1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_lock.h> 58 #include <net/netdev_queues.h> 59 #include <net/netdev_rx_queue.h> 60 #include <linux/pci-tph.h> 61 #include <linux/bnxt/hsi.h> 62 63 #include "bnxt.h" 64 #include "bnxt_hwrm.h" 65 #include "bnxt_ulp.h" 66 #include "bnxt_sriov.h" 67 #include "bnxt_ethtool.h" 68 #include "bnxt_dcb.h" 69 #include "bnxt_xdp.h" 70 #include "bnxt_ptp.h" 71 #include "bnxt_vfr.h" 72 #include "bnxt_tc.h" 73 #include "bnxt_devlink.h" 74 #include "bnxt_debugfs.h" 75 #include "bnxt_coredump.h" 76 #include "bnxt_hwmon.h" 77 78 #define BNXT_TX_TIMEOUT (5 * HZ) 79 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 80 NETIF_MSG_TX_ERR) 81 82 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 83 MODULE_LICENSE("GPL"); 84 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 85 86 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 87 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 88 89 #define BNXT_TX_PUSH_THRESH 164 90 91 /* indexed by enum board_idx */ 92 static const struct { 93 char *name; 94 } board_info[] = { 95 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 98 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 99 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 100 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 101 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 102 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 106 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 108 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 110 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 111 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 112 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 113 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 114 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 115 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 116 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 117 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 118 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 119 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 120 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 121 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 122 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 123 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 124 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 127 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 129 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 130 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 131 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 132 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 133 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 134 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 136 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 137 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 138 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 139 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 140 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 141 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 142 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 143 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 144 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 145 }; 146 147 static const struct pci_device_id bnxt_pci_tbl[] = { 148 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 149 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 151 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 153 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 154 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 155 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 156 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 157 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 158 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 163 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 164 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 165 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 166 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 167 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 168 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 170 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 175 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 182 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 183 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 184 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 185 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 186 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 187 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 188 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 189 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 190 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 197 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 198 #ifdef CONFIG_BNXT_SRIOV 199 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 208 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 209 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 216 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 217 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 218 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 219 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 220 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 221 #endif 222 { 0 } 223 }; 224 225 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 226 227 static const u16 bnxt_vf_req_snif[] = { 228 HWRM_FUNC_CFG, 229 HWRM_FUNC_VF_CFG, 230 HWRM_PORT_PHY_QCFG, 231 HWRM_CFA_L2_FILTER_ALLOC, 232 }; 233 234 static const u16 bnxt_async_events_arr[] = { 235 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 238 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 239 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 240 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 241 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 244 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 245 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 246 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 247 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 248 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 249 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 250 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 251 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 252 }; 253 254 const u16 bnxt_bstore_to_trace[] = { 255 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 256 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 257 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 258 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 259 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 260 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 261 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 262 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 263 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 264 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 265 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 266 }; 267 268 static struct workqueue_struct *bnxt_pf_wq; 269 270 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 272 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 273 274 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 275 .ports = { 276 .src = 0, 277 .dst = 0, 278 }, 279 .addrs = { 280 .v6addrs = { 281 .src = BNXT_IPV6_MASK_NONE, 282 .dst = BNXT_IPV6_MASK_NONE, 283 }, 284 }, 285 }; 286 287 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 288 .ports = { 289 .src = cpu_to_be16(0xffff), 290 .dst = cpu_to_be16(0xffff), 291 }, 292 .addrs = { 293 .v6addrs = { 294 .src = BNXT_IPV6_MASK_ALL, 295 .dst = BNXT_IPV6_MASK_ALL, 296 }, 297 }, 298 }; 299 300 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 301 .ports = { 302 .src = cpu_to_be16(0xffff), 303 .dst = cpu_to_be16(0xffff), 304 }, 305 .addrs = { 306 .v4addrs = { 307 .src = cpu_to_be32(0xffffffff), 308 .dst = cpu_to_be32(0xffffffff), 309 }, 310 }, 311 }; 312 313 static bool bnxt_vf_pciid(enum board_idx idx) 314 { 315 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 316 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 317 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 318 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 319 } 320 321 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 322 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 323 324 #define BNXT_DB_CQ(db, idx) \ 325 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 326 327 #define BNXT_DB_NQ_P5(db, idx) \ 328 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 329 (db)->doorbell) 330 331 #define BNXT_DB_NQ_P7(db, idx) \ 332 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 333 DB_RING_IDX(db, idx), (db)->doorbell) 334 335 #define BNXT_DB_CQ_ARM(db, idx) \ 336 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 337 338 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 339 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 340 DB_RING_IDX(db, idx), (db)->doorbell) 341 342 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 343 { 344 if (bp->flags & BNXT_FLAG_CHIP_P7) 345 BNXT_DB_NQ_P7(db, idx); 346 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 347 BNXT_DB_NQ_P5(db, idx); 348 else 349 BNXT_DB_CQ(db, idx); 350 } 351 352 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 353 { 354 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 355 BNXT_DB_NQ_ARM_P5(db, idx); 356 else 357 BNXT_DB_CQ_ARM(db, idx); 358 } 359 360 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 361 { 362 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 363 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 364 DB_RING_IDX(db, idx), db->doorbell); 365 else 366 BNXT_DB_CQ(db, idx); 367 } 368 369 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 370 { 371 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 372 return; 373 374 if (BNXT_PF(bp)) 375 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 376 else 377 schedule_delayed_work(&bp->fw_reset_task, delay); 378 } 379 380 static void __bnxt_queue_sp_work(struct bnxt *bp) 381 { 382 if (BNXT_PF(bp)) 383 queue_work(bnxt_pf_wq, &bp->sp_task); 384 else 385 schedule_work(&bp->sp_task); 386 } 387 388 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 389 { 390 set_bit(event, &bp->sp_event); 391 __bnxt_queue_sp_work(bp); 392 } 393 394 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 395 { 396 if (!rxr->bnapi->in_reset) { 397 rxr->bnapi->in_reset = true; 398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 399 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 400 else 401 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 402 __bnxt_queue_sp_work(bp); 403 } 404 rxr->rx_next_cons = 0xffff; 405 } 406 407 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 408 u16 curr) 409 { 410 struct bnxt_napi *bnapi = txr->bnapi; 411 412 if (bnapi->tx_fault) 413 return; 414 415 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 416 txr->txq_index, txr->tx_hw_cons, 417 txr->tx_cons, txr->tx_prod, curr); 418 WARN_ON_ONCE(1); 419 bnapi->tx_fault = 1; 420 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 421 } 422 423 const u16 bnxt_lhint_arr[] = { 424 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 425 TX_BD_FLAGS_LHINT_512_TO_1023, 426 TX_BD_FLAGS_LHINT_1024_TO_2047, 427 TX_BD_FLAGS_LHINT_1024_TO_2047, 428 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 429 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 430 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 441 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 442 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 443 }; 444 445 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 446 { 447 struct metadata_dst *md_dst = skb_metadata_dst(skb); 448 449 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 450 return 0; 451 452 return md_dst->u.port_info.port_id; 453 } 454 455 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 456 u16 prod) 457 { 458 /* Sync BD data before updating doorbell */ 459 wmb(); 460 bnxt_db_write(bp, &txr->tx_db, prod); 461 txr->kick_pending = 0; 462 } 463 464 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 465 { 466 struct bnxt *bp = netdev_priv(dev); 467 struct tx_bd *txbd, *txbd0; 468 struct tx_bd_ext *txbd1; 469 struct netdev_queue *txq; 470 int i; 471 dma_addr_t mapping; 472 unsigned int length, pad = 0; 473 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 474 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 475 struct pci_dev *pdev = bp->pdev; 476 u16 prod, last_frag, txts_prod; 477 struct bnxt_tx_ring_info *txr; 478 struct bnxt_sw_tx_bd *tx_buf; 479 __le32 lflags = 0; 480 skb_frag_t *frag; 481 482 i = skb_get_queue_mapping(skb); 483 if (unlikely(i >= bp->tx_nr_rings)) { 484 dev_kfree_skb_any(skb); 485 dev_core_stats_tx_dropped_inc(dev); 486 return NETDEV_TX_OK; 487 } 488 489 txq = netdev_get_tx_queue(dev, i); 490 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 491 prod = txr->tx_prod; 492 493 #if (MAX_SKB_FRAGS > TX_MAX_FRAGS) 494 if (skb_shinfo(skb)->nr_frags > TX_MAX_FRAGS) { 495 netdev_warn_once(dev, "SKB has too many (%d) fragments, max supported is %d. SKB will be linearized.\n", 496 skb_shinfo(skb)->nr_frags, TX_MAX_FRAGS); 497 if (skb_linearize(skb)) { 498 dev_kfree_skb_any(skb); 499 dev_core_stats_tx_dropped_inc(dev); 500 return NETDEV_TX_OK; 501 } 502 } 503 #endif 504 free_size = bnxt_tx_avail(bp, txr); 505 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 506 /* We must have raced with NAPI cleanup */ 507 if (net_ratelimit() && txr->kick_pending) 508 netif_warn(bp, tx_err, dev, 509 "bnxt: ring busy w/ flush pending!\n"); 510 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 511 bp->tx_wake_thresh)) 512 return NETDEV_TX_BUSY; 513 } 514 515 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 516 goto tx_free; 517 518 length = skb->len; 519 len = skb_headlen(skb); 520 last_frag = skb_shinfo(skb)->nr_frags; 521 522 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 523 524 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 525 tx_buf->skb = skb; 526 tx_buf->nr_frags = last_frag; 527 528 vlan_tag_flags = 0; 529 cfa_action = bnxt_xmit_get_cfa_action(skb); 530 if (skb_vlan_tag_present(skb)) { 531 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 532 skb_vlan_tag_get(skb); 533 /* Currently supports 8021Q, 8021AD vlan offloads 534 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 535 */ 536 if (skb->vlan_proto == htons(ETH_P_8021Q)) 537 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 538 } 539 540 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 541 ptp->tx_tstamp_en) { 542 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 543 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 544 tx_buf->is_ts_pkt = 1; 545 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 546 } else if (!skb_is_gso(skb)) { 547 u16 seq_id, hdr_off; 548 549 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 550 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 551 if (vlan_tag_flags) 552 hdr_off += VLAN_HLEN; 553 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 554 tx_buf->is_ts_pkt = 1; 555 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 556 557 ptp->txts_req[txts_prod].tx_seqid = seq_id; 558 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 559 tx_buf->txts_prod = txts_prod; 560 } 561 } 562 } 563 if (unlikely(skb->no_fcs)) 564 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 565 566 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 567 skb_frags_readable(skb) && !lflags) { 568 struct tx_push_buffer *tx_push_buf = txr->tx_push; 569 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 570 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 571 void __iomem *db = txr->tx_db.doorbell; 572 void *pdata = tx_push_buf->data; 573 u64 *end; 574 int j, push_len; 575 576 /* Set COAL_NOW to be ready quickly for the next push */ 577 tx_push->tx_bd_len_flags_type = 578 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 579 TX_BD_TYPE_LONG_TX_BD | 580 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 581 TX_BD_FLAGS_COAL_NOW | 582 TX_BD_FLAGS_PACKET_END | 583 TX_BD_CNT(2)); 584 585 if (skb->ip_summed == CHECKSUM_PARTIAL) 586 tx_push1->tx_bd_hsize_lflags = 587 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 588 else 589 tx_push1->tx_bd_hsize_lflags = 0; 590 591 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 592 tx_push1->tx_bd_cfa_action = 593 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 594 595 end = pdata + length; 596 end = PTR_ALIGN(end, 8) - 1; 597 *end = 0; 598 599 skb_copy_from_linear_data(skb, pdata, len); 600 pdata += len; 601 for (j = 0; j < last_frag; j++) { 602 void *fptr; 603 604 frag = &skb_shinfo(skb)->frags[j]; 605 fptr = skb_frag_address_safe(frag); 606 if (!fptr) 607 goto normal_tx; 608 609 memcpy(pdata, fptr, skb_frag_size(frag)); 610 pdata += skb_frag_size(frag); 611 } 612 613 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 614 txbd->tx_bd_haddr = txr->data_mapping; 615 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 616 prod = NEXT_TX(prod); 617 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 618 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 619 memcpy(txbd, tx_push1, sizeof(*txbd)); 620 prod = NEXT_TX(prod); 621 tx_push->doorbell = 622 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 623 DB_RING_IDX(&txr->tx_db, prod)); 624 WRITE_ONCE(txr->tx_prod, prod); 625 626 tx_buf->is_push = 1; 627 netdev_tx_sent_queue(txq, skb->len); 628 wmb(); /* Sync is_push and byte queue before pushing data */ 629 630 push_len = (length + sizeof(*tx_push) + 7) / 8; 631 if (push_len > 16) { 632 __iowrite64_copy(db, tx_push_buf, 16); 633 __iowrite32_copy(db + 4, tx_push_buf + 1, 634 (push_len - 16) << 1); 635 } else { 636 __iowrite64_copy(db, tx_push_buf, push_len); 637 } 638 639 goto tx_done; 640 } 641 642 normal_tx: 643 if (length < BNXT_MIN_PKT_SIZE) { 644 pad = BNXT_MIN_PKT_SIZE - length; 645 if (skb_pad(skb, pad)) 646 /* SKB already freed. */ 647 goto tx_kick_pending; 648 length = BNXT_MIN_PKT_SIZE; 649 } 650 651 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 652 653 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 654 goto tx_free; 655 656 dma_unmap_addr_set(tx_buf, mapping, mapping); 657 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 658 TX_BD_CNT(last_frag + 2); 659 660 txbd->tx_bd_haddr = cpu_to_le64(mapping); 661 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 662 663 prod = NEXT_TX(prod); 664 txbd1 = (struct tx_bd_ext *) 665 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 666 667 txbd1->tx_bd_hsize_lflags = lflags; 668 if (skb_is_gso(skb)) { 669 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 670 u32 hdr_len; 671 672 if (skb->encapsulation) { 673 if (udp_gso) 674 hdr_len = skb_inner_transport_offset(skb) + 675 sizeof(struct udphdr); 676 else 677 hdr_len = skb_inner_tcp_all_headers(skb); 678 } else if (udp_gso) { 679 hdr_len = skb_transport_offset(skb) + 680 sizeof(struct udphdr); 681 } else { 682 hdr_len = skb_tcp_all_headers(skb); 683 } 684 685 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 686 TX_BD_FLAGS_T_IPID | 687 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 688 length = skb_shinfo(skb)->gso_size; 689 txbd1->tx_bd_mss = cpu_to_le32(length); 690 length += hdr_len; 691 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 692 txbd1->tx_bd_hsize_lflags |= 693 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 694 txbd1->tx_bd_mss = 0; 695 } 696 697 length >>= 9; 698 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 699 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 700 skb->len); 701 i = 0; 702 goto tx_dma_error; 703 } 704 flags |= bnxt_lhint_arr[length]; 705 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 706 707 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 708 txbd1->tx_bd_cfa_action = 709 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 710 txbd0 = txbd; 711 for (i = 0; i < last_frag; i++) { 712 frag = &skb_shinfo(skb)->frags[i]; 713 prod = NEXT_TX(prod); 714 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 715 716 len = skb_frag_size(frag); 717 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 718 DMA_TO_DEVICE); 719 720 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 721 goto tx_dma_error; 722 723 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 724 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), tx_buf, 725 mapping, mapping); 726 727 txbd->tx_bd_haddr = cpu_to_le64(mapping); 728 729 flags = len << TX_BD_LEN_SHIFT; 730 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 731 } 732 733 flags &= ~TX_BD_LEN; 734 txbd->tx_bd_len_flags_type = 735 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 736 TX_BD_FLAGS_PACKET_END); 737 738 netdev_tx_sent_queue(txq, skb->len); 739 740 skb_tx_timestamp(skb); 741 742 prod = NEXT_TX(prod); 743 WRITE_ONCE(txr->tx_prod, prod); 744 745 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 746 bnxt_txr_db_kick(bp, txr, prod); 747 } else { 748 if (free_size >= bp->tx_wake_thresh) 749 txbd0->tx_bd_len_flags_type |= 750 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 751 txr->kick_pending = 1; 752 } 753 754 tx_done: 755 756 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 757 if (netdev_xmit_more() && !tx_buf->is_push) { 758 txbd0->tx_bd_len_flags_type &= 759 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 760 bnxt_txr_db_kick(bp, txr, prod); 761 } 762 763 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 764 bp->tx_wake_thresh); 765 } 766 return NETDEV_TX_OK; 767 768 tx_dma_error: 769 last_frag = i; 770 771 /* start back at beginning and unmap skb */ 772 prod = txr->tx_prod; 773 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 774 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 775 skb_headlen(skb), DMA_TO_DEVICE); 776 prod = NEXT_TX(prod); 777 778 /* unmap remaining mapped pages */ 779 for (i = 0; i < last_frag; i++) { 780 prod = NEXT_TX(prod); 781 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 782 frag = &skb_shinfo(skb)->frags[i]; 783 netmem_dma_unmap_page_attrs(&pdev->dev, 784 dma_unmap_addr(tx_buf, mapping), 785 skb_frag_size(frag), 786 DMA_TO_DEVICE, 0); 787 } 788 789 tx_free: 790 dev_kfree_skb_any(skb); 791 tx_kick_pending: 792 if (BNXT_TX_PTP_IS_SET(lflags)) { 793 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].is_ts_pkt = 0; 794 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 795 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 796 /* set SKB to err so PTP worker will clean up */ 797 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 798 } 799 if (txr->kick_pending) 800 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 801 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].skb = NULL; 802 dev_core_stats_tx_dropped_inc(dev); 803 return NETDEV_TX_OK; 804 } 805 806 /* Returns true if some remaining TX packets not processed. */ 807 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 808 int budget) 809 { 810 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 811 struct pci_dev *pdev = bp->pdev; 812 u16 hw_cons = txr->tx_hw_cons; 813 unsigned int tx_bytes = 0; 814 u16 cons = txr->tx_cons; 815 skb_frag_t *frag; 816 int tx_pkts = 0; 817 bool rc = false; 818 819 while (RING_TX(bp, cons) != hw_cons) { 820 struct bnxt_sw_tx_bd *tx_buf; 821 struct sk_buff *skb; 822 bool is_ts_pkt; 823 int j, last; 824 825 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 826 skb = tx_buf->skb; 827 828 if (unlikely(!skb)) { 829 bnxt_sched_reset_txr(bp, txr, cons); 830 return rc; 831 } 832 833 is_ts_pkt = tx_buf->is_ts_pkt; 834 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 835 rc = true; 836 break; 837 } 838 839 cons = NEXT_TX(cons); 840 tx_pkts++; 841 tx_bytes += skb->len; 842 tx_buf->skb = NULL; 843 tx_buf->is_ts_pkt = 0; 844 845 if (tx_buf->is_push) { 846 tx_buf->is_push = 0; 847 goto next_tx_int; 848 } 849 850 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 851 skb_headlen(skb), DMA_TO_DEVICE); 852 last = tx_buf->nr_frags; 853 854 for (j = 0; j < last; j++) { 855 frag = &skb_shinfo(skb)->frags[j]; 856 cons = NEXT_TX(cons); 857 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 858 netmem_dma_unmap_page_attrs(&pdev->dev, 859 dma_unmap_addr(tx_buf, 860 mapping), 861 skb_frag_size(frag), 862 DMA_TO_DEVICE, 0); 863 } 864 if (unlikely(is_ts_pkt)) { 865 if (BNXT_CHIP_P5(bp)) { 866 /* PTP worker takes ownership of the skb */ 867 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 868 skb = NULL; 869 } 870 } 871 872 next_tx_int: 873 cons = NEXT_TX(cons); 874 875 dev_consume_skb_any(skb); 876 } 877 878 WRITE_ONCE(txr->tx_cons, cons); 879 880 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 881 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 882 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 883 884 return rc; 885 } 886 887 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 888 { 889 struct bnxt_tx_ring_info *txr; 890 bool more = false; 891 int i; 892 893 bnxt_for_each_napi_tx(i, bnapi, txr) { 894 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 895 more |= __bnxt_tx_int(bp, txr, budget); 896 } 897 if (!more) 898 bnapi->events &= ~BNXT_TX_CMP_EVENT; 899 } 900 901 static bool bnxt_separate_head_pool(struct bnxt_rx_ring_info *rxr) 902 { 903 return rxr->need_head_pool || PAGE_SIZE > BNXT_RX_PAGE_SIZE; 904 } 905 906 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 907 struct bnxt_rx_ring_info *rxr, 908 unsigned int *offset, 909 gfp_t gfp) 910 { 911 struct page *page; 912 913 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 914 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 915 BNXT_RX_PAGE_SIZE); 916 } else { 917 page = page_pool_dev_alloc_pages(rxr->page_pool); 918 *offset = 0; 919 } 920 if (!page) 921 return NULL; 922 923 *mapping = page_pool_get_dma_addr(page) + *offset; 924 return page; 925 } 926 927 static netmem_ref __bnxt_alloc_rx_netmem(struct bnxt *bp, dma_addr_t *mapping, 928 struct bnxt_rx_ring_info *rxr, 929 unsigned int *offset, 930 gfp_t gfp) 931 { 932 netmem_ref netmem; 933 934 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 935 netmem = page_pool_alloc_frag_netmem(rxr->page_pool, offset, BNXT_RX_PAGE_SIZE, gfp); 936 } else { 937 netmem = page_pool_alloc_netmems(rxr->page_pool, gfp); 938 *offset = 0; 939 } 940 if (!netmem) 941 return 0; 942 943 *mapping = page_pool_get_dma_addr_netmem(netmem) + *offset; 944 return netmem; 945 } 946 947 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 948 struct bnxt_rx_ring_info *rxr, 949 gfp_t gfp) 950 { 951 unsigned int offset; 952 struct page *page; 953 954 page = page_pool_alloc_frag(rxr->head_pool, &offset, 955 bp->rx_buf_size, gfp); 956 if (!page) 957 return NULL; 958 959 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 960 return page_address(page) + offset; 961 } 962 963 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 964 u16 prod, gfp_t gfp) 965 { 966 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 967 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 968 dma_addr_t mapping; 969 970 if (BNXT_RX_PAGE_MODE(bp)) { 971 unsigned int offset; 972 struct page *page = 973 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 974 975 if (!page) 976 return -ENOMEM; 977 978 mapping += bp->rx_dma_offset; 979 rx_buf->data = page; 980 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 981 } else { 982 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 983 984 if (!data) 985 return -ENOMEM; 986 987 rx_buf->data = data; 988 rx_buf->data_ptr = data + bp->rx_offset; 989 } 990 rx_buf->mapping = mapping; 991 992 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 993 return 0; 994 } 995 996 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 997 { 998 u16 prod = rxr->rx_prod; 999 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1000 struct bnxt *bp = rxr->bnapi->bp; 1001 struct rx_bd *cons_bd, *prod_bd; 1002 1003 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1004 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1005 1006 prod_rx_buf->data = data; 1007 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 1008 1009 prod_rx_buf->mapping = cons_rx_buf->mapping; 1010 1011 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1012 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 1013 1014 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 1015 } 1016 1017 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1018 { 1019 u16 next, max = rxr->rx_agg_bmap_size; 1020 1021 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 1022 if (next >= max) 1023 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 1024 return next; 1025 } 1026 1027 static int bnxt_alloc_rx_netmem(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1028 u16 prod, gfp_t gfp) 1029 { 1030 struct rx_bd *rxbd = 1031 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1032 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 1033 u16 sw_prod = rxr->rx_sw_agg_prod; 1034 unsigned int offset = 0; 1035 dma_addr_t mapping; 1036 netmem_ref netmem; 1037 1038 netmem = __bnxt_alloc_rx_netmem(bp, &mapping, rxr, &offset, gfp); 1039 if (!netmem) 1040 return -ENOMEM; 1041 1042 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1043 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1044 1045 __set_bit(sw_prod, rxr->rx_agg_bmap); 1046 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1047 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1048 1049 rx_agg_buf->netmem = netmem; 1050 rx_agg_buf->offset = offset; 1051 rx_agg_buf->mapping = mapping; 1052 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1053 rxbd->rx_bd_opaque = sw_prod; 1054 return 0; 1055 } 1056 1057 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1058 struct bnxt_cp_ring_info *cpr, 1059 u16 cp_cons, u16 curr) 1060 { 1061 struct rx_agg_cmp *agg; 1062 1063 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1064 agg = (struct rx_agg_cmp *) 1065 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1066 return agg; 1067 } 1068 1069 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1070 struct bnxt_rx_ring_info *rxr, 1071 u16 agg_id, u16 curr) 1072 { 1073 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1074 1075 return &tpa_info->agg_arr[curr]; 1076 } 1077 1078 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1079 u16 start, u32 agg_bufs, bool tpa) 1080 { 1081 struct bnxt_napi *bnapi = cpr->bnapi; 1082 struct bnxt *bp = bnapi->bp; 1083 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1084 u16 prod = rxr->rx_agg_prod; 1085 u16 sw_prod = rxr->rx_sw_agg_prod; 1086 bool p5_tpa = false; 1087 u32 i; 1088 1089 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1090 p5_tpa = true; 1091 1092 for (i = 0; i < agg_bufs; i++) { 1093 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1094 struct rx_agg_cmp *agg; 1095 struct rx_bd *prod_bd; 1096 netmem_ref netmem; 1097 u16 cons; 1098 1099 if (p5_tpa) 1100 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1101 else 1102 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1103 cons = agg->rx_agg_cmp_opaque; 1104 __clear_bit(cons, rxr->rx_agg_bmap); 1105 1106 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1107 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1108 1109 __set_bit(sw_prod, rxr->rx_agg_bmap); 1110 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1111 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1112 1113 /* It is possible for sw_prod to be equal to cons, so 1114 * set cons_rx_buf->netmem to 0 first. 1115 */ 1116 netmem = cons_rx_buf->netmem; 1117 cons_rx_buf->netmem = 0; 1118 prod_rx_buf->netmem = netmem; 1119 prod_rx_buf->offset = cons_rx_buf->offset; 1120 1121 prod_rx_buf->mapping = cons_rx_buf->mapping; 1122 1123 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1124 1125 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1126 prod_bd->rx_bd_opaque = sw_prod; 1127 1128 prod = NEXT_RX_AGG(prod); 1129 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1130 } 1131 rxr->rx_agg_prod = prod; 1132 rxr->rx_sw_agg_prod = sw_prod; 1133 } 1134 1135 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1136 struct bnxt_rx_ring_info *rxr, 1137 u16 cons, void *data, u8 *data_ptr, 1138 dma_addr_t dma_addr, 1139 unsigned int offset_and_len) 1140 { 1141 unsigned int len = offset_and_len & 0xffff; 1142 struct page *page = data; 1143 u16 prod = rxr->rx_prod; 1144 struct sk_buff *skb; 1145 int err; 1146 1147 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1148 if (unlikely(err)) { 1149 bnxt_reuse_rx_data(rxr, cons, data); 1150 return NULL; 1151 } 1152 dma_addr -= bp->rx_dma_offset; 1153 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1154 bp->rx_dir); 1155 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1156 if (!skb) { 1157 page_pool_recycle_direct(rxr->page_pool, page); 1158 return NULL; 1159 } 1160 skb_mark_for_recycle(skb); 1161 skb_reserve(skb, bp->rx_offset); 1162 __skb_put(skb, len); 1163 1164 return skb; 1165 } 1166 1167 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1168 struct bnxt_rx_ring_info *rxr, 1169 u16 cons, void *data, u8 *data_ptr, 1170 dma_addr_t dma_addr, 1171 unsigned int offset_and_len) 1172 { 1173 unsigned int payload = offset_and_len >> 16; 1174 unsigned int len = offset_and_len & 0xffff; 1175 skb_frag_t *frag; 1176 struct page *page = data; 1177 u16 prod = rxr->rx_prod; 1178 struct sk_buff *skb; 1179 int off, err; 1180 1181 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1182 if (unlikely(err)) { 1183 bnxt_reuse_rx_data(rxr, cons, data); 1184 return NULL; 1185 } 1186 dma_addr -= bp->rx_dma_offset; 1187 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1188 bp->rx_dir); 1189 1190 if (unlikely(!payload)) 1191 payload = eth_get_headlen(bp->dev, data_ptr, len); 1192 1193 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1194 if (!skb) { 1195 page_pool_recycle_direct(rxr->page_pool, page); 1196 return NULL; 1197 } 1198 1199 skb_mark_for_recycle(skb); 1200 off = (void *)data_ptr - page_address(page); 1201 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1202 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1203 payload + NET_IP_ALIGN); 1204 1205 frag = &skb_shinfo(skb)->frags[0]; 1206 skb_frag_size_sub(frag, payload); 1207 skb_frag_off_add(frag, payload); 1208 skb->data_len -= payload; 1209 skb->tail += payload; 1210 1211 return skb; 1212 } 1213 1214 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1215 struct bnxt_rx_ring_info *rxr, u16 cons, 1216 void *data, u8 *data_ptr, 1217 dma_addr_t dma_addr, 1218 unsigned int offset_and_len) 1219 { 1220 u16 prod = rxr->rx_prod; 1221 struct sk_buff *skb; 1222 int err; 1223 1224 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1225 if (unlikely(err)) { 1226 bnxt_reuse_rx_data(rxr, cons, data); 1227 return NULL; 1228 } 1229 1230 skb = napi_build_skb(data, bp->rx_buf_size); 1231 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1232 bp->rx_dir); 1233 if (!skb) { 1234 page_pool_free_va(rxr->head_pool, data, true); 1235 return NULL; 1236 } 1237 1238 skb_mark_for_recycle(skb); 1239 skb_reserve(skb, bp->rx_offset); 1240 skb_put(skb, offset_and_len & 0xffff); 1241 return skb; 1242 } 1243 1244 static u32 __bnxt_rx_agg_netmems(struct bnxt *bp, 1245 struct bnxt_cp_ring_info *cpr, 1246 u16 idx, u32 agg_bufs, bool tpa, 1247 struct sk_buff *skb, 1248 struct xdp_buff *xdp) 1249 { 1250 struct bnxt_napi *bnapi = cpr->bnapi; 1251 struct skb_shared_info *shinfo; 1252 struct bnxt_rx_ring_info *rxr; 1253 u32 i, total_frag_len = 0; 1254 bool p5_tpa = false; 1255 u16 prod; 1256 1257 rxr = bnapi->rx_ring; 1258 prod = rxr->rx_agg_prod; 1259 1260 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1261 p5_tpa = true; 1262 1263 if (skb) 1264 shinfo = skb_shinfo(skb); 1265 else 1266 shinfo = xdp_get_shared_info_from_buff(xdp); 1267 1268 for (i = 0; i < agg_bufs; i++) { 1269 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1270 struct rx_agg_cmp *agg; 1271 u16 cons, frag_len; 1272 netmem_ref netmem; 1273 1274 if (p5_tpa) 1275 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1276 else 1277 agg = bnxt_get_agg(bp, cpr, idx, i); 1278 cons = agg->rx_agg_cmp_opaque; 1279 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1280 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1281 1282 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1283 if (skb) { 1284 skb_add_rx_frag_netmem(skb, i, cons_rx_buf->netmem, 1285 cons_rx_buf->offset, 1286 frag_len, BNXT_RX_PAGE_SIZE); 1287 } else { 1288 skb_frag_t *frag = &shinfo->frags[i]; 1289 1290 skb_frag_fill_netmem_desc(frag, cons_rx_buf->netmem, 1291 cons_rx_buf->offset, 1292 frag_len); 1293 shinfo->nr_frags = i + 1; 1294 } 1295 __clear_bit(cons, rxr->rx_agg_bmap); 1296 1297 /* It is possible for bnxt_alloc_rx_netmem() to allocate 1298 * a sw_prod index that equals the cons index, so we 1299 * need to clear the cons entry now. 1300 */ 1301 netmem = cons_rx_buf->netmem; 1302 cons_rx_buf->netmem = 0; 1303 1304 if (xdp && netmem_is_pfmemalloc(netmem)) 1305 xdp_buff_set_frag_pfmemalloc(xdp); 1306 1307 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_ATOMIC) != 0) { 1308 if (skb) { 1309 skb->len -= frag_len; 1310 skb->data_len -= frag_len; 1311 skb->truesize -= BNXT_RX_PAGE_SIZE; 1312 } 1313 1314 --shinfo->nr_frags; 1315 cons_rx_buf->netmem = netmem; 1316 1317 /* Update prod since possibly some netmems have been 1318 * allocated already. 1319 */ 1320 rxr->rx_agg_prod = prod; 1321 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1322 return 0; 1323 } 1324 1325 page_pool_dma_sync_netmem_for_cpu(rxr->page_pool, netmem, 0, 1326 BNXT_RX_PAGE_SIZE); 1327 1328 total_frag_len += frag_len; 1329 prod = NEXT_RX_AGG(prod); 1330 } 1331 rxr->rx_agg_prod = prod; 1332 return total_frag_len; 1333 } 1334 1335 static struct sk_buff *bnxt_rx_agg_netmems_skb(struct bnxt *bp, 1336 struct bnxt_cp_ring_info *cpr, 1337 struct sk_buff *skb, u16 idx, 1338 u32 agg_bufs, bool tpa) 1339 { 1340 u32 total_frag_len = 0; 1341 1342 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1343 skb, NULL); 1344 if (!total_frag_len) { 1345 skb_mark_for_recycle(skb); 1346 dev_kfree_skb(skb); 1347 return NULL; 1348 } 1349 1350 return skb; 1351 } 1352 1353 static u32 bnxt_rx_agg_netmems_xdp(struct bnxt *bp, 1354 struct bnxt_cp_ring_info *cpr, 1355 struct xdp_buff *xdp, u16 idx, 1356 u32 agg_bufs, bool tpa) 1357 { 1358 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1359 u32 total_frag_len = 0; 1360 1361 if (!xdp_buff_has_frags(xdp)) 1362 shinfo->nr_frags = 0; 1363 1364 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1365 NULL, xdp); 1366 if (total_frag_len) { 1367 xdp_buff_set_frags_flag(xdp); 1368 shinfo->nr_frags = agg_bufs; 1369 shinfo->xdp_frags_size = total_frag_len; 1370 } 1371 return total_frag_len; 1372 } 1373 1374 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1375 u8 agg_bufs, u32 *raw_cons) 1376 { 1377 u16 last; 1378 struct rx_agg_cmp *agg; 1379 1380 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1381 last = RING_CMP(*raw_cons); 1382 agg = (struct rx_agg_cmp *) 1383 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1384 return RX_AGG_CMP_VALID(agg, *raw_cons); 1385 } 1386 1387 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1388 unsigned int len, 1389 dma_addr_t mapping) 1390 { 1391 struct bnxt *bp = bnapi->bp; 1392 struct pci_dev *pdev = bp->pdev; 1393 struct sk_buff *skb; 1394 1395 skb = napi_alloc_skb(&bnapi->napi, len); 1396 if (!skb) 1397 return NULL; 1398 1399 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copybreak, 1400 bp->rx_dir); 1401 1402 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1403 len + NET_IP_ALIGN); 1404 1405 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copybreak, 1406 bp->rx_dir); 1407 1408 skb_put(skb, len); 1409 1410 return skb; 1411 } 1412 1413 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1414 unsigned int len, 1415 dma_addr_t mapping) 1416 { 1417 return bnxt_copy_data(bnapi, data, len, mapping); 1418 } 1419 1420 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1421 struct xdp_buff *xdp, 1422 unsigned int len, 1423 dma_addr_t mapping) 1424 { 1425 unsigned int metasize = 0; 1426 u8 *data = xdp->data; 1427 struct sk_buff *skb; 1428 1429 len = xdp->data_end - xdp->data_meta; 1430 metasize = xdp->data - xdp->data_meta; 1431 data = xdp->data_meta; 1432 1433 skb = bnxt_copy_data(bnapi, data, len, mapping); 1434 if (!skb) 1435 return skb; 1436 1437 if (metasize) { 1438 skb_metadata_set(skb, metasize); 1439 __skb_pull(skb, metasize); 1440 } 1441 1442 return skb; 1443 } 1444 1445 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1446 u32 *raw_cons, void *cmp) 1447 { 1448 struct rx_cmp *rxcmp = cmp; 1449 u32 tmp_raw_cons = *raw_cons; 1450 u8 cmp_type, agg_bufs = 0; 1451 1452 cmp_type = RX_CMP_TYPE(rxcmp); 1453 1454 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1455 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1456 RX_CMP_AGG_BUFS) >> 1457 RX_CMP_AGG_BUFS_SHIFT; 1458 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1459 struct rx_tpa_end_cmp *tpa_end = cmp; 1460 1461 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1462 return 0; 1463 1464 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1465 } 1466 1467 if (agg_bufs) { 1468 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1469 return -EBUSY; 1470 } 1471 *raw_cons = tmp_raw_cons; 1472 return 0; 1473 } 1474 1475 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1476 { 1477 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1478 u16 idx = agg_id & MAX_TPA_P5_MASK; 1479 1480 if (test_bit(idx, map->agg_idx_bmap)) 1481 idx = find_first_zero_bit(map->agg_idx_bmap, 1482 BNXT_AGG_IDX_BMAP_SIZE); 1483 __set_bit(idx, map->agg_idx_bmap); 1484 map->agg_id_tbl[agg_id] = idx; 1485 return idx; 1486 } 1487 1488 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1489 { 1490 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1491 1492 __clear_bit(idx, map->agg_idx_bmap); 1493 } 1494 1495 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1496 { 1497 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1498 1499 return map->agg_id_tbl[agg_id]; 1500 } 1501 1502 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1503 struct rx_tpa_start_cmp *tpa_start, 1504 struct rx_tpa_start_cmp_ext *tpa_start1) 1505 { 1506 tpa_info->cfa_code_valid = 1; 1507 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1508 tpa_info->vlan_valid = 0; 1509 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1510 tpa_info->vlan_valid = 1; 1511 tpa_info->metadata = 1512 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1513 } 1514 } 1515 1516 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1517 struct rx_tpa_start_cmp *tpa_start, 1518 struct rx_tpa_start_cmp_ext *tpa_start1) 1519 { 1520 tpa_info->vlan_valid = 0; 1521 if (TPA_START_VLAN_VALID(tpa_start)) { 1522 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1523 u32 vlan_proto = ETH_P_8021Q; 1524 1525 tpa_info->vlan_valid = 1; 1526 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1527 vlan_proto = ETH_P_8021AD; 1528 tpa_info->metadata = vlan_proto << 16 | 1529 TPA_START_METADATA0_TCI(tpa_start1); 1530 } 1531 } 1532 1533 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1534 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1535 struct rx_tpa_start_cmp_ext *tpa_start1) 1536 { 1537 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1538 struct bnxt_tpa_info *tpa_info; 1539 u16 cons, prod, agg_id; 1540 struct rx_bd *prod_bd; 1541 dma_addr_t mapping; 1542 1543 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1544 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1545 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1546 } else { 1547 agg_id = TPA_START_AGG_ID(tpa_start); 1548 } 1549 cons = tpa_start->rx_tpa_start_cmp_opaque; 1550 prod = rxr->rx_prod; 1551 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1552 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1553 tpa_info = &rxr->rx_tpa[agg_id]; 1554 1555 if (unlikely(cons != rxr->rx_next_cons || 1556 TPA_START_ERROR(tpa_start))) { 1557 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1558 cons, rxr->rx_next_cons, 1559 TPA_START_ERROR_CODE(tpa_start1)); 1560 bnxt_sched_reset_rxr(bp, rxr); 1561 return; 1562 } 1563 prod_rx_buf->data = tpa_info->data; 1564 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1565 1566 mapping = tpa_info->mapping; 1567 prod_rx_buf->mapping = mapping; 1568 1569 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1570 1571 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1572 1573 tpa_info->data = cons_rx_buf->data; 1574 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1575 cons_rx_buf->data = NULL; 1576 tpa_info->mapping = cons_rx_buf->mapping; 1577 1578 tpa_info->len = 1579 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1580 RX_TPA_START_CMP_LEN_SHIFT; 1581 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1582 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1583 tpa_info->gso_type = SKB_GSO_TCPV4; 1584 if (TPA_START_IS_IPV6(tpa_start1)) 1585 tpa_info->gso_type = SKB_GSO_TCPV6; 1586 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1587 else if (!BNXT_CHIP_P4_PLUS(bp) && 1588 TPA_START_HASH_TYPE(tpa_start) == 3) 1589 tpa_info->gso_type = SKB_GSO_TCPV6; 1590 tpa_info->rss_hash = 1591 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1592 } else { 1593 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1594 tpa_info->gso_type = 0; 1595 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1596 } 1597 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1598 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1599 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1600 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1601 else 1602 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1603 tpa_info->agg_count = 0; 1604 1605 rxr->rx_prod = NEXT_RX(prod); 1606 cons = RING_RX(bp, NEXT_RX(cons)); 1607 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1608 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1609 1610 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1611 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1612 cons_rx_buf->data = NULL; 1613 } 1614 1615 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1616 { 1617 if (agg_bufs) 1618 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1619 } 1620 1621 #ifdef CONFIG_INET 1622 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1623 { 1624 struct udphdr *uh = NULL; 1625 1626 if (ip_proto == htons(ETH_P_IP)) { 1627 struct iphdr *iph = (struct iphdr *)skb->data; 1628 1629 if (iph->protocol == IPPROTO_UDP) 1630 uh = (struct udphdr *)(iph + 1); 1631 } else { 1632 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1633 1634 if (iph->nexthdr == IPPROTO_UDP) 1635 uh = (struct udphdr *)(iph + 1); 1636 } 1637 if (uh) { 1638 if (uh->check) 1639 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1640 else 1641 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1642 } 1643 } 1644 #endif 1645 1646 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1647 int payload_off, int tcp_ts, 1648 struct sk_buff *skb) 1649 { 1650 #ifdef CONFIG_INET 1651 struct tcphdr *th; 1652 int len, nw_off; 1653 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1654 u32 hdr_info = tpa_info->hdr_info; 1655 bool loopback = false; 1656 1657 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1658 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1659 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1660 1661 /* If the packet is an internal loopback packet, the offsets will 1662 * have an extra 4 bytes. 1663 */ 1664 if (inner_mac_off == 4) { 1665 loopback = true; 1666 } else if (inner_mac_off > 4) { 1667 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1668 ETH_HLEN - 2)); 1669 1670 /* We only support inner iPv4/ipv6. If we don't see the 1671 * correct protocol ID, it must be a loopback packet where 1672 * the offsets are off by 4. 1673 */ 1674 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1675 loopback = true; 1676 } 1677 if (loopback) { 1678 /* internal loopback packet, subtract all offsets by 4 */ 1679 inner_ip_off -= 4; 1680 inner_mac_off -= 4; 1681 outer_ip_off -= 4; 1682 } 1683 1684 nw_off = inner_ip_off - ETH_HLEN; 1685 skb_set_network_header(skb, nw_off); 1686 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1687 struct ipv6hdr *iph = ipv6_hdr(skb); 1688 1689 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1690 len = skb->len - skb_transport_offset(skb); 1691 th = tcp_hdr(skb); 1692 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1693 } else { 1694 struct iphdr *iph = ip_hdr(skb); 1695 1696 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1697 len = skb->len - skb_transport_offset(skb); 1698 th = tcp_hdr(skb); 1699 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1700 } 1701 1702 if (inner_mac_off) { /* tunnel */ 1703 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1704 ETH_HLEN - 2)); 1705 1706 bnxt_gro_tunnel(skb, proto); 1707 } 1708 #endif 1709 return skb; 1710 } 1711 1712 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1713 int payload_off, int tcp_ts, 1714 struct sk_buff *skb) 1715 { 1716 #ifdef CONFIG_INET 1717 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1718 u32 hdr_info = tpa_info->hdr_info; 1719 int iphdr_len, nw_off; 1720 1721 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1722 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1723 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1724 1725 nw_off = inner_ip_off - ETH_HLEN; 1726 skb_set_network_header(skb, nw_off); 1727 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1728 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1729 skb_set_transport_header(skb, nw_off + iphdr_len); 1730 1731 if (inner_mac_off) { /* tunnel */ 1732 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1733 ETH_HLEN - 2)); 1734 1735 bnxt_gro_tunnel(skb, proto); 1736 } 1737 #endif 1738 return skb; 1739 } 1740 1741 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1742 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1743 1744 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1745 int payload_off, int tcp_ts, 1746 struct sk_buff *skb) 1747 { 1748 #ifdef CONFIG_INET 1749 struct tcphdr *th; 1750 int len, nw_off, tcp_opt_len = 0; 1751 1752 if (tcp_ts) 1753 tcp_opt_len = 12; 1754 1755 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1756 struct iphdr *iph; 1757 1758 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1759 ETH_HLEN; 1760 skb_set_network_header(skb, nw_off); 1761 iph = ip_hdr(skb); 1762 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1763 len = skb->len - skb_transport_offset(skb); 1764 th = tcp_hdr(skb); 1765 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1766 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1767 struct ipv6hdr *iph; 1768 1769 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1770 ETH_HLEN; 1771 skb_set_network_header(skb, nw_off); 1772 iph = ipv6_hdr(skb); 1773 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1774 len = skb->len - skb_transport_offset(skb); 1775 th = tcp_hdr(skb); 1776 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1777 } else { 1778 dev_kfree_skb_any(skb); 1779 return NULL; 1780 } 1781 1782 if (nw_off) /* tunnel */ 1783 bnxt_gro_tunnel(skb, skb->protocol); 1784 #endif 1785 return skb; 1786 } 1787 1788 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1789 struct bnxt_tpa_info *tpa_info, 1790 struct rx_tpa_end_cmp *tpa_end, 1791 struct rx_tpa_end_cmp_ext *tpa_end1, 1792 struct sk_buff *skb) 1793 { 1794 #ifdef CONFIG_INET 1795 int payload_off; 1796 u16 segs; 1797 1798 segs = TPA_END_TPA_SEGS(tpa_end); 1799 if (segs == 1) 1800 return skb; 1801 1802 NAPI_GRO_CB(skb)->count = segs; 1803 skb_shinfo(skb)->gso_size = 1804 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1805 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1806 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1807 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1808 else 1809 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1810 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1811 if (likely(skb)) 1812 tcp_gro_complete(skb); 1813 #endif 1814 return skb; 1815 } 1816 1817 /* Given the cfa_code of a received packet determine which 1818 * netdev (vf-rep or PF) the packet is destined to. 1819 */ 1820 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1821 { 1822 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1823 1824 /* if vf-rep dev is NULL, it must belong to the PF */ 1825 return dev ? dev : bp->dev; 1826 } 1827 1828 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1829 struct bnxt_cp_ring_info *cpr, 1830 u32 *raw_cons, 1831 struct rx_tpa_end_cmp *tpa_end, 1832 struct rx_tpa_end_cmp_ext *tpa_end1, 1833 u8 *event) 1834 { 1835 struct bnxt_napi *bnapi = cpr->bnapi; 1836 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1837 struct net_device *dev = bp->dev; 1838 u8 *data_ptr, agg_bufs; 1839 unsigned int len; 1840 struct bnxt_tpa_info *tpa_info; 1841 dma_addr_t mapping; 1842 struct sk_buff *skb; 1843 u16 idx = 0, agg_id; 1844 void *data; 1845 bool gro; 1846 1847 if (unlikely(bnapi->in_reset)) { 1848 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1849 1850 if (rc < 0) 1851 return ERR_PTR(-EBUSY); 1852 return NULL; 1853 } 1854 1855 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1856 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1857 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1858 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1859 tpa_info = &rxr->rx_tpa[agg_id]; 1860 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1861 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1862 agg_bufs, tpa_info->agg_count); 1863 agg_bufs = tpa_info->agg_count; 1864 } 1865 tpa_info->agg_count = 0; 1866 *event |= BNXT_AGG_EVENT; 1867 bnxt_free_agg_idx(rxr, agg_id); 1868 idx = agg_id; 1869 gro = !!(bp->flags & BNXT_FLAG_GRO); 1870 } else { 1871 agg_id = TPA_END_AGG_ID(tpa_end); 1872 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1873 tpa_info = &rxr->rx_tpa[agg_id]; 1874 idx = RING_CMP(*raw_cons); 1875 if (agg_bufs) { 1876 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1877 return ERR_PTR(-EBUSY); 1878 1879 *event |= BNXT_AGG_EVENT; 1880 idx = NEXT_CMP(idx); 1881 } 1882 gro = !!TPA_END_GRO(tpa_end); 1883 } 1884 data = tpa_info->data; 1885 data_ptr = tpa_info->data_ptr; 1886 prefetch(data_ptr); 1887 len = tpa_info->len; 1888 mapping = tpa_info->mapping; 1889 1890 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1891 bnxt_abort_tpa(cpr, idx, agg_bufs); 1892 if (agg_bufs > MAX_SKB_FRAGS) 1893 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1894 agg_bufs, (int)MAX_SKB_FRAGS); 1895 return NULL; 1896 } 1897 1898 if (len <= bp->rx_copybreak) { 1899 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1900 if (!skb) { 1901 bnxt_abort_tpa(cpr, idx, agg_bufs); 1902 cpr->sw_stats->rx.rx_oom_discards += 1; 1903 return NULL; 1904 } 1905 } else { 1906 u8 *new_data; 1907 dma_addr_t new_mapping; 1908 1909 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1910 GFP_ATOMIC); 1911 if (!new_data) { 1912 bnxt_abort_tpa(cpr, idx, agg_bufs); 1913 cpr->sw_stats->rx.rx_oom_discards += 1; 1914 return NULL; 1915 } 1916 1917 tpa_info->data = new_data; 1918 tpa_info->data_ptr = new_data + bp->rx_offset; 1919 tpa_info->mapping = new_mapping; 1920 1921 skb = napi_build_skb(data, bp->rx_buf_size); 1922 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1923 bp->rx_buf_use_size, bp->rx_dir); 1924 1925 if (!skb) { 1926 page_pool_free_va(rxr->head_pool, data, true); 1927 bnxt_abort_tpa(cpr, idx, agg_bufs); 1928 cpr->sw_stats->rx.rx_oom_discards += 1; 1929 return NULL; 1930 } 1931 skb_mark_for_recycle(skb); 1932 skb_reserve(skb, bp->rx_offset); 1933 skb_put(skb, len); 1934 } 1935 1936 if (agg_bufs) { 1937 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, idx, agg_bufs, 1938 true); 1939 if (!skb) { 1940 /* Page reuse already handled by bnxt_rx_pages(). */ 1941 cpr->sw_stats->rx.rx_oom_discards += 1; 1942 return NULL; 1943 } 1944 } 1945 1946 if (tpa_info->cfa_code_valid) 1947 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1948 skb->protocol = eth_type_trans(skb, dev); 1949 1950 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1951 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1952 1953 if (tpa_info->vlan_valid && 1954 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1955 __be16 vlan_proto = htons(tpa_info->metadata >> 1956 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1957 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1958 1959 if (eth_type_vlan(vlan_proto)) { 1960 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1961 } else { 1962 dev_kfree_skb(skb); 1963 return NULL; 1964 } 1965 } 1966 1967 skb_checksum_none_assert(skb); 1968 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1969 skb->ip_summed = CHECKSUM_UNNECESSARY; 1970 skb->csum_level = 1971 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1972 } 1973 1974 if (gro) 1975 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1976 1977 return skb; 1978 } 1979 1980 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1981 struct rx_agg_cmp *rx_agg) 1982 { 1983 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1984 struct bnxt_tpa_info *tpa_info; 1985 1986 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1987 tpa_info = &rxr->rx_tpa[agg_id]; 1988 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1989 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1990 } 1991 1992 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1993 struct sk_buff *skb) 1994 { 1995 skb_mark_for_recycle(skb); 1996 1997 if (skb->dev != bp->dev) { 1998 /* this packet belongs to a vf-rep */ 1999 bnxt_vf_rep_rx(bp, skb); 2000 return; 2001 } 2002 skb_record_rx_queue(skb, bnapi->index); 2003 napi_gro_receive(&bnapi->napi, skb); 2004 } 2005 2006 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 2007 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 2008 { 2009 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2010 2011 if (BNXT_PTP_RX_TS_VALID(flags)) 2012 goto ts_valid; 2013 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 2014 return false; 2015 2016 ts_valid: 2017 *cmpl_ts = ts; 2018 return true; 2019 } 2020 2021 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 2022 struct rx_cmp *rxcmp, 2023 struct rx_cmp_ext *rxcmp1) 2024 { 2025 __be16 vlan_proto; 2026 u16 vtag; 2027 2028 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2029 __le32 flags2 = rxcmp1->rx_cmp_flags2; 2030 u32 meta_data; 2031 2032 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 2033 return skb; 2034 2035 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2036 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2037 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 2038 if (eth_type_vlan(vlan_proto)) 2039 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2040 else 2041 goto vlan_err; 2042 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2043 if (RX_CMP_VLAN_VALID(rxcmp)) { 2044 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 2045 2046 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 2047 vlan_proto = htons(ETH_P_8021Q); 2048 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 2049 vlan_proto = htons(ETH_P_8021AD); 2050 else 2051 goto vlan_err; 2052 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 2053 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2054 } 2055 } 2056 return skb; 2057 vlan_err: 2058 skb_mark_for_recycle(skb); 2059 dev_kfree_skb(skb); 2060 return NULL; 2061 } 2062 2063 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2064 struct rx_cmp *rxcmp) 2065 { 2066 u8 ext_op; 2067 2068 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2069 switch (ext_op) { 2070 case EXT_OP_INNER_4: 2071 case EXT_OP_OUTER_4: 2072 case EXT_OP_INNFL_3: 2073 case EXT_OP_OUTFL_3: 2074 return PKT_HASH_TYPE_L4; 2075 default: 2076 return PKT_HASH_TYPE_L3; 2077 } 2078 } 2079 2080 /* returns the following: 2081 * 1 - 1 packet successfully received 2082 * 0 - successful TPA_START, packet not completed yet 2083 * -EBUSY - completion ring does not have all the agg buffers yet 2084 * -ENOMEM - packet aborted due to out of memory 2085 * -EIO - packet aborted due to hw error indicated in BD 2086 */ 2087 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2088 u32 *raw_cons, u8 *event) 2089 { 2090 struct bnxt_napi *bnapi = cpr->bnapi; 2091 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2092 struct net_device *dev = bp->dev; 2093 struct rx_cmp *rxcmp; 2094 struct rx_cmp_ext *rxcmp1; 2095 u32 tmp_raw_cons = *raw_cons; 2096 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2097 struct skb_shared_info *sinfo; 2098 struct bnxt_sw_rx_bd *rx_buf; 2099 unsigned int len; 2100 u8 *data_ptr, agg_bufs, cmp_type; 2101 bool xdp_active = false; 2102 dma_addr_t dma_addr; 2103 struct sk_buff *skb; 2104 struct xdp_buff xdp; 2105 u32 flags, misc; 2106 u32 cmpl_ts; 2107 void *data; 2108 int rc = 0; 2109 2110 rxcmp = (struct rx_cmp *) 2111 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2112 2113 cmp_type = RX_CMP_TYPE(rxcmp); 2114 2115 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2116 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2117 goto next_rx_no_prod_no_len; 2118 } 2119 2120 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2121 cp_cons = RING_CMP(tmp_raw_cons); 2122 rxcmp1 = (struct rx_cmp_ext *) 2123 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2124 2125 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2126 return -EBUSY; 2127 2128 /* The valid test of the entry must be done first before 2129 * reading any further. 2130 */ 2131 dma_rmb(); 2132 prod = rxr->rx_prod; 2133 2134 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2135 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2136 bnxt_tpa_start(bp, rxr, cmp_type, 2137 (struct rx_tpa_start_cmp *)rxcmp, 2138 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2139 2140 *event |= BNXT_RX_EVENT; 2141 goto next_rx_no_prod_no_len; 2142 2143 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2144 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2145 (struct rx_tpa_end_cmp *)rxcmp, 2146 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2147 2148 if (IS_ERR(skb)) 2149 return -EBUSY; 2150 2151 rc = -ENOMEM; 2152 if (likely(skb)) { 2153 bnxt_deliver_skb(bp, bnapi, skb); 2154 rc = 1; 2155 } 2156 *event |= BNXT_RX_EVENT; 2157 goto next_rx_no_prod_no_len; 2158 } 2159 2160 cons = rxcmp->rx_cmp_opaque; 2161 if (unlikely(cons != rxr->rx_next_cons)) { 2162 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2163 2164 /* 0xffff is forced error, don't print it */ 2165 if (rxr->rx_next_cons != 0xffff) 2166 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2167 cons, rxr->rx_next_cons); 2168 bnxt_sched_reset_rxr(bp, rxr); 2169 if (rc1) 2170 return rc1; 2171 goto next_rx_no_prod_no_len; 2172 } 2173 rx_buf = &rxr->rx_buf_ring[cons]; 2174 data = rx_buf->data; 2175 data_ptr = rx_buf->data_ptr; 2176 prefetch(data_ptr); 2177 2178 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2179 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2180 2181 if (agg_bufs) { 2182 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2183 return -EBUSY; 2184 2185 cp_cons = NEXT_CMP(cp_cons); 2186 *event |= BNXT_AGG_EVENT; 2187 } 2188 *event |= BNXT_RX_EVENT; 2189 2190 rx_buf->data = NULL; 2191 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2192 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2193 2194 bnxt_reuse_rx_data(rxr, cons, data); 2195 if (agg_bufs) 2196 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2197 false); 2198 2199 rc = -EIO; 2200 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2201 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2202 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2203 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2204 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2205 rx_err); 2206 bnxt_sched_reset_rxr(bp, rxr); 2207 } 2208 } 2209 goto next_rx_no_len; 2210 } 2211 2212 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2213 len = flags >> RX_CMP_LEN_SHIFT; 2214 dma_addr = rx_buf->mapping; 2215 2216 if (bnxt_xdp_attached(bp, rxr)) { 2217 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2218 if (agg_bufs) { 2219 u32 frag_len = bnxt_rx_agg_netmems_xdp(bp, cpr, &xdp, 2220 cp_cons, 2221 agg_bufs, 2222 false); 2223 if (!frag_len) 2224 goto oom_next_rx; 2225 2226 } 2227 xdp_active = true; 2228 } 2229 2230 if (xdp_active) { 2231 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2232 rc = 1; 2233 goto next_rx; 2234 } 2235 if (xdp_buff_has_frags(&xdp)) { 2236 sinfo = xdp_get_shared_info_from_buff(&xdp); 2237 agg_bufs = sinfo->nr_frags; 2238 } else { 2239 agg_bufs = 0; 2240 } 2241 } 2242 2243 if (len <= bp->rx_copybreak) { 2244 if (!xdp_active) 2245 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2246 else 2247 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2248 bnxt_reuse_rx_data(rxr, cons, data); 2249 if (!skb) { 2250 if (agg_bufs) { 2251 if (!xdp_active) 2252 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2253 agg_bufs, false); 2254 else 2255 bnxt_xdp_buff_frags_free(rxr, &xdp); 2256 } 2257 goto oom_next_rx; 2258 } 2259 } else { 2260 u32 payload; 2261 2262 if (rx_buf->data_ptr == data_ptr) 2263 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2264 else 2265 payload = 0; 2266 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2267 payload | len); 2268 if (!skb) 2269 goto oom_next_rx; 2270 } 2271 2272 if (agg_bufs) { 2273 if (!xdp_active) { 2274 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, cp_cons, 2275 agg_bufs, false); 2276 if (!skb) 2277 goto oom_next_rx; 2278 } else { 2279 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, 2280 rxr->page_pool, &xdp); 2281 if (!skb) { 2282 /* we should be able to free the old skb here */ 2283 bnxt_xdp_buff_frags_free(rxr, &xdp); 2284 goto oom_next_rx; 2285 } 2286 } 2287 } 2288 2289 if (RX_CMP_HASH_VALID(rxcmp)) { 2290 enum pkt_hash_types type; 2291 2292 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2293 type = bnxt_rss_ext_op(bp, rxcmp); 2294 } else { 2295 u32 itypes = RX_CMP_ITYPES(rxcmp); 2296 2297 if (itypes == RX_CMP_FLAGS_ITYPE_TCP || 2298 itypes == RX_CMP_FLAGS_ITYPE_UDP) 2299 type = PKT_HASH_TYPE_L4; 2300 else 2301 type = PKT_HASH_TYPE_L3; 2302 } 2303 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2304 } 2305 2306 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2307 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2308 skb->protocol = eth_type_trans(skb, dev); 2309 2310 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2311 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2312 if (!skb) 2313 goto next_rx; 2314 } 2315 2316 skb_checksum_none_assert(skb); 2317 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2318 if (dev->features & NETIF_F_RXCSUM) { 2319 skb->ip_summed = CHECKSUM_UNNECESSARY; 2320 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2321 } 2322 } else { 2323 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2324 if (dev->features & NETIF_F_RXCSUM) 2325 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2326 } 2327 } 2328 2329 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2330 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2331 u64 ns, ts; 2332 2333 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2334 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2335 2336 ns = bnxt_timecounter_cyc2time(ptp, ts); 2337 memset(skb_hwtstamps(skb), 0, 2338 sizeof(*skb_hwtstamps(skb))); 2339 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2340 } 2341 } 2342 } 2343 bnxt_deliver_skb(bp, bnapi, skb); 2344 rc = 1; 2345 2346 next_rx: 2347 cpr->rx_packets += 1; 2348 cpr->rx_bytes += len; 2349 2350 next_rx_no_len: 2351 rxr->rx_prod = NEXT_RX(prod); 2352 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2353 2354 next_rx_no_prod_no_len: 2355 *raw_cons = tmp_raw_cons; 2356 2357 return rc; 2358 2359 oom_next_rx: 2360 cpr->sw_stats->rx.rx_oom_discards += 1; 2361 rc = -ENOMEM; 2362 goto next_rx; 2363 } 2364 2365 /* In netpoll mode, if we are using a combined completion ring, we need to 2366 * discard the rx packets and recycle the buffers. 2367 */ 2368 static int bnxt_force_rx_discard(struct bnxt *bp, 2369 struct bnxt_cp_ring_info *cpr, 2370 u32 *raw_cons, u8 *event) 2371 { 2372 u32 tmp_raw_cons = *raw_cons; 2373 struct rx_cmp_ext *rxcmp1; 2374 struct rx_cmp *rxcmp; 2375 u16 cp_cons; 2376 u8 cmp_type; 2377 int rc; 2378 2379 cp_cons = RING_CMP(tmp_raw_cons); 2380 rxcmp = (struct rx_cmp *) 2381 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2382 2383 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2384 cp_cons = RING_CMP(tmp_raw_cons); 2385 rxcmp1 = (struct rx_cmp_ext *) 2386 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2387 2388 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2389 return -EBUSY; 2390 2391 /* The valid test of the entry must be done first before 2392 * reading any further. 2393 */ 2394 dma_rmb(); 2395 cmp_type = RX_CMP_TYPE(rxcmp); 2396 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2397 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2398 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2399 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2400 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2401 struct rx_tpa_end_cmp_ext *tpa_end1; 2402 2403 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2404 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2405 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2406 } 2407 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2408 if (rc && rc != -EBUSY) 2409 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2410 return rc; 2411 } 2412 2413 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2414 { 2415 struct bnxt_fw_health *fw_health = bp->fw_health; 2416 u32 reg = fw_health->regs[reg_idx]; 2417 u32 reg_type, reg_off, val = 0; 2418 2419 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2420 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2421 switch (reg_type) { 2422 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2423 pci_read_config_dword(bp->pdev, reg_off, &val); 2424 break; 2425 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2426 reg_off = fw_health->mapped_regs[reg_idx]; 2427 fallthrough; 2428 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2429 val = readl(bp->bar0 + reg_off); 2430 break; 2431 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2432 val = readl(bp->bar1 + reg_off); 2433 break; 2434 } 2435 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2436 val &= fw_health->fw_reset_inprog_reg_mask; 2437 return val; 2438 } 2439 2440 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2441 { 2442 int i; 2443 2444 for (i = 0; i < bp->rx_nr_rings; i++) { 2445 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2446 struct bnxt_ring_grp_info *grp_info; 2447 2448 grp_info = &bp->grp_info[grp_idx]; 2449 if (grp_info->agg_fw_ring_id == ring_id) 2450 return grp_idx; 2451 } 2452 return INVALID_HW_RING_ID; 2453 } 2454 2455 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2456 { 2457 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2458 2459 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2460 return link_info->force_link_speed2; 2461 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2462 return link_info->force_pam4_link_speed; 2463 return link_info->force_link_speed; 2464 } 2465 2466 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2467 { 2468 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2469 2470 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2471 link_info->req_link_speed = link_info->force_link_speed2; 2472 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2473 switch (link_info->req_link_speed) { 2474 case BNXT_LINK_SPEED_50GB_PAM4: 2475 case BNXT_LINK_SPEED_100GB_PAM4: 2476 case BNXT_LINK_SPEED_200GB_PAM4: 2477 case BNXT_LINK_SPEED_400GB_PAM4: 2478 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2479 break; 2480 case BNXT_LINK_SPEED_100GB_PAM4_112: 2481 case BNXT_LINK_SPEED_200GB_PAM4_112: 2482 case BNXT_LINK_SPEED_400GB_PAM4_112: 2483 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2484 break; 2485 default: 2486 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2487 } 2488 return; 2489 } 2490 link_info->req_link_speed = link_info->force_link_speed; 2491 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2492 if (link_info->force_pam4_link_speed) { 2493 link_info->req_link_speed = link_info->force_pam4_link_speed; 2494 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2495 } 2496 } 2497 2498 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2499 { 2500 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2501 2502 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2503 link_info->advertising = link_info->auto_link_speeds2; 2504 return; 2505 } 2506 link_info->advertising = link_info->auto_link_speeds; 2507 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2508 } 2509 2510 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2511 { 2512 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2513 2514 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2515 if (link_info->req_link_speed != link_info->force_link_speed2) 2516 return true; 2517 return false; 2518 } 2519 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2520 link_info->req_link_speed != link_info->force_link_speed) 2521 return true; 2522 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2523 link_info->req_link_speed != link_info->force_pam4_link_speed) 2524 return true; 2525 return false; 2526 } 2527 2528 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2529 { 2530 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2531 2532 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2533 if (link_info->advertising != link_info->auto_link_speeds2) 2534 return true; 2535 return false; 2536 } 2537 if (link_info->advertising != link_info->auto_link_speeds || 2538 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2539 return true; 2540 return false; 2541 } 2542 2543 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2544 { 2545 u32 flags = bp->ctx->ctx_arr[type].flags; 2546 2547 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2548 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2549 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2550 } 2551 2552 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2553 { 2554 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2555 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2556 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2557 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2558 struct bnxt_bs_trace_info *bs_trace; 2559 int last_pg; 2560 2561 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2562 return; 2563 2564 mem_size = ctxm->max_entries * ctxm->entry_size; 2565 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2566 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2567 2568 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2569 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2570 2571 rmem = &ctx_pg[0].ring_mem; 2572 bs_trace = &bp->bs_trace[trace_type]; 2573 bs_trace->ctx_type = ctxm->type; 2574 bs_trace->trace_type = trace_type; 2575 if (pages > MAX_CTX_PAGES) { 2576 int last_pg_dir = rmem->nr_pages - 1; 2577 2578 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2579 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2580 } else { 2581 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2582 } 2583 bs_trace->magic_byte += magic_byte_offset; 2584 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2585 } 2586 2587 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2588 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2589 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2590 2591 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2592 (((data2) & \ 2593 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2594 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2595 2596 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2597 ((data2) & \ 2598 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2599 2600 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2601 (((data2) & \ 2602 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2603 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2604 2605 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2606 ((data1) & \ 2607 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2608 2609 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2610 (((data1) & \ 2611 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2612 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2613 2614 /* Return true if the workqueue has to be scheduled */ 2615 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2616 { 2617 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2618 2619 switch (err_type) { 2620 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2621 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2622 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2623 break; 2624 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2625 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2626 break; 2627 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2628 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2629 break; 2630 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2631 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2632 char *threshold_type; 2633 bool notify = false; 2634 char *dir_str; 2635 2636 switch (type) { 2637 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2638 threshold_type = "warning"; 2639 break; 2640 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2641 threshold_type = "critical"; 2642 break; 2643 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2644 threshold_type = "fatal"; 2645 break; 2646 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2647 threshold_type = "shutdown"; 2648 break; 2649 default: 2650 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2651 return false; 2652 } 2653 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2654 dir_str = "above"; 2655 notify = true; 2656 } else { 2657 dir_str = "below"; 2658 } 2659 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2660 dir_str, threshold_type); 2661 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2662 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2663 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2664 if (notify) { 2665 bp->thermal_threshold_type = type; 2666 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2667 return true; 2668 } 2669 return false; 2670 } 2671 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2672 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2673 break; 2674 default: 2675 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2676 err_type); 2677 break; 2678 } 2679 return false; 2680 } 2681 2682 #define BNXT_GET_EVENT_PORT(data) \ 2683 ((data) & \ 2684 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2685 2686 #define BNXT_EVENT_RING_TYPE(data2) \ 2687 ((data2) & \ 2688 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2689 2690 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2691 (BNXT_EVENT_RING_TYPE(data2) == \ 2692 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2693 2694 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2695 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2696 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2697 2698 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2699 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2700 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2701 2702 #define BNXT_PHC_BITS 48 2703 2704 static int bnxt_async_event_process(struct bnxt *bp, 2705 struct hwrm_async_event_cmpl *cmpl) 2706 { 2707 u16 event_id = le16_to_cpu(cmpl->event_id); 2708 u32 data1 = le32_to_cpu(cmpl->event_data1); 2709 u32 data2 = le32_to_cpu(cmpl->event_data2); 2710 2711 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2712 event_id, data1, data2); 2713 2714 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2715 switch (event_id) { 2716 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2717 struct bnxt_link_info *link_info = &bp->link_info; 2718 2719 if (BNXT_VF(bp)) 2720 goto async_event_process_exit; 2721 2722 /* print unsupported speed warning in forced speed mode only */ 2723 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2724 (data1 & 0x20000)) { 2725 u16 fw_speed = bnxt_get_force_speed(link_info); 2726 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2727 2728 if (speed != SPEED_UNKNOWN) 2729 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2730 speed); 2731 } 2732 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2733 } 2734 fallthrough; 2735 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2736 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2737 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2738 fallthrough; 2739 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2740 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2741 break; 2742 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2743 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2744 break; 2745 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2746 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2747 2748 if (BNXT_VF(bp)) 2749 break; 2750 2751 if (bp->pf.port_id != port_id) 2752 break; 2753 2754 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2755 break; 2756 } 2757 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2758 if (BNXT_PF(bp)) 2759 goto async_event_process_exit; 2760 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2761 break; 2762 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2763 char *type_str = "Solicited"; 2764 2765 if (!bp->fw_health) 2766 goto async_event_process_exit; 2767 2768 bp->fw_reset_timestamp = jiffies; 2769 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2770 if (!bp->fw_reset_min_dsecs) 2771 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2772 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2773 if (!bp->fw_reset_max_dsecs) 2774 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2775 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2776 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2777 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2778 type_str = "Fatal"; 2779 bp->fw_health->fatalities++; 2780 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2781 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2782 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2783 type_str = "Non-fatal"; 2784 bp->fw_health->survivals++; 2785 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2786 } 2787 netif_warn(bp, hw, bp->dev, 2788 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2789 type_str, data1, data2, 2790 bp->fw_reset_min_dsecs * 100, 2791 bp->fw_reset_max_dsecs * 100); 2792 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2793 break; 2794 } 2795 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2796 struct bnxt_fw_health *fw_health = bp->fw_health; 2797 char *status_desc = "healthy"; 2798 u32 status; 2799 2800 if (!fw_health) 2801 goto async_event_process_exit; 2802 2803 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2804 fw_health->enabled = false; 2805 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2806 break; 2807 } 2808 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2809 fw_health->tmr_multiplier = 2810 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2811 bp->current_interval * 10); 2812 fw_health->tmr_counter = fw_health->tmr_multiplier; 2813 if (!fw_health->enabled) 2814 fw_health->last_fw_heartbeat = 2815 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2816 fw_health->last_fw_reset_cnt = 2817 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2818 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2819 if (status != BNXT_FW_STATUS_HEALTHY) 2820 status_desc = "unhealthy"; 2821 netif_info(bp, drv, bp->dev, 2822 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2823 fw_health->primary ? "primary" : "backup", status, 2824 status_desc, fw_health->last_fw_reset_cnt); 2825 if (!fw_health->enabled) { 2826 /* Make sure tmr_counter is set and visible to 2827 * bnxt_health_check() before setting enabled to true. 2828 */ 2829 smp_wmb(); 2830 fw_health->enabled = true; 2831 } 2832 goto async_event_process_exit; 2833 } 2834 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2835 netif_notice(bp, hw, bp->dev, 2836 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2837 data1, data2); 2838 goto async_event_process_exit; 2839 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2840 struct bnxt_rx_ring_info *rxr; 2841 u16 grp_idx; 2842 2843 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2844 goto async_event_process_exit; 2845 2846 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2847 BNXT_EVENT_RING_TYPE(data2), data1); 2848 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2849 goto async_event_process_exit; 2850 2851 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2852 if (grp_idx == INVALID_HW_RING_ID) { 2853 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2854 data1); 2855 goto async_event_process_exit; 2856 } 2857 rxr = bp->bnapi[grp_idx]->rx_ring; 2858 bnxt_sched_reset_rxr(bp, rxr); 2859 goto async_event_process_exit; 2860 } 2861 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2862 struct bnxt_fw_health *fw_health = bp->fw_health; 2863 2864 netif_notice(bp, hw, bp->dev, 2865 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2866 data1, data2); 2867 if (fw_health) { 2868 fw_health->echo_req_data1 = data1; 2869 fw_health->echo_req_data2 = data2; 2870 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2871 break; 2872 } 2873 goto async_event_process_exit; 2874 } 2875 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2876 bnxt_ptp_pps_event(bp, data1, data2); 2877 goto async_event_process_exit; 2878 } 2879 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2880 if (bnxt_event_error_report(bp, data1, data2)) 2881 break; 2882 goto async_event_process_exit; 2883 } 2884 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2885 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2886 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2887 if (BNXT_PTP_USE_RTC(bp)) { 2888 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2889 unsigned long flags; 2890 u64 ns; 2891 2892 if (!ptp) 2893 goto async_event_process_exit; 2894 2895 bnxt_ptp_update_current_time(bp); 2896 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2897 BNXT_PHC_BITS) | ptp->current_time); 2898 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2899 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2900 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2901 } 2902 break; 2903 } 2904 goto async_event_process_exit; 2905 } 2906 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2907 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2908 2909 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2910 goto async_event_process_exit; 2911 } 2912 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2913 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2914 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2915 2916 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2917 goto async_event_process_exit; 2918 } 2919 default: 2920 goto async_event_process_exit; 2921 } 2922 __bnxt_queue_sp_work(bp); 2923 async_event_process_exit: 2924 bnxt_ulp_async_events(bp, cmpl); 2925 return 0; 2926 } 2927 2928 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2929 { 2930 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2931 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2932 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2933 (struct hwrm_fwd_req_cmpl *)txcmp; 2934 2935 switch (cmpl_type) { 2936 case CMPL_BASE_TYPE_HWRM_DONE: 2937 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2938 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2939 break; 2940 2941 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2942 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2943 2944 if ((vf_id < bp->pf.first_vf_id) || 2945 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2946 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2947 vf_id); 2948 return -EINVAL; 2949 } 2950 2951 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2952 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2953 break; 2954 2955 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2956 bnxt_async_event_process(bp, 2957 (struct hwrm_async_event_cmpl *)txcmp); 2958 break; 2959 2960 default: 2961 break; 2962 } 2963 2964 return 0; 2965 } 2966 2967 static bool bnxt_vnic_is_active(struct bnxt *bp) 2968 { 2969 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 2970 2971 return vnic->fw_vnic_id != INVALID_HW_RING_ID && vnic->mru > 0; 2972 } 2973 2974 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2975 { 2976 struct bnxt_napi *bnapi = dev_instance; 2977 struct bnxt *bp = bnapi->bp; 2978 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2979 u32 cons = RING_CMP(cpr->cp_raw_cons); 2980 2981 cpr->event_ctr++; 2982 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2983 napi_schedule(&bnapi->napi); 2984 return IRQ_HANDLED; 2985 } 2986 2987 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2988 { 2989 u32 raw_cons = cpr->cp_raw_cons; 2990 u16 cons = RING_CMP(raw_cons); 2991 struct tx_cmp *txcmp; 2992 2993 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2994 2995 return TX_CMP_VALID(txcmp, raw_cons); 2996 } 2997 2998 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2999 int budget) 3000 { 3001 struct bnxt_napi *bnapi = cpr->bnapi; 3002 u32 raw_cons = cpr->cp_raw_cons; 3003 bool flush_xdp = false; 3004 u32 cons; 3005 int rx_pkts = 0; 3006 u8 event = 0; 3007 struct tx_cmp *txcmp; 3008 3009 cpr->has_more_work = 0; 3010 cpr->had_work_done = 1; 3011 while (1) { 3012 u8 cmp_type; 3013 int rc; 3014 3015 cons = RING_CMP(raw_cons); 3016 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3017 3018 if (!TX_CMP_VALID(txcmp, raw_cons)) 3019 break; 3020 3021 /* The valid test of the entry must be done first before 3022 * reading any further. 3023 */ 3024 dma_rmb(); 3025 cmp_type = TX_CMP_TYPE(txcmp); 3026 if (cmp_type == CMP_TYPE_TX_L2_CMP || 3027 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 3028 u32 opaque = txcmp->tx_cmp_opaque; 3029 struct bnxt_tx_ring_info *txr; 3030 u16 tx_freed; 3031 3032 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 3033 event |= BNXT_TX_CMP_EVENT; 3034 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 3035 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 3036 else 3037 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 3038 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 3039 bp->tx_ring_mask; 3040 /* return full budget so NAPI will complete. */ 3041 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 3042 rx_pkts = budget; 3043 raw_cons = NEXT_RAW_CMP(raw_cons); 3044 if (budget) 3045 cpr->has_more_work = 1; 3046 break; 3047 } 3048 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 3049 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 3050 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 3051 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 3052 if (likely(budget)) 3053 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3054 else 3055 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 3056 &event); 3057 if (event & BNXT_REDIRECT_EVENT) 3058 flush_xdp = true; 3059 if (likely(rc >= 0)) 3060 rx_pkts += rc; 3061 /* Increment rx_pkts when rc is -ENOMEM to count towards 3062 * the NAPI budget. Otherwise, we may potentially loop 3063 * here forever if we consistently cannot allocate 3064 * buffers. 3065 */ 3066 else if (rc == -ENOMEM && budget) 3067 rx_pkts++; 3068 else if (rc == -EBUSY) /* partial completion */ 3069 break; 3070 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 3071 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 3072 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 3073 bnxt_hwrm_handler(bp, txcmp); 3074 } 3075 raw_cons = NEXT_RAW_CMP(raw_cons); 3076 3077 if (rx_pkts && rx_pkts == budget) { 3078 cpr->has_more_work = 1; 3079 break; 3080 } 3081 } 3082 3083 if (flush_xdp) { 3084 xdp_do_flush(); 3085 event &= ~BNXT_REDIRECT_EVENT; 3086 } 3087 3088 if (event & BNXT_TX_EVENT) { 3089 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3090 u16 prod = txr->tx_prod; 3091 3092 /* Sync BD data before updating doorbell */ 3093 wmb(); 3094 3095 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3096 event &= ~BNXT_TX_EVENT; 3097 } 3098 3099 cpr->cp_raw_cons = raw_cons; 3100 bnapi->events |= event; 3101 return rx_pkts; 3102 } 3103 3104 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3105 int budget) 3106 { 3107 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3108 bnapi->tx_int(bp, bnapi, budget); 3109 3110 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3111 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3112 3113 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3114 bnapi->events &= ~BNXT_RX_EVENT; 3115 } 3116 if (bnapi->events & BNXT_AGG_EVENT) { 3117 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3118 3119 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3120 bnapi->events &= ~BNXT_AGG_EVENT; 3121 } 3122 } 3123 3124 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3125 int budget) 3126 { 3127 struct bnxt_napi *bnapi = cpr->bnapi; 3128 int rx_pkts; 3129 3130 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3131 3132 /* ACK completion ring before freeing tx ring and producing new 3133 * buffers in rx/agg rings to prevent overflowing the completion 3134 * ring. 3135 */ 3136 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3137 3138 __bnxt_poll_work_done(bp, bnapi, budget); 3139 return rx_pkts; 3140 } 3141 3142 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3143 { 3144 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3145 struct bnxt *bp = bnapi->bp; 3146 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3147 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3148 struct tx_cmp *txcmp; 3149 struct rx_cmp_ext *rxcmp1; 3150 u32 cp_cons, tmp_raw_cons; 3151 u32 raw_cons = cpr->cp_raw_cons; 3152 bool flush_xdp = false; 3153 u32 rx_pkts = 0; 3154 u8 event = 0; 3155 3156 while (1) { 3157 int rc; 3158 3159 cp_cons = RING_CMP(raw_cons); 3160 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3161 3162 if (!TX_CMP_VALID(txcmp, raw_cons)) 3163 break; 3164 3165 /* The valid test of the entry must be done first before 3166 * reading any further. 3167 */ 3168 dma_rmb(); 3169 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3170 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3171 cp_cons = RING_CMP(tmp_raw_cons); 3172 rxcmp1 = (struct rx_cmp_ext *) 3173 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3174 3175 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3176 break; 3177 3178 /* force an error to recycle the buffer */ 3179 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3180 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3181 3182 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3183 if (likely(rc == -EIO) && budget) 3184 rx_pkts++; 3185 else if (rc == -EBUSY) /* partial completion */ 3186 break; 3187 if (event & BNXT_REDIRECT_EVENT) 3188 flush_xdp = true; 3189 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3190 CMPL_BASE_TYPE_HWRM_DONE)) { 3191 bnxt_hwrm_handler(bp, txcmp); 3192 } else { 3193 netdev_err(bp->dev, 3194 "Invalid completion received on special ring\n"); 3195 } 3196 raw_cons = NEXT_RAW_CMP(raw_cons); 3197 3198 if (rx_pkts == budget) 3199 break; 3200 } 3201 3202 cpr->cp_raw_cons = raw_cons; 3203 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3204 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3205 3206 if (event & BNXT_AGG_EVENT) 3207 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3208 if (flush_xdp) 3209 xdp_do_flush(); 3210 3211 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3212 napi_complete_done(napi, rx_pkts); 3213 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3214 } 3215 return rx_pkts; 3216 } 3217 3218 static int bnxt_poll(struct napi_struct *napi, int budget) 3219 { 3220 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3221 struct bnxt *bp = bnapi->bp; 3222 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3223 int work_done = 0; 3224 3225 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3226 napi_complete(napi); 3227 return 0; 3228 } 3229 while (1) { 3230 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3231 3232 if (work_done >= budget) { 3233 if (!budget) 3234 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3235 break; 3236 } 3237 3238 if (!bnxt_has_work(bp, cpr)) { 3239 if (napi_complete_done(napi, work_done)) 3240 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3241 break; 3242 } 3243 } 3244 if ((bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3245 struct dim_sample dim_sample = {}; 3246 3247 dim_update_sample(cpr->event_ctr, 3248 cpr->rx_packets, 3249 cpr->rx_bytes, 3250 &dim_sample); 3251 net_dim(&cpr->dim, &dim_sample); 3252 } 3253 return work_done; 3254 } 3255 3256 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3257 { 3258 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3259 int i, work_done = 0; 3260 3261 for (i = 0; i < cpr->cp_ring_count; i++) { 3262 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3263 3264 if (cpr2->had_nqe_notify) { 3265 work_done += __bnxt_poll_work(bp, cpr2, 3266 budget - work_done); 3267 cpr->has_more_work |= cpr2->has_more_work; 3268 } 3269 } 3270 return work_done; 3271 } 3272 3273 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3274 u64 dbr_type, int budget) 3275 { 3276 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3277 int i; 3278 3279 for (i = 0; i < cpr->cp_ring_count; i++) { 3280 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3281 struct bnxt_db_info *db; 3282 3283 if (cpr2->had_work_done) { 3284 u32 tgl = 0; 3285 3286 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3287 cpr2->had_nqe_notify = 0; 3288 tgl = cpr2->toggle; 3289 } 3290 db = &cpr2->cp_db; 3291 bnxt_writeq(bp, 3292 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3293 DB_RING_IDX(db, cpr2->cp_raw_cons), 3294 db->doorbell); 3295 cpr2->had_work_done = 0; 3296 } 3297 } 3298 __bnxt_poll_work_done(bp, bnapi, budget); 3299 } 3300 3301 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3302 { 3303 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3304 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3305 struct bnxt_cp_ring_info *cpr_rx; 3306 u32 raw_cons = cpr->cp_raw_cons; 3307 struct bnxt *bp = bnapi->bp; 3308 struct nqe_cn *nqcmp; 3309 int work_done = 0; 3310 u32 cons; 3311 3312 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3313 napi_complete(napi); 3314 return 0; 3315 } 3316 if (cpr->has_more_work) { 3317 cpr->has_more_work = 0; 3318 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3319 } 3320 while (1) { 3321 u16 type; 3322 3323 cons = RING_CMP(raw_cons); 3324 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3325 3326 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3327 if (cpr->has_more_work) 3328 break; 3329 3330 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3331 budget); 3332 cpr->cp_raw_cons = raw_cons; 3333 if (napi_complete_done(napi, work_done)) 3334 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3335 cpr->cp_raw_cons); 3336 goto poll_done; 3337 } 3338 3339 /* The valid test of the entry must be done first before 3340 * reading any further. 3341 */ 3342 dma_rmb(); 3343 3344 type = le16_to_cpu(nqcmp->type); 3345 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3346 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3347 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3348 struct bnxt_cp_ring_info *cpr2; 3349 3350 /* No more budget for RX work */ 3351 if (budget && work_done >= budget && 3352 cq_type == BNXT_NQ_HDL_TYPE_RX) 3353 break; 3354 3355 idx = BNXT_NQ_HDL_IDX(idx); 3356 cpr2 = &cpr->cp_ring_arr[idx]; 3357 cpr2->had_nqe_notify = 1; 3358 cpr2->toggle = NQE_CN_TOGGLE(type); 3359 work_done += __bnxt_poll_work(bp, cpr2, 3360 budget - work_done); 3361 cpr->has_more_work |= cpr2->has_more_work; 3362 } else { 3363 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3364 } 3365 raw_cons = NEXT_RAW_CMP(raw_cons); 3366 } 3367 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3368 if (raw_cons != cpr->cp_raw_cons) { 3369 cpr->cp_raw_cons = raw_cons; 3370 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3371 } 3372 poll_done: 3373 cpr_rx = &cpr->cp_ring_arr[0]; 3374 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3375 (bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3376 struct dim_sample dim_sample = {}; 3377 3378 dim_update_sample(cpr->event_ctr, 3379 cpr_rx->rx_packets, 3380 cpr_rx->rx_bytes, 3381 &dim_sample); 3382 net_dim(&cpr->dim, &dim_sample); 3383 } 3384 return work_done; 3385 } 3386 3387 static void bnxt_free_one_tx_ring_skbs(struct bnxt *bp, 3388 struct bnxt_tx_ring_info *txr, int idx) 3389 { 3390 int i, max_idx; 3391 struct pci_dev *pdev = bp->pdev; 3392 3393 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3394 3395 for (i = 0; i < max_idx;) { 3396 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[i]; 3397 struct sk_buff *skb; 3398 int j, last; 3399 3400 if (idx < bp->tx_nr_rings_xdp && 3401 tx_buf->action == XDP_REDIRECT) { 3402 dma_unmap_single(&pdev->dev, 3403 dma_unmap_addr(tx_buf, mapping), 3404 dma_unmap_len(tx_buf, len), 3405 DMA_TO_DEVICE); 3406 xdp_return_frame(tx_buf->xdpf); 3407 tx_buf->action = 0; 3408 tx_buf->xdpf = NULL; 3409 i++; 3410 continue; 3411 } 3412 3413 skb = tx_buf->skb; 3414 if (!skb) { 3415 i++; 3416 continue; 3417 } 3418 3419 tx_buf->skb = NULL; 3420 3421 if (tx_buf->is_push) { 3422 dev_kfree_skb(skb); 3423 i += 2; 3424 continue; 3425 } 3426 3427 dma_unmap_single(&pdev->dev, 3428 dma_unmap_addr(tx_buf, mapping), 3429 skb_headlen(skb), 3430 DMA_TO_DEVICE); 3431 3432 last = tx_buf->nr_frags; 3433 i += 2; 3434 for (j = 0; j < last; j++, i++) { 3435 int ring_idx = i & bp->tx_ring_mask; 3436 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 3437 3438 tx_buf = &txr->tx_buf_ring[ring_idx]; 3439 netmem_dma_unmap_page_attrs(&pdev->dev, 3440 dma_unmap_addr(tx_buf, 3441 mapping), 3442 skb_frag_size(frag), 3443 DMA_TO_DEVICE, 0); 3444 } 3445 dev_kfree_skb(skb); 3446 } 3447 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, idx)); 3448 } 3449 3450 static void bnxt_free_tx_skbs(struct bnxt *bp) 3451 { 3452 int i; 3453 3454 if (!bp->tx_ring) 3455 return; 3456 3457 for (i = 0; i < bp->tx_nr_rings; i++) { 3458 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3459 3460 if (!txr->tx_buf_ring) 3461 continue; 3462 3463 bnxt_free_one_tx_ring_skbs(bp, txr, i); 3464 } 3465 3466 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 3467 bnxt_ptp_free_txts_skbs(bp->ptp_cfg); 3468 } 3469 3470 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3471 { 3472 int i, max_idx; 3473 3474 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3475 3476 for (i = 0; i < max_idx; i++) { 3477 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3478 void *data = rx_buf->data; 3479 3480 if (!data) 3481 continue; 3482 3483 rx_buf->data = NULL; 3484 if (BNXT_RX_PAGE_MODE(bp)) 3485 page_pool_recycle_direct(rxr->page_pool, data); 3486 else 3487 page_pool_free_va(rxr->head_pool, data, true); 3488 } 3489 } 3490 3491 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3492 { 3493 int i, max_idx; 3494 3495 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3496 3497 for (i = 0; i < max_idx; i++) { 3498 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3499 netmem_ref netmem = rx_agg_buf->netmem; 3500 3501 if (!netmem) 3502 continue; 3503 3504 rx_agg_buf->netmem = 0; 3505 __clear_bit(i, rxr->rx_agg_bmap); 3506 3507 page_pool_recycle_direct_netmem(rxr->page_pool, netmem); 3508 } 3509 } 3510 3511 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3512 struct bnxt_rx_ring_info *rxr) 3513 { 3514 int i; 3515 3516 for (i = 0; i < bp->max_tpa; i++) { 3517 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3518 u8 *data = tpa_info->data; 3519 3520 if (!data) 3521 continue; 3522 3523 tpa_info->data = NULL; 3524 page_pool_free_va(rxr->head_pool, data, false); 3525 } 3526 } 3527 3528 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3529 struct bnxt_rx_ring_info *rxr) 3530 { 3531 struct bnxt_tpa_idx_map *map; 3532 3533 if (!rxr->rx_tpa) 3534 goto skip_rx_tpa_free; 3535 3536 bnxt_free_one_tpa_info_data(bp, rxr); 3537 3538 skip_rx_tpa_free: 3539 if (!rxr->rx_buf_ring) 3540 goto skip_rx_buf_free; 3541 3542 bnxt_free_one_rx_ring(bp, rxr); 3543 3544 skip_rx_buf_free: 3545 if (!rxr->rx_agg_ring) 3546 goto skip_rx_agg_free; 3547 3548 bnxt_free_one_rx_agg_ring(bp, rxr); 3549 3550 skip_rx_agg_free: 3551 map = rxr->rx_tpa_idx_map; 3552 if (map) 3553 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3554 } 3555 3556 static void bnxt_free_rx_skbs(struct bnxt *bp) 3557 { 3558 int i; 3559 3560 if (!bp->rx_ring) 3561 return; 3562 3563 for (i = 0; i < bp->rx_nr_rings; i++) 3564 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3565 } 3566 3567 static void bnxt_free_skbs(struct bnxt *bp) 3568 { 3569 bnxt_free_tx_skbs(bp); 3570 bnxt_free_rx_skbs(bp); 3571 } 3572 3573 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3574 { 3575 u8 init_val = ctxm->init_value; 3576 u16 offset = ctxm->init_offset; 3577 u8 *p2 = p; 3578 int i; 3579 3580 if (!init_val) 3581 return; 3582 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3583 memset(p, init_val, len); 3584 return; 3585 } 3586 for (i = 0; i < len; i += ctxm->entry_size) 3587 *(p2 + i + offset) = init_val; 3588 } 3589 3590 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3591 void *buf, size_t offset, size_t head, 3592 size_t tail) 3593 { 3594 int i, head_page, start_idx, source_offset; 3595 size_t len, rem_len, total_len, max_bytes; 3596 3597 head_page = head / rmem->page_size; 3598 source_offset = head % rmem->page_size; 3599 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3600 if (!total_len) 3601 total_len = MAX_CTX_BYTES; 3602 start_idx = head_page % MAX_CTX_PAGES; 3603 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3604 source_offset; 3605 total_len = min(total_len, max_bytes); 3606 rem_len = total_len; 3607 3608 for (i = start_idx; rem_len; i++, source_offset = 0) { 3609 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3610 if (buf) 3611 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3612 len); 3613 offset += len; 3614 rem_len -= len; 3615 } 3616 return total_len; 3617 } 3618 3619 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3620 { 3621 struct pci_dev *pdev = bp->pdev; 3622 int i; 3623 3624 if (!rmem->pg_arr) 3625 goto skip_pages; 3626 3627 for (i = 0; i < rmem->nr_pages; i++) { 3628 if (!rmem->pg_arr[i]) 3629 continue; 3630 3631 dma_free_coherent(&pdev->dev, rmem->page_size, 3632 rmem->pg_arr[i], rmem->dma_arr[i]); 3633 3634 rmem->pg_arr[i] = NULL; 3635 } 3636 skip_pages: 3637 if (rmem->pg_tbl) { 3638 size_t pg_tbl_size = rmem->nr_pages * 8; 3639 3640 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3641 pg_tbl_size = rmem->page_size; 3642 dma_free_coherent(&pdev->dev, pg_tbl_size, 3643 rmem->pg_tbl, rmem->pg_tbl_map); 3644 rmem->pg_tbl = NULL; 3645 } 3646 if (rmem->vmem_size && *rmem->vmem) { 3647 vfree(*rmem->vmem); 3648 *rmem->vmem = NULL; 3649 } 3650 } 3651 3652 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3653 { 3654 struct pci_dev *pdev = bp->pdev; 3655 u64 valid_bit = 0; 3656 int i; 3657 3658 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3659 valid_bit = PTU_PTE_VALID; 3660 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3661 size_t pg_tbl_size = rmem->nr_pages * 8; 3662 3663 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3664 pg_tbl_size = rmem->page_size; 3665 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3666 &rmem->pg_tbl_map, 3667 GFP_KERNEL); 3668 if (!rmem->pg_tbl) 3669 return -ENOMEM; 3670 } 3671 3672 for (i = 0; i < rmem->nr_pages; i++) { 3673 u64 extra_bits = valid_bit; 3674 3675 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3676 rmem->page_size, 3677 &rmem->dma_arr[i], 3678 GFP_KERNEL); 3679 if (!rmem->pg_arr[i]) 3680 return -ENOMEM; 3681 3682 if (rmem->ctx_mem) 3683 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3684 rmem->page_size); 3685 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3686 if (i == rmem->nr_pages - 2 && 3687 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3688 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3689 else if (i == rmem->nr_pages - 1 && 3690 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3691 extra_bits |= PTU_PTE_LAST; 3692 rmem->pg_tbl[i] = 3693 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3694 } 3695 } 3696 3697 if (rmem->vmem_size) { 3698 *rmem->vmem = vzalloc(rmem->vmem_size); 3699 if (!(*rmem->vmem)) 3700 return -ENOMEM; 3701 } 3702 return 0; 3703 } 3704 3705 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3706 struct bnxt_rx_ring_info *rxr) 3707 { 3708 int i; 3709 3710 kfree(rxr->rx_tpa_idx_map); 3711 rxr->rx_tpa_idx_map = NULL; 3712 if (rxr->rx_tpa) { 3713 for (i = 0; i < bp->max_tpa; i++) { 3714 kfree(rxr->rx_tpa[i].agg_arr); 3715 rxr->rx_tpa[i].agg_arr = NULL; 3716 } 3717 } 3718 kfree(rxr->rx_tpa); 3719 rxr->rx_tpa = NULL; 3720 } 3721 3722 static void bnxt_free_tpa_info(struct bnxt *bp) 3723 { 3724 int i; 3725 3726 for (i = 0; i < bp->rx_nr_rings; i++) { 3727 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3728 3729 bnxt_free_one_tpa_info(bp, rxr); 3730 } 3731 } 3732 3733 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3734 struct bnxt_rx_ring_info *rxr) 3735 { 3736 struct rx_agg_cmp *agg; 3737 int i; 3738 3739 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3740 GFP_KERNEL); 3741 if (!rxr->rx_tpa) 3742 return -ENOMEM; 3743 3744 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3745 return 0; 3746 for (i = 0; i < bp->max_tpa; i++) { 3747 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3748 if (!agg) 3749 return -ENOMEM; 3750 rxr->rx_tpa[i].agg_arr = agg; 3751 } 3752 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3753 GFP_KERNEL); 3754 if (!rxr->rx_tpa_idx_map) 3755 return -ENOMEM; 3756 3757 return 0; 3758 } 3759 3760 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3761 { 3762 int i, rc; 3763 3764 bp->max_tpa = MAX_TPA; 3765 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3766 if (!bp->max_tpa_v2) 3767 return 0; 3768 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3769 } 3770 3771 for (i = 0; i < bp->rx_nr_rings; i++) { 3772 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3773 3774 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3775 if (rc) 3776 return rc; 3777 } 3778 return 0; 3779 } 3780 3781 static void bnxt_free_rx_rings(struct bnxt *bp) 3782 { 3783 int i; 3784 3785 if (!bp->rx_ring) 3786 return; 3787 3788 bnxt_free_tpa_info(bp); 3789 for (i = 0; i < bp->rx_nr_rings; i++) { 3790 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3791 struct bnxt_ring_struct *ring; 3792 3793 if (rxr->xdp_prog) 3794 bpf_prog_put(rxr->xdp_prog); 3795 3796 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3797 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3798 3799 page_pool_destroy(rxr->page_pool); 3800 if (bnxt_separate_head_pool(rxr)) 3801 page_pool_destroy(rxr->head_pool); 3802 rxr->page_pool = rxr->head_pool = NULL; 3803 3804 kfree(rxr->rx_agg_bmap); 3805 rxr->rx_agg_bmap = NULL; 3806 3807 ring = &rxr->rx_ring_struct; 3808 bnxt_free_ring(bp, &ring->ring_mem); 3809 3810 ring = &rxr->rx_agg_ring_struct; 3811 bnxt_free_ring(bp, &ring->ring_mem); 3812 } 3813 } 3814 3815 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3816 struct bnxt_rx_ring_info *rxr, 3817 int numa_node) 3818 { 3819 const unsigned int agg_size_fac = PAGE_SIZE / BNXT_RX_PAGE_SIZE; 3820 const unsigned int rx_size_fac = PAGE_SIZE / SZ_4K; 3821 struct page_pool_params pp = { 0 }; 3822 struct page_pool *pool; 3823 3824 pp.pool_size = bp->rx_agg_ring_size / agg_size_fac; 3825 if (BNXT_RX_PAGE_MODE(bp)) 3826 pp.pool_size += bp->rx_ring_size / rx_size_fac; 3827 pp.nid = numa_node; 3828 pp.netdev = bp->dev; 3829 pp.dev = &bp->pdev->dev; 3830 pp.dma_dir = bp->rx_dir; 3831 pp.max_len = PAGE_SIZE; 3832 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV | 3833 PP_FLAG_ALLOW_UNREADABLE_NETMEM; 3834 pp.queue_idx = rxr->bnapi->index; 3835 3836 pool = page_pool_create(&pp); 3837 if (IS_ERR(pool)) 3838 return PTR_ERR(pool); 3839 rxr->page_pool = pool; 3840 3841 rxr->need_head_pool = page_pool_is_unreadable(pool); 3842 if (bnxt_separate_head_pool(rxr)) { 3843 pp.pool_size = min(bp->rx_ring_size / rx_size_fac, 1024); 3844 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3845 pool = page_pool_create(&pp); 3846 if (IS_ERR(pool)) 3847 goto err_destroy_pp; 3848 } 3849 rxr->head_pool = pool; 3850 3851 return 0; 3852 3853 err_destroy_pp: 3854 page_pool_destroy(rxr->page_pool); 3855 rxr->page_pool = NULL; 3856 return PTR_ERR(pool); 3857 } 3858 3859 static void bnxt_enable_rx_page_pool(struct bnxt_rx_ring_info *rxr) 3860 { 3861 page_pool_enable_direct_recycling(rxr->head_pool, &rxr->bnapi->napi); 3862 page_pool_enable_direct_recycling(rxr->page_pool, &rxr->bnapi->napi); 3863 } 3864 3865 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3866 { 3867 u16 mem_size; 3868 3869 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3870 mem_size = rxr->rx_agg_bmap_size / 8; 3871 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3872 if (!rxr->rx_agg_bmap) 3873 return -ENOMEM; 3874 3875 return 0; 3876 } 3877 3878 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3879 { 3880 int numa_node = dev_to_node(&bp->pdev->dev); 3881 int i, rc = 0, agg_rings = 0, cpu; 3882 3883 if (!bp->rx_ring) 3884 return -ENOMEM; 3885 3886 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3887 agg_rings = 1; 3888 3889 for (i = 0; i < bp->rx_nr_rings; i++) { 3890 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3891 struct bnxt_ring_struct *ring; 3892 int cpu_node; 3893 3894 ring = &rxr->rx_ring_struct; 3895 3896 cpu = cpumask_local_spread(i, numa_node); 3897 cpu_node = cpu_to_node(cpu); 3898 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3899 i, cpu_node); 3900 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3901 if (rc) 3902 return rc; 3903 bnxt_enable_rx_page_pool(rxr); 3904 3905 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3906 if (rc < 0) 3907 return rc; 3908 3909 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3910 MEM_TYPE_PAGE_POOL, 3911 rxr->page_pool); 3912 if (rc) { 3913 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3914 return rc; 3915 } 3916 3917 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3918 if (rc) 3919 return rc; 3920 3921 ring->grp_idx = i; 3922 if (agg_rings) { 3923 ring = &rxr->rx_agg_ring_struct; 3924 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3925 if (rc) 3926 return rc; 3927 3928 ring->grp_idx = i; 3929 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3930 if (rc) 3931 return rc; 3932 } 3933 } 3934 if (bp->flags & BNXT_FLAG_TPA) 3935 rc = bnxt_alloc_tpa_info(bp); 3936 return rc; 3937 } 3938 3939 static void bnxt_free_tx_rings(struct bnxt *bp) 3940 { 3941 int i; 3942 struct pci_dev *pdev = bp->pdev; 3943 3944 if (!bp->tx_ring) 3945 return; 3946 3947 for (i = 0; i < bp->tx_nr_rings; i++) { 3948 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3949 struct bnxt_ring_struct *ring; 3950 3951 if (txr->tx_push) { 3952 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3953 txr->tx_push, txr->tx_push_mapping); 3954 txr->tx_push = NULL; 3955 } 3956 3957 ring = &txr->tx_ring_struct; 3958 3959 bnxt_free_ring(bp, &ring->ring_mem); 3960 } 3961 } 3962 3963 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3964 ((tc) * (bp)->tx_nr_rings_per_tc) 3965 3966 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3967 ((tx) % (bp)->tx_nr_rings_per_tc) 3968 3969 #define BNXT_RING_TO_TC(bp, tx) \ 3970 ((tx) / (bp)->tx_nr_rings_per_tc) 3971 3972 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3973 { 3974 int i, j, rc; 3975 struct pci_dev *pdev = bp->pdev; 3976 3977 bp->tx_push_size = 0; 3978 if (bp->tx_push_thresh) { 3979 int push_size; 3980 3981 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3982 bp->tx_push_thresh); 3983 3984 if (push_size > 256) { 3985 push_size = 0; 3986 bp->tx_push_thresh = 0; 3987 } 3988 3989 bp->tx_push_size = push_size; 3990 } 3991 3992 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3993 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3994 struct bnxt_ring_struct *ring; 3995 u8 qidx; 3996 3997 ring = &txr->tx_ring_struct; 3998 3999 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4000 if (rc) 4001 return rc; 4002 4003 ring->grp_idx = txr->bnapi->index; 4004 if (bp->tx_push_size) { 4005 dma_addr_t mapping; 4006 4007 /* One pre-allocated DMA buffer to backup 4008 * TX push operation 4009 */ 4010 txr->tx_push = dma_alloc_coherent(&pdev->dev, 4011 bp->tx_push_size, 4012 &txr->tx_push_mapping, 4013 GFP_KERNEL); 4014 4015 if (!txr->tx_push) 4016 return -ENOMEM; 4017 4018 mapping = txr->tx_push_mapping + 4019 sizeof(struct tx_push_bd); 4020 txr->data_mapping = cpu_to_le64(mapping); 4021 } 4022 qidx = bp->tc_to_qidx[j]; 4023 ring->queue_id = bp->q_info[qidx].queue_id; 4024 spin_lock_init(&txr->xdp_tx_lock); 4025 if (i < bp->tx_nr_rings_xdp) 4026 continue; 4027 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 4028 j++; 4029 } 4030 return 0; 4031 } 4032 4033 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 4034 { 4035 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4036 4037 kfree(cpr->cp_desc_ring); 4038 cpr->cp_desc_ring = NULL; 4039 ring->ring_mem.pg_arr = NULL; 4040 kfree(cpr->cp_desc_mapping); 4041 cpr->cp_desc_mapping = NULL; 4042 ring->ring_mem.dma_arr = NULL; 4043 } 4044 4045 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 4046 { 4047 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 4048 if (!cpr->cp_desc_ring) 4049 return -ENOMEM; 4050 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 4051 GFP_KERNEL); 4052 if (!cpr->cp_desc_mapping) 4053 return -ENOMEM; 4054 return 0; 4055 } 4056 4057 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 4058 { 4059 int i; 4060 4061 if (!bp->bnapi) 4062 return; 4063 for (i = 0; i < bp->cp_nr_rings; i++) { 4064 struct bnxt_napi *bnapi = bp->bnapi[i]; 4065 4066 if (!bnapi) 4067 continue; 4068 bnxt_free_cp_arrays(&bnapi->cp_ring); 4069 } 4070 } 4071 4072 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 4073 { 4074 int i, n = bp->cp_nr_pages; 4075 4076 for (i = 0; i < bp->cp_nr_rings; i++) { 4077 struct bnxt_napi *bnapi = bp->bnapi[i]; 4078 int rc; 4079 4080 if (!bnapi) 4081 continue; 4082 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 4083 if (rc) 4084 return rc; 4085 } 4086 return 0; 4087 } 4088 4089 static void bnxt_free_cp_rings(struct bnxt *bp) 4090 { 4091 int i; 4092 4093 if (!bp->bnapi) 4094 return; 4095 4096 for (i = 0; i < bp->cp_nr_rings; i++) { 4097 struct bnxt_napi *bnapi = bp->bnapi[i]; 4098 struct bnxt_cp_ring_info *cpr; 4099 struct bnxt_ring_struct *ring; 4100 int j; 4101 4102 if (!bnapi) 4103 continue; 4104 4105 cpr = &bnapi->cp_ring; 4106 ring = &cpr->cp_ring_struct; 4107 4108 bnxt_free_ring(bp, &ring->ring_mem); 4109 4110 if (!cpr->cp_ring_arr) 4111 continue; 4112 4113 for (j = 0; j < cpr->cp_ring_count; j++) { 4114 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4115 4116 ring = &cpr2->cp_ring_struct; 4117 bnxt_free_ring(bp, &ring->ring_mem); 4118 bnxt_free_cp_arrays(cpr2); 4119 } 4120 kfree(cpr->cp_ring_arr); 4121 cpr->cp_ring_arr = NULL; 4122 cpr->cp_ring_count = 0; 4123 } 4124 } 4125 4126 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4127 struct bnxt_cp_ring_info *cpr) 4128 { 4129 struct bnxt_ring_mem_info *rmem; 4130 struct bnxt_ring_struct *ring; 4131 int rc; 4132 4133 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4134 if (rc) { 4135 bnxt_free_cp_arrays(cpr); 4136 return -ENOMEM; 4137 } 4138 ring = &cpr->cp_ring_struct; 4139 rmem = &ring->ring_mem; 4140 rmem->nr_pages = bp->cp_nr_pages; 4141 rmem->page_size = HW_CMPD_RING_SIZE; 4142 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4143 rmem->dma_arr = cpr->cp_desc_mapping; 4144 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4145 rc = bnxt_alloc_ring(bp, rmem); 4146 if (rc) { 4147 bnxt_free_ring(bp, rmem); 4148 bnxt_free_cp_arrays(cpr); 4149 } 4150 return rc; 4151 } 4152 4153 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4154 { 4155 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4156 int i, j, rc, ulp_msix; 4157 int tcs = bp->num_tc; 4158 4159 if (!tcs) 4160 tcs = 1; 4161 ulp_msix = bnxt_get_ulp_msix_num(bp); 4162 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4163 struct bnxt_napi *bnapi = bp->bnapi[i]; 4164 struct bnxt_cp_ring_info *cpr, *cpr2; 4165 struct bnxt_ring_struct *ring; 4166 int cp_count = 0, k; 4167 int rx = 0, tx = 0; 4168 4169 if (!bnapi) 4170 continue; 4171 4172 cpr = &bnapi->cp_ring; 4173 cpr->bnapi = bnapi; 4174 ring = &cpr->cp_ring_struct; 4175 4176 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4177 if (rc) 4178 return rc; 4179 4180 ring->map_idx = ulp_msix + i; 4181 4182 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4183 continue; 4184 4185 if (i < bp->rx_nr_rings) { 4186 cp_count++; 4187 rx = 1; 4188 } 4189 if (i < bp->tx_nr_rings_xdp) { 4190 cp_count++; 4191 tx = 1; 4192 } else if ((sh && i < bp->tx_nr_rings) || 4193 (!sh && i >= bp->rx_nr_rings)) { 4194 cp_count += tcs; 4195 tx = 1; 4196 } 4197 4198 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4199 GFP_KERNEL); 4200 if (!cpr->cp_ring_arr) 4201 return -ENOMEM; 4202 cpr->cp_ring_count = cp_count; 4203 4204 for (k = 0; k < cp_count; k++) { 4205 cpr2 = &cpr->cp_ring_arr[k]; 4206 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4207 if (rc) 4208 return rc; 4209 cpr2->bnapi = bnapi; 4210 cpr2->sw_stats = cpr->sw_stats; 4211 cpr2->cp_idx = k; 4212 if (!k && rx) { 4213 bp->rx_ring[i].rx_cpr = cpr2; 4214 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4215 } else { 4216 int n, tc = k - rx; 4217 4218 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4219 bp->tx_ring[n].tx_cpr = cpr2; 4220 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4221 } 4222 } 4223 if (tx) 4224 j++; 4225 } 4226 return 0; 4227 } 4228 4229 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4230 struct bnxt_rx_ring_info *rxr) 4231 { 4232 struct bnxt_ring_mem_info *rmem; 4233 struct bnxt_ring_struct *ring; 4234 4235 ring = &rxr->rx_ring_struct; 4236 rmem = &ring->ring_mem; 4237 rmem->nr_pages = bp->rx_nr_pages; 4238 rmem->page_size = HW_RXBD_RING_SIZE; 4239 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4240 rmem->dma_arr = rxr->rx_desc_mapping; 4241 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4242 rmem->vmem = (void **)&rxr->rx_buf_ring; 4243 4244 ring = &rxr->rx_agg_ring_struct; 4245 rmem = &ring->ring_mem; 4246 rmem->nr_pages = bp->rx_agg_nr_pages; 4247 rmem->page_size = HW_RXBD_RING_SIZE; 4248 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4249 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4250 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4251 rmem->vmem = (void **)&rxr->rx_agg_ring; 4252 } 4253 4254 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4255 struct bnxt_rx_ring_info *rxr) 4256 { 4257 struct bnxt_ring_mem_info *rmem; 4258 struct bnxt_ring_struct *ring; 4259 int i; 4260 4261 rxr->page_pool->p.napi = NULL; 4262 rxr->page_pool = NULL; 4263 rxr->head_pool->p.napi = NULL; 4264 rxr->head_pool = NULL; 4265 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4266 4267 ring = &rxr->rx_ring_struct; 4268 rmem = &ring->ring_mem; 4269 rmem->pg_tbl = NULL; 4270 rmem->pg_tbl_map = 0; 4271 for (i = 0; i < rmem->nr_pages; i++) { 4272 rmem->pg_arr[i] = NULL; 4273 rmem->dma_arr[i] = 0; 4274 } 4275 *rmem->vmem = NULL; 4276 4277 ring = &rxr->rx_agg_ring_struct; 4278 rmem = &ring->ring_mem; 4279 rmem->pg_tbl = NULL; 4280 rmem->pg_tbl_map = 0; 4281 for (i = 0; i < rmem->nr_pages; i++) { 4282 rmem->pg_arr[i] = NULL; 4283 rmem->dma_arr[i] = 0; 4284 } 4285 *rmem->vmem = NULL; 4286 } 4287 4288 static void bnxt_init_ring_struct(struct bnxt *bp) 4289 { 4290 int i, j; 4291 4292 for (i = 0; i < bp->cp_nr_rings; i++) { 4293 struct bnxt_napi *bnapi = bp->bnapi[i]; 4294 struct bnxt_ring_mem_info *rmem; 4295 struct bnxt_cp_ring_info *cpr; 4296 struct bnxt_rx_ring_info *rxr; 4297 struct bnxt_tx_ring_info *txr; 4298 struct bnxt_ring_struct *ring; 4299 4300 if (!bnapi) 4301 continue; 4302 4303 cpr = &bnapi->cp_ring; 4304 ring = &cpr->cp_ring_struct; 4305 rmem = &ring->ring_mem; 4306 rmem->nr_pages = bp->cp_nr_pages; 4307 rmem->page_size = HW_CMPD_RING_SIZE; 4308 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4309 rmem->dma_arr = cpr->cp_desc_mapping; 4310 rmem->vmem_size = 0; 4311 4312 rxr = bnapi->rx_ring; 4313 if (!rxr) 4314 goto skip_rx; 4315 4316 ring = &rxr->rx_ring_struct; 4317 rmem = &ring->ring_mem; 4318 rmem->nr_pages = bp->rx_nr_pages; 4319 rmem->page_size = HW_RXBD_RING_SIZE; 4320 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4321 rmem->dma_arr = rxr->rx_desc_mapping; 4322 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4323 rmem->vmem = (void **)&rxr->rx_buf_ring; 4324 4325 ring = &rxr->rx_agg_ring_struct; 4326 rmem = &ring->ring_mem; 4327 rmem->nr_pages = bp->rx_agg_nr_pages; 4328 rmem->page_size = HW_RXBD_RING_SIZE; 4329 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4330 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4331 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4332 rmem->vmem = (void **)&rxr->rx_agg_ring; 4333 4334 skip_rx: 4335 bnxt_for_each_napi_tx(j, bnapi, txr) { 4336 ring = &txr->tx_ring_struct; 4337 rmem = &ring->ring_mem; 4338 rmem->nr_pages = bp->tx_nr_pages; 4339 rmem->page_size = HW_TXBD_RING_SIZE; 4340 rmem->pg_arr = (void **)txr->tx_desc_ring; 4341 rmem->dma_arr = txr->tx_desc_mapping; 4342 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4343 rmem->vmem = (void **)&txr->tx_buf_ring; 4344 } 4345 } 4346 } 4347 4348 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4349 { 4350 int i; 4351 u32 prod; 4352 struct rx_bd **rx_buf_ring; 4353 4354 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4355 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4356 int j; 4357 struct rx_bd *rxbd; 4358 4359 rxbd = rx_buf_ring[i]; 4360 if (!rxbd) 4361 continue; 4362 4363 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4364 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4365 rxbd->rx_bd_opaque = prod; 4366 } 4367 } 4368 } 4369 4370 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4371 struct bnxt_rx_ring_info *rxr, 4372 int ring_nr) 4373 { 4374 u32 prod; 4375 int i; 4376 4377 prod = rxr->rx_prod; 4378 for (i = 0; i < bp->rx_ring_size; i++) { 4379 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4380 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4381 ring_nr, i, bp->rx_ring_size); 4382 break; 4383 } 4384 prod = NEXT_RX(prod); 4385 } 4386 rxr->rx_prod = prod; 4387 } 4388 4389 static void bnxt_alloc_one_rx_ring_netmem(struct bnxt *bp, 4390 struct bnxt_rx_ring_info *rxr, 4391 int ring_nr) 4392 { 4393 u32 prod; 4394 int i; 4395 4396 prod = rxr->rx_agg_prod; 4397 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4398 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_KERNEL)) { 4399 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4400 ring_nr, i, bp->rx_ring_size); 4401 break; 4402 } 4403 prod = NEXT_RX_AGG(prod); 4404 } 4405 rxr->rx_agg_prod = prod; 4406 } 4407 4408 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4409 struct bnxt_rx_ring_info *rxr) 4410 { 4411 dma_addr_t mapping; 4412 u8 *data; 4413 int i; 4414 4415 for (i = 0; i < bp->max_tpa; i++) { 4416 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4417 GFP_KERNEL); 4418 if (!data) 4419 return -ENOMEM; 4420 4421 rxr->rx_tpa[i].data = data; 4422 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4423 rxr->rx_tpa[i].mapping = mapping; 4424 } 4425 4426 return 0; 4427 } 4428 4429 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4430 { 4431 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4432 int rc; 4433 4434 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4435 4436 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4437 return 0; 4438 4439 bnxt_alloc_one_rx_ring_netmem(bp, rxr, ring_nr); 4440 4441 if (rxr->rx_tpa) { 4442 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4443 if (rc) 4444 return rc; 4445 } 4446 return 0; 4447 } 4448 4449 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4450 struct bnxt_rx_ring_info *rxr) 4451 { 4452 struct bnxt_ring_struct *ring; 4453 u32 type; 4454 4455 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4456 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4457 4458 if (NET_IP_ALIGN == 2) 4459 type |= RX_BD_FLAGS_SOP; 4460 4461 ring = &rxr->rx_ring_struct; 4462 bnxt_init_rxbd_pages(ring, type); 4463 ring->fw_ring_id = INVALID_HW_RING_ID; 4464 } 4465 4466 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4467 struct bnxt_rx_ring_info *rxr) 4468 { 4469 struct bnxt_ring_struct *ring; 4470 u32 type; 4471 4472 ring = &rxr->rx_agg_ring_struct; 4473 ring->fw_ring_id = INVALID_HW_RING_ID; 4474 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4475 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4476 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4477 4478 bnxt_init_rxbd_pages(ring, type); 4479 } 4480 } 4481 4482 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4483 { 4484 struct bnxt_rx_ring_info *rxr; 4485 4486 rxr = &bp->rx_ring[ring_nr]; 4487 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4488 4489 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4490 &rxr->bnapi->napi); 4491 4492 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4493 bpf_prog_add(bp->xdp_prog, 1); 4494 rxr->xdp_prog = bp->xdp_prog; 4495 } 4496 4497 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4498 4499 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4500 } 4501 4502 static void bnxt_init_cp_rings(struct bnxt *bp) 4503 { 4504 int i, j; 4505 4506 for (i = 0; i < bp->cp_nr_rings; i++) { 4507 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4508 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4509 4510 ring->fw_ring_id = INVALID_HW_RING_ID; 4511 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4512 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4513 if (!cpr->cp_ring_arr) 4514 continue; 4515 for (j = 0; j < cpr->cp_ring_count; j++) { 4516 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4517 4518 ring = &cpr2->cp_ring_struct; 4519 ring->fw_ring_id = INVALID_HW_RING_ID; 4520 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4521 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4522 } 4523 } 4524 } 4525 4526 static int bnxt_init_rx_rings(struct bnxt *bp) 4527 { 4528 int i, rc = 0; 4529 4530 if (BNXT_RX_PAGE_MODE(bp)) { 4531 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4532 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4533 } else { 4534 bp->rx_offset = BNXT_RX_OFFSET; 4535 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4536 } 4537 4538 for (i = 0; i < bp->rx_nr_rings; i++) { 4539 rc = bnxt_init_one_rx_ring(bp, i); 4540 if (rc) 4541 break; 4542 } 4543 4544 return rc; 4545 } 4546 4547 static int bnxt_init_tx_rings(struct bnxt *bp) 4548 { 4549 u16 i; 4550 4551 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4552 BNXT_MIN_TX_DESC_CNT); 4553 4554 for (i = 0; i < bp->tx_nr_rings; i++) { 4555 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4556 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4557 4558 ring->fw_ring_id = INVALID_HW_RING_ID; 4559 4560 if (i >= bp->tx_nr_rings_xdp) 4561 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4562 NETDEV_QUEUE_TYPE_TX, 4563 &txr->bnapi->napi); 4564 } 4565 4566 return 0; 4567 } 4568 4569 static void bnxt_free_ring_grps(struct bnxt *bp) 4570 { 4571 kfree(bp->grp_info); 4572 bp->grp_info = NULL; 4573 } 4574 4575 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4576 { 4577 int i; 4578 4579 if (irq_re_init) { 4580 bp->grp_info = kcalloc(bp->cp_nr_rings, 4581 sizeof(struct bnxt_ring_grp_info), 4582 GFP_KERNEL); 4583 if (!bp->grp_info) 4584 return -ENOMEM; 4585 } 4586 for (i = 0; i < bp->cp_nr_rings; i++) { 4587 if (irq_re_init) 4588 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4589 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4590 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4591 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4592 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4593 } 4594 return 0; 4595 } 4596 4597 static void bnxt_free_vnics(struct bnxt *bp) 4598 { 4599 kfree(bp->vnic_info); 4600 bp->vnic_info = NULL; 4601 bp->nr_vnics = 0; 4602 } 4603 4604 static int bnxt_alloc_vnics(struct bnxt *bp) 4605 { 4606 int num_vnics = 1; 4607 4608 #ifdef CONFIG_RFS_ACCEL 4609 if (bp->flags & BNXT_FLAG_RFS) { 4610 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4611 num_vnics++; 4612 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4613 num_vnics += bp->rx_nr_rings; 4614 } 4615 #endif 4616 4617 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4618 num_vnics++; 4619 4620 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4621 GFP_KERNEL); 4622 if (!bp->vnic_info) 4623 return -ENOMEM; 4624 4625 bp->nr_vnics = num_vnics; 4626 return 0; 4627 } 4628 4629 static void bnxt_init_vnics(struct bnxt *bp) 4630 { 4631 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4632 int i; 4633 4634 for (i = 0; i < bp->nr_vnics; i++) { 4635 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4636 int j; 4637 4638 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4639 vnic->vnic_id = i; 4640 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4641 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4642 4643 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4644 4645 if (bp->vnic_info[i].rss_hash_key) { 4646 if (i == BNXT_VNIC_DEFAULT) { 4647 u8 *key = (void *)vnic->rss_hash_key; 4648 int k; 4649 4650 if (!bp->rss_hash_key_valid && 4651 !bp->rss_hash_key_updated) { 4652 get_random_bytes(bp->rss_hash_key, 4653 HW_HASH_KEY_SIZE); 4654 bp->rss_hash_key_updated = true; 4655 } 4656 4657 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4658 HW_HASH_KEY_SIZE); 4659 4660 if (!bp->rss_hash_key_updated) 4661 continue; 4662 4663 bp->rss_hash_key_updated = false; 4664 bp->rss_hash_key_valid = true; 4665 4666 bp->toeplitz_prefix = 0; 4667 for (k = 0; k < 8; k++) { 4668 bp->toeplitz_prefix <<= 8; 4669 bp->toeplitz_prefix |= key[k]; 4670 } 4671 } else { 4672 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4673 HW_HASH_KEY_SIZE); 4674 } 4675 } 4676 } 4677 } 4678 4679 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4680 { 4681 int pages; 4682 4683 pages = ring_size / desc_per_pg; 4684 4685 if (!pages) 4686 return 1; 4687 4688 pages++; 4689 4690 while (pages & (pages - 1)) 4691 pages++; 4692 4693 return pages; 4694 } 4695 4696 void bnxt_set_tpa_flags(struct bnxt *bp) 4697 { 4698 bp->flags &= ~BNXT_FLAG_TPA; 4699 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4700 return; 4701 if (bp->dev->features & NETIF_F_LRO) 4702 bp->flags |= BNXT_FLAG_LRO; 4703 else if (bp->dev->features & NETIF_F_GRO_HW) 4704 bp->flags |= BNXT_FLAG_GRO; 4705 } 4706 4707 static void bnxt_init_ring_params(struct bnxt *bp) 4708 { 4709 unsigned int rx_size; 4710 4711 bp->rx_copybreak = BNXT_DEFAULT_RX_COPYBREAK; 4712 /* Try to fit 4 chunks into a 4k page */ 4713 rx_size = SZ_1K - 4714 NET_SKB_PAD - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4715 bp->dev->cfg->hds_thresh = max(BNXT_DEFAULT_RX_COPYBREAK, rx_size); 4716 } 4717 4718 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4719 * be set on entry. 4720 */ 4721 void bnxt_set_ring_params(struct bnxt *bp) 4722 { 4723 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4724 u32 agg_factor = 0, agg_ring_size = 0; 4725 4726 /* 8 for CRC and VLAN */ 4727 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4728 4729 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4730 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4731 4732 ring_size = bp->rx_ring_size; 4733 bp->rx_agg_ring_size = 0; 4734 bp->rx_agg_nr_pages = 0; 4735 4736 if (bp->flags & BNXT_FLAG_TPA || bp->flags & BNXT_FLAG_HDS) 4737 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4738 4739 bp->flags &= ~BNXT_FLAG_JUMBO; 4740 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4741 u32 jumbo_factor; 4742 4743 bp->flags |= BNXT_FLAG_JUMBO; 4744 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4745 if (jumbo_factor > agg_factor) 4746 agg_factor = jumbo_factor; 4747 } 4748 if (agg_factor) { 4749 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4750 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4751 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4752 bp->rx_ring_size, ring_size); 4753 bp->rx_ring_size = ring_size; 4754 } 4755 agg_ring_size = ring_size * agg_factor; 4756 4757 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4758 RX_DESC_CNT); 4759 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4760 u32 tmp = agg_ring_size; 4761 4762 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4763 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4764 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4765 tmp, agg_ring_size); 4766 } 4767 bp->rx_agg_ring_size = agg_ring_size; 4768 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4769 4770 if (BNXT_RX_PAGE_MODE(bp)) { 4771 rx_space = PAGE_SIZE; 4772 rx_size = PAGE_SIZE - 4773 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4774 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4775 } else { 4776 rx_size = max3(BNXT_DEFAULT_RX_COPYBREAK, 4777 bp->rx_copybreak, 4778 bp->dev->cfg_pending->hds_thresh); 4779 rx_size = SKB_DATA_ALIGN(rx_size + NET_IP_ALIGN); 4780 rx_space = rx_size + NET_SKB_PAD + 4781 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4782 } 4783 } 4784 4785 bp->rx_buf_use_size = rx_size; 4786 bp->rx_buf_size = rx_space; 4787 4788 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4789 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4790 4791 ring_size = bp->tx_ring_size; 4792 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4793 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4794 4795 max_rx_cmpl = bp->rx_ring_size; 4796 /* MAX TPA needs to be added because TPA_START completions are 4797 * immediately recycled, so the TPA completions are not bound by 4798 * the RX ring size. 4799 */ 4800 if (bp->flags & BNXT_FLAG_TPA) 4801 max_rx_cmpl += bp->max_tpa; 4802 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4803 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4804 bp->cp_ring_size = ring_size; 4805 4806 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4807 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4808 bp->cp_nr_pages = MAX_CP_PAGES; 4809 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4810 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4811 ring_size, bp->cp_ring_size); 4812 } 4813 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4814 bp->cp_ring_mask = bp->cp_bit - 1; 4815 } 4816 4817 /* Changing allocation mode of RX rings. 4818 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4819 */ 4820 static void __bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4821 { 4822 struct net_device *dev = bp->dev; 4823 4824 if (page_mode) { 4825 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4826 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4827 4828 if (bp->xdp_prog->aux->xdp_has_frags) 4829 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4830 else 4831 dev->max_mtu = 4832 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4833 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4834 bp->flags |= BNXT_FLAG_JUMBO; 4835 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4836 } else { 4837 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4838 bp->rx_skb_func = bnxt_rx_page_skb; 4839 } 4840 bp->rx_dir = DMA_BIDIRECTIONAL; 4841 } else { 4842 dev->max_mtu = bp->max_mtu; 4843 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4844 bp->rx_dir = DMA_FROM_DEVICE; 4845 bp->rx_skb_func = bnxt_rx_skb; 4846 } 4847 } 4848 4849 void bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4850 { 4851 __bnxt_set_rx_skb_mode(bp, page_mode); 4852 4853 if (!page_mode) { 4854 int rx, tx; 4855 4856 bnxt_get_max_rings(bp, &rx, &tx, true); 4857 if (rx > 1) { 4858 bp->flags &= ~BNXT_FLAG_NO_AGG_RINGS; 4859 bp->dev->hw_features |= NETIF_F_LRO; 4860 } 4861 } 4862 4863 /* Update LRO and GRO_HW availability */ 4864 netdev_update_features(bp->dev); 4865 } 4866 4867 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4868 { 4869 int i; 4870 struct bnxt_vnic_info *vnic; 4871 struct pci_dev *pdev = bp->pdev; 4872 4873 if (!bp->vnic_info) 4874 return; 4875 4876 for (i = 0; i < bp->nr_vnics; i++) { 4877 vnic = &bp->vnic_info[i]; 4878 4879 kfree(vnic->fw_grp_ids); 4880 vnic->fw_grp_ids = NULL; 4881 4882 kfree(vnic->uc_list); 4883 vnic->uc_list = NULL; 4884 4885 if (vnic->mc_list) { 4886 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4887 vnic->mc_list, vnic->mc_list_mapping); 4888 vnic->mc_list = NULL; 4889 } 4890 4891 if (vnic->rss_table) { 4892 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4893 vnic->rss_table, 4894 vnic->rss_table_dma_addr); 4895 vnic->rss_table = NULL; 4896 } 4897 4898 vnic->rss_hash_key = NULL; 4899 vnic->flags = 0; 4900 } 4901 } 4902 4903 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4904 { 4905 int i, rc = 0, size; 4906 struct bnxt_vnic_info *vnic; 4907 struct pci_dev *pdev = bp->pdev; 4908 int max_rings; 4909 4910 for (i = 0; i < bp->nr_vnics; i++) { 4911 vnic = &bp->vnic_info[i]; 4912 4913 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4914 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4915 4916 if (mem_size > 0) { 4917 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4918 if (!vnic->uc_list) { 4919 rc = -ENOMEM; 4920 goto out; 4921 } 4922 } 4923 } 4924 4925 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4926 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4927 vnic->mc_list = 4928 dma_alloc_coherent(&pdev->dev, 4929 vnic->mc_list_size, 4930 &vnic->mc_list_mapping, 4931 GFP_KERNEL); 4932 if (!vnic->mc_list) { 4933 rc = -ENOMEM; 4934 goto out; 4935 } 4936 } 4937 4938 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4939 goto vnic_skip_grps; 4940 4941 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4942 max_rings = bp->rx_nr_rings; 4943 else 4944 max_rings = 1; 4945 4946 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4947 if (!vnic->fw_grp_ids) { 4948 rc = -ENOMEM; 4949 goto out; 4950 } 4951 vnic_skip_grps: 4952 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4953 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4954 continue; 4955 4956 /* Allocate rss table and hash key */ 4957 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4958 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4959 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4960 4961 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4962 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4963 vnic->rss_table_size, 4964 &vnic->rss_table_dma_addr, 4965 GFP_KERNEL); 4966 if (!vnic->rss_table) { 4967 rc = -ENOMEM; 4968 goto out; 4969 } 4970 4971 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4972 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4973 } 4974 return 0; 4975 4976 out: 4977 return rc; 4978 } 4979 4980 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4981 { 4982 struct bnxt_hwrm_wait_token *token; 4983 4984 dma_pool_destroy(bp->hwrm_dma_pool); 4985 bp->hwrm_dma_pool = NULL; 4986 4987 rcu_read_lock(); 4988 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4989 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4990 rcu_read_unlock(); 4991 } 4992 4993 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4994 { 4995 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4996 BNXT_HWRM_DMA_SIZE, 4997 BNXT_HWRM_DMA_ALIGN, 0); 4998 if (!bp->hwrm_dma_pool) 4999 return -ENOMEM; 5000 5001 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 5002 5003 return 0; 5004 } 5005 5006 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 5007 { 5008 kfree(stats->hw_masks); 5009 stats->hw_masks = NULL; 5010 kfree(stats->sw_stats); 5011 stats->sw_stats = NULL; 5012 if (stats->hw_stats) { 5013 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 5014 stats->hw_stats_map); 5015 stats->hw_stats = NULL; 5016 } 5017 } 5018 5019 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 5020 bool alloc_masks) 5021 { 5022 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 5023 &stats->hw_stats_map, GFP_KERNEL); 5024 if (!stats->hw_stats) 5025 return -ENOMEM; 5026 5027 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 5028 if (!stats->sw_stats) 5029 goto stats_mem_err; 5030 5031 if (alloc_masks) { 5032 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 5033 if (!stats->hw_masks) 5034 goto stats_mem_err; 5035 } 5036 return 0; 5037 5038 stats_mem_err: 5039 bnxt_free_stats_mem(bp, stats); 5040 return -ENOMEM; 5041 } 5042 5043 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 5044 { 5045 int i; 5046 5047 for (i = 0; i < count; i++) 5048 mask_arr[i] = mask; 5049 } 5050 5051 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 5052 { 5053 int i; 5054 5055 for (i = 0; i < count; i++) 5056 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 5057 } 5058 5059 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 5060 struct bnxt_stats_mem *stats) 5061 { 5062 struct hwrm_func_qstats_ext_output *resp; 5063 struct hwrm_func_qstats_ext_input *req; 5064 __le64 *hw_masks; 5065 int rc; 5066 5067 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 5068 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5069 return -EOPNOTSUPP; 5070 5071 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 5072 if (rc) 5073 return rc; 5074 5075 req->fid = cpu_to_le16(0xffff); 5076 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5077 5078 resp = hwrm_req_hold(bp, req); 5079 rc = hwrm_req_send(bp, req); 5080 if (!rc) { 5081 hw_masks = &resp->rx_ucast_pkts; 5082 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 5083 } 5084 hwrm_req_drop(bp, req); 5085 return rc; 5086 } 5087 5088 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 5089 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 5090 5091 static void bnxt_init_stats(struct bnxt *bp) 5092 { 5093 struct bnxt_napi *bnapi = bp->bnapi[0]; 5094 struct bnxt_cp_ring_info *cpr; 5095 struct bnxt_stats_mem *stats; 5096 __le64 *rx_stats, *tx_stats; 5097 int rc, rx_count, tx_count; 5098 u64 *rx_masks, *tx_masks; 5099 u64 mask; 5100 u8 flags; 5101 5102 cpr = &bnapi->cp_ring; 5103 stats = &cpr->stats; 5104 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 5105 if (rc) { 5106 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5107 mask = (1ULL << 48) - 1; 5108 else 5109 mask = -1ULL; 5110 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 5111 } 5112 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5113 stats = &bp->port_stats; 5114 rx_stats = stats->hw_stats; 5115 rx_masks = stats->hw_masks; 5116 rx_count = sizeof(struct rx_port_stats) / 8; 5117 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5118 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5119 tx_count = sizeof(struct tx_port_stats) / 8; 5120 5121 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 5122 rc = bnxt_hwrm_port_qstats(bp, flags); 5123 if (rc) { 5124 mask = (1ULL << 40) - 1; 5125 5126 bnxt_fill_masks(rx_masks, mask, rx_count); 5127 bnxt_fill_masks(tx_masks, mask, tx_count); 5128 } else { 5129 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5130 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5131 bnxt_hwrm_port_qstats(bp, 0); 5132 } 5133 } 5134 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5135 stats = &bp->rx_port_stats_ext; 5136 rx_stats = stats->hw_stats; 5137 rx_masks = stats->hw_masks; 5138 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5139 stats = &bp->tx_port_stats_ext; 5140 tx_stats = stats->hw_stats; 5141 tx_masks = stats->hw_masks; 5142 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5143 5144 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5145 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5146 if (rc) { 5147 mask = (1ULL << 40) - 1; 5148 5149 bnxt_fill_masks(rx_masks, mask, rx_count); 5150 if (tx_stats) 5151 bnxt_fill_masks(tx_masks, mask, tx_count); 5152 } else { 5153 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5154 if (tx_stats) 5155 bnxt_copy_hw_masks(tx_masks, tx_stats, 5156 tx_count); 5157 bnxt_hwrm_port_qstats_ext(bp, 0); 5158 } 5159 } 5160 } 5161 5162 static void bnxt_free_port_stats(struct bnxt *bp) 5163 { 5164 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5165 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5166 5167 bnxt_free_stats_mem(bp, &bp->port_stats); 5168 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5169 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5170 } 5171 5172 static void bnxt_free_ring_stats(struct bnxt *bp) 5173 { 5174 int i; 5175 5176 if (!bp->bnapi) 5177 return; 5178 5179 for (i = 0; i < bp->cp_nr_rings; i++) { 5180 struct bnxt_napi *bnapi = bp->bnapi[i]; 5181 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5182 5183 bnxt_free_stats_mem(bp, &cpr->stats); 5184 5185 kfree(cpr->sw_stats); 5186 cpr->sw_stats = NULL; 5187 } 5188 } 5189 5190 static int bnxt_alloc_stats(struct bnxt *bp) 5191 { 5192 u32 size, i; 5193 int rc; 5194 5195 size = bp->hw_ring_stats_size; 5196 5197 for (i = 0; i < bp->cp_nr_rings; i++) { 5198 struct bnxt_napi *bnapi = bp->bnapi[i]; 5199 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5200 5201 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5202 if (!cpr->sw_stats) 5203 return -ENOMEM; 5204 5205 cpr->stats.len = size; 5206 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5207 if (rc) 5208 return rc; 5209 5210 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5211 } 5212 5213 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5214 return 0; 5215 5216 if (bp->port_stats.hw_stats) 5217 goto alloc_ext_stats; 5218 5219 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5220 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5221 if (rc) 5222 return rc; 5223 5224 bp->flags |= BNXT_FLAG_PORT_STATS; 5225 5226 alloc_ext_stats: 5227 /* Display extended statistics only if FW supports it */ 5228 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5229 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5230 return 0; 5231 5232 if (bp->rx_port_stats_ext.hw_stats) 5233 goto alloc_tx_ext_stats; 5234 5235 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5236 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5237 /* Extended stats are optional */ 5238 if (rc) 5239 return 0; 5240 5241 alloc_tx_ext_stats: 5242 if (bp->tx_port_stats_ext.hw_stats) 5243 return 0; 5244 5245 if (bp->hwrm_spec_code >= 0x10902 || 5246 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5247 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5248 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5249 /* Extended stats are optional */ 5250 if (rc) 5251 return 0; 5252 } 5253 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5254 return 0; 5255 } 5256 5257 static void bnxt_clear_ring_indices(struct bnxt *bp) 5258 { 5259 int i, j; 5260 5261 if (!bp->bnapi) 5262 return; 5263 5264 for (i = 0; i < bp->cp_nr_rings; i++) { 5265 struct bnxt_napi *bnapi = bp->bnapi[i]; 5266 struct bnxt_cp_ring_info *cpr; 5267 struct bnxt_rx_ring_info *rxr; 5268 struct bnxt_tx_ring_info *txr; 5269 5270 if (!bnapi) 5271 continue; 5272 5273 cpr = &bnapi->cp_ring; 5274 cpr->cp_raw_cons = 0; 5275 5276 bnxt_for_each_napi_tx(j, bnapi, txr) { 5277 txr->tx_prod = 0; 5278 txr->tx_cons = 0; 5279 txr->tx_hw_cons = 0; 5280 } 5281 5282 rxr = bnapi->rx_ring; 5283 if (rxr) { 5284 rxr->rx_prod = 0; 5285 rxr->rx_agg_prod = 0; 5286 rxr->rx_sw_agg_prod = 0; 5287 rxr->rx_next_cons = 0; 5288 } 5289 bnapi->events = 0; 5290 } 5291 } 5292 5293 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5294 { 5295 u8 type = fltr->type, flags = fltr->flags; 5296 5297 INIT_LIST_HEAD(&fltr->list); 5298 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5299 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5300 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5301 } 5302 5303 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5304 { 5305 if (!list_empty(&fltr->list)) 5306 list_del_init(&fltr->list); 5307 } 5308 5309 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5310 { 5311 struct bnxt_filter_base *usr_fltr, *tmp; 5312 5313 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5314 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5315 continue; 5316 bnxt_del_one_usr_fltr(bp, usr_fltr); 5317 } 5318 } 5319 5320 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5321 { 5322 hlist_del(&fltr->hash); 5323 bnxt_del_one_usr_fltr(bp, fltr); 5324 if (fltr->flags) { 5325 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5326 bp->ntp_fltr_count--; 5327 } 5328 kfree(fltr); 5329 } 5330 5331 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5332 { 5333 int i; 5334 5335 netdev_assert_locked(bp->dev); 5336 5337 /* Under netdev instance lock and all our NAPIs have been disabled. 5338 * It's safe to delete the hash table. 5339 */ 5340 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5341 struct hlist_head *head; 5342 struct hlist_node *tmp; 5343 struct bnxt_ntuple_filter *fltr; 5344 5345 head = &bp->ntp_fltr_hash_tbl[i]; 5346 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5347 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5348 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5349 !list_empty(&fltr->base.list))) 5350 continue; 5351 bnxt_del_fltr(bp, &fltr->base); 5352 } 5353 } 5354 if (!all) 5355 return; 5356 5357 bitmap_free(bp->ntp_fltr_bmap); 5358 bp->ntp_fltr_bmap = NULL; 5359 bp->ntp_fltr_count = 0; 5360 } 5361 5362 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5363 { 5364 int i, rc = 0; 5365 5366 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5367 return 0; 5368 5369 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5370 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5371 5372 bp->ntp_fltr_count = 0; 5373 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5374 5375 if (!bp->ntp_fltr_bmap) 5376 rc = -ENOMEM; 5377 5378 return rc; 5379 } 5380 5381 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5382 { 5383 int i; 5384 5385 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5386 struct hlist_head *head; 5387 struct hlist_node *tmp; 5388 struct bnxt_l2_filter *fltr; 5389 5390 head = &bp->l2_fltr_hash_tbl[i]; 5391 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5392 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5393 !list_empty(&fltr->base.list))) 5394 continue; 5395 bnxt_del_fltr(bp, &fltr->base); 5396 } 5397 } 5398 } 5399 5400 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5401 { 5402 int i; 5403 5404 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5405 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5406 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5407 } 5408 5409 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5410 { 5411 bnxt_free_vnic_attributes(bp); 5412 bnxt_free_tx_rings(bp); 5413 bnxt_free_rx_rings(bp); 5414 bnxt_free_cp_rings(bp); 5415 bnxt_free_all_cp_arrays(bp); 5416 bnxt_free_ntp_fltrs(bp, false); 5417 bnxt_free_l2_filters(bp, false); 5418 if (irq_re_init) { 5419 bnxt_free_ring_stats(bp); 5420 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5421 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5422 bnxt_free_port_stats(bp); 5423 bnxt_free_ring_grps(bp); 5424 bnxt_free_vnics(bp); 5425 kfree(bp->tx_ring_map); 5426 bp->tx_ring_map = NULL; 5427 kfree(bp->tx_ring); 5428 bp->tx_ring = NULL; 5429 kfree(bp->rx_ring); 5430 bp->rx_ring = NULL; 5431 kfree(bp->bnapi); 5432 bp->bnapi = NULL; 5433 } else { 5434 bnxt_clear_ring_indices(bp); 5435 } 5436 } 5437 5438 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5439 { 5440 int i, j, rc, size, arr_size; 5441 void *bnapi; 5442 5443 if (irq_re_init) { 5444 /* Allocate bnapi mem pointer array and mem block for 5445 * all queues 5446 */ 5447 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5448 bp->cp_nr_rings); 5449 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5450 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5451 if (!bnapi) 5452 return -ENOMEM; 5453 5454 bp->bnapi = bnapi; 5455 bnapi += arr_size; 5456 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5457 bp->bnapi[i] = bnapi; 5458 bp->bnapi[i]->index = i; 5459 bp->bnapi[i]->bp = bp; 5460 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5461 struct bnxt_cp_ring_info *cpr = 5462 &bp->bnapi[i]->cp_ring; 5463 5464 cpr->cp_ring_struct.ring_mem.flags = 5465 BNXT_RMEM_RING_PTE_FLAG; 5466 } 5467 } 5468 5469 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5470 sizeof(struct bnxt_rx_ring_info), 5471 GFP_KERNEL); 5472 if (!bp->rx_ring) 5473 return -ENOMEM; 5474 5475 for (i = 0; i < bp->rx_nr_rings; i++) { 5476 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5477 5478 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5479 rxr->rx_ring_struct.ring_mem.flags = 5480 BNXT_RMEM_RING_PTE_FLAG; 5481 rxr->rx_agg_ring_struct.ring_mem.flags = 5482 BNXT_RMEM_RING_PTE_FLAG; 5483 } else { 5484 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5485 } 5486 rxr->bnapi = bp->bnapi[i]; 5487 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5488 } 5489 5490 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5491 sizeof(struct bnxt_tx_ring_info), 5492 GFP_KERNEL); 5493 if (!bp->tx_ring) 5494 return -ENOMEM; 5495 5496 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5497 GFP_KERNEL); 5498 5499 if (!bp->tx_ring_map) 5500 return -ENOMEM; 5501 5502 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5503 j = 0; 5504 else 5505 j = bp->rx_nr_rings; 5506 5507 for (i = 0; i < bp->tx_nr_rings; i++) { 5508 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5509 struct bnxt_napi *bnapi2; 5510 5511 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5512 txr->tx_ring_struct.ring_mem.flags = 5513 BNXT_RMEM_RING_PTE_FLAG; 5514 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5515 if (i >= bp->tx_nr_rings_xdp) { 5516 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5517 5518 bnapi2 = bp->bnapi[k]; 5519 txr->txq_index = i - bp->tx_nr_rings_xdp; 5520 txr->tx_napi_idx = 5521 BNXT_RING_TO_TC(bp, txr->txq_index); 5522 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5523 bnapi2->tx_int = bnxt_tx_int; 5524 } else { 5525 bnapi2 = bp->bnapi[j]; 5526 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5527 bnapi2->tx_ring[0] = txr; 5528 bnapi2->tx_int = bnxt_tx_int_xdp; 5529 j++; 5530 } 5531 txr->bnapi = bnapi2; 5532 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5533 txr->tx_cpr = &bnapi2->cp_ring; 5534 } 5535 5536 rc = bnxt_alloc_stats(bp); 5537 if (rc) 5538 goto alloc_mem_err; 5539 bnxt_init_stats(bp); 5540 5541 rc = bnxt_alloc_ntp_fltrs(bp); 5542 if (rc) 5543 goto alloc_mem_err; 5544 5545 rc = bnxt_alloc_vnics(bp); 5546 if (rc) 5547 goto alloc_mem_err; 5548 } 5549 5550 rc = bnxt_alloc_all_cp_arrays(bp); 5551 if (rc) 5552 goto alloc_mem_err; 5553 5554 bnxt_init_ring_struct(bp); 5555 5556 rc = bnxt_alloc_rx_rings(bp); 5557 if (rc) 5558 goto alloc_mem_err; 5559 5560 rc = bnxt_alloc_tx_rings(bp); 5561 if (rc) 5562 goto alloc_mem_err; 5563 5564 rc = bnxt_alloc_cp_rings(bp); 5565 if (rc) 5566 goto alloc_mem_err; 5567 5568 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5569 BNXT_VNIC_MCAST_FLAG | 5570 BNXT_VNIC_UCAST_FLAG; 5571 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5572 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5573 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5574 5575 rc = bnxt_alloc_vnic_attributes(bp); 5576 if (rc) 5577 goto alloc_mem_err; 5578 return 0; 5579 5580 alloc_mem_err: 5581 bnxt_free_mem(bp, true); 5582 return rc; 5583 } 5584 5585 static void bnxt_disable_int(struct bnxt *bp) 5586 { 5587 int i; 5588 5589 if (!bp->bnapi) 5590 return; 5591 5592 for (i = 0; i < bp->cp_nr_rings; i++) { 5593 struct bnxt_napi *bnapi = bp->bnapi[i]; 5594 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5595 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5596 5597 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5598 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5599 } 5600 } 5601 5602 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5603 { 5604 struct bnxt_napi *bnapi = bp->bnapi[n]; 5605 struct bnxt_cp_ring_info *cpr; 5606 5607 cpr = &bnapi->cp_ring; 5608 return cpr->cp_ring_struct.map_idx; 5609 } 5610 5611 static void bnxt_disable_int_sync(struct bnxt *bp) 5612 { 5613 int i; 5614 5615 if (!bp->irq_tbl) 5616 return; 5617 5618 atomic_inc(&bp->intr_sem); 5619 5620 bnxt_disable_int(bp); 5621 for (i = 0; i < bp->cp_nr_rings; i++) { 5622 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5623 5624 synchronize_irq(bp->irq_tbl[map_idx].vector); 5625 } 5626 } 5627 5628 static void bnxt_enable_int(struct bnxt *bp) 5629 { 5630 int i; 5631 5632 atomic_set(&bp->intr_sem, 0); 5633 for (i = 0; i < bp->cp_nr_rings; i++) { 5634 struct bnxt_napi *bnapi = bp->bnapi[i]; 5635 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5636 5637 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5638 } 5639 } 5640 5641 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5642 bool async_only) 5643 { 5644 DECLARE_BITMAP(async_events_bmap, 256); 5645 u32 *events = (u32 *)async_events_bmap; 5646 struct hwrm_func_drv_rgtr_output *resp; 5647 struct hwrm_func_drv_rgtr_input *req; 5648 u32 flags; 5649 int rc, i; 5650 5651 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5652 if (rc) 5653 return rc; 5654 5655 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5656 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5657 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5658 5659 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5660 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5661 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5662 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5663 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5664 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5665 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5666 if (bp->fw_cap & BNXT_FW_CAP_NPAR_1_2) 5667 flags |= FUNC_DRV_RGTR_REQ_FLAGS_NPAR_1_2_SUPPORT; 5668 req->flags = cpu_to_le32(flags); 5669 req->ver_maj_8b = DRV_VER_MAJ; 5670 req->ver_min_8b = DRV_VER_MIN; 5671 req->ver_upd_8b = DRV_VER_UPD; 5672 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5673 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5674 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5675 5676 if (BNXT_PF(bp)) { 5677 u32 data[8]; 5678 int i; 5679 5680 memset(data, 0, sizeof(data)); 5681 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5682 u16 cmd = bnxt_vf_req_snif[i]; 5683 unsigned int bit, idx; 5684 5685 idx = cmd / 32; 5686 bit = cmd % 32; 5687 data[idx] |= 1 << bit; 5688 } 5689 5690 for (i = 0; i < 8; i++) 5691 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5692 5693 req->enables |= 5694 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5695 } 5696 5697 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5698 req->flags |= cpu_to_le32( 5699 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5700 5701 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5702 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5703 u16 event_id = bnxt_async_events_arr[i]; 5704 5705 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5706 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5707 continue; 5708 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5709 !bp->ptp_cfg) 5710 continue; 5711 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5712 } 5713 if (bmap && bmap_size) { 5714 for (i = 0; i < bmap_size; i++) { 5715 if (test_bit(i, bmap)) 5716 __set_bit(i, async_events_bmap); 5717 } 5718 } 5719 for (i = 0; i < 8; i++) 5720 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5721 5722 if (async_only) 5723 req->enables = 5724 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5725 5726 resp = hwrm_req_hold(bp, req); 5727 rc = hwrm_req_send(bp, req); 5728 if (!rc) { 5729 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5730 if (resp->flags & 5731 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5732 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5733 } 5734 hwrm_req_drop(bp, req); 5735 return rc; 5736 } 5737 5738 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5739 { 5740 struct hwrm_func_drv_unrgtr_input *req; 5741 int rc; 5742 5743 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5744 return 0; 5745 5746 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5747 if (rc) 5748 return rc; 5749 return hwrm_req_send(bp, req); 5750 } 5751 5752 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5753 5754 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5755 { 5756 struct hwrm_tunnel_dst_port_free_input *req; 5757 int rc; 5758 5759 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5760 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5761 return 0; 5762 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5763 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5764 return 0; 5765 5766 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5767 if (rc) 5768 return rc; 5769 5770 req->tunnel_type = tunnel_type; 5771 5772 switch (tunnel_type) { 5773 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5774 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5775 bp->vxlan_port = 0; 5776 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5777 break; 5778 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5779 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5780 bp->nge_port = 0; 5781 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5782 break; 5783 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5784 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5785 bp->vxlan_gpe_port = 0; 5786 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5787 break; 5788 default: 5789 break; 5790 } 5791 5792 rc = hwrm_req_send(bp, req); 5793 if (rc) 5794 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5795 rc); 5796 if (bp->flags & BNXT_FLAG_TPA) 5797 bnxt_set_tpa(bp, true); 5798 return rc; 5799 } 5800 5801 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5802 u8 tunnel_type) 5803 { 5804 struct hwrm_tunnel_dst_port_alloc_output *resp; 5805 struct hwrm_tunnel_dst_port_alloc_input *req; 5806 int rc; 5807 5808 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5809 if (rc) 5810 return rc; 5811 5812 req->tunnel_type = tunnel_type; 5813 req->tunnel_dst_port_val = port; 5814 5815 resp = hwrm_req_hold(bp, req); 5816 rc = hwrm_req_send(bp, req); 5817 if (rc) { 5818 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5819 rc); 5820 goto err_out; 5821 } 5822 5823 switch (tunnel_type) { 5824 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5825 bp->vxlan_port = port; 5826 bp->vxlan_fw_dst_port_id = 5827 le16_to_cpu(resp->tunnel_dst_port_id); 5828 break; 5829 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5830 bp->nge_port = port; 5831 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5832 break; 5833 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5834 bp->vxlan_gpe_port = port; 5835 bp->vxlan_gpe_fw_dst_port_id = 5836 le16_to_cpu(resp->tunnel_dst_port_id); 5837 break; 5838 default: 5839 break; 5840 } 5841 if (bp->flags & BNXT_FLAG_TPA) 5842 bnxt_set_tpa(bp, true); 5843 5844 err_out: 5845 hwrm_req_drop(bp, req); 5846 return rc; 5847 } 5848 5849 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5850 { 5851 struct hwrm_cfa_l2_set_rx_mask_input *req; 5852 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5853 int rc; 5854 5855 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5856 if (rc) 5857 return rc; 5858 5859 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5860 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5861 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5862 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5863 } 5864 req->mask = cpu_to_le32(vnic->rx_mask); 5865 return hwrm_req_send_silent(bp, req); 5866 } 5867 5868 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5869 { 5870 if (!atomic_dec_and_test(&fltr->refcnt)) 5871 return; 5872 spin_lock_bh(&bp->ntp_fltr_lock); 5873 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5874 spin_unlock_bh(&bp->ntp_fltr_lock); 5875 return; 5876 } 5877 hlist_del_rcu(&fltr->base.hash); 5878 bnxt_del_one_usr_fltr(bp, &fltr->base); 5879 if (fltr->base.flags) { 5880 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5881 bp->ntp_fltr_count--; 5882 } 5883 spin_unlock_bh(&bp->ntp_fltr_lock); 5884 kfree_rcu(fltr, base.rcu); 5885 } 5886 5887 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5888 struct bnxt_l2_key *key, 5889 u32 idx) 5890 { 5891 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5892 struct bnxt_l2_filter *fltr; 5893 5894 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5895 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5896 5897 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5898 l2_key->vlan == key->vlan) 5899 return fltr; 5900 } 5901 return NULL; 5902 } 5903 5904 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5905 struct bnxt_l2_key *key, 5906 u32 idx) 5907 { 5908 struct bnxt_l2_filter *fltr = NULL; 5909 5910 rcu_read_lock(); 5911 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5912 if (fltr) 5913 atomic_inc(&fltr->refcnt); 5914 rcu_read_unlock(); 5915 return fltr; 5916 } 5917 5918 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5919 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5920 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5921 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5922 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5923 5924 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5925 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5926 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5927 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5928 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5929 5930 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5931 { 5932 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5933 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5934 return sizeof(fkeys->addrs.v4addrs) + 5935 sizeof(fkeys->ports); 5936 5937 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5938 return sizeof(fkeys->addrs.v4addrs); 5939 } 5940 5941 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5942 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5943 return sizeof(fkeys->addrs.v6addrs) + 5944 sizeof(fkeys->ports); 5945 5946 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5947 return sizeof(fkeys->addrs.v6addrs); 5948 } 5949 5950 return 0; 5951 } 5952 5953 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5954 const unsigned char *key) 5955 { 5956 u64 prefix = bp->toeplitz_prefix, hash = 0; 5957 struct bnxt_ipv4_tuple tuple4; 5958 struct bnxt_ipv6_tuple tuple6; 5959 int i, j, len = 0; 5960 u8 *four_tuple; 5961 5962 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5963 if (!len) 5964 return 0; 5965 5966 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5967 tuple4.v4addrs = fkeys->addrs.v4addrs; 5968 tuple4.ports = fkeys->ports; 5969 four_tuple = (unsigned char *)&tuple4; 5970 } else { 5971 tuple6.v6addrs = fkeys->addrs.v6addrs; 5972 tuple6.ports = fkeys->ports; 5973 four_tuple = (unsigned char *)&tuple6; 5974 } 5975 5976 for (i = 0, j = 8; i < len; i++, j++) { 5977 u8 byte = four_tuple[i]; 5978 int bit; 5979 5980 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5981 if (byte & 0x80) 5982 hash ^= prefix; 5983 } 5984 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5985 } 5986 5987 /* The valid part of the hash is in the upper 32 bits. */ 5988 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5989 } 5990 5991 #ifdef CONFIG_RFS_ACCEL 5992 static struct bnxt_l2_filter * 5993 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5994 { 5995 struct bnxt_l2_filter *fltr; 5996 u32 idx; 5997 5998 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5999 BNXT_L2_FLTR_HASH_MASK; 6000 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6001 return fltr; 6002 } 6003 #endif 6004 6005 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 6006 struct bnxt_l2_key *key, u32 idx) 6007 { 6008 struct hlist_head *head; 6009 6010 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 6011 fltr->l2_key.vlan = key->vlan; 6012 fltr->base.type = BNXT_FLTR_TYPE_L2; 6013 if (fltr->base.flags) { 6014 int bit_id; 6015 6016 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 6017 bp->max_fltr, 0); 6018 if (bit_id < 0) 6019 return -ENOMEM; 6020 fltr->base.sw_id = (u16)bit_id; 6021 bp->ntp_fltr_count++; 6022 } 6023 head = &bp->l2_fltr_hash_tbl[idx]; 6024 hlist_add_head_rcu(&fltr->base.hash, head); 6025 bnxt_insert_usr_fltr(bp, &fltr->base); 6026 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 6027 atomic_set(&fltr->refcnt, 1); 6028 return 0; 6029 } 6030 6031 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 6032 struct bnxt_l2_key *key, 6033 gfp_t gfp) 6034 { 6035 struct bnxt_l2_filter *fltr; 6036 u32 idx; 6037 int rc; 6038 6039 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6040 BNXT_L2_FLTR_HASH_MASK; 6041 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6042 if (fltr) 6043 return fltr; 6044 6045 fltr = kzalloc(sizeof(*fltr), gfp); 6046 if (!fltr) 6047 return ERR_PTR(-ENOMEM); 6048 spin_lock_bh(&bp->ntp_fltr_lock); 6049 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6050 spin_unlock_bh(&bp->ntp_fltr_lock); 6051 if (rc) { 6052 bnxt_del_l2_filter(bp, fltr); 6053 fltr = ERR_PTR(rc); 6054 } 6055 return fltr; 6056 } 6057 6058 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 6059 struct bnxt_l2_key *key, 6060 u16 flags) 6061 { 6062 struct bnxt_l2_filter *fltr; 6063 u32 idx; 6064 int rc; 6065 6066 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6067 BNXT_L2_FLTR_HASH_MASK; 6068 spin_lock_bh(&bp->ntp_fltr_lock); 6069 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 6070 if (fltr) { 6071 fltr = ERR_PTR(-EEXIST); 6072 goto l2_filter_exit; 6073 } 6074 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 6075 if (!fltr) { 6076 fltr = ERR_PTR(-ENOMEM); 6077 goto l2_filter_exit; 6078 } 6079 fltr->base.flags = flags; 6080 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6081 if (rc) { 6082 spin_unlock_bh(&bp->ntp_fltr_lock); 6083 bnxt_del_l2_filter(bp, fltr); 6084 return ERR_PTR(rc); 6085 } 6086 6087 l2_filter_exit: 6088 spin_unlock_bh(&bp->ntp_fltr_lock); 6089 return fltr; 6090 } 6091 6092 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 6093 { 6094 #ifdef CONFIG_BNXT_SRIOV 6095 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 6096 6097 return vf->fw_fid; 6098 #else 6099 return INVALID_HW_RING_ID; 6100 #endif 6101 } 6102 6103 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6104 { 6105 struct hwrm_cfa_l2_filter_free_input *req; 6106 u16 target_id = 0xffff; 6107 int rc; 6108 6109 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6110 struct bnxt_pf_info *pf = &bp->pf; 6111 6112 if (fltr->base.vf_idx >= pf->active_vfs) 6113 return -EINVAL; 6114 6115 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6116 if (target_id == INVALID_HW_RING_ID) 6117 return -EINVAL; 6118 } 6119 6120 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 6121 if (rc) 6122 return rc; 6123 6124 req->target_id = cpu_to_le16(target_id); 6125 req->l2_filter_id = fltr->base.filter_id; 6126 return hwrm_req_send(bp, req); 6127 } 6128 6129 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6130 { 6131 struct hwrm_cfa_l2_filter_alloc_output *resp; 6132 struct hwrm_cfa_l2_filter_alloc_input *req; 6133 u16 target_id = 0xffff; 6134 int rc; 6135 6136 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6137 struct bnxt_pf_info *pf = &bp->pf; 6138 6139 if (fltr->base.vf_idx >= pf->active_vfs) 6140 return -EINVAL; 6141 6142 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6143 } 6144 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6145 if (rc) 6146 return rc; 6147 6148 req->target_id = cpu_to_le16(target_id); 6149 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6150 6151 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6152 req->flags |= 6153 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6154 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6155 req->enables = 6156 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6157 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6158 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6159 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6160 eth_broadcast_addr(req->l2_addr_mask); 6161 6162 if (fltr->l2_key.vlan) { 6163 req->enables |= 6164 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6165 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6166 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6167 req->num_vlans = 1; 6168 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6169 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6170 } 6171 6172 resp = hwrm_req_hold(bp, req); 6173 rc = hwrm_req_send(bp, req); 6174 if (!rc) { 6175 fltr->base.filter_id = resp->l2_filter_id; 6176 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6177 } 6178 hwrm_req_drop(bp, req); 6179 return rc; 6180 } 6181 6182 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6183 struct bnxt_ntuple_filter *fltr) 6184 { 6185 struct hwrm_cfa_ntuple_filter_free_input *req; 6186 int rc; 6187 6188 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6189 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6190 if (rc) 6191 return rc; 6192 6193 req->ntuple_filter_id = fltr->base.filter_id; 6194 return hwrm_req_send(bp, req); 6195 } 6196 6197 #define BNXT_NTP_FLTR_FLAGS \ 6198 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6199 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6200 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6201 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6202 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6203 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6204 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6205 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6206 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6207 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6208 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6209 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6210 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6211 6212 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6213 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6214 6215 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6216 { 6217 int i; 6218 6219 for (i = 0; i < 4; i++) 6220 mask[i] = cpu_to_be32(~0); 6221 } 6222 6223 static void 6224 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6225 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6226 struct bnxt_ntuple_filter *fltr) 6227 { 6228 u16 rxq = fltr->base.rxq; 6229 6230 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6231 struct ethtool_rxfh_context *ctx; 6232 struct bnxt_rss_ctx *rss_ctx; 6233 struct bnxt_vnic_info *vnic; 6234 6235 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6236 fltr->base.fw_vnic_id); 6237 if (ctx) { 6238 rss_ctx = ethtool_rxfh_context_priv(ctx); 6239 vnic = &rss_ctx->vnic; 6240 6241 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6242 } 6243 return; 6244 } 6245 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6246 struct bnxt_vnic_info *vnic; 6247 u32 enables; 6248 6249 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6250 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6251 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6252 req->enables |= cpu_to_le32(enables); 6253 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6254 } else { 6255 u32 flags; 6256 6257 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6258 req->flags |= cpu_to_le32(flags); 6259 req->dst_id = cpu_to_le16(rxq); 6260 } 6261 } 6262 6263 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6264 struct bnxt_ntuple_filter *fltr) 6265 { 6266 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6267 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6268 struct bnxt_flow_masks *masks = &fltr->fmasks; 6269 struct flow_keys *keys = &fltr->fkeys; 6270 struct bnxt_l2_filter *l2_fltr; 6271 struct bnxt_vnic_info *vnic; 6272 int rc; 6273 6274 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6275 if (rc) 6276 return rc; 6277 6278 l2_fltr = fltr->l2_fltr; 6279 req->l2_filter_id = l2_fltr->base.filter_id; 6280 6281 if (fltr->base.flags & BNXT_ACT_DROP) { 6282 req->flags = 6283 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6284 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6285 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6286 } else { 6287 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6288 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6289 } 6290 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6291 6292 req->ethertype = htons(ETH_P_IP); 6293 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6294 req->ip_protocol = keys->basic.ip_proto; 6295 6296 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6297 req->ethertype = htons(ETH_P_IPV6); 6298 req->ip_addr_type = 6299 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6300 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6301 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6302 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6303 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6304 } else { 6305 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6306 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6307 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6308 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6309 } 6310 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6311 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6312 req->tunnel_type = 6313 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6314 } 6315 6316 req->src_port = keys->ports.src; 6317 req->src_port_mask = masks->ports.src; 6318 req->dst_port = keys->ports.dst; 6319 req->dst_port_mask = masks->ports.dst; 6320 6321 resp = hwrm_req_hold(bp, req); 6322 rc = hwrm_req_send(bp, req); 6323 if (!rc) 6324 fltr->base.filter_id = resp->ntuple_filter_id; 6325 hwrm_req_drop(bp, req); 6326 return rc; 6327 } 6328 6329 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6330 const u8 *mac_addr) 6331 { 6332 struct bnxt_l2_filter *fltr; 6333 struct bnxt_l2_key key; 6334 int rc; 6335 6336 ether_addr_copy(key.dst_mac_addr, mac_addr); 6337 key.vlan = 0; 6338 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6339 if (IS_ERR(fltr)) 6340 return PTR_ERR(fltr); 6341 6342 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6343 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6344 if (rc) 6345 bnxt_del_l2_filter(bp, fltr); 6346 else 6347 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6348 return rc; 6349 } 6350 6351 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6352 { 6353 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6354 6355 /* Any associated ntuple filters will also be cleared by firmware. */ 6356 for (i = 0; i < num_of_vnics; i++) { 6357 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6358 6359 for (j = 0; j < vnic->uc_filter_count; j++) { 6360 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6361 6362 bnxt_hwrm_l2_filter_free(bp, fltr); 6363 bnxt_del_l2_filter(bp, fltr); 6364 } 6365 vnic->uc_filter_count = 0; 6366 } 6367 } 6368 6369 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6370 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6371 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6372 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6373 6374 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6375 struct hwrm_vnic_tpa_cfg_input *req) 6376 { 6377 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6378 6379 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6380 return; 6381 6382 if (bp->vxlan_port) 6383 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6384 if (bp->vxlan_gpe_port) 6385 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6386 if (bp->nge_port) 6387 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6388 6389 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6390 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6391 } 6392 6393 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6394 u32 tpa_flags) 6395 { 6396 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6397 struct hwrm_vnic_tpa_cfg_input *req; 6398 int rc; 6399 6400 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6401 return 0; 6402 6403 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6404 if (rc) 6405 return rc; 6406 6407 if (tpa_flags) { 6408 u16 mss = bp->dev->mtu - 40; 6409 u32 nsegs, n, segs = 0, flags; 6410 6411 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6412 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6413 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6414 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6415 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6416 if (tpa_flags & BNXT_FLAG_GRO) 6417 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6418 6419 req->flags = cpu_to_le32(flags); 6420 6421 req->enables = 6422 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6423 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6424 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6425 6426 /* Number of segs are log2 units, and first packet is not 6427 * included as part of this units. 6428 */ 6429 if (mss <= BNXT_RX_PAGE_SIZE) { 6430 n = BNXT_RX_PAGE_SIZE / mss; 6431 nsegs = (MAX_SKB_FRAGS - 1) * n; 6432 } else { 6433 n = mss / BNXT_RX_PAGE_SIZE; 6434 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6435 n++; 6436 nsegs = (MAX_SKB_FRAGS - n) / n; 6437 } 6438 6439 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6440 segs = MAX_TPA_SEGS_P5; 6441 max_aggs = bp->max_tpa; 6442 } else { 6443 segs = ilog2(nsegs); 6444 } 6445 req->max_agg_segs = cpu_to_le16(segs); 6446 req->max_aggs = cpu_to_le16(max_aggs); 6447 6448 req->min_agg_len = cpu_to_le32(512); 6449 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6450 } 6451 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6452 6453 return hwrm_req_send(bp, req); 6454 } 6455 6456 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6457 { 6458 struct bnxt_ring_grp_info *grp_info; 6459 6460 grp_info = &bp->grp_info[ring->grp_idx]; 6461 return grp_info->cp_fw_ring_id; 6462 } 6463 6464 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6465 { 6466 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6467 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6468 else 6469 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6470 } 6471 6472 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6473 { 6474 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6475 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6476 else 6477 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6478 } 6479 6480 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6481 { 6482 int entries; 6483 6484 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6485 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6486 else 6487 entries = HW_HASH_INDEX_SIZE; 6488 6489 bp->rss_indir_tbl_entries = entries; 6490 bp->rss_indir_tbl = 6491 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6492 if (!bp->rss_indir_tbl) 6493 return -ENOMEM; 6494 6495 return 0; 6496 } 6497 6498 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6499 struct ethtool_rxfh_context *rss_ctx) 6500 { 6501 u16 max_rings, max_entries, pad, i; 6502 u32 *rss_indir_tbl; 6503 6504 if (!bp->rx_nr_rings) 6505 return; 6506 6507 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6508 max_rings = bp->rx_nr_rings - 1; 6509 else 6510 max_rings = bp->rx_nr_rings; 6511 6512 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6513 if (rss_ctx) 6514 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6515 else 6516 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6517 6518 for (i = 0; i < max_entries; i++) 6519 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6520 6521 pad = bp->rss_indir_tbl_entries - max_entries; 6522 if (pad) 6523 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6524 } 6525 6526 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6527 { 6528 u32 i, tbl_size, max_ring = 0; 6529 6530 if (!bp->rss_indir_tbl) 6531 return 0; 6532 6533 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6534 for (i = 0; i < tbl_size; i++) 6535 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6536 return max_ring; 6537 } 6538 6539 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6540 { 6541 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6542 if (!rx_rings) 6543 return 0; 6544 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6545 BNXT_RSS_TABLE_ENTRIES_P5); 6546 } 6547 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6548 return 2; 6549 return 1; 6550 } 6551 6552 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6553 { 6554 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6555 u16 i, j; 6556 6557 /* Fill the RSS indirection table with ring group ids */ 6558 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6559 if (!no_rss) 6560 j = bp->rss_indir_tbl[i]; 6561 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6562 } 6563 } 6564 6565 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6566 struct bnxt_vnic_info *vnic) 6567 { 6568 __le16 *ring_tbl = vnic->rss_table; 6569 struct bnxt_rx_ring_info *rxr; 6570 u16 tbl_size, i; 6571 6572 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6573 6574 for (i = 0; i < tbl_size; i++) { 6575 u16 ring_id, j; 6576 6577 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6578 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6579 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6580 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6581 else 6582 j = bp->rss_indir_tbl[i]; 6583 rxr = &bp->rx_ring[j]; 6584 6585 ring_id = rxr->rx_ring_struct.fw_ring_id; 6586 *ring_tbl++ = cpu_to_le16(ring_id); 6587 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6588 *ring_tbl++ = cpu_to_le16(ring_id); 6589 } 6590 } 6591 6592 static void 6593 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6594 struct bnxt_vnic_info *vnic) 6595 { 6596 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6597 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6598 if (bp->flags & BNXT_FLAG_CHIP_P7) 6599 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6600 } else { 6601 bnxt_fill_hw_rss_tbl(bp, vnic); 6602 } 6603 6604 if (bp->rss_hash_delta) { 6605 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6606 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6607 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6608 else 6609 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6610 } else { 6611 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6612 } 6613 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6614 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6615 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6616 } 6617 6618 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6619 bool set_rss) 6620 { 6621 struct hwrm_vnic_rss_cfg_input *req; 6622 int rc; 6623 6624 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6625 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6626 return 0; 6627 6628 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6629 if (rc) 6630 return rc; 6631 6632 if (set_rss) 6633 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6634 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6635 return hwrm_req_send(bp, req); 6636 } 6637 6638 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6639 struct bnxt_vnic_info *vnic, bool set_rss) 6640 { 6641 struct hwrm_vnic_rss_cfg_input *req; 6642 dma_addr_t ring_tbl_map; 6643 u32 i, nr_ctxs; 6644 int rc; 6645 6646 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6647 if (rc) 6648 return rc; 6649 6650 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6651 if (!set_rss) 6652 return hwrm_req_send(bp, req); 6653 6654 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6655 ring_tbl_map = vnic->rss_table_dma_addr; 6656 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6657 6658 hwrm_req_hold(bp, req); 6659 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6660 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6661 req->ring_table_pair_index = i; 6662 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6663 rc = hwrm_req_send(bp, req); 6664 if (rc) 6665 goto exit; 6666 } 6667 6668 exit: 6669 hwrm_req_drop(bp, req); 6670 return rc; 6671 } 6672 6673 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6674 { 6675 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6676 struct hwrm_vnic_rss_qcfg_output *resp; 6677 struct hwrm_vnic_rss_qcfg_input *req; 6678 6679 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6680 return; 6681 6682 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6683 /* all contexts configured to same hash_type, zero always exists */ 6684 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6685 resp = hwrm_req_hold(bp, req); 6686 if (!hwrm_req_send(bp, req)) { 6687 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6688 bp->rss_hash_delta = 0; 6689 } 6690 hwrm_req_drop(bp, req); 6691 } 6692 6693 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6694 { 6695 u16 hds_thresh = (u16)bp->dev->cfg_pending->hds_thresh; 6696 struct hwrm_vnic_plcmodes_cfg_input *req; 6697 int rc; 6698 6699 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6700 if (rc) 6701 return rc; 6702 6703 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6704 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6705 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6706 6707 if (!BNXT_RX_PAGE_MODE(bp) && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 6708 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6709 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6710 req->enables |= 6711 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6712 req->hds_threshold = cpu_to_le16(hds_thresh); 6713 } 6714 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6715 return hwrm_req_send(bp, req); 6716 } 6717 6718 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6719 struct bnxt_vnic_info *vnic, 6720 u16 ctx_idx) 6721 { 6722 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6723 6724 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6725 return; 6726 6727 req->rss_cos_lb_ctx_id = 6728 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6729 6730 hwrm_req_send(bp, req); 6731 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6732 } 6733 6734 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6735 { 6736 int i, j; 6737 6738 for (i = 0; i < bp->nr_vnics; i++) { 6739 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6740 6741 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6742 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6743 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6744 } 6745 } 6746 bp->rsscos_nr_ctxs = 0; 6747 } 6748 6749 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6750 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6751 { 6752 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6753 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6754 int rc; 6755 6756 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6757 if (rc) 6758 return rc; 6759 6760 resp = hwrm_req_hold(bp, req); 6761 rc = hwrm_req_send(bp, req); 6762 if (!rc) 6763 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6764 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6765 hwrm_req_drop(bp, req); 6766 6767 return rc; 6768 } 6769 6770 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6771 { 6772 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6773 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6774 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6775 } 6776 6777 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6778 { 6779 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6780 struct hwrm_vnic_cfg_input *req; 6781 unsigned int ring = 0, grp_idx; 6782 u16 def_vlan = 0; 6783 int rc; 6784 6785 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6786 if (rc) 6787 return rc; 6788 6789 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6790 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6791 6792 req->default_rx_ring_id = 6793 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6794 req->default_cmpl_ring_id = 6795 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6796 req->enables = 6797 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6798 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6799 goto vnic_mru; 6800 } 6801 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6802 /* Only RSS support for now TBD: COS & LB */ 6803 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6804 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6805 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6806 VNIC_CFG_REQ_ENABLES_MRU); 6807 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6808 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6809 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6810 VNIC_CFG_REQ_ENABLES_MRU); 6811 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6812 } else { 6813 req->rss_rule = cpu_to_le16(0xffff); 6814 } 6815 6816 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6817 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6818 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6819 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6820 } else { 6821 req->cos_rule = cpu_to_le16(0xffff); 6822 } 6823 6824 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6825 ring = 0; 6826 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6827 ring = vnic->vnic_id - 1; 6828 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6829 ring = bp->rx_nr_rings - 1; 6830 6831 grp_idx = bp->rx_ring[ring].bnapi->index; 6832 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6833 req->lb_rule = cpu_to_le16(0xffff); 6834 vnic_mru: 6835 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6836 req->mru = cpu_to_le16(vnic->mru); 6837 6838 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6839 #ifdef CONFIG_BNXT_SRIOV 6840 if (BNXT_VF(bp)) 6841 def_vlan = bp->vf.vlan; 6842 #endif 6843 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6844 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6845 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6846 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6847 6848 return hwrm_req_send(bp, req); 6849 } 6850 6851 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6852 struct bnxt_vnic_info *vnic) 6853 { 6854 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6855 struct hwrm_vnic_free_input *req; 6856 6857 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6858 return; 6859 6860 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6861 6862 hwrm_req_send(bp, req); 6863 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6864 } 6865 } 6866 6867 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6868 { 6869 u16 i; 6870 6871 for (i = 0; i < bp->nr_vnics; i++) 6872 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6873 } 6874 6875 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6876 unsigned int start_rx_ring_idx, 6877 unsigned int nr_rings) 6878 { 6879 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6880 struct hwrm_vnic_alloc_output *resp; 6881 struct hwrm_vnic_alloc_input *req; 6882 int rc; 6883 6884 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6885 if (rc) 6886 return rc; 6887 6888 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6889 goto vnic_no_ring_grps; 6890 6891 /* map ring groups to this vnic */ 6892 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6893 grp_idx = bp->rx_ring[i].bnapi->index; 6894 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6895 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6896 j, nr_rings); 6897 break; 6898 } 6899 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6900 } 6901 6902 vnic_no_ring_grps: 6903 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6904 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6905 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6906 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6907 6908 resp = hwrm_req_hold(bp, req); 6909 rc = hwrm_req_send(bp, req); 6910 if (!rc) 6911 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6912 hwrm_req_drop(bp, req); 6913 return rc; 6914 } 6915 6916 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6917 { 6918 struct hwrm_vnic_qcaps_output *resp; 6919 struct hwrm_vnic_qcaps_input *req; 6920 int rc; 6921 6922 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6923 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6924 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6925 if (bp->hwrm_spec_code < 0x10600) 6926 return 0; 6927 6928 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6929 if (rc) 6930 return rc; 6931 6932 resp = hwrm_req_hold(bp, req); 6933 rc = hwrm_req_send(bp, req); 6934 if (!rc) { 6935 u32 flags = le32_to_cpu(resp->flags); 6936 6937 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6938 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6939 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6940 if (flags & 6941 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6942 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6943 6944 /* Older P5 fw before EXT_HW_STATS support did not set 6945 * VLAN_STRIP_CAP properly. 6946 */ 6947 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6948 (BNXT_CHIP_P5(bp) && 6949 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6950 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6951 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6952 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6953 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6954 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6955 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6956 if (bp->max_tpa_v2) { 6957 if (BNXT_CHIP_P5(bp)) 6958 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6959 else 6960 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6961 } 6962 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6963 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6964 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6965 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6966 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6967 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6968 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6969 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6970 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6971 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6972 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6973 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6974 } 6975 hwrm_req_drop(bp, req); 6976 return rc; 6977 } 6978 6979 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6980 { 6981 struct hwrm_ring_grp_alloc_output *resp; 6982 struct hwrm_ring_grp_alloc_input *req; 6983 int rc; 6984 u16 i; 6985 6986 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6987 return 0; 6988 6989 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6990 if (rc) 6991 return rc; 6992 6993 resp = hwrm_req_hold(bp, req); 6994 for (i = 0; i < bp->rx_nr_rings; i++) { 6995 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6996 6997 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6998 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6999 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 7000 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 7001 7002 rc = hwrm_req_send(bp, req); 7003 7004 if (rc) 7005 break; 7006 7007 bp->grp_info[grp_idx].fw_grp_id = 7008 le32_to_cpu(resp->ring_group_id); 7009 } 7010 hwrm_req_drop(bp, req); 7011 return rc; 7012 } 7013 7014 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 7015 { 7016 struct hwrm_ring_grp_free_input *req; 7017 u16 i; 7018 7019 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7020 return; 7021 7022 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 7023 return; 7024 7025 hwrm_req_hold(bp, req); 7026 for (i = 0; i < bp->cp_nr_rings; i++) { 7027 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 7028 continue; 7029 req->ring_group_id = 7030 cpu_to_le32(bp->grp_info[i].fw_grp_id); 7031 7032 hwrm_req_send(bp, req); 7033 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 7034 } 7035 hwrm_req_drop(bp, req); 7036 } 7037 7038 static void bnxt_set_rx_ring_params_p5(struct bnxt *bp, u32 ring_type, 7039 struct hwrm_ring_alloc_input *req, 7040 struct bnxt_ring_struct *ring) 7041 { 7042 struct bnxt_ring_grp_info *grp_info = &bp->grp_info[ring->grp_idx]; 7043 u32 enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID | 7044 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID; 7045 7046 if (ring_type == HWRM_RING_ALLOC_AGG) { 7047 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 7048 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 7049 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 7050 enables |= RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID; 7051 } else { 7052 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 7053 if (NET_IP_ALIGN == 2) 7054 req->flags = 7055 cpu_to_le16(RING_ALLOC_REQ_FLAGS_RX_SOP_PAD); 7056 } 7057 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7058 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7059 req->enables |= cpu_to_le32(enables); 7060 } 7061 7062 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 7063 struct bnxt_ring_struct *ring, 7064 u32 ring_type, u32 map_index) 7065 { 7066 struct hwrm_ring_alloc_output *resp; 7067 struct hwrm_ring_alloc_input *req; 7068 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 7069 struct bnxt_ring_grp_info *grp_info; 7070 int rc, err = 0; 7071 u16 ring_id; 7072 7073 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 7074 if (rc) 7075 goto exit; 7076 7077 req->enables = 0; 7078 if (rmem->nr_pages > 1) { 7079 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 7080 /* Page size is in log2 units */ 7081 req->page_size = BNXT_PAGE_SHIFT; 7082 req->page_tbl_depth = 1; 7083 } else { 7084 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 7085 } 7086 req->fbo = 0; 7087 /* Association of ring index with doorbell index and MSIX number */ 7088 req->logical_id = cpu_to_le16(map_index); 7089 7090 switch (ring_type) { 7091 case HWRM_RING_ALLOC_TX: { 7092 struct bnxt_tx_ring_info *txr; 7093 u16 flags = 0; 7094 7095 txr = container_of(ring, struct bnxt_tx_ring_info, 7096 tx_ring_struct); 7097 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 7098 /* Association of transmit ring with completion ring */ 7099 grp_info = &bp->grp_info[ring->grp_idx]; 7100 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 7101 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 7102 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7103 req->queue_id = cpu_to_le16(ring->queue_id); 7104 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 7105 req->cmpl_coal_cnt = 7106 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 7107 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 7108 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 7109 req->flags = cpu_to_le16(flags); 7110 break; 7111 } 7112 case HWRM_RING_ALLOC_RX: 7113 case HWRM_RING_ALLOC_AGG: 7114 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 7115 req->length = (ring_type == HWRM_RING_ALLOC_RX) ? 7116 cpu_to_le32(bp->rx_ring_mask + 1) : 7117 cpu_to_le32(bp->rx_agg_ring_mask + 1); 7118 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7119 bnxt_set_rx_ring_params_p5(bp, ring_type, req, ring); 7120 break; 7121 case HWRM_RING_ALLOC_CMPL: 7122 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 7123 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7124 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7125 /* Association of cp ring with nq */ 7126 grp_info = &bp->grp_info[map_index]; 7127 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7128 req->cq_handle = cpu_to_le64(ring->handle); 7129 req->enables |= cpu_to_le32( 7130 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 7131 } else { 7132 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7133 } 7134 break; 7135 case HWRM_RING_ALLOC_NQ: 7136 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7137 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7138 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7139 break; 7140 default: 7141 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7142 ring_type); 7143 return -EINVAL; 7144 } 7145 7146 resp = hwrm_req_hold(bp, req); 7147 rc = hwrm_req_send(bp, req); 7148 err = le16_to_cpu(resp->error_code); 7149 ring_id = le16_to_cpu(resp->ring_id); 7150 hwrm_req_drop(bp, req); 7151 7152 exit: 7153 if (rc || err) { 7154 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7155 ring_type, rc, err); 7156 return -EIO; 7157 } 7158 ring->fw_ring_id = ring_id; 7159 return rc; 7160 } 7161 7162 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7163 { 7164 int rc; 7165 7166 if (BNXT_PF(bp)) { 7167 struct hwrm_func_cfg_input *req; 7168 7169 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7170 if (rc) 7171 return rc; 7172 7173 req->fid = cpu_to_le16(0xffff); 7174 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7175 req->async_event_cr = cpu_to_le16(idx); 7176 return hwrm_req_send(bp, req); 7177 } else { 7178 struct hwrm_func_vf_cfg_input *req; 7179 7180 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7181 if (rc) 7182 return rc; 7183 7184 req->enables = 7185 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7186 req->async_event_cr = cpu_to_le16(idx); 7187 return hwrm_req_send(bp, req); 7188 } 7189 } 7190 7191 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7192 u32 ring_type) 7193 { 7194 switch (ring_type) { 7195 case HWRM_RING_ALLOC_TX: 7196 db->db_ring_mask = bp->tx_ring_mask; 7197 break; 7198 case HWRM_RING_ALLOC_RX: 7199 db->db_ring_mask = bp->rx_ring_mask; 7200 break; 7201 case HWRM_RING_ALLOC_AGG: 7202 db->db_ring_mask = bp->rx_agg_ring_mask; 7203 break; 7204 case HWRM_RING_ALLOC_CMPL: 7205 case HWRM_RING_ALLOC_NQ: 7206 db->db_ring_mask = bp->cp_ring_mask; 7207 break; 7208 } 7209 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7210 db->db_epoch_mask = db->db_ring_mask + 1; 7211 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7212 } 7213 } 7214 7215 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7216 u32 map_idx, u32 xid) 7217 { 7218 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7219 switch (ring_type) { 7220 case HWRM_RING_ALLOC_TX: 7221 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7222 break; 7223 case HWRM_RING_ALLOC_RX: 7224 case HWRM_RING_ALLOC_AGG: 7225 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7226 break; 7227 case HWRM_RING_ALLOC_CMPL: 7228 db->db_key64 = DBR_PATH_L2; 7229 break; 7230 case HWRM_RING_ALLOC_NQ: 7231 db->db_key64 = DBR_PATH_L2; 7232 break; 7233 } 7234 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7235 7236 if (bp->flags & BNXT_FLAG_CHIP_P7) 7237 db->db_key64 |= DBR_VALID; 7238 7239 db->doorbell = bp->bar1 + bp->db_offset; 7240 } else { 7241 db->doorbell = bp->bar1 + map_idx * 0x80; 7242 switch (ring_type) { 7243 case HWRM_RING_ALLOC_TX: 7244 db->db_key32 = DB_KEY_TX; 7245 break; 7246 case HWRM_RING_ALLOC_RX: 7247 case HWRM_RING_ALLOC_AGG: 7248 db->db_key32 = DB_KEY_RX; 7249 break; 7250 case HWRM_RING_ALLOC_CMPL: 7251 db->db_key32 = DB_KEY_CP; 7252 break; 7253 } 7254 } 7255 bnxt_set_db_mask(bp, db, ring_type); 7256 } 7257 7258 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7259 struct bnxt_rx_ring_info *rxr) 7260 { 7261 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7262 struct bnxt_napi *bnapi = rxr->bnapi; 7263 u32 type = HWRM_RING_ALLOC_RX; 7264 u32 map_idx = bnapi->index; 7265 int rc; 7266 7267 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7268 if (rc) 7269 return rc; 7270 7271 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7272 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7273 7274 return 0; 7275 } 7276 7277 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7278 struct bnxt_rx_ring_info *rxr) 7279 { 7280 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7281 u32 type = HWRM_RING_ALLOC_AGG; 7282 u32 grp_idx = ring->grp_idx; 7283 u32 map_idx; 7284 int rc; 7285 7286 map_idx = grp_idx + bp->rx_nr_rings; 7287 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7288 if (rc) 7289 return rc; 7290 7291 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7292 ring->fw_ring_id); 7293 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7294 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7295 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7296 7297 return 0; 7298 } 7299 7300 static int bnxt_hwrm_cp_ring_alloc_p5(struct bnxt *bp, 7301 struct bnxt_cp_ring_info *cpr) 7302 { 7303 const u32 type = HWRM_RING_ALLOC_CMPL; 7304 struct bnxt_napi *bnapi = cpr->bnapi; 7305 struct bnxt_ring_struct *ring; 7306 u32 map_idx = bnapi->index; 7307 int rc; 7308 7309 ring = &cpr->cp_ring_struct; 7310 ring->handle = BNXT_SET_NQ_HDL(cpr); 7311 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7312 if (rc) 7313 return rc; 7314 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7315 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7316 return 0; 7317 } 7318 7319 static int bnxt_hwrm_tx_ring_alloc(struct bnxt *bp, 7320 struct bnxt_tx_ring_info *txr, u32 tx_idx) 7321 { 7322 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7323 const u32 type = HWRM_RING_ALLOC_TX; 7324 int rc; 7325 7326 rc = hwrm_ring_alloc_send_msg(bp, ring, type, tx_idx); 7327 if (rc) 7328 return rc; 7329 bnxt_set_db(bp, &txr->tx_db, type, tx_idx, ring->fw_ring_id); 7330 return 0; 7331 } 7332 7333 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7334 { 7335 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7336 int i, rc = 0; 7337 u32 type; 7338 7339 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7340 type = HWRM_RING_ALLOC_NQ; 7341 else 7342 type = HWRM_RING_ALLOC_CMPL; 7343 for (i = 0; i < bp->cp_nr_rings; i++) { 7344 struct bnxt_napi *bnapi = bp->bnapi[i]; 7345 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7346 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7347 u32 map_idx = ring->map_idx; 7348 unsigned int vector; 7349 7350 vector = bp->irq_tbl[map_idx].vector; 7351 disable_irq_nosync(vector); 7352 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7353 if (rc) { 7354 enable_irq(vector); 7355 goto err_out; 7356 } 7357 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7358 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7359 enable_irq(vector); 7360 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7361 7362 if (!i) { 7363 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7364 if (rc) 7365 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7366 } 7367 } 7368 7369 for (i = 0; i < bp->tx_nr_rings; i++) { 7370 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7371 7372 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7373 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 7374 if (rc) 7375 goto err_out; 7376 } 7377 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, i); 7378 if (rc) 7379 goto err_out; 7380 } 7381 7382 for (i = 0; i < bp->rx_nr_rings; i++) { 7383 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7384 7385 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7386 if (rc) 7387 goto err_out; 7388 /* If we have agg rings, post agg buffers first. */ 7389 if (!agg_rings) 7390 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7391 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7392 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 7393 if (rc) 7394 goto err_out; 7395 } 7396 } 7397 7398 if (agg_rings) { 7399 for (i = 0; i < bp->rx_nr_rings; i++) { 7400 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7401 if (rc) 7402 goto err_out; 7403 } 7404 } 7405 err_out: 7406 return rc; 7407 } 7408 7409 static void bnxt_cancel_dim(struct bnxt *bp) 7410 { 7411 int i; 7412 7413 /* DIM work is initialized in bnxt_enable_napi(). Proceed only 7414 * if NAPI is enabled. 7415 */ 7416 if (!bp->bnapi || test_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 7417 return; 7418 7419 /* Make sure NAPI sees that the VNIC is disabled */ 7420 synchronize_net(); 7421 for (i = 0; i < bp->rx_nr_rings; i++) { 7422 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7423 struct bnxt_napi *bnapi = rxr->bnapi; 7424 7425 cancel_work_sync(&bnapi->cp_ring.dim.work); 7426 } 7427 } 7428 7429 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7430 struct bnxt_ring_struct *ring, 7431 u32 ring_type, int cmpl_ring_id) 7432 { 7433 struct hwrm_ring_free_output *resp; 7434 struct hwrm_ring_free_input *req; 7435 u16 error_code = 0; 7436 int rc; 7437 7438 if (BNXT_NO_FW_ACCESS(bp)) 7439 return 0; 7440 7441 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7442 if (rc) 7443 goto exit; 7444 7445 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7446 req->ring_type = ring_type; 7447 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7448 7449 resp = hwrm_req_hold(bp, req); 7450 rc = hwrm_req_send(bp, req); 7451 error_code = le16_to_cpu(resp->error_code); 7452 hwrm_req_drop(bp, req); 7453 exit: 7454 if (rc || error_code) { 7455 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7456 ring_type, rc, error_code); 7457 return -EIO; 7458 } 7459 return 0; 7460 } 7461 7462 static void bnxt_hwrm_tx_ring_free(struct bnxt *bp, 7463 struct bnxt_tx_ring_info *txr, 7464 bool close_path) 7465 { 7466 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7467 u32 cmpl_ring_id; 7468 7469 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7470 return; 7471 7472 cmpl_ring_id = close_path ? bnxt_cp_ring_for_tx(bp, txr) : 7473 INVALID_HW_RING_ID; 7474 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, 7475 cmpl_ring_id); 7476 ring->fw_ring_id = INVALID_HW_RING_ID; 7477 } 7478 7479 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7480 struct bnxt_rx_ring_info *rxr, 7481 bool close_path) 7482 { 7483 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7484 u32 grp_idx = rxr->bnapi->index; 7485 u32 cmpl_ring_id; 7486 7487 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7488 return; 7489 7490 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7491 hwrm_ring_free_send_msg(bp, ring, 7492 RING_FREE_REQ_RING_TYPE_RX, 7493 close_path ? cmpl_ring_id : 7494 INVALID_HW_RING_ID); 7495 ring->fw_ring_id = INVALID_HW_RING_ID; 7496 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7497 } 7498 7499 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7500 struct bnxt_rx_ring_info *rxr, 7501 bool close_path) 7502 { 7503 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7504 u32 grp_idx = rxr->bnapi->index; 7505 u32 type, cmpl_ring_id; 7506 7507 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7508 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7509 else 7510 type = RING_FREE_REQ_RING_TYPE_RX; 7511 7512 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7513 return; 7514 7515 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7516 hwrm_ring_free_send_msg(bp, ring, type, 7517 close_path ? cmpl_ring_id : 7518 INVALID_HW_RING_ID); 7519 ring->fw_ring_id = INVALID_HW_RING_ID; 7520 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7521 } 7522 7523 static void bnxt_hwrm_cp_ring_free(struct bnxt *bp, 7524 struct bnxt_cp_ring_info *cpr) 7525 { 7526 struct bnxt_ring_struct *ring; 7527 7528 ring = &cpr->cp_ring_struct; 7529 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7530 return; 7531 7532 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, 7533 INVALID_HW_RING_ID); 7534 ring->fw_ring_id = INVALID_HW_RING_ID; 7535 } 7536 7537 static void bnxt_clear_one_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 7538 { 7539 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7540 int i, size = ring->ring_mem.page_size; 7541 7542 cpr->cp_raw_cons = 0; 7543 cpr->toggle = 0; 7544 7545 for (i = 0; i < bp->cp_nr_pages; i++) 7546 if (cpr->cp_desc_ring[i]) 7547 memset(cpr->cp_desc_ring[i], 0, size); 7548 } 7549 7550 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7551 { 7552 u32 type; 7553 int i; 7554 7555 if (!bp->bnapi) 7556 return; 7557 7558 for (i = 0; i < bp->tx_nr_rings; i++) 7559 bnxt_hwrm_tx_ring_free(bp, &bp->tx_ring[i], close_path); 7560 7561 bnxt_cancel_dim(bp); 7562 for (i = 0; i < bp->rx_nr_rings; i++) { 7563 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7564 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7565 } 7566 7567 /* The completion rings are about to be freed. After that the 7568 * IRQ doorbell will not work anymore. So we need to disable 7569 * IRQ here. 7570 */ 7571 bnxt_disable_int_sync(bp); 7572 7573 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7574 type = RING_FREE_REQ_RING_TYPE_NQ; 7575 else 7576 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7577 for (i = 0; i < bp->cp_nr_rings; i++) { 7578 struct bnxt_napi *bnapi = bp->bnapi[i]; 7579 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7580 struct bnxt_ring_struct *ring; 7581 int j; 7582 7583 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) 7584 bnxt_hwrm_cp_ring_free(bp, &cpr->cp_ring_arr[j]); 7585 7586 ring = &cpr->cp_ring_struct; 7587 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7588 hwrm_ring_free_send_msg(bp, ring, type, 7589 INVALID_HW_RING_ID); 7590 ring->fw_ring_id = INVALID_HW_RING_ID; 7591 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7592 } 7593 } 7594 } 7595 7596 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7597 bool shared); 7598 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7599 bool shared); 7600 7601 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7602 { 7603 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7604 struct hwrm_func_qcfg_output *resp; 7605 struct hwrm_func_qcfg_input *req; 7606 int rc; 7607 7608 if (bp->hwrm_spec_code < 0x10601) 7609 return 0; 7610 7611 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7612 if (rc) 7613 return rc; 7614 7615 req->fid = cpu_to_le16(0xffff); 7616 resp = hwrm_req_hold(bp, req); 7617 rc = hwrm_req_send(bp, req); 7618 if (rc) { 7619 hwrm_req_drop(bp, req); 7620 return rc; 7621 } 7622 7623 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7624 if (BNXT_NEW_RM(bp)) { 7625 u16 cp, stats; 7626 7627 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7628 hw_resc->resv_hw_ring_grps = 7629 le32_to_cpu(resp->alloc_hw_ring_grps); 7630 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7631 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7632 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7633 stats = le16_to_cpu(resp->alloc_stat_ctx); 7634 hw_resc->resv_irqs = cp; 7635 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7636 int rx = hw_resc->resv_rx_rings; 7637 int tx = hw_resc->resv_tx_rings; 7638 7639 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7640 rx >>= 1; 7641 if (cp < (rx + tx)) { 7642 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7643 if (rc) 7644 goto get_rings_exit; 7645 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7646 rx <<= 1; 7647 hw_resc->resv_rx_rings = rx; 7648 hw_resc->resv_tx_rings = tx; 7649 } 7650 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7651 hw_resc->resv_hw_ring_grps = rx; 7652 } 7653 hw_resc->resv_cp_rings = cp; 7654 hw_resc->resv_stat_ctxs = stats; 7655 } 7656 get_rings_exit: 7657 hwrm_req_drop(bp, req); 7658 return rc; 7659 } 7660 7661 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7662 { 7663 struct hwrm_func_qcfg_output *resp; 7664 struct hwrm_func_qcfg_input *req; 7665 int rc; 7666 7667 if (bp->hwrm_spec_code < 0x10601) 7668 return 0; 7669 7670 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7671 if (rc) 7672 return rc; 7673 7674 req->fid = cpu_to_le16(fid); 7675 resp = hwrm_req_hold(bp, req); 7676 rc = hwrm_req_send(bp, req); 7677 if (!rc) 7678 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7679 7680 hwrm_req_drop(bp, req); 7681 return rc; 7682 } 7683 7684 static bool bnxt_rfs_supported(struct bnxt *bp); 7685 7686 static struct hwrm_func_cfg_input * 7687 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7688 { 7689 struct hwrm_func_cfg_input *req; 7690 u32 enables = 0; 7691 7692 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7693 return NULL; 7694 7695 req->fid = cpu_to_le16(0xffff); 7696 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7697 req->num_tx_rings = cpu_to_le16(hwr->tx); 7698 if (BNXT_NEW_RM(bp)) { 7699 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7700 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7701 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7702 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7703 enables |= hwr->cp_p5 ? 7704 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7705 } else { 7706 enables |= hwr->cp ? 7707 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7708 enables |= hwr->grp ? 7709 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7710 } 7711 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7712 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7713 0; 7714 req->num_rx_rings = cpu_to_le16(hwr->rx); 7715 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7716 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7717 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7718 req->num_msix = cpu_to_le16(hwr->cp); 7719 } else { 7720 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7721 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7722 } 7723 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7724 req->num_vnics = cpu_to_le16(hwr->vnic); 7725 } 7726 req->enables = cpu_to_le32(enables); 7727 return req; 7728 } 7729 7730 static struct hwrm_func_vf_cfg_input * 7731 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7732 { 7733 struct hwrm_func_vf_cfg_input *req; 7734 u32 enables = 0; 7735 7736 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7737 return NULL; 7738 7739 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7740 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7741 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7742 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7743 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7744 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7745 enables |= hwr->cp_p5 ? 7746 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7747 } else { 7748 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7749 enables |= hwr->grp ? 7750 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7751 } 7752 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7753 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7754 7755 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7756 req->num_tx_rings = cpu_to_le16(hwr->tx); 7757 req->num_rx_rings = cpu_to_le16(hwr->rx); 7758 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7759 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7760 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7761 } else { 7762 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7763 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7764 } 7765 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7766 req->num_vnics = cpu_to_le16(hwr->vnic); 7767 7768 req->enables = cpu_to_le32(enables); 7769 return req; 7770 } 7771 7772 static int 7773 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7774 { 7775 struct hwrm_func_cfg_input *req; 7776 int rc; 7777 7778 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7779 if (!req) 7780 return -ENOMEM; 7781 7782 if (!req->enables) { 7783 hwrm_req_drop(bp, req); 7784 return 0; 7785 } 7786 7787 rc = hwrm_req_send(bp, req); 7788 if (rc) 7789 return rc; 7790 7791 if (bp->hwrm_spec_code < 0x10601) 7792 bp->hw_resc.resv_tx_rings = hwr->tx; 7793 7794 return bnxt_hwrm_get_rings(bp); 7795 } 7796 7797 static int 7798 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7799 { 7800 struct hwrm_func_vf_cfg_input *req; 7801 int rc; 7802 7803 if (!BNXT_NEW_RM(bp)) { 7804 bp->hw_resc.resv_tx_rings = hwr->tx; 7805 return 0; 7806 } 7807 7808 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7809 if (!req) 7810 return -ENOMEM; 7811 7812 rc = hwrm_req_send(bp, req); 7813 if (rc) 7814 return rc; 7815 7816 return bnxt_hwrm_get_rings(bp); 7817 } 7818 7819 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7820 { 7821 if (BNXT_PF(bp)) 7822 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7823 else 7824 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7825 } 7826 7827 int bnxt_nq_rings_in_use(struct bnxt *bp) 7828 { 7829 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7830 } 7831 7832 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7833 { 7834 int cp; 7835 7836 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7837 return bnxt_nq_rings_in_use(bp); 7838 7839 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7840 return cp; 7841 } 7842 7843 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7844 { 7845 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7846 } 7847 7848 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7849 { 7850 if (!hwr->grp) 7851 return 0; 7852 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7853 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7854 7855 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7856 rss_ctx *= hwr->vnic; 7857 return rss_ctx; 7858 } 7859 if (BNXT_VF(bp)) 7860 return BNXT_VF_MAX_RSS_CTX; 7861 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7862 return hwr->grp + 1; 7863 return 1; 7864 } 7865 7866 /* Check if a default RSS map needs to be setup. This function is only 7867 * used on older firmware that does not require reserving RX rings. 7868 */ 7869 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7870 { 7871 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7872 7873 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7874 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7875 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7876 if (!netif_is_rxfh_configured(bp->dev)) 7877 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7878 } 7879 } 7880 7881 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7882 { 7883 if (bp->flags & BNXT_FLAG_RFS) { 7884 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7885 return 2 + bp->num_rss_ctx; 7886 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7887 return rx_rings + 1; 7888 } 7889 return 1; 7890 } 7891 7892 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7893 { 7894 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7895 int cp = bnxt_cp_rings_in_use(bp); 7896 int nq = bnxt_nq_rings_in_use(bp); 7897 int rx = bp->rx_nr_rings, stat; 7898 int vnic, grp = rx; 7899 7900 /* Old firmware does not need RX ring reservations but we still 7901 * need to setup a default RSS map when needed. With new firmware 7902 * we go through RX ring reservations first and then set up the 7903 * RSS map for the successfully reserved RX rings when needed. 7904 */ 7905 if (!BNXT_NEW_RM(bp)) 7906 bnxt_check_rss_tbl_no_rmgr(bp); 7907 7908 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7909 bp->hwrm_spec_code >= 0x10601) 7910 return true; 7911 7912 if (!BNXT_NEW_RM(bp)) 7913 return false; 7914 7915 vnic = bnxt_get_total_vnics(bp, rx); 7916 7917 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7918 rx <<= 1; 7919 stat = bnxt_get_func_stat_ctxs(bp); 7920 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7921 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7922 (hw_resc->resv_hw_ring_grps != grp && 7923 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7924 return true; 7925 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7926 hw_resc->resv_irqs != nq) 7927 return true; 7928 return false; 7929 } 7930 7931 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7932 { 7933 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7934 7935 hwr->tx = hw_resc->resv_tx_rings; 7936 if (BNXT_NEW_RM(bp)) { 7937 hwr->rx = hw_resc->resv_rx_rings; 7938 hwr->cp = hw_resc->resv_irqs; 7939 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7940 hwr->cp_p5 = hw_resc->resv_cp_rings; 7941 hwr->grp = hw_resc->resv_hw_ring_grps; 7942 hwr->vnic = hw_resc->resv_vnics; 7943 hwr->stat = hw_resc->resv_stat_ctxs; 7944 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7945 } 7946 } 7947 7948 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7949 { 7950 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7951 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7952 } 7953 7954 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7955 7956 static int __bnxt_reserve_rings(struct bnxt *bp) 7957 { 7958 struct bnxt_hw_rings hwr = {0}; 7959 int rx_rings, old_rx_rings, rc; 7960 int cp = bp->cp_nr_rings; 7961 int ulp_msix = 0; 7962 bool sh = false; 7963 int tx_cp; 7964 7965 if (!bnxt_need_reserve_rings(bp)) 7966 return 0; 7967 7968 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7969 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7970 if (!ulp_msix) 7971 bnxt_set_ulp_stat_ctxs(bp, 0); 7972 7973 if (ulp_msix > bp->ulp_num_msix_want) 7974 ulp_msix = bp->ulp_num_msix_want; 7975 hwr.cp = cp + ulp_msix; 7976 } else { 7977 hwr.cp = bnxt_nq_rings_in_use(bp); 7978 } 7979 7980 hwr.tx = bp->tx_nr_rings; 7981 hwr.rx = bp->rx_nr_rings; 7982 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7983 sh = true; 7984 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7985 hwr.cp_p5 = hwr.rx + hwr.tx; 7986 7987 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7988 7989 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7990 hwr.rx <<= 1; 7991 hwr.grp = bp->rx_nr_rings; 7992 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7993 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7994 old_rx_rings = bp->hw_resc.resv_rx_rings; 7995 7996 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7997 if (rc) 7998 return rc; 7999 8000 bnxt_copy_reserved_rings(bp, &hwr); 8001 8002 rx_rings = hwr.rx; 8003 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8004 if (hwr.rx >= 2) { 8005 rx_rings = hwr.rx >> 1; 8006 } else { 8007 if (netif_running(bp->dev)) 8008 return -ENOMEM; 8009 8010 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 8011 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 8012 bp->dev->hw_features &= ~NETIF_F_LRO; 8013 bp->dev->features &= ~NETIF_F_LRO; 8014 bnxt_set_ring_params(bp); 8015 } 8016 } 8017 rx_rings = min_t(int, rx_rings, hwr.grp); 8018 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 8019 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 8020 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 8021 hwr.cp = min_t(int, hwr.cp, hwr.stat); 8022 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 8023 if (bp->flags & BNXT_FLAG_AGG_RINGS) 8024 hwr.rx = rx_rings << 1; 8025 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 8026 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 8027 bp->tx_nr_rings = hwr.tx; 8028 8029 /* If we cannot reserve all the RX rings, reset the RSS map only 8030 * if absolutely necessary 8031 */ 8032 if (rx_rings != bp->rx_nr_rings) { 8033 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 8034 rx_rings, bp->rx_nr_rings); 8035 if (netif_is_rxfh_configured(bp->dev) && 8036 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 8037 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 8038 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 8039 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 8040 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 8041 } 8042 } 8043 bp->rx_nr_rings = rx_rings; 8044 bp->cp_nr_rings = hwr.cp; 8045 8046 if (!bnxt_rings_ok(bp, &hwr)) 8047 return -ENOMEM; 8048 8049 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 8050 !netif_is_rxfh_configured(bp->dev)) 8051 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 8052 8053 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 8054 int resv_msix, resv_ctx, ulp_ctxs; 8055 struct bnxt_hw_resc *hw_resc; 8056 8057 hw_resc = &bp->hw_resc; 8058 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 8059 ulp_msix = min_t(int, resv_msix, ulp_msix); 8060 bnxt_set_ulp_msix_num(bp, ulp_msix); 8061 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 8062 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 8063 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 8064 } 8065 8066 return rc; 8067 } 8068 8069 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8070 { 8071 struct hwrm_func_vf_cfg_input *req; 8072 u32 flags; 8073 8074 if (!BNXT_NEW_RM(bp)) 8075 return 0; 8076 8077 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 8078 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 8079 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8080 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8081 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8082 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 8083 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 8084 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8085 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8086 8087 req->flags = cpu_to_le32(flags); 8088 return hwrm_req_send_silent(bp, req); 8089 } 8090 8091 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8092 { 8093 struct hwrm_func_cfg_input *req; 8094 u32 flags; 8095 8096 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 8097 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 8098 if (BNXT_NEW_RM(bp)) { 8099 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8100 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8101 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8102 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 8103 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8104 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 8105 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 8106 else 8107 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8108 } 8109 8110 req->flags = cpu_to_le32(flags); 8111 return hwrm_req_send_silent(bp, req); 8112 } 8113 8114 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8115 { 8116 if (bp->hwrm_spec_code < 0x10801) 8117 return 0; 8118 8119 if (BNXT_PF(bp)) 8120 return bnxt_hwrm_check_pf_rings(bp, hwr); 8121 8122 return bnxt_hwrm_check_vf_rings(bp, hwr); 8123 } 8124 8125 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 8126 { 8127 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8128 struct hwrm_ring_aggint_qcaps_output *resp; 8129 struct hwrm_ring_aggint_qcaps_input *req; 8130 int rc; 8131 8132 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 8133 coal_cap->num_cmpl_dma_aggr_max = 63; 8134 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 8135 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 8136 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 8137 coal_cap->int_lat_tmr_min_max = 65535; 8138 coal_cap->int_lat_tmr_max_max = 65535; 8139 coal_cap->num_cmpl_aggr_int_max = 65535; 8140 coal_cap->timer_units = 80; 8141 8142 if (bp->hwrm_spec_code < 0x10902) 8143 return; 8144 8145 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 8146 return; 8147 8148 resp = hwrm_req_hold(bp, req); 8149 rc = hwrm_req_send_silent(bp, req); 8150 if (!rc) { 8151 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 8152 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 8153 coal_cap->num_cmpl_dma_aggr_max = 8154 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 8155 coal_cap->num_cmpl_dma_aggr_during_int_max = 8156 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 8157 coal_cap->cmpl_aggr_dma_tmr_max = 8158 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 8159 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 8160 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 8161 coal_cap->int_lat_tmr_min_max = 8162 le16_to_cpu(resp->int_lat_tmr_min_max); 8163 coal_cap->int_lat_tmr_max_max = 8164 le16_to_cpu(resp->int_lat_tmr_max_max); 8165 coal_cap->num_cmpl_aggr_int_max = 8166 le16_to_cpu(resp->num_cmpl_aggr_int_max); 8167 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 8168 } 8169 hwrm_req_drop(bp, req); 8170 } 8171 8172 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 8173 { 8174 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8175 8176 return usec * 1000 / coal_cap->timer_units; 8177 } 8178 8179 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 8180 struct bnxt_coal *hw_coal, 8181 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8182 { 8183 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8184 u16 val, tmr, max, flags = hw_coal->flags; 8185 u32 cmpl_params = coal_cap->cmpl_params; 8186 8187 max = hw_coal->bufs_per_record * 128; 8188 if (hw_coal->budget) 8189 max = hw_coal->bufs_per_record * hw_coal->budget; 8190 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8191 8192 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8193 req->num_cmpl_aggr_int = cpu_to_le16(val); 8194 8195 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8196 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8197 8198 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8199 coal_cap->num_cmpl_dma_aggr_during_int_max); 8200 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8201 8202 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8203 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8204 req->int_lat_tmr_max = cpu_to_le16(tmr); 8205 8206 /* min timer set to 1/2 of interrupt timer */ 8207 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8208 val = tmr / 2; 8209 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8210 req->int_lat_tmr_min = cpu_to_le16(val); 8211 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8212 } 8213 8214 /* buf timer set to 1/4 of interrupt timer */ 8215 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8216 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8217 8218 if (cmpl_params & 8219 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8220 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8221 val = clamp_t(u16, tmr, 1, 8222 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8223 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8224 req->enables |= 8225 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8226 } 8227 8228 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8229 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8230 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8231 req->flags = cpu_to_le16(flags); 8232 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8233 } 8234 8235 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8236 struct bnxt_coal *hw_coal) 8237 { 8238 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8239 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8240 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8241 u32 nq_params = coal_cap->nq_params; 8242 u16 tmr; 8243 int rc; 8244 8245 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8246 return 0; 8247 8248 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8249 if (rc) 8250 return rc; 8251 8252 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8253 req->flags = 8254 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8255 8256 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8257 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8258 req->int_lat_tmr_min = cpu_to_le16(tmr); 8259 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8260 return hwrm_req_send(bp, req); 8261 } 8262 8263 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8264 { 8265 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8266 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8267 struct bnxt_coal coal; 8268 int rc; 8269 8270 /* Tick values in micro seconds. 8271 * 1 coal_buf x bufs_per_record = 1 completion record. 8272 */ 8273 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8274 8275 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8276 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8277 8278 if (!bnapi->rx_ring) 8279 return -ENODEV; 8280 8281 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8282 if (rc) 8283 return rc; 8284 8285 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8286 8287 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8288 8289 return hwrm_req_send(bp, req_rx); 8290 } 8291 8292 static int 8293 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8294 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8295 { 8296 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8297 8298 req->ring_id = cpu_to_le16(ring_id); 8299 return hwrm_req_send(bp, req); 8300 } 8301 8302 static int 8303 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8304 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8305 { 8306 struct bnxt_tx_ring_info *txr; 8307 int i, rc; 8308 8309 bnxt_for_each_napi_tx(i, bnapi, txr) { 8310 u16 ring_id; 8311 8312 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8313 req->ring_id = cpu_to_le16(ring_id); 8314 rc = hwrm_req_send(bp, req); 8315 if (rc) 8316 return rc; 8317 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8318 return 0; 8319 } 8320 return 0; 8321 } 8322 8323 int bnxt_hwrm_set_coal(struct bnxt *bp) 8324 { 8325 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8326 int i, rc; 8327 8328 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8329 if (rc) 8330 return rc; 8331 8332 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8333 if (rc) { 8334 hwrm_req_drop(bp, req_rx); 8335 return rc; 8336 } 8337 8338 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8339 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8340 8341 hwrm_req_hold(bp, req_rx); 8342 hwrm_req_hold(bp, req_tx); 8343 for (i = 0; i < bp->cp_nr_rings; i++) { 8344 struct bnxt_napi *bnapi = bp->bnapi[i]; 8345 struct bnxt_coal *hw_coal; 8346 8347 if (!bnapi->rx_ring) 8348 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8349 else 8350 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8351 if (rc) 8352 break; 8353 8354 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8355 continue; 8356 8357 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8358 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8359 if (rc) 8360 break; 8361 } 8362 if (bnapi->rx_ring) 8363 hw_coal = &bp->rx_coal; 8364 else 8365 hw_coal = &bp->tx_coal; 8366 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8367 } 8368 hwrm_req_drop(bp, req_rx); 8369 hwrm_req_drop(bp, req_tx); 8370 return rc; 8371 } 8372 8373 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8374 { 8375 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8376 struct hwrm_stat_ctx_free_input *req; 8377 int i; 8378 8379 if (!bp->bnapi) 8380 return; 8381 8382 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8383 return; 8384 8385 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8386 return; 8387 if (BNXT_FW_MAJ(bp) <= 20) { 8388 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8389 hwrm_req_drop(bp, req); 8390 return; 8391 } 8392 hwrm_req_hold(bp, req0); 8393 } 8394 hwrm_req_hold(bp, req); 8395 for (i = 0; i < bp->cp_nr_rings; i++) { 8396 struct bnxt_napi *bnapi = bp->bnapi[i]; 8397 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8398 8399 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8400 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8401 if (req0) { 8402 req0->stat_ctx_id = req->stat_ctx_id; 8403 hwrm_req_send(bp, req0); 8404 } 8405 hwrm_req_send(bp, req); 8406 8407 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8408 } 8409 } 8410 hwrm_req_drop(bp, req); 8411 if (req0) 8412 hwrm_req_drop(bp, req0); 8413 } 8414 8415 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8416 { 8417 struct hwrm_stat_ctx_alloc_output *resp; 8418 struct hwrm_stat_ctx_alloc_input *req; 8419 int rc, i; 8420 8421 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8422 return 0; 8423 8424 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8425 if (rc) 8426 return rc; 8427 8428 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8429 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8430 8431 resp = hwrm_req_hold(bp, req); 8432 for (i = 0; i < bp->cp_nr_rings; i++) { 8433 struct bnxt_napi *bnapi = bp->bnapi[i]; 8434 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8435 8436 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8437 8438 rc = hwrm_req_send(bp, req); 8439 if (rc) 8440 break; 8441 8442 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8443 8444 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8445 } 8446 hwrm_req_drop(bp, req); 8447 return rc; 8448 } 8449 8450 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8451 { 8452 struct hwrm_func_qcfg_output *resp; 8453 struct hwrm_func_qcfg_input *req; 8454 u16 flags; 8455 int rc; 8456 8457 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8458 if (rc) 8459 return rc; 8460 8461 req->fid = cpu_to_le16(0xffff); 8462 resp = hwrm_req_hold(bp, req); 8463 rc = hwrm_req_send(bp, req); 8464 if (rc) 8465 goto func_qcfg_exit; 8466 8467 flags = le16_to_cpu(resp->flags); 8468 #ifdef CONFIG_BNXT_SRIOV 8469 if (BNXT_VF(bp)) { 8470 struct bnxt_vf_info *vf = &bp->vf; 8471 8472 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8473 if (flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF) 8474 vf->flags |= BNXT_VF_TRUST; 8475 else 8476 vf->flags &= ~BNXT_VF_TRUST; 8477 } else { 8478 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8479 } 8480 #endif 8481 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8482 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8483 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8484 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8485 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8486 } 8487 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8488 bp->flags |= BNXT_FLAG_MULTI_HOST; 8489 8490 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8491 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8492 8493 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8494 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8495 8496 switch (resp->port_partition_type) { 8497 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8498 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_2: 8499 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8500 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8501 bp->port_partition_type = resp->port_partition_type; 8502 break; 8503 } 8504 if (bp->hwrm_spec_code < 0x10707 || 8505 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8506 bp->br_mode = BRIDGE_MODE_VEB; 8507 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8508 bp->br_mode = BRIDGE_MODE_VEPA; 8509 else 8510 bp->br_mode = BRIDGE_MODE_UNDEF; 8511 8512 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8513 if (!bp->max_mtu) 8514 bp->max_mtu = BNXT_MAX_MTU; 8515 8516 if (bp->db_size) 8517 goto func_qcfg_exit; 8518 8519 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8520 if (BNXT_CHIP_P5(bp)) { 8521 if (BNXT_PF(bp)) 8522 bp->db_offset = DB_PF_OFFSET_P5; 8523 else 8524 bp->db_offset = DB_VF_OFFSET_P5; 8525 } 8526 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8527 1024); 8528 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8529 bp->db_size <= bp->db_offset) 8530 bp->db_size = pci_resource_len(bp->pdev, 2); 8531 8532 func_qcfg_exit: 8533 hwrm_req_drop(bp, req); 8534 return rc; 8535 } 8536 8537 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8538 u8 init_val, u8 init_offset, 8539 bool init_mask_set) 8540 { 8541 ctxm->init_value = init_val; 8542 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8543 if (init_mask_set) 8544 ctxm->init_offset = init_offset * 4; 8545 else 8546 ctxm->init_value = 0; 8547 } 8548 8549 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8550 { 8551 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8552 u16 type; 8553 8554 for (type = 0; type < ctx_max; type++) { 8555 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8556 int n = 1; 8557 8558 if (!ctxm->max_entries || ctxm->pg_info) 8559 continue; 8560 8561 if (ctxm->instance_bmap) 8562 n = hweight32(ctxm->instance_bmap); 8563 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8564 if (!ctxm->pg_info) 8565 return -ENOMEM; 8566 } 8567 return 0; 8568 } 8569 8570 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8571 struct bnxt_ctx_mem_type *ctxm, bool force); 8572 8573 #define BNXT_CTX_INIT_VALID(flags) \ 8574 (!!((flags) & \ 8575 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8576 8577 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8578 { 8579 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8580 struct hwrm_func_backing_store_qcaps_v2_input *req; 8581 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8582 u16 type; 8583 int rc; 8584 8585 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8586 if (rc) 8587 return rc; 8588 8589 if (!ctx) { 8590 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8591 if (!ctx) 8592 return -ENOMEM; 8593 bp->ctx = ctx; 8594 } 8595 8596 resp = hwrm_req_hold(bp, req); 8597 8598 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8599 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8600 u8 init_val, init_off, i; 8601 u32 max_entries; 8602 u16 entry_size; 8603 __le32 *p; 8604 u32 flags; 8605 8606 req->type = cpu_to_le16(type); 8607 rc = hwrm_req_send(bp, req); 8608 if (rc) 8609 goto ctx_done; 8610 flags = le32_to_cpu(resp->flags); 8611 type = le16_to_cpu(resp->next_valid_type); 8612 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8613 bnxt_free_one_ctx_mem(bp, ctxm, true); 8614 continue; 8615 } 8616 entry_size = le16_to_cpu(resp->entry_size); 8617 max_entries = le32_to_cpu(resp->max_num_entries); 8618 if (ctxm->mem_valid) { 8619 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8620 ctxm->entry_size != entry_size || 8621 ctxm->max_entries != max_entries) 8622 bnxt_free_one_ctx_mem(bp, ctxm, true); 8623 else 8624 continue; 8625 } 8626 ctxm->type = le16_to_cpu(resp->type); 8627 ctxm->entry_size = entry_size; 8628 ctxm->flags = flags; 8629 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8630 ctxm->entry_multiple = resp->entry_multiple; 8631 ctxm->max_entries = max_entries; 8632 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8633 init_val = resp->ctx_init_value; 8634 init_off = resp->ctx_init_offset; 8635 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8636 BNXT_CTX_INIT_VALID(flags)); 8637 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8638 BNXT_MAX_SPLIT_ENTRY); 8639 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8640 i++, p++) 8641 ctxm->split[i] = le32_to_cpu(*p); 8642 } 8643 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8644 8645 ctx_done: 8646 hwrm_req_drop(bp, req); 8647 return rc; 8648 } 8649 8650 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8651 { 8652 struct hwrm_func_backing_store_qcaps_output *resp; 8653 struct hwrm_func_backing_store_qcaps_input *req; 8654 int rc; 8655 8656 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8657 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8658 return 0; 8659 8660 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8661 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8662 8663 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8664 if (rc) 8665 return rc; 8666 8667 resp = hwrm_req_hold(bp, req); 8668 rc = hwrm_req_send_silent(bp, req); 8669 if (!rc) { 8670 struct bnxt_ctx_mem_type *ctxm; 8671 struct bnxt_ctx_mem_info *ctx; 8672 u8 init_val, init_idx = 0; 8673 u16 init_mask; 8674 8675 ctx = bp->ctx; 8676 if (!ctx) { 8677 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8678 if (!ctx) { 8679 rc = -ENOMEM; 8680 goto ctx_err; 8681 } 8682 bp->ctx = ctx; 8683 } 8684 init_val = resp->ctx_kind_initializer; 8685 init_mask = le16_to_cpu(resp->ctx_init_mask); 8686 8687 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8688 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8689 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8690 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8691 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8692 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8693 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8694 (init_mask & (1 << init_idx++)) != 0); 8695 8696 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8697 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8698 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8699 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8700 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8701 (init_mask & (1 << init_idx++)) != 0); 8702 8703 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8704 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8705 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8706 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8707 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8708 (init_mask & (1 << init_idx++)) != 0); 8709 8710 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8711 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8712 ctxm->max_entries = ctxm->vnic_entries + 8713 le16_to_cpu(resp->vnic_max_ring_table_entries); 8714 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8715 bnxt_init_ctx_initializer(ctxm, init_val, 8716 resp->vnic_init_offset, 8717 (init_mask & (1 << init_idx++)) != 0); 8718 8719 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8720 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8721 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8722 bnxt_init_ctx_initializer(ctxm, init_val, 8723 resp->stat_init_offset, 8724 (init_mask & (1 << init_idx++)) != 0); 8725 8726 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8727 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8728 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8729 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8730 ctxm->entry_multiple = resp->tqm_entries_multiple; 8731 if (!ctxm->entry_multiple) 8732 ctxm->entry_multiple = 1; 8733 8734 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8735 8736 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8737 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8738 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8739 ctxm->mrav_num_entries_units = 8740 le16_to_cpu(resp->mrav_num_entries_units); 8741 bnxt_init_ctx_initializer(ctxm, init_val, 8742 resp->mrav_init_offset, 8743 (init_mask & (1 << init_idx++)) != 0); 8744 8745 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8746 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8747 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8748 8749 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8750 if (!ctx->tqm_fp_rings_count) 8751 ctx->tqm_fp_rings_count = bp->max_q; 8752 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8753 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8754 8755 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8756 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8757 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8758 8759 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8760 } else { 8761 rc = 0; 8762 } 8763 ctx_err: 8764 hwrm_req_drop(bp, req); 8765 return rc; 8766 } 8767 8768 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8769 __le64 *pg_dir) 8770 { 8771 if (!rmem->nr_pages) 8772 return; 8773 8774 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8775 if (rmem->depth >= 1) { 8776 if (rmem->depth == 2) 8777 *pg_attr |= 2; 8778 else 8779 *pg_attr |= 1; 8780 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8781 } else { 8782 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8783 } 8784 } 8785 8786 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8787 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8788 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8789 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8790 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8791 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8792 8793 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8794 { 8795 struct hwrm_func_backing_store_cfg_input *req; 8796 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8797 struct bnxt_ctx_pg_info *ctx_pg; 8798 struct bnxt_ctx_mem_type *ctxm; 8799 void **__req = (void **)&req; 8800 u32 req_len = sizeof(*req); 8801 __le32 *num_entries; 8802 __le64 *pg_dir; 8803 u32 flags = 0; 8804 u8 *pg_attr; 8805 u32 ena; 8806 int rc; 8807 int i; 8808 8809 if (!ctx) 8810 return 0; 8811 8812 if (req_len > bp->hwrm_max_ext_req_len) 8813 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8814 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8815 if (rc) 8816 return rc; 8817 8818 req->enables = cpu_to_le32(enables); 8819 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8820 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8821 ctx_pg = ctxm->pg_info; 8822 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8823 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8824 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8825 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8826 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8827 &req->qpc_pg_size_qpc_lvl, 8828 &req->qpc_page_dir); 8829 8830 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8831 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8832 } 8833 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8834 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8835 ctx_pg = ctxm->pg_info; 8836 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8837 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8838 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8839 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8840 &req->srq_pg_size_srq_lvl, 8841 &req->srq_page_dir); 8842 } 8843 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8844 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8845 ctx_pg = ctxm->pg_info; 8846 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8847 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8848 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8849 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8850 &req->cq_pg_size_cq_lvl, 8851 &req->cq_page_dir); 8852 } 8853 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8854 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8855 ctx_pg = ctxm->pg_info; 8856 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8857 req->vnic_num_ring_table_entries = 8858 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8859 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8860 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8861 &req->vnic_pg_size_vnic_lvl, 8862 &req->vnic_page_dir); 8863 } 8864 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8865 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8866 ctx_pg = ctxm->pg_info; 8867 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8868 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8869 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8870 &req->stat_pg_size_stat_lvl, 8871 &req->stat_page_dir); 8872 } 8873 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8874 u32 units; 8875 8876 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8877 ctx_pg = ctxm->pg_info; 8878 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8879 units = ctxm->mrav_num_entries_units; 8880 if (units) { 8881 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8882 u32 entries; 8883 8884 num_mr = ctx_pg->entries - num_ah; 8885 entries = ((num_mr / units) << 16) | (num_ah / units); 8886 req->mrav_num_entries = cpu_to_le32(entries); 8887 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8888 } 8889 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8890 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8891 &req->mrav_pg_size_mrav_lvl, 8892 &req->mrav_page_dir); 8893 } 8894 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8895 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8896 ctx_pg = ctxm->pg_info; 8897 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8898 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8899 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8900 &req->tim_pg_size_tim_lvl, 8901 &req->tim_page_dir); 8902 } 8903 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8904 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8905 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8906 pg_dir = &req->tqm_sp_page_dir, 8907 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8908 ctx_pg = ctxm->pg_info; 8909 i < BNXT_MAX_TQM_RINGS; 8910 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8911 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8912 if (!(enables & ena)) 8913 continue; 8914 8915 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8916 *num_entries = cpu_to_le32(ctx_pg->entries); 8917 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8918 } 8919 req->flags = cpu_to_le32(flags); 8920 return hwrm_req_send(bp, req); 8921 } 8922 8923 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8924 struct bnxt_ctx_pg_info *ctx_pg) 8925 { 8926 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8927 8928 rmem->page_size = BNXT_PAGE_SIZE; 8929 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8930 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8931 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8932 if (rmem->depth >= 1) 8933 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8934 return bnxt_alloc_ring(bp, rmem); 8935 } 8936 8937 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8938 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8939 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8940 { 8941 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8942 int rc; 8943 8944 if (!mem_size) 8945 return -EINVAL; 8946 8947 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8948 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8949 ctx_pg->nr_pages = 0; 8950 return -EINVAL; 8951 } 8952 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8953 int nr_tbls, i; 8954 8955 rmem->depth = 2; 8956 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8957 GFP_KERNEL); 8958 if (!ctx_pg->ctx_pg_tbl) 8959 return -ENOMEM; 8960 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8961 rmem->nr_pages = nr_tbls; 8962 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8963 if (rc) 8964 return rc; 8965 for (i = 0; i < nr_tbls; i++) { 8966 struct bnxt_ctx_pg_info *pg_tbl; 8967 8968 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8969 if (!pg_tbl) 8970 return -ENOMEM; 8971 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8972 rmem = &pg_tbl->ring_mem; 8973 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8974 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8975 rmem->depth = 1; 8976 rmem->nr_pages = MAX_CTX_PAGES; 8977 rmem->ctx_mem = ctxm; 8978 if (i == (nr_tbls - 1)) { 8979 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8980 8981 if (rem) 8982 rmem->nr_pages = rem; 8983 } 8984 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8985 if (rc) 8986 break; 8987 } 8988 } else { 8989 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8990 if (rmem->nr_pages > 1 || depth) 8991 rmem->depth = 1; 8992 rmem->ctx_mem = ctxm; 8993 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8994 } 8995 return rc; 8996 } 8997 8998 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 8999 struct bnxt_ctx_pg_info *ctx_pg, 9000 void *buf, size_t offset, size_t head, 9001 size_t tail) 9002 { 9003 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9004 size_t nr_pages = ctx_pg->nr_pages; 9005 int page_size = rmem->page_size; 9006 size_t len = 0, total_len = 0; 9007 u16 depth = rmem->depth; 9008 9009 tail %= nr_pages * page_size; 9010 do { 9011 if (depth > 1) { 9012 int i = head / (page_size * MAX_CTX_PAGES); 9013 struct bnxt_ctx_pg_info *pg_tbl; 9014 9015 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9016 rmem = &pg_tbl->ring_mem; 9017 } 9018 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 9019 head += len; 9020 offset += len; 9021 total_len += len; 9022 if (head >= nr_pages * page_size) 9023 head = 0; 9024 } while (head != tail); 9025 return total_len; 9026 } 9027 9028 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 9029 struct bnxt_ctx_pg_info *ctx_pg) 9030 { 9031 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9032 9033 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 9034 ctx_pg->ctx_pg_tbl) { 9035 int i, nr_tbls = rmem->nr_pages; 9036 9037 for (i = 0; i < nr_tbls; i++) { 9038 struct bnxt_ctx_pg_info *pg_tbl; 9039 struct bnxt_ring_mem_info *rmem2; 9040 9041 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9042 if (!pg_tbl) 9043 continue; 9044 rmem2 = &pg_tbl->ring_mem; 9045 bnxt_free_ring(bp, rmem2); 9046 ctx_pg->ctx_pg_arr[i] = NULL; 9047 kfree(pg_tbl); 9048 ctx_pg->ctx_pg_tbl[i] = NULL; 9049 } 9050 kfree(ctx_pg->ctx_pg_tbl); 9051 ctx_pg->ctx_pg_tbl = NULL; 9052 } 9053 bnxt_free_ring(bp, rmem); 9054 ctx_pg->nr_pages = 0; 9055 } 9056 9057 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 9058 struct bnxt_ctx_mem_type *ctxm, u32 entries, 9059 u8 pg_lvl) 9060 { 9061 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9062 int i, rc = 0, n = 1; 9063 u32 mem_size; 9064 9065 if (!ctxm->entry_size || !ctx_pg) 9066 return -EINVAL; 9067 if (ctxm->instance_bmap) 9068 n = hweight32(ctxm->instance_bmap); 9069 if (ctxm->entry_multiple) 9070 entries = roundup(entries, ctxm->entry_multiple); 9071 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 9072 mem_size = entries * ctxm->entry_size; 9073 for (i = 0; i < n && !rc; i++) { 9074 ctx_pg[i].entries = entries; 9075 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 9076 ctxm->init_value ? ctxm : NULL); 9077 } 9078 if (!rc) 9079 ctxm->mem_valid = 1; 9080 return rc; 9081 } 9082 9083 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 9084 struct bnxt_ctx_mem_type *ctxm, 9085 bool last) 9086 { 9087 struct hwrm_func_backing_store_cfg_v2_input *req; 9088 u32 instance_bmap = ctxm->instance_bmap; 9089 int i, j, rc = 0, n = 1; 9090 __le32 *p; 9091 9092 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 9093 return 0; 9094 9095 if (instance_bmap) 9096 n = hweight32(ctxm->instance_bmap); 9097 else 9098 instance_bmap = 1; 9099 9100 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 9101 if (rc) 9102 return rc; 9103 hwrm_req_hold(bp, req); 9104 req->type = cpu_to_le16(ctxm->type); 9105 req->entry_size = cpu_to_le16(ctxm->entry_size); 9106 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 9107 bnxt_bs_trace_avail(bp, ctxm->type)) { 9108 struct bnxt_bs_trace_info *bs_trace; 9109 u32 enables; 9110 9111 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 9112 req->enables = cpu_to_le32(enables); 9113 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 9114 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 9115 } 9116 req->subtype_valid_cnt = ctxm->split_entry_cnt; 9117 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 9118 p[i] = cpu_to_le32(ctxm->split[i]); 9119 for (i = 0, j = 0; j < n && !rc; i++) { 9120 struct bnxt_ctx_pg_info *ctx_pg; 9121 9122 if (!(instance_bmap & (1 << i))) 9123 continue; 9124 req->instance = cpu_to_le16(i); 9125 ctx_pg = &ctxm->pg_info[j++]; 9126 if (!ctx_pg->entries) 9127 continue; 9128 req->num_entries = cpu_to_le32(ctx_pg->entries); 9129 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 9130 &req->page_size_pbl_level, 9131 &req->page_dir); 9132 if (last && j == n) 9133 req->flags = 9134 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 9135 rc = hwrm_req_send(bp, req); 9136 } 9137 hwrm_req_drop(bp, req); 9138 return rc; 9139 } 9140 9141 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 9142 { 9143 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9144 struct bnxt_ctx_mem_type *ctxm; 9145 u16 last_type = BNXT_CTX_INV; 9146 int rc = 0; 9147 u16 type; 9148 9149 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 9150 ctxm = &ctx->ctx_arr[type]; 9151 if (!bnxt_bs_trace_avail(bp, type)) 9152 continue; 9153 if (!ctxm->mem_valid) { 9154 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 9155 ctxm->max_entries, 1); 9156 if (rc) { 9157 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 9158 type); 9159 continue; 9160 } 9161 bnxt_bs_trace_init(bp, ctxm); 9162 } 9163 last_type = type; 9164 } 9165 9166 if (last_type == BNXT_CTX_INV) { 9167 if (!ena) 9168 return 0; 9169 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 9170 last_type = BNXT_CTX_MAX - 1; 9171 else 9172 last_type = BNXT_CTX_L2_MAX - 1; 9173 } 9174 ctx->ctx_arr[last_type].last = 1; 9175 9176 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 9177 ctxm = &ctx->ctx_arr[type]; 9178 9179 if (!ctxm->mem_valid) 9180 continue; 9181 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 9182 if (rc) 9183 return rc; 9184 } 9185 return 0; 9186 } 9187 9188 /** 9189 * __bnxt_copy_ctx_mem - copy host context memory 9190 * @bp: The driver context 9191 * @ctxm: The pointer to the context memory type 9192 * @buf: The destination buffer or NULL to just obtain the length 9193 * @offset: The buffer offset to copy the data to 9194 * @head: The head offset of context memory to copy from 9195 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9196 * 9197 * This function is called for debugging purposes to dump the host context 9198 * used by the chip. 9199 * 9200 * Return: Length of memory copied 9201 */ 9202 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9203 struct bnxt_ctx_mem_type *ctxm, void *buf, 9204 size_t offset, size_t head, size_t tail) 9205 { 9206 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9207 size_t len = 0, total_len = 0; 9208 int i, n = 1; 9209 9210 if (!ctx_pg) 9211 return 0; 9212 9213 if (ctxm->instance_bmap) 9214 n = hweight32(ctxm->instance_bmap); 9215 for (i = 0; i < n; i++) { 9216 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9217 tail); 9218 offset += len; 9219 total_len += len; 9220 } 9221 return total_len; 9222 } 9223 9224 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9225 void *buf, size_t offset) 9226 { 9227 size_t tail = ctxm->max_entries * ctxm->entry_size; 9228 9229 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9230 } 9231 9232 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9233 struct bnxt_ctx_mem_type *ctxm, bool force) 9234 { 9235 struct bnxt_ctx_pg_info *ctx_pg; 9236 int i, n = 1; 9237 9238 ctxm->last = 0; 9239 9240 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9241 return; 9242 9243 ctx_pg = ctxm->pg_info; 9244 if (ctx_pg) { 9245 if (ctxm->instance_bmap) 9246 n = hweight32(ctxm->instance_bmap); 9247 for (i = 0; i < n; i++) 9248 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9249 9250 kfree(ctx_pg); 9251 ctxm->pg_info = NULL; 9252 ctxm->mem_valid = 0; 9253 } 9254 memset(ctxm, 0, sizeof(*ctxm)); 9255 } 9256 9257 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9258 { 9259 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9260 u16 type; 9261 9262 if (!ctx) 9263 return; 9264 9265 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9266 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9267 9268 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9269 if (force) { 9270 kfree(ctx); 9271 bp->ctx = NULL; 9272 } 9273 } 9274 9275 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9276 { 9277 struct bnxt_ctx_mem_type *ctxm; 9278 struct bnxt_ctx_mem_info *ctx; 9279 u32 l2_qps, qp1_qps, max_qps; 9280 u32 ena, entries_sp, entries; 9281 u32 srqs, max_srqs, min; 9282 u32 num_mr, num_ah; 9283 u32 extra_srqs = 0; 9284 u32 extra_qps = 0; 9285 u32 fast_qpmd_qps; 9286 u8 pg_lvl = 1; 9287 int i, rc; 9288 9289 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9290 if (rc) { 9291 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9292 rc); 9293 return rc; 9294 } 9295 ctx = bp->ctx; 9296 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9297 return 0; 9298 9299 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9300 l2_qps = ctxm->qp_l2_entries; 9301 qp1_qps = ctxm->qp_qp1_entries; 9302 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9303 max_qps = ctxm->max_entries; 9304 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9305 srqs = ctxm->srq_l2_entries; 9306 max_srqs = ctxm->max_entries; 9307 ena = 0; 9308 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9309 pg_lvl = 2; 9310 if (BNXT_SW_RES_LMT(bp)) { 9311 extra_qps = max_qps - l2_qps - qp1_qps; 9312 extra_srqs = max_srqs - srqs; 9313 } else { 9314 extra_qps = min_t(u32, 65536, 9315 max_qps - l2_qps - qp1_qps); 9316 /* allocate extra qps if fw supports RoCE fast qp 9317 * destroy feature 9318 */ 9319 extra_qps += fast_qpmd_qps; 9320 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9321 } 9322 if (fast_qpmd_qps) 9323 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9324 } 9325 9326 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9327 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9328 pg_lvl); 9329 if (rc) 9330 return rc; 9331 9332 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9333 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9334 if (rc) 9335 return rc; 9336 9337 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9338 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9339 extra_qps * 2, pg_lvl); 9340 if (rc) 9341 return rc; 9342 9343 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9344 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9345 if (rc) 9346 return rc; 9347 9348 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9349 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9350 if (rc) 9351 return rc; 9352 9353 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9354 goto skip_rdma; 9355 9356 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9357 if (BNXT_SW_RES_LMT(bp) && 9358 ctxm->split_entry_cnt == BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1) { 9359 num_ah = ctxm->mrav_av_entries; 9360 num_mr = ctxm->max_entries - num_ah; 9361 } else { 9362 /* 128K extra is needed to accommodate static AH context 9363 * allocation by f/w. 9364 */ 9365 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9366 num_ah = min_t(u32, num_mr, 1024 * 128); 9367 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9368 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9369 ctxm->mrav_av_entries = num_ah; 9370 } 9371 9372 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9373 if (rc) 9374 return rc; 9375 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9376 9377 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9378 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9379 if (rc) 9380 return rc; 9381 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9382 9383 skip_rdma: 9384 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9385 min = ctxm->min_entries; 9386 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9387 2 * (extra_qps + qp1_qps) + min; 9388 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9389 if (rc) 9390 return rc; 9391 9392 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9393 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9394 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9395 if (rc) 9396 return rc; 9397 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9398 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9399 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9400 9401 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9402 rc = bnxt_backing_store_cfg_v2(bp, ena); 9403 else 9404 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9405 if (rc) { 9406 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9407 rc); 9408 return rc; 9409 } 9410 ctx->flags |= BNXT_CTX_FLAG_INITED; 9411 return 0; 9412 } 9413 9414 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9415 { 9416 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9417 u16 page_attr; 9418 int rc; 9419 9420 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9421 return 0; 9422 9423 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9424 if (rc) 9425 return rc; 9426 9427 if (BNXT_PAGE_SIZE == 0x2000) 9428 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9429 else if (BNXT_PAGE_SIZE == 0x10000) 9430 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9431 else 9432 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9433 req->pg_size_lvl = cpu_to_le16(page_attr | 9434 bp->fw_crash_mem->ring_mem.depth); 9435 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9436 req->size = cpu_to_le32(bp->fw_crash_len); 9437 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9438 return hwrm_req_send(bp, req); 9439 } 9440 9441 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9442 { 9443 if (bp->fw_crash_mem) { 9444 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9445 kfree(bp->fw_crash_mem); 9446 bp->fw_crash_mem = NULL; 9447 } 9448 } 9449 9450 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9451 { 9452 u32 mem_size = 0; 9453 int rc; 9454 9455 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9456 return 0; 9457 9458 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9459 if (rc) 9460 return rc; 9461 9462 mem_size = round_up(mem_size, 4); 9463 9464 /* keep and use the existing pages */ 9465 if (bp->fw_crash_mem && 9466 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9467 goto alloc_done; 9468 9469 if (bp->fw_crash_mem) 9470 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9471 else 9472 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9473 GFP_KERNEL); 9474 if (!bp->fw_crash_mem) 9475 return -ENOMEM; 9476 9477 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9478 if (rc) { 9479 bnxt_free_crash_dump_mem(bp); 9480 return rc; 9481 } 9482 9483 alloc_done: 9484 bp->fw_crash_len = mem_size; 9485 return 0; 9486 } 9487 9488 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9489 { 9490 struct hwrm_func_resource_qcaps_output *resp; 9491 struct hwrm_func_resource_qcaps_input *req; 9492 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9493 int rc; 9494 9495 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9496 if (rc) 9497 return rc; 9498 9499 req->fid = cpu_to_le16(0xffff); 9500 resp = hwrm_req_hold(bp, req); 9501 rc = hwrm_req_send_silent(bp, req); 9502 if (rc) 9503 goto hwrm_func_resc_qcaps_exit; 9504 9505 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9506 if (!all) 9507 goto hwrm_func_resc_qcaps_exit; 9508 9509 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9510 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9511 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9512 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9513 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9514 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9515 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9516 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9517 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9518 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9519 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9520 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9521 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9522 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9523 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9524 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9525 9526 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9527 u16 max_msix = le16_to_cpu(resp->max_msix); 9528 9529 hw_resc->max_nqs = max_msix; 9530 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9531 } 9532 9533 if (BNXT_PF(bp)) { 9534 struct bnxt_pf_info *pf = &bp->pf; 9535 9536 pf->vf_resv_strategy = 9537 le16_to_cpu(resp->vf_reservation_strategy); 9538 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9539 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9540 } 9541 hwrm_func_resc_qcaps_exit: 9542 hwrm_req_drop(bp, req); 9543 return rc; 9544 } 9545 9546 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9547 { 9548 struct hwrm_port_mac_ptp_qcfg_output *resp; 9549 struct hwrm_port_mac_ptp_qcfg_input *req; 9550 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9551 u8 flags; 9552 int rc; 9553 9554 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9555 rc = -ENODEV; 9556 goto no_ptp; 9557 } 9558 9559 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9560 if (rc) 9561 goto no_ptp; 9562 9563 req->port_id = cpu_to_le16(bp->pf.port_id); 9564 resp = hwrm_req_hold(bp, req); 9565 rc = hwrm_req_send(bp, req); 9566 if (rc) 9567 goto exit; 9568 9569 flags = resp->flags; 9570 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9571 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9572 rc = -ENODEV; 9573 goto exit; 9574 } 9575 if (!ptp) { 9576 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9577 if (!ptp) { 9578 rc = -ENOMEM; 9579 goto exit; 9580 } 9581 ptp->bp = bp; 9582 bp->ptp_cfg = ptp; 9583 } 9584 9585 if (flags & 9586 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9587 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9588 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9589 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9590 } else if (BNXT_CHIP_P5(bp)) { 9591 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9592 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9593 } else { 9594 rc = -ENODEV; 9595 goto exit; 9596 } 9597 ptp->rtc_configured = 9598 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9599 rc = bnxt_ptp_init(bp); 9600 if (rc) 9601 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9602 exit: 9603 hwrm_req_drop(bp, req); 9604 if (!rc) 9605 return 0; 9606 9607 no_ptp: 9608 bnxt_ptp_clear(bp); 9609 kfree(ptp); 9610 bp->ptp_cfg = NULL; 9611 return rc; 9612 } 9613 9614 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9615 { 9616 struct hwrm_func_qcaps_output *resp; 9617 struct hwrm_func_qcaps_input *req; 9618 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9619 u32 flags, flags_ext, flags_ext2; 9620 int rc; 9621 9622 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9623 if (rc) 9624 return rc; 9625 9626 req->fid = cpu_to_le16(0xffff); 9627 resp = hwrm_req_hold(bp, req); 9628 rc = hwrm_req_send(bp, req); 9629 if (rc) 9630 goto hwrm_func_qcaps_exit; 9631 9632 flags = le32_to_cpu(resp->flags); 9633 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9634 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9635 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9636 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9637 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9638 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9639 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9640 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9641 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9642 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9643 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9644 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9645 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9646 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9647 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9648 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9649 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9650 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9651 9652 flags_ext = le32_to_cpu(resp->flags_ext); 9653 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9654 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9655 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9656 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9657 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9658 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9659 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9660 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9661 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9662 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9663 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_NPAR_1_2_SUPPORTED) 9664 bp->fw_cap |= BNXT_FW_CAP_NPAR_1_2; 9665 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9666 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9667 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9668 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9669 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9670 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9671 9672 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9673 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9674 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9675 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9676 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9677 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9678 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9679 if (flags_ext2 & 9680 FUNC_QCAPS_RESP_FLAGS_EXT2_SW_MAX_RESOURCE_LIMITS_SUPPORTED) 9681 bp->fw_cap |= BNXT_FW_CAP_SW_MAX_RESOURCE_LIMITS; 9682 if (BNXT_PF(bp) && 9683 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9684 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9685 9686 bp->tx_push_thresh = 0; 9687 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9688 BNXT_FW_MAJ(bp) > 217) 9689 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9690 9691 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9692 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9693 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9694 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9695 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9696 if (!hw_resc->max_hw_ring_grps) 9697 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9698 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9699 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9700 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9701 9702 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9703 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9704 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9705 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9706 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9707 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9708 9709 if (BNXT_PF(bp)) { 9710 struct bnxt_pf_info *pf = &bp->pf; 9711 9712 pf->fw_fid = le16_to_cpu(resp->fid); 9713 pf->port_id = le16_to_cpu(resp->port_id); 9714 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9715 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9716 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9717 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9718 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9719 bp->flags |= BNXT_FLAG_WOL_CAP; 9720 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9721 bp->fw_cap |= BNXT_FW_CAP_PTP; 9722 } else { 9723 bnxt_ptp_clear(bp); 9724 kfree(bp->ptp_cfg); 9725 bp->ptp_cfg = NULL; 9726 } 9727 } else { 9728 #ifdef CONFIG_BNXT_SRIOV 9729 struct bnxt_vf_info *vf = &bp->vf; 9730 9731 vf->fw_fid = le16_to_cpu(resp->fid); 9732 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9733 #endif 9734 } 9735 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9736 9737 hwrm_func_qcaps_exit: 9738 hwrm_req_drop(bp, req); 9739 return rc; 9740 } 9741 9742 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9743 { 9744 struct hwrm_dbg_qcaps_output *resp; 9745 struct hwrm_dbg_qcaps_input *req; 9746 int rc; 9747 9748 bp->fw_dbg_cap = 0; 9749 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9750 return; 9751 9752 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9753 if (rc) 9754 return; 9755 9756 req->fid = cpu_to_le16(0xffff); 9757 resp = hwrm_req_hold(bp, req); 9758 rc = hwrm_req_send(bp, req); 9759 if (rc) 9760 goto hwrm_dbg_qcaps_exit; 9761 9762 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9763 9764 hwrm_dbg_qcaps_exit: 9765 hwrm_req_drop(bp, req); 9766 } 9767 9768 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9769 9770 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9771 { 9772 int rc; 9773 9774 rc = __bnxt_hwrm_func_qcaps(bp); 9775 if (rc) 9776 return rc; 9777 9778 bnxt_hwrm_dbg_qcaps(bp); 9779 9780 rc = bnxt_hwrm_queue_qportcfg(bp); 9781 if (rc) { 9782 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9783 return rc; 9784 } 9785 if (bp->hwrm_spec_code >= 0x10803) { 9786 rc = bnxt_alloc_ctx_mem(bp); 9787 if (rc) 9788 return rc; 9789 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9790 if (!rc) 9791 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9792 } 9793 return 0; 9794 } 9795 9796 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9797 { 9798 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9799 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9800 u32 flags; 9801 int rc; 9802 9803 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9804 return 0; 9805 9806 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9807 if (rc) 9808 return rc; 9809 9810 resp = hwrm_req_hold(bp, req); 9811 rc = hwrm_req_send(bp, req); 9812 if (rc) 9813 goto hwrm_cfa_adv_qcaps_exit; 9814 9815 flags = le32_to_cpu(resp->flags); 9816 if (flags & 9817 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9818 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9819 9820 if (flags & 9821 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9822 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9823 9824 if (flags & 9825 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9826 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9827 9828 hwrm_cfa_adv_qcaps_exit: 9829 hwrm_req_drop(bp, req); 9830 return rc; 9831 } 9832 9833 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9834 { 9835 if (bp->fw_health) 9836 return 0; 9837 9838 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9839 if (!bp->fw_health) 9840 return -ENOMEM; 9841 9842 mutex_init(&bp->fw_health->lock); 9843 return 0; 9844 } 9845 9846 static int bnxt_alloc_fw_health(struct bnxt *bp) 9847 { 9848 int rc; 9849 9850 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9851 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9852 return 0; 9853 9854 rc = __bnxt_alloc_fw_health(bp); 9855 if (rc) { 9856 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9857 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9858 return rc; 9859 } 9860 9861 return 0; 9862 } 9863 9864 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9865 { 9866 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9867 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9868 BNXT_FW_HEALTH_WIN_MAP_OFF); 9869 } 9870 9871 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9872 { 9873 struct bnxt_fw_health *fw_health = bp->fw_health; 9874 u32 reg_type; 9875 9876 if (!fw_health) 9877 return; 9878 9879 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9880 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9881 fw_health->status_reliable = false; 9882 9883 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9884 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9885 fw_health->resets_reliable = false; 9886 } 9887 9888 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9889 { 9890 void __iomem *hs; 9891 u32 status_loc; 9892 u32 reg_type; 9893 u32 sig; 9894 9895 if (bp->fw_health) 9896 bp->fw_health->status_reliable = false; 9897 9898 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9899 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9900 9901 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9902 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9903 if (!bp->chip_num) { 9904 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9905 bp->chip_num = readl(bp->bar0 + 9906 BNXT_FW_HEALTH_WIN_BASE + 9907 BNXT_GRC_REG_CHIP_NUM); 9908 } 9909 if (!BNXT_CHIP_P5_PLUS(bp)) 9910 return; 9911 9912 status_loc = BNXT_GRC_REG_STATUS_P5 | 9913 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9914 } else { 9915 status_loc = readl(hs + offsetof(struct hcomm_status, 9916 fw_status_loc)); 9917 } 9918 9919 if (__bnxt_alloc_fw_health(bp)) { 9920 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9921 return; 9922 } 9923 9924 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9925 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9926 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9927 __bnxt_map_fw_health_reg(bp, status_loc); 9928 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9929 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9930 } 9931 9932 bp->fw_health->status_reliable = true; 9933 } 9934 9935 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9936 { 9937 struct bnxt_fw_health *fw_health = bp->fw_health; 9938 u32 reg_base = 0xffffffff; 9939 int i; 9940 9941 bp->fw_health->status_reliable = false; 9942 bp->fw_health->resets_reliable = false; 9943 /* Only pre-map the monitoring GRC registers using window 3 */ 9944 for (i = 0; i < 4; i++) { 9945 u32 reg = fw_health->regs[i]; 9946 9947 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9948 continue; 9949 if (reg_base == 0xffffffff) 9950 reg_base = reg & BNXT_GRC_BASE_MASK; 9951 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9952 return -ERANGE; 9953 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9954 } 9955 bp->fw_health->status_reliable = true; 9956 bp->fw_health->resets_reliable = true; 9957 if (reg_base == 0xffffffff) 9958 return 0; 9959 9960 __bnxt_map_fw_health_reg(bp, reg_base); 9961 return 0; 9962 } 9963 9964 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9965 { 9966 if (!bp->fw_health) 9967 return; 9968 9969 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9970 bp->fw_health->status_reliable = true; 9971 bp->fw_health->resets_reliable = true; 9972 } else { 9973 bnxt_try_map_fw_health_reg(bp); 9974 } 9975 } 9976 9977 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9978 { 9979 struct bnxt_fw_health *fw_health = bp->fw_health; 9980 struct hwrm_error_recovery_qcfg_output *resp; 9981 struct hwrm_error_recovery_qcfg_input *req; 9982 int rc, i; 9983 9984 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9985 return 0; 9986 9987 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9988 if (rc) 9989 return rc; 9990 9991 resp = hwrm_req_hold(bp, req); 9992 rc = hwrm_req_send(bp, req); 9993 if (rc) 9994 goto err_recovery_out; 9995 fw_health->flags = le32_to_cpu(resp->flags); 9996 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9997 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9998 rc = -EINVAL; 9999 goto err_recovery_out; 10000 } 10001 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 10002 fw_health->master_func_wait_dsecs = 10003 le32_to_cpu(resp->master_func_wait_period); 10004 fw_health->normal_func_wait_dsecs = 10005 le32_to_cpu(resp->normal_func_wait_period); 10006 fw_health->post_reset_wait_dsecs = 10007 le32_to_cpu(resp->master_func_wait_period_after_reset); 10008 fw_health->post_reset_max_wait_dsecs = 10009 le32_to_cpu(resp->max_bailout_time_after_reset); 10010 fw_health->regs[BNXT_FW_HEALTH_REG] = 10011 le32_to_cpu(resp->fw_health_status_reg); 10012 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 10013 le32_to_cpu(resp->fw_heartbeat_reg); 10014 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 10015 le32_to_cpu(resp->fw_reset_cnt_reg); 10016 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 10017 le32_to_cpu(resp->reset_inprogress_reg); 10018 fw_health->fw_reset_inprog_reg_mask = 10019 le32_to_cpu(resp->reset_inprogress_reg_mask); 10020 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 10021 if (fw_health->fw_reset_seq_cnt >= 16) { 10022 rc = -EINVAL; 10023 goto err_recovery_out; 10024 } 10025 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 10026 fw_health->fw_reset_seq_regs[i] = 10027 le32_to_cpu(resp->reset_reg[i]); 10028 fw_health->fw_reset_seq_vals[i] = 10029 le32_to_cpu(resp->reset_reg_val[i]); 10030 fw_health->fw_reset_seq_delay_msec[i] = 10031 resp->delay_after_reset[i]; 10032 } 10033 err_recovery_out: 10034 hwrm_req_drop(bp, req); 10035 if (!rc) 10036 rc = bnxt_map_fw_health_regs(bp); 10037 if (rc) 10038 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 10039 return rc; 10040 } 10041 10042 static int bnxt_hwrm_func_reset(struct bnxt *bp) 10043 { 10044 struct hwrm_func_reset_input *req; 10045 int rc; 10046 10047 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 10048 if (rc) 10049 return rc; 10050 10051 req->enables = 0; 10052 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 10053 return hwrm_req_send(bp, req); 10054 } 10055 10056 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 10057 { 10058 struct hwrm_nvm_get_dev_info_output nvm_info; 10059 10060 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 10061 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 10062 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 10063 nvm_info.nvm_cfg_ver_upd); 10064 } 10065 10066 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 10067 { 10068 struct hwrm_queue_qportcfg_output *resp; 10069 struct hwrm_queue_qportcfg_input *req; 10070 u8 i, j, *qptr; 10071 bool no_rdma; 10072 int rc = 0; 10073 10074 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 10075 if (rc) 10076 return rc; 10077 10078 resp = hwrm_req_hold(bp, req); 10079 rc = hwrm_req_send(bp, req); 10080 if (rc) 10081 goto qportcfg_exit; 10082 10083 if (!resp->max_configurable_queues) { 10084 rc = -EINVAL; 10085 goto qportcfg_exit; 10086 } 10087 bp->max_tc = resp->max_configurable_queues; 10088 bp->max_lltc = resp->max_configurable_lossless_queues; 10089 if (bp->max_tc > BNXT_MAX_QUEUE) 10090 bp->max_tc = BNXT_MAX_QUEUE; 10091 10092 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 10093 qptr = &resp->queue_id0; 10094 for (i = 0, j = 0; i < bp->max_tc; i++) { 10095 bp->q_info[j].queue_id = *qptr; 10096 bp->q_ids[i] = *qptr++; 10097 bp->q_info[j].queue_profile = *qptr++; 10098 bp->tc_to_qidx[j] = j; 10099 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 10100 (no_rdma && BNXT_PF(bp))) 10101 j++; 10102 } 10103 bp->max_q = bp->max_tc; 10104 bp->max_tc = max_t(u8, j, 1); 10105 10106 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 10107 bp->max_tc = 1; 10108 10109 if (bp->max_lltc > bp->max_tc) 10110 bp->max_lltc = bp->max_tc; 10111 10112 qportcfg_exit: 10113 hwrm_req_drop(bp, req); 10114 return rc; 10115 } 10116 10117 static int bnxt_hwrm_poll(struct bnxt *bp) 10118 { 10119 struct hwrm_ver_get_input *req; 10120 int rc; 10121 10122 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10123 if (rc) 10124 return rc; 10125 10126 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10127 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10128 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10129 10130 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 10131 rc = hwrm_req_send(bp, req); 10132 return rc; 10133 } 10134 10135 static int bnxt_hwrm_ver_get(struct bnxt *bp) 10136 { 10137 struct hwrm_ver_get_output *resp; 10138 struct hwrm_ver_get_input *req; 10139 u16 fw_maj, fw_min, fw_bld, fw_rsv; 10140 u32 dev_caps_cfg, hwrm_ver; 10141 int rc, len, max_tmo_secs; 10142 10143 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10144 if (rc) 10145 return rc; 10146 10147 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10148 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 10149 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10150 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10151 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10152 10153 resp = hwrm_req_hold(bp, req); 10154 rc = hwrm_req_send(bp, req); 10155 if (rc) 10156 goto hwrm_ver_get_exit; 10157 10158 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 10159 10160 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 10161 resp->hwrm_intf_min_8b << 8 | 10162 resp->hwrm_intf_upd_8b; 10163 if (resp->hwrm_intf_maj_8b < 1) { 10164 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 10165 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10166 resp->hwrm_intf_upd_8b); 10167 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 10168 } 10169 10170 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 10171 HWRM_VERSION_UPDATE; 10172 10173 if (bp->hwrm_spec_code > hwrm_ver) 10174 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10175 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 10176 HWRM_VERSION_UPDATE); 10177 else 10178 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10179 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10180 resp->hwrm_intf_upd_8b); 10181 10182 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 10183 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 10184 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 10185 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 10186 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 10187 len = FW_VER_STR_LEN; 10188 } else { 10189 fw_maj = resp->hwrm_fw_maj_8b; 10190 fw_min = resp->hwrm_fw_min_8b; 10191 fw_bld = resp->hwrm_fw_bld_8b; 10192 fw_rsv = resp->hwrm_fw_rsvd_8b; 10193 len = BC_HWRM_STR_LEN; 10194 } 10195 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 10196 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 10197 fw_rsv); 10198 10199 if (strlen(resp->active_pkg_name)) { 10200 int fw_ver_len = strlen(bp->fw_ver_str); 10201 10202 snprintf(bp->fw_ver_str + fw_ver_len, 10203 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 10204 resp->active_pkg_name); 10205 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 10206 } 10207 10208 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10209 if (!bp->hwrm_cmd_timeout) 10210 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10211 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10212 if (!bp->hwrm_cmd_max_timeout) 10213 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10214 max_tmo_secs = bp->hwrm_cmd_max_timeout / 1000; 10215 #ifdef CONFIG_DETECT_HUNG_TASK 10216 if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT || 10217 max_tmo_secs > CONFIG_DEFAULT_HUNG_TASK_TIMEOUT) { 10218 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog (kernel default %ds)\n", 10219 max_tmo_secs, CONFIG_DEFAULT_HUNG_TASK_TIMEOUT); 10220 } 10221 #endif 10222 10223 if (resp->hwrm_intf_maj_8b >= 1) { 10224 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10225 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10226 } 10227 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10228 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10229 10230 bp->chip_num = le16_to_cpu(resp->chip_num); 10231 bp->chip_rev = resp->chip_rev; 10232 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10233 !resp->chip_metal) 10234 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10235 10236 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10237 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10238 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10239 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10240 10241 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10242 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10243 10244 if (dev_caps_cfg & 10245 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10246 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10247 10248 if (dev_caps_cfg & 10249 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10250 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10251 10252 if (dev_caps_cfg & 10253 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10254 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10255 10256 hwrm_ver_get_exit: 10257 hwrm_req_drop(bp, req); 10258 return rc; 10259 } 10260 10261 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10262 { 10263 struct hwrm_fw_set_time_input *req; 10264 struct tm tm; 10265 time64_t now = ktime_get_real_seconds(); 10266 int rc; 10267 10268 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10269 bp->hwrm_spec_code < 0x10400) 10270 return -EOPNOTSUPP; 10271 10272 time64_to_tm(now, 0, &tm); 10273 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10274 if (rc) 10275 return rc; 10276 10277 req->year = cpu_to_le16(1900 + tm.tm_year); 10278 req->month = 1 + tm.tm_mon; 10279 req->day = tm.tm_mday; 10280 req->hour = tm.tm_hour; 10281 req->minute = tm.tm_min; 10282 req->second = tm.tm_sec; 10283 return hwrm_req_send(bp, req); 10284 } 10285 10286 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10287 { 10288 u64 sw_tmp; 10289 10290 hw &= mask; 10291 sw_tmp = (*sw & ~mask) | hw; 10292 if (hw < (*sw & mask)) 10293 sw_tmp += mask + 1; 10294 WRITE_ONCE(*sw, sw_tmp); 10295 } 10296 10297 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10298 int count, bool ignore_zero) 10299 { 10300 int i; 10301 10302 for (i = 0; i < count; i++) { 10303 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10304 10305 if (ignore_zero && !hw) 10306 continue; 10307 10308 if (masks[i] == -1ULL) 10309 sw_stats[i] = hw; 10310 else 10311 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10312 } 10313 } 10314 10315 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10316 { 10317 if (!stats->hw_stats) 10318 return; 10319 10320 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10321 stats->hw_masks, stats->len / 8, false); 10322 } 10323 10324 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10325 { 10326 struct bnxt_stats_mem *ring0_stats; 10327 bool ignore_zero = false; 10328 int i; 10329 10330 /* Chip bug. Counter intermittently becomes 0. */ 10331 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10332 ignore_zero = true; 10333 10334 for (i = 0; i < bp->cp_nr_rings; i++) { 10335 struct bnxt_napi *bnapi = bp->bnapi[i]; 10336 struct bnxt_cp_ring_info *cpr; 10337 struct bnxt_stats_mem *stats; 10338 10339 cpr = &bnapi->cp_ring; 10340 stats = &cpr->stats; 10341 if (!i) 10342 ring0_stats = stats; 10343 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10344 ring0_stats->hw_masks, 10345 ring0_stats->len / 8, ignore_zero); 10346 } 10347 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10348 struct bnxt_stats_mem *stats = &bp->port_stats; 10349 __le64 *hw_stats = stats->hw_stats; 10350 u64 *sw_stats = stats->sw_stats; 10351 u64 *masks = stats->hw_masks; 10352 int cnt; 10353 10354 cnt = sizeof(struct rx_port_stats) / 8; 10355 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10356 10357 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10358 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10359 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10360 cnt = sizeof(struct tx_port_stats) / 8; 10361 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10362 } 10363 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10364 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10365 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10366 } 10367 } 10368 10369 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10370 { 10371 struct hwrm_port_qstats_input *req; 10372 struct bnxt_pf_info *pf = &bp->pf; 10373 int rc; 10374 10375 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10376 return 0; 10377 10378 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10379 return -EOPNOTSUPP; 10380 10381 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10382 if (rc) 10383 return rc; 10384 10385 req->flags = flags; 10386 req->port_id = cpu_to_le16(pf->port_id); 10387 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10388 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10389 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10390 return hwrm_req_send(bp, req); 10391 } 10392 10393 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10394 { 10395 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10396 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10397 struct hwrm_port_qstats_ext_output *resp_qs; 10398 struct hwrm_port_qstats_ext_input *req_qs; 10399 struct bnxt_pf_info *pf = &bp->pf; 10400 u32 tx_stat_size; 10401 int rc; 10402 10403 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10404 return 0; 10405 10406 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10407 return -EOPNOTSUPP; 10408 10409 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10410 if (rc) 10411 return rc; 10412 10413 req_qs->flags = flags; 10414 req_qs->port_id = cpu_to_le16(pf->port_id); 10415 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10416 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10417 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10418 sizeof(struct tx_port_stats_ext) : 0; 10419 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10420 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10421 resp_qs = hwrm_req_hold(bp, req_qs); 10422 rc = hwrm_req_send(bp, req_qs); 10423 if (!rc) { 10424 bp->fw_rx_stats_ext_size = 10425 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10426 if (BNXT_FW_MAJ(bp) < 220 && 10427 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10428 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10429 10430 bp->fw_tx_stats_ext_size = tx_stat_size ? 10431 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10432 } else { 10433 bp->fw_rx_stats_ext_size = 0; 10434 bp->fw_tx_stats_ext_size = 0; 10435 } 10436 hwrm_req_drop(bp, req_qs); 10437 10438 if (flags) 10439 return rc; 10440 10441 if (bp->fw_tx_stats_ext_size <= 10442 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10443 bp->pri2cos_valid = 0; 10444 return rc; 10445 } 10446 10447 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10448 if (rc) 10449 return rc; 10450 10451 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10452 10453 resp_qc = hwrm_req_hold(bp, req_qc); 10454 rc = hwrm_req_send(bp, req_qc); 10455 if (!rc) { 10456 u8 *pri2cos; 10457 int i, j; 10458 10459 pri2cos = &resp_qc->pri0_cos_queue_id; 10460 for (i = 0; i < 8; i++) { 10461 u8 queue_id = pri2cos[i]; 10462 u8 queue_idx; 10463 10464 /* Per port queue IDs start from 0, 10, 20, etc */ 10465 queue_idx = queue_id % 10; 10466 if (queue_idx > BNXT_MAX_QUEUE) { 10467 bp->pri2cos_valid = false; 10468 hwrm_req_drop(bp, req_qc); 10469 return rc; 10470 } 10471 for (j = 0; j < bp->max_q; j++) { 10472 if (bp->q_ids[j] == queue_id) 10473 bp->pri2cos_idx[i] = queue_idx; 10474 } 10475 } 10476 bp->pri2cos_valid = true; 10477 } 10478 hwrm_req_drop(bp, req_qc); 10479 10480 return rc; 10481 } 10482 10483 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10484 { 10485 bnxt_hwrm_tunnel_dst_port_free(bp, 10486 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10487 bnxt_hwrm_tunnel_dst_port_free(bp, 10488 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10489 } 10490 10491 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10492 { 10493 int rc, i; 10494 u32 tpa_flags = 0; 10495 10496 if (set_tpa) 10497 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10498 else if (BNXT_NO_FW_ACCESS(bp)) 10499 return 0; 10500 for (i = 0; i < bp->nr_vnics; i++) { 10501 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10502 if (rc) { 10503 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10504 i, rc); 10505 return rc; 10506 } 10507 } 10508 return 0; 10509 } 10510 10511 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10512 { 10513 int i; 10514 10515 for (i = 0; i < bp->nr_vnics; i++) 10516 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10517 } 10518 10519 static void bnxt_clear_vnic(struct bnxt *bp) 10520 { 10521 if (!bp->vnic_info) 10522 return; 10523 10524 bnxt_hwrm_clear_vnic_filter(bp); 10525 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10526 /* clear all RSS setting before free vnic ctx */ 10527 bnxt_hwrm_clear_vnic_rss(bp); 10528 bnxt_hwrm_vnic_ctx_free(bp); 10529 } 10530 /* before free the vnic, undo the vnic tpa settings */ 10531 if (bp->flags & BNXT_FLAG_TPA) 10532 bnxt_set_tpa(bp, false); 10533 bnxt_hwrm_vnic_free(bp); 10534 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10535 bnxt_hwrm_vnic_ctx_free(bp); 10536 } 10537 10538 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10539 bool irq_re_init) 10540 { 10541 bnxt_clear_vnic(bp); 10542 bnxt_hwrm_ring_free(bp, close_path); 10543 bnxt_hwrm_ring_grp_free(bp); 10544 if (irq_re_init) { 10545 bnxt_hwrm_stat_ctx_free(bp); 10546 bnxt_hwrm_free_tunnel_ports(bp); 10547 } 10548 } 10549 10550 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10551 { 10552 struct hwrm_func_cfg_input *req; 10553 u8 evb_mode; 10554 int rc; 10555 10556 if (br_mode == BRIDGE_MODE_VEB) 10557 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10558 else if (br_mode == BRIDGE_MODE_VEPA) 10559 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10560 else 10561 return -EINVAL; 10562 10563 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10564 if (rc) 10565 return rc; 10566 10567 req->fid = cpu_to_le16(0xffff); 10568 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10569 req->evb_mode = evb_mode; 10570 return hwrm_req_send(bp, req); 10571 } 10572 10573 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10574 { 10575 struct hwrm_func_cfg_input *req; 10576 int rc; 10577 10578 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10579 return 0; 10580 10581 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10582 if (rc) 10583 return rc; 10584 10585 req->fid = cpu_to_le16(0xffff); 10586 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10587 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10588 if (size == 128) 10589 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10590 10591 return hwrm_req_send(bp, req); 10592 } 10593 10594 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10595 { 10596 int rc; 10597 10598 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10599 goto skip_rss_ctx; 10600 10601 /* allocate context for vnic */ 10602 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10603 if (rc) { 10604 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10605 vnic->vnic_id, rc); 10606 goto vnic_setup_err; 10607 } 10608 bp->rsscos_nr_ctxs++; 10609 10610 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10611 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10612 if (rc) { 10613 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10614 vnic->vnic_id, rc); 10615 goto vnic_setup_err; 10616 } 10617 bp->rsscos_nr_ctxs++; 10618 } 10619 10620 skip_rss_ctx: 10621 /* configure default vnic, ring grp */ 10622 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10623 if (rc) { 10624 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10625 vnic->vnic_id, rc); 10626 goto vnic_setup_err; 10627 } 10628 10629 /* Enable RSS hashing on vnic */ 10630 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10631 if (rc) { 10632 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10633 vnic->vnic_id, rc); 10634 goto vnic_setup_err; 10635 } 10636 10637 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10638 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10639 if (rc) { 10640 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10641 vnic->vnic_id, rc); 10642 } 10643 } 10644 10645 vnic_setup_err: 10646 return rc; 10647 } 10648 10649 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10650 u8 valid) 10651 { 10652 struct hwrm_vnic_update_input *req; 10653 int rc; 10654 10655 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10656 if (rc) 10657 return rc; 10658 10659 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10660 10661 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10662 req->mru = cpu_to_le16(vnic->mru); 10663 10664 req->enables = cpu_to_le32(valid); 10665 10666 return hwrm_req_send(bp, req); 10667 } 10668 10669 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10670 { 10671 int rc; 10672 10673 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10674 if (rc) { 10675 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10676 vnic->vnic_id, rc); 10677 return rc; 10678 } 10679 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10680 if (rc) 10681 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10682 vnic->vnic_id, rc); 10683 return rc; 10684 } 10685 10686 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10687 { 10688 int rc, i, nr_ctxs; 10689 10690 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10691 for (i = 0; i < nr_ctxs; i++) { 10692 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10693 if (rc) { 10694 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10695 vnic->vnic_id, i, rc); 10696 break; 10697 } 10698 bp->rsscos_nr_ctxs++; 10699 } 10700 if (i < nr_ctxs) 10701 return -ENOMEM; 10702 10703 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10704 if (rc) 10705 return rc; 10706 10707 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10708 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10709 if (rc) { 10710 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10711 vnic->vnic_id, rc); 10712 } 10713 } 10714 return rc; 10715 } 10716 10717 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10718 { 10719 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10720 return __bnxt_setup_vnic_p5(bp, vnic); 10721 else 10722 return __bnxt_setup_vnic(bp, vnic); 10723 } 10724 10725 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10726 struct bnxt_vnic_info *vnic, 10727 u16 start_rx_ring_idx, int rx_rings) 10728 { 10729 int rc; 10730 10731 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10732 if (rc) { 10733 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10734 vnic->vnic_id, rc); 10735 return rc; 10736 } 10737 return bnxt_setup_vnic(bp, vnic); 10738 } 10739 10740 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10741 { 10742 struct bnxt_vnic_info *vnic; 10743 int i, rc = 0; 10744 10745 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10746 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10747 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10748 } 10749 10750 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10751 return 0; 10752 10753 for (i = 0; i < bp->rx_nr_rings; i++) { 10754 u16 vnic_id = i + 1; 10755 u16 ring_id = i; 10756 10757 if (vnic_id >= bp->nr_vnics) 10758 break; 10759 10760 vnic = &bp->vnic_info[vnic_id]; 10761 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10762 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10763 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10764 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10765 break; 10766 } 10767 return rc; 10768 } 10769 10770 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10771 bool all) 10772 { 10773 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10774 struct bnxt_filter_base *usr_fltr, *tmp; 10775 struct bnxt_ntuple_filter *ntp_fltr; 10776 int i; 10777 10778 if (netif_running(bp->dev)) { 10779 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10780 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10781 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10782 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10783 } 10784 } 10785 if (!all) 10786 return; 10787 10788 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10789 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10790 usr_fltr->fw_vnic_id == rss_ctx->index) { 10791 ntp_fltr = container_of(usr_fltr, 10792 struct bnxt_ntuple_filter, 10793 base); 10794 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10795 bnxt_del_ntp_filter(bp, ntp_fltr); 10796 bnxt_del_one_usr_fltr(bp, usr_fltr); 10797 } 10798 } 10799 10800 if (vnic->rss_table) 10801 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10802 vnic->rss_table, 10803 vnic->rss_table_dma_addr); 10804 bp->num_rss_ctx--; 10805 } 10806 10807 static bool bnxt_vnic_has_rx_ring(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10808 int rxr_id) 10809 { 10810 u16 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 10811 int i, vnic_rx; 10812 10813 /* Ntuple VNIC always has all the rx rings. Any change of ring id 10814 * must be updated because a future filter may use it. 10815 */ 10816 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 10817 return true; 10818 10819 for (i = 0; i < tbl_size; i++) { 10820 if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 10821 vnic_rx = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 10822 else 10823 vnic_rx = bp->rss_indir_tbl[i]; 10824 10825 if (rxr_id == vnic_rx) 10826 return true; 10827 } 10828 10829 return false; 10830 } 10831 10832 static int bnxt_set_vnic_mru_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10833 u16 mru, int rxr_id) 10834 { 10835 int rc; 10836 10837 if (!bnxt_vnic_has_rx_ring(bp, vnic, rxr_id)) 10838 return 0; 10839 10840 if (mru) { 10841 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10842 if (rc) { 10843 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10844 vnic->vnic_id, rc); 10845 return rc; 10846 } 10847 } 10848 vnic->mru = mru; 10849 bnxt_hwrm_vnic_update(bp, vnic, 10850 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 10851 10852 return 0; 10853 } 10854 10855 static int bnxt_set_rss_ctx_vnic_mru(struct bnxt *bp, u16 mru, int rxr_id) 10856 { 10857 struct ethtool_rxfh_context *ctx; 10858 unsigned long context; 10859 int rc; 10860 10861 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10862 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10863 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10864 10865 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, rxr_id); 10866 if (rc) 10867 return rc; 10868 } 10869 10870 return 0; 10871 } 10872 10873 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10874 { 10875 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10876 struct ethtool_rxfh_context *ctx; 10877 unsigned long context; 10878 10879 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10880 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10881 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10882 10883 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10884 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10885 __bnxt_setup_vnic_p5(bp, vnic)) { 10886 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10887 rss_ctx->index); 10888 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10889 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10890 } 10891 } 10892 } 10893 10894 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10895 { 10896 struct ethtool_rxfh_context *ctx; 10897 unsigned long context; 10898 10899 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10900 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10901 10902 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10903 } 10904 } 10905 10906 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10907 static bool bnxt_promisc_ok(struct bnxt *bp) 10908 { 10909 #ifdef CONFIG_BNXT_SRIOV 10910 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10911 return false; 10912 #endif 10913 return true; 10914 } 10915 10916 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10917 { 10918 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10919 unsigned int rc = 0; 10920 10921 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10922 if (rc) { 10923 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10924 rc); 10925 return rc; 10926 } 10927 10928 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10929 if (rc) { 10930 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10931 rc); 10932 return rc; 10933 } 10934 return rc; 10935 } 10936 10937 static int bnxt_cfg_rx_mode(struct bnxt *); 10938 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10939 10940 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10941 { 10942 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10943 int rc = 0; 10944 unsigned int rx_nr_rings = bp->rx_nr_rings; 10945 10946 if (irq_re_init) { 10947 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10948 if (rc) { 10949 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10950 rc); 10951 goto err_out; 10952 } 10953 } 10954 10955 rc = bnxt_hwrm_ring_alloc(bp); 10956 if (rc) { 10957 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10958 goto err_out; 10959 } 10960 10961 rc = bnxt_hwrm_ring_grp_alloc(bp); 10962 if (rc) { 10963 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10964 goto err_out; 10965 } 10966 10967 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10968 rx_nr_rings--; 10969 10970 /* default vnic 0 */ 10971 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10972 if (rc) { 10973 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10974 goto err_out; 10975 } 10976 10977 if (BNXT_VF(bp)) 10978 bnxt_hwrm_func_qcfg(bp); 10979 10980 rc = bnxt_setup_vnic(bp, vnic); 10981 if (rc) 10982 goto err_out; 10983 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10984 bnxt_hwrm_update_rss_hash_cfg(bp); 10985 10986 if (bp->flags & BNXT_FLAG_RFS) { 10987 rc = bnxt_alloc_rfs_vnics(bp); 10988 if (rc) 10989 goto err_out; 10990 } 10991 10992 if (bp->flags & BNXT_FLAG_TPA) { 10993 rc = bnxt_set_tpa(bp, true); 10994 if (rc) 10995 goto err_out; 10996 } 10997 10998 if (BNXT_VF(bp)) 10999 bnxt_update_vf_mac(bp); 11000 11001 /* Filter for default vnic 0 */ 11002 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 11003 if (rc) { 11004 if (BNXT_VF(bp) && rc == -ENODEV) 11005 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 11006 else 11007 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11008 goto err_out; 11009 } 11010 vnic->uc_filter_count = 1; 11011 11012 vnic->rx_mask = 0; 11013 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 11014 goto skip_rx_mask; 11015 11016 if (bp->dev->flags & IFF_BROADCAST) 11017 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11018 11019 if (bp->dev->flags & IFF_PROMISC) 11020 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11021 11022 if (bp->dev->flags & IFF_ALLMULTI) { 11023 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11024 vnic->mc_list_count = 0; 11025 } else if (bp->dev->flags & IFF_MULTICAST) { 11026 u32 mask = 0; 11027 11028 bnxt_mc_list_updated(bp, &mask); 11029 vnic->rx_mask |= mask; 11030 } 11031 11032 rc = bnxt_cfg_rx_mode(bp); 11033 if (rc) 11034 goto err_out; 11035 11036 skip_rx_mask: 11037 rc = bnxt_hwrm_set_coal(bp); 11038 if (rc) 11039 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 11040 rc); 11041 11042 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11043 rc = bnxt_setup_nitroa0_vnic(bp); 11044 if (rc) 11045 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 11046 rc); 11047 } 11048 11049 if (BNXT_VF(bp)) { 11050 bnxt_hwrm_func_qcfg(bp); 11051 netdev_update_features(bp->dev); 11052 } 11053 11054 return 0; 11055 11056 err_out: 11057 bnxt_hwrm_resource_free(bp, 0, true); 11058 11059 return rc; 11060 } 11061 11062 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 11063 { 11064 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 11065 return 0; 11066 } 11067 11068 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 11069 { 11070 bnxt_init_cp_rings(bp); 11071 bnxt_init_rx_rings(bp); 11072 bnxt_init_tx_rings(bp); 11073 bnxt_init_ring_grps(bp, irq_re_init); 11074 bnxt_init_vnics(bp); 11075 11076 return bnxt_init_chip(bp, irq_re_init); 11077 } 11078 11079 static int bnxt_set_real_num_queues(struct bnxt *bp) 11080 { 11081 int rc; 11082 struct net_device *dev = bp->dev; 11083 11084 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 11085 bp->tx_nr_rings_xdp); 11086 if (rc) 11087 return rc; 11088 11089 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 11090 if (rc) 11091 return rc; 11092 11093 #ifdef CONFIG_RFS_ACCEL 11094 if (bp->flags & BNXT_FLAG_RFS) 11095 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 11096 #endif 11097 11098 return rc; 11099 } 11100 11101 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11102 bool shared) 11103 { 11104 int _rx = *rx, _tx = *tx; 11105 11106 if (shared) { 11107 *rx = min_t(int, _rx, max); 11108 *tx = min_t(int, _tx, max); 11109 } else { 11110 if (max < 2) 11111 return -ENOMEM; 11112 11113 while (_rx + _tx > max) { 11114 if (_rx > _tx && _rx > 1) 11115 _rx--; 11116 else if (_tx > 1) 11117 _tx--; 11118 } 11119 *rx = _rx; 11120 *tx = _tx; 11121 } 11122 return 0; 11123 } 11124 11125 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 11126 { 11127 return (tx - tx_xdp) / tx_sets + tx_xdp; 11128 } 11129 11130 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 11131 { 11132 int tcs = bp->num_tc; 11133 11134 if (!tcs) 11135 tcs = 1; 11136 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 11137 } 11138 11139 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 11140 { 11141 int tcs = bp->num_tc; 11142 11143 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 11144 bp->tx_nr_rings_xdp; 11145 } 11146 11147 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11148 bool sh) 11149 { 11150 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 11151 11152 if (tx_cp != *tx) { 11153 int tx_saved = tx_cp, rc; 11154 11155 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 11156 if (rc) 11157 return rc; 11158 if (tx_cp != tx_saved) 11159 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 11160 return 0; 11161 } 11162 return __bnxt_trim_rings(bp, rx, tx, max, sh); 11163 } 11164 11165 static void bnxt_setup_msix(struct bnxt *bp) 11166 { 11167 const int len = sizeof(bp->irq_tbl[0].name); 11168 struct net_device *dev = bp->dev; 11169 int tcs, i; 11170 11171 tcs = bp->num_tc; 11172 if (tcs) { 11173 int i, off, count; 11174 11175 for (i = 0; i < tcs; i++) { 11176 count = bp->tx_nr_rings_per_tc; 11177 off = BNXT_TC_TO_RING_BASE(bp, i); 11178 netdev_set_tc_queue(dev, i, count, off); 11179 } 11180 } 11181 11182 for (i = 0; i < bp->cp_nr_rings; i++) { 11183 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11184 char *attr; 11185 11186 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11187 attr = "TxRx"; 11188 else if (i < bp->rx_nr_rings) 11189 attr = "rx"; 11190 else 11191 attr = "tx"; 11192 11193 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 11194 attr, i); 11195 bp->irq_tbl[map_idx].handler = bnxt_msix; 11196 } 11197 } 11198 11199 static int bnxt_init_int_mode(struct bnxt *bp); 11200 11201 static int bnxt_change_msix(struct bnxt *bp, int total) 11202 { 11203 struct msi_map map; 11204 int i; 11205 11206 /* add MSIX to the end if needed */ 11207 for (i = bp->total_irqs; i < total; i++) { 11208 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 11209 if (map.index < 0) 11210 return bp->total_irqs; 11211 bp->irq_tbl[i].vector = map.virq; 11212 bp->total_irqs++; 11213 } 11214 11215 /* trim MSIX from the end if needed */ 11216 for (i = bp->total_irqs; i > total; i--) { 11217 map.index = i - 1; 11218 map.virq = bp->irq_tbl[i - 1].vector; 11219 pci_msix_free_irq(bp->pdev, map); 11220 bp->total_irqs--; 11221 } 11222 return bp->total_irqs; 11223 } 11224 11225 static int bnxt_setup_int_mode(struct bnxt *bp) 11226 { 11227 int rc; 11228 11229 if (!bp->irq_tbl) { 11230 rc = bnxt_init_int_mode(bp); 11231 if (rc || !bp->irq_tbl) 11232 return rc ?: -ENODEV; 11233 } 11234 11235 bnxt_setup_msix(bp); 11236 11237 rc = bnxt_set_real_num_queues(bp); 11238 return rc; 11239 } 11240 11241 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 11242 { 11243 return bp->hw_resc.max_rsscos_ctxs; 11244 } 11245 11246 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 11247 { 11248 return bp->hw_resc.max_vnics; 11249 } 11250 11251 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 11252 { 11253 return bp->hw_resc.max_stat_ctxs; 11254 } 11255 11256 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 11257 { 11258 return bp->hw_resc.max_cp_rings; 11259 } 11260 11261 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 11262 { 11263 unsigned int cp = bp->hw_resc.max_cp_rings; 11264 11265 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11266 cp -= bnxt_get_ulp_msix_num(bp); 11267 11268 return cp; 11269 } 11270 11271 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 11272 { 11273 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11274 11275 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11276 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 11277 11278 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11279 } 11280 11281 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11282 { 11283 bp->hw_resc.max_irqs = max_irqs; 11284 } 11285 11286 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11287 { 11288 unsigned int cp; 11289 11290 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11291 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11292 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11293 else 11294 return cp - bp->cp_nr_rings; 11295 } 11296 11297 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11298 { 11299 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11300 } 11301 11302 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11303 { 11304 int max_irq = bnxt_get_max_func_irqs(bp); 11305 int total_req = bp->cp_nr_rings + num; 11306 11307 if (max_irq < total_req) { 11308 num = max_irq - bp->cp_nr_rings; 11309 if (num <= 0) 11310 return 0; 11311 } 11312 return num; 11313 } 11314 11315 static int bnxt_get_num_msix(struct bnxt *bp) 11316 { 11317 if (!BNXT_NEW_RM(bp)) 11318 return bnxt_get_max_func_irqs(bp); 11319 11320 return bnxt_nq_rings_in_use(bp); 11321 } 11322 11323 static int bnxt_init_int_mode(struct bnxt *bp) 11324 { 11325 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11326 11327 total_vecs = bnxt_get_num_msix(bp); 11328 max = bnxt_get_max_func_irqs(bp); 11329 if (total_vecs > max) 11330 total_vecs = max; 11331 11332 if (!total_vecs) 11333 return 0; 11334 11335 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11336 min = 2; 11337 11338 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11339 PCI_IRQ_MSIX); 11340 ulp_msix = bnxt_get_ulp_msix_num(bp); 11341 if (total_vecs < 0 || total_vecs < ulp_msix) { 11342 rc = -ENODEV; 11343 goto msix_setup_exit; 11344 } 11345 11346 tbl_size = total_vecs; 11347 if (pci_msix_can_alloc_dyn(bp->pdev)) 11348 tbl_size = max; 11349 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11350 if (bp->irq_tbl) { 11351 for (i = 0; i < total_vecs; i++) 11352 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11353 11354 bp->total_irqs = total_vecs; 11355 /* Trim rings based upon num of vectors allocated */ 11356 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11357 total_vecs - ulp_msix, min == 1); 11358 if (rc) 11359 goto msix_setup_exit; 11360 11361 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11362 bp->cp_nr_rings = (min == 1) ? 11363 max_t(int, tx_cp, bp->rx_nr_rings) : 11364 tx_cp + bp->rx_nr_rings; 11365 11366 } else { 11367 rc = -ENOMEM; 11368 goto msix_setup_exit; 11369 } 11370 return 0; 11371 11372 msix_setup_exit: 11373 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11374 kfree(bp->irq_tbl); 11375 bp->irq_tbl = NULL; 11376 pci_free_irq_vectors(bp->pdev); 11377 return rc; 11378 } 11379 11380 static void bnxt_clear_int_mode(struct bnxt *bp) 11381 { 11382 pci_free_irq_vectors(bp->pdev); 11383 11384 kfree(bp->irq_tbl); 11385 bp->irq_tbl = NULL; 11386 } 11387 11388 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11389 { 11390 bool irq_cleared = false; 11391 bool irq_change = false; 11392 int tcs = bp->num_tc; 11393 int irqs_required; 11394 int rc; 11395 11396 if (!bnxt_need_reserve_rings(bp)) 11397 return 0; 11398 11399 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11400 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11401 11402 if (ulp_msix > bp->ulp_num_msix_want) 11403 ulp_msix = bp->ulp_num_msix_want; 11404 irqs_required = ulp_msix + bp->cp_nr_rings; 11405 } else { 11406 irqs_required = bnxt_get_num_msix(bp); 11407 } 11408 11409 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11410 irq_change = true; 11411 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11412 bnxt_ulp_irq_stop(bp); 11413 bnxt_clear_int_mode(bp); 11414 irq_cleared = true; 11415 } 11416 } 11417 rc = __bnxt_reserve_rings(bp); 11418 if (irq_cleared) { 11419 if (!rc) 11420 rc = bnxt_init_int_mode(bp); 11421 bnxt_ulp_irq_restart(bp, rc); 11422 } else if (irq_change && !rc) { 11423 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11424 rc = -ENOSPC; 11425 } 11426 if (rc) { 11427 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11428 return rc; 11429 } 11430 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11431 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11432 netdev_err(bp->dev, "tx ring reservation failure\n"); 11433 netdev_reset_tc(bp->dev); 11434 bp->num_tc = 0; 11435 if (bp->tx_nr_rings_xdp) 11436 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11437 else 11438 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11439 return -ENOMEM; 11440 } 11441 return 0; 11442 } 11443 11444 static void bnxt_tx_queue_stop(struct bnxt *bp, int idx) 11445 { 11446 struct bnxt_tx_ring_info *txr; 11447 struct netdev_queue *txq; 11448 struct bnxt_napi *bnapi; 11449 int i; 11450 11451 bnapi = bp->bnapi[idx]; 11452 bnxt_for_each_napi_tx(i, bnapi, txr) { 11453 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11454 synchronize_net(); 11455 11456 if (!(bnapi->flags & BNXT_NAPI_FLAG_XDP)) { 11457 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11458 if (txq) { 11459 __netif_tx_lock_bh(txq); 11460 netif_tx_stop_queue(txq); 11461 __netif_tx_unlock_bh(txq); 11462 } 11463 } 11464 11465 if (!bp->tph_mode) 11466 continue; 11467 11468 bnxt_hwrm_tx_ring_free(bp, txr, true); 11469 bnxt_hwrm_cp_ring_free(bp, txr->tx_cpr); 11470 bnxt_free_one_tx_ring_skbs(bp, txr, txr->txq_index); 11471 bnxt_clear_one_cp_ring(bp, txr->tx_cpr); 11472 } 11473 } 11474 11475 static int bnxt_tx_queue_start(struct bnxt *bp, int idx) 11476 { 11477 struct bnxt_tx_ring_info *txr; 11478 struct netdev_queue *txq; 11479 struct bnxt_napi *bnapi; 11480 int rc, i; 11481 11482 bnapi = bp->bnapi[idx]; 11483 /* All rings have been reserved and previously allocated. 11484 * Reallocating with the same parameters should never fail. 11485 */ 11486 bnxt_for_each_napi_tx(i, bnapi, txr) { 11487 if (!bp->tph_mode) 11488 goto start_tx; 11489 11490 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 11491 if (rc) 11492 return rc; 11493 11494 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, false); 11495 if (rc) 11496 return rc; 11497 11498 txr->tx_prod = 0; 11499 txr->tx_cons = 0; 11500 txr->tx_hw_cons = 0; 11501 start_tx: 11502 WRITE_ONCE(txr->dev_state, 0); 11503 synchronize_net(); 11504 11505 if (bnapi->flags & BNXT_NAPI_FLAG_XDP) 11506 continue; 11507 11508 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11509 if (txq) 11510 netif_tx_start_queue(txq); 11511 } 11512 11513 return 0; 11514 } 11515 11516 static void bnxt_irq_affinity_notify(struct irq_affinity_notify *notify, 11517 const cpumask_t *mask) 11518 { 11519 struct bnxt_irq *irq; 11520 u16 tag; 11521 int err; 11522 11523 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11524 11525 if (!irq->bp->tph_mode) 11526 return; 11527 11528 cpumask_copy(irq->cpu_mask, mask); 11529 11530 if (irq->ring_nr >= irq->bp->rx_nr_rings) 11531 return; 11532 11533 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11534 cpumask_first(irq->cpu_mask), &tag)) 11535 return; 11536 11537 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag)) 11538 return; 11539 11540 netdev_lock(irq->bp->dev); 11541 if (netif_running(irq->bp->dev)) { 11542 err = netdev_rx_queue_restart(irq->bp->dev, irq->ring_nr); 11543 if (err) 11544 netdev_err(irq->bp->dev, 11545 "RX queue restart failed: err=%d\n", err); 11546 } 11547 netdev_unlock(irq->bp->dev); 11548 } 11549 11550 static void bnxt_irq_affinity_release(struct kref *ref) 11551 { 11552 struct irq_affinity_notify *notify = 11553 container_of(ref, struct irq_affinity_notify, kref); 11554 struct bnxt_irq *irq; 11555 11556 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11557 11558 if (!irq->bp->tph_mode) 11559 return; 11560 11561 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, 0)) { 11562 netdev_err(irq->bp->dev, 11563 "Setting ST=0 for MSIX entry %d failed\n", 11564 irq->msix_nr); 11565 return; 11566 } 11567 } 11568 11569 static void bnxt_release_irq_notifier(struct bnxt_irq *irq) 11570 { 11571 irq_set_affinity_notifier(irq->vector, NULL); 11572 } 11573 11574 static void bnxt_register_irq_notifier(struct bnxt *bp, struct bnxt_irq *irq) 11575 { 11576 struct irq_affinity_notify *notify; 11577 11578 irq->bp = bp; 11579 11580 /* Nothing to do if TPH is not enabled */ 11581 if (!bp->tph_mode) 11582 return; 11583 11584 /* Register IRQ affinity notifier */ 11585 notify = &irq->affinity_notify; 11586 notify->irq = irq->vector; 11587 notify->notify = bnxt_irq_affinity_notify; 11588 notify->release = bnxt_irq_affinity_release; 11589 11590 irq_set_affinity_notifier(irq->vector, notify); 11591 } 11592 11593 static void bnxt_free_irq(struct bnxt *bp) 11594 { 11595 struct bnxt_irq *irq; 11596 int i; 11597 11598 #ifdef CONFIG_RFS_ACCEL 11599 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11600 bp->dev->rx_cpu_rmap = NULL; 11601 #endif 11602 if (!bp->irq_tbl || !bp->bnapi) 11603 return; 11604 11605 for (i = 0; i < bp->cp_nr_rings; i++) { 11606 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11607 11608 irq = &bp->irq_tbl[map_idx]; 11609 if (irq->requested) { 11610 if (irq->have_cpumask) { 11611 irq_update_affinity_hint(irq->vector, NULL); 11612 free_cpumask_var(irq->cpu_mask); 11613 irq->have_cpumask = 0; 11614 } 11615 11616 bnxt_release_irq_notifier(irq); 11617 11618 free_irq(irq->vector, bp->bnapi[i]); 11619 } 11620 11621 irq->requested = 0; 11622 } 11623 11624 /* Disable TPH support */ 11625 pcie_disable_tph(bp->pdev); 11626 bp->tph_mode = 0; 11627 } 11628 11629 static int bnxt_request_irq(struct bnxt *bp) 11630 { 11631 struct cpu_rmap *rmap = NULL; 11632 int i, j, rc = 0; 11633 unsigned long flags = 0; 11634 11635 rc = bnxt_setup_int_mode(bp); 11636 if (rc) { 11637 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11638 rc); 11639 return rc; 11640 } 11641 #ifdef CONFIG_RFS_ACCEL 11642 rmap = bp->dev->rx_cpu_rmap; 11643 #endif 11644 11645 /* Enable TPH support as part of IRQ request */ 11646 rc = pcie_enable_tph(bp->pdev, PCI_TPH_ST_IV_MODE); 11647 if (!rc) 11648 bp->tph_mode = PCI_TPH_ST_IV_MODE; 11649 11650 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11651 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11652 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11653 11654 if (IS_ENABLED(CONFIG_RFS_ACCEL) && 11655 rmap && bp->bnapi[i]->rx_ring) { 11656 rc = irq_cpu_rmap_add(rmap, irq->vector); 11657 if (rc) 11658 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11659 j); 11660 j++; 11661 } 11662 11663 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11664 bp->bnapi[i]); 11665 if (rc) 11666 break; 11667 11668 netif_napi_set_irq_locked(&bp->bnapi[i]->napi, irq->vector); 11669 irq->requested = 1; 11670 11671 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11672 int numa_node = dev_to_node(&bp->pdev->dev); 11673 u16 tag; 11674 11675 irq->have_cpumask = 1; 11676 irq->msix_nr = map_idx; 11677 irq->ring_nr = i; 11678 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11679 irq->cpu_mask); 11680 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11681 if (rc) { 11682 netdev_warn(bp->dev, 11683 "Update affinity hint failed, IRQ = %d\n", 11684 irq->vector); 11685 break; 11686 } 11687 11688 bnxt_register_irq_notifier(bp, irq); 11689 11690 /* Init ST table entry */ 11691 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11692 cpumask_first(irq->cpu_mask), 11693 &tag)) 11694 continue; 11695 11696 pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag); 11697 } 11698 } 11699 return rc; 11700 } 11701 11702 static void bnxt_del_napi(struct bnxt *bp) 11703 { 11704 int i; 11705 11706 if (!bp->bnapi) 11707 return; 11708 11709 for (i = 0; i < bp->rx_nr_rings; i++) 11710 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11711 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11712 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11713 11714 for (i = 0; i < bp->cp_nr_rings; i++) { 11715 struct bnxt_napi *bnapi = bp->bnapi[i]; 11716 11717 __netif_napi_del_locked(&bnapi->napi); 11718 } 11719 /* We called __netif_napi_del_locked(), we need 11720 * to respect an RCU grace period before freeing napi structures. 11721 */ 11722 synchronize_net(); 11723 } 11724 11725 static void bnxt_init_napi(struct bnxt *bp) 11726 { 11727 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11728 unsigned int cp_nr_rings = bp->cp_nr_rings; 11729 struct bnxt_napi *bnapi; 11730 int i; 11731 11732 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11733 poll_fn = bnxt_poll_p5; 11734 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11735 cp_nr_rings--; 11736 11737 set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11738 11739 for (i = 0; i < cp_nr_rings; i++) { 11740 bnapi = bp->bnapi[i]; 11741 netif_napi_add_config_locked(bp->dev, &bnapi->napi, poll_fn, 11742 bnapi->index); 11743 } 11744 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11745 bnapi = bp->bnapi[cp_nr_rings]; 11746 netif_napi_add_locked(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11747 } 11748 } 11749 11750 static void bnxt_disable_napi(struct bnxt *bp) 11751 { 11752 int i; 11753 11754 if (!bp->bnapi || 11755 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11756 return; 11757 11758 for (i = 0; i < bp->cp_nr_rings; i++) { 11759 struct bnxt_napi *bnapi = bp->bnapi[i]; 11760 struct bnxt_cp_ring_info *cpr; 11761 11762 cpr = &bnapi->cp_ring; 11763 if (bnapi->tx_fault) 11764 cpr->sw_stats->tx.tx_resets++; 11765 if (bnapi->in_reset) 11766 cpr->sw_stats->rx.rx_resets++; 11767 napi_disable_locked(&bnapi->napi); 11768 } 11769 } 11770 11771 static void bnxt_enable_napi(struct bnxt *bp) 11772 { 11773 int i; 11774 11775 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11776 for (i = 0; i < bp->cp_nr_rings; i++) { 11777 struct bnxt_napi *bnapi = bp->bnapi[i]; 11778 struct bnxt_cp_ring_info *cpr; 11779 11780 bnapi->tx_fault = 0; 11781 11782 cpr = &bnapi->cp_ring; 11783 bnapi->in_reset = false; 11784 11785 if (bnapi->rx_ring) { 11786 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11787 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11788 } 11789 napi_enable_locked(&bnapi->napi); 11790 } 11791 } 11792 11793 void bnxt_tx_disable(struct bnxt *bp) 11794 { 11795 int i; 11796 struct bnxt_tx_ring_info *txr; 11797 11798 if (bp->tx_ring) { 11799 for (i = 0; i < bp->tx_nr_rings; i++) { 11800 txr = &bp->tx_ring[i]; 11801 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11802 } 11803 } 11804 /* Make sure napi polls see @dev_state change */ 11805 synchronize_net(); 11806 /* Drop carrier first to prevent TX timeout */ 11807 netif_carrier_off(bp->dev); 11808 /* Stop all TX queues */ 11809 netif_tx_disable(bp->dev); 11810 } 11811 11812 void bnxt_tx_enable(struct bnxt *bp) 11813 { 11814 int i; 11815 struct bnxt_tx_ring_info *txr; 11816 11817 for (i = 0; i < bp->tx_nr_rings; i++) { 11818 txr = &bp->tx_ring[i]; 11819 WRITE_ONCE(txr->dev_state, 0); 11820 } 11821 /* Make sure napi polls see @dev_state change */ 11822 synchronize_net(); 11823 netif_tx_wake_all_queues(bp->dev); 11824 if (BNXT_LINK_IS_UP(bp)) 11825 netif_carrier_on(bp->dev); 11826 } 11827 11828 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11829 { 11830 u8 active_fec = link_info->active_fec_sig_mode & 11831 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11832 11833 switch (active_fec) { 11834 default: 11835 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11836 return "None"; 11837 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11838 return "Clause 74 BaseR"; 11839 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11840 return "Clause 91 RS(528,514)"; 11841 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11842 return "Clause 91 RS544_1XN"; 11843 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11844 return "Clause 91 RS(544,514)"; 11845 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11846 return "Clause 91 RS272_1XN"; 11847 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11848 return "Clause 91 RS(272,257)"; 11849 } 11850 } 11851 11852 void bnxt_report_link(struct bnxt *bp) 11853 { 11854 if (BNXT_LINK_IS_UP(bp)) { 11855 const char *signal = ""; 11856 const char *flow_ctrl; 11857 const char *duplex; 11858 u32 speed; 11859 u16 fec; 11860 11861 netif_carrier_on(bp->dev); 11862 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11863 if (speed == SPEED_UNKNOWN) { 11864 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11865 return; 11866 } 11867 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11868 duplex = "full"; 11869 else 11870 duplex = "half"; 11871 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11872 flow_ctrl = "ON - receive & transmit"; 11873 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11874 flow_ctrl = "ON - transmit"; 11875 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11876 flow_ctrl = "ON - receive"; 11877 else 11878 flow_ctrl = "none"; 11879 if (bp->link_info.phy_qcfg_resp.option_flags & 11880 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11881 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11882 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11883 switch (sig_mode) { 11884 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11885 signal = "(NRZ) "; 11886 break; 11887 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11888 signal = "(PAM4 56Gbps) "; 11889 break; 11890 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11891 signal = "(PAM4 112Gbps) "; 11892 break; 11893 default: 11894 break; 11895 } 11896 } 11897 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11898 speed, signal, duplex, flow_ctrl); 11899 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11900 netdev_info(bp->dev, "EEE is %s\n", 11901 bp->eee.eee_active ? "active" : 11902 "not active"); 11903 fec = bp->link_info.fec_cfg; 11904 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11905 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11906 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11907 bnxt_report_fec(&bp->link_info)); 11908 } else { 11909 netif_carrier_off(bp->dev); 11910 netdev_err(bp->dev, "NIC Link is Down\n"); 11911 } 11912 } 11913 11914 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11915 { 11916 if (!resp->supported_speeds_auto_mode && 11917 !resp->supported_speeds_force_mode && 11918 !resp->supported_pam4_speeds_auto_mode && 11919 !resp->supported_pam4_speeds_force_mode && 11920 !resp->supported_speeds2_auto_mode && 11921 !resp->supported_speeds2_force_mode) 11922 return true; 11923 return false; 11924 } 11925 11926 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11927 { 11928 struct bnxt_link_info *link_info = &bp->link_info; 11929 struct hwrm_port_phy_qcaps_output *resp; 11930 struct hwrm_port_phy_qcaps_input *req; 11931 int rc = 0; 11932 11933 if (bp->hwrm_spec_code < 0x10201) 11934 return 0; 11935 11936 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11937 if (rc) 11938 return rc; 11939 11940 resp = hwrm_req_hold(bp, req); 11941 rc = hwrm_req_send(bp, req); 11942 if (rc) 11943 goto hwrm_phy_qcaps_exit; 11944 11945 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11946 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11947 struct ethtool_keee *eee = &bp->eee; 11948 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11949 11950 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11951 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11952 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11953 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11954 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11955 } 11956 11957 if (bp->hwrm_spec_code >= 0x10a01) { 11958 if (bnxt_phy_qcaps_no_speed(resp)) { 11959 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11960 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11961 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11962 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11963 netdev_info(bp->dev, "Ethernet link enabled\n"); 11964 /* Phy re-enabled, reprobe the speeds */ 11965 link_info->support_auto_speeds = 0; 11966 link_info->support_pam4_auto_speeds = 0; 11967 link_info->support_auto_speeds2 = 0; 11968 } 11969 } 11970 if (resp->supported_speeds_auto_mode) 11971 link_info->support_auto_speeds = 11972 le16_to_cpu(resp->supported_speeds_auto_mode); 11973 if (resp->supported_pam4_speeds_auto_mode) 11974 link_info->support_pam4_auto_speeds = 11975 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11976 if (resp->supported_speeds2_auto_mode) 11977 link_info->support_auto_speeds2 = 11978 le16_to_cpu(resp->supported_speeds2_auto_mode); 11979 11980 bp->port_count = resp->port_cnt; 11981 11982 hwrm_phy_qcaps_exit: 11983 hwrm_req_drop(bp, req); 11984 return rc; 11985 } 11986 11987 static void bnxt_hwrm_mac_qcaps(struct bnxt *bp) 11988 { 11989 struct hwrm_port_mac_qcaps_output *resp; 11990 struct hwrm_port_mac_qcaps_input *req; 11991 int rc; 11992 11993 if (bp->hwrm_spec_code < 0x10a03) 11994 return; 11995 11996 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_QCAPS); 11997 if (rc) 11998 return; 11999 12000 resp = hwrm_req_hold(bp, req); 12001 rc = hwrm_req_send_silent(bp, req); 12002 if (!rc) 12003 bp->mac_flags = resp->flags; 12004 hwrm_req_drop(bp, req); 12005 } 12006 12007 static bool bnxt_support_dropped(u16 advertising, u16 supported) 12008 { 12009 u16 diff = advertising ^ supported; 12010 12011 return ((supported | diff) != supported); 12012 } 12013 12014 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 12015 { 12016 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 12017 12018 /* Check if any advertised speeds are no longer supported. The caller 12019 * holds the link_lock mutex, so we can modify link_info settings. 12020 */ 12021 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12022 if (bnxt_support_dropped(link_info->advertising, 12023 link_info->support_auto_speeds2)) { 12024 link_info->advertising = link_info->support_auto_speeds2; 12025 return true; 12026 } 12027 return false; 12028 } 12029 if (bnxt_support_dropped(link_info->advertising, 12030 link_info->support_auto_speeds)) { 12031 link_info->advertising = link_info->support_auto_speeds; 12032 return true; 12033 } 12034 if (bnxt_support_dropped(link_info->advertising_pam4, 12035 link_info->support_pam4_auto_speeds)) { 12036 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 12037 return true; 12038 } 12039 return false; 12040 } 12041 12042 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 12043 { 12044 struct bnxt_link_info *link_info = &bp->link_info; 12045 struct hwrm_port_phy_qcfg_output *resp; 12046 struct hwrm_port_phy_qcfg_input *req; 12047 u8 link_state = link_info->link_state; 12048 bool support_changed; 12049 int rc; 12050 12051 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 12052 if (rc) 12053 return rc; 12054 12055 resp = hwrm_req_hold(bp, req); 12056 rc = hwrm_req_send(bp, req); 12057 if (rc) { 12058 hwrm_req_drop(bp, req); 12059 if (BNXT_VF(bp) && rc == -ENODEV) { 12060 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 12061 rc = 0; 12062 } 12063 return rc; 12064 } 12065 12066 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 12067 link_info->phy_link_status = resp->link; 12068 link_info->duplex = resp->duplex_cfg; 12069 if (bp->hwrm_spec_code >= 0x10800) 12070 link_info->duplex = resp->duplex_state; 12071 link_info->pause = resp->pause; 12072 link_info->auto_mode = resp->auto_mode; 12073 link_info->auto_pause_setting = resp->auto_pause; 12074 link_info->lp_pause = resp->link_partner_adv_pause; 12075 link_info->force_pause_setting = resp->force_pause; 12076 link_info->duplex_setting = resp->duplex_cfg; 12077 if (link_info->phy_link_status == BNXT_LINK_LINK) { 12078 link_info->link_speed = le16_to_cpu(resp->link_speed); 12079 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 12080 link_info->active_lanes = resp->active_lanes; 12081 } else { 12082 link_info->link_speed = 0; 12083 link_info->active_lanes = 0; 12084 } 12085 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 12086 link_info->force_pam4_link_speed = 12087 le16_to_cpu(resp->force_pam4_link_speed); 12088 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 12089 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 12090 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 12091 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 12092 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 12093 link_info->auto_pam4_link_speeds = 12094 le16_to_cpu(resp->auto_pam4_link_speed_mask); 12095 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 12096 link_info->lp_auto_link_speeds = 12097 le16_to_cpu(resp->link_partner_adv_speeds); 12098 link_info->lp_auto_pam4_link_speeds = 12099 resp->link_partner_pam4_adv_speeds; 12100 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 12101 link_info->phy_ver[0] = resp->phy_maj; 12102 link_info->phy_ver[1] = resp->phy_min; 12103 link_info->phy_ver[2] = resp->phy_bld; 12104 link_info->media_type = resp->media_type; 12105 link_info->phy_type = resp->phy_type; 12106 link_info->transceiver = resp->xcvr_pkg_type; 12107 link_info->phy_addr = resp->eee_config_phy_addr & 12108 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 12109 link_info->module_status = resp->module_status; 12110 12111 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 12112 struct ethtool_keee *eee = &bp->eee; 12113 u16 fw_speeds; 12114 12115 eee->eee_active = 0; 12116 if (resp->eee_config_phy_addr & 12117 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 12118 eee->eee_active = 1; 12119 fw_speeds = le16_to_cpu( 12120 resp->link_partner_adv_eee_link_speed_mask); 12121 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 12122 } 12123 12124 /* Pull initial EEE config */ 12125 if (!chng_link_state) { 12126 if (resp->eee_config_phy_addr & 12127 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 12128 eee->eee_enabled = 1; 12129 12130 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 12131 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 12132 12133 if (resp->eee_config_phy_addr & 12134 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 12135 __le32 tmr; 12136 12137 eee->tx_lpi_enabled = 1; 12138 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 12139 eee->tx_lpi_timer = le32_to_cpu(tmr) & 12140 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 12141 } 12142 } 12143 } 12144 12145 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 12146 if (bp->hwrm_spec_code >= 0x10504) { 12147 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 12148 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 12149 } 12150 /* TODO: need to add more logic to report VF link */ 12151 if (chng_link_state) { 12152 if (link_info->phy_link_status == BNXT_LINK_LINK) 12153 link_info->link_state = BNXT_LINK_STATE_UP; 12154 else 12155 link_info->link_state = BNXT_LINK_STATE_DOWN; 12156 if (link_state != link_info->link_state) 12157 bnxt_report_link(bp); 12158 } else { 12159 /* always link down if not require to update link state */ 12160 link_info->link_state = BNXT_LINK_STATE_DOWN; 12161 } 12162 hwrm_req_drop(bp, req); 12163 12164 if (!BNXT_PHY_CFG_ABLE(bp)) 12165 return 0; 12166 12167 support_changed = bnxt_support_speed_dropped(link_info); 12168 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 12169 bnxt_hwrm_set_link_setting(bp, true, false); 12170 return 0; 12171 } 12172 12173 static void bnxt_get_port_module_status(struct bnxt *bp) 12174 { 12175 struct bnxt_link_info *link_info = &bp->link_info; 12176 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 12177 u8 module_status; 12178 12179 if (bnxt_update_link(bp, true)) 12180 return; 12181 12182 module_status = link_info->module_status; 12183 switch (module_status) { 12184 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 12185 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 12186 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 12187 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 12188 bp->pf.port_id); 12189 if (bp->hwrm_spec_code >= 0x10201) { 12190 netdev_warn(bp->dev, "Module part number %s\n", 12191 resp->phy_vendor_partnumber); 12192 } 12193 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 12194 netdev_warn(bp->dev, "TX is disabled\n"); 12195 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 12196 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 12197 } 12198 } 12199 12200 static void 12201 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12202 { 12203 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 12204 if (bp->hwrm_spec_code >= 0x10201) 12205 req->auto_pause = 12206 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 12207 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12208 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 12209 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12210 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 12211 req->enables |= 12212 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12213 } else { 12214 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12215 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 12216 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12217 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 12218 req->enables |= 12219 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 12220 if (bp->hwrm_spec_code >= 0x10201) { 12221 req->auto_pause = req->force_pause; 12222 req->enables |= cpu_to_le32( 12223 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12224 } 12225 } 12226 } 12227 12228 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12229 { 12230 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 12231 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 12232 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12233 req->enables |= 12234 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 12235 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 12236 } else if (bp->link_info.advertising) { 12237 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 12238 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 12239 } 12240 if (bp->link_info.advertising_pam4) { 12241 req->enables |= 12242 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 12243 req->auto_link_pam4_speed_mask = 12244 cpu_to_le16(bp->link_info.advertising_pam4); 12245 } 12246 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 12247 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 12248 } else { 12249 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 12250 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12251 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 12252 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 12253 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 12254 (u32)bp->link_info.req_link_speed); 12255 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 12256 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12257 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 12258 } else { 12259 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12260 } 12261 } 12262 12263 /* tell chimp that the setting takes effect immediately */ 12264 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 12265 } 12266 12267 int bnxt_hwrm_set_pause(struct bnxt *bp) 12268 { 12269 struct hwrm_port_phy_cfg_input *req; 12270 int rc; 12271 12272 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12273 if (rc) 12274 return rc; 12275 12276 bnxt_hwrm_set_pause_common(bp, req); 12277 12278 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 12279 bp->link_info.force_link_chng) 12280 bnxt_hwrm_set_link_common(bp, req); 12281 12282 rc = hwrm_req_send(bp, req); 12283 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 12284 /* since changing of pause setting doesn't trigger any link 12285 * change event, the driver needs to update the current pause 12286 * result upon successfully return of the phy_cfg command 12287 */ 12288 bp->link_info.pause = 12289 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 12290 bp->link_info.auto_pause_setting = 0; 12291 if (!bp->link_info.force_link_chng) 12292 bnxt_report_link(bp); 12293 } 12294 bp->link_info.force_link_chng = false; 12295 return rc; 12296 } 12297 12298 static void bnxt_hwrm_set_eee(struct bnxt *bp, 12299 struct hwrm_port_phy_cfg_input *req) 12300 { 12301 struct ethtool_keee *eee = &bp->eee; 12302 12303 if (eee->eee_enabled) { 12304 u16 eee_speeds; 12305 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 12306 12307 if (eee->tx_lpi_enabled) 12308 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 12309 else 12310 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 12311 12312 req->flags |= cpu_to_le32(flags); 12313 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 12314 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 12315 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 12316 } else { 12317 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 12318 } 12319 } 12320 12321 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 12322 { 12323 struct hwrm_port_phy_cfg_input *req; 12324 int rc; 12325 12326 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12327 if (rc) 12328 return rc; 12329 12330 if (set_pause) 12331 bnxt_hwrm_set_pause_common(bp, req); 12332 12333 bnxt_hwrm_set_link_common(bp, req); 12334 12335 if (set_eee) 12336 bnxt_hwrm_set_eee(bp, req); 12337 return hwrm_req_send(bp, req); 12338 } 12339 12340 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 12341 { 12342 struct hwrm_port_phy_cfg_input *req; 12343 int rc; 12344 12345 if (!BNXT_SINGLE_PF(bp)) 12346 return 0; 12347 12348 if (pci_num_vf(bp->pdev) && 12349 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 12350 return 0; 12351 12352 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12353 if (rc) 12354 return rc; 12355 12356 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 12357 rc = hwrm_req_send(bp, req); 12358 if (!rc) { 12359 mutex_lock(&bp->link_lock); 12360 /* Device is not obliged link down in certain scenarios, even 12361 * when forced. Setting the state unknown is consistent with 12362 * driver startup and will force link state to be reported 12363 * during subsequent open based on PORT_PHY_QCFG. 12364 */ 12365 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 12366 mutex_unlock(&bp->link_lock); 12367 } 12368 return rc; 12369 } 12370 12371 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 12372 { 12373 #ifdef CONFIG_TEE_BNXT_FW 12374 int rc = tee_bnxt_fw_load(); 12375 12376 if (rc) 12377 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 12378 12379 return rc; 12380 #else 12381 netdev_err(bp->dev, "OP-TEE not supported\n"); 12382 return -ENODEV; 12383 #endif 12384 } 12385 12386 static int bnxt_try_recover_fw(struct bnxt *bp) 12387 { 12388 if (bp->fw_health && bp->fw_health->status_reliable) { 12389 int retry = 0, rc; 12390 u32 sts; 12391 12392 do { 12393 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12394 rc = bnxt_hwrm_poll(bp); 12395 if (!BNXT_FW_IS_BOOTING(sts) && 12396 !BNXT_FW_IS_RECOVERING(sts)) 12397 break; 12398 retry++; 12399 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 12400 12401 if (!BNXT_FW_IS_HEALTHY(sts)) { 12402 netdev_err(bp->dev, 12403 "Firmware not responding, status: 0x%x\n", 12404 sts); 12405 rc = -ENODEV; 12406 } 12407 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 12408 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 12409 return bnxt_fw_reset_via_optee(bp); 12410 } 12411 return rc; 12412 } 12413 12414 return -ENODEV; 12415 } 12416 12417 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 12418 { 12419 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12420 12421 if (!BNXT_NEW_RM(bp)) 12422 return; /* no resource reservations required */ 12423 12424 hw_resc->resv_cp_rings = 0; 12425 hw_resc->resv_stat_ctxs = 0; 12426 hw_resc->resv_irqs = 0; 12427 hw_resc->resv_tx_rings = 0; 12428 hw_resc->resv_rx_rings = 0; 12429 hw_resc->resv_hw_ring_grps = 0; 12430 hw_resc->resv_vnics = 0; 12431 hw_resc->resv_rsscos_ctxs = 0; 12432 if (!fw_reset) { 12433 bp->tx_nr_rings = 0; 12434 bp->rx_nr_rings = 0; 12435 } 12436 } 12437 12438 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 12439 { 12440 int rc; 12441 12442 if (!BNXT_NEW_RM(bp)) 12443 return 0; /* no resource reservations required */ 12444 12445 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 12446 if (rc) 12447 netdev_err(bp->dev, "resc_qcaps failed\n"); 12448 12449 bnxt_clear_reservations(bp, fw_reset); 12450 12451 return rc; 12452 } 12453 12454 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 12455 { 12456 struct hwrm_func_drv_if_change_output *resp; 12457 struct hwrm_func_drv_if_change_input *req; 12458 bool resc_reinit = false; 12459 bool caps_change = false; 12460 int rc, retry = 0; 12461 bool fw_reset; 12462 u32 flags = 0; 12463 12464 fw_reset = (bp->fw_reset_state == BNXT_FW_RESET_STATE_ABORT); 12465 bp->fw_reset_state = 0; 12466 12467 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 12468 return 0; 12469 12470 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 12471 if (rc) 12472 return rc; 12473 12474 if (up) 12475 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12476 resp = hwrm_req_hold(bp, req); 12477 12478 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12479 while (retry < BNXT_FW_IF_RETRY) { 12480 rc = hwrm_req_send(bp, req); 12481 if (rc != -EAGAIN) 12482 break; 12483 12484 msleep(50); 12485 retry++; 12486 } 12487 12488 if (rc == -EAGAIN) { 12489 hwrm_req_drop(bp, req); 12490 return rc; 12491 } else if (!rc) { 12492 flags = le32_to_cpu(resp->flags); 12493 } else if (up) { 12494 rc = bnxt_try_recover_fw(bp); 12495 fw_reset = true; 12496 } 12497 hwrm_req_drop(bp, req); 12498 if (rc) 12499 return rc; 12500 12501 if (!up) { 12502 bnxt_inv_fw_health_reg(bp); 12503 return 0; 12504 } 12505 12506 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12507 resc_reinit = true; 12508 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12509 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12510 fw_reset = true; 12511 else 12512 bnxt_remap_fw_health_regs(bp); 12513 12514 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12515 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12516 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12517 return -ENODEV; 12518 } 12519 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_CAPS_CHANGE) 12520 caps_change = true; 12521 12522 if (resc_reinit || fw_reset || caps_change) { 12523 if (fw_reset || caps_change) { 12524 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12525 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12526 bnxt_ulp_irq_stop(bp); 12527 bnxt_free_ctx_mem(bp, false); 12528 bnxt_dcb_free(bp); 12529 rc = bnxt_fw_init_one(bp); 12530 if (rc) { 12531 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12532 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12533 return rc; 12534 } 12535 /* IRQ will be initialized later in bnxt_request_irq()*/ 12536 bnxt_clear_int_mode(bp); 12537 } 12538 rc = bnxt_cancel_reservations(bp, fw_reset); 12539 } 12540 return rc; 12541 } 12542 12543 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12544 { 12545 struct hwrm_port_led_qcaps_output *resp; 12546 struct hwrm_port_led_qcaps_input *req; 12547 struct bnxt_pf_info *pf = &bp->pf; 12548 int rc; 12549 12550 bp->num_leds = 0; 12551 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12552 return 0; 12553 12554 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12555 if (rc) 12556 return rc; 12557 12558 req->port_id = cpu_to_le16(pf->port_id); 12559 resp = hwrm_req_hold(bp, req); 12560 rc = hwrm_req_send(bp, req); 12561 if (rc) { 12562 hwrm_req_drop(bp, req); 12563 return rc; 12564 } 12565 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12566 int i; 12567 12568 bp->num_leds = resp->num_leds; 12569 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12570 bp->num_leds); 12571 for (i = 0; i < bp->num_leds; i++) { 12572 struct bnxt_led_info *led = &bp->leds[i]; 12573 __le16 caps = led->led_state_caps; 12574 12575 if (!led->led_group_id || 12576 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12577 bp->num_leds = 0; 12578 break; 12579 } 12580 } 12581 } 12582 hwrm_req_drop(bp, req); 12583 return 0; 12584 } 12585 12586 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12587 { 12588 struct hwrm_wol_filter_alloc_output *resp; 12589 struct hwrm_wol_filter_alloc_input *req; 12590 int rc; 12591 12592 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12593 if (rc) 12594 return rc; 12595 12596 req->port_id = cpu_to_le16(bp->pf.port_id); 12597 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12598 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12599 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12600 12601 resp = hwrm_req_hold(bp, req); 12602 rc = hwrm_req_send(bp, req); 12603 if (!rc) 12604 bp->wol_filter_id = resp->wol_filter_id; 12605 hwrm_req_drop(bp, req); 12606 return rc; 12607 } 12608 12609 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12610 { 12611 struct hwrm_wol_filter_free_input *req; 12612 int rc; 12613 12614 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12615 if (rc) 12616 return rc; 12617 12618 req->port_id = cpu_to_le16(bp->pf.port_id); 12619 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12620 req->wol_filter_id = bp->wol_filter_id; 12621 12622 return hwrm_req_send(bp, req); 12623 } 12624 12625 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12626 { 12627 struct hwrm_wol_filter_qcfg_output *resp; 12628 struct hwrm_wol_filter_qcfg_input *req; 12629 u16 next_handle = 0; 12630 int rc; 12631 12632 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12633 if (rc) 12634 return rc; 12635 12636 req->port_id = cpu_to_le16(bp->pf.port_id); 12637 req->handle = cpu_to_le16(handle); 12638 resp = hwrm_req_hold(bp, req); 12639 rc = hwrm_req_send(bp, req); 12640 if (!rc) { 12641 next_handle = le16_to_cpu(resp->next_handle); 12642 if (next_handle != 0) { 12643 if (resp->wol_type == 12644 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12645 bp->wol = 1; 12646 bp->wol_filter_id = resp->wol_filter_id; 12647 } 12648 } 12649 } 12650 hwrm_req_drop(bp, req); 12651 return next_handle; 12652 } 12653 12654 static void bnxt_get_wol_settings(struct bnxt *bp) 12655 { 12656 u16 handle = 0; 12657 12658 bp->wol = 0; 12659 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12660 return; 12661 12662 do { 12663 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12664 } while (handle && handle != 0xffff); 12665 } 12666 12667 static bool bnxt_eee_config_ok(struct bnxt *bp) 12668 { 12669 struct ethtool_keee *eee = &bp->eee; 12670 struct bnxt_link_info *link_info = &bp->link_info; 12671 12672 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12673 return true; 12674 12675 if (eee->eee_enabled) { 12676 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12677 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12678 12679 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12680 12681 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12682 eee->eee_enabled = 0; 12683 return false; 12684 } 12685 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12686 linkmode_and(eee->advertised, advertising, 12687 eee->supported); 12688 return false; 12689 } 12690 } 12691 return true; 12692 } 12693 12694 static int bnxt_update_phy_setting(struct bnxt *bp) 12695 { 12696 int rc; 12697 bool update_link = false; 12698 bool update_pause = false; 12699 bool update_eee = false; 12700 struct bnxt_link_info *link_info = &bp->link_info; 12701 12702 rc = bnxt_update_link(bp, true); 12703 if (rc) { 12704 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12705 rc); 12706 return rc; 12707 } 12708 if (!BNXT_SINGLE_PF(bp)) 12709 return 0; 12710 12711 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12712 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12713 link_info->req_flow_ctrl) 12714 update_pause = true; 12715 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12716 link_info->force_pause_setting != link_info->req_flow_ctrl) 12717 update_pause = true; 12718 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12719 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12720 update_link = true; 12721 if (bnxt_force_speed_updated(link_info)) 12722 update_link = true; 12723 if (link_info->req_duplex != link_info->duplex_setting) 12724 update_link = true; 12725 } else { 12726 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12727 update_link = true; 12728 if (bnxt_auto_speed_updated(link_info)) 12729 update_link = true; 12730 } 12731 12732 /* The last close may have shutdown the link, so need to call 12733 * PHY_CFG to bring it back up. 12734 */ 12735 if (!BNXT_LINK_IS_UP(bp)) 12736 update_link = true; 12737 12738 if (!bnxt_eee_config_ok(bp)) 12739 update_eee = true; 12740 12741 if (update_link) 12742 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12743 else if (update_pause) 12744 rc = bnxt_hwrm_set_pause(bp); 12745 if (rc) { 12746 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12747 rc); 12748 return rc; 12749 } 12750 12751 return rc; 12752 } 12753 12754 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12755 12756 static int bnxt_reinit_after_abort(struct bnxt *bp) 12757 { 12758 int rc; 12759 12760 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12761 return -EBUSY; 12762 12763 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12764 return -ENODEV; 12765 12766 rc = bnxt_fw_init_one(bp); 12767 if (!rc) { 12768 bnxt_clear_int_mode(bp); 12769 rc = bnxt_init_int_mode(bp); 12770 if (!rc) { 12771 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12772 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12773 } 12774 } 12775 return rc; 12776 } 12777 12778 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12779 { 12780 struct bnxt_ntuple_filter *ntp_fltr; 12781 struct bnxt_l2_filter *l2_fltr; 12782 12783 if (list_empty(&fltr->list)) 12784 return; 12785 12786 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12787 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12788 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12789 atomic_inc(&l2_fltr->refcnt); 12790 ntp_fltr->l2_fltr = l2_fltr; 12791 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12792 bnxt_del_ntp_filter(bp, ntp_fltr); 12793 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12794 fltr->sw_id); 12795 } 12796 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12797 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12798 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12799 bnxt_del_l2_filter(bp, l2_fltr); 12800 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12801 fltr->sw_id); 12802 } 12803 } 12804 } 12805 12806 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12807 { 12808 struct bnxt_filter_base *usr_fltr, *tmp; 12809 12810 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12811 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12812 } 12813 12814 static int bnxt_set_xps_mapping(struct bnxt *bp) 12815 { 12816 int numa_node = dev_to_node(&bp->pdev->dev); 12817 unsigned int q_idx, map_idx, cpu, i; 12818 const struct cpumask *cpu_mask_ptr; 12819 int nr_cpus = num_online_cpus(); 12820 cpumask_t *q_map; 12821 int rc = 0; 12822 12823 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12824 if (!q_map) 12825 return -ENOMEM; 12826 12827 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12828 * Each TC has the same number of TX queues. The nth TX queue for each 12829 * TC will have the same CPU mask. 12830 */ 12831 for (i = 0; i < nr_cpus; i++) { 12832 map_idx = i % bp->tx_nr_rings_per_tc; 12833 cpu = cpumask_local_spread(i, numa_node); 12834 cpu_mask_ptr = get_cpu_mask(cpu); 12835 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12836 } 12837 12838 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12839 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12840 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12841 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12842 if (rc) { 12843 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12844 q_idx); 12845 break; 12846 } 12847 } 12848 12849 kfree(q_map); 12850 12851 return rc; 12852 } 12853 12854 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12855 { 12856 int rc = 0; 12857 12858 netif_carrier_off(bp->dev); 12859 if (irq_re_init) { 12860 /* Reserve rings now if none were reserved at driver probe. */ 12861 rc = bnxt_init_dflt_ring_mode(bp); 12862 if (rc) { 12863 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12864 return rc; 12865 } 12866 } 12867 rc = bnxt_reserve_rings(bp, irq_re_init); 12868 if (rc) 12869 return rc; 12870 12871 rc = bnxt_alloc_mem(bp, irq_re_init); 12872 if (rc) { 12873 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12874 goto open_err_free_mem; 12875 } 12876 12877 if (irq_re_init) { 12878 bnxt_init_napi(bp); 12879 rc = bnxt_request_irq(bp); 12880 if (rc) { 12881 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12882 goto open_err_irq; 12883 } 12884 } 12885 12886 rc = bnxt_init_nic(bp, irq_re_init); 12887 if (rc) { 12888 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12889 goto open_err_irq; 12890 } 12891 12892 bnxt_enable_napi(bp); 12893 bnxt_debug_dev_init(bp); 12894 12895 if (link_re_init) { 12896 mutex_lock(&bp->link_lock); 12897 rc = bnxt_update_phy_setting(bp); 12898 mutex_unlock(&bp->link_lock); 12899 if (rc) { 12900 netdev_warn(bp->dev, "failed to update phy settings\n"); 12901 if (BNXT_SINGLE_PF(bp)) { 12902 bp->link_info.phy_retry = true; 12903 bp->link_info.phy_retry_expires = 12904 jiffies + 5 * HZ; 12905 } 12906 } 12907 } 12908 12909 if (irq_re_init) { 12910 udp_tunnel_nic_reset_ntf(bp->dev); 12911 rc = bnxt_set_xps_mapping(bp); 12912 if (rc) 12913 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12914 } 12915 12916 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12917 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12918 static_branch_enable(&bnxt_xdp_locking_key); 12919 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12920 static_branch_disable(&bnxt_xdp_locking_key); 12921 } 12922 set_bit(BNXT_STATE_OPEN, &bp->state); 12923 bnxt_enable_int(bp); 12924 /* Enable TX queues */ 12925 bnxt_tx_enable(bp); 12926 mod_timer(&bp->timer, jiffies + bp->current_interval); 12927 /* Poll link status and check for SFP+ module status */ 12928 mutex_lock(&bp->link_lock); 12929 bnxt_get_port_module_status(bp); 12930 mutex_unlock(&bp->link_lock); 12931 12932 /* VF-reps may need to be re-opened after the PF is re-opened */ 12933 if (BNXT_PF(bp)) 12934 bnxt_vf_reps_open(bp); 12935 bnxt_ptp_init_rtc(bp, true); 12936 bnxt_ptp_cfg_tstamp_filters(bp); 12937 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12938 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12939 bnxt_cfg_usr_fltrs(bp); 12940 return 0; 12941 12942 open_err_irq: 12943 bnxt_del_napi(bp); 12944 12945 open_err_free_mem: 12946 bnxt_free_skbs(bp); 12947 bnxt_free_irq(bp); 12948 bnxt_free_mem(bp, true); 12949 return rc; 12950 } 12951 12952 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12953 { 12954 int rc = 0; 12955 12956 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12957 rc = -EIO; 12958 if (!rc) 12959 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12960 if (rc) { 12961 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12962 netif_close(bp->dev); 12963 } 12964 return rc; 12965 } 12966 12967 /* netdev instance lock held, open the NIC half way by allocating all 12968 * resources, but NAPI, IRQ, and TX are not enabled. This is mainly used 12969 * for offline self tests. 12970 */ 12971 int bnxt_half_open_nic(struct bnxt *bp) 12972 { 12973 int rc = 0; 12974 12975 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12976 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12977 rc = -ENODEV; 12978 goto half_open_err; 12979 } 12980 12981 rc = bnxt_alloc_mem(bp, true); 12982 if (rc) { 12983 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12984 goto half_open_err; 12985 } 12986 bnxt_init_napi(bp); 12987 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12988 rc = bnxt_init_nic(bp, true); 12989 if (rc) { 12990 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12991 bnxt_del_napi(bp); 12992 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12993 goto half_open_err; 12994 } 12995 return 0; 12996 12997 half_open_err: 12998 bnxt_free_skbs(bp); 12999 bnxt_free_mem(bp, true); 13000 netif_close(bp->dev); 13001 return rc; 13002 } 13003 13004 /* netdev instance lock held, this call can only be made after a previous 13005 * successful call to bnxt_half_open_nic(). 13006 */ 13007 void bnxt_half_close_nic(struct bnxt *bp) 13008 { 13009 bnxt_hwrm_resource_free(bp, false, true); 13010 bnxt_del_napi(bp); 13011 bnxt_free_skbs(bp); 13012 bnxt_free_mem(bp, true); 13013 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13014 } 13015 13016 void bnxt_reenable_sriov(struct bnxt *bp) 13017 { 13018 if (BNXT_PF(bp)) { 13019 struct bnxt_pf_info *pf = &bp->pf; 13020 int n = pf->active_vfs; 13021 13022 if (n) 13023 bnxt_cfg_hw_sriov(bp, &n, true); 13024 } 13025 } 13026 13027 static int bnxt_open(struct net_device *dev) 13028 { 13029 struct bnxt *bp = netdev_priv(dev); 13030 int rc; 13031 13032 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13033 rc = bnxt_reinit_after_abort(bp); 13034 if (rc) { 13035 if (rc == -EBUSY) 13036 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 13037 else 13038 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 13039 return -ENODEV; 13040 } 13041 } 13042 13043 rc = bnxt_hwrm_if_change(bp, true); 13044 if (rc) 13045 return rc; 13046 13047 rc = __bnxt_open_nic(bp, true, true); 13048 if (rc) { 13049 bnxt_hwrm_if_change(bp, false); 13050 } else { 13051 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 13052 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13053 bnxt_queue_sp_work(bp, 13054 BNXT_RESTART_ULP_SP_EVENT); 13055 } 13056 } 13057 13058 return rc; 13059 } 13060 13061 static bool bnxt_drv_busy(struct bnxt *bp) 13062 { 13063 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 13064 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 13065 } 13066 13067 static void bnxt_get_ring_stats(struct bnxt *bp, 13068 struct rtnl_link_stats64 *stats); 13069 13070 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 13071 bool link_re_init) 13072 { 13073 /* Close the VF-reps before closing PF */ 13074 if (BNXT_PF(bp)) 13075 bnxt_vf_reps_close(bp); 13076 13077 /* Change device state to avoid TX queue wake up's */ 13078 bnxt_tx_disable(bp); 13079 13080 clear_bit(BNXT_STATE_OPEN, &bp->state); 13081 smp_mb__after_atomic(); 13082 while (bnxt_drv_busy(bp)) 13083 msleep(20); 13084 13085 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 13086 bnxt_clear_rss_ctxs(bp); 13087 /* Flush rings and disable interrupts */ 13088 bnxt_shutdown_nic(bp, irq_re_init); 13089 13090 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 13091 13092 bnxt_debug_dev_exit(bp); 13093 bnxt_disable_napi(bp); 13094 timer_delete_sync(&bp->timer); 13095 bnxt_free_skbs(bp); 13096 13097 /* Save ring stats before shutdown */ 13098 if (bp->bnapi && irq_re_init) { 13099 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 13100 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 13101 } 13102 if (irq_re_init) { 13103 bnxt_free_irq(bp); 13104 bnxt_del_napi(bp); 13105 } 13106 bnxt_free_mem(bp, irq_re_init); 13107 } 13108 13109 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13110 { 13111 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13112 /* If we get here, it means firmware reset is in progress 13113 * while we are trying to close. We can safely proceed with 13114 * the close because we are holding netdev instance lock. 13115 * Some firmware messages may fail as we proceed to close. 13116 * We set the ABORT_ERR flag here so that the FW reset thread 13117 * will later abort when it gets the netdev instance lock 13118 * and sees the flag. 13119 */ 13120 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 13121 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 13122 } 13123 13124 #ifdef CONFIG_BNXT_SRIOV 13125 if (bp->sriov_cfg) { 13126 int rc; 13127 13128 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 13129 !bp->sriov_cfg, 13130 BNXT_SRIOV_CFG_WAIT_TMO); 13131 if (!rc) 13132 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 13133 else if (rc < 0) 13134 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 13135 } 13136 #endif 13137 __bnxt_close_nic(bp, irq_re_init, link_re_init); 13138 } 13139 13140 static int bnxt_close(struct net_device *dev) 13141 { 13142 struct bnxt *bp = netdev_priv(dev); 13143 13144 bnxt_close_nic(bp, true, true); 13145 bnxt_hwrm_shutdown_link(bp); 13146 bnxt_hwrm_if_change(bp, false); 13147 return 0; 13148 } 13149 13150 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 13151 u16 *val) 13152 { 13153 struct hwrm_port_phy_mdio_read_output *resp; 13154 struct hwrm_port_phy_mdio_read_input *req; 13155 int rc; 13156 13157 if (bp->hwrm_spec_code < 0x10a00) 13158 return -EOPNOTSUPP; 13159 13160 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 13161 if (rc) 13162 return rc; 13163 13164 req->port_id = cpu_to_le16(bp->pf.port_id); 13165 req->phy_addr = phy_addr; 13166 req->reg_addr = cpu_to_le16(reg & 0x1f); 13167 if (mdio_phy_id_is_c45(phy_addr)) { 13168 req->cl45_mdio = 1; 13169 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13170 req->dev_addr = mdio_phy_id_devad(phy_addr); 13171 req->reg_addr = cpu_to_le16(reg); 13172 } 13173 13174 resp = hwrm_req_hold(bp, req); 13175 rc = hwrm_req_send(bp, req); 13176 if (!rc) 13177 *val = le16_to_cpu(resp->reg_data); 13178 hwrm_req_drop(bp, req); 13179 return rc; 13180 } 13181 13182 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 13183 u16 val) 13184 { 13185 struct hwrm_port_phy_mdio_write_input *req; 13186 int rc; 13187 13188 if (bp->hwrm_spec_code < 0x10a00) 13189 return -EOPNOTSUPP; 13190 13191 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 13192 if (rc) 13193 return rc; 13194 13195 req->port_id = cpu_to_le16(bp->pf.port_id); 13196 req->phy_addr = phy_addr; 13197 req->reg_addr = cpu_to_le16(reg & 0x1f); 13198 if (mdio_phy_id_is_c45(phy_addr)) { 13199 req->cl45_mdio = 1; 13200 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13201 req->dev_addr = mdio_phy_id_devad(phy_addr); 13202 req->reg_addr = cpu_to_le16(reg); 13203 } 13204 req->reg_data = cpu_to_le16(val); 13205 13206 return hwrm_req_send(bp, req); 13207 } 13208 13209 /* netdev instance lock held */ 13210 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 13211 { 13212 struct mii_ioctl_data *mdio = if_mii(ifr); 13213 struct bnxt *bp = netdev_priv(dev); 13214 int rc; 13215 13216 switch (cmd) { 13217 case SIOCGMIIPHY: 13218 mdio->phy_id = bp->link_info.phy_addr; 13219 13220 fallthrough; 13221 case SIOCGMIIREG: { 13222 u16 mii_regval = 0; 13223 13224 if (!netif_running(dev)) 13225 return -EAGAIN; 13226 13227 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 13228 &mii_regval); 13229 mdio->val_out = mii_regval; 13230 return rc; 13231 } 13232 13233 case SIOCSMIIREG: 13234 if (!netif_running(dev)) 13235 return -EAGAIN; 13236 13237 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 13238 mdio->val_in); 13239 13240 case SIOCSHWTSTAMP: 13241 return bnxt_hwtstamp_set(dev, ifr); 13242 13243 case SIOCGHWTSTAMP: 13244 return bnxt_hwtstamp_get(dev, ifr); 13245 13246 default: 13247 /* do nothing */ 13248 break; 13249 } 13250 return -EOPNOTSUPP; 13251 } 13252 13253 static void bnxt_get_ring_stats(struct bnxt *bp, 13254 struct rtnl_link_stats64 *stats) 13255 { 13256 int i; 13257 13258 for (i = 0; i < bp->cp_nr_rings; i++) { 13259 struct bnxt_napi *bnapi = bp->bnapi[i]; 13260 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13261 u64 *sw = cpr->stats.sw_stats; 13262 13263 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 13264 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13265 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 13266 13267 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 13268 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 13269 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 13270 13271 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 13272 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 13273 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 13274 13275 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 13276 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 13277 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 13278 13279 stats->rx_missed_errors += 13280 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 13281 13282 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13283 13284 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 13285 13286 stats->rx_dropped += 13287 cpr->sw_stats->rx.rx_netpoll_discards + 13288 cpr->sw_stats->rx.rx_oom_discards; 13289 } 13290 } 13291 13292 static void bnxt_add_prev_stats(struct bnxt *bp, 13293 struct rtnl_link_stats64 *stats) 13294 { 13295 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 13296 13297 stats->rx_packets += prev_stats->rx_packets; 13298 stats->tx_packets += prev_stats->tx_packets; 13299 stats->rx_bytes += prev_stats->rx_bytes; 13300 stats->tx_bytes += prev_stats->tx_bytes; 13301 stats->rx_missed_errors += prev_stats->rx_missed_errors; 13302 stats->multicast += prev_stats->multicast; 13303 stats->rx_dropped += prev_stats->rx_dropped; 13304 stats->tx_dropped += prev_stats->tx_dropped; 13305 } 13306 13307 static void 13308 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 13309 { 13310 struct bnxt *bp = netdev_priv(dev); 13311 13312 set_bit(BNXT_STATE_READ_STATS, &bp->state); 13313 /* Make sure bnxt_close_nic() sees that we are reading stats before 13314 * we check the BNXT_STATE_OPEN flag. 13315 */ 13316 smp_mb__after_atomic(); 13317 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13318 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13319 *stats = bp->net_stats_prev; 13320 return; 13321 } 13322 13323 bnxt_get_ring_stats(bp, stats); 13324 bnxt_add_prev_stats(bp, stats); 13325 13326 if (bp->flags & BNXT_FLAG_PORT_STATS) { 13327 u64 *rx = bp->port_stats.sw_stats; 13328 u64 *tx = bp->port_stats.sw_stats + 13329 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 13330 13331 stats->rx_crc_errors = 13332 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 13333 stats->rx_frame_errors = 13334 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 13335 stats->rx_length_errors = 13336 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 13337 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 13338 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 13339 stats->rx_errors = 13340 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 13341 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 13342 stats->collisions = 13343 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 13344 stats->tx_fifo_errors = 13345 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 13346 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 13347 } 13348 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13349 } 13350 13351 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 13352 struct bnxt_total_ring_err_stats *stats, 13353 struct bnxt_cp_ring_info *cpr) 13354 { 13355 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 13356 u64 *hw_stats = cpr->stats.sw_stats; 13357 13358 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 13359 stats->rx_total_resets += sw_stats->rx.rx_resets; 13360 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 13361 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 13362 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 13363 stats->rx_total_ring_discards += 13364 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 13365 stats->tx_total_resets += sw_stats->tx.tx_resets; 13366 stats->tx_total_ring_discards += 13367 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 13368 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 13369 } 13370 13371 void bnxt_get_ring_err_stats(struct bnxt *bp, 13372 struct bnxt_total_ring_err_stats *stats) 13373 { 13374 int i; 13375 13376 for (i = 0; i < bp->cp_nr_rings; i++) 13377 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 13378 } 13379 13380 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 13381 { 13382 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13383 struct net_device *dev = bp->dev; 13384 struct netdev_hw_addr *ha; 13385 u8 *haddr; 13386 int mc_count = 0; 13387 bool update = false; 13388 int off = 0; 13389 13390 netdev_for_each_mc_addr(ha, dev) { 13391 if (mc_count >= BNXT_MAX_MC_ADDRS) { 13392 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13393 vnic->mc_list_count = 0; 13394 return false; 13395 } 13396 haddr = ha->addr; 13397 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 13398 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 13399 update = true; 13400 } 13401 off += ETH_ALEN; 13402 mc_count++; 13403 } 13404 if (mc_count) 13405 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13406 13407 if (mc_count != vnic->mc_list_count) { 13408 vnic->mc_list_count = mc_count; 13409 update = true; 13410 } 13411 return update; 13412 } 13413 13414 static bool bnxt_uc_list_updated(struct bnxt *bp) 13415 { 13416 struct net_device *dev = bp->dev; 13417 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13418 struct netdev_hw_addr *ha; 13419 int off = 0; 13420 13421 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 13422 return true; 13423 13424 netdev_for_each_uc_addr(ha, dev) { 13425 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 13426 return true; 13427 13428 off += ETH_ALEN; 13429 } 13430 return false; 13431 } 13432 13433 static void bnxt_set_rx_mode(struct net_device *dev) 13434 { 13435 struct bnxt *bp = netdev_priv(dev); 13436 struct bnxt_vnic_info *vnic; 13437 bool mc_update = false; 13438 bool uc_update; 13439 u32 mask; 13440 13441 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 13442 return; 13443 13444 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13445 mask = vnic->rx_mask; 13446 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 13447 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 13448 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 13449 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 13450 13451 if (dev->flags & IFF_PROMISC) 13452 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13453 13454 uc_update = bnxt_uc_list_updated(bp); 13455 13456 if (dev->flags & IFF_BROADCAST) 13457 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 13458 if (dev->flags & IFF_ALLMULTI) { 13459 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13460 vnic->mc_list_count = 0; 13461 } else if (dev->flags & IFF_MULTICAST) { 13462 mc_update = bnxt_mc_list_updated(bp, &mask); 13463 } 13464 13465 if (mask != vnic->rx_mask || uc_update || mc_update) { 13466 vnic->rx_mask = mask; 13467 13468 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13469 } 13470 } 13471 13472 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13473 { 13474 struct net_device *dev = bp->dev; 13475 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13476 struct netdev_hw_addr *ha; 13477 int i, off = 0, rc; 13478 bool uc_update; 13479 13480 netif_addr_lock_bh(dev); 13481 uc_update = bnxt_uc_list_updated(bp); 13482 netif_addr_unlock_bh(dev); 13483 13484 if (!uc_update) 13485 goto skip_uc; 13486 13487 for (i = 1; i < vnic->uc_filter_count; i++) { 13488 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13489 13490 bnxt_hwrm_l2_filter_free(bp, fltr); 13491 bnxt_del_l2_filter(bp, fltr); 13492 } 13493 13494 vnic->uc_filter_count = 1; 13495 13496 netif_addr_lock_bh(dev); 13497 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13498 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13499 } else { 13500 netdev_for_each_uc_addr(ha, dev) { 13501 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13502 off += ETH_ALEN; 13503 vnic->uc_filter_count++; 13504 } 13505 } 13506 netif_addr_unlock_bh(dev); 13507 13508 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13509 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13510 if (rc) { 13511 if (BNXT_VF(bp) && rc == -ENODEV) { 13512 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13513 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13514 else 13515 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13516 rc = 0; 13517 } else { 13518 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13519 } 13520 vnic->uc_filter_count = i; 13521 return rc; 13522 } 13523 } 13524 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13525 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13526 13527 skip_uc: 13528 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13529 !bnxt_promisc_ok(bp)) 13530 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13531 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13532 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13533 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13534 rc); 13535 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13536 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13537 vnic->mc_list_count = 0; 13538 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13539 } 13540 if (rc) 13541 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13542 rc); 13543 13544 return rc; 13545 } 13546 13547 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13548 { 13549 #ifdef CONFIG_BNXT_SRIOV 13550 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13551 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13552 13553 /* No minimum rings were provisioned by the PF. Don't 13554 * reserve rings by default when device is down. 13555 */ 13556 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13557 return true; 13558 13559 if (!netif_running(bp->dev)) 13560 return false; 13561 } 13562 #endif 13563 return true; 13564 } 13565 13566 /* If the chip and firmware supports RFS */ 13567 static bool bnxt_rfs_supported(struct bnxt *bp) 13568 { 13569 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13570 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13571 return true; 13572 return false; 13573 } 13574 /* 212 firmware is broken for aRFS */ 13575 if (BNXT_FW_MAJ(bp) == 212) 13576 return false; 13577 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13578 return true; 13579 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13580 return true; 13581 return false; 13582 } 13583 13584 /* If runtime conditions support RFS */ 13585 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13586 { 13587 struct bnxt_hw_rings hwr = {0}; 13588 int max_vnics, max_rss_ctxs; 13589 13590 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13591 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13592 return bnxt_rfs_supported(bp); 13593 13594 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13595 return false; 13596 13597 hwr.grp = bp->rx_nr_rings; 13598 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13599 if (new_rss_ctx) 13600 hwr.vnic++; 13601 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13602 max_vnics = bnxt_get_max_func_vnics(bp); 13603 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13604 13605 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13606 if (bp->rx_nr_rings > 1) 13607 netdev_warn(bp->dev, 13608 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13609 min(max_rss_ctxs - 1, max_vnics - 1)); 13610 return false; 13611 } 13612 13613 if (!BNXT_NEW_RM(bp)) 13614 return true; 13615 13616 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13617 * issue that will mess up the default VNIC if we reduce the 13618 * reservations. 13619 */ 13620 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13621 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13622 return true; 13623 13624 bnxt_hwrm_reserve_rings(bp, &hwr); 13625 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13626 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13627 return true; 13628 13629 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13630 hwr.vnic = 1; 13631 hwr.rss_ctx = 0; 13632 bnxt_hwrm_reserve_rings(bp, &hwr); 13633 return false; 13634 } 13635 13636 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13637 netdev_features_t features) 13638 { 13639 struct bnxt *bp = netdev_priv(dev); 13640 netdev_features_t vlan_features; 13641 13642 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13643 features &= ~NETIF_F_NTUPLE; 13644 13645 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13646 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13647 13648 if (!(features & NETIF_F_GRO)) 13649 features &= ~NETIF_F_GRO_HW; 13650 13651 if (features & NETIF_F_GRO_HW) 13652 features &= ~NETIF_F_LRO; 13653 13654 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13655 * turned on or off together. 13656 */ 13657 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13658 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13659 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13660 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13661 else if (vlan_features) 13662 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13663 } 13664 #ifdef CONFIG_BNXT_SRIOV 13665 if (BNXT_VF(bp) && bp->vf.vlan) 13666 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13667 #endif 13668 return features; 13669 } 13670 13671 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13672 bool link_re_init, u32 flags, bool update_tpa) 13673 { 13674 bnxt_close_nic(bp, irq_re_init, link_re_init); 13675 bp->flags = flags; 13676 if (update_tpa) 13677 bnxt_set_ring_params(bp); 13678 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13679 } 13680 13681 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13682 { 13683 bool update_tpa = false, update_ntuple = false; 13684 struct bnxt *bp = netdev_priv(dev); 13685 u32 flags = bp->flags; 13686 u32 changes; 13687 int rc = 0; 13688 bool re_init = false; 13689 13690 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13691 if (features & NETIF_F_GRO_HW) 13692 flags |= BNXT_FLAG_GRO; 13693 else if (features & NETIF_F_LRO) 13694 flags |= BNXT_FLAG_LRO; 13695 13696 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13697 flags &= ~BNXT_FLAG_TPA; 13698 13699 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13700 flags |= BNXT_FLAG_STRIP_VLAN; 13701 13702 if (features & NETIF_F_NTUPLE) 13703 flags |= BNXT_FLAG_RFS; 13704 else 13705 bnxt_clear_usr_fltrs(bp, true); 13706 13707 changes = flags ^ bp->flags; 13708 if (changes & BNXT_FLAG_TPA) { 13709 update_tpa = true; 13710 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13711 (flags & BNXT_FLAG_TPA) == 0 || 13712 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13713 re_init = true; 13714 } 13715 13716 if (changes & ~BNXT_FLAG_TPA) 13717 re_init = true; 13718 13719 if (changes & BNXT_FLAG_RFS) 13720 update_ntuple = true; 13721 13722 if (flags != bp->flags) { 13723 u32 old_flags = bp->flags; 13724 13725 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13726 bp->flags = flags; 13727 if (update_tpa) 13728 bnxt_set_ring_params(bp); 13729 return rc; 13730 } 13731 13732 if (update_ntuple) 13733 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13734 13735 if (re_init) 13736 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13737 13738 if (update_tpa) { 13739 bp->flags = flags; 13740 rc = bnxt_set_tpa(bp, 13741 (flags & BNXT_FLAG_TPA) ? 13742 true : false); 13743 if (rc) 13744 bp->flags = old_flags; 13745 } 13746 } 13747 return rc; 13748 } 13749 13750 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13751 u8 **nextp) 13752 { 13753 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13754 struct hop_jumbo_hdr *jhdr; 13755 int hdr_count = 0; 13756 u8 *nexthdr; 13757 int start; 13758 13759 /* Check that there are at most 2 IPv6 extension headers, no 13760 * fragment header, and each is <= 64 bytes. 13761 */ 13762 start = nw_off + sizeof(*ip6h); 13763 nexthdr = &ip6h->nexthdr; 13764 while (ipv6_ext_hdr(*nexthdr)) { 13765 struct ipv6_opt_hdr *hp; 13766 int hdrlen; 13767 13768 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13769 *nexthdr == NEXTHDR_FRAGMENT) 13770 return false; 13771 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13772 skb_headlen(skb), NULL); 13773 if (!hp) 13774 return false; 13775 if (*nexthdr == NEXTHDR_AUTH) 13776 hdrlen = ipv6_authlen(hp); 13777 else 13778 hdrlen = ipv6_optlen(hp); 13779 13780 if (hdrlen > 64) 13781 return false; 13782 13783 /* The ext header may be a hop-by-hop header inserted for 13784 * big TCP purposes. This will be removed before sending 13785 * from NIC, so do not count it. 13786 */ 13787 if (*nexthdr == NEXTHDR_HOP) { 13788 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13789 goto increment_hdr; 13790 13791 jhdr = (struct hop_jumbo_hdr *)hp; 13792 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13793 jhdr->nexthdr != IPPROTO_TCP) 13794 goto increment_hdr; 13795 13796 goto next_hdr; 13797 } 13798 increment_hdr: 13799 hdr_count++; 13800 next_hdr: 13801 nexthdr = &hp->nexthdr; 13802 start += hdrlen; 13803 } 13804 if (nextp) { 13805 /* Caller will check inner protocol */ 13806 if (skb->encapsulation) { 13807 *nextp = nexthdr; 13808 return true; 13809 } 13810 *nextp = NULL; 13811 } 13812 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13813 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13814 } 13815 13816 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13817 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13818 { 13819 struct udphdr *uh = udp_hdr(skb); 13820 __be16 udp_port = uh->dest; 13821 13822 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13823 udp_port != bp->vxlan_gpe_port) 13824 return false; 13825 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13826 struct ethhdr *eh = inner_eth_hdr(skb); 13827 13828 switch (eh->h_proto) { 13829 case htons(ETH_P_IP): 13830 return true; 13831 case htons(ETH_P_IPV6): 13832 return bnxt_exthdr_check(bp, skb, 13833 skb_inner_network_offset(skb), 13834 NULL); 13835 } 13836 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13837 return true; 13838 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13839 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13840 NULL); 13841 } 13842 return false; 13843 } 13844 13845 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13846 { 13847 switch (l4_proto) { 13848 case IPPROTO_UDP: 13849 return bnxt_udp_tunl_check(bp, skb); 13850 case IPPROTO_IPIP: 13851 return true; 13852 case IPPROTO_GRE: { 13853 switch (skb->inner_protocol) { 13854 default: 13855 return false; 13856 case htons(ETH_P_IP): 13857 return true; 13858 case htons(ETH_P_IPV6): 13859 fallthrough; 13860 } 13861 } 13862 case IPPROTO_IPV6: 13863 /* Check ext headers of inner ipv6 */ 13864 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13865 NULL); 13866 } 13867 return false; 13868 } 13869 13870 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13871 struct net_device *dev, 13872 netdev_features_t features) 13873 { 13874 struct bnxt *bp = netdev_priv(dev); 13875 u8 *l4_proto; 13876 13877 features = vlan_features_check(skb, features); 13878 switch (vlan_get_protocol(skb)) { 13879 case htons(ETH_P_IP): 13880 if (!skb->encapsulation) 13881 return features; 13882 l4_proto = &ip_hdr(skb)->protocol; 13883 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13884 return features; 13885 break; 13886 case htons(ETH_P_IPV6): 13887 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13888 &l4_proto)) 13889 break; 13890 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13891 return features; 13892 break; 13893 } 13894 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13895 } 13896 13897 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13898 u32 *reg_buf) 13899 { 13900 struct hwrm_dbg_read_direct_output *resp; 13901 struct hwrm_dbg_read_direct_input *req; 13902 __le32 *dbg_reg_buf; 13903 dma_addr_t mapping; 13904 int rc, i; 13905 13906 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13907 if (rc) 13908 return rc; 13909 13910 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13911 &mapping); 13912 if (!dbg_reg_buf) { 13913 rc = -ENOMEM; 13914 goto dbg_rd_reg_exit; 13915 } 13916 13917 req->host_dest_addr = cpu_to_le64(mapping); 13918 13919 resp = hwrm_req_hold(bp, req); 13920 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13921 req->read_len32 = cpu_to_le32(num_words); 13922 13923 rc = hwrm_req_send(bp, req); 13924 if (rc || resp->error_code) { 13925 rc = -EIO; 13926 goto dbg_rd_reg_exit; 13927 } 13928 for (i = 0; i < num_words; i++) 13929 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13930 13931 dbg_rd_reg_exit: 13932 hwrm_req_drop(bp, req); 13933 return rc; 13934 } 13935 13936 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13937 u32 ring_id, u32 *prod, u32 *cons) 13938 { 13939 struct hwrm_dbg_ring_info_get_output *resp; 13940 struct hwrm_dbg_ring_info_get_input *req; 13941 int rc; 13942 13943 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13944 if (rc) 13945 return rc; 13946 13947 req->ring_type = ring_type; 13948 req->fw_ring_id = cpu_to_le32(ring_id); 13949 resp = hwrm_req_hold(bp, req); 13950 rc = hwrm_req_send(bp, req); 13951 if (!rc) { 13952 *prod = le32_to_cpu(resp->producer_index); 13953 *cons = le32_to_cpu(resp->consumer_index); 13954 } 13955 hwrm_req_drop(bp, req); 13956 return rc; 13957 } 13958 13959 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13960 { 13961 struct bnxt_tx_ring_info *txr; 13962 int i = bnapi->index, j; 13963 13964 bnxt_for_each_napi_tx(j, bnapi, txr) 13965 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13966 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13967 txr->tx_cons); 13968 } 13969 13970 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13971 { 13972 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13973 int i = bnapi->index; 13974 13975 if (!rxr) 13976 return; 13977 13978 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13979 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13980 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13981 rxr->rx_sw_agg_prod); 13982 } 13983 13984 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13985 { 13986 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13987 int i = bnapi->index; 13988 13989 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13990 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13991 } 13992 13993 static void bnxt_dbg_dump_states(struct bnxt *bp) 13994 { 13995 int i; 13996 struct bnxt_napi *bnapi; 13997 13998 for (i = 0; i < bp->cp_nr_rings; i++) { 13999 bnapi = bp->bnapi[i]; 14000 if (netif_msg_drv(bp)) { 14001 bnxt_dump_tx_sw_state(bnapi); 14002 bnxt_dump_rx_sw_state(bnapi); 14003 bnxt_dump_cp_sw_state(bnapi); 14004 } 14005 } 14006 } 14007 14008 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 14009 { 14010 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 14011 struct hwrm_ring_reset_input *req; 14012 struct bnxt_napi *bnapi = rxr->bnapi; 14013 struct bnxt_cp_ring_info *cpr; 14014 u16 cp_ring_id; 14015 int rc; 14016 14017 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 14018 if (rc) 14019 return rc; 14020 14021 cpr = &bnapi->cp_ring; 14022 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 14023 req->cmpl_ring = cpu_to_le16(cp_ring_id); 14024 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 14025 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 14026 return hwrm_req_send_silent(bp, req); 14027 } 14028 14029 static void bnxt_reset_task(struct bnxt *bp, bool silent) 14030 { 14031 if (!silent) 14032 bnxt_dbg_dump_states(bp); 14033 if (netif_running(bp->dev)) { 14034 bnxt_close_nic(bp, !silent, false); 14035 bnxt_open_nic(bp, !silent, false); 14036 } 14037 } 14038 14039 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 14040 { 14041 struct bnxt *bp = netdev_priv(dev); 14042 14043 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 14044 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 14045 } 14046 14047 static void bnxt_fw_health_check(struct bnxt *bp) 14048 { 14049 struct bnxt_fw_health *fw_health = bp->fw_health; 14050 struct pci_dev *pdev = bp->pdev; 14051 u32 val; 14052 14053 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14054 return; 14055 14056 /* Make sure it is enabled before checking the tmr_counter. */ 14057 smp_rmb(); 14058 if (fw_health->tmr_counter) { 14059 fw_health->tmr_counter--; 14060 return; 14061 } 14062 14063 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14064 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 14065 fw_health->arrests++; 14066 goto fw_reset; 14067 } 14068 14069 fw_health->last_fw_heartbeat = val; 14070 14071 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14072 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 14073 fw_health->discoveries++; 14074 goto fw_reset; 14075 } 14076 14077 fw_health->tmr_counter = fw_health->tmr_multiplier; 14078 return; 14079 14080 fw_reset: 14081 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 14082 } 14083 14084 static void bnxt_timer(struct timer_list *t) 14085 { 14086 struct bnxt *bp = timer_container_of(bp, t, timer); 14087 struct net_device *dev = bp->dev; 14088 14089 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 14090 return; 14091 14092 if (atomic_read(&bp->intr_sem) != 0) 14093 goto bnxt_restart_timer; 14094 14095 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 14096 bnxt_fw_health_check(bp); 14097 14098 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 14099 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 14100 14101 if (bnxt_tc_flower_enabled(bp)) 14102 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 14103 14104 #ifdef CONFIG_RFS_ACCEL 14105 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 14106 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14107 #endif /*CONFIG_RFS_ACCEL*/ 14108 14109 if (bp->link_info.phy_retry) { 14110 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 14111 bp->link_info.phy_retry = false; 14112 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 14113 } else { 14114 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 14115 } 14116 } 14117 14118 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 14119 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 14120 14121 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 14122 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 14123 14124 bnxt_restart_timer: 14125 mod_timer(&bp->timer, jiffies + bp->current_interval); 14126 } 14127 14128 static void bnxt_lock_sp(struct bnxt *bp) 14129 { 14130 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 14131 * set. If the device is being closed, bnxt_close() may be holding 14132 * netdev instance lock and waiting for BNXT_STATE_IN_SP_TASK to clear. 14133 * So we must clear BNXT_STATE_IN_SP_TASK before holding netdev 14134 * instance lock. 14135 */ 14136 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14137 netdev_lock(bp->dev); 14138 } 14139 14140 static void bnxt_unlock_sp(struct bnxt *bp) 14141 { 14142 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14143 netdev_unlock(bp->dev); 14144 } 14145 14146 /* Only called from bnxt_sp_task() */ 14147 static void bnxt_reset(struct bnxt *bp, bool silent) 14148 { 14149 bnxt_lock_sp(bp); 14150 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 14151 bnxt_reset_task(bp, silent); 14152 bnxt_unlock_sp(bp); 14153 } 14154 14155 /* Only called from bnxt_sp_task() */ 14156 static void bnxt_rx_ring_reset(struct bnxt *bp) 14157 { 14158 int i; 14159 14160 bnxt_lock_sp(bp); 14161 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14162 bnxt_unlock_sp(bp); 14163 return; 14164 } 14165 /* Disable and flush TPA before resetting the RX ring */ 14166 if (bp->flags & BNXT_FLAG_TPA) 14167 bnxt_set_tpa(bp, false); 14168 for (i = 0; i < bp->rx_nr_rings; i++) { 14169 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 14170 struct bnxt_cp_ring_info *cpr; 14171 int rc; 14172 14173 if (!rxr->bnapi->in_reset) 14174 continue; 14175 14176 rc = bnxt_hwrm_rx_ring_reset(bp, i); 14177 if (rc) { 14178 if (rc == -EINVAL || rc == -EOPNOTSUPP) 14179 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 14180 else 14181 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 14182 rc); 14183 bnxt_reset_task(bp, true); 14184 break; 14185 } 14186 bnxt_free_one_rx_ring_skbs(bp, rxr); 14187 rxr->rx_prod = 0; 14188 rxr->rx_agg_prod = 0; 14189 rxr->rx_sw_agg_prod = 0; 14190 rxr->rx_next_cons = 0; 14191 rxr->bnapi->in_reset = false; 14192 bnxt_alloc_one_rx_ring(bp, i); 14193 cpr = &rxr->bnapi->cp_ring; 14194 cpr->sw_stats->rx.rx_resets++; 14195 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14196 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 14197 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 14198 } 14199 if (bp->flags & BNXT_FLAG_TPA) 14200 bnxt_set_tpa(bp, true); 14201 bnxt_unlock_sp(bp); 14202 } 14203 14204 static void bnxt_fw_fatal_close(struct bnxt *bp) 14205 { 14206 bnxt_tx_disable(bp); 14207 bnxt_disable_napi(bp); 14208 bnxt_disable_int_sync(bp); 14209 bnxt_free_irq(bp); 14210 bnxt_clear_int_mode(bp); 14211 pci_disable_device(bp->pdev); 14212 } 14213 14214 static void bnxt_fw_reset_close(struct bnxt *bp) 14215 { 14216 /* When firmware is in fatal state, quiesce device and disable 14217 * bus master to prevent any potential bad DMAs before freeing 14218 * kernel memory. 14219 */ 14220 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 14221 u16 val = 0; 14222 14223 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14224 if (val == 0xffff) 14225 bp->fw_reset_min_dsecs = 0; 14226 bnxt_fw_fatal_close(bp); 14227 } 14228 __bnxt_close_nic(bp, true, false); 14229 bnxt_vf_reps_free(bp); 14230 bnxt_clear_int_mode(bp); 14231 bnxt_hwrm_func_drv_unrgtr(bp); 14232 if (pci_is_enabled(bp->pdev)) 14233 pci_disable_device(bp->pdev); 14234 bnxt_free_ctx_mem(bp, false); 14235 } 14236 14237 static bool is_bnxt_fw_ok(struct bnxt *bp) 14238 { 14239 struct bnxt_fw_health *fw_health = bp->fw_health; 14240 bool no_heartbeat = false, has_reset = false; 14241 u32 val; 14242 14243 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14244 if (val == fw_health->last_fw_heartbeat) 14245 no_heartbeat = true; 14246 14247 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14248 if (val != fw_health->last_fw_reset_cnt) 14249 has_reset = true; 14250 14251 if (!no_heartbeat && has_reset) 14252 return true; 14253 14254 return false; 14255 } 14256 14257 /* netdev instance lock is acquired before calling this function */ 14258 static void bnxt_force_fw_reset(struct bnxt *bp) 14259 { 14260 struct bnxt_fw_health *fw_health = bp->fw_health; 14261 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14262 u32 wait_dsecs; 14263 14264 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 14265 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14266 return; 14267 14268 /* we have to serialize with bnxt_refclk_read()*/ 14269 if (ptp) { 14270 unsigned long flags; 14271 14272 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14273 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14274 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14275 } else { 14276 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14277 } 14278 bnxt_fw_reset_close(bp); 14279 wait_dsecs = fw_health->master_func_wait_dsecs; 14280 if (fw_health->primary) { 14281 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 14282 wait_dsecs = 0; 14283 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14284 } else { 14285 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 14286 wait_dsecs = fw_health->normal_func_wait_dsecs; 14287 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14288 } 14289 14290 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 14291 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 14292 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14293 } 14294 14295 void bnxt_fw_exception(struct bnxt *bp) 14296 { 14297 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 14298 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14299 bnxt_ulp_stop(bp); 14300 bnxt_lock_sp(bp); 14301 bnxt_force_fw_reset(bp); 14302 bnxt_unlock_sp(bp); 14303 } 14304 14305 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 14306 * < 0 on error. 14307 */ 14308 static int bnxt_get_registered_vfs(struct bnxt *bp) 14309 { 14310 #ifdef CONFIG_BNXT_SRIOV 14311 int rc; 14312 14313 if (!BNXT_PF(bp)) 14314 return 0; 14315 14316 rc = bnxt_hwrm_func_qcfg(bp); 14317 if (rc) { 14318 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 14319 return rc; 14320 } 14321 if (bp->pf.registered_vfs) 14322 return bp->pf.registered_vfs; 14323 if (bp->sriov_cfg) 14324 return 1; 14325 #endif 14326 return 0; 14327 } 14328 14329 void bnxt_fw_reset(struct bnxt *bp) 14330 { 14331 bnxt_ulp_stop(bp); 14332 bnxt_lock_sp(bp); 14333 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 14334 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14335 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14336 int n = 0, tmo; 14337 14338 /* we have to serialize with bnxt_refclk_read()*/ 14339 if (ptp) { 14340 unsigned long flags; 14341 14342 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14343 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14344 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14345 } else { 14346 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14347 } 14348 if (bp->pf.active_vfs && 14349 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 14350 n = bnxt_get_registered_vfs(bp); 14351 if (n < 0) { 14352 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 14353 n); 14354 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14355 netif_close(bp->dev); 14356 goto fw_reset_exit; 14357 } else if (n > 0) { 14358 u16 vf_tmo_dsecs = n * 10; 14359 14360 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 14361 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 14362 bp->fw_reset_state = 14363 BNXT_FW_RESET_STATE_POLL_VF; 14364 bnxt_queue_fw_reset_work(bp, HZ / 10); 14365 goto fw_reset_exit; 14366 } 14367 bnxt_fw_reset_close(bp); 14368 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14369 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14370 tmo = HZ / 10; 14371 } else { 14372 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14373 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14374 } 14375 bnxt_queue_fw_reset_work(bp, tmo); 14376 } 14377 fw_reset_exit: 14378 bnxt_unlock_sp(bp); 14379 } 14380 14381 static void bnxt_chk_missed_irq(struct bnxt *bp) 14382 { 14383 int i; 14384 14385 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14386 return; 14387 14388 for (i = 0; i < bp->cp_nr_rings; i++) { 14389 struct bnxt_napi *bnapi = bp->bnapi[i]; 14390 struct bnxt_cp_ring_info *cpr; 14391 u32 fw_ring_id; 14392 int j; 14393 14394 if (!bnapi) 14395 continue; 14396 14397 cpr = &bnapi->cp_ring; 14398 for (j = 0; j < cpr->cp_ring_count; j++) { 14399 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 14400 u32 val[2]; 14401 14402 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 14403 continue; 14404 14405 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 14406 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 14407 continue; 14408 } 14409 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 14410 bnxt_dbg_hwrm_ring_info_get(bp, 14411 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 14412 fw_ring_id, &val[0], &val[1]); 14413 cpr->sw_stats->cmn.missed_irqs++; 14414 } 14415 } 14416 } 14417 14418 static void bnxt_cfg_ntp_filters(struct bnxt *); 14419 14420 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 14421 { 14422 struct bnxt_link_info *link_info = &bp->link_info; 14423 14424 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 14425 link_info->autoneg = BNXT_AUTONEG_SPEED; 14426 if (bp->hwrm_spec_code >= 0x10201) { 14427 if (link_info->auto_pause_setting & 14428 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 14429 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14430 } else { 14431 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14432 } 14433 bnxt_set_auto_speed(link_info); 14434 } else { 14435 bnxt_set_force_speed(link_info); 14436 link_info->req_duplex = link_info->duplex_setting; 14437 } 14438 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 14439 link_info->req_flow_ctrl = 14440 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 14441 else 14442 link_info->req_flow_ctrl = link_info->force_pause_setting; 14443 } 14444 14445 static void bnxt_fw_echo_reply(struct bnxt *bp) 14446 { 14447 struct bnxt_fw_health *fw_health = bp->fw_health; 14448 struct hwrm_func_echo_response_input *req; 14449 int rc; 14450 14451 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 14452 if (rc) 14453 return; 14454 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 14455 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 14456 hwrm_req_send(bp, req); 14457 } 14458 14459 static void bnxt_ulp_restart(struct bnxt *bp) 14460 { 14461 bnxt_ulp_stop(bp); 14462 bnxt_ulp_start(bp, 0); 14463 } 14464 14465 static void bnxt_sp_task(struct work_struct *work) 14466 { 14467 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 14468 14469 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14470 smp_mb__after_atomic(); 14471 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14472 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14473 return; 14474 } 14475 14476 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14477 bnxt_ulp_restart(bp); 14478 bnxt_reenable_sriov(bp); 14479 } 14480 14481 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14482 bnxt_cfg_rx_mode(bp); 14483 14484 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14485 bnxt_cfg_ntp_filters(bp); 14486 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14487 bnxt_hwrm_exec_fwd_req(bp); 14488 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14489 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14490 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14491 bnxt_hwrm_port_qstats(bp, 0); 14492 bnxt_hwrm_port_qstats_ext(bp, 0); 14493 bnxt_accumulate_all_stats(bp); 14494 } 14495 14496 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14497 int rc; 14498 14499 mutex_lock(&bp->link_lock); 14500 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14501 &bp->sp_event)) 14502 bnxt_hwrm_phy_qcaps(bp); 14503 14504 rc = bnxt_update_link(bp, true); 14505 if (rc) 14506 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14507 rc); 14508 14509 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14510 &bp->sp_event)) 14511 bnxt_init_ethtool_link_settings(bp); 14512 mutex_unlock(&bp->link_lock); 14513 } 14514 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14515 int rc; 14516 14517 mutex_lock(&bp->link_lock); 14518 rc = bnxt_update_phy_setting(bp); 14519 mutex_unlock(&bp->link_lock); 14520 if (rc) { 14521 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14522 } else { 14523 bp->link_info.phy_retry = false; 14524 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14525 } 14526 } 14527 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14528 mutex_lock(&bp->link_lock); 14529 bnxt_get_port_module_status(bp); 14530 mutex_unlock(&bp->link_lock); 14531 } 14532 14533 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14534 bnxt_tc_flow_stats_work(bp); 14535 14536 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14537 bnxt_chk_missed_irq(bp); 14538 14539 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14540 bnxt_fw_echo_reply(bp); 14541 14542 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14543 bnxt_hwmon_notify_event(bp); 14544 14545 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14546 * must be the last functions to be called before exiting. 14547 */ 14548 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14549 bnxt_reset(bp, false); 14550 14551 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14552 bnxt_reset(bp, true); 14553 14554 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14555 bnxt_rx_ring_reset(bp); 14556 14557 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14558 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14559 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14560 bnxt_devlink_health_fw_report(bp); 14561 else 14562 bnxt_fw_reset(bp); 14563 } 14564 14565 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14566 if (!is_bnxt_fw_ok(bp)) 14567 bnxt_devlink_health_fw_report(bp); 14568 } 14569 14570 smp_mb__before_atomic(); 14571 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14572 } 14573 14574 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14575 int *max_cp); 14576 14577 /* Under netdev instance lock */ 14578 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14579 int tx_xdp) 14580 { 14581 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14582 struct bnxt_hw_rings hwr = {0}; 14583 int rx_rings = rx; 14584 int rc; 14585 14586 if (tcs) 14587 tx_sets = tcs; 14588 14589 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14590 14591 if (max_rx < rx_rings) 14592 return -ENOMEM; 14593 14594 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14595 rx_rings <<= 1; 14596 14597 hwr.rx = rx_rings; 14598 hwr.tx = tx * tx_sets + tx_xdp; 14599 if (max_tx < hwr.tx) 14600 return -ENOMEM; 14601 14602 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14603 14604 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14605 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14606 if (max_cp < hwr.cp) 14607 return -ENOMEM; 14608 hwr.stat = hwr.cp; 14609 if (BNXT_NEW_RM(bp)) { 14610 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14611 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14612 hwr.grp = rx; 14613 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14614 } 14615 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14616 hwr.cp_p5 = hwr.tx + rx; 14617 rc = bnxt_hwrm_check_rings(bp, &hwr); 14618 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14619 if (!bnxt_ulp_registered(bp->edev)) { 14620 hwr.cp += bnxt_get_ulp_msix_num(bp); 14621 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14622 } 14623 if (hwr.cp > bp->total_irqs) { 14624 int total_msix = bnxt_change_msix(bp, hwr.cp); 14625 14626 if (total_msix < hwr.cp) { 14627 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14628 hwr.cp, total_msix); 14629 rc = -ENOSPC; 14630 } 14631 } 14632 } 14633 return rc; 14634 } 14635 14636 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14637 { 14638 if (bp->bar2) { 14639 pci_iounmap(pdev, bp->bar2); 14640 bp->bar2 = NULL; 14641 } 14642 14643 if (bp->bar1) { 14644 pci_iounmap(pdev, bp->bar1); 14645 bp->bar1 = NULL; 14646 } 14647 14648 if (bp->bar0) { 14649 pci_iounmap(pdev, bp->bar0); 14650 bp->bar0 = NULL; 14651 } 14652 } 14653 14654 static void bnxt_cleanup_pci(struct bnxt *bp) 14655 { 14656 bnxt_unmap_bars(bp, bp->pdev); 14657 pci_release_regions(bp->pdev); 14658 if (pci_is_enabled(bp->pdev)) 14659 pci_disable_device(bp->pdev); 14660 } 14661 14662 static void bnxt_init_dflt_coal(struct bnxt *bp) 14663 { 14664 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14665 struct bnxt_coal *coal; 14666 u16 flags = 0; 14667 14668 if (coal_cap->cmpl_params & 14669 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14670 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14671 14672 /* Tick values in micro seconds. 14673 * 1 coal_buf x bufs_per_record = 1 completion record. 14674 */ 14675 coal = &bp->rx_coal; 14676 coal->coal_ticks = 10; 14677 coal->coal_bufs = 30; 14678 coal->coal_ticks_irq = 1; 14679 coal->coal_bufs_irq = 2; 14680 coal->idle_thresh = 50; 14681 coal->bufs_per_record = 2; 14682 coal->budget = 64; /* NAPI budget */ 14683 coal->flags = flags; 14684 14685 coal = &bp->tx_coal; 14686 coal->coal_ticks = 28; 14687 coal->coal_bufs = 30; 14688 coal->coal_ticks_irq = 2; 14689 coal->coal_bufs_irq = 2; 14690 coal->bufs_per_record = 1; 14691 coal->flags = flags; 14692 14693 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14694 } 14695 14696 /* FW that pre-reserves 1 VNIC per function */ 14697 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14698 { 14699 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14700 14701 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14702 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14703 return true; 14704 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14705 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14706 return true; 14707 return false; 14708 } 14709 14710 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14711 { 14712 int rc; 14713 14714 bp->fw_cap = 0; 14715 rc = bnxt_hwrm_ver_get(bp); 14716 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14717 * so wait before continuing with recovery. 14718 */ 14719 if (rc) 14720 msleep(100); 14721 bnxt_try_map_fw_health_reg(bp); 14722 if (rc) { 14723 rc = bnxt_try_recover_fw(bp); 14724 if (rc) 14725 return rc; 14726 rc = bnxt_hwrm_ver_get(bp); 14727 if (rc) 14728 return rc; 14729 } 14730 14731 bnxt_nvm_cfg_ver_get(bp); 14732 14733 rc = bnxt_hwrm_func_reset(bp); 14734 if (rc) 14735 return -ENODEV; 14736 14737 bnxt_hwrm_fw_set_time(bp); 14738 return 0; 14739 } 14740 14741 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14742 { 14743 int rc; 14744 14745 /* Get the MAX capabilities for this function */ 14746 rc = bnxt_hwrm_func_qcaps(bp); 14747 if (rc) { 14748 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14749 rc); 14750 return -ENODEV; 14751 } 14752 14753 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14754 if (rc) 14755 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14756 rc); 14757 14758 if (bnxt_alloc_fw_health(bp)) { 14759 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14760 } else { 14761 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14762 if (rc) 14763 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14764 rc); 14765 } 14766 14767 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14768 if (rc) 14769 return -ENODEV; 14770 14771 rc = bnxt_alloc_crash_dump_mem(bp); 14772 if (rc) 14773 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14774 rc); 14775 if (!rc) { 14776 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14777 if (rc) { 14778 bnxt_free_crash_dump_mem(bp); 14779 netdev_warn(bp->dev, 14780 "hwrm crash dump mem failure rc: %d\n", rc); 14781 } 14782 } 14783 14784 if (bnxt_fw_pre_resv_vnics(bp)) 14785 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14786 14787 bnxt_hwrm_func_qcfg(bp); 14788 bnxt_hwrm_vnic_qcaps(bp); 14789 bnxt_hwrm_port_led_qcaps(bp); 14790 bnxt_ethtool_init(bp); 14791 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14792 __bnxt_hwrm_ptp_qcfg(bp); 14793 bnxt_dcb_init(bp); 14794 bnxt_hwmon_init(bp); 14795 return 0; 14796 } 14797 14798 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14799 { 14800 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14801 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14802 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14803 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14804 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14805 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14806 bp->rss_hash_delta = bp->rss_hash_cfg; 14807 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14808 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14809 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14810 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14811 } 14812 } 14813 14814 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14815 { 14816 struct net_device *dev = bp->dev; 14817 14818 dev->hw_features &= ~NETIF_F_NTUPLE; 14819 dev->features &= ~NETIF_F_NTUPLE; 14820 bp->flags &= ~BNXT_FLAG_RFS; 14821 if (bnxt_rfs_supported(bp)) { 14822 dev->hw_features |= NETIF_F_NTUPLE; 14823 if (bnxt_rfs_capable(bp, false)) { 14824 bp->flags |= BNXT_FLAG_RFS; 14825 dev->features |= NETIF_F_NTUPLE; 14826 } 14827 } 14828 } 14829 14830 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14831 { 14832 struct pci_dev *pdev = bp->pdev; 14833 14834 bnxt_set_dflt_rss_hash_type(bp); 14835 bnxt_set_dflt_rfs(bp); 14836 14837 bnxt_get_wol_settings(bp); 14838 if (bp->flags & BNXT_FLAG_WOL_CAP) 14839 device_set_wakeup_enable(&pdev->dev, bp->wol); 14840 else 14841 device_set_wakeup_capable(&pdev->dev, false); 14842 14843 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14844 bnxt_hwrm_coal_params_qcaps(bp); 14845 } 14846 14847 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14848 14849 int bnxt_fw_init_one(struct bnxt *bp) 14850 { 14851 int rc; 14852 14853 rc = bnxt_fw_init_one_p1(bp); 14854 if (rc) { 14855 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14856 return rc; 14857 } 14858 rc = bnxt_fw_init_one_p2(bp); 14859 if (rc) { 14860 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14861 return rc; 14862 } 14863 rc = bnxt_probe_phy(bp, false); 14864 if (rc) 14865 return rc; 14866 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14867 if (rc) 14868 return rc; 14869 14870 bnxt_fw_init_one_p3(bp); 14871 return 0; 14872 } 14873 14874 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14875 { 14876 struct bnxt_fw_health *fw_health = bp->fw_health; 14877 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14878 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14879 u32 reg_type, reg_off, delay_msecs; 14880 14881 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14882 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14883 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14884 switch (reg_type) { 14885 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14886 pci_write_config_dword(bp->pdev, reg_off, val); 14887 break; 14888 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14889 writel(reg_off & BNXT_GRC_BASE_MASK, 14890 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14891 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14892 fallthrough; 14893 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14894 writel(val, bp->bar0 + reg_off); 14895 break; 14896 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14897 writel(val, bp->bar1 + reg_off); 14898 break; 14899 } 14900 if (delay_msecs) { 14901 pci_read_config_dword(bp->pdev, 0, &val); 14902 msleep(delay_msecs); 14903 } 14904 } 14905 14906 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14907 { 14908 struct hwrm_func_qcfg_output *resp; 14909 struct hwrm_func_qcfg_input *req; 14910 bool result = true; /* firmware will enforce if unknown */ 14911 14912 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14913 return result; 14914 14915 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14916 return result; 14917 14918 req->fid = cpu_to_le16(0xffff); 14919 resp = hwrm_req_hold(bp, req); 14920 if (!hwrm_req_send(bp, req)) 14921 result = !!(le16_to_cpu(resp->flags) & 14922 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14923 hwrm_req_drop(bp, req); 14924 return result; 14925 } 14926 14927 static void bnxt_reset_all(struct bnxt *bp) 14928 { 14929 struct bnxt_fw_health *fw_health = bp->fw_health; 14930 int i, rc; 14931 14932 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14933 bnxt_fw_reset_via_optee(bp); 14934 bp->fw_reset_timestamp = jiffies; 14935 return; 14936 } 14937 14938 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14939 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14940 bnxt_fw_reset_writel(bp, i); 14941 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14942 struct hwrm_fw_reset_input *req; 14943 14944 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14945 if (!rc) { 14946 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14947 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14948 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14949 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14950 rc = hwrm_req_send(bp, req); 14951 } 14952 if (rc != -ENODEV) 14953 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14954 } 14955 bp->fw_reset_timestamp = jiffies; 14956 } 14957 14958 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14959 { 14960 return time_after(jiffies, bp->fw_reset_timestamp + 14961 (bp->fw_reset_max_dsecs * HZ / 10)); 14962 } 14963 14964 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14965 { 14966 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14967 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14968 bnxt_dl_health_fw_status_update(bp, false); 14969 bp->fw_reset_state = BNXT_FW_RESET_STATE_ABORT; 14970 netif_close(bp->dev); 14971 } 14972 14973 static void bnxt_fw_reset_task(struct work_struct *work) 14974 { 14975 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14976 int rc = 0; 14977 14978 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14979 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14980 return; 14981 } 14982 14983 switch (bp->fw_reset_state) { 14984 case BNXT_FW_RESET_STATE_POLL_VF: { 14985 int n = bnxt_get_registered_vfs(bp); 14986 int tmo; 14987 14988 if (n < 0) { 14989 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14990 n, jiffies_to_msecs(jiffies - 14991 bp->fw_reset_timestamp)); 14992 goto fw_reset_abort; 14993 } else if (n > 0) { 14994 if (bnxt_fw_reset_timeout(bp)) { 14995 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14996 bp->fw_reset_state = 0; 14997 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14998 n); 14999 goto ulp_start; 15000 } 15001 bnxt_queue_fw_reset_work(bp, HZ / 10); 15002 return; 15003 } 15004 bp->fw_reset_timestamp = jiffies; 15005 netdev_lock(bp->dev); 15006 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 15007 bnxt_fw_reset_abort(bp, rc); 15008 netdev_unlock(bp->dev); 15009 goto ulp_start; 15010 } 15011 bnxt_fw_reset_close(bp); 15012 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 15013 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 15014 tmo = HZ / 10; 15015 } else { 15016 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15017 tmo = bp->fw_reset_min_dsecs * HZ / 10; 15018 } 15019 netdev_unlock(bp->dev); 15020 bnxt_queue_fw_reset_work(bp, tmo); 15021 return; 15022 } 15023 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 15024 u32 val; 15025 15026 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15027 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 15028 !bnxt_fw_reset_timeout(bp)) { 15029 bnxt_queue_fw_reset_work(bp, HZ / 5); 15030 return; 15031 } 15032 15033 if (!bp->fw_health->primary) { 15034 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 15035 15036 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15037 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 15038 return; 15039 } 15040 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 15041 } 15042 fallthrough; 15043 case BNXT_FW_RESET_STATE_RESET_FW: 15044 bnxt_reset_all(bp); 15045 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15046 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 15047 return; 15048 case BNXT_FW_RESET_STATE_ENABLE_DEV: 15049 bnxt_inv_fw_health_reg(bp); 15050 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 15051 !bp->fw_reset_min_dsecs) { 15052 u16 val; 15053 15054 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 15055 if (val == 0xffff) { 15056 if (bnxt_fw_reset_timeout(bp)) { 15057 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 15058 rc = -ETIMEDOUT; 15059 goto fw_reset_abort; 15060 } 15061 bnxt_queue_fw_reset_work(bp, HZ / 1000); 15062 return; 15063 } 15064 } 15065 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 15066 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 15067 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 15068 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 15069 bnxt_dl_remote_reload(bp); 15070 if (pci_enable_device(bp->pdev)) { 15071 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 15072 rc = -ENODEV; 15073 goto fw_reset_abort; 15074 } 15075 pci_set_master(bp->pdev); 15076 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 15077 fallthrough; 15078 case BNXT_FW_RESET_STATE_POLL_FW: 15079 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 15080 rc = bnxt_hwrm_poll(bp); 15081 if (rc) { 15082 if (bnxt_fw_reset_timeout(bp)) { 15083 netdev_err(bp->dev, "Firmware reset aborted\n"); 15084 goto fw_reset_abort_status; 15085 } 15086 bnxt_queue_fw_reset_work(bp, HZ / 5); 15087 return; 15088 } 15089 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 15090 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 15091 fallthrough; 15092 case BNXT_FW_RESET_STATE_OPENING: 15093 while (!netdev_trylock(bp->dev)) { 15094 bnxt_queue_fw_reset_work(bp, HZ / 10); 15095 return; 15096 } 15097 rc = bnxt_open(bp->dev); 15098 if (rc) { 15099 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 15100 bnxt_fw_reset_abort(bp, rc); 15101 netdev_unlock(bp->dev); 15102 goto ulp_start; 15103 } 15104 15105 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 15106 bp->fw_health->enabled) { 15107 bp->fw_health->last_fw_reset_cnt = 15108 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 15109 } 15110 bp->fw_reset_state = 0; 15111 /* Make sure fw_reset_state is 0 before clearing the flag */ 15112 smp_mb__before_atomic(); 15113 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15114 bnxt_ptp_reapply_pps(bp); 15115 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 15116 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 15117 bnxt_dl_health_fw_recovery_done(bp); 15118 bnxt_dl_health_fw_status_update(bp, true); 15119 } 15120 netdev_unlock(bp->dev); 15121 bnxt_ulp_start(bp, 0); 15122 bnxt_reenable_sriov(bp); 15123 netdev_lock(bp->dev); 15124 bnxt_vf_reps_alloc(bp); 15125 bnxt_vf_reps_open(bp); 15126 netdev_unlock(bp->dev); 15127 break; 15128 } 15129 return; 15130 15131 fw_reset_abort_status: 15132 if (bp->fw_health->status_reliable || 15133 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 15134 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15135 15136 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 15137 } 15138 fw_reset_abort: 15139 netdev_lock(bp->dev); 15140 bnxt_fw_reset_abort(bp, rc); 15141 netdev_unlock(bp->dev); 15142 ulp_start: 15143 bnxt_ulp_start(bp, rc); 15144 } 15145 15146 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 15147 { 15148 int rc; 15149 struct bnxt *bp = netdev_priv(dev); 15150 15151 SET_NETDEV_DEV(dev, &pdev->dev); 15152 15153 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 15154 rc = pci_enable_device(pdev); 15155 if (rc) { 15156 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 15157 goto init_err; 15158 } 15159 15160 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 15161 dev_err(&pdev->dev, 15162 "Cannot find PCI device base address, aborting\n"); 15163 rc = -ENODEV; 15164 goto init_err_disable; 15165 } 15166 15167 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 15168 if (rc) { 15169 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 15170 goto init_err_disable; 15171 } 15172 15173 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 15174 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 15175 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 15176 rc = -EIO; 15177 goto init_err_release; 15178 } 15179 15180 pci_set_master(pdev); 15181 15182 bp->dev = dev; 15183 bp->pdev = pdev; 15184 15185 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 15186 * determines the BAR size. 15187 */ 15188 bp->bar0 = pci_ioremap_bar(pdev, 0); 15189 if (!bp->bar0) { 15190 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 15191 rc = -ENOMEM; 15192 goto init_err_release; 15193 } 15194 15195 bp->bar2 = pci_ioremap_bar(pdev, 4); 15196 if (!bp->bar2) { 15197 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 15198 rc = -ENOMEM; 15199 goto init_err_release; 15200 } 15201 15202 INIT_WORK(&bp->sp_task, bnxt_sp_task); 15203 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 15204 15205 spin_lock_init(&bp->ntp_fltr_lock); 15206 #if BITS_PER_LONG == 32 15207 spin_lock_init(&bp->db_lock); 15208 #endif 15209 15210 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 15211 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 15212 15213 timer_setup(&bp->timer, bnxt_timer, 0); 15214 bp->current_interval = BNXT_TIMER_INTERVAL; 15215 15216 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 15217 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 15218 15219 clear_bit(BNXT_STATE_OPEN, &bp->state); 15220 return 0; 15221 15222 init_err_release: 15223 bnxt_unmap_bars(bp, pdev); 15224 pci_release_regions(pdev); 15225 15226 init_err_disable: 15227 pci_disable_device(pdev); 15228 15229 init_err: 15230 return rc; 15231 } 15232 15233 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 15234 { 15235 struct sockaddr *addr = p; 15236 struct bnxt *bp = netdev_priv(dev); 15237 int rc = 0; 15238 15239 netdev_assert_locked(dev); 15240 15241 if (!is_valid_ether_addr(addr->sa_data)) 15242 return -EADDRNOTAVAIL; 15243 15244 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 15245 return 0; 15246 15247 rc = bnxt_approve_mac(bp, addr->sa_data, true); 15248 if (rc) 15249 return rc; 15250 15251 eth_hw_addr_set(dev, addr->sa_data); 15252 bnxt_clear_usr_fltrs(bp, true); 15253 if (netif_running(dev)) { 15254 bnxt_close_nic(bp, false, false); 15255 rc = bnxt_open_nic(bp, false, false); 15256 } 15257 15258 return rc; 15259 } 15260 15261 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 15262 { 15263 struct bnxt *bp = netdev_priv(dev); 15264 15265 netdev_assert_locked(dev); 15266 15267 if (netif_running(dev)) 15268 bnxt_close_nic(bp, true, false); 15269 15270 WRITE_ONCE(dev->mtu, new_mtu); 15271 15272 /* MTU change may change the AGG ring settings if an XDP multi-buffer 15273 * program is attached. We need to set the AGG rings settings and 15274 * rx_skb_func accordingly. 15275 */ 15276 if (READ_ONCE(bp->xdp_prog)) 15277 bnxt_set_rx_skb_mode(bp, true); 15278 15279 bnxt_set_ring_params(bp); 15280 15281 if (netif_running(dev)) 15282 return bnxt_open_nic(bp, true, false); 15283 15284 return 0; 15285 } 15286 15287 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 15288 { 15289 struct bnxt *bp = netdev_priv(dev); 15290 bool sh = false; 15291 int rc, tx_cp; 15292 15293 if (tc > bp->max_tc) { 15294 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 15295 tc, bp->max_tc); 15296 return -EINVAL; 15297 } 15298 15299 if (bp->num_tc == tc) 15300 return 0; 15301 15302 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15303 sh = true; 15304 15305 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 15306 sh, tc, bp->tx_nr_rings_xdp); 15307 if (rc) 15308 return rc; 15309 15310 /* Needs to close the device and do hw resource re-allocations */ 15311 if (netif_running(bp->dev)) 15312 bnxt_close_nic(bp, true, false); 15313 15314 if (tc) { 15315 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 15316 netdev_set_num_tc(dev, tc); 15317 bp->num_tc = tc; 15318 } else { 15319 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15320 netdev_reset_tc(dev); 15321 bp->num_tc = 0; 15322 } 15323 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 15324 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 15325 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 15326 tx_cp + bp->rx_nr_rings; 15327 15328 if (netif_running(bp->dev)) 15329 return bnxt_open_nic(bp, true, false); 15330 15331 return 0; 15332 } 15333 15334 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 15335 void *cb_priv) 15336 { 15337 struct bnxt *bp = cb_priv; 15338 15339 if (!bnxt_tc_flower_enabled(bp) || 15340 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 15341 return -EOPNOTSUPP; 15342 15343 switch (type) { 15344 case TC_SETUP_CLSFLOWER: 15345 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 15346 default: 15347 return -EOPNOTSUPP; 15348 } 15349 } 15350 15351 LIST_HEAD(bnxt_block_cb_list); 15352 15353 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 15354 void *type_data) 15355 { 15356 struct bnxt *bp = netdev_priv(dev); 15357 15358 switch (type) { 15359 case TC_SETUP_BLOCK: 15360 return flow_block_cb_setup_simple(type_data, 15361 &bnxt_block_cb_list, 15362 bnxt_setup_tc_block_cb, 15363 bp, bp, true); 15364 case TC_SETUP_QDISC_MQPRIO: { 15365 struct tc_mqprio_qopt *mqprio = type_data; 15366 15367 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 15368 15369 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 15370 } 15371 default: 15372 return -EOPNOTSUPP; 15373 } 15374 } 15375 15376 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 15377 const struct sk_buff *skb) 15378 { 15379 struct bnxt_vnic_info *vnic; 15380 15381 if (skb) 15382 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 15383 15384 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 15385 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 15386 } 15387 15388 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 15389 u32 idx) 15390 { 15391 struct hlist_head *head; 15392 int bit_id; 15393 15394 spin_lock_bh(&bp->ntp_fltr_lock); 15395 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 15396 if (bit_id < 0) { 15397 spin_unlock_bh(&bp->ntp_fltr_lock); 15398 return -ENOMEM; 15399 } 15400 15401 fltr->base.sw_id = (u16)bit_id; 15402 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 15403 fltr->base.flags |= BNXT_ACT_RING_DST; 15404 head = &bp->ntp_fltr_hash_tbl[idx]; 15405 hlist_add_head_rcu(&fltr->base.hash, head); 15406 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 15407 bnxt_insert_usr_fltr(bp, &fltr->base); 15408 bp->ntp_fltr_count++; 15409 spin_unlock_bh(&bp->ntp_fltr_lock); 15410 return 0; 15411 } 15412 15413 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 15414 struct bnxt_ntuple_filter *f2) 15415 { 15416 struct bnxt_flow_masks *masks1 = &f1->fmasks; 15417 struct bnxt_flow_masks *masks2 = &f2->fmasks; 15418 struct flow_keys *keys1 = &f1->fkeys; 15419 struct flow_keys *keys2 = &f2->fkeys; 15420 15421 if (keys1->basic.n_proto != keys2->basic.n_proto || 15422 keys1->basic.ip_proto != keys2->basic.ip_proto) 15423 return false; 15424 15425 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 15426 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 15427 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 15428 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 15429 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 15430 return false; 15431 } else { 15432 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 15433 &keys2->addrs.v6addrs.src) || 15434 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 15435 &masks2->addrs.v6addrs.src) || 15436 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 15437 &keys2->addrs.v6addrs.dst) || 15438 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 15439 &masks2->addrs.v6addrs.dst)) 15440 return false; 15441 } 15442 15443 return keys1->ports.src == keys2->ports.src && 15444 masks1->ports.src == masks2->ports.src && 15445 keys1->ports.dst == keys2->ports.dst && 15446 masks1->ports.dst == masks2->ports.dst && 15447 keys1->control.flags == keys2->control.flags && 15448 f1->l2_fltr == f2->l2_fltr; 15449 } 15450 15451 struct bnxt_ntuple_filter * 15452 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 15453 struct bnxt_ntuple_filter *fltr, u32 idx) 15454 { 15455 struct bnxt_ntuple_filter *f; 15456 struct hlist_head *head; 15457 15458 head = &bp->ntp_fltr_hash_tbl[idx]; 15459 hlist_for_each_entry_rcu(f, head, base.hash) { 15460 if (bnxt_fltr_match(f, fltr)) 15461 return f; 15462 } 15463 return NULL; 15464 } 15465 15466 #ifdef CONFIG_RFS_ACCEL 15467 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 15468 u16 rxq_index, u32 flow_id) 15469 { 15470 struct bnxt *bp = netdev_priv(dev); 15471 struct bnxt_ntuple_filter *fltr, *new_fltr; 15472 struct flow_keys *fkeys; 15473 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 15474 struct bnxt_l2_filter *l2_fltr; 15475 int rc = 0, idx; 15476 u32 flags; 15477 15478 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15479 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15480 atomic_inc(&l2_fltr->refcnt); 15481 } else { 15482 struct bnxt_l2_key key; 15483 15484 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15485 key.vlan = 0; 15486 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15487 if (!l2_fltr) 15488 return -EINVAL; 15489 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15490 bnxt_del_l2_filter(bp, l2_fltr); 15491 return -EINVAL; 15492 } 15493 } 15494 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15495 if (!new_fltr) { 15496 bnxt_del_l2_filter(bp, l2_fltr); 15497 return -ENOMEM; 15498 } 15499 15500 fkeys = &new_fltr->fkeys; 15501 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15502 rc = -EPROTONOSUPPORT; 15503 goto err_free; 15504 } 15505 15506 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15507 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15508 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15509 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15510 rc = -EPROTONOSUPPORT; 15511 goto err_free; 15512 } 15513 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15514 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15515 if (bp->hwrm_spec_code < 0x10601) { 15516 rc = -EPROTONOSUPPORT; 15517 goto err_free; 15518 } 15519 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15520 } 15521 flags = fkeys->control.flags; 15522 if (((flags & FLOW_DIS_ENCAPSULATION) && 15523 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15524 rc = -EPROTONOSUPPORT; 15525 goto err_free; 15526 } 15527 new_fltr->l2_fltr = l2_fltr; 15528 15529 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15530 rcu_read_lock(); 15531 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15532 if (fltr) { 15533 rc = fltr->base.sw_id; 15534 rcu_read_unlock(); 15535 goto err_free; 15536 } 15537 rcu_read_unlock(); 15538 15539 new_fltr->flow_id = flow_id; 15540 new_fltr->base.rxq = rxq_index; 15541 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15542 if (!rc) { 15543 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15544 return new_fltr->base.sw_id; 15545 } 15546 15547 err_free: 15548 bnxt_del_l2_filter(bp, l2_fltr); 15549 kfree(new_fltr); 15550 return rc; 15551 } 15552 #endif 15553 15554 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15555 { 15556 spin_lock_bh(&bp->ntp_fltr_lock); 15557 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15558 spin_unlock_bh(&bp->ntp_fltr_lock); 15559 return; 15560 } 15561 hlist_del_rcu(&fltr->base.hash); 15562 bnxt_del_one_usr_fltr(bp, &fltr->base); 15563 bp->ntp_fltr_count--; 15564 spin_unlock_bh(&bp->ntp_fltr_lock); 15565 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15566 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15567 kfree_rcu(fltr, base.rcu); 15568 } 15569 15570 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15571 { 15572 #ifdef CONFIG_RFS_ACCEL 15573 int i; 15574 15575 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15576 struct hlist_head *head; 15577 struct hlist_node *tmp; 15578 struct bnxt_ntuple_filter *fltr; 15579 int rc; 15580 15581 head = &bp->ntp_fltr_hash_tbl[i]; 15582 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15583 bool del = false; 15584 15585 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15586 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15587 continue; 15588 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15589 fltr->flow_id, 15590 fltr->base.sw_id)) { 15591 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15592 fltr); 15593 del = true; 15594 } 15595 } else { 15596 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15597 fltr); 15598 if (rc) 15599 del = true; 15600 else 15601 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15602 } 15603 15604 if (del) 15605 bnxt_del_ntp_filter(bp, fltr); 15606 } 15607 } 15608 #endif 15609 } 15610 15611 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15612 unsigned int entry, struct udp_tunnel_info *ti) 15613 { 15614 struct bnxt *bp = netdev_priv(netdev); 15615 unsigned int cmd; 15616 15617 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15618 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15619 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15620 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15621 else 15622 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15623 15624 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15625 } 15626 15627 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15628 unsigned int entry, struct udp_tunnel_info *ti) 15629 { 15630 struct bnxt *bp = netdev_priv(netdev); 15631 unsigned int cmd; 15632 15633 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15634 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15635 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15636 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15637 else 15638 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15639 15640 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15641 } 15642 15643 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15644 .set_port = bnxt_udp_tunnel_set_port, 15645 .unset_port = bnxt_udp_tunnel_unset_port, 15646 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15647 .tables = { 15648 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15649 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15650 }, 15651 }, bnxt_udp_tunnels_p7 = { 15652 .set_port = bnxt_udp_tunnel_set_port, 15653 .unset_port = bnxt_udp_tunnel_unset_port, 15654 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15655 .tables = { 15656 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15657 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15658 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15659 }, 15660 }; 15661 15662 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15663 struct net_device *dev, u32 filter_mask, 15664 int nlflags) 15665 { 15666 struct bnxt *bp = netdev_priv(dev); 15667 15668 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15669 nlflags, filter_mask, NULL); 15670 } 15671 15672 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15673 u16 flags, struct netlink_ext_ack *extack) 15674 { 15675 struct bnxt *bp = netdev_priv(dev); 15676 struct nlattr *attr, *br_spec; 15677 int rem, rc = 0; 15678 15679 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15680 return -EOPNOTSUPP; 15681 15682 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15683 if (!br_spec) 15684 return -EINVAL; 15685 15686 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15687 u16 mode; 15688 15689 mode = nla_get_u16(attr); 15690 if (mode == bp->br_mode) 15691 break; 15692 15693 rc = bnxt_hwrm_set_br_mode(bp, mode); 15694 if (!rc) 15695 bp->br_mode = mode; 15696 break; 15697 } 15698 return rc; 15699 } 15700 15701 int bnxt_get_port_parent_id(struct net_device *dev, 15702 struct netdev_phys_item_id *ppid) 15703 { 15704 struct bnxt *bp = netdev_priv(dev); 15705 15706 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15707 return -EOPNOTSUPP; 15708 15709 /* The PF and it's VF-reps only support the switchdev framework */ 15710 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15711 return -EOPNOTSUPP; 15712 15713 ppid->id_len = sizeof(bp->dsn); 15714 memcpy(ppid->id, bp->dsn, ppid->id_len); 15715 15716 return 0; 15717 } 15718 15719 static const struct net_device_ops bnxt_netdev_ops = { 15720 .ndo_open = bnxt_open, 15721 .ndo_start_xmit = bnxt_start_xmit, 15722 .ndo_stop = bnxt_close, 15723 .ndo_get_stats64 = bnxt_get_stats64, 15724 .ndo_set_rx_mode = bnxt_set_rx_mode, 15725 .ndo_eth_ioctl = bnxt_ioctl, 15726 .ndo_validate_addr = eth_validate_addr, 15727 .ndo_set_mac_address = bnxt_change_mac_addr, 15728 .ndo_change_mtu = bnxt_change_mtu, 15729 .ndo_fix_features = bnxt_fix_features, 15730 .ndo_set_features = bnxt_set_features, 15731 .ndo_features_check = bnxt_features_check, 15732 .ndo_tx_timeout = bnxt_tx_timeout, 15733 #ifdef CONFIG_BNXT_SRIOV 15734 .ndo_get_vf_config = bnxt_get_vf_config, 15735 .ndo_set_vf_mac = bnxt_set_vf_mac, 15736 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15737 .ndo_set_vf_rate = bnxt_set_vf_bw, 15738 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15739 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15740 .ndo_set_vf_trust = bnxt_set_vf_trust, 15741 #endif 15742 .ndo_setup_tc = bnxt_setup_tc, 15743 #ifdef CONFIG_RFS_ACCEL 15744 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15745 #endif 15746 .ndo_bpf = bnxt_xdp, 15747 .ndo_xdp_xmit = bnxt_xdp_xmit, 15748 .ndo_bridge_getlink = bnxt_bridge_getlink, 15749 .ndo_bridge_setlink = bnxt_bridge_setlink, 15750 }; 15751 15752 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15753 struct netdev_queue_stats_rx *stats) 15754 { 15755 struct bnxt *bp = netdev_priv(dev); 15756 struct bnxt_cp_ring_info *cpr; 15757 u64 *sw; 15758 15759 if (!bp->bnapi) 15760 return; 15761 15762 cpr = &bp->bnapi[i]->cp_ring; 15763 sw = cpr->stats.sw_stats; 15764 15765 stats->packets = 0; 15766 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15767 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15768 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15769 15770 stats->bytes = 0; 15771 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15772 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15773 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15774 15775 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15776 } 15777 15778 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15779 struct netdev_queue_stats_tx *stats) 15780 { 15781 struct bnxt *bp = netdev_priv(dev); 15782 struct bnxt_napi *bnapi; 15783 u64 *sw; 15784 15785 if (!bp->tx_ring) 15786 return; 15787 15788 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15789 sw = bnapi->cp_ring.stats.sw_stats; 15790 15791 stats->packets = 0; 15792 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15793 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15794 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15795 15796 stats->bytes = 0; 15797 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15798 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15799 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15800 } 15801 15802 static void bnxt_get_base_stats(struct net_device *dev, 15803 struct netdev_queue_stats_rx *rx, 15804 struct netdev_queue_stats_tx *tx) 15805 { 15806 struct bnxt *bp = netdev_priv(dev); 15807 15808 rx->packets = bp->net_stats_prev.rx_packets; 15809 rx->bytes = bp->net_stats_prev.rx_bytes; 15810 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15811 15812 tx->packets = bp->net_stats_prev.tx_packets; 15813 tx->bytes = bp->net_stats_prev.tx_bytes; 15814 } 15815 15816 static const struct netdev_stat_ops bnxt_stat_ops = { 15817 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15818 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15819 .get_base_stats = bnxt_get_base_stats, 15820 }; 15821 15822 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15823 { 15824 struct bnxt_rx_ring_info *rxr, *clone; 15825 struct bnxt *bp = netdev_priv(dev); 15826 struct bnxt_ring_struct *ring; 15827 int rc; 15828 15829 if (!bp->rx_ring) 15830 return -ENETDOWN; 15831 15832 rxr = &bp->rx_ring[idx]; 15833 clone = qmem; 15834 memcpy(clone, rxr, sizeof(*rxr)); 15835 bnxt_init_rx_ring_struct(bp, clone); 15836 bnxt_reset_rx_ring_struct(bp, clone); 15837 15838 clone->rx_prod = 0; 15839 clone->rx_agg_prod = 0; 15840 clone->rx_sw_agg_prod = 0; 15841 clone->rx_next_cons = 0; 15842 clone->need_head_pool = false; 15843 15844 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15845 if (rc) 15846 return rc; 15847 15848 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15849 if (rc < 0) 15850 goto err_page_pool_destroy; 15851 15852 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15853 MEM_TYPE_PAGE_POOL, 15854 clone->page_pool); 15855 if (rc) 15856 goto err_rxq_info_unreg; 15857 15858 ring = &clone->rx_ring_struct; 15859 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15860 if (rc) 15861 goto err_free_rx_ring; 15862 15863 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15864 ring = &clone->rx_agg_ring_struct; 15865 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15866 if (rc) 15867 goto err_free_rx_agg_ring; 15868 15869 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15870 if (rc) 15871 goto err_free_rx_agg_ring; 15872 } 15873 15874 if (bp->flags & BNXT_FLAG_TPA) { 15875 rc = bnxt_alloc_one_tpa_info(bp, clone); 15876 if (rc) 15877 goto err_free_tpa_info; 15878 } 15879 15880 bnxt_init_one_rx_ring_rxbd(bp, clone); 15881 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15882 15883 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15884 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15885 bnxt_alloc_one_rx_ring_netmem(bp, clone, idx); 15886 if (bp->flags & BNXT_FLAG_TPA) 15887 bnxt_alloc_one_tpa_info_data(bp, clone); 15888 15889 return 0; 15890 15891 err_free_tpa_info: 15892 bnxt_free_one_tpa_info(bp, clone); 15893 err_free_rx_agg_ring: 15894 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15895 err_free_rx_ring: 15896 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15897 err_rxq_info_unreg: 15898 xdp_rxq_info_unreg(&clone->xdp_rxq); 15899 err_page_pool_destroy: 15900 page_pool_destroy(clone->page_pool); 15901 if (bnxt_separate_head_pool(clone)) 15902 page_pool_destroy(clone->head_pool); 15903 clone->page_pool = NULL; 15904 clone->head_pool = NULL; 15905 return rc; 15906 } 15907 15908 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15909 { 15910 struct bnxt_rx_ring_info *rxr = qmem; 15911 struct bnxt *bp = netdev_priv(dev); 15912 struct bnxt_ring_struct *ring; 15913 15914 bnxt_free_one_rx_ring_skbs(bp, rxr); 15915 bnxt_free_one_tpa_info(bp, rxr); 15916 15917 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15918 15919 page_pool_destroy(rxr->page_pool); 15920 if (bnxt_separate_head_pool(rxr)) 15921 page_pool_destroy(rxr->head_pool); 15922 rxr->page_pool = NULL; 15923 rxr->head_pool = NULL; 15924 15925 ring = &rxr->rx_ring_struct; 15926 bnxt_free_ring(bp, &ring->ring_mem); 15927 15928 ring = &rxr->rx_agg_ring_struct; 15929 bnxt_free_ring(bp, &ring->ring_mem); 15930 15931 kfree(rxr->rx_agg_bmap); 15932 rxr->rx_agg_bmap = NULL; 15933 } 15934 15935 static void bnxt_copy_rx_ring(struct bnxt *bp, 15936 struct bnxt_rx_ring_info *dst, 15937 struct bnxt_rx_ring_info *src) 15938 { 15939 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15940 struct bnxt_ring_struct *dst_ring, *src_ring; 15941 int i; 15942 15943 dst_ring = &dst->rx_ring_struct; 15944 dst_rmem = &dst_ring->ring_mem; 15945 src_ring = &src->rx_ring_struct; 15946 src_rmem = &src_ring->ring_mem; 15947 15948 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15949 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15950 WARN_ON(dst_rmem->flags != src_rmem->flags); 15951 WARN_ON(dst_rmem->depth != src_rmem->depth); 15952 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15953 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15954 15955 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15956 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15957 *dst_rmem->vmem = *src_rmem->vmem; 15958 for (i = 0; i < dst_rmem->nr_pages; i++) { 15959 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15960 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15961 } 15962 15963 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15964 return; 15965 15966 dst_ring = &dst->rx_agg_ring_struct; 15967 dst_rmem = &dst_ring->ring_mem; 15968 src_ring = &src->rx_agg_ring_struct; 15969 src_rmem = &src_ring->ring_mem; 15970 15971 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15972 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15973 WARN_ON(dst_rmem->flags != src_rmem->flags); 15974 WARN_ON(dst_rmem->depth != src_rmem->depth); 15975 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15976 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15977 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15978 15979 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15980 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15981 *dst_rmem->vmem = *src_rmem->vmem; 15982 for (i = 0; i < dst_rmem->nr_pages; i++) { 15983 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15984 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15985 } 15986 15987 dst->rx_agg_bmap = src->rx_agg_bmap; 15988 } 15989 15990 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15991 { 15992 struct bnxt *bp = netdev_priv(dev); 15993 struct bnxt_rx_ring_info *rxr, *clone; 15994 struct bnxt_cp_ring_info *cpr; 15995 struct bnxt_vnic_info *vnic; 15996 struct bnxt_napi *bnapi; 15997 int i, rc; 15998 u16 mru; 15999 16000 rxr = &bp->rx_ring[idx]; 16001 clone = qmem; 16002 16003 rxr->rx_prod = clone->rx_prod; 16004 rxr->rx_agg_prod = clone->rx_agg_prod; 16005 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 16006 rxr->rx_next_cons = clone->rx_next_cons; 16007 rxr->rx_tpa = clone->rx_tpa; 16008 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 16009 rxr->page_pool = clone->page_pool; 16010 rxr->head_pool = clone->head_pool; 16011 rxr->xdp_rxq = clone->xdp_rxq; 16012 rxr->need_head_pool = clone->need_head_pool; 16013 16014 bnxt_copy_rx_ring(bp, rxr, clone); 16015 16016 bnapi = rxr->bnapi; 16017 cpr = &bnapi->cp_ring; 16018 16019 /* All rings have been reserved and previously allocated. 16020 * Reallocating with the same parameters should never fail. 16021 */ 16022 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 16023 if (rc) 16024 goto err_reset; 16025 16026 if (bp->tph_mode) { 16027 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 16028 if (rc) 16029 goto err_reset; 16030 } 16031 16032 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 16033 if (rc) 16034 goto err_reset; 16035 16036 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 16037 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16038 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 16039 16040 if (bp->flags & BNXT_FLAG_SHARED_RINGS) { 16041 rc = bnxt_tx_queue_start(bp, idx); 16042 if (rc) 16043 goto err_reset; 16044 } 16045 16046 bnxt_enable_rx_page_pool(rxr); 16047 napi_enable_locked(&bnapi->napi); 16048 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16049 16050 mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 16051 for (i = 0; i < bp->nr_vnics; i++) { 16052 vnic = &bp->vnic_info[i]; 16053 16054 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, idx); 16055 if (rc) 16056 return rc; 16057 } 16058 return bnxt_set_rss_ctx_vnic_mru(bp, mru, idx); 16059 16060 err_reset: 16061 netdev_err(bp->dev, "Unexpected HWRM error during queue start rc: %d\n", 16062 rc); 16063 napi_enable_locked(&bnapi->napi); 16064 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16065 bnxt_reset_task(bp, true); 16066 return rc; 16067 } 16068 16069 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 16070 { 16071 struct bnxt *bp = netdev_priv(dev); 16072 struct bnxt_rx_ring_info *rxr; 16073 struct bnxt_cp_ring_info *cpr; 16074 struct bnxt_vnic_info *vnic; 16075 struct bnxt_napi *bnapi; 16076 int i; 16077 16078 for (i = 0; i < bp->nr_vnics; i++) { 16079 vnic = &bp->vnic_info[i]; 16080 16081 bnxt_set_vnic_mru_p5(bp, vnic, 0, idx); 16082 } 16083 bnxt_set_rss_ctx_vnic_mru(bp, 0, idx); 16084 /* Make sure NAPI sees that the VNIC is disabled */ 16085 synchronize_net(); 16086 rxr = &bp->rx_ring[idx]; 16087 bnapi = rxr->bnapi; 16088 cpr = &bnapi->cp_ring; 16089 cancel_work_sync(&cpr->dim.work); 16090 bnxt_hwrm_rx_ring_free(bp, rxr, false); 16091 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 16092 page_pool_disable_direct_recycling(rxr->page_pool); 16093 if (bnxt_separate_head_pool(rxr)) 16094 page_pool_disable_direct_recycling(rxr->head_pool); 16095 16096 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 16097 bnxt_tx_queue_stop(bp, idx); 16098 16099 /* Disable NAPI now after freeing the rings because HWRM_RING_FREE 16100 * completion is handled in NAPI to guarantee no more DMA on that ring 16101 * after seeing the completion. 16102 */ 16103 napi_disable_locked(&bnapi->napi); 16104 16105 if (bp->tph_mode) { 16106 bnxt_hwrm_cp_ring_free(bp, rxr->rx_cpr); 16107 bnxt_clear_one_cp_ring(bp, rxr->rx_cpr); 16108 } 16109 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 16110 16111 memcpy(qmem, rxr, sizeof(*rxr)); 16112 bnxt_init_rx_ring_struct(bp, qmem); 16113 16114 return 0; 16115 } 16116 16117 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 16118 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 16119 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 16120 .ndo_queue_mem_free = bnxt_queue_mem_free, 16121 .ndo_queue_start = bnxt_queue_start, 16122 .ndo_queue_stop = bnxt_queue_stop, 16123 }; 16124 16125 static void bnxt_remove_one(struct pci_dev *pdev) 16126 { 16127 struct net_device *dev = pci_get_drvdata(pdev); 16128 struct bnxt *bp = netdev_priv(dev); 16129 16130 if (BNXT_PF(bp)) 16131 bnxt_sriov_disable(bp); 16132 16133 bnxt_rdma_aux_device_del(bp); 16134 16135 unregister_netdev(dev); 16136 bnxt_ptp_clear(bp); 16137 16138 bnxt_rdma_aux_device_uninit(bp); 16139 16140 bnxt_free_l2_filters(bp, true); 16141 bnxt_free_ntp_fltrs(bp, true); 16142 WARN_ON(bp->num_rss_ctx); 16143 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16144 /* Flush any pending tasks */ 16145 cancel_work_sync(&bp->sp_task); 16146 cancel_delayed_work_sync(&bp->fw_reset_task); 16147 bp->sp_event = 0; 16148 16149 bnxt_dl_fw_reporters_destroy(bp); 16150 bnxt_dl_unregister(bp); 16151 bnxt_shutdown_tc(bp); 16152 16153 bnxt_clear_int_mode(bp); 16154 bnxt_hwrm_func_drv_unrgtr(bp); 16155 bnxt_free_hwrm_resources(bp); 16156 bnxt_hwmon_uninit(bp); 16157 bnxt_ethtool_free(bp); 16158 bnxt_dcb_free(bp); 16159 kfree(bp->ptp_cfg); 16160 bp->ptp_cfg = NULL; 16161 kfree(bp->fw_health); 16162 bp->fw_health = NULL; 16163 bnxt_cleanup_pci(bp); 16164 bnxt_free_ctx_mem(bp, true); 16165 bnxt_free_crash_dump_mem(bp); 16166 kfree(bp->rss_indir_tbl); 16167 bp->rss_indir_tbl = NULL; 16168 bnxt_free_port_stats(bp); 16169 free_netdev(dev); 16170 } 16171 16172 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 16173 { 16174 int rc = 0; 16175 struct bnxt_link_info *link_info = &bp->link_info; 16176 16177 bp->phy_flags = 0; 16178 rc = bnxt_hwrm_phy_qcaps(bp); 16179 if (rc) { 16180 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 16181 rc); 16182 return rc; 16183 } 16184 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 16185 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 16186 else 16187 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 16188 16189 bp->mac_flags = 0; 16190 bnxt_hwrm_mac_qcaps(bp); 16191 16192 if (!fw_dflt) 16193 return 0; 16194 16195 mutex_lock(&bp->link_lock); 16196 rc = bnxt_update_link(bp, false); 16197 if (rc) { 16198 mutex_unlock(&bp->link_lock); 16199 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 16200 rc); 16201 return rc; 16202 } 16203 16204 /* Older firmware does not have supported_auto_speeds, so assume 16205 * that all supported speeds can be autonegotiated. 16206 */ 16207 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 16208 link_info->support_auto_speeds = link_info->support_speeds; 16209 16210 bnxt_init_ethtool_link_settings(bp); 16211 mutex_unlock(&bp->link_lock); 16212 return 0; 16213 } 16214 16215 static int bnxt_get_max_irq(struct pci_dev *pdev) 16216 { 16217 u16 ctrl; 16218 16219 if (!pdev->msix_cap) 16220 return 1; 16221 16222 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 16223 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 16224 } 16225 16226 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16227 int *max_cp) 16228 { 16229 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 16230 int max_ring_grps = 0, max_irq; 16231 16232 *max_tx = hw_resc->max_tx_rings; 16233 *max_rx = hw_resc->max_rx_rings; 16234 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 16235 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 16236 bnxt_get_ulp_msix_num_in_use(bp), 16237 hw_resc->max_stat_ctxs - 16238 bnxt_get_ulp_stat_ctxs_in_use(bp)); 16239 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 16240 *max_cp = min_t(int, *max_cp, max_irq); 16241 max_ring_grps = hw_resc->max_hw_ring_grps; 16242 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 16243 *max_cp -= 1; 16244 *max_rx -= 2; 16245 } 16246 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16247 *max_rx >>= 1; 16248 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 16249 int rc; 16250 16251 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 16252 if (rc) { 16253 *max_rx = 0; 16254 *max_tx = 0; 16255 } 16256 /* On P5 chips, max_cp output param should be available NQs */ 16257 *max_cp = max_irq; 16258 } 16259 *max_rx = min_t(int, *max_rx, max_ring_grps); 16260 } 16261 16262 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 16263 { 16264 int rx, tx, cp; 16265 16266 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 16267 *max_rx = rx; 16268 *max_tx = tx; 16269 if (!rx || !tx || !cp) 16270 return -ENOMEM; 16271 16272 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 16273 } 16274 16275 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16276 bool shared) 16277 { 16278 int rc; 16279 16280 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16281 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 16282 /* Not enough rings, try disabling agg rings. */ 16283 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 16284 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16285 if (rc) { 16286 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 16287 bp->flags |= BNXT_FLAG_AGG_RINGS; 16288 return rc; 16289 } 16290 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 16291 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16292 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16293 bnxt_set_ring_params(bp); 16294 } 16295 16296 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 16297 int max_cp, max_stat, max_irq; 16298 16299 /* Reserve minimum resources for RoCE */ 16300 max_cp = bnxt_get_max_func_cp_rings(bp); 16301 max_stat = bnxt_get_max_func_stat_ctxs(bp); 16302 max_irq = bnxt_get_max_func_irqs(bp); 16303 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 16304 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 16305 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 16306 return 0; 16307 16308 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 16309 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 16310 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 16311 max_cp = min_t(int, max_cp, max_irq); 16312 max_cp = min_t(int, max_cp, max_stat); 16313 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 16314 if (rc) 16315 rc = 0; 16316 } 16317 return rc; 16318 } 16319 16320 /* In initial default shared ring setting, each shared ring must have a 16321 * RX/TX ring pair. 16322 */ 16323 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 16324 { 16325 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 16326 bp->rx_nr_rings = bp->cp_nr_rings; 16327 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 16328 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16329 } 16330 16331 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 16332 { 16333 int dflt_rings, max_rx_rings, max_tx_rings, rc; 16334 int avail_msix; 16335 16336 if (!bnxt_can_reserve_rings(bp)) 16337 return 0; 16338 16339 if (sh) 16340 bp->flags |= BNXT_FLAG_SHARED_RINGS; 16341 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 16342 /* Reduce default rings on multi-port cards so that total default 16343 * rings do not exceed CPU count. 16344 */ 16345 if (bp->port_count > 1) { 16346 int max_rings = 16347 max_t(int, num_online_cpus() / bp->port_count, 1); 16348 16349 dflt_rings = min_t(int, dflt_rings, max_rings); 16350 } 16351 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 16352 if (rc) 16353 return rc; 16354 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 16355 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 16356 if (sh) 16357 bnxt_trim_dflt_sh_rings(bp); 16358 else 16359 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 16360 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16361 16362 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 16363 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 16364 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 16365 16366 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 16367 bnxt_set_dflt_ulp_stat_ctxs(bp); 16368 } 16369 16370 rc = __bnxt_reserve_rings(bp); 16371 if (rc && rc != -ENODEV) 16372 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 16373 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16374 if (sh) 16375 bnxt_trim_dflt_sh_rings(bp); 16376 16377 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 16378 if (bnxt_need_reserve_rings(bp)) { 16379 rc = __bnxt_reserve_rings(bp); 16380 if (rc && rc != -ENODEV) 16381 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 16382 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16383 } 16384 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 16385 bp->rx_nr_rings++; 16386 bp->cp_nr_rings++; 16387 } 16388 if (rc) { 16389 bp->tx_nr_rings = 0; 16390 bp->rx_nr_rings = 0; 16391 } 16392 return rc; 16393 } 16394 16395 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 16396 { 16397 int rc; 16398 16399 if (bp->tx_nr_rings) 16400 return 0; 16401 16402 bnxt_ulp_irq_stop(bp); 16403 bnxt_clear_int_mode(bp); 16404 rc = bnxt_set_dflt_rings(bp, true); 16405 if (rc) { 16406 if (BNXT_VF(bp) && rc == -ENODEV) 16407 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16408 else 16409 netdev_err(bp->dev, "Not enough rings available.\n"); 16410 goto init_dflt_ring_err; 16411 } 16412 rc = bnxt_init_int_mode(bp); 16413 if (rc) 16414 goto init_dflt_ring_err; 16415 16416 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16417 16418 bnxt_set_dflt_rfs(bp); 16419 16420 init_dflt_ring_err: 16421 bnxt_ulp_irq_restart(bp, rc); 16422 return rc; 16423 } 16424 16425 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 16426 { 16427 int rc; 16428 16429 netdev_ops_assert_locked(bp->dev); 16430 bnxt_hwrm_func_qcaps(bp); 16431 16432 if (netif_running(bp->dev)) 16433 __bnxt_close_nic(bp, true, false); 16434 16435 bnxt_ulp_irq_stop(bp); 16436 bnxt_clear_int_mode(bp); 16437 rc = bnxt_init_int_mode(bp); 16438 bnxt_ulp_irq_restart(bp, rc); 16439 16440 if (netif_running(bp->dev)) { 16441 if (rc) 16442 netif_close(bp->dev); 16443 else 16444 rc = bnxt_open_nic(bp, true, false); 16445 } 16446 16447 return rc; 16448 } 16449 16450 static int bnxt_init_mac_addr(struct bnxt *bp) 16451 { 16452 int rc = 0; 16453 16454 if (BNXT_PF(bp)) { 16455 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 16456 } else { 16457 #ifdef CONFIG_BNXT_SRIOV 16458 struct bnxt_vf_info *vf = &bp->vf; 16459 bool strict_approval = true; 16460 16461 if (is_valid_ether_addr(vf->mac_addr)) { 16462 /* overwrite netdev dev_addr with admin VF MAC */ 16463 eth_hw_addr_set(bp->dev, vf->mac_addr); 16464 /* Older PF driver or firmware may not approve this 16465 * correctly. 16466 */ 16467 strict_approval = false; 16468 } else { 16469 eth_hw_addr_random(bp->dev); 16470 } 16471 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 16472 #endif 16473 } 16474 return rc; 16475 } 16476 16477 static void bnxt_vpd_read_info(struct bnxt *bp) 16478 { 16479 struct pci_dev *pdev = bp->pdev; 16480 unsigned int vpd_size, kw_len; 16481 int pos, size; 16482 u8 *vpd_data; 16483 16484 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 16485 if (IS_ERR(vpd_data)) { 16486 pci_warn(pdev, "Unable to read VPD\n"); 16487 return; 16488 } 16489 16490 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16491 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 16492 if (pos < 0) 16493 goto read_sn; 16494 16495 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16496 memcpy(bp->board_partno, &vpd_data[pos], size); 16497 16498 read_sn: 16499 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16500 PCI_VPD_RO_KEYWORD_SERIALNO, 16501 &kw_len); 16502 if (pos < 0) 16503 goto exit; 16504 16505 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16506 memcpy(bp->board_serialno, &vpd_data[pos], size); 16507 exit: 16508 kfree(vpd_data); 16509 } 16510 16511 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 16512 { 16513 struct pci_dev *pdev = bp->pdev; 16514 u64 qword; 16515 16516 qword = pci_get_dsn(pdev); 16517 if (!qword) { 16518 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 16519 return -EOPNOTSUPP; 16520 } 16521 16522 put_unaligned_le64(qword, dsn); 16523 16524 bp->flags |= BNXT_FLAG_DSN_VALID; 16525 return 0; 16526 } 16527 16528 static int bnxt_map_db_bar(struct bnxt *bp) 16529 { 16530 if (!bp->db_size) 16531 return -ENODEV; 16532 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16533 if (!bp->bar1) 16534 return -ENOMEM; 16535 return 0; 16536 } 16537 16538 void bnxt_print_device_info(struct bnxt *bp) 16539 { 16540 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16541 board_info[bp->board_idx].name, 16542 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16543 16544 pcie_print_link_status(bp->pdev); 16545 } 16546 16547 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16548 { 16549 struct bnxt_hw_resc *hw_resc; 16550 struct net_device *dev; 16551 struct bnxt *bp; 16552 int rc, max_irqs; 16553 16554 if (pci_is_bridge(pdev)) 16555 return -ENODEV; 16556 16557 if (!pdev->msix_cap) { 16558 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16559 return -ENODEV; 16560 } 16561 16562 /* Clear any pending DMA transactions from crash kernel 16563 * while loading driver in capture kernel. 16564 */ 16565 if (is_kdump_kernel()) { 16566 pci_clear_master(pdev); 16567 pcie_flr(pdev); 16568 } 16569 16570 max_irqs = bnxt_get_max_irq(pdev); 16571 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16572 max_irqs); 16573 if (!dev) 16574 return -ENOMEM; 16575 16576 bp = netdev_priv(dev); 16577 bp->board_idx = ent->driver_data; 16578 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16579 bnxt_set_max_func_irqs(bp, max_irqs); 16580 16581 if (bnxt_vf_pciid(bp->board_idx)) 16582 bp->flags |= BNXT_FLAG_VF; 16583 16584 /* No devlink port registration in case of a VF */ 16585 if (BNXT_PF(bp)) 16586 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16587 16588 rc = bnxt_init_board(pdev, dev); 16589 if (rc < 0) 16590 goto init_err_free; 16591 16592 dev->netdev_ops = &bnxt_netdev_ops; 16593 dev->stat_ops = &bnxt_stat_ops; 16594 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16595 dev->ethtool_ops = &bnxt_ethtool_ops; 16596 pci_set_drvdata(pdev, dev); 16597 16598 rc = bnxt_alloc_hwrm_resources(bp); 16599 if (rc) 16600 goto init_err_pci_clean; 16601 16602 mutex_init(&bp->hwrm_cmd_lock); 16603 mutex_init(&bp->link_lock); 16604 16605 rc = bnxt_fw_init_one_p1(bp); 16606 if (rc) 16607 goto init_err_pci_clean; 16608 16609 if (BNXT_PF(bp)) 16610 bnxt_vpd_read_info(bp); 16611 16612 if (BNXT_CHIP_P5_PLUS(bp)) { 16613 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16614 if (BNXT_CHIP_P7(bp)) 16615 bp->flags |= BNXT_FLAG_CHIP_P7; 16616 } 16617 16618 rc = bnxt_alloc_rss_indir_tbl(bp); 16619 if (rc) 16620 goto init_err_pci_clean; 16621 16622 rc = bnxt_fw_init_one_p2(bp); 16623 if (rc) 16624 goto init_err_pci_clean; 16625 16626 rc = bnxt_map_db_bar(bp); 16627 if (rc) { 16628 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16629 rc); 16630 goto init_err_pci_clean; 16631 } 16632 16633 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16634 NETIF_F_TSO | NETIF_F_TSO6 | 16635 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16636 NETIF_F_GSO_IPXIP4 | 16637 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16638 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16639 NETIF_F_RXCSUM | NETIF_F_GRO; 16640 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16641 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16642 16643 if (BNXT_SUPPORTS_TPA(bp)) 16644 dev->hw_features |= NETIF_F_LRO; 16645 16646 dev->hw_enc_features = 16647 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16648 NETIF_F_TSO | NETIF_F_TSO6 | 16649 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16650 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16651 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16652 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16653 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16654 if (bp->flags & BNXT_FLAG_CHIP_P7) 16655 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16656 else 16657 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16658 16659 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16660 NETIF_F_GSO_GRE_CSUM; 16661 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16662 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16663 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16664 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16665 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16666 if (BNXT_SUPPORTS_TPA(bp)) 16667 dev->hw_features |= NETIF_F_GRO_HW; 16668 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16669 if (dev->features & NETIF_F_GRO_HW) 16670 dev->features &= ~NETIF_F_LRO; 16671 dev->priv_flags |= IFF_UNICAST_FLT; 16672 16673 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16674 if (bp->tso_max_segs) 16675 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16676 16677 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16678 NETDEV_XDP_ACT_RX_SG; 16679 16680 #ifdef CONFIG_BNXT_SRIOV 16681 init_waitqueue_head(&bp->sriov_cfg_wait); 16682 #endif 16683 if (BNXT_SUPPORTS_TPA(bp)) { 16684 bp->gro_func = bnxt_gro_func_5730x; 16685 if (BNXT_CHIP_P4(bp)) 16686 bp->gro_func = bnxt_gro_func_5731x; 16687 else if (BNXT_CHIP_P5_PLUS(bp)) 16688 bp->gro_func = bnxt_gro_func_5750x; 16689 } 16690 if (!BNXT_CHIP_P4_PLUS(bp)) 16691 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16692 16693 rc = bnxt_init_mac_addr(bp); 16694 if (rc) { 16695 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16696 rc = -EADDRNOTAVAIL; 16697 goto init_err_pci_clean; 16698 } 16699 16700 if (BNXT_PF(bp)) { 16701 /* Read the adapter's DSN to use as the eswitch switch_id */ 16702 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16703 } 16704 16705 /* MTU range: 60 - FW defined max */ 16706 dev->min_mtu = ETH_ZLEN; 16707 dev->max_mtu = bp->max_mtu; 16708 16709 rc = bnxt_probe_phy(bp, true); 16710 if (rc) 16711 goto init_err_pci_clean; 16712 16713 hw_resc = &bp->hw_resc; 16714 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16715 BNXT_L2_FLTR_MAX_FLTR; 16716 /* Older firmware may not report these filters properly */ 16717 if (bp->max_fltr < BNXT_MAX_FLTR) 16718 bp->max_fltr = BNXT_MAX_FLTR; 16719 bnxt_init_l2_fltr_tbl(bp); 16720 __bnxt_set_rx_skb_mode(bp, false); 16721 bnxt_set_tpa_flags(bp); 16722 bnxt_init_ring_params(bp); 16723 bnxt_set_ring_params(bp); 16724 bnxt_rdma_aux_device_init(bp); 16725 rc = bnxt_set_dflt_rings(bp, true); 16726 if (rc) { 16727 if (BNXT_VF(bp) && rc == -ENODEV) { 16728 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16729 } else { 16730 netdev_err(bp->dev, "Not enough rings available.\n"); 16731 rc = -ENOMEM; 16732 } 16733 goto init_err_pci_clean; 16734 } 16735 16736 bnxt_fw_init_one_p3(bp); 16737 16738 bnxt_init_dflt_coal(bp); 16739 16740 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16741 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16742 16743 rc = bnxt_init_int_mode(bp); 16744 if (rc) 16745 goto init_err_pci_clean; 16746 16747 /* No TC has been set yet and rings may have been trimmed due to 16748 * limited MSIX, so we re-initialize the TX rings per TC. 16749 */ 16750 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16751 16752 if (BNXT_PF(bp)) { 16753 if (!bnxt_pf_wq) { 16754 bnxt_pf_wq = 16755 create_singlethread_workqueue("bnxt_pf_wq"); 16756 if (!bnxt_pf_wq) { 16757 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16758 rc = -ENOMEM; 16759 goto init_err_pci_clean; 16760 } 16761 } 16762 rc = bnxt_init_tc(bp); 16763 if (rc) 16764 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16765 rc); 16766 } 16767 16768 bnxt_inv_fw_health_reg(bp); 16769 rc = bnxt_dl_register(bp); 16770 if (rc) 16771 goto init_err_dl; 16772 16773 INIT_LIST_HEAD(&bp->usr_fltr_list); 16774 16775 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16776 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16777 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16778 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16779 dev->request_ops_lock = true; 16780 dev->netmem_tx = true; 16781 16782 rc = register_netdev(dev); 16783 if (rc) 16784 goto init_err_cleanup; 16785 16786 bnxt_dl_fw_reporters_create(bp); 16787 16788 bnxt_rdma_aux_device_add(bp); 16789 16790 bnxt_print_device_info(bp); 16791 16792 pci_save_state(pdev); 16793 16794 return 0; 16795 init_err_cleanup: 16796 bnxt_rdma_aux_device_uninit(bp); 16797 bnxt_dl_unregister(bp); 16798 init_err_dl: 16799 bnxt_shutdown_tc(bp); 16800 bnxt_clear_int_mode(bp); 16801 16802 init_err_pci_clean: 16803 bnxt_hwrm_func_drv_unrgtr(bp); 16804 bnxt_free_hwrm_resources(bp); 16805 bnxt_hwmon_uninit(bp); 16806 bnxt_ethtool_free(bp); 16807 bnxt_ptp_clear(bp); 16808 kfree(bp->ptp_cfg); 16809 bp->ptp_cfg = NULL; 16810 kfree(bp->fw_health); 16811 bp->fw_health = NULL; 16812 bnxt_cleanup_pci(bp); 16813 bnxt_free_ctx_mem(bp, true); 16814 bnxt_free_crash_dump_mem(bp); 16815 kfree(bp->rss_indir_tbl); 16816 bp->rss_indir_tbl = NULL; 16817 16818 init_err_free: 16819 free_netdev(dev); 16820 return rc; 16821 } 16822 16823 static void bnxt_shutdown(struct pci_dev *pdev) 16824 { 16825 struct net_device *dev = pci_get_drvdata(pdev); 16826 struct bnxt *bp; 16827 16828 if (!dev) 16829 return; 16830 16831 rtnl_lock(); 16832 netdev_lock(dev); 16833 bp = netdev_priv(dev); 16834 if (!bp) 16835 goto shutdown_exit; 16836 16837 if (netif_running(dev)) 16838 netif_close(dev); 16839 16840 bnxt_ptp_clear(bp); 16841 bnxt_clear_int_mode(bp); 16842 pci_disable_device(pdev); 16843 16844 if (system_state == SYSTEM_POWER_OFF) { 16845 pci_wake_from_d3(pdev, bp->wol); 16846 pci_set_power_state(pdev, PCI_D3hot); 16847 } 16848 16849 shutdown_exit: 16850 netdev_unlock(dev); 16851 rtnl_unlock(); 16852 } 16853 16854 #ifdef CONFIG_PM_SLEEP 16855 static int bnxt_suspend(struct device *device) 16856 { 16857 struct net_device *dev = dev_get_drvdata(device); 16858 struct bnxt *bp = netdev_priv(dev); 16859 int rc = 0; 16860 16861 bnxt_ulp_stop(bp); 16862 16863 netdev_lock(dev); 16864 if (netif_running(dev)) { 16865 netif_device_detach(dev); 16866 rc = bnxt_close(dev); 16867 } 16868 bnxt_hwrm_func_drv_unrgtr(bp); 16869 bnxt_ptp_clear(bp); 16870 pci_disable_device(bp->pdev); 16871 bnxt_free_ctx_mem(bp, false); 16872 netdev_unlock(dev); 16873 return rc; 16874 } 16875 16876 static int bnxt_resume(struct device *device) 16877 { 16878 struct net_device *dev = dev_get_drvdata(device); 16879 struct bnxt *bp = netdev_priv(dev); 16880 int rc = 0; 16881 16882 netdev_lock(dev); 16883 rc = pci_enable_device(bp->pdev); 16884 if (rc) { 16885 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16886 rc); 16887 goto resume_exit; 16888 } 16889 pci_set_master(bp->pdev); 16890 if (bnxt_hwrm_ver_get(bp)) { 16891 rc = -ENODEV; 16892 goto resume_exit; 16893 } 16894 rc = bnxt_hwrm_func_reset(bp); 16895 if (rc) { 16896 rc = -EBUSY; 16897 goto resume_exit; 16898 } 16899 16900 rc = bnxt_hwrm_func_qcaps(bp); 16901 if (rc) 16902 goto resume_exit; 16903 16904 bnxt_clear_reservations(bp, true); 16905 16906 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16907 rc = -ENODEV; 16908 goto resume_exit; 16909 } 16910 if (bp->fw_crash_mem) 16911 bnxt_hwrm_crash_dump_mem_cfg(bp); 16912 16913 if (bnxt_ptp_init(bp)) { 16914 kfree(bp->ptp_cfg); 16915 bp->ptp_cfg = NULL; 16916 } 16917 bnxt_get_wol_settings(bp); 16918 if (netif_running(dev)) { 16919 rc = bnxt_open(dev); 16920 if (!rc) 16921 netif_device_attach(dev); 16922 } 16923 16924 resume_exit: 16925 netdev_unlock(bp->dev); 16926 bnxt_ulp_start(bp, rc); 16927 if (!rc) 16928 bnxt_reenable_sriov(bp); 16929 return rc; 16930 } 16931 16932 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16933 #define BNXT_PM_OPS (&bnxt_pm_ops) 16934 16935 #else 16936 16937 #define BNXT_PM_OPS NULL 16938 16939 #endif /* CONFIG_PM_SLEEP */ 16940 16941 /** 16942 * bnxt_io_error_detected - called when PCI error is detected 16943 * @pdev: Pointer to PCI device 16944 * @state: The current pci connection state 16945 * 16946 * This function is called after a PCI bus error affecting 16947 * this device has been detected. 16948 */ 16949 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16950 pci_channel_state_t state) 16951 { 16952 struct net_device *netdev = pci_get_drvdata(pdev); 16953 struct bnxt *bp = netdev_priv(netdev); 16954 bool abort = false; 16955 16956 netdev_info(netdev, "PCI I/O error detected\n"); 16957 16958 bnxt_ulp_stop(bp); 16959 16960 netdev_lock(netdev); 16961 netif_device_detach(netdev); 16962 16963 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16964 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16965 abort = true; 16966 } 16967 16968 if (abort || state == pci_channel_io_perm_failure) { 16969 netdev_unlock(netdev); 16970 return PCI_ERS_RESULT_DISCONNECT; 16971 } 16972 16973 /* Link is not reliable anymore if state is pci_channel_io_frozen 16974 * so we disable bus master to prevent any potential bad DMAs before 16975 * freeing kernel memory. 16976 */ 16977 if (state == pci_channel_io_frozen) { 16978 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16979 bnxt_fw_fatal_close(bp); 16980 } 16981 16982 if (netif_running(netdev)) 16983 __bnxt_close_nic(bp, true, true); 16984 16985 if (pci_is_enabled(pdev)) 16986 pci_disable_device(pdev); 16987 bnxt_free_ctx_mem(bp, false); 16988 netdev_unlock(netdev); 16989 16990 /* Request a slot reset. */ 16991 return PCI_ERS_RESULT_NEED_RESET; 16992 } 16993 16994 /** 16995 * bnxt_io_slot_reset - called after the pci bus has been reset. 16996 * @pdev: Pointer to PCI device 16997 * 16998 * Restart the card from scratch, as if from a cold-boot. 16999 * At this point, the card has experienced a hard reset, 17000 * followed by fixups by BIOS, and has its config space 17001 * set up identically to what it was at cold boot. 17002 */ 17003 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 17004 { 17005 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 17006 struct net_device *netdev = pci_get_drvdata(pdev); 17007 struct bnxt *bp = netdev_priv(netdev); 17008 int retry = 0; 17009 int err = 0; 17010 int off; 17011 17012 netdev_info(bp->dev, "PCI Slot Reset\n"); 17013 17014 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 17015 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 17016 msleep(900); 17017 17018 netdev_lock(netdev); 17019 17020 if (pci_enable_device(pdev)) { 17021 dev_err(&pdev->dev, 17022 "Cannot re-enable PCI device after reset.\n"); 17023 } else { 17024 pci_set_master(pdev); 17025 /* Upon fatal error, our device internal logic that latches to 17026 * BAR value is getting reset and will restore only upon 17027 * rewriting the BARs. 17028 * 17029 * As pci_restore_state() does not re-write the BARs if the 17030 * value is same as saved value earlier, driver needs to 17031 * write the BARs to 0 to force restore, in case of fatal error. 17032 */ 17033 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 17034 &bp->state)) { 17035 for (off = PCI_BASE_ADDRESS_0; 17036 off <= PCI_BASE_ADDRESS_5; off += 4) 17037 pci_write_config_dword(bp->pdev, off, 0); 17038 } 17039 pci_restore_state(pdev); 17040 pci_save_state(pdev); 17041 17042 bnxt_inv_fw_health_reg(bp); 17043 bnxt_try_map_fw_health_reg(bp); 17044 17045 /* In some PCIe AER scenarios, firmware may take up to 17046 * 10 seconds to become ready in the worst case. 17047 */ 17048 do { 17049 err = bnxt_try_recover_fw(bp); 17050 if (!err) 17051 break; 17052 retry++; 17053 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 17054 17055 if (err) { 17056 dev_err(&pdev->dev, "Firmware not ready\n"); 17057 goto reset_exit; 17058 } 17059 17060 err = bnxt_hwrm_func_reset(bp); 17061 if (!err) 17062 result = PCI_ERS_RESULT_RECOVERED; 17063 17064 /* IRQ will be initialized later in bnxt_io_resume */ 17065 bnxt_ulp_irq_stop(bp); 17066 bnxt_clear_int_mode(bp); 17067 } 17068 17069 reset_exit: 17070 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 17071 bnxt_clear_reservations(bp, true); 17072 netdev_unlock(netdev); 17073 17074 return result; 17075 } 17076 17077 /** 17078 * bnxt_io_resume - called when traffic can start flowing again. 17079 * @pdev: Pointer to PCI device 17080 * 17081 * This callback is called when the error recovery driver tells 17082 * us that its OK to resume normal operation. 17083 */ 17084 static void bnxt_io_resume(struct pci_dev *pdev) 17085 { 17086 struct net_device *netdev = pci_get_drvdata(pdev); 17087 struct bnxt *bp = netdev_priv(netdev); 17088 int err; 17089 17090 netdev_info(bp->dev, "PCI Slot Resume\n"); 17091 netdev_lock(netdev); 17092 17093 err = bnxt_hwrm_func_qcaps(bp); 17094 if (!err) { 17095 if (netif_running(netdev)) { 17096 err = bnxt_open(netdev); 17097 } else { 17098 err = bnxt_reserve_rings(bp, true); 17099 if (!err) 17100 err = bnxt_init_int_mode(bp); 17101 } 17102 } 17103 17104 if (!err) 17105 netif_device_attach(netdev); 17106 17107 netdev_unlock(netdev); 17108 bnxt_ulp_start(bp, err); 17109 if (!err) 17110 bnxt_reenable_sriov(bp); 17111 } 17112 17113 static const struct pci_error_handlers bnxt_err_handler = { 17114 .error_detected = bnxt_io_error_detected, 17115 .slot_reset = bnxt_io_slot_reset, 17116 .resume = bnxt_io_resume 17117 }; 17118 17119 static struct pci_driver bnxt_pci_driver = { 17120 .name = DRV_MODULE_NAME, 17121 .id_table = bnxt_pci_tbl, 17122 .probe = bnxt_init_one, 17123 .remove = bnxt_remove_one, 17124 .shutdown = bnxt_shutdown, 17125 .driver.pm = BNXT_PM_OPS, 17126 .err_handler = &bnxt_err_handler, 17127 #if defined(CONFIG_BNXT_SRIOV) 17128 .sriov_configure = bnxt_sriov_configure, 17129 #endif 17130 }; 17131 17132 static int __init bnxt_init(void) 17133 { 17134 int err; 17135 17136 bnxt_debug_init(); 17137 err = pci_register_driver(&bnxt_pci_driver); 17138 if (err) { 17139 bnxt_debug_exit(); 17140 return err; 17141 } 17142 17143 return 0; 17144 } 17145 17146 static void __exit bnxt_exit(void) 17147 { 17148 pci_unregister_driver(&bnxt_pci_driver); 17149 if (bnxt_pf_wq) 17150 destroy_workqueue(bnxt_pf_wq); 17151 bnxt_debug_exit(); 17152 } 17153 17154 module_init(bnxt_init); 17155 module_exit(bnxt_exit); 17156