xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 3e64db35bc37edbe9e37aaa987df92cde12ddb6c)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 };
141 
142 static const struct pci_device_id bnxt_pci_tbl[] = {
143 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
193 #ifdef CONFIG_BNXT_SRIOV
194 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
195 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
210 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
213 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
215 #endif
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
220 
221 static const u16 bnxt_vf_req_snif[] = {
222 	HWRM_FUNC_CFG,
223 	HWRM_FUNC_VF_CFG,
224 	HWRM_PORT_PHY_QCFG,
225 	HWRM_CFA_L2_FILTER_ALLOC,
226 };
227 
228 static const u16 bnxt_async_events_arr[] = {
229 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
230 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
231 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
232 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
233 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
237 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
238 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
239 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
240 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
241 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
253 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
254 		idx == NETXTREME_E_P5_VF_HV);
255 }
256 
257 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
258 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
259 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
260 
261 #define BNXT_CP_DB_IRQ_DIS(db)						\
262 		writel(DB_CP_IRQ_DIS_FLAGS, db)
263 
264 #define BNXT_DB_CQ(db, idx)						\
265 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_P5(db, idx)						\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
269 		    (db)->doorbell)
270 
271 #define BNXT_DB_NQ_P7(db, idx)						\
272 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
273 		    DB_RING_IDX(db, idx), (db)->doorbell)
274 
275 #define BNXT_DB_CQ_ARM(db, idx)						\
276 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
277 
278 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
279 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
280 		    DB_RING_IDX(db, idx), (db)->doorbell)
281 
282 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 	if (bp->flags & BNXT_FLAG_CHIP_P7)
285 		BNXT_DB_NQ_P7(db, idx);
286 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
287 		BNXT_DB_NQ_P5(db, idx);
288 	else
289 		BNXT_DB_CQ(db, idx);
290 }
291 
292 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
293 {
294 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
295 		BNXT_DB_NQ_ARM_P5(db, idx);
296 	else
297 		BNXT_DB_CQ_ARM(db, idx);
298 }
299 
300 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
301 {
302 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
303 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
304 			    DB_RING_IDX(db, idx), db->doorbell);
305 	else
306 		BNXT_DB_CQ(db, idx);
307 }
308 
309 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
310 {
311 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
312 		return;
313 
314 	if (BNXT_PF(bp))
315 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
316 	else
317 		schedule_delayed_work(&bp->fw_reset_task, delay);
318 }
319 
320 static void __bnxt_queue_sp_work(struct bnxt *bp)
321 {
322 	if (BNXT_PF(bp))
323 		queue_work(bnxt_pf_wq, &bp->sp_task);
324 	else
325 		schedule_work(&bp->sp_task);
326 }
327 
328 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
329 {
330 	set_bit(event, &bp->sp_event);
331 	__bnxt_queue_sp_work(bp);
332 }
333 
334 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
335 {
336 	if (!rxr->bnapi->in_reset) {
337 		rxr->bnapi->in_reset = true;
338 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
339 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
340 		else
341 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
342 		__bnxt_queue_sp_work(bp);
343 	}
344 	rxr->rx_next_cons = 0xffff;
345 }
346 
347 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
348 			  u16 curr)
349 {
350 	struct bnxt_napi *bnapi = txr->bnapi;
351 
352 	if (bnapi->tx_fault)
353 		return;
354 
355 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
356 		   txr->txq_index, txr->tx_hw_cons,
357 		   txr->tx_cons, txr->tx_prod, curr);
358 	WARN_ON_ONCE(1);
359 	bnapi->tx_fault = 1;
360 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
361 }
362 
363 const u16 bnxt_lhint_arr[] = {
364 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
365 	TX_BD_FLAGS_LHINT_512_TO_1023,
366 	TX_BD_FLAGS_LHINT_1024_TO_2047,
367 	TX_BD_FLAGS_LHINT_1024_TO_2047,
368 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
369 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
370 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
371 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
372 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
373 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
374 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
375 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
376 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
377 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
378 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
379 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
380 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
381 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
382 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
383 };
384 
385 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
386 {
387 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
388 
389 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
390 		return 0;
391 
392 	return md_dst->u.port_info.port_id;
393 }
394 
395 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
396 			     u16 prod)
397 {
398 	/* Sync BD data before updating doorbell */
399 	wmb();
400 	bnxt_db_write(bp, &txr->tx_db, prod);
401 	txr->kick_pending = 0;
402 }
403 
404 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
405 {
406 	struct bnxt *bp = netdev_priv(dev);
407 	struct tx_bd *txbd, *txbd0;
408 	struct tx_bd_ext *txbd1;
409 	struct netdev_queue *txq;
410 	int i;
411 	dma_addr_t mapping;
412 	unsigned int length, pad = 0;
413 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
414 	u16 prod, last_frag;
415 	struct pci_dev *pdev = bp->pdev;
416 	struct bnxt_tx_ring_info *txr;
417 	struct bnxt_sw_tx_bd *tx_buf;
418 	__le32 lflags = 0;
419 
420 	i = skb_get_queue_mapping(skb);
421 	if (unlikely(i >= bp->tx_nr_rings)) {
422 		dev_kfree_skb_any(skb);
423 		dev_core_stats_tx_dropped_inc(dev);
424 		return NETDEV_TX_OK;
425 	}
426 
427 	txq = netdev_get_tx_queue(dev, i);
428 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
429 	prod = txr->tx_prod;
430 
431 	free_size = bnxt_tx_avail(bp, txr);
432 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
433 		/* We must have raced with NAPI cleanup */
434 		if (net_ratelimit() && txr->kick_pending)
435 			netif_warn(bp, tx_err, dev,
436 				   "bnxt: ring busy w/ flush pending!\n");
437 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
438 					bp->tx_wake_thresh))
439 			return NETDEV_TX_BUSY;
440 	}
441 
442 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
443 		goto tx_free;
444 
445 	length = skb->len;
446 	len = skb_headlen(skb);
447 	last_frag = skb_shinfo(skb)->nr_frags;
448 
449 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
450 
451 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
452 	tx_buf->skb = skb;
453 	tx_buf->nr_frags = last_frag;
454 
455 	vlan_tag_flags = 0;
456 	cfa_action = bnxt_xmit_get_cfa_action(skb);
457 	if (skb_vlan_tag_present(skb)) {
458 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
459 				 skb_vlan_tag_get(skb);
460 		/* Currently supports 8021Q, 8021AD vlan offloads
461 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
462 		 */
463 		if (skb->vlan_proto == htons(ETH_P_8021Q))
464 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
465 	}
466 
467 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
468 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
469 
470 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
471 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
472 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
473 					    &ptp->tx_hdr_off)) {
474 				if (vlan_tag_flags)
475 					ptp->tx_hdr_off += VLAN_HLEN;
476 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
477 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
478 			} else {
479 				atomic_inc(&bp->ptp_cfg->tx_avail);
480 			}
481 		}
482 	}
483 
484 	if (unlikely(skb->no_fcs))
485 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
486 
487 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
488 	    !lflags) {
489 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
490 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
491 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
492 		void __iomem *db = txr->tx_db.doorbell;
493 		void *pdata = tx_push_buf->data;
494 		u64 *end;
495 		int j, push_len;
496 
497 		/* Set COAL_NOW to be ready quickly for the next push */
498 		tx_push->tx_bd_len_flags_type =
499 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
500 					TX_BD_TYPE_LONG_TX_BD |
501 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
502 					TX_BD_FLAGS_COAL_NOW |
503 					TX_BD_FLAGS_PACKET_END |
504 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
505 
506 		if (skb->ip_summed == CHECKSUM_PARTIAL)
507 			tx_push1->tx_bd_hsize_lflags =
508 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
509 		else
510 			tx_push1->tx_bd_hsize_lflags = 0;
511 
512 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
513 		tx_push1->tx_bd_cfa_action =
514 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
515 
516 		end = pdata + length;
517 		end = PTR_ALIGN(end, 8) - 1;
518 		*end = 0;
519 
520 		skb_copy_from_linear_data(skb, pdata, len);
521 		pdata += len;
522 		for (j = 0; j < last_frag; j++) {
523 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
524 			void *fptr;
525 
526 			fptr = skb_frag_address_safe(frag);
527 			if (!fptr)
528 				goto normal_tx;
529 
530 			memcpy(pdata, fptr, skb_frag_size(frag));
531 			pdata += skb_frag_size(frag);
532 		}
533 
534 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
535 		txbd->tx_bd_haddr = txr->data_mapping;
536 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
537 		prod = NEXT_TX(prod);
538 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
539 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
540 		memcpy(txbd, tx_push1, sizeof(*txbd));
541 		prod = NEXT_TX(prod);
542 		tx_push->doorbell =
543 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
544 				    DB_RING_IDX(&txr->tx_db, prod));
545 		WRITE_ONCE(txr->tx_prod, prod);
546 
547 		tx_buf->is_push = 1;
548 		netdev_tx_sent_queue(txq, skb->len);
549 		wmb();	/* Sync is_push and byte queue before pushing data */
550 
551 		push_len = (length + sizeof(*tx_push) + 7) / 8;
552 		if (push_len > 16) {
553 			__iowrite64_copy(db, tx_push_buf, 16);
554 			__iowrite32_copy(db + 4, tx_push_buf + 1,
555 					 (push_len - 16) << 1);
556 		} else {
557 			__iowrite64_copy(db, tx_push_buf, push_len);
558 		}
559 
560 		goto tx_done;
561 	}
562 
563 normal_tx:
564 	if (length < BNXT_MIN_PKT_SIZE) {
565 		pad = BNXT_MIN_PKT_SIZE - length;
566 		if (skb_pad(skb, pad))
567 			/* SKB already freed. */
568 			goto tx_kick_pending;
569 		length = BNXT_MIN_PKT_SIZE;
570 	}
571 
572 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
573 
574 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
575 		goto tx_free;
576 
577 	dma_unmap_addr_set(tx_buf, mapping, mapping);
578 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
579 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
580 
581 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
582 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
583 
584 	prod = NEXT_TX(prod);
585 	txbd1 = (struct tx_bd_ext *)
586 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
587 
588 	txbd1->tx_bd_hsize_lflags = lflags;
589 	if (skb_is_gso(skb)) {
590 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
591 		u32 hdr_len;
592 
593 		if (skb->encapsulation) {
594 			if (udp_gso)
595 				hdr_len = skb_inner_transport_offset(skb) +
596 					  sizeof(struct udphdr);
597 			else
598 				hdr_len = skb_inner_tcp_all_headers(skb);
599 		} else if (udp_gso) {
600 			hdr_len = skb_transport_offset(skb) +
601 				  sizeof(struct udphdr);
602 		} else {
603 			hdr_len = skb_tcp_all_headers(skb);
604 		}
605 
606 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
607 					TX_BD_FLAGS_T_IPID |
608 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
609 		length = skb_shinfo(skb)->gso_size;
610 		txbd1->tx_bd_mss = cpu_to_le32(length);
611 		length += hdr_len;
612 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
613 		txbd1->tx_bd_hsize_lflags |=
614 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
615 		txbd1->tx_bd_mss = 0;
616 	}
617 
618 	length >>= 9;
619 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
620 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
621 				     skb->len);
622 		i = 0;
623 		goto tx_dma_error;
624 	}
625 	flags |= bnxt_lhint_arr[length];
626 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
627 
628 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
629 	txbd1->tx_bd_cfa_action =
630 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
631 	txbd0 = txbd;
632 	for (i = 0; i < last_frag; i++) {
633 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
634 
635 		prod = NEXT_TX(prod);
636 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
637 
638 		len = skb_frag_size(frag);
639 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
640 					   DMA_TO_DEVICE);
641 
642 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
643 			goto tx_dma_error;
644 
645 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
646 		dma_unmap_addr_set(tx_buf, mapping, mapping);
647 
648 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
649 
650 		flags = len << TX_BD_LEN_SHIFT;
651 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
652 	}
653 
654 	flags &= ~TX_BD_LEN;
655 	txbd->tx_bd_len_flags_type =
656 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
657 			    TX_BD_FLAGS_PACKET_END);
658 
659 	netdev_tx_sent_queue(txq, skb->len);
660 
661 	skb_tx_timestamp(skb);
662 
663 	prod = NEXT_TX(prod);
664 	WRITE_ONCE(txr->tx_prod, prod);
665 
666 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
667 		bnxt_txr_db_kick(bp, txr, prod);
668 	} else {
669 		if (free_size >= bp->tx_wake_thresh)
670 			txbd0->tx_bd_len_flags_type |=
671 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
672 		txr->kick_pending = 1;
673 	}
674 
675 tx_done:
676 
677 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
678 		if (netdev_xmit_more() && !tx_buf->is_push) {
679 			txbd0->tx_bd_len_flags_type &=
680 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
681 			bnxt_txr_db_kick(bp, txr, prod);
682 		}
683 
684 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
685 				   bp->tx_wake_thresh);
686 	}
687 	return NETDEV_TX_OK;
688 
689 tx_dma_error:
690 	if (BNXT_TX_PTP_IS_SET(lflags))
691 		atomic_inc(&bp->ptp_cfg->tx_avail);
692 
693 	last_frag = i;
694 
695 	/* start back at beginning and unmap skb */
696 	prod = txr->tx_prod;
697 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
698 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
699 			 skb_headlen(skb), DMA_TO_DEVICE);
700 	prod = NEXT_TX(prod);
701 
702 	/* unmap remaining mapped pages */
703 	for (i = 0; i < last_frag; i++) {
704 		prod = NEXT_TX(prod);
705 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
706 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
707 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
708 			       DMA_TO_DEVICE);
709 	}
710 
711 tx_free:
712 	dev_kfree_skb_any(skb);
713 tx_kick_pending:
714 	if (txr->kick_pending)
715 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
716 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
717 	dev_core_stats_tx_dropped_inc(dev);
718 	return NETDEV_TX_OK;
719 }
720 
721 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
722 			  int budget)
723 {
724 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
725 	struct pci_dev *pdev = bp->pdev;
726 	u16 hw_cons = txr->tx_hw_cons;
727 	unsigned int tx_bytes = 0;
728 	u16 cons = txr->tx_cons;
729 	int tx_pkts = 0;
730 
731 	while (RING_TX(bp, cons) != hw_cons) {
732 		struct bnxt_sw_tx_bd *tx_buf;
733 		struct sk_buff *skb;
734 		int j, last;
735 
736 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
737 		cons = NEXT_TX(cons);
738 		skb = tx_buf->skb;
739 		tx_buf->skb = NULL;
740 
741 		if (unlikely(!skb)) {
742 			bnxt_sched_reset_txr(bp, txr, cons);
743 			return;
744 		}
745 
746 		tx_pkts++;
747 		tx_bytes += skb->len;
748 
749 		if (tx_buf->is_push) {
750 			tx_buf->is_push = 0;
751 			goto next_tx_int;
752 		}
753 
754 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
755 				 skb_headlen(skb), DMA_TO_DEVICE);
756 		last = tx_buf->nr_frags;
757 
758 		for (j = 0; j < last; j++) {
759 			cons = NEXT_TX(cons);
760 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
761 			dma_unmap_page(
762 				&pdev->dev,
763 				dma_unmap_addr(tx_buf, mapping),
764 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
765 				DMA_TO_DEVICE);
766 		}
767 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
768 			if (BNXT_CHIP_P5(bp)) {
769 				/* PTP worker takes ownership of the skb */
770 				if (!bnxt_get_tx_ts_p5(bp, skb))
771 					skb = NULL;
772 				else
773 					atomic_inc(&bp->ptp_cfg->tx_avail);
774 			}
775 		}
776 
777 next_tx_int:
778 		cons = NEXT_TX(cons);
779 
780 		dev_consume_skb_any(skb);
781 	}
782 
783 	WRITE_ONCE(txr->tx_cons, cons);
784 
785 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
786 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
787 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
788 }
789 
790 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
791 {
792 	struct bnxt_tx_ring_info *txr;
793 	int i;
794 
795 	bnxt_for_each_napi_tx(i, bnapi, txr) {
796 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
797 			__bnxt_tx_int(bp, txr, budget);
798 	}
799 	bnapi->events &= ~BNXT_TX_CMP_EVENT;
800 }
801 
802 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
803 					 struct bnxt_rx_ring_info *rxr,
804 					 unsigned int *offset,
805 					 gfp_t gfp)
806 {
807 	struct page *page;
808 
809 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
810 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
811 						BNXT_RX_PAGE_SIZE);
812 	} else {
813 		page = page_pool_dev_alloc_pages(rxr->page_pool);
814 		*offset = 0;
815 	}
816 	if (!page)
817 		return NULL;
818 
819 	*mapping = page_pool_get_dma_addr(page) + *offset;
820 	return page;
821 }
822 
823 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
824 				       gfp_t gfp)
825 {
826 	u8 *data;
827 	struct pci_dev *pdev = bp->pdev;
828 
829 	if (gfp == GFP_ATOMIC)
830 		data = napi_alloc_frag(bp->rx_buf_size);
831 	else
832 		data = netdev_alloc_frag(bp->rx_buf_size);
833 	if (!data)
834 		return NULL;
835 
836 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
837 					bp->rx_buf_use_size, bp->rx_dir,
838 					DMA_ATTR_WEAK_ORDERING);
839 
840 	if (dma_mapping_error(&pdev->dev, *mapping)) {
841 		skb_free_frag(data);
842 		data = NULL;
843 	}
844 	return data;
845 }
846 
847 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
848 		       u16 prod, gfp_t gfp)
849 {
850 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
851 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
852 	dma_addr_t mapping;
853 
854 	if (BNXT_RX_PAGE_MODE(bp)) {
855 		unsigned int offset;
856 		struct page *page =
857 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
858 
859 		if (!page)
860 			return -ENOMEM;
861 
862 		mapping += bp->rx_dma_offset;
863 		rx_buf->data = page;
864 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
865 	} else {
866 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
867 
868 		if (!data)
869 			return -ENOMEM;
870 
871 		rx_buf->data = data;
872 		rx_buf->data_ptr = data + bp->rx_offset;
873 	}
874 	rx_buf->mapping = mapping;
875 
876 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
877 	return 0;
878 }
879 
880 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
881 {
882 	u16 prod = rxr->rx_prod;
883 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
884 	struct bnxt *bp = rxr->bnapi->bp;
885 	struct rx_bd *cons_bd, *prod_bd;
886 
887 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
888 	cons_rx_buf = &rxr->rx_buf_ring[cons];
889 
890 	prod_rx_buf->data = data;
891 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
892 
893 	prod_rx_buf->mapping = cons_rx_buf->mapping;
894 
895 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
896 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
897 
898 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
899 }
900 
901 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
902 {
903 	u16 next, max = rxr->rx_agg_bmap_size;
904 
905 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
906 	if (next >= max)
907 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
908 	return next;
909 }
910 
911 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
912 				     struct bnxt_rx_ring_info *rxr,
913 				     u16 prod, gfp_t gfp)
914 {
915 	struct rx_bd *rxbd =
916 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
917 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
918 	struct page *page;
919 	dma_addr_t mapping;
920 	u16 sw_prod = rxr->rx_sw_agg_prod;
921 	unsigned int offset = 0;
922 
923 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
924 
925 	if (!page)
926 		return -ENOMEM;
927 
928 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
929 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
930 
931 	__set_bit(sw_prod, rxr->rx_agg_bmap);
932 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
933 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
934 
935 	rx_agg_buf->page = page;
936 	rx_agg_buf->offset = offset;
937 	rx_agg_buf->mapping = mapping;
938 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
939 	rxbd->rx_bd_opaque = sw_prod;
940 	return 0;
941 }
942 
943 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
944 				       struct bnxt_cp_ring_info *cpr,
945 				       u16 cp_cons, u16 curr)
946 {
947 	struct rx_agg_cmp *agg;
948 
949 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
950 	agg = (struct rx_agg_cmp *)
951 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
952 	return agg;
953 }
954 
955 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
956 					      struct bnxt_rx_ring_info *rxr,
957 					      u16 agg_id, u16 curr)
958 {
959 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
960 
961 	return &tpa_info->agg_arr[curr];
962 }
963 
964 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
965 				   u16 start, u32 agg_bufs, bool tpa)
966 {
967 	struct bnxt_napi *bnapi = cpr->bnapi;
968 	struct bnxt *bp = bnapi->bp;
969 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
970 	u16 prod = rxr->rx_agg_prod;
971 	u16 sw_prod = rxr->rx_sw_agg_prod;
972 	bool p5_tpa = false;
973 	u32 i;
974 
975 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
976 		p5_tpa = true;
977 
978 	for (i = 0; i < agg_bufs; i++) {
979 		u16 cons;
980 		struct rx_agg_cmp *agg;
981 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
982 		struct rx_bd *prod_bd;
983 		struct page *page;
984 
985 		if (p5_tpa)
986 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
987 		else
988 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
989 		cons = agg->rx_agg_cmp_opaque;
990 		__clear_bit(cons, rxr->rx_agg_bmap);
991 
992 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
993 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
994 
995 		__set_bit(sw_prod, rxr->rx_agg_bmap);
996 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
997 		cons_rx_buf = &rxr->rx_agg_ring[cons];
998 
999 		/* It is possible for sw_prod to be equal to cons, so
1000 		 * set cons_rx_buf->page to NULL first.
1001 		 */
1002 		page = cons_rx_buf->page;
1003 		cons_rx_buf->page = NULL;
1004 		prod_rx_buf->page = page;
1005 		prod_rx_buf->offset = cons_rx_buf->offset;
1006 
1007 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1008 
1009 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1010 
1011 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1012 		prod_bd->rx_bd_opaque = sw_prod;
1013 
1014 		prod = NEXT_RX_AGG(prod);
1015 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1016 	}
1017 	rxr->rx_agg_prod = prod;
1018 	rxr->rx_sw_agg_prod = sw_prod;
1019 }
1020 
1021 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1022 					      struct bnxt_rx_ring_info *rxr,
1023 					      u16 cons, void *data, u8 *data_ptr,
1024 					      dma_addr_t dma_addr,
1025 					      unsigned int offset_and_len)
1026 {
1027 	unsigned int len = offset_and_len & 0xffff;
1028 	struct page *page = data;
1029 	u16 prod = rxr->rx_prod;
1030 	struct sk_buff *skb;
1031 	int err;
1032 
1033 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1034 	if (unlikely(err)) {
1035 		bnxt_reuse_rx_data(rxr, cons, data);
1036 		return NULL;
1037 	}
1038 	dma_addr -= bp->rx_dma_offset;
1039 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1040 				bp->rx_dir);
1041 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1042 	if (!skb) {
1043 		page_pool_recycle_direct(rxr->page_pool, page);
1044 		return NULL;
1045 	}
1046 	skb_mark_for_recycle(skb);
1047 	skb_reserve(skb, bp->rx_offset);
1048 	__skb_put(skb, len);
1049 
1050 	return skb;
1051 }
1052 
1053 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1054 					struct bnxt_rx_ring_info *rxr,
1055 					u16 cons, void *data, u8 *data_ptr,
1056 					dma_addr_t dma_addr,
1057 					unsigned int offset_and_len)
1058 {
1059 	unsigned int payload = offset_and_len >> 16;
1060 	unsigned int len = offset_and_len & 0xffff;
1061 	skb_frag_t *frag;
1062 	struct page *page = data;
1063 	u16 prod = rxr->rx_prod;
1064 	struct sk_buff *skb;
1065 	int off, err;
1066 
1067 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1068 	if (unlikely(err)) {
1069 		bnxt_reuse_rx_data(rxr, cons, data);
1070 		return NULL;
1071 	}
1072 	dma_addr -= bp->rx_dma_offset;
1073 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1074 				bp->rx_dir);
1075 
1076 	if (unlikely(!payload))
1077 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1078 
1079 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1080 	if (!skb) {
1081 		page_pool_recycle_direct(rxr->page_pool, page);
1082 		return NULL;
1083 	}
1084 
1085 	skb_mark_for_recycle(skb);
1086 	off = (void *)data_ptr - page_address(page);
1087 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1088 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1089 	       payload + NET_IP_ALIGN);
1090 
1091 	frag = &skb_shinfo(skb)->frags[0];
1092 	skb_frag_size_sub(frag, payload);
1093 	skb_frag_off_add(frag, payload);
1094 	skb->data_len -= payload;
1095 	skb->tail += payload;
1096 
1097 	return skb;
1098 }
1099 
1100 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1101 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1102 				   void *data, u8 *data_ptr,
1103 				   dma_addr_t dma_addr,
1104 				   unsigned int offset_and_len)
1105 {
1106 	u16 prod = rxr->rx_prod;
1107 	struct sk_buff *skb;
1108 	int err;
1109 
1110 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1111 	if (unlikely(err)) {
1112 		bnxt_reuse_rx_data(rxr, cons, data);
1113 		return NULL;
1114 	}
1115 
1116 	skb = napi_build_skb(data, bp->rx_buf_size);
1117 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1118 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1119 	if (!skb) {
1120 		skb_free_frag(data);
1121 		return NULL;
1122 	}
1123 
1124 	skb_reserve(skb, bp->rx_offset);
1125 	skb_put(skb, offset_and_len & 0xffff);
1126 	return skb;
1127 }
1128 
1129 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1130 			       struct bnxt_cp_ring_info *cpr,
1131 			       struct skb_shared_info *shinfo,
1132 			       u16 idx, u32 agg_bufs, bool tpa,
1133 			       struct xdp_buff *xdp)
1134 {
1135 	struct bnxt_napi *bnapi = cpr->bnapi;
1136 	struct pci_dev *pdev = bp->pdev;
1137 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1138 	u16 prod = rxr->rx_agg_prod;
1139 	u32 i, total_frag_len = 0;
1140 	bool p5_tpa = false;
1141 
1142 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1143 		p5_tpa = true;
1144 
1145 	for (i = 0; i < agg_bufs; i++) {
1146 		skb_frag_t *frag = &shinfo->frags[i];
1147 		u16 cons, frag_len;
1148 		struct rx_agg_cmp *agg;
1149 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1150 		struct page *page;
1151 		dma_addr_t mapping;
1152 
1153 		if (p5_tpa)
1154 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1155 		else
1156 			agg = bnxt_get_agg(bp, cpr, idx, i);
1157 		cons = agg->rx_agg_cmp_opaque;
1158 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1159 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1160 
1161 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1162 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1163 					cons_rx_buf->offset, frag_len);
1164 		shinfo->nr_frags = i + 1;
1165 		__clear_bit(cons, rxr->rx_agg_bmap);
1166 
1167 		/* It is possible for bnxt_alloc_rx_page() to allocate
1168 		 * a sw_prod index that equals the cons index, so we
1169 		 * need to clear the cons entry now.
1170 		 */
1171 		mapping = cons_rx_buf->mapping;
1172 		page = cons_rx_buf->page;
1173 		cons_rx_buf->page = NULL;
1174 
1175 		if (xdp && page_is_pfmemalloc(page))
1176 			xdp_buff_set_frag_pfmemalloc(xdp);
1177 
1178 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1179 			--shinfo->nr_frags;
1180 			cons_rx_buf->page = page;
1181 
1182 			/* Update prod since possibly some pages have been
1183 			 * allocated already.
1184 			 */
1185 			rxr->rx_agg_prod = prod;
1186 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1187 			return 0;
1188 		}
1189 
1190 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1191 					bp->rx_dir);
1192 
1193 		total_frag_len += frag_len;
1194 		prod = NEXT_RX_AGG(prod);
1195 	}
1196 	rxr->rx_agg_prod = prod;
1197 	return total_frag_len;
1198 }
1199 
1200 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1201 					     struct bnxt_cp_ring_info *cpr,
1202 					     struct sk_buff *skb, u16 idx,
1203 					     u32 agg_bufs, bool tpa)
1204 {
1205 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1206 	u32 total_frag_len = 0;
1207 
1208 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1209 					     agg_bufs, tpa, NULL);
1210 	if (!total_frag_len) {
1211 		skb_mark_for_recycle(skb);
1212 		dev_kfree_skb(skb);
1213 		return NULL;
1214 	}
1215 
1216 	skb->data_len += total_frag_len;
1217 	skb->len += total_frag_len;
1218 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1219 	return skb;
1220 }
1221 
1222 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1223 				 struct bnxt_cp_ring_info *cpr,
1224 				 struct xdp_buff *xdp, u16 idx,
1225 				 u32 agg_bufs, bool tpa)
1226 {
1227 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1228 	u32 total_frag_len = 0;
1229 
1230 	if (!xdp_buff_has_frags(xdp))
1231 		shinfo->nr_frags = 0;
1232 
1233 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1234 					     idx, agg_bufs, tpa, xdp);
1235 	if (total_frag_len) {
1236 		xdp_buff_set_frags_flag(xdp);
1237 		shinfo->nr_frags = agg_bufs;
1238 		shinfo->xdp_frags_size = total_frag_len;
1239 	}
1240 	return total_frag_len;
1241 }
1242 
1243 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1244 			       u8 agg_bufs, u32 *raw_cons)
1245 {
1246 	u16 last;
1247 	struct rx_agg_cmp *agg;
1248 
1249 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1250 	last = RING_CMP(*raw_cons);
1251 	agg = (struct rx_agg_cmp *)
1252 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1253 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1254 }
1255 
1256 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1257 					    unsigned int len,
1258 					    dma_addr_t mapping)
1259 {
1260 	struct bnxt *bp = bnapi->bp;
1261 	struct pci_dev *pdev = bp->pdev;
1262 	struct sk_buff *skb;
1263 
1264 	skb = napi_alloc_skb(&bnapi->napi, len);
1265 	if (!skb)
1266 		return NULL;
1267 
1268 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1269 				bp->rx_dir);
1270 
1271 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1272 	       len + NET_IP_ALIGN);
1273 
1274 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1275 				   bp->rx_dir);
1276 
1277 	skb_put(skb, len);
1278 	return skb;
1279 }
1280 
1281 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1282 			   u32 *raw_cons, void *cmp)
1283 {
1284 	struct rx_cmp *rxcmp = cmp;
1285 	u32 tmp_raw_cons = *raw_cons;
1286 	u8 cmp_type, agg_bufs = 0;
1287 
1288 	cmp_type = RX_CMP_TYPE(rxcmp);
1289 
1290 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1291 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1292 			    RX_CMP_AGG_BUFS) >>
1293 			   RX_CMP_AGG_BUFS_SHIFT;
1294 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1295 		struct rx_tpa_end_cmp *tpa_end = cmp;
1296 
1297 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1298 			return 0;
1299 
1300 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1301 	}
1302 
1303 	if (agg_bufs) {
1304 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1305 			return -EBUSY;
1306 	}
1307 	*raw_cons = tmp_raw_cons;
1308 	return 0;
1309 }
1310 
1311 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1312 {
1313 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1314 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1315 
1316 	if (test_bit(idx, map->agg_idx_bmap))
1317 		idx = find_first_zero_bit(map->agg_idx_bmap,
1318 					  BNXT_AGG_IDX_BMAP_SIZE);
1319 	__set_bit(idx, map->agg_idx_bmap);
1320 	map->agg_id_tbl[agg_id] = idx;
1321 	return idx;
1322 }
1323 
1324 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1325 {
1326 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1327 
1328 	__clear_bit(idx, map->agg_idx_bmap);
1329 }
1330 
1331 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1332 {
1333 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1334 
1335 	return map->agg_id_tbl[agg_id];
1336 }
1337 
1338 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1339 			      struct rx_tpa_start_cmp *tpa_start,
1340 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1341 {
1342 	tpa_info->cfa_code_valid = 1;
1343 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1344 	tpa_info->vlan_valid = 0;
1345 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1346 		tpa_info->vlan_valid = 1;
1347 		tpa_info->metadata =
1348 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1349 	}
1350 }
1351 
1352 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1353 				 struct rx_tpa_start_cmp *tpa_start,
1354 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1355 {
1356 	tpa_info->vlan_valid = 0;
1357 	if (TPA_START_VLAN_VALID(tpa_start)) {
1358 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1359 		u32 vlan_proto = ETH_P_8021Q;
1360 
1361 		tpa_info->vlan_valid = 1;
1362 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1363 			vlan_proto = ETH_P_8021AD;
1364 		tpa_info->metadata = vlan_proto << 16 |
1365 				     TPA_START_METADATA0_TCI(tpa_start1);
1366 	}
1367 }
1368 
1369 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1370 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1371 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1372 {
1373 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1374 	struct bnxt_tpa_info *tpa_info;
1375 	u16 cons, prod, agg_id;
1376 	struct rx_bd *prod_bd;
1377 	dma_addr_t mapping;
1378 
1379 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1380 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1381 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1382 	} else {
1383 		agg_id = TPA_START_AGG_ID(tpa_start);
1384 	}
1385 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1386 	prod = rxr->rx_prod;
1387 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1388 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1389 	tpa_info = &rxr->rx_tpa[agg_id];
1390 
1391 	if (unlikely(cons != rxr->rx_next_cons ||
1392 		     TPA_START_ERROR(tpa_start))) {
1393 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1394 			    cons, rxr->rx_next_cons,
1395 			    TPA_START_ERROR_CODE(tpa_start1));
1396 		bnxt_sched_reset_rxr(bp, rxr);
1397 		return;
1398 	}
1399 	prod_rx_buf->data = tpa_info->data;
1400 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1401 
1402 	mapping = tpa_info->mapping;
1403 	prod_rx_buf->mapping = mapping;
1404 
1405 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1406 
1407 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1408 
1409 	tpa_info->data = cons_rx_buf->data;
1410 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1411 	cons_rx_buf->data = NULL;
1412 	tpa_info->mapping = cons_rx_buf->mapping;
1413 
1414 	tpa_info->len =
1415 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1416 				RX_TPA_START_CMP_LEN_SHIFT;
1417 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1418 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1419 		tpa_info->gso_type = SKB_GSO_TCPV4;
1420 		if (TPA_START_IS_IPV6(tpa_start1))
1421 			tpa_info->gso_type = SKB_GSO_TCPV6;
1422 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1423 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1424 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1425 			tpa_info->gso_type = SKB_GSO_TCPV6;
1426 		tpa_info->rss_hash =
1427 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1428 	} else {
1429 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1430 		tpa_info->gso_type = 0;
1431 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1432 	}
1433 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1434 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1435 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1436 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1437 	else
1438 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1439 	tpa_info->agg_count = 0;
1440 
1441 	rxr->rx_prod = NEXT_RX(prod);
1442 	cons = RING_RX(bp, NEXT_RX(cons));
1443 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1444 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1445 
1446 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1447 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1448 	cons_rx_buf->data = NULL;
1449 }
1450 
1451 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1452 {
1453 	if (agg_bufs)
1454 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1455 }
1456 
1457 #ifdef CONFIG_INET
1458 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1459 {
1460 	struct udphdr *uh = NULL;
1461 
1462 	if (ip_proto == htons(ETH_P_IP)) {
1463 		struct iphdr *iph = (struct iphdr *)skb->data;
1464 
1465 		if (iph->protocol == IPPROTO_UDP)
1466 			uh = (struct udphdr *)(iph + 1);
1467 	} else {
1468 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1469 
1470 		if (iph->nexthdr == IPPROTO_UDP)
1471 			uh = (struct udphdr *)(iph + 1);
1472 	}
1473 	if (uh) {
1474 		if (uh->check)
1475 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1476 		else
1477 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1478 	}
1479 }
1480 #endif
1481 
1482 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1483 					   int payload_off, int tcp_ts,
1484 					   struct sk_buff *skb)
1485 {
1486 #ifdef CONFIG_INET
1487 	struct tcphdr *th;
1488 	int len, nw_off;
1489 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1490 	u32 hdr_info = tpa_info->hdr_info;
1491 	bool loopback = false;
1492 
1493 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1494 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1495 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1496 
1497 	/* If the packet is an internal loopback packet, the offsets will
1498 	 * have an extra 4 bytes.
1499 	 */
1500 	if (inner_mac_off == 4) {
1501 		loopback = true;
1502 	} else if (inner_mac_off > 4) {
1503 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1504 					    ETH_HLEN - 2));
1505 
1506 		/* We only support inner iPv4/ipv6.  If we don't see the
1507 		 * correct protocol ID, it must be a loopback packet where
1508 		 * the offsets are off by 4.
1509 		 */
1510 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1511 			loopback = true;
1512 	}
1513 	if (loopback) {
1514 		/* internal loopback packet, subtract all offsets by 4 */
1515 		inner_ip_off -= 4;
1516 		inner_mac_off -= 4;
1517 		outer_ip_off -= 4;
1518 	}
1519 
1520 	nw_off = inner_ip_off - ETH_HLEN;
1521 	skb_set_network_header(skb, nw_off);
1522 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1523 		struct ipv6hdr *iph = ipv6_hdr(skb);
1524 
1525 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1526 		len = skb->len - skb_transport_offset(skb);
1527 		th = tcp_hdr(skb);
1528 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1529 	} else {
1530 		struct iphdr *iph = ip_hdr(skb);
1531 
1532 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1533 		len = skb->len - skb_transport_offset(skb);
1534 		th = tcp_hdr(skb);
1535 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1536 	}
1537 
1538 	if (inner_mac_off) { /* tunnel */
1539 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1540 					    ETH_HLEN - 2));
1541 
1542 		bnxt_gro_tunnel(skb, proto);
1543 	}
1544 #endif
1545 	return skb;
1546 }
1547 
1548 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1549 					   int payload_off, int tcp_ts,
1550 					   struct sk_buff *skb)
1551 {
1552 #ifdef CONFIG_INET
1553 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1554 	u32 hdr_info = tpa_info->hdr_info;
1555 	int iphdr_len, nw_off;
1556 
1557 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1558 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1559 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1560 
1561 	nw_off = inner_ip_off - ETH_HLEN;
1562 	skb_set_network_header(skb, nw_off);
1563 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1564 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1565 	skb_set_transport_header(skb, nw_off + iphdr_len);
1566 
1567 	if (inner_mac_off) { /* tunnel */
1568 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1569 					    ETH_HLEN - 2));
1570 
1571 		bnxt_gro_tunnel(skb, proto);
1572 	}
1573 #endif
1574 	return skb;
1575 }
1576 
1577 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1578 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1579 
1580 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1581 					   int payload_off, int tcp_ts,
1582 					   struct sk_buff *skb)
1583 {
1584 #ifdef CONFIG_INET
1585 	struct tcphdr *th;
1586 	int len, nw_off, tcp_opt_len = 0;
1587 
1588 	if (tcp_ts)
1589 		tcp_opt_len = 12;
1590 
1591 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1592 		struct iphdr *iph;
1593 
1594 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1595 			 ETH_HLEN;
1596 		skb_set_network_header(skb, nw_off);
1597 		iph = ip_hdr(skb);
1598 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1599 		len = skb->len - skb_transport_offset(skb);
1600 		th = tcp_hdr(skb);
1601 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1602 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1603 		struct ipv6hdr *iph;
1604 
1605 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1606 			 ETH_HLEN;
1607 		skb_set_network_header(skb, nw_off);
1608 		iph = ipv6_hdr(skb);
1609 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1610 		len = skb->len - skb_transport_offset(skb);
1611 		th = tcp_hdr(skb);
1612 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1613 	} else {
1614 		dev_kfree_skb_any(skb);
1615 		return NULL;
1616 	}
1617 
1618 	if (nw_off) /* tunnel */
1619 		bnxt_gro_tunnel(skb, skb->protocol);
1620 #endif
1621 	return skb;
1622 }
1623 
1624 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1625 					   struct bnxt_tpa_info *tpa_info,
1626 					   struct rx_tpa_end_cmp *tpa_end,
1627 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1628 					   struct sk_buff *skb)
1629 {
1630 #ifdef CONFIG_INET
1631 	int payload_off;
1632 	u16 segs;
1633 
1634 	segs = TPA_END_TPA_SEGS(tpa_end);
1635 	if (segs == 1)
1636 		return skb;
1637 
1638 	NAPI_GRO_CB(skb)->count = segs;
1639 	skb_shinfo(skb)->gso_size =
1640 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1641 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1642 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1643 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1644 	else
1645 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1646 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1647 	if (likely(skb))
1648 		tcp_gro_complete(skb);
1649 #endif
1650 	return skb;
1651 }
1652 
1653 /* Given the cfa_code of a received packet determine which
1654  * netdev (vf-rep or PF) the packet is destined to.
1655  */
1656 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1657 {
1658 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1659 
1660 	/* if vf-rep dev is NULL, the must belongs to the PF */
1661 	return dev ? dev : bp->dev;
1662 }
1663 
1664 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1665 					   struct bnxt_cp_ring_info *cpr,
1666 					   u32 *raw_cons,
1667 					   struct rx_tpa_end_cmp *tpa_end,
1668 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1669 					   u8 *event)
1670 {
1671 	struct bnxt_napi *bnapi = cpr->bnapi;
1672 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1673 	struct net_device *dev = bp->dev;
1674 	u8 *data_ptr, agg_bufs;
1675 	unsigned int len;
1676 	struct bnxt_tpa_info *tpa_info;
1677 	dma_addr_t mapping;
1678 	struct sk_buff *skb;
1679 	u16 idx = 0, agg_id;
1680 	void *data;
1681 	bool gro;
1682 
1683 	if (unlikely(bnapi->in_reset)) {
1684 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1685 
1686 		if (rc < 0)
1687 			return ERR_PTR(-EBUSY);
1688 		return NULL;
1689 	}
1690 
1691 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1692 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1693 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1694 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1695 		tpa_info = &rxr->rx_tpa[agg_id];
1696 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1697 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1698 				    agg_bufs, tpa_info->agg_count);
1699 			agg_bufs = tpa_info->agg_count;
1700 		}
1701 		tpa_info->agg_count = 0;
1702 		*event |= BNXT_AGG_EVENT;
1703 		bnxt_free_agg_idx(rxr, agg_id);
1704 		idx = agg_id;
1705 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1706 	} else {
1707 		agg_id = TPA_END_AGG_ID(tpa_end);
1708 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1709 		tpa_info = &rxr->rx_tpa[agg_id];
1710 		idx = RING_CMP(*raw_cons);
1711 		if (agg_bufs) {
1712 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1713 				return ERR_PTR(-EBUSY);
1714 
1715 			*event |= BNXT_AGG_EVENT;
1716 			idx = NEXT_CMP(idx);
1717 		}
1718 		gro = !!TPA_END_GRO(tpa_end);
1719 	}
1720 	data = tpa_info->data;
1721 	data_ptr = tpa_info->data_ptr;
1722 	prefetch(data_ptr);
1723 	len = tpa_info->len;
1724 	mapping = tpa_info->mapping;
1725 
1726 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1727 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1728 		if (agg_bufs > MAX_SKB_FRAGS)
1729 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1730 				    agg_bufs, (int)MAX_SKB_FRAGS);
1731 		return NULL;
1732 	}
1733 
1734 	if (len <= bp->rx_copy_thresh) {
1735 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1736 		if (!skb) {
1737 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1738 			cpr->sw_stats.rx.rx_oom_discards += 1;
1739 			return NULL;
1740 		}
1741 	} else {
1742 		u8 *new_data;
1743 		dma_addr_t new_mapping;
1744 
1745 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1746 		if (!new_data) {
1747 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1748 			cpr->sw_stats.rx.rx_oom_discards += 1;
1749 			return NULL;
1750 		}
1751 
1752 		tpa_info->data = new_data;
1753 		tpa_info->data_ptr = new_data + bp->rx_offset;
1754 		tpa_info->mapping = new_mapping;
1755 
1756 		skb = napi_build_skb(data, bp->rx_buf_size);
1757 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1758 				       bp->rx_buf_use_size, bp->rx_dir,
1759 				       DMA_ATTR_WEAK_ORDERING);
1760 
1761 		if (!skb) {
1762 			skb_free_frag(data);
1763 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1764 			cpr->sw_stats.rx.rx_oom_discards += 1;
1765 			return NULL;
1766 		}
1767 		skb_reserve(skb, bp->rx_offset);
1768 		skb_put(skb, len);
1769 	}
1770 
1771 	if (agg_bufs) {
1772 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1773 		if (!skb) {
1774 			/* Page reuse already handled by bnxt_rx_pages(). */
1775 			cpr->sw_stats.rx.rx_oom_discards += 1;
1776 			return NULL;
1777 		}
1778 	}
1779 
1780 	if (tpa_info->cfa_code_valid)
1781 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1782 	skb->protocol = eth_type_trans(skb, dev);
1783 
1784 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1785 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1786 
1787 	if (tpa_info->vlan_valid &&
1788 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1789 		__be16 vlan_proto = htons(tpa_info->metadata >>
1790 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1791 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1792 
1793 		if (eth_type_vlan(vlan_proto)) {
1794 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1795 		} else {
1796 			dev_kfree_skb(skb);
1797 			return NULL;
1798 		}
1799 	}
1800 
1801 	skb_checksum_none_assert(skb);
1802 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1803 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1804 		skb->csum_level =
1805 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1806 	}
1807 
1808 	if (gro)
1809 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1810 
1811 	return skb;
1812 }
1813 
1814 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1815 			 struct rx_agg_cmp *rx_agg)
1816 {
1817 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1818 	struct bnxt_tpa_info *tpa_info;
1819 
1820 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1821 	tpa_info = &rxr->rx_tpa[agg_id];
1822 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1823 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1824 }
1825 
1826 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1827 			     struct sk_buff *skb)
1828 {
1829 	skb_mark_for_recycle(skb);
1830 
1831 	if (skb->dev != bp->dev) {
1832 		/* this packet belongs to a vf-rep */
1833 		bnxt_vf_rep_rx(bp, skb);
1834 		return;
1835 	}
1836 	skb_record_rx_queue(skb, bnapi->index);
1837 	napi_gro_receive(&bnapi->napi, skb);
1838 }
1839 
1840 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1841 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1842 {
1843 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1844 
1845 	if (BNXT_PTP_RX_TS_VALID(flags))
1846 		goto ts_valid;
1847 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1848 		return false;
1849 
1850 ts_valid:
1851 	*cmpl_ts = ts;
1852 	return true;
1853 }
1854 
1855 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1856 				    struct rx_cmp *rxcmp,
1857 				    struct rx_cmp_ext *rxcmp1)
1858 {
1859 	__be16 vlan_proto;
1860 	u16 vtag;
1861 
1862 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1863 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1864 		u32 meta_data;
1865 
1866 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1867 			return skb;
1868 
1869 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1870 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1871 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1872 		if (eth_type_vlan(vlan_proto))
1873 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1874 		else
1875 			goto vlan_err;
1876 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1877 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1878 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1879 
1880 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1881 				vlan_proto = htons(ETH_P_8021Q);
1882 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1883 				vlan_proto = htons(ETH_P_8021AD);
1884 			else
1885 				goto vlan_err;
1886 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1887 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1888 		}
1889 	}
1890 	return skb;
1891 vlan_err:
1892 	dev_kfree_skb(skb);
1893 	return NULL;
1894 }
1895 
1896 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1897 					   struct rx_cmp *rxcmp)
1898 {
1899 	u8 ext_op;
1900 
1901 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
1902 	switch (ext_op) {
1903 	case EXT_OP_INNER_4:
1904 	case EXT_OP_OUTER_4:
1905 	case EXT_OP_INNFL_3:
1906 	case EXT_OP_OUTFL_3:
1907 		return PKT_HASH_TYPE_L4;
1908 	default:
1909 		return PKT_HASH_TYPE_L3;
1910 	}
1911 }
1912 
1913 /* returns the following:
1914  * 1       - 1 packet successfully received
1915  * 0       - successful TPA_START, packet not completed yet
1916  * -EBUSY  - completion ring does not have all the agg buffers yet
1917  * -ENOMEM - packet aborted due to out of memory
1918  * -EIO    - packet aborted due to hw error indicated in BD
1919  */
1920 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1921 		       u32 *raw_cons, u8 *event)
1922 {
1923 	struct bnxt_napi *bnapi = cpr->bnapi;
1924 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1925 	struct net_device *dev = bp->dev;
1926 	struct rx_cmp *rxcmp;
1927 	struct rx_cmp_ext *rxcmp1;
1928 	u32 tmp_raw_cons = *raw_cons;
1929 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1930 	struct bnxt_sw_rx_bd *rx_buf;
1931 	unsigned int len;
1932 	u8 *data_ptr, agg_bufs, cmp_type;
1933 	bool xdp_active = false;
1934 	dma_addr_t dma_addr;
1935 	struct sk_buff *skb;
1936 	struct xdp_buff xdp;
1937 	u32 flags, misc;
1938 	u32 cmpl_ts;
1939 	void *data;
1940 	int rc = 0;
1941 
1942 	rxcmp = (struct rx_cmp *)
1943 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1944 
1945 	cmp_type = RX_CMP_TYPE(rxcmp);
1946 
1947 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1948 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1949 		goto next_rx_no_prod_no_len;
1950 	}
1951 
1952 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1953 	cp_cons = RING_CMP(tmp_raw_cons);
1954 	rxcmp1 = (struct rx_cmp_ext *)
1955 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1956 
1957 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1958 		return -EBUSY;
1959 
1960 	/* The valid test of the entry must be done first before
1961 	 * reading any further.
1962 	 */
1963 	dma_rmb();
1964 	prod = rxr->rx_prod;
1965 
1966 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
1967 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
1968 		bnxt_tpa_start(bp, rxr, cmp_type,
1969 			       (struct rx_tpa_start_cmp *)rxcmp,
1970 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1971 
1972 		*event |= BNXT_RX_EVENT;
1973 		goto next_rx_no_prod_no_len;
1974 
1975 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1976 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1977 				   (struct rx_tpa_end_cmp *)rxcmp,
1978 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1979 
1980 		if (IS_ERR(skb))
1981 			return -EBUSY;
1982 
1983 		rc = -ENOMEM;
1984 		if (likely(skb)) {
1985 			bnxt_deliver_skb(bp, bnapi, skb);
1986 			rc = 1;
1987 		}
1988 		*event |= BNXT_RX_EVENT;
1989 		goto next_rx_no_prod_no_len;
1990 	}
1991 
1992 	cons = rxcmp->rx_cmp_opaque;
1993 	if (unlikely(cons != rxr->rx_next_cons)) {
1994 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1995 
1996 		/* 0xffff is forced error, don't print it */
1997 		if (rxr->rx_next_cons != 0xffff)
1998 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1999 				    cons, rxr->rx_next_cons);
2000 		bnxt_sched_reset_rxr(bp, rxr);
2001 		if (rc1)
2002 			return rc1;
2003 		goto next_rx_no_prod_no_len;
2004 	}
2005 	rx_buf = &rxr->rx_buf_ring[cons];
2006 	data = rx_buf->data;
2007 	data_ptr = rx_buf->data_ptr;
2008 	prefetch(data_ptr);
2009 
2010 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2011 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2012 
2013 	if (agg_bufs) {
2014 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2015 			return -EBUSY;
2016 
2017 		cp_cons = NEXT_CMP(cp_cons);
2018 		*event |= BNXT_AGG_EVENT;
2019 	}
2020 	*event |= BNXT_RX_EVENT;
2021 
2022 	rx_buf->data = NULL;
2023 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2024 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2025 
2026 		bnxt_reuse_rx_data(rxr, cons, data);
2027 		if (agg_bufs)
2028 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2029 					       false);
2030 
2031 		rc = -EIO;
2032 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2033 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
2034 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2035 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2036 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2037 						 rx_err);
2038 				bnxt_sched_reset_rxr(bp, rxr);
2039 			}
2040 		}
2041 		goto next_rx_no_len;
2042 	}
2043 
2044 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2045 	len = flags >> RX_CMP_LEN_SHIFT;
2046 	dma_addr = rx_buf->mapping;
2047 
2048 	if (bnxt_xdp_attached(bp, rxr)) {
2049 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2050 		if (agg_bufs) {
2051 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2052 							     cp_cons, agg_bufs,
2053 							     false);
2054 			if (!frag_len) {
2055 				cpr->sw_stats.rx.rx_oom_discards += 1;
2056 				rc = -ENOMEM;
2057 				goto next_rx;
2058 			}
2059 		}
2060 		xdp_active = true;
2061 	}
2062 
2063 	if (xdp_active) {
2064 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
2065 			rc = 1;
2066 			goto next_rx;
2067 		}
2068 	}
2069 
2070 	if (len <= bp->rx_copy_thresh) {
2071 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2072 		bnxt_reuse_rx_data(rxr, cons, data);
2073 		if (!skb) {
2074 			if (agg_bufs) {
2075 				if (!xdp_active)
2076 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2077 							       agg_bufs, false);
2078 				else
2079 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2080 			}
2081 			cpr->sw_stats.rx.rx_oom_discards += 1;
2082 			rc = -ENOMEM;
2083 			goto next_rx;
2084 		}
2085 	} else {
2086 		u32 payload;
2087 
2088 		if (rx_buf->data_ptr == data_ptr)
2089 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2090 		else
2091 			payload = 0;
2092 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2093 				      payload | len);
2094 		if (!skb) {
2095 			cpr->sw_stats.rx.rx_oom_discards += 1;
2096 			rc = -ENOMEM;
2097 			goto next_rx;
2098 		}
2099 	}
2100 
2101 	if (agg_bufs) {
2102 		if (!xdp_active) {
2103 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2104 			if (!skb) {
2105 				cpr->sw_stats.rx.rx_oom_discards += 1;
2106 				rc = -ENOMEM;
2107 				goto next_rx;
2108 			}
2109 		} else {
2110 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2111 			if (!skb) {
2112 				/* we should be able to free the old skb here */
2113 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2114 				cpr->sw_stats.rx.rx_oom_discards += 1;
2115 				rc = -ENOMEM;
2116 				goto next_rx;
2117 			}
2118 		}
2119 	}
2120 
2121 	if (RX_CMP_HASH_VALID(rxcmp)) {
2122 		enum pkt_hash_types type;
2123 
2124 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2125 			type = bnxt_rss_ext_op(bp, rxcmp);
2126 		} else {
2127 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2128 
2129 			/* RSS profiles 1 and 3 with extract code 0 for inner
2130 			 * 4-tuple
2131 			 */
2132 			if (hash_type != 1 && hash_type != 3)
2133 				type = PKT_HASH_TYPE_L3;
2134 			else
2135 				type = PKT_HASH_TYPE_L4;
2136 		}
2137 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2138 	}
2139 
2140 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2141 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2142 	skb->protocol = eth_type_trans(skb, dev);
2143 
2144 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2145 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2146 		if (!skb)
2147 			goto next_rx;
2148 	}
2149 
2150 	skb_checksum_none_assert(skb);
2151 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2152 		if (dev->features & NETIF_F_RXCSUM) {
2153 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2154 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2155 		}
2156 	} else {
2157 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2158 			if (dev->features & NETIF_F_RXCSUM)
2159 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2160 		}
2161 	}
2162 
2163 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2164 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2165 			u64 ns, ts;
2166 
2167 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2168 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2169 
2170 				spin_lock_bh(&ptp->ptp_lock);
2171 				ns = timecounter_cyc2time(&ptp->tc, ts);
2172 				spin_unlock_bh(&ptp->ptp_lock);
2173 				memset(skb_hwtstamps(skb), 0,
2174 				       sizeof(*skb_hwtstamps(skb)));
2175 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2176 			}
2177 		}
2178 	}
2179 	bnxt_deliver_skb(bp, bnapi, skb);
2180 	rc = 1;
2181 
2182 next_rx:
2183 	cpr->rx_packets += 1;
2184 	cpr->rx_bytes += len;
2185 
2186 next_rx_no_len:
2187 	rxr->rx_prod = NEXT_RX(prod);
2188 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2189 
2190 next_rx_no_prod_no_len:
2191 	*raw_cons = tmp_raw_cons;
2192 
2193 	return rc;
2194 }
2195 
2196 /* In netpoll mode, if we are using a combined completion ring, we need to
2197  * discard the rx packets and recycle the buffers.
2198  */
2199 static int bnxt_force_rx_discard(struct bnxt *bp,
2200 				 struct bnxt_cp_ring_info *cpr,
2201 				 u32 *raw_cons, u8 *event)
2202 {
2203 	u32 tmp_raw_cons = *raw_cons;
2204 	struct rx_cmp_ext *rxcmp1;
2205 	struct rx_cmp *rxcmp;
2206 	u16 cp_cons;
2207 	u8 cmp_type;
2208 	int rc;
2209 
2210 	cp_cons = RING_CMP(tmp_raw_cons);
2211 	rxcmp = (struct rx_cmp *)
2212 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2213 
2214 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2215 	cp_cons = RING_CMP(tmp_raw_cons);
2216 	rxcmp1 = (struct rx_cmp_ext *)
2217 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2218 
2219 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2220 		return -EBUSY;
2221 
2222 	/* The valid test of the entry must be done first before
2223 	 * reading any further.
2224 	 */
2225 	dma_rmb();
2226 	cmp_type = RX_CMP_TYPE(rxcmp);
2227 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2228 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2229 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2230 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2231 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2232 		struct rx_tpa_end_cmp_ext *tpa_end1;
2233 
2234 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2235 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2236 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2237 	}
2238 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2239 	if (rc && rc != -EBUSY)
2240 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2241 	return rc;
2242 }
2243 
2244 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2245 {
2246 	struct bnxt_fw_health *fw_health = bp->fw_health;
2247 	u32 reg = fw_health->regs[reg_idx];
2248 	u32 reg_type, reg_off, val = 0;
2249 
2250 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2251 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2252 	switch (reg_type) {
2253 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2254 		pci_read_config_dword(bp->pdev, reg_off, &val);
2255 		break;
2256 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2257 		reg_off = fw_health->mapped_regs[reg_idx];
2258 		fallthrough;
2259 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2260 		val = readl(bp->bar0 + reg_off);
2261 		break;
2262 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2263 		val = readl(bp->bar1 + reg_off);
2264 		break;
2265 	}
2266 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2267 		val &= fw_health->fw_reset_inprog_reg_mask;
2268 	return val;
2269 }
2270 
2271 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2272 {
2273 	int i;
2274 
2275 	for (i = 0; i < bp->rx_nr_rings; i++) {
2276 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2277 		struct bnxt_ring_grp_info *grp_info;
2278 
2279 		grp_info = &bp->grp_info[grp_idx];
2280 		if (grp_info->agg_fw_ring_id == ring_id)
2281 			return grp_idx;
2282 	}
2283 	return INVALID_HW_RING_ID;
2284 }
2285 
2286 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2287 {
2288 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2289 
2290 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2291 		return link_info->force_link_speed2;
2292 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2293 		return link_info->force_pam4_link_speed;
2294 	return link_info->force_link_speed;
2295 }
2296 
2297 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2298 {
2299 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2300 
2301 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2302 		link_info->req_link_speed = link_info->force_link_speed2;
2303 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2304 		switch (link_info->req_link_speed) {
2305 		case BNXT_LINK_SPEED_50GB_PAM4:
2306 		case BNXT_LINK_SPEED_100GB_PAM4:
2307 		case BNXT_LINK_SPEED_200GB_PAM4:
2308 		case BNXT_LINK_SPEED_400GB_PAM4:
2309 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2310 			break;
2311 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2312 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2313 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2314 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2315 			break;
2316 		default:
2317 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2318 		}
2319 		return;
2320 	}
2321 	link_info->req_link_speed = link_info->force_link_speed;
2322 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2323 	if (link_info->force_pam4_link_speed) {
2324 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2325 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2326 	}
2327 }
2328 
2329 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2330 {
2331 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2332 
2333 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2334 		link_info->advertising = link_info->auto_link_speeds2;
2335 		return;
2336 	}
2337 	link_info->advertising = link_info->auto_link_speeds;
2338 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2339 }
2340 
2341 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2342 {
2343 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2344 
2345 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2346 		if (link_info->req_link_speed != link_info->force_link_speed2)
2347 			return true;
2348 		return false;
2349 	}
2350 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2351 	    link_info->req_link_speed != link_info->force_link_speed)
2352 		return true;
2353 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2354 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2355 		return true;
2356 	return false;
2357 }
2358 
2359 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2360 {
2361 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2362 
2363 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2364 		if (link_info->advertising != link_info->auto_link_speeds2)
2365 			return true;
2366 		return false;
2367 	}
2368 	if (link_info->advertising != link_info->auto_link_speeds ||
2369 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2370 		return true;
2371 	return false;
2372 }
2373 
2374 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2375 	((data2) &							\
2376 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2377 
2378 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2379 	(((data2) &							\
2380 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2381 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2382 
2383 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2384 	((data1) &							\
2385 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2386 
2387 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2388 	(((data1) &							\
2389 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2390 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2391 
2392 /* Return true if the workqueue has to be scheduled */
2393 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2394 {
2395 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2396 
2397 	switch (err_type) {
2398 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2399 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2400 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2401 		break;
2402 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2403 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2404 		break;
2405 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2406 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2407 		break;
2408 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2409 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2410 		char *threshold_type;
2411 		bool notify = false;
2412 		char *dir_str;
2413 
2414 		switch (type) {
2415 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2416 			threshold_type = "warning";
2417 			break;
2418 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2419 			threshold_type = "critical";
2420 			break;
2421 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2422 			threshold_type = "fatal";
2423 			break;
2424 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2425 			threshold_type = "shutdown";
2426 			break;
2427 		default:
2428 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2429 			return false;
2430 		}
2431 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2432 			dir_str = "above";
2433 			notify = true;
2434 		} else {
2435 			dir_str = "below";
2436 		}
2437 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2438 			    dir_str, threshold_type);
2439 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2440 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2441 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2442 		if (notify) {
2443 			bp->thermal_threshold_type = type;
2444 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2445 			return true;
2446 		}
2447 		return false;
2448 	}
2449 	default:
2450 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2451 			   err_type);
2452 		break;
2453 	}
2454 	return false;
2455 }
2456 
2457 #define BNXT_GET_EVENT_PORT(data)	\
2458 	((data) &			\
2459 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2460 
2461 #define BNXT_EVENT_RING_TYPE(data2)	\
2462 	((data2) &			\
2463 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2464 
2465 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2466 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2467 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2468 
2469 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2470 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2471 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2472 
2473 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2474 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2475 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2476 
2477 #define BNXT_PHC_BITS	48
2478 
2479 static int bnxt_async_event_process(struct bnxt *bp,
2480 				    struct hwrm_async_event_cmpl *cmpl)
2481 {
2482 	u16 event_id = le16_to_cpu(cmpl->event_id);
2483 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2484 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2485 
2486 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2487 		   event_id, data1, data2);
2488 
2489 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2490 	switch (event_id) {
2491 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2492 		struct bnxt_link_info *link_info = &bp->link_info;
2493 
2494 		if (BNXT_VF(bp))
2495 			goto async_event_process_exit;
2496 
2497 		/* print unsupported speed warning in forced speed mode only */
2498 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2499 		    (data1 & 0x20000)) {
2500 			u16 fw_speed = bnxt_get_force_speed(link_info);
2501 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2502 
2503 			if (speed != SPEED_UNKNOWN)
2504 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2505 					    speed);
2506 		}
2507 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2508 	}
2509 		fallthrough;
2510 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2511 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2512 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2513 		fallthrough;
2514 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2515 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2516 		break;
2517 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2518 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2519 		break;
2520 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2521 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2522 
2523 		if (BNXT_VF(bp))
2524 			break;
2525 
2526 		if (bp->pf.port_id != port_id)
2527 			break;
2528 
2529 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2530 		break;
2531 	}
2532 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2533 		if (BNXT_PF(bp))
2534 			goto async_event_process_exit;
2535 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2536 		break;
2537 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2538 		char *type_str = "Solicited";
2539 
2540 		if (!bp->fw_health)
2541 			goto async_event_process_exit;
2542 
2543 		bp->fw_reset_timestamp = jiffies;
2544 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2545 		if (!bp->fw_reset_min_dsecs)
2546 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2547 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2548 		if (!bp->fw_reset_max_dsecs)
2549 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2550 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2551 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2552 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2553 			type_str = "Fatal";
2554 			bp->fw_health->fatalities++;
2555 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2556 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2557 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2558 			type_str = "Non-fatal";
2559 			bp->fw_health->survivals++;
2560 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2561 		}
2562 		netif_warn(bp, hw, bp->dev,
2563 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2564 			   type_str, data1, data2,
2565 			   bp->fw_reset_min_dsecs * 100,
2566 			   bp->fw_reset_max_dsecs * 100);
2567 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2568 		break;
2569 	}
2570 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2571 		struct bnxt_fw_health *fw_health = bp->fw_health;
2572 		char *status_desc = "healthy";
2573 		u32 status;
2574 
2575 		if (!fw_health)
2576 			goto async_event_process_exit;
2577 
2578 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2579 			fw_health->enabled = false;
2580 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2581 			break;
2582 		}
2583 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2584 		fw_health->tmr_multiplier =
2585 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2586 				     bp->current_interval * 10);
2587 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2588 		if (!fw_health->enabled)
2589 			fw_health->last_fw_heartbeat =
2590 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2591 		fw_health->last_fw_reset_cnt =
2592 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2593 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2594 		if (status != BNXT_FW_STATUS_HEALTHY)
2595 			status_desc = "unhealthy";
2596 		netif_info(bp, drv, bp->dev,
2597 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2598 			   fw_health->primary ? "primary" : "backup", status,
2599 			   status_desc, fw_health->last_fw_reset_cnt);
2600 		if (!fw_health->enabled) {
2601 			/* Make sure tmr_counter is set and visible to
2602 			 * bnxt_health_check() before setting enabled to true.
2603 			 */
2604 			smp_wmb();
2605 			fw_health->enabled = true;
2606 		}
2607 		goto async_event_process_exit;
2608 	}
2609 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2610 		netif_notice(bp, hw, bp->dev,
2611 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2612 			     data1, data2);
2613 		goto async_event_process_exit;
2614 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2615 		struct bnxt_rx_ring_info *rxr;
2616 		u16 grp_idx;
2617 
2618 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2619 			goto async_event_process_exit;
2620 
2621 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2622 			    BNXT_EVENT_RING_TYPE(data2), data1);
2623 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2624 			goto async_event_process_exit;
2625 
2626 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2627 		if (grp_idx == INVALID_HW_RING_ID) {
2628 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2629 				    data1);
2630 			goto async_event_process_exit;
2631 		}
2632 		rxr = bp->bnapi[grp_idx]->rx_ring;
2633 		bnxt_sched_reset_rxr(bp, rxr);
2634 		goto async_event_process_exit;
2635 	}
2636 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2637 		struct bnxt_fw_health *fw_health = bp->fw_health;
2638 
2639 		netif_notice(bp, hw, bp->dev,
2640 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2641 			     data1, data2);
2642 		if (fw_health) {
2643 			fw_health->echo_req_data1 = data1;
2644 			fw_health->echo_req_data2 = data2;
2645 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2646 			break;
2647 		}
2648 		goto async_event_process_exit;
2649 	}
2650 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2651 		bnxt_ptp_pps_event(bp, data1, data2);
2652 		goto async_event_process_exit;
2653 	}
2654 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2655 		if (bnxt_event_error_report(bp, data1, data2))
2656 			break;
2657 		goto async_event_process_exit;
2658 	}
2659 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2660 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2661 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2662 			if (BNXT_PTP_USE_RTC(bp)) {
2663 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2664 				u64 ns;
2665 
2666 				if (!ptp)
2667 					goto async_event_process_exit;
2668 
2669 				spin_lock_bh(&ptp->ptp_lock);
2670 				bnxt_ptp_update_current_time(bp);
2671 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2672 				       BNXT_PHC_BITS) | ptp->current_time);
2673 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2674 				spin_unlock_bh(&ptp->ptp_lock);
2675 			}
2676 			break;
2677 		}
2678 		goto async_event_process_exit;
2679 	}
2680 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2681 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2682 
2683 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2684 		goto async_event_process_exit;
2685 	}
2686 	default:
2687 		goto async_event_process_exit;
2688 	}
2689 	__bnxt_queue_sp_work(bp);
2690 async_event_process_exit:
2691 	return 0;
2692 }
2693 
2694 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2695 {
2696 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2697 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2698 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2699 				(struct hwrm_fwd_req_cmpl *)txcmp;
2700 
2701 	switch (cmpl_type) {
2702 	case CMPL_BASE_TYPE_HWRM_DONE:
2703 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2704 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2705 		break;
2706 
2707 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2708 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2709 
2710 		if ((vf_id < bp->pf.first_vf_id) ||
2711 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2712 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2713 				   vf_id);
2714 			return -EINVAL;
2715 		}
2716 
2717 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2718 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2719 		break;
2720 
2721 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2722 		bnxt_async_event_process(bp,
2723 					 (struct hwrm_async_event_cmpl *)txcmp);
2724 		break;
2725 
2726 	default:
2727 		break;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2734 {
2735 	struct bnxt_napi *bnapi = dev_instance;
2736 	struct bnxt *bp = bnapi->bp;
2737 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2738 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2739 
2740 	cpr->event_ctr++;
2741 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2742 	napi_schedule(&bnapi->napi);
2743 	return IRQ_HANDLED;
2744 }
2745 
2746 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2747 {
2748 	u32 raw_cons = cpr->cp_raw_cons;
2749 	u16 cons = RING_CMP(raw_cons);
2750 	struct tx_cmp *txcmp;
2751 
2752 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2753 
2754 	return TX_CMP_VALID(txcmp, raw_cons);
2755 }
2756 
2757 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2758 {
2759 	struct bnxt_napi *bnapi = dev_instance;
2760 	struct bnxt *bp = bnapi->bp;
2761 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2762 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2763 	u32 int_status;
2764 
2765 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2766 
2767 	if (!bnxt_has_work(bp, cpr)) {
2768 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2769 		/* return if erroneous interrupt */
2770 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2771 			return IRQ_NONE;
2772 	}
2773 
2774 	/* disable ring IRQ */
2775 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2776 
2777 	/* Return here if interrupt is shared and is disabled. */
2778 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2779 		return IRQ_HANDLED;
2780 
2781 	napi_schedule(&bnapi->napi);
2782 	return IRQ_HANDLED;
2783 }
2784 
2785 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2786 			    int budget)
2787 {
2788 	struct bnxt_napi *bnapi = cpr->bnapi;
2789 	u32 raw_cons = cpr->cp_raw_cons;
2790 	u32 cons;
2791 	int rx_pkts = 0;
2792 	u8 event = 0;
2793 	struct tx_cmp *txcmp;
2794 
2795 	cpr->has_more_work = 0;
2796 	cpr->had_work_done = 1;
2797 	while (1) {
2798 		u8 cmp_type;
2799 		int rc;
2800 
2801 		cons = RING_CMP(raw_cons);
2802 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2803 
2804 		if (!TX_CMP_VALID(txcmp, raw_cons))
2805 			break;
2806 
2807 		/* The valid test of the entry must be done first before
2808 		 * reading any further.
2809 		 */
2810 		dma_rmb();
2811 		cmp_type = TX_CMP_TYPE(txcmp);
2812 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2813 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2814 			u32 opaque = txcmp->tx_cmp_opaque;
2815 			struct bnxt_tx_ring_info *txr;
2816 			u16 tx_freed;
2817 
2818 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2819 			event |= BNXT_TX_CMP_EVENT;
2820 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2821 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2822 			else
2823 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2824 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2825 				   bp->tx_ring_mask;
2826 			/* return full budget so NAPI will complete. */
2827 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2828 				rx_pkts = budget;
2829 				raw_cons = NEXT_RAW_CMP(raw_cons);
2830 				if (budget)
2831 					cpr->has_more_work = 1;
2832 				break;
2833 			}
2834 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2835 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2836 			if (likely(budget))
2837 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2838 			else
2839 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2840 							   &event);
2841 			if (likely(rc >= 0))
2842 				rx_pkts += rc;
2843 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2844 			 * the NAPI budget.  Otherwise, we may potentially loop
2845 			 * here forever if we consistently cannot allocate
2846 			 * buffers.
2847 			 */
2848 			else if (rc == -ENOMEM && budget)
2849 				rx_pkts++;
2850 			else if (rc == -EBUSY)	/* partial completion */
2851 				break;
2852 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2853 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2854 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2855 			bnxt_hwrm_handler(bp, txcmp);
2856 		}
2857 		raw_cons = NEXT_RAW_CMP(raw_cons);
2858 
2859 		if (rx_pkts && rx_pkts == budget) {
2860 			cpr->has_more_work = 1;
2861 			break;
2862 		}
2863 	}
2864 
2865 	if (event & BNXT_REDIRECT_EVENT)
2866 		xdp_do_flush();
2867 
2868 	if (event & BNXT_TX_EVENT) {
2869 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2870 		u16 prod = txr->tx_prod;
2871 
2872 		/* Sync BD data before updating doorbell */
2873 		wmb();
2874 
2875 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2876 	}
2877 
2878 	cpr->cp_raw_cons = raw_cons;
2879 	bnapi->events |= event;
2880 	return rx_pkts;
2881 }
2882 
2883 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2884 				  int budget)
2885 {
2886 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2887 		bnapi->tx_int(bp, bnapi, budget);
2888 
2889 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2890 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2891 
2892 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2893 	}
2894 	if (bnapi->events & BNXT_AGG_EVENT) {
2895 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2896 
2897 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2898 	}
2899 	bnapi->events &= BNXT_TX_CMP_EVENT;
2900 }
2901 
2902 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2903 			  int budget)
2904 {
2905 	struct bnxt_napi *bnapi = cpr->bnapi;
2906 	int rx_pkts;
2907 
2908 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2909 
2910 	/* ACK completion ring before freeing tx ring and producing new
2911 	 * buffers in rx/agg rings to prevent overflowing the completion
2912 	 * ring.
2913 	 */
2914 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2915 
2916 	__bnxt_poll_work_done(bp, bnapi, budget);
2917 	return rx_pkts;
2918 }
2919 
2920 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2921 {
2922 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2923 	struct bnxt *bp = bnapi->bp;
2924 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2925 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2926 	struct tx_cmp *txcmp;
2927 	struct rx_cmp_ext *rxcmp1;
2928 	u32 cp_cons, tmp_raw_cons;
2929 	u32 raw_cons = cpr->cp_raw_cons;
2930 	bool flush_xdp = false;
2931 	u32 rx_pkts = 0;
2932 	u8 event = 0;
2933 
2934 	while (1) {
2935 		int rc;
2936 
2937 		cp_cons = RING_CMP(raw_cons);
2938 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2939 
2940 		if (!TX_CMP_VALID(txcmp, raw_cons))
2941 			break;
2942 
2943 		/* The valid test of the entry must be done first before
2944 		 * reading any further.
2945 		 */
2946 		dma_rmb();
2947 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2948 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2949 			cp_cons = RING_CMP(tmp_raw_cons);
2950 			rxcmp1 = (struct rx_cmp_ext *)
2951 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2952 
2953 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2954 				break;
2955 
2956 			/* force an error to recycle the buffer */
2957 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2958 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2959 
2960 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2961 			if (likely(rc == -EIO) && budget)
2962 				rx_pkts++;
2963 			else if (rc == -EBUSY)	/* partial completion */
2964 				break;
2965 			if (event & BNXT_REDIRECT_EVENT)
2966 				flush_xdp = true;
2967 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2968 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2969 			bnxt_hwrm_handler(bp, txcmp);
2970 		} else {
2971 			netdev_err(bp->dev,
2972 				   "Invalid completion received on special ring\n");
2973 		}
2974 		raw_cons = NEXT_RAW_CMP(raw_cons);
2975 
2976 		if (rx_pkts == budget)
2977 			break;
2978 	}
2979 
2980 	cpr->cp_raw_cons = raw_cons;
2981 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2982 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2983 
2984 	if (event & BNXT_AGG_EVENT)
2985 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2986 	if (flush_xdp)
2987 		xdp_do_flush();
2988 
2989 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2990 		napi_complete_done(napi, rx_pkts);
2991 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2992 	}
2993 	return rx_pkts;
2994 }
2995 
2996 static int bnxt_poll(struct napi_struct *napi, int budget)
2997 {
2998 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2999 	struct bnxt *bp = bnapi->bp;
3000 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3001 	int work_done = 0;
3002 
3003 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3004 		napi_complete(napi);
3005 		return 0;
3006 	}
3007 	while (1) {
3008 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3009 
3010 		if (work_done >= budget) {
3011 			if (!budget)
3012 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3013 			break;
3014 		}
3015 
3016 		if (!bnxt_has_work(bp, cpr)) {
3017 			if (napi_complete_done(napi, work_done))
3018 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3019 			break;
3020 		}
3021 	}
3022 	if (bp->flags & BNXT_FLAG_DIM) {
3023 		struct dim_sample dim_sample = {};
3024 
3025 		dim_update_sample(cpr->event_ctr,
3026 				  cpr->rx_packets,
3027 				  cpr->rx_bytes,
3028 				  &dim_sample);
3029 		net_dim(&cpr->dim, dim_sample);
3030 	}
3031 	return work_done;
3032 }
3033 
3034 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3035 {
3036 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3037 	int i, work_done = 0;
3038 
3039 	for (i = 0; i < cpr->cp_ring_count; i++) {
3040 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3041 
3042 		if (cpr2->had_nqe_notify) {
3043 			work_done += __bnxt_poll_work(bp, cpr2,
3044 						      budget - work_done);
3045 			cpr->has_more_work |= cpr2->has_more_work;
3046 		}
3047 	}
3048 	return work_done;
3049 }
3050 
3051 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3052 				 u64 dbr_type, int budget)
3053 {
3054 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3055 	int i;
3056 
3057 	for (i = 0; i < cpr->cp_ring_count; i++) {
3058 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3059 		struct bnxt_db_info *db;
3060 
3061 		if (cpr2->had_work_done) {
3062 			u32 tgl = 0;
3063 
3064 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3065 				cpr2->had_nqe_notify = 0;
3066 				tgl = cpr2->toggle;
3067 			}
3068 			db = &cpr2->cp_db;
3069 			bnxt_writeq(bp,
3070 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3071 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3072 				    db->doorbell);
3073 			cpr2->had_work_done = 0;
3074 		}
3075 	}
3076 	__bnxt_poll_work_done(bp, bnapi, budget);
3077 }
3078 
3079 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3080 {
3081 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3082 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3083 	struct bnxt_cp_ring_info *cpr_rx;
3084 	u32 raw_cons = cpr->cp_raw_cons;
3085 	struct bnxt *bp = bnapi->bp;
3086 	struct nqe_cn *nqcmp;
3087 	int work_done = 0;
3088 	u32 cons;
3089 
3090 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3091 		napi_complete(napi);
3092 		return 0;
3093 	}
3094 	if (cpr->has_more_work) {
3095 		cpr->has_more_work = 0;
3096 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3097 	}
3098 	while (1) {
3099 		u16 type;
3100 
3101 		cons = RING_CMP(raw_cons);
3102 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3103 
3104 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3105 			if (cpr->has_more_work)
3106 				break;
3107 
3108 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3109 					     budget);
3110 			cpr->cp_raw_cons = raw_cons;
3111 			if (napi_complete_done(napi, work_done))
3112 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3113 						  cpr->cp_raw_cons);
3114 			goto poll_done;
3115 		}
3116 
3117 		/* The valid test of the entry must be done first before
3118 		 * reading any further.
3119 		 */
3120 		dma_rmb();
3121 
3122 		type = le16_to_cpu(nqcmp->type);
3123 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3124 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3125 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3126 			struct bnxt_cp_ring_info *cpr2;
3127 
3128 			/* No more budget for RX work */
3129 			if (budget && work_done >= budget &&
3130 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3131 				break;
3132 
3133 			idx = BNXT_NQ_HDL_IDX(idx);
3134 			cpr2 = &cpr->cp_ring_arr[idx];
3135 			cpr2->had_nqe_notify = 1;
3136 			cpr2->toggle = NQE_CN_TOGGLE(type);
3137 			work_done += __bnxt_poll_work(bp, cpr2,
3138 						      budget - work_done);
3139 			cpr->has_more_work |= cpr2->has_more_work;
3140 		} else {
3141 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3142 		}
3143 		raw_cons = NEXT_RAW_CMP(raw_cons);
3144 	}
3145 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3146 	if (raw_cons != cpr->cp_raw_cons) {
3147 		cpr->cp_raw_cons = raw_cons;
3148 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3149 	}
3150 poll_done:
3151 	cpr_rx = &cpr->cp_ring_arr[0];
3152 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3153 	    (bp->flags & BNXT_FLAG_DIM)) {
3154 		struct dim_sample dim_sample = {};
3155 
3156 		dim_update_sample(cpr->event_ctr,
3157 				  cpr_rx->rx_packets,
3158 				  cpr_rx->rx_bytes,
3159 				  &dim_sample);
3160 		net_dim(&cpr->dim, dim_sample);
3161 	}
3162 	return work_done;
3163 }
3164 
3165 static void bnxt_free_tx_skbs(struct bnxt *bp)
3166 {
3167 	int i, max_idx;
3168 	struct pci_dev *pdev = bp->pdev;
3169 
3170 	if (!bp->tx_ring)
3171 		return;
3172 
3173 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3174 	for (i = 0; i < bp->tx_nr_rings; i++) {
3175 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3176 		int j;
3177 
3178 		if (!txr->tx_buf_ring)
3179 			continue;
3180 
3181 		for (j = 0; j < max_idx;) {
3182 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3183 			struct sk_buff *skb;
3184 			int k, last;
3185 
3186 			if (i < bp->tx_nr_rings_xdp &&
3187 			    tx_buf->action == XDP_REDIRECT) {
3188 				dma_unmap_single(&pdev->dev,
3189 					dma_unmap_addr(tx_buf, mapping),
3190 					dma_unmap_len(tx_buf, len),
3191 					DMA_TO_DEVICE);
3192 				xdp_return_frame(tx_buf->xdpf);
3193 				tx_buf->action = 0;
3194 				tx_buf->xdpf = NULL;
3195 				j++;
3196 				continue;
3197 			}
3198 
3199 			skb = tx_buf->skb;
3200 			if (!skb) {
3201 				j++;
3202 				continue;
3203 			}
3204 
3205 			tx_buf->skb = NULL;
3206 
3207 			if (tx_buf->is_push) {
3208 				dev_kfree_skb(skb);
3209 				j += 2;
3210 				continue;
3211 			}
3212 
3213 			dma_unmap_single(&pdev->dev,
3214 					 dma_unmap_addr(tx_buf, mapping),
3215 					 skb_headlen(skb),
3216 					 DMA_TO_DEVICE);
3217 
3218 			last = tx_buf->nr_frags;
3219 			j += 2;
3220 			for (k = 0; k < last; k++, j++) {
3221 				int ring_idx = j & bp->tx_ring_mask;
3222 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3223 
3224 				tx_buf = &txr->tx_buf_ring[ring_idx];
3225 				dma_unmap_page(
3226 					&pdev->dev,
3227 					dma_unmap_addr(tx_buf, mapping),
3228 					skb_frag_size(frag), DMA_TO_DEVICE);
3229 			}
3230 			dev_kfree_skb(skb);
3231 		}
3232 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3233 	}
3234 }
3235 
3236 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3237 {
3238 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3239 	struct pci_dev *pdev = bp->pdev;
3240 	struct bnxt_tpa_idx_map *map;
3241 	int i, max_idx, max_agg_idx;
3242 
3243 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3244 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3245 	if (!rxr->rx_tpa)
3246 		goto skip_rx_tpa_free;
3247 
3248 	for (i = 0; i < bp->max_tpa; i++) {
3249 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3250 		u8 *data = tpa_info->data;
3251 
3252 		if (!data)
3253 			continue;
3254 
3255 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3256 				       bp->rx_buf_use_size, bp->rx_dir,
3257 				       DMA_ATTR_WEAK_ORDERING);
3258 
3259 		tpa_info->data = NULL;
3260 
3261 		skb_free_frag(data);
3262 	}
3263 
3264 skip_rx_tpa_free:
3265 	if (!rxr->rx_buf_ring)
3266 		goto skip_rx_buf_free;
3267 
3268 	for (i = 0; i < max_idx; i++) {
3269 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3270 		dma_addr_t mapping = rx_buf->mapping;
3271 		void *data = rx_buf->data;
3272 
3273 		if (!data)
3274 			continue;
3275 
3276 		rx_buf->data = NULL;
3277 		if (BNXT_RX_PAGE_MODE(bp)) {
3278 			page_pool_recycle_direct(rxr->page_pool, data);
3279 		} else {
3280 			dma_unmap_single_attrs(&pdev->dev, mapping,
3281 					       bp->rx_buf_use_size, bp->rx_dir,
3282 					       DMA_ATTR_WEAK_ORDERING);
3283 			skb_free_frag(data);
3284 		}
3285 	}
3286 
3287 skip_rx_buf_free:
3288 	if (!rxr->rx_agg_ring)
3289 		goto skip_rx_agg_free;
3290 
3291 	for (i = 0; i < max_agg_idx; i++) {
3292 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3293 		struct page *page = rx_agg_buf->page;
3294 
3295 		if (!page)
3296 			continue;
3297 
3298 		rx_agg_buf->page = NULL;
3299 		__clear_bit(i, rxr->rx_agg_bmap);
3300 
3301 		page_pool_recycle_direct(rxr->page_pool, page);
3302 	}
3303 
3304 skip_rx_agg_free:
3305 	map = rxr->rx_tpa_idx_map;
3306 	if (map)
3307 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3308 }
3309 
3310 static void bnxt_free_rx_skbs(struct bnxt *bp)
3311 {
3312 	int i;
3313 
3314 	if (!bp->rx_ring)
3315 		return;
3316 
3317 	for (i = 0; i < bp->rx_nr_rings; i++)
3318 		bnxt_free_one_rx_ring_skbs(bp, i);
3319 }
3320 
3321 static void bnxt_free_skbs(struct bnxt *bp)
3322 {
3323 	bnxt_free_tx_skbs(bp);
3324 	bnxt_free_rx_skbs(bp);
3325 }
3326 
3327 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3328 {
3329 	u8 init_val = ctxm->init_value;
3330 	u16 offset = ctxm->init_offset;
3331 	u8 *p2 = p;
3332 	int i;
3333 
3334 	if (!init_val)
3335 		return;
3336 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3337 		memset(p, init_val, len);
3338 		return;
3339 	}
3340 	for (i = 0; i < len; i += ctxm->entry_size)
3341 		*(p2 + i + offset) = init_val;
3342 }
3343 
3344 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3345 {
3346 	struct pci_dev *pdev = bp->pdev;
3347 	int i;
3348 
3349 	if (!rmem->pg_arr)
3350 		goto skip_pages;
3351 
3352 	for (i = 0; i < rmem->nr_pages; i++) {
3353 		if (!rmem->pg_arr[i])
3354 			continue;
3355 
3356 		dma_free_coherent(&pdev->dev, rmem->page_size,
3357 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3358 
3359 		rmem->pg_arr[i] = NULL;
3360 	}
3361 skip_pages:
3362 	if (rmem->pg_tbl) {
3363 		size_t pg_tbl_size = rmem->nr_pages * 8;
3364 
3365 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3366 			pg_tbl_size = rmem->page_size;
3367 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3368 				  rmem->pg_tbl, rmem->pg_tbl_map);
3369 		rmem->pg_tbl = NULL;
3370 	}
3371 	if (rmem->vmem_size && *rmem->vmem) {
3372 		vfree(*rmem->vmem);
3373 		*rmem->vmem = NULL;
3374 	}
3375 }
3376 
3377 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3378 {
3379 	struct pci_dev *pdev = bp->pdev;
3380 	u64 valid_bit = 0;
3381 	int i;
3382 
3383 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3384 		valid_bit = PTU_PTE_VALID;
3385 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3386 		size_t pg_tbl_size = rmem->nr_pages * 8;
3387 
3388 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3389 			pg_tbl_size = rmem->page_size;
3390 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3391 						  &rmem->pg_tbl_map,
3392 						  GFP_KERNEL);
3393 		if (!rmem->pg_tbl)
3394 			return -ENOMEM;
3395 	}
3396 
3397 	for (i = 0; i < rmem->nr_pages; i++) {
3398 		u64 extra_bits = valid_bit;
3399 
3400 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3401 						     rmem->page_size,
3402 						     &rmem->dma_arr[i],
3403 						     GFP_KERNEL);
3404 		if (!rmem->pg_arr[i])
3405 			return -ENOMEM;
3406 
3407 		if (rmem->ctx_mem)
3408 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3409 					  rmem->page_size);
3410 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3411 			if (i == rmem->nr_pages - 2 &&
3412 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3413 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3414 			else if (i == rmem->nr_pages - 1 &&
3415 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3416 				extra_bits |= PTU_PTE_LAST;
3417 			rmem->pg_tbl[i] =
3418 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3419 		}
3420 	}
3421 
3422 	if (rmem->vmem_size) {
3423 		*rmem->vmem = vzalloc(rmem->vmem_size);
3424 		if (!(*rmem->vmem))
3425 			return -ENOMEM;
3426 	}
3427 	return 0;
3428 }
3429 
3430 static void bnxt_free_tpa_info(struct bnxt *bp)
3431 {
3432 	int i, j;
3433 
3434 	for (i = 0; i < bp->rx_nr_rings; i++) {
3435 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3436 
3437 		kfree(rxr->rx_tpa_idx_map);
3438 		rxr->rx_tpa_idx_map = NULL;
3439 		if (rxr->rx_tpa) {
3440 			for (j = 0; j < bp->max_tpa; j++) {
3441 				kfree(rxr->rx_tpa[j].agg_arr);
3442 				rxr->rx_tpa[j].agg_arr = NULL;
3443 			}
3444 		}
3445 		kfree(rxr->rx_tpa);
3446 		rxr->rx_tpa = NULL;
3447 	}
3448 }
3449 
3450 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3451 {
3452 	int i, j;
3453 
3454 	bp->max_tpa = MAX_TPA;
3455 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3456 		if (!bp->max_tpa_v2)
3457 			return 0;
3458 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3459 	}
3460 
3461 	for (i = 0; i < bp->rx_nr_rings; i++) {
3462 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3463 		struct rx_agg_cmp *agg;
3464 
3465 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3466 				      GFP_KERNEL);
3467 		if (!rxr->rx_tpa)
3468 			return -ENOMEM;
3469 
3470 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3471 			continue;
3472 		for (j = 0; j < bp->max_tpa; j++) {
3473 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3474 			if (!agg)
3475 				return -ENOMEM;
3476 			rxr->rx_tpa[j].agg_arr = agg;
3477 		}
3478 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3479 					      GFP_KERNEL);
3480 		if (!rxr->rx_tpa_idx_map)
3481 			return -ENOMEM;
3482 	}
3483 	return 0;
3484 }
3485 
3486 static void bnxt_free_rx_rings(struct bnxt *bp)
3487 {
3488 	int i;
3489 
3490 	if (!bp->rx_ring)
3491 		return;
3492 
3493 	bnxt_free_tpa_info(bp);
3494 	for (i = 0; i < bp->rx_nr_rings; i++) {
3495 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3496 		struct bnxt_ring_struct *ring;
3497 
3498 		if (rxr->xdp_prog)
3499 			bpf_prog_put(rxr->xdp_prog);
3500 
3501 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3502 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3503 
3504 		page_pool_destroy(rxr->page_pool);
3505 		rxr->page_pool = NULL;
3506 
3507 		kfree(rxr->rx_agg_bmap);
3508 		rxr->rx_agg_bmap = NULL;
3509 
3510 		ring = &rxr->rx_ring_struct;
3511 		bnxt_free_ring(bp, &ring->ring_mem);
3512 
3513 		ring = &rxr->rx_agg_ring_struct;
3514 		bnxt_free_ring(bp, &ring->ring_mem);
3515 	}
3516 }
3517 
3518 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3519 				   struct bnxt_rx_ring_info *rxr)
3520 {
3521 	struct page_pool_params pp = { 0 };
3522 
3523 	pp.pool_size = bp->rx_agg_ring_size;
3524 	if (BNXT_RX_PAGE_MODE(bp))
3525 		pp.pool_size += bp->rx_ring_size;
3526 	pp.nid = dev_to_node(&bp->pdev->dev);
3527 	pp.napi = &rxr->bnapi->napi;
3528 	pp.netdev = bp->dev;
3529 	pp.dev = &bp->pdev->dev;
3530 	pp.dma_dir = bp->rx_dir;
3531 	pp.max_len = PAGE_SIZE;
3532 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3533 
3534 	rxr->page_pool = page_pool_create(&pp);
3535 	if (IS_ERR(rxr->page_pool)) {
3536 		int err = PTR_ERR(rxr->page_pool);
3537 
3538 		rxr->page_pool = NULL;
3539 		return err;
3540 	}
3541 	return 0;
3542 }
3543 
3544 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3545 {
3546 	int i, rc = 0, agg_rings = 0;
3547 
3548 	if (!bp->rx_ring)
3549 		return -ENOMEM;
3550 
3551 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3552 		agg_rings = 1;
3553 
3554 	for (i = 0; i < bp->rx_nr_rings; i++) {
3555 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3556 		struct bnxt_ring_struct *ring;
3557 
3558 		ring = &rxr->rx_ring_struct;
3559 
3560 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3561 		if (rc)
3562 			return rc;
3563 
3564 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3565 		if (rc < 0)
3566 			return rc;
3567 
3568 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3569 						MEM_TYPE_PAGE_POOL,
3570 						rxr->page_pool);
3571 		if (rc) {
3572 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3573 			return rc;
3574 		}
3575 
3576 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3577 		if (rc)
3578 			return rc;
3579 
3580 		ring->grp_idx = i;
3581 		if (agg_rings) {
3582 			u16 mem_size;
3583 
3584 			ring = &rxr->rx_agg_ring_struct;
3585 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3586 			if (rc)
3587 				return rc;
3588 
3589 			ring->grp_idx = i;
3590 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3591 			mem_size = rxr->rx_agg_bmap_size / 8;
3592 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3593 			if (!rxr->rx_agg_bmap)
3594 				return -ENOMEM;
3595 		}
3596 	}
3597 	if (bp->flags & BNXT_FLAG_TPA)
3598 		rc = bnxt_alloc_tpa_info(bp);
3599 	return rc;
3600 }
3601 
3602 static void bnxt_free_tx_rings(struct bnxt *bp)
3603 {
3604 	int i;
3605 	struct pci_dev *pdev = bp->pdev;
3606 
3607 	if (!bp->tx_ring)
3608 		return;
3609 
3610 	for (i = 0; i < bp->tx_nr_rings; i++) {
3611 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3612 		struct bnxt_ring_struct *ring;
3613 
3614 		if (txr->tx_push) {
3615 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3616 					  txr->tx_push, txr->tx_push_mapping);
3617 			txr->tx_push = NULL;
3618 		}
3619 
3620 		ring = &txr->tx_ring_struct;
3621 
3622 		bnxt_free_ring(bp, &ring->ring_mem);
3623 	}
3624 }
3625 
3626 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3627 	((tc) * (bp)->tx_nr_rings_per_tc)
3628 
3629 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3630 	((tx) % (bp)->tx_nr_rings_per_tc)
3631 
3632 #define BNXT_RING_TO_TC(bp, tx)		\
3633 	((tx) / (bp)->tx_nr_rings_per_tc)
3634 
3635 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3636 {
3637 	int i, j, rc;
3638 	struct pci_dev *pdev = bp->pdev;
3639 
3640 	bp->tx_push_size = 0;
3641 	if (bp->tx_push_thresh) {
3642 		int push_size;
3643 
3644 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3645 					bp->tx_push_thresh);
3646 
3647 		if (push_size > 256) {
3648 			push_size = 0;
3649 			bp->tx_push_thresh = 0;
3650 		}
3651 
3652 		bp->tx_push_size = push_size;
3653 	}
3654 
3655 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3656 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3657 		struct bnxt_ring_struct *ring;
3658 		u8 qidx;
3659 
3660 		ring = &txr->tx_ring_struct;
3661 
3662 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3663 		if (rc)
3664 			return rc;
3665 
3666 		ring->grp_idx = txr->bnapi->index;
3667 		if (bp->tx_push_size) {
3668 			dma_addr_t mapping;
3669 
3670 			/* One pre-allocated DMA buffer to backup
3671 			 * TX push operation
3672 			 */
3673 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3674 						bp->tx_push_size,
3675 						&txr->tx_push_mapping,
3676 						GFP_KERNEL);
3677 
3678 			if (!txr->tx_push)
3679 				return -ENOMEM;
3680 
3681 			mapping = txr->tx_push_mapping +
3682 				sizeof(struct tx_push_bd);
3683 			txr->data_mapping = cpu_to_le64(mapping);
3684 		}
3685 		qidx = bp->tc_to_qidx[j];
3686 		ring->queue_id = bp->q_info[qidx].queue_id;
3687 		spin_lock_init(&txr->xdp_tx_lock);
3688 		if (i < bp->tx_nr_rings_xdp)
3689 			continue;
3690 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3691 			j++;
3692 	}
3693 	return 0;
3694 }
3695 
3696 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3697 {
3698 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3699 
3700 	kfree(cpr->cp_desc_ring);
3701 	cpr->cp_desc_ring = NULL;
3702 	ring->ring_mem.pg_arr = NULL;
3703 	kfree(cpr->cp_desc_mapping);
3704 	cpr->cp_desc_mapping = NULL;
3705 	ring->ring_mem.dma_arr = NULL;
3706 }
3707 
3708 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3709 {
3710 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3711 	if (!cpr->cp_desc_ring)
3712 		return -ENOMEM;
3713 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3714 				       GFP_KERNEL);
3715 	if (!cpr->cp_desc_mapping)
3716 		return -ENOMEM;
3717 	return 0;
3718 }
3719 
3720 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3721 {
3722 	int i;
3723 
3724 	if (!bp->bnapi)
3725 		return;
3726 	for (i = 0; i < bp->cp_nr_rings; i++) {
3727 		struct bnxt_napi *bnapi = bp->bnapi[i];
3728 
3729 		if (!bnapi)
3730 			continue;
3731 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3732 	}
3733 }
3734 
3735 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3736 {
3737 	int i, n = bp->cp_nr_pages;
3738 
3739 	for (i = 0; i < bp->cp_nr_rings; i++) {
3740 		struct bnxt_napi *bnapi = bp->bnapi[i];
3741 		int rc;
3742 
3743 		if (!bnapi)
3744 			continue;
3745 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3746 		if (rc)
3747 			return rc;
3748 	}
3749 	return 0;
3750 }
3751 
3752 static void bnxt_free_cp_rings(struct bnxt *bp)
3753 {
3754 	int i;
3755 
3756 	if (!bp->bnapi)
3757 		return;
3758 
3759 	for (i = 0; i < bp->cp_nr_rings; i++) {
3760 		struct bnxt_napi *bnapi = bp->bnapi[i];
3761 		struct bnxt_cp_ring_info *cpr;
3762 		struct bnxt_ring_struct *ring;
3763 		int j;
3764 
3765 		if (!bnapi)
3766 			continue;
3767 
3768 		cpr = &bnapi->cp_ring;
3769 		ring = &cpr->cp_ring_struct;
3770 
3771 		bnxt_free_ring(bp, &ring->ring_mem);
3772 
3773 		if (!cpr->cp_ring_arr)
3774 			continue;
3775 
3776 		for (j = 0; j < cpr->cp_ring_count; j++) {
3777 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3778 
3779 			ring = &cpr2->cp_ring_struct;
3780 			bnxt_free_ring(bp, &ring->ring_mem);
3781 			bnxt_free_cp_arrays(cpr2);
3782 		}
3783 		kfree(cpr->cp_ring_arr);
3784 		cpr->cp_ring_arr = NULL;
3785 		cpr->cp_ring_count = 0;
3786 	}
3787 }
3788 
3789 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3790 				  struct bnxt_cp_ring_info *cpr)
3791 {
3792 	struct bnxt_ring_mem_info *rmem;
3793 	struct bnxt_ring_struct *ring;
3794 	int rc;
3795 
3796 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3797 	if (rc) {
3798 		bnxt_free_cp_arrays(cpr);
3799 		return -ENOMEM;
3800 	}
3801 	ring = &cpr->cp_ring_struct;
3802 	rmem = &ring->ring_mem;
3803 	rmem->nr_pages = bp->cp_nr_pages;
3804 	rmem->page_size = HW_CMPD_RING_SIZE;
3805 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3806 	rmem->dma_arr = cpr->cp_desc_mapping;
3807 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3808 	rc = bnxt_alloc_ring(bp, rmem);
3809 	if (rc) {
3810 		bnxt_free_ring(bp, rmem);
3811 		bnxt_free_cp_arrays(cpr);
3812 	}
3813 	return rc;
3814 }
3815 
3816 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3817 {
3818 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3819 	int i, j, rc, ulp_base_vec, ulp_msix;
3820 	int tcs = netdev_get_num_tc(bp->dev);
3821 
3822 	if (!tcs)
3823 		tcs = 1;
3824 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3825 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3826 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3827 		struct bnxt_napi *bnapi = bp->bnapi[i];
3828 		struct bnxt_cp_ring_info *cpr, *cpr2;
3829 		struct bnxt_ring_struct *ring;
3830 		int cp_count = 0, k;
3831 		int rx = 0, tx = 0;
3832 
3833 		if (!bnapi)
3834 			continue;
3835 
3836 		cpr = &bnapi->cp_ring;
3837 		cpr->bnapi = bnapi;
3838 		ring = &cpr->cp_ring_struct;
3839 
3840 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3841 		if (rc)
3842 			return rc;
3843 
3844 		if (ulp_msix && i >= ulp_base_vec)
3845 			ring->map_idx = i + ulp_msix;
3846 		else
3847 			ring->map_idx = i;
3848 
3849 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3850 			continue;
3851 
3852 		if (i < bp->rx_nr_rings) {
3853 			cp_count++;
3854 			rx = 1;
3855 		}
3856 		if (i < bp->tx_nr_rings_xdp) {
3857 			cp_count++;
3858 			tx = 1;
3859 		} else if ((sh && i < bp->tx_nr_rings) ||
3860 			 (!sh && i >= bp->rx_nr_rings)) {
3861 			cp_count += tcs;
3862 			tx = 1;
3863 		}
3864 
3865 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3866 					   GFP_KERNEL);
3867 		if (!cpr->cp_ring_arr)
3868 			return -ENOMEM;
3869 		cpr->cp_ring_count = cp_count;
3870 
3871 		for (k = 0; k < cp_count; k++) {
3872 			cpr2 = &cpr->cp_ring_arr[k];
3873 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3874 			if (rc)
3875 				return rc;
3876 			cpr2->bnapi = bnapi;
3877 			cpr2->cp_idx = k;
3878 			if (!k && rx) {
3879 				bp->rx_ring[i].rx_cpr = cpr2;
3880 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3881 			} else {
3882 				int n, tc = k - rx;
3883 
3884 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3885 				bp->tx_ring[n].tx_cpr = cpr2;
3886 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3887 			}
3888 		}
3889 		if (tx)
3890 			j++;
3891 	}
3892 	return 0;
3893 }
3894 
3895 static void bnxt_init_ring_struct(struct bnxt *bp)
3896 {
3897 	int i, j;
3898 
3899 	for (i = 0; i < bp->cp_nr_rings; i++) {
3900 		struct bnxt_napi *bnapi = bp->bnapi[i];
3901 		struct bnxt_ring_mem_info *rmem;
3902 		struct bnxt_cp_ring_info *cpr;
3903 		struct bnxt_rx_ring_info *rxr;
3904 		struct bnxt_tx_ring_info *txr;
3905 		struct bnxt_ring_struct *ring;
3906 
3907 		if (!bnapi)
3908 			continue;
3909 
3910 		cpr = &bnapi->cp_ring;
3911 		ring = &cpr->cp_ring_struct;
3912 		rmem = &ring->ring_mem;
3913 		rmem->nr_pages = bp->cp_nr_pages;
3914 		rmem->page_size = HW_CMPD_RING_SIZE;
3915 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3916 		rmem->dma_arr = cpr->cp_desc_mapping;
3917 		rmem->vmem_size = 0;
3918 
3919 		rxr = bnapi->rx_ring;
3920 		if (!rxr)
3921 			goto skip_rx;
3922 
3923 		ring = &rxr->rx_ring_struct;
3924 		rmem = &ring->ring_mem;
3925 		rmem->nr_pages = bp->rx_nr_pages;
3926 		rmem->page_size = HW_RXBD_RING_SIZE;
3927 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3928 		rmem->dma_arr = rxr->rx_desc_mapping;
3929 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3930 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3931 
3932 		ring = &rxr->rx_agg_ring_struct;
3933 		rmem = &ring->ring_mem;
3934 		rmem->nr_pages = bp->rx_agg_nr_pages;
3935 		rmem->page_size = HW_RXBD_RING_SIZE;
3936 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3937 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3938 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3939 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3940 
3941 skip_rx:
3942 		bnxt_for_each_napi_tx(j, bnapi, txr) {
3943 			ring = &txr->tx_ring_struct;
3944 			rmem = &ring->ring_mem;
3945 			rmem->nr_pages = bp->tx_nr_pages;
3946 			rmem->page_size = HW_TXBD_RING_SIZE;
3947 			rmem->pg_arr = (void **)txr->tx_desc_ring;
3948 			rmem->dma_arr = txr->tx_desc_mapping;
3949 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3950 			rmem->vmem = (void **)&txr->tx_buf_ring;
3951 		}
3952 	}
3953 }
3954 
3955 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3956 {
3957 	int i;
3958 	u32 prod;
3959 	struct rx_bd **rx_buf_ring;
3960 
3961 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3962 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3963 		int j;
3964 		struct rx_bd *rxbd;
3965 
3966 		rxbd = rx_buf_ring[i];
3967 		if (!rxbd)
3968 			continue;
3969 
3970 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3971 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3972 			rxbd->rx_bd_opaque = prod;
3973 		}
3974 	}
3975 }
3976 
3977 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3978 {
3979 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3980 	struct net_device *dev = bp->dev;
3981 	u32 prod;
3982 	int i;
3983 
3984 	prod = rxr->rx_prod;
3985 	for (i = 0; i < bp->rx_ring_size; i++) {
3986 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3987 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3988 				    ring_nr, i, bp->rx_ring_size);
3989 			break;
3990 		}
3991 		prod = NEXT_RX(prod);
3992 	}
3993 	rxr->rx_prod = prod;
3994 
3995 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3996 		return 0;
3997 
3998 	prod = rxr->rx_agg_prod;
3999 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4000 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4001 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
4002 				    ring_nr, i, bp->rx_ring_size);
4003 			break;
4004 		}
4005 		prod = NEXT_RX_AGG(prod);
4006 	}
4007 	rxr->rx_agg_prod = prod;
4008 
4009 	if (rxr->rx_tpa) {
4010 		dma_addr_t mapping;
4011 		u8 *data;
4012 
4013 		for (i = 0; i < bp->max_tpa; i++) {
4014 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4015 			if (!data)
4016 				return -ENOMEM;
4017 
4018 			rxr->rx_tpa[i].data = data;
4019 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4020 			rxr->rx_tpa[i].mapping = mapping;
4021 		}
4022 	}
4023 	return 0;
4024 }
4025 
4026 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4027 {
4028 	struct bnxt_rx_ring_info *rxr;
4029 	struct bnxt_ring_struct *ring;
4030 	u32 type;
4031 
4032 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4033 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4034 
4035 	if (NET_IP_ALIGN == 2)
4036 		type |= RX_BD_FLAGS_SOP;
4037 
4038 	rxr = &bp->rx_ring[ring_nr];
4039 	ring = &rxr->rx_ring_struct;
4040 	bnxt_init_rxbd_pages(ring, type);
4041 
4042 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4043 			     &rxr->bnapi->napi);
4044 
4045 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4046 		bpf_prog_add(bp->xdp_prog, 1);
4047 		rxr->xdp_prog = bp->xdp_prog;
4048 	}
4049 	ring->fw_ring_id = INVALID_HW_RING_ID;
4050 
4051 	ring = &rxr->rx_agg_ring_struct;
4052 	ring->fw_ring_id = INVALID_HW_RING_ID;
4053 
4054 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4055 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4056 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4057 
4058 		bnxt_init_rxbd_pages(ring, type);
4059 	}
4060 
4061 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4062 }
4063 
4064 static void bnxt_init_cp_rings(struct bnxt *bp)
4065 {
4066 	int i, j;
4067 
4068 	for (i = 0; i < bp->cp_nr_rings; i++) {
4069 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4070 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4071 
4072 		ring->fw_ring_id = INVALID_HW_RING_ID;
4073 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4074 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4075 		if (!cpr->cp_ring_arr)
4076 			continue;
4077 		for (j = 0; j < cpr->cp_ring_count; j++) {
4078 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4079 
4080 			ring = &cpr2->cp_ring_struct;
4081 			ring->fw_ring_id = INVALID_HW_RING_ID;
4082 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4083 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4084 		}
4085 	}
4086 }
4087 
4088 static int bnxt_init_rx_rings(struct bnxt *bp)
4089 {
4090 	int i, rc = 0;
4091 
4092 	if (BNXT_RX_PAGE_MODE(bp)) {
4093 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4094 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4095 	} else {
4096 		bp->rx_offset = BNXT_RX_OFFSET;
4097 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4098 	}
4099 
4100 	for (i = 0; i < bp->rx_nr_rings; i++) {
4101 		rc = bnxt_init_one_rx_ring(bp, i);
4102 		if (rc)
4103 			break;
4104 	}
4105 
4106 	return rc;
4107 }
4108 
4109 static int bnxt_init_tx_rings(struct bnxt *bp)
4110 {
4111 	u16 i;
4112 
4113 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4114 				   BNXT_MIN_TX_DESC_CNT);
4115 
4116 	for (i = 0; i < bp->tx_nr_rings; i++) {
4117 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4118 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4119 
4120 		ring->fw_ring_id = INVALID_HW_RING_ID;
4121 
4122 		if (i >= bp->tx_nr_rings_xdp)
4123 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4124 					     NETDEV_QUEUE_TYPE_TX,
4125 					     &txr->bnapi->napi);
4126 	}
4127 
4128 	return 0;
4129 }
4130 
4131 static void bnxt_free_ring_grps(struct bnxt *bp)
4132 {
4133 	kfree(bp->grp_info);
4134 	bp->grp_info = NULL;
4135 }
4136 
4137 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4138 {
4139 	int i;
4140 
4141 	if (irq_re_init) {
4142 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4143 				       sizeof(struct bnxt_ring_grp_info),
4144 				       GFP_KERNEL);
4145 		if (!bp->grp_info)
4146 			return -ENOMEM;
4147 	}
4148 	for (i = 0; i < bp->cp_nr_rings; i++) {
4149 		if (irq_re_init)
4150 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4151 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4152 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4153 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4154 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4155 	}
4156 	return 0;
4157 }
4158 
4159 static void bnxt_free_vnics(struct bnxt *bp)
4160 {
4161 	kfree(bp->vnic_info);
4162 	bp->vnic_info = NULL;
4163 	bp->nr_vnics = 0;
4164 }
4165 
4166 static int bnxt_alloc_vnics(struct bnxt *bp)
4167 {
4168 	int num_vnics = 1;
4169 
4170 #ifdef CONFIG_RFS_ACCEL
4171 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) == BNXT_FLAG_RFS)
4172 		num_vnics += bp->rx_nr_rings;
4173 #endif
4174 
4175 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4176 		num_vnics++;
4177 
4178 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4179 				GFP_KERNEL);
4180 	if (!bp->vnic_info)
4181 		return -ENOMEM;
4182 
4183 	bp->nr_vnics = num_vnics;
4184 	return 0;
4185 }
4186 
4187 static void bnxt_init_vnics(struct bnxt *bp)
4188 {
4189 	int i;
4190 
4191 	for (i = 0; i < bp->nr_vnics; i++) {
4192 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4193 		int j;
4194 
4195 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4196 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4197 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4198 
4199 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4200 
4201 		if (bp->vnic_info[i].rss_hash_key) {
4202 			if (!i) {
4203 				u8 *key = (void *)vnic->rss_hash_key;
4204 				int k;
4205 
4206 				bp->toeplitz_prefix = 0;
4207 				get_random_bytes(vnic->rss_hash_key,
4208 					      HW_HASH_KEY_SIZE);
4209 				for (k = 0; k < 8; k++) {
4210 					bp->toeplitz_prefix <<= 8;
4211 					bp->toeplitz_prefix |= key[k];
4212 				}
4213 			} else {
4214 				memcpy(vnic->rss_hash_key,
4215 				       bp->vnic_info[0].rss_hash_key,
4216 				       HW_HASH_KEY_SIZE);
4217 			}
4218 		}
4219 	}
4220 }
4221 
4222 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4223 {
4224 	int pages;
4225 
4226 	pages = ring_size / desc_per_pg;
4227 
4228 	if (!pages)
4229 		return 1;
4230 
4231 	pages++;
4232 
4233 	while (pages & (pages - 1))
4234 		pages++;
4235 
4236 	return pages;
4237 }
4238 
4239 void bnxt_set_tpa_flags(struct bnxt *bp)
4240 {
4241 	bp->flags &= ~BNXT_FLAG_TPA;
4242 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4243 		return;
4244 	if (bp->dev->features & NETIF_F_LRO)
4245 		bp->flags |= BNXT_FLAG_LRO;
4246 	else if (bp->dev->features & NETIF_F_GRO_HW)
4247 		bp->flags |= BNXT_FLAG_GRO;
4248 }
4249 
4250 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4251  * be set on entry.
4252  */
4253 void bnxt_set_ring_params(struct bnxt *bp)
4254 {
4255 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4256 	u32 agg_factor = 0, agg_ring_size = 0;
4257 
4258 	/* 8 for CRC and VLAN */
4259 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4260 
4261 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4262 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4263 
4264 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4265 	ring_size = bp->rx_ring_size;
4266 	bp->rx_agg_ring_size = 0;
4267 	bp->rx_agg_nr_pages = 0;
4268 
4269 	if (bp->flags & BNXT_FLAG_TPA)
4270 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4271 
4272 	bp->flags &= ~BNXT_FLAG_JUMBO;
4273 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4274 		u32 jumbo_factor;
4275 
4276 		bp->flags |= BNXT_FLAG_JUMBO;
4277 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4278 		if (jumbo_factor > agg_factor)
4279 			agg_factor = jumbo_factor;
4280 	}
4281 	if (agg_factor) {
4282 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4283 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4284 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4285 				    bp->rx_ring_size, ring_size);
4286 			bp->rx_ring_size = ring_size;
4287 		}
4288 		agg_ring_size = ring_size * agg_factor;
4289 
4290 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4291 							RX_DESC_CNT);
4292 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4293 			u32 tmp = agg_ring_size;
4294 
4295 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4296 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4297 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4298 				    tmp, agg_ring_size);
4299 		}
4300 		bp->rx_agg_ring_size = agg_ring_size;
4301 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4302 
4303 		if (BNXT_RX_PAGE_MODE(bp)) {
4304 			rx_space = PAGE_SIZE;
4305 			rx_size = PAGE_SIZE -
4306 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4307 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4308 		} else {
4309 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4310 			rx_space = rx_size + NET_SKB_PAD +
4311 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4312 		}
4313 	}
4314 
4315 	bp->rx_buf_use_size = rx_size;
4316 	bp->rx_buf_size = rx_space;
4317 
4318 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4319 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4320 
4321 	ring_size = bp->tx_ring_size;
4322 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4323 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4324 
4325 	max_rx_cmpl = bp->rx_ring_size;
4326 	/* MAX TPA needs to be added because TPA_START completions are
4327 	 * immediately recycled, so the TPA completions are not bound by
4328 	 * the RX ring size.
4329 	 */
4330 	if (bp->flags & BNXT_FLAG_TPA)
4331 		max_rx_cmpl += bp->max_tpa;
4332 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4333 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4334 	bp->cp_ring_size = ring_size;
4335 
4336 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4337 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4338 		bp->cp_nr_pages = MAX_CP_PAGES;
4339 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4340 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4341 			    ring_size, bp->cp_ring_size);
4342 	}
4343 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4344 	bp->cp_ring_mask = bp->cp_bit - 1;
4345 }
4346 
4347 /* Changing allocation mode of RX rings.
4348  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4349  */
4350 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4351 {
4352 	struct net_device *dev = bp->dev;
4353 
4354 	if (page_mode) {
4355 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4356 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4357 
4358 		if (bp->xdp_prog->aux->xdp_has_frags)
4359 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4360 		else
4361 			dev->max_mtu =
4362 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4363 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4364 			bp->flags |= BNXT_FLAG_JUMBO;
4365 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4366 		} else {
4367 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4368 			bp->rx_skb_func = bnxt_rx_page_skb;
4369 		}
4370 		bp->rx_dir = DMA_BIDIRECTIONAL;
4371 		/* Disable LRO or GRO_HW */
4372 		netdev_update_features(dev);
4373 	} else {
4374 		dev->max_mtu = bp->max_mtu;
4375 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4376 		bp->rx_dir = DMA_FROM_DEVICE;
4377 		bp->rx_skb_func = bnxt_rx_skb;
4378 	}
4379 	return 0;
4380 }
4381 
4382 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4383 {
4384 	int i;
4385 	struct bnxt_vnic_info *vnic;
4386 	struct pci_dev *pdev = bp->pdev;
4387 
4388 	if (!bp->vnic_info)
4389 		return;
4390 
4391 	for (i = 0; i < bp->nr_vnics; i++) {
4392 		vnic = &bp->vnic_info[i];
4393 
4394 		kfree(vnic->fw_grp_ids);
4395 		vnic->fw_grp_ids = NULL;
4396 
4397 		kfree(vnic->uc_list);
4398 		vnic->uc_list = NULL;
4399 
4400 		if (vnic->mc_list) {
4401 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4402 					  vnic->mc_list, vnic->mc_list_mapping);
4403 			vnic->mc_list = NULL;
4404 		}
4405 
4406 		if (vnic->rss_table) {
4407 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4408 					  vnic->rss_table,
4409 					  vnic->rss_table_dma_addr);
4410 			vnic->rss_table = NULL;
4411 		}
4412 
4413 		vnic->rss_hash_key = NULL;
4414 		vnic->flags = 0;
4415 	}
4416 }
4417 
4418 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4419 {
4420 	int i, rc = 0, size;
4421 	struct bnxt_vnic_info *vnic;
4422 	struct pci_dev *pdev = bp->pdev;
4423 	int max_rings;
4424 
4425 	for (i = 0; i < bp->nr_vnics; i++) {
4426 		vnic = &bp->vnic_info[i];
4427 
4428 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4429 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4430 
4431 			if (mem_size > 0) {
4432 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4433 				if (!vnic->uc_list) {
4434 					rc = -ENOMEM;
4435 					goto out;
4436 				}
4437 			}
4438 		}
4439 
4440 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4441 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4442 			vnic->mc_list =
4443 				dma_alloc_coherent(&pdev->dev,
4444 						   vnic->mc_list_size,
4445 						   &vnic->mc_list_mapping,
4446 						   GFP_KERNEL);
4447 			if (!vnic->mc_list) {
4448 				rc = -ENOMEM;
4449 				goto out;
4450 			}
4451 		}
4452 
4453 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4454 			goto vnic_skip_grps;
4455 
4456 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4457 			max_rings = bp->rx_nr_rings;
4458 		else
4459 			max_rings = 1;
4460 
4461 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4462 		if (!vnic->fw_grp_ids) {
4463 			rc = -ENOMEM;
4464 			goto out;
4465 		}
4466 vnic_skip_grps:
4467 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4468 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4469 			continue;
4470 
4471 		/* Allocate rss table and hash key */
4472 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4473 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4474 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4475 
4476 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4477 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4478 						     vnic->rss_table_size,
4479 						     &vnic->rss_table_dma_addr,
4480 						     GFP_KERNEL);
4481 		if (!vnic->rss_table) {
4482 			rc = -ENOMEM;
4483 			goto out;
4484 		}
4485 
4486 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4487 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4488 	}
4489 	return 0;
4490 
4491 out:
4492 	return rc;
4493 }
4494 
4495 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4496 {
4497 	struct bnxt_hwrm_wait_token *token;
4498 
4499 	dma_pool_destroy(bp->hwrm_dma_pool);
4500 	bp->hwrm_dma_pool = NULL;
4501 
4502 	rcu_read_lock();
4503 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4504 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4505 	rcu_read_unlock();
4506 }
4507 
4508 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4509 {
4510 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4511 					    BNXT_HWRM_DMA_SIZE,
4512 					    BNXT_HWRM_DMA_ALIGN, 0);
4513 	if (!bp->hwrm_dma_pool)
4514 		return -ENOMEM;
4515 
4516 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4517 
4518 	return 0;
4519 }
4520 
4521 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4522 {
4523 	kfree(stats->hw_masks);
4524 	stats->hw_masks = NULL;
4525 	kfree(stats->sw_stats);
4526 	stats->sw_stats = NULL;
4527 	if (stats->hw_stats) {
4528 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4529 				  stats->hw_stats_map);
4530 		stats->hw_stats = NULL;
4531 	}
4532 }
4533 
4534 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4535 				bool alloc_masks)
4536 {
4537 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4538 					     &stats->hw_stats_map, GFP_KERNEL);
4539 	if (!stats->hw_stats)
4540 		return -ENOMEM;
4541 
4542 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4543 	if (!stats->sw_stats)
4544 		goto stats_mem_err;
4545 
4546 	if (alloc_masks) {
4547 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4548 		if (!stats->hw_masks)
4549 			goto stats_mem_err;
4550 	}
4551 	return 0;
4552 
4553 stats_mem_err:
4554 	bnxt_free_stats_mem(bp, stats);
4555 	return -ENOMEM;
4556 }
4557 
4558 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4559 {
4560 	int i;
4561 
4562 	for (i = 0; i < count; i++)
4563 		mask_arr[i] = mask;
4564 }
4565 
4566 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4567 {
4568 	int i;
4569 
4570 	for (i = 0; i < count; i++)
4571 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4572 }
4573 
4574 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4575 				    struct bnxt_stats_mem *stats)
4576 {
4577 	struct hwrm_func_qstats_ext_output *resp;
4578 	struct hwrm_func_qstats_ext_input *req;
4579 	__le64 *hw_masks;
4580 	int rc;
4581 
4582 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4583 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4584 		return -EOPNOTSUPP;
4585 
4586 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4587 	if (rc)
4588 		return rc;
4589 
4590 	req->fid = cpu_to_le16(0xffff);
4591 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4592 
4593 	resp = hwrm_req_hold(bp, req);
4594 	rc = hwrm_req_send(bp, req);
4595 	if (!rc) {
4596 		hw_masks = &resp->rx_ucast_pkts;
4597 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4598 	}
4599 	hwrm_req_drop(bp, req);
4600 	return rc;
4601 }
4602 
4603 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4604 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4605 
4606 static void bnxt_init_stats(struct bnxt *bp)
4607 {
4608 	struct bnxt_napi *bnapi = bp->bnapi[0];
4609 	struct bnxt_cp_ring_info *cpr;
4610 	struct bnxt_stats_mem *stats;
4611 	__le64 *rx_stats, *tx_stats;
4612 	int rc, rx_count, tx_count;
4613 	u64 *rx_masks, *tx_masks;
4614 	u64 mask;
4615 	u8 flags;
4616 
4617 	cpr = &bnapi->cp_ring;
4618 	stats = &cpr->stats;
4619 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4620 	if (rc) {
4621 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4622 			mask = (1ULL << 48) - 1;
4623 		else
4624 			mask = -1ULL;
4625 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4626 	}
4627 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4628 		stats = &bp->port_stats;
4629 		rx_stats = stats->hw_stats;
4630 		rx_masks = stats->hw_masks;
4631 		rx_count = sizeof(struct rx_port_stats) / 8;
4632 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4633 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4634 		tx_count = sizeof(struct tx_port_stats) / 8;
4635 
4636 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4637 		rc = bnxt_hwrm_port_qstats(bp, flags);
4638 		if (rc) {
4639 			mask = (1ULL << 40) - 1;
4640 
4641 			bnxt_fill_masks(rx_masks, mask, rx_count);
4642 			bnxt_fill_masks(tx_masks, mask, tx_count);
4643 		} else {
4644 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4645 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4646 			bnxt_hwrm_port_qstats(bp, 0);
4647 		}
4648 	}
4649 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4650 		stats = &bp->rx_port_stats_ext;
4651 		rx_stats = stats->hw_stats;
4652 		rx_masks = stats->hw_masks;
4653 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4654 		stats = &bp->tx_port_stats_ext;
4655 		tx_stats = stats->hw_stats;
4656 		tx_masks = stats->hw_masks;
4657 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4658 
4659 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4660 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4661 		if (rc) {
4662 			mask = (1ULL << 40) - 1;
4663 
4664 			bnxt_fill_masks(rx_masks, mask, rx_count);
4665 			if (tx_stats)
4666 				bnxt_fill_masks(tx_masks, mask, tx_count);
4667 		} else {
4668 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4669 			if (tx_stats)
4670 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4671 						   tx_count);
4672 			bnxt_hwrm_port_qstats_ext(bp, 0);
4673 		}
4674 	}
4675 }
4676 
4677 static void bnxt_free_port_stats(struct bnxt *bp)
4678 {
4679 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4680 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4681 
4682 	bnxt_free_stats_mem(bp, &bp->port_stats);
4683 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4684 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4685 }
4686 
4687 static void bnxt_free_ring_stats(struct bnxt *bp)
4688 {
4689 	int i;
4690 
4691 	if (!bp->bnapi)
4692 		return;
4693 
4694 	for (i = 0; i < bp->cp_nr_rings; i++) {
4695 		struct bnxt_napi *bnapi = bp->bnapi[i];
4696 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4697 
4698 		bnxt_free_stats_mem(bp, &cpr->stats);
4699 	}
4700 }
4701 
4702 static int bnxt_alloc_stats(struct bnxt *bp)
4703 {
4704 	u32 size, i;
4705 	int rc;
4706 
4707 	size = bp->hw_ring_stats_size;
4708 
4709 	for (i = 0; i < bp->cp_nr_rings; i++) {
4710 		struct bnxt_napi *bnapi = bp->bnapi[i];
4711 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4712 
4713 		cpr->stats.len = size;
4714 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4715 		if (rc)
4716 			return rc;
4717 
4718 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4719 	}
4720 
4721 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4722 		return 0;
4723 
4724 	if (bp->port_stats.hw_stats)
4725 		goto alloc_ext_stats;
4726 
4727 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4728 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4729 	if (rc)
4730 		return rc;
4731 
4732 	bp->flags |= BNXT_FLAG_PORT_STATS;
4733 
4734 alloc_ext_stats:
4735 	/* Display extended statistics only if FW supports it */
4736 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4737 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4738 			return 0;
4739 
4740 	if (bp->rx_port_stats_ext.hw_stats)
4741 		goto alloc_tx_ext_stats;
4742 
4743 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4744 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4745 	/* Extended stats are optional */
4746 	if (rc)
4747 		return 0;
4748 
4749 alloc_tx_ext_stats:
4750 	if (bp->tx_port_stats_ext.hw_stats)
4751 		return 0;
4752 
4753 	if (bp->hwrm_spec_code >= 0x10902 ||
4754 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4755 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4756 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4757 		/* Extended stats are optional */
4758 		if (rc)
4759 			return 0;
4760 	}
4761 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4762 	return 0;
4763 }
4764 
4765 static void bnxt_clear_ring_indices(struct bnxt *bp)
4766 {
4767 	int i, j;
4768 
4769 	if (!bp->bnapi)
4770 		return;
4771 
4772 	for (i = 0; i < bp->cp_nr_rings; i++) {
4773 		struct bnxt_napi *bnapi = bp->bnapi[i];
4774 		struct bnxt_cp_ring_info *cpr;
4775 		struct bnxt_rx_ring_info *rxr;
4776 		struct bnxt_tx_ring_info *txr;
4777 
4778 		if (!bnapi)
4779 			continue;
4780 
4781 		cpr = &bnapi->cp_ring;
4782 		cpr->cp_raw_cons = 0;
4783 
4784 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4785 			txr->tx_prod = 0;
4786 			txr->tx_cons = 0;
4787 			txr->tx_hw_cons = 0;
4788 		}
4789 
4790 		rxr = bnapi->rx_ring;
4791 		if (rxr) {
4792 			rxr->rx_prod = 0;
4793 			rxr->rx_agg_prod = 0;
4794 			rxr->rx_sw_agg_prod = 0;
4795 			rxr->rx_next_cons = 0;
4796 		}
4797 		bnapi->events = 0;
4798 	}
4799 }
4800 
4801 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
4802 {
4803 	int i;
4804 
4805 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4806 	 * safe to delete the hash table.
4807 	 */
4808 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4809 		struct hlist_head *head;
4810 		struct hlist_node *tmp;
4811 		struct bnxt_ntuple_filter *fltr;
4812 
4813 		head = &bp->ntp_fltr_hash_tbl[i];
4814 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
4815 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
4816 			if (!all && (fltr->base.flags & BNXT_ACT_FUNC_DST))
4817 				continue;
4818 			hlist_del(&fltr->base.hash);
4819 			clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
4820 			bp->ntp_fltr_count--;
4821 			kfree(fltr);
4822 		}
4823 	}
4824 	if (!all)
4825 		return;
4826 
4827 	bitmap_free(bp->ntp_fltr_bmap);
4828 	bp->ntp_fltr_bmap = NULL;
4829 	bp->ntp_fltr_count = 0;
4830 }
4831 
4832 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4833 {
4834 	int i, rc = 0;
4835 
4836 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
4837 		return 0;
4838 
4839 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4840 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4841 
4842 	bp->ntp_fltr_count = 0;
4843 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_MAX_FLTR, GFP_KERNEL);
4844 
4845 	if (!bp->ntp_fltr_bmap)
4846 		rc = -ENOMEM;
4847 
4848 	return rc;
4849 }
4850 
4851 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
4852 {
4853 	int i;
4854 
4855 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
4856 		struct hlist_head *head;
4857 		struct hlist_node *tmp;
4858 		struct bnxt_l2_filter *fltr;
4859 
4860 		head = &bp->l2_fltr_hash_tbl[i];
4861 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
4862 			if (!all && (fltr->base.flags & BNXT_ACT_FUNC_DST))
4863 				continue;
4864 			hlist_del(&fltr->base.hash);
4865 			if (fltr->base.flags) {
4866 				clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
4867 				bp->ntp_fltr_count--;
4868 			}
4869 			kfree(fltr);
4870 		}
4871 	}
4872 }
4873 
4874 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
4875 {
4876 	int i;
4877 
4878 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
4879 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
4880 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
4881 }
4882 
4883 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4884 {
4885 	bnxt_free_vnic_attributes(bp);
4886 	bnxt_free_tx_rings(bp);
4887 	bnxt_free_rx_rings(bp);
4888 	bnxt_free_cp_rings(bp);
4889 	bnxt_free_all_cp_arrays(bp);
4890 	bnxt_free_ntp_fltrs(bp, false);
4891 	bnxt_free_l2_filters(bp, false);
4892 	if (irq_re_init) {
4893 		bnxt_free_ring_stats(bp);
4894 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4895 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4896 			bnxt_free_port_stats(bp);
4897 		bnxt_free_ring_grps(bp);
4898 		bnxt_free_vnics(bp);
4899 		kfree(bp->tx_ring_map);
4900 		bp->tx_ring_map = NULL;
4901 		kfree(bp->tx_ring);
4902 		bp->tx_ring = NULL;
4903 		kfree(bp->rx_ring);
4904 		bp->rx_ring = NULL;
4905 		kfree(bp->bnapi);
4906 		bp->bnapi = NULL;
4907 	} else {
4908 		bnxt_clear_ring_indices(bp);
4909 	}
4910 }
4911 
4912 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4913 {
4914 	int i, j, rc, size, arr_size;
4915 	void *bnapi;
4916 
4917 	if (irq_re_init) {
4918 		/* Allocate bnapi mem pointer array and mem block for
4919 		 * all queues
4920 		 */
4921 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4922 				bp->cp_nr_rings);
4923 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4924 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4925 		if (!bnapi)
4926 			return -ENOMEM;
4927 
4928 		bp->bnapi = bnapi;
4929 		bnapi += arr_size;
4930 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4931 			bp->bnapi[i] = bnapi;
4932 			bp->bnapi[i]->index = i;
4933 			bp->bnapi[i]->bp = bp;
4934 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4935 				struct bnxt_cp_ring_info *cpr =
4936 					&bp->bnapi[i]->cp_ring;
4937 
4938 				cpr->cp_ring_struct.ring_mem.flags =
4939 					BNXT_RMEM_RING_PTE_FLAG;
4940 			}
4941 		}
4942 
4943 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4944 				      sizeof(struct bnxt_rx_ring_info),
4945 				      GFP_KERNEL);
4946 		if (!bp->rx_ring)
4947 			return -ENOMEM;
4948 
4949 		for (i = 0; i < bp->rx_nr_rings; i++) {
4950 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4951 
4952 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4953 				rxr->rx_ring_struct.ring_mem.flags =
4954 					BNXT_RMEM_RING_PTE_FLAG;
4955 				rxr->rx_agg_ring_struct.ring_mem.flags =
4956 					BNXT_RMEM_RING_PTE_FLAG;
4957 			} else {
4958 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
4959 			}
4960 			rxr->bnapi = bp->bnapi[i];
4961 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4962 		}
4963 
4964 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4965 				      sizeof(struct bnxt_tx_ring_info),
4966 				      GFP_KERNEL);
4967 		if (!bp->tx_ring)
4968 			return -ENOMEM;
4969 
4970 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4971 					  GFP_KERNEL);
4972 
4973 		if (!bp->tx_ring_map)
4974 			return -ENOMEM;
4975 
4976 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4977 			j = 0;
4978 		else
4979 			j = bp->rx_nr_rings;
4980 
4981 		for (i = 0; i < bp->tx_nr_rings; i++) {
4982 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4983 			struct bnxt_napi *bnapi2;
4984 
4985 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4986 				txr->tx_ring_struct.ring_mem.flags =
4987 					BNXT_RMEM_RING_PTE_FLAG;
4988 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4989 			if (i >= bp->tx_nr_rings_xdp) {
4990 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
4991 
4992 				bnapi2 = bp->bnapi[k];
4993 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4994 				txr->tx_napi_idx =
4995 					BNXT_RING_TO_TC(bp, txr->txq_index);
4996 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
4997 				bnapi2->tx_int = bnxt_tx_int;
4998 			} else {
4999 				bnapi2 = bp->bnapi[j];
5000 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5001 				bnapi2->tx_ring[0] = txr;
5002 				bnapi2->tx_int = bnxt_tx_int_xdp;
5003 				j++;
5004 			}
5005 			txr->bnapi = bnapi2;
5006 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5007 				txr->tx_cpr = &bnapi2->cp_ring;
5008 		}
5009 
5010 		rc = bnxt_alloc_stats(bp);
5011 		if (rc)
5012 			goto alloc_mem_err;
5013 		bnxt_init_stats(bp);
5014 
5015 		rc = bnxt_alloc_ntp_fltrs(bp);
5016 		if (rc)
5017 			goto alloc_mem_err;
5018 
5019 		rc = bnxt_alloc_vnics(bp);
5020 		if (rc)
5021 			goto alloc_mem_err;
5022 	}
5023 
5024 	rc = bnxt_alloc_all_cp_arrays(bp);
5025 	if (rc)
5026 		goto alloc_mem_err;
5027 
5028 	bnxt_init_ring_struct(bp);
5029 
5030 	rc = bnxt_alloc_rx_rings(bp);
5031 	if (rc)
5032 		goto alloc_mem_err;
5033 
5034 	rc = bnxt_alloc_tx_rings(bp);
5035 	if (rc)
5036 		goto alloc_mem_err;
5037 
5038 	rc = bnxt_alloc_cp_rings(bp);
5039 	if (rc)
5040 		goto alloc_mem_err;
5041 
5042 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
5043 				  BNXT_VNIC_UCAST_FLAG;
5044 	rc = bnxt_alloc_vnic_attributes(bp);
5045 	if (rc)
5046 		goto alloc_mem_err;
5047 	return 0;
5048 
5049 alloc_mem_err:
5050 	bnxt_free_mem(bp, true);
5051 	return rc;
5052 }
5053 
5054 static void bnxt_disable_int(struct bnxt *bp)
5055 {
5056 	int i;
5057 
5058 	if (!bp->bnapi)
5059 		return;
5060 
5061 	for (i = 0; i < bp->cp_nr_rings; i++) {
5062 		struct bnxt_napi *bnapi = bp->bnapi[i];
5063 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5064 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5065 
5066 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5067 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5068 	}
5069 }
5070 
5071 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5072 {
5073 	struct bnxt_napi *bnapi = bp->bnapi[n];
5074 	struct bnxt_cp_ring_info *cpr;
5075 
5076 	cpr = &bnapi->cp_ring;
5077 	return cpr->cp_ring_struct.map_idx;
5078 }
5079 
5080 static void bnxt_disable_int_sync(struct bnxt *bp)
5081 {
5082 	int i;
5083 
5084 	if (!bp->irq_tbl)
5085 		return;
5086 
5087 	atomic_inc(&bp->intr_sem);
5088 
5089 	bnxt_disable_int(bp);
5090 	for (i = 0; i < bp->cp_nr_rings; i++) {
5091 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5092 
5093 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5094 	}
5095 }
5096 
5097 static void bnxt_enable_int(struct bnxt *bp)
5098 {
5099 	int i;
5100 
5101 	atomic_set(&bp->intr_sem, 0);
5102 	for (i = 0; i < bp->cp_nr_rings; i++) {
5103 		struct bnxt_napi *bnapi = bp->bnapi[i];
5104 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5105 
5106 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5107 	}
5108 }
5109 
5110 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5111 			    bool async_only)
5112 {
5113 	DECLARE_BITMAP(async_events_bmap, 256);
5114 	u32 *events = (u32 *)async_events_bmap;
5115 	struct hwrm_func_drv_rgtr_output *resp;
5116 	struct hwrm_func_drv_rgtr_input *req;
5117 	u32 flags;
5118 	int rc, i;
5119 
5120 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5121 	if (rc)
5122 		return rc;
5123 
5124 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5125 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5126 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5127 
5128 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5129 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5130 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5131 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5132 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5133 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5134 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5135 	req->flags = cpu_to_le32(flags);
5136 	req->ver_maj_8b = DRV_VER_MAJ;
5137 	req->ver_min_8b = DRV_VER_MIN;
5138 	req->ver_upd_8b = DRV_VER_UPD;
5139 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5140 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5141 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5142 
5143 	if (BNXT_PF(bp)) {
5144 		u32 data[8];
5145 		int i;
5146 
5147 		memset(data, 0, sizeof(data));
5148 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5149 			u16 cmd = bnxt_vf_req_snif[i];
5150 			unsigned int bit, idx;
5151 
5152 			idx = cmd / 32;
5153 			bit = cmd % 32;
5154 			data[idx] |= 1 << bit;
5155 		}
5156 
5157 		for (i = 0; i < 8; i++)
5158 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5159 
5160 		req->enables |=
5161 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5162 	}
5163 
5164 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5165 		req->flags |= cpu_to_le32(
5166 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5167 
5168 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5169 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5170 		u16 event_id = bnxt_async_events_arr[i];
5171 
5172 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5173 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5174 			continue;
5175 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5176 		    !bp->ptp_cfg)
5177 			continue;
5178 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5179 	}
5180 	if (bmap && bmap_size) {
5181 		for (i = 0; i < bmap_size; i++) {
5182 			if (test_bit(i, bmap))
5183 				__set_bit(i, async_events_bmap);
5184 		}
5185 	}
5186 	for (i = 0; i < 8; i++)
5187 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5188 
5189 	if (async_only)
5190 		req->enables =
5191 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5192 
5193 	resp = hwrm_req_hold(bp, req);
5194 	rc = hwrm_req_send(bp, req);
5195 	if (!rc) {
5196 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5197 		if (resp->flags &
5198 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5199 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5200 	}
5201 	hwrm_req_drop(bp, req);
5202 	return rc;
5203 }
5204 
5205 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5206 {
5207 	struct hwrm_func_drv_unrgtr_input *req;
5208 	int rc;
5209 
5210 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5211 		return 0;
5212 
5213 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5214 	if (rc)
5215 		return rc;
5216 	return hwrm_req_send(bp, req);
5217 }
5218 
5219 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5220 
5221 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5222 {
5223 	struct hwrm_tunnel_dst_port_free_input *req;
5224 	int rc;
5225 
5226 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5227 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5228 		return 0;
5229 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5230 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5231 		return 0;
5232 
5233 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5234 	if (rc)
5235 		return rc;
5236 
5237 	req->tunnel_type = tunnel_type;
5238 
5239 	switch (tunnel_type) {
5240 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5241 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5242 		bp->vxlan_port = 0;
5243 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5244 		break;
5245 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5246 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5247 		bp->nge_port = 0;
5248 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5249 		break;
5250 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5251 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5252 		bp->vxlan_gpe_port = 0;
5253 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5254 		break;
5255 	default:
5256 		break;
5257 	}
5258 
5259 	rc = hwrm_req_send(bp, req);
5260 	if (rc)
5261 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5262 			   rc);
5263 	if (bp->flags & BNXT_FLAG_TPA)
5264 		bnxt_set_tpa(bp, true);
5265 	return rc;
5266 }
5267 
5268 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5269 					   u8 tunnel_type)
5270 {
5271 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5272 	struct hwrm_tunnel_dst_port_alloc_input *req;
5273 	int rc;
5274 
5275 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5276 	if (rc)
5277 		return rc;
5278 
5279 	req->tunnel_type = tunnel_type;
5280 	req->tunnel_dst_port_val = port;
5281 
5282 	resp = hwrm_req_hold(bp, req);
5283 	rc = hwrm_req_send(bp, req);
5284 	if (rc) {
5285 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5286 			   rc);
5287 		goto err_out;
5288 	}
5289 
5290 	switch (tunnel_type) {
5291 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5292 		bp->vxlan_port = port;
5293 		bp->vxlan_fw_dst_port_id =
5294 			le16_to_cpu(resp->tunnel_dst_port_id);
5295 		break;
5296 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5297 		bp->nge_port = port;
5298 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5299 		break;
5300 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5301 		bp->vxlan_gpe_port = port;
5302 		bp->vxlan_gpe_fw_dst_port_id =
5303 			le16_to_cpu(resp->tunnel_dst_port_id);
5304 		break;
5305 	default:
5306 		break;
5307 	}
5308 	if (bp->flags & BNXT_FLAG_TPA)
5309 		bnxt_set_tpa(bp, true);
5310 
5311 err_out:
5312 	hwrm_req_drop(bp, req);
5313 	return rc;
5314 }
5315 
5316 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5317 {
5318 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5319 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5320 	int rc;
5321 
5322 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5323 	if (rc)
5324 		return rc;
5325 
5326 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5327 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5328 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5329 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5330 	}
5331 	req->mask = cpu_to_le32(vnic->rx_mask);
5332 	return hwrm_req_send_silent(bp, req);
5333 }
5334 
5335 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5336 {
5337 	if (!atomic_dec_and_test(&fltr->refcnt))
5338 		return;
5339 	spin_lock_bh(&bp->ntp_fltr_lock);
5340 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5341 		spin_unlock_bh(&bp->ntp_fltr_lock);
5342 		return;
5343 	}
5344 	hlist_del_rcu(&fltr->base.hash);
5345 	if (fltr->base.flags) {
5346 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5347 		bp->ntp_fltr_count--;
5348 	}
5349 	spin_unlock_bh(&bp->ntp_fltr_lock);
5350 	kfree_rcu(fltr, base.rcu);
5351 }
5352 
5353 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5354 						      struct bnxt_l2_key *key,
5355 						      u32 idx)
5356 {
5357 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5358 	struct bnxt_l2_filter *fltr;
5359 
5360 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5361 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5362 
5363 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5364 		    l2_key->vlan == key->vlan)
5365 			return fltr;
5366 	}
5367 	return NULL;
5368 }
5369 
5370 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5371 						    struct bnxt_l2_key *key,
5372 						    u32 idx)
5373 {
5374 	struct bnxt_l2_filter *fltr = NULL;
5375 
5376 	rcu_read_lock();
5377 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5378 	if (fltr)
5379 		atomic_inc(&fltr->refcnt);
5380 	rcu_read_unlock();
5381 	return fltr;
5382 }
5383 
5384 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5385 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5386 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5387 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5388 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5389 
5390 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5391 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5392 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5393 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5394 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5395 
5396 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5397 {
5398 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5399 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5400 			return sizeof(fkeys->addrs.v4addrs) +
5401 			       sizeof(fkeys->ports);
5402 
5403 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5404 			return sizeof(fkeys->addrs.v4addrs);
5405 	}
5406 
5407 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5408 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5409 			return sizeof(fkeys->addrs.v6addrs) +
5410 			       sizeof(fkeys->ports);
5411 
5412 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5413 			return sizeof(fkeys->addrs.v6addrs);
5414 	}
5415 
5416 	return 0;
5417 }
5418 
5419 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5420 			 const unsigned char *key)
5421 {
5422 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5423 	struct bnxt_ipv4_tuple tuple4;
5424 	struct bnxt_ipv6_tuple tuple6;
5425 	int i, j, len = 0;
5426 	u8 *four_tuple;
5427 
5428 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5429 	if (!len)
5430 		return 0;
5431 
5432 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5433 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5434 		tuple4.ports = fkeys->ports;
5435 		four_tuple = (unsigned char *)&tuple4;
5436 	} else {
5437 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5438 		tuple6.ports = fkeys->ports;
5439 		four_tuple = (unsigned char *)&tuple6;
5440 	}
5441 
5442 	for (i = 0, j = 8; i < len; i++, j++) {
5443 		u8 byte = four_tuple[i];
5444 		int bit;
5445 
5446 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5447 			if (byte & 0x80)
5448 				hash ^= prefix;
5449 		}
5450 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5451 	}
5452 
5453 	/* The valid part of the hash is in the upper 32 bits. */
5454 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5455 }
5456 
5457 #ifdef CONFIG_RFS_ACCEL
5458 static struct bnxt_l2_filter *
5459 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5460 {
5461 	struct bnxt_l2_filter *fltr;
5462 	u32 idx;
5463 
5464 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5465 	      BNXT_L2_FLTR_HASH_MASK;
5466 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5467 	return fltr;
5468 }
5469 #endif
5470 
5471 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5472 			       struct bnxt_l2_key *key, u32 idx)
5473 {
5474 	struct hlist_head *head;
5475 
5476 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5477 	fltr->l2_key.vlan = key->vlan;
5478 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5479 	if (fltr->base.flags) {
5480 		int bit_id;
5481 
5482 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5483 						 BNXT_MAX_FLTR, 0);
5484 		if (bit_id < 0)
5485 			return -ENOMEM;
5486 		fltr->base.sw_id = (u16)bit_id;
5487 	}
5488 	head = &bp->l2_fltr_hash_tbl[idx];
5489 	hlist_add_head_rcu(&fltr->base.hash, head);
5490 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5491 	atomic_set(&fltr->refcnt, 1);
5492 	return 0;
5493 }
5494 
5495 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5496 						   struct bnxt_l2_key *key,
5497 						   gfp_t gfp)
5498 {
5499 	struct bnxt_l2_filter *fltr;
5500 	u32 idx;
5501 	int rc;
5502 
5503 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5504 	      BNXT_L2_FLTR_HASH_MASK;
5505 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5506 	if (fltr)
5507 		return fltr;
5508 
5509 	fltr = kzalloc(sizeof(*fltr), gfp);
5510 	if (!fltr)
5511 		return ERR_PTR(-ENOMEM);
5512 	spin_lock_bh(&bp->ntp_fltr_lock);
5513 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5514 	spin_unlock_bh(&bp->ntp_fltr_lock);
5515 	if (rc) {
5516 		bnxt_del_l2_filter(bp, fltr);
5517 		fltr = ERR_PTR(rc);
5518 	}
5519 	return fltr;
5520 }
5521 
5522 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5523 {
5524 #ifdef CONFIG_BNXT_SRIOV
5525 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5526 
5527 	return vf->fw_fid;
5528 #else
5529 	return INVALID_HW_RING_ID;
5530 #endif
5531 }
5532 
5533 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5534 {
5535 	struct hwrm_cfa_l2_filter_free_input *req;
5536 	u16 target_id = 0xffff;
5537 	int rc;
5538 
5539 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5540 		struct bnxt_pf_info *pf = &bp->pf;
5541 
5542 		if (fltr->base.vf_idx >= pf->active_vfs)
5543 			return -EINVAL;
5544 
5545 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5546 		if (target_id == INVALID_HW_RING_ID)
5547 			return -EINVAL;
5548 	}
5549 
5550 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5551 	if (rc)
5552 		return rc;
5553 
5554 	req->target_id = cpu_to_le16(target_id);
5555 	req->l2_filter_id = fltr->base.filter_id;
5556 	return hwrm_req_send(bp, req);
5557 }
5558 
5559 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5560 {
5561 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5562 	struct hwrm_cfa_l2_filter_alloc_input *req;
5563 	u16 target_id = 0xffff;
5564 	int rc;
5565 
5566 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5567 		struct bnxt_pf_info *pf = &bp->pf;
5568 
5569 		if (fltr->base.vf_idx >= pf->active_vfs)
5570 			return -EINVAL;
5571 
5572 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5573 	}
5574 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5575 	if (rc)
5576 		return rc;
5577 
5578 	req->target_id = cpu_to_le16(target_id);
5579 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5580 
5581 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5582 		req->flags |=
5583 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5584 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5585 	req->enables =
5586 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5587 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5588 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5589 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5590 	eth_broadcast_addr(req->l2_addr_mask);
5591 
5592 	if (fltr->l2_key.vlan) {
5593 		req->enables |=
5594 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5595 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5596 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5597 		req->num_vlans = 1;
5598 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5599 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5600 	}
5601 
5602 	resp = hwrm_req_hold(bp, req);
5603 	rc = hwrm_req_send(bp, req);
5604 	if (!rc) {
5605 		fltr->base.filter_id = resp->l2_filter_id;
5606 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5607 	}
5608 	hwrm_req_drop(bp, req);
5609 	return rc;
5610 }
5611 
5612 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5613 				     struct bnxt_ntuple_filter *fltr)
5614 {
5615 	struct hwrm_cfa_ntuple_filter_free_input *req;
5616 	int rc;
5617 
5618 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5619 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5620 	if (rc)
5621 		return rc;
5622 
5623 	req->ntuple_filter_id = fltr->base.filter_id;
5624 	return hwrm_req_send(bp, req);
5625 }
5626 
5627 #define BNXT_NTP_FLTR_FLAGS					\
5628 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5629 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5630 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5631 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5632 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5633 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5634 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5635 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5636 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5637 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5638 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5639 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5640 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5641 
5642 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5643 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5644 
5645 void bnxt_fill_ipv6_mask(__be32 mask[4])
5646 {
5647 	int i;
5648 
5649 	for (i = 0; i < 4; i++)
5650 		mask[i] = cpu_to_be32(~0);
5651 }
5652 
5653 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5654 				      struct bnxt_ntuple_filter *fltr)
5655 {
5656 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5657 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5658 	struct flow_keys *keys = &fltr->fkeys;
5659 	struct bnxt_l2_filter *l2_fltr;
5660 	struct bnxt_vnic_info *vnic;
5661 	u32 flags = 0;
5662 	int rc;
5663 
5664 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5665 	if (rc)
5666 		return rc;
5667 
5668 	l2_fltr = fltr->l2_fltr;
5669 	req->l2_filter_id = l2_fltr->base.filter_id;
5670 
5671 
5672 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
5673 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5674 		req->dst_id = cpu_to_le16(fltr->base.rxq);
5675 	} else {
5676 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
5677 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5678 	}
5679 	req->flags = cpu_to_le32(flags);
5680 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
5681 
5682 	req->ethertype = htons(ETH_P_IP);
5683 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
5684 	req->ip_protocol = keys->basic.ip_proto;
5685 
5686 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
5687 		req->ethertype = htons(ETH_P_IPV6);
5688 		req->ip_addr_type =
5689 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5690 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) {
5691 			*(struct in6_addr *)&req->src_ipaddr[0] =
5692 				keys->addrs.v6addrs.src;
5693 			bnxt_fill_ipv6_mask(req->src_ipaddr_mask);
5694 		}
5695 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) {
5696 			*(struct in6_addr *)&req->dst_ipaddr[0] =
5697 				keys->addrs.v6addrs.dst;
5698 			bnxt_fill_ipv6_mask(req->dst_ipaddr_mask);
5699 		}
5700 	} else {
5701 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) {
5702 			req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5703 			req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5704 		}
5705 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) {
5706 			req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5707 			req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5708 		}
5709 	}
5710 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5711 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5712 		req->tunnel_type =
5713 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5714 	}
5715 
5716 	if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_PORT) {
5717 		req->src_port = keys->ports.src;
5718 		req->src_port_mask = cpu_to_be16(0xffff);
5719 	}
5720 	if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_DST_PORT) {
5721 		req->dst_port = keys->ports.dst;
5722 		req->dst_port_mask = cpu_to_be16(0xffff);
5723 	}
5724 
5725 	resp = hwrm_req_hold(bp, req);
5726 	rc = hwrm_req_send(bp, req);
5727 	if (!rc)
5728 		fltr->base.filter_id = resp->ntuple_filter_id;
5729 	hwrm_req_drop(bp, req);
5730 	return rc;
5731 }
5732 
5733 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5734 				     const u8 *mac_addr)
5735 {
5736 	struct bnxt_l2_filter *fltr;
5737 	struct bnxt_l2_key key;
5738 	int rc;
5739 
5740 	ether_addr_copy(key.dst_mac_addr, mac_addr);
5741 	key.vlan = 0;
5742 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
5743 	if (IS_ERR(fltr))
5744 		return PTR_ERR(fltr);
5745 
5746 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
5747 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
5748 	if (rc)
5749 		bnxt_del_l2_filter(bp, fltr);
5750 	else
5751 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
5752 	return rc;
5753 }
5754 
5755 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5756 {
5757 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5758 	int rc = 0;
5759 
5760 	/* Any associated ntuple filters will also be cleared by firmware. */
5761 	for (i = 0; i < num_of_vnics; i++) {
5762 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5763 
5764 		for (j = 0; j < vnic->uc_filter_count; j++) {
5765 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
5766 
5767 			bnxt_hwrm_l2_filter_free(bp, fltr);
5768 			bnxt_del_l2_filter(bp, fltr);
5769 		}
5770 		vnic->uc_filter_count = 0;
5771 	}
5772 
5773 	return rc;
5774 }
5775 
5776 #define BNXT_DFLT_TUNL_TPA_BMAP				\
5777 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
5778 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
5779 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
5780 
5781 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
5782 					   struct hwrm_vnic_tpa_cfg_input *req)
5783 {
5784 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
5785 
5786 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
5787 		return;
5788 
5789 	if (bp->vxlan_port)
5790 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
5791 	if (bp->vxlan_gpe_port)
5792 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
5793 	if (bp->nge_port)
5794 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
5795 
5796 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
5797 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
5798 }
5799 
5800 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5801 {
5802 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5803 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5804 	struct hwrm_vnic_tpa_cfg_input *req;
5805 	int rc;
5806 
5807 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5808 		return 0;
5809 
5810 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5811 	if (rc)
5812 		return rc;
5813 
5814 	if (tpa_flags) {
5815 		u16 mss = bp->dev->mtu - 40;
5816 		u32 nsegs, n, segs = 0, flags;
5817 
5818 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5819 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5820 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5821 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5822 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5823 		if (tpa_flags & BNXT_FLAG_GRO)
5824 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5825 
5826 		req->flags = cpu_to_le32(flags);
5827 
5828 		req->enables =
5829 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5830 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5831 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5832 
5833 		/* Number of segs are log2 units, and first packet is not
5834 		 * included as part of this units.
5835 		 */
5836 		if (mss <= BNXT_RX_PAGE_SIZE) {
5837 			n = BNXT_RX_PAGE_SIZE / mss;
5838 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5839 		} else {
5840 			n = mss / BNXT_RX_PAGE_SIZE;
5841 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5842 				n++;
5843 			nsegs = (MAX_SKB_FRAGS - n) / n;
5844 		}
5845 
5846 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5847 			segs = MAX_TPA_SEGS_P5;
5848 			max_aggs = bp->max_tpa;
5849 		} else {
5850 			segs = ilog2(nsegs);
5851 		}
5852 		req->max_agg_segs = cpu_to_le16(segs);
5853 		req->max_aggs = cpu_to_le16(max_aggs);
5854 
5855 		req->min_agg_len = cpu_to_le32(512);
5856 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
5857 	}
5858 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5859 
5860 	return hwrm_req_send(bp, req);
5861 }
5862 
5863 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5864 {
5865 	struct bnxt_ring_grp_info *grp_info;
5866 
5867 	grp_info = &bp->grp_info[ring->grp_idx];
5868 	return grp_info->cp_fw_ring_id;
5869 }
5870 
5871 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5872 {
5873 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5874 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
5875 	else
5876 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5877 }
5878 
5879 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5880 {
5881 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5882 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
5883 	else
5884 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5885 }
5886 
5887 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5888 {
5889 	int entries;
5890 
5891 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5892 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5893 	else
5894 		entries = HW_HASH_INDEX_SIZE;
5895 
5896 	bp->rss_indir_tbl_entries = entries;
5897 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5898 					  GFP_KERNEL);
5899 	if (!bp->rss_indir_tbl)
5900 		return -ENOMEM;
5901 	return 0;
5902 }
5903 
5904 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5905 {
5906 	u16 max_rings, max_entries, pad, i;
5907 
5908 	if (!bp->rx_nr_rings)
5909 		return;
5910 
5911 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5912 		max_rings = bp->rx_nr_rings - 1;
5913 	else
5914 		max_rings = bp->rx_nr_rings;
5915 
5916 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5917 
5918 	for (i = 0; i < max_entries; i++)
5919 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5920 
5921 	pad = bp->rss_indir_tbl_entries - max_entries;
5922 	if (pad)
5923 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5924 }
5925 
5926 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5927 {
5928 	u16 i, tbl_size, max_ring = 0;
5929 
5930 	if (!bp->rss_indir_tbl)
5931 		return 0;
5932 
5933 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5934 	for (i = 0; i < tbl_size; i++)
5935 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5936 	return max_ring;
5937 }
5938 
5939 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5940 {
5941 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5942 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5943 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5944 		return 2;
5945 	return 1;
5946 }
5947 
5948 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5949 {
5950 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5951 	u16 i, j;
5952 
5953 	/* Fill the RSS indirection table with ring group ids */
5954 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5955 		if (!no_rss)
5956 			j = bp->rss_indir_tbl[i];
5957 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5958 	}
5959 }
5960 
5961 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5962 				    struct bnxt_vnic_info *vnic)
5963 {
5964 	__le16 *ring_tbl = vnic->rss_table;
5965 	struct bnxt_rx_ring_info *rxr;
5966 	u16 tbl_size, i;
5967 
5968 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5969 
5970 	for (i = 0; i < tbl_size; i++) {
5971 		u16 ring_id, j;
5972 
5973 		j = bp->rss_indir_tbl[i];
5974 		rxr = &bp->rx_ring[j];
5975 
5976 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5977 		*ring_tbl++ = cpu_to_le16(ring_id);
5978 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5979 		*ring_tbl++ = cpu_to_le16(ring_id);
5980 	}
5981 }
5982 
5983 static void
5984 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5985 			 struct bnxt_vnic_info *vnic)
5986 {
5987 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5988 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5989 	else
5990 		bnxt_fill_hw_rss_tbl(bp, vnic);
5991 
5992 	if (bp->rss_hash_delta) {
5993 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5994 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5995 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5996 		else
5997 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5998 	} else {
5999 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6000 	}
6001 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6002 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6003 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6004 }
6005 
6006 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
6007 {
6008 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6009 	struct hwrm_vnic_rss_cfg_input *req;
6010 	int rc;
6011 
6012 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6013 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6014 		return 0;
6015 
6016 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6017 	if (rc)
6018 		return rc;
6019 
6020 	if (set_rss)
6021 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6022 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6023 	return hwrm_req_send(bp, req);
6024 }
6025 
6026 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
6027 {
6028 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6029 	struct hwrm_vnic_rss_cfg_input *req;
6030 	dma_addr_t ring_tbl_map;
6031 	u32 i, nr_ctxs;
6032 	int rc;
6033 
6034 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6035 	if (rc)
6036 		return rc;
6037 
6038 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6039 	if (!set_rss)
6040 		return hwrm_req_send(bp, req);
6041 
6042 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6043 	ring_tbl_map = vnic->rss_table_dma_addr;
6044 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6045 
6046 	hwrm_req_hold(bp, req);
6047 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6048 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6049 		req->ring_table_pair_index = i;
6050 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6051 		rc = hwrm_req_send(bp, req);
6052 		if (rc)
6053 			goto exit;
6054 	}
6055 
6056 exit:
6057 	hwrm_req_drop(bp, req);
6058 	return rc;
6059 }
6060 
6061 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6062 {
6063 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6064 	struct hwrm_vnic_rss_qcfg_output *resp;
6065 	struct hwrm_vnic_rss_qcfg_input *req;
6066 
6067 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6068 		return;
6069 
6070 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6071 	/* all contexts configured to same hash_type, zero always exists */
6072 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6073 	resp = hwrm_req_hold(bp, req);
6074 	if (!hwrm_req_send(bp, req)) {
6075 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6076 		bp->rss_hash_delta = 0;
6077 	}
6078 	hwrm_req_drop(bp, req);
6079 }
6080 
6081 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
6082 {
6083 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6084 	struct hwrm_vnic_plcmodes_cfg_input *req;
6085 	int rc;
6086 
6087 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6088 	if (rc)
6089 		return rc;
6090 
6091 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6092 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6093 
6094 	if (BNXT_RX_PAGE_MODE(bp)) {
6095 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6096 	} else {
6097 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6098 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6099 		req->enables |=
6100 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6101 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6102 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6103 	}
6104 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6105 	return hwrm_req_send(bp, req);
6106 }
6107 
6108 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
6109 					u16 ctx_idx)
6110 {
6111 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6112 
6113 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6114 		return;
6115 
6116 	req->rss_cos_lb_ctx_id =
6117 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
6118 
6119 	hwrm_req_send(bp, req);
6120 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6121 }
6122 
6123 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6124 {
6125 	int i, j;
6126 
6127 	for (i = 0; i < bp->nr_vnics; i++) {
6128 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6129 
6130 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6131 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6132 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
6133 		}
6134 	}
6135 	bp->rsscos_nr_ctxs = 0;
6136 }
6137 
6138 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
6139 {
6140 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6141 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6142 	int rc;
6143 
6144 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6145 	if (rc)
6146 		return rc;
6147 
6148 	resp = hwrm_req_hold(bp, req);
6149 	rc = hwrm_req_send(bp, req);
6150 	if (!rc)
6151 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
6152 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6153 	hwrm_req_drop(bp, req);
6154 
6155 	return rc;
6156 }
6157 
6158 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6159 {
6160 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6161 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6162 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6163 }
6164 
6165 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
6166 {
6167 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6168 	struct hwrm_vnic_cfg_input *req;
6169 	unsigned int ring = 0, grp_idx;
6170 	u16 def_vlan = 0;
6171 	int rc;
6172 
6173 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6174 	if (rc)
6175 		return rc;
6176 
6177 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6178 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6179 
6180 		req->default_rx_ring_id =
6181 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6182 		req->default_cmpl_ring_id =
6183 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6184 		req->enables =
6185 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6186 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6187 		goto vnic_mru;
6188 	}
6189 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6190 	/* Only RSS support for now TBD: COS & LB */
6191 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6192 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6193 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6194 					   VNIC_CFG_REQ_ENABLES_MRU);
6195 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6196 		req->rss_rule =
6197 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
6198 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6199 					   VNIC_CFG_REQ_ENABLES_MRU);
6200 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6201 	} else {
6202 		req->rss_rule = cpu_to_le16(0xffff);
6203 	}
6204 
6205 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6206 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6207 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6208 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6209 	} else {
6210 		req->cos_rule = cpu_to_le16(0xffff);
6211 	}
6212 
6213 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6214 		ring = 0;
6215 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6216 		ring = vnic_id - 1;
6217 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6218 		ring = bp->rx_nr_rings - 1;
6219 
6220 	grp_idx = bp->rx_ring[ring].bnapi->index;
6221 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6222 	req->lb_rule = cpu_to_le16(0xffff);
6223 vnic_mru:
6224 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
6225 
6226 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6227 #ifdef CONFIG_BNXT_SRIOV
6228 	if (BNXT_VF(bp))
6229 		def_vlan = bp->vf.vlan;
6230 #endif
6231 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6232 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6233 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
6234 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6235 
6236 	return hwrm_req_send(bp, req);
6237 }
6238 
6239 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
6240 {
6241 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
6242 		struct hwrm_vnic_free_input *req;
6243 
6244 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6245 			return;
6246 
6247 		req->vnic_id =
6248 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
6249 
6250 		hwrm_req_send(bp, req);
6251 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
6252 	}
6253 }
6254 
6255 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6256 {
6257 	u16 i;
6258 
6259 	for (i = 0; i < bp->nr_vnics; i++)
6260 		bnxt_hwrm_vnic_free_one(bp, i);
6261 }
6262 
6263 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
6264 				unsigned int start_rx_ring_idx,
6265 				unsigned int nr_rings)
6266 {
6267 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6268 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6269 	struct hwrm_vnic_alloc_output *resp;
6270 	struct hwrm_vnic_alloc_input *req;
6271 	int rc;
6272 
6273 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6274 	if (rc)
6275 		return rc;
6276 
6277 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6278 		goto vnic_no_ring_grps;
6279 
6280 	/* map ring groups to this vnic */
6281 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6282 		grp_idx = bp->rx_ring[i].bnapi->index;
6283 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6284 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6285 				   j, nr_rings);
6286 			break;
6287 		}
6288 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6289 	}
6290 
6291 vnic_no_ring_grps:
6292 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6293 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6294 	if (vnic_id == 0)
6295 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6296 
6297 	resp = hwrm_req_hold(bp, req);
6298 	rc = hwrm_req_send(bp, req);
6299 	if (!rc)
6300 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6301 	hwrm_req_drop(bp, req);
6302 	return rc;
6303 }
6304 
6305 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6306 {
6307 	struct hwrm_vnic_qcaps_output *resp;
6308 	struct hwrm_vnic_qcaps_input *req;
6309 	int rc;
6310 
6311 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6312 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6313 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6314 	if (bp->hwrm_spec_code < 0x10600)
6315 		return 0;
6316 
6317 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6318 	if (rc)
6319 		return rc;
6320 
6321 	resp = hwrm_req_hold(bp, req);
6322 	rc = hwrm_req_send(bp, req);
6323 	if (!rc) {
6324 		u32 flags = le32_to_cpu(resp->flags);
6325 
6326 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6327 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6328 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6329 		if (flags &
6330 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6331 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6332 
6333 		/* Older P5 fw before EXT_HW_STATS support did not set
6334 		 * VLAN_STRIP_CAP properly.
6335 		 */
6336 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6337 		    (BNXT_CHIP_P5(bp) &&
6338 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6339 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6340 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6341 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6342 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6343 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6344 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6345 		if (bp->max_tpa_v2) {
6346 			if (BNXT_CHIP_P5(bp))
6347 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6348 			else
6349 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6350 		}
6351 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6352 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6353 	}
6354 	hwrm_req_drop(bp, req);
6355 	return rc;
6356 }
6357 
6358 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6359 {
6360 	struct hwrm_ring_grp_alloc_output *resp;
6361 	struct hwrm_ring_grp_alloc_input *req;
6362 	int rc;
6363 	u16 i;
6364 
6365 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6366 		return 0;
6367 
6368 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6369 	if (rc)
6370 		return rc;
6371 
6372 	resp = hwrm_req_hold(bp, req);
6373 	for (i = 0; i < bp->rx_nr_rings; i++) {
6374 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6375 
6376 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6377 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6378 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6379 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6380 
6381 		rc = hwrm_req_send(bp, req);
6382 
6383 		if (rc)
6384 			break;
6385 
6386 		bp->grp_info[grp_idx].fw_grp_id =
6387 			le32_to_cpu(resp->ring_group_id);
6388 	}
6389 	hwrm_req_drop(bp, req);
6390 	return rc;
6391 }
6392 
6393 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6394 {
6395 	struct hwrm_ring_grp_free_input *req;
6396 	u16 i;
6397 
6398 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6399 		return;
6400 
6401 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6402 		return;
6403 
6404 	hwrm_req_hold(bp, req);
6405 	for (i = 0; i < bp->cp_nr_rings; i++) {
6406 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6407 			continue;
6408 		req->ring_group_id =
6409 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6410 
6411 		hwrm_req_send(bp, req);
6412 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6413 	}
6414 	hwrm_req_drop(bp, req);
6415 }
6416 
6417 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6418 				    struct bnxt_ring_struct *ring,
6419 				    u32 ring_type, u32 map_index)
6420 {
6421 	struct hwrm_ring_alloc_output *resp;
6422 	struct hwrm_ring_alloc_input *req;
6423 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6424 	struct bnxt_ring_grp_info *grp_info;
6425 	int rc, err = 0;
6426 	u16 ring_id;
6427 
6428 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6429 	if (rc)
6430 		goto exit;
6431 
6432 	req->enables = 0;
6433 	if (rmem->nr_pages > 1) {
6434 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6435 		/* Page size is in log2 units */
6436 		req->page_size = BNXT_PAGE_SHIFT;
6437 		req->page_tbl_depth = 1;
6438 	} else {
6439 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6440 	}
6441 	req->fbo = 0;
6442 	/* Association of ring index with doorbell index and MSIX number */
6443 	req->logical_id = cpu_to_le16(map_index);
6444 
6445 	switch (ring_type) {
6446 	case HWRM_RING_ALLOC_TX: {
6447 		struct bnxt_tx_ring_info *txr;
6448 
6449 		txr = container_of(ring, struct bnxt_tx_ring_info,
6450 				   tx_ring_struct);
6451 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6452 		/* Association of transmit ring with completion ring */
6453 		grp_info = &bp->grp_info[ring->grp_idx];
6454 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6455 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6456 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6457 		req->queue_id = cpu_to_le16(ring->queue_id);
6458 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6459 			req->cmpl_coal_cnt =
6460 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6461 		break;
6462 	}
6463 	case HWRM_RING_ALLOC_RX:
6464 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6465 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6466 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6467 			u16 flags = 0;
6468 
6469 			/* Association of rx ring with stats context */
6470 			grp_info = &bp->grp_info[ring->grp_idx];
6471 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6472 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6473 			req->enables |= cpu_to_le32(
6474 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6475 			if (NET_IP_ALIGN == 2)
6476 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6477 			req->flags = cpu_to_le16(flags);
6478 		}
6479 		break;
6480 	case HWRM_RING_ALLOC_AGG:
6481 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6482 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6483 			/* Association of agg ring with rx ring */
6484 			grp_info = &bp->grp_info[ring->grp_idx];
6485 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6486 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6487 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6488 			req->enables |= cpu_to_le32(
6489 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6490 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6491 		} else {
6492 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6493 		}
6494 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6495 		break;
6496 	case HWRM_RING_ALLOC_CMPL:
6497 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6498 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6499 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6500 			/* Association of cp ring with nq */
6501 			grp_info = &bp->grp_info[map_index];
6502 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6503 			req->cq_handle = cpu_to_le64(ring->handle);
6504 			req->enables |= cpu_to_le32(
6505 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6506 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6507 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6508 		}
6509 		break;
6510 	case HWRM_RING_ALLOC_NQ:
6511 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6512 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6513 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6514 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6515 		break;
6516 	default:
6517 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6518 			   ring_type);
6519 		return -1;
6520 	}
6521 
6522 	resp = hwrm_req_hold(bp, req);
6523 	rc = hwrm_req_send(bp, req);
6524 	err = le16_to_cpu(resp->error_code);
6525 	ring_id = le16_to_cpu(resp->ring_id);
6526 	hwrm_req_drop(bp, req);
6527 
6528 exit:
6529 	if (rc || err) {
6530 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6531 			   ring_type, rc, err);
6532 		return -EIO;
6533 	}
6534 	ring->fw_ring_id = ring_id;
6535 	return rc;
6536 }
6537 
6538 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6539 {
6540 	int rc;
6541 
6542 	if (BNXT_PF(bp)) {
6543 		struct hwrm_func_cfg_input *req;
6544 
6545 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6546 		if (rc)
6547 			return rc;
6548 
6549 		req->fid = cpu_to_le16(0xffff);
6550 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6551 		req->async_event_cr = cpu_to_le16(idx);
6552 		return hwrm_req_send(bp, req);
6553 	} else {
6554 		struct hwrm_func_vf_cfg_input *req;
6555 
6556 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6557 		if (rc)
6558 			return rc;
6559 
6560 		req->enables =
6561 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6562 		req->async_event_cr = cpu_to_le16(idx);
6563 		return hwrm_req_send(bp, req);
6564 	}
6565 }
6566 
6567 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6568 			     u32 ring_type)
6569 {
6570 	switch (ring_type) {
6571 	case HWRM_RING_ALLOC_TX:
6572 		db->db_ring_mask = bp->tx_ring_mask;
6573 		break;
6574 	case HWRM_RING_ALLOC_RX:
6575 		db->db_ring_mask = bp->rx_ring_mask;
6576 		break;
6577 	case HWRM_RING_ALLOC_AGG:
6578 		db->db_ring_mask = bp->rx_agg_ring_mask;
6579 		break;
6580 	case HWRM_RING_ALLOC_CMPL:
6581 	case HWRM_RING_ALLOC_NQ:
6582 		db->db_ring_mask = bp->cp_ring_mask;
6583 		break;
6584 	}
6585 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6586 		db->db_epoch_mask = db->db_ring_mask + 1;
6587 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6588 	}
6589 }
6590 
6591 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6592 			u32 map_idx, u32 xid)
6593 {
6594 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6595 		switch (ring_type) {
6596 		case HWRM_RING_ALLOC_TX:
6597 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6598 			break;
6599 		case HWRM_RING_ALLOC_RX:
6600 		case HWRM_RING_ALLOC_AGG:
6601 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6602 			break;
6603 		case HWRM_RING_ALLOC_CMPL:
6604 			db->db_key64 = DBR_PATH_L2;
6605 			break;
6606 		case HWRM_RING_ALLOC_NQ:
6607 			db->db_key64 = DBR_PATH_L2;
6608 			break;
6609 		}
6610 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6611 
6612 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6613 			db->db_key64 |= DBR_VALID;
6614 
6615 		db->doorbell = bp->bar1 + bp->db_offset;
6616 	} else {
6617 		db->doorbell = bp->bar1 + map_idx * 0x80;
6618 		switch (ring_type) {
6619 		case HWRM_RING_ALLOC_TX:
6620 			db->db_key32 = DB_KEY_TX;
6621 			break;
6622 		case HWRM_RING_ALLOC_RX:
6623 		case HWRM_RING_ALLOC_AGG:
6624 			db->db_key32 = DB_KEY_RX;
6625 			break;
6626 		case HWRM_RING_ALLOC_CMPL:
6627 			db->db_key32 = DB_KEY_CP;
6628 			break;
6629 		}
6630 	}
6631 	bnxt_set_db_mask(bp, db, ring_type);
6632 }
6633 
6634 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
6635 {
6636 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
6637 	int i, rc = 0;
6638 	u32 type;
6639 
6640 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6641 		type = HWRM_RING_ALLOC_NQ;
6642 	else
6643 		type = HWRM_RING_ALLOC_CMPL;
6644 	for (i = 0; i < bp->cp_nr_rings; i++) {
6645 		struct bnxt_napi *bnapi = bp->bnapi[i];
6646 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6647 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
6648 		u32 map_idx = ring->map_idx;
6649 		unsigned int vector;
6650 
6651 		vector = bp->irq_tbl[map_idx].vector;
6652 		disable_irq_nosync(vector);
6653 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6654 		if (rc) {
6655 			enable_irq(vector);
6656 			goto err_out;
6657 		}
6658 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
6659 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
6660 		enable_irq(vector);
6661 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
6662 
6663 		if (!i) {
6664 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
6665 			if (rc)
6666 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
6667 		}
6668 	}
6669 
6670 	type = HWRM_RING_ALLOC_TX;
6671 	for (i = 0; i < bp->tx_nr_rings; i++) {
6672 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6673 		struct bnxt_ring_struct *ring;
6674 		u32 map_idx;
6675 
6676 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6677 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
6678 			struct bnxt_napi *bnapi = txr->bnapi;
6679 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6680 
6681 			ring = &cpr2->cp_ring_struct;
6682 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6683 			map_idx = bnapi->index;
6684 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6685 			if (rc)
6686 				goto err_out;
6687 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6688 				    ring->fw_ring_id);
6689 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6690 		}
6691 		ring = &txr->tx_ring_struct;
6692 		map_idx = i;
6693 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6694 		if (rc)
6695 			goto err_out;
6696 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
6697 	}
6698 
6699 	type = HWRM_RING_ALLOC_RX;
6700 	for (i = 0; i < bp->rx_nr_rings; i++) {
6701 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6702 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6703 		struct bnxt_napi *bnapi = rxr->bnapi;
6704 		u32 map_idx = bnapi->index;
6705 
6706 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6707 		if (rc)
6708 			goto err_out;
6709 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6710 		/* If we have agg rings, post agg buffers first. */
6711 		if (!agg_rings)
6712 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6713 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6714 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6715 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
6716 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6717 
6718 			ring = &cpr2->cp_ring_struct;
6719 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6720 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6721 			if (rc)
6722 				goto err_out;
6723 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6724 				    ring->fw_ring_id);
6725 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6726 		}
6727 	}
6728 
6729 	if (agg_rings) {
6730 		type = HWRM_RING_ALLOC_AGG;
6731 		for (i = 0; i < bp->rx_nr_rings; i++) {
6732 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6733 			struct bnxt_ring_struct *ring =
6734 						&rxr->rx_agg_ring_struct;
6735 			u32 grp_idx = ring->grp_idx;
6736 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6737 
6738 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6739 			if (rc)
6740 				goto err_out;
6741 
6742 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6743 				    ring->fw_ring_id);
6744 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6745 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6746 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6747 		}
6748 	}
6749 err_out:
6750 	return rc;
6751 }
6752 
6753 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6754 				   struct bnxt_ring_struct *ring,
6755 				   u32 ring_type, int cmpl_ring_id)
6756 {
6757 	struct hwrm_ring_free_output *resp;
6758 	struct hwrm_ring_free_input *req;
6759 	u16 error_code = 0;
6760 	int rc;
6761 
6762 	if (BNXT_NO_FW_ACCESS(bp))
6763 		return 0;
6764 
6765 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6766 	if (rc)
6767 		goto exit;
6768 
6769 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6770 	req->ring_type = ring_type;
6771 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6772 
6773 	resp = hwrm_req_hold(bp, req);
6774 	rc = hwrm_req_send(bp, req);
6775 	error_code = le16_to_cpu(resp->error_code);
6776 	hwrm_req_drop(bp, req);
6777 exit:
6778 	if (rc || error_code) {
6779 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6780 			   ring_type, rc, error_code);
6781 		return -EIO;
6782 	}
6783 	return 0;
6784 }
6785 
6786 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6787 {
6788 	u32 type;
6789 	int i;
6790 
6791 	if (!bp->bnapi)
6792 		return;
6793 
6794 	for (i = 0; i < bp->tx_nr_rings; i++) {
6795 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6796 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6797 
6798 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6799 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6800 
6801 			hwrm_ring_free_send_msg(bp, ring,
6802 						RING_FREE_REQ_RING_TYPE_TX,
6803 						close_path ? cmpl_ring_id :
6804 						INVALID_HW_RING_ID);
6805 			ring->fw_ring_id = INVALID_HW_RING_ID;
6806 		}
6807 	}
6808 
6809 	for (i = 0; i < bp->rx_nr_rings; i++) {
6810 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6811 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6812 		u32 grp_idx = rxr->bnapi->index;
6813 
6814 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6815 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6816 
6817 			hwrm_ring_free_send_msg(bp, ring,
6818 						RING_FREE_REQ_RING_TYPE_RX,
6819 						close_path ? cmpl_ring_id :
6820 						INVALID_HW_RING_ID);
6821 			ring->fw_ring_id = INVALID_HW_RING_ID;
6822 			bp->grp_info[grp_idx].rx_fw_ring_id =
6823 				INVALID_HW_RING_ID;
6824 		}
6825 	}
6826 
6827 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6828 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6829 	else
6830 		type = RING_FREE_REQ_RING_TYPE_RX;
6831 	for (i = 0; i < bp->rx_nr_rings; i++) {
6832 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6833 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6834 		u32 grp_idx = rxr->bnapi->index;
6835 
6836 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6837 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6838 
6839 			hwrm_ring_free_send_msg(bp, ring, type,
6840 						close_path ? cmpl_ring_id :
6841 						INVALID_HW_RING_ID);
6842 			ring->fw_ring_id = INVALID_HW_RING_ID;
6843 			bp->grp_info[grp_idx].agg_fw_ring_id =
6844 				INVALID_HW_RING_ID;
6845 		}
6846 	}
6847 
6848 	/* The completion rings are about to be freed.  After that the
6849 	 * IRQ doorbell will not work anymore.  So we need to disable
6850 	 * IRQ here.
6851 	 */
6852 	bnxt_disable_int_sync(bp);
6853 
6854 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6855 		type = RING_FREE_REQ_RING_TYPE_NQ;
6856 	else
6857 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6858 	for (i = 0; i < bp->cp_nr_rings; i++) {
6859 		struct bnxt_napi *bnapi = bp->bnapi[i];
6860 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6861 		struct bnxt_ring_struct *ring;
6862 		int j;
6863 
6864 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
6865 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
6866 
6867 			ring = &cpr2->cp_ring_struct;
6868 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
6869 				continue;
6870 			hwrm_ring_free_send_msg(bp, ring,
6871 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
6872 						INVALID_HW_RING_ID);
6873 			ring->fw_ring_id = INVALID_HW_RING_ID;
6874 		}
6875 		ring = &cpr->cp_ring_struct;
6876 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6877 			hwrm_ring_free_send_msg(bp, ring, type,
6878 						INVALID_HW_RING_ID);
6879 			ring->fw_ring_id = INVALID_HW_RING_ID;
6880 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6881 		}
6882 	}
6883 }
6884 
6885 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6886 			     bool shared);
6887 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6888 			   bool shared);
6889 
6890 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6891 {
6892 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6893 	struct hwrm_func_qcfg_output *resp;
6894 	struct hwrm_func_qcfg_input *req;
6895 	int rc;
6896 
6897 	if (bp->hwrm_spec_code < 0x10601)
6898 		return 0;
6899 
6900 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6901 	if (rc)
6902 		return rc;
6903 
6904 	req->fid = cpu_to_le16(0xffff);
6905 	resp = hwrm_req_hold(bp, req);
6906 	rc = hwrm_req_send(bp, req);
6907 	if (rc) {
6908 		hwrm_req_drop(bp, req);
6909 		return rc;
6910 	}
6911 
6912 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6913 	if (BNXT_NEW_RM(bp)) {
6914 		u16 cp, stats;
6915 
6916 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6917 		hw_resc->resv_hw_ring_grps =
6918 			le32_to_cpu(resp->alloc_hw_ring_grps);
6919 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6920 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6921 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6922 		hw_resc->resv_irqs = cp;
6923 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6924 			int rx = hw_resc->resv_rx_rings;
6925 			int tx = hw_resc->resv_tx_rings;
6926 
6927 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6928 				rx >>= 1;
6929 			if (cp < (rx + tx)) {
6930 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
6931 				if (rc)
6932 					return rc;
6933 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6934 					rx <<= 1;
6935 				hw_resc->resv_rx_rings = rx;
6936 				hw_resc->resv_tx_rings = tx;
6937 			}
6938 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6939 			hw_resc->resv_hw_ring_grps = rx;
6940 		}
6941 		hw_resc->resv_cp_rings = cp;
6942 		hw_resc->resv_stat_ctxs = stats;
6943 	}
6944 	hwrm_req_drop(bp, req);
6945 	return 0;
6946 }
6947 
6948 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6949 {
6950 	struct hwrm_func_qcfg_output *resp;
6951 	struct hwrm_func_qcfg_input *req;
6952 	int rc;
6953 
6954 	if (bp->hwrm_spec_code < 0x10601)
6955 		return 0;
6956 
6957 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6958 	if (rc)
6959 		return rc;
6960 
6961 	req->fid = cpu_to_le16(fid);
6962 	resp = hwrm_req_hold(bp, req);
6963 	rc = hwrm_req_send(bp, req);
6964 	if (!rc)
6965 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6966 
6967 	hwrm_req_drop(bp, req);
6968 	return rc;
6969 }
6970 
6971 static bool bnxt_rfs_supported(struct bnxt *bp);
6972 
6973 static struct hwrm_func_cfg_input *
6974 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6975 			     int ring_grps, int cp_rings, int stats, int vnics)
6976 {
6977 	struct hwrm_func_cfg_input *req;
6978 	u32 enables = 0;
6979 
6980 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
6981 		return NULL;
6982 
6983 	req->fid = cpu_to_le16(0xffff);
6984 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6985 	req->num_tx_rings = cpu_to_le16(tx_rings);
6986 	if (BNXT_NEW_RM(bp)) {
6987 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6988 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6989 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6990 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6991 			enables |= tx_rings + ring_grps ?
6992 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6993 			enables |= rx_rings ?
6994 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6995 		} else {
6996 			enables |= cp_rings ?
6997 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6998 			enables |= ring_grps ?
6999 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
7000 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7001 		}
7002 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7003 
7004 		req->num_rx_rings = cpu_to_le16(rx_rings);
7005 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7006 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
7007 			req->num_msix = cpu_to_le16(cp_rings);
7008 			req->num_rsscos_ctxs =
7009 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
7010 		} else {
7011 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
7012 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
7013 			req->num_rsscos_ctxs = cpu_to_le16(1);
7014 			if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
7015 			    bnxt_rfs_supported(bp))
7016 				req->num_rsscos_ctxs =
7017 					cpu_to_le16(ring_grps + 1);
7018 		}
7019 		req->num_stat_ctxs = cpu_to_le16(stats);
7020 		req->num_vnics = cpu_to_le16(vnics);
7021 	}
7022 	req->enables = cpu_to_le32(enables);
7023 	return req;
7024 }
7025 
7026 static struct hwrm_func_vf_cfg_input *
7027 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7028 			     int ring_grps, int cp_rings, int stats, int vnics)
7029 {
7030 	struct hwrm_func_vf_cfg_input *req;
7031 	u32 enables = 0;
7032 
7033 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7034 		return NULL;
7035 
7036 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7037 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7038 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7039 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7040 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7041 		enables |= tx_rings + ring_grps ?
7042 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7043 	} else {
7044 		enables |= cp_rings ?
7045 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7046 		enables |= ring_grps ?
7047 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7048 	}
7049 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7050 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7051 
7052 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7053 	req->num_tx_rings = cpu_to_le16(tx_rings);
7054 	req->num_rx_rings = cpu_to_le16(rx_rings);
7055 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7056 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
7057 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
7058 	} else {
7059 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
7060 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
7061 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
7062 	}
7063 	req->num_stat_ctxs = cpu_to_le16(stats);
7064 	req->num_vnics = cpu_to_le16(vnics);
7065 
7066 	req->enables = cpu_to_le32(enables);
7067 	return req;
7068 }
7069 
7070 static int
7071 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7072 			   int ring_grps, int cp_rings, int stats, int vnics)
7073 {
7074 	struct hwrm_func_cfg_input *req;
7075 	int rc;
7076 
7077 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
7078 					   cp_rings, stats, vnics);
7079 	if (!req)
7080 		return -ENOMEM;
7081 
7082 	if (!req->enables) {
7083 		hwrm_req_drop(bp, req);
7084 		return 0;
7085 	}
7086 
7087 	rc = hwrm_req_send(bp, req);
7088 	if (rc)
7089 		return rc;
7090 
7091 	if (bp->hwrm_spec_code < 0x10601)
7092 		bp->hw_resc.resv_tx_rings = tx_rings;
7093 
7094 	return bnxt_hwrm_get_rings(bp);
7095 }
7096 
7097 static int
7098 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7099 			   int ring_grps, int cp_rings, int stats, int vnics)
7100 {
7101 	struct hwrm_func_vf_cfg_input *req;
7102 	int rc;
7103 
7104 	if (!BNXT_NEW_RM(bp)) {
7105 		bp->hw_resc.resv_tx_rings = tx_rings;
7106 		return 0;
7107 	}
7108 
7109 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7110 					   cp_rings, stats, vnics);
7111 	if (!req)
7112 		return -ENOMEM;
7113 
7114 	rc = hwrm_req_send(bp, req);
7115 	if (rc)
7116 		return rc;
7117 
7118 	return bnxt_hwrm_get_rings(bp);
7119 }
7120 
7121 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
7122 				   int cp, int stat, int vnic)
7123 {
7124 	if (BNXT_PF(bp))
7125 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
7126 						  vnic);
7127 	else
7128 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
7129 						  vnic);
7130 }
7131 
7132 int bnxt_nq_rings_in_use(struct bnxt *bp)
7133 {
7134 	int cp = bp->cp_nr_rings;
7135 	int ulp_msix, ulp_base;
7136 
7137 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7138 	if (ulp_msix) {
7139 		ulp_base = bnxt_get_ulp_msix_base(bp);
7140 		cp += ulp_msix;
7141 		if ((ulp_base + ulp_msix) > cp)
7142 			cp = ulp_base + ulp_msix;
7143 	}
7144 	return cp;
7145 }
7146 
7147 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7148 {
7149 	int cp;
7150 
7151 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7152 		return bnxt_nq_rings_in_use(bp);
7153 
7154 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7155 	return cp;
7156 }
7157 
7158 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7159 {
7160 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
7161 	int cp = bp->cp_nr_rings;
7162 
7163 	if (!ulp_stat)
7164 		return cp;
7165 
7166 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
7167 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
7168 
7169 	return cp + ulp_stat;
7170 }
7171 
7172 /* Check if a default RSS map needs to be setup.  This function is only
7173  * used on older firmware that does not require reserving RX rings.
7174  */
7175 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7176 {
7177 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7178 
7179 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7180 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7181 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7182 		if (!netif_is_rxfh_configured(bp->dev))
7183 			bnxt_set_dflt_rss_indir_tbl(bp);
7184 	}
7185 }
7186 
7187 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7188 {
7189 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7190 	int cp = bnxt_cp_rings_in_use(bp);
7191 	int nq = bnxt_nq_rings_in_use(bp);
7192 	int rx = bp->rx_nr_rings, stat;
7193 	int vnic = 1, grp = rx;
7194 
7195 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7196 	    bp->hwrm_spec_code >= 0x10601)
7197 		return true;
7198 
7199 	/* Old firmware does not need RX ring reservations but we still
7200 	 * need to setup a default RSS map when needed.  With new firmware
7201 	 * we go through RX ring reservations first and then set up the
7202 	 * RSS map for the successfully reserved RX rings when needed.
7203 	 */
7204 	if (!BNXT_NEW_RM(bp)) {
7205 		bnxt_check_rss_tbl_no_rmgr(bp);
7206 		return false;
7207 	}
7208 	if ((bp->flags & BNXT_FLAG_RFS) &&
7209 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7210 		vnic = rx + 1;
7211 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7212 		rx <<= 1;
7213 	stat = bnxt_get_func_stat_ctxs(bp);
7214 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7215 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7216 	    (hw_resc->resv_hw_ring_grps != grp &&
7217 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7218 		return true;
7219 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7220 	    hw_resc->resv_irqs != nq)
7221 		return true;
7222 	return false;
7223 }
7224 
7225 static int __bnxt_reserve_rings(struct bnxt *bp)
7226 {
7227 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7228 	int cp = bnxt_nq_rings_in_use(bp);
7229 	int tx = bp->tx_nr_rings;
7230 	int rx = bp->rx_nr_rings;
7231 	int grp, rx_rings, rc;
7232 	int vnic = 1, stat;
7233 	bool sh = false;
7234 	int tx_cp;
7235 
7236 	if (!bnxt_need_reserve_rings(bp))
7237 		return 0;
7238 
7239 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7240 		sh = true;
7241 	if ((bp->flags & BNXT_FLAG_RFS) &&
7242 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7243 		vnic = rx + 1;
7244 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7245 		rx <<= 1;
7246 	grp = bp->rx_nr_rings;
7247 	stat = bnxt_get_func_stat_ctxs(bp);
7248 
7249 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
7250 	if (rc)
7251 		return rc;
7252 
7253 	tx = hw_resc->resv_tx_rings;
7254 	if (BNXT_NEW_RM(bp)) {
7255 		rx = hw_resc->resv_rx_rings;
7256 		cp = hw_resc->resv_irqs;
7257 		grp = hw_resc->resv_hw_ring_grps;
7258 		vnic = hw_resc->resv_vnics;
7259 		stat = hw_resc->resv_stat_ctxs;
7260 	}
7261 
7262 	rx_rings = rx;
7263 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7264 		if (rx >= 2) {
7265 			rx_rings = rx >> 1;
7266 		} else {
7267 			if (netif_running(bp->dev))
7268 				return -ENOMEM;
7269 
7270 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7271 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7272 			bp->dev->hw_features &= ~NETIF_F_LRO;
7273 			bp->dev->features &= ~NETIF_F_LRO;
7274 			bnxt_set_ring_params(bp);
7275 		}
7276 	}
7277 	rx_rings = min_t(int, rx_rings, grp);
7278 	cp = min_t(int, cp, bp->cp_nr_rings);
7279 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
7280 		stat -= bnxt_get_ulp_stat_ctxs(bp);
7281 	cp = min_t(int, cp, stat);
7282 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
7283 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7284 		rx = rx_rings << 1;
7285 	tx_cp = bnxt_num_tx_to_cp(bp, tx);
7286 	cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7287 	bp->tx_nr_rings = tx;
7288 
7289 	/* If we cannot reserve all the RX rings, reset the RSS map only
7290 	 * if absolutely necessary
7291 	 */
7292 	if (rx_rings != bp->rx_nr_rings) {
7293 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7294 			    rx_rings, bp->rx_nr_rings);
7295 		if (netif_is_rxfh_configured(bp->dev) &&
7296 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7297 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7298 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7299 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7300 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7301 		}
7302 	}
7303 	bp->rx_nr_rings = rx_rings;
7304 	bp->cp_nr_rings = cp;
7305 
7306 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
7307 		return -ENOMEM;
7308 
7309 	if (!netif_is_rxfh_configured(bp->dev))
7310 		bnxt_set_dflt_rss_indir_tbl(bp);
7311 
7312 	return rc;
7313 }
7314 
7315 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7316 				    int ring_grps, int cp_rings, int stats,
7317 				    int vnics)
7318 {
7319 	struct hwrm_func_vf_cfg_input *req;
7320 	u32 flags;
7321 
7322 	if (!BNXT_NEW_RM(bp))
7323 		return 0;
7324 
7325 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7326 					   cp_rings, stats, vnics);
7327 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7328 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7329 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7330 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7331 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7332 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7333 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7334 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7335 
7336 	req->flags = cpu_to_le32(flags);
7337 	return hwrm_req_send_silent(bp, req);
7338 }
7339 
7340 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7341 				    int ring_grps, int cp_rings, int stats,
7342 				    int vnics)
7343 {
7344 	struct hwrm_func_cfg_input *req;
7345 	u32 flags;
7346 
7347 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
7348 					   cp_rings, stats, vnics);
7349 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7350 	if (BNXT_NEW_RM(bp)) {
7351 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7352 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7353 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7354 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7355 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7356 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7357 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7358 		else
7359 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7360 	}
7361 
7362 	req->flags = cpu_to_le32(flags);
7363 	return hwrm_req_send_silent(bp, req);
7364 }
7365 
7366 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7367 				 int ring_grps, int cp_rings, int stats,
7368 				 int vnics)
7369 {
7370 	if (bp->hwrm_spec_code < 0x10801)
7371 		return 0;
7372 
7373 	if (BNXT_PF(bp))
7374 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
7375 						ring_grps, cp_rings, stats,
7376 						vnics);
7377 
7378 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7379 					cp_rings, stats, vnics);
7380 }
7381 
7382 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7383 {
7384 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7385 	struct hwrm_ring_aggint_qcaps_output *resp;
7386 	struct hwrm_ring_aggint_qcaps_input *req;
7387 	int rc;
7388 
7389 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7390 	coal_cap->num_cmpl_dma_aggr_max = 63;
7391 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7392 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7393 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7394 	coal_cap->int_lat_tmr_min_max = 65535;
7395 	coal_cap->int_lat_tmr_max_max = 65535;
7396 	coal_cap->num_cmpl_aggr_int_max = 65535;
7397 	coal_cap->timer_units = 80;
7398 
7399 	if (bp->hwrm_spec_code < 0x10902)
7400 		return;
7401 
7402 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7403 		return;
7404 
7405 	resp = hwrm_req_hold(bp, req);
7406 	rc = hwrm_req_send_silent(bp, req);
7407 	if (!rc) {
7408 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7409 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7410 		coal_cap->num_cmpl_dma_aggr_max =
7411 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7412 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7413 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7414 		coal_cap->cmpl_aggr_dma_tmr_max =
7415 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7416 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7417 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7418 		coal_cap->int_lat_tmr_min_max =
7419 			le16_to_cpu(resp->int_lat_tmr_min_max);
7420 		coal_cap->int_lat_tmr_max_max =
7421 			le16_to_cpu(resp->int_lat_tmr_max_max);
7422 		coal_cap->num_cmpl_aggr_int_max =
7423 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7424 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7425 	}
7426 	hwrm_req_drop(bp, req);
7427 }
7428 
7429 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7430 {
7431 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7432 
7433 	return usec * 1000 / coal_cap->timer_units;
7434 }
7435 
7436 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7437 	struct bnxt_coal *hw_coal,
7438 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7439 {
7440 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7441 	u16 val, tmr, max, flags = hw_coal->flags;
7442 	u32 cmpl_params = coal_cap->cmpl_params;
7443 
7444 	max = hw_coal->bufs_per_record * 128;
7445 	if (hw_coal->budget)
7446 		max = hw_coal->bufs_per_record * hw_coal->budget;
7447 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7448 
7449 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7450 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7451 
7452 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7453 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7454 
7455 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7456 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7457 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7458 
7459 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7460 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7461 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7462 
7463 	/* min timer set to 1/2 of interrupt timer */
7464 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7465 		val = tmr / 2;
7466 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7467 		req->int_lat_tmr_min = cpu_to_le16(val);
7468 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7469 	}
7470 
7471 	/* buf timer set to 1/4 of interrupt timer */
7472 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7473 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7474 
7475 	if (cmpl_params &
7476 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7477 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7478 		val = clamp_t(u16, tmr, 1,
7479 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7480 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7481 		req->enables |=
7482 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7483 	}
7484 
7485 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7486 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7487 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7488 	req->flags = cpu_to_le16(flags);
7489 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7490 }
7491 
7492 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7493 				   struct bnxt_coal *hw_coal)
7494 {
7495 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7496 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7497 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7498 	u32 nq_params = coal_cap->nq_params;
7499 	u16 tmr;
7500 	int rc;
7501 
7502 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7503 		return 0;
7504 
7505 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7506 	if (rc)
7507 		return rc;
7508 
7509 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7510 	req->flags =
7511 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7512 
7513 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7514 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7515 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7516 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7517 	return hwrm_req_send(bp, req);
7518 }
7519 
7520 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7521 {
7522 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7523 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7524 	struct bnxt_coal coal;
7525 	int rc;
7526 
7527 	/* Tick values in micro seconds.
7528 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7529 	 */
7530 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7531 
7532 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7533 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7534 
7535 	if (!bnapi->rx_ring)
7536 		return -ENODEV;
7537 
7538 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7539 	if (rc)
7540 		return rc;
7541 
7542 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7543 
7544 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7545 
7546 	return hwrm_req_send(bp, req_rx);
7547 }
7548 
7549 static int
7550 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7551 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7552 {
7553 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7554 
7555 	req->ring_id = cpu_to_le16(ring_id);
7556 	return hwrm_req_send(bp, req);
7557 }
7558 
7559 static int
7560 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7561 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7562 {
7563 	struct bnxt_tx_ring_info *txr;
7564 	int i, rc;
7565 
7566 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7567 		u16 ring_id;
7568 
7569 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7570 		req->ring_id = cpu_to_le16(ring_id);
7571 		rc = hwrm_req_send(bp, req);
7572 		if (rc)
7573 			return rc;
7574 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7575 			return 0;
7576 	}
7577 	return 0;
7578 }
7579 
7580 int bnxt_hwrm_set_coal(struct bnxt *bp)
7581 {
7582 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7583 	int i, rc;
7584 
7585 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7586 	if (rc)
7587 		return rc;
7588 
7589 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7590 	if (rc) {
7591 		hwrm_req_drop(bp, req_rx);
7592 		return rc;
7593 	}
7594 
7595 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
7596 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
7597 
7598 	hwrm_req_hold(bp, req_rx);
7599 	hwrm_req_hold(bp, req_tx);
7600 	for (i = 0; i < bp->cp_nr_rings; i++) {
7601 		struct bnxt_napi *bnapi = bp->bnapi[i];
7602 		struct bnxt_coal *hw_coal;
7603 
7604 		if (!bnapi->rx_ring)
7605 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7606 		else
7607 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
7608 		if (rc)
7609 			break;
7610 
7611 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7612 			continue;
7613 
7614 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
7615 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7616 			if (rc)
7617 				break;
7618 		}
7619 		if (bnapi->rx_ring)
7620 			hw_coal = &bp->rx_coal;
7621 		else
7622 			hw_coal = &bp->tx_coal;
7623 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
7624 	}
7625 	hwrm_req_drop(bp, req_rx);
7626 	hwrm_req_drop(bp, req_tx);
7627 	return rc;
7628 }
7629 
7630 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
7631 {
7632 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
7633 	struct hwrm_stat_ctx_free_input *req;
7634 	int i;
7635 
7636 	if (!bp->bnapi)
7637 		return;
7638 
7639 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7640 		return;
7641 
7642 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
7643 		return;
7644 	if (BNXT_FW_MAJ(bp) <= 20) {
7645 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
7646 			hwrm_req_drop(bp, req);
7647 			return;
7648 		}
7649 		hwrm_req_hold(bp, req0);
7650 	}
7651 	hwrm_req_hold(bp, req);
7652 	for (i = 0; i < bp->cp_nr_rings; i++) {
7653 		struct bnxt_napi *bnapi = bp->bnapi[i];
7654 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7655 
7656 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
7657 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
7658 			if (req0) {
7659 				req0->stat_ctx_id = req->stat_ctx_id;
7660 				hwrm_req_send(bp, req0);
7661 			}
7662 			hwrm_req_send(bp, req);
7663 
7664 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
7665 		}
7666 	}
7667 	hwrm_req_drop(bp, req);
7668 	if (req0)
7669 		hwrm_req_drop(bp, req0);
7670 }
7671 
7672 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
7673 {
7674 	struct hwrm_stat_ctx_alloc_output *resp;
7675 	struct hwrm_stat_ctx_alloc_input *req;
7676 	int rc, i;
7677 
7678 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7679 		return 0;
7680 
7681 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
7682 	if (rc)
7683 		return rc;
7684 
7685 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
7686 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
7687 
7688 	resp = hwrm_req_hold(bp, req);
7689 	for (i = 0; i < bp->cp_nr_rings; i++) {
7690 		struct bnxt_napi *bnapi = bp->bnapi[i];
7691 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7692 
7693 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
7694 
7695 		rc = hwrm_req_send(bp, req);
7696 		if (rc)
7697 			break;
7698 
7699 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
7700 
7701 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
7702 	}
7703 	hwrm_req_drop(bp, req);
7704 	return rc;
7705 }
7706 
7707 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
7708 {
7709 	struct hwrm_func_qcfg_output *resp;
7710 	struct hwrm_func_qcfg_input *req;
7711 	u16 flags;
7712 	int rc;
7713 
7714 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7715 	if (rc)
7716 		return rc;
7717 
7718 	req->fid = cpu_to_le16(0xffff);
7719 	resp = hwrm_req_hold(bp, req);
7720 	rc = hwrm_req_send(bp, req);
7721 	if (rc)
7722 		goto func_qcfg_exit;
7723 
7724 #ifdef CONFIG_BNXT_SRIOV
7725 	if (BNXT_VF(bp)) {
7726 		struct bnxt_vf_info *vf = &bp->vf;
7727 
7728 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
7729 	} else {
7730 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
7731 	}
7732 #endif
7733 	flags = le16_to_cpu(resp->flags);
7734 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
7735 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
7736 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
7737 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
7738 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
7739 	}
7740 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
7741 		bp->flags |= BNXT_FLAG_MULTI_HOST;
7742 
7743 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
7744 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
7745 
7746 	switch (resp->port_partition_type) {
7747 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7748 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7749 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7750 		bp->port_partition_type = resp->port_partition_type;
7751 		break;
7752 	}
7753 	if (bp->hwrm_spec_code < 0x10707 ||
7754 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7755 		bp->br_mode = BRIDGE_MODE_VEB;
7756 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7757 		bp->br_mode = BRIDGE_MODE_VEPA;
7758 	else
7759 		bp->br_mode = BRIDGE_MODE_UNDEF;
7760 
7761 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7762 	if (!bp->max_mtu)
7763 		bp->max_mtu = BNXT_MAX_MTU;
7764 
7765 	if (bp->db_size)
7766 		goto func_qcfg_exit;
7767 
7768 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
7769 	if (BNXT_CHIP_P5(bp)) {
7770 		if (BNXT_PF(bp))
7771 			bp->db_offset = DB_PF_OFFSET_P5;
7772 		else
7773 			bp->db_offset = DB_VF_OFFSET_P5;
7774 	}
7775 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7776 				 1024);
7777 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7778 	    bp->db_size <= bp->db_offset)
7779 		bp->db_size = pci_resource_len(bp->pdev, 2);
7780 
7781 func_qcfg_exit:
7782 	hwrm_req_drop(bp, req);
7783 	return rc;
7784 }
7785 
7786 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
7787 				      u8 init_val, u8 init_offset,
7788 				      bool init_mask_set)
7789 {
7790 	ctxm->init_value = init_val;
7791 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
7792 	if (init_mask_set)
7793 		ctxm->init_offset = init_offset * 4;
7794 	else
7795 		ctxm->init_value = 0;
7796 }
7797 
7798 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
7799 {
7800 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7801 	u16 type;
7802 
7803 	for (type = 0; type < ctx_max; type++) {
7804 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7805 		int n = 1;
7806 
7807 		if (!ctxm->max_entries)
7808 			continue;
7809 
7810 		if (ctxm->instance_bmap)
7811 			n = hweight32(ctxm->instance_bmap);
7812 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
7813 		if (!ctxm->pg_info)
7814 			return -ENOMEM;
7815 	}
7816 	return 0;
7817 }
7818 
7819 #define BNXT_CTX_INIT_VALID(flags)	\
7820 	(!!((flags) &			\
7821 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
7822 
7823 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
7824 {
7825 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
7826 	struct hwrm_func_backing_store_qcaps_v2_input *req;
7827 	struct bnxt_ctx_mem_info *ctx;
7828 	u16 type;
7829 	int rc;
7830 
7831 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
7832 	if (rc)
7833 		return rc;
7834 
7835 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7836 	if (!ctx)
7837 		return -ENOMEM;
7838 	bp->ctx = ctx;
7839 
7840 	resp = hwrm_req_hold(bp, req);
7841 
7842 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
7843 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7844 		u8 init_val, init_off, i;
7845 		__le32 *p;
7846 		u32 flags;
7847 
7848 		req->type = cpu_to_le16(type);
7849 		rc = hwrm_req_send(bp, req);
7850 		if (rc)
7851 			goto ctx_done;
7852 		flags = le32_to_cpu(resp->flags);
7853 		type = le16_to_cpu(resp->next_valid_type);
7854 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
7855 			continue;
7856 
7857 		ctxm->type = le16_to_cpu(resp->type);
7858 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
7859 		ctxm->flags = flags;
7860 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
7861 		ctxm->entry_multiple = resp->entry_multiple;
7862 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
7863 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
7864 		init_val = resp->ctx_init_value;
7865 		init_off = resp->ctx_init_offset;
7866 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
7867 					  BNXT_CTX_INIT_VALID(flags));
7868 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
7869 					      BNXT_MAX_SPLIT_ENTRY);
7870 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
7871 		     i++, p++)
7872 			ctxm->split[i] = le32_to_cpu(*p);
7873 	}
7874 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
7875 
7876 ctx_done:
7877 	hwrm_req_drop(bp, req);
7878 	return rc;
7879 }
7880 
7881 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7882 {
7883 	struct hwrm_func_backing_store_qcaps_output *resp;
7884 	struct hwrm_func_backing_store_qcaps_input *req;
7885 	int rc;
7886 
7887 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7888 		return 0;
7889 
7890 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
7891 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
7892 
7893 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7894 	if (rc)
7895 		return rc;
7896 
7897 	resp = hwrm_req_hold(bp, req);
7898 	rc = hwrm_req_send_silent(bp, req);
7899 	if (!rc) {
7900 		struct bnxt_ctx_mem_type *ctxm;
7901 		struct bnxt_ctx_mem_info *ctx;
7902 		u8 init_val, init_idx = 0;
7903 		u16 init_mask;
7904 
7905 		ctx = bp->ctx;
7906 		if (!ctx) {
7907 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7908 			if (!ctx) {
7909 				rc = -ENOMEM;
7910 				goto ctx_err;
7911 			}
7912 			bp->ctx = ctx;
7913 		}
7914 		init_val = resp->ctx_kind_initializer;
7915 		init_mask = le16_to_cpu(resp->ctx_init_mask);
7916 
7917 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
7918 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
7919 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7920 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7921 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
7922 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
7923 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
7924 					  (init_mask & (1 << init_idx++)) != 0);
7925 
7926 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
7927 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7928 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
7929 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
7930 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
7931 					  (init_mask & (1 << init_idx++)) != 0);
7932 
7933 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
7934 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7935 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
7936 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
7937 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
7938 					  (init_mask & (1 << init_idx++)) != 0);
7939 
7940 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
7941 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
7942 		ctxm->max_entries = ctxm->vnic_entries +
7943 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7944 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
7945 		bnxt_init_ctx_initializer(ctxm, init_val,
7946 					  resp->vnic_init_offset,
7947 					  (init_mask & (1 << init_idx++)) != 0);
7948 
7949 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
7950 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
7951 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
7952 		bnxt_init_ctx_initializer(ctxm, init_val,
7953 					  resp->stat_init_offset,
7954 					  (init_mask & (1 << init_idx++)) != 0);
7955 
7956 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
7957 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
7958 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
7959 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
7960 		ctxm->entry_multiple = resp->tqm_entries_multiple;
7961 		if (!ctxm->entry_multiple)
7962 			ctxm->entry_multiple = 1;
7963 
7964 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
7965 
7966 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
7967 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
7968 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
7969 		ctxm->mrav_num_entries_units =
7970 			le16_to_cpu(resp->mrav_num_entries_units);
7971 		bnxt_init_ctx_initializer(ctxm, init_val,
7972 					  resp->mrav_init_offset,
7973 					  (init_mask & (1 << init_idx++)) != 0);
7974 
7975 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
7976 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
7977 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
7978 
7979 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7980 		if (!ctx->tqm_fp_rings_count)
7981 			ctx->tqm_fp_rings_count = bp->max_q;
7982 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7983 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7984 
7985 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
7986 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
7987 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
7988 
7989 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
7990 	} else {
7991 		rc = 0;
7992 	}
7993 ctx_err:
7994 	hwrm_req_drop(bp, req);
7995 	return rc;
7996 }
7997 
7998 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7999 				  __le64 *pg_dir)
8000 {
8001 	if (!rmem->nr_pages)
8002 		return;
8003 
8004 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8005 	if (rmem->depth >= 1) {
8006 		if (rmem->depth == 2)
8007 			*pg_attr |= 2;
8008 		else
8009 			*pg_attr |= 1;
8010 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8011 	} else {
8012 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8013 	}
8014 }
8015 
8016 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8017 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8018 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8019 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8020 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8021 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8022 
8023 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8024 {
8025 	struct hwrm_func_backing_store_cfg_input *req;
8026 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8027 	struct bnxt_ctx_pg_info *ctx_pg;
8028 	struct bnxt_ctx_mem_type *ctxm;
8029 	void **__req = (void **)&req;
8030 	u32 req_len = sizeof(*req);
8031 	__le32 *num_entries;
8032 	__le64 *pg_dir;
8033 	u32 flags = 0;
8034 	u8 *pg_attr;
8035 	u32 ena;
8036 	int rc;
8037 	int i;
8038 
8039 	if (!ctx)
8040 		return 0;
8041 
8042 	if (req_len > bp->hwrm_max_ext_req_len)
8043 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8044 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8045 	if (rc)
8046 		return rc;
8047 
8048 	req->enables = cpu_to_le32(enables);
8049 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8050 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8051 		ctx_pg = ctxm->pg_info;
8052 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8053 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8054 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8055 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8056 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8057 				      &req->qpc_pg_size_qpc_lvl,
8058 				      &req->qpc_page_dir);
8059 
8060 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8061 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8062 	}
8063 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8064 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8065 		ctx_pg = ctxm->pg_info;
8066 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8067 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8068 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8069 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8070 				      &req->srq_pg_size_srq_lvl,
8071 				      &req->srq_page_dir);
8072 	}
8073 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8074 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8075 		ctx_pg = ctxm->pg_info;
8076 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8077 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8078 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8079 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8080 				      &req->cq_pg_size_cq_lvl,
8081 				      &req->cq_page_dir);
8082 	}
8083 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8084 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8085 		ctx_pg = ctxm->pg_info;
8086 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8087 		req->vnic_num_ring_table_entries =
8088 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8089 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8090 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8091 				      &req->vnic_pg_size_vnic_lvl,
8092 				      &req->vnic_page_dir);
8093 	}
8094 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8095 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8096 		ctx_pg = ctxm->pg_info;
8097 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8098 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8099 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8100 				      &req->stat_pg_size_stat_lvl,
8101 				      &req->stat_page_dir);
8102 	}
8103 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8104 		u32 units;
8105 
8106 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8107 		ctx_pg = ctxm->pg_info;
8108 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8109 		units = ctxm->mrav_num_entries_units;
8110 		if (units) {
8111 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8112 			u32 entries;
8113 
8114 			num_mr = ctx_pg->entries - num_ah;
8115 			entries = ((num_mr / units) << 16) | (num_ah / units);
8116 			req->mrav_num_entries = cpu_to_le32(entries);
8117 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8118 		}
8119 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8120 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8121 				      &req->mrav_pg_size_mrav_lvl,
8122 				      &req->mrav_page_dir);
8123 	}
8124 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8125 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8126 		ctx_pg = ctxm->pg_info;
8127 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8128 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8129 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8130 				      &req->tim_pg_size_tim_lvl,
8131 				      &req->tim_page_dir);
8132 	}
8133 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8134 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8135 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8136 	     pg_dir = &req->tqm_sp_page_dir,
8137 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8138 	     ctx_pg = ctxm->pg_info;
8139 	     i < BNXT_MAX_TQM_RINGS;
8140 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8141 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8142 		if (!(enables & ena))
8143 			continue;
8144 
8145 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8146 		*num_entries = cpu_to_le32(ctx_pg->entries);
8147 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8148 	}
8149 	req->flags = cpu_to_le32(flags);
8150 	return hwrm_req_send(bp, req);
8151 }
8152 
8153 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8154 				  struct bnxt_ctx_pg_info *ctx_pg)
8155 {
8156 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8157 
8158 	rmem->page_size = BNXT_PAGE_SIZE;
8159 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8160 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8161 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8162 	if (rmem->depth >= 1)
8163 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8164 	return bnxt_alloc_ring(bp, rmem);
8165 }
8166 
8167 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8168 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8169 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8170 {
8171 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8172 	int rc;
8173 
8174 	if (!mem_size)
8175 		return -EINVAL;
8176 
8177 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8178 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8179 		ctx_pg->nr_pages = 0;
8180 		return -EINVAL;
8181 	}
8182 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8183 		int nr_tbls, i;
8184 
8185 		rmem->depth = 2;
8186 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8187 					     GFP_KERNEL);
8188 		if (!ctx_pg->ctx_pg_tbl)
8189 			return -ENOMEM;
8190 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8191 		rmem->nr_pages = nr_tbls;
8192 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8193 		if (rc)
8194 			return rc;
8195 		for (i = 0; i < nr_tbls; i++) {
8196 			struct bnxt_ctx_pg_info *pg_tbl;
8197 
8198 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8199 			if (!pg_tbl)
8200 				return -ENOMEM;
8201 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8202 			rmem = &pg_tbl->ring_mem;
8203 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8204 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8205 			rmem->depth = 1;
8206 			rmem->nr_pages = MAX_CTX_PAGES;
8207 			rmem->ctx_mem = ctxm;
8208 			if (i == (nr_tbls - 1)) {
8209 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8210 
8211 				if (rem)
8212 					rmem->nr_pages = rem;
8213 			}
8214 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8215 			if (rc)
8216 				break;
8217 		}
8218 	} else {
8219 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8220 		if (rmem->nr_pages > 1 || depth)
8221 			rmem->depth = 1;
8222 		rmem->ctx_mem = ctxm;
8223 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8224 	}
8225 	return rc;
8226 }
8227 
8228 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8229 				  struct bnxt_ctx_pg_info *ctx_pg)
8230 {
8231 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8232 
8233 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8234 	    ctx_pg->ctx_pg_tbl) {
8235 		int i, nr_tbls = rmem->nr_pages;
8236 
8237 		for (i = 0; i < nr_tbls; i++) {
8238 			struct bnxt_ctx_pg_info *pg_tbl;
8239 			struct bnxt_ring_mem_info *rmem2;
8240 
8241 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8242 			if (!pg_tbl)
8243 				continue;
8244 			rmem2 = &pg_tbl->ring_mem;
8245 			bnxt_free_ring(bp, rmem2);
8246 			ctx_pg->ctx_pg_arr[i] = NULL;
8247 			kfree(pg_tbl);
8248 			ctx_pg->ctx_pg_tbl[i] = NULL;
8249 		}
8250 		kfree(ctx_pg->ctx_pg_tbl);
8251 		ctx_pg->ctx_pg_tbl = NULL;
8252 	}
8253 	bnxt_free_ring(bp, rmem);
8254 	ctx_pg->nr_pages = 0;
8255 }
8256 
8257 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8258 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8259 				   u8 pg_lvl)
8260 {
8261 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8262 	int i, rc = 0, n = 1;
8263 	u32 mem_size;
8264 
8265 	if (!ctxm->entry_size || !ctx_pg)
8266 		return -EINVAL;
8267 	if (ctxm->instance_bmap)
8268 		n = hweight32(ctxm->instance_bmap);
8269 	if (ctxm->entry_multiple)
8270 		entries = roundup(entries, ctxm->entry_multiple);
8271 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8272 	mem_size = entries * ctxm->entry_size;
8273 	for (i = 0; i < n && !rc; i++) {
8274 		ctx_pg[i].entries = entries;
8275 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8276 					    ctxm->init_value ? ctxm : NULL);
8277 	}
8278 	return rc;
8279 }
8280 
8281 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8282 					       struct bnxt_ctx_mem_type *ctxm,
8283 					       bool last)
8284 {
8285 	struct hwrm_func_backing_store_cfg_v2_input *req;
8286 	u32 instance_bmap = ctxm->instance_bmap;
8287 	int i, j, rc = 0, n = 1;
8288 	__le32 *p;
8289 
8290 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8291 		return 0;
8292 
8293 	if (instance_bmap)
8294 		n = hweight32(ctxm->instance_bmap);
8295 	else
8296 		instance_bmap = 1;
8297 
8298 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8299 	if (rc)
8300 		return rc;
8301 	hwrm_req_hold(bp, req);
8302 	req->type = cpu_to_le16(ctxm->type);
8303 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8304 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8305 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8306 		p[i] = cpu_to_le32(ctxm->split[i]);
8307 	for (i = 0, j = 0; j < n && !rc; i++) {
8308 		struct bnxt_ctx_pg_info *ctx_pg;
8309 
8310 		if (!(instance_bmap & (1 << i)))
8311 			continue;
8312 		req->instance = cpu_to_le16(i);
8313 		ctx_pg = &ctxm->pg_info[j++];
8314 		if (!ctx_pg->entries)
8315 			continue;
8316 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8317 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8318 				      &req->page_size_pbl_level,
8319 				      &req->page_dir);
8320 		if (last && j == n)
8321 			req->flags =
8322 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8323 		rc = hwrm_req_send(bp, req);
8324 	}
8325 	hwrm_req_drop(bp, req);
8326 	return rc;
8327 }
8328 
8329 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8330 {
8331 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8332 	struct bnxt_ctx_mem_type *ctxm;
8333 	u16 last_type;
8334 	int rc = 0;
8335 	u16 type;
8336 
8337 	if (!ena)
8338 		return 0;
8339 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8340 		last_type = BNXT_CTX_MAX - 1;
8341 	else
8342 		last_type = BNXT_CTX_L2_MAX - 1;
8343 	ctx->ctx_arr[last_type].last = 1;
8344 
8345 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8346 		ctxm = &ctx->ctx_arr[type];
8347 
8348 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8349 		if (rc)
8350 			return rc;
8351 	}
8352 	return 0;
8353 }
8354 
8355 void bnxt_free_ctx_mem(struct bnxt *bp)
8356 {
8357 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8358 	u16 type;
8359 
8360 	if (!ctx)
8361 		return;
8362 
8363 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8364 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8365 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8366 		int i, n = 1;
8367 
8368 		if (!ctx_pg)
8369 			continue;
8370 		if (ctxm->instance_bmap)
8371 			n = hweight32(ctxm->instance_bmap);
8372 		for (i = 0; i < n; i++)
8373 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8374 
8375 		kfree(ctx_pg);
8376 		ctxm->pg_info = NULL;
8377 	}
8378 
8379 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8380 	kfree(ctx);
8381 	bp->ctx = NULL;
8382 }
8383 
8384 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8385 {
8386 	struct bnxt_ctx_mem_type *ctxm;
8387 	struct bnxt_ctx_mem_info *ctx;
8388 	u32 l2_qps, qp1_qps, max_qps;
8389 	u32 ena, entries_sp, entries;
8390 	u32 srqs, max_srqs, min;
8391 	u32 num_mr, num_ah;
8392 	u32 extra_srqs = 0;
8393 	u32 extra_qps = 0;
8394 	u32 fast_qpmd_qps;
8395 	u8 pg_lvl = 1;
8396 	int i, rc;
8397 
8398 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8399 	if (rc) {
8400 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8401 			   rc);
8402 		return rc;
8403 	}
8404 	ctx = bp->ctx;
8405 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8406 		return 0;
8407 
8408 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8409 	l2_qps = ctxm->qp_l2_entries;
8410 	qp1_qps = ctxm->qp_qp1_entries;
8411 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8412 	max_qps = ctxm->max_entries;
8413 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8414 	srqs = ctxm->srq_l2_entries;
8415 	max_srqs = ctxm->max_entries;
8416 	ena = 0;
8417 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8418 		pg_lvl = 2;
8419 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8420 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8421 		extra_qps += fast_qpmd_qps;
8422 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8423 		if (fast_qpmd_qps)
8424 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8425 	}
8426 
8427 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8428 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8429 				     pg_lvl);
8430 	if (rc)
8431 		return rc;
8432 
8433 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8434 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8435 	if (rc)
8436 		return rc;
8437 
8438 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8439 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8440 				     extra_qps * 2, pg_lvl);
8441 	if (rc)
8442 		return rc;
8443 
8444 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8445 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8446 	if (rc)
8447 		return rc;
8448 
8449 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8450 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8451 	if (rc)
8452 		return rc;
8453 
8454 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8455 		goto skip_rdma;
8456 
8457 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8458 	/* 128K extra is needed to accommodate static AH context
8459 	 * allocation by f/w.
8460 	 */
8461 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8462 	num_ah = min_t(u32, num_mr, 1024 * 128);
8463 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8464 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8465 		ctxm->mrav_av_entries = num_ah;
8466 
8467 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8468 	if (rc)
8469 		return rc;
8470 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8471 
8472 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8473 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8474 	if (rc)
8475 		return rc;
8476 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8477 
8478 skip_rdma:
8479 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8480 	min = ctxm->min_entries;
8481 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8482 		     2 * (extra_qps + qp1_qps) + min;
8483 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8484 	if (rc)
8485 		return rc;
8486 
8487 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8488 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8489 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8490 	if (rc)
8491 		return rc;
8492 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8493 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8494 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8495 
8496 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8497 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8498 	else
8499 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8500 	if (rc) {
8501 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8502 			   rc);
8503 		return rc;
8504 	}
8505 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8506 	return 0;
8507 }
8508 
8509 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8510 {
8511 	struct hwrm_func_resource_qcaps_output *resp;
8512 	struct hwrm_func_resource_qcaps_input *req;
8513 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8514 	int rc;
8515 
8516 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8517 	if (rc)
8518 		return rc;
8519 
8520 	req->fid = cpu_to_le16(0xffff);
8521 	resp = hwrm_req_hold(bp, req);
8522 	rc = hwrm_req_send_silent(bp, req);
8523 	if (rc)
8524 		goto hwrm_func_resc_qcaps_exit;
8525 
8526 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8527 	if (!all)
8528 		goto hwrm_func_resc_qcaps_exit;
8529 
8530 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8531 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8532 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8533 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8534 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8535 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8536 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8537 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8538 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8539 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8540 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8541 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8542 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8543 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8544 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8545 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8546 
8547 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8548 		u16 max_msix = le16_to_cpu(resp->max_msix);
8549 
8550 		hw_resc->max_nqs = max_msix;
8551 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8552 	}
8553 
8554 	if (BNXT_PF(bp)) {
8555 		struct bnxt_pf_info *pf = &bp->pf;
8556 
8557 		pf->vf_resv_strategy =
8558 			le16_to_cpu(resp->vf_reservation_strategy);
8559 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8560 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8561 	}
8562 hwrm_func_resc_qcaps_exit:
8563 	hwrm_req_drop(bp, req);
8564 	return rc;
8565 }
8566 
8567 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
8568 {
8569 	struct hwrm_port_mac_ptp_qcfg_output *resp;
8570 	struct hwrm_port_mac_ptp_qcfg_input *req;
8571 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
8572 	bool phc_cfg;
8573 	u8 flags;
8574 	int rc;
8575 
8576 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) {
8577 		rc = -ENODEV;
8578 		goto no_ptp;
8579 	}
8580 
8581 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
8582 	if (rc)
8583 		goto no_ptp;
8584 
8585 	req->port_id = cpu_to_le16(bp->pf.port_id);
8586 	resp = hwrm_req_hold(bp, req);
8587 	rc = hwrm_req_send(bp, req);
8588 	if (rc)
8589 		goto exit;
8590 
8591 	flags = resp->flags;
8592 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
8593 		rc = -ENODEV;
8594 		goto exit;
8595 	}
8596 	if (!ptp) {
8597 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
8598 		if (!ptp) {
8599 			rc = -ENOMEM;
8600 			goto exit;
8601 		}
8602 		ptp->bp = bp;
8603 		bp->ptp_cfg = ptp;
8604 	}
8605 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
8606 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
8607 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
8608 	} else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8609 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
8610 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
8611 	} else {
8612 		rc = -ENODEV;
8613 		goto exit;
8614 	}
8615 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
8616 	rc = bnxt_ptp_init(bp, phc_cfg);
8617 	if (rc)
8618 		netdev_warn(bp->dev, "PTP initialization failed.\n");
8619 exit:
8620 	hwrm_req_drop(bp, req);
8621 	if (!rc)
8622 		return 0;
8623 
8624 no_ptp:
8625 	bnxt_ptp_clear(bp);
8626 	kfree(ptp);
8627 	bp->ptp_cfg = NULL;
8628 	return rc;
8629 }
8630 
8631 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
8632 {
8633 	struct hwrm_func_qcaps_output *resp;
8634 	struct hwrm_func_qcaps_input *req;
8635 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8636 	u32 flags, flags_ext, flags_ext2;
8637 	int rc;
8638 
8639 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
8640 	if (rc)
8641 		return rc;
8642 
8643 	req->fid = cpu_to_le16(0xffff);
8644 	resp = hwrm_req_hold(bp, req);
8645 	rc = hwrm_req_send(bp, req);
8646 	if (rc)
8647 		goto hwrm_func_qcaps_exit;
8648 
8649 	flags = le32_to_cpu(resp->flags);
8650 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
8651 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
8652 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
8653 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
8654 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
8655 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
8656 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
8657 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
8658 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
8659 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
8660 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
8661 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
8662 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
8663 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
8664 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
8665 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
8666 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
8667 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
8668 
8669 	flags_ext = le32_to_cpu(resp->flags_ext);
8670 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
8671 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
8672 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
8673 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
8674 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
8675 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
8676 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
8677 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
8678 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
8679 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
8680 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
8681 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
8682 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
8683 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
8684 
8685 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
8686 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
8687 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
8688 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
8689 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
8690 
8691 	bp->tx_push_thresh = 0;
8692 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
8693 	    BNXT_FW_MAJ(bp) > 217)
8694 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
8695 
8696 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8697 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8698 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8699 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8700 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
8701 	if (!hw_resc->max_hw_ring_grps)
8702 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
8703 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8704 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8705 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8706 
8707 	if (BNXT_PF(bp)) {
8708 		struct bnxt_pf_info *pf = &bp->pf;
8709 
8710 		pf->fw_fid = le16_to_cpu(resp->fid);
8711 		pf->port_id = le16_to_cpu(resp->port_id);
8712 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
8713 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
8714 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
8715 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
8716 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
8717 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
8718 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
8719 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
8720 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
8721 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
8722 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
8723 			bp->flags |= BNXT_FLAG_WOL_CAP;
8724 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
8725 			bp->fw_cap |= BNXT_FW_CAP_PTP;
8726 		} else {
8727 			bnxt_ptp_clear(bp);
8728 			kfree(bp->ptp_cfg);
8729 			bp->ptp_cfg = NULL;
8730 		}
8731 	} else {
8732 #ifdef CONFIG_BNXT_SRIOV
8733 		struct bnxt_vf_info *vf = &bp->vf;
8734 
8735 		vf->fw_fid = le16_to_cpu(resp->fid);
8736 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
8737 #endif
8738 	}
8739 
8740 hwrm_func_qcaps_exit:
8741 	hwrm_req_drop(bp, req);
8742 	return rc;
8743 }
8744 
8745 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
8746 {
8747 	struct hwrm_dbg_qcaps_output *resp;
8748 	struct hwrm_dbg_qcaps_input *req;
8749 	int rc;
8750 
8751 	bp->fw_dbg_cap = 0;
8752 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
8753 		return;
8754 
8755 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
8756 	if (rc)
8757 		return;
8758 
8759 	req->fid = cpu_to_le16(0xffff);
8760 	resp = hwrm_req_hold(bp, req);
8761 	rc = hwrm_req_send(bp, req);
8762 	if (rc)
8763 		goto hwrm_dbg_qcaps_exit;
8764 
8765 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
8766 
8767 hwrm_dbg_qcaps_exit:
8768 	hwrm_req_drop(bp, req);
8769 }
8770 
8771 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
8772 
8773 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
8774 {
8775 	int rc;
8776 
8777 	rc = __bnxt_hwrm_func_qcaps(bp);
8778 	if (rc)
8779 		return rc;
8780 
8781 	bnxt_hwrm_dbg_qcaps(bp);
8782 
8783 	rc = bnxt_hwrm_queue_qportcfg(bp);
8784 	if (rc) {
8785 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
8786 		return rc;
8787 	}
8788 	if (bp->hwrm_spec_code >= 0x10803) {
8789 		rc = bnxt_alloc_ctx_mem(bp);
8790 		if (rc)
8791 			return rc;
8792 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8793 		if (!rc)
8794 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
8795 	}
8796 	return 0;
8797 }
8798 
8799 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
8800 {
8801 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
8802 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
8803 	u32 flags;
8804 	int rc;
8805 
8806 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
8807 		return 0;
8808 
8809 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
8810 	if (rc)
8811 		return rc;
8812 
8813 	resp = hwrm_req_hold(bp, req);
8814 	rc = hwrm_req_send(bp, req);
8815 	if (rc)
8816 		goto hwrm_cfa_adv_qcaps_exit;
8817 
8818 	flags = le32_to_cpu(resp->flags);
8819 	if (flags &
8820 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
8821 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
8822 
8823 hwrm_cfa_adv_qcaps_exit:
8824 	hwrm_req_drop(bp, req);
8825 	return rc;
8826 }
8827 
8828 static int __bnxt_alloc_fw_health(struct bnxt *bp)
8829 {
8830 	if (bp->fw_health)
8831 		return 0;
8832 
8833 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
8834 	if (!bp->fw_health)
8835 		return -ENOMEM;
8836 
8837 	mutex_init(&bp->fw_health->lock);
8838 	return 0;
8839 }
8840 
8841 static int bnxt_alloc_fw_health(struct bnxt *bp)
8842 {
8843 	int rc;
8844 
8845 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
8846 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8847 		return 0;
8848 
8849 	rc = __bnxt_alloc_fw_health(bp);
8850 	if (rc) {
8851 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
8852 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8853 		return rc;
8854 	}
8855 
8856 	return 0;
8857 }
8858 
8859 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
8860 {
8861 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
8862 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
8863 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
8864 }
8865 
8866 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
8867 {
8868 	struct bnxt_fw_health *fw_health = bp->fw_health;
8869 	u32 reg_type;
8870 
8871 	if (!fw_health)
8872 		return;
8873 
8874 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
8875 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8876 		fw_health->status_reliable = false;
8877 
8878 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
8879 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8880 		fw_health->resets_reliable = false;
8881 }
8882 
8883 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
8884 {
8885 	void __iomem *hs;
8886 	u32 status_loc;
8887 	u32 reg_type;
8888 	u32 sig;
8889 
8890 	if (bp->fw_health)
8891 		bp->fw_health->status_reliable = false;
8892 
8893 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
8894 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
8895 
8896 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
8897 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
8898 		if (!bp->chip_num) {
8899 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
8900 			bp->chip_num = readl(bp->bar0 +
8901 					     BNXT_FW_HEALTH_WIN_BASE +
8902 					     BNXT_GRC_REG_CHIP_NUM);
8903 		}
8904 		if (!BNXT_CHIP_P5(bp))
8905 			return;
8906 
8907 		status_loc = BNXT_GRC_REG_STATUS_P5 |
8908 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
8909 	} else {
8910 		status_loc = readl(hs + offsetof(struct hcomm_status,
8911 						 fw_status_loc));
8912 	}
8913 
8914 	if (__bnxt_alloc_fw_health(bp)) {
8915 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
8916 		return;
8917 	}
8918 
8919 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
8920 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
8921 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
8922 		__bnxt_map_fw_health_reg(bp, status_loc);
8923 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
8924 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
8925 	}
8926 
8927 	bp->fw_health->status_reliable = true;
8928 }
8929 
8930 static int bnxt_map_fw_health_regs(struct bnxt *bp)
8931 {
8932 	struct bnxt_fw_health *fw_health = bp->fw_health;
8933 	u32 reg_base = 0xffffffff;
8934 	int i;
8935 
8936 	bp->fw_health->status_reliable = false;
8937 	bp->fw_health->resets_reliable = false;
8938 	/* Only pre-map the monitoring GRC registers using window 3 */
8939 	for (i = 0; i < 4; i++) {
8940 		u32 reg = fw_health->regs[i];
8941 
8942 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
8943 			continue;
8944 		if (reg_base == 0xffffffff)
8945 			reg_base = reg & BNXT_GRC_BASE_MASK;
8946 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
8947 			return -ERANGE;
8948 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
8949 	}
8950 	bp->fw_health->status_reliable = true;
8951 	bp->fw_health->resets_reliable = true;
8952 	if (reg_base == 0xffffffff)
8953 		return 0;
8954 
8955 	__bnxt_map_fw_health_reg(bp, reg_base);
8956 	return 0;
8957 }
8958 
8959 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8960 {
8961 	if (!bp->fw_health)
8962 		return;
8963 
8964 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8965 		bp->fw_health->status_reliable = true;
8966 		bp->fw_health->resets_reliable = true;
8967 	} else {
8968 		bnxt_try_map_fw_health_reg(bp);
8969 	}
8970 }
8971 
8972 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8973 {
8974 	struct bnxt_fw_health *fw_health = bp->fw_health;
8975 	struct hwrm_error_recovery_qcfg_output *resp;
8976 	struct hwrm_error_recovery_qcfg_input *req;
8977 	int rc, i;
8978 
8979 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8980 		return 0;
8981 
8982 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8983 	if (rc)
8984 		return rc;
8985 
8986 	resp = hwrm_req_hold(bp, req);
8987 	rc = hwrm_req_send(bp, req);
8988 	if (rc)
8989 		goto err_recovery_out;
8990 	fw_health->flags = le32_to_cpu(resp->flags);
8991 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8992 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8993 		rc = -EINVAL;
8994 		goto err_recovery_out;
8995 	}
8996 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8997 	fw_health->master_func_wait_dsecs =
8998 		le32_to_cpu(resp->master_func_wait_period);
8999 	fw_health->normal_func_wait_dsecs =
9000 		le32_to_cpu(resp->normal_func_wait_period);
9001 	fw_health->post_reset_wait_dsecs =
9002 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9003 	fw_health->post_reset_max_wait_dsecs =
9004 		le32_to_cpu(resp->max_bailout_time_after_reset);
9005 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9006 		le32_to_cpu(resp->fw_health_status_reg);
9007 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9008 		le32_to_cpu(resp->fw_heartbeat_reg);
9009 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9010 		le32_to_cpu(resp->fw_reset_cnt_reg);
9011 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9012 		le32_to_cpu(resp->reset_inprogress_reg);
9013 	fw_health->fw_reset_inprog_reg_mask =
9014 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9015 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9016 	if (fw_health->fw_reset_seq_cnt >= 16) {
9017 		rc = -EINVAL;
9018 		goto err_recovery_out;
9019 	}
9020 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9021 		fw_health->fw_reset_seq_regs[i] =
9022 			le32_to_cpu(resp->reset_reg[i]);
9023 		fw_health->fw_reset_seq_vals[i] =
9024 			le32_to_cpu(resp->reset_reg_val[i]);
9025 		fw_health->fw_reset_seq_delay_msec[i] =
9026 			resp->delay_after_reset[i];
9027 	}
9028 err_recovery_out:
9029 	hwrm_req_drop(bp, req);
9030 	if (!rc)
9031 		rc = bnxt_map_fw_health_regs(bp);
9032 	if (rc)
9033 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9034 	return rc;
9035 }
9036 
9037 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9038 {
9039 	struct hwrm_func_reset_input *req;
9040 	int rc;
9041 
9042 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9043 	if (rc)
9044 		return rc;
9045 
9046 	req->enables = 0;
9047 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9048 	return hwrm_req_send(bp, req);
9049 }
9050 
9051 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9052 {
9053 	struct hwrm_nvm_get_dev_info_output nvm_info;
9054 
9055 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9056 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9057 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9058 			 nvm_info.nvm_cfg_ver_upd);
9059 }
9060 
9061 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9062 {
9063 	struct hwrm_queue_qportcfg_output *resp;
9064 	struct hwrm_queue_qportcfg_input *req;
9065 	u8 i, j, *qptr;
9066 	bool no_rdma;
9067 	int rc = 0;
9068 
9069 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9070 	if (rc)
9071 		return rc;
9072 
9073 	resp = hwrm_req_hold(bp, req);
9074 	rc = hwrm_req_send(bp, req);
9075 	if (rc)
9076 		goto qportcfg_exit;
9077 
9078 	if (!resp->max_configurable_queues) {
9079 		rc = -EINVAL;
9080 		goto qportcfg_exit;
9081 	}
9082 	bp->max_tc = resp->max_configurable_queues;
9083 	bp->max_lltc = resp->max_configurable_lossless_queues;
9084 	if (bp->max_tc > BNXT_MAX_QUEUE)
9085 		bp->max_tc = BNXT_MAX_QUEUE;
9086 
9087 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9088 	qptr = &resp->queue_id0;
9089 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9090 		bp->q_info[j].queue_id = *qptr;
9091 		bp->q_ids[i] = *qptr++;
9092 		bp->q_info[j].queue_profile = *qptr++;
9093 		bp->tc_to_qidx[j] = j;
9094 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9095 		    (no_rdma && BNXT_PF(bp)))
9096 			j++;
9097 	}
9098 	bp->max_q = bp->max_tc;
9099 	bp->max_tc = max_t(u8, j, 1);
9100 
9101 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9102 		bp->max_tc = 1;
9103 
9104 	if (bp->max_lltc > bp->max_tc)
9105 		bp->max_lltc = bp->max_tc;
9106 
9107 qportcfg_exit:
9108 	hwrm_req_drop(bp, req);
9109 	return rc;
9110 }
9111 
9112 static int bnxt_hwrm_poll(struct bnxt *bp)
9113 {
9114 	struct hwrm_ver_get_input *req;
9115 	int rc;
9116 
9117 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9118 	if (rc)
9119 		return rc;
9120 
9121 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9122 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9123 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9124 
9125 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9126 	rc = hwrm_req_send(bp, req);
9127 	return rc;
9128 }
9129 
9130 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9131 {
9132 	struct hwrm_ver_get_output *resp;
9133 	struct hwrm_ver_get_input *req;
9134 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9135 	u32 dev_caps_cfg, hwrm_ver;
9136 	int rc, len;
9137 
9138 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9139 	if (rc)
9140 		return rc;
9141 
9142 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9143 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9144 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9145 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9146 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9147 
9148 	resp = hwrm_req_hold(bp, req);
9149 	rc = hwrm_req_send(bp, req);
9150 	if (rc)
9151 		goto hwrm_ver_get_exit;
9152 
9153 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9154 
9155 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9156 			     resp->hwrm_intf_min_8b << 8 |
9157 			     resp->hwrm_intf_upd_8b;
9158 	if (resp->hwrm_intf_maj_8b < 1) {
9159 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9160 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9161 			    resp->hwrm_intf_upd_8b);
9162 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9163 	}
9164 
9165 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9166 			HWRM_VERSION_UPDATE;
9167 
9168 	if (bp->hwrm_spec_code > hwrm_ver)
9169 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9170 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9171 			 HWRM_VERSION_UPDATE);
9172 	else
9173 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9174 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9175 			 resp->hwrm_intf_upd_8b);
9176 
9177 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9178 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9179 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9180 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9181 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9182 		len = FW_VER_STR_LEN;
9183 	} else {
9184 		fw_maj = resp->hwrm_fw_maj_8b;
9185 		fw_min = resp->hwrm_fw_min_8b;
9186 		fw_bld = resp->hwrm_fw_bld_8b;
9187 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9188 		len = BC_HWRM_STR_LEN;
9189 	}
9190 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9191 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9192 		 fw_rsv);
9193 
9194 	if (strlen(resp->active_pkg_name)) {
9195 		int fw_ver_len = strlen(bp->fw_ver_str);
9196 
9197 		snprintf(bp->fw_ver_str + fw_ver_len,
9198 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9199 			 resp->active_pkg_name);
9200 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9201 	}
9202 
9203 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9204 	if (!bp->hwrm_cmd_timeout)
9205 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9206 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9207 	if (!bp->hwrm_cmd_max_timeout)
9208 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9209 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9210 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9211 			    bp->hwrm_cmd_max_timeout / 1000);
9212 
9213 	if (resp->hwrm_intf_maj_8b >= 1) {
9214 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9215 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9216 	}
9217 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9218 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9219 
9220 	bp->chip_num = le16_to_cpu(resp->chip_num);
9221 	bp->chip_rev = resp->chip_rev;
9222 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9223 	    !resp->chip_metal)
9224 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9225 
9226 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9227 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9228 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9229 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9230 
9231 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9232 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9233 
9234 	if (dev_caps_cfg &
9235 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9236 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9237 
9238 	if (dev_caps_cfg &
9239 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9240 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9241 
9242 	if (dev_caps_cfg &
9243 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9244 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9245 
9246 hwrm_ver_get_exit:
9247 	hwrm_req_drop(bp, req);
9248 	return rc;
9249 }
9250 
9251 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9252 {
9253 	struct hwrm_fw_set_time_input *req;
9254 	struct tm tm;
9255 	time64_t now = ktime_get_real_seconds();
9256 	int rc;
9257 
9258 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9259 	    bp->hwrm_spec_code < 0x10400)
9260 		return -EOPNOTSUPP;
9261 
9262 	time64_to_tm(now, 0, &tm);
9263 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9264 	if (rc)
9265 		return rc;
9266 
9267 	req->year = cpu_to_le16(1900 + tm.tm_year);
9268 	req->month = 1 + tm.tm_mon;
9269 	req->day = tm.tm_mday;
9270 	req->hour = tm.tm_hour;
9271 	req->minute = tm.tm_min;
9272 	req->second = tm.tm_sec;
9273 	return hwrm_req_send(bp, req);
9274 }
9275 
9276 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9277 {
9278 	u64 sw_tmp;
9279 
9280 	hw &= mask;
9281 	sw_tmp = (*sw & ~mask) | hw;
9282 	if (hw < (*sw & mask))
9283 		sw_tmp += mask + 1;
9284 	WRITE_ONCE(*sw, sw_tmp);
9285 }
9286 
9287 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9288 				    int count, bool ignore_zero)
9289 {
9290 	int i;
9291 
9292 	for (i = 0; i < count; i++) {
9293 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9294 
9295 		if (ignore_zero && !hw)
9296 			continue;
9297 
9298 		if (masks[i] == -1ULL)
9299 			sw_stats[i] = hw;
9300 		else
9301 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9302 	}
9303 }
9304 
9305 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9306 {
9307 	if (!stats->hw_stats)
9308 		return;
9309 
9310 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9311 				stats->hw_masks, stats->len / 8, false);
9312 }
9313 
9314 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9315 {
9316 	struct bnxt_stats_mem *ring0_stats;
9317 	bool ignore_zero = false;
9318 	int i;
9319 
9320 	/* Chip bug.  Counter intermittently becomes 0. */
9321 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9322 		ignore_zero = true;
9323 
9324 	for (i = 0; i < bp->cp_nr_rings; i++) {
9325 		struct bnxt_napi *bnapi = bp->bnapi[i];
9326 		struct bnxt_cp_ring_info *cpr;
9327 		struct bnxt_stats_mem *stats;
9328 
9329 		cpr = &bnapi->cp_ring;
9330 		stats = &cpr->stats;
9331 		if (!i)
9332 			ring0_stats = stats;
9333 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9334 					ring0_stats->hw_masks,
9335 					ring0_stats->len / 8, ignore_zero);
9336 	}
9337 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9338 		struct bnxt_stats_mem *stats = &bp->port_stats;
9339 		__le64 *hw_stats = stats->hw_stats;
9340 		u64 *sw_stats = stats->sw_stats;
9341 		u64 *masks = stats->hw_masks;
9342 		int cnt;
9343 
9344 		cnt = sizeof(struct rx_port_stats) / 8;
9345 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9346 
9347 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9348 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9349 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9350 		cnt = sizeof(struct tx_port_stats) / 8;
9351 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9352 	}
9353 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9354 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9355 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9356 	}
9357 }
9358 
9359 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9360 {
9361 	struct hwrm_port_qstats_input *req;
9362 	struct bnxt_pf_info *pf = &bp->pf;
9363 	int rc;
9364 
9365 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9366 		return 0;
9367 
9368 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9369 		return -EOPNOTSUPP;
9370 
9371 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9372 	if (rc)
9373 		return rc;
9374 
9375 	req->flags = flags;
9376 	req->port_id = cpu_to_le16(pf->port_id);
9377 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9378 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9379 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9380 	return hwrm_req_send(bp, req);
9381 }
9382 
9383 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9384 {
9385 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9386 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9387 	struct hwrm_port_qstats_ext_output *resp_qs;
9388 	struct hwrm_port_qstats_ext_input *req_qs;
9389 	struct bnxt_pf_info *pf = &bp->pf;
9390 	u32 tx_stat_size;
9391 	int rc;
9392 
9393 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9394 		return 0;
9395 
9396 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9397 		return -EOPNOTSUPP;
9398 
9399 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9400 	if (rc)
9401 		return rc;
9402 
9403 	req_qs->flags = flags;
9404 	req_qs->port_id = cpu_to_le16(pf->port_id);
9405 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9406 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9407 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9408 		       sizeof(struct tx_port_stats_ext) : 0;
9409 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9410 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9411 	resp_qs = hwrm_req_hold(bp, req_qs);
9412 	rc = hwrm_req_send(bp, req_qs);
9413 	if (!rc) {
9414 		bp->fw_rx_stats_ext_size =
9415 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9416 		if (BNXT_FW_MAJ(bp) < 220 &&
9417 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9418 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9419 
9420 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9421 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9422 	} else {
9423 		bp->fw_rx_stats_ext_size = 0;
9424 		bp->fw_tx_stats_ext_size = 0;
9425 	}
9426 	hwrm_req_drop(bp, req_qs);
9427 
9428 	if (flags)
9429 		return rc;
9430 
9431 	if (bp->fw_tx_stats_ext_size <=
9432 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9433 		bp->pri2cos_valid = 0;
9434 		return rc;
9435 	}
9436 
9437 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9438 	if (rc)
9439 		return rc;
9440 
9441 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9442 
9443 	resp_qc = hwrm_req_hold(bp, req_qc);
9444 	rc = hwrm_req_send(bp, req_qc);
9445 	if (!rc) {
9446 		u8 *pri2cos;
9447 		int i, j;
9448 
9449 		pri2cos = &resp_qc->pri0_cos_queue_id;
9450 		for (i = 0; i < 8; i++) {
9451 			u8 queue_id = pri2cos[i];
9452 			u8 queue_idx;
9453 
9454 			/* Per port queue IDs start from 0, 10, 20, etc */
9455 			queue_idx = queue_id % 10;
9456 			if (queue_idx > BNXT_MAX_QUEUE) {
9457 				bp->pri2cos_valid = false;
9458 				hwrm_req_drop(bp, req_qc);
9459 				return rc;
9460 			}
9461 			for (j = 0; j < bp->max_q; j++) {
9462 				if (bp->q_ids[j] == queue_id)
9463 					bp->pri2cos_idx[i] = queue_idx;
9464 			}
9465 		}
9466 		bp->pri2cos_valid = true;
9467 	}
9468 	hwrm_req_drop(bp, req_qc);
9469 
9470 	return rc;
9471 }
9472 
9473 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9474 {
9475 	bnxt_hwrm_tunnel_dst_port_free(bp,
9476 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9477 	bnxt_hwrm_tunnel_dst_port_free(bp,
9478 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9479 }
9480 
9481 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9482 {
9483 	int rc, i;
9484 	u32 tpa_flags = 0;
9485 
9486 	if (set_tpa)
9487 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9488 	else if (BNXT_NO_FW_ACCESS(bp))
9489 		return 0;
9490 	for (i = 0; i < bp->nr_vnics; i++) {
9491 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
9492 		if (rc) {
9493 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9494 				   i, rc);
9495 			return rc;
9496 		}
9497 	}
9498 	return 0;
9499 }
9500 
9501 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9502 {
9503 	int i;
9504 
9505 	for (i = 0; i < bp->nr_vnics; i++)
9506 		bnxt_hwrm_vnic_set_rss(bp, i, false);
9507 }
9508 
9509 static void bnxt_clear_vnic(struct bnxt *bp)
9510 {
9511 	if (!bp->vnic_info)
9512 		return;
9513 
9514 	bnxt_hwrm_clear_vnic_filter(bp);
9515 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9516 		/* clear all RSS setting before free vnic ctx */
9517 		bnxt_hwrm_clear_vnic_rss(bp);
9518 		bnxt_hwrm_vnic_ctx_free(bp);
9519 	}
9520 	/* before free the vnic, undo the vnic tpa settings */
9521 	if (bp->flags & BNXT_FLAG_TPA)
9522 		bnxt_set_tpa(bp, false);
9523 	bnxt_hwrm_vnic_free(bp);
9524 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9525 		bnxt_hwrm_vnic_ctx_free(bp);
9526 }
9527 
9528 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9529 				    bool irq_re_init)
9530 {
9531 	bnxt_clear_vnic(bp);
9532 	bnxt_hwrm_ring_free(bp, close_path);
9533 	bnxt_hwrm_ring_grp_free(bp);
9534 	if (irq_re_init) {
9535 		bnxt_hwrm_stat_ctx_free(bp);
9536 		bnxt_hwrm_free_tunnel_ports(bp);
9537 	}
9538 }
9539 
9540 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9541 {
9542 	struct hwrm_func_cfg_input *req;
9543 	u8 evb_mode;
9544 	int rc;
9545 
9546 	if (br_mode == BRIDGE_MODE_VEB)
9547 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
9548 	else if (br_mode == BRIDGE_MODE_VEPA)
9549 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
9550 	else
9551 		return -EINVAL;
9552 
9553 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9554 	if (rc)
9555 		return rc;
9556 
9557 	req->fid = cpu_to_le16(0xffff);
9558 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
9559 	req->evb_mode = evb_mode;
9560 	return hwrm_req_send(bp, req);
9561 }
9562 
9563 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
9564 {
9565 	struct hwrm_func_cfg_input *req;
9566 	int rc;
9567 
9568 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
9569 		return 0;
9570 
9571 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9572 	if (rc)
9573 		return rc;
9574 
9575 	req->fid = cpu_to_le16(0xffff);
9576 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
9577 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
9578 	if (size == 128)
9579 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
9580 
9581 	return hwrm_req_send(bp, req);
9582 }
9583 
9584 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9585 {
9586 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
9587 	int rc;
9588 
9589 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
9590 		goto skip_rss_ctx;
9591 
9592 	/* allocate context for vnic */
9593 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
9594 	if (rc) {
9595 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9596 			   vnic_id, rc);
9597 		goto vnic_setup_err;
9598 	}
9599 	bp->rsscos_nr_ctxs++;
9600 
9601 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9602 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
9603 		if (rc) {
9604 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
9605 				   vnic_id, rc);
9606 			goto vnic_setup_err;
9607 		}
9608 		bp->rsscos_nr_ctxs++;
9609 	}
9610 
9611 skip_rss_ctx:
9612 	/* configure default vnic, ring grp */
9613 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9614 	if (rc) {
9615 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9616 			   vnic_id, rc);
9617 		goto vnic_setup_err;
9618 	}
9619 
9620 	/* Enable RSS hashing on vnic */
9621 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
9622 	if (rc) {
9623 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
9624 			   vnic_id, rc);
9625 		goto vnic_setup_err;
9626 	}
9627 
9628 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9629 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9630 		if (rc) {
9631 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9632 				   vnic_id, rc);
9633 		}
9634 	}
9635 
9636 vnic_setup_err:
9637 	return rc;
9638 }
9639 
9640 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
9641 {
9642 	int rc, i, nr_ctxs;
9643 
9644 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
9645 	for (i = 0; i < nr_ctxs; i++) {
9646 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
9647 		if (rc) {
9648 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
9649 				   vnic_id, i, rc);
9650 			break;
9651 		}
9652 		bp->rsscos_nr_ctxs++;
9653 	}
9654 	if (i < nr_ctxs)
9655 		return -ENOMEM;
9656 
9657 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
9658 	if (rc) {
9659 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
9660 			   vnic_id, rc);
9661 		return rc;
9662 	}
9663 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9664 	if (rc) {
9665 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9666 			   vnic_id, rc);
9667 		return rc;
9668 	}
9669 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9670 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9671 		if (rc) {
9672 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9673 				   vnic_id, rc);
9674 		}
9675 	}
9676 	return rc;
9677 }
9678 
9679 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9680 {
9681 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9682 		return __bnxt_setup_vnic_p5(bp, vnic_id);
9683 	else
9684 		return __bnxt_setup_vnic(bp, vnic_id);
9685 }
9686 
9687 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
9688 {
9689 	int i, rc = 0;
9690 
9691 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9692 		return 0;
9693 
9694 	for (i = 0; i < bp->rx_nr_rings; i++) {
9695 		struct bnxt_vnic_info *vnic;
9696 		u16 vnic_id = i + 1;
9697 		u16 ring_id = i;
9698 
9699 		if (vnic_id >= bp->nr_vnics)
9700 			break;
9701 
9702 		vnic = &bp->vnic_info[vnic_id];
9703 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
9704 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
9705 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
9706 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
9707 		if (rc) {
9708 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9709 				   vnic_id, rc);
9710 			break;
9711 		}
9712 		rc = bnxt_setup_vnic(bp, vnic_id);
9713 		if (rc)
9714 			break;
9715 	}
9716 	return rc;
9717 }
9718 
9719 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
9720 static bool bnxt_promisc_ok(struct bnxt *bp)
9721 {
9722 #ifdef CONFIG_BNXT_SRIOV
9723 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
9724 		return false;
9725 #endif
9726 	return true;
9727 }
9728 
9729 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
9730 {
9731 	unsigned int rc = 0;
9732 
9733 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
9734 	if (rc) {
9735 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9736 			   rc);
9737 		return rc;
9738 	}
9739 
9740 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
9741 	if (rc) {
9742 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9743 			   rc);
9744 		return rc;
9745 	}
9746 	return rc;
9747 }
9748 
9749 static int bnxt_cfg_rx_mode(struct bnxt *);
9750 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
9751 
9752 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
9753 {
9754 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9755 	int rc = 0;
9756 	unsigned int rx_nr_rings = bp->rx_nr_rings;
9757 
9758 	if (irq_re_init) {
9759 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
9760 		if (rc) {
9761 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
9762 				   rc);
9763 			goto err_out;
9764 		}
9765 	}
9766 
9767 	rc = bnxt_hwrm_ring_alloc(bp);
9768 	if (rc) {
9769 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
9770 		goto err_out;
9771 	}
9772 
9773 	rc = bnxt_hwrm_ring_grp_alloc(bp);
9774 	if (rc) {
9775 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
9776 		goto err_out;
9777 	}
9778 
9779 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9780 		rx_nr_rings--;
9781 
9782 	/* default vnic 0 */
9783 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
9784 	if (rc) {
9785 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
9786 		goto err_out;
9787 	}
9788 
9789 	if (BNXT_VF(bp))
9790 		bnxt_hwrm_func_qcfg(bp);
9791 
9792 	rc = bnxt_setup_vnic(bp, 0);
9793 	if (rc)
9794 		goto err_out;
9795 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
9796 		bnxt_hwrm_update_rss_hash_cfg(bp);
9797 
9798 	if (bp->flags & BNXT_FLAG_RFS) {
9799 		rc = bnxt_alloc_rfs_vnics(bp);
9800 		if (rc)
9801 			goto err_out;
9802 	}
9803 
9804 	if (bp->flags & BNXT_FLAG_TPA) {
9805 		rc = bnxt_set_tpa(bp, true);
9806 		if (rc)
9807 			goto err_out;
9808 	}
9809 
9810 	if (BNXT_VF(bp))
9811 		bnxt_update_vf_mac(bp);
9812 
9813 	/* Filter for default vnic 0 */
9814 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
9815 	if (rc) {
9816 		if (BNXT_VF(bp) && rc == -ENODEV)
9817 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
9818 		else
9819 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
9820 		goto err_out;
9821 	}
9822 	vnic->uc_filter_count = 1;
9823 
9824 	vnic->rx_mask = 0;
9825 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
9826 		goto skip_rx_mask;
9827 
9828 	if (bp->dev->flags & IFF_BROADCAST)
9829 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9830 
9831 	if (bp->dev->flags & IFF_PROMISC)
9832 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9833 
9834 	if (bp->dev->flags & IFF_ALLMULTI) {
9835 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9836 		vnic->mc_list_count = 0;
9837 	} else if (bp->dev->flags & IFF_MULTICAST) {
9838 		u32 mask = 0;
9839 
9840 		bnxt_mc_list_updated(bp, &mask);
9841 		vnic->rx_mask |= mask;
9842 	}
9843 
9844 	rc = bnxt_cfg_rx_mode(bp);
9845 	if (rc)
9846 		goto err_out;
9847 
9848 skip_rx_mask:
9849 	rc = bnxt_hwrm_set_coal(bp);
9850 	if (rc)
9851 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
9852 				rc);
9853 
9854 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9855 		rc = bnxt_setup_nitroa0_vnic(bp);
9856 		if (rc)
9857 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
9858 				   rc);
9859 	}
9860 
9861 	if (BNXT_VF(bp)) {
9862 		bnxt_hwrm_func_qcfg(bp);
9863 		netdev_update_features(bp->dev);
9864 	}
9865 
9866 	return 0;
9867 
9868 err_out:
9869 	bnxt_hwrm_resource_free(bp, 0, true);
9870 
9871 	return rc;
9872 }
9873 
9874 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
9875 {
9876 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
9877 	return 0;
9878 }
9879 
9880 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
9881 {
9882 	bnxt_init_cp_rings(bp);
9883 	bnxt_init_rx_rings(bp);
9884 	bnxt_init_tx_rings(bp);
9885 	bnxt_init_ring_grps(bp, irq_re_init);
9886 	bnxt_init_vnics(bp);
9887 
9888 	return bnxt_init_chip(bp, irq_re_init);
9889 }
9890 
9891 static int bnxt_set_real_num_queues(struct bnxt *bp)
9892 {
9893 	int rc;
9894 	struct net_device *dev = bp->dev;
9895 
9896 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
9897 					  bp->tx_nr_rings_xdp);
9898 	if (rc)
9899 		return rc;
9900 
9901 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
9902 	if (rc)
9903 		return rc;
9904 
9905 #ifdef CONFIG_RFS_ACCEL
9906 	if (bp->flags & BNXT_FLAG_RFS)
9907 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
9908 #endif
9909 
9910 	return rc;
9911 }
9912 
9913 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9914 			     bool shared)
9915 {
9916 	int _rx = *rx, _tx = *tx;
9917 
9918 	if (shared) {
9919 		*rx = min_t(int, _rx, max);
9920 		*tx = min_t(int, _tx, max);
9921 	} else {
9922 		if (max < 2)
9923 			return -ENOMEM;
9924 
9925 		while (_rx + _tx > max) {
9926 			if (_rx > _tx && _rx > 1)
9927 				_rx--;
9928 			else if (_tx > 1)
9929 				_tx--;
9930 		}
9931 		*rx = _rx;
9932 		*tx = _tx;
9933 	}
9934 	return 0;
9935 }
9936 
9937 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
9938 {
9939 	return (tx - tx_xdp) / tx_sets + tx_xdp;
9940 }
9941 
9942 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
9943 {
9944 	int tcs = netdev_get_num_tc(bp->dev);
9945 
9946 	if (!tcs)
9947 		tcs = 1;
9948 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
9949 }
9950 
9951 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
9952 {
9953 	int tcs = netdev_get_num_tc(bp->dev);
9954 
9955 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
9956 	       bp->tx_nr_rings_xdp;
9957 }
9958 
9959 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9960 			   bool sh)
9961 {
9962 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
9963 
9964 	if (tx_cp != *tx) {
9965 		int tx_saved = tx_cp, rc;
9966 
9967 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
9968 		if (rc)
9969 			return rc;
9970 		if (tx_cp != tx_saved)
9971 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
9972 		return 0;
9973 	}
9974 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
9975 }
9976 
9977 static void bnxt_setup_msix(struct bnxt *bp)
9978 {
9979 	const int len = sizeof(bp->irq_tbl[0].name);
9980 	struct net_device *dev = bp->dev;
9981 	int tcs, i;
9982 
9983 	tcs = netdev_get_num_tc(dev);
9984 	if (tcs) {
9985 		int i, off, count;
9986 
9987 		for (i = 0; i < tcs; i++) {
9988 			count = bp->tx_nr_rings_per_tc;
9989 			off = BNXT_TC_TO_RING_BASE(bp, i);
9990 			netdev_set_tc_queue(dev, i, count, off);
9991 		}
9992 	}
9993 
9994 	for (i = 0; i < bp->cp_nr_rings; i++) {
9995 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9996 		char *attr;
9997 
9998 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9999 			attr = "TxRx";
10000 		else if (i < bp->rx_nr_rings)
10001 			attr = "rx";
10002 		else
10003 			attr = "tx";
10004 
10005 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10006 			 attr, i);
10007 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10008 	}
10009 }
10010 
10011 static void bnxt_setup_inta(struct bnxt *bp)
10012 {
10013 	const int len = sizeof(bp->irq_tbl[0].name);
10014 
10015 	if (netdev_get_num_tc(bp->dev))
10016 		netdev_reset_tc(bp->dev);
10017 
10018 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
10019 		 0);
10020 	bp->irq_tbl[0].handler = bnxt_inta;
10021 }
10022 
10023 static int bnxt_init_int_mode(struct bnxt *bp);
10024 
10025 static int bnxt_setup_int_mode(struct bnxt *bp)
10026 {
10027 	int rc;
10028 
10029 	if (!bp->irq_tbl) {
10030 		rc = bnxt_init_int_mode(bp);
10031 		if (rc || !bp->irq_tbl)
10032 			return rc ?: -ENODEV;
10033 	}
10034 
10035 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10036 		bnxt_setup_msix(bp);
10037 	else
10038 		bnxt_setup_inta(bp);
10039 
10040 	rc = bnxt_set_real_num_queues(bp);
10041 	return rc;
10042 }
10043 
10044 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10045 {
10046 	return bp->hw_resc.max_rsscos_ctxs;
10047 }
10048 
10049 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10050 {
10051 	return bp->hw_resc.max_vnics;
10052 }
10053 
10054 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10055 {
10056 	return bp->hw_resc.max_stat_ctxs;
10057 }
10058 
10059 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10060 {
10061 	return bp->hw_resc.max_cp_rings;
10062 }
10063 
10064 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10065 {
10066 	unsigned int cp = bp->hw_resc.max_cp_rings;
10067 
10068 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10069 		cp -= bnxt_get_ulp_msix_num(bp);
10070 
10071 	return cp;
10072 }
10073 
10074 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10075 {
10076 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10077 
10078 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10079 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10080 
10081 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10082 }
10083 
10084 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10085 {
10086 	bp->hw_resc.max_irqs = max_irqs;
10087 }
10088 
10089 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10090 {
10091 	unsigned int cp;
10092 
10093 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10094 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10095 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10096 	else
10097 		return cp - bp->cp_nr_rings;
10098 }
10099 
10100 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10101 {
10102 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10103 }
10104 
10105 int bnxt_get_avail_msix(struct bnxt *bp, int num)
10106 {
10107 	int max_cp = bnxt_get_max_func_cp_rings(bp);
10108 	int max_irq = bnxt_get_max_func_irqs(bp);
10109 	int total_req = bp->cp_nr_rings + num;
10110 	int max_idx, avail_msix;
10111 
10112 	max_idx = bp->total_irqs;
10113 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10114 		max_idx = min_t(int, bp->total_irqs, max_cp);
10115 	avail_msix = max_idx - bp->cp_nr_rings;
10116 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
10117 		return avail_msix;
10118 
10119 	if (max_irq < total_req) {
10120 		num = max_irq - bp->cp_nr_rings;
10121 		if (num <= 0)
10122 			return 0;
10123 	}
10124 	return num;
10125 }
10126 
10127 static int bnxt_get_num_msix(struct bnxt *bp)
10128 {
10129 	if (!BNXT_NEW_RM(bp))
10130 		return bnxt_get_max_func_irqs(bp);
10131 
10132 	return bnxt_nq_rings_in_use(bp);
10133 }
10134 
10135 static int bnxt_init_msix(struct bnxt *bp)
10136 {
10137 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
10138 	struct msix_entry *msix_ent;
10139 
10140 	total_vecs = bnxt_get_num_msix(bp);
10141 	max = bnxt_get_max_func_irqs(bp);
10142 	if (total_vecs > max)
10143 		total_vecs = max;
10144 
10145 	if (!total_vecs)
10146 		return 0;
10147 
10148 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
10149 	if (!msix_ent)
10150 		return -ENOMEM;
10151 
10152 	for (i = 0; i < total_vecs; i++) {
10153 		msix_ent[i].entry = i;
10154 		msix_ent[i].vector = 0;
10155 	}
10156 
10157 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10158 		min = 2;
10159 
10160 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
10161 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10162 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10163 		rc = -ENODEV;
10164 		goto msix_setup_exit;
10165 	}
10166 
10167 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
10168 	if (bp->irq_tbl) {
10169 		for (i = 0; i < total_vecs; i++)
10170 			bp->irq_tbl[i].vector = msix_ent[i].vector;
10171 
10172 		bp->total_irqs = total_vecs;
10173 		/* Trim rings based upon num of vectors allocated */
10174 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10175 				     total_vecs - ulp_msix, min == 1);
10176 		if (rc)
10177 			goto msix_setup_exit;
10178 
10179 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10180 		bp->cp_nr_rings = (min == 1) ?
10181 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10182 				  tx_cp + bp->rx_nr_rings;
10183 
10184 	} else {
10185 		rc = -ENOMEM;
10186 		goto msix_setup_exit;
10187 	}
10188 	bp->flags |= BNXT_FLAG_USING_MSIX;
10189 	kfree(msix_ent);
10190 	return 0;
10191 
10192 msix_setup_exit:
10193 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
10194 	kfree(bp->irq_tbl);
10195 	bp->irq_tbl = NULL;
10196 	pci_disable_msix(bp->pdev);
10197 	kfree(msix_ent);
10198 	return rc;
10199 }
10200 
10201 static int bnxt_init_inta(struct bnxt *bp)
10202 {
10203 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
10204 	if (!bp->irq_tbl)
10205 		return -ENOMEM;
10206 
10207 	bp->total_irqs = 1;
10208 	bp->rx_nr_rings = 1;
10209 	bp->tx_nr_rings = 1;
10210 	bp->cp_nr_rings = 1;
10211 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
10212 	bp->irq_tbl[0].vector = bp->pdev->irq;
10213 	return 0;
10214 }
10215 
10216 static int bnxt_init_int_mode(struct bnxt *bp)
10217 {
10218 	int rc = -ENODEV;
10219 
10220 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
10221 		rc = bnxt_init_msix(bp);
10222 
10223 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
10224 		/* fallback to INTA */
10225 		rc = bnxt_init_inta(bp);
10226 	}
10227 	return rc;
10228 }
10229 
10230 static void bnxt_clear_int_mode(struct bnxt *bp)
10231 {
10232 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10233 		pci_disable_msix(bp->pdev);
10234 
10235 	kfree(bp->irq_tbl);
10236 	bp->irq_tbl = NULL;
10237 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
10238 }
10239 
10240 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10241 {
10242 	int tcs = netdev_get_num_tc(bp->dev);
10243 	bool irq_cleared = false;
10244 	int rc;
10245 
10246 	if (!bnxt_need_reserve_rings(bp))
10247 		return 0;
10248 
10249 	if (irq_re_init && BNXT_NEW_RM(bp) &&
10250 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
10251 		bnxt_ulp_irq_stop(bp);
10252 		bnxt_clear_int_mode(bp);
10253 		irq_cleared = true;
10254 	}
10255 	rc = __bnxt_reserve_rings(bp);
10256 	if (irq_cleared) {
10257 		if (!rc)
10258 			rc = bnxt_init_int_mode(bp);
10259 		bnxt_ulp_irq_restart(bp, rc);
10260 	}
10261 	if (rc) {
10262 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10263 		return rc;
10264 	}
10265 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10266 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10267 		netdev_err(bp->dev, "tx ring reservation failure\n");
10268 		netdev_reset_tc(bp->dev);
10269 		if (bp->tx_nr_rings_xdp)
10270 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10271 		else
10272 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10273 		return -ENOMEM;
10274 	}
10275 	return 0;
10276 }
10277 
10278 static void bnxt_free_irq(struct bnxt *bp)
10279 {
10280 	struct bnxt_irq *irq;
10281 	int i;
10282 
10283 #ifdef CONFIG_RFS_ACCEL
10284 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10285 	bp->dev->rx_cpu_rmap = NULL;
10286 #endif
10287 	if (!bp->irq_tbl || !bp->bnapi)
10288 		return;
10289 
10290 	for (i = 0; i < bp->cp_nr_rings; i++) {
10291 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10292 
10293 		irq = &bp->irq_tbl[map_idx];
10294 		if (irq->requested) {
10295 			if (irq->have_cpumask) {
10296 				irq_set_affinity_hint(irq->vector, NULL);
10297 				free_cpumask_var(irq->cpu_mask);
10298 				irq->have_cpumask = 0;
10299 			}
10300 			free_irq(irq->vector, bp->bnapi[i]);
10301 		}
10302 
10303 		irq->requested = 0;
10304 	}
10305 }
10306 
10307 static int bnxt_request_irq(struct bnxt *bp)
10308 {
10309 	int i, j, rc = 0;
10310 	unsigned long flags = 0;
10311 #ifdef CONFIG_RFS_ACCEL
10312 	struct cpu_rmap *rmap;
10313 #endif
10314 
10315 	rc = bnxt_setup_int_mode(bp);
10316 	if (rc) {
10317 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10318 			   rc);
10319 		return rc;
10320 	}
10321 #ifdef CONFIG_RFS_ACCEL
10322 	rmap = bp->dev->rx_cpu_rmap;
10323 #endif
10324 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
10325 		flags = IRQF_SHARED;
10326 
10327 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10328 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10329 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10330 
10331 #ifdef CONFIG_RFS_ACCEL
10332 		if (rmap && bp->bnapi[i]->rx_ring) {
10333 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10334 			if (rc)
10335 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10336 					    j);
10337 			j++;
10338 		}
10339 #endif
10340 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10341 				 bp->bnapi[i]);
10342 		if (rc)
10343 			break;
10344 
10345 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10346 		irq->requested = 1;
10347 
10348 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10349 			int numa_node = dev_to_node(&bp->pdev->dev);
10350 
10351 			irq->have_cpumask = 1;
10352 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10353 					irq->cpu_mask);
10354 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10355 			if (rc) {
10356 				netdev_warn(bp->dev,
10357 					    "Set affinity failed, IRQ = %d\n",
10358 					    irq->vector);
10359 				break;
10360 			}
10361 		}
10362 	}
10363 	return rc;
10364 }
10365 
10366 static void bnxt_del_napi(struct bnxt *bp)
10367 {
10368 	int i;
10369 
10370 	if (!bp->bnapi)
10371 		return;
10372 
10373 	for (i = 0; i < bp->rx_nr_rings; i++)
10374 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10375 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10376 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10377 
10378 	for (i = 0; i < bp->cp_nr_rings; i++) {
10379 		struct bnxt_napi *bnapi = bp->bnapi[i];
10380 
10381 		__netif_napi_del(&bnapi->napi);
10382 	}
10383 	/* We called __netif_napi_del(), we need
10384 	 * to respect an RCU grace period before freeing napi structures.
10385 	 */
10386 	synchronize_net();
10387 }
10388 
10389 static void bnxt_init_napi(struct bnxt *bp)
10390 {
10391 	int i;
10392 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10393 	struct bnxt_napi *bnapi;
10394 
10395 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
10396 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10397 
10398 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10399 			poll_fn = bnxt_poll_p5;
10400 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10401 			cp_nr_rings--;
10402 		for (i = 0; i < cp_nr_rings; i++) {
10403 			bnapi = bp->bnapi[i];
10404 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10405 		}
10406 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10407 			bnapi = bp->bnapi[cp_nr_rings];
10408 			netif_napi_add(bp->dev, &bnapi->napi,
10409 				       bnxt_poll_nitroa0);
10410 		}
10411 	} else {
10412 		bnapi = bp->bnapi[0];
10413 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10414 	}
10415 }
10416 
10417 static void bnxt_disable_napi(struct bnxt *bp)
10418 {
10419 	int i;
10420 
10421 	if (!bp->bnapi ||
10422 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10423 		return;
10424 
10425 	for (i = 0; i < bp->cp_nr_rings; i++) {
10426 		struct bnxt_napi *bnapi = bp->bnapi[i];
10427 		struct bnxt_cp_ring_info *cpr;
10428 
10429 		cpr = &bnapi->cp_ring;
10430 		if (bnapi->tx_fault)
10431 			cpr->sw_stats.tx.tx_resets++;
10432 		if (bnapi->in_reset)
10433 			cpr->sw_stats.rx.rx_resets++;
10434 		napi_disable(&bnapi->napi);
10435 		if (bnapi->rx_ring)
10436 			cancel_work_sync(&cpr->dim.work);
10437 	}
10438 }
10439 
10440 static void bnxt_enable_napi(struct bnxt *bp)
10441 {
10442 	int i;
10443 
10444 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
10445 	for (i = 0; i < bp->cp_nr_rings; i++) {
10446 		struct bnxt_napi *bnapi = bp->bnapi[i];
10447 		struct bnxt_cp_ring_info *cpr;
10448 
10449 		bnapi->tx_fault = 0;
10450 
10451 		cpr = &bnapi->cp_ring;
10452 		bnapi->in_reset = false;
10453 
10454 		if (bnapi->rx_ring) {
10455 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
10456 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
10457 		}
10458 		napi_enable(&bnapi->napi);
10459 	}
10460 }
10461 
10462 void bnxt_tx_disable(struct bnxt *bp)
10463 {
10464 	int i;
10465 	struct bnxt_tx_ring_info *txr;
10466 
10467 	if (bp->tx_ring) {
10468 		for (i = 0; i < bp->tx_nr_rings; i++) {
10469 			txr = &bp->tx_ring[i];
10470 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
10471 		}
10472 	}
10473 	/* Make sure napi polls see @dev_state change */
10474 	synchronize_net();
10475 	/* Drop carrier first to prevent TX timeout */
10476 	netif_carrier_off(bp->dev);
10477 	/* Stop all TX queues */
10478 	netif_tx_disable(bp->dev);
10479 }
10480 
10481 void bnxt_tx_enable(struct bnxt *bp)
10482 {
10483 	int i;
10484 	struct bnxt_tx_ring_info *txr;
10485 
10486 	for (i = 0; i < bp->tx_nr_rings; i++) {
10487 		txr = &bp->tx_ring[i];
10488 		WRITE_ONCE(txr->dev_state, 0);
10489 	}
10490 	/* Make sure napi polls see @dev_state change */
10491 	synchronize_net();
10492 	netif_tx_wake_all_queues(bp->dev);
10493 	if (BNXT_LINK_IS_UP(bp))
10494 		netif_carrier_on(bp->dev);
10495 }
10496 
10497 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
10498 {
10499 	u8 active_fec = link_info->active_fec_sig_mode &
10500 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
10501 
10502 	switch (active_fec) {
10503 	default:
10504 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
10505 		return "None";
10506 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
10507 		return "Clause 74 BaseR";
10508 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
10509 		return "Clause 91 RS(528,514)";
10510 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
10511 		return "Clause 91 RS544_1XN";
10512 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
10513 		return "Clause 91 RS(544,514)";
10514 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
10515 		return "Clause 91 RS272_1XN";
10516 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
10517 		return "Clause 91 RS(272,257)";
10518 	}
10519 }
10520 
10521 void bnxt_report_link(struct bnxt *bp)
10522 {
10523 	if (BNXT_LINK_IS_UP(bp)) {
10524 		const char *signal = "";
10525 		const char *flow_ctrl;
10526 		const char *duplex;
10527 		u32 speed;
10528 		u16 fec;
10529 
10530 		netif_carrier_on(bp->dev);
10531 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
10532 		if (speed == SPEED_UNKNOWN) {
10533 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
10534 			return;
10535 		}
10536 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
10537 			duplex = "full";
10538 		else
10539 			duplex = "half";
10540 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
10541 			flow_ctrl = "ON - receive & transmit";
10542 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
10543 			flow_ctrl = "ON - transmit";
10544 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
10545 			flow_ctrl = "ON - receive";
10546 		else
10547 			flow_ctrl = "none";
10548 		if (bp->link_info.phy_qcfg_resp.option_flags &
10549 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
10550 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
10551 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
10552 			switch (sig_mode) {
10553 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
10554 				signal = "(NRZ) ";
10555 				break;
10556 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
10557 				signal = "(PAM4 56Gbps) ";
10558 				break;
10559 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
10560 				signal = "(PAM4 112Gbps) ";
10561 				break;
10562 			default:
10563 				break;
10564 			}
10565 		}
10566 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
10567 			    speed, signal, duplex, flow_ctrl);
10568 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
10569 			netdev_info(bp->dev, "EEE is %s\n",
10570 				    bp->eee.eee_active ? "active" :
10571 							 "not active");
10572 		fec = bp->link_info.fec_cfg;
10573 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
10574 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
10575 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
10576 				    bnxt_report_fec(&bp->link_info));
10577 	} else {
10578 		netif_carrier_off(bp->dev);
10579 		netdev_err(bp->dev, "NIC Link is Down\n");
10580 	}
10581 }
10582 
10583 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
10584 {
10585 	if (!resp->supported_speeds_auto_mode &&
10586 	    !resp->supported_speeds_force_mode &&
10587 	    !resp->supported_pam4_speeds_auto_mode &&
10588 	    !resp->supported_pam4_speeds_force_mode &&
10589 	    !resp->supported_speeds2_auto_mode &&
10590 	    !resp->supported_speeds2_force_mode)
10591 		return true;
10592 	return false;
10593 }
10594 
10595 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
10596 {
10597 	struct bnxt_link_info *link_info = &bp->link_info;
10598 	struct hwrm_port_phy_qcaps_output *resp;
10599 	struct hwrm_port_phy_qcaps_input *req;
10600 	int rc = 0;
10601 
10602 	if (bp->hwrm_spec_code < 0x10201)
10603 		return 0;
10604 
10605 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
10606 	if (rc)
10607 		return rc;
10608 
10609 	resp = hwrm_req_hold(bp, req);
10610 	rc = hwrm_req_send(bp, req);
10611 	if (rc)
10612 		goto hwrm_phy_qcaps_exit;
10613 
10614 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
10615 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
10616 		struct ethtool_eee *eee = &bp->eee;
10617 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
10618 
10619 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10620 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
10621 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
10622 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
10623 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
10624 	}
10625 
10626 	if (bp->hwrm_spec_code >= 0x10a01) {
10627 		if (bnxt_phy_qcaps_no_speed(resp)) {
10628 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
10629 			netdev_warn(bp->dev, "Ethernet link disabled\n");
10630 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
10631 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
10632 			netdev_info(bp->dev, "Ethernet link enabled\n");
10633 			/* Phy re-enabled, reprobe the speeds */
10634 			link_info->support_auto_speeds = 0;
10635 			link_info->support_pam4_auto_speeds = 0;
10636 			link_info->support_auto_speeds2 = 0;
10637 		}
10638 	}
10639 	if (resp->supported_speeds_auto_mode)
10640 		link_info->support_auto_speeds =
10641 			le16_to_cpu(resp->supported_speeds_auto_mode);
10642 	if (resp->supported_pam4_speeds_auto_mode)
10643 		link_info->support_pam4_auto_speeds =
10644 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
10645 	if (resp->supported_speeds2_auto_mode)
10646 		link_info->support_auto_speeds2 =
10647 			le16_to_cpu(resp->supported_speeds2_auto_mode);
10648 
10649 	bp->port_count = resp->port_cnt;
10650 
10651 hwrm_phy_qcaps_exit:
10652 	hwrm_req_drop(bp, req);
10653 	return rc;
10654 }
10655 
10656 static bool bnxt_support_dropped(u16 advertising, u16 supported)
10657 {
10658 	u16 diff = advertising ^ supported;
10659 
10660 	return ((supported | diff) != supported);
10661 }
10662 
10663 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
10664 {
10665 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
10666 
10667 	/* Check if any advertised speeds are no longer supported. The caller
10668 	 * holds the link_lock mutex, so we can modify link_info settings.
10669 	 */
10670 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10671 		if (bnxt_support_dropped(link_info->advertising,
10672 					 link_info->support_auto_speeds2)) {
10673 			link_info->advertising = link_info->support_auto_speeds2;
10674 			return true;
10675 		}
10676 		return false;
10677 	}
10678 	if (bnxt_support_dropped(link_info->advertising,
10679 				 link_info->support_auto_speeds)) {
10680 		link_info->advertising = link_info->support_auto_speeds;
10681 		return true;
10682 	}
10683 	if (bnxt_support_dropped(link_info->advertising_pam4,
10684 				 link_info->support_pam4_auto_speeds)) {
10685 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
10686 		return true;
10687 	}
10688 	return false;
10689 }
10690 
10691 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
10692 {
10693 	struct bnxt_link_info *link_info = &bp->link_info;
10694 	struct hwrm_port_phy_qcfg_output *resp;
10695 	struct hwrm_port_phy_qcfg_input *req;
10696 	u8 link_state = link_info->link_state;
10697 	bool support_changed;
10698 	int rc;
10699 
10700 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
10701 	if (rc)
10702 		return rc;
10703 
10704 	resp = hwrm_req_hold(bp, req);
10705 	rc = hwrm_req_send(bp, req);
10706 	if (rc) {
10707 		hwrm_req_drop(bp, req);
10708 		if (BNXT_VF(bp) && rc == -ENODEV) {
10709 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
10710 			rc = 0;
10711 		}
10712 		return rc;
10713 	}
10714 
10715 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
10716 	link_info->phy_link_status = resp->link;
10717 	link_info->duplex = resp->duplex_cfg;
10718 	if (bp->hwrm_spec_code >= 0x10800)
10719 		link_info->duplex = resp->duplex_state;
10720 	link_info->pause = resp->pause;
10721 	link_info->auto_mode = resp->auto_mode;
10722 	link_info->auto_pause_setting = resp->auto_pause;
10723 	link_info->lp_pause = resp->link_partner_adv_pause;
10724 	link_info->force_pause_setting = resp->force_pause;
10725 	link_info->duplex_setting = resp->duplex_cfg;
10726 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
10727 		link_info->link_speed = le16_to_cpu(resp->link_speed);
10728 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
10729 			link_info->active_lanes = resp->active_lanes;
10730 	} else {
10731 		link_info->link_speed = 0;
10732 		link_info->active_lanes = 0;
10733 	}
10734 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
10735 	link_info->force_pam4_link_speed =
10736 		le16_to_cpu(resp->force_pam4_link_speed);
10737 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
10738 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
10739 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
10740 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
10741 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
10742 	link_info->auto_pam4_link_speeds =
10743 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
10744 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
10745 	link_info->lp_auto_link_speeds =
10746 		le16_to_cpu(resp->link_partner_adv_speeds);
10747 	link_info->lp_auto_pam4_link_speeds =
10748 		resp->link_partner_pam4_adv_speeds;
10749 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
10750 	link_info->phy_ver[0] = resp->phy_maj;
10751 	link_info->phy_ver[1] = resp->phy_min;
10752 	link_info->phy_ver[2] = resp->phy_bld;
10753 	link_info->media_type = resp->media_type;
10754 	link_info->phy_type = resp->phy_type;
10755 	link_info->transceiver = resp->xcvr_pkg_type;
10756 	link_info->phy_addr = resp->eee_config_phy_addr &
10757 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
10758 	link_info->module_status = resp->module_status;
10759 
10760 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
10761 		struct ethtool_eee *eee = &bp->eee;
10762 		u16 fw_speeds;
10763 
10764 		eee->eee_active = 0;
10765 		if (resp->eee_config_phy_addr &
10766 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
10767 			eee->eee_active = 1;
10768 			fw_speeds = le16_to_cpu(
10769 				resp->link_partner_adv_eee_link_speed_mask);
10770 			eee->lp_advertised =
10771 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10772 		}
10773 
10774 		/* Pull initial EEE config */
10775 		if (!chng_link_state) {
10776 			if (resp->eee_config_phy_addr &
10777 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
10778 				eee->eee_enabled = 1;
10779 
10780 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
10781 			eee->advertised =
10782 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10783 
10784 			if (resp->eee_config_phy_addr &
10785 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
10786 				__le32 tmr;
10787 
10788 				eee->tx_lpi_enabled = 1;
10789 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
10790 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
10791 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
10792 			}
10793 		}
10794 	}
10795 
10796 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
10797 	if (bp->hwrm_spec_code >= 0x10504) {
10798 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
10799 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
10800 	}
10801 	/* TODO: need to add more logic to report VF link */
10802 	if (chng_link_state) {
10803 		if (link_info->phy_link_status == BNXT_LINK_LINK)
10804 			link_info->link_state = BNXT_LINK_STATE_UP;
10805 		else
10806 			link_info->link_state = BNXT_LINK_STATE_DOWN;
10807 		if (link_state != link_info->link_state)
10808 			bnxt_report_link(bp);
10809 	} else {
10810 		/* always link down if not require to update link state */
10811 		link_info->link_state = BNXT_LINK_STATE_DOWN;
10812 	}
10813 	hwrm_req_drop(bp, req);
10814 
10815 	if (!BNXT_PHY_CFG_ABLE(bp))
10816 		return 0;
10817 
10818 	support_changed = bnxt_support_speed_dropped(link_info);
10819 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
10820 		bnxt_hwrm_set_link_setting(bp, true, false);
10821 	return 0;
10822 }
10823 
10824 static void bnxt_get_port_module_status(struct bnxt *bp)
10825 {
10826 	struct bnxt_link_info *link_info = &bp->link_info;
10827 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
10828 	u8 module_status;
10829 
10830 	if (bnxt_update_link(bp, true))
10831 		return;
10832 
10833 	module_status = link_info->module_status;
10834 	switch (module_status) {
10835 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
10836 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
10837 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
10838 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
10839 			    bp->pf.port_id);
10840 		if (bp->hwrm_spec_code >= 0x10201) {
10841 			netdev_warn(bp->dev, "Module part number %s\n",
10842 				    resp->phy_vendor_partnumber);
10843 		}
10844 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
10845 			netdev_warn(bp->dev, "TX is disabled\n");
10846 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
10847 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
10848 	}
10849 }
10850 
10851 static void
10852 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10853 {
10854 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
10855 		if (bp->hwrm_spec_code >= 0x10201)
10856 			req->auto_pause =
10857 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
10858 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10859 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
10860 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10861 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
10862 		req->enables |=
10863 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10864 	} else {
10865 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10866 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
10867 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10868 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
10869 		req->enables |=
10870 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
10871 		if (bp->hwrm_spec_code >= 0x10201) {
10872 			req->auto_pause = req->force_pause;
10873 			req->enables |= cpu_to_le32(
10874 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10875 		}
10876 	}
10877 }
10878 
10879 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10880 {
10881 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
10882 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
10883 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10884 			req->enables |=
10885 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
10886 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
10887 		} else if (bp->link_info.advertising) {
10888 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
10889 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
10890 		}
10891 		if (bp->link_info.advertising_pam4) {
10892 			req->enables |=
10893 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
10894 			req->auto_link_pam4_speed_mask =
10895 				cpu_to_le16(bp->link_info.advertising_pam4);
10896 		}
10897 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
10898 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
10899 	} else {
10900 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
10901 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10902 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
10903 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
10904 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
10905 				   (u32)bp->link_info.req_link_speed);
10906 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
10907 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10908 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
10909 		} else {
10910 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10911 		}
10912 	}
10913 
10914 	/* tell chimp that the setting takes effect immediately */
10915 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
10916 }
10917 
10918 int bnxt_hwrm_set_pause(struct bnxt *bp)
10919 {
10920 	struct hwrm_port_phy_cfg_input *req;
10921 	int rc;
10922 
10923 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10924 	if (rc)
10925 		return rc;
10926 
10927 	bnxt_hwrm_set_pause_common(bp, req);
10928 
10929 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
10930 	    bp->link_info.force_link_chng)
10931 		bnxt_hwrm_set_link_common(bp, req);
10932 
10933 	rc = hwrm_req_send(bp, req);
10934 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
10935 		/* since changing of pause setting doesn't trigger any link
10936 		 * change event, the driver needs to update the current pause
10937 		 * result upon successfully return of the phy_cfg command
10938 		 */
10939 		bp->link_info.pause =
10940 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
10941 		bp->link_info.auto_pause_setting = 0;
10942 		if (!bp->link_info.force_link_chng)
10943 			bnxt_report_link(bp);
10944 	}
10945 	bp->link_info.force_link_chng = false;
10946 	return rc;
10947 }
10948 
10949 static void bnxt_hwrm_set_eee(struct bnxt *bp,
10950 			      struct hwrm_port_phy_cfg_input *req)
10951 {
10952 	struct ethtool_eee *eee = &bp->eee;
10953 
10954 	if (eee->eee_enabled) {
10955 		u16 eee_speeds;
10956 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
10957 
10958 		if (eee->tx_lpi_enabled)
10959 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
10960 		else
10961 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
10962 
10963 		req->flags |= cpu_to_le32(flags);
10964 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
10965 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
10966 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
10967 	} else {
10968 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
10969 	}
10970 }
10971 
10972 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
10973 {
10974 	struct hwrm_port_phy_cfg_input *req;
10975 	int rc;
10976 
10977 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10978 	if (rc)
10979 		return rc;
10980 
10981 	if (set_pause)
10982 		bnxt_hwrm_set_pause_common(bp, req);
10983 
10984 	bnxt_hwrm_set_link_common(bp, req);
10985 
10986 	if (set_eee)
10987 		bnxt_hwrm_set_eee(bp, req);
10988 	return hwrm_req_send(bp, req);
10989 }
10990 
10991 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
10992 {
10993 	struct hwrm_port_phy_cfg_input *req;
10994 	int rc;
10995 
10996 	if (!BNXT_SINGLE_PF(bp))
10997 		return 0;
10998 
10999 	if (pci_num_vf(bp->pdev) &&
11000 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11001 		return 0;
11002 
11003 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11004 	if (rc)
11005 		return rc;
11006 
11007 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11008 	rc = hwrm_req_send(bp, req);
11009 	if (!rc) {
11010 		mutex_lock(&bp->link_lock);
11011 		/* Device is not obliged link down in certain scenarios, even
11012 		 * when forced. Setting the state unknown is consistent with
11013 		 * driver startup and will force link state to be reported
11014 		 * during subsequent open based on PORT_PHY_QCFG.
11015 		 */
11016 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11017 		mutex_unlock(&bp->link_lock);
11018 	}
11019 	return rc;
11020 }
11021 
11022 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11023 {
11024 #ifdef CONFIG_TEE_BNXT_FW
11025 	int rc = tee_bnxt_fw_load();
11026 
11027 	if (rc)
11028 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11029 
11030 	return rc;
11031 #else
11032 	netdev_err(bp->dev, "OP-TEE not supported\n");
11033 	return -ENODEV;
11034 #endif
11035 }
11036 
11037 static int bnxt_try_recover_fw(struct bnxt *bp)
11038 {
11039 	if (bp->fw_health && bp->fw_health->status_reliable) {
11040 		int retry = 0, rc;
11041 		u32 sts;
11042 
11043 		do {
11044 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11045 			rc = bnxt_hwrm_poll(bp);
11046 			if (!BNXT_FW_IS_BOOTING(sts) &&
11047 			    !BNXT_FW_IS_RECOVERING(sts))
11048 				break;
11049 			retry++;
11050 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11051 
11052 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11053 			netdev_err(bp->dev,
11054 				   "Firmware not responding, status: 0x%x\n",
11055 				   sts);
11056 			rc = -ENODEV;
11057 		}
11058 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11059 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11060 			return bnxt_fw_reset_via_optee(bp);
11061 		}
11062 		return rc;
11063 	}
11064 
11065 	return -ENODEV;
11066 }
11067 
11068 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11069 {
11070 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11071 
11072 	if (!BNXT_NEW_RM(bp))
11073 		return; /* no resource reservations required */
11074 
11075 	hw_resc->resv_cp_rings = 0;
11076 	hw_resc->resv_stat_ctxs = 0;
11077 	hw_resc->resv_irqs = 0;
11078 	hw_resc->resv_tx_rings = 0;
11079 	hw_resc->resv_rx_rings = 0;
11080 	hw_resc->resv_hw_ring_grps = 0;
11081 	hw_resc->resv_vnics = 0;
11082 	if (!fw_reset) {
11083 		bp->tx_nr_rings = 0;
11084 		bp->rx_nr_rings = 0;
11085 	}
11086 }
11087 
11088 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11089 {
11090 	int rc;
11091 
11092 	if (!BNXT_NEW_RM(bp))
11093 		return 0; /* no resource reservations required */
11094 
11095 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11096 	if (rc)
11097 		netdev_err(bp->dev, "resc_qcaps failed\n");
11098 
11099 	bnxt_clear_reservations(bp, fw_reset);
11100 
11101 	return rc;
11102 }
11103 
11104 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11105 {
11106 	struct hwrm_func_drv_if_change_output *resp;
11107 	struct hwrm_func_drv_if_change_input *req;
11108 	bool fw_reset = !bp->irq_tbl;
11109 	bool resc_reinit = false;
11110 	int rc, retry = 0;
11111 	u32 flags = 0;
11112 
11113 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11114 		return 0;
11115 
11116 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11117 	if (rc)
11118 		return rc;
11119 
11120 	if (up)
11121 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11122 	resp = hwrm_req_hold(bp, req);
11123 
11124 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11125 	while (retry < BNXT_FW_IF_RETRY) {
11126 		rc = hwrm_req_send(bp, req);
11127 		if (rc != -EAGAIN)
11128 			break;
11129 
11130 		msleep(50);
11131 		retry++;
11132 	}
11133 
11134 	if (rc == -EAGAIN) {
11135 		hwrm_req_drop(bp, req);
11136 		return rc;
11137 	} else if (!rc) {
11138 		flags = le32_to_cpu(resp->flags);
11139 	} else if (up) {
11140 		rc = bnxt_try_recover_fw(bp);
11141 		fw_reset = true;
11142 	}
11143 	hwrm_req_drop(bp, req);
11144 	if (rc)
11145 		return rc;
11146 
11147 	if (!up) {
11148 		bnxt_inv_fw_health_reg(bp);
11149 		return 0;
11150 	}
11151 
11152 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11153 		resc_reinit = true;
11154 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11155 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11156 		fw_reset = true;
11157 	else
11158 		bnxt_remap_fw_health_regs(bp);
11159 
11160 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11161 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11162 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11163 		return -ENODEV;
11164 	}
11165 	if (resc_reinit || fw_reset) {
11166 		if (fw_reset) {
11167 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11168 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11169 				bnxt_ulp_stop(bp);
11170 			bnxt_free_ctx_mem(bp);
11171 			bnxt_dcb_free(bp);
11172 			rc = bnxt_fw_init_one(bp);
11173 			if (rc) {
11174 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11175 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11176 				return rc;
11177 			}
11178 			bnxt_clear_int_mode(bp);
11179 			rc = bnxt_init_int_mode(bp);
11180 			if (rc) {
11181 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11182 				netdev_err(bp->dev, "init int mode failed\n");
11183 				return rc;
11184 			}
11185 		}
11186 		rc = bnxt_cancel_reservations(bp, fw_reset);
11187 	}
11188 	return rc;
11189 }
11190 
11191 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11192 {
11193 	struct hwrm_port_led_qcaps_output *resp;
11194 	struct hwrm_port_led_qcaps_input *req;
11195 	struct bnxt_pf_info *pf = &bp->pf;
11196 	int rc;
11197 
11198 	bp->num_leds = 0;
11199 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11200 		return 0;
11201 
11202 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11203 	if (rc)
11204 		return rc;
11205 
11206 	req->port_id = cpu_to_le16(pf->port_id);
11207 	resp = hwrm_req_hold(bp, req);
11208 	rc = hwrm_req_send(bp, req);
11209 	if (rc) {
11210 		hwrm_req_drop(bp, req);
11211 		return rc;
11212 	}
11213 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11214 		int i;
11215 
11216 		bp->num_leds = resp->num_leds;
11217 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11218 						 bp->num_leds);
11219 		for (i = 0; i < bp->num_leds; i++) {
11220 			struct bnxt_led_info *led = &bp->leds[i];
11221 			__le16 caps = led->led_state_caps;
11222 
11223 			if (!led->led_group_id ||
11224 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11225 				bp->num_leds = 0;
11226 				break;
11227 			}
11228 		}
11229 	}
11230 	hwrm_req_drop(bp, req);
11231 	return 0;
11232 }
11233 
11234 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11235 {
11236 	struct hwrm_wol_filter_alloc_output *resp;
11237 	struct hwrm_wol_filter_alloc_input *req;
11238 	int rc;
11239 
11240 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11241 	if (rc)
11242 		return rc;
11243 
11244 	req->port_id = cpu_to_le16(bp->pf.port_id);
11245 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11246 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11247 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11248 
11249 	resp = hwrm_req_hold(bp, req);
11250 	rc = hwrm_req_send(bp, req);
11251 	if (!rc)
11252 		bp->wol_filter_id = resp->wol_filter_id;
11253 	hwrm_req_drop(bp, req);
11254 	return rc;
11255 }
11256 
11257 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11258 {
11259 	struct hwrm_wol_filter_free_input *req;
11260 	int rc;
11261 
11262 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11263 	if (rc)
11264 		return rc;
11265 
11266 	req->port_id = cpu_to_le16(bp->pf.port_id);
11267 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11268 	req->wol_filter_id = bp->wol_filter_id;
11269 
11270 	return hwrm_req_send(bp, req);
11271 }
11272 
11273 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11274 {
11275 	struct hwrm_wol_filter_qcfg_output *resp;
11276 	struct hwrm_wol_filter_qcfg_input *req;
11277 	u16 next_handle = 0;
11278 	int rc;
11279 
11280 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11281 	if (rc)
11282 		return rc;
11283 
11284 	req->port_id = cpu_to_le16(bp->pf.port_id);
11285 	req->handle = cpu_to_le16(handle);
11286 	resp = hwrm_req_hold(bp, req);
11287 	rc = hwrm_req_send(bp, req);
11288 	if (!rc) {
11289 		next_handle = le16_to_cpu(resp->next_handle);
11290 		if (next_handle != 0) {
11291 			if (resp->wol_type ==
11292 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11293 				bp->wol = 1;
11294 				bp->wol_filter_id = resp->wol_filter_id;
11295 			}
11296 		}
11297 	}
11298 	hwrm_req_drop(bp, req);
11299 	return next_handle;
11300 }
11301 
11302 static void bnxt_get_wol_settings(struct bnxt *bp)
11303 {
11304 	u16 handle = 0;
11305 
11306 	bp->wol = 0;
11307 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11308 		return;
11309 
11310 	do {
11311 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11312 	} while (handle && handle != 0xffff);
11313 }
11314 
11315 static bool bnxt_eee_config_ok(struct bnxt *bp)
11316 {
11317 	struct ethtool_eee *eee = &bp->eee;
11318 	struct bnxt_link_info *link_info = &bp->link_info;
11319 
11320 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11321 		return true;
11322 
11323 	if (eee->eee_enabled) {
11324 		u32 advertising =
11325 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
11326 
11327 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11328 			eee->eee_enabled = 0;
11329 			return false;
11330 		}
11331 		if (eee->advertised & ~advertising) {
11332 			eee->advertised = advertising & eee->supported;
11333 			return false;
11334 		}
11335 	}
11336 	return true;
11337 }
11338 
11339 static int bnxt_update_phy_setting(struct bnxt *bp)
11340 {
11341 	int rc;
11342 	bool update_link = false;
11343 	bool update_pause = false;
11344 	bool update_eee = false;
11345 	struct bnxt_link_info *link_info = &bp->link_info;
11346 
11347 	rc = bnxt_update_link(bp, true);
11348 	if (rc) {
11349 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11350 			   rc);
11351 		return rc;
11352 	}
11353 	if (!BNXT_SINGLE_PF(bp))
11354 		return 0;
11355 
11356 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11357 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11358 	    link_info->req_flow_ctrl)
11359 		update_pause = true;
11360 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11361 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11362 		update_pause = true;
11363 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11364 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11365 			update_link = true;
11366 		if (bnxt_force_speed_updated(link_info))
11367 			update_link = true;
11368 		if (link_info->req_duplex != link_info->duplex_setting)
11369 			update_link = true;
11370 	} else {
11371 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11372 			update_link = true;
11373 		if (bnxt_auto_speed_updated(link_info))
11374 			update_link = true;
11375 	}
11376 
11377 	/* The last close may have shutdown the link, so need to call
11378 	 * PHY_CFG to bring it back up.
11379 	 */
11380 	if (!BNXT_LINK_IS_UP(bp))
11381 		update_link = true;
11382 
11383 	if (!bnxt_eee_config_ok(bp))
11384 		update_eee = true;
11385 
11386 	if (update_link)
11387 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11388 	else if (update_pause)
11389 		rc = bnxt_hwrm_set_pause(bp);
11390 	if (rc) {
11391 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11392 			   rc);
11393 		return rc;
11394 	}
11395 
11396 	return rc;
11397 }
11398 
11399 /* Common routine to pre-map certain register block to different GRC window.
11400  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
11401  * in PF and 3 windows in VF that can be customized to map in different
11402  * register blocks.
11403  */
11404 static void bnxt_preset_reg_win(struct bnxt *bp)
11405 {
11406 	if (BNXT_PF(bp)) {
11407 		/* CAG registers map to GRC window #4 */
11408 		writel(BNXT_CAG_REG_BASE,
11409 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11410 	}
11411 }
11412 
11413 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11414 
11415 static int bnxt_reinit_after_abort(struct bnxt *bp)
11416 {
11417 	int rc;
11418 
11419 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11420 		return -EBUSY;
11421 
11422 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11423 		return -ENODEV;
11424 
11425 	rc = bnxt_fw_init_one(bp);
11426 	if (!rc) {
11427 		bnxt_clear_int_mode(bp);
11428 		rc = bnxt_init_int_mode(bp);
11429 		if (!rc) {
11430 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11431 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11432 		}
11433 	}
11434 	return rc;
11435 }
11436 
11437 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11438 {
11439 	int rc = 0;
11440 
11441 	bnxt_preset_reg_win(bp);
11442 	netif_carrier_off(bp->dev);
11443 	if (irq_re_init) {
11444 		/* Reserve rings now if none were reserved at driver probe. */
11445 		rc = bnxt_init_dflt_ring_mode(bp);
11446 		if (rc) {
11447 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
11448 			return rc;
11449 		}
11450 	}
11451 	rc = bnxt_reserve_rings(bp, irq_re_init);
11452 	if (rc)
11453 		return rc;
11454 	if ((bp->flags & BNXT_FLAG_RFS) &&
11455 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
11456 		/* disable RFS if falling back to INTA */
11457 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
11458 		bp->flags &= ~BNXT_FLAG_RFS;
11459 	}
11460 
11461 	rc = bnxt_alloc_mem(bp, irq_re_init);
11462 	if (rc) {
11463 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11464 		goto open_err_free_mem;
11465 	}
11466 
11467 	if (irq_re_init) {
11468 		bnxt_init_napi(bp);
11469 		rc = bnxt_request_irq(bp);
11470 		if (rc) {
11471 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
11472 			goto open_err_irq;
11473 		}
11474 	}
11475 
11476 	rc = bnxt_init_nic(bp, irq_re_init);
11477 	if (rc) {
11478 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11479 		goto open_err_irq;
11480 	}
11481 
11482 	bnxt_enable_napi(bp);
11483 	bnxt_debug_dev_init(bp);
11484 
11485 	if (link_re_init) {
11486 		mutex_lock(&bp->link_lock);
11487 		rc = bnxt_update_phy_setting(bp);
11488 		mutex_unlock(&bp->link_lock);
11489 		if (rc) {
11490 			netdev_warn(bp->dev, "failed to update phy settings\n");
11491 			if (BNXT_SINGLE_PF(bp)) {
11492 				bp->link_info.phy_retry = true;
11493 				bp->link_info.phy_retry_expires =
11494 					jiffies + 5 * HZ;
11495 			}
11496 		}
11497 	}
11498 
11499 	if (irq_re_init)
11500 		udp_tunnel_nic_reset_ntf(bp->dev);
11501 
11502 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
11503 		if (!static_key_enabled(&bnxt_xdp_locking_key))
11504 			static_branch_enable(&bnxt_xdp_locking_key);
11505 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
11506 		static_branch_disable(&bnxt_xdp_locking_key);
11507 	}
11508 	set_bit(BNXT_STATE_OPEN, &bp->state);
11509 	bnxt_enable_int(bp);
11510 	/* Enable TX queues */
11511 	bnxt_tx_enable(bp);
11512 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11513 	/* Poll link status and check for SFP+ module status */
11514 	mutex_lock(&bp->link_lock);
11515 	bnxt_get_port_module_status(bp);
11516 	mutex_unlock(&bp->link_lock);
11517 
11518 	/* VF-reps may need to be re-opened after the PF is re-opened */
11519 	if (BNXT_PF(bp))
11520 		bnxt_vf_reps_open(bp);
11521 	bnxt_ptp_init_rtc(bp, true);
11522 	bnxt_ptp_cfg_tstamp_filters(bp);
11523 	return 0;
11524 
11525 open_err_irq:
11526 	bnxt_del_napi(bp);
11527 
11528 open_err_free_mem:
11529 	bnxt_free_skbs(bp);
11530 	bnxt_free_irq(bp);
11531 	bnxt_free_mem(bp, true);
11532 	return rc;
11533 }
11534 
11535 /* rtnl_lock held */
11536 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11537 {
11538 	int rc = 0;
11539 
11540 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
11541 		rc = -EIO;
11542 	if (!rc)
11543 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
11544 	if (rc) {
11545 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
11546 		dev_close(bp->dev);
11547 	}
11548 	return rc;
11549 }
11550 
11551 /* rtnl_lock held, open the NIC half way by allocating all resources, but
11552  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
11553  * self tests.
11554  */
11555 int bnxt_half_open_nic(struct bnxt *bp)
11556 {
11557 	int rc = 0;
11558 
11559 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11560 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
11561 		rc = -ENODEV;
11562 		goto half_open_err;
11563 	}
11564 
11565 	rc = bnxt_alloc_mem(bp, true);
11566 	if (rc) {
11567 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11568 		goto half_open_err;
11569 	}
11570 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11571 	rc = bnxt_init_nic(bp, true);
11572 	if (rc) {
11573 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11574 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11575 		goto half_open_err;
11576 	}
11577 	return 0;
11578 
11579 half_open_err:
11580 	bnxt_free_skbs(bp);
11581 	bnxt_free_mem(bp, true);
11582 	dev_close(bp->dev);
11583 	return rc;
11584 }
11585 
11586 /* rtnl_lock held, this call can only be made after a previous successful
11587  * call to bnxt_half_open_nic().
11588  */
11589 void bnxt_half_close_nic(struct bnxt *bp)
11590 {
11591 	bnxt_hwrm_resource_free(bp, false, true);
11592 	bnxt_free_skbs(bp);
11593 	bnxt_free_mem(bp, true);
11594 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11595 }
11596 
11597 void bnxt_reenable_sriov(struct bnxt *bp)
11598 {
11599 	if (BNXT_PF(bp)) {
11600 		struct bnxt_pf_info *pf = &bp->pf;
11601 		int n = pf->active_vfs;
11602 
11603 		if (n)
11604 			bnxt_cfg_hw_sriov(bp, &n, true);
11605 	}
11606 }
11607 
11608 static int bnxt_open(struct net_device *dev)
11609 {
11610 	struct bnxt *bp = netdev_priv(dev);
11611 	int rc;
11612 
11613 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11614 		rc = bnxt_reinit_after_abort(bp);
11615 		if (rc) {
11616 			if (rc == -EBUSY)
11617 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
11618 			else
11619 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
11620 			return -ENODEV;
11621 		}
11622 	}
11623 
11624 	rc = bnxt_hwrm_if_change(bp, true);
11625 	if (rc)
11626 		return rc;
11627 
11628 	rc = __bnxt_open_nic(bp, true, true);
11629 	if (rc) {
11630 		bnxt_hwrm_if_change(bp, false);
11631 	} else {
11632 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
11633 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11634 				bnxt_ulp_start(bp, 0);
11635 				bnxt_reenable_sriov(bp);
11636 			}
11637 		}
11638 	}
11639 
11640 	return rc;
11641 }
11642 
11643 static bool bnxt_drv_busy(struct bnxt *bp)
11644 {
11645 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
11646 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
11647 }
11648 
11649 static void bnxt_get_ring_stats(struct bnxt *bp,
11650 				struct rtnl_link_stats64 *stats);
11651 
11652 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
11653 			     bool link_re_init)
11654 {
11655 	/* Close the VF-reps before closing PF */
11656 	if (BNXT_PF(bp))
11657 		bnxt_vf_reps_close(bp);
11658 
11659 	/* Change device state to avoid TX queue wake up's */
11660 	bnxt_tx_disable(bp);
11661 
11662 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11663 	smp_mb__after_atomic();
11664 	while (bnxt_drv_busy(bp))
11665 		msleep(20);
11666 
11667 	/* Flush rings and disable interrupts */
11668 	bnxt_shutdown_nic(bp, irq_re_init);
11669 
11670 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
11671 
11672 	bnxt_debug_dev_exit(bp);
11673 	bnxt_disable_napi(bp);
11674 	del_timer_sync(&bp->timer);
11675 	bnxt_free_skbs(bp);
11676 
11677 	/* Save ring stats before shutdown */
11678 	if (bp->bnapi && irq_re_init) {
11679 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
11680 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
11681 	}
11682 	if (irq_re_init) {
11683 		bnxt_free_irq(bp);
11684 		bnxt_del_napi(bp);
11685 	}
11686 	bnxt_free_mem(bp, irq_re_init);
11687 }
11688 
11689 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11690 {
11691 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11692 		/* If we get here, it means firmware reset is in progress
11693 		 * while we are trying to close.  We can safely proceed with
11694 		 * the close because we are holding rtnl_lock().  Some firmware
11695 		 * messages may fail as we proceed to close.  We set the
11696 		 * ABORT_ERR flag here so that the FW reset thread will later
11697 		 * abort when it gets the rtnl_lock() and sees the flag.
11698 		 */
11699 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
11700 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11701 	}
11702 
11703 #ifdef CONFIG_BNXT_SRIOV
11704 	if (bp->sriov_cfg) {
11705 		int rc;
11706 
11707 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
11708 						      !bp->sriov_cfg,
11709 						      BNXT_SRIOV_CFG_WAIT_TMO);
11710 		if (!rc)
11711 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
11712 		else if (rc < 0)
11713 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
11714 	}
11715 #endif
11716 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
11717 }
11718 
11719 static int bnxt_close(struct net_device *dev)
11720 {
11721 	struct bnxt *bp = netdev_priv(dev);
11722 
11723 	bnxt_close_nic(bp, true, true);
11724 	bnxt_hwrm_shutdown_link(bp);
11725 	bnxt_hwrm_if_change(bp, false);
11726 	return 0;
11727 }
11728 
11729 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
11730 				   u16 *val)
11731 {
11732 	struct hwrm_port_phy_mdio_read_output *resp;
11733 	struct hwrm_port_phy_mdio_read_input *req;
11734 	int rc;
11735 
11736 	if (bp->hwrm_spec_code < 0x10a00)
11737 		return -EOPNOTSUPP;
11738 
11739 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
11740 	if (rc)
11741 		return rc;
11742 
11743 	req->port_id = cpu_to_le16(bp->pf.port_id);
11744 	req->phy_addr = phy_addr;
11745 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11746 	if (mdio_phy_id_is_c45(phy_addr)) {
11747 		req->cl45_mdio = 1;
11748 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11749 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11750 		req->reg_addr = cpu_to_le16(reg);
11751 	}
11752 
11753 	resp = hwrm_req_hold(bp, req);
11754 	rc = hwrm_req_send(bp, req);
11755 	if (!rc)
11756 		*val = le16_to_cpu(resp->reg_data);
11757 	hwrm_req_drop(bp, req);
11758 	return rc;
11759 }
11760 
11761 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
11762 				    u16 val)
11763 {
11764 	struct hwrm_port_phy_mdio_write_input *req;
11765 	int rc;
11766 
11767 	if (bp->hwrm_spec_code < 0x10a00)
11768 		return -EOPNOTSUPP;
11769 
11770 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
11771 	if (rc)
11772 		return rc;
11773 
11774 	req->port_id = cpu_to_le16(bp->pf.port_id);
11775 	req->phy_addr = phy_addr;
11776 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11777 	if (mdio_phy_id_is_c45(phy_addr)) {
11778 		req->cl45_mdio = 1;
11779 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11780 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11781 		req->reg_addr = cpu_to_le16(reg);
11782 	}
11783 	req->reg_data = cpu_to_le16(val);
11784 
11785 	return hwrm_req_send(bp, req);
11786 }
11787 
11788 /* rtnl_lock held */
11789 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11790 {
11791 	struct mii_ioctl_data *mdio = if_mii(ifr);
11792 	struct bnxt *bp = netdev_priv(dev);
11793 	int rc;
11794 
11795 	switch (cmd) {
11796 	case SIOCGMIIPHY:
11797 		mdio->phy_id = bp->link_info.phy_addr;
11798 
11799 		fallthrough;
11800 	case SIOCGMIIREG: {
11801 		u16 mii_regval = 0;
11802 
11803 		if (!netif_running(dev))
11804 			return -EAGAIN;
11805 
11806 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
11807 					     &mii_regval);
11808 		mdio->val_out = mii_regval;
11809 		return rc;
11810 	}
11811 
11812 	case SIOCSMIIREG:
11813 		if (!netif_running(dev))
11814 			return -EAGAIN;
11815 
11816 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
11817 						mdio->val_in);
11818 
11819 	case SIOCSHWTSTAMP:
11820 		return bnxt_hwtstamp_set(dev, ifr);
11821 
11822 	case SIOCGHWTSTAMP:
11823 		return bnxt_hwtstamp_get(dev, ifr);
11824 
11825 	default:
11826 		/* do nothing */
11827 		break;
11828 	}
11829 	return -EOPNOTSUPP;
11830 }
11831 
11832 static void bnxt_get_ring_stats(struct bnxt *bp,
11833 				struct rtnl_link_stats64 *stats)
11834 {
11835 	int i;
11836 
11837 	for (i = 0; i < bp->cp_nr_rings; i++) {
11838 		struct bnxt_napi *bnapi = bp->bnapi[i];
11839 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11840 		u64 *sw = cpr->stats.sw_stats;
11841 
11842 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
11843 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11844 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
11845 
11846 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
11847 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
11848 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
11849 
11850 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
11851 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
11852 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
11853 
11854 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
11855 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
11856 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
11857 
11858 		stats->rx_missed_errors +=
11859 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
11860 
11861 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11862 
11863 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
11864 
11865 		stats->rx_dropped +=
11866 			cpr->sw_stats.rx.rx_netpoll_discards +
11867 			cpr->sw_stats.rx.rx_oom_discards;
11868 	}
11869 }
11870 
11871 static void bnxt_add_prev_stats(struct bnxt *bp,
11872 				struct rtnl_link_stats64 *stats)
11873 {
11874 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
11875 
11876 	stats->rx_packets += prev_stats->rx_packets;
11877 	stats->tx_packets += prev_stats->tx_packets;
11878 	stats->rx_bytes += prev_stats->rx_bytes;
11879 	stats->tx_bytes += prev_stats->tx_bytes;
11880 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
11881 	stats->multicast += prev_stats->multicast;
11882 	stats->rx_dropped += prev_stats->rx_dropped;
11883 	stats->tx_dropped += prev_stats->tx_dropped;
11884 }
11885 
11886 static void
11887 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
11888 {
11889 	struct bnxt *bp = netdev_priv(dev);
11890 
11891 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
11892 	/* Make sure bnxt_close_nic() sees that we are reading stats before
11893 	 * we check the BNXT_STATE_OPEN flag.
11894 	 */
11895 	smp_mb__after_atomic();
11896 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11897 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11898 		*stats = bp->net_stats_prev;
11899 		return;
11900 	}
11901 
11902 	bnxt_get_ring_stats(bp, stats);
11903 	bnxt_add_prev_stats(bp, stats);
11904 
11905 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
11906 		u64 *rx = bp->port_stats.sw_stats;
11907 		u64 *tx = bp->port_stats.sw_stats +
11908 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
11909 
11910 		stats->rx_crc_errors =
11911 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
11912 		stats->rx_frame_errors =
11913 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
11914 		stats->rx_length_errors =
11915 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
11916 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
11917 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
11918 		stats->rx_errors =
11919 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
11920 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
11921 		stats->collisions =
11922 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
11923 		stats->tx_fifo_errors =
11924 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
11925 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
11926 	}
11927 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11928 }
11929 
11930 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
11931 					struct bnxt_total_ring_err_stats *stats,
11932 					struct bnxt_cp_ring_info *cpr)
11933 {
11934 	struct bnxt_sw_stats *sw_stats = &cpr->sw_stats;
11935 	u64 *hw_stats = cpr->stats.sw_stats;
11936 
11937 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
11938 	stats->rx_total_resets += sw_stats->rx.rx_resets;
11939 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
11940 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
11941 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
11942 	stats->rx_total_ring_discards +=
11943 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
11944 	stats->tx_total_resets += sw_stats->tx.tx_resets;
11945 	stats->tx_total_ring_discards +=
11946 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
11947 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
11948 }
11949 
11950 void bnxt_get_ring_err_stats(struct bnxt *bp,
11951 			     struct bnxt_total_ring_err_stats *stats)
11952 {
11953 	int i;
11954 
11955 	for (i = 0; i < bp->cp_nr_rings; i++)
11956 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
11957 }
11958 
11959 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
11960 {
11961 	struct net_device *dev = bp->dev;
11962 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11963 	struct netdev_hw_addr *ha;
11964 	u8 *haddr;
11965 	int mc_count = 0;
11966 	bool update = false;
11967 	int off = 0;
11968 
11969 	netdev_for_each_mc_addr(ha, dev) {
11970 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
11971 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11972 			vnic->mc_list_count = 0;
11973 			return false;
11974 		}
11975 		haddr = ha->addr;
11976 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
11977 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
11978 			update = true;
11979 		}
11980 		off += ETH_ALEN;
11981 		mc_count++;
11982 	}
11983 	if (mc_count)
11984 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11985 
11986 	if (mc_count != vnic->mc_list_count) {
11987 		vnic->mc_list_count = mc_count;
11988 		update = true;
11989 	}
11990 	return update;
11991 }
11992 
11993 static bool bnxt_uc_list_updated(struct bnxt *bp)
11994 {
11995 	struct net_device *dev = bp->dev;
11996 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11997 	struct netdev_hw_addr *ha;
11998 	int off = 0;
11999 
12000 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12001 		return true;
12002 
12003 	netdev_for_each_uc_addr(ha, dev) {
12004 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12005 			return true;
12006 
12007 		off += ETH_ALEN;
12008 	}
12009 	return false;
12010 }
12011 
12012 static void bnxt_set_rx_mode(struct net_device *dev)
12013 {
12014 	struct bnxt *bp = netdev_priv(dev);
12015 	struct bnxt_vnic_info *vnic;
12016 	bool mc_update = false;
12017 	bool uc_update;
12018 	u32 mask;
12019 
12020 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12021 		return;
12022 
12023 	vnic = &bp->vnic_info[0];
12024 	mask = vnic->rx_mask;
12025 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12026 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12027 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12028 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12029 
12030 	if (dev->flags & IFF_PROMISC)
12031 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12032 
12033 	uc_update = bnxt_uc_list_updated(bp);
12034 
12035 	if (dev->flags & IFF_BROADCAST)
12036 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12037 	if (dev->flags & IFF_ALLMULTI) {
12038 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12039 		vnic->mc_list_count = 0;
12040 	} else if (dev->flags & IFF_MULTICAST) {
12041 		mc_update = bnxt_mc_list_updated(bp, &mask);
12042 	}
12043 
12044 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12045 		vnic->rx_mask = mask;
12046 
12047 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12048 	}
12049 }
12050 
12051 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12052 {
12053 	struct net_device *dev = bp->dev;
12054 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12055 	struct netdev_hw_addr *ha;
12056 	int i, off = 0, rc;
12057 	bool uc_update;
12058 
12059 	netif_addr_lock_bh(dev);
12060 	uc_update = bnxt_uc_list_updated(bp);
12061 	netif_addr_unlock_bh(dev);
12062 
12063 	if (!uc_update)
12064 		goto skip_uc;
12065 
12066 	for (i = 1; i < vnic->uc_filter_count; i++) {
12067 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12068 
12069 		bnxt_hwrm_l2_filter_free(bp, fltr);
12070 		bnxt_del_l2_filter(bp, fltr);
12071 	}
12072 
12073 	vnic->uc_filter_count = 1;
12074 
12075 	netif_addr_lock_bh(dev);
12076 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12077 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12078 	} else {
12079 		netdev_for_each_uc_addr(ha, dev) {
12080 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12081 			off += ETH_ALEN;
12082 			vnic->uc_filter_count++;
12083 		}
12084 	}
12085 	netif_addr_unlock_bh(dev);
12086 
12087 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12088 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12089 		if (rc) {
12090 			if (BNXT_VF(bp) && rc == -ENODEV) {
12091 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12092 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12093 				else
12094 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12095 				rc = 0;
12096 			} else {
12097 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12098 			}
12099 			vnic->uc_filter_count = i;
12100 			return rc;
12101 		}
12102 	}
12103 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12104 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12105 
12106 skip_uc:
12107 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12108 	    !bnxt_promisc_ok(bp))
12109 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12110 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12111 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12112 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12113 			    rc);
12114 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12115 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12116 		vnic->mc_list_count = 0;
12117 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12118 	}
12119 	if (rc)
12120 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12121 			   rc);
12122 
12123 	return rc;
12124 }
12125 
12126 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12127 {
12128 #ifdef CONFIG_BNXT_SRIOV
12129 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12130 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12131 
12132 		/* No minimum rings were provisioned by the PF.  Don't
12133 		 * reserve rings by default when device is down.
12134 		 */
12135 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12136 			return true;
12137 
12138 		if (!netif_running(bp->dev))
12139 			return false;
12140 	}
12141 #endif
12142 	return true;
12143 }
12144 
12145 /* If the chip and firmware supports RFS */
12146 static bool bnxt_rfs_supported(struct bnxt *bp)
12147 {
12148 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12149 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12150 			return true;
12151 		return false;
12152 	}
12153 	/* 212 firmware is broken for aRFS */
12154 	if (BNXT_FW_MAJ(bp) == 212)
12155 		return false;
12156 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12157 		return true;
12158 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12159 		return true;
12160 	return false;
12161 }
12162 
12163 /* If runtime conditions support RFS */
12164 static bool bnxt_rfs_capable(struct bnxt *bp)
12165 {
12166 	int vnics, max_vnics, max_rss_ctxs;
12167 
12168 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
12169 		return bnxt_rfs_supported(bp);
12170 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12171 		return false;
12172 
12173 	vnics = 1 + bp->rx_nr_rings;
12174 	max_vnics = bnxt_get_max_func_vnics(bp);
12175 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12176 
12177 	/* RSS contexts not a limiting factor */
12178 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12179 		max_rss_ctxs = max_vnics;
12180 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
12181 		if (bp->rx_nr_rings > 1)
12182 			netdev_warn(bp->dev,
12183 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12184 				    min(max_rss_ctxs - 1, max_vnics - 1));
12185 		return false;
12186 	}
12187 
12188 	if (!BNXT_NEW_RM(bp))
12189 		return true;
12190 
12191 	if (vnics == bp->hw_resc.resv_vnics)
12192 		return true;
12193 
12194 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
12195 	if (vnics <= bp->hw_resc.resv_vnics)
12196 		return true;
12197 
12198 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12199 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
12200 	return false;
12201 }
12202 
12203 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12204 					   netdev_features_t features)
12205 {
12206 	struct bnxt *bp = netdev_priv(dev);
12207 	netdev_features_t vlan_features;
12208 
12209 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
12210 		features &= ~NETIF_F_NTUPLE;
12211 
12212 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12213 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12214 
12215 	if (!(features & NETIF_F_GRO))
12216 		features &= ~NETIF_F_GRO_HW;
12217 
12218 	if (features & NETIF_F_GRO_HW)
12219 		features &= ~NETIF_F_LRO;
12220 
12221 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12222 	 * turned on or off together.
12223 	 */
12224 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12225 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12226 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12227 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12228 		else if (vlan_features)
12229 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12230 	}
12231 #ifdef CONFIG_BNXT_SRIOV
12232 	if (BNXT_VF(bp) && bp->vf.vlan)
12233 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12234 #endif
12235 	return features;
12236 }
12237 
12238 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12239 {
12240 	struct bnxt *bp = netdev_priv(dev);
12241 	u32 flags = bp->flags;
12242 	u32 changes;
12243 	int rc = 0;
12244 	bool re_init = false;
12245 	bool update_tpa = false;
12246 
12247 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12248 	if (features & NETIF_F_GRO_HW)
12249 		flags |= BNXT_FLAG_GRO;
12250 	else if (features & NETIF_F_LRO)
12251 		flags |= BNXT_FLAG_LRO;
12252 
12253 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12254 		flags &= ~BNXT_FLAG_TPA;
12255 
12256 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12257 		flags |= BNXT_FLAG_STRIP_VLAN;
12258 
12259 	if (features & NETIF_F_NTUPLE)
12260 		flags |= BNXT_FLAG_RFS;
12261 
12262 	changes = flags ^ bp->flags;
12263 	if (changes & BNXT_FLAG_TPA) {
12264 		update_tpa = true;
12265 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12266 		    (flags & BNXT_FLAG_TPA) == 0 ||
12267 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12268 			re_init = true;
12269 	}
12270 
12271 	if (changes & ~BNXT_FLAG_TPA)
12272 		re_init = true;
12273 
12274 	if (flags != bp->flags) {
12275 		u32 old_flags = bp->flags;
12276 
12277 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12278 			bp->flags = flags;
12279 			if (update_tpa)
12280 				bnxt_set_ring_params(bp);
12281 			return rc;
12282 		}
12283 
12284 		if (re_init) {
12285 			bnxt_close_nic(bp, false, false);
12286 			bp->flags = flags;
12287 			if (update_tpa)
12288 				bnxt_set_ring_params(bp);
12289 
12290 			return bnxt_open_nic(bp, false, false);
12291 		}
12292 		if (update_tpa) {
12293 			bp->flags = flags;
12294 			rc = bnxt_set_tpa(bp,
12295 					  (flags & BNXT_FLAG_TPA) ?
12296 					  true : false);
12297 			if (rc)
12298 				bp->flags = old_flags;
12299 		}
12300 	}
12301 	return rc;
12302 }
12303 
12304 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12305 			      u8 **nextp)
12306 {
12307 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12308 	struct hop_jumbo_hdr *jhdr;
12309 	int hdr_count = 0;
12310 	u8 *nexthdr;
12311 	int start;
12312 
12313 	/* Check that there are at most 2 IPv6 extension headers, no
12314 	 * fragment header, and each is <= 64 bytes.
12315 	 */
12316 	start = nw_off + sizeof(*ip6h);
12317 	nexthdr = &ip6h->nexthdr;
12318 	while (ipv6_ext_hdr(*nexthdr)) {
12319 		struct ipv6_opt_hdr *hp;
12320 		int hdrlen;
12321 
12322 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
12323 		    *nexthdr == NEXTHDR_FRAGMENT)
12324 			return false;
12325 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
12326 					  skb_headlen(skb), NULL);
12327 		if (!hp)
12328 			return false;
12329 		if (*nexthdr == NEXTHDR_AUTH)
12330 			hdrlen = ipv6_authlen(hp);
12331 		else
12332 			hdrlen = ipv6_optlen(hp);
12333 
12334 		if (hdrlen > 64)
12335 			return false;
12336 
12337 		/* The ext header may be a hop-by-hop header inserted for
12338 		 * big TCP purposes. This will be removed before sending
12339 		 * from NIC, so do not count it.
12340 		 */
12341 		if (*nexthdr == NEXTHDR_HOP) {
12342 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
12343 				goto increment_hdr;
12344 
12345 			jhdr = (struct hop_jumbo_hdr *)hp;
12346 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
12347 			    jhdr->nexthdr != IPPROTO_TCP)
12348 				goto increment_hdr;
12349 
12350 			goto next_hdr;
12351 		}
12352 increment_hdr:
12353 		hdr_count++;
12354 next_hdr:
12355 		nexthdr = &hp->nexthdr;
12356 		start += hdrlen;
12357 	}
12358 	if (nextp) {
12359 		/* Caller will check inner protocol */
12360 		if (skb->encapsulation) {
12361 			*nextp = nexthdr;
12362 			return true;
12363 		}
12364 		*nextp = NULL;
12365 	}
12366 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
12367 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
12368 }
12369 
12370 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
12371 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
12372 {
12373 	struct udphdr *uh = udp_hdr(skb);
12374 	__be16 udp_port = uh->dest;
12375 
12376 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
12377 	    udp_port != bp->vxlan_gpe_port)
12378 		return false;
12379 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
12380 		struct ethhdr *eh = inner_eth_hdr(skb);
12381 
12382 		switch (eh->h_proto) {
12383 		case htons(ETH_P_IP):
12384 			return true;
12385 		case htons(ETH_P_IPV6):
12386 			return bnxt_exthdr_check(bp, skb,
12387 						 skb_inner_network_offset(skb),
12388 						 NULL);
12389 		}
12390 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
12391 		return true;
12392 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
12393 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12394 					 NULL);
12395 	}
12396 	return false;
12397 }
12398 
12399 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
12400 {
12401 	switch (l4_proto) {
12402 	case IPPROTO_UDP:
12403 		return bnxt_udp_tunl_check(bp, skb);
12404 	case IPPROTO_IPIP:
12405 		return true;
12406 	case IPPROTO_GRE: {
12407 		switch (skb->inner_protocol) {
12408 		default:
12409 			return false;
12410 		case htons(ETH_P_IP):
12411 			return true;
12412 		case htons(ETH_P_IPV6):
12413 			fallthrough;
12414 		}
12415 	}
12416 	case IPPROTO_IPV6:
12417 		/* Check ext headers of inner ipv6 */
12418 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12419 					 NULL);
12420 	}
12421 	return false;
12422 }
12423 
12424 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
12425 					     struct net_device *dev,
12426 					     netdev_features_t features)
12427 {
12428 	struct bnxt *bp = netdev_priv(dev);
12429 	u8 *l4_proto;
12430 
12431 	features = vlan_features_check(skb, features);
12432 	switch (vlan_get_protocol(skb)) {
12433 	case htons(ETH_P_IP):
12434 		if (!skb->encapsulation)
12435 			return features;
12436 		l4_proto = &ip_hdr(skb)->protocol;
12437 		if (bnxt_tunl_check(bp, skb, *l4_proto))
12438 			return features;
12439 		break;
12440 	case htons(ETH_P_IPV6):
12441 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
12442 				       &l4_proto))
12443 			break;
12444 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
12445 			return features;
12446 		break;
12447 	}
12448 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
12449 }
12450 
12451 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
12452 			 u32 *reg_buf)
12453 {
12454 	struct hwrm_dbg_read_direct_output *resp;
12455 	struct hwrm_dbg_read_direct_input *req;
12456 	__le32 *dbg_reg_buf;
12457 	dma_addr_t mapping;
12458 	int rc, i;
12459 
12460 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
12461 	if (rc)
12462 		return rc;
12463 
12464 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
12465 					 &mapping);
12466 	if (!dbg_reg_buf) {
12467 		rc = -ENOMEM;
12468 		goto dbg_rd_reg_exit;
12469 	}
12470 
12471 	req->host_dest_addr = cpu_to_le64(mapping);
12472 
12473 	resp = hwrm_req_hold(bp, req);
12474 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
12475 	req->read_len32 = cpu_to_le32(num_words);
12476 
12477 	rc = hwrm_req_send(bp, req);
12478 	if (rc || resp->error_code) {
12479 		rc = -EIO;
12480 		goto dbg_rd_reg_exit;
12481 	}
12482 	for (i = 0; i < num_words; i++)
12483 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
12484 
12485 dbg_rd_reg_exit:
12486 	hwrm_req_drop(bp, req);
12487 	return rc;
12488 }
12489 
12490 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
12491 				       u32 ring_id, u32 *prod, u32 *cons)
12492 {
12493 	struct hwrm_dbg_ring_info_get_output *resp;
12494 	struct hwrm_dbg_ring_info_get_input *req;
12495 	int rc;
12496 
12497 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
12498 	if (rc)
12499 		return rc;
12500 
12501 	req->ring_type = ring_type;
12502 	req->fw_ring_id = cpu_to_le32(ring_id);
12503 	resp = hwrm_req_hold(bp, req);
12504 	rc = hwrm_req_send(bp, req);
12505 	if (!rc) {
12506 		*prod = le32_to_cpu(resp->producer_index);
12507 		*cons = le32_to_cpu(resp->consumer_index);
12508 	}
12509 	hwrm_req_drop(bp, req);
12510 	return rc;
12511 }
12512 
12513 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
12514 {
12515 	struct bnxt_tx_ring_info *txr;
12516 	int i = bnapi->index, j;
12517 
12518 	bnxt_for_each_napi_tx(j, bnapi, txr)
12519 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
12520 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
12521 			    txr->tx_cons);
12522 }
12523 
12524 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
12525 {
12526 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
12527 	int i = bnapi->index;
12528 
12529 	if (!rxr)
12530 		return;
12531 
12532 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
12533 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
12534 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
12535 		    rxr->rx_sw_agg_prod);
12536 }
12537 
12538 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
12539 {
12540 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12541 	int i = bnapi->index;
12542 
12543 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
12544 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
12545 }
12546 
12547 static void bnxt_dbg_dump_states(struct bnxt *bp)
12548 {
12549 	int i;
12550 	struct bnxt_napi *bnapi;
12551 
12552 	for (i = 0; i < bp->cp_nr_rings; i++) {
12553 		bnapi = bp->bnapi[i];
12554 		if (netif_msg_drv(bp)) {
12555 			bnxt_dump_tx_sw_state(bnapi);
12556 			bnxt_dump_rx_sw_state(bnapi);
12557 			bnxt_dump_cp_sw_state(bnapi);
12558 		}
12559 	}
12560 }
12561 
12562 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
12563 {
12564 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
12565 	struct hwrm_ring_reset_input *req;
12566 	struct bnxt_napi *bnapi = rxr->bnapi;
12567 	struct bnxt_cp_ring_info *cpr;
12568 	u16 cp_ring_id;
12569 	int rc;
12570 
12571 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
12572 	if (rc)
12573 		return rc;
12574 
12575 	cpr = &bnapi->cp_ring;
12576 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
12577 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
12578 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
12579 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
12580 	return hwrm_req_send_silent(bp, req);
12581 }
12582 
12583 static void bnxt_reset_task(struct bnxt *bp, bool silent)
12584 {
12585 	if (!silent)
12586 		bnxt_dbg_dump_states(bp);
12587 	if (netif_running(bp->dev)) {
12588 		int rc;
12589 
12590 		if (silent) {
12591 			bnxt_close_nic(bp, false, false);
12592 			bnxt_open_nic(bp, false, false);
12593 		} else {
12594 			bnxt_ulp_stop(bp);
12595 			bnxt_close_nic(bp, true, false);
12596 			rc = bnxt_open_nic(bp, true, false);
12597 			bnxt_ulp_start(bp, rc);
12598 		}
12599 	}
12600 }
12601 
12602 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
12603 {
12604 	struct bnxt *bp = netdev_priv(dev);
12605 
12606 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
12607 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
12608 }
12609 
12610 static void bnxt_fw_health_check(struct bnxt *bp)
12611 {
12612 	struct bnxt_fw_health *fw_health = bp->fw_health;
12613 	struct pci_dev *pdev = bp->pdev;
12614 	u32 val;
12615 
12616 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12617 		return;
12618 
12619 	/* Make sure it is enabled before checking the tmr_counter. */
12620 	smp_rmb();
12621 	if (fw_health->tmr_counter) {
12622 		fw_health->tmr_counter--;
12623 		return;
12624 	}
12625 
12626 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12627 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
12628 		fw_health->arrests++;
12629 		goto fw_reset;
12630 	}
12631 
12632 	fw_health->last_fw_heartbeat = val;
12633 
12634 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12635 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
12636 		fw_health->discoveries++;
12637 		goto fw_reset;
12638 	}
12639 
12640 	fw_health->tmr_counter = fw_health->tmr_multiplier;
12641 	return;
12642 
12643 fw_reset:
12644 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
12645 }
12646 
12647 static void bnxt_timer(struct timer_list *t)
12648 {
12649 	struct bnxt *bp = from_timer(bp, t, timer);
12650 	struct net_device *dev = bp->dev;
12651 
12652 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
12653 		return;
12654 
12655 	if (atomic_read(&bp->intr_sem) != 0)
12656 		goto bnxt_restart_timer;
12657 
12658 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
12659 		bnxt_fw_health_check(bp);
12660 
12661 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
12662 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
12663 
12664 	if (bnxt_tc_flower_enabled(bp))
12665 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
12666 
12667 #ifdef CONFIG_RFS_ACCEL
12668 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
12669 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
12670 #endif /*CONFIG_RFS_ACCEL*/
12671 
12672 	if (bp->link_info.phy_retry) {
12673 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
12674 			bp->link_info.phy_retry = false;
12675 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
12676 		} else {
12677 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
12678 		}
12679 	}
12680 
12681 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12682 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12683 
12684 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
12685 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
12686 
12687 bnxt_restart_timer:
12688 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12689 }
12690 
12691 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
12692 {
12693 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
12694 	 * set.  If the device is being closed, bnxt_close() may be holding
12695 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
12696 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
12697 	 */
12698 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12699 	rtnl_lock();
12700 }
12701 
12702 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
12703 {
12704 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12705 	rtnl_unlock();
12706 }
12707 
12708 /* Only called from bnxt_sp_task() */
12709 static void bnxt_reset(struct bnxt *bp, bool silent)
12710 {
12711 	bnxt_rtnl_lock_sp(bp);
12712 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
12713 		bnxt_reset_task(bp, silent);
12714 	bnxt_rtnl_unlock_sp(bp);
12715 }
12716 
12717 /* Only called from bnxt_sp_task() */
12718 static void bnxt_rx_ring_reset(struct bnxt *bp)
12719 {
12720 	int i;
12721 
12722 	bnxt_rtnl_lock_sp(bp);
12723 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12724 		bnxt_rtnl_unlock_sp(bp);
12725 		return;
12726 	}
12727 	/* Disable and flush TPA before resetting the RX ring */
12728 	if (bp->flags & BNXT_FLAG_TPA)
12729 		bnxt_set_tpa(bp, false);
12730 	for (i = 0; i < bp->rx_nr_rings; i++) {
12731 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
12732 		struct bnxt_cp_ring_info *cpr;
12733 		int rc;
12734 
12735 		if (!rxr->bnapi->in_reset)
12736 			continue;
12737 
12738 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
12739 		if (rc) {
12740 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
12741 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
12742 			else
12743 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
12744 					    rc);
12745 			bnxt_reset_task(bp, true);
12746 			break;
12747 		}
12748 		bnxt_free_one_rx_ring_skbs(bp, i);
12749 		rxr->rx_prod = 0;
12750 		rxr->rx_agg_prod = 0;
12751 		rxr->rx_sw_agg_prod = 0;
12752 		rxr->rx_next_cons = 0;
12753 		rxr->bnapi->in_reset = false;
12754 		bnxt_alloc_one_rx_ring(bp, i);
12755 		cpr = &rxr->bnapi->cp_ring;
12756 		cpr->sw_stats.rx.rx_resets++;
12757 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
12758 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
12759 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
12760 	}
12761 	if (bp->flags & BNXT_FLAG_TPA)
12762 		bnxt_set_tpa(bp, true);
12763 	bnxt_rtnl_unlock_sp(bp);
12764 }
12765 
12766 static void bnxt_fw_reset_close(struct bnxt *bp)
12767 {
12768 	bnxt_ulp_stop(bp);
12769 	/* When firmware is in fatal state, quiesce device and disable
12770 	 * bus master to prevent any potential bad DMAs before freeing
12771 	 * kernel memory.
12772 	 */
12773 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
12774 		u16 val = 0;
12775 
12776 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12777 		if (val == 0xffff)
12778 			bp->fw_reset_min_dsecs = 0;
12779 		bnxt_tx_disable(bp);
12780 		bnxt_disable_napi(bp);
12781 		bnxt_disable_int_sync(bp);
12782 		bnxt_free_irq(bp);
12783 		bnxt_clear_int_mode(bp);
12784 		pci_disable_device(bp->pdev);
12785 	}
12786 	__bnxt_close_nic(bp, true, false);
12787 	bnxt_vf_reps_free(bp);
12788 	bnxt_clear_int_mode(bp);
12789 	bnxt_hwrm_func_drv_unrgtr(bp);
12790 	if (pci_is_enabled(bp->pdev))
12791 		pci_disable_device(bp->pdev);
12792 	bnxt_free_ctx_mem(bp);
12793 }
12794 
12795 static bool is_bnxt_fw_ok(struct bnxt *bp)
12796 {
12797 	struct bnxt_fw_health *fw_health = bp->fw_health;
12798 	bool no_heartbeat = false, has_reset = false;
12799 	u32 val;
12800 
12801 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12802 	if (val == fw_health->last_fw_heartbeat)
12803 		no_heartbeat = true;
12804 
12805 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12806 	if (val != fw_health->last_fw_reset_cnt)
12807 		has_reset = true;
12808 
12809 	if (!no_heartbeat && has_reset)
12810 		return true;
12811 
12812 	return false;
12813 }
12814 
12815 /* rtnl_lock is acquired before calling this function */
12816 static void bnxt_force_fw_reset(struct bnxt *bp)
12817 {
12818 	struct bnxt_fw_health *fw_health = bp->fw_health;
12819 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12820 	u32 wait_dsecs;
12821 
12822 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
12823 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12824 		return;
12825 
12826 	if (ptp) {
12827 		spin_lock_bh(&ptp->ptp_lock);
12828 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12829 		spin_unlock_bh(&ptp->ptp_lock);
12830 	} else {
12831 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12832 	}
12833 	bnxt_fw_reset_close(bp);
12834 	wait_dsecs = fw_health->master_func_wait_dsecs;
12835 	if (fw_health->primary) {
12836 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
12837 			wait_dsecs = 0;
12838 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12839 	} else {
12840 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
12841 		wait_dsecs = fw_health->normal_func_wait_dsecs;
12842 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12843 	}
12844 
12845 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
12846 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
12847 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12848 }
12849 
12850 void bnxt_fw_exception(struct bnxt *bp)
12851 {
12852 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
12853 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12854 	bnxt_rtnl_lock_sp(bp);
12855 	bnxt_force_fw_reset(bp);
12856 	bnxt_rtnl_unlock_sp(bp);
12857 }
12858 
12859 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
12860  * < 0 on error.
12861  */
12862 static int bnxt_get_registered_vfs(struct bnxt *bp)
12863 {
12864 #ifdef CONFIG_BNXT_SRIOV
12865 	int rc;
12866 
12867 	if (!BNXT_PF(bp))
12868 		return 0;
12869 
12870 	rc = bnxt_hwrm_func_qcfg(bp);
12871 	if (rc) {
12872 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
12873 		return rc;
12874 	}
12875 	if (bp->pf.registered_vfs)
12876 		return bp->pf.registered_vfs;
12877 	if (bp->sriov_cfg)
12878 		return 1;
12879 #endif
12880 	return 0;
12881 }
12882 
12883 void bnxt_fw_reset(struct bnxt *bp)
12884 {
12885 	bnxt_rtnl_lock_sp(bp);
12886 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
12887 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12888 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12889 		int n = 0, tmo;
12890 
12891 		if (ptp) {
12892 			spin_lock_bh(&ptp->ptp_lock);
12893 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12894 			spin_unlock_bh(&ptp->ptp_lock);
12895 		} else {
12896 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12897 		}
12898 		if (bp->pf.active_vfs &&
12899 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
12900 			n = bnxt_get_registered_vfs(bp);
12901 		if (n < 0) {
12902 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
12903 				   n);
12904 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12905 			dev_close(bp->dev);
12906 			goto fw_reset_exit;
12907 		} else if (n > 0) {
12908 			u16 vf_tmo_dsecs = n * 10;
12909 
12910 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
12911 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
12912 			bp->fw_reset_state =
12913 				BNXT_FW_RESET_STATE_POLL_VF;
12914 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12915 			goto fw_reset_exit;
12916 		}
12917 		bnxt_fw_reset_close(bp);
12918 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12919 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12920 			tmo = HZ / 10;
12921 		} else {
12922 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12923 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12924 		}
12925 		bnxt_queue_fw_reset_work(bp, tmo);
12926 	}
12927 fw_reset_exit:
12928 	bnxt_rtnl_unlock_sp(bp);
12929 }
12930 
12931 static void bnxt_chk_missed_irq(struct bnxt *bp)
12932 {
12933 	int i;
12934 
12935 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12936 		return;
12937 
12938 	for (i = 0; i < bp->cp_nr_rings; i++) {
12939 		struct bnxt_napi *bnapi = bp->bnapi[i];
12940 		struct bnxt_cp_ring_info *cpr;
12941 		u32 fw_ring_id;
12942 		int j;
12943 
12944 		if (!bnapi)
12945 			continue;
12946 
12947 		cpr = &bnapi->cp_ring;
12948 		for (j = 0; j < cpr->cp_ring_count; j++) {
12949 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
12950 			u32 val[2];
12951 
12952 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
12953 				continue;
12954 
12955 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
12956 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
12957 				continue;
12958 			}
12959 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
12960 			bnxt_dbg_hwrm_ring_info_get(bp,
12961 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
12962 				fw_ring_id, &val[0], &val[1]);
12963 			cpr->sw_stats.cmn.missed_irqs++;
12964 		}
12965 	}
12966 }
12967 
12968 static void bnxt_cfg_ntp_filters(struct bnxt *);
12969 
12970 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
12971 {
12972 	struct bnxt_link_info *link_info = &bp->link_info;
12973 
12974 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12975 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12976 		if (bp->hwrm_spec_code >= 0x10201) {
12977 			if (link_info->auto_pause_setting &
12978 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12979 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12980 		} else {
12981 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12982 		}
12983 		bnxt_set_auto_speed(link_info);
12984 	} else {
12985 		bnxt_set_force_speed(link_info);
12986 		link_info->req_duplex = link_info->duplex_setting;
12987 	}
12988 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12989 		link_info->req_flow_ctrl =
12990 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12991 	else
12992 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12993 }
12994 
12995 static void bnxt_fw_echo_reply(struct bnxt *bp)
12996 {
12997 	struct bnxt_fw_health *fw_health = bp->fw_health;
12998 	struct hwrm_func_echo_response_input *req;
12999 	int rc;
13000 
13001 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13002 	if (rc)
13003 		return;
13004 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13005 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13006 	hwrm_req_send(bp, req);
13007 }
13008 
13009 static void bnxt_sp_task(struct work_struct *work)
13010 {
13011 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13012 
13013 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13014 	smp_mb__after_atomic();
13015 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13016 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13017 		return;
13018 	}
13019 
13020 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13021 		bnxt_cfg_rx_mode(bp);
13022 
13023 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13024 		bnxt_cfg_ntp_filters(bp);
13025 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13026 		bnxt_hwrm_exec_fwd_req(bp);
13027 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13028 		bnxt_hwrm_port_qstats(bp, 0);
13029 		bnxt_hwrm_port_qstats_ext(bp, 0);
13030 		bnxt_accumulate_all_stats(bp);
13031 	}
13032 
13033 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13034 		int rc;
13035 
13036 		mutex_lock(&bp->link_lock);
13037 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13038 				       &bp->sp_event))
13039 			bnxt_hwrm_phy_qcaps(bp);
13040 
13041 		rc = bnxt_update_link(bp, true);
13042 		if (rc)
13043 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13044 				   rc);
13045 
13046 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13047 				       &bp->sp_event))
13048 			bnxt_init_ethtool_link_settings(bp);
13049 		mutex_unlock(&bp->link_lock);
13050 	}
13051 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13052 		int rc;
13053 
13054 		mutex_lock(&bp->link_lock);
13055 		rc = bnxt_update_phy_setting(bp);
13056 		mutex_unlock(&bp->link_lock);
13057 		if (rc) {
13058 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13059 		} else {
13060 			bp->link_info.phy_retry = false;
13061 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13062 		}
13063 	}
13064 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13065 		mutex_lock(&bp->link_lock);
13066 		bnxt_get_port_module_status(bp);
13067 		mutex_unlock(&bp->link_lock);
13068 	}
13069 
13070 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13071 		bnxt_tc_flow_stats_work(bp);
13072 
13073 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13074 		bnxt_chk_missed_irq(bp);
13075 
13076 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13077 		bnxt_fw_echo_reply(bp);
13078 
13079 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13080 		bnxt_hwmon_notify_event(bp);
13081 
13082 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13083 	 * must be the last functions to be called before exiting.
13084 	 */
13085 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13086 		bnxt_reset(bp, false);
13087 
13088 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13089 		bnxt_reset(bp, true);
13090 
13091 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13092 		bnxt_rx_ring_reset(bp);
13093 
13094 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13095 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13096 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13097 			bnxt_devlink_health_fw_report(bp);
13098 		else
13099 			bnxt_fw_reset(bp);
13100 	}
13101 
13102 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13103 		if (!is_bnxt_fw_ok(bp))
13104 			bnxt_devlink_health_fw_report(bp);
13105 	}
13106 
13107 	smp_mb__before_atomic();
13108 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13109 }
13110 
13111 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13112 				int *max_cp);
13113 
13114 /* Under rtnl_lock */
13115 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13116 		     int tx_xdp)
13117 {
13118 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13119 	int tx_rings_needed, stats;
13120 	int rx_rings = rx;
13121 	int cp, vnics;
13122 
13123 	if (tcs)
13124 		tx_sets = tcs;
13125 
13126 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13127 
13128 	if (max_rx < rx_rings)
13129 		return -ENOMEM;
13130 
13131 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13132 		rx_rings <<= 1;
13133 
13134 	tx_rings_needed = tx * tx_sets + tx_xdp;
13135 	if (max_tx < tx_rings_needed)
13136 		return -ENOMEM;
13137 
13138 	vnics = 1;
13139 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) ==
13140 	    BNXT_FLAG_RFS)
13141 		vnics += rx;
13142 
13143 	tx_cp = __bnxt_num_tx_to_cp(bp, tx_rings_needed, tx_sets, tx_xdp);
13144 	cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13145 	if (max_cp < cp)
13146 		return -ENOMEM;
13147 	stats = cp;
13148 	if (BNXT_NEW_RM(bp)) {
13149 		cp += bnxt_get_ulp_msix_num(bp);
13150 		stats += bnxt_get_ulp_stat_ctxs(bp);
13151 	}
13152 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
13153 				     stats, vnics);
13154 }
13155 
13156 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13157 {
13158 	if (bp->bar2) {
13159 		pci_iounmap(pdev, bp->bar2);
13160 		bp->bar2 = NULL;
13161 	}
13162 
13163 	if (bp->bar1) {
13164 		pci_iounmap(pdev, bp->bar1);
13165 		bp->bar1 = NULL;
13166 	}
13167 
13168 	if (bp->bar0) {
13169 		pci_iounmap(pdev, bp->bar0);
13170 		bp->bar0 = NULL;
13171 	}
13172 }
13173 
13174 static void bnxt_cleanup_pci(struct bnxt *bp)
13175 {
13176 	bnxt_unmap_bars(bp, bp->pdev);
13177 	pci_release_regions(bp->pdev);
13178 	if (pci_is_enabled(bp->pdev))
13179 		pci_disable_device(bp->pdev);
13180 }
13181 
13182 static void bnxt_init_dflt_coal(struct bnxt *bp)
13183 {
13184 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13185 	struct bnxt_coal *coal;
13186 	u16 flags = 0;
13187 
13188 	if (coal_cap->cmpl_params &
13189 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13190 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13191 
13192 	/* Tick values in micro seconds.
13193 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13194 	 */
13195 	coal = &bp->rx_coal;
13196 	coal->coal_ticks = 10;
13197 	coal->coal_bufs = 30;
13198 	coal->coal_ticks_irq = 1;
13199 	coal->coal_bufs_irq = 2;
13200 	coal->idle_thresh = 50;
13201 	coal->bufs_per_record = 2;
13202 	coal->budget = 64;		/* NAPI budget */
13203 	coal->flags = flags;
13204 
13205 	coal = &bp->tx_coal;
13206 	coal->coal_ticks = 28;
13207 	coal->coal_bufs = 30;
13208 	coal->coal_ticks_irq = 2;
13209 	coal->coal_bufs_irq = 2;
13210 	coal->bufs_per_record = 1;
13211 	coal->flags = flags;
13212 
13213 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13214 }
13215 
13216 /* FW that pre-reserves 1 VNIC per function */
13217 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13218 {
13219 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13220 
13221 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13222 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13223 		return true;
13224 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13225 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13226 		return true;
13227 	return false;
13228 }
13229 
13230 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13231 {
13232 	int rc;
13233 
13234 	bp->fw_cap = 0;
13235 	rc = bnxt_hwrm_ver_get(bp);
13236 	bnxt_try_map_fw_health_reg(bp);
13237 	if (rc) {
13238 		rc = bnxt_try_recover_fw(bp);
13239 		if (rc)
13240 			return rc;
13241 		rc = bnxt_hwrm_ver_get(bp);
13242 		if (rc)
13243 			return rc;
13244 	}
13245 
13246 	bnxt_nvm_cfg_ver_get(bp);
13247 
13248 	rc = bnxt_hwrm_func_reset(bp);
13249 	if (rc)
13250 		return -ENODEV;
13251 
13252 	bnxt_hwrm_fw_set_time(bp);
13253 	return 0;
13254 }
13255 
13256 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13257 {
13258 	int rc;
13259 
13260 	/* Get the MAX capabilities for this function */
13261 	rc = bnxt_hwrm_func_qcaps(bp);
13262 	if (rc) {
13263 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13264 			   rc);
13265 		return -ENODEV;
13266 	}
13267 
13268 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13269 	if (rc)
13270 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13271 			    rc);
13272 
13273 	if (bnxt_alloc_fw_health(bp)) {
13274 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13275 	} else {
13276 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13277 		if (rc)
13278 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13279 				    rc);
13280 	}
13281 
13282 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13283 	if (rc)
13284 		return -ENODEV;
13285 
13286 	if (bnxt_fw_pre_resv_vnics(bp))
13287 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
13288 
13289 	bnxt_hwrm_func_qcfg(bp);
13290 	bnxt_hwrm_vnic_qcaps(bp);
13291 	bnxt_hwrm_port_led_qcaps(bp);
13292 	bnxt_ethtool_init(bp);
13293 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
13294 		__bnxt_hwrm_ptp_qcfg(bp);
13295 	bnxt_dcb_init(bp);
13296 	bnxt_hwmon_init(bp);
13297 	return 0;
13298 }
13299 
13300 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
13301 {
13302 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
13303 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
13304 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
13305 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
13306 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
13307 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
13308 		bp->rss_hash_delta = bp->rss_hash_cfg;
13309 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
13310 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
13311 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
13312 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
13313 	}
13314 }
13315 
13316 static void bnxt_set_dflt_rfs(struct bnxt *bp)
13317 {
13318 	struct net_device *dev = bp->dev;
13319 
13320 	dev->hw_features &= ~NETIF_F_NTUPLE;
13321 	dev->features &= ~NETIF_F_NTUPLE;
13322 	bp->flags &= ~BNXT_FLAG_RFS;
13323 	if (bnxt_rfs_supported(bp)) {
13324 		dev->hw_features |= NETIF_F_NTUPLE;
13325 		if (bnxt_rfs_capable(bp)) {
13326 			bp->flags |= BNXT_FLAG_RFS;
13327 			dev->features |= NETIF_F_NTUPLE;
13328 		}
13329 	}
13330 }
13331 
13332 static void bnxt_fw_init_one_p3(struct bnxt *bp)
13333 {
13334 	struct pci_dev *pdev = bp->pdev;
13335 
13336 	bnxt_set_dflt_rss_hash_type(bp);
13337 	bnxt_set_dflt_rfs(bp);
13338 
13339 	bnxt_get_wol_settings(bp);
13340 	if (bp->flags & BNXT_FLAG_WOL_CAP)
13341 		device_set_wakeup_enable(&pdev->dev, bp->wol);
13342 	else
13343 		device_set_wakeup_capable(&pdev->dev, false);
13344 
13345 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
13346 	bnxt_hwrm_coal_params_qcaps(bp);
13347 }
13348 
13349 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
13350 
13351 int bnxt_fw_init_one(struct bnxt *bp)
13352 {
13353 	int rc;
13354 
13355 	rc = bnxt_fw_init_one_p1(bp);
13356 	if (rc) {
13357 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
13358 		return rc;
13359 	}
13360 	rc = bnxt_fw_init_one_p2(bp);
13361 	if (rc) {
13362 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
13363 		return rc;
13364 	}
13365 	rc = bnxt_probe_phy(bp, false);
13366 	if (rc)
13367 		return rc;
13368 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
13369 	if (rc)
13370 		return rc;
13371 
13372 	bnxt_fw_init_one_p3(bp);
13373 	return 0;
13374 }
13375 
13376 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
13377 {
13378 	struct bnxt_fw_health *fw_health = bp->fw_health;
13379 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
13380 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
13381 	u32 reg_type, reg_off, delay_msecs;
13382 
13383 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
13384 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
13385 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
13386 	switch (reg_type) {
13387 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
13388 		pci_write_config_dword(bp->pdev, reg_off, val);
13389 		break;
13390 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
13391 		writel(reg_off & BNXT_GRC_BASE_MASK,
13392 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
13393 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
13394 		fallthrough;
13395 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
13396 		writel(val, bp->bar0 + reg_off);
13397 		break;
13398 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
13399 		writel(val, bp->bar1 + reg_off);
13400 		break;
13401 	}
13402 	if (delay_msecs) {
13403 		pci_read_config_dword(bp->pdev, 0, &val);
13404 		msleep(delay_msecs);
13405 	}
13406 }
13407 
13408 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
13409 {
13410 	struct hwrm_func_qcfg_output *resp;
13411 	struct hwrm_func_qcfg_input *req;
13412 	bool result = true; /* firmware will enforce if unknown */
13413 
13414 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
13415 		return result;
13416 
13417 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
13418 		return result;
13419 
13420 	req->fid = cpu_to_le16(0xffff);
13421 	resp = hwrm_req_hold(bp, req);
13422 	if (!hwrm_req_send(bp, req))
13423 		result = !!(le16_to_cpu(resp->flags) &
13424 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
13425 	hwrm_req_drop(bp, req);
13426 	return result;
13427 }
13428 
13429 static void bnxt_reset_all(struct bnxt *bp)
13430 {
13431 	struct bnxt_fw_health *fw_health = bp->fw_health;
13432 	int i, rc;
13433 
13434 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13435 		bnxt_fw_reset_via_optee(bp);
13436 		bp->fw_reset_timestamp = jiffies;
13437 		return;
13438 	}
13439 
13440 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
13441 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
13442 			bnxt_fw_reset_writel(bp, i);
13443 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
13444 		struct hwrm_fw_reset_input *req;
13445 
13446 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
13447 		if (!rc) {
13448 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
13449 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
13450 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
13451 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
13452 			rc = hwrm_req_send(bp, req);
13453 		}
13454 		if (rc != -ENODEV)
13455 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
13456 	}
13457 	bp->fw_reset_timestamp = jiffies;
13458 }
13459 
13460 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
13461 {
13462 	return time_after(jiffies, bp->fw_reset_timestamp +
13463 			  (bp->fw_reset_max_dsecs * HZ / 10));
13464 }
13465 
13466 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
13467 {
13468 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13469 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
13470 		bnxt_ulp_start(bp, rc);
13471 		bnxt_dl_health_fw_status_update(bp, false);
13472 	}
13473 	bp->fw_reset_state = 0;
13474 	dev_close(bp->dev);
13475 }
13476 
13477 static void bnxt_fw_reset_task(struct work_struct *work)
13478 {
13479 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
13480 	int rc = 0;
13481 
13482 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13483 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
13484 		return;
13485 	}
13486 
13487 	switch (bp->fw_reset_state) {
13488 	case BNXT_FW_RESET_STATE_POLL_VF: {
13489 		int n = bnxt_get_registered_vfs(bp);
13490 		int tmo;
13491 
13492 		if (n < 0) {
13493 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
13494 				   n, jiffies_to_msecs(jiffies -
13495 				   bp->fw_reset_timestamp));
13496 			goto fw_reset_abort;
13497 		} else if (n > 0) {
13498 			if (bnxt_fw_reset_timeout(bp)) {
13499 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13500 				bp->fw_reset_state = 0;
13501 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
13502 					   n);
13503 				return;
13504 			}
13505 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13506 			return;
13507 		}
13508 		bp->fw_reset_timestamp = jiffies;
13509 		rtnl_lock();
13510 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
13511 			bnxt_fw_reset_abort(bp, rc);
13512 			rtnl_unlock();
13513 			return;
13514 		}
13515 		bnxt_fw_reset_close(bp);
13516 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13517 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13518 			tmo = HZ / 10;
13519 		} else {
13520 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13521 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13522 		}
13523 		rtnl_unlock();
13524 		bnxt_queue_fw_reset_work(bp, tmo);
13525 		return;
13526 	}
13527 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
13528 		u32 val;
13529 
13530 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13531 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
13532 		    !bnxt_fw_reset_timeout(bp)) {
13533 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13534 			return;
13535 		}
13536 
13537 		if (!bp->fw_health->primary) {
13538 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
13539 
13540 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13541 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13542 			return;
13543 		}
13544 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13545 	}
13546 		fallthrough;
13547 	case BNXT_FW_RESET_STATE_RESET_FW:
13548 		bnxt_reset_all(bp);
13549 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13550 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
13551 		return;
13552 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
13553 		bnxt_inv_fw_health_reg(bp);
13554 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
13555 		    !bp->fw_reset_min_dsecs) {
13556 			u16 val;
13557 
13558 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13559 			if (val == 0xffff) {
13560 				if (bnxt_fw_reset_timeout(bp)) {
13561 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
13562 					rc = -ETIMEDOUT;
13563 					goto fw_reset_abort;
13564 				}
13565 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
13566 				return;
13567 			}
13568 		}
13569 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13570 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
13571 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
13572 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
13573 			bnxt_dl_remote_reload(bp);
13574 		if (pci_enable_device(bp->pdev)) {
13575 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
13576 			rc = -ENODEV;
13577 			goto fw_reset_abort;
13578 		}
13579 		pci_set_master(bp->pdev);
13580 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
13581 		fallthrough;
13582 	case BNXT_FW_RESET_STATE_POLL_FW:
13583 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
13584 		rc = bnxt_hwrm_poll(bp);
13585 		if (rc) {
13586 			if (bnxt_fw_reset_timeout(bp)) {
13587 				netdev_err(bp->dev, "Firmware reset aborted\n");
13588 				goto fw_reset_abort_status;
13589 			}
13590 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13591 			return;
13592 		}
13593 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
13594 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
13595 		fallthrough;
13596 	case BNXT_FW_RESET_STATE_OPENING:
13597 		while (!rtnl_trylock()) {
13598 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13599 			return;
13600 		}
13601 		rc = bnxt_open(bp->dev);
13602 		if (rc) {
13603 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
13604 			bnxt_fw_reset_abort(bp, rc);
13605 			rtnl_unlock();
13606 			return;
13607 		}
13608 
13609 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
13610 		    bp->fw_health->enabled) {
13611 			bp->fw_health->last_fw_reset_cnt =
13612 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13613 		}
13614 		bp->fw_reset_state = 0;
13615 		/* Make sure fw_reset_state is 0 before clearing the flag */
13616 		smp_mb__before_atomic();
13617 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13618 		bnxt_ulp_start(bp, 0);
13619 		bnxt_reenable_sriov(bp);
13620 		bnxt_vf_reps_alloc(bp);
13621 		bnxt_vf_reps_open(bp);
13622 		bnxt_ptp_reapply_pps(bp);
13623 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
13624 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
13625 			bnxt_dl_health_fw_recovery_done(bp);
13626 			bnxt_dl_health_fw_status_update(bp, true);
13627 		}
13628 		rtnl_unlock();
13629 		break;
13630 	}
13631 	return;
13632 
13633 fw_reset_abort_status:
13634 	if (bp->fw_health->status_reliable ||
13635 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
13636 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13637 
13638 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
13639 	}
13640 fw_reset_abort:
13641 	rtnl_lock();
13642 	bnxt_fw_reset_abort(bp, rc);
13643 	rtnl_unlock();
13644 }
13645 
13646 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
13647 {
13648 	int rc;
13649 	struct bnxt *bp = netdev_priv(dev);
13650 
13651 	SET_NETDEV_DEV(dev, &pdev->dev);
13652 
13653 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
13654 	rc = pci_enable_device(pdev);
13655 	if (rc) {
13656 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
13657 		goto init_err;
13658 	}
13659 
13660 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13661 		dev_err(&pdev->dev,
13662 			"Cannot find PCI device base address, aborting\n");
13663 		rc = -ENODEV;
13664 		goto init_err_disable;
13665 	}
13666 
13667 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13668 	if (rc) {
13669 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
13670 		goto init_err_disable;
13671 	}
13672 
13673 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
13674 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
13675 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
13676 		rc = -EIO;
13677 		goto init_err_release;
13678 	}
13679 
13680 	pci_set_master(pdev);
13681 
13682 	bp->dev = dev;
13683 	bp->pdev = pdev;
13684 
13685 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
13686 	 * determines the BAR size.
13687 	 */
13688 	bp->bar0 = pci_ioremap_bar(pdev, 0);
13689 	if (!bp->bar0) {
13690 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
13691 		rc = -ENOMEM;
13692 		goto init_err_release;
13693 	}
13694 
13695 	bp->bar2 = pci_ioremap_bar(pdev, 4);
13696 	if (!bp->bar2) {
13697 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
13698 		rc = -ENOMEM;
13699 		goto init_err_release;
13700 	}
13701 
13702 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
13703 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
13704 
13705 	spin_lock_init(&bp->ntp_fltr_lock);
13706 #if BITS_PER_LONG == 32
13707 	spin_lock_init(&bp->db_lock);
13708 #endif
13709 
13710 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
13711 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
13712 
13713 	timer_setup(&bp->timer, bnxt_timer, 0);
13714 	bp->current_interval = BNXT_TIMER_INTERVAL;
13715 
13716 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
13717 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
13718 
13719 	clear_bit(BNXT_STATE_OPEN, &bp->state);
13720 	return 0;
13721 
13722 init_err_release:
13723 	bnxt_unmap_bars(bp, pdev);
13724 	pci_release_regions(pdev);
13725 
13726 init_err_disable:
13727 	pci_disable_device(pdev);
13728 
13729 init_err:
13730 	return rc;
13731 }
13732 
13733 /* rtnl_lock held */
13734 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
13735 {
13736 	struct sockaddr *addr = p;
13737 	struct bnxt *bp = netdev_priv(dev);
13738 	int rc = 0;
13739 
13740 	if (!is_valid_ether_addr(addr->sa_data))
13741 		return -EADDRNOTAVAIL;
13742 
13743 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
13744 		return 0;
13745 
13746 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
13747 	if (rc)
13748 		return rc;
13749 
13750 	eth_hw_addr_set(dev, addr->sa_data);
13751 	if (netif_running(dev)) {
13752 		bnxt_close_nic(bp, false, false);
13753 		rc = bnxt_open_nic(bp, false, false);
13754 	}
13755 
13756 	return rc;
13757 }
13758 
13759 /* rtnl_lock held */
13760 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
13761 {
13762 	struct bnxt *bp = netdev_priv(dev);
13763 
13764 	if (netif_running(dev))
13765 		bnxt_close_nic(bp, true, false);
13766 
13767 	dev->mtu = new_mtu;
13768 	bnxt_set_ring_params(bp);
13769 
13770 	if (netif_running(dev))
13771 		return bnxt_open_nic(bp, true, false);
13772 
13773 	return 0;
13774 }
13775 
13776 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
13777 {
13778 	struct bnxt *bp = netdev_priv(dev);
13779 	bool sh = false;
13780 	int rc, tx_cp;
13781 
13782 	if (tc > bp->max_tc) {
13783 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
13784 			   tc, bp->max_tc);
13785 		return -EINVAL;
13786 	}
13787 
13788 	if (netdev_get_num_tc(dev) == tc)
13789 		return 0;
13790 
13791 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
13792 		sh = true;
13793 
13794 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
13795 			      sh, tc, bp->tx_nr_rings_xdp);
13796 	if (rc)
13797 		return rc;
13798 
13799 	/* Needs to close the device and do hw resource re-allocations */
13800 	if (netif_running(bp->dev))
13801 		bnxt_close_nic(bp, true, false);
13802 
13803 	if (tc) {
13804 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
13805 		netdev_set_num_tc(dev, tc);
13806 	} else {
13807 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13808 		netdev_reset_tc(dev);
13809 	}
13810 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
13811 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
13812 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
13813 			       tx_cp + bp->rx_nr_rings;
13814 
13815 	if (netif_running(bp->dev))
13816 		return bnxt_open_nic(bp, true, false);
13817 
13818 	return 0;
13819 }
13820 
13821 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
13822 				  void *cb_priv)
13823 {
13824 	struct bnxt *bp = cb_priv;
13825 
13826 	if (!bnxt_tc_flower_enabled(bp) ||
13827 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
13828 		return -EOPNOTSUPP;
13829 
13830 	switch (type) {
13831 	case TC_SETUP_CLSFLOWER:
13832 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
13833 	default:
13834 		return -EOPNOTSUPP;
13835 	}
13836 }
13837 
13838 LIST_HEAD(bnxt_block_cb_list);
13839 
13840 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
13841 			 void *type_data)
13842 {
13843 	struct bnxt *bp = netdev_priv(dev);
13844 
13845 	switch (type) {
13846 	case TC_SETUP_BLOCK:
13847 		return flow_block_cb_setup_simple(type_data,
13848 						  &bnxt_block_cb_list,
13849 						  bnxt_setup_tc_block_cb,
13850 						  bp, bp, true);
13851 	case TC_SETUP_QDISC_MQPRIO: {
13852 		struct tc_mqprio_qopt *mqprio = type_data;
13853 
13854 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
13855 
13856 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
13857 	}
13858 	default:
13859 		return -EOPNOTSUPP;
13860 	}
13861 }
13862 
13863 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
13864 			    const struct sk_buff *skb)
13865 {
13866 	struct bnxt_vnic_info *vnic;
13867 
13868 	if (skb)
13869 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
13870 
13871 	vnic = &bp->vnic_info[0];
13872 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
13873 }
13874 
13875 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
13876 			   u32 idx)
13877 {
13878 	struct hlist_head *head;
13879 	int bit_id;
13880 
13881 	spin_lock_bh(&bp->ntp_fltr_lock);
13882 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, BNXT_MAX_FLTR, 0);
13883 	if (bit_id < 0) {
13884 		spin_unlock_bh(&bp->ntp_fltr_lock);
13885 		return -ENOMEM;
13886 	}
13887 
13888 	fltr->base.sw_id = (u16)bit_id;
13889 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
13890 	fltr->base.flags |= BNXT_ACT_RING_DST;
13891 	head = &bp->ntp_fltr_hash_tbl[idx];
13892 	hlist_add_head_rcu(&fltr->base.hash, head);
13893 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
13894 	bp->ntp_fltr_count++;
13895 	spin_unlock_bh(&bp->ntp_fltr_lock);
13896 	return 0;
13897 }
13898 
13899 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
13900 			    struct bnxt_ntuple_filter *f2)
13901 {
13902 	struct flow_keys *keys1 = &f1->fkeys;
13903 	struct flow_keys *keys2 = &f2->fkeys;
13904 
13905 	if (f1->ntuple_flags != f2->ntuple_flags)
13906 		return false;
13907 
13908 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
13909 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
13910 		return false;
13911 
13912 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
13913 		if (((f1->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) &&
13914 		     keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src) ||
13915 		    ((f1->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) &&
13916 		     keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst))
13917 			return false;
13918 	} else {
13919 		if (((f1->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) &&
13920 		     memcmp(&keys1->addrs.v6addrs.src,
13921 			    &keys2->addrs.v6addrs.src,
13922 			    sizeof(keys1->addrs.v6addrs.src))) ||
13923 		    ((f1->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) &&
13924 		     memcmp(&keys1->addrs.v6addrs.dst,
13925 			    &keys2->addrs.v6addrs.dst,
13926 			    sizeof(keys1->addrs.v6addrs.dst))))
13927 			return false;
13928 	}
13929 
13930 	if (((f1->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_PORT) &&
13931 	     keys1->ports.src != keys2->ports.src) ||
13932 	    ((f1->ntuple_flags & BNXT_NTUPLE_MATCH_DST_PORT) &&
13933 	     keys1->ports.dst != keys2->ports.dst))
13934 		return false;
13935 
13936 	if (keys1->control.flags == keys2->control.flags &&
13937 	    f1->l2_fltr == f2->l2_fltr)
13938 		return true;
13939 
13940 	return false;
13941 }
13942 
13943 struct bnxt_ntuple_filter *
13944 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
13945 				struct bnxt_ntuple_filter *fltr, u32 idx)
13946 {
13947 	struct bnxt_ntuple_filter *f;
13948 	struct hlist_head *head;
13949 
13950 	head = &bp->ntp_fltr_hash_tbl[idx];
13951 	hlist_for_each_entry_rcu(f, head, base.hash) {
13952 		if (bnxt_fltr_match(f, fltr))
13953 			return f;
13954 	}
13955 	return NULL;
13956 }
13957 
13958 #ifdef CONFIG_RFS_ACCEL
13959 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
13960 			      u16 rxq_index, u32 flow_id)
13961 {
13962 	struct bnxt *bp = netdev_priv(dev);
13963 	struct bnxt_ntuple_filter *fltr, *new_fltr;
13964 	struct flow_keys *fkeys;
13965 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
13966 	struct bnxt_l2_filter *l2_fltr;
13967 	int rc = 0, idx;
13968 	u32 flags;
13969 
13970 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
13971 		l2_fltr = bp->vnic_info[0].l2_filters[0];
13972 		atomic_inc(&l2_fltr->refcnt);
13973 	} else {
13974 		struct bnxt_l2_key key;
13975 
13976 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
13977 		key.vlan = 0;
13978 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
13979 		if (!l2_fltr)
13980 			return -EINVAL;
13981 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
13982 			bnxt_del_l2_filter(bp, l2_fltr);
13983 			return -EINVAL;
13984 		}
13985 	}
13986 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
13987 	if (!new_fltr) {
13988 		bnxt_del_l2_filter(bp, l2_fltr);
13989 		return -ENOMEM;
13990 	}
13991 
13992 	fkeys = &new_fltr->fkeys;
13993 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
13994 		rc = -EPROTONOSUPPORT;
13995 		goto err_free;
13996 	}
13997 
13998 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
13999 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14000 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14001 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14002 		rc = -EPROTONOSUPPORT;
14003 		goto err_free;
14004 	}
14005 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
14006 	    bp->hwrm_spec_code < 0x10601) {
14007 		rc = -EPROTONOSUPPORT;
14008 		goto err_free;
14009 	}
14010 	flags = fkeys->control.flags;
14011 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14012 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14013 		rc = -EPROTONOSUPPORT;
14014 		goto err_free;
14015 	}
14016 
14017 	new_fltr->l2_fltr = l2_fltr;
14018 	new_fltr->ntuple_flags = BNXT_NTUPLE_MATCH_ALL;
14019 
14020 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14021 	rcu_read_lock();
14022 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14023 	if (fltr) {
14024 		rcu_read_unlock();
14025 		rc = fltr->base.sw_id;
14026 		goto err_free;
14027 	}
14028 	rcu_read_unlock();
14029 
14030 	new_fltr->flow_id = flow_id;
14031 	new_fltr->base.rxq = rxq_index;
14032 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14033 	if (!rc) {
14034 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14035 		return new_fltr->base.sw_id;
14036 	}
14037 
14038 err_free:
14039 	bnxt_del_l2_filter(bp, l2_fltr);
14040 	kfree(new_fltr);
14041 	return rc;
14042 }
14043 #endif
14044 
14045 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14046 {
14047 	spin_lock_bh(&bp->ntp_fltr_lock);
14048 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14049 		spin_unlock_bh(&bp->ntp_fltr_lock);
14050 		return;
14051 	}
14052 	hlist_del_rcu(&fltr->base.hash);
14053 	bp->ntp_fltr_count--;
14054 	spin_unlock_bh(&bp->ntp_fltr_lock);
14055 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14056 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14057 	kfree_rcu(fltr, base.rcu);
14058 }
14059 
14060 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14061 {
14062 	int i;
14063 
14064 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14065 		struct hlist_head *head;
14066 		struct hlist_node *tmp;
14067 		struct bnxt_ntuple_filter *fltr;
14068 		int rc;
14069 
14070 		head = &bp->ntp_fltr_hash_tbl[i];
14071 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14072 			bool del = false;
14073 
14074 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14075 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14076 					continue;
14077 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14078 							fltr->flow_id,
14079 							fltr->base.sw_id)) {
14080 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14081 									 fltr);
14082 					del = true;
14083 				}
14084 			} else {
14085 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14086 								       fltr);
14087 				if (rc)
14088 					del = true;
14089 				else
14090 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14091 			}
14092 
14093 			if (del)
14094 				bnxt_del_ntp_filter(bp, fltr);
14095 		}
14096 	}
14097 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
14098 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
14099 }
14100 
14101 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14102 				    unsigned int entry, struct udp_tunnel_info *ti)
14103 {
14104 	struct bnxt *bp = netdev_priv(netdev);
14105 	unsigned int cmd;
14106 
14107 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14108 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14109 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14110 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14111 	else
14112 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14113 
14114 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14115 }
14116 
14117 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14118 				      unsigned int entry, struct udp_tunnel_info *ti)
14119 {
14120 	struct bnxt *bp = netdev_priv(netdev);
14121 	unsigned int cmd;
14122 
14123 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14124 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14125 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14126 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14127 	else
14128 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14129 
14130 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14131 }
14132 
14133 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14134 	.set_port	= bnxt_udp_tunnel_set_port,
14135 	.unset_port	= bnxt_udp_tunnel_unset_port,
14136 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14137 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14138 	.tables		= {
14139 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14140 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14141 	},
14142 }, bnxt_udp_tunnels_p7 = {
14143 	.set_port	= bnxt_udp_tunnel_set_port,
14144 	.unset_port	= bnxt_udp_tunnel_unset_port,
14145 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14146 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14147 	.tables		= {
14148 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14149 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14150 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14151 	},
14152 };
14153 
14154 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14155 			       struct net_device *dev, u32 filter_mask,
14156 			       int nlflags)
14157 {
14158 	struct bnxt *bp = netdev_priv(dev);
14159 
14160 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14161 				       nlflags, filter_mask, NULL);
14162 }
14163 
14164 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14165 			       u16 flags, struct netlink_ext_ack *extack)
14166 {
14167 	struct bnxt *bp = netdev_priv(dev);
14168 	struct nlattr *attr, *br_spec;
14169 	int rem, rc = 0;
14170 
14171 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14172 		return -EOPNOTSUPP;
14173 
14174 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14175 	if (!br_spec)
14176 		return -EINVAL;
14177 
14178 	nla_for_each_nested(attr, br_spec, rem) {
14179 		u16 mode;
14180 
14181 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
14182 			continue;
14183 
14184 		mode = nla_get_u16(attr);
14185 		if (mode == bp->br_mode)
14186 			break;
14187 
14188 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14189 		if (!rc)
14190 			bp->br_mode = mode;
14191 		break;
14192 	}
14193 	return rc;
14194 }
14195 
14196 int bnxt_get_port_parent_id(struct net_device *dev,
14197 			    struct netdev_phys_item_id *ppid)
14198 {
14199 	struct bnxt *bp = netdev_priv(dev);
14200 
14201 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14202 		return -EOPNOTSUPP;
14203 
14204 	/* The PF and it's VF-reps only support the switchdev framework */
14205 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14206 		return -EOPNOTSUPP;
14207 
14208 	ppid->id_len = sizeof(bp->dsn);
14209 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14210 
14211 	return 0;
14212 }
14213 
14214 static const struct net_device_ops bnxt_netdev_ops = {
14215 	.ndo_open		= bnxt_open,
14216 	.ndo_start_xmit		= bnxt_start_xmit,
14217 	.ndo_stop		= bnxt_close,
14218 	.ndo_get_stats64	= bnxt_get_stats64,
14219 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14220 	.ndo_eth_ioctl		= bnxt_ioctl,
14221 	.ndo_validate_addr	= eth_validate_addr,
14222 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14223 	.ndo_change_mtu		= bnxt_change_mtu,
14224 	.ndo_fix_features	= bnxt_fix_features,
14225 	.ndo_set_features	= bnxt_set_features,
14226 	.ndo_features_check	= bnxt_features_check,
14227 	.ndo_tx_timeout		= bnxt_tx_timeout,
14228 #ifdef CONFIG_BNXT_SRIOV
14229 	.ndo_get_vf_config	= bnxt_get_vf_config,
14230 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14231 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14232 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14233 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14234 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14235 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14236 #endif
14237 	.ndo_setup_tc           = bnxt_setup_tc,
14238 #ifdef CONFIG_RFS_ACCEL
14239 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14240 #endif
14241 	.ndo_bpf		= bnxt_xdp,
14242 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14243 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14244 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14245 };
14246 
14247 static void bnxt_remove_one(struct pci_dev *pdev)
14248 {
14249 	struct net_device *dev = pci_get_drvdata(pdev);
14250 	struct bnxt *bp = netdev_priv(dev);
14251 
14252 	if (BNXT_PF(bp))
14253 		bnxt_sriov_disable(bp);
14254 
14255 	bnxt_rdma_aux_device_uninit(bp);
14256 
14257 	bnxt_ptp_clear(bp);
14258 	unregister_netdev(dev);
14259 	bnxt_free_l2_filters(bp, true);
14260 	bnxt_free_ntp_fltrs(bp, true);
14261 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14262 	/* Flush any pending tasks */
14263 	cancel_work_sync(&bp->sp_task);
14264 	cancel_delayed_work_sync(&bp->fw_reset_task);
14265 	bp->sp_event = 0;
14266 
14267 	bnxt_dl_fw_reporters_destroy(bp);
14268 	bnxt_dl_unregister(bp);
14269 	bnxt_shutdown_tc(bp);
14270 
14271 	bnxt_clear_int_mode(bp);
14272 	bnxt_hwrm_func_drv_unrgtr(bp);
14273 	bnxt_free_hwrm_resources(bp);
14274 	bnxt_hwmon_uninit(bp);
14275 	bnxt_ethtool_free(bp);
14276 	bnxt_dcb_free(bp);
14277 	kfree(bp->ptp_cfg);
14278 	bp->ptp_cfg = NULL;
14279 	kfree(bp->fw_health);
14280 	bp->fw_health = NULL;
14281 	bnxt_cleanup_pci(bp);
14282 	bnxt_free_ctx_mem(bp);
14283 	kfree(bp->rss_indir_tbl);
14284 	bp->rss_indir_tbl = NULL;
14285 	bnxt_free_port_stats(bp);
14286 	free_netdev(dev);
14287 }
14288 
14289 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
14290 {
14291 	int rc = 0;
14292 	struct bnxt_link_info *link_info = &bp->link_info;
14293 
14294 	bp->phy_flags = 0;
14295 	rc = bnxt_hwrm_phy_qcaps(bp);
14296 	if (rc) {
14297 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
14298 			   rc);
14299 		return rc;
14300 	}
14301 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
14302 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
14303 	else
14304 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
14305 	if (!fw_dflt)
14306 		return 0;
14307 
14308 	mutex_lock(&bp->link_lock);
14309 	rc = bnxt_update_link(bp, false);
14310 	if (rc) {
14311 		mutex_unlock(&bp->link_lock);
14312 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
14313 			   rc);
14314 		return rc;
14315 	}
14316 
14317 	/* Older firmware does not have supported_auto_speeds, so assume
14318 	 * that all supported speeds can be autonegotiated.
14319 	 */
14320 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
14321 		link_info->support_auto_speeds = link_info->support_speeds;
14322 
14323 	bnxt_init_ethtool_link_settings(bp);
14324 	mutex_unlock(&bp->link_lock);
14325 	return 0;
14326 }
14327 
14328 static int bnxt_get_max_irq(struct pci_dev *pdev)
14329 {
14330 	u16 ctrl;
14331 
14332 	if (!pdev->msix_cap)
14333 		return 1;
14334 
14335 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
14336 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
14337 }
14338 
14339 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14340 				int *max_cp)
14341 {
14342 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
14343 	int max_ring_grps = 0, max_irq;
14344 
14345 	*max_tx = hw_resc->max_tx_rings;
14346 	*max_rx = hw_resc->max_rx_rings;
14347 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
14348 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
14349 			bnxt_get_ulp_msix_num(bp),
14350 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
14351 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
14352 		*max_cp = min_t(int, *max_cp, max_irq);
14353 	max_ring_grps = hw_resc->max_hw_ring_grps;
14354 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
14355 		*max_cp -= 1;
14356 		*max_rx -= 2;
14357 	}
14358 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
14359 		*max_rx >>= 1;
14360 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
14361 		int rc;
14362 
14363 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
14364 		if (rc) {
14365 			*max_rx = 0;
14366 			*max_tx = 0;
14367 		}
14368 		/* On P5 chips, max_cp output param should be available NQs */
14369 		*max_cp = max_irq;
14370 	}
14371 	*max_rx = min_t(int, *max_rx, max_ring_grps);
14372 }
14373 
14374 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
14375 {
14376 	int rx, tx, cp;
14377 
14378 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
14379 	*max_rx = rx;
14380 	*max_tx = tx;
14381 	if (!rx || !tx || !cp)
14382 		return -ENOMEM;
14383 
14384 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
14385 }
14386 
14387 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14388 			       bool shared)
14389 {
14390 	int rc;
14391 
14392 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14393 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
14394 		/* Not enough rings, try disabling agg rings. */
14395 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
14396 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14397 		if (rc) {
14398 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
14399 			bp->flags |= BNXT_FLAG_AGG_RINGS;
14400 			return rc;
14401 		}
14402 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
14403 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14404 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14405 		bnxt_set_ring_params(bp);
14406 	}
14407 
14408 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
14409 		int max_cp, max_stat, max_irq;
14410 
14411 		/* Reserve minimum resources for RoCE */
14412 		max_cp = bnxt_get_max_func_cp_rings(bp);
14413 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
14414 		max_irq = bnxt_get_max_func_irqs(bp);
14415 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
14416 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
14417 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
14418 			return 0;
14419 
14420 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
14421 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
14422 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
14423 		max_cp = min_t(int, max_cp, max_irq);
14424 		max_cp = min_t(int, max_cp, max_stat);
14425 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
14426 		if (rc)
14427 			rc = 0;
14428 	}
14429 	return rc;
14430 }
14431 
14432 /* In initial default shared ring setting, each shared ring must have a
14433  * RX/TX ring pair.
14434  */
14435 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
14436 {
14437 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
14438 	bp->rx_nr_rings = bp->cp_nr_rings;
14439 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
14440 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14441 }
14442 
14443 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
14444 {
14445 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
14446 
14447 	if (!bnxt_can_reserve_rings(bp))
14448 		return 0;
14449 
14450 	if (sh)
14451 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
14452 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
14453 	/* Reduce default rings on multi-port cards so that total default
14454 	 * rings do not exceed CPU count.
14455 	 */
14456 	if (bp->port_count > 1) {
14457 		int max_rings =
14458 			max_t(int, num_online_cpus() / bp->port_count, 1);
14459 
14460 		dflt_rings = min_t(int, dflt_rings, max_rings);
14461 	}
14462 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
14463 	if (rc)
14464 		return rc;
14465 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
14466 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
14467 	if (sh)
14468 		bnxt_trim_dflt_sh_rings(bp);
14469 	else
14470 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
14471 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14472 
14473 	rc = __bnxt_reserve_rings(bp);
14474 	if (rc && rc != -ENODEV)
14475 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
14476 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14477 	if (sh)
14478 		bnxt_trim_dflt_sh_rings(bp);
14479 
14480 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
14481 	if (bnxt_need_reserve_rings(bp)) {
14482 		rc = __bnxt_reserve_rings(bp);
14483 		if (rc && rc != -ENODEV)
14484 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
14485 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14486 	}
14487 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
14488 		bp->rx_nr_rings++;
14489 		bp->cp_nr_rings++;
14490 	}
14491 	if (rc) {
14492 		bp->tx_nr_rings = 0;
14493 		bp->rx_nr_rings = 0;
14494 	}
14495 	return rc;
14496 }
14497 
14498 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
14499 {
14500 	int rc;
14501 
14502 	if (bp->tx_nr_rings)
14503 		return 0;
14504 
14505 	bnxt_ulp_irq_stop(bp);
14506 	bnxt_clear_int_mode(bp);
14507 	rc = bnxt_set_dflt_rings(bp, true);
14508 	if (rc) {
14509 		if (BNXT_VF(bp) && rc == -ENODEV)
14510 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14511 		else
14512 			netdev_err(bp->dev, "Not enough rings available.\n");
14513 		goto init_dflt_ring_err;
14514 	}
14515 	rc = bnxt_init_int_mode(bp);
14516 	if (rc)
14517 		goto init_dflt_ring_err;
14518 
14519 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14520 
14521 	bnxt_set_dflt_rfs(bp);
14522 
14523 init_dflt_ring_err:
14524 	bnxt_ulp_irq_restart(bp, rc);
14525 	return rc;
14526 }
14527 
14528 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
14529 {
14530 	int rc;
14531 
14532 	ASSERT_RTNL();
14533 	bnxt_hwrm_func_qcaps(bp);
14534 
14535 	if (netif_running(bp->dev))
14536 		__bnxt_close_nic(bp, true, false);
14537 
14538 	bnxt_ulp_irq_stop(bp);
14539 	bnxt_clear_int_mode(bp);
14540 	rc = bnxt_init_int_mode(bp);
14541 	bnxt_ulp_irq_restart(bp, rc);
14542 
14543 	if (netif_running(bp->dev)) {
14544 		if (rc)
14545 			dev_close(bp->dev);
14546 		else
14547 			rc = bnxt_open_nic(bp, true, false);
14548 	}
14549 
14550 	return rc;
14551 }
14552 
14553 static int bnxt_init_mac_addr(struct bnxt *bp)
14554 {
14555 	int rc = 0;
14556 
14557 	if (BNXT_PF(bp)) {
14558 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
14559 	} else {
14560 #ifdef CONFIG_BNXT_SRIOV
14561 		struct bnxt_vf_info *vf = &bp->vf;
14562 		bool strict_approval = true;
14563 
14564 		if (is_valid_ether_addr(vf->mac_addr)) {
14565 			/* overwrite netdev dev_addr with admin VF MAC */
14566 			eth_hw_addr_set(bp->dev, vf->mac_addr);
14567 			/* Older PF driver or firmware may not approve this
14568 			 * correctly.
14569 			 */
14570 			strict_approval = false;
14571 		} else {
14572 			eth_hw_addr_random(bp->dev);
14573 		}
14574 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
14575 #endif
14576 	}
14577 	return rc;
14578 }
14579 
14580 static void bnxt_vpd_read_info(struct bnxt *bp)
14581 {
14582 	struct pci_dev *pdev = bp->pdev;
14583 	unsigned int vpd_size, kw_len;
14584 	int pos, size;
14585 	u8 *vpd_data;
14586 
14587 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
14588 	if (IS_ERR(vpd_data)) {
14589 		pci_warn(pdev, "Unable to read VPD\n");
14590 		return;
14591 	}
14592 
14593 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14594 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
14595 	if (pos < 0)
14596 		goto read_sn;
14597 
14598 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14599 	memcpy(bp->board_partno, &vpd_data[pos], size);
14600 
14601 read_sn:
14602 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14603 					   PCI_VPD_RO_KEYWORD_SERIALNO,
14604 					   &kw_len);
14605 	if (pos < 0)
14606 		goto exit;
14607 
14608 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14609 	memcpy(bp->board_serialno, &vpd_data[pos], size);
14610 exit:
14611 	kfree(vpd_data);
14612 }
14613 
14614 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
14615 {
14616 	struct pci_dev *pdev = bp->pdev;
14617 	u64 qword;
14618 
14619 	qword = pci_get_dsn(pdev);
14620 	if (!qword) {
14621 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
14622 		return -EOPNOTSUPP;
14623 	}
14624 
14625 	put_unaligned_le64(qword, dsn);
14626 
14627 	bp->flags |= BNXT_FLAG_DSN_VALID;
14628 	return 0;
14629 }
14630 
14631 static int bnxt_map_db_bar(struct bnxt *bp)
14632 {
14633 	if (!bp->db_size)
14634 		return -ENODEV;
14635 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
14636 	if (!bp->bar1)
14637 		return -ENOMEM;
14638 	return 0;
14639 }
14640 
14641 void bnxt_print_device_info(struct bnxt *bp)
14642 {
14643 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
14644 		    board_info[bp->board_idx].name,
14645 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
14646 
14647 	pcie_print_link_status(bp->pdev);
14648 }
14649 
14650 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
14651 {
14652 	struct net_device *dev;
14653 	struct bnxt *bp;
14654 	int rc, max_irqs;
14655 
14656 	if (pci_is_bridge(pdev))
14657 		return -ENODEV;
14658 
14659 	/* Clear any pending DMA transactions from crash kernel
14660 	 * while loading driver in capture kernel.
14661 	 */
14662 	if (is_kdump_kernel()) {
14663 		pci_clear_master(pdev);
14664 		pcie_flr(pdev);
14665 	}
14666 
14667 	max_irqs = bnxt_get_max_irq(pdev);
14668 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
14669 				 max_irqs);
14670 	if (!dev)
14671 		return -ENOMEM;
14672 
14673 	bp = netdev_priv(dev);
14674 	bp->board_idx = ent->driver_data;
14675 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
14676 	bnxt_set_max_func_irqs(bp, max_irqs);
14677 
14678 	if (bnxt_vf_pciid(bp->board_idx))
14679 		bp->flags |= BNXT_FLAG_VF;
14680 
14681 	/* No devlink port registration in case of a VF */
14682 	if (BNXT_PF(bp))
14683 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
14684 
14685 	if (pdev->msix_cap)
14686 		bp->flags |= BNXT_FLAG_MSIX_CAP;
14687 
14688 	rc = bnxt_init_board(pdev, dev);
14689 	if (rc < 0)
14690 		goto init_err_free;
14691 
14692 	dev->netdev_ops = &bnxt_netdev_ops;
14693 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
14694 	dev->ethtool_ops = &bnxt_ethtool_ops;
14695 	pci_set_drvdata(pdev, dev);
14696 
14697 	rc = bnxt_alloc_hwrm_resources(bp);
14698 	if (rc)
14699 		goto init_err_pci_clean;
14700 
14701 	mutex_init(&bp->hwrm_cmd_lock);
14702 	mutex_init(&bp->link_lock);
14703 
14704 	rc = bnxt_fw_init_one_p1(bp);
14705 	if (rc)
14706 		goto init_err_pci_clean;
14707 
14708 	if (BNXT_PF(bp))
14709 		bnxt_vpd_read_info(bp);
14710 
14711 	if (BNXT_CHIP_P5_PLUS(bp)) {
14712 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
14713 		if (BNXT_CHIP_P7(bp))
14714 			bp->flags |= BNXT_FLAG_CHIP_P7;
14715 	}
14716 
14717 	rc = bnxt_alloc_rss_indir_tbl(bp);
14718 	if (rc)
14719 		goto init_err_pci_clean;
14720 
14721 	rc = bnxt_fw_init_one_p2(bp);
14722 	if (rc)
14723 		goto init_err_pci_clean;
14724 
14725 	rc = bnxt_map_db_bar(bp);
14726 	if (rc) {
14727 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
14728 			rc);
14729 		goto init_err_pci_clean;
14730 	}
14731 
14732 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14733 			   NETIF_F_TSO | NETIF_F_TSO6 |
14734 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14735 			   NETIF_F_GSO_IPXIP4 |
14736 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14737 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
14738 			   NETIF_F_RXCSUM | NETIF_F_GRO;
14739 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
14740 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
14741 
14742 	if (BNXT_SUPPORTS_TPA(bp))
14743 		dev->hw_features |= NETIF_F_LRO;
14744 
14745 	dev->hw_enc_features =
14746 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14747 			NETIF_F_TSO | NETIF_F_TSO6 |
14748 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14749 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14750 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
14751 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
14752 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
14753 	if (bp->flags & BNXT_FLAG_CHIP_P7)
14754 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
14755 	else
14756 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
14757 
14758 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
14759 				    NETIF_F_GSO_GRE_CSUM;
14760 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
14761 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
14762 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
14763 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
14764 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
14765 	if (BNXT_SUPPORTS_TPA(bp))
14766 		dev->hw_features |= NETIF_F_GRO_HW;
14767 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
14768 	if (dev->features & NETIF_F_GRO_HW)
14769 		dev->features &= ~NETIF_F_LRO;
14770 	dev->priv_flags |= IFF_UNICAST_FLT;
14771 
14772 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
14773 
14774 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
14775 			    NETDEV_XDP_ACT_RX_SG;
14776 
14777 #ifdef CONFIG_BNXT_SRIOV
14778 	init_waitqueue_head(&bp->sriov_cfg_wait);
14779 #endif
14780 	if (BNXT_SUPPORTS_TPA(bp)) {
14781 		bp->gro_func = bnxt_gro_func_5730x;
14782 		if (BNXT_CHIP_P4(bp))
14783 			bp->gro_func = bnxt_gro_func_5731x;
14784 		else if (BNXT_CHIP_P5_PLUS(bp))
14785 			bp->gro_func = bnxt_gro_func_5750x;
14786 	}
14787 	if (!BNXT_CHIP_P4_PLUS(bp))
14788 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
14789 
14790 	rc = bnxt_init_mac_addr(bp);
14791 	if (rc) {
14792 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
14793 		rc = -EADDRNOTAVAIL;
14794 		goto init_err_pci_clean;
14795 	}
14796 
14797 	if (BNXT_PF(bp)) {
14798 		/* Read the adapter's DSN to use as the eswitch switch_id */
14799 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
14800 	}
14801 
14802 	/* MTU range: 60 - FW defined max */
14803 	dev->min_mtu = ETH_ZLEN;
14804 	dev->max_mtu = bp->max_mtu;
14805 
14806 	rc = bnxt_probe_phy(bp, true);
14807 	if (rc)
14808 		goto init_err_pci_clean;
14809 
14810 	bnxt_init_l2_fltr_tbl(bp);
14811 	bnxt_set_rx_skb_mode(bp, false);
14812 	bnxt_set_tpa_flags(bp);
14813 	bnxt_set_ring_params(bp);
14814 	rc = bnxt_set_dflt_rings(bp, true);
14815 	if (rc) {
14816 		if (BNXT_VF(bp) && rc == -ENODEV) {
14817 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14818 		} else {
14819 			netdev_err(bp->dev, "Not enough rings available.\n");
14820 			rc = -ENOMEM;
14821 		}
14822 		goto init_err_pci_clean;
14823 	}
14824 
14825 	bnxt_fw_init_one_p3(bp);
14826 
14827 	bnxt_init_dflt_coal(bp);
14828 
14829 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
14830 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
14831 
14832 	rc = bnxt_init_int_mode(bp);
14833 	if (rc)
14834 		goto init_err_pci_clean;
14835 
14836 	/* No TC has been set yet and rings may have been trimmed due to
14837 	 * limited MSIX, so we re-initialize the TX rings per TC.
14838 	 */
14839 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14840 
14841 	if (BNXT_PF(bp)) {
14842 		if (!bnxt_pf_wq) {
14843 			bnxt_pf_wq =
14844 				create_singlethread_workqueue("bnxt_pf_wq");
14845 			if (!bnxt_pf_wq) {
14846 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
14847 				rc = -ENOMEM;
14848 				goto init_err_pci_clean;
14849 			}
14850 		}
14851 		rc = bnxt_init_tc(bp);
14852 		if (rc)
14853 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
14854 				   rc);
14855 	}
14856 
14857 	bnxt_inv_fw_health_reg(bp);
14858 	rc = bnxt_dl_register(bp);
14859 	if (rc)
14860 		goto init_err_dl;
14861 
14862 	rc = register_netdev(dev);
14863 	if (rc)
14864 		goto init_err_cleanup;
14865 
14866 	bnxt_dl_fw_reporters_create(bp);
14867 
14868 	bnxt_rdma_aux_device_init(bp);
14869 
14870 	bnxt_print_device_info(bp);
14871 
14872 	pci_save_state(pdev);
14873 
14874 	return 0;
14875 init_err_cleanup:
14876 	bnxt_dl_unregister(bp);
14877 init_err_dl:
14878 	bnxt_shutdown_tc(bp);
14879 	bnxt_clear_int_mode(bp);
14880 
14881 init_err_pci_clean:
14882 	bnxt_hwrm_func_drv_unrgtr(bp);
14883 	bnxt_free_hwrm_resources(bp);
14884 	bnxt_hwmon_uninit(bp);
14885 	bnxt_ethtool_free(bp);
14886 	bnxt_ptp_clear(bp);
14887 	kfree(bp->ptp_cfg);
14888 	bp->ptp_cfg = NULL;
14889 	kfree(bp->fw_health);
14890 	bp->fw_health = NULL;
14891 	bnxt_cleanup_pci(bp);
14892 	bnxt_free_ctx_mem(bp);
14893 	kfree(bp->rss_indir_tbl);
14894 	bp->rss_indir_tbl = NULL;
14895 
14896 init_err_free:
14897 	free_netdev(dev);
14898 	return rc;
14899 }
14900 
14901 static void bnxt_shutdown(struct pci_dev *pdev)
14902 {
14903 	struct net_device *dev = pci_get_drvdata(pdev);
14904 	struct bnxt *bp;
14905 
14906 	if (!dev)
14907 		return;
14908 
14909 	rtnl_lock();
14910 	bp = netdev_priv(dev);
14911 	if (!bp)
14912 		goto shutdown_exit;
14913 
14914 	if (netif_running(dev))
14915 		dev_close(dev);
14916 
14917 	bnxt_clear_int_mode(bp);
14918 	pci_disable_device(pdev);
14919 
14920 	if (system_state == SYSTEM_POWER_OFF) {
14921 		pci_wake_from_d3(pdev, bp->wol);
14922 		pci_set_power_state(pdev, PCI_D3hot);
14923 	}
14924 
14925 shutdown_exit:
14926 	rtnl_unlock();
14927 }
14928 
14929 #ifdef CONFIG_PM_SLEEP
14930 static int bnxt_suspend(struct device *device)
14931 {
14932 	struct net_device *dev = dev_get_drvdata(device);
14933 	struct bnxt *bp = netdev_priv(dev);
14934 	int rc = 0;
14935 
14936 	rtnl_lock();
14937 	bnxt_ulp_stop(bp);
14938 	if (netif_running(dev)) {
14939 		netif_device_detach(dev);
14940 		rc = bnxt_close(dev);
14941 	}
14942 	bnxt_hwrm_func_drv_unrgtr(bp);
14943 	pci_disable_device(bp->pdev);
14944 	bnxt_free_ctx_mem(bp);
14945 	rtnl_unlock();
14946 	return rc;
14947 }
14948 
14949 static int bnxt_resume(struct device *device)
14950 {
14951 	struct net_device *dev = dev_get_drvdata(device);
14952 	struct bnxt *bp = netdev_priv(dev);
14953 	int rc = 0;
14954 
14955 	rtnl_lock();
14956 	rc = pci_enable_device(bp->pdev);
14957 	if (rc) {
14958 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
14959 			   rc);
14960 		goto resume_exit;
14961 	}
14962 	pci_set_master(bp->pdev);
14963 	if (bnxt_hwrm_ver_get(bp)) {
14964 		rc = -ENODEV;
14965 		goto resume_exit;
14966 	}
14967 	rc = bnxt_hwrm_func_reset(bp);
14968 	if (rc) {
14969 		rc = -EBUSY;
14970 		goto resume_exit;
14971 	}
14972 
14973 	rc = bnxt_hwrm_func_qcaps(bp);
14974 	if (rc)
14975 		goto resume_exit;
14976 
14977 	bnxt_clear_reservations(bp, true);
14978 
14979 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
14980 		rc = -ENODEV;
14981 		goto resume_exit;
14982 	}
14983 
14984 	bnxt_get_wol_settings(bp);
14985 	if (netif_running(dev)) {
14986 		rc = bnxt_open(dev);
14987 		if (!rc)
14988 			netif_device_attach(dev);
14989 	}
14990 
14991 resume_exit:
14992 	bnxt_ulp_start(bp, rc);
14993 	if (!rc)
14994 		bnxt_reenable_sriov(bp);
14995 	rtnl_unlock();
14996 	return rc;
14997 }
14998 
14999 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
15000 #define BNXT_PM_OPS (&bnxt_pm_ops)
15001 
15002 #else
15003 
15004 #define BNXT_PM_OPS NULL
15005 
15006 #endif /* CONFIG_PM_SLEEP */
15007 
15008 /**
15009  * bnxt_io_error_detected - called when PCI error is detected
15010  * @pdev: Pointer to PCI device
15011  * @state: The current pci connection state
15012  *
15013  * This function is called after a PCI bus error affecting
15014  * this device has been detected.
15015  */
15016 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
15017 					       pci_channel_state_t state)
15018 {
15019 	struct net_device *netdev = pci_get_drvdata(pdev);
15020 	struct bnxt *bp = netdev_priv(netdev);
15021 
15022 	netdev_info(netdev, "PCI I/O error detected\n");
15023 
15024 	rtnl_lock();
15025 	netif_device_detach(netdev);
15026 
15027 	bnxt_ulp_stop(bp);
15028 
15029 	if (state == pci_channel_io_perm_failure) {
15030 		rtnl_unlock();
15031 		return PCI_ERS_RESULT_DISCONNECT;
15032 	}
15033 
15034 	if (state == pci_channel_io_frozen)
15035 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
15036 
15037 	if (netif_running(netdev))
15038 		bnxt_close(netdev);
15039 
15040 	if (pci_is_enabled(pdev))
15041 		pci_disable_device(pdev);
15042 	bnxt_free_ctx_mem(bp);
15043 	rtnl_unlock();
15044 
15045 	/* Request a slot slot reset. */
15046 	return PCI_ERS_RESULT_NEED_RESET;
15047 }
15048 
15049 /**
15050  * bnxt_io_slot_reset - called after the pci bus has been reset.
15051  * @pdev: Pointer to PCI device
15052  *
15053  * Restart the card from scratch, as if from a cold-boot.
15054  * At this point, the card has exprienced a hard reset,
15055  * followed by fixups by BIOS, and has its config space
15056  * set up identically to what it was at cold boot.
15057  */
15058 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
15059 {
15060 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
15061 	struct net_device *netdev = pci_get_drvdata(pdev);
15062 	struct bnxt *bp = netdev_priv(netdev);
15063 	int retry = 0;
15064 	int err = 0;
15065 	int off;
15066 
15067 	netdev_info(bp->dev, "PCI Slot Reset\n");
15068 
15069 	rtnl_lock();
15070 
15071 	if (pci_enable_device(pdev)) {
15072 		dev_err(&pdev->dev,
15073 			"Cannot re-enable PCI device after reset.\n");
15074 	} else {
15075 		pci_set_master(pdev);
15076 		/* Upon fatal error, our device internal logic that latches to
15077 		 * BAR value is getting reset and will restore only upon
15078 		 * rewritting the BARs.
15079 		 *
15080 		 * As pci_restore_state() does not re-write the BARs if the
15081 		 * value is same as saved value earlier, driver needs to
15082 		 * write the BARs to 0 to force restore, in case of fatal error.
15083 		 */
15084 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
15085 				       &bp->state)) {
15086 			for (off = PCI_BASE_ADDRESS_0;
15087 			     off <= PCI_BASE_ADDRESS_5; off += 4)
15088 				pci_write_config_dword(bp->pdev, off, 0);
15089 		}
15090 		pci_restore_state(pdev);
15091 		pci_save_state(pdev);
15092 
15093 		bnxt_inv_fw_health_reg(bp);
15094 		bnxt_try_map_fw_health_reg(bp);
15095 
15096 		/* In some PCIe AER scenarios, firmware may take up to
15097 		 * 10 seconds to become ready in the worst case.
15098 		 */
15099 		do {
15100 			err = bnxt_try_recover_fw(bp);
15101 			if (!err)
15102 				break;
15103 			retry++;
15104 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
15105 
15106 		if (err) {
15107 			dev_err(&pdev->dev, "Firmware not ready\n");
15108 			goto reset_exit;
15109 		}
15110 
15111 		err = bnxt_hwrm_func_reset(bp);
15112 		if (!err)
15113 			result = PCI_ERS_RESULT_RECOVERED;
15114 
15115 		bnxt_ulp_irq_stop(bp);
15116 		bnxt_clear_int_mode(bp);
15117 		err = bnxt_init_int_mode(bp);
15118 		bnxt_ulp_irq_restart(bp, err);
15119 	}
15120 
15121 reset_exit:
15122 	bnxt_clear_reservations(bp, true);
15123 	rtnl_unlock();
15124 
15125 	return result;
15126 }
15127 
15128 /**
15129  * bnxt_io_resume - called when traffic can start flowing again.
15130  * @pdev: Pointer to PCI device
15131  *
15132  * This callback is called when the error recovery driver tells
15133  * us that its OK to resume normal operation.
15134  */
15135 static void bnxt_io_resume(struct pci_dev *pdev)
15136 {
15137 	struct net_device *netdev = pci_get_drvdata(pdev);
15138 	struct bnxt *bp = netdev_priv(netdev);
15139 	int err;
15140 
15141 	netdev_info(bp->dev, "PCI Slot Resume\n");
15142 	rtnl_lock();
15143 
15144 	err = bnxt_hwrm_func_qcaps(bp);
15145 	if (!err && netif_running(netdev))
15146 		err = bnxt_open(netdev);
15147 
15148 	bnxt_ulp_start(bp, err);
15149 	if (!err) {
15150 		bnxt_reenable_sriov(bp);
15151 		netif_device_attach(netdev);
15152 	}
15153 
15154 	rtnl_unlock();
15155 }
15156 
15157 static const struct pci_error_handlers bnxt_err_handler = {
15158 	.error_detected	= bnxt_io_error_detected,
15159 	.slot_reset	= bnxt_io_slot_reset,
15160 	.resume		= bnxt_io_resume
15161 };
15162 
15163 static struct pci_driver bnxt_pci_driver = {
15164 	.name		= DRV_MODULE_NAME,
15165 	.id_table	= bnxt_pci_tbl,
15166 	.probe		= bnxt_init_one,
15167 	.remove		= bnxt_remove_one,
15168 	.shutdown	= bnxt_shutdown,
15169 	.driver.pm	= BNXT_PM_OPS,
15170 	.err_handler	= &bnxt_err_handler,
15171 #if defined(CONFIG_BNXT_SRIOV)
15172 	.sriov_configure = bnxt_sriov_configure,
15173 #endif
15174 };
15175 
15176 static int __init bnxt_init(void)
15177 {
15178 	int err;
15179 
15180 	bnxt_debug_init();
15181 	err = pci_register_driver(&bnxt_pci_driver);
15182 	if (err) {
15183 		bnxt_debug_exit();
15184 		return err;
15185 	}
15186 
15187 	return 0;
15188 }
15189 
15190 static void __exit bnxt_exit(void)
15191 {
15192 	pci_unregister_driver(&bnxt_pci_driver);
15193 	if (bnxt_pf_wq)
15194 		destroy_workqueue(bnxt_pf_wq);
15195 	bnxt_debug_exit();
15196 }
15197 
15198 module_init(bnxt_init);
15199 module_exit(bnxt_exit);
15200