coal->idle_thresh = 50; 13731 coal->bufs_per_record = 2; 13732 coal->budget = 64; /* NAPI budget */ 13733 coal->flags = flags; 13734 13735 coal = &bp->tx_coal; 13736 coal->coal_ticks = 28; 13737 coal->coal_bufs = 30; 13738 coal->coal_ticks_irq = 2; 13739 coal->coal_bufs_irq = 2; 13740 coal->bufs_per_record = 1; 13741 coal->flags = flags; 13742 13743 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13744 } 13745 13746 /* FW that pre-reserves 1 VNIC per function */ 13747 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13748 { 13749 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13750 13751 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13752 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13753 return true; 13754 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13755 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13756 return true; 13757 return false; 13758 } 13759 13760 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13761 { 13762 int rc; 13763 13764 bp->fw_cap = 0; 13765 rc = bnxt_hwrm_ver_get(bp); 13766 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13767 * so wait before continuing with recovery. 13768 */ 13769 if (rc) 13770 msleep(100); 13771 bnxt_try_map_fw_health_reg(bp); 13772 if (rc) { 13773 rc = bnxt_try_recover_fw(bp); 13774 if (rc) 13775 return rc; 13776 rc = bnxt_hwrm_ver_get(bp); 13777 if (rc) 13778 return rc; 13779 } 13780 13781 bnxt_nvm_cfg_ver_get(bp); 13782 13783 rc = bnxt_hwrm_func_reset(bp); 13784 if (rc) 13785 return -ENODEV; 13786 13787 bnxt_hwrm_fw_set_time(bp); 13788 return 0; 13789 } 13790 13791 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13792 { 13793 int rc; 13794 13795 /* Get the MAX capabilities for this function */ 13796 rc = bnxt_hwrm_func_qcaps(bp); 13797 if (rc) { 13798 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13799 rc); 13800 return -ENODEV; 13801 } 13802 13803 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13804 if (rc) 13805 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13806 rc); 13807 13808 if (bnxt_alloc_fw_health(bp)) { 13809 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13810 } else { 13811 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13812 if (rc) 13813 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13814 rc); 13815 } 13816 13817 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13818 if (rc) 13819 return -ENODEV; 13820 13821 if (bnxt_fw_pre_resv_vnics(bp)) 13822 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13823 13824 bnxt_hwrm_func_qcfg(bp); 13825 bnxt_hwrm_vnic_qcaps(bp); 13826 bnxt_hwrm_port_led_qcaps(bp); 13827 bnxt_ethtool_init(bp); 13828 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13829 __bnxt_hwrm_ptp_qcfg(bp); 13830 bnxt_dcb_init(bp); 13831 bnxt_hwmon_init(bp); 13832 return 0; 13833 } 13834 13835 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13836 { 13837 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13838 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13839 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13840 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13841 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13842 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13843 bp->rss_hash_delta = bp->rss_hash_cfg; 13844 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13845 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13846 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13847 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13848 } 13849 } 13850 13851 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13852 { 13853 struct net_device *dev = bp->dev; 13854 13855 dev->hw_features &= ~NETIF_F_NTUPLE; 13856 dev->features &= ~NETIF_F_NTUPLE; 13857 bp->flags &= ~BNXT_FLAG_RFS; 13858 if (bnxt_rfs_supported(bp)) { 13859 dev->hw_features |= NETIF_F_NTUPLE; 13860 if (bnxt_rfs_capable(bp, false)) { 13861 bp->flags |= BNXT_FLAG_RFS; 13862 dev->features |= NETIF_F_NTUPLE; 13863 } 13864 } 13865 } 13866 13867 static void bnxt_fw_init_one_p3(struct bnxt *bp) 13868 { 13869 struct pci_dev *pdev = bp->pdev; 13870 13871 bnxt_set_dflt_rss_hash_type(bp); 13872 bnxt_set_dflt_rfs(bp); 13873 13874 bnxt_get_wol_settings(bp); 13875 if (bp->flags & BNXT_FLAG_WOL_CAP) 13876 device_set_wakeup_enable(&pdev->dev, bp->wol); 13877 else 13878 device_set_wakeup_capable(&pdev->dev, false); 13879 13880 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 13881 bnxt_hwrm_coal_params_qcaps(bp); 13882 } 13883 13884 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 13885 13886 int bnxt_fw_init_one(struct bnxt *bp) 13887 { 13888 int rc; 13889 13890 rc = bnxt_fw_init_one_p1(bp); 13891 if (rc) { 13892 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 13893 return rc; 13894 } 13895 rc = bnxt_fw_init_one_p2(bp); 13896 if (rc) { 13897 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 13898 return rc; 13899 } 13900 rc = bnxt_probe_phy(bp, false); 13901 if (rc) 13902 return rc; 13903 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 13904 if (rc) 13905 return rc; 13906 13907 bnxt_fw_init_one_p3(bp); 13908 return 0; 13909 } 13910 13911 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 13912 { 13913 struct bnxt_fw_health *fw_health = bp->fw_health; 13914 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 13915 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 13916 u32 reg_type, reg_off, delay_msecs; 13917 13918 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 13919 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 13920 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 13921 switch (reg_type) { 13922 case BNXT_FW_HEALTH_REG_TYPE_CFG: 13923 pci_write_config_dword(bp->pdev, reg_off, val); 13924 break; 13925 case BNXT_FW_HEALTH_REG_TYPE_GRC: 13926 writel(reg_off & BNXT_GRC_BASE_MASK, 13927 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 13928 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 13929 fallthrough; 13930 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 13931 writel(val, bp->bar0 + reg_off); 13932 break; 13933 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 13934 writel(val, bp->bar1 + reg_off); 13935 break; 13936 } 13937 if (delay_msecs) { 13938 pci_read_config_dword(bp->pdev, 0, &val); 13939 msleep(delay_msecs); 13940 } 13941 } 13942 13943 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 13944 { 13945 struct hwrm_func_qcfg_output *resp; 13946 struct hwrm_func_qcfg_input *req; 13947 bool result = true; /* firmware will enforce if unknown */ 13948 13949 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 13950 return result; 13951 13952 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 13953 return result; 13954 13955 req->fid = cpu_to_le16(0xffff); 13956 resp = hwrm_req_hold(bp, req); 13957 if (!hwrm_req_send(bp, req)) 13958 result = !!(le16_to_cpu(resp->flags) & 13959 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 13960 hwrm_req_drop(bp, req); 13961 return result; 13962 } 13963 13964 static void bnxt_reset_all(struct bnxt *bp) 13965 { 13966 struct bnxt_fw_health *fw_health = bp->fw_health; 13967 int i, rc; 13968 13969 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13970 bnxt_fw_reset_via_optee(bp); 13971 bp->fw_reset_timestamp = jiffies; 13972 return; 13973 } 13974 13975 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 13976 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 13977 bnxt_fw_reset_writel(bp, i); 13978 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 13979 struct hwrm_fw_reset_input *req; 13980 13981 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 13982 if (!rc) { 13983 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 13984 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 13985 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 13986 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 13987 rc = hwrm_req_send(bp, req); 13988 } 13989 if (rc != -ENODEV) 13990 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 13991 } 13992 bp->fw_reset_timestamp = jiffies; 13993 } 13994 13995 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 13996 { 13997 return time_after(jiffies, bp->fw_reset_timestamp + 13998 (bp->fw_reset_max_dsecs * HZ / 10)); 13999 } 14000 14001 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14002 { 14003 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14004 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14005 bnxt_dl_health_fw_status_update(bp, false); 14006 bp->fw_reset_state = 0; 14007 dev_close(bp->dev); 14008 } 14009 14010 static void bnxt_fw_reset_task(struct work_struct *work) 14011 { 14012 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14013 int rc = 0; 14014 14015 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14016 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14017 return; 14018 } 14019 14020 switch (bp->fw_reset_state) { 14021 case BNXT_FW_RESET_STATE_POLL_VF: { 14022 int n = bnxt_get_registered_vfs(bp); 14023 int tmo; 14024 14025 if (n < 0) { 14026 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14027 n, jiffies_to_msecs(jiffies - 14028 bp->fw_reset_timestamp)); 14029 goto fw_reset_abort; 14030 } else if (n > 0) { 14031 if (bnxt_fw_reset_timeout(bp)) { 14032 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14033 bp->fw_reset_state = 0; 14034 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14035 n); 14036 goto ulp_start; 14037 } 14038 bnxt_queue_fw_reset_work(bp, HZ / 10); 14039 return; 14040 } 14041 bp->fw_reset_timestamp = jiffies; 14042 rtnl_lock(); 14043 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14044 bnxt_fw_reset_abort(bp, rc); 14045 rtnl_unlock(); 14046 goto ulp_start; 14047 } 14048 bnxt_fw_reset_close(bp); 14049 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14050 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14051 tmo = HZ / 10; 14052 } else { 14053 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14054 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14055 } 14056 rtnl_unlock(); 14057 bnxt_queue_fw_reset_work(bp, tmo); 14058 return; 14059 } 14060 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14061 u32 val; 14062 14063 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14064 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14065 !bnxt_fw_reset_timeout(bp)) { 14066 bnxt_queue_fw_reset_work(bp, HZ / 5); 14067 return; 14068 } 14069 14070 if (!bp->fw_health->primary) { 14071 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14072 14073 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14074 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14075 return; 14076 } 14077 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14078 } 14079 fallthrough; 14080 case BNXT_FW_RESET_STATE_RESET_FW: 14081 bnxt_reset_all(bp); 14082 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14083 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14084 return; 14085 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14086 bnxt_inv_fw_health_reg(bp); 14087 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14088 !bp->fw_reset_min_dsecs) { 14089 u16 val; 14090 14091 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14092 if (val == 0xffff) { 14093 if (bnxt_fw_reset_timeout(bp)) { 14094 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14095 rc = -ETIMEDOUT; 14096 goto fw_reset_abort; 14097 } 14098 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14099 return; 14100 } 14101 } 14102 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14103 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14104 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14105 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14106 bnxt_dl_remote_reload(bp); 14107 if (pci_enable_device(bp->pdev)) { 14108 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14109 rc = -ENODEV; 14110 goto fw_reset_abort; 14111 } 14112 pci_set_master(bp->pdev); 14113 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14114 fallthrough; 14115 case BNXT_FW_RESET_STATE_POLL_FW: 14116 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14117 rc = bnxt_hwrm_poll(bp); 14118 if (rc) { 14119 if (bnxt_fw_reset_timeout(bp)) { 14120 netdev_err(bp->dev, "Firmware reset aborted\n"); 14121 goto fw_reset_abort_status; 14122 } 14123 bnxt_queue_fw_reset_work(bp, HZ / 5); 14124 return; 14125 } 14126 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14127 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14128 fallthrough; 14129 case BNXT_FW_RESET_STATE_OPENING: 14130 while (!rtnl_trylock()) { 14131 bnxt_queue_fw_reset_work(bp, HZ / 10); 14132 return; 14133 } 14134 rc = bnxt_open(bp->dev); 14135 if (rc) { 14136 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14137 bnxt_fw_reset_abort(bp, rc); 14138 rtnl_unlock(); 14139 goto ulp_start; 14140 } 14141 14142 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14143 bp->fw_health->enabled) { 14144 bp->fw_health->last_fw_reset_cnt = 14145 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14146 } 14147 bp->fw_reset_state = 0; 14148 /* Make sure fw_reset_state is 0 before clearing the flag */ 14149 smp_mb__before_atomic(); 14150 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14151 bnxt_ptp_reapply_pps(bp); 14152 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14153 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14154 bnxt_dl_health_fw_recovery_done(bp); 14155 bnxt_dl_health_fw_status_update(bp, true); 14156 } 14157 rtnl_unlock(); 14158 bnxt_ulp_start(bp, 0); 14159 bnxt_reenable_sriov(bp); 14160 rtnl_lock(); 14161 bnxt_vf_reps_alloc(bp); 14162 bnxt_vf_reps_open(bp); 14163 rtnl_unlock(); 14164 break; 14165 } 14166 return; 14167 14168 fw_reset_abort_status: 14169 if (bp->fw_health->status_reliable || 14170 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14171 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14172 14173 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14174 } 14175 fw_reset_abort: 14176 rtnl_lock(); 14177 bnxt_fw_reset_abort(bp, rc); 14178 rtnl_unlock(); 14179 ulp_start: 14180 bnxt_ulp_start(bp, rc); 14181 } 14182 14183 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14184 { 14185 int rc; 14186 struct bnxt *bp = netdev_priv(dev); 14187 14188 SET_NETDEV_DEV(dev, &pdev->dev); 14189 14190 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14191 rc = pci_enable_device(pdev); 14192 if (rc) { 14193 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14194 goto init_err; 14195 } 14196 14197 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14198 dev_err(&pdev->dev, 14199 "Cannot find PCI device base address, aborting\n"); 14200 rc = -ENODEV; 14201 goto init_err_disable; 14202 } 14203 14204 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14205 if (rc) { 14206 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14207 goto init_err_disable; 14208 } 14209 14210 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14211 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14212 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14213 rc = -EIO; 14214 goto init_err_release; 14215 } 14216 14217 pci_set_master(pdev); 14218 14219 bp->dev = dev; 14220 bp->pdev = pdev; 14221 14222 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14223 * determines the BAR size. 14224 */ 14225 bp->bar0 = pci_ioremap_bar(pdev, 0); 14226 if (!bp->bar0) { 14227 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14228 rc = -ENOMEM; 14229 goto init_err_release; 14230 } 14231 14232 bp->bar2 = pci_ioremap_bar(pdev, 4); 14233 if (!bp->bar2) { 14234 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14235 rc = -ENOMEM; 14236 goto init_err_release; 14237 } 14238 14239 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14240 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14241 14242 spin_lock_init(&bp->ntp_fltr_lock); 14243 #if BITS_PER_LONG == 32 14244 spin_lock_init(&bp->db_lock); 14245 #endif 14246 14247 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14248 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14249 14250 timer_setup(&bp->timer, bnxt_timer, 0); 14251 bp->current_interval = BNXT_TIMER_INTERVAL; 14252 14253 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14254 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14255 14256 clear_bit(BNXT_STATE_OPEN, &bp->state); 14257 return 0; 14258 14259 init_err_release: 14260 bnxt_unmap_bars(bp, pdev); 14261 pci_release_regions(pdev); 14262 14263 init_err_disable: 14264 pci_disable_device(pdev); 14265 14266 init_err: 14267 return rc; 14268 } 14269 14270 /* rtnl_lock held */ 14271 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14272 { 14273 struct sockaddr *addr = p; 14274 struct bnxt *bp = netdev_priv(dev); 14275 int rc = 0; 14276 14277 if (!is_valid_ether_addr(addr->sa_data)) 14278 return -EADDRNOTAVAIL; 14279 14280 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14281 return 0; 14282 14283 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14284 if (rc) 14285 return rc; 14286 14287 eth_hw_addr_set(dev, addr->sa_data); 14288 bnxt_clear_usr_fltrs(bp, true); 14289 if (netif_running(dev)) { 14290 bnxt_close_nic(bp, false, false); 14291 rc = bnxt_open_nic(bp, false, false); 14292 } 14293 14294 return rc; 14295 } 14296 14297 /* rtnl_lock held */ 14298 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14299 { 14300 struct bnxt *bp = netdev_priv(dev); 14301 14302 if (netif_running(dev)) 14303 bnxt_close_nic(bp, true, false); 14304 14305 WRITE_ONCE(dev->mtu, new_mtu); 14306 bnxt_set_ring_params(bp); 14307 14308 if (netif_running(dev)) 14309 return bnxt_open_nic(bp, true, false); 14310 14311 return 0; 14312 } 14313 14314 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14315 { 14316 struct bnxt *bp = netdev_priv(dev); 14317 bool sh = false; 14318 int rc, tx_cp; 14319 14320 if (tc > bp->max_tc) { 14321 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14322 tc, bp->max_tc); 14323 return -EINVAL; 14324 } 14325 14326 if (bp->num_tc == tc) 14327 return 0; 14328 14329 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14330 sh = true; 14331 14332 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14333 sh, tc, bp->tx_nr_rings_xdp); 14334 if (rc) 14335 return rc; 14336 14337 /* Needs to close the device and do hw resource re-allocations */ 14338 if (netif_running(bp->dev)) 14339 bnxt_close_nic(bp, true, false); 14340 14341 if (tc) { 14342 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14343 netdev_set_num_tc(dev, tc); 14344 bp->num_tc = tc; 14345 } else { 14346 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14347 netdev_reset_tc(dev); 14348 bp->num_tc = 0; 14349 } 14350 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14351 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14352 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14353 tx_cp + bp->rx_nr_rings; 14354 14355 if (netif_running(bp->dev)) 14356 return bnxt_open_nic(bp, true, false); 14357 14358 return 0; 14359 } 14360 14361 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14362 void *cb_priv) 14363 { 14364 struct bnxt *bp = cb_priv; 14365 14366 if (!bnxt_tc_flower_enabled(bp) || 14367 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14368 return -EOPNOTSUPP; 14369 14370 switch (type) { 14371 case TC_SETUP_CLSFLOWER: 14372 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14373 default: 14374 return -EOPNOTSUPP; 14375 } 14376 } 14377 14378 LIST_HEAD(bnxt_block_cb_list); 14379 14380 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14381 void *type_data) 14382 { 14383 struct bnxt *bp = netdev_priv(dev); 14384 14385 switch (type) { 14386 case TC_SETUP_BLOCK: 14387 return flow_block_cb_setup_simple(type_data, 14388 &bnxt_block_cb_list, 14389 bnxt_setup_tc_block_cb, 14390 bp, bp, true); 14391 case TC_SETUP_QDISC_MQPRIO: { 14392 struct tc_mqprio_qopt *mqprio = type_data; 14393 14394 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14395 14396 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14397 } 14398 default: 14399 return -EOPNOTSUPP; 14400 } 14401 } 14402 14403 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14404 const struct sk_buff *skb) 14405 { 14406 struct bnxt_vnic_info *vnic; 14407 14408 if (skb) 14409 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14410 14411 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14412 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14413 } 14414 14415 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14416 u32 idx) 14417 { 14418 struct hlist_head *head; 14419 int bit_id; 14420 14421 spin_lock_bh(&bp->ntp_fltr_lock); 14422 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14423 if (bit_id < 0) { 14424 spin_unlock_bh(&bp->ntp_fltr_lock); 14425 return -ENOMEM; 14426 } 14427 14428 fltr->base.sw_id = (u16)bit_id; 14429 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14430 fltr->base.flags |= BNXT_ACT_RING_DST; 14431 head = &bp->ntp_fltr_hash_tbl[idx]; 14432 hlist_add_head_rcu(&fltr->base.hash, head); 14433 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14434 bnxt_insert_usr_fltr(bp, &fltr->base); 14435 bp->ntp_fltr_count++; 14436 spin_unlock_bh(&bp->ntp_fltr_lock); 14437 return 0; 14438 } 14439 14440 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14441 struct bnxt_ntuple_filter *f2) 14442 { 14443 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14444 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14445 struct flow_keys *keys1 = &f1->fkeys; 14446 struct flow_keys *keys2 = &f2->fkeys; 14447 14448 if (keys1->basic.n_proto != keys2->basic.n_proto || 14449 keys1->basic.ip_proto != keys2->basic.ip_proto) 14450 return false; 14451 14452 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14453 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14454 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14455 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14456 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14457 return false; 14458 } else { 14459 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14460 &keys2->addrs.v6addrs.src) || 14461 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14462 &masks2->addrs.v6addrs.src) || 14463 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14464 &keys2->addrs.v6addrs.dst) || 14465 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14466 &masks2->addrs.v6addrs.dst)) 14467 return false; 14468 } 14469 14470 return keys1->ports.src == keys2->ports.src && 14471 masks1->ports.src == masks2->ports.src && 14472 keys1->ports.dst == keys2->ports.dst && 14473 masks1->ports.dst == masks2->ports.dst && 14474 keys1->control.flags == keys2->control.flags && 14475 f1->l2_fltr == f2->l2_fltr; 14476 } 14477 14478 struct bnxt_ntuple_filter * 14479 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14480 struct bnxt_ntuple_filter *fltr, u32 idx) 14481 { 14482 struct bnxt_ntuple_filter *f; 14483 struct hlist_head *head; 14484 14485 head = &bp->ntp_fltr_hash_tbl[idx]; 14486 hlist_for_each_entry_rcu(f, head, base.hash) { 14487 if (bnxt_fltr_match(f, fltr)) 14488 return f; 14489 } 14490 return NULL; 14491 } 14492 14493 #ifdef CONFIG_RFS_ACCEL 14494 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14495 u16 rxq_index, u32 flow_id) 14496 { 14497 struct bnxt *bp = netdev_priv(dev); 14498 struct bnxt_ntuple_filter *fltr, *new_fltr; 14499 struct flow_keys *fkeys; 14500 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14501 struct bnxt_l2_filter *l2_fltr; 14502 int rc = 0, idx; 14503 u32 flags; 14504 14505 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14506 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14507 atomic_inc(&l2_fltr->refcnt); 14508 } else { 14509 struct bnxt_l2_key key; 14510 14511 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14512 key.vlan = 0; 14513 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14514 if (!l2_fltr) 14515 return -EINVAL; 14516 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14517 bnxt_del_l2_filter(bp, l2_fltr); 14518 return -EINVAL; 14519 } 14520 } 14521 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14522 if (!new_fltr) { 14523 bnxt_del_l2_filter(bp, l2_fltr); 14524 return -ENOMEM; 14525 } 14526 14527 fkeys = &new_fltr->fkeys; 14528 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14529 rc = -EPROTONOSUPPORT; 14530 goto err_free; 14531 } 14532 14533 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14534 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14535 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14536 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14537 rc = -EPROTONOSUPPORT; 14538 goto err_free; 14539 } 14540 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14541 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14542 if (bp->hwrm_spec_code < 0x10601) { 14543 rc = -EPROTONOSUPPORT; 14544 goto err_free; 14545 } 14546 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14547 } 14548 flags = fkeys->control.flags; 14549 if (((flags & FLOW_DIS_ENCAPSULATION) && 14550 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14551 rc = -EPROTONOSUPPORT; 14552 goto err_free; 14553 } 14554 new_fltr->l2_fltr = l2_fltr; 14555 14556 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14557 rcu_read_lock(); 14558 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14559 if (fltr) { 14560 rc = fltr->base.sw_id; 14561 rcu_read_unlock(); 14562 goto err_free; 14563 } 14564 rcu_read_unlock(); 14565 14566 new_fltr->flow_id = flow_id; 14567 new_fltr->base.rxq = rxq_index; 14568 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14569 if (!rc) { 14570 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14571 return new_fltr->base.sw_id; 14572 } 14573 14574 err_free: 14575 bnxt_del_l2_filter(bp, l2_fltr); 14576 kfree(new_fltr); 14577 return rc; 14578 } 14579 #endif 14580 14581 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14582 { 14583 spin_lock_bh(&bp->ntp_fltr_lock); 14584 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14585 spin_unlock_bh(&bp->ntp_fltr_lock); 14586 return; 14587 } 14588 hlist_del_rcu(&fltr->base.hash); 14589 bnxt_del_one_usr_fltr(bp, &fltr->base); 14590 bp->ntp_fltr_count--; 14591 spin_unlock_bh(&bp->ntp_fltr_lock); 14592 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14593 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14594 kfree_rcu(fltr, base.rcu); 14595 } 14596 14597 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14598 { 14599 #ifdef CONFIG_RFS_ACCEL 14600 int i; 14601 14602 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14603 struct hlist_head *head; 14604 struct hlist_node *tmp; 14605 struct bnxt_ntuple_filter *fltr; 14606 int rc; 14607 14608 head = &bp->ntp_fltr_hash_tbl[i]; 14609 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14610 bool del = false; 14611 14612 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14613 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14614 continue; 14615 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14616 fltr->flow_id, 14617 fltr->base.sw_id)) { 14618 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14619 fltr); 14620 del = true; 14621 } 14622 } else { 14623 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14624 fltr); 14625 if (rc) 14626 del = true; 14627 else 14628 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14629 } 14630 14631 if (del) 14632 bnxt_del_ntp_filter(bp, fltr); 14633 } 14634 } 14635 #endif 14636 } 14637 14638 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14639 unsigned int entry, struct udp_tunnel_info *ti) 14640 { 14641 struct bnxt *bp = netdev_priv(netdev); 14642 unsigned int cmd; 14643 14644 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14645 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14646 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14647 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14648 else 14649 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14650 14651 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14652 } 14653 14654 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14655 unsigned int entry, struct udp_tunnel_info *ti) 14656 { 14657 struct bnxt *bp = netdev_priv(netdev); 14658 unsigned int cmd; 14659 14660 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14661 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14662 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14663 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14664 else 14665 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14666 14667 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14668 } 14669 14670 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14671 .set_port = bnxt_udp_tunnel_set_port, 14672 .unset_port = bnxt_udp_tunnel_unset_port, 14673 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14674 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14675 .tables = { 14676 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14677 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14678 }, 14679 }, bnxt_udp_tunnels_p7 = { 14680 .set_port = bnxt_udp_tunnel_set_port, 14681 .unset_port = bnxt_udp_tunnel_unset_port, 14682 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14683 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14684 .tables = { 14685 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14686 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14687 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14688 }, 14689 }; 14690 14691 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14692 struct net_device *dev, u32 filter_mask, 14693 int nlflags) 14694 { 14695 struct bnxt *bp = netdev_priv(dev); 14696 14697 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14698 nlflags, filter_mask, NULL); 14699 } 14700 14701 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14702 u16 flags, struct netlink_ext_ack *extack) 14703 { 14704 struct bnxt *bp = netdev_priv(dev); 14705 struct nlattr *attr, *br_spec; 14706 int rem, rc = 0; 14707 14708 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14709 return -EOPNOTSUPP; 14710 14711 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14712 if (!br_spec) 14713 return -EINVAL; 14714 14715 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 14716 u16 mode; 14717 14718 mode = nla_get_u16(attr); 14719 if (mode == bp->br_mode) 14720 break; 14721 14722 rc = bnxt_hwrm_set_br_mode(bp, mode); 14723 if (!rc) 14724 bp->br_mode = mode; 14725 break; 14726 } 14727 return rc; 14728 } 14729 14730 int bnxt_get_port_parent_id(struct net_device *dev, 14731 struct netdev_phys_item_id *ppid) 14732 { 14733 struct bnxt *bp = netdev_priv(dev); 14734 14735 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14736 return -EOPNOTSUPP; 14737 14738 /* The PF and it's VF-reps only support the switchdev framework */ 14739 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14740 return -EOPNOTSUPP; 14741 14742 ppid->id_len = sizeof(bp->dsn); 14743 memcpy(ppid->id, bp->dsn, ppid->id_len); 14744 14745 return 0; 14746 } 14747 14748 static const struct net_device_ops bnxt_netdev_ops = { 14749 .ndo_open = bnxt_open, 14750 .ndo_start_xmit = bnxt_start_xmit, 14751 .ndo_stop = bnxt_close, 14752 .ndo_get_stats64 = bnxt_get_stats64, 14753 .ndo_set_rx_mode = bnxt_set_rx_mode, 14754 .ndo_eth_ioctl = bnxt_ioctl, 14755 .ndo_validate_addr = eth_validate_addr, 14756 .ndo_set_mac_address = bnxt_change_mac_addr, 14757 .ndo_change_mtu = bnxt_change_mtu, 14758 .ndo_fix_features = bnxt_fix_features, 14759 .ndo_set_features = bnxt_set_features, 14760 .ndo_features_check = bnxt_features_check, 14761 .ndo_tx_timeout = bnxt_tx_timeout, 14762 #ifdef CONFIG_BNXT_SRIOV 14763 .ndo_get_vf_config = bnxt_get_vf_config, 14764 .ndo_set_vf_mac = bnxt_set_vf_mac, 14765 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14766 .ndo_set_vf_rate = bnxt_set_vf_bw, 14767 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14768 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14769 .ndo_set_vf_trust = bnxt_set_vf_trust, 14770 #endif 14771 .ndo_setup_tc = bnxt_setup_tc, 14772 #ifdef CONFIG_RFS_ACCEL 14773 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14774 #endif 14775 .ndo_bpf = bnxt_xdp, 14776 .ndo_xdp_xmit = bnxt_xdp_xmit, 14777 .ndo_bridge_getlink = bnxt_bridge_getlink, 14778 .ndo_bridge_setlink = bnxt_bridge_setlink, 14779 }; 14780 14781 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14782 struct netdev_queue_stats_rx *stats) 14783 { 14784 struct bnxt *bp = netdev_priv(dev); 14785 struct bnxt_cp_ring_info *cpr; 14786 u64 *sw; 14787 14788 cpr = &bp->bnapi[i]->cp_ring; 14789 sw = cpr->stats.sw_stats; 14790 14791 stats->packets = 0; 14792 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14793 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14794 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14795 14796 stats->bytes = 0; 14797 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14798 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14799 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14800 14801 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 14802 } 14803 14804 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14805 struct netdev_queue_stats_tx *stats) 14806 { 14807 struct bnxt *bp = netdev_priv(dev); 14808 struct bnxt_napi *bnapi; 14809 u64 *sw; 14810 14811 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14812 sw = bnapi->cp_ring.stats.sw_stats; 14813 14814 stats->packets = 0; 14815 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14816 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14817 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14818 14819 stats->bytes = 0; 14820 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14821 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14822 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14823 } 14824 14825 static void bnxt_get_base_stats(struct net_device *dev, 14826 struct netdev_queue_stats_rx *rx, 14827 struct netdev_queue_stats_tx *tx) 14828 { 14829 struct bnxt *bp = netdev_priv(dev); 14830 14831 rx->packets = bp->net_stats_prev.rx_packets; 14832 rx->bytes = bp->net_stats_prev.rx_bytes; 14833 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14834 14835 tx->packets = bp->net_stats_prev.tx_packets; 14836 tx->bytes = bp->net_stats_prev.tx_bytes; 14837 } 14838 14839 static const struct netdev_stat_ops bnxt_stat_ops = { 14840 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 14841 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 14842 .get_base_stats = bnxt_get_base_stats, 14843 }; 14844 14845 static void bnxt_remove_one(struct pci_dev *pdev) 14846 { 14847 struct net_device *dev = pci_get_drvdata(pdev); 14848 struct bnxt *bp = netdev_priv(dev); 14849 14850 if (BNXT_PF(bp)) 14851 bnxt_sriov_disable(bp); 14852 14853 bnxt_rdma_aux_device_del(bp); 14854 14855 bnxt_ptp_clear(bp); 14856 unregister_netdev(dev); 14857 14858 bnxt_rdma_aux_device_uninit(bp); 14859 14860 bnxt_free_l2_filters(bp, true); 14861 bnxt_free_ntp_fltrs(bp, true); 14862 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 14863 bnxt_clear_rss_ctxs(bp, true); 14864 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14865 /* Flush any pending tasks */ 14866 cancel_work_sync(&bp->sp_task); 14867 cancel_delayed_work_sync(&bp->fw_reset_task); 14868 bp->sp_event = 0; 14869 14870 bnxt_dl_fw_reporters_destroy(bp); 14871 bnxt_dl_unregister(bp); 14872 bnxt_shutdown_tc(bp); 14873 14874 bnxt_clear_int_mode(bp); 14875 bnxt_hwrm_func_drv_unrgtr(bp); 14876 bnxt_free_hwrm_resources(bp); 14877 bnxt_hwmon_uninit(bp); 14878 bnxt_ethtool_free(bp); 14879 bnxt_dcb_free(bp); 14880 kfree(bp->ptp_cfg); 14881 bp->ptp_cfg = NULL; 14882 kfree(bp->fw_health); 14883 bp->fw_health = NULL; 14884 bnxt_cleanup_pci(bp); 14885 bnxt_free_ctx_mem(bp); 14886 kfree(bp->rss_indir_tbl); 14887 bp->rss_indir_tbl = NULL; 14888 bnxt_free_port_stats(bp); 14889 free_netdev(dev); 14890 } 14891 14892 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 14893 { 14894 int rc = 0; 14895 struct bnxt_link_info *link_info = &bp->link_info; 14896 14897 bp->phy_flags = 0; 14898 rc = bnxt_hwrm_phy_qcaps(bp); 14899 if (rc) { 14900 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 14901 rc); 14902 return rc; 14903 } 14904 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 14905 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 14906 else 14907 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 14908 if (!fw_dflt) 14909 return 0; 14910 14911 mutex_lock(&bp->link_lock); 14912 rc = bnxt_update_link(bp, false); 14913 if (rc) { 14914 mutex_unlock(&bp->link_lock); 14915 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 14916 rc); 14917 return rc; 14918 } 14919 14920 /* Older firmware does not have supported_auto_speeds, so assume 14921 * that all supported speeds can be autonegotiated. 14922 */ 14923 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 14924 link_info->support_auto_speeds = link_info->support_speeds; 14925 14926 bnxt_init_ethtool_link_settings(bp); 14927 mutex_unlock(&bp->link_lock); 14928 return 0; 14929 } 14930 14931 static int bnxt_get_max_irq(struct pci_dev *pdev) 14932 { 14933 u16 ctrl; 14934 14935 if (!pdev->msix_cap) 14936 return 1; 14937 14938 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 14939 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 14940 } 14941 14942 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14943 int *max_cp) 14944 { 14945 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 14946 int max_ring_grps = 0, max_irq; 14947 14948 *max_tx = hw_resc->max_tx_rings; 14949 *max_rx = hw_resc->max_rx_rings; 14950 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 14951 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 14952 bnxt_get_ulp_msix_num_in_use(bp), 14953 hw_resc->max_stat_ctxs - 14954 bnxt_get_ulp_stat_ctxs_in_use(bp)); 14955 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14956 *max_cp = min_t(int, *max_cp, max_irq); 14957 max_ring_grps = hw_resc->max_hw_ring_grps; 14958 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 14959 *max_cp -= 1; 14960 *max_rx -= 2; 14961 } 14962 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14963 *max_rx >>= 1; 14964 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 14965 int rc; 14966 14967 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 14968 if (rc) { 14969 *max_rx = 0; 14970 *max_tx = 0; 14971 } 14972 /* On P5 chips, max_cp output param should be available NQs */ 14973 *max_cp = max_irq; 14974 } 14975 *max_rx = min_t(int, *max_rx, max_ring_grps); 14976 } 14977 14978 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 14979 { 14980 int rx, tx, cp; 14981 14982 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 14983 *max_rx = rx; 14984 *max_tx = tx; 14985 if (!rx || !tx || !cp) 14986 return -ENOMEM; 14987 14988 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 14989 } 14990 14991 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14992 bool shared) 14993 { 14994 int rc; 14995 14996 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14997 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 14998 /* Not enough rings, try disabling agg rings. */ 14999 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15000 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15001 if (rc) { 15002 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15003 bp->flags |= BNXT_FLAG_AGG_RINGS; 15004 return rc; 15005 } 15006 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15007 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15008 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15009 bnxt_set_ring_params(bp); 15010 } 15011 15012 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15013 int max_cp, max_stat, max_irq; 15014 15015 /* Reserve minimum resources for RoCE */ 15016 max_cp = bnxt_get_max_func_cp_rings(bp); 15017 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15018 max_irq = bnxt_get_max_func_irqs(bp); 15019 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15020 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15021 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15022 return 0; 15023 15024 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15025 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15026 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15027 max_cp = min_t(int, max_cp, max_irq); 15028 max_cp = min_t(int, max_cp, max_stat); 15029 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15030 if (rc) 15031 rc = 0; 15032 } 15033 return rc; 15034 } 15035 15036 /* In initial default shared ring setting, each shared ring must have a 15037 * RX/TX ring pair. 15038 */ 15039 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15040 { 15041 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15042 bp->rx_nr_rings = bp->cp_nr_rings; 15043 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15044 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15045 } 15046 15047 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15048 { 15049 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15050 int avail_msix; 15051 15052 if (!bnxt_can_reserve_rings(bp)) 15053 return 0; 15054 15055 if (sh) 15056 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15057 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15058 /* Reduce default rings on multi-port cards so that total default 15059 * rings do not exceed CPU count. 15060 */ 15061 if (bp->port_count > 1) { 15062 int max_rings = 15063 max_t(int, num_online_cpus() / bp->port_count, 1); 15064 15065 dflt_rings = min_t(int, dflt_rings, max_rings); 15066 } 15067 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15068 if (rc) 15069 return rc; 15070 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15071 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15072 if (sh) 15073 bnxt_trim_dflt_sh_rings(bp); 15074 else 15075 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15076 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15077 15078 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15079 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15080 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15081 15082 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15083 bnxt_set_dflt_ulp_stat_ctxs(bp); 15084 } 15085 15086 rc = __bnxt_reserve_rings(bp); 15087 if (rc && rc != -ENODEV) 15088 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15089 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15090 if (sh) 15091 bnxt_trim_dflt_sh_rings(bp); 15092 15093 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15094 if (bnxt_need_reserve_rings(bp)) { 15095 rc = __bnxt_reserve_rings(bp); 15096 if (rc && rc != -ENODEV) 15097 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15098 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15099 } 15100 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15101 bp->rx_nr_rings++; 15102 bp->cp_nr_rings++; 15103 } 15104 if (rc) { 15105 bp->tx_nr_rings = 0; 15106 bp->rx_nr_rings = 0; 15107 } 15108 return rc; 15109 } 15110 15111 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15112 { 15113 int rc; 15114 15115 if (bp->tx_nr_rings) 15116 return 0; 15117 15118 bnxt_ulp_irq_stop(bp); 15119 bnxt_clear_int_mode(bp); 15120 rc = bnxt_set_dflt_rings(bp, true); 15121 if (rc) { 15122 if (BNXT_VF(bp) && rc == -ENODEV) 15123 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15124 else 15125 netdev_err(bp->dev, "Not enough rings available.\n"); 15126 goto init_dflt_ring_err; 15127 } 15128 rc = bnxt_init_int_mode(bp); 15129 if (rc) 15130 goto init_dflt_ring_err; 15131 15132 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15133 15134 bnxt_set_dflt_rfs(bp); 15135 15136 init_dflt_ring_err: 15137 bnxt_ulp_irq_restart(bp, rc); 15138 return rc; 15139 } 15140 15141 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15142 { 15143 int rc; 15144 15145 ASSERT_RTNL(); 15146 bnxt_hwrm_func_qcaps(bp); 15147 15148 if (netif_running(bp->dev)) 15149 __bnxt_close_nic(bp, true, false); 15150 15151 bnxt_ulp_irq_stop(bp); 15152 bnxt_clear_int_mode(bp); 15153 rc = bnxt_init_int_mode(bp); 15154 bnxt_ulp_irq_restart(bp, rc); 15155 15156 if (netif_running(bp->dev)) { 15157 if (rc) 15158 dev_close(bp->dev); 15159 else 15160 rc = bnxt_open_nic(bp, true, false); 15161 } 15162 15163 return rc; 15164 } 15165 15166 static int bnxt_init_mac_addr(struct bnxt *bp) 15167 { 15168 int rc = 0; 15169 15170 if (BNXT_PF(bp)) { 15171 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15172 } else { 15173 #ifdef CONFIG_BNXT_SRIOV 15174 struct bnxt_vf_info *vf = &bp->vf; 15175 bool strict_approval = true; 15176 15177 if (is_valid_ether_addr(vf->mac_addr)) { 15178 /* overwrite netdev dev_addr with admin VF MAC */ 15179 eth_hw_addr_set(bp->dev, vf->mac_addr); 15180 /* Older PF driver or firmware may not approve this 15181 * correctly. 15182 */ 15183 strict_approval = false; 15184 } else { 15185 eth_hw_addr_random(bp->dev); 15186 } 15187 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15188 #endif 15189 } 15190 return rc; 15191 } 15192 15193 static void bnxt_vpd_read_info(struct bnxt *bp) 15194 { 15195 struct pci_dev *pdev = bp->pdev; 15196 unsigned int vpd_size, kw_len; 15197 int pos, size; 15198 u8 *vpd_data; 15199 15200 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15201 if (IS_ERR(vpd_data)) { 15202 pci_warn(pdev, "Unable to read VPD\n"); 15203 return; 15204 } 15205 15206 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15207 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15208 if (pos < 0) 15209 goto read_sn; 15210 15211 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15212 memcpy(bp->board_partno, &vpd_data[pos], size); 15213 15214 read_sn: 15215 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15216 PCI_VPD_RO_KEYWORD_SERIALNO, 15217 &kw_len); 15218 if (pos < 0) 15219 goto exit; 15220 15221 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15222 memcpy(bp->board_serialno, &vpd_data[pos], size); 15223 exit: 15224 kfree(vpd_data); 15225 } 15226 15227 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15228 { 15229 struct pci_dev *pdev = bp->pdev; 15230 u64 qword; 15231 15232 qword = pci_get_dsn(pdev); 15233 if (!qword) { 15234 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15235 return -EOPNOTSUPP; 15236 } 15237 15238 put_unaligned_le64(qword, dsn); 15239 15240 bp->flags |= BNXT_FLAG_DSN_VALID; 15241 return 0; 15242 } 15243 15244 static int bnxt_map_db_bar(struct bnxt *bp) 15245 { 15246 if (!bp->db_size) 15247 return -ENODEV; 15248 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15249 if (!bp->bar1) 15250 return -ENOMEM; 15251 return 0; 15252 } 15253 15254 void bnxt_print_device_info(struct bnxt *bp) 15255 { 15256 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15257 board_info[bp->board_idx].name, 15258 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15259 15260 pcie_print_link_status(bp->pdev); 15261 } 15262 15263 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15264 { 15265 struct bnxt_hw_resc *hw_resc; 15266 struct net_device *dev; 15267 struct bnxt *bp; 15268 int rc, max_irqs; 15269 15270 if (pci_is_bridge(pdev)) 15271 return -ENODEV; 15272 15273 /* Clear any pending DMA transactions from crash kernel 15274 * while loading driver in capture kernel. 15275 */ 15276 if (is_kdump_kernel()) { 15277 pci_clear_master(pdev); 15278 pcie_flr(pdev); 15279 } 15280 15281 max_irqs = bnxt_get_max_irq(pdev); 15282 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15283 max_irqs); 15284 if (!dev) 15285 return -ENOMEM; 15286 15287 bp = netdev_priv(dev); 15288 bp->board_idx = ent->driver_data; 15289 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15290 bnxt_set_max_func_irqs(bp, max_irqs); 15291 15292 if (bnxt_vf_pciid(bp->board_idx)) 15293 bp->flags |= BNXT_FLAG_VF; 15294 15295 /* No devlink port registration in case of a VF */ 15296 if (BNXT_PF(bp)) 15297 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15298 15299 if (pdev->msix_cap) 15300 bp->flags |= BNXT_FLAG_MSIX_CAP; 15301 15302 rc = bnxt_init_board(pdev, dev); 15303 if (rc < 0) 15304 goto init_err_free; 15305 15306 dev->netdev_ops = &bnxt_netdev_ops; 15307 dev->stat_ops = &bnxt_stat_ops; 15308 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15309 dev->ethtool_ops = &bnxt_ethtool_ops; 15310 pci_set_drvdata(pdev, dev); 15311 15312 rc = bnxt_alloc_hwrm_resources(bp); 15313 if (rc) 15314 goto init_err_pci_clean; 15315 15316 mutex_init(&bp->hwrm_cmd_lock); 15317 mutex_init(&bp->link_lock); 15318 15319 rc = bnxt_fw_init_one_p1(bp); 15320 if (rc) 15321 goto init_err_pci_clean; 15322 15323 if (BNXT_PF(bp)) 15324 bnxt_vpd_read_info(bp); 15325 15326 if (BNXT_CHIP_P5_PLUS(bp)) { 15327 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15328 if (BNXT_CHIP_P7(bp)) 15329 bp->flags |= BNXT_FLAG_CHIP_P7; 15330 } 15331 15332 rc = bnxt_alloc_rss_indir_tbl(bp, NULL); 15333 if (rc) 15334 goto init_err_pci_clean; 15335 15336 rc = bnxt_fw_init_one_p2(bp); 15337 if (rc) 15338 goto init_err_pci_clean; 15339 15340 rc = bnxt_map_db_bar(bp); 15341 if (rc) { 15342 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15343 rc); 15344 goto init_err_pci_clean; 15345 } 15346 15347 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15348 NETIF_F_TSO | NETIF_F_TSO6 | 15349 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15350 NETIF_F_GSO_IPXIP4 | 15351 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15352 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15353 NETIF_F_RXCSUM | NETIF_F_GRO; 15354 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15355 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15356 15357 if (BNXT_SUPPORTS_TPA(bp)) 15358 dev->hw_features |= NETIF_F_LRO; 15359 15360 dev->hw_enc_features = 15361 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15362 NETIF_F_TSO | NETIF_F_TSO6 | 15363 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15364 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15365 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15366 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15367 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15368 if (bp->flags & BNXT_FLAG_CHIP_P7) 15369 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15370 else 15371 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15372 15373 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15374 NETIF_F_GSO_GRE_CSUM; 15375 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15376 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15377 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15378 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15379 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15380 if (BNXT_SUPPORTS_TPA(bp)) 15381 dev->hw_features |= NETIF_F_GRO_HW; 15382 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15383 if (dev->features & NETIF_F_GRO_HW) 15384 dev->features &= ~NETIF_F_LRO; 15385 dev->priv_flags |= IFF_UNICAST_FLT; 15386 15387 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15388 if (bp->tso_max_segs) 15389 netif_set_tso_max_segs(dev, bp->tso_max_segs); 15390 15391 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15392 NETDEV_XDP_ACT_RX_SG; 15393 15394 #ifdef CONFIG_BNXT_SRIOV 15395 init_waitqueue_head(&bp->sriov_cfg_wait); 15396 #endif 15397 if (BNXT_SUPPORTS_TPA(bp)) { 15398 bp->gro_func = bnxt_gro_func_5730x; 15399 if (BNXT_CHIP_P4(bp)) 15400 bp->gro_func = bnxt_gro_func_5731x; 15401 else if (BNXT_CHIP_P5_PLUS(bp)) 15402 bp->gro_func = bnxt_gro_func_5750x; 15403 } 15404 if (!BNXT_CHIP_P4_PLUS(bp)) 15405 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15406 15407 rc = bnxt_init_mac_addr(bp); 15408 if (rc) { 15409 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15410 rc = -EADDRNOTAVAIL; 15411 goto init_err_pci_clean; 15412 } 15413 15414 if (BNXT_PF(bp)) { 15415 /* Read the adapter's DSN to use as the eswitch switch_id */ 15416 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15417 } 15418 15419 /* MTU range: 60 - FW defined max */ 15420 dev->min_mtu = ETH_ZLEN; 15421 dev->max_mtu = bp->max_mtu; 15422 15423 rc = bnxt_probe_phy(bp, true); 15424 if (rc) 15425 goto init_err_pci_clean; 15426 15427 hw_resc = &bp->hw_resc; 15428 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15429 BNXT_L2_FLTR_MAX_FLTR; 15430 /* Older firmware may not report these filters properly */ 15431 if (bp->max_fltr < BNXT_MAX_FLTR) 15432 bp->max_fltr = BNXT_MAX_FLTR; 15433 bnxt_init_l2_fltr_tbl(bp); 15434 bnxt_set_rx_skb_mode(bp, false); 15435 bnxt_set_tpa_flags(bp); 15436 bnxt_set_ring_params(bp); 15437 bnxt_rdma_aux_device_init(bp); 15438 rc = bnxt_set_dflt_rings(bp, true); 15439 if (rc) { 15440 if (BNXT_VF(bp) && rc == -ENODEV) { 15441 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15442 } else { 15443 netdev_err(bp->dev, "Not enough rings available.\n"); 15444 rc = -ENOMEM; 15445 } 15446 goto init_err_pci_clean; 15447 } 15448 15449 bnxt_fw_init_one_p3(bp); 15450 15451 bnxt_init_dflt_coal(bp); 15452 15453 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15454 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15455 15456 rc = bnxt_init_int_mode(bp); 15457 if (rc) 15458 goto init_err_pci_clean; 15459 15460 /* No TC has been set yet and rings may have been trimmed due to 15461 * limited MSIX, so we re-initialize the TX rings per TC. 15462 */ 15463 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15464 15465 if (BNXT_PF(bp)) { 15466 if (!bnxt_pf_wq) { 15467 bnxt_pf_wq = 15468 create_singlethread_workqueue("bnxt_pf_wq"); 15469 if (!bnxt_pf_wq) { 15470 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15471 rc = -ENOMEM; 15472 goto init_err_pci_clean; 15473 } 15474 } 15475 rc = bnxt_init_tc(bp); 15476 if (rc) 15477 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15478 rc); 15479 } 15480 15481 bnxt_inv_fw_health_reg(bp); 15482 rc = bnxt_dl_register(bp); 15483 if (rc) 15484 goto init_err_dl; 15485 15486 INIT_LIST_HEAD(&bp->usr_fltr_list); 15487 15488 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 15489 bnxt_init_multi_rss_ctx(bp); 15490 15491 15492 rc = register_netdev(dev); 15493 if (rc) 15494 goto init_err_cleanup; 15495 15496 bnxt_dl_fw_reporters_create(bp); 15497 15498 bnxt_rdma_aux_device_add(bp); 15499 15500 bnxt_print_device_info(bp); 15501 15502 pci_save_state(pdev); 15503 15504 return 0; 15505 init_err_cleanup: 15506 bnxt_rdma_aux_device_uninit(bp); 15507 bnxt_dl_unregister(bp); 15508 init_err_dl: 15509 bnxt_shutdown_tc(bp); 15510 bnxt_clear_int_mode(bp); 15511 15512 init_err_pci_clean: 15513 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 15514 bnxt_clear_rss_ctxs(bp, true); 15515 bnxt_hwrm_func_drv_unrgtr(bp); 15516 bnxt_free_hwrm_resources(bp); 15517 bnxt_hwmon_uninit(bp); 15518 bnxt_ethtool_free(bp); 15519 bnxt_ptp_clear(bp); 15520 kfree(bp->ptp_cfg); 15521 bp->ptp_cfg = NULL; 15522 kfree(bp->fw_health); 15523 bp->fw_health = NULL; 15524 bnxt_cleanup_pci(bp); 15525 bnxt_free_ctx_mem(bp); 15526 kfree(bp->rss_indir_tbl); 15527 bp->rss_indir_tbl = NULL; 15528 15529 init_err_free: 15530 free_netdev(dev); 15531 return rc; 15532 } 15533 15534 static void bnxt_shutdown(struct pci_dev *pdev) 15535 { 15536 struct net_device *dev = pci_get_drvdata(pdev); 15537 struct bnxt *bp; 15538 15539 if (!dev) 15540 return; 15541 15542 rtnl_lock(); 15543 bp = netdev_priv(dev); 15544 if (!bp) 15545 goto shutdown_exit; 15546 15547 if (netif_running(dev)) 15548 dev_close(dev); 15549 15550 bnxt_clear_int_mode(bp); 15551 pci_disable_device(pdev); 15552 15553 if (system_state == SYSTEM_POWER_OFF) { 15554 pci_wake_from_d3(pdev, bp->wol); 15555 pci_set_power_state(pdev, PCI_D3hot); 15556 } 15557 15558 shutdown_exit: 15559 rtnl_unlock(); 15560 } 15561 15562 #ifdef CONFIG_PM_SLEEP 15563 static int bnxt_suspend(struct device *device) 15564 { 15565 struct net_device *dev = dev_get_drvdata(device); 15566 struct bnxt *bp = netdev_priv(dev); 15567 int rc = 0; 15568 15569 bnxt_ulp_stop(bp); 15570 15571 rtnl_lock(); 15572 if (netif_running(dev)) { 15573 netif_device_detach(dev); 15574 rc = bnxt_close(dev); 15575 } 15576 bnxt_hwrm_func_drv_unrgtr(bp); 15577 pci_disable_device(bp->pdev); 15578 bnxt_free_ctx_mem(bp); 15579 rtnl_unlock(); 15580 return rc; 15581 } 15582 15583 static int bnxt_resume(struct device *device) 15584 { 15585 struct net_device *dev = dev_get_drvdata(device); 15586 struct bnxt *bp = netdev_priv(dev); 15587 int rc = 0; 15588 15589 rtnl_lock(); 15590 rc = pci_enable_device(bp->pdev); 15591 if (rc) { 15592 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15593 rc); 15594 goto resume_exit; 15595 } 15596 pci_set_master(bp->pdev); 15597 if (bnxt_hwrm_ver_get(bp)) { 15598 rc = -ENODEV; 15599 goto resume_exit; 15600 } 15601 rc = bnxt_hwrm_func_reset(bp); 15602 if (rc) { 15603 rc = -EBUSY; 15604 goto resume_exit; 15605 } 15606 15607 rc = bnxt_hwrm_func_qcaps(bp); 15608 if (rc) 15609 goto resume_exit; 15610 15611 bnxt_clear_reservations(bp, true); 15612 15613 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15614 rc = -ENODEV; 15615 goto resume_exit; 15616 } 15617 15618 bnxt_get_wol_settings(bp); 15619 if (netif_running(dev)) { 15620 rc = bnxt_open(dev); 15621 if (!rc) 15622 netif_device_attach(dev); 15623 } 15624 15625 resume_exit: 15626 rtnl_unlock(); 15627 bnxt_ulp_start(bp, rc); 15628 if (!rc) 15629 bnxt_reenable_sriov(bp); 15630 return rc; 15631 } 15632 15633 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 15634 #define BNXT_PM_OPS (&bnxt_pm_ops) 15635 15636 #else 15637 15638 #define BNXT_PM_OPS NULL 15639 15640 #endif /* CONFIG_PM_SLEEP */ 15641 15642 /** 15643 * bnxt_io_error_detected - called when PCI error is detected 15644 * @pdev: Pointer to PCI device 15645 * @state: The current pci connection state 15646 * 15647 * This function is called after a PCI bus error affecting 15648 * this device has been detected. 15649 */ 15650 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 15651 pci_channel_state_t state) 15652 { 15653 struct net_device *netdev = pci_get_drvdata(pdev); 15654 struct bnxt *bp = netdev_priv(netdev); 15655 bool abort = false; 15656 15657 netdev_info(netdev, "PCI I/O error detected\n"); 15658 15659 bnxt_ulp_stop(bp); 15660 15661 rtnl_lock(); 15662 netif_device_detach(netdev); 15663 15664 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 15665 netdev_err(bp->dev, "Firmware reset already in progress\n"); 15666 abort = true; 15667 } 15668 15669 if (abort || state == pci_channel_io_perm_failure) { 15670 rtnl_unlock(); 15671 return PCI_ERS_RESULT_DISCONNECT; 15672 } 15673 15674 /* Link is not reliable anymore if state is pci_channel_io_frozen 15675 * so we disable bus master to prevent any potential bad DMAs before 15676 * freeing kernel memory. 15677 */ 15678 if (state == pci_channel_io_frozen) { 15679 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 15680 bnxt_fw_fatal_close(bp); 15681 } 15682 15683 if (netif_running(netdev)) 15684 __bnxt_close_nic(bp, true, true); 15685 15686 if (pci_is_enabled(pdev)) 15687 pci_disable_device(pdev); 15688 bnxt_free_ctx_mem(bp); 15689 rtnl_unlock(); 15690 15691 /* Request a slot slot reset. */ 15692 return PCI_ERS_RESULT_NEED_RESET; 15693 } 15694 15695 /** 15696 * bnxt_io_slot_reset - called after the pci bus has been reset. 15697 * @pdev: Pointer to PCI device 15698 * 15699 * Restart the card from scratch, as if from a cold-boot. 15700 * At this point, the card has exprienced a hard reset, 15701 * followed by fixups by BIOS, and has its config space 15702 * set up identically to what it was at cold boot. 15703 */ 15704 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 15705 { 15706 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 15707 struct net_device *netdev = pci_get_drvdata(pdev); 15708 struct bnxt *bp = netdev_priv(netdev); 15709 int retry = 0; 15710 int err = 0; 15711 int off; 15712 15713 netdev_info(bp->dev, "PCI Slot Reset\n"); 15714 15715 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 15716 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 15717 msleep(900); 15718 15719 rtnl_lock(); 15720 15721 if (pci_enable_device(pdev)) { 15722 dev_err(&pdev->dev, 15723 "Cannot re-enable PCI device after reset.\n"); 15724 } else { 15725 pci_set_master(pdev); 15726 /* Upon fatal error, our device internal logic that latches to 15727 * BAR value is getting reset and will restore only upon 15728 * rewritting the BARs. 15729 * 15730 * As pci_restore_state() does not re-write the BARs if the 15731 * value is same as saved value earlier, driver needs to 15732 * write the BARs to 0 to force restore, in case of fatal error. 15733 */ 15734 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 15735 &bp->state)) { 15736 for (off = PCI_BASE_ADDRESS_0; 15737 off <= PCI_BASE_ADDRESS_5; off += 4) 15738 pci_write_config_dword(bp->pdev, off, 0); 15739 } 15740 pci_restore_state(pdev); 15741 pci_save_state(pdev); 15742 15743 bnxt_inv_fw_health_reg(bp); 15744 bnxt_try_map_fw_health_reg(bp); 15745 15746 /* In some PCIe AER scenarios, firmware may take up to 15747 * 10 seconds to become ready in the worst case. 15748 */ 15749 do { 15750 err = bnxt_try_recover_fw(bp); 15751 if (!err) 15752 break; 15753 retry++; 15754 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 15755 15756 if (err) { 15757 dev_err(&pdev->dev, "Firmware not ready\n"); 15758 goto reset_exit; 15759 } 15760 15761 err = bnxt_hwrm_func_reset(bp); 15762 if (!err) 15763 result = PCI_ERS_RESULT_RECOVERED; 15764 15765 bnxt_ulp_irq_stop(bp); 15766 bnxt_clear_int_mode(bp); 15767 err = bnxt_init_int_mode(bp); 15768 bnxt_ulp_irq_restart(bp, err); 15769 } 15770 15771 reset_exit: 15772 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15773 bnxt_clear_reservations(bp, true); 15774 rtnl_unlock(); 15775 15776 return result; 15777 } 15778 15779 /** 15780 * bnxt_io_resume - called when traffic can start flowing again. 15781 * @pdev: Pointer to PCI device 15782 * 15783 * This callback is called when the error recovery driver tells 15784 * us that its OK to resume normal operation. 15785 */ 15786 static void bnxt_io_resume(struct pci_dev *pdev) 15787 { 15788 struct net_device *netdev = pci_get_drvdata(pdev); 15789 struct bnxt *bp = netdev_priv(netdev); 15790 int err; 15791 15792 netdev_info(bp->dev, "PCI Slot Resume\n"); 15793 rtnl_lock(); 15794 15795 err = bnxt_hwrm_func_qcaps(bp); 15796 if (!err && netif_running(netdev)) 15797 err = bnxt_open(netdev); 15798 15799 if (!err) 15800 netif_device_attach(netdev); 15801 15802 rtnl_unlock(); 15803 bnxt_ulp_start(bp, err); 15804 if (!err) 15805 bnxt_reenable_sriov(bp); 15806 } 15807 15808 static const struct pci_error_handlers bnxt_err_handler = { 15809 .error_detected = bnxt_io_error_detected, 15810 .slot_reset = bnxt_io_slot_reset, 15811 .resume = bnxt_io_resume 15812 }; 15813 15814 static struct pci_driver bnxt_pci_driver = { 15815 .name = DRV_MODULE_NAME, 15816 .id_table = bnxt_pci_tbl, 15817 .probe = bnxt_init_one, 15818 .remove = bnxt_remove_one, 15819 .shutdown = bnxt_shutdown, 15820 .driver.pm = BNXT_PM_OPS, 15821 .err_handler = &bnxt_err_handler, 15822 #if defined(CONFIG_BNXT_SRIOV) 15823 .sriov_configure = bnxt_sriov_configure, 15824 #endif 15825 }; 15826 15827 static int __init bnxt_init(void) 15828 { 15829 int err; 15830 15831 bnxt_debug_init(); 15832 err = pci_register_driver(&bnxt_pci_driver); 15833 if (err) { 15834 bnxt_debug_exit(); 15835 return err; 15836 } 15837 15838 return 0; 15839 } 15840 15841 static void __exit bnxt_exit(void) 15842 { 15843 pci_unregister_driver(&bnxt_pci_driver); 15844 if (bnxt_pf_wq) 15845 destroy_workqueue(bnxt_pf_wq); 15846 bnxt_debug_exit(); 15847 } 15848 15849 module_init(bnxt_init); 15850 module_exit(bnxt_exit); 15851