xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_coredump.h"
73 #include "bnxt_hwmon.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom NetXtreme network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
125 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
126 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
127 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
128 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
129 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
130 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
131 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
132 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
134 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
135 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
136 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
137 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
138 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
139 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
140 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
141 	[NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" },
142 };
143 
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
149 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
186 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
187 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
194 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
195 #ifdef CONFIG_BNXT_SRIOV
196 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
198 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
212 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
214 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
215 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
216 	{ PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
218 #endif
219 	{ 0 }
220 };
221 
222 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
223 
224 static const u16 bnxt_vf_req_snif[] = {
225 	HWRM_FUNC_CFG,
226 	HWRM_FUNC_VF_CFG,
227 	HWRM_PORT_PHY_QCFG,
228 	HWRM_CFA_L2_FILTER_ALLOC,
229 };
230 
231 static const u16 bnxt_async_events_arr[] = {
232 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
236 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
237 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
238 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
239 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
240 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
241 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
242 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
243 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
244 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
245 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
246 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
247 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
248 	ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER,
249 };
250 
251 const u16 bnxt_bstore_to_trace[] = {
252 	[BNXT_CTX_SRT]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE,
253 	[BNXT_CTX_SRT2]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE,
254 	[BNXT_CTX_CRT]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE,
255 	[BNXT_CTX_CRT2]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE,
256 	[BNXT_CTX_RIGP0]	= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE,
257 	[BNXT_CTX_L2HWRM]	= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE,
258 	[BNXT_CTX_REHWRM]	= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE,
259 	[BNXT_CTX_CA0]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE,
260 	[BNXT_CTX_CA1]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE,
261 	[BNXT_CTX_CA2]		= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE,
262 	[BNXT_CTX_RIGP1]	= DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE,
263 };
264 
265 static struct workqueue_struct *bnxt_pf_wq;
266 
267 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \
268 			       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}
269 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}}
270 
271 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = {
272 	.ports = {
273 		.src = 0,
274 		.dst = 0,
275 	},
276 	.addrs = {
277 		.v6addrs = {
278 			.src = BNXT_IPV6_MASK_NONE,
279 			.dst = BNXT_IPV6_MASK_NONE,
280 		},
281 	},
282 };
283 
284 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = {
285 	.ports = {
286 		.src = cpu_to_be16(0xffff),
287 		.dst = cpu_to_be16(0xffff),
288 	},
289 	.addrs = {
290 		.v6addrs = {
291 			.src = BNXT_IPV6_MASK_ALL,
292 			.dst = BNXT_IPV6_MASK_ALL,
293 		},
294 	},
295 };
296 
297 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = {
298 	.ports = {
299 		.src = cpu_to_be16(0xffff),
300 		.dst = cpu_to_be16(0xffff),
301 	},
302 	.addrs = {
303 		.v4addrs = {
304 			.src = cpu_to_be32(0xffffffff),
305 			.dst = cpu_to_be32(0xffffffff),
306 		},
307 	},
308 };
309 
310 static bool bnxt_vf_pciid(enum board_idx idx)
311 {
312 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
313 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
314 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
315 		idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF);
316 }
317 
318 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
319 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
320 
321 #define BNXT_DB_CQ(db, idx)						\
322 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
323 
324 #define BNXT_DB_NQ_P5(db, idx)						\
325 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
326 		    (db)->doorbell)
327 
328 #define BNXT_DB_NQ_P7(db, idx)						\
329 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
330 		    DB_RING_IDX(db, idx), (db)->doorbell)
331 
332 #define BNXT_DB_CQ_ARM(db, idx)						\
333 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
334 
335 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
336 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
337 		    DB_RING_IDX(db, idx), (db)->doorbell)
338 
339 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
340 {
341 	if (bp->flags & BNXT_FLAG_CHIP_P7)
342 		BNXT_DB_NQ_P7(db, idx);
343 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
344 		BNXT_DB_NQ_P5(db, idx);
345 	else
346 		BNXT_DB_CQ(db, idx);
347 }
348 
349 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
350 {
351 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
352 		BNXT_DB_NQ_ARM_P5(db, idx);
353 	else
354 		BNXT_DB_CQ_ARM(db, idx);
355 }
356 
357 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
358 {
359 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
360 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
361 			    DB_RING_IDX(db, idx), db->doorbell);
362 	else
363 		BNXT_DB_CQ(db, idx);
364 }
365 
366 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
367 {
368 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
369 		return;
370 
371 	if (BNXT_PF(bp))
372 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
373 	else
374 		schedule_delayed_work(&bp->fw_reset_task, delay);
375 }
376 
377 static void __bnxt_queue_sp_work(struct bnxt *bp)
378 {
379 	if (BNXT_PF(bp))
380 		queue_work(bnxt_pf_wq, &bp->sp_task);
381 	else
382 		schedule_work(&bp->sp_task);
383 }
384 
385 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
386 {
387 	set_bit(event, &bp->sp_event);
388 	__bnxt_queue_sp_work(bp);
389 }
390 
391 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
392 {
393 	if (!rxr->bnapi->in_reset) {
394 		rxr->bnapi->in_reset = true;
395 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
396 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
397 		else
398 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
399 		__bnxt_queue_sp_work(bp);
400 	}
401 	rxr->rx_next_cons = 0xffff;
402 }
403 
404 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
405 			  u16 curr)
406 {
407 	struct bnxt_napi *bnapi = txr->bnapi;
408 
409 	if (bnapi->tx_fault)
410 		return;
411 
412 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
413 		   txr->txq_index, txr->tx_hw_cons,
414 		   txr->tx_cons, txr->tx_prod, curr);
415 	WARN_ON_ONCE(1);
416 	bnapi->tx_fault = 1;
417 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
418 }
419 
420 const u16 bnxt_lhint_arr[] = {
421 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
422 	TX_BD_FLAGS_LHINT_512_TO_1023,
423 	TX_BD_FLAGS_LHINT_1024_TO_2047,
424 	TX_BD_FLAGS_LHINT_1024_TO_2047,
425 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
426 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
427 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
428 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
429 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
430 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
431 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
432 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
433 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
434 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
435 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
436 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
437 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
438 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
439 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
440 };
441 
442 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
443 {
444 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
445 
446 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
447 		return 0;
448 
449 	return md_dst->u.port_info.port_id;
450 }
451 
452 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
453 			     u16 prod)
454 {
455 	/* Sync BD data before updating doorbell */
456 	wmb();
457 	bnxt_db_write(bp, &txr->tx_db, prod);
458 	txr->kick_pending = 0;
459 }
460 
461 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
462 {
463 	struct bnxt *bp = netdev_priv(dev);
464 	struct tx_bd *txbd, *txbd0;
465 	struct tx_bd_ext *txbd1;
466 	struct netdev_queue *txq;
467 	int i;
468 	dma_addr_t mapping;
469 	unsigned int length, pad = 0;
470 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
471 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
472 	struct pci_dev *pdev = bp->pdev;
473 	u16 prod, last_frag, txts_prod;
474 	struct bnxt_tx_ring_info *txr;
475 	struct bnxt_sw_tx_bd *tx_buf;
476 	__le32 lflags = 0;
477 
478 	i = skb_get_queue_mapping(skb);
479 	if (unlikely(i >= bp->tx_nr_rings)) {
480 		dev_kfree_skb_any(skb);
481 		dev_core_stats_tx_dropped_inc(dev);
482 		return NETDEV_TX_OK;
483 	}
484 
485 	txq = netdev_get_tx_queue(dev, i);
486 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
487 	prod = txr->tx_prod;
488 
489 	free_size = bnxt_tx_avail(bp, txr);
490 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
491 		/* We must have raced with NAPI cleanup */
492 		if (net_ratelimit() && txr->kick_pending)
493 			netif_warn(bp, tx_err, dev,
494 				   "bnxt: ring busy w/ flush pending!\n");
495 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
496 					bp->tx_wake_thresh))
497 			return NETDEV_TX_BUSY;
498 	}
499 
500 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
501 		goto tx_free;
502 
503 	length = skb->len;
504 	len = skb_headlen(skb);
505 	last_frag = skb_shinfo(skb)->nr_frags;
506 
507 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
508 
509 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
510 	tx_buf->skb = skb;
511 	tx_buf->nr_frags = last_frag;
512 
513 	vlan_tag_flags = 0;
514 	cfa_action = bnxt_xmit_get_cfa_action(skb);
515 	if (skb_vlan_tag_present(skb)) {
516 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
517 				 skb_vlan_tag_get(skb);
518 		/* Currently supports 8021Q, 8021AD vlan offloads
519 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
520 		 */
521 		if (skb->vlan_proto == htons(ETH_P_8021Q))
522 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
523 	}
524 
525 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp &&
526 	    ptp->tx_tstamp_en) {
527 		if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) {
528 			lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
529 			tx_buf->is_ts_pkt = 1;
530 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
531 		} else if (!skb_is_gso(skb)) {
532 			u16 seq_id, hdr_off;
533 
534 			if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) &&
535 			    !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) {
536 				if (vlan_tag_flags)
537 					hdr_off += VLAN_HLEN;
538 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
539 				tx_buf->is_ts_pkt = 1;
540 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
541 
542 				ptp->txts_req[txts_prod].tx_seqid = seq_id;
543 				ptp->txts_req[txts_prod].tx_hdr_off = hdr_off;
544 				tx_buf->txts_prod = txts_prod;
545 			}
546 		}
547 	}
548 	if (unlikely(skb->no_fcs))
549 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
550 
551 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
552 	    !lflags) {
553 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
554 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
555 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
556 		void __iomem *db = txr->tx_db.doorbell;
557 		void *pdata = tx_push_buf->data;
558 		u64 *end;
559 		int j, push_len;
560 
561 		/* Set COAL_NOW to be ready quickly for the next push */
562 		tx_push->tx_bd_len_flags_type =
563 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
564 					TX_BD_TYPE_LONG_TX_BD |
565 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
566 					TX_BD_FLAGS_COAL_NOW |
567 					TX_BD_FLAGS_PACKET_END |
568 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
569 
570 		if (skb->ip_summed == CHECKSUM_PARTIAL)
571 			tx_push1->tx_bd_hsize_lflags =
572 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
573 		else
574 			tx_push1->tx_bd_hsize_lflags = 0;
575 
576 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
577 		tx_push1->tx_bd_cfa_action =
578 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
579 
580 		end = pdata + length;
581 		end = PTR_ALIGN(end, 8) - 1;
582 		*end = 0;
583 
584 		skb_copy_from_linear_data(skb, pdata, len);
585 		pdata += len;
586 		for (j = 0; j < last_frag; j++) {
587 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
588 			void *fptr;
589 
590 			fptr = skb_frag_address_safe(frag);
591 			if (!fptr)
592 				goto normal_tx;
593 
594 			memcpy(pdata, fptr, skb_frag_size(frag));
595 			pdata += skb_frag_size(frag);
596 		}
597 
598 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
599 		txbd->tx_bd_haddr = txr->data_mapping;
600 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
601 		prod = NEXT_TX(prod);
602 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
603 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
604 		memcpy(txbd, tx_push1, sizeof(*txbd));
605 		prod = NEXT_TX(prod);
606 		tx_push->doorbell =
607 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
608 				    DB_RING_IDX(&txr->tx_db, prod));
609 		WRITE_ONCE(txr->tx_prod, prod);
610 
611 		tx_buf->is_push = 1;
612 		netdev_tx_sent_queue(txq, skb->len);
613 		wmb();	/* Sync is_push and byte queue before pushing data */
614 
615 		push_len = (length + sizeof(*tx_push) + 7) / 8;
616 		if (push_len > 16) {
617 			__iowrite64_copy(db, tx_push_buf, 16);
618 			__iowrite32_copy(db + 4, tx_push_buf + 1,
619 					 (push_len - 16) << 1);
620 		} else {
621 			__iowrite64_copy(db, tx_push_buf, push_len);
622 		}
623 
624 		goto tx_done;
625 	}
626 
627 normal_tx:
628 	if (length < BNXT_MIN_PKT_SIZE) {
629 		pad = BNXT_MIN_PKT_SIZE - length;
630 		if (skb_pad(skb, pad))
631 			/* SKB already freed. */
632 			goto tx_kick_pending;
633 		length = BNXT_MIN_PKT_SIZE;
634 	}
635 
636 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
637 
638 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
639 		goto tx_free;
640 
641 	dma_unmap_addr_set(tx_buf, mapping, mapping);
642 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
643 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
644 
645 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
646 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
647 
648 	prod = NEXT_TX(prod);
649 	txbd1 = (struct tx_bd_ext *)
650 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
651 
652 	txbd1->tx_bd_hsize_lflags = lflags;
653 	if (skb_is_gso(skb)) {
654 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
655 		u32 hdr_len;
656 
657 		if (skb->encapsulation) {
658 			if (udp_gso)
659 				hdr_len = skb_inner_transport_offset(skb) +
660 					  sizeof(struct udphdr);
661 			else
662 				hdr_len = skb_inner_tcp_all_headers(skb);
663 		} else if (udp_gso) {
664 			hdr_len = skb_transport_offset(skb) +
665 				  sizeof(struct udphdr);
666 		} else {
667 			hdr_len = skb_tcp_all_headers(skb);
668 		}
669 
670 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
671 					TX_BD_FLAGS_T_IPID |
672 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
673 		length = skb_shinfo(skb)->gso_size;
674 		txbd1->tx_bd_mss = cpu_to_le32(length);
675 		length += hdr_len;
676 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
677 		txbd1->tx_bd_hsize_lflags |=
678 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
679 		txbd1->tx_bd_mss = 0;
680 	}
681 
682 	length >>= 9;
683 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
684 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
685 				     skb->len);
686 		i = 0;
687 		goto tx_dma_error;
688 	}
689 	flags |= bnxt_lhint_arr[length];
690 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
691 
692 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
693 	txbd1->tx_bd_cfa_action =
694 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
695 	txbd0 = txbd;
696 	for (i = 0; i < last_frag; i++) {
697 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
698 
699 		prod = NEXT_TX(prod);
700 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
701 
702 		len = skb_frag_size(frag);
703 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
704 					   DMA_TO_DEVICE);
705 
706 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
707 			goto tx_dma_error;
708 
709 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
710 		dma_unmap_addr_set(tx_buf, mapping, mapping);
711 
712 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
713 
714 		flags = len << TX_BD_LEN_SHIFT;
715 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
716 	}
717 
718 	flags &= ~TX_BD_LEN;
719 	txbd->tx_bd_len_flags_type =
720 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
721 			    TX_BD_FLAGS_PACKET_END);
722 
723 	netdev_tx_sent_queue(txq, skb->len);
724 
725 	skb_tx_timestamp(skb);
726 
727 	prod = NEXT_TX(prod);
728 	WRITE_ONCE(txr->tx_prod, prod);
729 
730 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
731 		bnxt_txr_db_kick(bp, txr, prod);
732 	} else {
733 		if (free_size >= bp->tx_wake_thresh)
734 			txbd0->tx_bd_len_flags_type |=
735 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
736 		txr->kick_pending = 1;
737 	}
738 
739 tx_done:
740 
741 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
742 		if (netdev_xmit_more() && !tx_buf->is_push) {
743 			txbd0->tx_bd_len_flags_type &=
744 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
745 			bnxt_txr_db_kick(bp, txr, prod);
746 		}
747 
748 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
749 				   bp->tx_wake_thresh);
750 	}
751 	return NETDEV_TX_OK;
752 
753 tx_dma_error:
754 	last_frag = i;
755 
756 	/* start back at beginning and unmap skb */
757 	prod = txr->tx_prod;
758 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
759 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
760 			 skb_headlen(skb), DMA_TO_DEVICE);
761 	prod = NEXT_TX(prod);
762 
763 	/* unmap remaining mapped pages */
764 	for (i = 0; i < last_frag; i++) {
765 		prod = NEXT_TX(prod);
766 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
767 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
768 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
769 			       DMA_TO_DEVICE);
770 	}
771 
772 tx_free:
773 	dev_kfree_skb_any(skb);
774 tx_kick_pending:
775 	if (BNXT_TX_PTP_IS_SET(lflags)) {
776 		txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0;
777 		atomic64_inc(&bp->ptp_cfg->stats.ts_err);
778 		if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
779 			/* set SKB to err so PTP worker will clean up */
780 			ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO);
781 	}
782 	if (txr->kick_pending)
783 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
784 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
785 	dev_core_stats_tx_dropped_inc(dev);
786 	return NETDEV_TX_OK;
787 }
788 
789 /* Returns true if some remaining TX packets not processed. */
790 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
791 			  int budget)
792 {
793 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
794 	struct pci_dev *pdev = bp->pdev;
795 	u16 hw_cons = txr->tx_hw_cons;
796 	unsigned int tx_bytes = 0;
797 	u16 cons = txr->tx_cons;
798 	int tx_pkts = 0;
799 	bool rc = false;
800 
801 	while (RING_TX(bp, cons) != hw_cons) {
802 		struct bnxt_sw_tx_bd *tx_buf;
803 		struct sk_buff *skb;
804 		bool is_ts_pkt;
805 		int j, last;
806 
807 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
808 		skb = tx_buf->skb;
809 
810 		if (unlikely(!skb)) {
811 			bnxt_sched_reset_txr(bp, txr, cons);
812 			return rc;
813 		}
814 
815 		is_ts_pkt = tx_buf->is_ts_pkt;
816 		if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) {
817 			rc = true;
818 			break;
819 		}
820 
821 		cons = NEXT_TX(cons);
822 		tx_pkts++;
823 		tx_bytes += skb->len;
824 		tx_buf->skb = NULL;
825 		tx_buf->is_ts_pkt = 0;
826 
827 		if (tx_buf->is_push) {
828 			tx_buf->is_push = 0;
829 			goto next_tx_int;
830 		}
831 
832 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
833 				 skb_headlen(skb), DMA_TO_DEVICE);
834 		last = tx_buf->nr_frags;
835 
836 		for (j = 0; j < last; j++) {
837 			cons = NEXT_TX(cons);
838 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
839 			dma_unmap_page(
840 				&pdev->dev,
841 				dma_unmap_addr(tx_buf, mapping),
842 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
843 				DMA_TO_DEVICE);
844 		}
845 		if (unlikely(is_ts_pkt)) {
846 			if (BNXT_CHIP_P5(bp)) {
847 				/* PTP worker takes ownership of the skb */
848 				bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod);
849 				skb = NULL;
850 			}
851 		}
852 
853 next_tx_int:
854 		cons = NEXT_TX(cons);
855 
856 		dev_consume_skb_any(skb);
857 	}
858 
859 	WRITE_ONCE(txr->tx_cons, cons);
860 
861 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
862 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
863 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
864 
865 	return rc;
866 }
867 
868 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
869 {
870 	struct bnxt_tx_ring_info *txr;
871 	bool more = false;
872 	int i;
873 
874 	bnxt_for_each_napi_tx(i, bnapi, txr) {
875 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
876 			more |= __bnxt_tx_int(bp, txr, budget);
877 	}
878 	if (!more)
879 		bnapi->events &= ~BNXT_TX_CMP_EVENT;
880 }
881 
882 static bool bnxt_separate_head_pool(void)
883 {
884 	return PAGE_SIZE > BNXT_RX_PAGE_SIZE;
885 }
886 
887 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
888 					 struct bnxt_rx_ring_info *rxr,
889 					 unsigned int *offset,
890 					 gfp_t gfp)
891 {
892 	struct page *page;
893 
894 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
895 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
896 						BNXT_RX_PAGE_SIZE);
897 	} else {
898 		page = page_pool_dev_alloc_pages(rxr->page_pool);
899 		*offset = 0;
900 	}
901 	if (!page)
902 		return NULL;
903 
904 	*mapping = page_pool_get_dma_addr(page) + *offset;
905 	return page;
906 }
907 
908 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
909 				       struct bnxt_rx_ring_info *rxr,
910 				       gfp_t gfp)
911 {
912 	unsigned int offset;
913 	struct page *page;
914 
915 	page = page_pool_alloc_frag(rxr->head_pool, &offset,
916 				    bp->rx_buf_size, gfp);
917 	if (!page)
918 		return NULL;
919 
920 	*mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset;
921 	return page_address(page) + offset;
922 }
923 
924 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
925 		       u16 prod, gfp_t gfp)
926 {
927 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
928 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
929 	dma_addr_t mapping;
930 
931 	if (BNXT_RX_PAGE_MODE(bp)) {
932 		unsigned int offset;
933 		struct page *page =
934 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
935 
936 		if (!page)
937 			return -ENOMEM;
938 
939 		mapping += bp->rx_dma_offset;
940 		rx_buf->data = page;
941 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
942 	} else {
943 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp);
944 
945 		if (!data)
946 			return -ENOMEM;
947 
948 		rx_buf->data = data;
949 		rx_buf->data_ptr = data + bp->rx_offset;
950 	}
951 	rx_buf->mapping = mapping;
952 
953 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
954 	return 0;
955 }
956 
957 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
958 {
959 	u16 prod = rxr->rx_prod;
960 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
961 	struct bnxt *bp = rxr->bnapi->bp;
962 	struct rx_bd *cons_bd, *prod_bd;
963 
964 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
965 	cons_rx_buf = &rxr->rx_buf_ring[cons];
966 
967 	prod_rx_buf->data = data;
968 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
969 
970 	prod_rx_buf->mapping = cons_rx_buf->mapping;
971 
972 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
973 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
974 
975 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
976 }
977 
978 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
979 {
980 	u16 next, max = rxr->rx_agg_bmap_size;
981 
982 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
983 	if (next >= max)
984 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
985 	return next;
986 }
987 
988 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
989 				     struct bnxt_rx_ring_info *rxr,
990 				     u16 prod, gfp_t gfp)
991 {
992 	struct rx_bd *rxbd =
993 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
994 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
995 	struct page *page;
996 	dma_addr_t mapping;
997 	u16 sw_prod = rxr->rx_sw_agg_prod;
998 	unsigned int offset = 0;
999 
1000 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
1001 
1002 	if (!page)
1003 		return -ENOMEM;
1004 
1005 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1006 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1007 
1008 	__set_bit(sw_prod, rxr->rx_agg_bmap);
1009 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
1010 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1011 
1012 	rx_agg_buf->page = page;
1013 	rx_agg_buf->offset = offset;
1014 	rx_agg_buf->mapping = mapping;
1015 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
1016 	rxbd->rx_bd_opaque = sw_prod;
1017 	return 0;
1018 }
1019 
1020 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
1021 				       struct bnxt_cp_ring_info *cpr,
1022 				       u16 cp_cons, u16 curr)
1023 {
1024 	struct rx_agg_cmp *agg;
1025 
1026 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
1027 	agg = (struct rx_agg_cmp *)
1028 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1029 	return agg;
1030 }
1031 
1032 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
1033 					      struct bnxt_rx_ring_info *rxr,
1034 					      u16 agg_id, u16 curr)
1035 {
1036 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
1037 
1038 	return &tpa_info->agg_arr[curr];
1039 }
1040 
1041 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
1042 				   u16 start, u32 agg_bufs, bool tpa)
1043 {
1044 	struct bnxt_napi *bnapi = cpr->bnapi;
1045 	struct bnxt *bp = bnapi->bp;
1046 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1047 	u16 prod = rxr->rx_agg_prod;
1048 	u16 sw_prod = rxr->rx_sw_agg_prod;
1049 	bool p5_tpa = false;
1050 	u32 i;
1051 
1052 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1053 		p5_tpa = true;
1054 
1055 	for (i = 0; i < agg_bufs; i++) {
1056 		u16 cons;
1057 		struct rx_agg_cmp *agg;
1058 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
1059 		struct rx_bd *prod_bd;
1060 		struct page *page;
1061 
1062 		if (p5_tpa)
1063 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
1064 		else
1065 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
1066 		cons = agg->rx_agg_cmp_opaque;
1067 		__clear_bit(cons, rxr->rx_agg_bmap);
1068 
1069 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1070 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1071 
1072 		__set_bit(sw_prod, rxr->rx_agg_bmap);
1073 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
1074 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1075 
1076 		/* It is possible for sw_prod to be equal to cons, so
1077 		 * set cons_rx_buf->page to NULL first.
1078 		 */
1079 		page = cons_rx_buf->page;
1080 		cons_rx_buf->page = NULL;
1081 		prod_rx_buf->page = page;
1082 		prod_rx_buf->offset = cons_rx_buf->offset;
1083 
1084 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1085 
1086 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1087 
1088 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1089 		prod_bd->rx_bd_opaque = sw_prod;
1090 
1091 		prod = NEXT_RX_AGG(prod);
1092 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1093 	}
1094 	rxr->rx_agg_prod = prod;
1095 	rxr->rx_sw_agg_prod = sw_prod;
1096 }
1097 
1098 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1099 					      struct bnxt_rx_ring_info *rxr,
1100 					      u16 cons, void *data, u8 *data_ptr,
1101 					      dma_addr_t dma_addr,
1102 					      unsigned int offset_and_len)
1103 {
1104 	unsigned int len = offset_and_len & 0xffff;
1105 	struct page *page = data;
1106 	u16 prod = rxr->rx_prod;
1107 	struct sk_buff *skb;
1108 	int err;
1109 
1110 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1111 	if (unlikely(err)) {
1112 		bnxt_reuse_rx_data(rxr, cons, data);
1113 		return NULL;
1114 	}
1115 	dma_addr -= bp->rx_dma_offset;
1116 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1117 				bp->rx_dir);
1118 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1119 	if (!skb) {
1120 		page_pool_recycle_direct(rxr->page_pool, page);
1121 		return NULL;
1122 	}
1123 	skb_mark_for_recycle(skb);
1124 	skb_reserve(skb, bp->rx_offset);
1125 	__skb_put(skb, len);
1126 
1127 	return skb;
1128 }
1129 
1130 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1131 					struct bnxt_rx_ring_info *rxr,
1132 					u16 cons, void *data, u8 *data_ptr,
1133 					dma_addr_t dma_addr,
1134 					unsigned int offset_and_len)
1135 {
1136 	unsigned int payload = offset_and_len >> 16;
1137 	unsigned int len = offset_and_len & 0xffff;
1138 	skb_frag_t *frag;
1139 	struct page *page = data;
1140 	u16 prod = rxr->rx_prod;
1141 	struct sk_buff *skb;
1142 	int off, err;
1143 
1144 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1145 	if (unlikely(err)) {
1146 		bnxt_reuse_rx_data(rxr, cons, data);
1147 		return NULL;
1148 	}
1149 	dma_addr -= bp->rx_dma_offset;
1150 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1151 				bp->rx_dir);
1152 
1153 	if (unlikely(!payload))
1154 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1155 
1156 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1157 	if (!skb) {
1158 		page_pool_recycle_direct(rxr->page_pool, page);
1159 		return NULL;
1160 	}
1161 
1162 	skb_mark_for_recycle(skb);
1163 	off = (void *)data_ptr - page_address(page);
1164 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1165 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1166 	       payload + NET_IP_ALIGN);
1167 
1168 	frag = &skb_shinfo(skb)->frags[0];
1169 	skb_frag_size_sub(frag, payload);
1170 	skb_frag_off_add(frag, payload);
1171 	skb->data_len -= payload;
1172 	skb->tail += payload;
1173 
1174 	return skb;
1175 }
1176 
1177 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1178 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1179 				   void *data, u8 *data_ptr,
1180 				   dma_addr_t dma_addr,
1181 				   unsigned int offset_and_len)
1182 {
1183 	u16 prod = rxr->rx_prod;
1184 	struct sk_buff *skb;
1185 	int err;
1186 
1187 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1188 	if (unlikely(err)) {
1189 		bnxt_reuse_rx_data(rxr, cons, data);
1190 		return NULL;
1191 	}
1192 
1193 	skb = napi_build_skb(data, bp->rx_buf_size);
1194 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1195 				bp->rx_dir);
1196 	if (!skb) {
1197 		page_pool_free_va(rxr->head_pool, data, true);
1198 		return NULL;
1199 	}
1200 
1201 	skb_mark_for_recycle(skb);
1202 	skb_reserve(skb, bp->rx_offset);
1203 	skb_put(skb, offset_and_len & 0xffff);
1204 	return skb;
1205 }
1206 
1207 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1208 			       struct bnxt_cp_ring_info *cpr,
1209 			       struct skb_shared_info *shinfo,
1210 			       u16 idx, u32 agg_bufs, bool tpa,
1211 			       struct xdp_buff *xdp)
1212 {
1213 	struct bnxt_napi *bnapi = cpr->bnapi;
1214 	struct pci_dev *pdev = bp->pdev;
1215 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1216 	u16 prod = rxr->rx_agg_prod;
1217 	u32 i, total_frag_len = 0;
1218 	bool p5_tpa = false;
1219 
1220 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1221 		p5_tpa = true;
1222 
1223 	for (i = 0; i < agg_bufs; i++) {
1224 		skb_frag_t *frag = &shinfo->frags[i];
1225 		u16 cons, frag_len;
1226 		struct rx_agg_cmp *agg;
1227 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1228 		struct page *page;
1229 		dma_addr_t mapping;
1230 
1231 		if (p5_tpa)
1232 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1233 		else
1234 			agg = bnxt_get_agg(bp, cpr, idx, i);
1235 		cons = agg->rx_agg_cmp_opaque;
1236 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1237 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1238 
1239 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1240 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1241 					cons_rx_buf->offset, frag_len);
1242 		shinfo->nr_frags = i + 1;
1243 		__clear_bit(cons, rxr->rx_agg_bmap);
1244 
1245 		/* It is possible for bnxt_alloc_rx_page() to allocate
1246 		 * a sw_prod index that equals the cons index, so we
1247 		 * need to clear the cons entry now.
1248 		 */
1249 		mapping = cons_rx_buf->mapping;
1250 		page = cons_rx_buf->page;
1251 		cons_rx_buf->page = NULL;
1252 
1253 		if (xdp && page_is_pfmemalloc(page))
1254 			xdp_buff_set_frag_pfmemalloc(xdp);
1255 
1256 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1257 			--shinfo->nr_frags;
1258 			cons_rx_buf->page = page;
1259 
1260 			/* Update prod since possibly some pages have been
1261 			 * allocated already.
1262 			 */
1263 			rxr->rx_agg_prod = prod;
1264 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1265 			return 0;
1266 		}
1267 
1268 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1269 					bp->rx_dir);
1270 
1271 		total_frag_len += frag_len;
1272 		prod = NEXT_RX_AGG(prod);
1273 	}
1274 	rxr->rx_agg_prod = prod;
1275 	return total_frag_len;
1276 }
1277 
1278 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1279 					     struct bnxt_cp_ring_info *cpr,
1280 					     struct sk_buff *skb, u16 idx,
1281 					     u32 agg_bufs, bool tpa)
1282 {
1283 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1284 	u32 total_frag_len = 0;
1285 
1286 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1287 					     agg_bufs, tpa, NULL);
1288 	if (!total_frag_len) {
1289 		skb_mark_for_recycle(skb);
1290 		dev_kfree_skb(skb);
1291 		return NULL;
1292 	}
1293 
1294 	skb->data_len += total_frag_len;
1295 	skb->len += total_frag_len;
1296 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1297 	return skb;
1298 }
1299 
1300 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1301 				 struct bnxt_cp_ring_info *cpr,
1302 				 struct xdp_buff *xdp, u16 idx,
1303 				 u32 agg_bufs, bool tpa)
1304 {
1305 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1306 	u32 total_frag_len = 0;
1307 
1308 	if (!xdp_buff_has_frags(xdp))
1309 		shinfo->nr_frags = 0;
1310 
1311 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1312 					     idx, agg_bufs, tpa, xdp);
1313 	if (total_frag_len) {
1314 		xdp_buff_set_frags_flag(xdp);
1315 		shinfo->nr_frags = agg_bufs;
1316 		shinfo->xdp_frags_size = total_frag_len;
1317 	}
1318 	return total_frag_len;
1319 }
1320 
1321 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1322 			       u8 agg_bufs, u32 *raw_cons)
1323 {
1324 	u16 last;
1325 	struct rx_agg_cmp *agg;
1326 
1327 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1328 	last = RING_CMP(*raw_cons);
1329 	agg = (struct rx_agg_cmp *)
1330 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1331 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1332 }
1333 
1334 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data,
1335 				      unsigned int len,
1336 				      dma_addr_t mapping)
1337 {
1338 	struct bnxt *bp = bnapi->bp;
1339 	struct pci_dev *pdev = bp->pdev;
1340 	struct sk_buff *skb;
1341 
1342 	skb = napi_alloc_skb(&bnapi->napi, len);
1343 	if (!skb)
1344 		return NULL;
1345 
1346 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1347 				bp->rx_dir);
1348 
1349 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1350 	       len + NET_IP_ALIGN);
1351 
1352 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1353 				   bp->rx_dir);
1354 
1355 	skb_put(skb, len);
1356 
1357 	return skb;
1358 }
1359 
1360 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1361 				     unsigned int len,
1362 				     dma_addr_t mapping)
1363 {
1364 	return bnxt_copy_data(bnapi, data, len, mapping);
1365 }
1366 
1367 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi,
1368 				     struct xdp_buff *xdp,
1369 				     unsigned int len,
1370 				     dma_addr_t mapping)
1371 {
1372 	unsigned int metasize = 0;
1373 	u8 *data = xdp->data;
1374 	struct sk_buff *skb;
1375 
1376 	len = xdp->data_end - xdp->data_meta;
1377 	metasize = xdp->data - xdp->data_meta;
1378 	data = xdp->data_meta;
1379 
1380 	skb = bnxt_copy_data(bnapi, data, len, mapping);
1381 	if (!skb)
1382 		return skb;
1383 
1384 	if (metasize) {
1385 		skb_metadata_set(skb, metasize);
1386 		__skb_pull(skb, metasize);
1387 	}
1388 
1389 	return skb;
1390 }
1391 
1392 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1393 			   u32 *raw_cons, void *cmp)
1394 {
1395 	struct rx_cmp *rxcmp = cmp;
1396 	u32 tmp_raw_cons = *raw_cons;
1397 	u8 cmp_type, agg_bufs = 0;
1398 
1399 	cmp_type = RX_CMP_TYPE(rxcmp);
1400 
1401 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1402 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1403 			    RX_CMP_AGG_BUFS) >>
1404 			   RX_CMP_AGG_BUFS_SHIFT;
1405 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1406 		struct rx_tpa_end_cmp *tpa_end = cmp;
1407 
1408 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1409 			return 0;
1410 
1411 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1412 	}
1413 
1414 	if (agg_bufs) {
1415 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1416 			return -EBUSY;
1417 	}
1418 	*raw_cons = tmp_raw_cons;
1419 	return 0;
1420 }
1421 
1422 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1423 {
1424 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1425 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1426 
1427 	if (test_bit(idx, map->agg_idx_bmap))
1428 		idx = find_first_zero_bit(map->agg_idx_bmap,
1429 					  BNXT_AGG_IDX_BMAP_SIZE);
1430 	__set_bit(idx, map->agg_idx_bmap);
1431 	map->agg_id_tbl[agg_id] = idx;
1432 	return idx;
1433 }
1434 
1435 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1436 {
1437 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1438 
1439 	__clear_bit(idx, map->agg_idx_bmap);
1440 }
1441 
1442 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1443 {
1444 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1445 
1446 	return map->agg_id_tbl[agg_id];
1447 }
1448 
1449 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1450 			      struct rx_tpa_start_cmp *tpa_start,
1451 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1452 {
1453 	tpa_info->cfa_code_valid = 1;
1454 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1455 	tpa_info->vlan_valid = 0;
1456 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1457 		tpa_info->vlan_valid = 1;
1458 		tpa_info->metadata =
1459 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1460 	}
1461 }
1462 
1463 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1464 				 struct rx_tpa_start_cmp *tpa_start,
1465 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1466 {
1467 	tpa_info->vlan_valid = 0;
1468 	if (TPA_START_VLAN_VALID(tpa_start)) {
1469 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1470 		u32 vlan_proto = ETH_P_8021Q;
1471 
1472 		tpa_info->vlan_valid = 1;
1473 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1474 			vlan_proto = ETH_P_8021AD;
1475 		tpa_info->metadata = vlan_proto << 16 |
1476 				     TPA_START_METADATA0_TCI(tpa_start1);
1477 	}
1478 }
1479 
1480 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1481 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1482 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1483 {
1484 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1485 	struct bnxt_tpa_info *tpa_info;
1486 	u16 cons, prod, agg_id;
1487 	struct rx_bd *prod_bd;
1488 	dma_addr_t mapping;
1489 
1490 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1491 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1492 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1493 	} else {
1494 		agg_id = TPA_START_AGG_ID(tpa_start);
1495 	}
1496 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1497 	prod = rxr->rx_prod;
1498 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1499 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1500 	tpa_info = &rxr->rx_tpa[agg_id];
1501 
1502 	if (unlikely(cons != rxr->rx_next_cons ||
1503 		     TPA_START_ERROR(tpa_start))) {
1504 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1505 			    cons, rxr->rx_next_cons,
1506 			    TPA_START_ERROR_CODE(tpa_start1));
1507 		bnxt_sched_reset_rxr(bp, rxr);
1508 		return;
1509 	}
1510 	prod_rx_buf->data = tpa_info->data;
1511 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1512 
1513 	mapping = tpa_info->mapping;
1514 	prod_rx_buf->mapping = mapping;
1515 
1516 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1517 
1518 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1519 
1520 	tpa_info->data = cons_rx_buf->data;
1521 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1522 	cons_rx_buf->data = NULL;
1523 	tpa_info->mapping = cons_rx_buf->mapping;
1524 
1525 	tpa_info->len =
1526 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1527 				RX_TPA_START_CMP_LEN_SHIFT;
1528 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1529 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1530 		tpa_info->gso_type = SKB_GSO_TCPV4;
1531 		if (TPA_START_IS_IPV6(tpa_start1))
1532 			tpa_info->gso_type = SKB_GSO_TCPV6;
1533 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1534 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1535 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1536 			tpa_info->gso_type = SKB_GSO_TCPV6;
1537 		tpa_info->rss_hash =
1538 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1539 	} else {
1540 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1541 		tpa_info->gso_type = 0;
1542 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1543 	}
1544 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1545 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1546 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1547 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1548 	else
1549 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1550 	tpa_info->agg_count = 0;
1551 
1552 	rxr->rx_prod = NEXT_RX(prod);
1553 	cons = RING_RX(bp, NEXT_RX(cons));
1554 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1555 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1556 
1557 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1558 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1559 	cons_rx_buf->data = NULL;
1560 }
1561 
1562 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1563 {
1564 	if (agg_bufs)
1565 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1566 }
1567 
1568 #ifdef CONFIG_INET
1569 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1570 {
1571 	struct udphdr *uh = NULL;
1572 
1573 	if (ip_proto == htons(ETH_P_IP)) {
1574 		struct iphdr *iph = (struct iphdr *)skb->data;
1575 
1576 		if (iph->protocol == IPPROTO_UDP)
1577 			uh = (struct udphdr *)(iph + 1);
1578 	} else {
1579 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1580 
1581 		if (iph->nexthdr == IPPROTO_UDP)
1582 			uh = (struct udphdr *)(iph + 1);
1583 	}
1584 	if (uh) {
1585 		if (uh->check)
1586 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1587 		else
1588 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1589 	}
1590 }
1591 #endif
1592 
1593 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1594 					   int payload_off, int tcp_ts,
1595 					   struct sk_buff *skb)
1596 {
1597 #ifdef CONFIG_INET
1598 	struct tcphdr *th;
1599 	int len, nw_off;
1600 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1601 	u32 hdr_info = tpa_info->hdr_info;
1602 	bool loopback = false;
1603 
1604 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1605 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1606 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1607 
1608 	/* If the packet is an internal loopback packet, the offsets will
1609 	 * have an extra 4 bytes.
1610 	 */
1611 	if (inner_mac_off == 4) {
1612 		loopback = true;
1613 	} else if (inner_mac_off > 4) {
1614 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1615 					    ETH_HLEN - 2));
1616 
1617 		/* We only support inner iPv4/ipv6.  If we don't see the
1618 		 * correct protocol ID, it must be a loopback packet where
1619 		 * the offsets are off by 4.
1620 		 */
1621 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1622 			loopback = true;
1623 	}
1624 	if (loopback) {
1625 		/* internal loopback packet, subtract all offsets by 4 */
1626 		inner_ip_off -= 4;
1627 		inner_mac_off -= 4;
1628 		outer_ip_off -= 4;
1629 	}
1630 
1631 	nw_off = inner_ip_off - ETH_HLEN;
1632 	skb_set_network_header(skb, nw_off);
1633 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1634 		struct ipv6hdr *iph = ipv6_hdr(skb);
1635 
1636 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1637 		len = skb->len - skb_transport_offset(skb);
1638 		th = tcp_hdr(skb);
1639 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1640 	} else {
1641 		struct iphdr *iph = ip_hdr(skb);
1642 
1643 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1644 		len = skb->len - skb_transport_offset(skb);
1645 		th = tcp_hdr(skb);
1646 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1647 	}
1648 
1649 	if (inner_mac_off) { /* tunnel */
1650 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1651 					    ETH_HLEN - 2));
1652 
1653 		bnxt_gro_tunnel(skb, proto);
1654 	}
1655 #endif
1656 	return skb;
1657 }
1658 
1659 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1660 					   int payload_off, int tcp_ts,
1661 					   struct sk_buff *skb)
1662 {
1663 #ifdef CONFIG_INET
1664 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1665 	u32 hdr_info = tpa_info->hdr_info;
1666 	int iphdr_len, nw_off;
1667 
1668 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1669 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1670 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1671 
1672 	nw_off = inner_ip_off - ETH_HLEN;
1673 	skb_set_network_header(skb, nw_off);
1674 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1675 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1676 	skb_set_transport_header(skb, nw_off + iphdr_len);
1677 
1678 	if (inner_mac_off) { /* tunnel */
1679 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1680 					    ETH_HLEN - 2));
1681 
1682 		bnxt_gro_tunnel(skb, proto);
1683 	}
1684 #endif
1685 	return skb;
1686 }
1687 
1688 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1689 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1690 
1691 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1692 					   int payload_off, int tcp_ts,
1693 					   struct sk_buff *skb)
1694 {
1695 #ifdef CONFIG_INET
1696 	struct tcphdr *th;
1697 	int len, nw_off, tcp_opt_len = 0;
1698 
1699 	if (tcp_ts)
1700 		tcp_opt_len = 12;
1701 
1702 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1703 		struct iphdr *iph;
1704 
1705 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1706 			 ETH_HLEN;
1707 		skb_set_network_header(skb, nw_off);
1708 		iph = ip_hdr(skb);
1709 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1710 		len = skb->len - skb_transport_offset(skb);
1711 		th = tcp_hdr(skb);
1712 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1713 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1714 		struct ipv6hdr *iph;
1715 
1716 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1717 			 ETH_HLEN;
1718 		skb_set_network_header(skb, nw_off);
1719 		iph = ipv6_hdr(skb);
1720 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1721 		len = skb->len - skb_transport_offset(skb);
1722 		th = tcp_hdr(skb);
1723 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1724 	} else {
1725 		dev_kfree_skb_any(skb);
1726 		return NULL;
1727 	}
1728 
1729 	if (nw_off) /* tunnel */
1730 		bnxt_gro_tunnel(skb, skb->protocol);
1731 #endif
1732 	return skb;
1733 }
1734 
1735 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1736 					   struct bnxt_tpa_info *tpa_info,
1737 					   struct rx_tpa_end_cmp *tpa_end,
1738 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1739 					   struct sk_buff *skb)
1740 {
1741 #ifdef CONFIG_INET
1742 	int payload_off;
1743 	u16 segs;
1744 
1745 	segs = TPA_END_TPA_SEGS(tpa_end);
1746 	if (segs == 1)
1747 		return skb;
1748 
1749 	NAPI_GRO_CB(skb)->count = segs;
1750 	skb_shinfo(skb)->gso_size =
1751 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1752 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1753 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1754 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1755 	else
1756 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1757 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1758 	if (likely(skb))
1759 		tcp_gro_complete(skb);
1760 #endif
1761 	return skb;
1762 }
1763 
1764 /* Given the cfa_code of a received packet determine which
1765  * netdev (vf-rep or PF) the packet is destined to.
1766  */
1767 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1768 {
1769 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1770 
1771 	/* if vf-rep dev is NULL, the must belongs to the PF */
1772 	return dev ? dev : bp->dev;
1773 }
1774 
1775 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1776 					   struct bnxt_cp_ring_info *cpr,
1777 					   u32 *raw_cons,
1778 					   struct rx_tpa_end_cmp *tpa_end,
1779 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1780 					   u8 *event)
1781 {
1782 	struct bnxt_napi *bnapi = cpr->bnapi;
1783 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1784 	struct net_device *dev = bp->dev;
1785 	u8 *data_ptr, agg_bufs;
1786 	unsigned int len;
1787 	struct bnxt_tpa_info *tpa_info;
1788 	dma_addr_t mapping;
1789 	struct sk_buff *skb;
1790 	u16 idx = 0, agg_id;
1791 	void *data;
1792 	bool gro;
1793 
1794 	if (unlikely(bnapi->in_reset)) {
1795 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1796 
1797 		if (rc < 0)
1798 			return ERR_PTR(-EBUSY);
1799 		return NULL;
1800 	}
1801 
1802 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1803 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1804 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1805 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1806 		tpa_info = &rxr->rx_tpa[agg_id];
1807 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1808 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1809 				    agg_bufs, tpa_info->agg_count);
1810 			agg_bufs = tpa_info->agg_count;
1811 		}
1812 		tpa_info->agg_count = 0;
1813 		*event |= BNXT_AGG_EVENT;
1814 		bnxt_free_agg_idx(rxr, agg_id);
1815 		idx = agg_id;
1816 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1817 	} else {
1818 		agg_id = TPA_END_AGG_ID(tpa_end);
1819 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1820 		tpa_info = &rxr->rx_tpa[agg_id];
1821 		idx = RING_CMP(*raw_cons);
1822 		if (agg_bufs) {
1823 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1824 				return ERR_PTR(-EBUSY);
1825 
1826 			*event |= BNXT_AGG_EVENT;
1827 			idx = NEXT_CMP(idx);
1828 		}
1829 		gro = !!TPA_END_GRO(tpa_end);
1830 	}
1831 	data = tpa_info->data;
1832 	data_ptr = tpa_info->data_ptr;
1833 	prefetch(data_ptr);
1834 	len = tpa_info->len;
1835 	mapping = tpa_info->mapping;
1836 
1837 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1838 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1839 		if (agg_bufs > MAX_SKB_FRAGS)
1840 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1841 				    agg_bufs, (int)MAX_SKB_FRAGS);
1842 		return NULL;
1843 	}
1844 
1845 	if (len <= bp->rx_copy_thresh) {
1846 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1847 		if (!skb) {
1848 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1849 			cpr->sw_stats->rx.rx_oom_discards += 1;
1850 			return NULL;
1851 		}
1852 	} else {
1853 		u8 *new_data;
1854 		dma_addr_t new_mapping;
1855 
1856 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr,
1857 						GFP_ATOMIC);
1858 		if (!new_data) {
1859 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1860 			cpr->sw_stats->rx.rx_oom_discards += 1;
1861 			return NULL;
1862 		}
1863 
1864 		tpa_info->data = new_data;
1865 		tpa_info->data_ptr = new_data + bp->rx_offset;
1866 		tpa_info->mapping = new_mapping;
1867 
1868 		skb = napi_build_skb(data, bp->rx_buf_size);
1869 		dma_sync_single_for_cpu(&bp->pdev->dev, mapping,
1870 					bp->rx_buf_use_size, bp->rx_dir);
1871 
1872 		if (!skb) {
1873 			page_pool_free_va(rxr->head_pool, data, true);
1874 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1875 			cpr->sw_stats->rx.rx_oom_discards += 1;
1876 			return NULL;
1877 		}
1878 		skb_mark_for_recycle(skb);
1879 		skb_reserve(skb, bp->rx_offset);
1880 		skb_put(skb, len);
1881 	}
1882 
1883 	if (agg_bufs) {
1884 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1885 		if (!skb) {
1886 			/* Page reuse already handled by bnxt_rx_pages(). */
1887 			cpr->sw_stats->rx.rx_oom_discards += 1;
1888 			return NULL;
1889 		}
1890 	}
1891 
1892 	if (tpa_info->cfa_code_valid)
1893 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1894 	skb->protocol = eth_type_trans(skb, dev);
1895 
1896 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1897 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1898 
1899 	if (tpa_info->vlan_valid &&
1900 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1901 		__be16 vlan_proto = htons(tpa_info->metadata >>
1902 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1903 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1904 
1905 		if (eth_type_vlan(vlan_proto)) {
1906 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1907 		} else {
1908 			dev_kfree_skb(skb);
1909 			return NULL;
1910 		}
1911 	}
1912 
1913 	skb_checksum_none_assert(skb);
1914 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1915 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1916 		skb->csum_level =
1917 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1918 	}
1919 
1920 	if (gro)
1921 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1922 
1923 	return skb;
1924 }
1925 
1926 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1927 			 struct rx_agg_cmp *rx_agg)
1928 {
1929 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1930 	struct bnxt_tpa_info *tpa_info;
1931 
1932 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1933 	tpa_info = &rxr->rx_tpa[agg_id];
1934 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1935 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1936 }
1937 
1938 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1939 			     struct sk_buff *skb)
1940 {
1941 	skb_mark_for_recycle(skb);
1942 
1943 	if (skb->dev != bp->dev) {
1944 		/* this packet belongs to a vf-rep */
1945 		bnxt_vf_rep_rx(bp, skb);
1946 		return;
1947 	}
1948 	skb_record_rx_queue(skb, bnapi->index);
1949 	napi_gro_receive(&bnapi->napi, skb);
1950 }
1951 
1952 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1953 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1954 {
1955 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1956 
1957 	if (BNXT_PTP_RX_TS_VALID(flags))
1958 		goto ts_valid;
1959 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1960 		return false;
1961 
1962 ts_valid:
1963 	*cmpl_ts = ts;
1964 	return true;
1965 }
1966 
1967 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1968 				    struct rx_cmp *rxcmp,
1969 				    struct rx_cmp_ext *rxcmp1)
1970 {
1971 	__be16 vlan_proto;
1972 	u16 vtag;
1973 
1974 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1975 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1976 		u32 meta_data;
1977 
1978 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1979 			return skb;
1980 
1981 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1982 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1983 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1984 		if (eth_type_vlan(vlan_proto))
1985 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1986 		else
1987 			goto vlan_err;
1988 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1989 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1990 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1991 
1992 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1993 				vlan_proto = htons(ETH_P_8021Q);
1994 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1995 				vlan_proto = htons(ETH_P_8021AD);
1996 			else
1997 				goto vlan_err;
1998 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1999 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2000 		}
2001 	}
2002 	return skb;
2003 vlan_err:
2004 	dev_kfree_skb(skb);
2005 	return NULL;
2006 }
2007 
2008 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
2009 					   struct rx_cmp *rxcmp)
2010 {
2011 	u8 ext_op;
2012 
2013 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
2014 	switch (ext_op) {
2015 	case EXT_OP_INNER_4:
2016 	case EXT_OP_OUTER_4:
2017 	case EXT_OP_INNFL_3:
2018 	case EXT_OP_OUTFL_3:
2019 		return PKT_HASH_TYPE_L4;
2020 	default:
2021 		return PKT_HASH_TYPE_L3;
2022 	}
2023 }
2024 
2025 /* returns the following:
2026  * 1       - 1 packet successfully received
2027  * 0       - successful TPA_START, packet not completed yet
2028  * -EBUSY  - completion ring does not have all the agg buffers yet
2029  * -ENOMEM - packet aborted due to out of memory
2030  * -EIO    - packet aborted due to hw error indicated in BD
2031  */
2032 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2033 		       u32 *raw_cons, u8 *event)
2034 {
2035 	struct bnxt_napi *bnapi = cpr->bnapi;
2036 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2037 	struct net_device *dev = bp->dev;
2038 	struct rx_cmp *rxcmp;
2039 	struct rx_cmp_ext *rxcmp1;
2040 	u32 tmp_raw_cons = *raw_cons;
2041 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
2042 	struct bnxt_sw_rx_bd *rx_buf;
2043 	unsigned int len;
2044 	u8 *data_ptr, agg_bufs, cmp_type;
2045 	bool xdp_active = false;
2046 	dma_addr_t dma_addr;
2047 	struct sk_buff *skb;
2048 	struct xdp_buff xdp;
2049 	u32 flags, misc;
2050 	u32 cmpl_ts;
2051 	void *data;
2052 	int rc = 0;
2053 
2054 	rxcmp = (struct rx_cmp *)
2055 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2056 
2057 	cmp_type = RX_CMP_TYPE(rxcmp);
2058 
2059 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
2060 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
2061 		goto next_rx_no_prod_no_len;
2062 	}
2063 
2064 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2065 	cp_cons = RING_CMP(tmp_raw_cons);
2066 	rxcmp1 = (struct rx_cmp_ext *)
2067 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2068 
2069 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2070 		return -EBUSY;
2071 
2072 	/* The valid test of the entry must be done first before
2073 	 * reading any further.
2074 	 */
2075 	dma_rmb();
2076 	prod = rxr->rx_prod;
2077 
2078 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
2079 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2080 		bnxt_tpa_start(bp, rxr, cmp_type,
2081 			       (struct rx_tpa_start_cmp *)rxcmp,
2082 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
2083 
2084 		*event |= BNXT_RX_EVENT;
2085 		goto next_rx_no_prod_no_len;
2086 
2087 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2088 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
2089 				   (struct rx_tpa_end_cmp *)rxcmp,
2090 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
2091 
2092 		if (IS_ERR(skb))
2093 			return -EBUSY;
2094 
2095 		rc = -ENOMEM;
2096 		if (likely(skb)) {
2097 			bnxt_deliver_skb(bp, bnapi, skb);
2098 			rc = 1;
2099 		}
2100 		*event |= BNXT_RX_EVENT;
2101 		goto next_rx_no_prod_no_len;
2102 	}
2103 
2104 	cons = rxcmp->rx_cmp_opaque;
2105 	if (unlikely(cons != rxr->rx_next_cons)) {
2106 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
2107 
2108 		/* 0xffff is forced error, don't print it */
2109 		if (rxr->rx_next_cons != 0xffff)
2110 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
2111 				    cons, rxr->rx_next_cons);
2112 		bnxt_sched_reset_rxr(bp, rxr);
2113 		if (rc1)
2114 			return rc1;
2115 		goto next_rx_no_prod_no_len;
2116 	}
2117 	rx_buf = &rxr->rx_buf_ring[cons];
2118 	data = rx_buf->data;
2119 	data_ptr = rx_buf->data_ptr;
2120 	prefetch(data_ptr);
2121 
2122 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2123 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2124 
2125 	if (agg_bufs) {
2126 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2127 			return -EBUSY;
2128 
2129 		cp_cons = NEXT_CMP(cp_cons);
2130 		*event |= BNXT_AGG_EVENT;
2131 	}
2132 	*event |= BNXT_RX_EVENT;
2133 
2134 	rx_buf->data = NULL;
2135 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2136 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2137 
2138 		bnxt_reuse_rx_data(rxr, cons, data);
2139 		if (agg_bufs)
2140 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2141 					       false);
2142 
2143 		rc = -EIO;
2144 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2145 			bnapi->cp_ring.sw_stats->rx.rx_buf_errors++;
2146 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2147 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2148 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2149 						 rx_err);
2150 				bnxt_sched_reset_rxr(bp, rxr);
2151 			}
2152 		}
2153 		goto next_rx_no_len;
2154 	}
2155 
2156 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2157 	len = flags >> RX_CMP_LEN_SHIFT;
2158 	dma_addr = rx_buf->mapping;
2159 
2160 	if (bnxt_xdp_attached(bp, rxr)) {
2161 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2162 		if (agg_bufs) {
2163 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2164 							     cp_cons, agg_bufs,
2165 							     false);
2166 			if (!frag_len)
2167 				goto oom_next_rx;
2168 		}
2169 		xdp_active = true;
2170 	}
2171 
2172 	if (xdp_active) {
2173 		if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) {
2174 			rc = 1;
2175 			goto next_rx;
2176 		}
2177 	}
2178 
2179 	if (len <= bp->rx_copy_thresh) {
2180 		if (!xdp_active)
2181 			skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2182 		else
2183 			skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr);
2184 		bnxt_reuse_rx_data(rxr, cons, data);
2185 		if (!skb) {
2186 			if (agg_bufs) {
2187 				if (!xdp_active)
2188 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2189 							       agg_bufs, false);
2190 				else
2191 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2192 			}
2193 			goto oom_next_rx;
2194 		}
2195 	} else {
2196 		u32 payload;
2197 
2198 		if (rx_buf->data_ptr == data_ptr)
2199 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2200 		else
2201 			payload = 0;
2202 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2203 				      payload | len);
2204 		if (!skb)
2205 			goto oom_next_rx;
2206 	}
2207 
2208 	if (agg_bufs) {
2209 		if (!xdp_active) {
2210 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2211 			if (!skb)
2212 				goto oom_next_rx;
2213 		} else {
2214 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2215 			if (!skb) {
2216 				/* we should be able to free the old skb here */
2217 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2218 				goto oom_next_rx;
2219 			}
2220 		}
2221 	}
2222 
2223 	if (RX_CMP_HASH_VALID(rxcmp)) {
2224 		enum pkt_hash_types type;
2225 
2226 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2227 			type = bnxt_rss_ext_op(bp, rxcmp);
2228 		} else {
2229 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2230 
2231 			/* RSS profiles 1 and 3 with extract code 0 for inner
2232 			 * 4-tuple
2233 			 */
2234 			if (hash_type != 1 && hash_type != 3)
2235 				type = PKT_HASH_TYPE_L3;
2236 			else
2237 				type = PKT_HASH_TYPE_L4;
2238 		}
2239 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2240 	}
2241 
2242 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2243 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2244 	skb->protocol = eth_type_trans(skb, dev);
2245 
2246 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2247 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2248 		if (!skb)
2249 			goto next_rx;
2250 	}
2251 
2252 	skb_checksum_none_assert(skb);
2253 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2254 		if (dev->features & NETIF_F_RXCSUM) {
2255 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2256 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2257 		}
2258 	} else {
2259 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2260 			if (dev->features & NETIF_F_RXCSUM)
2261 				bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++;
2262 		}
2263 	}
2264 
2265 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2266 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2267 			u64 ns, ts;
2268 
2269 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2270 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2271 
2272 				ns = bnxt_timecounter_cyc2time(ptp, ts);
2273 				memset(skb_hwtstamps(skb), 0,
2274 				       sizeof(*skb_hwtstamps(skb)));
2275 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2276 			}
2277 		}
2278 	}
2279 	bnxt_deliver_skb(bp, bnapi, skb);
2280 	rc = 1;
2281 
2282 next_rx:
2283 	cpr->rx_packets += 1;
2284 	cpr->rx_bytes += len;
2285 
2286 next_rx_no_len:
2287 	rxr->rx_prod = NEXT_RX(prod);
2288 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2289 
2290 next_rx_no_prod_no_len:
2291 	*raw_cons = tmp_raw_cons;
2292 
2293 	return rc;
2294 
2295 oom_next_rx:
2296 	cpr->sw_stats->rx.rx_oom_discards += 1;
2297 	rc = -ENOMEM;
2298 	goto next_rx;
2299 }
2300 
2301 /* In netpoll mode, if we are using a combined completion ring, we need to
2302  * discard the rx packets and recycle the buffers.
2303  */
2304 static int bnxt_force_rx_discard(struct bnxt *bp,
2305 				 struct bnxt_cp_ring_info *cpr,
2306 				 u32 *raw_cons, u8 *event)
2307 {
2308 	u32 tmp_raw_cons = *raw_cons;
2309 	struct rx_cmp_ext *rxcmp1;
2310 	struct rx_cmp *rxcmp;
2311 	u16 cp_cons;
2312 	u8 cmp_type;
2313 	int rc;
2314 
2315 	cp_cons = RING_CMP(tmp_raw_cons);
2316 	rxcmp = (struct rx_cmp *)
2317 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2318 
2319 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2320 	cp_cons = RING_CMP(tmp_raw_cons);
2321 	rxcmp1 = (struct rx_cmp_ext *)
2322 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2323 
2324 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2325 		return -EBUSY;
2326 
2327 	/* The valid test of the entry must be done first before
2328 	 * reading any further.
2329 	 */
2330 	dma_rmb();
2331 	cmp_type = RX_CMP_TYPE(rxcmp);
2332 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2333 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2334 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2335 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2336 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2337 		struct rx_tpa_end_cmp_ext *tpa_end1;
2338 
2339 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2340 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2341 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2342 	}
2343 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2344 	if (rc && rc != -EBUSY)
2345 		cpr->sw_stats->rx.rx_netpoll_discards += 1;
2346 	return rc;
2347 }
2348 
2349 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2350 {
2351 	struct bnxt_fw_health *fw_health = bp->fw_health;
2352 	u32 reg = fw_health->regs[reg_idx];
2353 	u32 reg_type, reg_off, val = 0;
2354 
2355 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2356 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2357 	switch (reg_type) {
2358 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2359 		pci_read_config_dword(bp->pdev, reg_off, &val);
2360 		break;
2361 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2362 		reg_off = fw_health->mapped_regs[reg_idx];
2363 		fallthrough;
2364 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2365 		val = readl(bp->bar0 + reg_off);
2366 		break;
2367 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2368 		val = readl(bp->bar1 + reg_off);
2369 		break;
2370 	}
2371 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2372 		val &= fw_health->fw_reset_inprog_reg_mask;
2373 	return val;
2374 }
2375 
2376 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2377 {
2378 	int i;
2379 
2380 	for (i = 0; i < bp->rx_nr_rings; i++) {
2381 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2382 		struct bnxt_ring_grp_info *grp_info;
2383 
2384 		grp_info = &bp->grp_info[grp_idx];
2385 		if (grp_info->agg_fw_ring_id == ring_id)
2386 			return grp_idx;
2387 	}
2388 	return INVALID_HW_RING_ID;
2389 }
2390 
2391 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2392 {
2393 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2394 
2395 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2396 		return link_info->force_link_speed2;
2397 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2398 		return link_info->force_pam4_link_speed;
2399 	return link_info->force_link_speed;
2400 }
2401 
2402 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2403 {
2404 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2405 
2406 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2407 		link_info->req_link_speed = link_info->force_link_speed2;
2408 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2409 		switch (link_info->req_link_speed) {
2410 		case BNXT_LINK_SPEED_50GB_PAM4:
2411 		case BNXT_LINK_SPEED_100GB_PAM4:
2412 		case BNXT_LINK_SPEED_200GB_PAM4:
2413 		case BNXT_LINK_SPEED_400GB_PAM4:
2414 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2415 			break;
2416 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2417 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2418 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2419 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2420 			break;
2421 		default:
2422 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2423 		}
2424 		return;
2425 	}
2426 	link_info->req_link_speed = link_info->force_link_speed;
2427 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2428 	if (link_info->force_pam4_link_speed) {
2429 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2430 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2431 	}
2432 }
2433 
2434 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2435 {
2436 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2437 
2438 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2439 		link_info->advertising = link_info->auto_link_speeds2;
2440 		return;
2441 	}
2442 	link_info->advertising = link_info->auto_link_speeds;
2443 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2444 }
2445 
2446 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2447 {
2448 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2449 
2450 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2451 		if (link_info->req_link_speed != link_info->force_link_speed2)
2452 			return true;
2453 		return false;
2454 	}
2455 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2456 	    link_info->req_link_speed != link_info->force_link_speed)
2457 		return true;
2458 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2459 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2460 		return true;
2461 	return false;
2462 }
2463 
2464 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2465 {
2466 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2467 
2468 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2469 		if (link_info->advertising != link_info->auto_link_speeds2)
2470 			return true;
2471 		return false;
2472 	}
2473 	if (link_info->advertising != link_info->auto_link_speeds ||
2474 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2475 		return true;
2476 	return false;
2477 }
2478 
2479 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type)
2480 {
2481 	u32 flags = bp->ctx->ctx_arr[type].flags;
2482 
2483 	return (flags & BNXT_CTX_MEM_TYPE_VALID) &&
2484 		((flags & BNXT_CTX_MEM_FW_TRACE) ||
2485 		 (flags & BNXT_CTX_MEM_FW_BIN_TRACE));
2486 }
2487 
2488 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm)
2489 {
2490 	u32 mem_size, pages, rem_bytes, magic_byte_offset;
2491 	u16 trace_type = bnxt_bstore_to_trace[ctxm->type];
2492 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
2493 	struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl;
2494 	struct bnxt_bs_trace_info *bs_trace;
2495 	int last_pg;
2496 
2497 	if (ctxm->instance_bmap && ctxm->instance_bmap > 1)
2498 		return;
2499 
2500 	mem_size = ctxm->max_entries * ctxm->entry_size;
2501 	rem_bytes = mem_size % BNXT_PAGE_SIZE;
2502 	pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
2503 
2504 	last_pg = (pages - 1) & (MAX_CTX_PAGES - 1);
2505 	magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1;
2506 
2507 	rmem = &ctx_pg[0].ring_mem;
2508 	bs_trace = &bp->bs_trace[trace_type];
2509 	bs_trace->ctx_type = ctxm->type;
2510 	bs_trace->trace_type = trace_type;
2511 	if (pages > MAX_CTX_PAGES) {
2512 		int last_pg_dir = rmem->nr_pages - 1;
2513 
2514 		rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem;
2515 		bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg];
2516 	} else {
2517 		bs_trace->magic_byte = rmem->pg_arr[last_pg];
2518 	}
2519 	bs_trace->magic_byte += magic_byte_offset;
2520 	*bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE;
2521 }
2522 
2523 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1)				\
2524 	(((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\
2525 	 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT)
2526 
2527 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2)				\
2528 	(((data2) &							\
2529 	  ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\
2530 	 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT)
2531 
2532 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2533 	((data2) &							\
2534 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2535 
2536 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2537 	(((data2) &							\
2538 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2539 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2540 
2541 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2542 	((data1) &							\
2543 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2544 
2545 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2546 	(((data1) &							\
2547 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2548 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2549 
2550 /* Return true if the workqueue has to be scheduled */
2551 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2552 {
2553 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2554 
2555 	switch (err_type) {
2556 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2557 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2558 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2559 		break;
2560 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2561 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2562 		break;
2563 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2564 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2565 		break;
2566 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2567 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2568 		char *threshold_type;
2569 		bool notify = false;
2570 		char *dir_str;
2571 
2572 		switch (type) {
2573 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2574 			threshold_type = "warning";
2575 			break;
2576 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2577 			threshold_type = "critical";
2578 			break;
2579 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2580 			threshold_type = "fatal";
2581 			break;
2582 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2583 			threshold_type = "shutdown";
2584 			break;
2585 		default:
2586 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2587 			return false;
2588 		}
2589 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2590 			dir_str = "above";
2591 			notify = true;
2592 		} else {
2593 			dir_str = "below";
2594 		}
2595 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2596 			    dir_str, threshold_type);
2597 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2598 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2599 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2600 		if (notify) {
2601 			bp->thermal_threshold_type = type;
2602 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2603 			return true;
2604 		}
2605 		return false;
2606 	}
2607 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED:
2608 		netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n");
2609 		break;
2610 	default:
2611 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2612 			   err_type);
2613 		break;
2614 	}
2615 	return false;
2616 }
2617 
2618 #define BNXT_GET_EVENT_PORT(data)	\
2619 	((data) &			\
2620 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2621 
2622 #define BNXT_EVENT_RING_TYPE(data2)	\
2623 	((data2) &			\
2624 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2625 
2626 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2627 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2628 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2629 
2630 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2631 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2632 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2633 
2634 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2635 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2636 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2637 
2638 #define BNXT_PHC_BITS	48
2639 
2640 static int bnxt_async_event_process(struct bnxt *bp,
2641 				    struct hwrm_async_event_cmpl *cmpl)
2642 {
2643 	u16 event_id = le16_to_cpu(cmpl->event_id);
2644 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2645 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2646 
2647 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2648 		   event_id, data1, data2);
2649 
2650 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2651 	switch (event_id) {
2652 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2653 		struct bnxt_link_info *link_info = &bp->link_info;
2654 
2655 		if (BNXT_VF(bp))
2656 			goto async_event_process_exit;
2657 
2658 		/* print unsupported speed warning in forced speed mode only */
2659 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2660 		    (data1 & 0x20000)) {
2661 			u16 fw_speed = bnxt_get_force_speed(link_info);
2662 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2663 
2664 			if (speed != SPEED_UNKNOWN)
2665 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2666 					    speed);
2667 		}
2668 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2669 	}
2670 		fallthrough;
2671 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2672 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2673 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2674 		fallthrough;
2675 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2676 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2677 		break;
2678 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2679 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2680 		break;
2681 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2682 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2683 
2684 		if (BNXT_VF(bp))
2685 			break;
2686 
2687 		if (bp->pf.port_id != port_id)
2688 			break;
2689 
2690 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2691 		break;
2692 	}
2693 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2694 		if (BNXT_PF(bp))
2695 			goto async_event_process_exit;
2696 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2697 		break;
2698 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2699 		char *type_str = "Solicited";
2700 
2701 		if (!bp->fw_health)
2702 			goto async_event_process_exit;
2703 
2704 		bp->fw_reset_timestamp = jiffies;
2705 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2706 		if (!bp->fw_reset_min_dsecs)
2707 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2708 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2709 		if (!bp->fw_reset_max_dsecs)
2710 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2711 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2712 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2713 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2714 			type_str = "Fatal";
2715 			bp->fw_health->fatalities++;
2716 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2717 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2718 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2719 			type_str = "Non-fatal";
2720 			bp->fw_health->survivals++;
2721 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2722 		}
2723 		netif_warn(bp, hw, bp->dev,
2724 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2725 			   type_str, data1, data2,
2726 			   bp->fw_reset_min_dsecs * 100,
2727 			   bp->fw_reset_max_dsecs * 100);
2728 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2729 		break;
2730 	}
2731 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2732 		struct bnxt_fw_health *fw_health = bp->fw_health;
2733 		char *status_desc = "healthy";
2734 		u32 status;
2735 
2736 		if (!fw_health)
2737 			goto async_event_process_exit;
2738 
2739 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2740 			fw_health->enabled = false;
2741 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2742 			break;
2743 		}
2744 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2745 		fw_health->tmr_multiplier =
2746 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2747 				     bp->current_interval * 10);
2748 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2749 		if (!fw_health->enabled)
2750 			fw_health->last_fw_heartbeat =
2751 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2752 		fw_health->last_fw_reset_cnt =
2753 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2754 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2755 		if (status != BNXT_FW_STATUS_HEALTHY)
2756 			status_desc = "unhealthy";
2757 		netif_info(bp, drv, bp->dev,
2758 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2759 			   fw_health->primary ? "primary" : "backup", status,
2760 			   status_desc, fw_health->last_fw_reset_cnt);
2761 		if (!fw_health->enabled) {
2762 			/* Make sure tmr_counter is set and visible to
2763 			 * bnxt_health_check() before setting enabled to true.
2764 			 */
2765 			smp_wmb();
2766 			fw_health->enabled = true;
2767 		}
2768 		goto async_event_process_exit;
2769 	}
2770 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2771 		netif_notice(bp, hw, bp->dev,
2772 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2773 			     data1, data2);
2774 		goto async_event_process_exit;
2775 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2776 		struct bnxt_rx_ring_info *rxr;
2777 		u16 grp_idx;
2778 
2779 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2780 			goto async_event_process_exit;
2781 
2782 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2783 			    BNXT_EVENT_RING_TYPE(data2), data1);
2784 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2785 			goto async_event_process_exit;
2786 
2787 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2788 		if (grp_idx == INVALID_HW_RING_ID) {
2789 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2790 				    data1);
2791 			goto async_event_process_exit;
2792 		}
2793 		rxr = bp->bnapi[grp_idx]->rx_ring;
2794 		bnxt_sched_reset_rxr(bp, rxr);
2795 		goto async_event_process_exit;
2796 	}
2797 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2798 		struct bnxt_fw_health *fw_health = bp->fw_health;
2799 
2800 		netif_notice(bp, hw, bp->dev,
2801 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2802 			     data1, data2);
2803 		if (fw_health) {
2804 			fw_health->echo_req_data1 = data1;
2805 			fw_health->echo_req_data2 = data2;
2806 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2807 			break;
2808 		}
2809 		goto async_event_process_exit;
2810 	}
2811 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2812 		bnxt_ptp_pps_event(bp, data1, data2);
2813 		goto async_event_process_exit;
2814 	}
2815 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2816 		if (bnxt_event_error_report(bp, data1, data2))
2817 			break;
2818 		goto async_event_process_exit;
2819 	}
2820 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2821 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2822 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2823 			if (BNXT_PTP_USE_RTC(bp)) {
2824 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2825 				unsigned long flags;
2826 				u64 ns;
2827 
2828 				if (!ptp)
2829 					goto async_event_process_exit;
2830 
2831 				bnxt_ptp_update_current_time(bp);
2832 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2833 				       BNXT_PHC_BITS) | ptp->current_time);
2834 				write_seqlock_irqsave(&ptp->ptp_lock, flags);
2835 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2836 				write_sequnlock_irqrestore(&ptp->ptp_lock, flags);
2837 			}
2838 			break;
2839 		}
2840 		goto async_event_process_exit;
2841 	}
2842 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2843 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2844 
2845 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2846 		goto async_event_process_exit;
2847 	}
2848 	case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: {
2849 		u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1);
2850 		u32 offset =  BNXT_EVENT_BUF_PRODUCER_OFFSET(data2);
2851 
2852 		bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset);
2853 		goto async_event_process_exit;
2854 	}
2855 	default:
2856 		goto async_event_process_exit;
2857 	}
2858 	__bnxt_queue_sp_work(bp);
2859 async_event_process_exit:
2860 	return 0;
2861 }
2862 
2863 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2864 {
2865 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2866 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2867 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2868 				(struct hwrm_fwd_req_cmpl *)txcmp;
2869 
2870 	switch (cmpl_type) {
2871 	case CMPL_BASE_TYPE_HWRM_DONE:
2872 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2873 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2874 		break;
2875 
2876 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2877 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2878 
2879 		if ((vf_id < bp->pf.first_vf_id) ||
2880 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2881 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2882 				   vf_id);
2883 			return -EINVAL;
2884 		}
2885 
2886 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2887 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2888 		break;
2889 
2890 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2891 		bnxt_async_event_process(bp,
2892 					 (struct hwrm_async_event_cmpl *)txcmp);
2893 		break;
2894 
2895 	default:
2896 		break;
2897 	}
2898 
2899 	return 0;
2900 }
2901 
2902 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2903 {
2904 	struct bnxt_napi *bnapi = dev_instance;
2905 	struct bnxt *bp = bnapi->bp;
2906 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2907 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2908 
2909 	cpr->event_ctr++;
2910 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2911 	napi_schedule(&bnapi->napi);
2912 	return IRQ_HANDLED;
2913 }
2914 
2915 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2916 {
2917 	u32 raw_cons = cpr->cp_raw_cons;
2918 	u16 cons = RING_CMP(raw_cons);
2919 	struct tx_cmp *txcmp;
2920 
2921 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2922 
2923 	return TX_CMP_VALID(txcmp, raw_cons);
2924 }
2925 
2926 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2927 			    int budget)
2928 {
2929 	struct bnxt_napi *bnapi = cpr->bnapi;
2930 	u32 raw_cons = cpr->cp_raw_cons;
2931 	u32 cons;
2932 	int rx_pkts = 0;
2933 	u8 event = 0;
2934 	struct tx_cmp *txcmp;
2935 
2936 	cpr->has_more_work = 0;
2937 	cpr->had_work_done = 1;
2938 	while (1) {
2939 		u8 cmp_type;
2940 		int rc;
2941 
2942 		cons = RING_CMP(raw_cons);
2943 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2944 
2945 		if (!TX_CMP_VALID(txcmp, raw_cons))
2946 			break;
2947 
2948 		/* The valid test of the entry must be done first before
2949 		 * reading any further.
2950 		 */
2951 		dma_rmb();
2952 		cmp_type = TX_CMP_TYPE(txcmp);
2953 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2954 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2955 			u32 opaque = txcmp->tx_cmp_opaque;
2956 			struct bnxt_tx_ring_info *txr;
2957 			u16 tx_freed;
2958 
2959 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2960 			event |= BNXT_TX_CMP_EVENT;
2961 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2962 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2963 			else
2964 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2965 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2966 				   bp->tx_ring_mask;
2967 			/* return full budget so NAPI will complete. */
2968 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2969 				rx_pkts = budget;
2970 				raw_cons = NEXT_RAW_CMP(raw_cons);
2971 				if (budget)
2972 					cpr->has_more_work = 1;
2973 				break;
2974 			}
2975 		} else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) {
2976 			bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp);
2977 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2978 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2979 			if (likely(budget))
2980 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2981 			else
2982 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2983 							   &event);
2984 			if (likely(rc >= 0))
2985 				rx_pkts += rc;
2986 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2987 			 * the NAPI budget.  Otherwise, we may potentially loop
2988 			 * here forever if we consistently cannot allocate
2989 			 * buffers.
2990 			 */
2991 			else if (rc == -ENOMEM && budget)
2992 				rx_pkts++;
2993 			else if (rc == -EBUSY)	/* partial completion */
2994 				break;
2995 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2996 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2997 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2998 			bnxt_hwrm_handler(bp, txcmp);
2999 		}
3000 		raw_cons = NEXT_RAW_CMP(raw_cons);
3001 
3002 		if (rx_pkts && rx_pkts == budget) {
3003 			cpr->has_more_work = 1;
3004 			break;
3005 		}
3006 	}
3007 
3008 	if (event & BNXT_REDIRECT_EVENT) {
3009 		xdp_do_flush();
3010 		event &= ~BNXT_REDIRECT_EVENT;
3011 	}
3012 
3013 	if (event & BNXT_TX_EVENT) {
3014 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
3015 		u16 prod = txr->tx_prod;
3016 
3017 		/* Sync BD data before updating doorbell */
3018 		wmb();
3019 
3020 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
3021 		event &= ~BNXT_TX_EVENT;
3022 	}
3023 
3024 	cpr->cp_raw_cons = raw_cons;
3025 	bnapi->events |= event;
3026 	return rx_pkts;
3027 }
3028 
3029 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3030 				  int budget)
3031 {
3032 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
3033 		bnapi->tx_int(bp, bnapi, budget);
3034 
3035 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
3036 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3037 
3038 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3039 		bnapi->events &= ~BNXT_RX_EVENT;
3040 	}
3041 	if (bnapi->events & BNXT_AGG_EVENT) {
3042 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3043 
3044 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3045 		bnapi->events &= ~BNXT_AGG_EVENT;
3046 	}
3047 }
3048 
3049 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
3050 			  int budget)
3051 {
3052 	struct bnxt_napi *bnapi = cpr->bnapi;
3053 	int rx_pkts;
3054 
3055 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
3056 
3057 	/* ACK completion ring before freeing tx ring and producing new
3058 	 * buffers in rx/agg rings to prevent overflowing the completion
3059 	 * ring.
3060 	 */
3061 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3062 
3063 	__bnxt_poll_work_done(bp, bnapi, budget);
3064 	return rx_pkts;
3065 }
3066 
3067 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
3068 {
3069 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3070 	struct bnxt *bp = bnapi->bp;
3071 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3072 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3073 	struct tx_cmp *txcmp;
3074 	struct rx_cmp_ext *rxcmp1;
3075 	u32 cp_cons, tmp_raw_cons;
3076 	u32 raw_cons = cpr->cp_raw_cons;
3077 	bool flush_xdp = false;
3078 	u32 rx_pkts = 0;
3079 	u8 event = 0;
3080 
3081 	while (1) {
3082 		int rc;
3083 
3084 		cp_cons = RING_CMP(raw_cons);
3085 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3086 
3087 		if (!TX_CMP_VALID(txcmp, raw_cons))
3088 			break;
3089 
3090 		/* The valid test of the entry must be done first before
3091 		 * reading any further.
3092 		 */
3093 		dma_rmb();
3094 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
3095 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
3096 			cp_cons = RING_CMP(tmp_raw_cons);
3097 			rxcmp1 = (struct rx_cmp_ext *)
3098 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3099 
3100 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
3101 				break;
3102 
3103 			/* force an error to recycle the buffer */
3104 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
3105 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
3106 
3107 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
3108 			if (likely(rc == -EIO) && budget)
3109 				rx_pkts++;
3110 			else if (rc == -EBUSY)	/* partial completion */
3111 				break;
3112 			if (event & BNXT_REDIRECT_EVENT)
3113 				flush_xdp = true;
3114 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
3115 				    CMPL_BASE_TYPE_HWRM_DONE)) {
3116 			bnxt_hwrm_handler(bp, txcmp);
3117 		} else {
3118 			netdev_err(bp->dev,
3119 				   "Invalid completion received on special ring\n");
3120 		}
3121 		raw_cons = NEXT_RAW_CMP(raw_cons);
3122 
3123 		if (rx_pkts == budget)
3124 			break;
3125 	}
3126 
3127 	cpr->cp_raw_cons = raw_cons;
3128 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
3129 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3130 
3131 	if (event & BNXT_AGG_EVENT)
3132 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3133 	if (flush_xdp)
3134 		xdp_do_flush();
3135 
3136 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
3137 		napi_complete_done(napi, rx_pkts);
3138 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3139 	}
3140 	return rx_pkts;
3141 }
3142 
3143 static int bnxt_poll(struct napi_struct *napi, int budget)
3144 {
3145 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3146 	struct bnxt *bp = bnapi->bp;
3147 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3148 	int work_done = 0;
3149 
3150 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3151 		napi_complete(napi);
3152 		return 0;
3153 	}
3154 	while (1) {
3155 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3156 
3157 		if (work_done >= budget) {
3158 			if (!budget)
3159 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3160 			break;
3161 		}
3162 
3163 		if (!bnxt_has_work(bp, cpr)) {
3164 			if (napi_complete_done(napi, work_done))
3165 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3166 			break;
3167 		}
3168 	}
3169 	if (bp->flags & BNXT_FLAG_DIM) {
3170 		struct dim_sample dim_sample = {};
3171 
3172 		dim_update_sample(cpr->event_ctr,
3173 				  cpr->rx_packets,
3174 				  cpr->rx_bytes,
3175 				  &dim_sample);
3176 		net_dim(&cpr->dim, &dim_sample);
3177 	}
3178 	return work_done;
3179 }
3180 
3181 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3182 {
3183 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3184 	int i, work_done = 0;
3185 
3186 	for (i = 0; i < cpr->cp_ring_count; i++) {
3187 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3188 
3189 		if (cpr2->had_nqe_notify) {
3190 			work_done += __bnxt_poll_work(bp, cpr2,
3191 						      budget - work_done);
3192 			cpr->has_more_work |= cpr2->has_more_work;
3193 		}
3194 	}
3195 	return work_done;
3196 }
3197 
3198 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3199 				 u64 dbr_type, int budget)
3200 {
3201 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3202 	int i;
3203 
3204 	for (i = 0; i < cpr->cp_ring_count; i++) {
3205 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3206 		struct bnxt_db_info *db;
3207 
3208 		if (cpr2->had_work_done) {
3209 			u32 tgl = 0;
3210 
3211 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3212 				cpr2->had_nqe_notify = 0;
3213 				tgl = cpr2->toggle;
3214 			}
3215 			db = &cpr2->cp_db;
3216 			bnxt_writeq(bp,
3217 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3218 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3219 				    db->doorbell);
3220 			cpr2->had_work_done = 0;
3221 		}
3222 	}
3223 	__bnxt_poll_work_done(bp, bnapi, budget);
3224 }
3225 
3226 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3227 {
3228 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3229 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3230 	struct bnxt_cp_ring_info *cpr_rx;
3231 	u32 raw_cons = cpr->cp_raw_cons;
3232 	struct bnxt *bp = bnapi->bp;
3233 	struct nqe_cn *nqcmp;
3234 	int work_done = 0;
3235 	u32 cons;
3236 
3237 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3238 		napi_complete(napi);
3239 		return 0;
3240 	}
3241 	if (cpr->has_more_work) {
3242 		cpr->has_more_work = 0;
3243 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3244 	}
3245 	while (1) {
3246 		u16 type;
3247 
3248 		cons = RING_CMP(raw_cons);
3249 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3250 
3251 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3252 			if (cpr->has_more_work)
3253 				break;
3254 
3255 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3256 					     budget);
3257 			cpr->cp_raw_cons = raw_cons;
3258 			if (napi_complete_done(napi, work_done))
3259 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3260 						  cpr->cp_raw_cons);
3261 			goto poll_done;
3262 		}
3263 
3264 		/* The valid test of the entry must be done first before
3265 		 * reading any further.
3266 		 */
3267 		dma_rmb();
3268 
3269 		type = le16_to_cpu(nqcmp->type);
3270 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3271 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3272 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3273 			struct bnxt_cp_ring_info *cpr2;
3274 
3275 			/* No more budget for RX work */
3276 			if (budget && work_done >= budget &&
3277 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3278 				break;
3279 
3280 			idx = BNXT_NQ_HDL_IDX(idx);
3281 			cpr2 = &cpr->cp_ring_arr[idx];
3282 			cpr2->had_nqe_notify = 1;
3283 			cpr2->toggle = NQE_CN_TOGGLE(type);
3284 			work_done += __bnxt_poll_work(bp, cpr2,
3285 						      budget - work_done);
3286 			cpr->has_more_work |= cpr2->has_more_work;
3287 		} else {
3288 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3289 		}
3290 		raw_cons = NEXT_RAW_CMP(raw_cons);
3291 	}
3292 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3293 	if (raw_cons != cpr->cp_raw_cons) {
3294 		cpr->cp_raw_cons = raw_cons;
3295 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3296 	}
3297 poll_done:
3298 	cpr_rx = &cpr->cp_ring_arr[0];
3299 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3300 	    (bp->flags & BNXT_FLAG_DIM)) {
3301 		struct dim_sample dim_sample = {};
3302 
3303 		dim_update_sample(cpr->event_ctr,
3304 				  cpr_rx->rx_packets,
3305 				  cpr_rx->rx_bytes,
3306 				  &dim_sample);
3307 		net_dim(&cpr->dim, &dim_sample);
3308 	}
3309 	return work_done;
3310 }
3311 
3312 static void bnxt_free_tx_skbs(struct bnxt *bp)
3313 {
3314 	int i, max_idx;
3315 	struct pci_dev *pdev = bp->pdev;
3316 
3317 	if (!bp->tx_ring)
3318 		return;
3319 
3320 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3321 	for (i = 0; i < bp->tx_nr_rings; i++) {
3322 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3323 		int j;
3324 
3325 		if (!txr->tx_buf_ring)
3326 			continue;
3327 
3328 		for (j = 0; j < max_idx;) {
3329 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3330 			struct sk_buff *skb;
3331 			int k, last;
3332 
3333 			if (i < bp->tx_nr_rings_xdp &&
3334 			    tx_buf->action == XDP_REDIRECT) {
3335 				dma_unmap_single(&pdev->dev,
3336 					dma_unmap_addr(tx_buf, mapping),
3337 					dma_unmap_len(tx_buf, len),
3338 					DMA_TO_DEVICE);
3339 				xdp_return_frame(tx_buf->xdpf);
3340 				tx_buf->action = 0;
3341 				tx_buf->xdpf = NULL;
3342 				j++;
3343 				continue;
3344 			}
3345 
3346 			skb = tx_buf->skb;
3347 			if (!skb) {
3348 				j++;
3349 				continue;
3350 			}
3351 
3352 			tx_buf->skb = NULL;
3353 
3354 			if (tx_buf->is_push) {
3355 				dev_kfree_skb(skb);
3356 				j += 2;
3357 				continue;
3358 			}
3359 
3360 			dma_unmap_single(&pdev->dev,
3361 					 dma_unmap_addr(tx_buf, mapping),
3362 					 skb_headlen(skb),
3363 					 DMA_TO_DEVICE);
3364 
3365 			last = tx_buf->nr_frags;
3366 			j += 2;
3367 			for (k = 0; k < last; k++, j++) {
3368 				int ring_idx = j & bp->tx_ring_mask;
3369 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3370 
3371 				tx_buf = &txr->tx_buf_ring[ring_idx];
3372 				dma_unmap_page(
3373 					&pdev->dev,
3374 					dma_unmap_addr(tx_buf, mapping),
3375 					skb_frag_size(frag), DMA_TO_DEVICE);
3376 			}
3377 			dev_kfree_skb(skb);
3378 		}
3379 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3380 	}
3381 }
3382 
3383 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3384 {
3385 	int i, max_idx;
3386 
3387 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3388 
3389 	for (i = 0; i < max_idx; i++) {
3390 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3391 		void *data = rx_buf->data;
3392 
3393 		if (!data)
3394 			continue;
3395 
3396 		rx_buf->data = NULL;
3397 		if (BNXT_RX_PAGE_MODE(bp))
3398 			page_pool_recycle_direct(rxr->page_pool, data);
3399 		else
3400 			page_pool_free_va(rxr->head_pool, data, true);
3401 	}
3402 }
3403 
3404 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3405 {
3406 	int i, max_idx;
3407 
3408 	max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3409 
3410 	for (i = 0; i < max_idx; i++) {
3411 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3412 		struct page *page = rx_agg_buf->page;
3413 
3414 		if (!page)
3415 			continue;
3416 
3417 		rx_agg_buf->page = NULL;
3418 		__clear_bit(i, rxr->rx_agg_bmap);
3419 
3420 		page_pool_recycle_direct(rxr->page_pool, page);
3421 	}
3422 }
3423 
3424 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3425 {
3426 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3427 	struct bnxt_tpa_idx_map *map;
3428 	int i;
3429 
3430 	if (!rxr->rx_tpa)
3431 		goto skip_rx_tpa_free;
3432 
3433 	for (i = 0; i < bp->max_tpa; i++) {
3434 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3435 		u8 *data = tpa_info->data;
3436 
3437 		if (!data)
3438 			continue;
3439 
3440 		tpa_info->data = NULL;
3441 		page_pool_free_va(rxr->head_pool, data, false);
3442 	}
3443 
3444 skip_rx_tpa_free:
3445 	if (!rxr->rx_buf_ring)
3446 		goto skip_rx_buf_free;
3447 
3448 	bnxt_free_one_rx_ring(bp, rxr);
3449 
3450 skip_rx_buf_free:
3451 	if (!rxr->rx_agg_ring)
3452 		goto skip_rx_agg_free;
3453 
3454 	bnxt_free_one_rx_agg_ring(bp, rxr);
3455 
3456 skip_rx_agg_free:
3457 	map = rxr->rx_tpa_idx_map;
3458 	if (map)
3459 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3460 }
3461 
3462 static void bnxt_free_rx_skbs(struct bnxt *bp)
3463 {
3464 	int i;
3465 
3466 	if (!bp->rx_ring)
3467 		return;
3468 
3469 	for (i = 0; i < bp->rx_nr_rings; i++)
3470 		bnxt_free_one_rx_ring_skbs(bp, i);
3471 }
3472 
3473 static void bnxt_free_skbs(struct bnxt *bp)
3474 {
3475 	bnxt_free_tx_skbs(bp);
3476 	bnxt_free_rx_skbs(bp);
3477 }
3478 
3479 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3480 {
3481 	u8 init_val = ctxm->init_value;
3482 	u16 offset = ctxm->init_offset;
3483 	u8 *p2 = p;
3484 	int i;
3485 
3486 	if (!init_val)
3487 		return;
3488 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3489 		memset(p, init_val, len);
3490 		return;
3491 	}
3492 	for (i = 0; i < len; i += ctxm->entry_size)
3493 		*(p2 + i + offset) = init_val;
3494 }
3495 
3496 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem,
3497 			       void *buf, size_t offset, size_t head,
3498 			       size_t tail)
3499 {
3500 	int i, head_page, start_idx, source_offset;
3501 	size_t len, rem_len, total_len, max_bytes;
3502 
3503 	head_page = head / rmem->page_size;
3504 	source_offset = head % rmem->page_size;
3505 	total_len = (tail - head) & MAX_CTX_BYTES_MASK;
3506 	if (!total_len)
3507 		total_len = MAX_CTX_BYTES;
3508 	start_idx = head_page % MAX_CTX_PAGES;
3509 	max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size -
3510 		    source_offset;
3511 	total_len = min(total_len, max_bytes);
3512 	rem_len = total_len;
3513 
3514 	for (i = start_idx; rem_len; i++, source_offset = 0) {
3515 		len = min((size_t)(rmem->page_size - source_offset), rem_len);
3516 		if (buf)
3517 			memcpy(buf + offset, rmem->pg_arr[i] + source_offset,
3518 			       len);
3519 		offset += len;
3520 		rem_len -= len;
3521 	}
3522 	return total_len;
3523 }
3524 
3525 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3526 {
3527 	struct pci_dev *pdev = bp->pdev;
3528 	int i;
3529 
3530 	if (!rmem->pg_arr)
3531 		goto skip_pages;
3532 
3533 	for (i = 0; i < rmem->nr_pages; i++) {
3534 		if (!rmem->pg_arr[i])
3535 			continue;
3536 
3537 		dma_free_coherent(&pdev->dev, rmem->page_size,
3538 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3539 
3540 		rmem->pg_arr[i] = NULL;
3541 	}
3542 skip_pages:
3543 	if (rmem->pg_tbl) {
3544 		size_t pg_tbl_size = rmem->nr_pages * 8;
3545 
3546 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3547 			pg_tbl_size = rmem->page_size;
3548 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3549 				  rmem->pg_tbl, rmem->pg_tbl_map);
3550 		rmem->pg_tbl = NULL;
3551 	}
3552 	if (rmem->vmem_size && *rmem->vmem) {
3553 		vfree(*rmem->vmem);
3554 		*rmem->vmem = NULL;
3555 	}
3556 }
3557 
3558 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3559 {
3560 	struct pci_dev *pdev = bp->pdev;
3561 	u64 valid_bit = 0;
3562 	int i;
3563 
3564 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3565 		valid_bit = PTU_PTE_VALID;
3566 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3567 		size_t pg_tbl_size = rmem->nr_pages * 8;
3568 
3569 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3570 			pg_tbl_size = rmem->page_size;
3571 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3572 						  &rmem->pg_tbl_map,
3573 						  GFP_KERNEL);
3574 		if (!rmem->pg_tbl)
3575 			return -ENOMEM;
3576 	}
3577 
3578 	for (i = 0; i < rmem->nr_pages; i++) {
3579 		u64 extra_bits = valid_bit;
3580 
3581 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3582 						     rmem->page_size,
3583 						     &rmem->dma_arr[i],
3584 						     GFP_KERNEL);
3585 		if (!rmem->pg_arr[i])
3586 			return -ENOMEM;
3587 
3588 		if (rmem->ctx_mem)
3589 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3590 					  rmem->page_size);
3591 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3592 			if (i == rmem->nr_pages - 2 &&
3593 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3594 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3595 			else if (i == rmem->nr_pages - 1 &&
3596 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3597 				extra_bits |= PTU_PTE_LAST;
3598 			rmem->pg_tbl[i] =
3599 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3600 		}
3601 	}
3602 
3603 	if (rmem->vmem_size) {
3604 		*rmem->vmem = vzalloc(rmem->vmem_size);
3605 		if (!(*rmem->vmem))
3606 			return -ENOMEM;
3607 	}
3608 	return 0;
3609 }
3610 
3611 static void bnxt_free_tpa_info(struct bnxt *bp)
3612 {
3613 	int i, j;
3614 
3615 	for (i = 0; i < bp->rx_nr_rings; i++) {
3616 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3617 
3618 		kfree(rxr->rx_tpa_idx_map);
3619 		rxr->rx_tpa_idx_map = NULL;
3620 		if (rxr->rx_tpa) {
3621 			for (j = 0; j < bp->max_tpa; j++) {
3622 				kfree(rxr->rx_tpa[j].agg_arr);
3623 				rxr->rx_tpa[j].agg_arr = NULL;
3624 			}
3625 		}
3626 		kfree(rxr->rx_tpa);
3627 		rxr->rx_tpa = NULL;
3628 	}
3629 }
3630 
3631 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3632 {
3633 	int i, j;
3634 
3635 	bp->max_tpa = MAX_TPA;
3636 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3637 		if (!bp->max_tpa_v2)
3638 			return 0;
3639 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3640 	}
3641 
3642 	for (i = 0; i < bp->rx_nr_rings; i++) {
3643 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3644 		struct rx_agg_cmp *agg;
3645 
3646 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3647 				      GFP_KERNEL);
3648 		if (!rxr->rx_tpa)
3649 			return -ENOMEM;
3650 
3651 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3652 			continue;
3653 		for (j = 0; j < bp->max_tpa; j++) {
3654 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3655 			if (!agg)
3656 				return -ENOMEM;
3657 			rxr->rx_tpa[j].agg_arr = agg;
3658 		}
3659 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3660 					      GFP_KERNEL);
3661 		if (!rxr->rx_tpa_idx_map)
3662 			return -ENOMEM;
3663 	}
3664 	return 0;
3665 }
3666 
3667 static void bnxt_free_rx_rings(struct bnxt *bp)
3668 {
3669 	int i;
3670 
3671 	if (!bp->rx_ring)
3672 		return;
3673 
3674 	bnxt_free_tpa_info(bp);
3675 	for (i = 0; i < bp->rx_nr_rings; i++) {
3676 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3677 		struct bnxt_ring_struct *ring;
3678 
3679 		if (rxr->xdp_prog)
3680 			bpf_prog_put(rxr->xdp_prog);
3681 
3682 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3683 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3684 
3685 		page_pool_destroy(rxr->page_pool);
3686 		if (rxr->page_pool != rxr->head_pool)
3687 			page_pool_destroy(rxr->head_pool);
3688 		rxr->page_pool = rxr->head_pool = NULL;
3689 
3690 		kfree(rxr->rx_agg_bmap);
3691 		rxr->rx_agg_bmap = NULL;
3692 
3693 		ring = &rxr->rx_ring_struct;
3694 		bnxt_free_ring(bp, &ring->ring_mem);
3695 
3696 		ring = &rxr->rx_agg_ring_struct;
3697 		bnxt_free_ring(bp, &ring->ring_mem);
3698 	}
3699 }
3700 
3701 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3702 				   struct bnxt_rx_ring_info *rxr,
3703 				   int numa_node)
3704 {
3705 	struct page_pool_params pp = { 0 };
3706 	struct page_pool *pool;
3707 
3708 	pp.pool_size = bp->rx_agg_ring_size;
3709 	if (BNXT_RX_PAGE_MODE(bp))
3710 		pp.pool_size += bp->rx_ring_size;
3711 	pp.nid = numa_node;
3712 	pp.napi = &rxr->bnapi->napi;
3713 	pp.netdev = bp->dev;
3714 	pp.dev = &bp->pdev->dev;
3715 	pp.dma_dir = bp->rx_dir;
3716 	pp.max_len = PAGE_SIZE;
3717 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3718 
3719 	pool = page_pool_create(&pp);
3720 	if (IS_ERR(pool))
3721 		return PTR_ERR(pool);
3722 	rxr->page_pool = pool;
3723 
3724 	if (bnxt_separate_head_pool()) {
3725 		pp.pool_size = max(bp->rx_ring_size, 1024);
3726 		pool = page_pool_create(&pp);
3727 		if (IS_ERR(pool))
3728 			goto err_destroy_pp;
3729 	}
3730 	rxr->head_pool = pool;
3731 
3732 	return 0;
3733 
3734 err_destroy_pp:
3735 	page_pool_destroy(rxr->page_pool);
3736 	rxr->page_pool = NULL;
3737 	return PTR_ERR(pool);
3738 }
3739 
3740 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3741 {
3742 	int numa_node = dev_to_node(&bp->pdev->dev);
3743 	int i, rc = 0, agg_rings = 0, cpu;
3744 
3745 	if (!bp->rx_ring)
3746 		return -ENOMEM;
3747 
3748 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3749 		agg_rings = 1;
3750 
3751 	for (i = 0; i < bp->rx_nr_rings; i++) {
3752 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3753 		struct bnxt_ring_struct *ring;
3754 		int cpu_node;
3755 
3756 		ring = &rxr->rx_ring_struct;
3757 
3758 		cpu = cpumask_local_spread(i, numa_node);
3759 		cpu_node = cpu_to_node(cpu);
3760 		netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n",
3761 			   i, cpu_node);
3762 		rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node);
3763 		if (rc)
3764 			return rc;
3765 
3766 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3767 		if (rc < 0)
3768 			return rc;
3769 
3770 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3771 						MEM_TYPE_PAGE_POOL,
3772 						rxr->page_pool);
3773 		if (rc) {
3774 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3775 			return rc;
3776 		}
3777 
3778 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3779 		if (rc)
3780 			return rc;
3781 
3782 		ring->grp_idx = i;
3783 		if (agg_rings) {
3784 			u16 mem_size;
3785 
3786 			ring = &rxr->rx_agg_ring_struct;
3787 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3788 			if (rc)
3789 				return rc;
3790 
3791 			ring->grp_idx = i;
3792 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3793 			mem_size = rxr->rx_agg_bmap_size / 8;
3794 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3795 			if (!rxr->rx_agg_bmap)
3796 				return -ENOMEM;
3797 		}
3798 	}
3799 	if (bp->flags & BNXT_FLAG_TPA)
3800 		rc = bnxt_alloc_tpa_info(bp);
3801 	return rc;
3802 }
3803 
3804 static void bnxt_free_tx_rings(struct bnxt *bp)
3805 {
3806 	int i;
3807 	struct pci_dev *pdev = bp->pdev;
3808 
3809 	if (!bp->tx_ring)
3810 		return;
3811 
3812 	for (i = 0; i < bp->tx_nr_rings; i++) {
3813 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3814 		struct bnxt_ring_struct *ring;
3815 
3816 		if (txr->tx_push) {
3817 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3818 					  txr->tx_push, txr->tx_push_mapping);
3819 			txr->tx_push = NULL;
3820 		}
3821 
3822 		ring = &txr->tx_ring_struct;
3823 
3824 		bnxt_free_ring(bp, &ring->ring_mem);
3825 	}
3826 }
3827 
3828 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3829 	((tc) * (bp)->tx_nr_rings_per_tc)
3830 
3831 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3832 	((tx) % (bp)->tx_nr_rings_per_tc)
3833 
3834 #define BNXT_RING_TO_TC(bp, tx)		\
3835 	((tx) / (bp)->tx_nr_rings_per_tc)
3836 
3837 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3838 {
3839 	int i, j, rc;
3840 	struct pci_dev *pdev = bp->pdev;
3841 
3842 	bp->tx_push_size = 0;
3843 	if (bp->tx_push_thresh) {
3844 		int push_size;
3845 
3846 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3847 					bp->tx_push_thresh);
3848 
3849 		if (push_size > 256) {
3850 			push_size = 0;
3851 			bp->tx_push_thresh = 0;
3852 		}
3853 
3854 		bp->tx_push_size = push_size;
3855 	}
3856 
3857 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3858 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3859 		struct bnxt_ring_struct *ring;
3860 		u8 qidx;
3861 
3862 		ring = &txr->tx_ring_struct;
3863 
3864 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3865 		if (rc)
3866 			return rc;
3867 
3868 		ring->grp_idx = txr->bnapi->index;
3869 		if (bp->tx_push_size) {
3870 			dma_addr_t mapping;
3871 
3872 			/* One pre-allocated DMA buffer to backup
3873 			 * TX push operation
3874 			 */
3875 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3876 						bp->tx_push_size,
3877 						&txr->tx_push_mapping,
3878 						GFP_KERNEL);
3879 
3880 			if (!txr->tx_push)
3881 				return -ENOMEM;
3882 
3883 			mapping = txr->tx_push_mapping +
3884 				sizeof(struct tx_push_bd);
3885 			txr->data_mapping = cpu_to_le64(mapping);
3886 		}
3887 		qidx = bp->tc_to_qidx[j];
3888 		ring->queue_id = bp->q_info[qidx].queue_id;
3889 		spin_lock_init(&txr->xdp_tx_lock);
3890 		if (i < bp->tx_nr_rings_xdp)
3891 			continue;
3892 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3893 			j++;
3894 	}
3895 	return 0;
3896 }
3897 
3898 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3899 {
3900 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3901 
3902 	kfree(cpr->cp_desc_ring);
3903 	cpr->cp_desc_ring = NULL;
3904 	ring->ring_mem.pg_arr = NULL;
3905 	kfree(cpr->cp_desc_mapping);
3906 	cpr->cp_desc_mapping = NULL;
3907 	ring->ring_mem.dma_arr = NULL;
3908 }
3909 
3910 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3911 {
3912 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3913 	if (!cpr->cp_desc_ring)
3914 		return -ENOMEM;
3915 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3916 				       GFP_KERNEL);
3917 	if (!cpr->cp_desc_mapping)
3918 		return -ENOMEM;
3919 	return 0;
3920 }
3921 
3922 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3923 {
3924 	int i;
3925 
3926 	if (!bp->bnapi)
3927 		return;
3928 	for (i = 0; i < bp->cp_nr_rings; i++) {
3929 		struct bnxt_napi *bnapi = bp->bnapi[i];
3930 
3931 		if (!bnapi)
3932 			continue;
3933 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3934 	}
3935 }
3936 
3937 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3938 {
3939 	int i, n = bp->cp_nr_pages;
3940 
3941 	for (i = 0; i < bp->cp_nr_rings; i++) {
3942 		struct bnxt_napi *bnapi = bp->bnapi[i];
3943 		int rc;
3944 
3945 		if (!bnapi)
3946 			continue;
3947 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3948 		if (rc)
3949 			return rc;
3950 	}
3951 	return 0;
3952 }
3953 
3954 static void bnxt_free_cp_rings(struct bnxt *bp)
3955 {
3956 	int i;
3957 
3958 	if (!bp->bnapi)
3959 		return;
3960 
3961 	for (i = 0; i < bp->cp_nr_rings; i++) {
3962 		struct bnxt_napi *bnapi = bp->bnapi[i];
3963 		struct bnxt_cp_ring_info *cpr;
3964 		struct bnxt_ring_struct *ring;
3965 		int j;
3966 
3967 		if (!bnapi)
3968 			continue;
3969 
3970 		cpr = &bnapi->cp_ring;
3971 		ring = &cpr->cp_ring_struct;
3972 
3973 		bnxt_free_ring(bp, &ring->ring_mem);
3974 
3975 		if (!cpr->cp_ring_arr)
3976 			continue;
3977 
3978 		for (j = 0; j < cpr->cp_ring_count; j++) {
3979 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3980 
3981 			ring = &cpr2->cp_ring_struct;
3982 			bnxt_free_ring(bp, &ring->ring_mem);
3983 			bnxt_free_cp_arrays(cpr2);
3984 		}
3985 		kfree(cpr->cp_ring_arr);
3986 		cpr->cp_ring_arr = NULL;
3987 		cpr->cp_ring_count = 0;
3988 	}
3989 }
3990 
3991 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3992 				  struct bnxt_cp_ring_info *cpr)
3993 {
3994 	struct bnxt_ring_mem_info *rmem;
3995 	struct bnxt_ring_struct *ring;
3996 	int rc;
3997 
3998 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3999 	if (rc) {
4000 		bnxt_free_cp_arrays(cpr);
4001 		return -ENOMEM;
4002 	}
4003 	ring = &cpr->cp_ring_struct;
4004 	rmem = &ring->ring_mem;
4005 	rmem->nr_pages = bp->cp_nr_pages;
4006 	rmem->page_size = HW_CMPD_RING_SIZE;
4007 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
4008 	rmem->dma_arr = cpr->cp_desc_mapping;
4009 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
4010 	rc = bnxt_alloc_ring(bp, rmem);
4011 	if (rc) {
4012 		bnxt_free_ring(bp, rmem);
4013 		bnxt_free_cp_arrays(cpr);
4014 	}
4015 	return rc;
4016 }
4017 
4018 static int bnxt_alloc_cp_rings(struct bnxt *bp)
4019 {
4020 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
4021 	int i, j, rc, ulp_msix;
4022 	int tcs = bp->num_tc;
4023 
4024 	if (!tcs)
4025 		tcs = 1;
4026 	ulp_msix = bnxt_get_ulp_msix_num(bp);
4027 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4028 		struct bnxt_napi *bnapi = bp->bnapi[i];
4029 		struct bnxt_cp_ring_info *cpr, *cpr2;
4030 		struct bnxt_ring_struct *ring;
4031 		int cp_count = 0, k;
4032 		int rx = 0, tx = 0;
4033 
4034 		if (!bnapi)
4035 			continue;
4036 
4037 		cpr = &bnapi->cp_ring;
4038 		cpr->bnapi = bnapi;
4039 		ring = &cpr->cp_ring_struct;
4040 
4041 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
4042 		if (rc)
4043 			return rc;
4044 
4045 		ring->map_idx = ulp_msix + i;
4046 
4047 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4048 			continue;
4049 
4050 		if (i < bp->rx_nr_rings) {
4051 			cp_count++;
4052 			rx = 1;
4053 		}
4054 		if (i < bp->tx_nr_rings_xdp) {
4055 			cp_count++;
4056 			tx = 1;
4057 		} else if ((sh && i < bp->tx_nr_rings) ||
4058 			 (!sh && i >= bp->rx_nr_rings)) {
4059 			cp_count += tcs;
4060 			tx = 1;
4061 		}
4062 
4063 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
4064 					   GFP_KERNEL);
4065 		if (!cpr->cp_ring_arr)
4066 			return -ENOMEM;
4067 		cpr->cp_ring_count = cp_count;
4068 
4069 		for (k = 0; k < cp_count; k++) {
4070 			cpr2 = &cpr->cp_ring_arr[k];
4071 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
4072 			if (rc)
4073 				return rc;
4074 			cpr2->bnapi = bnapi;
4075 			cpr2->sw_stats = cpr->sw_stats;
4076 			cpr2->cp_idx = k;
4077 			if (!k && rx) {
4078 				bp->rx_ring[i].rx_cpr = cpr2;
4079 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
4080 			} else {
4081 				int n, tc = k - rx;
4082 
4083 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
4084 				bp->tx_ring[n].tx_cpr = cpr2;
4085 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
4086 			}
4087 		}
4088 		if (tx)
4089 			j++;
4090 	}
4091 	return 0;
4092 }
4093 
4094 static void bnxt_init_rx_ring_struct(struct bnxt *bp,
4095 				     struct bnxt_rx_ring_info *rxr)
4096 {
4097 	struct bnxt_ring_mem_info *rmem;
4098 	struct bnxt_ring_struct *ring;
4099 
4100 	ring = &rxr->rx_ring_struct;
4101 	rmem = &ring->ring_mem;
4102 	rmem->nr_pages = bp->rx_nr_pages;
4103 	rmem->page_size = HW_RXBD_RING_SIZE;
4104 	rmem->pg_arr = (void **)rxr->rx_desc_ring;
4105 	rmem->dma_arr = rxr->rx_desc_mapping;
4106 	rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4107 	rmem->vmem = (void **)&rxr->rx_buf_ring;
4108 
4109 	ring = &rxr->rx_agg_ring_struct;
4110 	rmem = &ring->ring_mem;
4111 	rmem->nr_pages = bp->rx_agg_nr_pages;
4112 	rmem->page_size = HW_RXBD_RING_SIZE;
4113 	rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4114 	rmem->dma_arr = rxr->rx_agg_desc_mapping;
4115 	rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4116 	rmem->vmem = (void **)&rxr->rx_agg_ring;
4117 }
4118 
4119 static void bnxt_reset_rx_ring_struct(struct bnxt *bp,
4120 				      struct bnxt_rx_ring_info *rxr)
4121 {
4122 	struct bnxt_ring_mem_info *rmem;
4123 	struct bnxt_ring_struct *ring;
4124 	int i;
4125 
4126 	rxr->page_pool->p.napi = NULL;
4127 	rxr->page_pool = NULL;
4128 	memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info));
4129 
4130 	ring = &rxr->rx_ring_struct;
4131 	rmem = &ring->ring_mem;
4132 	rmem->pg_tbl = NULL;
4133 	rmem->pg_tbl_map = 0;
4134 	for (i = 0; i < rmem->nr_pages; i++) {
4135 		rmem->pg_arr[i] = NULL;
4136 		rmem->dma_arr[i] = 0;
4137 	}
4138 	*rmem->vmem = NULL;
4139 
4140 	ring = &rxr->rx_agg_ring_struct;
4141 	rmem = &ring->ring_mem;
4142 	rmem->pg_tbl = NULL;
4143 	rmem->pg_tbl_map = 0;
4144 	for (i = 0; i < rmem->nr_pages; i++) {
4145 		rmem->pg_arr[i] = NULL;
4146 		rmem->dma_arr[i] = 0;
4147 	}
4148 	*rmem->vmem = NULL;
4149 }
4150 
4151 static void bnxt_init_ring_struct(struct bnxt *bp)
4152 {
4153 	int i, j;
4154 
4155 	for (i = 0; i < bp->cp_nr_rings; i++) {
4156 		struct bnxt_napi *bnapi = bp->bnapi[i];
4157 		struct bnxt_ring_mem_info *rmem;
4158 		struct bnxt_cp_ring_info *cpr;
4159 		struct bnxt_rx_ring_info *rxr;
4160 		struct bnxt_tx_ring_info *txr;
4161 		struct bnxt_ring_struct *ring;
4162 
4163 		if (!bnapi)
4164 			continue;
4165 
4166 		cpr = &bnapi->cp_ring;
4167 		ring = &cpr->cp_ring_struct;
4168 		rmem = &ring->ring_mem;
4169 		rmem->nr_pages = bp->cp_nr_pages;
4170 		rmem->page_size = HW_CMPD_RING_SIZE;
4171 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
4172 		rmem->dma_arr = cpr->cp_desc_mapping;
4173 		rmem->vmem_size = 0;
4174 
4175 		rxr = bnapi->rx_ring;
4176 		if (!rxr)
4177 			goto skip_rx;
4178 
4179 		ring = &rxr->rx_ring_struct;
4180 		rmem = &ring->ring_mem;
4181 		rmem->nr_pages = bp->rx_nr_pages;
4182 		rmem->page_size = HW_RXBD_RING_SIZE;
4183 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
4184 		rmem->dma_arr = rxr->rx_desc_mapping;
4185 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4186 		rmem->vmem = (void **)&rxr->rx_buf_ring;
4187 
4188 		ring = &rxr->rx_agg_ring_struct;
4189 		rmem = &ring->ring_mem;
4190 		rmem->nr_pages = bp->rx_agg_nr_pages;
4191 		rmem->page_size = HW_RXBD_RING_SIZE;
4192 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4193 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
4194 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4195 		rmem->vmem = (void **)&rxr->rx_agg_ring;
4196 
4197 skip_rx:
4198 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4199 			ring = &txr->tx_ring_struct;
4200 			rmem = &ring->ring_mem;
4201 			rmem->nr_pages = bp->tx_nr_pages;
4202 			rmem->page_size = HW_TXBD_RING_SIZE;
4203 			rmem->pg_arr = (void **)txr->tx_desc_ring;
4204 			rmem->dma_arr = txr->tx_desc_mapping;
4205 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
4206 			rmem->vmem = (void **)&txr->tx_buf_ring;
4207 		}
4208 	}
4209 }
4210 
4211 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
4212 {
4213 	int i;
4214 	u32 prod;
4215 	struct rx_bd **rx_buf_ring;
4216 
4217 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
4218 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
4219 		int j;
4220 		struct rx_bd *rxbd;
4221 
4222 		rxbd = rx_buf_ring[i];
4223 		if (!rxbd)
4224 			continue;
4225 
4226 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
4227 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
4228 			rxbd->rx_bd_opaque = prod;
4229 		}
4230 	}
4231 }
4232 
4233 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp,
4234 				       struct bnxt_rx_ring_info *rxr,
4235 				       int ring_nr)
4236 {
4237 	u32 prod;
4238 	int i;
4239 
4240 	prod = rxr->rx_prod;
4241 	for (i = 0; i < bp->rx_ring_size; i++) {
4242 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
4243 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
4244 				    ring_nr, i, bp->rx_ring_size);
4245 			break;
4246 		}
4247 		prod = NEXT_RX(prod);
4248 	}
4249 	rxr->rx_prod = prod;
4250 }
4251 
4252 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp,
4253 					struct bnxt_rx_ring_info *rxr,
4254 					int ring_nr)
4255 {
4256 	u32 prod;
4257 	int i;
4258 
4259 	prod = rxr->rx_agg_prod;
4260 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4261 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4262 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n",
4263 				    ring_nr, i, bp->rx_ring_size);
4264 			break;
4265 		}
4266 		prod = NEXT_RX_AGG(prod);
4267 	}
4268 	rxr->rx_agg_prod = prod;
4269 }
4270 
4271 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
4272 {
4273 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
4274 	int i;
4275 
4276 	bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr);
4277 
4278 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
4279 		return 0;
4280 
4281 	bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr);
4282 
4283 	if (rxr->rx_tpa) {
4284 		dma_addr_t mapping;
4285 		u8 *data;
4286 
4287 		for (i = 0; i < bp->max_tpa; i++) {
4288 			data = __bnxt_alloc_rx_frag(bp, &mapping, rxr,
4289 						    GFP_KERNEL);
4290 			if (!data)
4291 				return -ENOMEM;
4292 
4293 			rxr->rx_tpa[i].data = data;
4294 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4295 			rxr->rx_tpa[i].mapping = mapping;
4296 		}
4297 	}
4298 	return 0;
4299 }
4300 
4301 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp,
4302 				       struct bnxt_rx_ring_info *rxr)
4303 {
4304 	struct bnxt_ring_struct *ring;
4305 	u32 type;
4306 
4307 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4308 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4309 
4310 	if (NET_IP_ALIGN == 2)
4311 		type |= RX_BD_FLAGS_SOP;
4312 
4313 	ring = &rxr->rx_ring_struct;
4314 	bnxt_init_rxbd_pages(ring, type);
4315 	ring->fw_ring_id = INVALID_HW_RING_ID;
4316 }
4317 
4318 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp,
4319 					   struct bnxt_rx_ring_info *rxr)
4320 {
4321 	struct bnxt_ring_struct *ring;
4322 	u32 type;
4323 
4324 	ring = &rxr->rx_agg_ring_struct;
4325 	ring->fw_ring_id = INVALID_HW_RING_ID;
4326 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4327 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4328 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4329 
4330 		bnxt_init_rxbd_pages(ring, type);
4331 	}
4332 }
4333 
4334 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4335 {
4336 	struct bnxt_rx_ring_info *rxr;
4337 
4338 	rxr = &bp->rx_ring[ring_nr];
4339 	bnxt_init_one_rx_ring_rxbd(bp, rxr);
4340 
4341 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4342 			     &rxr->bnapi->napi);
4343 
4344 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4345 		bpf_prog_add(bp->xdp_prog, 1);
4346 		rxr->xdp_prog = bp->xdp_prog;
4347 	}
4348 
4349 	bnxt_init_one_rx_agg_ring_rxbd(bp, rxr);
4350 
4351 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4352 }
4353 
4354 static void bnxt_init_cp_rings(struct bnxt *bp)
4355 {
4356 	int i, j;
4357 
4358 	for (i = 0; i < bp->cp_nr_rings; i++) {
4359 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4360 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4361 
4362 		ring->fw_ring_id = INVALID_HW_RING_ID;
4363 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4364 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4365 		if (!cpr->cp_ring_arr)
4366 			continue;
4367 		for (j = 0; j < cpr->cp_ring_count; j++) {
4368 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4369 
4370 			ring = &cpr2->cp_ring_struct;
4371 			ring->fw_ring_id = INVALID_HW_RING_ID;
4372 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4373 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4374 		}
4375 	}
4376 }
4377 
4378 static int bnxt_init_rx_rings(struct bnxt *bp)
4379 {
4380 	int i, rc = 0;
4381 
4382 	if (BNXT_RX_PAGE_MODE(bp)) {
4383 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4384 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4385 	} else {
4386 		bp->rx_offset = BNXT_RX_OFFSET;
4387 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4388 	}
4389 
4390 	for (i = 0; i < bp->rx_nr_rings; i++) {
4391 		rc = bnxt_init_one_rx_ring(bp, i);
4392 		if (rc)
4393 			break;
4394 	}
4395 
4396 	return rc;
4397 }
4398 
4399 static int bnxt_init_tx_rings(struct bnxt *bp)
4400 {
4401 	u16 i;
4402 
4403 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4404 				   BNXT_MIN_TX_DESC_CNT);
4405 
4406 	for (i = 0; i < bp->tx_nr_rings; i++) {
4407 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4408 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4409 
4410 		ring->fw_ring_id = INVALID_HW_RING_ID;
4411 
4412 		if (i >= bp->tx_nr_rings_xdp)
4413 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4414 					     NETDEV_QUEUE_TYPE_TX,
4415 					     &txr->bnapi->napi);
4416 	}
4417 
4418 	return 0;
4419 }
4420 
4421 static void bnxt_free_ring_grps(struct bnxt *bp)
4422 {
4423 	kfree(bp->grp_info);
4424 	bp->grp_info = NULL;
4425 }
4426 
4427 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4428 {
4429 	int i;
4430 
4431 	if (irq_re_init) {
4432 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4433 				       sizeof(struct bnxt_ring_grp_info),
4434 				       GFP_KERNEL);
4435 		if (!bp->grp_info)
4436 			return -ENOMEM;
4437 	}
4438 	for (i = 0; i < bp->cp_nr_rings; i++) {
4439 		if (irq_re_init)
4440 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4441 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4442 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4443 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4444 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4445 	}
4446 	return 0;
4447 }
4448 
4449 static void bnxt_free_vnics(struct bnxt *bp)
4450 {
4451 	kfree(bp->vnic_info);
4452 	bp->vnic_info = NULL;
4453 	bp->nr_vnics = 0;
4454 }
4455 
4456 static int bnxt_alloc_vnics(struct bnxt *bp)
4457 {
4458 	int num_vnics = 1;
4459 
4460 #ifdef CONFIG_RFS_ACCEL
4461 	if (bp->flags & BNXT_FLAG_RFS) {
4462 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
4463 			num_vnics++;
4464 		else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4465 			num_vnics += bp->rx_nr_rings;
4466 	}
4467 #endif
4468 
4469 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4470 		num_vnics++;
4471 
4472 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4473 				GFP_KERNEL);
4474 	if (!bp->vnic_info)
4475 		return -ENOMEM;
4476 
4477 	bp->nr_vnics = num_vnics;
4478 	return 0;
4479 }
4480 
4481 static void bnxt_init_vnics(struct bnxt *bp)
4482 {
4483 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
4484 	int i;
4485 
4486 	for (i = 0; i < bp->nr_vnics; i++) {
4487 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4488 		int j;
4489 
4490 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4491 		vnic->vnic_id = i;
4492 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4493 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4494 
4495 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4496 
4497 		if (bp->vnic_info[i].rss_hash_key) {
4498 			if (i == BNXT_VNIC_DEFAULT) {
4499 				u8 *key = (void *)vnic->rss_hash_key;
4500 				int k;
4501 
4502 				if (!bp->rss_hash_key_valid &&
4503 				    !bp->rss_hash_key_updated) {
4504 					get_random_bytes(bp->rss_hash_key,
4505 							 HW_HASH_KEY_SIZE);
4506 					bp->rss_hash_key_updated = true;
4507 				}
4508 
4509 				memcpy(vnic->rss_hash_key, bp->rss_hash_key,
4510 				       HW_HASH_KEY_SIZE);
4511 
4512 				if (!bp->rss_hash_key_updated)
4513 					continue;
4514 
4515 				bp->rss_hash_key_updated = false;
4516 				bp->rss_hash_key_valid = true;
4517 
4518 				bp->toeplitz_prefix = 0;
4519 				for (k = 0; k < 8; k++) {
4520 					bp->toeplitz_prefix <<= 8;
4521 					bp->toeplitz_prefix |= key[k];
4522 				}
4523 			} else {
4524 				memcpy(vnic->rss_hash_key, vnic0->rss_hash_key,
4525 				       HW_HASH_KEY_SIZE);
4526 			}
4527 		}
4528 	}
4529 }
4530 
4531 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4532 {
4533 	int pages;
4534 
4535 	pages = ring_size / desc_per_pg;
4536 
4537 	if (!pages)
4538 		return 1;
4539 
4540 	pages++;
4541 
4542 	while (pages & (pages - 1))
4543 		pages++;
4544 
4545 	return pages;
4546 }
4547 
4548 void bnxt_set_tpa_flags(struct bnxt *bp)
4549 {
4550 	bp->flags &= ~BNXT_FLAG_TPA;
4551 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4552 		return;
4553 	if (bp->dev->features & NETIF_F_LRO)
4554 		bp->flags |= BNXT_FLAG_LRO;
4555 	else if (bp->dev->features & NETIF_F_GRO_HW)
4556 		bp->flags |= BNXT_FLAG_GRO;
4557 }
4558 
4559 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4560  * be set on entry.
4561  */
4562 void bnxt_set_ring_params(struct bnxt *bp)
4563 {
4564 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4565 	u32 agg_factor = 0, agg_ring_size = 0;
4566 
4567 	/* 8 for CRC and VLAN */
4568 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4569 
4570 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4571 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4572 
4573 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4574 	ring_size = bp->rx_ring_size;
4575 	bp->rx_agg_ring_size = 0;
4576 	bp->rx_agg_nr_pages = 0;
4577 
4578 	if (bp->flags & BNXT_FLAG_TPA)
4579 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4580 
4581 	bp->flags &= ~BNXT_FLAG_JUMBO;
4582 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4583 		u32 jumbo_factor;
4584 
4585 		bp->flags |= BNXT_FLAG_JUMBO;
4586 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4587 		if (jumbo_factor > agg_factor)
4588 			agg_factor = jumbo_factor;
4589 	}
4590 	if (agg_factor) {
4591 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4592 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4593 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4594 				    bp->rx_ring_size, ring_size);
4595 			bp->rx_ring_size = ring_size;
4596 		}
4597 		agg_ring_size = ring_size * agg_factor;
4598 
4599 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4600 							RX_DESC_CNT);
4601 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4602 			u32 tmp = agg_ring_size;
4603 
4604 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4605 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4606 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4607 				    tmp, agg_ring_size);
4608 		}
4609 		bp->rx_agg_ring_size = agg_ring_size;
4610 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4611 
4612 		if (BNXT_RX_PAGE_MODE(bp)) {
4613 			rx_space = PAGE_SIZE;
4614 			rx_size = PAGE_SIZE -
4615 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4616 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4617 		} else {
4618 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4619 			rx_space = rx_size + NET_SKB_PAD +
4620 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4621 		}
4622 	}
4623 
4624 	bp->rx_buf_use_size = rx_size;
4625 	bp->rx_buf_size = rx_space;
4626 
4627 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4628 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4629 
4630 	ring_size = bp->tx_ring_size;
4631 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4632 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4633 
4634 	max_rx_cmpl = bp->rx_ring_size;
4635 	/* MAX TPA needs to be added because TPA_START completions are
4636 	 * immediately recycled, so the TPA completions are not bound by
4637 	 * the RX ring size.
4638 	 */
4639 	if (bp->flags & BNXT_FLAG_TPA)
4640 		max_rx_cmpl += bp->max_tpa;
4641 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4642 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4643 	bp->cp_ring_size = ring_size;
4644 
4645 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4646 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4647 		bp->cp_nr_pages = MAX_CP_PAGES;
4648 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4649 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4650 			    ring_size, bp->cp_ring_size);
4651 	}
4652 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4653 	bp->cp_ring_mask = bp->cp_bit - 1;
4654 }
4655 
4656 /* Changing allocation mode of RX rings.
4657  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4658  */
4659 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4660 {
4661 	struct net_device *dev = bp->dev;
4662 
4663 	if (page_mode) {
4664 		bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS);
4665 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4666 
4667 		if (bp->xdp_prog->aux->xdp_has_frags)
4668 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4669 		else
4670 			dev->max_mtu =
4671 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4672 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4673 			bp->flags |= BNXT_FLAG_JUMBO;
4674 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4675 		} else {
4676 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4677 			bp->rx_skb_func = bnxt_rx_page_skb;
4678 		}
4679 		bp->rx_dir = DMA_BIDIRECTIONAL;
4680 		/* Disable LRO or GRO_HW */
4681 		netdev_update_features(dev);
4682 	} else {
4683 		dev->max_mtu = bp->max_mtu;
4684 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4685 		bp->rx_dir = DMA_FROM_DEVICE;
4686 		bp->rx_skb_func = bnxt_rx_skb;
4687 	}
4688 	return 0;
4689 }
4690 
4691 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4692 {
4693 	int i;
4694 	struct bnxt_vnic_info *vnic;
4695 	struct pci_dev *pdev = bp->pdev;
4696 
4697 	if (!bp->vnic_info)
4698 		return;
4699 
4700 	for (i = 0; i < bp->nr_vnics; i++) {
4701 		vnic = &bp->vnic_info[i];
4702 
4703 		kfree(vnic->fw_grp_ids);
4704 		vnic->fw_grp_ids = NULL;
4705 
4706 		kfree(vnic->uc_list);
4707 		vnic->uc_list = NULL;
4708 
4709 		if (vnic->mc_list) {
4710 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4711 					  vnic->mc_list, vnic->mc_list_mapping);
4712 			vnic->mc_list = NULL;
4713 		}
4714 
4715 		if (vnic->rss_table) {
4716 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4717 					  vnic->rss_table,
4718 					  vnic->rss_table_dma_addr);
4719 			vnic->rss_table = NULL;
4720 		}
4721 
4722 		vnic->rss_hash_key = NULL;
4723 		vnic->flags = 0;
4724 	}
4725 }
4726 
4727 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4728 {
4729 	int i, rc = 0, size;
4730 	struct bnxt_vnic_info *vnic;
4731 	struct pci_dev *pdev = bp->pdev;
4732 	int max_rings;
4733 
4734 	for (i = 0; i < bp->nr_vnics; i++) {
4735 		vnic = &bp->vnic_info[i];
4736 
4737 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4738 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4739 
4740 			if (mem_size > 0) {
4741 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4742 				if (!vnic->uc_list) {
4743 					rc = -ENOMEM;
4744 					goto out;
4745 				}
4746 			}
4747 		}
4748 
4749 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4750 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4751 			vnic->mc_list =
4752 				dma_alloc_coherent(&pdev->dev,
4753 						   vnic->mc_list_size,
4754 						   &vnic->mc_list_mapping,
4755 						   GFP_KERNEL);
4756 			if (!vnic->mc_list) {
4757 				rc = -ENOMEM;
4758 				goto out;
4759 			}
4760 		}
4761 
4762 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4763 			goto vnic_skip_grps;
4764 
4765 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4766 			max_rings = bp->rx_nr_rings;
4767 		else
4768 			max_rings = 1;
4769 
4770 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4771 		if (!vnic->fw_grp_ids) {
4772 			rc = -ENOMEM;
4773 			goto out;
4774 		}
4775 vnic_skip_grps:
4776 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4777 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4778 			continue;
4779 
4780 		/* Allocate rss table and hash key */
4781 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4782 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4783 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4784 
4785 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4786 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4787 						     vnic->rss_table_size,
4788 						     &vnic->rss_table_dma_addr,
4789 						     GFP_KERNEL);
4790 		if (!vnic->rss_table) {
4791 			rc = -ENOMEM;
4792 			goto out;
4793 		}
4794 
4795 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4796 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4797 	}
4798 	return 0;
4799 
4800 out:
4801 	return rc;
4802 }
4803 
4804 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4805 {
4806 	struct bnxt_hwrm_wait_token *token;
4807 
4808 	dma_pool_destroy(bp->hwrm_dma_pool);
4809 	bp->hwrm_dma_pool = NULL;
4810 
4811 	rcu_read_lock();
4812 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4813 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4814 	rcu_read_unlock();
4815 }
4816 
4817 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4818 {
4819 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4820 					    BNXT_HWRM_DMA_SIZE,
4821 					    BNXT_HWRM_DMA_ALIGN, 0);
4822 	if (!bp->hwrm_dma_pool)
4823 		return -ENOMEM;
4824 
4825 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4826 
4827 	return 0;
4828 }
4829 
4830 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4831 {
4832 	kfree(stats->hw_masks);
4833 	stats->hw_masks = NULL;
4834 	kfree(stats->sw_stats);
4835 	stats->sw_stats = NULL;
4836 	if (stats->hw_stats) {
4837 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4838 				  stats->hw_stats_map);
4839 		stats->hw_stats = NULL;
4840 	}
4841 }
4842 
4843 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4844 				bool alloc_masks)
4845 {
4846 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4847 					     &stats->hw_stats_map, GFP_KERNEL);
4848 	if (!stats->hw_stats)
4849 		return -ENOMEM;
4850 
4851 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4852 	if (!stats->sw_stats)
4853 		goto stats_mem_err;
4854 
4855 	if (alloc_masks) {
4856 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4857 		if (!stats->hw_masks)
4858 			goto stats_mem_err;
4859 	}
4860 	return 0;
4861 
4862 stats_mem_err:
4863 	bnxt_free_stats_mem(bp, stats);
4864 	return -ENOMEM;
4865 }
4866 
4867 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4868 {
4869 	int i;
4870 
4871 	for (i = 0; i < count; i++)
4872 		mask_arr[i] = mask;
4873 }
4874 
4875 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4876 {
4877 	int i;
4878 
4879 	for (i = 0; i < count; i++)
4880 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4881 }
4882 
4883 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4884 				    struct bnxt_stats_mem *stats)
4885 {
4886 	struct hwrm_func_qstats_ext_output *resp;
4887 	struct hwrm_func_qstats_ext_input *req;
4888 	__le64 *hw_masks;
4889 	int rc;
4890 
4891 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4892 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4893 		return -EOPNOTSUPP;
4894 
4895 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4896 	if (rc)
4897 		return rc;
4898 
4899 	req->fid = cpu_to_le16(0xffff);
4900 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4901 
4902 	resp = hwrm_req_hold(bp, req);
4903 	rc = hwrm_req_send(bp, req);
4904 	if (!rc) {
4905 		hw_masks = &resp->rx_ucast_pkts;
4906 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4907 	}
4908 	hwrm_req_drop(bp, req);
4909 	return rc;
4910 }
4911 
4912 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4913 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4914 
4915 static void bnxt_init_stats(struct bnxt *bp)
4916 {
4917 	struct bnxt_napi *bnapi = bp->bnapi[0];
4918 	struct bnxt_cp_ring_info *cpr;
4919 	struct bnxt_stats_mem *stats;
4920 	__le64 *rx_stats, *tx_stats;
4921 	int rc, rx_count, tx_count;
4922 	u64 *rx_masks, *tx_masks;
4923 	u64 mask;
4924 	u8 flags;
4925 
4926 	cpr = &bnapi->cp_ring;
4927 	stats = &cpr->stats;
4928 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4929 	if (rc) {
4930 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4931 			mask = (1ULL << 48) - 1;
4932 		else
4933 			mask = -1ULL;
4934 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4935 	}
4936 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4937 		stats = &bp->port_stats;
4938 		rx_stats = stats->hw_stats;
4939 		rx_masks = stats->hw_masks;
4940 		rx_count = sizeof(struct rx_port_stats) / 8;
4941 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4942 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4943 		tx_count = sizeof(struct tx_port_stats) / 8;
4944 
4945 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4946 		rc = bnxt_hwrm_port_qstats(bp, flags);
4947 		if (rc) {
4948 			mask = (1ULL << 40) - 1;
4949 
4950 			bnxt_fill_masks(rx_masks, mask, rx_count);
4951 			bnxt_fill_masks(tx_masks, mask, tx_count);
4952 		} else {
4953 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4954 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4955 			bnxt_hwrm_port_qstats(bp, 0);
4956 		}
4957 	}
4958 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4959 		stats = &bp->rx_port_stats_ext;
4960 		rx_stats = stats->hw_stats;
4961 		rx_masks = stats->hw_masks;
4962 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4963 		stats = &bp->tx_port_stats_ext;
4964 		tx_stats = stats->hw_stats;
4965 		tx_masks = stats->hw_masks;
4966 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4967 
4968 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4969 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4970 		if (rc) {
4971 			mask = (1ULL << 40) - 1;
4972 
4973 			bnxt_fill_masks(rx_masks, mask, rx_count);
4974 			if (tx_stats)
4975 				bnxt_fill_masks(tx_masks, mask, tx_count);
4976 		} else {
4977 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4978 			if (tx_stats)
4979 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4980 						   tx_count);
4981 			bnxt_hwrm_port_qstats_ext(bp, 0);
4982 		}
4983 	}
4984 }
4985 
4986 static void bnxt_free_port_stats(struct bnxt *bp)
4987 {
4988 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4989 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4990 
4991 	bnxt_free_stats_mem(bp, &bp->port_stats);
4992 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4993 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4994 }
4995 
4996 static void bnxt_free_ring_stats(struct bnxt *bp)
4997 {
4998 	int i;
4999 
5000 	if (!bp->bnapi)
5001 		return;
5002 
5003 	for (i = 0; i < bp->cp_nr_rings; i++) {
5004 		struct bnxt_napi *bnapi = bp->bnapi[i];
5005 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5006 
5007 		bnxt_free_stats_mem(bp, &cpr->stats);
5008 
5009 		kfree(cpr->sw_stats);
5010 		cpr->sw_stats = NULL;
5011 	}
5012 }
5013 
5014 static int bnxt_alloc_stats(struct bnxt *bp)
5015 {
5016 	u32 size, i;
5017 	int rc;
5018 
5019 	size = bp->hw_ring_stats_size;
5020 
5021 	for (i = 0; i < bp->cp_nr_rings; i++) {
5022 		struct bnxt_napi *bnapi = bp->bnapi[i];
5023 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5024 
5025 		cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL);
5026 		if (!cpr->sw_stats)
5027 			return -ENOMEM;
5028 
5029 		cpr->stats.len = size;
5030 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
5031 		if (rc)
5032 			return rc;
5033 
5034 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5035 	}
5036 
5037 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
5038 		return 0;
5039 
5040 	if (bp->port_stats.hw_stats)
5041 		goto alloc_ext_stats;
5042 
5043 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
5044 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
5045 	if (rc)
5046 		return rc;
5047 
5048 	bp->flags |= BNXT_FLAG_PORT_STATS;
5049 
5050 alloc_ext_stats:
5051 	/* Display extended statistics only if FW supports it */
5052 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
5053 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
5054 			return 0;
5055 
5056 	if (bp->rx_port_stats_ext.hw_stats)
5057 		goto alloc_tx_ext_stats;
5058 
5059 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
5060 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
5061 	/* Extended stats are optional */
5062 	if (rc)
5063 		return 0;
5064 
5065 alloc_tx_ext_stats:
5066 	if (bp->tx_port_stats_ext.hw_stats)
5067 		return 0;
5068 
5069 	if (bp->hwrm_spec_code >= 0x10902 ||
5070 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
5071 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
5072 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
5073 		/* Extended stats are optional */
5074 		if (rc)
5075 			return 0;
5076 	}
5077 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
5078 	return 0;
5079 }
5080 
5081 static void bnxt_clear_ring_indices(struct bnxt *bp)
5082 {
5083 	int i, j;
5084 
5085 	if (!bp->bnapi)
5086 		return;
5087 
5088 	for (i = 0; i < bp->cp_nr_rings; i++) {
5089 		struct bnxt_napi *bnapi = bp->bnapi[i];
5090 		struct bnxt_cp_ring_info *cpr;
5091 		struct bnxt_rx_ring_info *rxr;
5092 		struct bnxt_tx_ring_info *txr;
5093 
5094 		if (!bnapi)
5095 			continue;
5096 
5097 		cpr = &bnapi->cp_ring;
5098 		cpr->cp_raw_cons = 0;
5099 
5100 		bnxt_for_each_napi_tx(j, bnapi, txr) {
5101 			txr->tx_prod = 0;
5102 			txr->tx_cons = 0;
5103 			txr->tx_hw_cons = 0;
5104 		}
5105 
5106 		rxr = bnapi->rx_ring;
5107 		if (rxr) {
5108 			rxr->rx_prod = 0;
5109 			rxr->rx_agg_prod = 0;
5110 			rxr->rx_sw_agg_prod = 0;
5111 			rxr->rx_next_cons = 0;
5112 		}
5113 		bnapi->events = 0;
5114 	}
5115 }
5116 
5117 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5118 {
5119 	u8 type = fltr->type, flags = fltr->flags;
5120 
5121 	INIT_LIST_HEAD(&fltr->list);
5122 	if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) ||
5123 	    (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING))
5124 		list_add_tail(&fltr->list, &bp->usr_fltr_list);
5125 }
5126 
5127 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5128 {
5129 	if (!list_empty(&fltr->list))
5130 		list_del_init(&fltr->list);
5131 }
5132 
5133 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all)
5134 {
5135 	struct bnxt_filter_base *usr_fltr, *tmp;
5136 
5137 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
5138 		if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2)
5139 			continue;
5140 		bnxt_del_one_usr_fltr(bp, usr_fltr);
5141 	}
5142 }
5143 
5144 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5145 {
5146 	hlist_del(&fltr->hash);
5147 	bnxt_del_one_usr_fltr(bp, fltr);
5148 	if (fltr->flags) {
5149 		clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5150 		bp->ntp_fltr_count--;
5151 	}
5152 	kfree(fltr);
5153 }
5154 
5155 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
5156 {
5157 	int i;
5158 
5159 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
5160 	 * safe to delete the hash table.
5161 	 */
5162 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5163 		struct hlist_head *head;
5164 		struct hlist_node *tmp;
5165 		struct bnxt_ntuple_filter *fltr;
5166 
5167 		head = &bp->ntp_fltr_hash_tbl[i];
5168 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5169 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
5170 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5171 				     !list_empty(&fltr->base.list)))
5172 				continue;
5173 			bnxt_del_fltr(bp, &fltr->base);
5174 		}
5175 	}
5176 	if (!all)
5177 		return;
5178 
5179 	bitmap_free(bp->ntp_fltr_bmap);
5180 	bp->ntp_fltr_bmap = NULL;
5181 	bp->ntp_fltr_count = 0;
5182 }
5183 
5184 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
5185 {
5186 	int i, rc = 0;
5187 
5188 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
5189 		return 0;
5190 
5191 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
5192 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
5193 
5194 	bp->ntp_fltr_count = 0;
5195 	bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL);
5196 
5197 	if (!bp->ntp_fltr_bmap)
5198 		rc = -ENOMEM;
5199 
5200 	return rc;
5201 }
5202 
5203 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
5204 {
5205 	int i;
5206 
5207 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
5208 		struct hlist_head *head;
5209 		struct hlist_node *tmp;
5210 		struct bnxt_l2_filter *fltr;
5211 
5212 		head = &bp->l2_fltr_hash_tbl[i];
5213 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5214 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5215 				     !list_empty(&fltr->base.list)))
5216 				continue;
5217 			bnxt_del_fltr(bp, &fltr->base);
5218 		}
5219 	}
5220 }
5221 
5222 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
5223 {
5224 	int i;
5225 
5226 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
5227 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
5228 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
5229 }
5230 
5231 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
5232 {
5233 	bnxt_free_vnic_attributes(bp);
5234 	bnxt_free_tx_rings(bp);
5235 	bnxt_free_rx_rings(bp);
5236 	bnxt_free_cp_rings(bp);
5237 	bnxt_free_all_cp_arrays(bp);
5238 	bnxt_free_ntp_fltrs(bp, false);
5239 	bnxt_free_l2_filters(bp, false);
5240 	if (irq_re_init) {
5241 		bnxt_free_ring_stats(bp);
5242 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
5243 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
5244 			bnxt_free_port_stats(bp);
5245 		bnxt_free_ring_grps(bp);
5246 		bnxt_free_vnics(bp);
5247 		kfree(bp->tx_ring_map);
5248 		bp->tx_ring_map = NULL;
5249 		kfree(bp->tx_ring);
5250 		bp->tx_ring = NULL;
5251 		kfree(bp->rx_ring);
5252 		bp->rx_ring = NULL;
5253 		kfree(bp->bnapi);
5254 		bp->bnapi = NULL;
5255 	} else {
5256 		bnxt_clear_ring_indices(bp);
5257 	}
5258 }
5259 
5260 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
5261 {
5262 	int i, j, rc, size, arr_size;
5263 	void *bnapi;
5264 
5265 	if (irq_re_init) {
5266 		/* Allocate bnapi mem pointer array and mem block for
5267 		 * all queues
5268 		 */
5269 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
5270 				bp->cp_nr_rings);
5271 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
5272 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
5273 		if (!bnapi)
5274 			return -ENOMEM;
5275 
5276 		bp->bnapi = bnapi;
5277 		bnapi += arr_size;
5278 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
5279 			bp->bnapi[i] = bnapi;
5280 			bp->bnapi[i]->index = i;
5281 			bp->bnapi[i]->bp = bp;
5282 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5283 				struct bnxt_cp_ring_info *cpr =
5284 					&bp->bnapi[i]->cp_ring;
5285 
5286 				cpr->cp_ring_struct.ring_mem.flags =
5287 					BNXT_RMEM_RING_PTE_FLAG;
5288 			}
5289 		}
5290 
5291 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
5292 				      sizeof(struct bnxt_rx_ring_info),
5293 				      GFP_KERNEL);
5294 		if (!bp->rx_ring)
5295 			return -ENOMEM;
5296 
5297 		for (i = 0; i < bp->rx_nr_rings; i++) {
5298 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5299 
5300 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5301 				rxr->rx_ring_struct.ring_mem.flags =
5302 					BNXT_RMEM_RING_PTE_FLAG;
5303 				rxr->rx_agg_ring_struct.ring_mem.flags =
5304 					BNXT_RMEM_RING_PTE_FLAG;
5305 			} else {
5306 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
5307 			}
5308 			rxr->bnapi = bp->bnapi[i];
5309 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
5310 		}
5311 
5312 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
5313 				      sizeof(struct bnxt_tx_ring_info),
5314 				      GFP_KERNEL);
5315 		if (!bp->tx_ring)
5316 			return -ENOMEM;
5317 
5318 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
5319 					  GFP_KERNEL);
5320 
5321 		if (!bp->tx_ring_map)
5322 			return -ENOMEM;
5323 
5324 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5325 			j = 0;
5326 		else
5327 			j = bp->rx_nr_rings;
5328 
5329 		for (i = 0; i < bp->tx_nr_rings; i++) {
5330 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5331 			struct bnxt_napi *bnapi2;
5332 
5333 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5334 				txr->tx_ring_struct.ring_mem.flags =
5335 					BNXT_RMEM_RING_PTE_FLAG;
5336 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
5337 			if (i >= bp->tx_nr_rings_xdp) {
5338 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
5339 
5340 				bnapi2 = bp->bnapi[k];
5341 				txr->txq_index = i - bp->tx_nr_rings_xdp;
5342 				txr->tx_napi_idx =
5343 					BNXT_RING_TO_TC(bp, txr->txq_index);
5344 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
5345 				bnapi2->tx_int = bnxt_tx_int;
5346 			} else {
5347 				bnapi2 = bp->bnapi[j];
5348 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5349 				bnapi2->tx_ring[0] = txr;
5350 				bnapi2->tx_int = bnxt_tx_int_xdp;
5351 				j++;
5352 			}
5353 			txr->bnapi = bnapi2;
5354 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5355 				txr->tx_cpr = &bnapi2->cp_ring;
5356 		}
5357 
5358 		rc = bnxt_alloc_stats(bp);
5359 		if (rc)
5360 			goto alloc_mem_err;
5361 		bnxt_init_stats(bp);
5362 
5363 		rc = bnxt_alloc_ntp_fltrs(bp);
5364 		if (rc)
5365 			goto alloc_mem_err;
5366 
5367 		rc = bnxt_alloc_vnics(bp);
5368 		if (rc)
5369 			goto alloc_mem_err;
5370 	}
5371 
5372 	rc = bnxt_alloc_all_cp_arrays(bp);
5373 	if (rc)
5374 		goto alloc_mem_err;
5375 
5376 	bnxt_init_ring_struct(bp);
5377 
5378 	rc = bnxt_alloc_rx_rings(bp);
5379 	if (rc)
5380 		goto alloc_mem_err;
5381 
5382 	rc = bnxt_alloc_tx_rings(bp);
5383 	if (rc)
5384 		goto alloc_mem_err;
5385 
5386 	rc = bnxt_alloc_cp_rings(bp);
5387 	if (rc)
5388 		goto alloc_mem_err;
5389 
5390 	bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG |
5391 						  BNXT_VNIC_MCAST_FLAG |
5392 						  BNXT_VNIC_UCAST_FLAG;
5393 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS))
5394 		bp->vnic_info[BNXT_VNIC_NTUPLE].flags |=
5395 			BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG;
5396 
5397 	rc = bnxt_alloc_vnic_attributes(bp);
5398 	if (rc)
5399 		goto alloc_mem_err;
5400 	return 0;
5401 
5402 alloc_mem_err:
5403 	bnxt_free_mem(bp, true);
5404 	return rc;
5405 }
5406 
5407 static void bnxt_disable_int(struct bnxt *bp)
5408 {
5409 	int i;
5410 
5411 	if (!bp->bnapi)
5412 		return;
5413 
5414 	for (i = 0; i < bp->cp_nr_rings; i++) {
5415 		struct bnxt_napi *bnapi = bp->bnapi[i];
5416 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5417 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5418 
5419 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5420 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5421 	}
5422 }
5423 
5424 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5425 {
5426 	struct bnxt_napi *bnapi = bp->bnapi[n];
5427 	struct bnxt_cp_ring_info *cpr;
5428 
5429 	cpr = &bnapi->cp_ring;
5430 	return cpr->cp_ring_struct.map_idx;
5431 }
5432 
5433 static void bnxt_disable_int_sync(struct bnxt *bp)
5434 {
5435 	int i;
5436 
5437 	if (!bp->irq_tbl)
5438 		return;
5439 
5440 	atomic_inc(&bp->intr_sem);
5441 
5442 	bnxt_disable_int(bp);
5443 	for (i = 0; i < bp->cp_nr_rings; i++) {
5444 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5445 
5446 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5447 	}
5448 }
5449 
5450 static void bnxt_enable_int(struct bnxt *bp)
5451 {
5452 	int i;
5453 
5454 	atomic_set(&bp->intr_sem, 0);
5455 	for (i = 0; i < bp->cp_nr_rings; i++) {
5456 		struct bnxt_napi *bnapi = bp->bnapi[i];
5457 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5458 
5459 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5460 	}
5461 }
5462 
5463 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5464 			    bool async_only)
5465 {
5466 	DECLARE_BITMAP(async_events_bmap, 256);
5467 	u32 *events = (u32 *)async_events_bmap;
5468 	struct hwrm_func_drv_rgtr_output *resp;
5469 	struct hwrm_func_drv_rgtr_input *req;
5470 	u32 flags;
5471 	int rc, i;
5472 
5473 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5474 	if (rc)
5475 		return rc;
5476 
5477 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5478 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5479 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5480 
5481 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5482 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5483 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5484 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5485 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5486 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5487 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5488 	req->flags = cpu_to_le32(flags);
5489 	req->ver_maj_8b = DRV_VER_MAJ;
5490 	req->ver_min_8b = DRV_VER_MIN;
5491 	req->ver_upd_8b = DRV_VER_UPD;
5492 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5493 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5494 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5495 
5496 	if (BNXT_PF(bp)) {
5497 		u32 data[8];
5498 		int i;
5499 
5500 		memset(data, 0, sizeof(data));
5501 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5502 			u16 cmd = bnxt_vf_req_snif[i];
5503 			unsigned int bit, idx;
5504 
5505 			idx = cmd / 32;
5506 			bit = cmd % 32;
5507 			data[idx] |= 1 << bit;
5508 		}
5509 
5510 		for (i = 0; i < 8; i++)
5511 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5512 
5513 		req->enables |=
5514 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5515 	}
5516 
5517 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5518 		req->flags |= cpu_to_le32(
5519 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5520 
5521 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5522 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5523 		u16 event_id = bnxt_async_events_arr[i];
5524 
5525 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5526 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5527 			continue;
5528 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5529 		    !bp->ptp_cfg)
5530 			continue;
5531 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5532 	}
5533 	if (bmap && bmap_size) {
5534 		for (i = 0; i < bmap_size; i++) {
5535 			if (test_bit(i, bmap))
5536 				__set_bit(i, async_events_bmap);
5537 		}
5538 	}
5539 	for (i = 0; i < 8; i++)
5540 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5541 
5542 	if (async_only)
5543 		req->enables =
5544 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5545 
5546 	resp = hwrm_req_hold(bp, req);
5547 	rc = hwrm_req_send(bp, req);
5548 	if (!rc) {
5549 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5550 		if (resp->flags &
5551 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5552 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5553 	}
5554 	hwrm_req_drop(bp, req);
5555 	return rc;
5556 }
5557 
5558 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5559 {
5560 	struct hwrm_func_drv_unrgtr_input *req;
5561 	int rc;
5562 
5563 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5564 		return 0;
5565 
5566 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5567 	if (rc)
5568 		return rc;
5569 	return hwrm_req_send(bp, req);
5570 }
5571 
5572 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5573 
5574 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5575 {
5576 	struct hwrm_tunnel_dst_port_free_input *req;
5577 	int rc;
5578 
5579 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5580 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5581 		return 0;
5582 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5583 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5584 		return 0;
5585 
5586 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5587 	if (rc)
5588 		return rc;
5589 
5590 	req->tunnel_type = tunnel_type;
5591 
5592 	switch (tunnel_type) {
5593 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5594 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5595 		bp->vxlan_port = 0;
5596 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5597 		break;
5598 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5599 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5600 		bp->nge_port = 0;
5601 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5602 		break;
5603 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5604 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5605 		bp->vxlan_gpe_port = 0;
5606 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5607 		break;
5608 	default:
5609 		break;
5610 	}
5611 
5612 	rc = hwrm_req_send(bp, req);
5613 	if (rc)
5614 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5615 			   rc);
5616 	if (bp->flags & BNXT_FLAG_TPA)
5617 		bnxt_set_tpa(bp, true);
5618 	return rc;
5619 }
5620 
5621 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5622 					   u8 tunnel_type)
5623 {
5624 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5625 	struct hwrm_tunnel_dst_port_alloc_input *req;
5626 	int rc;
5627 
5628 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5629 	if (rc)
5630 		return rc;
5631 
5632 	req->tunnel_type = tunnel_type;
5633 	req->tunnel_dst_port_val = port;
5634 
5635 	resp = hwrm_req_hold(bp, req);
5636 	rc = hwrm_req_send(bp, req);
5637 	if (rc) {
5638 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5639 			   rc);
5640 		goto err_out;
5641 	}
5642 
5643 	switch (tunnel_type) {
5644 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5645 		bp->vxlan_port = port;
5646 		bp->vxlan_fw_dst_port_id =
5647 			le16_to_cpu(resp->tunnel_dst_port_id);
5648 		break;
5649 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5650 		bp->nge_port = port;
5651 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5652 		break;
5653 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5654 		bp->vxlan_gpe_port = port;
5655 		bp->vxlan_gpe_fw_dst_port_id =
5656 			le16_to_cpu(resp->tunnel_dst_port_id);
5657 		break;
5658 	default:
5659 		break;
5660 	}
5661 	if (bp->flags & BNXT_FLAG_TPA)
5662 		bnxt_set_tpa(bp, true);
5663 
5664 err_out:
5665 	hwrm_req_drop(bp, req);
5666 	return rc;
5667 }
5668 
5669 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5670 {
5671 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5672 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5673 	int rc;
5674 
5675 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5676 	if (rc)
5677 		return rc;
5678 
5679 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5680 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5681 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5682 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5683 	}
5684 	req->mask = cpu_to_le32(vnic->rx_mask);
5685 	return hwrm_req_send_silent(bp, req);
5686 }
5687 
5688 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5689 {
5690 	if (!atomic_dec_and_test(&fltr->refcnt))
5691 		return;
5692 	spin_lock_bh(&bp->ntp_fltr_lock);
5693 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5694 		spin_unlock_bh(&bp->ntp_fltr_lock);
5695 		return;
5696 	}
5697 	hlist_del_rcu(&fltr->base.hash);
5698 	bnxt_del_one_usr_fltr(bp, &fltr->base);
5699 	if (fltr->base.flags) {
5700 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5701 		bp->ntp_fltr_count--;
5702 	}
5703 	spin_unlock_bh(&bp->ntp_fltr_lock);
5704 	kfree_rcu(fltr, base.rcu);
5705 }
5706 
5707 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5708 						      struct bnxt_l2_key *key,
5709 						      u32 idx)
5710 {
5711 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5712 	struct bnxt_l2_filter *fltr;
5713 
5714 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5715 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5716 
5717 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5718 		    l2_key->vlan == key->vlan)
5719 			return fltr;
5720 	}
5721 	return NULL;
5722 }
5723 
5724 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5725 						    struct bnxt_l2_key *key,
5726 						    u32 idx)
5727 {
5728 	struct bnxt_l2_filter *fltr = NULL;
5729 
5730 	rcu_read_lock();
5731 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5732 	if (fltr)
5733 		atomic_inc(&fltr->refcnt);
5734 	rcu_read_unlock();
5735 	return fltr;
5736 }
5737 
5738 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5739 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5740 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5741 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5742 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5743 
5744 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5745 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5746 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5747 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5748 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5749 
5750 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5751 {
5752 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5753 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5754 			return sizeof(fkeys->addrs.v4addrs) +
5755 			       sizeof(fkeys->ports);
5756 
5757 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5758 			return sizeof(fkeys->addrs.v4addrs);
5759 	}
5760 
5761 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5762 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5763 			return sizeof(fkeys->addrs.v6addrs) +
5764 			       sizeof(fkeys->ports);
5765 
5766 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5767 			return sizeof(fkeys->addrs.v6addrs);
5768 	}
5769 
5770 	return 0;
5771 }
5772 
5773 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5774 			 const unsigned char *key)
5775 {
5776 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5777 	struct bnxt_ipv4_tuple tuple4;
5778 	struct bnxt_ipv6_tuple tuple6;
5779 	int i, j, len = 0;
5780 	u8 *four_tuple;
5781 
5782 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5783 	if (!len)
5784 		return 0;
5785 
5786 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5787 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5788 		tuple4.ports = fkeys->ports;
5789 		four_tuple = (unsigned char *)&tuple4;
5790 	} else {
5791 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5792 		tuple6.ports = fkeys->ports;
5793 		four_tuple = (unsigned char *)&tuple6;
5794 	}
5795 
5796 	for (i = 0, j = 8; i < len; i++, j++) {
5797 		u8 byte = four_tuple[i];
5798 		int bit;
5799 
5800 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5801 			if (byte & 0x80)
5802 				hash ^= prefix;
5803 		}
5804 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5805 	}
5806 
5807 	/* The valid part of the hash is in the upper 32 bits. */
5808 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5809 }
5810 
5811 #ifdef CONFIG_RFS_ACCEL
5812 static struct bnxt_l2_filter *
5813 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5814 {
5815 	struct bnxt_l2_filter *fltr;
5816 	u32 idx;
5817 
5818 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5819 	      BNXT_L2_FLTR_HASH_MASK;
5820 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5821 	return fltr;
5822 }
5823 #endif
5824 
5825 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5826 			       struct bnxt_l2_key *key, u32 idx)
5827 {
5828 	struct hlist_head *head;
5829 
5830 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5831 	fltr->l2_key.vlan = key->vlan;
5832 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5833 	if (fltr->base.flags) {
5834 		int bit_id;
5835 
5836 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5837 						 bp->max_fltr, 0);
5838 		if (bit_id < 0)
5839 			return -ENOMEM;
5840 		fltr->base.sw_id = (u16)bit_id;
5841 		bp->ntp_fltr_count++;
5842 	}
5843 	head = &bp->l2_fltr_hash_tbl[idx];
5844 	hlist_add_head_rcu(&fltr->base.hash, head);
5845 	bnxt_insert_usr_fltr(bp, &fltr->base);
5846 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5847 	atomic_set(&fltr->refcnt, 1);
5848 	return 0;
5849 }
5850 
5851 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5852 						   struct bnxt_l2_key *key,
5853 						   gfp_t gfp)
5854 {
5855 	struct bnxt_l2_filter *fltr;
5856 	u32 idx;
5857 	int rc;
5858 
5859 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5860 	      BNXT_L2_FLTR_HASH_MASK;
5861 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5862 	if (fltr)
5863 		return fltr;
5864 
5865 	fltr = kzalloc(sizeof(*fltr), gfp);
5866 	if (!fltr)
5867 		return ERR_PTR(-ENOMEM);
5868 	spin_lock_bh(&bp->ntp_fltr_lock);
5869 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5870 	spin_unlock_bh(&bp->ntp_fltr_lock);
5871 	if (rc) {
5872 		bnxt_del_l2_filter(bp, fltr);
5873 		fltr = ERR_PTR(rc);
5874 	}
5875 	return fltr;
5876 }
5877 
5878 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp,
5879 						struct bnxt_l2_key *key,
5880 						u16 flags)
5881 {
5882 	struct bnxt_l2_filter *fltr;
5883 	u32 idx;
5884 	int rc;
5885 
5886 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5887 	      BNXT_L2_FLTR_HASH_MASK;
5888 	spin_lock_bh(&bp->ntp_fltr_lock);
5889 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5890 	if (fltr) {
5891 		fltr = ERR_PTR(-EEXIST);
5892 		goto l2_filter_exit;
5893 	}
5894 	fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC);
5895 	if (!fltr) {
5896 		fltr = ERR_PTR(-ENOMEM);
5897 		goto l2_filter_exit;
5898 	}
5899 	fltr->base.flags = flags;
5900 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5901 	if (rc) {
5902 		spin_unlock_bh(&bp->ntp_fltr_lock);
5903 		bnxt_del_l2_filter(bp, fltr);
5904 		return ERR_PTR(rc);
5905 	}
5906 
5907 l2_filter_exit:
5908 	spin_unlock_bh(&bp->ntp_fltr_lock);
5909 	return fltr;
5910 }
5911 
5912 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5913 {
5914 #ifdef CONFIG_BNXT_SRIOV
5915 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5916 
5917 	return vf->fw_fid;
5918 #else
5919 	return INVALID_HW_RING_ID;
5920 #endif
5921 }
5922 
5923 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5924 {
5925 	struct hwrm_cfa_l2_filter_free_input *req;
5926 	u16 target_id = 0xffff;
5927 	int rc;
5928 
5929 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5930 		struct bnxt_pf_info *pf = &bp->pf;
5931 
5932 		if (fltr->base.vf_idx >= pf->active_vfs)
5933 			return -EINVAL;
5934 
5935 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5936 		if (target_id == INVALID_HW_RING_ID)
5937 			return -EINVAL;
5938 	}
5939 
5940 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5941 	if (rc)
5942 		return rc;
5943 
5944 	req->target_id = cpu_to_le16(target_id);
5945 	req->l2_filter_id = fltr->base.filter_id;
5946 	return hwrm_req_send(bp, req);
5947 }
5948 
5949 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5950 {
5951 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5952 	struct hwrm_cfa_l2_filter_alloc_input *req;
5953 	u16 target_id = 0xffff;
5954 	int rc;
5955 
5956 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5957 		struct bnxt_pf_info *pf = &bp->pf;
5958 
5959 		if (fltr->base.vf_idx >= pf->active_vfs)
5960 			return -EINVAL;
5961 
5962 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5963 	}
5964 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5965 	if (rc)
5966 		return rc;
5967 
5968 	req->target_id = cpu_to_le16(target_id);
5969 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5970 
5971 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5972 		req->flags |=
5973 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5974 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5975 	req->enables =
5976 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5977 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5978 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5979 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5980 	eth_broadcast_addr(req->l2_addr_mask);
5981 
5982 	if (fltr->l2_key.vlan) {
5983 		req->enables |=
5984 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5985 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5986 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5987 		req->num_vlans = 1;
5988 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5989 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5990 	}
5991 
5992 	resp = hwrm_req_hold(bp, req);
5993 	rc = hwrm_req_send(bp, req);
5994 	if (!rc) {
5995 		fltr->base.filter_id = resp->l2_filter_id;
5996 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5997 	}
5998 	hwrm_req_drop(bp, req);
5999 	return rc;
6000 }
6001 
6002 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
6003 				     struct bnxt_ntuple_filter *fltr)
6004 {
6005 	struct hwrm_cfa_ntuple_filter_free_input *req;
6006 	int rc;
6007 
6008 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
6009 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
6010 	if (rc)
6011 		return rc;
6012 
6013 	req->ntuple_filter_id = fltr->base.filter_id;
6014 	return hwrm_req_send(bp, req);
6015 }
6016 
6017 #define BNXT_NTP_FLTR_FLAGS					\
6018 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
6019 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
6020 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
6021 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
6022 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
6023 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
6024 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
6025 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
6026 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
6027 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
6028 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
6029 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
6030 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
6031 
6032 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
6033 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
6034 
6035 void bnxt_fill_ipv6_mask(__be32 mask[4])
6036 {
6037 	int i;
6038 
6039 	for (i = 0; i < 4; i++)
6040 		mask[i] = cpu_to_be32(~0);
6041 }
6042 
6043 static void
6044 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp,
6045 			  struct hwrm_cfa_ntuple_filter_alloc_input *req,
6046 			  struct bnxt_ntuple_filter *fltr)
6047 {
6048 	u16 rxq = fltr->base.rxq;
6049 
6050 	if (fltr->base.flags & BNXT_ACT_RSS_CTX) {
6051 		struct ethtool_rxfh_context *ctx;
6052 		struct bnxt_rss_ctx *rss_ctx;
6053 		struct bnxt_vnic_info *vnic;
6054 
6055 		ctx = xa_load(&bp->dev->ethtool->rss_ctx,
6056 			      fltr->base.fw_vnic_id);
6057 		if (ctx) {
6058 			rss_ctx = ethtool_rxfh_context_priv(ctx);
6059 			vnic = &rss_ctx->vnic;
6060 
6061 			req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6062 		}
6063 		return;
6064 	}
6065 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
6066 		struct bnxt_vnic_info *vnic;
6067 		u32 enables;
6068 
6069 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
6070 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6071 		enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
6072 		req->enables |= cpu_to_le32(enables);
6073 		req->rfs_ring_tbl_idx = cpu_to_le16(rxq);
6074 	} else {
6075 		u32 flags;
6076 
6077 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
6078 		req->flags |= cpu_to_le32(flags);
6079 		req->dst_id = cpu_to_le16(rxq);
6080 	}
6081 }
6082 
6083 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
6084 				      struct bnxt_ntuple_filter *fltr)
6085 {
6086 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
6087 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
6088 	struct bnxt_flow_masks *masks = &fltr->fmasks;
6089 	struct flow_keys *keys = &fltr->fkeys;
6090 	struct bnxt_l2_filter *l2_fltr;
6091 	struct bnxt_vnic_info *vnic;
6092 	int rc;
6093 
6094 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
6095 	if (rc)
6096 		return rc;
6097 
6098 	l2_fltr = fltr->l2_fltr;
6099 	req->l2_filter_id = l2_fltr->base.filter_id;
6100 
6101 	if (fltr->base.flags & BNXT_ACT_DROP) {
6102 		req->flags =
6103 			cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP);
6104 	} else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
6105 		bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr);
6106 	} else {
6107 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
6108 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6109 	}
6110 	req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
6111 
6112 	req->ethertype = htons(ETH_P_IP);
6113 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
6114 	req->ip_protocol = keys->basic.ip_proto;
6115 
6116 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
6117 		req->ethertype = htons(ETH_P_IPV6);
6118 		req->ip_addr_type =
6119 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
6120 		*(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src;
6121 		*(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src;
6122 		*(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst;
6123 		*(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst;
6124 	} else {
6125 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
6126 		req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src;
6127 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
6128 		req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst;
6129 	}
6130 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
6131 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
6132 		req->tunnel_type =
6133 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
6134 	}
6135 
6136 	req->src_port = keys->ports.src;
6137 	req->src_port_mask = masks->ports.src;
6138 	req->dst_port = keys->ports.dst;
6139 	req->dst_port_mask = masks->ports.dst;
6140 
6141 	resp = hwrm_req_hold(bp, req);
6142 	rc = hwrm_req_send(bp, req);
6143 	if (!rc)
6144 		fltr->base.filter_id = resp->ntuple_filter_id;
6145 	hwrm_req_drop(bp, req);
6146 	return rc;
6147 }
6148 
6149 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
6150 				     const u8 *mac_addr)
6151 {
6152 	struct bnxt_l2_filter *fltr;
6153 	struct bnxt_l2_key key;
6154 	int rc;
6155 
6156 	ether_addr_copy(key.dst_mac_addr, mac_addr);
6157 	key.vlan = 0;
6158 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
6159 	if (IS_ERR(fltr))
6160 		return PTR_ERR(fltr);
6161 
6162 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
6163 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
6164 	if (rc)
6165 		bnxt_del_l2_filter(bp, fltr);
6166 	else
6167 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
6168 	return rc;
6169 }
6170 
6171 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
6172 {
6173 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
6174 
6175 	/* Any associated ntuple filters will also be cleared by firmware. */
6176 	for (i = 0; i < num_of_vnics; i++) {
6177 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6178 
6179 		for (j = 0; j < vnic->uc_filter_count; j++) {
6180 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
6181 
6182 			bnxt_hwrm_l2_filter_free(bp, fltr);
6183 			bnxt_del_l2_filter(bp, fltr);
6184 		}
6185 		vnic->uc_filter_count = 0;
6186 	}
6187 }
6188 
6189 #define BNXT_DFLT_TUNL_TPA_BMAP				\
6190 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
6191 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
6192 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
6193 
6194 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
6195 					   struct hwrm_vnic_tpa_cfg_input *req)
6196 {
6197 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
6198 
6199 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
6200 		return;
6201 
6202 	if (bp->vxlan_port)
6203 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
6204 	if (bp->vxlan_gpe_port)
6205 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
6206 	if (bp->nge_port)
6207 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
6208 
6209 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
6210 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
6211 }
6212 
6213 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6214 			   u32 tpa_flags)
6215 {
6216 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
6217 	struct hwrm_vnic_tpa_cfg_input *req;
6218 	int rc;
6219 
6220 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
6221 		return 0;
6222 
6223 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
6224 	if (rc)
6225 		return rc;
6226 
6227 	if (tpa_flags) {
6228 		u16 mss = bp->dev->mtu - 40;
6229 		u32 nsegs, n, segs = 0, flags;
6230 
6231 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
6232 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
6233 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
6234 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
6235 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
6236 		if (tpa_flags & BNXT_FLAG_GRO)
6237 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
6238 
6239 		req->flags = cpu_to_le32(flags);
6240 
6241 		req->enables =
6242 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
6243 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
6244 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
6245 
6246 		/* Number of segs are log2 units, and first packet is not
6247 		 * included as part of this units.
6248 		 */
6249 		if (mss <= BNXT_RX_PAGE_SIZE) {
6250 			n = BNXT_RX_PAGE_SIZE / mss;
6251 			nsegs = (MAX_SKB_FRAGS - 1) * n;
6252 		} else {
6253 			n = mss / BNXT_RX_PAGE_SIZE;
6254 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
6255 				n++;
6256 			nsegs = (MAX_SKB_FRAGS - n) / n;
6257 		}
6258 
6259 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6260 			segs = MAX_TPA_SEGS_P5;
6261 			max_aggs = bp->max_tpa;
6262 		} else {
6263 			segs = ilog2(nsegs);
6264 		}
6265 		req->max_agg_segs = cpu_to_le16(segs);
6266 		req->max_aggs = cpu_to_le16(max_aggs);
6267 
6268 		req->min_agg_len = cpu_to_le32(512);
6269 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
6270 	}
6271 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6272 
6273 	return hwrm_req_send(bp, req);
6274 }
6275 
6276 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
6277 {
6278 	struct bnxt_ring_grp_info *grp_info;
6279 
6280 	grp_info = &bp->grp_info[ring->grp_idx];
6281 	return grp_info->cp_fw_ring_id;
6282 }
6283 
6284 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
6285 {
6286 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6287 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
6288 	else
6289 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
6290 }
6291 
6292 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
6293 {
6294 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6295 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
6296 	else
6297 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
6298 }
6299 
6300 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
6301 {
6302 	int entries;
6303 
6304 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6305 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
6306 	else
6307 		entries = HW_HASH_INDEX_SIZE;
6308 
6309 	bp->rss_indir_tbl_entries = entries;
6310 	bp->rss_indir_tbl =
6311 		kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL);
6312 	if (!bp->rss_indir_tbl)
6313 		return -ENOMEM;
6314 
6315 	return 0;
6316 }
6317 
6318 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp,
6319 				 struct ethtool_rxfh_context *rss_ctx)
6320 {
6321 	u16 max_rings, max_entries, pad, i;
6322 	u32 *rss_indir_tbl;
6323 
6324 	if (!bp->rx_nr_rings)
6325 		return;
6326 
6327 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6328 		max_rings = bp->rx_nr_rings - 1;
6329 	else
6330 		max_rings = bp->rx_nr_rings;
6331 
6332 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
6333 	if (rss_ctx)
6334 		rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx);
6335 	else
6336 		rss_indir_tbl = &bp->rss_indir_tbl[0];
6337 
6338 	for (i = 0; i < max_entries; i++)
6339 		rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
6340 
6341 	pad = bp->rss_indir_tbl_entries - max_entries;
6342 	if (pad)
6343 		memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl));
6344 }
6345 
6346 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
6347 {
6348 	u32 i, tbl_size, max_ring = 0;
6349 
6350 	if (!bp->rss_indir_tbl)
6351 		return 0;
6352 
6353 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6354 	for (i = 0; i < tbl_size; i++)
6355 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
6356 	return max_ring;
6357 }
6358 
6359 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
6360 {
6361 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6362 		if (!rx_rings)
6363 			return 0;
6364 		return bnxt_calc_nr_ring_pages(rx_rings - 1,
6365 					       BNXT_RSS_TABLE_ENTRIES_P5);
6366 	}
6367 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6368 		return 2;
6369 	return 1;
6370 }
6371 
6372 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6373 {
6374 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
6375 	u16 i, j;
6376 
6377 	/* Fill the RSS indirection table with ring group ids */
6378 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
6379 		if (!no_rss)
6380 			j = bp->rss_indir_tbl[i];
6381 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
6382 	}
6383 }
6384 
6385 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
6386 				    struct bnxt_vnic_info *vnic)
6387 {
6388 	__le16 *ring_tbl = vnic->rss_table;
6389 	struct bnxt_rx_ring_info *rxr;
6390 	u16 tbl_size, i;
6391 
6392 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6393 
6394 	for (i = 0; i < tbl_size; i++) {
6395 		u16 ring_id, j;
6396 
6397 		if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG)
6398 			j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings);
6399 		else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG)
6400 			j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i];
6401 		else
6402 			j = bp->rss_indir_tbl[i];
6403 		rxr = &bp->rx_ring[j];
6404 
6405 		ring_id = rxr->rx_ring_struct.fw_ring_id;
6406 		*ring_tbl++ = cpu_to_le16(ring_id);
6407 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6408 		*ring_tbl++ = cpu_to_le16(ring_id);
6409 	}
6410 }
6411 
6412 static void
6413 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
6414 			 struct bnxt_vnic_info *vnic)
6415 {
6416 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6417 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
6418 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6419 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT;
6420 	} else {
6421 		bnxt_fill_hw_rss_tbl(bp, vnic);
6422 	}
6423 
6424 	if (bp->rss_hash_delta) {
6425 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
6426 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
6427 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
6428 		else
6429 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
6430 	} else {
6431 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6432 	}
6433 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6434 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6435 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6436 }
6437 
6438 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6439 				  bool set_rss)
6440 {
6441 	struct hwrm_vnic_rss_cfg_input *req;
6442 	int rc;
6443 
6444 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6445 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6446 		return 0;
6447 
6448 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6449 	if (rc)
6450 		return rc;
6451 
6452 	if (set_rss)
6453 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6454 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6455 	return hwrm_req_send(bp, req);
6456 }
6457 
6458 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp,
6459 				     struct bnxt_vnic_info *vnic, bool set_rss)
6460 {
6461 	struct hwrm_vnic_rss_cfg_input *req;
6462 	dma_addr_t ring_tbl_map;
6463 	u32 i, nr_ctxs;
6464 	int rc;
6465 
6466 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6467 	if (rc)
6468 		return rc;
6469 
6470 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6471 	if (!set_rss)
6472 		return hwrm_req_send(bp, req);
6473 
6474 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6475 	ring_tbl_map = vnic->rss_table_dma_addr;
6476 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6477 
6478 	hwrm_req_hold(bp, req);
6479 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6480 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6481 		req->ring_table_pair_index = i;
6482 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6483 		rc = hwrm_req_send(bp, req);
6484 		if (rc)
6485 			goto exit;
6486 	}
6487 
6488 exit:
6489 	hwrm_req_drop(bp, req);
6490 	return rc;
6491 }
6492 
6493 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6494 {
6495 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6496 	struct hwrm_vnic_rss_qcfg_output *resp;
6497 	struct hwrm_vnic_rss_qcfg_input *req;
6498 
6499 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6500 		return;
6501 
6502 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6503 	/* all contexts configured to same hash_type, zero always exists */
6504 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6505 	resp = hwrm_req_hold(bp, req);
6506 	if (!hwrm_req_send(bp, req)) {
6507 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6508 		bp->rss_hash_delta = 0;
6509 	}
6510 	hwrm_req_drop(bp, req);
6511 }
6512 
6513 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6514 {
6515 	struct hwrm_vnic_plcmodes_cfg_input *req;
6516 	int rc;
6517 
6518 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6519 	if (rc)
6520 		return rc;
6521 
6522 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6523 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6524 
6525 	if (BNXT_RX_PAGE_MODE(bp)) {
6526 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6527 	} else {
6528 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6529 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6530 		req->enables |=
6531 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6532 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6533 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6534 	}
6535 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6536 	return hwrm_req_send(bp, req);
6537 }
6538 
6539 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp,
6540 					struct bnxt_vnic_info *vnic,
6541 					u16 ctx_idx)
6542 {
6543 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6544 
6545 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6546 		return;
6547 
6548 	req->rss_cos_lb_ctx_id =
6549 		cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]);
6550 
6551 	hwrm_req_send(bp, req);
6552 	vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6553 }
6554 
6555 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6556 {
6557 	int i, j;
6558 
6559 	for (i = 0; i < bp->nr_vnics; i++) {
6560 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6561 
6562 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6563 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6564 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j);
6565 		}
6566 	}
6567 	bp->rsscos_nr_ctxs = 0;
6568 }
6569 
6570 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp,
6571 				    struct bnxt_vnic_info *vnic, u16 ctx_idx)
6572 {
6573 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6574 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6575 	int rc;
6576 
6577 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6578 	if (rc)
6579 		return rc;
6580 
6581 	resp = hwrm_req_hold(bp, req);
6582 	rc = hwrm_req_send(bp, req);
6583 	if (!rc)
6584 		vnic->fw_rss_cos_lb_ctx[ctx_idx] =
6585 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6586 	hwrm_req_drop(bp, req);
6587 
6588 	return rc;
6589 }
6590 
6591 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6592 {
6593 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6594 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6595 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6596 }
6597 
6598 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6599 {
6600 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6601 	struct hwrm_vnic_cfg_input *req;
6602 	unsigned int ring = 0, grp_idx;
6603 	u16 def_vlan = 0;
6604 	int rc;
6605 
6606 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6607 	if (rc)
6608 		return rc;
6609 
6610 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6611 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6612 
6613 		req->default_rx_ring_id =
6614 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6615 		req->default_cmpl_ring_id =
6616 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6617 		req->enables =
6618 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6619 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6620 		goto vnic_mru;
6621 	}
6622 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6623 	/* Only RSS support for now TBD: COS & LB */
6624 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6625 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6626 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6627 					   VNIC_CFG_REQ_ENABLES_MRU);
6628 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6629 		req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]);
6630 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6631 					   VNIC_CFG_REQ_ENABLES_MRU);
6632 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6633 	} else {
6634 		req->rss_rule = cpu_to_le16(0xffff);
6635 	}
6636 
6637 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6638 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6639 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6640 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6641 	} else {
6642 		req->cos_rule = cpu_to_le16(0xffff);
6643 	}
6644 
6645 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6646 		ring = 0;
6647 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6648 		ring = vnic->vnic_id - 1;
6649 	else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6650 		ring = bp->rx_nr_rings - 1;
6651 
6652 	grp_idx = bp->rx_ring[ring].bnapi->index;
6653 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6654 	req->lb_rule = cpu_to_le16(0xffff);
6655 vnic_mru:
6656 	vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
6657 	req->mru = cpu_to_le16(vnic->mru);
6658 
6659 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6660 #ifdef CONFIG_BNXT_SRIOV
6661 	if (BNXT_VF(bp))
6662 		def_vlan = bp->vf.vlan;
6663 #endif
6664 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6665 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6666 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev))
6667 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6668 
6669 	return hwrm_req_send(bp, req);
6670 }
6671 
6672 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp,
6673 				    struct bnxt_vnic_info *vnic)
6674 {
6675 	if (vnic->fw_vnic_id != INVALID_HW_RING_ID) {
6676 		struct hwrm_vnic_free_input *req;
6677 
6678 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6679 			return;
6680 
6681 		req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6682 
6683 		hwrm_req_send(bp, req);
6684 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
6685 	}
6686 }
6687 
6688 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6689 {
6690 	u16 i;
6691 
6692 	for (i = 0; i < bp->nr_vnics; i++)
6693 		bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]);
6694 }
6695 
6696 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6697 			 unsigned int start_rx_ring_idx,
6698 			 unsigned int nr_rings)
6699 {
6700 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6701 	struct hwrm_vnic_alloc_output *resp;
6702 	struct hwrm_vnic_alloc_input *req;
6703 	int rc;
6704 
6705 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6706 	if (rc)
6707 		return rc;
6708 
6709 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6710 		goto vnic_no_ring_grps;
6711 
6712 	/* map ring groups to this vnic */
6713 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6714 		grp_idx = bp->rx_ring[i].bnapi->index;
6715 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6716 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6717 				   j, nr_rings);
6718 			break;
6719 		}
6720 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6721 	}
6722 
6723 vnic_no_ring_grps:
6724 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6725 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6726 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT)
6727 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6728 
6729 	resp = hwrm_req_hold(bp, req);
6730 	rc = hwrm_req_send(bp, req);
6731 	if (!rc)
6732 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6733 	hwrm_req_drop(bp, req);
6734 	return rc;
6735 }
6736 
6737 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6738 {
6739 	struct hwrm_vnic_qcaps_output *resp;
6740 	struct hwrm_vnic_qcaps_input *req;
6741 	int rc;
6742 
6743 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6744 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6745 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6746 	if (bp->hwrm_spec_code < 0x10600)
6747 		return 0;
6748 
6749 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6750 	if (rc)
6751 		return rc;
6752 
6753 	resp = hwrm_req_hold(bp, req);
6754 	rc = hwrm_req_send(bp, req);
6755 	if (!rc) {
6756 		u32 flags = le32_to_cpu(resp->flags);
6757 
6758 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6759 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6760 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6761 		if (flags &
6762 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6763 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6764 
6765 		/* Older P5 fw before EXT_HW_STATS support did not set
6766 		 * VLAN_STRIP_CAP properly.
6767 		 */
6768 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6769 		    (BNXT_CHIP_P5(bp) &&
6770 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6771 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6772 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6773 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6774 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6775 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6776 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6777 		if (bp->max_tpa_v2) {
6778 			if (BNXT_CHIP_P5(bp))
6779 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6780 			else
6781 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6782 		}
6783 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6784 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6785 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP)
6786 			bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP;
6787 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP)
6788 			bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP;
6789 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP)
6790 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP;
6791 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP)
6792 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP;
6793 		if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP)
6794 			bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH;
6795 	}
6796 	hwrm_req_drop(bp, req);
6797 	return rc;
6798 }
6799 
6800 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6801 {
6802 	struct hwrm_ring_grp_alloc_output *resp;
6803 	struct hwrm_ring_grp_alloc_input *req;
6804 	int rc;
6805 	u16 i;
6806 
6807 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6808 		return 0;
6809 
6810 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6811 	if (rc)
6812 		return rc;
6813 
6814 	resp = hwrm_req_hold(bp, req);
6815 	for (i = 0; i < bp->rx_nr_rings; i++) {
6816 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6817 
6818 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6819 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6820 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6821 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6822 
6823 		rc = hwrm_req_send(bp, req);
6824 
6825 		if (rc)
6826 			break;
6827 
6828 		bp->grp_info[grp_idx].fw_grp_id =
6829 			le32_to_cpu(resp->ring_group_id);
6830 	}
6831 	hwrm_req_drop(bp, req);
6832 	return rc;
6833 }
6834 
6835 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6836 {
6837 	struct hwrm_ring_grp_free_input *req;
6838 	u16 i;
6839 
6840 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6841 		return;
6842 
6843 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6844 		return;
6845 
6846 	hwrm_req_hold(bp, req);
6847 	for (i = 0; i < bp->cp_nr_rings; i++) {
6848 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6849 			continue;
6850 		req->ring_group_id =
6851 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6852 
6853 		hwrm_req_send(bp, req);
6854 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6855 	}
6856 	hwrm_req_drop(bp, req);
6857 }
6858 
6859 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6860 				    struct bnxt_ring_struct *ring,
6861 				    u32 ring_type, u32 map_index)
6862 {
6863 	struct hwrm_ring_alloc_output *resp;
6864 	struct hwrm_ring_alloc_input *req;
6865 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6866 	struct bnxt_ring_grp_info *grp_info;
6867 	int rc, err = 0;
6868 	u16 ring_id;
6869 
6870 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6871 	if (rc)
6872 		goto exit;
6873 
6874 	req->enables = 0;
6875 	if (rmem->nr_pages > 1) {
6876 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6877 		/* Page size is in log2 units */
6878 		req->page_size = BNXT_PAGE_SHIFT;
6879 		req->page_tbl_depth = 1;
6880 	} else {
6881 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6882 	}
6883 	req->fbo = 0;
6884 	/* Association of ring index with doorbell index and MSIX number */
6885 	req->logical_id = cpu_to_le16(map_index);
6886 
6887 	switch (ring_type) {
6888 	case HWRM_RING_ALLOC_TX: {
6889 		struct bnxt_tx_ring_info *txr;
6890 		u16 flags = 0;
6891 
6892 		txr = container_of(ring, struct bnxt_tx_ring_info,
6893 				   tx_ring_struct);
6894 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6895 		/* Association of transmit ring with completion ring */
6896 		grp_info = &bp->grp_info[ring->grp_idx];
6897 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6898 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6899 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6900 		req->queue_id = cpu_to_le16(ring->queue_id);
6901 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6902 			req->cmpl_coal_cnt =
6903 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6904 		if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg)
6905 			flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE;
6906 		req->flags = cpu_to_le16(flags);
6907 		break;
6908 	}
6909 	case HWRM_RING_ALLOC_RX:
6910 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6911 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6912 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6913 			u16 flags = 0;
6914 
6915 			/* Association of rx ring with stats context */
6916 			grp_info = &bp->grp_info[ring->grp_idx];
6917 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6918 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6919 			req->enables |= cpu_to_le32(
6920 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6921 			if (NET_IP_ALIGN == 2)
6922 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6923 			req->flags = cpu_to_le16(flags);
6924 		}
6925 		break;
6926 	case HWRM_RING_ALLOC_AGG:
6927 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6928 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6929 			/* Association of agg ring with rx ring */
6930 			grp_info = &bp->grp_info[ring->grp_idx];
6931 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6932 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6933 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6934 			req->enables |= cpu_to_le32(
6935 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6936 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6937 		} else {
6938 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6939 		}
6940 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6941 		break;
6942 	case HWRM_RING_ALLOC_CMPL:
6943 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6944 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6945 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6946 			/* Association of cp ring with nq */
6947 			grp_info = &bp->grp_info[map_index];
6948 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6949 			req->cq_handle = cpu_to_le64(ring->handle);
6950 			req->enables |= cpu_to_le32(
6951 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6952 		} else {
6953 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6954 		}
6955 		break;
6956 	case HWRM_RING_ALLOC_NQ:
6957 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6958 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6959 		req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6960 		break;
6961 	default:
6962 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6963 			   ring_type);
6964 		return -1;
6965 	}
6966 
6967 	resp = hwrm_req_hold(bp, req);
6968 	rc = hwrm_req_send(bp, req);
6969 	err = le16_to_cpu(resp->error_code);
6970 	ring_id = le16_to_cpu(resp->ring_id);
6971 	hwrm_req_drop(bp, req);
6972 
6973 exit:
6974 	if (rc || err) {
6975 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6976 			   ring_type, rc, err);
6977 		return -EIO;
6978 	}
6979 	ring->fw_ring_id = ring_id;
6980 	return rc;
6981 }
6982 
6983 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6984 {
6985 	int rc;
6986 
6987 	if (BNXT_PF(bp)) {
6988 		struct hwrm_func_cfg_input *req;
6989 
6990 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6991 		if (rc)
6992 			return rc;
6993 
6994 		req->fid = cpu_to_le16(0xffff);
6995 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6996 		req->async_event_cr = cpu_to_le16(idx);
6997 		return hwrm_req_send(bp, req);
6998 	} else {
6999 		struct hwrm_func_vf_cfg_input *req;
7000 
7001 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
7002 		if (rc)
7003 			return rc;
7004 
7005 		req->enables =
7006 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
7007 		req->async_event_cr = cpu_to_le16(idx);
7008 		return hwrm_req_send(bp, req);
7009 	}
7010 }
7011 
7012 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
7013 			     u32 ring_type)
7014 {
7015 	switch (ring_type) {
7016 	case HWRM_RING_ALLOC_TX:
7017 		db->db_ring_mask = bp->tx_ring_mask;
7018 		break;
7019 	case HWRM_RING_ALLOC_RX:
7020 		db->db_ring_mask = bp->rx_ring_mask;
7021 		break;
7022 	case HWRM_RING_ALLOC_AGG:
7023 		db->db_ring_mask = bp->rx_agg_ring_mask;
7024 		break;
7025 	case HWRM_RING_ALLOC_CMPL:
7026 	case HWRM_RING_ALLOC_NQ:
7027 		db->db_ring_mask = bp->cp_ring_mask;
7028 		break;
7029 	}
7030 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
7031 		db->db_epoch_mask = db->db_ring_mask + 1;
7032 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
7033 	}
7034 }
7035 
7036 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
7037 			u32 map_idx, u32 xid)
7038 {
7039 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7040 		switch (ring_type) {
7041 		case HWRM_RING_ALLOC_TX:
7042 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
7043 			break;
7044 		case HWRM_RING_ALLOC_RX:
7045 		case HWRM_RING_ALLOC_AGG:
7046 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
7047 			break;
7048 		case HWRM_RING_ALLOC_CMPL:
7049 			db->db_key64 = DBR_PATH_L2;
7050 			break;
7051 		case HWRM_RING_ALLOC_NQ:
7052 			db->db_key64 = DBR_PATH_L2;
7053 			break;
7054 		}
7055 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
7056 
7057 		if (bp->flags & BNXT_FLAG_CHIP_P7)
7058 			db->db_key64 |= DBR_VALID;
7059 
7060 		db->doorbell = bp->bar1 + bp->db_offset;
7061 	} else {
7062 		db->doorbell = bp->bar1 + map_idx * 0x80;
7063 		switch (ring_type) {
7064 		case HWRM_RING_ALLOC_TX:
7065 			db->db_key32 = DB_KEY_TX;
7066 			break;
7067 		case HWRM_RING_ALLOC_RX:
7068 		case HWRM_RING_ALLOC_AGG:
7069 			db->db_key32 = DB_KEY_RX;
7070 			break;
7071 		case HWRM_RING_ALLOC_CMPL:
7072 			db->db_key32 = DB_KEY_CP;
7073 			break;
7074 		}
7075 	}
7076 	bnxt_set_db_mask(bp, db, ring_type);
7077 }
7078 
7079 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp,
7080 				   struct bnxt_rx_ring_info *rxr)
7081 {
7082 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7083 	struct bnxt_napi *bnapi = rxr->bnapi;
7084 	u32 type = HWRM_RING_ALLOC_RX;
7085 	u32 map_idx = bnapi->index;
7086 	int rc;
7087 
7088 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7089 	if (rc)
7090 		return rc;
7091 
7092 	bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
7093 	bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
7094 
7095 	return 0;
7096 }
7097 
7098 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp,
7099 				       struct bnxt_rx_ring_info *rxr)
7100 {
7101 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7102 	u32 type = HWRM_RING_ALLOC_AGG;
7103 	u32 grp_idx = ring->grp_idx;
7104 	u32 map_idx;
7105 	int rc;
7106 
7107 	map_idx = grp_idx + bp->rx_nr_rings;
7108 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7109 	if (rc)
7110 		return rc;
7111 
7112 	bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
7113 		    ring->fw_ring_id);
7114 	bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
7115 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7116 	bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
7117 
7118 	return 0;
7119 }
7120 
7121 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
7122 {
7123 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
7124 	int i, rc = 0;
7125 	u32 type;
7126 
7127 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7128 		type = HWRM_RING_ALLOC_NQ;
7129 	else
7130 		type = HWRM_RING_ALLOC_CMPL;
7131 	for (i = 0; i < bp->cp_nr_rings; i++) {
7132 		struct bnxt_napi *bnapi = bp->bnapi[i];
7133 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7134 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
7135 		u32 map_idx = ring->map_idx;
7136 		unsigned int vector;
7137 
7138 		vector = bp->irq_tbl[map_idx].vector;
7139 		disable_irq_nosync(vector);
7140 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7141 		if (rc) {
7142 			enable_irq(vector);
7143 			goto err_out;
7144 		}
7145 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
7146 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
7147 		enable_irq(vector);
7148 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
7149 
7150 		if (!i) {
7151 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
7152 			if (rc)
7153 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
7154 		}
7155 	}
7156 
7157 	type = HWRM_RING_ALLOC_TX;
7158 	for (i = 0; i < bp->tx_nr_rings; i++) {
7159 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7160 		struct bnxt_ring_struct *ring;
7161 		u32 map_idx;
7162 
7163 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7164 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
7165 			struct bnxt_napi *bnapi = txr->bnapi;
7166 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7167 
7168 			ring = &cpr2->cp_ring_struct;
7169 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7170 			map_idx = bnapi->index;
7171 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7172 			if (rc)
7173 				goto err_out;
7174 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7175 				    ring->fw_ring_id);
7176 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7177 		}
7178 		ring = &txr->tx_ring_struct;
7179 		map_idx = i;
7180 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7181 		if (rc)
7182 			goto err_out;
7183 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
7184 	}
7185 
7186 	for (i = 0; i < bp->rx_nr_rings; i++) {
7187 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
7188 
7189 		rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
7190 		if (rc)
7191 			goto err_out;
7192 		/* If we have agg rings, post agg buffers first. */
7193 		if (!agg_rings)
7194 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7195 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7196 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
7197 			struct bnxt_napi *bnapi = rxr->bnapi;
7198 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7199 			struct bnxt_ring_struct *ring;
7200 			u32 map_idx = bnapi->index;
7201 
7202 			ring = &cpr2->cp_ring_struct;
7203 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7204 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7205 			if (rc)
7206 				goto err_out;
7207 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7208 				    ring->fw_ring_id);
7209 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7210 		}
7211 	}
7212 
7213 	if (agg_rings) {
7214 		for (i = 0; i < bp->rx_nr_rings; i++) {
7215 			rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]);
7216 			if (rc)
7217 				goto err_out;
7218 		}
7219 	}
7220 err_out:
7221 	return rc;
7222 }
7223 
7224 static int hwrm_ring_free_send_msg(struct bnxt *bp,
7225 				   struct bnxt_ring_struct *ring,
7226 				   u32 ring_type, int cmpl_ring_id)
7227 {
7228 	struct hwrm_ring_free_output *resp;
7229 	struct hwrm_ring_free_input *req;
7230 	u16 error_code = 0;
7231 	int rc;
7232 
7233 	if (BNXT_NO_FW_ACCESS(bp))
7234 		return 0;
7235 
7236 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
7237 	if (rc)
7238 		goto exit;
7239 
7240 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
7241 	req->ring_type = ring_type;
7242 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
7243 
7244 	resp = hwrm_req_hold(bp, req);
7245 	rc = hwrm_req_send(bp, req);
7246 	error_code = le16_to_cpu(resp->error_code);
7247 	hwrm_req_drop(bp, req);
7248 exit:
7249 	if (rc || error_code) {
7250 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
7251 			   ring_type, rc, error_code);
7252 		return -EIO;
7253 	}
7254 	return 0;
7255 }
7256 
7257 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp,
7258 				   struct bnxt_rx_ring_info *rxr,
7259 				   bool close_path)
7260 {
7261 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7262 	u32 grp_idx = rxr->bnapi->index;
7263 	u32 cmpl_ring_id;
7264 
7265 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7266 		return;
7267 
7268 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7269 	hwrm_ring_free_send_msg(bp, ring,
7270 				RING_FREE_REQ_RING_TYPE_RX,
7271 				close_path ? cmpl_ring_id :
7272 				INVALID_HW_RING_ID);
7273 	ring->fw_ring_id = INVALID_HW_RING_ID;
7274 	bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID;
7275 }
7276 
7277 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp,
7278 				       struct bnxt_rx_ring_info *rxr,
7279 				       bool close_path)
7280 {
7281 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7282 	u32 grp_idx = rxr->bnapi->index;
7283 	u32 type, cmpl_ring_id;
7284 
7285 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7286 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
7287 	else
7288 		type = RING_FREE_REQ_RING_TYPE_RX;
7289 
7290 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7291 		return;
7292 
7293 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7294 	hwrm_ring_free_send_msg(bp, ring, type,
7295 				close_path ? cmpl_ring_id :
7296 				INVALID_HW_RING_ID);
7297 	ring->fw_ring_id = INVALID_HW_RING_ID;
7298 	bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID;
7299 }
7300 
7301 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
7302 {
7303 	u32 type;
7304 	int i;
7305 
7306 	if (!bp->bnapi)
7307 		return;
7308 
7309 	for (i = 0; i < bp->tx_nr_rings; i++) {
7310 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7311 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
7312 
7313 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7314 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
7315 
7316 			hwrm_ring_free_send_msg(bp, ring,
7317 						RING_FREE_REQ_RING_TYPE_TX,
7318 						close_path ? cmpl_ring_id :
7319 						INVALID_HW_RING_ID);
7320 			ring->fw_ring_id = INVALID_HW_RING_ID;
7321 		}
7322 	}
7323 
7324 	for (i = 0; i < bp->rx_nr_rings; i++) {
7325 		bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path);
7326 		bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path);
7327 	}
7328 
7329 	/* The completion rings are about to be freed.  After that the
7330 	 * IRQ doorbell will not work anymore.  So we need to disable
7331 	 * IRQ here.
7332 	 */
7333 	bnxt_disable_int_sync(bp);
7334 
7335 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7336 		type = RING_FREE_REQ_RING_TYPE_NQ;
7337 	else
7338 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
7339 	for (i = 0; i < bp->cp_nr_rings; i++) {
7340 		struct bnxt_napi *bnapi = bp->bnapi[i];
7341 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7342 		struct bnxt_ring_struct *ring;
7343 		int j;
7344 
7345 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
7346 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
7347 
7348 			ring = &cpr2->cp_ring_struct;
7349 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
7350 				continue;
7351 			hwrm_ring_free_send_msg(bp, ring,
7352 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
7353 						INVALID_HW_RING_ID);
7354 			ring->fw_ring_id = INVALID_HW_RING_ID;
7355 		}
7356 		ring = &cpr->cp_ring_struct;
7357 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7358 			hwrm_ring_free_send_msg(bp, ring, type,
7359 						INVALID_HW_RING_ID);
7360 			ring->fw_ring_id = INVALID_HW_RING_ID;
7361 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
7362 		}
7363 	}
7364 }
7365 
7366 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7367 			     bool shared);
7368 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7369 			   bool shared);
7370 
7371 static int bnxt_hwrm_get_rings(struct bnxt *bp)
7372 {
7373 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7374 	struct hwrm_func_qcfg_output *resp;
7375 	struct hwrm_func_qcfg_input *req;
7376 	int rc;
7377 
7378 	if (bp->hwrm_spec_code < 0x10601)
7379 		return 0;
7380 
7381 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7382 	if (rc)
7383 		return rc;
7384 
7385 	req->fid = cpu_to_le16(0xffff);
7386 	resp = hwrm_req_hold(bp, req);
7387 	rc = hwrm_req_send(bp, req);
7388 	if (rc) {
7389 		hwrm_req_drop(bp, req);
7390 		return rc;
7391 	}
7392 
7393 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7394 	if (BNXT_NEW_RM(bp)) {
7395 		u16 cp, stats;
7396 
7397 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
7398 		hw_resc->resv_hw_ring_grps =
7399 			le32_to_cpu(resp->alloc_hw_ring_grps);
7400 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
7401 		hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx);
7402 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
7403 		stats = le16_to_cpu(resp->alloc_stat_ctx);
7404 		hw_resc->resv_irqs = cp;
7405 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7406 			int rx = hw_resc->resv_rx_rings;
7407 			int tx = hw_resc->resv_tx_rings;
7408 
7409 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
7410 				rx >>= 1;
7411 			if (cp < (rx + tx)) {
7412 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
7413 				if (rc)
7414 					goto get_rings_exit;
7415 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
7416 					rx <<= 1;
7417 				hw_resc->resv_rx_rings = rx;
7418 				hw_resc->resv_tx_rings = tx;
7419 			}
7420 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
7421 			hw_resc->resv_hw_ring_grps = rx;
7422 		}
7423 		hw_resc->resv_cp_rings = cp;
7424 		hw_resc->resv_stat_ctxs = stats;
7425 	}
7426 get_rings_exit:
7427 	hwrm_req_drop(bp, req);
7428 	return rc;
7429 }
7430 
7431 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
7432 {
7433 	struct hwrm_func_qcfg_output *resp;
7434 	struct hwrm_func_qcfg_input *req;
7435 	int rc;
7436 
7437 	if (bp->hwrm_spec_code < 0x10601)
7438 		return 0;
7439 
7440 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7441 	if (rc)
7442 		return rc;
7443 
7444 	req->fid = cpu_to_le16(fid);
7445 	resp = hwrm_req_hold(bp, req);
7446 	rc = hwrm_req_send(bp, req);
7447 	if (!rc)
7448 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7449 
7450 	hwrm_req_drop(bp, req);
7451 	return rc;
7452 }
7453 
7454 static bool bnxt_rfs_supported(struct bnxt *bp);
7455 
7456 static struct hwrm_func_cfg_input *
7457 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7458 {
7459 	struct hwrm_func_cfg_input *req;
7460 	u32 enables = 0;
7461 
7462 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
7463 		return NULL;
7464 
7465 	req->fid = cpu_to_le16(0xffff);
7466 	enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7467 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7468 	if (BNXT_NEW_RM(bp)) {
7469 		enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
7470 		enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7471 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7472 			enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
7473 			enables |= hwr->cp_p5 ?
7474 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7475 		} else {
7476 			enables |= hwr->cp ?
7477 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7478 			enables |= hwr->grp ?
7479 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7480 		}
7481 		enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7482 		enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS :
7483 					  0;
7484 		req->num_rx_rings = cpu_to_le16(hwr->rx);
7485 		req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7486 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7487 			req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7488 			req->num_msix = cpu_to_le16(hwr->cp);
7489 		} else {
7490 			req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7491 			req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7492 		}
7493 		req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7494 		req->num_vnics = cpu_to_le16(hwr->vnic);
7495 	}
7496 	req->enables = cpu_to_le32(enables);
7497 	return req;
7498 }
7499 
7500 static struct hwrm_func_vf_cfg_input *
7501 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7502 {
7503 	struct hwrm_func_vf_cfg_input *req;
7504 	u32 enables = 0;
7505 
7506 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7507 		return NULL;
7508 
7509 	enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7510 	enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7511 			     FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7512 	enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7513 	enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7514 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7515 		enables |= hwr->cp_p5 ?
7516 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7517 	} else {
7518 		enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7519 		enables |= hwr->grp ?
7520 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7521 	}
7522 	enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7523 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7524 
7525 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7526 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7527 	req->num_rx_rings = cpu_to_le16(hwr->rx);
7528 	req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7529 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7530 		req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7531 	} else {
7532 		req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7533 		req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7534 	}
7535 	req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7536 	req->num_vnics = cpu_to_le16(hwr->vnic);
7537 
7538 	req->enables = cpu_to_le32(enables);
7539 	return req;
7540 }
7541 
7542 static int
7543 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7544 {
7545 	struct hwrm_func_cfg_input *req;
7546 	int rc;
7547 
7548 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7549 	if (!req)
7550 		return -ENOMEM;
7551 
7552 	if (!req->enables) {
7553 		hwrm_req_drop(bp, req);
7554 		return 0;
7555 	}
7556 
7557 	rc = hwrm_req_send(bp, req);
7558 	if (rc)
7559 		return rc;
7560 
7561 	if (bp->hwrm_spec_code < 0x10601)
7562 		bp->hw_resc.resv_tx_rings = hwr->tx;
7563 
7564 	return bnxt_hwrm_get_rings(bp);
7565 }
7566 
7567 static int
7568 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7569 {
7570 	struct hwrm_func_vf_cfg_input *req;
7571 	int rc;
7572 
7573 	if (!BNXT_NEW_RM(bp)) {
7574 		bp->hw_resc.resv_tx_rings = hwr->tx;
7575 		return 0;
7576 	}
7577 
7578 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7579 	if (!req)
7580 		return -ENOMEM;
7581 
7582 	rc = hwrm_req_send(bp, req);
7583 	if (rc)
7584 		return rc;
7585 
7586 	return bnxt_hwrm_get_rings(bp);
7587 }
7588 
7589 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7590 {
7591 	if (BNXT_PF(bp))
7592 		return bnxt_hwrm_reserve_pf_rings(bp, hwr);
7593 	else
7594 		return bnxt_hwrm_reserve_vf_rings(bp, hwr);
7595 }
7596 
7597 int bnxt_nq_rings_in_use(struct bnxt *bp)
7598 {
7599 	return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp);
7600 }
7601 
7602 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7603 {
7604 	int cp;
7605 
7606 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7607 		return bnxt_nq_rings_in_use(bp);
7608 
7609 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7610 	return cp;
7611 }
7612 
7613 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7614 {
7615 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
7616 }
7617 
7618 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7619 {
7620 	if (!hwr->grp)
7621 		return 0;
7622 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7623 		int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp);
7624 
7625 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7626 			rss_ctx *= hwr->vnic;
7627 		return rss_ctx;
7628 	}
7629 	if (BNXT_VF(bp))
7630 		return BNXT_VF_MAX_RSS_CTX;
7631 	if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp))
7632 		return hwr->grp + 1;
7633 	return 1;
7634 }
7635 
7636 /* Check if a default RSS map needs to be setup.  This function is only
7637  * used on older firmware that does not require reserving RX rings.
7638  */
7639 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7640 {
7641 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7642 
7643 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7644 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7645 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7646 		if (!netif_is_rxfh_configured(bp->dev))
7647 			bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7648 	}
7649 }
7650 
7651 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings)
7652 {
7653 	if (bp->flags & BNXT_FLAG_RFS) {
7654 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7655 			return 2 + bp->num_rss_ctx;
7656 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7657 			return rx_rings + 1;
7658 	}
7659 	return 1;
7660 }
7661 
7662 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7663 {
7664 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7665 	int cp = bnxt_cp_rings_in_use(bp);
7666 	int nq = bnxt_nq_rings_in_use(bp);
7667 	int rx = bp->rx_nr_rings, stat;
7668 	int vnic, grp = rx;
7669 
7670 	/* Old firmware does not need RX ring reservations but we still
7671 	 * need to setup a default RSS map when needed.  With new firmware
7672 	 * we go through RX ring reservations first and then set up the
7673 	 * RSS map for the successfully reserved RX rings when needed.
7674 	 */
7675 	if (!BNXT_NEW_RM(bp))
7676 		bnxt_check_rss_tbl_no_rmgr(bp);
7677 
7678 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7679 	    bp->hwrm_spec_code >= 0x10601)
7680 		return true;
7681 
7682 	if (!BNXT_NEW_RM(bp))
7683 		return false;
7684 
7685 	vnic = bnxt_get_total_vnics(bp, rx);
7686 
7687 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7688 		rx <<= 1;
7689 	stat = bnxt_get_func_stat_ctxs(bp);
7690 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7691 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7692 	    (hw_resc->resv_hw_ring_grps != grp &&
7693 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7694 		return true;
7695 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7696 	    hw_resc->resv_irqs != nq)
7697 		return true;
7698 	return false;
7699 }
7700 
7701 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7702 {
7703 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7704 
7705 	hwr->tx = hw_resc->resv_tx_rings;
7706 	if (BNXT_NEW_RM(bp)) {
7707 		hwr->rx = hw_resc->resv_rx_rings;
7708 		hwr->cp = hw_resc->resv_irqs;
7709 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7710 			hwr->cp_p5 = hw_resc->resv_cp_rings;
7711 		hwr->grp = hw_resc->resv_hw_ring_grps;
7712 		hwr->vnic = hw_resc->resv_vnics;
7713 		hwr->stat = hw_resc->resv_stat_ctxs;
7714 		hwr->rss_ctx = hw_resc->resv_rsscos_ctxs;
7715 	}
7716 }
7717 
7718 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7719 {
7720 	return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic &&
7721 	       hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS));
7722 }
7723 
7724 static int bnxt_get_avail_msix(struct bnxt *bp, int num);
7725 
7726 static int __bnxt_reserve_rings(struct bnxt *bp)
7727 {
7728 	struct bnxt_hw_rings hwr = {0};
7729 	int rx_rings, old_rx_rings, rc;
7730 	int cp = bp->cp_nr_rings;
7731 	int ulp_msix = 0;
7732 	bool sh = false;
7733 	int tx_cp;
7734 
7735 	if (!bnxt_need_reserve_rings(bp))
7736 		return 0;
7737 
7738 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
7739 		ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
7740 		if (!ulp_msix)
7741 			bnxt_set_ulp_stat_ctxs(bp, 0);
7742 
7743 		if (ulp_msix > bp->ulp_num_msix_want)
7744 			ulp_msix = bp->ulp_num_msix_want;
7745 		hwr.cp = cp + ulp_msix;
7746 	} else {
7747 		hwr.cp = bnxt_nq_rings_in_use(bp);
7748 	}
7749 
7750 	hwr.tx = bp->tx_nr_rings;
7751 	hwr.rx = bp->rx_nr_rings;
7752 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7753 		sh = true;
7754 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7755 		hwr.cp_p5 = hwr.rx + hwr.tx;
7756 
7757 	hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx);
7758 
7759 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7760 		hwr.rx <<= 1;
7761 	hwr.grp = bp->rx_nr_rings;
7762 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
7763 	hwr.stat = bnxt_get_func_stat_ctxs(bp);
7764 	old_rx_rings = bp->hw_resc.resv_rx_rings;
7765 
7766 	rc = bnxt_hwrm_reserve_rings(bp, &hwr);
7767 	if (rc)
7768 		return rc;
7769 
7770 	bnxt_copy_reserved_rings(bp, &hwr);
7771 
7772 	rx_rings = hwr.rx;
7773 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7774 		if (hwr.rx >= 2) {
7775 			rx_rings = hwr.rx >> 1;
7776 		} else {
7777 			if (netif_running(bp->dev))
7778 				return -ENOMEM;
7779 
7780 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7781 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7782 			bp->dev->hw_features &= ~NETIF_F_LRO;
7783 			bp->dev->features &= ~NETIF_F_LRO;
7784 			bnxt_set_ring_params(bp);
7785 		}
7786 	}
7787 	rx_rings = min_t(int, rx_rings, hwr.grp);
7788 	hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings);
7789 	if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp))
7790 		hwr.stat -= bnxt_get_ulp_stat_ctxs(bp);
7791 	hwr.cp = min_t(int, hwr.cp, hwr.stat);
7792 	rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh);
7793 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7794 		hwr.rx = rx_rings << 1;
7795 	tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx);
7796 	hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7797 	bp->tx_nr_rings = hwr.tx;
7798 
7799 	/* If we cannot reserve all the RX rings, reset the RSS map only
7800 	 * if absolutely necessary
7801 	 */
7802 	if (rx_rings != bp->rx_nr_rings) {
7803 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7804 			    rx_rings, bp->rx_nr_rings);
7805 		if (netif_is_rxfh_configured(bp->dev) &&
7806 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7807 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7808 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7809 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7810 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7811 		}
7812 	}
7813 	bp->rx_nr_rings = rx_rings;
7814 	bp->cp_nr_rings = hwr.cp;
7815 
7816 	if (!bnxt_rings_ok(bp, &hwr))
7817 		return -ENOMEM;
7818 
7819 	if (old_rx_rings != bp->hw_resc.resv_rx_rings &&
7820 	    !netif_is_rxfh_configured(bp->dev))
7821 		bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7822 
7823 	if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) {
7824 		int resv_msix, resv_ctx, ulp_ctxs;
7825 		struct bnxt_hw_resc *hw_resc;
7826 
7827 		hw_resc = &bp->hw_resc;
7828 		resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings;
7829 		ulp_msix = min_t(int, resv_msix, ulp_msix);
7830 		bnxt_set_ulp_msix_num(bp, ulp_msix);
7831 		resv_ctx = hw_resc->resv_stat_ctxs  - bp->cp_nr_rings;
7832 		ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp));
7833 		bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs);
7834 	}
7835 
7836 	return rc;
7837 }
7838 
7839 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7840 {
7841 	struct hwrm_func_vf_cfg_input *req;
7842 	u32 flags;
7843 
7844 	if (!BNXT_NEW_RM(bp))
7845 		return 0;
7846 
7847 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7848 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7849 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7850 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7851 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7852 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7853 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7854 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7855 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7856 
7857 	req->flags = cpu_to_le32(flags);
7858 	return hwrm_req_send_silent(bp, req);
7859 }
7860 
7861 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7862 {
7863 	struct hwrm_func_cfg_input *req;
7864 	u32 flags;
7865 
7866 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7867 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7868 	if (BNXT_NEW_RM(bp)) {
7869 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7870 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7871 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7872 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7873 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7874 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7875 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7876 		else
7877 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7878 	}
7879 
7880 	req->flags = cpu_to_le32(flags);
7881 	return hwrm_req_send_silent(bp, req);
7882 }
7883 
7884 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7885 {
7886 	if (bp->hwrm_spec_code < 0x10801)
7887 		return 0;
7888 
7889 	if (BNXT_PF(bp))
7890 		return bnxt_hwrm_check_pf_rings(bp, hwr);
7891 
7892 	return bnxt_hwrm_check_vf_rings(bp, hwr);
7893 }
7894 
7895 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7896 {
7897 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7898 	struct hwrm_ring_aggint_qcaps_output *resp;
7899 	struct hwrm_ring_aggint_qcaps_input *req;
7900 	int rc;
7901 
7902 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7903 	coal_cap->num_cmpl_dma_aggr_max = 63;
7904 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7905 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7906 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7907 	coal_cap->int_lat_tmr_min_max = 65535;
7908 	coal_cap->int_lat_tmr_max_max = 65535;
7909 	coal_cap->num_cmpl_aggr_int_max = 65535;
7910 	coal_cap->timer_units = 80;
7911 
7912 	if (bp->hwrm_spec_code < 0x10902)
7913 		return;
7914 
7915 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7916 		return;
7917 
7918 	resp = hwrm_req_hold(bp, req);
7919 	rc = hwrm_req_send_silent(bp, req);
7920 	if (!rc) {
7921 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7922 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7923 		coal_cap->num_cmpl_dma_aggr_max =
7924 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7925 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7926 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7927 		coal_cap->cmpl_aggr_dma_tmr_max =
7928 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7929 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7930 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7931 		coal_cap->int_lat_tmr_min_max =
7932 			le16_to_cpu(resp->int_lat_tmr_min_max);
7933 		coal_cap->int_lat_tmr_max_max =
7934 			le16_to_cpu(resp->int_lat_tmr_max_max);
7935 		coal_cap->num_cmpl_aggr_int_max =
7936 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7937 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7938 	}
7939 	hwrm_req_drop(bp, req);
7940 }
7941 
7942 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7943 {
7944 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7945 
7946 	return usec * 1000 / coal_cap->timer_units;
7947 }
7948 
7949 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7950 	struct bnxt_coal *hw_coal,
7951 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7952 {
7953 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7954 	u16 val, tmr, max, flags = hw_coal->flags;
7955 	u32 cmpl_params = coal_cap->cmpl_params;
7956 
7957 	max = hw_coal->bufs_per_record * 128;
7958 	if (hw_coal->budget)
7959 		max = hw_coal->bufs_per_record * hw_coal->budget;
7960 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7961 
7962 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7963 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7964 
7965 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7966 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7967 
7968 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7969 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7970 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7971 
7972 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7973 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7974 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7975 
7976 	/* min timer set to 1/2 of interrupt timer */
7977 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7978 		val = tmr / 2;
7979 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7980 		req->int_lat_tmr_min = cpu_to_le16(val);
7981 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7982 	}
7983 
7984 	/* buf timer set to 1/4 of interrupt timer */
7985 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7986 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7987 
7988 	if (cmpl_params &
7989 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7990 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7991 		val = clamp_t(u16, tmr, 1,
7992 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7993 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7994 		req->enables |=
7995 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7996 	}
7997 
7998 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7999 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
8000 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
8001 	req->flags = cpu_to_le16(flags);
8002 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
8003 }
8004 
8005 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
8006 				   struct bnxt_coal *hw_coal)
8007 {
8008 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
8009 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8010 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
8011 	u32 nq_params = coal_cap->nq_params;
8012 	u16 tmr;
8013 	int rc;
8014 
8015 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
8016 		return 0;
8017 
8018 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8019 	if (rc)
8020 		return rc;
8021 
8022 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
8023 	req->flags =
8024 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
8025 
8026 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
8027 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
8028 	req->int_lat_tmr_min = cpu_to_le16(tmr);
8029 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
8030 	return hwrm_req_send(bp, req);
8031 }
8032 
8033 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
8034 {
8035 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
8036 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8037 	struct bnxt_coal coal;
8038 	int rc;
8039 
8040 	/* Tick values in micro seconds.
8041 	 * 1 coal_buf x bufs_per_record = 1 completion record.
8042 	 */
8043 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
8044 
8045 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
8046 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
8047 
8048 	if (!bnapi->rx_ring)
8049 		return -ENODEV;
8050 
8051 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8052 	if (rc)
8053 		return rc;
8054 
8055 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
8056 
8057 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
8058 
8059 	return hwrm_req_send(bp, req_rx);
8060 }
8061 
8062 static int
8063 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
8064 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
8065 {
8066 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
8067 
8068 	req->ring_id = cpu_to_le16(ring_id);
8069 	return hwrm_req_send(bp, req);
8070 }
8071 
8072 static int
8073 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
8074 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
8075 {
8076 	struct bnxt_tx_ring_info *txr;
8077 	int i, rc;
8078 
8079 	bnxt_for_each_napi_tx(i, bnapi, txr) {
8080 		u16 ring_id;
8081 
8082 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
8083 		req->ring_id = cpu_to_le16(ring_id);
8084 		rc = hwrm_req_send(bp, req);
8085 		if (rc)
8086 			return rc;
8087 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8088 			return 0;
8089 	}
8090 	return 0;
8091 }
8092 
8093 int bnxt_hwrm_set_coal(struct bnxt *bp)
8094 {
8095 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
8096 	int i, rc;
8097 
8098 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8099 	if (rc)
8100 		return rc;
8101 
8102 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8103 	if (rc) {
8104 		hwrm_req_drop(bp, req_rx);
8105 		return rc;
8106 	}
8107 
8108 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
8109 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
8110 
8111 	hwrm_req_hold(bp, req_rx);
8112 	hwrm_req_hold(bp, req_tx);
8113 	for (i = 0; i < bp->cp_nr_rings; i++) {
8114 		struct bnxt_napi *bnapi = bp->bnapi[i];
8115 		struct bnxt_coal *hw_coal;
8116 
8117 		if (!bnapi->rx_ring)
8118 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8119 		else
8120 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
8121 		if (rc)
8122 			break;
8123 
8124 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8125 			continue;
8126 
8127 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
8128 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8129 			if (rc)
8130 				break;
8131 		}
8132 		if (bnapi->rx_ring)
8133 			hw_coal = &bp->rx_coal;
8134 		else
8135 			hw_coal = &bp->tx_coal;
8136 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
8137 	}
8138 	hwrm_req_drop(bp, req_rx);
8139 	hwrm_req_drop(bp, req_tx);
8140 	return rc;
8141 }
8142 
8143 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
8144 {
8145 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
8146 	struct hwrm_stat_ctx_free_input *req;
8147 	int i;
8148 
8149 	if (!bp->bnapi)
8150 		return;
8151 
8152 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8153 		return;
8154 
8155 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
8156 		return;
8157 	if (BNXT_FW_MAJ(bp) <= 20) {
8158 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
8159 			hwrm_req_drop(bp, req);
8160 			return;
8161 		}
8162 		hwrm_req_hold(bp, req0);
8163 	}
8164 	hwrm_req_hold(bp, req);
8165 	for (i = 0; i < bp->cp_nr_rings; i++) {
8166 		struct bnxt_napi *bnapi = bp->bnapi[i];
8167 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8168 
8169 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
8170 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
8171 			if (req0) {
8172 				req0->stat_ctx_id = req->stat_ctx_id;
8173 				hwrm_req_send(bp, req0);
8174 			}
8175 			hwrm_req_send(bp, req);
8176 
8177 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
8178 		}
8179 	}
8180 	hwrm_req_drop(bp, req);
8181 	if (req0)
8182 		hwrm_req_drop(bp, req0);
8183 }
8184 
8185 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
8186 {
8187 	struct hwrm_stat_ctx_alloc_output *resp;
8188 	struct hwrm_stat_ctx_alloc_input *req;
8189 	int rc, i;
8190 
8191 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8192 		return 0;
8193 
8194 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
8195 	if (rc)
8196 		return rc;
8197 
8198 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
8199 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
8200 
8201 	resp = hwrm_req_hold(bp, req);
8202 	for (i = 0; i < bp->cp_nr_rings; i++) {
8203 		struct bnxt_napi *bnapi = bp->bnapi[i];
8204 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8205 
8206 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
8207 
8208 		rc = hwrm_req_send(bp, req);
8209 		if (rc)
8210 			break;
8211 
8212 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
8213 
8214 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
8215 	}
8216 	hwrm_req_drop(bp, req);
8217 	return rc;
8218 }
8219 
8220 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
8221 {
8222 	struct hwrm_func_qcfg_output *resp;
8223 	struct hwrm_func_qcfg_input *req;
8224 	u16 flags;
8225 	int rc;
8226 
8227 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
8228 	if (rc)
8229 		return rc;
8230 
8231 	req->fid = cpu_to_le16(0xffff);
8232 	resp = hwrm_req_hold(bp, req);
8233 	rc = hwrm_req_send(bp, req);
8234 	if (rc)
8235 		goto func_qcfg_exit;
8236 
8237 #ifdef CONFIG_BNXT_SRIOV
8238 	if (BNXT_VF(bp)) {
8239 		struct bnxt_vf_info *vf = &bp->vf;
8240 
8241 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
8242 	} else {
8243 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
8244 	}
8245 #endif
8246 	flags = le16_to_cpu(resp->flags);
8247 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
8248 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
8249 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
8250 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
8251 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
8252 	}
8253 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
8254 		bp->flags |= BNXT_FLAG_MULTI_HOST;
8255 
8256 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
8257 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
8258 
8259 	if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV)
8260 		bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV;
8261 
8262 	switch (resp->port_partition_type) {
8263 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
8264 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
8265 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
8266 		bp->port_partition_type = resp->port_partition_type;
8267 		break;
8268 	}
8269 	if (bp->hwrm_spec_code < 0x10707 ||
8270 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
8271 		bp->br_mode = BRIDGE_MODE_VEB;
8272 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
8273 		bp->br_mode = BRIDGE_MODE_VEPA;
8274 	else
8275 		bp->br_mode = BRIDGE_MODE_UNDEF;
8276 
8277 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
8278 	if (!bp->max_mtu)
8279 		bp->max_mtu = BNXT_MAX_MTU;
8280 
8281 	if (bp->db_size)
8282 		goto func_qcfg_exit;
8283 
8284 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
8285 	if (BNXT_CHIP_P5(bp)) {
8286 		if (BNXT_PF(bp))
8287 			bp->db_offset = DB_PF_OFFSET_P5;
8288 		else
8289 			bp->db_offset = DB_VF_OFFSET_P5;
8290 	}
8291 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
8292 				 1024);
8293 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
8294 	    bp->db_size <= bp->db_offset)
8295 		bp->db_size = pci_resource_len(bp->pdev, 2);
8296 
8297 func_qcfg_exit:
8298 	hwrm_req_drop(bp, req);
8299 	return rc;
8300 }
8301 
8302 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
8303 				      u8 init_val, u8 init_offset,
8304 				      bool init_mask_set)
8305 {
8306 	ctxm->init_value = init_val;
8307 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
8308 	if (init_mask_set)
8309 		ctxm->init_offset = init_offset * 4;
8310 	else
8311 		ctxm->init_value = 0;
8312 }
8313 
8314 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
8315 {
8316 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8317 	u16 type;
8318 
8319 	for (type = 0; type < ctx_max; type++) {
8320 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8321 		int n = 1;
8322 
8323 		if (!ctxm->max_entries)
8324 			continue;
8325 
8326 		if (ctxm->instance_bmap)
8327 			n = hweight32(ctxm->instance_bmap);
8328 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
8329 		if (!ctxm->pg_info)
8330 			return -ENOMEM;
8331 	}
8332 	return 0;
8333 }
8334 
8335 static void bnxt_free_one_ctx_mem(struct bnxt *bp,
8336 				  struct bnxt_ctx_mem_type *ctxm, bool force);
8337 
8338 #define BNXT_CTX_INIT_VALID(flags)	\
8339 	(!!((flags) &			\
8340 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
8341 
8342 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
8343 {
8344 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
8345 	struct hwrm_func_backing_store_qcaps_v2_input *req;
8346 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8347 	u16 type;
8348 	int rc;
8349 
8350 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
8351 	if (rc)
8352 		return rc;
8353 
8354 	if (!ctx) {
8355 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8356 		if (!ctx)
8357 			return -ENOMEM;
8358 		bp->ctx = ctx;
8359 	}
8360 
8361 	resp = hwrm_req_hold(bp, req);
8362 
8363 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
8364 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8365 		u8 init_val, init_off, i;
8366 		u32 max_entries;
8367 		u16 entry_size;
8368 		__le32 *p;
8369 		u32 flags;
8370 
8371 		req->type = cpu_to_le16(type);
8372 		rc = hwrm_req_send(bp, req);
8373 		if (rc)
8374 			goto ctx_done;
8375 		flags = le32_to_cpu(resp->flags);
8376 		type = le16_to_cpu(resp->next_valid_type);
8377 		if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) {
8378 			bnxt_free_one_ctx_mem(bp, ctxm, true);
8379 			continue;
8380 		}
8381 		entry_size = le16_to_cpu(resp->entry_size);
8382 		max_entries = le32_to_cpu(resp->max_num_entries);
8383 		if (ctxm->mem_valid) {
8384 			if (!(flags & BNXT_CTX_MEM_PERSIST) ||
8385 			    ctxm->entry_size != entry_size ||
8386 			    ctxm->max_entries != max_entries)
8387 				bnxt_free_one_ctx_mem(bp, ctxm, true);
8388 			else
8389 				continue;
8390 		}
8391 		ctxm->type = le16_to_cpu(resp->type);
8392 		ctxm->entry_size = entry_size;
8393 		ctxm->flags = flags;
8394 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
8395 		ctxm->entry_multiple = resp->entry_multiple;
8396 		ctxm->max_entries = max_entries;
8397 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
8398 		init_val = resp->ctx_init_value;
8399 		init_off = resp->ctx_init_offset;
8400 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
8401 					  BNXT_CTX_INIT_VALID(flags));
8402 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
8403 					      BNXT_MAX_SPLIT_ENTRY);
8404 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
8405 		     i++, p++)
8406 			ctxm->split[i] = le32_to_cpu(*p);
8407 	}
8408 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
8409 
8410 ctx_done:
8411 	hwrm_req_drop(bp, req);
8412 	return rc;
8413 }
8414 
8415 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
8416 {
8417 	struct hwrm_func_backing_store_qcaps_output *resp;
8418 	struct hwrm_func_backing_store_qcaps_input *req;
8419 	int rc;
8420 
8421 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) ||
8422 	    (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED))
8423 		return 0;
8424 
8425 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8426 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
8427 
8428 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
8429 	if (rc)
8430 		return rc;
8431 
8432 	resp = hwrm_req_hold(bp, req);
8433 	rc = hwrm_req_send_silent(bp, req);
8434 	if (!rc) {
8435 		struct bnxt_ctx_mem_type *ctxm;
8436 		struct bnxt_ctx_mem_info *ctx;
8437 		u8 init_val, init_idx = 0;
8438 		u16 init_mask;
8439 
8440 		ctx = bp->ctx;
8441 		if (!ctx) {
8442 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8443 			if (!ctx) {
8444 				rc = -ENOMEM;
8445 				goto ctx_err;
8446 			}
8447 			bp->ctx = ctx;
8448 		}
8449 		init_val = resp->ctx_kind_initializer;
8450 		init_mask = le16_to_cpu(resp->ctx_init_mask);
8451 
8452 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8453 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
8454 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
8455 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
8456 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
8457 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
8458 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
8459 					  (init_mask & (1 << init_idx++)) != 0);
8460 
8461 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8462 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
8463 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
8464 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
8465 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
8466 					  (init_mask & (1 << init_idx++)) != 0);
8467 
8468 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8469 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
8470 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
8471 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
8472 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
8473 					  (init_mask & (1 << init_idx++)) != 0);
8474 
8475 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8476 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
8477 		ctxm->max_entries = ctxm->vnic_entries +
8478 			le16_to_cpu(resp->vnic_max_ring_table_entries);
8479 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
8480 		bnxt_init_ctx_initializer(ctxm, init_val,
8481 					  resp->vnic_init_offset,
8482 					  (init_mask & (1 << init_idx++)) != 0);
8483 
8484 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8485 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
8486 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
8487 		bnxt_init_ctx_initializer(ctxm, init_val,
8488 					  resp->stat_init_offset,
8489 					  (init_mask & (1 << init_idx++)) != 0);
8490 
8491 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8492 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
8493 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
8494 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
8495 		ctxm->entry_multiple = resp->tqm_entries_multiple;
8496 		if (!ctxm->entry_multiple)
8497 			ctxm->entry_multiple = 1;
8498 
8499 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
8500 
8501 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8502 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
8503 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
8504 		ctxm->mrav_num_entries_units =
8505 			le16_to_cpu(resp->mrav_num_entries_units);
8506 		bnxt_init_ctx_initializer(ctxm, init_val,
8507 					  resp->mrav_init_offset,
8508 					  (init_mask & (1 << init_idx++)) != 0);
8509 
8510 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8511 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
8512 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
8513 
8514 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
8515 		if (!ctx->tqm_fp_rings_count)
8516 			ctx->tqm_fp_rings_count = bp->max_q;
8517 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
8518 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
8519 
8520 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8521 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
8522 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
8523 
8524 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
8525 	} else {
8526 		rc = 0;
8527 	}
8528 ctx_err:
8529 	hwrm_req_drop(bp, req);
8530 	return rc;
8531 }
8532 
8533 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
8534 				  __le64 *pg_dir)
8535 {
8536 	if (!rmem->nr_pages)
8537 		return;
8538 
8539 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8540 	if (rmem->depth >= 1) {
8541 		if (rmem->depth == 2)
8542 			*pg_attr |= 2;
8543 		else
8544 			*pg_attr |= 1;
8545 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8546 	} else {
8547 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8548 	}
8549 }
8550 
8551 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8552 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8553 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8554 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8555 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8556 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8557 
8558 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8559 {
8560 	struct hwrm_func_backing_store_cfg_input *req;
8561 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8562 	struct bnxt_ctx_pg_info *ctx_pg;
8563 	struct bnxt_ctx_mem_type *ctxm;
8564 	void **__req = (void **)&req;
8565 	u32 req_len = sizeof(*req);
8566 	__le32 *num_entries;
8567 	__le64 *pg_dir;
8568 	u32 flags = 0;
8569 	u8 *pg_attr;
8570 	u32 ena;
8571 	int rc;
8572 	int i;
8573 
8574 	if (!ctx)
8575 		return 0;
8576 
8577 	if (req_len > bp->hwrm_max_ext_req_len)
8578 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8579 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8580 	if (rc)
8581 		return rc;
8582 
8583 	req->enables = cpu_to_le32(enables);
8584 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8585 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8586 		ctx_pg = ctxm->pg_info;
8587 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8588 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8589 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8590 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8591 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8592 				      &req->qpc_pg_size_qpc_lvl,
8593 				      &req->qpc_page_dir);
8594 
8595 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8596 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8597 	}
8598 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8599 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8600 		ctx_pg = ctxm->pg_info;
8601 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8602 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8603 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8604 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8605 				      &req->srq_pg_size_srq_lvl,
8606 				      &req->srq_page_dir);
8607 	}
8608 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8609 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8610 		ctx_pg = ctxm->pg_info;
8611 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8612 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8613 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8614 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8615 				      &req->cq_pg_size_cq_lvl,
8616 				      &req->cq_page_dir);
8617 	}
8618 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8619 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8620 		ctx_pg = ctxm->pg_info;
8621 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8622 		req->vnic_num_ring_table_entries =
8623 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8624 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8625 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8626 				      &req->vnic_pg_size_vnic_lvl,
8627 				      &req->vnic_page_dir);
8628 	}
8629 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8630 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8631 		ctx_pg = ctxm->pg_info;
8632 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8633 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8634 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8635 				      &req->stat_pg_size_stat_lvl,
8636 				      &req->stat_page_dir);
8637 	}
8638 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8639 		u32 units;
8640 
8641 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8642 		ctx_pg = ctxm->pg_info;
8643 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8644 		units = ctxm->mrav_num_entries_units;
8645 		if (units) {
8646 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8647 			u32 entries;
8648 
8649 			num_mr = ctx_pg->entries - num_ah;
8650 			entries = ((num_mr / units) << 16) | (num_ah / units);
8651 			req->mrav_num_entries = cpu_to_le32(entries);
8652 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8653 		}
8654 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8655 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8656 				      &req->mrav_pg_size_mrav_lvl,
8657 				      &req->mrav_page_dir);
8658 	}
8659 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8660 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8661 		ctx_pg = ctxm->pg_info;
8662 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8663 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8664 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8665 				      &req->tim_pg_size_tim_lvl,
8666 				      &req->tim_page_dir);
8667 	}
8668 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8669 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8670 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8671 	     pg_dir = &req->tqm_sp_page_dir,
8672 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8673 	     ctx_pg = ctxm->pg_info;
8674 	     i < BNXT_MAX_TQM_RINGS;
8675 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8676 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8677 		if (!(enables & ena))
8678 			continue;
8679 
8680 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8681 		*num_entries = cpu_to_le32(ctx_pg->entries);
8682 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8683 	}
8684 	req->flags = cpu_to_le32(flags);
8685 	return hwrm_req_send(bp, req);
8686 }
8687 
8688 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8689 				  struct bnxt_ctx_pg_info *ctx_pg)
8690 {
8691 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8692 
8693 	rmem->page_size = BNXT_PAGE_SIZE;
8694 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8695 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8696 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8697 	if (rmem->depth >= 1)
8698 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8699 	return bnxt_alloc_ring(bp, rmem);
8700 }
8701 
8702 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8703 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8704 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8705 {
8706 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8707 	int rc;
8708 
8709 	if (!mem_size)
8710 		return -EINVAL;
8711 
8712 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8713 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8714 		ctx_pg->nr_pages = 0;
8715 		return -EINVAL;
8716 	}
8717 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8718 		int nr_tbls, i;
8719 
8720 		rmem->depth = 2;
8721 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8722 					     GFP_KERNEL);
8723 		if (!ctx_pg->ctx_pg_tbl)
8724 			return -ENOMEM;
8725 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8726 		rmem->nr_pages = nr_tbls;
8727 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8728 		if (rc)
8729 			return rc;
8730 		for (i = 0; i < nr_tbls; i++) {
8731 			struct bnxt_ctx_pg_info *pg_tbl;
8732 
8733 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8734 			if (!pg_tbl)
8735 				return -ENOMEM;
8736 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8737 			rmem = &pg_tbl->ring_mem;
8738 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8739 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8740 			rmem->depth = 1;
8741 			rmem->nr_pages = MAX_CTX_PAGES;
8742 			rmem->ctx_mem = ctxm;
8743 			if (i == (nr_tbls - 1)) {
8744 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8745 
8746 				if (rem)
8747 					rmem->nr_pages = rem;
8748 			}
8749 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8750 			if (rc)
8751 				break;
8752 		}
8753 	} else {
8754 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8755 		if (rmem->nr_pages > 1 || depth)
8756 			rmem->depth = 1;
8757 		rmem->ctx_mem = ctxm;
8758 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8759 	}
8760 	return rc;
8761 }
8762 
8763 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp,
8764 				    struct bnxt_ctx_pg_info *ctx_pg,
8765 				    void *buf, size_t offset, size_t head,
8766 				    size_t tail)
8767 {
8768 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8769 	size_t nr_pages = ctx_pg->nr_pages;
8770 	int page_size = rmem->page_size;
8771 	size_t len = 0, total_len = 0;
8772 	u16 depth = rmem->depth;
8773 
8774 	tail %= nr_pages * page_size;
8775 	do {
8776 		if (depth > 1) {
8777 			int i = head / (page_size * MAX_CTX_PAGES);
8778 			struct bnxt_ctx_pg_info *pg_tbl;
8779 
8780 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8781 			rmem = &pg_tbl->ring_mem;
8782 		}
8783 		len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail);
8784 		head += len;
8785 		offset += len;
8786 		total_len += len;
8787 		if (head >= nr_pages * page_size)
8788 			head = 0;
8789 	} while (head != tail);
8790 	return total_len;
8791 }
8792 
8793 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8794 				  struct bnxt_ctx_pg_info *ctx_pg)
8795 {
8796 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8797 
8798 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8799 	    ctx_pg->ctx_pg_tbl) {
8800 		int i, nr_tbls = rmem->nr_pages;
8801 
8802 		for (i = 0; i < nr_tbls; i++) {
8803 			struct bnxt_ctx_pg_info *pg_tbl;
8804 			struct bnxt_ring_mem_info *rmem2;
8805 
8806 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8807 			if (!pg_tbl)
8808 				continue;
8809 			rmem2 = &pg_tbl->ring_mem;
8810 			bnxt_free_ring(bp, rmem2);
8811 			ctx_pg->ctx_pg_arr[i] = NULL;
8812 			kfree(pg_tbl);
8813 			ctx_pg->ctx_pg_tbl[i] = NULL;
8814 		}
8815 		kfree(ctx_pg->ctx_pg_tbl);
8816 		ctx_pg->ctx_pg_tbl = NULL;
8817 	}
8818 	bnxt_free_ring(bp, rmem);
8819 	ctx_pg->nr_pages = 0;
8820 }
8821 
8822 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8823 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8824 				   u8 pg_lvl)
8825 {
8826 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8827 	int i, rc = 0, n = 1;
8828 	u32 mem_size;
8829 
8830 	if (!ctxm->entry_size || !ctx_pg)
8831 		return -EINVAL;
8832 	if (ctxm->instance_bmap)
8833 		n = hweight32(ctxm->instance_bmap);
8834 	if (ctxm->entry_multiple)
8835 		entries = roundup(entries, ctxm->entry_multiple);
8836 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8837 	mem_size = entries * ctxm->entry_size;
8838 	for (i = 0; i < n && !rc; i++) {
8839 		ctx_pg[i].entries = entries;
8840 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8841 					    ctxm->init_value ? ctxm : NULL);
8842 	}
8843 	if (!rc)
8844 		ctxm->mem_valid = 1;
8845 	return rc;
8846 }
8847 
8848 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8849 					       struct bnxt_ctx_mem_type *ctxm,
8850 					       bool last)
8851 {
8852 	struct hwrm_func_backing_store_cfg_v2_input *req;
8853 	u32 instance_bmap = ctxm->instance_bmap;
8854 	int i, j, rc = 0, n = 1;
8855 	__le32 *p;
8856 
8857 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8858 		return 0;
8859 
8860 	if (instance_bmap)
8861 		n = hweight32(ctxm->instance_bmap);
8862 	else
8863 		instance_bmap = 1;
8864 
8865 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8866 	if (rc)
8867 		return rc;
8868 	hwrm_req_hold(bp, req);
8869 	req->type = cpu_to_le16(ctxm->type);
8870 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8871 	if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) &&
8872 	    bnxt_bs_trace_avail(bp, ctxm->type)) {
8873 		struct bnxt_bs_trace_info *bs_trace;
8874 		u32 enables;
8875 
8876 		enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET;
8877 		req->enables = cpu_to_le32(enables);
8878 		bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]];
8879 		req->next_bs_offset = cpu_to_le32(bs_trace->last_offset);
8880 	}
8881 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8882 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8883 		p[i] = cpu_to_le32(ctxm->split[i]);
8884 	for (i = 0, j = 0; j < n && !rc; i++) {
8885 		struct bnxt_ctx_pg_info *ctx_pg;
8886 
8887 		if (!(instance_bmap & (1 << i)))
8888 			continue;
8889 		req->instance = cpu_to_le16(i);
8890 		ctx_pg = &ctxm->pg_info[j++];
8891 		if (!ctx_pg->entries)
8892 			continue;
8893 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8894 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8895 				      &req->page_size_pbl_level,
8896 				      &req->page_dir);
8897 		if (last && j == n)
8898 			req->flags =
8899 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8900 		rc = hwrm_req_send(bp, req);
8901 	}
8902 	hwrm_req_drop(bp, req);
8903 	return rc;
8904 }
8905 
8906 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8907 {
8908 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8909 	struct bnxt_ctx_mem_type *ctxm;
8910 	u16 last_type = BNXT_CTX_INV;
8911 	int rc = 0;
8912 	u16 type;
8913 
8914 	for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) {
8915 		ctxm = &ctx->ctx_arr[type];
8916 		if (!bnxt_bs_trace_avail(bp, type))
8917 			continue;
8918 		if (!ctxm->mem_valid) {
8919 			rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm,
8920 						     ctxm->max_entries, 1);
8921 			if (rc) {
8922 				netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n",
8923 					    type);
8924 				continue;
8925 			}
8926 			bnxt_bs_trace_init(bp, ctxm);
8927 			last_type = type;
8928 		}
8929 	}
8930 
8931 	if (last_type == BNXT_CTX_INV) {
8932 		if (!ena)
8933 			return 0;
8934 		else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8935 			last_type = BNXT_CTX_MAX - 1;
8936 		else
8937 			last_type = BNXT_CTX_L2_MAX - 1;
8938 	}
8939 	ctx->ctx_arr[last_type].last = 1;
8940 
8941 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8942 		ctxm = &ctx->ctx_arr[type];
8943 
8944 		if (!ctxm->mem_valid)
8945 			continue;
8946 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8947 		if (rc)
8948 			return rc;
8949 	}
8950 	return 0;
8951 }
8952 
8953 /**
8954  * __bnxt_copy_ctx_mem - copy host context memory
8955  * @bp: The driver context
8956  * @ctxm: The pointer to the context memory type
8957  * @buf: The destination buffer or NULL to just obtain the length
8958  * @offset: The buffer offset to copy the data to
8959  * @head: The head offset of context memory to copy from
8960  * @tail: The tail offset (last byte + 1) of context memory to end the copy
8961  *
8962  * This function is called for debugging purposes to dump the host context
8963  * used by the chip.
8964  *
8965  * Return: Length of memory copied
8966  */
8967 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp,
8968 				  struct bnxt_ctx_mem_type *ctxm, void *buf,
8969 				  size_t offset, size_t head, size_t tail)
8970 {
8971 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8972 	size_t len = 0, total_len = 0;
8973 	int i, n = 1;
8974 
8975 	if (!ctx_pg)
8976 		return 0;
8977 
8978 	if (ctxm->instance_bmap)
8979 		n = hweight32(ctxm->instance_bmap);
8980 	for (i = 0; i < n; i++) {
8981 		len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head,
8982 					    tail);
8983 		offset += len;
8984 		total_len += len;
8985 	}
8986 	return total_len;
8987 }
8988 
8989 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm,
8990 			 void *buf, size_t offset)
8991 {
8992 	size_t tail = ctxm->max_entries * ctxm->entry_size;
8993 
8994 	return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail);
8995 }
8996 
8997 static void bnxt_free_one_ctx_mem(struct bnxt *bp,
8998 				  struct bnxt_ctx_mem_type *ctxm, bool force)
8999 {
9000 	struct bnxt_ctx_pg_info *ctx_pg;
9001 	int i, n = 1;
9002 
9003 	ctxm->last = 0;
9004 
9005 	if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST))
9006 		return;
9007 
9008 	ctx_pg = ctxm->pg_info;
9009 	if (ctx_pg) {
9010 		if (ctxm->instance_bmap)
9011 			n = hweight32(ctxm->instance_bmap);
9012 		for (i = 0; i < n; i++)
9013 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
9014 
9015 		kfree(ctx_pg);
9016 		ctxm->pg_info = NULL;
9017 		ctxm->mem_valid = 0;
9018 	}
9019 	memset(ctxm, 0, sizeof(*ctxm));
9020 }
9021 
9022 void bnxt_free_ctx_mem(struct bnxt *bp, bool force)
9023 {
9024 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
9025 	u16 type;
9026 
9027 	if (!ctx)
9028 		return;
9029 
9030 	for (type = 0; type < BNXT_CTX_V2_MAX; type++)
9031 		bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force);
9032 
9033 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
9034 	if (force) {
9035 		kfree(ctx);
9036 		bp->ctx = NULL;
9037 	}
9038 }
9039 
9040 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
9041 {
9042 	struct bnxt_ctx_mem_type *ctxm;
9043 	struct bnxt_ctx_mem_info *ctx;
9044 	u32 l2_qps, qp1_qps, max_qps;
9045 	u32 ena, entries_sp, entries;
9046 	u32 srqs, max_srqs, min;
9047 	u32 num_mr, num_ah;
9048 	u32 extra_srqs = 0;
9049 	u32 extra_qps = 0;
9050 	u32 fast_qpmd_qps;
9051 	u8 pg_lvl = 1;
9052 	int i, rc;
9053 
9054 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
9055 	if (rc) {
9056 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
9057 			   rc);
9058 		return rc;
9059 	}
9060 	ctx = bp->ctx;
9061 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
9062 		return 0;
9063 
9064 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
9065 	l2_qps = ctxm->qp_l2_entries;
9066 	qp1_qps = ctxm->qp_qp1_entries;
9067 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
9068 	max_qps = ctxm->max_entries;
9069 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
9070 	srqs = ctxm->srq_l2_entries;
9071 	max_srqs = ctxm->max_entries;
9072 	ena = 0;
9073 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
9074 		pg_lvl = 2;
9075 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
9076 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
9077 		extra_qps += fast_qpmd_qps;
9078 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
9079 		if (fast_qpmd_qps)
9080 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
9081 	}
9082 
9083 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
9084 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
9085 				     pg_lvl);
9086 	if (rc)
9087 		return rc;
9088 
9089 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
9090 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
9091 	if (rc)
9092 		return rc;
9093 
9094 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
9095 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
9096 				     extra_qps * 2, pg_lvl);
9097 	if (rc)
9098 		return rc;
9099 
9100 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
9101 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
9102 	if (rc)
9103 		return rc;
9104 
9105 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
9106 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
9107 	if (rc)
9108 		return rc;
9109 
9110 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
9111 		goto skip_rdma;
9112 
9113 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
9114 	/* 128K extra is needed to accommodate static AH context
9115 	 * allocation by f/w.
9116 	 */
9117 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
9118 	num_ah = min_t(u32, num_mr, 1024 * 128);
9119 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
9120 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
9121 		ctxm->mrav_av_entries = num_ah;
9122 
9123 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
9124 	if (rc)
9125 		return rc;
9126 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
9127 
9128 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
9129 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
9130 	if (rc)
9131 		return rc;
9132 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
9133 
9134 skip_rdma:
9135 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
9136 	min = ctxm->min_entries;
9137 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
9138 		     2 * (extra_qps + qp1_qps) + min;
9139 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
9140 	if (rc)
9141 		return rc;
9142 
9143 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
9144 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
9145 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
9146 	if (rc)
9147 		return rc;
9148 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
9149 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
9150 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
9151 
9152 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
9153 		rc = bnxt_backing_store_cfg_v2(bp, ena);
9154 	else
9155 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
9156 	if (rc) {
9157 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
9158 			   rc);
9159 		return rc;
9160 	}
9161 	ctx->flags |= BNXT_CTX_FLAG_INITED;
9162 	return 0;
9163 }
9164 
9165 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp)
9166 {
9167 	struct hwrm_dbg_crashdump_medium_cfg_input *req;
9168 	u16 page_attr;
9169 	int rc;
9170 
9171 	if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR))
9172 		return 0;
9173 
9174 	rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG);
9175 	if (rc)
9176 		return rc;
9177 
9178 	if (BNXT_PAGE_SIZE == 0x2000)
9179 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K;
9180 	else if (BNXT_PAGE_SIZE == 0x10000)
9181 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K;
9182 	else
9183 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K;
9184 	req->pg_size_lvl = cpu_to_le16(page_attr |
9185 				       bp->fw_crash_mem->ring_mem.depth);
9186 	req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map);
9187 	req->size = cpu_to_le32(bp->fw_crash_len);
9188 	req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR);
9189 	return hwrm_req_send(bp, req);
9190 }
9191 
9192 static void bnxt_free_crash_dump_mem(struct bnxt *bp)
9193 {
9194 	if (bp->fw_crash_mem) {
9195 		bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem);
9196 		kfree(bp->fw_crash_mem);
9197 		bp->fw_crash_mem = NULL;
9198 	}
9199 }
9200 
9201 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp)
9202 {
9203 	u32 mem_size = 0;
9204 	int rc;
9205 
9206 	if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR))
9207 		return 0;
9208 
9209 	rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size);
9210 	if (rc)
9211 		return rc;
9212 
9213 	mem_size = round_up(mem_size, 4);
9214 
9215 	/* keep and use the existing pages */
9216 	if (bp->fw_crash_mem &&
9217 	    mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE)
9218 		goto alloc_done;
9219 
9220 	if (bp->fw_crash_mem)
9221 		bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem);
9222 	else
9223 		bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem),
9224 					   GFP_KERNEL);
9225 	if (!bp->fw_crash_mem)
9226 		return -ENOMEM;
9227 
9228 	rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL);
9229 	if (rc) {
9230 		bnxt_free_crash_dump_mem(bp);
9231 		return rc;
9232 	}
9233 
9234 alloc_done:
9235 	bp->fw_crash_len = mem_size;
9236 	return 0;
9237 }
9238 
9239 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
9240 {
9241 	struct hwrm_func_resource_qcaps_output *resp;
9242 	struct hwrm_func_resource_qcaps_input *req;
9243 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9244 	int rc;
9245 
9246 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
9247 	if (rc)
9248 		return rc;
9249 
9250 	req->fid = cpu_to_le16(0xffff);
9251 	resp = hwrm_req_hold(bp, req);
9252 	rc = hwrm_req_send_silent(bp, req);
9253 	if (rc)
9254 		goto hwrm_func_resc_qcaps_exit;
9255 
9256 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
9257 	if (!all)
9258 		goto hwrm_func_resc_qcaps_exit;
9259 
9260 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
9261 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9262 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
9263 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9264 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
9265 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9266 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
9267 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9268 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
9269 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
9270 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
9271 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9272 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
9273 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9274 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
9275 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9276 
9277 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
9278 		u16 max_msix = le16_to_cpu(resp->max_msix);
9279 
9280 		hw_resc->max_nqs = max_msix;
9281 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
9282 	}
9283 
9284 	if (BNXT_PF(bp)) {
9285 		struct bnxt_pf_info *pf = &bp->pf;
9286 
9287 		pf->vf_resv_strategy =
9288 			le16_to_cpu(resp->vf_reservation_strategy);
9289 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
9290 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
9291 	}
9292 hwrm_func_resc_qcaps_exit:
9293 	hwrm_req_drop(bp, req);
9294 	return rc;
9295 }
9296 
9297 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
9298 {
9299 	struct hwrm_port_mac_ptp_qcfg_output *resp;
9300 	struct hwrm_port_mac_ptp_qcfg_input *req;
9301 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
9302 	u8 flags;
9303 	int rc;
9304 
9305 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) {
9306 		rc = -ENODEV;
9307 		goto no_ptp;
9308 	}
9309 
9310 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
9311 	if (rc)
9312 		goto no_ptp;
9313 
9314 	req->port_id = cpu_to_le16(bp->pf.port_id);
9315 	resp = hwrm_req_hold(bp, req);
9316 	rc = hwrm_req_send(bp, req);
9317 	if (rc)
9318 		goto exit;
9319 
9320 	flags = resp->flags;
9321 	if (BNXT_CHIP_P5_AND_MINUS(bp) &&
9322 	    !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
9323 		rc = -ENODEV;
9324 		goto exit;
9325 	}
9326 	if (!ptp) {
9327 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
9328 		if (!ptp) {
9329 			rc = -ENOMEM;
9330 			goto exit;
9331 		}
9332 		ptp->bp = bp;
9333 		bp->ptp_cfg = ptp;
9334 	}
9335 
9336 	if (flags &
9337 	    (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK |
9338 	     PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) {
9339 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
9340 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
9341 	} else if (BNXT_CHIP_P5(bp)) {
9342 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
9343 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
9344 	} else {
9345 		rc = -ENODEV;
9346 		goto exit;
9347 	}
9348 	ptp->rtc_configured =
9349 		(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
9350 	rc = bnxt_ptp_init(bp);
9351 	if (rc)
9352 		netdev_warn(bp->dev, "PTP initialization failed.\n");
9353 exit:
9354 	hwrm_req_drop(bp, req);
9355 	if (!rc)
9356 		return 0;
9357 
9358 no_ptp:
9359 	bnxt_ptp_clear(bp);
9360 	kfree(ptp);
9361 	bp->ptp_cfg = NULL;
9362 	return rc;
9363 }
9364 
9365 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
9366 {
9367 	struct hwrm_func_qcaps_output *resp;
9368 	struct hwrm_func_qcaps_input *req;
9369 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9370 	u32 flags, flags_ext, flags_ext2;
9371 	int rc;
9372 
9373 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
9374 	if (rc)
9375 		return rc;
9376 
9377 	req->fid = cpu_to_le16(0xffff);
9378 	resp = hwrm_req_hold(bp, req);
9379 	rc = hwrm_req_send(bp, req);
9380 	if (rc)
9381 		goto hwrm_func_qcaps_exit;
9382 
9383 	flags = le32_to_cpu(resp->flags);
9384 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
9385 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
9386 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
9387 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
9388 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
9389 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
9390 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
9391 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
9392 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
9393 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
9394 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
9395 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
9396 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
9397 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
9398 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
9399 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
9400 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
9401 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
9402 
9403 	flags_ext = le32_to_cpu(resp->flags_ext);
9404 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
9405 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
9406 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
9407 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
9408 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
9409 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
9410 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
9411 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
9412 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
9413 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
9414 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED))
9415 		bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP;
9416 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
9417 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
9418 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
9419 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
9420 
9421 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
9422 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
9423 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
9424 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
9425 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
9426 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED)
9427 		bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP;
9428 	if (BNXT_PF(bp) &&
9429 	    (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED))
9430 		bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED;
9431 
9432 	bp->tx_push_thresh = 0;
9433 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
9434 	    BNXT_FW_MAJ(bp) > 217)
9435 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
9436 
9437 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9438 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9439 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9440 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9441 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
9442 	if (!hw_resc->max_hw_ring_grps)
9443 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
9444 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9445 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9446 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9447 
9448 	hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records);
9449 	hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records);
9450 	hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
9451 	hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
9452 	hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
9453 	hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
9454 
9455 	if (BNXT_PF(bp)) {
9456 		struct bnxt_pf_info *pf = &bp->pf;
9457 
9458 		pf->fw_fid = le16_to_cpu(resp->fid);
9459 		pf->port_id = le16_to_cpu(resp->port_id);
9460 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
9461 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
9462 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
9463 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
9464 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
9465 			bp->flags |= BNXT_FLAG_WOL_CAP;
9466 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
9467 			bp->fw_cap |= BNXT_FW_CAP_PTP;
9468 		} else {
9469 			bnxt_ptp_clear(bp);
9470 			kfree(bp->ptp_cfg);
9471 			bp->ptp_cfg = NULL;
9472 		}
9473 	} else {
9474 #ifdef CONFIG_BNXT_SRIOV
9475 		struct bnxt_vf_info *vf = &bp->vf;
9476 
9477 		vf->fw_fid = le16_to_cpu(resp->fid);
9478 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
9479 #endif
9480 	}
9481 	bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs);
9482 
9483 hwrm_func_qcaps_exit:
9484 	hwrm_req_drop(bp, req);
9485 	return rc;
9486 }
9487 
9488 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
9489 {
9490 	struct hwrm_dbg_qcaps_output *resp;
9491 	struct hwrm_dbg_qcaps_input *req;
9492 	int rc;
9493 
9494 	bp->fw_dbg_cap = 0;
9495 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
9496 		return;
9497 
9498 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
9499 	if (rc)
9500 		return;
9501 
9502 	req->fid = cpu_to_le16(0xffff);
9503 	resp = hwrm_req_hold(bp, req);
9504 	rc = hwrm_req_send(bp, req);
9505 	if (rc)
9506 		goto hwrm_dbg_qcaps_exit;
9507 
9508 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
9509 
9510 hwrm_dbg_qcaps_exit:
9511 	hwrm_req_drop(bp, req);
9512 }
9513 
9514 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
9515 
9516 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
9517 {
9518 	int rc;
9519 
9520 	rc = __bnxt_hwrm_func_qcaps(bp);
9521 	if (rc)
9522 		return rc;
9523 
9524 	bnxt_hwrm_dbg_qcaps(bp);
9525 
9526 	rc = bnxt_hwrm_queue_qportcfg(bp);
9527 	if (rc) {
9528 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
9529 		return rc;
9530 	}
9531 	if (bp->hwrm_spec_code >= 0x10803) {
9532 		rc = bnxt_alloc_ctx_mem(bp);
9533 		if (rc)
9534 			return rc;
9535 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9536 		if (!rc)
9537 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
9538 	}
9539 	return 0;
9540 }
9541 
9542 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
9543 {
9544 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
9545 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
9546 	u32 flags;
9547 	int rc;
9548 
9549 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
9550 		return 0;
9551 
9552 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
9553 	if (rc)
9554 		return rc;
9555 
9556 	resp = hwrm_req_hold(bp, req);
9557 	rc = hwrm_req_send(bp, req);
9558 	if (rc)
9559 		goto hwrm_cfa_adv_qcaps_exit;
9560 
9561 	flags = le32_to_cpu(resp->flags);
9562 	if (flags &
9563 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
9564 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
9565 
9566 	if (flags &
9567 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED)
9568 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3;
9569 
9570 	if (flags &
9571 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED)
9572 		bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO;
9573 
9574 hwrm_cfa_adv_qcaps_exit:
9575 	hwrm_req_drop(bp, req);
9576 	return rc;
9577 }
9578 
9579 static int __bnxt_alloc_fw_health(struct bnxt *bp)
9580 {
9581 	if (bp->fw_health)
9582 		return 0;
9583 
9584 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
9585 	if (!bp->fw_health)
9586 		return -ENOMEM;
9587 
9588 	mutex_init(&bp->fw_health->lock);
9589 	return 0;
9590 }
9591 
9592 static int bnxt_alloc_fw_health(struct bnxt *bp)
9593 {
9594 	int rc;
9595 
9596 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
9597 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9598 		return 0;
9599 
9600 	rc = __bnxt_alloc_fw_health(bp);
9601 	if (rc) {
9602 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
9603 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9604 		return rc;
9605 	}
9606 
9607 	return 0;
9608 }
9609 
9610 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
9611 {
9612 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
9613 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
9614 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
9615 }
9616 
9617 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
9618 {
9619 	struct bnxt_fw_health *fw_health = bp->fw_health;
9620 	u32 reg_type;
9621 
9622 	if (!fw_health)
9623 		return;
9624 
9625 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
9626 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9627 		fw_health->status_reliable = false;
9628 
9629 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
9630 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9631 		fw_health->resets_reliable = false;
9632 }
9633 
9634 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
9635 {
9636 	void __iomem *hs;
9637 	u32 status_loc;
9638 	u32 reg_type;
9639 	u32 sig;
9640 
9641 	if (bp->fw_health)
9642 		bp->fw_health->status_reliable = false;
9643 
9644 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
9645 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
9646 
9647 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
9648 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
9649 		if (!bp->chip_num) {
9650 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
9651 			bp->chip_num = readl(bp->bar0 +
9652 					     BNXT_FW_HEALTH_WIN_BASE +
9653 					     BNXT_GRC_REG_CHIP_NUM);
9654 		}
9655 		if (!BNXT_CHIP_P5_PLUS(bp))
9656 			return;
9657 
9658 		status_loc = BNXT_GRC_REG_STATUS_P5 |
9659 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
9660 	} else {
9661 		status_loc = readl(hs + offsetof(struct hcomm_status,
9662 						 fw_status_loc));
9663 	}
9664 
9665 	if (__bnxt_alloc_fw_health(bp)) {
9666 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
9667 		return;
9668 	}
9669 
9670 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
9671 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
9672 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
9673 		__bnxt_map_fw_health_reg(bp, status_loc);
9674 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
9675 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
9676 	}
9677 
9678 	bp->fw_health->status_reliable = true;
9679 }
9680 
9681 static int bnxt_map_fw_health_regs(struct bnxt *bp)
9682 {
9683 	struct bnxt_fw_health *fw_health = bp->fw_health;
9684 	u32 reg_base = 0xffffffff;
9685 	int i;
9686 
9687 	bp->fw_health->status_reliable = false;
9688 	bp->fw_health->resets_reliable = false;
9689 	/* Only pre-map the monitoring GRC registers using window 3 */
9690 	for (i = 0; i < 4; i++) {
9691 		u32 reg = fw_health->regs[i];
9692 
9693 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
9694 			continue;
9695 		if (reg_base == 0xffffffff)
9696 			reg_base = reg & BNXT_GRC_BASE_MASK;
9697 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
9698 			return -ERANGE;
9699 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
9700 	}
9701 	bp->fw_health->status_reliable = true;
9702 	bp->fw_health->resets_reliable = true;
9703 	if (reg_base == 0xffffffff)
9704 		return 0;
9705 
9706 	__bnxt_map_fw_health_reg(bp, reg_base);
9707 	return 0;
9708 }
9709 
9710 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
9711 {
9712 	if (!bp->fw_health)
9713 		return;
9714 
9715 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
9716 		bp->fw_health->status_reliable = true;
9717 		bp->fw_health->resets_reliable = true;
9718 	} else {
9719 		bnxt_try_map_fw_health_reg(bp);
9720 	}
9721 }
9722 
9723 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
9724 {
9725 	struct bnxt_fw_health *fw_health = bp->fw_health;
9726 	struct hwrm_error_recovery_qcfg_output *resp;
9727 	struct hwrm_error_recovery_qcfg_input *req;
9728 	int rc, i;
9729 
9730 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9731 		return 0;
9732 
9733 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
9734 	if (rc)
9735 		return rc;
9736 
9737 	resp = hwrm_req_hold(bp, req);
9738 	rc = hwrm_req_send(bp, req);
9739 	if (rc)
9740 		goto err_recovery_out;
9741 	fw_health->flags = le32_to_cpu(resp->flags);
9742 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
9743 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
9744 		rc = -EINVAL;
9745 		goto err_recovery_out;
9746 	}
9747 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
9748 	fw_health->master_func_wait_dsecs =
9749 		le32_to_cpu(resp->master_func_wait_period);
9750 	fw_health->normal_func_wait_dsecs =
9751 		le32_to_cpu(resp->normal_func_wait_period);
9752 	fw_health->post_reset_wait_dsecs =
9753 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9754 	fw_health->post_reset_max_wait_dsecs =
9755 		le32_to_cpu(resp->max_bailout_time_after_reset);
9756 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9757 		le32_to_cpu(resp->fw_health_status_reg);
9758 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9759 		le32_to_cpu(resp->fw_heartbeat_reg);
9760 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9761 		le32_to_cpu(resp->fw_reset_cnt_reg);
9762 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9763 		le32_to_cpu(resp->reset_inprogress_reg);
9764 	fw_health->fw_reset_inprog_reg_mask =
9765 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9766 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9767 	if (fw_health->fw_reset_seq_cnt >= 16) {
9768 		rc = -EINVAL;
9769 		goto err_recovery_out;
9770 	}
9771 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9772 		fw_health->fw_reset_seq_regs[i] =
9773 			le32_to_cpu(resp->reset_reg[i]);
9774 		fw_health->fw_reset_seq_vals[i] =
9775 			le32_to_cpu(resp->reset_reg_val[i]);
9776 		fw_health->fw_reset_seq_delay_msec[i] =
9777 			resp->delay_after_reset[i];
9778 	}
9779 err_recovery_out:
9780 	hwrm_req_drop(bp, req);
9781 	if (!rc)
9782 		rc = bnxt_map_fw_health_regs(bp);
9783 	if (rc)
9784 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9785 	return rc;
9786 }
9787 
9788 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9789 {
9790 	struct hwrm_func_reset_input *req;
9791 	int rc;
9792 
9793 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9794 	if (rc)
9795 		return rc;
9796 
9797 	req->enables = 0;
9798 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9799 	return hwrm_req_send(bp, req);
9800 }
9801 
9802 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9803 {
9804 	struct hwrm_nvm_get_dev_info_output nvm_info;
9805 
9806 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9807 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9808 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9809 			 nvm_info.nvm_cfg_ver_upd);
9810 }
9811 
9812 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9813 {
9814 	struct hwrm_queue_qportcfg_output *resp;
9815 	struct hwrm_queue_qportcfg_input *req;
9816 	u8 i, j, *qptr;
9817 	bool no_rdma;
9818 	int rc = 0;
9819 
9820 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9821 	if (rc)
9822 		return rc;
9823 
9824 	resp = hwrm_req_hold(bp, req);
9825 	rc = hwrm_req_send(bp, req);
9826 	if (rc)
9827 		goto qportcfg_exit;
9828 
9829 	if (!resp->max_configurable_queues) {
9830 		rc = -EINVAL;
9831 		goto qportcfg_exit;
9832 	}
9833 	bp->max_tc = resp->max_configurable_queues;
9834 	bp->max_lltc = resp->max_configurable_lossless_queues;
9835 	if (bp->max_tc > BNXT_MAX_QUEUE)
9836 		bp->max_tc = BNXT_MAX_QUEUE;
9837 
9838 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9839 	qptr = &resp->queue_id0;
9840 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9841 		bp->q_info[j].queue_id = *qptr;
9842 		bp->q_ids[i] = *qptr++;
9843 		bp->q_info[j].queue_profile = *qptr++;
9844 		bp->tc_to_qidx[j] = j;
9845 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9846 		    (no_rdma && BNXT_PF(bp)))
9847 			j++;
9848 	}
9849 	bp->max_q = bp->max_tc;
9850 	bp->max_tc = max_t(u8, j, 1);
9851 
9852 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9853 		bp->max_tc = 1;
9854 
9855 	if (bp->max_lltc > bp->max_tc)
9856 		bp->max_lltc = bp->max_tc;
9857 
9858 qportcfg_exit:
9859 	hwrm_req_drop(bp, req);
9860 	return rc;
9861 }
9862 
9863 static int bnxt_hwrm_poll(struct bnxt *bp)
9864 {
9865 	struct hwrm_ver_get_input *req;
9866 	int rc;
9867 
9868 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9869 	if (rc)
9870 		return rc;
9871 
9872 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9873 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9874 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9875 
9876 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9877 	rc = hwrm_req_send(bp, req);
9878 	return rc;
9879 }
9880 
9881 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9882 {
9883 	struct hwrm_ver_get_output *resp;
9884 	struct hwrm_ver_get_input *req;
9885 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9886 	u32 dev_caps_cfg, hwrm_ver;
9887 	int rc, len;
9888 
9889 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9890 	if (rc)
9891 		return rc;
9892 
9893 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9894 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9895 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9896 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9897 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9898 
9899 	resp = hwrm_req_hold(bp, req);
9900 	rc = hwrm_req_send(bp, req);
9901 	if (rc)
9902 		goto hwrm_ver_get_exit;
9903 
9904 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9905 
9906 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9907 			     resp->hwrm_intf_min_8b << 8 |
9908 			     resp->hwrm_intf_upd_8b;
9909 	if (resp->hwrm_intf_maj_8b < 1) {
9910 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9911 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9912 			    resp->hwrm_intf_upd_8b);
9913 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9914 	}
9915 
9916 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9917 			HWRM_VERSION_UPDATE;
9918 
9919 	if (bp->hwrm_spec_code > hwrm_ver)
9920 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9921 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9922 			 HWRM_VERSION_UPDATE);
9923 	else
9924 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9925 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9926 			 resp->hwrm_intf_upd_8b);
9927 
9928 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9929 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9930 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9931 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9932 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9933 		len = FW_VER_STR_LEN;
9934 	} else {
9935 		fw_maj = resp->hwrm_fw_maj_8b;
9936 		fw_min = resp->hwrm_fw_min_8b;
9937 		fw_bld = resp->hwrm_fw_bld_8b;
9938 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9939 		len = BC_HWRM_STR_LEN;
9940 	}
9941 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9942 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9943 		 fw_rsv);
9944 
9945 	if (strlen(resp->active_pkg_name)) {
9946 		int fw_ver_len = strlen(bp->fw_ver_str);
9947 
9948 		snprintf(bp->fw_ver_str + fw_ver_len,
9949 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9950 			 resp->active_pkg_name);
9951 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9952 	}
9953 
9954 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9955 	if (!bp->hwrm_cmd_timeout)
9956 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9957 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9958 	if (!bp->hwrm_cmd_max_timeout)
9959 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9960 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9961 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9962 			    bp->hwrm_cmd_max_timeout / 1000);
9963 
9964 	if (resp->hwrm_intf_maj_8b >= 1) {
9965 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9966 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9967 	}
9968 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9969 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9970 
9971 	bp->chip_num = le16_to_cpu(resp->chip_num);
9972 	bp->chip_rev = resp->chip_rev;
9973 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9974 	    !resp->chip_metal)
9975 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9976 
9977 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9978 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9979 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9980 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9981 
9982 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9983 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9984 
9985 	if (dev_caps_cfg &
9986 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9987 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9988 
9989 	if (dev_caps_cfg &
9990 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9991 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9992 
9993 	if (dev_caps_cfg &
9994 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9995 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9996 
9997 hwrm_ver_get_exit:
9998 	hwrm_req_drop(bp, req);
9999 	return rc;
10000 }
10001 
10002 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
10003 {
10004 	struct hwrm_fw_set_time_input *req;
10005 	struct tm tm;
10006 	time64_t now = ktime_get_real_seconds();
10007 	int rc;
10008 
10009 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
10010 	    bp->hwrm_spec_code < 0x10400)
10011 		return -EOPNOTSUPP;
10012 
10013 	time64_to_tm(now, 0, &tm);
10014 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
10015 	if (rc)
10016 		return rc;
10017 
10018 	req->year = cpu_to_le16(1900 + tm.tm_year);
10019 	req->month = 1 + tm.tm_mon;
10020 	req->day = tm.tm_mday;
10021 	req->hour = tm.tm_hour;
10022 	req->minute = tm.tm_min;
10023 	req->second = tm.tm_sec;
10024 	return hwrm_req_send(bp, req);
10025 }
10026 
10027 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
10028 {
10029 	u64 sw_tmp;
10030 
10031 	hw &= mask;
10032 	sw_tmp = (*sw & ~mask) | hw;
10033 	if (hw < (*sw & mask))
10034 		sw_tmp += mask + 1;
10035 	WRITE_ONCE(*sw, sw_tmp);
10036 }
10037 
10038 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
10039 				    int count, bool ignore_zero)
10040 {
10041 	int i;
10042 
10043 	for (i = 0; i < count; i++) {
10044 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
10045 
10046 		if (ignore_zero && !hw)
10047 			continue;
10048 
10049 		if (masks[i] == -1ULL)
10050 			sw_stats[i] = hw;
10051 		else
10052 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
10053 	}
10054 }
10055 
10056 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
10057 {
10058 	if (!stats->hw_stats)
10059 		return;
10060 
10061 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
10062 				stats->hw_masks, stats->len / 8, false);
10063 }
10064 
10065 static void bnxt_accumulate_all_stats(struct bnxt *bp)
10066 {
10067 	struct bnxt_stats_mem *ring0_stats;
10068 	bool ignore_zero = false;
10069 	int i;
10070 
10071 	/* Chip bug.  Counter intermittently becomes 0. */
10072 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10073 		ignore_zero = true;
10074 
10075 	for (i = 0; i < bp->cp_nr_rings; i++) {
10076 		struct bnxt_napi *bnapi = bp->bnapi[i];
10077 		struct bnxt_cp_ring_info *cpr;
10078 		struct bnxt_stats_mem *stats;
10079 
10080 		cpr = &bnapi->cp_ring;
10081 		stats = &cpr->stats;
10082 		if (!i)
10083 			ring0_stats = stats;
10084 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
10085 					ring0_stats->hw_masks,
10086 					ring0_stats->len / 8, ignore_zero);
10087 	}
10088 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10089 		struct bnxt_stats_mem *stats = &bp->port_stats;
10090 		__le64 *hw_stats = stats->hw_stats;
10091 		u64 *sw_stats = stats->sw_stats;
10092 		u64 *masks = stats->hw_masks;
10093 		int cnt;
10094 
10095 		cnt = sizeof(struct rx_port_stats) / 8;
10096 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
10097 
10098 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10099 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10100 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10101 		cnt = sizeof(struct tx_port_stats) / 8;
10102 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
10103 	}
10104 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
10105 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
10106 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
10107 	}
10108 }
10109 
10110 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
10111 {
10112 	struct hwrm_port_qstats_input *req;
10113 	struct bnxt_pf_info *pf = &bp->pf;
10114 	int rc;
10115 
10116 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
10117 		return 0;
10118 
10119 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
10120 		return -EOPNOTSUPP;
10121 
10122 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
10123 	if (rc)
10124 		return rc;
10125 
10126 	req->flags = flags;
10127 	req->port_id = cpu_to_le16(pf->port_id);
10128 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
10129 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
10130 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
10131 	return hwrm_req_send(bp, req);
10132 }
10133 
10134 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
10135 {
10136 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
10137 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
10138 	struct hwrm_port_qstats_ext_output *resp_qs;
10139 	struct hwrm_port_qstats_ext_input *req_qs;
10140 	struct bnxt_pf_info *pf = &bp->pf;
10141 	u32 tx_stat_size;
10142 	int rc;
10143 
10144 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
10145 		return 0;
10146 
10147 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
10148 		return -EOPNOTSUPP;
10149 
10150 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
10151 	if (rc)
10152 		return rc;
10153 
10154 	req_qs->flags = flags;
10155 	req_qs->port_id = cpu_to_le16(pf->port_id);
10156 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
10157 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
10158 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
10159 		       sizeof(struct tx_port_stats_ext) : 0;
10160 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
10161 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
10162 	resp_qs = hwrm_req_hold(bp, req_qs);
10163 	rc = hwrm_req_send(bp, req_qs);
10164 	if (!rc) {
10165 		bp->fw_rx_stats_ext_size =
10166 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
10167 		if (BNXT_FW_MAJ(bp) < 220 &&
10168 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
10169 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
10170 
10171 		bp->fw_tx_stats_ext_size = tx_stat_size ?
10172 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
10173 	} else {
10174 		bp->fw_rx_stats_ext_size = 0;
10175 		bp->fw_tx_stats_ext_size = 0;
10176 	}
10177 	hwrm_req_drop(bp, req_qs);
10178 
10179 	if (flags)
10180 		return rc;
10181 
10182 	if (bp->fw_tx_stats_ext_size <=
10183 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
10184 		bp->pri2cos_valid = 0;
10185 		return rc;
10186 	}
10187 
10188 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
10189 	if (rc)
10190 		return rc;
10191 
10192 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
10193 
10194 	resp_qc = hwrm_req_hold(bp, req_qc);
10195 	rc = hwrm_req_send(bp, req_qc);
10196 	if (!rc) {
10197 		u8 *pri2cos;
10198 		int i, j;
10199 
10200 		pri2cos = &resp_qc->pri0_cos_queue_id;
10201 		for (i = 0; i < 8; i++) {
10202 			u8 queue_id = pri2cos[i];
10203 			u8 queue_idx;
10204 
10205 			/* Per port queue IDs start from 0, 10, 20, etc */
10206 			queue_idx = queue_id % 10;
10207 			if (queue_idx > BNXT_MAX_QUEUE) {
10208 				bp->pri2cos_valid = false;
10209 				hwrm_req_drop(bp, req_qc);
10210 				return rc;
10211 			}
10212 			for (j = 0; j < bp->max_q; j++) {
10213 				if (bp->q_ids[j] == queue_id)
10214 					bp->pri2cos_idx[i] = queue_idx;
10215 			}
10216 		}
10217 		bp->pri2cos_valid = true;
10218 	}
10219 	hwrm_req_drop(bp, req_qc);
10220 
10221 	return rc;
10222 }
10223 
10224 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
10225 {
10226 	bnxt_hwrm_tunnel_dst_port_free(bp,
10227 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10228 	bnxt_hwrm_tunnel_dst_port_free(bp,
10229 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10230 }
10231 
10232 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
10233 {
10234 	int rc, i;
10235 	u32 tpa_flags = 0;
10236 
10237 	if (set_tpa)
10238 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
10239 	else if (BNXT_NO_FW_ACCESS(bp))
10240 		return 0;
10241 	for (i = 0; i < bp->nr_vnics; i++) {
10242 		rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags);
10243 		if (rc) {
10244 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
10245 				   i, rc);
10246 			return rc;
10247 		}
10248 	}
10249 	return 0;
10250 }
10251 
10252 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
10253 {
10254 	int i;
10255 
10256 	for (i = 0; i < bp->nr_vnics; i++)
10257 		bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false);
10258 }
10259 
10260 static void bnxt_clear_vnic(struct bnxt *bp)
10261 {
10262 	if (!bp->vnic_info)
10263 		return;
10264 
10265 	bnxt_hwrm_clear_vnic_filter(bp);
10266 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
10267 		/* clear all RSS setting before free vnic ctx */
10268 		bnxt_hwrm_clear_vnic_rss(bp);
10269 		bnxt_hwrm_vnic_ctx_free(bp);
10270 	}
10271 	/* before free the vnic, undo the vnic tpa settings */
10272 	if (bp->flags & BNXT_FLAG_TPA)
10273 		bnxt_set_tpa(bp, false);
10274 	bnxt_hwrm_vnic_free(bp);
10275 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10276 		bnxt_hwrm_vnic_ctx_free(bp);
10277 }
10278 
10279 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
10280 				    bool irq_re_init)
10281 {
10282 	bnxt_clear_vnic(bp);
10283 	bnxt_hwrm_ring_free(bp, close_path);
10284 	bnxt_hwrm_ring_grp_free(bp);
10285 	if (irq_re_init) {
10286 		bnxt_hwrm_stat_ctx_free(bp);
10287 		bnxt_hwrm_free_tunnel_ports(bp);
10288 	}
10289 }
10290 
10291 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
10292 {
10293 	struct hwrm_func_cfg_input *req;
10294 	u8 evb_mode;
10295 	int rc;
10296 
10297 	if (br_mode == BRIDGE_MODE_VEB)
10298 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
10299 	else if (br_mode == BRIDGE_MODE_VEPA)
10300 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
10301 	else
10302 		return -EINVAL;
10303 
10304 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10305 	if (rc)
10306 		return rc;
10307 
10308 	req->fid = cpu_to_le16(0xffff);
10309 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
10310 	req->evb_mode = evb_mode;
10311 	return hwrm_req_send(bp, req);
10312 }
10313 
10314 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
10315 {
10316 	struct hwrm_func_cfg_input *req;
10317 	int rc;
10318 
10319 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
10320 		return 0;
10321 
10322 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10323 	if (rc)
10324 		return rc;
10325 
10326 	req->fid = cpu_to_le16(0xffff);
10327 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
10328 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
10329 	if (size == 128)
10330 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
10331 
10332 	return hwrm_req_send(bp, req);
10333 }
10334 
10335 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10336 {
10337 	int rc;
10338 
10339 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
10340 		goto skip_rss_ctx;
10341 
10342 	/* allocate context for vnic */
10343 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0);
10344 	if (rc) {
10345 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10346 			   vnic->vnic_id, rc);
10347 		goto vnic_setup_err;
10348 	}
10349 	bp->rsscos_nr_ctxs++;
10350 
10351 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10352 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1);
10353 		if (rc) {
10354 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
10355 				   vnic->vnic_id, rc);
10356 			goto vnic_setup_err;
10357 		}
10358 		bp->rsscos_nr_ctxs++;
10359 	}
10360 
10361 skip_rss_ctx:
10362 	/* configure default vnic, ring grp */
10363 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10364 	if (rc) {
10365 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10366 			   vnic->vnic_id, rc);
10367 		goto vnic_setup_err;
10368 	}
10369 
10370 	/* Enable RSS hashing on vnic */
10371 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true);
10372 	if (rc) {
10373 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
10374 			   vnic->vnic_id, rc);
10375 		goto vnic_setup_err;
10376 	}
10377 
10378 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10379 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10380 		if (rc) {
10381 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10382 				   vnic->vnic_id, rc);
10383 		}
10384 	}
10385 
10386 vnic_setup_err:
10387 	return rc;
10388 }
10389 
10390 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic,
10391 			  u8 valid)
10392 {
10393 	struct hwrm_vnic_update_input *req;
10394 	int rc;
10395 
10396 	rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE);
10397 	if (rc)
10398 		return rc;
10399 
10400 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
10401 
10402 	if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID)
10403 		req->mru = cpu_to_le16(vnic->mru);
10404 
10405 	req->enables = cpu_to_le32(valid);
10406 
10407 	return hwrm_req_send(bp, req);
10408 }
10409 
10410 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10411 {
10412 	int rc;
10413 
10414 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true);
10415 	if (rc) {
10416 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
10417 			   vnic->vnic_id, rc);
10418 		return rc;
10419 	}
10420 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10421 	if (rc)
10422 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10423 			   vnic->vnic_id, rc);
10424 	return rc;
10425 }
10426 
10427 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10428 {
10429 	int rc, i, nr_ctxs;
10430 
10431 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
10432 	for (i = 0; i < nr_ctxs; i++) {
10433 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i);
10434 		if (rc) {
10435 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
10436 				   vnic->vnic_id, i, rc);
10437 			break;
10438 		}
10439 		bp->rsscos_nr_ctxs++;
10440 	}
10441 	if (i < nr_ctxs)
10442 		return -ENOMEM;
10443 
10444 	rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic);
10445 	if (rc)
10446 		return rc;
10447 
10448 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10449 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10450 		if (rc) {
10451 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10452 				   vnic->vnic_id, rc);
10453 		}
10454 	}
10455 	return rc;
10456 }
10457 
10458 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10459 {
10460 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10461 		return __bnxt_setup_vnic_p5(bp, vnic);
10462 	else
10463 		return __bnxt_setup_vnic(bp, vnic);
10464 }
10465 
10466 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp,
10467 				     struct bnxt_vnic_info *vnic,
10468 				     u16 start_rx_ring_idx, int rx_rings)
10469 {
10470 	int rc;
10471 
10472 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings);
10473 	if (rc) {
10474 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10475 			   vnic->vnic_id, rc);
10476 		return rc;
10477 	}
10478 	return bnxt_setup_vnic(bp, vnic);
10479 }
10480 
10481 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
10482 {
10483 	struct bnxt_vnic_info *vnic;
10484 	int i, rc = 0;
10485 
10486 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
10487 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
10488 		return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings);
10489 	}
10490 
10491 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10492 		return 0;
10493 
10494 	for (i = 0; i < bp->rx_nr_rings; i++) {
10495 		u16 vnic_id = i + 1;
10496 		u16 ring_id = i;
10497 
10498 		if (vnic_id >= bp->nr_vnics)
10499 			break;
10500 
10501 		vnic = &bp->vnic_info[vnic_id];
10502 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
10503 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
10504 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
10505 		if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1))
10506 			break;
10507 	}
10508 	return rc;
10509 }
10510 
10511 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx,
10512 			  bool all)
10513 {
10514 	struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10515 	struct bnxt_filter_base *usr_fltr, *tmp;
10516 	struct bnxt_ntuple_filter *ntp_fltr;
10517 	int i;
10518 
10519 	if (netif_running(bp->dev)) {
10520 		bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic);
10521 		for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) {
10522 			if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID)
10523 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i);
10524 		}
10525 	}
10526 	if (!all)
10527 		return;
10528 
10529 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
10530 		if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) &&
10531 		    usr_fltr->fw_vnic_id == rss_ctx->index) {
10532 			ntp_fltr = container_of(usr_fltr,
10533 						struct bnxt_ntuple_filter,
10534 						base);
10535 			bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr);
10536 			bnxt_del_ntp_filter(bp, ntp_fltr);
10537 			bnxt_del_one_usr_fltr(bp, usr_fltr);
10538 		}
10539 	}
10540 
10541 	if (vnic->rss_table)
10542 		dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size,
10543 				  vnic->rss_table,
10544 				  vnic->rss_table_dma_addr);
10545 	bp->num_rss_ctx--;
10546 }
10547 
10548 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp)
10549 {
10550 	bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA);
10551 	struct ethtool_rxfh_context *ctx;
10552 	unsigned long context;
10553 
10554 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10555 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10556 		struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10557 
10558 		if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) ||
10559 		    bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) ||
10560 		    __bnxt_setup_vnic_p5(bp, vnic)) {
10561 			netdev_err(bp->dev, "Failed to restore RSS ctx %d\n",
10562 				   rss_ctx->index);
10563 			bnxt_del_one_rss_ctx(bp, rss_ctx, true);
10564 			ethtool_rxfh_context_lost(bp->dev, rss_ctx->index);
10565 		}
10566 	}
10567 }
10568 
10569 static void bnxt_clear_rss_ctxs(struct bnxt *bp)
10570 {
10571 	struct ethtool_rxfh_context *ctx;
10572 	unsigned long context;
10573 
10574 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10575 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10576 
10577 		bnxt_del_one_rss_ctx(bp, rss_ctx, false);
10578 	}
10579 }
10580 
10581 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
10582 static bool bnxt_promisc_ok(struct bnxt *bp)
10583 {
10584 #ifdef CONFIG_BNXT_SRIOV
10585 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
10586 		return false;
10587 #endif
10588 	return true;
10589 }
10590 
10591 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
10592 {
10593 	struct bnxt_vnic_info *vnic = &bp->vnic_info[1];
10594 	unsigned int rc = 0;
10595 
10596 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1);
10597 	if (rc) {
10598 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10599 			   rc);
10600 		return rc;
10601 	}
10602 
10603 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10604 	if (rc) {
10605 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10606 			   rc);
10607 		return rc;
10608 	}
10609 	return rc;
10610 }
10611 
10612 static int bnxt_cfg_rx_mode(struct bnxt *);
10613 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
10614 
10615 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
10616 {
10617 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
10618 	int rc = 0;
10619 	unsigned int rx_nr_rings = bp->rx_nr_rings;
10620 
10621 	if (irq_re_init) {
10622 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
10623 		if (rc) {
10624 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
10625 				   rc);
10626 			goto err_out;
10627 		}
10628 	}
10629 
10630 	rc = bnxt_hwrm_ring_alloc(bp);
10631 	if (rc) {
10632 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
10633 		goto err_out;
10634 	}
10635 
10636 	rc = bnxt_hwrm_ring_grp_alloc(bp);
10637 	if (rc) {
10638 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
10639 		goto err_out;
10640 	}
10641 
10642 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10643 		rx_nr_rings--;
10644 
10645 	/* default vnic 0 */
10646 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings);
10647 	if (rc) {
10648 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
10649 		goto err_out;
10650 	}
10651 
10652 	if (BNXT_VF(bp))
10653 		bnxt_hwrm_func_qcfg(bp);
10654 
10655 	rc = bnxt_setup_vnic(bp, vnic);
10656 	if (rc)
10657 		goto err_out;
10658 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
10659 		bnxt_hwrm_update_rss_hash_cfg(bp);
10660 
10661 	if (bp->flags & BNXT_FLAG_RFS) {
10662 		rc = bnxt_alloc_rfs_vnics(bp);
10663 		if (rc)
10664 			goto err_out;
10665 	}
10666 
10667 	if (bp->flags & BNXT_FLAG_TPA) {
10668 		rc = bnxt_set_tpa(bp, true);
10669 		if (rc)
10670 			goto err_out;
10671 	}
10672 
10673 	if (BNXT_VF(bp))
10674 		bnxt_update_vf_mac(bp);
10675 
10676 	/* Filter for default vnic 0 */
10677 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
10678 	if (rc) {
10679 		if (BNXT_VF(bp) && rc == -ENODEV)
10680 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
10681 		else
10682 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10683 		goto err_out;
10684 	}
10685 	vnic->uc_filter_count = 1;
10686 
10687 	vnic->rx_mask = 0;
10688 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
10689 		goto skip_rx_mask;
10690 
10691 	if (bp->dev->flags & IFF_BROADCAST)
10692 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10693 
10694 	if (bp->dev->flags & IFF_PROMISC)
10695 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10696 
10697 	if (bp->dev->flags & IFF_ALLMULTI) {
10698 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10699 		vnic->mc_list_count = 0;
10700 	} else if (bp->dev->flags & IFF_MULTICAST) {
10701 		u32 mask = 0;
10702 
10703 		bnxt_mc_list_updated(bp, &mask);
10704 		vnic->rx_mask |= mask;
10705 	}
10706 
10707 	rc = bnxt_cfg_rx_mode(bp);
10708 	if (rc)
10709 		goto err_out;
10710 
10711 skip_rx_mask:
10712 	rc = bnxt_hwrm_set_coal(bp);
10713 	if (rc)
10714 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
10715 				rc);
10716 
10717 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10718 		rc = bnxt_setup_nitroa0_vnic(bp);
10719 		if (rc)
10720 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
10721 				   rc);
10722 	}
10723 
10724 	if (BNXT_VF(bp)) {
10725 		bnxt_hwrm_func_qcfg(bp);
10726 		netdev_update_features(bp->dev);
10727 	}
10728 
10729 	return 0;
10730 
10731 err_out:
10732 	bnxt_hwrm_resource_free(bp, 0, true);
10733 
10734 	return rc;
10735 }
10736 
10737 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
10738 {
10739 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
10740 	return 0;
10741 }
10742 
10743 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
10744 {
10745 	bnxt_init_cp_rings(bp);
10746 	bnxt_init_rx_rings(bp);
10747 	bnxt_init_tx_rings(bp);
10748 	bnxt_init_ring_grps(bp, irq_re_init);
10749 	bnxt_init_vnics(bp);
10750 
10751 	return bnxt_init_chip(bp, irq_re_init);
10752 }
10753 
10754 static int bnxt_set_real_num_queues(struct bnxt *bp)
10755 {
10756 	int rc;
10757 	struct net_device *dev = bp->dev;
10758 
10759 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
10760 					  bp->tx_nr_rings_xdp);
10761 	if (rc)
10762 		return rc;
10763 
10764 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
10765 	if (rc)
10766 		return rc;
10767 
10768 #ifdef CONFIG_RFS_ACCEL
10769 	if (bp->flags & BNXT_FLAG_RFS)
10770 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
10771 #endif
10772 
10773 	return rc;
10774 }
10775 
10776 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10777 			     bool shared)
10778 {
10779 	int _rx = *rx, _tx = *tx;
10780 
10781 	if (shared) {
10782 		*rx = min_t(int, _rx, max);
10783 		*tx = min_t(int, _tx, max);
10784 	} else {
10785 		if (max < 2)
10786 			return -ENOMEM;
10787 
10788 		while (_rx + _tx > max) {
10789 			if (_rx > _tx && _rx > 1)
10790 				_rx--;
10791 			else if (_tx > 1)
10792 				_tx--;
10793 		}
10794 		*rx = _rx;
10795 		*tx = _tx;
10796 	}
10797 	return 0;
10798 }
10799 
10800 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
10801 {
10802 	return (tx - tx_xdp) / tx_sets + tx_xdp;
10803 }
10804 
10805 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
10806 {
10807 	int tcs = bp->num_tc;
10808 
10809 	if (!tcs)
10810 		tcs = 1;
10811 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
10812 }
10813 
10814 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
10815 {
10816 	int tcs = bp->num_tc;
10817 
10818 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
10819 	       bp->tx_nr_rings_xdp;
10820 }
10821 
10822 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10823 			   bool sh)
10824 {
10825 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
10826 
10827 	if (tx_cp != *tx) {
10828 		int tx_saved = tx_cp, rc;
10829 
10830 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
10831 		if (rc)
10832 			return rc;
10833 		if (tx_cp != tx_saved)
10834 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
10835 		return 0;
10836 	}
10837 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
10838 }
10839 
10840 static void bnxt_setup_msix(struct bnxt *bp)
10841 {
10842 	const int len = sizeof(bp->irq_tbl[0].name);
10843 	struct net_device *dev = bp->dev;
10844 	int tcs, i;
10845 
10846 	tcs = bp->num_tc;
10847 	if (tcs) {
10848 		int i, off, count;
10849 
10850 		for (i = 0; i < tcs; i++) {
10851 			count = bp->tx_nr_rings_per_tc;
10852 			off = BNXT_TC_TO_RING_BASE(bp, i);
10853 			netdev_set_tc_queue(dev, i, count, off);
10854 		}
10855 	}
10856 
10857 	for (i = 0; i < bp->cp_nr_rings; i++) {
10858 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10859 		char *attr;
10860 
10861 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10862 			attr = "TxRx";
10863 		else if (i < bp->rx_nr_rings)
10864 			attr = "rx";
10865 		else
10866 			attr = "tx";
10867 
10868 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10869 			 attr, i);
10870 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10871 	}
10872 }
10873 
10874 static int bnxt_init_int_mode(struct bnxt *bp);
10875 
10876 static int bnxt_change_msix(struct bnxt *bp, int total)
10877 {
10878 	struct msi_map map;
10879 	int i;
10880 
10881 	/* add MSIX to the end if needed */
10882 	for (i = bp->total_irqs; i < total; i++) {
10883 		map = pci_msix_alloc_irq_at(bp->pdev, i, NULL);
10884 		if (map.index < 0)
10885 			return bp->total_irqs;
10886 		bp->irq_tbl[i].vector = map.virq;
10887 		bp->total_irqs++;
10888 	}
10889 
10890 	/* trim MSIX from the end if needed */
10891 	for (i = bp->total_irqs; i > total; i--) {
10892 		map.index = i - 1;
10893 		map.virq = bp->irq_tbl[i - 1].vector;
10894 		pci_msix_free_irq(bp->pdev, map);
10895 		bp->total_irqs--;
10896 	}
10897 	return bp->total_irqs;
10898 }
10899 
10900 static int bnxt_setup_int_mode(struct bnxt *bp)
10901 {
10902 	int rc;
10903 
10904 	if (!bp->irq_tbl) {
10905 		rc = bnxt_init_int_mode(bp);
10906 		if (rc || !bp->irq_tbl)
10907 			return rc ?: -ENODEV;
10908 	}
10909 
10910 	bnxt_setup_msix(bp);
10911 
10912 	rc = bnxt_set_real_num_queues(bp);
10913 	return rc;
10914 }
10915 
10916 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10917 {
10918 	return bp->hw_resc.max_rsscos_ctxs;
10919 }
10920 
10921 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10922 {
10923 	return bp->hw_resc.max_vnics;
10924 }
10925 
10926 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10927 {
10928 	return bp->hw_resc.max_stat_ctxs;
10929 }
10930 
10931 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10932 {
10933 	return bp->hw_resc.max_cp_rings;
10934 }
10935 
10936 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10937 {
10938 	unsigned int cp = bp->hw_resc.max_cp_rings;
10939 
10940 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10941 		cp -= bnxt_get_ulp_msix_num(bp);
10942 
10943 	return cp;
10944 }
10945 
10946 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10947 {
10948 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10949 
10950 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10951 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10952 
10953 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10954 }
10955 
10956 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10957 {
10958 	bp->hw_resc.max_irqs = max_irqs;
10959 }
10960 
10961 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10962 {
10963 	unsigned int cp;
10964 
10965 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10966 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10967 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10968 	else
10969 		return cp - bp->cp_nr_rings;
10970 }
10971 
10972 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10973 {
10974 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10975 }
10976 
10977 static int bnxt_get_avail_msix(struct bnxt *bp, int num)
10978 {
10979 	int max_irq = bnxt_get_max_func_irqs(bp);
10980 	int total_req = bp->cp_nr_rings + num;
10981 
10982 	if (max_irq < total_req) {
10983 		num = max_irq - bp->cp_nr_rings;
10984 		if (num <= 0)
10985 			return 0;
10986 	}
10987 	return num;
10988 }
10989 
10990 static int bnxt_get_num_msix(struct bnxt *bp)
10991 {
10992 	if (!BNXT_NEW_RM(bp))
10993 		return bnxt_get_max_func_irqs(bp);
10994 
10995 	return bnxt_nq_rings_in_use(bp);
10996 }
10997 
10998 static int bnxt_init_int_mode(struct bnxt *bp)
10999 {
11000 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size;
11001 
11002 	total_vecs = bnxt_get_num_msix(bp);
11003 	max = bnxt_get_max_func_irqs(bp);
11004 	if (total_vecs > max)
11005 		total_vecs = max;
11006 
11007 	if (!total_vecs)
11008 		return 0;
11009 
11010 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
11011 		min = 2;
11012 
11013 	total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs,
11014 					   PCI_IRQ_MSIX);
11015 	ulp_msix = bnxt_get_ulp_msix_num(bp);
11016 	if (total_vecs < 0 || total_vecs < ulp_msix) {
11017 		rc = -ENODEV;
11018 		goto msix_setup_exit;
11019 	}
11020 
11021 	tbl_size = total_vecs;
11022 	if (pci_msix_can_alloc_dyn(bp->pdev))
11023 		tbl_size = max;
11024 	bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL);
11025 	if (bp->irq_tbl) {
11026 		for (i = 0; i < total_vecs; i++)
11027 			bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i);
11028 
11029 		bp->total_irqs = total_vecs;
11030 		/* Trim rings based upon num of vectors allocated */
11031 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
11032 				     total_vecs - ulp_msix, min == 1);
11033 		if (rc)
11034 			goto msix_setup_exit;
11035 
11036 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
11037 		bp->cp_nr_rings = (min == 1) ?
11038 				  max_t(int, tx_cp, bp->rx_nr_rings) :
11039 				  tx_cp + bp->rx_nr_rings;
11040 
11041 	} else {
11042 		rc = -ENOMEM;
11043 		goto msix_setup_exit;
11044 	}
11045 	return 0;
11046 
11047 msix_setup_exit:
11048 	netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc);
11049 	kfree(bp->irq_tbl);
11050 	bp->irq_tbl = NULL;
11051 	pci_free_irq_vectors(bp->pdev);
11052 	return rc;
11053 }
11054 
11055 static void bnxt_clear_int_mode(struct bnxt *bp)
11056 {
11057 	pci_free_irq_vectors(bp->pdev);
11058 
11059 	kfree(bp->irq_tbl);
11060 	bp->irq_tbl = NULL;
11061 }
11062 
11063 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
11064 {
11065 	bool irq_cleared = false;
11066 	bool irq_change = false;
11067 	int tcs = bp->num_tc;
11068 	int irqs_required;
11069 	int rc;
11070 
11071 	if (!bnxt_need_reserve_rings(bp))
11072 		return 0;
11073 
11074 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
11075 		int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
11076 
11077 		if (ulp_msix > bp->ulp_num_msix_want)
11078 			ulp_msix = bp->ulp_num_msix_want;
11079 		irqs_required = ulp_msix + bp->cp_nr_rings;
11080 	} else {
11081 		irqs_required = bnxt_get_num_msix(bp);
11082 	}
11083 
11084 	if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) {
11085 		irq_change = true;
11086 		if (!pci_msix_can_alloc_dyn(bp->pdev)) {
11087 			bnxt_ulp_irq_stop(bp);
11088 			bnxt_clear_int_mode(bp);
11089 			irq_cleared = true;
11090 		}
11091 	}
11092 	rc = __bnxt_reserve_rings(bp);
11093 	if (irq_cleared) {
11094 		if (!rc)
11095 			rc = bnxt_init_int_mode(bp);
11096 		bnxt_ulp_irq_restart(bp, rc);
11097 	} else if (irq_change && !rc) {
11098 		if (bnxt_change_msix(bp, irqs_required) != irqs_required)
11099 			rc = -ENOSPC;
11100 	}
11101 	if (rc) {
11102 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
11103 		return rc;
11104 	}
11105 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
11106 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
11107 		netdev_err(bp->dev, "tx ring reservation failure\n");
11108 		netdev_reset_tc(bp->dev);
11109 		bp->num_tc = 0;
11110 		if (bp->tx_nr_rings_xdp)
11111 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
11112 		else
11113 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11114 		return -ENOMEM;
11115 	}
11116 	return 0;
11117 }
11118 
11119 static void bnxt_free_irq(struct bnxt *bp)
11120 {
11121 	struct bnxt_irq *irq;
11122 	int i;
11123 
11124 #ifdef CONFIG_RFS_ACCEL
11125 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
11126 	bp->dev->rx_cpu_rmap = NULL;
11127 #endif
11128 	if (!bp->irq_tbl || !bp->bnapi)
11129 		return;
11130 
11131 	for (i = 0; i < bp->cp_nr_rings; i++) {
11132 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
11133 
11134 		irq = &bp->irq_tbl[map_idx];
11135 		if (irq->requested) {
11136 			if (irq->have_cpumask) {
11137 				irq_update_affinity_hint(irq->vector, NULL);
11138 				free_cpumask_var(irq->cpu_mask);
11139 				irq->have_cpumask = 0;
11140 			}
11141 			free_irq(irq->vector, bp->bnapi[i]);
11142 		}
11143 
11144 		irq->requested = 0;
11145 	}
11146 }
11147 
11148 static int bnxt_request_irq(struct bnxt *bp)
11149 {
11150 	int i, j, rc = 0;
11151 	unsigned long flags = 0;
11152 #ifdef CONFIG_RFS_ACCEL
11153 	struct cpu_rmap *rmap;
11154 #endif
11155 
11156 	rc = bnxt_setup_int_mode(bp);
11157 	if (rc) {
11158 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
11159 			   rc);
11160 		return rc;
11161 	}
11162 #ifdef CONFIG_RFS_ACCEL
11163 	rmap = bp->dev->rx_cpu_rmap;
11164 #endif
11165 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
11166 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
11167 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
11168 
11169 #ifdef CONFIG_RFS_ACCEL
11170 		if (rmap && bp->bnapi[i]->rx_ring) {
11171 			rc = irq_cpu_rmap_add(rmap, irq->vector);
11172 			if (rc)
11173 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
11174 					    j);
11175 			j++;
11176 		}
11177 #endif
11178 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
11179 				 bp->bnapi[i]);
11180 		if (rc)
11181 			break;
11182 
11183 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
11184 		irq->requested = 1;
11185 
11186 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
11187 			int numa_node = dev_to_node(&bp->pdev->dev);
11188 
11189 			irq->have_cpumask = 1;
11190 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
11191 					irq->cpu_mask);
11192 			rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask);
11193 			if (rc) {
11194 				netdev_warn(bp->dev,
11195 					    "Update affinity hint failed, IRQ = %d\n",
11196 					    irq->vector);
11197 				break;
11198 			}
11199 		}
11200 	}
11201 	return rc;
11202 }
11203 
11204 static void bnxt_del_napi(struct bnxt *bp)
11205 {
11206 	int i;
11207 
11208 	if (!bp->bnapi)
11209 		return;
11210 
11211 	for (i = 0; i < bp->rx_nr_rings; i++)
11212 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
11213 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
11214 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
11215 
11216 	for (i = 0; i < bp->cp_nr_rings; i++) {
11217 		struct bnxt_napi *bnapi = bp->bnapi[i];
11218 
11219 		__netif_napi_del(&bnapi->napi);
11220 	}
11221 	/* We called __netif_napi_del(), we need
11222 	 * to respect an RCU grace period before freeing napi structures.
11223 	 */
11224 	synchronize_net();
11225 }
11226 
11227 static void bnxt_init_napi(struct bnxt *bp)
11228 {
11229 	int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
11230 	unsigned int cp_nr_rings = bp->cp_nr_rings;
11231 	struct bnxt_napi *bnapi;
11232 	int i;
11233 
11234 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
11235 		poll_fn = bnxt_poll_p5;
11236 	else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
11237 		cp_nr_rings--;
11238 	for (i = 0; i < cp_nr_rings; i++) {
11239 		bnapi = bp->bnapi[i];
11240 		netif_napi_add_config(bp->dev, &bnapi->napi, poll_fn,
11241 				      bnapi->index);
11242 	}
11243 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
11244 		bnapi = bp->bnapi[cp_nr_rings];
11245 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll_nitroa0);
11246 	}
11247 }
11248 
11249 static void bnxt_disable_napi(struct bnxt *bp)
11250 {
11251 	int i;
11252 
11253 	if (!bp->bnapi ||
11254 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
11255 		return;
11256 
11257 	for (i = 0; i < bp->cp_nr_rings; i++) {
11258 		struct bnxt_napi *bnapi = bp->bnapi[i];
11259 		struct bnxt_cp_ring_info *cpr;
11260 
11261 		cpr = &bnapi->cp_ring;
11262 		if (bnapi->tx_fault)
11263 			cpr->sw_stats->tx.tx_resets++;
11264 		if (bnapi->in_reset)
11265 			cpr->sw_stats->rx.rx_resets++;
11266 		napi_disable(&bnapi->napi);
11267 		if (bnapi->rx_ring)
11268 			cancel_work_sync(&cpr->dim.work);
11269 	}
11270 }
11271 
11272 static void bnxt_enable_napi(struct bnxt *bp)
11273 {
11274 	int i;
11275 
11276 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
11277 	for (i = 0; i < bp->cp_nr_rings; i++) {
11278 		struct bnxt_napi *bnapi = bp->bnapi[i];
11279 		struct bnxt_cp_ring_info *cpr;
11280 
11281 		bnapi->tx_fault = 0;
11282 
11283 		cpr = &bnapi->cp_ring;
11284 		bnapi->in_reset = false;
11285 
11286 		if (bnapi->rx_ring) {
11287 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
11288 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
11289 		}
11290 		napi_enable(&bnapi->napi);
11291 	}
11292 }
11293 
11294 void bnxt_tx_disable(struct bnxt *bp)
11295 {
11296 	int i;
11297 	struct bnxt_tx_ring_info *txr;
11298 
11299 	if (bp->tx_ring) {
11300 		for (i = 0; i < bp->tx_nr_rings; i++) {
11301 			txr = &bp->tx_ring[i];
11302 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
11303 		}
11304 	}
11305 	/* Make sure napi polls see @dev_state change */
11306 	synchronize_net();
11307 	/* Drop carrier first to prevent TX timeout */
11308 	netif_carrier_off(bp->dev);
11309 	/* Stop all TX queues */
11310 	netif_tx_disable(bp->dev);
11311 }
11312 
11313 void bnxt_tx_enable(struct bnxt *bp)
11314 {
11315 	int i;
11316 	struct bnxt_tx_ring_info *txr;
11317 
11318 	for (i = 0; i < bp->tx_nr_rings; i++) {
11319 		txr = &bp->tx_ring[i];
11320 		WRITE_ONCE(txr->dev_state, 0);
11321 	}
11322 	/* Make sure napi polls see @dev_state change */
11323 	synchronize_net();
11324 	netif_tx_wake_all_queues(bp->dev);
11325 	if (BNXT_LINK_IS_UP(bp))
11326 		netif_carrier_on(bp->dev);
11327 }
11328 
11329 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
11330 {
11331 	u8 active_fec = link_info->active_fec_sig_mode &
11332 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
11333 
11334 	switch (active_fec) {
11335 	default:
11336 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
11337 		return "None";
11338 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
11339 		return "Clause 74 BaseR";
11340 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
11341 		return "Clause 91 RS(528,514)";
11342 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
11343 		return "Clause 91 RS544_1XN";
11344 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
11345 		return "Clause 91 RS(544,514)";
11346 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
11347 		return "Clause 91 RS272_1XN";
11348 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
11349 		return "Clause 91 RS(272,257)";
11350 	}
11351 }
11352 
11353 void bnxt_report_link(struct bnxt *bp)
11354 {
11355 	if (BNXT_LINK_IS_UP(bp)) {
11356 		const char *signal = "";
11357 		const char *flow_ctrl;
11358 		const char *duplex;
11359 		u32 speed;
11360 		u16 fec;
11361 
11362 		netif_carrier_on(bp->dev);
11363 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
11364 		if (speed == SPEED_UNKNOWN) {
11365 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
11366 			return;
11367 		}
11368 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
11369 			duplex = "full";
11370 		else
11371 			duplex = "half";
11372 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
11373 			flow_ctrl = "ON - receive & transmit";
11374 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
11375 			flow_ctrl = "ON - transmit";
11376 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
11377 			flow_ctrl = "ON - receive";
11378 		else
11379 			flow_ctrl = "none";
11380 		if (bp->link_info.phy_qcfg_resp.option_flags &
11381 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
11382 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
11383 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
11384 			switch (sig_mode) {
11385 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
11386 				signal = "(NRZ) ";
11387 				break;
11388 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
11389 				signal = "(PAM4 56Gbps) ";
11390 				break;
11391 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
11392 				signal = "(PAM4 112Gbps) ";
11393 				break;
11394 			default:
11395 				break;
11396 			}
11397 		}
11398 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
11399 			    speed, signal, duplex, flow_ctrl);
11400 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
11401 			netdev_info(bp->dev, "EEE is %s\n",
11402 				    bp->eee.eee_active ? "active" :
11403 							 "not active");
11404 		fec = bp->link_info.fec_cfg;
11405 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
11406 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
11407 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
11408 				    bnxt_report_fec(&bp->link_info));
11409 	} else {
11410 		netif_carrier_off(bp->dev);
11411 		netdev_err(bp->dev, "NIC Link is Down\n");
11412 	}
11413 }
11414 
11415 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
11416 {
11417 	if (!resp->supported_speeds_auto_mode &&
11418 	    !resp->supported_speeds_force_mode &&
11419 	    !resp->supported_pam4_speeds_auto_mode &&
11420 	    !resp->supported_pam4_speeds_force_mode &&
11421 	    !resp->supported_speeds2_auto_mode &&
11422 	    !resp->supported_speeds2_force_mode)
11423 		return true;
11424 	return false;
11425 }
11426 
11427 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
11428 {
11429 	struct bnxt_link_info *link_info = &bp->link_info;
11430 	struct hwrm_port_phy_qcaps_output *resp;
11431 	struct hwrm_port_phy_qcaps_input *req;
11432 	int rc = 0;
11433 
11434 	if (bp->hwrm_spec_code < 0x10201)
11435 		return 0;
11436 
11437 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
11438 	if (rc)
11439 		return rc;
11440 
11441 	resp = hwrm_req_hold(bp, req);
11442 	rc = hwrm_req_send(bp, req);
11443 	if (rc)
11444 		goto hwrm_phy_qcaps_exit;
11445 
11446 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
11447 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
11448 		struct ethtool_keee *eee = &bp->eee;
11449 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
11450 
11451 		_bnxt_fw_to_linkmode(eee->supported, fw_speeds);
11452 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
11453 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
11454 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
11455 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
11456 	}
11457 
11458 	if (bp->hwrm_spec_code >= 0x10a01) {
11459 		if (bnxt_phy_qcaps_no_speed(resp)) {
11460 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
11461 			netdev_warn(bp->dev, "Ethernet link disabled\n");
11462 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
11463 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
11464 			netdev_info(bp->dev, "Ethernet link enabled\n");
11465 			/* Phy re-enabled, reprobe the speeds */
11466 			link_info->support_auto_speeds = 0;
11467 			link_info->support_pam4_auto_speeds = 0;
11468 			link_info->support_auto_speeds2 = 0;
11469 		}
11470 	}
11471 	if (resp->supported_speeds_auto_mode)
11472 		link_info->support_auto_speeds =
11473 			le16_to_cpu(resp->supported_speeds_auto_mode);
11474 	if (resp->supported_pam4_speeds_auto_mode)
11475 		link_info->support_pam4_auto_speeds =
11476 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
11477 	if (resp->supported_speeds2_auto_mode)
11478 		link_info->support_auto_speeds2 =
11479 			le16_to_cpu(resp->supported_speeds2_auto_mode);
11480 
11481 	bp->port_count = resp->port_cnt;
11482 
11483 hwrm_phy_qcaps_exit:
11484 	hwrm_req_drop(bp, req);
11485 	return rc;
11486 }
11487 
11488 static bool bnxt_support_dropped(u16 advertising, u16 supported)
11489 {
11490 	u16 diff = advertising ^ supported;
11491 
11492 	return ((supported | diff) != supported);
11493 }
11494 
11495 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
11496 {
11497 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
11498 
11499 	/* Check if any advertised speeds are no longer supported. The caller
11500 	 * holds the link_lock mutex, so we can modify link_info settings.
11501 	 */
11502 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11503 		if (bnxt_support_dropped(link_info->advertising,
11504 					 link_info->support_auto_speeds2)) {
11505 			link_info->advertising = link_info->support_auto_speeds2;
11506 			return true;
11507 		}
11508 		return false;
11509 	}
11510 	if (bnxt_support_dropped(link_info->advertising,
11511 				 link_info->support_auto_speeds)) {
11512 		link_info->advertising = link_info->support_auto_speeds;
11513 		return true;
11514 	}
11515 	if (bnxt_support_dropped(link_info->advertising_pam4,
11516 				 link_info->support_pam4_auto_speeds)) {
11517 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
11518 		return true;
11519 	}
11520 	return false;
11521 }
11522 
11523 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
11524 {
11525 	struct bnxt_link_info *link_info = &bp->link_info;
11526 	struct hwrm_port_phy_qcfg_output *resp;
11527 	struct hwrm_port_phy_qcfg_input *req;
11528 	u8 link_state = link_info->link_state;
11529 	bool support_changed;
11530 	int rc;
11531 
11532 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
11533 	if (rc)
11534 		return rc;
11535 
11536 	resp = hwrm_req_hold(bp, req);
11537 	rc = hwrm_req_send(bp, req);
11538 	if (rc) {
11539 		hwrm_req_drop(bp, req);
11540 		if (BNXT_VF(bp) && rc == -ENODEV) {
11541 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
11542 			rc = 0;
11543 		}
11544 		return rc;
11545 	}
11546 
11547 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
11548 	link_info->phy_link_status = resp->link;
11549 	link_info->duplex = resp->duplex_cfg;
11550 	if (bp->hwrm_spec_code >= 0x10800)
11551 		link_info->duplex = resp->duplex_state;
11552 	link_info->pause = resp->pause;
11553 	link_info->auto_mode = resp->auto_mode;
11554 	link_info->auto_pause_setting = resp->auto_pause;
11555 	link_info->lp_pause = resp->link_partner_adv_pause;
11556 	link_info->force_pause_setting = resp->force_pause;
11557 	link_info->duplex_setting = resp->duplex_cfg;
11558 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
11559 		link_info->link_speed = le16_to_cpu(resp->link_speed);
11560 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
11561 			link_info->active_lanes = resp->active_lanes;
11562 	} else {
11563 		link_info->link_speed = 0;
11564 		link_info->active_lanes = 0;
11565 	}
11566 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
11567 	link_info->force_pam4_link_speed =
11568 		le16_to_cpu(resp->force_pam4_link_speed);
11569 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
11570 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
11571 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
11572 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
11573 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
11574 	link_info->auto_pam4_link_speeds =
11575 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
11576 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
11577 	link_info->lp_auto_link_speeds =
11578 		le16_to_cpu(resp->link_partner_adv_speeds);
11579 	link_info->lp_auto_pam4_link_speeds =
11580 		resp->link_partner_pam4_adv_speeds;
11581 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
11582 	link_info->phy_ver[0] = resp->phy_maj;
11583 	link_info->phy_ver[1] = resp->phy_min;
11584 	link_info->phy_ver[2] = resp->phy_bld;
11585 	link_info->media_type = resp->media_type;
11586 	link_info->phy_type = resp->phy_type;
11587 	link_info->transceiver = resp->xcvr_pkg_type;
11588 	link_info->phy_addr = resp->eee_config_phy_addr &
11589 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
11590 	link_info->module_status = resp->module_status;
11591 
11592 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
11593 		struct ethtool_keee *eee = &bp->eee;
11594 		u16 fw_speeds;
11595 
11596 		eee->eee_active = 0;
11597 		if (resp->eee_config_phy_addr &
11598 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
11599 			eee->eee_active = 1;
11600 			fw_speeds = le16_to_cpu(
11601 				resp->link_partner_adv_eee_link_speed_mask);
11602 			_bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds);
11603 		}
11604 
11605 		/* Pull initial EEE config */
11606 		if (!chng_link_state) {
11607 			if (resp->eee_config_phy_addr &
11608 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
11609 				eee->eee_enabled = 1;
11610 
11611 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
11612 			_bnxt_fw_to_linkmode(eee->advertised, fw_speeds);
11613 
11614 			if (resp->eee_config_phy_addr &
11615 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
11616 				__le32 tmr;
11617 
11618 				eee->tx_lpi_enabled = 1;
11619 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
11620 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
11621 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
11622 			}
11623 		}
11624 	}
11625 
11626 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
11627 	if (bp->hwrm_spec_code >= 0x10504) {
11628 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
11629 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
11630 	}
11631 	/* TODO: need to add more logic to report VF link */
11632 	if (chng_link_state) {
11633 		if (link_info->phy_link_status == BNXT_LINK_LINK)
11634 			link_info->link_state = BNXT_LINK_STATE_UP;
11635 		else
11636 			link_info->link_state = BNXT_LINK_STATE_DOWN;
11637 		if (link_state != link_info->link_state)
11638 			bnxt_report_link(bp);
11639 	} else {
11640 		/* always link down if not require to update link state */
11641 		link_info->link_state = BNXT_LINK_STATE_DOWN;
11642 	}
11643 	hwrm_req_drop(bp, req);
11644 
11645 	if (!BNXT_PHY_CFG_ABLE(bp))
11646 		return 0;
11647 
11648 	support_changed = bnxt_support_speed_dropped(link_info);
11649 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
11650 		bnxt_hwrm_set_link_setting(bp, true, false);
11651 	return 0;
11652 }
11653 
11654 static void bnxt_get_port_module_status(struct bnxt *bp)
11655 {
11656 	struct bnxt_link_info *link_info = &bp->link_info;
11657 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
11658 	u8 module_status;
11659 
11660 	if (bnxt_update_link(bp, true))
11661 		return;
11662 
11663 	module_status = link_info->module_status;
11664 	switch (module_status) {
11665 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
11666 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
11667 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
11668 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
11669 			    bp->pf.port_id);
11670 		if (bp->hwrm_spec_code >= 0x10201) {
11671 			netdev_warn(bp->dev, "Module part number %s\n",
11672 				    resp->phy_vendor_partnumber);
11673 		}
11674 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
11675 			netdev_warn(bp->dev, "TX is disabled\n");
11676 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
11677 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
11678 	}
11679 }
11680 
11681 static void
11682 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11683 {
11684 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
11685 		if (bp->hwrm_spec_code >= 0x10201)
11686 			req->auto_pause =
11687 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
11688 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11689 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
11690 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11691 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
11692 		req->enables |=
11693 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11694 	} else {
11695 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11696 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
11697 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11698 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
11699 		req->enables |=
11700 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
11701 		if (bp->hwrm_spec_code >= 0x10201) {
11702 			req->auto_pause = req->force_pause;
11703 			req->enables |= cpu_to_le32(
11704 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11705 		}
11706 	}
11707 }
11708 
11709 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11710 {
11711 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
11712 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
11713 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11714 			req->enables |=
11715 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
11716 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
11717 		} else if (bp->link_info.advertising) {
11718 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
11719 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
11720 		}
11721 		if (bp->link_info.advertising_pam4) {
11722 			req->enables |=
11723 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
11724 			req->auto_link_pam4_speed_mask =
11725 				cpu_to_le16(bp->link_info.advertising_pam4);
11726 		}
11727 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
11728 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
11729 	} else {
11730 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
11731 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11732 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
11733 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
11734 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
11735 				   (u32)bp->link_info.req_link_speed);
11736 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
11737 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11738 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
11739 		} else {
11740 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11741 		}
11742 	}
11743 
11744 	/* tell chimp that the setting takes effect immediately */
11745 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
11746 }
11747 
11748 int bnxt_hwrm_set_pause(struct bnxt *bp)
11749 {
11750 	struct hwrm_port_phy_cfg_input *req;
11751 	int rc;
11752 
11753 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11754 	if (rc)
11755 		return rc;
11756 
11757 	bnxt_hwrm_set_pause_common(bp, req);
11758 
11759 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
11760 	    bp->link_info.force_link_chng)
11761 		bnxt_hwrm_set_link_common(bp, req);
11762 
11763 	rc = hwrm_req_send(bp, req);
11764 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
11765 		/* since changing of pause setting doesn't trigger any link
11766 		 * change event, the driver needs to update the current pause
11767 		 * result upon successfully return of the phy_cfg command
11768 		 */
11769 		bp->link_info.pause =
11770 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
11771 		bp->link_info.auto_pause_setting = 0;
11772 		if (!bp->link_info.force_link_chng)
11773 			bnxt_report_link(bp);
11774 	}
11775 	bp->link_info.force_link_chng = false;
11776 	return rc;
11777 }
11778 
11779 static void bnxt_hwrm_set_eee(struct bnxt *bp,
11780 			      struct hwrm_port_phy_cfg_input *req)
11781 {
11782 	struct ethtool_keee *eee = &bp->eee;
11783 
11784 	if (eee->eee_enabled) {
11785 		u16 eee_speeds;
11786 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
11787 
11788 		if (eee->tx_lpi_enabled)
11789 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
11790 		else
11791 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
11792 
11793 		req->flags |= cpu_to_le32(flags);
11794 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
11795 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
11796 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
11797 	} else {
11798 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
11799 	}
11800 }
11801 
11802 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
11803 {
11804 	struct hwrm_port_phy_cfg_input *req;
11805 	int rc;
11806 
11807 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11808 	if (rc)
11809 		return rc;
11810 
11811 	if (set_pause)
11812 		bnxt_hwrm_set_pause_common(bp, req);
11813 
11814 	bnxt_hwrm_set_link_common(bp, req);
11815 
11816 	if (set_eee)
11817 		bnxt_hwrm_set_eee(bp, req);
11818 	return hwrm_req_send(bp, req);
11819 }
11820 
11821 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
11822 {
11823 	struct hwrm_port_phy_cfg_input *req;
11824 	int rc;
11825 
11826 	if (!BNXT_SINGLE_PF(bp))
11827 		return 0;
11828 
11829 	if (pci_num_vf(bp->pdev) &&
11830 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11831 		return 0;
11832 
11833 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11834 	if (rc)
11835 		return rc;
11836 
11837 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11838 	rc = hwrm_req_send(bp, req);
11839 	if (!rc) {
11840 		mutex_lock(&bp->link_lock);
11841 		/* Device is not obliged link down in certain scenarios, even
11842 		 * when forced. Setting the state unknown is consistent with
11843 		 * driver startup and will force link state to be reported
11844 		 * during subsequent open based on PORT_PHY_QCFG.
11845 		 */
11846 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11847 		mutex_unlock(&bp->link_lock);
11848 	}
11849 	return rc;
11850 }
11851 
11852 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11853 {
11854 #ifdef CONFIG_TEE_BNXT_FW
11855 	int rc = tee_bnxt_fw_load();
11856 
11857 	if (rc)
11858 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11859 
11860 	return rc;
11861 #else
11862 	netdev_err(bp->dev, "OP-TEE not supported\n");
11863 	return -ENODEV;
11864 #endif
11865 }
11866 
11867 static int bnxt_try_recover_fw(struct bnxt *bp)
11868 {
11869 	if (bp->fw_health && bp->fw_health->status_reliable) {
11870 		int retry = 0, rc;
11871 		u32 sts;
11872 
11873 		do {
11874 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11875 			rc = bnxt_hwrm_poll(bp);
11876 			if (!BNXT_FW_IS_BOOTING(sts) &&
11877 			    !BNXT_FW_IS_RECOVERING(sts))
11878 				break;
11879 			retry++;
11880 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11881 
11882 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11883 			netdev_err(bp->dev,
11884 				   "Firmware not responding, status: 0x%x\n",
11885 				   sts);
11886 			rc = -ENODEV;
11887 		}
11888 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11889 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11890 			return bnxt_fw_reset_via_optee(bp);
11891 		}
11892 		return rc;
11893 	}
11894 
11895 	return -ENODEV;
11896 }
11897 
11898 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11899 {
11900 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11901 
11902 	if (!BNXT_NEW_RM(bp))
11903 		return; /* no resource reservations required */
11904 
11905 	hw_resc->resv_cp_rings = 0;
11906 	hw_resc->resv_stat_ctxs = 0;
11907 	hw_resc->resv_irqs = 0;
11908 	hw_resc->resv_tx_rings = 0;
11909 	hw_resc->resv_rx_rings = 0;
11910 	hw_resc->resv_hw_ring_grps = 0;
11911 	hw_resc->resv_vnics = 0;
11912 	hw_resc->resv_rsscos_ctxs = 0;
11913 	if (!fw_reset) {
11914 		bp->tx_nr_rings = 0;
11915 		bp->rx_nr_rings = 0;
11916 	}
11917 }
11918 
11919 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11920 {
11921 	int rc;
11922 
11923 	if (!BNXT_NEW_RM(bp))
11924 		return 0; /* no resource reservations required */
11925 
11926 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11927 	if (rc)
11928 		netdev_err(bp->dev, "resc_qcaps failed\n");
11929 
11930 	bnxt_clear_reservations(bp, fw_reset);
11931 
11932 	return rc;
11933 }
11934 
11935 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11936 {
11937 	struct hwrm_func_drv_if_change_output *resp;
11938 	struct hwrm_func_drv_if_change_input *req;
11939 	bool fw_reset = !bp->irq_tbl;
11940 	bool resc_reinit = false;
11941 	int rc, retry = 0;
11942 	u32 flags = 0;
11943 
11944 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11945 		return 0;
11946 
11947 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11948 	if (rc)
11949 		return rc;
11950 
11951 	if (up)
11952 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11953 	resp = hwrm_req_hold(bp, req);
11954 
11955 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11956 	while (retry < BNXT_FW_IF_RETRY) {
11957 		rc = hwrm_req_send(bp, req);
11958 		if (rc != -EAGAIN)
11959 			break;
11960 
11961 		msleep(50);
11962 		retry++;
11963 	}
11964 
11965 	if (rc == -EAGAIN) {
11966 		hwrm_req_drop(bp, req);
11967 		return rc;
11968 	} else if (!rc) {
11969 		flags = le32_to_cpu(resp->flags);
11970 	} else if (up) {
11971 		rc = bnxt_try_recover_fw(bp);
11972 		fw_reset = true;
11973 	}
11974 	hwrm_req_drop(bp, req);
11975 	if (rc)
11976 		return rc;
11977 
11978 	if (!up) {
11979 		bnxt_inv_fw_health_reg(bp);
11980 		return 0;
11981 	}
11982 
11983 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11984 		resc_reinit = true;
11985 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11986 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11987 		fw_reset = true;
11988 	else
11989 		bnxt_remap_fw_health_regs(bp);
11990 
11991 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11992 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11993 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11994 		return -ENODEV;
11995 	}
11996 	if (resc_reinit || fw_reset) {
11997 		if (fw_reset) {
11998 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11999 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12000 				bnxt_ulp_irq_stop(bp);
12001 			bnxt_free_ctx_mem(bp, false);
12002 			bnxt_dcb_free(bp);
12003 			rc = bnxt_fw_init_one(bp);
12004 			if (rc) {
12005 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
12006 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12007 				return rc;
12008 			}
12009 			bnxt_clear_int_mode(bp);
12010 			rc = bnxt_init_int_mode(bp);
12011 			if (rc) {
12012 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
12013 				netdev_err(bp->dev, "init int mode failed\n");
12014 				return rc;
12015 			}
12016 		}
12017 		rc = bnxt_cancel_reservations(bp, fw_reset);
12018 	}
12019 	return rc;
12020 }
12021 
12022 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
12023 {
12024 	struct hwrm_port_led_qcaps_output *resp;
12025 	struct hwrm_port_led_qcaps_input *req;
12026 	struct bnxt_pf_info *pf = &bp->pf;
12027 	int rc;
12028 
12029 	bp->num_leds = 0;
12030 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
12031 		return 0;
12032 
12033 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
12034 	if (rc)
12035 		return rc;
12036 
12037 	req->port_id = cpu_to_le16(pf->port_id);
12038 	resp = hwrm_req_hold(bp, req);
12039 	rc = hwrm_req_send(bp, req);
12040 	if (rc) {
12041 		hwrm_req_drop(bp, req);
12042 		return rc;
12043 	}
12044 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
12045 		int i;
12046 
12047 		bp->num_leds = resp->num_leds;
12048 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
12049 						 bp->num_leds);
12050 		for (i = 0; i < bp->num_leds; i++) {
12051 			struct bnxt_led_info *led = &bp->leds[i];
12052 			__le16 caps = led->led_state_caps;
12053 
12054 			if (!led->led_group_id ||
12055 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
12056 				bp->num_leds = 0;
12057 				break;
12058 			}
12059 		}
12060 	}
12061 	hwrm_req_drop(bp, req);
12062 	return 0;
12063 }
12064 
12065 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
12066 {
12067 	struct hwrm_wol_filter_alloc_output *resp;
12068 	struct hwrm_wol_filter_alloc_input *req;
12069 	int rc;
12070 
12071 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
12072 	if (rc)
12073 		return rc;
12074 
12075 	req->port_id = cpu_to_le16(bp->pf.port_id);
12076 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
12077 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
12078 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
12079 
12080 	resp = hwrm_req_hold(bp, req);
12081 	rc = hwrm_req_send(bp, req);
12082 	if (!rc)
12083 		bp->wol_filter_id = resp->wol_filter_id;
12084 	hwrm_req_drop(bp, req);
12085 	return rc;
12086 }
12087 
12088 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
12089 {
12090 	struct hwrm_wol_filter_free_input *req;
12091 	int rc;
12092 
12093 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
12094 	if (rc)
12095 		return rc;
12096 
12097 	req->port_id = cpu_to_le16(bp->pf.port_id);
12098 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
12099 	req->wol_filter_id = bp->wol_filter_id;
12100 
12101 	return hwrm_req_send(bp, req);
12102 }
12103 
12104 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
12105 {
12106 	struct hwrm_wol_filter_qcfg_output *resp;
12107 	struct hwrm_wol_filter_qcfg_input *req;
12108 	u16 next_handle = 0;
12109 	int rc;
12110 
12111 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
12112 	if (rc)
12113 		return rc;
12114 
12115 	req->port_id = cpu_to_le16(bp->pf.port_id);
12116 	req->handle = cpu_to_le16(handle);
12117 	resp = hwrm_req_hold(bp, req);
12118 	rc = hwrm_req_send(bp, req);
12119 	if (!rc) {
12120 		next_handle = le16_to_cpu(resp->next_handle);
12121 		if (next_handle != 0) {
12122 			if (resp->wol_type ==
12123 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
12124 				bp->wol = 1;
12125 				bp->wol_filter_id = resp->wol_filter_id;
12126 			}
12127 		}
12128 	}
12129 	hwrm_req_drop(bp, req);
12130 	return next_handle;
12131 }
12132 
12133 static void bnxt_get_wol_settings(struct bnxt *bp)
12134 {
12135 	u16 handle = 0;
12136 
12137 	bp->wol = 0;
12138 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
12139 		return;
12140 
12141 	do {
12142 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
12143 	} while (handle && handle != 0xffff);
12144 }
12145 
12146 static bool bnxt_eee_config_ok(struct bnxt *bp)
12147 {
12148 	struct ethtool_keee *eee = &bp->eee;
12149 	struct bnxt_link_info *link_info = &bp->link_info;
12150 
12151 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
12152 		return true;
12153 
12154 	if (eee->eee_enabled) {
12155 		__ETHTOOL_DECLARE_LINK_MODE_MASK(advertising);
12156 		__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp);
12157 
12158 		_bnxt_fw_to_linkmode(advertising, link_info->advertising);
12159 
12160 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
12161 			eee->eee_enabled = 0;
12162 			return false;
12163 		}
12164 		if (linkmode_andnot(tmp, eee->advertised, advertising)) {
12165 			linkmode_and(eee->advertised, advertising,
12166 				     eee->supported);
12167 			return false;
12168 		}
12169 	}
12170 	return true;
12171 }
12172 
12173 static int bnxt_update_phy_setting(struct bnxt *bp)
12174 {
12175 	int rc;
12176 	bool update_link = false;
12177 	bool update_pause = false;
12178 	bool update_eee = false;
12179 	struct bnxt_link_info *link_info = &bp->link_info;
12180 
12181 	rc = bnxt_update_link(bp, true);
12182 	if (rc) {
12183 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
12184 			   rc);
12185 		return rc;
12186 	}
12187 	if (!BNXT_SINGLE_PF(bp))
12188 		return 0;
12189 
12190 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
12191 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
12192 	    link_info->req_flow_ctrl)
12193 		update_pause = true;
12194 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
12195 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
12196 		update_pause = true;
12197 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
12198 		if (BNXT_AUTO_MODE(link_info->auto_mode))
12199 			update_link = true;
12200 		if (bnxt_force_speed_updated(link_info))
12201 			update_link = true;
12202 		if (link_info->req_duplex != link_info->duplex_setting)
12203 			update_link = true;
12204 	} else {
12205 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
12206 			update_link = true;
12207 		if (bnxt_auto_speed_updated(link_info))
12208 			update_link = true;
12209 	}
12210 
12211 	/* The last close may have shutdown the link, so need to call
12212 	 * PHY_CFG to bring it back up.
12213 	 */
12214 	if (!BNXT_LINK_IS_UP(bp))
12215 		update_link = true;
12216 
12217 	if (!bnxt_eee_config_ok(bp))
12218 		update_eee = true;
12219 
12220 	if (update_link)
12221 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
12222 	else if (update_pause)
12223 		rc = bnxt_hwrm_set_pause(bp);
12224 	if (rc) {
12225 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
12226 			   rc);
12227 		return rc;
12228 	}
12229 
12230 	return rc;
12231 }
12232 
12233 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
12234 
12235 static int bnxt_reinit_after_abort(struct bnxt *bp)
12236 {
12237 	int rc;
12238 
12239 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12240 		return -EBUSY;
12241 
12242 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
12243 		return -ENODEV;
12244 
12245 	rc = bnxt_fw_init_one(bp);
12246 	if (!rc) {
12247 		bnxt_clear_int_mode(bp);
12248 		rc = bnxt_init_int_mode(bp);
12249 		if (!rc) {
12250 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12251 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
12252 		}
12253 	}
12254 	return rc;
12255 }
12256 
12257 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
12258 {
12259 	struct bnxt_ntuple_filter *ntp_fltr;
12260 	struct bnxt_l2_filter *l2_fltr;
12261 
12262 	if (list_empty(&fltr->list))
12263 		return;
12264 
12265 	if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) {
12266 		ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base);
12267 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
12268 		atomic_inc(&l2_fltr->refcnt);
12269 		ntp_fltr->l2_fltr = l2_fltr;
12270 		if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) {
12271 			bnxt_del_ntp_filter(bp, ntp_fltr);
12272 			netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n",
12273 				   fltr->sw_id);
12274 		}
12275 	} else if (fltr->type == BNXT_FLTR_TYPE_L2) {
12276 		l2_fltr = container_of(fltr, struct bnxt_l2_filter, base);
12277 		if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) {
12278 			bnxt_del_l2_filter(bp, l2_fltr);
12279 			netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n",
12280 				   fltr->sw_id);
12281 		}
12282 	}
12283 }
12284 
12285 static void bnxt_cfg_usr_fltrs(struct bnxt *bp)
12286 {
12287 	struct bnxt_filter_base *usr_fltr, *tmp;
12288 
12289 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list)
12290 		bnxt_cfg_one_usr_fltr(bp, usr_fltr);
12291 }
12292 
12293 static int bnxt_set_xps_mapping(struct bnxt *bp)
12294 {
12295 	int numa_node = dev_to_node(&bp->pdev->dev);
12296 	unsigned int q_idx, map_idx, cpu, i;
12297 	const struct cpumask *cpu_mask_ptr;
12298 	int nr_cpus = num_online_cpus();
12299 	cpumask_t *q_map;
12300 	int rc = 0;
12301 
12302 	q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL);
12303 	if (!q_map)
12304 		return -ENOMEM;
12305 
12306 	/* Create CPU mask for all TX queues across MQPRIO traffic classes.
12307 	 * Each TC has the same number of TX queues. The nth TX queue for each
12308 	 * TC will have the same CPU mask.
12309 	 */
12310 	for (i = 0; i < nr_cpus; i++) {
12311 		map_idx = i % bp->tx_nr_rings_per_tc;
12312 		cpu = cpumask_local_spread(i, numa_node);
12313 		cpu_mask_ptr = get_cpu_mask(cpu);
12314 		cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr);
12315 	}
12316 
12317 	/* Register CPU mask for each TX queue except the ones marked for XDP */
12318 	for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) {
12319 		map_idx = q_idx % bp->tx_nr_rings_per_tc;
12320 		rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx);
12321 		if (rc) {
12322 			netdev_warn(bp->dev, "Error setting XPS for q:%d\n",
12323 				    q_idx);
12324 			break;
12325 		}
12326 	}
12327 
12328 	kfree(q_map);
12329 
12330 	return rc;
12331 }
12332 
12333 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12334 {
12335 	int rc = 0;
12336 
12337 	netif_carrier_off(bp->dev);
12338 	if (irq_re_init) {
12339 		/* Reserve rings now if none were reserved at driver probe. */
12340 		rc = bnxt_init_dflt_ring_mode(bp);
12341 		if (rc) {
12342 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
12343 			return rc;
12344 		}
12345 	}
12346 	rc = bnxt_reserve_rings(bp, irq_re_init);
12347 	if (rc)
12348 		return rc;
12349 
12350 	rc = bnxt_alloc_mem(bp, irq_re_init);
12351 	if (rc) {
12352 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12353 		goto open_err_free_mem;
12354 	}
12355 
12356 	if (irq_re_init) {
12357 		bnxt_init_napi(bp);
12358 		rc = bnxt_request_irq(bp);
12359 		if (rc) {
12360 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
12361 			goto open_err_irq;
12362 		}
12363 	}
12364 
12365 	rc = bnxt_init_nic(bp, irq_re_init);
12366 	if (rc) {
12367 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12368 		goto open_err_irq;
12369 	}
12370 
12371 	bnxt_enable_napi(bp);
12372 	bnxt_debug_dev_init(bp);
12373 
12374 	if (link_re_init) {
12375 		mutex_lock(&bp->link_lock);
12376 		rc = bnxt_update_phy_setting(bp);
12377 		mutex_unlock(&bp->link_lock);
12378 		if (rc) {
12379 			netdev_warn(bp->dev, "failed to update phy settings\n");
12380 			if (BNXT_SINGLE_PF(bp)) {
12381 				bp->link_info.phy_retry = true;
12382 				bp->link_info.phy_retry_expires =
12383 					jiffies + 5 * HZ;
12384 			}
12385 		}
12386 	}
12387 
12388 	if (irq_re_init) {
12389 		udp_tunnel_nic_reset_ntf(bp->dev);
12390 		rc = bnxt_set_xps_mapping(bp);
12391 		if (rc)
12392 			netdev_warn(bp->dev, "failed to set xps mapping\n");
12393 	}
12394 
12395 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
12396 		if (!static_key_enabled(&bnxt_xdp_locking_key))
12397 			static_branch_enable(&bnxt_xdp_locking_key);
12398 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
12399 		static_branch_disable(&bnxt_xdp_locking_key);
12400 	}
12401 	set_bit(BNXT_STATE_OPEN, &bp->state);
12402 	bnxt_enable_int(bp);
12403 	/* Enable TX queues */
12404 	bnxt_tx_enable(bp);
12405 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12406 	/* Poll link status and check for SFP+ module status */
12407 	mutex_lock(&bp->link_lock);
12408 	bnxt_get_port_module_status(bp);
12409 	mutex_unlock(&bp->link_lock);
12410 
12411 	/* VF-reps may need to be re-opened after the PF is re-opened */
12412 	if (BNXT_PF(bp))
12413 		bnxt_vf_reps_open(bp);
12414 	if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
12415 		WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS);
12416 	bnxt_ptp_init_rtc(bp, true);
12417 	bnxt_ptp_cfg_tstamp_filters(bp);
12418 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12419 		bnxt_hwrm_realloc_rss_ctx_vnic(bp);
12420 	bnxt_cfg_usr_fltrs(bp);
12421 	return 0;
12422 
12423 open_err_irq:
12424 	bnxt_del_napi(bp);
12425 
12426 open_err_free_mem:
12427 	bnxt_free_skbs(bp);
12428 	bnxt_free_irq(bp);
12429 	bnxt_free_mem(bp, true);
12430 	return rc;
12431 }
12432 
12433 /* rtnl_lock held */
12434 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12435 {
12436 	int rc = 0;
12437 
12438 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
12439 		rc = -EIO;
12440 	if (!rc)
12441 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
12442 	if (rc) {
12443 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
12444 		dev_close(bp->dev);
12445 	}
12446 	return rc;
12447 }
12448 
12449 /* rtnl_lock held, open the NIC half way by allocating all resources, but
12450  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
12451  * self tests.
12452  */
12453 int bnxt_half_open_nic(struct bnxt *bp)
12454 {
12455 	int rc = 0;
12456 
12457 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12458 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
12459 		rc = -ENODEV;
12460 		goto half_open_err;
12461 	}
12462 
12463 	rc = bnxt_alloc_mem(bp, true);
12464 	if (rc) {
12465 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12466 		goto half_open_err;
12467 	}
12468 	bnxt_init_napi(bp);
12469 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12470 	rc = bnxt_init_nic(bp, true);
12471 	if (rc) {
12472 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12473 		bnxt_del_napi(bp);
12474 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12475 		goto half_open_err;
12476 	}
12477 	return 0;
12478 
12479 half_open_err:
12480 	bnxt_free_skbs(bp);
12481 	bnxt_free_mem(bp, true);
12482 	dev_close(bp->dev);
12483 	return rc;
12484 }
12485 
12486 /* rtnl_lock held, this call can only be made after a previous successful
12487  * call to bnxt_half_open_nic().
12488  */
12489 void bnxt_half_close_nic(struct bnxt *bp)
12490 {
12491 	bnxt_hwrm_resource_free(bp, false, true);
12492 	bnxt_del_napi(bp);
12493 	bnxt_free_skbs(bp);
12494 	bnxt_free_mem(bp, true);
12495 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12496 }
12497 
12498 void bnxt_reenable_sriov(struct bnxt *bp)
12499 {
12500 	if (BNXT_PF(bp)) {
12501 		struct bnxt_pf_info *pf = &bp->pf;
12502 		int n = pf->active_vfs;
12503 
12504 		if (n)
12505 			bnxt_cfg_hw_sriov(bp, &n, true);
12506 	}
12507 }
12508 
12509 static int bnxt_open(struct net_device *dev)
12510 {
12511 	struct bnxt *bp = netdev_priv(dev);
12512 	int rc;
12513 
12514 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12515 		rc = bnxt_reinit_after_abort(bp);
12516 		if (rc) {
12517 			if (rc == -EBUSY)
12518 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
12519 			else
12520 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
12521 			return -ENODEV;
12522 		}
12523 	}
12524 
12525 	rc = bnxt_hwrm_if_change(bp, true);
12526 	if (rc)
12527 		return rc;
12528 
12529 	rc = __bnxt_open_nic(bp, true, true);
12530 	if (rc) {
12531 		bnxt_hwrm_if_change(bp, false);
12532 	} else {
12533 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
12534 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12535 				bnxt_queue_sp_work(bp,
12536 						   BNXT_RESTART_ULP_SP_EVENT);
12537 		}
12538 	}
12539 
12540 	return rc;
12541 }
12542 
12543 static bool bnxt_drv_busy(struct bnxt *bp)
12544 {
12545 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
12546 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
12547 }
12548 
12549 static void bnxt_get_ring_stats(struct bnxt *bp,
12550 				struct rtnl_link_stats64 *stats);
12551 
12552 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
12553 			     bool link_re_init)
12554 {
12555 	/* Close the VF-reps before closing PF */
12556 	if (BNXT_PF(bp))
12557 		bnxt_vf_reps_close(bp);
12558 
12559 	/* Change device state to avoid TX queue wake up's */
12560 	bnxt_tx_disable(bp);
12561 
12562 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12563 	smp_mb__after_atomic();
12564 	while (bnxt_drv_busy(bp))
12565 		msleep(20);
12566 
12567 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12568 		bnxt_clear_rss_ctxs(bp);
12569 	/* Flush rings and disable interrupts */
12570 	bnxt_shutdown_nic(bp, irq_re_init);
12571 
12572 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
12573 
12574 	bnxt_debug_dev_exit(bp);
12575 	bnxt_disable_napi(bp);
12576 	del_timer_sync(&bp->timer);
12577 	bnxt_free_skbs(bp);
12578 
12579 	/* Save ring stats before shutdown */
12580 	if (bp->bnapi && irq_re_init) {
12581 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
12582 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
12583 	}
12584 	if (irq_re_init) {
12585 		bnxt_free_irq(bp);
12586 		bnxt_del_napi(bp);
12587 	}
12588 	bnxt_free_mem(bp, irq_re_init);
12589 }
12590 
12591 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12592 {
12593 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12594 		/* If we get here, it means firmware reset is in progress
12595 		 * while we are trying to close.  We can safely proceed with
12596 		 * the close because we are holding rtnl_lock().  Some firmware
12597 		 * messages may fail as we proceed to close.  We set the
12598 		 * ABORT_ERR flag here so that the FW reset thread will later
12599 		 * abort when it gets the rtnl_lock() and sees the flag.
12600 		 */
12601 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
12602 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12603 	}
12604 
12605 #ifdef CONFIG_BNXT_SRIOV
12606 	if (bp->sriov_cfg) {
12607 		int rc;
12608 
12609 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
12610 						      !bp->sriov_cfg,
12611 						      BNXT_SRIOV_CFG_WAIT_TMO);
12612 		if (!rc)
12613 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
12614 		else if (rc < 0)
12615 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
12616 	}
12617 #endif
12618 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
12619 }
12620 
12621 static int bnxt_close(struct net_device *dev)
12622 {
12623 	struct bnxt *bp = netdev_priv(dev);
12624 
12625 	bnxt_close_nic(bp, true, true);
12626 	bnxt_hwrm_shutdown_link(bp);
12627 	bnxt_hwrm_if_change(bp, false);
12628 	return 0;
12629 }
12630 
12631 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
12632 				   u16 *val)
12633 {
12634 	struct hwrm_port_phy_mdio_read_output *resp;
12635 	struct hwrm_port_phy_mdio_read_input *req;
12636 	int rc;
12637 
12638 	if (bp->hwrm_spec_code < 0x10a00)
12639 		return -EOPNOTSUPP;
12640 
12641 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
12642 	if (rc)
12643 		return rc;
12644 
12645 	req->port_id = cpu_to_le16(bp->pf.port_id);
12646 	req->phy_addr = phy_addr;
12647 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12648 	if (mdio_phy_id_is_c45(phy_addr)) {
12649 		req->cl45_mdio = 1;
12650 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12651 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12652 		req->reg_addr = cpu_to_le16(reg);
12653 	}
12654 
12655 	resp = hwrm_req_hold(bp, req);
12656 	rc = hwrm_req_send(bp, req);
12657 	if (!rc)
12658 		*val = le16_to_cpu(resp->reg_data);
12659 	hwrm_req_drop(bp, req);
12660 	return rc;
12661 }
12662 
12663 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
12664 				    u16 val)
12665 {
12666 	struct hwrm_port_phy_mdio_write_input *req;
12667 	int rc;
12668 
12669 	if (bp->hwrm_spec_code < 0x10a00)
12670 		return -EOPNOTSUPP;
12671 
12672 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
12673 	if (rc)
12674 		return rc;
12675 
12676 	req->port_id = cpu_to_le16(bp->pf.port_id);
12677 	req->phy_addr = phy_addr;
12678 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12679 	if (mdio_phy_id_is_c45(phy_addr)) {
12680 		req->cl45_mdio = 1;
12681 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12682 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12683 		req->reg_addr = cpu_to_le16(reg);
12684 	}
12685 	req->reg_data = cpu_to_le16(val);
12686 
12687 	return hwrm_req_send(bp, req);
12688 }
12689 
12690 /* rtnl_lock held */
12691 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12692 {
12693 	struct mii_ioctl_data *mdio = if_mii(ifr);
12694 	struct bnxt *bp = netdev_priv(dev);
12695 	int rc;
12696 
12697 	switch (cmd) {
12698 	case SIOCGMIIPHY:
12699 		mdio->phy_id = bp->link_info.phy_addr;
12700 
12701 		fallthrough;
12702 	case SIOCGMIIREG: {
12703 		u16 mii_regval = 0;
12704 
12705 		if (!netif_running(dev))
12706 			return -EAGAIN;
12707 
12708 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
12709 					     &mii_regval);
12710 		mdio->val_out = mii_regval;
12711 		return rc;
12712 	}
12713 
12714 	case SIOCSMIIREG:
12715 		if (!netif_running(dev))
12716 			return -EAGAIN;
12717 
12718 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
12719 						mdio->val_in);
12720 
12721 	case SIOCSHWTSTAMP:
12722 		return bnxt_hwtstamp_set(dev, ifr);
12723 
12724 	case SIOCGHWTSTAMP:
12725 		return bnxt_hwtstamp_get(dev, ifr);
12726 
12727 	default:
12728 		/* do nothing */
12729 		break;
12730 	}
12731 	return -EOPNOTSUPP;
12732 }
12733 
12734 static void bnxt_get_ring_stats(struct bnxt *bp,
12735 				struct rtnl_link_stats64 *stats)
12736 {
12737 	int i;
12738 
12739 	for (i = 0; i < bp->cp_nr_rings; i++) {
12740 		struct bnxt_napi *bnapi = bp->bnapi[i];
12741 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12742 		u64 *sw = cpr->stats.sw_stats;
12743 
12744 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
12745 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12746 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
12747 
12748 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
12749 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
12750 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
12751 
12752 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
12753 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
12754 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
12755 
12756 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
12757 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
12758 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
12759 
12760 		stats->rx_missed_errors +=
12761 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
12762 
12763 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12764 
12765 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
12766 
12767 		stats->rx_dropped +=
12768 			cpr->sw_stats->rx.rx_netpoll_discards +
12769 			cpr->sw_stats->rx.rx_oom_discards;
12770 	}
12771 }
12772 
12773 static void bnxt_add_prev_stats(struct bnxt *bp,
12774 				struct rtnl_link_stats64 *stats)
12775 {
12776 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
12777 
12778 	stats->rx_packets += prev_stats->rx_packets;
12779 	stats->tx_packets += prev_stats->tx_packets;
12780 	stats->rx_bytes += prev_stats->rx_bytes;
12781 	stats->tx_bytes += prev_stats->tx_bytes;
12782 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
12783 	stats->multicast += prev_stats->multicast;
12784 	stats->rx_dropped += prev_stats->rx_dropped;
12785 	stats->tx_dropped += prev_stats->tx_dropped;
12786 }
12787 
12788 static void
12789 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
12790 {
12791 	struct bnxt *bp = netdev_priv(dev);
12792 
12793 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
12794 	/* Make sure bnxt_close_nic() sees that we are reading stats before
12795 	 * we check the BNXT_STATE_OPEN flag.
12796 	 */
12797 	smp_mb__after_atomic();
12798 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12799 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12800 		*stats = bp->net_stats_prev;
12801 		return;
12802 	}
12803 
12804 	bnxt_get_ring_stats(bp, stats);
12805 	bnxt_add_prev_stats(bp, stats);
12806 
12807 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
12808 		u64 *rx = bp->port_stats.sw_stats;
12809 		u64 *tx = bp->port_stats.sw_stats +
12810 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
12811 
12812 		stats->rx_crc_errors =
12813 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
12814 		stats->rx_frame_errors =
12815 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
12816 		stats->rx_length_errors =
12817 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
12818 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
12819 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
12820 		stats->rx_errors =
12821 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
12822 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
12823 		stats->collisions =
12824 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
12825 		stats->tx_fifo_errors =
12826 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
12827 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
12828 	}
12829 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12830 }
12831 
12832 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
12833 					struct bnxt_total_ring_err_stats *stats,
12834 					struct bnxt_cp_ring_info *cpr)
12835 {
12836 	struct bnxt_sw_stats *sw_stats = cpr->sw_stats;
12837 	u64 *hw_stats = cpr->stats.sw_stats;
12838 
12839 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
12840 	stats->rx_total_resets += sw_stats->rx.rx_resets;
12841 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
12842 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
12843 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
12844 	stats->rx_total_ring_discards +=
12845 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
12846 	stats->tx_total_resets += sw_stats->tx.tx_resets;
12847 	stats->tx_total_ring_discards +=
12848 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
12849 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
12850 }
12851 
12852 void bnxt_get_ring_err_stats(struct bnxt *bp,
12853 			     struct bnxt_total_ring_err_stats *stats)
12854 {
12855 	int i;
12856 
12857 	for (i = 0; i < bp->cp_nr_rings; i++)
12858 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
12859 }
12860 
12861 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
12862 {
12863 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12864 	struct net_device *dev = bp->dev;
12865 	struct netdev_hw_addr *ha;
12866 	u8 *haddr;
12867 	int mc_count = 0;
12868 	bool update = false;
12869 	int off = 0;
12870 
12871 	netdev_for_each_mc_addr(ha, dev) {
12872 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
12873 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12874 			vnic->mc_list_count = 0;
12875 			return false;
12876 		}
12877 		haddr = ha->addr;
12878 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
12879 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
12880 			update = true;
12881 		}
12882 		off += ETH_ALEN;
12883 		mc_count++;
12884 	}
12885 	if (mc_count)
12886 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12887 
12888 	if (mc_count != vnic->mc_list_count) {
12889 		vnic->mc_list_count = mc_count;
12890 		update = true;
12891 	}
12892 	return update;
12893 }
12894 
12895 static bool bnxt_uc_list_updated(struct bnxt *bp)
12896 {
12897 	struct net_device *dev = bp->dev;
12898 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12899 	struct netdev_hw_addr *ha;
12900 	int off = 0;
12901 
12902 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12903 		return true;
12904 
12905 	netdev_for_each_uc_addr(ha, dev) {
12906 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12907 			return true;
12908 
12909 		off += ETH_ALEN;
12910 	}
12911 	return false;
12912 }
12913 
12914 static void bnxt_set_rx_mode(struct net_device *dev)
12915 {
12916 	struct bnxt *bp = netdev_priv(dev);
12917 	struct bnxt_vnic_info *vnic;
12918 	bool mc_update = false;
12919 	bool uc_update;
12920 	u32 mask;
12921 
12922 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12923 		return;
12924 
12925 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12926 	mask = vnic->rx_mask;
12927 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12928 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12929 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12930 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12931 
12932 	if (dev->flags & IFF_PROMISC)
12933 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12934 
12935 	uc_update = bnxt_uc_list_updated(bp);
12936 
12937 	if (dev->flags & IFF_BROADCAST)
12938 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12939 	if (dev->flags & IFF_ALLMULTI) {
12940 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12941 		vnic->mc_list_count = 0;
12942 	} else if (dev->flags & IFF_MULTICAST) {
12943 		mc_update = bnxt_mc_list_updated(bp, &mask);
12944 	}
12945 
12946 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12947 		vnic->rx_mask = mask;
12948 
12949 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12950 	}
12951 }
12952 
12953 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12954 {
12955 	struct net_device *dev = bp->dev;
12956 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12957 	struct netdev_hw_addr *ha;
12958 	int i, off = 0, rc;
12959 	bool uc_update;
12960 
12961 	netif_addr_lock_bh(dev);
12962 	uc_update = bnxt_uc_list_updated(bp);
12963 	netif_addr_unlock_bh(dev);
12964 
12965 	if (!uc_update)
12966 		goto skip_uc;
12967 
12968 	for (i = 1; i < vnic->uc_filter_count; i++) {
12969 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12970 
12971 		bnxt_hwrm_l2_filter_free(bp, fltr);
12972 		bnxt_del_l2_filter(bp, fltr);
12973 	}
12974 
12975 	vnic->uc_filter_count = 1;
12976 
12977 	netif_addr_lock_bh(dev);
12978 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12979 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12980 	} else {
12981 		netdev_for_each_uc_addr(ha, dev) {
12982 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12983 			off += ETH_ALEN;
12984 			vnic->uc_filter_count++;
12985 		}
12986 	}
12987 	netif_addr_unlock_bh(dev);
12988 
12989 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12990 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12991 		if (rc) {
12992 			if (BNXT_VF(bp) && rc == -ENODEV) {
12993 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12994 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12995 				else
12996 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12997 				rc = 0;
12998 			} else {
12999 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
13000 			}
13001 			vnic->uc_filter_count = i;
13002 			return rc;
13003 		}
13004 	}
13005 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
13006 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
13007 
13008 skip_uc:
13009 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
13010 	    !bnxt_promisc_ok(bp))
13011 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
13012 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
13013 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
13014 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
13015 			    rc);
13016 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
13017 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
13018 		vnic->mc_list_count = 0;
13019 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
13020 	}
13021 	if (rc)
13022 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
13023 			   rc);
13024 
13025 	return rc;
13026 }
13027 
13028 static bool bnxt_can_reserve_rings(struct bnxt *bp)
13029 {
13030 #ifdef CONFIG_BNXT_SRIOV
13031 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
13032 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13033 
13034 		/* No minimum rings were provisioned by the PF.  Don't
13035 		 * reserve rings by default when device is down.
13036 		 */
13037 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
13038 			return true;
13039 
13040 		if (!netif_running(bp->dev))
13041 			return false;
13042 	}
13043 #endif
13044 	return true;
13045 }
13046 
13047 /* If the chip and firmware supports RFS */
13048 static bool bnxt_rfs_supported(struct bnxt *bp)
13049 {
13050 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
13051 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
13052 			return true;
13053 		return false;
13054 	}
13055 	/* 212 firmware is broken for aRFS */
13056 	if (BNXT_FW_MAJ(bp) == 212)
13057 		return false;
13058 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
13059 		return true;
13060 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
13061 		return true;
13062 	return false;
13063 }
13064 
13065 /* If runtime conditions support RFS */
13066 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx)
13067 {
13068 	struct bnxt_hw_rings hwr = {0};
13069 	int max_vnics, max_rss_ctxs;
13070 
13071 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13072 	    !BNXT_SUPPORTS_NTUPLE_VNIC(bp))
13073 		return bnxt_rfs_supported(bp);
13074 
13075 	if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
13076 		return false;
13077 
13078 	hwr.grp = bp->rx_nr_rings;
13079 	hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings);
13080 	if (new_rss_ctx)
13081 		hwr.vnic++;
13082 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
13083 	max_vnics = bnxt_get_max_func_vnics(bp);
13084 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
13085 
13086 	if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) {
13087 		if (bp->rx_nr_rings > 1)
13088 			netdev_warn(bp->dev,
13089 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
13090 				    min(max_rss_ctxs - 1, max_vnics - 1));
13091 		return false;
13092 	}
13093 
13094 	if (!BNXT_NEW_RM(bp))
13095 		return true;
13096 
13097 	/* Do not reduce VNIC and RSS ctx reservations.  There is a FW
13098 	 * issue that will mess up the default VNIC if we reduce the
13099 	 * reservations.
13100 	 */
13101 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
13102 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
13103 		return true;
13104 
13105 	bnxt_hwrm_reserve_rings(bp, &hwr);
13106 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
13107 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
13108 		return true;
13109 
13110 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
13111 	hwr.vnic = 1;
13112 	hwr.rss_ctx = 0;
13113 	bnxt_hwrm_reserve_rings(bp, &hwr);
13114 	return false;
13115 }
13116 
13117 static netdev_features_t bnxt_fix_features(struct net_device *dev,
13118 					   netdev_features_t features)
13119 {
13120 	struct bnxt *bp = netdev_priv(dev);
13121 	netdev_features_t vlan_features;
13122 
13123 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false))
13124 		features &= ~NETIF_F_NTUPLE;
13125 
13126 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
13127 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13128 
13129 	if (!(features & NETIF_F_GRO))
13130 		features &= ~NETIF_F_GRO_HW;
13131 
13132 	if (features & NETIF_F_GRO_HW)
13133 		features &= ~NETIF_F_LRO;
13134 
13135 	/* Both CTAG and STAG VLAN acceleration on the RX side have to be
13136 	 * turned on or off together.
13137 	 */
13138 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
13139 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
13140 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13141 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
13142 		else if (vlan_features)
13143 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13144 	}
13145 #ifdef CONFIG_BNXT_SRIOV
13146 	if (BNXT_VF(bp) && bp->vf.vlan)
13147 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
13148 #endif
13149 	return features;
13150 }
13151 
13152 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init,
13153 				bool link_re_init, u32 flags, bool update_tpa)
13154 {
13155 	bnxt_close_nic(bp, irq_re_init, link_re_init);
13156 	bp->flags = flags;
13157 	if (update_tpa)
13158 		bnxt_set_ring_params(bp);
13159 	return bnxt_open_nic(bp, irq_re_init, link_re_init);
13160 }
13161 
13162 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
13163 {
13164 	bool update_tpa = false, update_ntuple = false;
13165 	struct bnxt *bp = netdev_priv(dev);
13166 	u32 flags = bp->flags;
13167 	u32 changes;
13168 	int rc = 0;
13169 	bool re_init = false;
13170 
13171 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
13172 	if (features & NETIF_F_GRO_HW)
13173 		flags |= BNXT_FLAG_GRO;
13174 	else if (features & NETIF_F_LRO)
13175 		flags |= BNXT_FLAG_LRO;
13176 
13177 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
13178 		flags &= ~BNXT_FLAG_TPA;
13179 
13180 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13181 		flags |= BNXT_FLAG_STRIP_VLAN;
13182 
13183 	if (features & NETIF_F_NTUPLE)
13184 		flags |= BNXT_FLAG_RFS;
13185 	else
13186 		bnxt_clear_usr_fltrs(bp, true);
13187 
13188 	changes = flags ^ bp->flags;
13189 	if (changes & BNXT_FLAG_TPA) {
13190 		update_tpa = true;
13191 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
13192 		    (flags & BNXT_FLAG_TPA) == 0 ||
13193 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13194 			re_init = true;
13195 	}
13196 
13197 	if (changes & ~BNXT_FLAG_TPA)
13198 		re_init = true;
13199 
13200 	if (changes & BNXT_FLAG_RFS)
13201 		update_ntuple = true;
13202 
13203 	if (flags != bp->flags) {
13204 		u32 old_flags = bp->flags;
13205 
13206 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13207 			bp->flags = flags;
13208 			if (update_tpa)
13209 				bnxt_set_ring_params(bp);
13210 			return rc;
13211 		}
13212 
13213 		if (update_ntuple)
13214 			return bnxt_reinit_features(bp, true, false, flags, update_tpa);
13215 
13216 		if (re_init)
13217 			return bnxt_reinit_features(bp, false, false, flags, update_tpa);
13218 
13219 		if (update_tpa) {
13220 			bp->flags = flags;
13221 			rc = bnxt_set_tpa(bp,
13222 					  (flags & BNXT_FLAG_TPA) ?
13223 					  true : false);
13224 			if (rc)
13225 				bp->flags = old_flags;
13226 		}
13227 	}
13228 	return rc;
13229 }
13230 
13231 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
13232 			      u8 **nextp)
13233 {
13234 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
13235 	struct hop_jumbo_hdr *jhdr;
13236 	int hdr_count = 0;
13237 	u8 *nexthdr;
13238 	int start;
13239 
13240 	/* Check that there are at most 2 IPv6 extension headers, no
13241 	 * fragment header, and each is <= 64 bytes.
13242 	 */
13243 	start = nw_off + sizeof(*ip6h);
13244 	nexthdr = &ip6h->nexthdr;
13245 	while (ipv6_ext_hdr(*nexthdr)) {
13246 		struct ipv6_opt_hdr *hp;
13247 		int hdrlen;
13248 
13249 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
13250 		    *nexthdr == NEXTHDR_FRAGMENT)
13251 			return false;
13252 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
13253 					  skb_headlen(skb), NULL);
13254 		if (!hp)
13255 			return false;
13256 		if (*nexthdr == NEXTHDR_AUTH)
13257 			hdrlen = ipv6_authlen(hp);
13258 		else
13259 			hdrlen = ipv6_optlen(hp);
13260 
13261 		if (hdrlen > 64)
13262 			return false;
13263 
13264 		/* The ext header may be a hop-by-hop header inserted for
13265 		 * big TCP purposes. This will be removed before sending
13266 		 * from NIC, so do not count it.
13267 		 */
13268 		if (*nexthdr == NEXTHDR_HOP) {
13269 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
13270 				goto increment_hdr;
13271 
13272 			jhdr = (struct hop_jumbo_hdr *)hp;
13273 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
13274 			    jhdr->nexthdr != IPPROTO_TCP)
13275 				goto increment_hdr;
13276 
13277 			goto next_hdr;
13278 		}
13279 increment_hdr:
13280 		hdr_count++;
13281 next_hdr:
13282 		nexthdr = &hp->nexthdr;
13283 		start += hdrlen;
13284 	}
13285 	if (nextp) {
13286 		/* Caller will check inner protocol */
13287 		if (skb->encapsulation) {
13288 			*nextp = nexthdr;
13289 			return true;
13290 		}
13291 		*nextp = NULL;
13292 	}
13293 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
13294 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
13295 }
13296 
13297 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
13298 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
13299 {
13300 	struct udphdr *uh = udp_hdr(skb);
13301 	__be16 udp_port = uh->dest;
13302 
13303 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
13304 	    udp_port != bp->vxlan_gpe_port)
13305 		return false;
13306 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
13307 		struct ethhdr *eh = inner_eth_hdr(skb);
13308 
13309 		switch (eh->h_proto) {
13310 		case htons(ETH_P_IP):
13311 			return true;
13312 		case htons(ETH_P_IPV6):
13313 			return bnxt_exthdr_check(bp, skb,
13314 						 skb_inner_network_offset(skb),
13315 						 NULL);
13316 		}
13317 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
13318 		return true;
13319 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
13320 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13321 					 NULL);
13322 	}
13323 	return false;
13324 }
13325 
13326 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
13327 {
13328 	switch (l4_proto) {
13329 	case IPPROTO_UDP:
13330 		return bnxt_udp_tunl_check(bp, skb);
13331 	case IPPROTO_IPIP:
13332 		return true;
13333 	case IPPROTO_GRE: {
13334 		switch (skb->inner_protocol) {
13335 		default:
13336 			return false;
13337 		case htons(ETH_P_IP):
13338 			return true;
13339 		case htons(ETH_P_IPV6):
13340 			fallthrough;
13341 		}
13342 	}
13343 	case IPPROTO_IPV6:
13344 		/* Check ext headers of inner ipv6 */
13345 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13346 					 NULL);
13347 	}
13348 	return false;
13349 }
13350 
13351 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
13352 					     struct net_device *dev,
13353 					     netdev_features_t features)
13354 {
13355 	struct bnxt *bp = netdev_priv(dev);
13356 	u8 *l4_proto;
13357 
13358 	features = vlan_features_check(skb, features);
13359 	switch (vlan_get_protocol(skb)) {
13360 	case htons(ETH_P_IP):
13361 		if (!skb->encapsulation)
13362 			return features;
13363 		l4_proto = &ip_hdr(skb)->protocol;
13364 		if (bnxt_tunl_check(bp, skb, *l4_proto))
13365 			return features;
13366 		break;
13367 	case htons(ETH_P_IPV6):
13368 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
13369 				       &l4_proto))
13370 			break;
13371 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
13372 			return features;
13373 		break;
13374 	}
13375 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13376 }
13377 
13378 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
13379 			 u32 *reg_buf)
13380 {
13381 	struct hwrm_dbg_read_direct_output *resp;
13382 	struct hwrm_dbg_read_direct_input *req;
13383 	__le32 *dbg_reg_buf;
13384 	dma_addr_t mapping;
13385 	int rc, i;
13386 
13387 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
13388 	if (rc)
13389 		return rc;
13390 
13391 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
13392 					 &mapping);
13393 	if (!dbg_reg_buf) {
13394 		rc = -ENOMEM;
13395 		goto dbg_rd_reg_exit;
13396 	}
13397 
13398 	req->host_dest_addr = cpu_to_le64(mapping);
13399 
13400 	resp = hwrm_req_hold(bp, req);
13401 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
13402 	req->read_len32 = cpu_to_le32(num_words);
13403 
13404 	rc = hwrm_req_send(bp, req);
13405 	if (rc || resp->error_code) {
13406 		rc = -EIO;
13407 		goto dbg_rd_reg_exit;
13408 	}
13409 	for (i = 0; i < num_words; i++)
13410 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
13411 
13412 dbg_rd_reg_exit:
13413 	hwrm_req_drop(bp, req);
13414 	return rc;
13415 }
13416 
13417 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
13418 				       u32 ring_id, u32 *prod, u32 *cons)
13419 {
13420 	struct hwrm_dbg_ring_info_get_output *resp;
13421 	struct hwrm_dbg_ring_info_get_input *req;
13422 	int rc;
13423 
13424 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
13425 	if (rc)
13426 		return rc;
13427 
13428 	req->ring_type = ring_type;
13429 	req->fw_ring_id = cpu_to_le32(ring_id);
13430 	resp = hwrm_req_hold(bp, req);
13431 	rc = hwrm_req_send(bp, req);
13432 	if (!rc) {
13433 		*prod = le32_to_cpu(resp->producer_index);
13434 		*cons = le32_to_cpu(resp->consumer_index);
13435 	}
13436 	hwrm_req_drop(bp, req);
13437 	return rc;
13438 }
13439 
13440 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
13441 {
13442 	struct bnxt_tx_ring_info *txr;
13443 	int i = bnapi->index, j;
13444 
13445 	bnxt_for_each_napi_tx(j, bnapi, txr)
13446 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
13447 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
13448 			    txr->tx_cons);
13449 }
13450 
13451 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
13452 {
13453 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
13454 	int i = bnapi->index;
13455 
13456 	if (!rxr)
13457 		return;
13458 
13459 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
13460 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
13461 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
13462 		    rxr->rx_sw_agg_prod);
13463 }
13464 
13465 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
13466 {
13467 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
13468 	int i = bnapi->index;
13469 
13470 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
13471 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
13472 }
13473 
13474 static void bnxt_dbg_dump_states(struct bnxt *bp)
13475 {
13476 	int i;
13477 	struct bnxt_napi *bnapi;
13478 
13479 	for (i = 0; i < bp->cp_nr_rings; i++) {
13480 		bnapi = bp->bnapi[i];
13481 		if (netif_msg_drv(bp)) {
13482 			bnxt_dump_tx_sw_state(bnapi);
13483 			bnxt_dump_rx_sw_state(bnapi);
13484 			bnxt_dump_cp_sw_state(bnapi);
13485 		}
13486 	}
13487 }
13488 
13489 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
13490 {
13491 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
13492 	struct hwrm_ring_reset_input *req;
13493 	struct bnxt_napi *bnapi = rxr->bnapi;
13494 	struct bnxt_cp_ring_info *cpr;
13495 	u16 cp_ring_id;
13496 	int rc;
13497 
13498 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
13499 	if (rc)
13500 		return rc;
13501 
13502 	cpr = &bnapi->cp_ring;
13503 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
13504 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
13505 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
13506 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
13507 	return hwrm_req_send_silent(bp, req);
13508 }
13509 
13510 static void bnxt_reset_task(struct bnxt *bp, bool silent)
13511 {
13512 	if (!silent)
13513 		bnxt_dbg_dump_states(bp);
13514 	if (netif_running(bp->dev)) {
13515 		bnxt_close_nic(bp, !silent, false);
13516 		bnxt_open_nic(bp, !silent, false);
13517 	}
13518 }
13519 
13520 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
13521 {
13522 	struct bnxt *bp = netdev_priv(dev);
13523 
13524 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
13525 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
13526 }
13527 
13528 static void bnxt_fw_health_check(struct bnxt *bp)
13529 {
13530 	struct bnxt_fw_health *fw_health = bp->fw_health;
13531 	struct pci_dev *pdev = bp->pdev;
13532 	u32 val;
13533 
13534 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13535 		return;
13536 
13537 	/* Make sure it is enabled before checking the tmr_counter. */
13538 	smp_rmb();
13539 	if (fw_health->tmr_counter) {
13540 		fw_health->tmr_counter--;
13541 		return;
13542 	}
13543 
13544 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13545 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
13546 		fw_health->arrests++;
13547 		goto fw_reset;
13548 	}
13549 
13550 	fw_health->last_fw_heartbeat = val;
13551 
13552 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13553 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
13554 		fw_health->discoveries++;
13555 		goto fw_reset;
13556 	}
13557 
13558 	fw_health->tmr_counter = fw_health->tmr_multiplier;
13559 	return;
13560 
13561 fw_reset:
13562 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
13563 }
13564 
13565 static void bnxt_timer(struct timer_list *t)
13566 {
13567 	struct bnxt *bp = from_timer(bp, t, timer);
13568 	struct net_device *dev = bp->dev;
13569 
13570 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
13571 		return;
13572 
13573 	if (atomic_read(&bp->intr_sem) != 0)
13574 		goto bnxt_restart_timer;
13575 
13576 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
13577 		bnxt_fw_health_check(bp);
13578 
13579 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
13580 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
13581 
13582 	if (bnxt_tc_flower_enabled(bp))
13583 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
13584 
13585 #ifdef CONFIG_RFS_ACCEL
13586 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
13587 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13588 #endif /*CONFIG_RFS_ACCEL*/
13589 
13590 	if (bp->link_info.phy_retry) {
13591 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
13592 			bp->link_info.phy_retry = false;
13593 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
13594 		} else {
13595 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
13596 		}
13597 	}
13598 
13599 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
13600 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
13601 
13602 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
13603 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
13604 
13605 bnxt_restart_timer:
13606 	mod_timer(&bp->timer, jiffies + bp->current_interval);
13607 }
13608 
13609 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
13610 {
13611 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
13612 	 * set.  If the device is being closed, bnxt_close() may be holding
13613 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
13614 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
13615 	 */
13616 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13617 	rtnl_lock();
13618 }
13619 
13620 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
13621 {
13622 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13623 	rtnl_unlock();
13624 }
13625 
13626 /* Only called from bnxt_sp_task() */
13627 static void bnxt_reset(struct bnxt *bp, bool silent)
13628 {
13629 	bnxt_rtnl_lock_sp(bp);
13630 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
13631 		bnxt_reset_task(bp, silent);
13632 	bnxt_rtnl_unlock_sp(bp);
13633 }
13634 
13635 /* Only called from bnxt_sp_task() */
13636 static void bnxt_rx_ring_reset(struct bnxt *bp)
13637 {
13638 	int i;
13639 
13640 	bnxt_rtnl_lock_sp(bp);
13641 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13642 		bnxt_rtnl_unlock_sp(bp);
13643 		return;
13644 	}
13645 	/* Disable and flush TPA before resetting the RX ring */
13646 	if (bp->flags & BNXT_FLAG_TPA)
13647 		bnxt_set_tpa(bp, false);
13648 	for (i = 0; i < bp->rx_nr_rings; i++) {
13649 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
13650 		struct bnxt_cp_ring_info *cpr;
13651 		int rc;
13652 
13653 		if (!rxr->bnapi->in_reset)
13654 			continue;
13655 
13656 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
13657 		if (rc) {
13658 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
13659 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
13660 			else
13661 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
13662 					    rc);
13663 			bnxt_reset_task(bp, true);
13664 			break;
13665 		}
13666 		bnxt_free_one_rx_ring_skbs(bp, i);
13667 		rxr->rx_prod = 0;
13668 		rxr->rx_agg_prod = 0;
13669 		rxr->rx_sw_agg_prod = 0;
13670 		rxr->rx_next_cons = 0;
13671 		rxr->bnapi->in_reset = false;
13672 		bnxt_alloc_one_rx_ring(bp, i);
13673 		cpr = &rxr->bnapi->cp_ring;
13674 		cpr->sw_stats->rx.rx_resets++;
13675 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
13676 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
13677 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
13678 	}
13679 	if (bp->flags & BNXT_FLAG_TPA)
13680 		bnxt_set_tpa(bp, true);
13681 	bnxt_rtnl_unlock_sp(bp);
13682 }
13683 
13684 static void bnxt_fw_fatal_close(struct bnxt *bp)
13685 {
13686 	bnxt_tx_disable(bp);
13687 	bnxt_disable_napi(bp);
13688 	bnxt_disable_int_sync(bp);
13689 	bnxt_free_irq(bp);
13690 	bnxt_clear_int_mode(bp);
13691 	pci_disable_device(bp->pdev);
13692 }
13693 
13694 static void bnxt_fw_reset_close(struct bnxt *bp)
13695 {
13696 	/* When firmware is in fatal state, quiesce device and disable
13697 	 * bus master to prevent any potential bad DMAs before freeing
13698 	 * kernel memory.
13699 	 */
13700 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
13701 		u16 val = 0;
13702 
13703 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13704 		if (val == 0xffff)
13705 			bp->fw_reset_min_dsecs = 0;
13706 		bnxt_fw_fatal_close(bp);
13707 	}
13708 	__bnxt_close_nic(bp, true, false);
13709 	bnxt_vf_reps_free(bp);
13710 	bnxt_clear_int_mode(bp);
13711 	bnxt_hwrm_func_drv_unrgtr(bp);
13712 	if (pci_is_enabled(bp->pdev))
13713 		pci_disable_device(bp->pdev);
13714 	bnxt_free_ctx_mem(bp, false);
13715 }
13716 
13717 static bool is_bnxt_fw_ok(struct bnxt *bp)
13718 {
13719 	struct bnxt_fw_health *fw_health = bp->fw_health;
13720 	bool no_heartbeat = false, has_reset = false;
13721 	u32 val;
13722 
13723 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13724 	if (val == fw_health->last_fw_heartbeat)
13725 		no_heartbeat = true;
13726 
13727 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13728 	if (val != fw_health->last_fw_reset_cnt)
13729 		has_reset = true;
13730 
13731 	if (!no_heartbeat && has_reset)
13732 		return true;
13733 
13734 	return false;
13735 }
13736 
13737 /* rtnl_lock is acquired before calling this function */
13738 static void bnxt_force_fw_reset(struct bnxt *bp)
13739 {
13740 	struct bnxt_fw_health *fw_health = bp->fw_health;
13741 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13742 	u32 wait_dsecs;
13743 
13744 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
13745 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13746 		return;
13747 
13748 	/* we have to serialize with bnxt_refclk_read()*/
13749 	if (ptp) {
13750 		unsigned long flags;
13751 
13752 		write_seqlock_irqsave(&ptp->ptp_lock, flags);
13753 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13754 		write_sequnlock_irqrestore(&ptp->ptp_lock, flags);
13755 	} else {
13756 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13757 	}
13758 	bnxt_fw_reset_close(bp);
13759 	wait_dsecs = fw_health->master_func_wait_dsecs;
13760 	if (fw_health->primary) {
13761 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
13762 			wait_dsecs = 0;
13763 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13764 	} else {
13765 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
13766 		wait_dsecs = fw_health->normal_func_wait_dsecs;
13767 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13768 	}
13769 
13770 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
13771 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
13772 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13773 }
13774 
13775 void bnxt_fw_exception(struct bnxt *bp)
13776 {
13777 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
13778 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13779 	bnxt_ulp_stop(bp);
13780 	bnxt_rtnl_lock_sp(bp);
13781 	bnxt_force_fw_reset(bp);
13782 	bnxt_rtnl_unlock_sp(bp);
13783 }
13784 
13785 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
13786  * < 0 on error.
13787  */
13788 static int bnxt_get_registered_vfs(struct bnxt *bp)
13789 {
13790 #ifdef CONFIG_BNXT_SRIOV
13791 	int rc;
13792 
13793 	if (!BNXT_PF(bp))
13794 		return 0;
13795 
13796 	rc = bnxt_hwrm_func_qcfg(bp);
13797 	if (rc) {
13798 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
13799 		return rc;
13800 	}
13801 	if (bp->pf.registered_vfs)
13802 		return bp->pf.registered_vfs;
13803 	if (bp->sriov_cfg)
13804 		return 1;
13805 #endif
13806 	return 0;
13807 }
13808 
13809 void bnxt_fw_reset(struct bnxt *bp)
13810 {
13811 	bnxt_ulp_stop(bp);
13812 	bnxt_rtnl_lock_sp(bp);
13813 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
13814 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13815 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13816 		int n = 0, tmo;
13817 
13818 		/* we have to serialize with bnxt_refclk_read()*/
13819 		if (ptp) {
13820 			unsigned long flags;
13821 
13822 			write_seqlock_irqsave(&ptp->ptp_lock, flags);
13823 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13824 			write_sequnlock_irqrestore(&ptp->ptp_lock, flags);
13825 		} else {
13826 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13827 		}
13828 		if (bp->pf.active_vfs &&
13829 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
13830 			n = bnxt_get_registered_vfs(bp);
13831 		if (n < 0) {
13832 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
13833 				   n);
13834 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13835 			dev_close(bp->dev);
13836 			goto fw_reset_exit;
13837 		} else if (n > 0) {
13838 			u16 vf_tmo_dsecs = n * 10;
13839 
13840 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
13841 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
13842 			bp->fw_reset_state =
13843 				BNXT_FW_RESET_STATE_POLL_VF;
13844 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13845 			goto fw_reset_exit;
13846 		}
13847 		bnxt_fw_reset_close(bp);
13848 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13849 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13850 			tmo = HZ / 10;
13851 		} else {
13852 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13853 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13854 		}
13855 		bnxt_queue_fw_reset_work(bp, tmo);
13856 	}
13857 fw_reset_exit:
13858 	bnxt_rtnl_unlock_sp(bp);
13859 }
13860 
13861 static void bnxt_chk_missed_irq(struct bnxt *bp)
13862 {
13863 	int i;
13864 
13865 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13866 		return;
13867 
13868 	for (i = 0; i < bp->cp_nr_rings; i++) {
13869 		struct bnxt_napi *bnapi = bp->bnapi[i];
13870 		struct bnxt_cp_ring_info *cpr;
13871 		u32 fw_ring_id;
13872 		int j;
13873 
13874 		if (!bnapi)
13875 			continue;
13876 
13877 		cpr = &bnapi->cp_ring;
13878 		for (j = 0; j < cpr->cp_ring_count; j++) {
13879 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
13880 			u32 val[2];
13881 
13882 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
13883 				continue;
13884 
13885 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
13886 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
13887 				continue;
13888 			}
13889 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
13890 			bnxt_dbg_hwrm_ring_info_get(bp,
13891 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
13892 				fw_ring_id, &val[0], &val[1]);
13893 			cpr->sw_stats->cmn.missed_irqs++;
13894 		}
13895 	}
13896 }
13897 
13898 static void bnxt_cfg_ntp_filters(struct bnxt *);
13899 
13900 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
13901 {
13902 	struct bnxt_link_info *link_info = &bp->link_info;
13903 
13904 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
13905 		link_info->autoneg = BNXT_AUTONEG_SPEED;
13906 		if (bp->hwrm_spec_code >= 0x10201) {
13907 			if (link_info->auto_pause_setting &
13908 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
13909 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13910 		} else {
13911 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13912 		}
13913 		bnxt_set_auto_speed(link_info);
13914 	} else {
13915 		bnxt_set_force_speed(link_info);
13916 		link_info->req_duplex = link_info->duplex_setting;
13917 	}
13918 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
13919 		link_info->req_flow_ctrl =
13920 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
13921 	else
13922 		link_info->req_flow_ctrl = link_info->force_pause_setting;
13923 }
13924 
13925 static void bnxt_fw_echo_reply(struct bnxt *bp)
13926 {
13927 	struct bnxt_fw_health *fw_health = bp->fw_health;
13928 	struct hwrm_func_echo_response_input *req;
13929 	int rc;
13930 
13931 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13932 	if (rc)
13933 		return;
13934 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13935 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13936 	hwrm_req_send(bp, req);
13937 }
13938 
13939 static void bnxt_ulp_restart(struct bnxt *bp)
13940 {
13941 	bnxt_ulp_stop(bp);
13942 	bnxt_ulp_start(bp, 0);
13943 }
13944 
13945 static void bnxt_sp_task(struct work_struct *work)
13946 {
13947 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13948 
13949 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13950 	smp_mb__after_atomic();
13951 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13952 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13953 		return;
13954 	}
13955 
13956 	if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) {
13957 		bnxt_ulp_restart(bp);
13958 		bnxt_reenable_sriov(bp);
13959 	}
13960 
13961 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13962 		bnxt_cfg_rx_mode(bp);
13963 
13964 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13965 		bnxt_cfg_ntp_filters(bp);
13966 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13967 		bnxt_hwrm_exec_fwd_req(bp);
13968 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13969 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13970 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13971 		bnxt_hwrm_port_qstats(bp, 0);
13972 		bnxt_hwrm_port_qstats_ext(bp, 0);
13973 		bnxt_accumulate_all_stats(bp);
13974 	}
13975 
13976 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13977 		int rc;
13978 
13979 		mutex_lock(&bp->link_lock);
13980 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13981 				       &bp->sp_event))
13982 			bnxt_hwrm_phy_qcaps(bp);
13983 
13984 		rc = bnxt_update_link(bp, true);
13985 		if (rc)
13986 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13987 				   rc);
13988 
13989 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13990 				       &bp->sp_event))
13991 			bnxt_init_ethtool_link_settings(bp);
13992 		mutex_unlock(&bp->link_lock);
13993 	}
13994 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13995 		int rc;
13996 
13997 		mutex_lock(&bp->link_lock);
13998 		rc = bnxt_update_phy_setting(bp);
13999 		mutex_unlock(&bp->link_lock);
14000 		if (rc) {
14001 			netdev_warn(bp->dev, "update phy settings retry failed\n");
14002 		} else {
14003 			bp->link_info.phy_retry = false;
14004 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
14005 		}
14006 	}
14007 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
14008 		mutex_lock(&bp->link_lock);
14009 		bnxt_get_port_module_status(bp);
14010 		mutex_unlock(&bp->link_lock);
14011 	}
14012 
14013 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
14014 		bnxt_tc_flow_stats_work(bp);
14015 
14016 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
14017 		bnxt_chk_missed_irq(bp);
14018 
14019 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
14020 		bnxt_fw_echo_reply(bp);
14021 
14022 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
14023 		bnxt_hwmon_notify_event(bp);
14024 
14025 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
14026 	 * must be the last functions to be called before exiting.
14027 	 */
14028 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
14029 		bnxt_reset(bp, false);
14030 
14031 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
14032 		bnxt_reset(bp, true);
14033 
14034 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
14035 		bnxt_rx_ring_reset(bp);
14036 
14037 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
14038 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
14039 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
14040 			bnxt_devlink_health_fw_report(bp);
14041 		else
14042 			bnxt_fw_reset(bp);
14043 	}
14044 
14045 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
14046 		if (!is_bnxt_fw_ok(bp))
14047 			bnxt_devlink_health_fw_report(bp);
14048 	}
14049 
14050 	smp_mb__before_atomic();
14051 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
14052 }
14053 
14054 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14055 				int *max_cp);
14056 
14057 /* Under rtnl_lock */
14058 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
14059 		     int tx_xdp)
14060 {
14061 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
14062 	struct bnxt_hw_rings hwr = {0};
14063 	int rx_rings = rx;
14064 	int rc;
14065 
14066 	if (tcs)
14067 		tx_sets = tcs;
14068 
14069 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
14070 
14071 	if (max_rx < rx_rings)
14072 		return -ENOMEM;
14073 
14074 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
14075 		rx_rings <<= 1;
14076 
14077 	hwr.rx = rx_rings;
14078 	hwr.tx = tx * tx_sets + tx_xdp;
14079 	if (max_tx < hwr.tx)
14080 		return -ENOMEM;
14081 
14082 	hwr.vnic = bnxt_get_total_vnics(bp, rx);
14083 
14084 	tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp);
14085 	hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
14086 	if (max_cp < hwr.cp)
14087 		return -ENOMEM;
14088 	hwr.stat = hwr.cp;
14089 	if (BNXT_NEW_RM(bp)) {
14090 		hwr.cp += bnxt_get_ulp_msix_num_in_use(bp);
14091 		hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp);
14092 		hwr.grp = rx;
14093 		hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
14094 	}
14095 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
14096 		hwr.cp_p5 = hwr.tx + rx;
14097 	rc = bnxt_hwrm_check_rings(bp, &hwr);
14098 	if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) {
14099 		if (!bnxt_ulp_registered(bp->edev)) {
14100 			hwr.cp += bnxt_get_ulp_msix_num(bp);
14101 			hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp));
14102 		}
14103 		if (hwr.cp > bp->total_irqs) {
14104 			int total_msix = bnxt_change_msix(bp, hwr.cp);
14105 
14106 			if (total_msix < hwr.cp) {
14107 				netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n",
14108 					    hwr.cp, total_msix);
14109 				rc = -ENOSPC;
14110 			}
14111 		}
14112 	}
14113 	return rc;
14114 }
14115 
14116 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
14117 {
14118 	if (bp->bar2) {
14119 		pci_iounmap(pdev, bp->bar2);
14120 		bp->bar2 = NULL;
14121 	}
14122 
14123 	if (bp->bar1) {
14124 		pci_iounmap(pdev, bp->bar1);
14125 		bp->bar1 = NULL;
14126 	}
14127 
14128 	if (bp->bar0) {
14129 		pci_iounmap(pdev, bp->bar0);
14130 		bp->bar0 = NULL;
14131 	}
14132 }
14133 
14134 static void bnxt_cleanup_pci(struct bnxt *bp)
14135 {
14136 	bnxt_unmap_bars(bp, bp->pdev);
14137 	pci_release_regions(bp->pdev);
14138 	if (pci_is_enabled(bp->pdev))
14139 		pci_disable_device(bp->pdev);
14140 }
14141 
14142 static void bnxt_init_dflt_coal(struct bnxt *bp)
14143 {
14144 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
14145 	struct bnxt_coal *coal;
14146 	u16 flags = 0;
14147 
14148 	if (coal_cap->cmpl_params &
14149 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
14150 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
14151 
14152 	/* Tick values in micro seconds.
14153 	 * 1 coal_buf x bufs_per_record = 1 completion record.
14154 	 */
14155 	coal = &bp->rx_coal;
14156 	coal->coal_ticks = 10;
14157 	coal->coal_bufs = 30;
14158 	coal->coal_ticks_irq = 1;
14159 	coal->coal_bufs_irq = 2;
14160 	coal->idle_thresh = 50;
14161 	coal->bufs_per_record = 2;
14162 	coal->budget = 64;		/* NAPI budget */
14163 	coal->flags = flags;
14164 
14165 	coal = &bp->tx_coal;
14166 	coal->coal_ticks = 28;
14167 	coal->coal_bufs = 30;
14168 	coal->coal_ticks_irq = 2;
14169 	coal->coal_bufs_irq = 2;
14170 	coal->bufs_per_record = 1;
14171 	coal->flags = flags;
14172 
14173 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
14174 }
14175 
14176 /* FW that pre-reserves 1 VNIC per function */
14177 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
14178 {
14179 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
14180 
14181 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
14182 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
14183 		return true;
14184 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
14185 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
14186 		return true;
14187 	return false;
14188 }
14189 
14190 static int bnxt_fw_init_one_p1(struct bnxt *bp)
14191 {
14192 	int rc;
14193 
14194 	bp->fw_cap = 0;
14195 	rc = bnxt_hwrm_ver_get(bp);
14196 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
14197 	 * so wait before continuing with recovery.
14198 	 */
14199 	if (rc)
14200 		msleep(100);
14201 	bnxt_try_map_fw_health_reg(bp);
14202 	if (rc) {
14203 		rc = bnxt_try_recover_fw(bp);
14204 		if (rc)
14205 			return rc;
14206 		rc = bnxt_hwrm_ver_get(bp);
14207 		if (rc)
14208 			return rc;
14209 	}
14210 
14211 	bnxt_nvm_cfg_ver_get(bp);
14212 
14213 	rc = bnxt_hwrm_func_reset(bp);
14214 	if (rc)
14215 		return -ENODEV;
14216 
14217 	bnxt_hwrm_fw_set_time(bp);
14218 	return 0;
14219 }
14220 
14221 static int bnxt_fw_init_one_p2(struct bnxt *bp)
14222 {
14223 	int rc;
14224 
14225 	/* Get the MAX capabilities for this function */
14226 	rc = bnxt_hwrm_func_qcaps(bp);
14227 	if (rc) {
14228 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
14229 			   rc);
14230 		return -ENODEV;
14231 	}
14232 
14233 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
14234 	if (rc)
14235 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
14236 			    rc);
14237 
14238 	if (bnxt_alloc_fw_health(bp)) {
14239 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
14240 	} else {
14241 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
14242 		if (rc)
14243 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
14244 				    rc);
14245 	}
14246 
14247 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
14248 	if (rc)
14249 		return -ENODEV;
14250 
14251 	rc = bnxt_alloc_crash_dump_mem(bp);
14252 	if (rc)
14253 		netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n",
14254 			    rc);
14255 	if (!rc) {
14256 		rc = bnxt_hwrm_crash_dump_mem_cfg(bp);
14257 		if (rc) {
14258 			bnxt_free_crash_dump_mem(bp);
14259 			netdev_warn(bp->dev,
14260 				    "hwrm crash dump mem failure rc: %d\n", rc);
14261 		}
14262 	}
14263 
14264 	if (bnxt_fw_pre_resv_vnics(bp))
14265 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
14266 
14267 	bnxt_hwrm_func_qcfg(bp);
14268 	bnxt_hwrm_vnic_qcaps(bp);
14269 	bnxt_hwrm_port_led_qcaps(bp);
14270 	bnxt_ethtool_init(bp);
14271 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
14272 		__bnxt_hwrm_ptp_qcfg(bp);
14273 	bnxt_dcb_init(bp);
14274 	bnxt_hwmon_init(bp);
14275 	return 0;
14276 }
14277 
14278 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
14279 {
14280 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
14281 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
14282 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
14283 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
14284 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
14285 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
14286 		bp->rss_hash_delta = bp->rss_hash_cfg;
14287 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
14288 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
14289 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
14290 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
14291 	}
14292 }
14293 
14294 static void bnxt_set_dflt_rfs(struct bnxt *bp)
14295 {
14296 	struct net_device *dev = bp->dev;
14297 
14298 	dev->hw_features &= ~NETIF_F_NTUPLE;
14299 	dev->features &= ~NETIF_F_NTUPLE;
14300 	bp->flags &= ~BNXT_FLAG_RFS;
14301 	if (bnxt_rfs_supported(bp)) {
14302 		dev->hw_features |= NETIF_F_NTUPLE;
14303 		if (bnxt_rfs_capable(bp, false)) {
14304 			bp->flags |= BNXT_FLAG_RFS;
14305 			dev->features |= NETIF_F_NTUPLE;
14306 		}
14307 	}
14308 }
14309 
14310 static void bnxt_fw_init_one_p3(struct bnxt *bp)
14311 {
14312 	struct pci_dev *pdev = bp->pdev;
14313 
14314 	bnxt_set_dflt_rss_hash_type(bp);
14315 	bnxt_set_dflt_rfs(bp);
14316 
14317 	bnxt_get_wol_settings(bp);
14318 	if (bp->flags & BNXT_FLAG_WOL_CAP)
14319 		device_set_wakeup_enable(&pdev->dev, bp->wol);
14320 	else
14321 		device_set_wakeup_capable(&pdev->dev, false);
14322 
14323 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
14324 	bnxt_hwrm_coal_params_qcaps(bp);
14325 }
14326 
14327 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
14328 
14329 int bnxt_fw_init_one(struct bnxt *bp)
14330 {
14331 	int rc;
14332 
14333 	rc = bnxt_fw_init_one_p1(bp);
14334 	if (rc) {
14335 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
14336 		return rc;
14337 	}
14338 	rc = bnxt_fw_init_one_p2(bp);
14339 	if (rc) {
14340 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
14341 		return rc;
14342 	}
14343 	rc = bnxt_probe_phy(bp, false);
14344 	if (rc)
14345 		return rc;
14346 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
14347 	if (rc)
14348 		return rc;
14349 
14350 	bnxt_fw_init_one_p3(bp);
14351 	return 0;
14352 }
14353 
14354 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
14355 {
14356 	struct bnxt_fw_health *fw_health = bp->fw_health;
14357 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
14358 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
14359 	u32 reg_type, reg_off, delay_msecs;
14360 
14361 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
14362 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
14363 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
14364 	switch (reg_type) {
14365 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
14366 		pci_write_config_dword(bp->pdev, reg_off, val);
14367 		break;
14368 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
14369 		writel(reg_off & BNXT_GRC_BASE_MASK,
14370 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
14371 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
14372 		fallthrough;
14373 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
14374 		writel(val, bp->bar0 + reg_off);
14375 		break;
14376 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
14377 		writel(val, bp->bar1 + reg_off);
14378 		break;
14379 	}
14380 	if (delay_msecs) {
14381 		pci_read_config_dword(bp->pdev, 0, &val);
14382 		msleep(delay_msecs);
14383 	}
14384 }
14385 
14386 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
14387 {
14388 	struct hwrm_func_qcfg_output *resp;
14389 	struct hwrm_func_qcfg_input *req;
14390 	bool result = true; /* firmware will enforce if unknown */
14391 
14392 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
14393 		return result;
14394 
14395 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
14396 		return result;
14397 
14398 	req->fid = cpu_to_le16(0xffff);
14399 	resp = hwrm_req_hold(bp, req);
14400 	if (!hwrm_req_send(bp, req))
14401 		result = !!(le16_to_cpu(resp->flags) &
14402 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
14403 	hwrm_req_drop(bp, req);
14404 	return result;
14405 }
14406 
14407 static void bnxt_reset_all(struct bnxt *bp)
14408 {
14409 	struct bnxt_fw_health *fw_health = bp->fw_health;
14410 	int i, rc;
14411 
14412 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14413 		bnxt_fw_reset_via_optee(bp);
14414 		bp->fw_reset_timestamp = jiffies;
14415 		return;
14416 	}
14417 
14418 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
14419 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
14420 			bnxt_fw_reset_writel(bp, i);
14421 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
14422 		struct hwrm_fw_reset_input *req;
14423 
14424 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
14425 		if (!rc) {
14426 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
14427 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
14428 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
14429 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
14430 			rc = hwrm_req_send(bp, req);
14431 		}
14432 		if (rc != -ENODEV)
14433 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
14434 	}
14435 	bp->fw_reset_timestamp = jiffies;
14436 }
14437 
14438 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
14439 {
14440 	return time_after(jiffies, bp->fw_reset_timestamp +
14441 			  (bp->fw_reset_max_dsecs * HZ / 10));
14442 }
14443 
14444 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
14445 {
14446 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14447 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
14448 		bnxt_dl_health_fw_status_update(bp, false);
14449 	bp->fw_reset_state = 0;
14450 	dev_close(bp->dev);
14451 }
14452 
14453 static void bnxt_fw_reset_task(struct work_struct *work)
14454 {
14455 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
14456 	int rc = 0;
14457 
14458 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
14459 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
14460 		return;
14461 	}
14462 
14463 	switch (bp->fw_reset_state) {
14464 	case BNXT_FW_RESET_STATE_POLL_VF: {
14465 		int n = bnxt_get_registered_vfs(bp);
14466 		int tmo;
14467 
14468 		if (n < 0) {
14469 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
14470 				   n, jiffies_to_msecs(jiffies -
14471 				   bp->fw_reset_timestamp));
14472 			goto fw_reset_abort;
14473 		} else if (n > 0) {
14474 			if (bnxt_fw_reset_timeout(bp)) {
14475 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14476 				bp->fw_reset_state = 0;
14477 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
14478 					   n);
14479 				goto ulp_start;
14480 			}
14481 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14482 			return;
14483 		}
14484 		bp->fw_reset_timestamp = jiffies;
14485 		rtnl_lock();
14486 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
14487 			bnxt_fw_reset_abort(bp, rc);
14488 			rtnl_unlock();
14489 			goto ulp_start;
14490 		}
14491 		bnxt_fw_reset_close(bp);
14492 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14493 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
14494 			tmo = HZ / 10;
14495 		} else {
14496 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14497 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
14498 		}
14499 		rtnl_unlock();
14500 		bnxt_queue_fw_reset_work(bp, tmo);
14501 		return;
14502 	}
14503 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
14504 		u32 val;
14505 
14506 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14507 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
14508 		    !bnxt_fw_reset_timeout(bp)) {
14509 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14510 			return;
14511 		}
14512 
14513 		if (!bp->fw_health->primary) {
14514 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
14515 
14516 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14517 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
14518 			return;
14519 		}
14520 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
14521 	}
14522 		fallthrough;
14523 	case BNXT_FW_RESET_STATE_RESET_FW:
14524 		bnxt_reset_all(bp);
14525 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14526 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
14527 		return;
14528 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
14529 		bnxt_inv_fw_health_reg(bp);
14530 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
14531 		    !bp->fw_reset_min_dsecs) {
14532 			u16 val;
14533 
14534 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
14535 			if (val == 0xffff) {
14536 				if (bnxt_fw_reset_timeout(bp)) {
14537 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
14538 					rc = -ETIMEDOUT;
14539 					goto fw_reset_abort;
14540 				}
14541 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
14542 				return;
14543 			}
14544 		}
14545 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
14546 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
14547 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
14548 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
14549 			bnxt_dl_remote_reload(bp);
14550 		if (pci_enable_device(bp->pdev)) {
14551 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
14552 			rc = -ENODEV;
14553 			goto fw_reset_abort;
14554 		}
14555 		pci_set_master(bp->pdev);
14556 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
14557 		fallthrough;
14558 	case BNXT_FW_RESET_STATE_POLL_FW:
14559 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
14560 		rc = bnxt_hwrm_poll(bp);
14561 		if (rc) {
14562 			if (bnxt_fw_reset_timeout(bp)) {
14563 				netdev_err(bp->dev, "Firmware reset aborted\n");
14564 				goto fw_reset_abort_status;
14565 			}
14566 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14567 			return;
14568 		}
14569 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
14570 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
14571 		fallthrough;
14572 	case BNXT_FW_RESET_STATE_OPENING:
14573 		while (!rtnl_trylock()) {
14574 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14575 			return;
14576 		}
14577 		rc = bnxt_open(bp->dev);
14578 		if (rc) {
14579 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
14580 			bnxt_fw_reset_abort(bp, rc);
14581 			rtnl_unlock();
14582 			goto ulp_start;
14583 		}
14584 
14585 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
14586 		    bp->fw_health->enabled) {
14587 			bp->fw_health->last_fw_reset_cnt =
14588 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
14589 		}
14590 		bp->fw_reset_state = 0;
14591 		/* Make sure fw_reset_state is 0 before clearing the flag */
14592 		smp_mb__before_atomic();
14593 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14594 		bnxt_ptp_reapply_pps(bp);
14595 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
14596 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
14597 			bnxt_dl_health_fw_recovery_done(bp);
14598 			bnxt_dl_health_fw_status_update(bp, true);
14599 		}
14600 		rtnl_unlock();
14601 		bnxt_ulp_start(bp, 0);
14602 		bnxt_reenable_sriov(bp);
14603 		rtnl_lock();
14604 		bnxt_vf_reps_alloc(bp);
14605 		bnxt_vf_reps_open(bp);
14606 		rtnl_unlock();
14607 		break;
14608 	}
14609 	return;
14610 
14611 fw_reset_abort_status:
14612 	if (bp->fw_health->status_reliable ||
14613 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
14614 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14615 
14616 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
14617 	}
14618 fw_reset_abort:
14619 	rtnl_lock();
14620 	bnxt_fw_reset_abort(bp, rc);
14621 	rtnl_unlock();
14622 ulp_start:
14623 	bnxt_ulp_start(bp, rc);
14624 }
14625 
14626 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
14627 {
14628 	int rc;
14629 	struct bnxt *bp = netdev_priv(dev);
14630 
14631 	SET_NETDEV_DEV(dev, &pdev->dev);
14632 
14633 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
14634 	rc = pci_enable_device(pdev);
14635 	if (rc) {
14636 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
14637 		goto init_err;
14638 	}
14639 
14640 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
14641 		dev_err(&pdev->dev,
14642 			"Cannot find PCI device base address, aborting\n");
14643 		rc = -ENODEV;
14644 		goto init_err_disable;
14645 	}
14646 
14647 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
14648 	if (rc) {
14649 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
14650 		goto init_err_disable;
14651 	}
14652 
14653 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
14654 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
14655 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
14656 		rc = -EIO;
14657 		goto init_err_release;
14658 	}
14659 
14660 	pci_set_master(pdev);
14661 
14662 	bp->dev = dev;
14663 	bp->pdev = pdev;
14664 
14665 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
14666 	 * determines the BAR size.
14667 	 */
14668 	bp->bar0 = pci_ioremap_bar(pdev, 0);
14669 	if (!bp->bar0) {
14670 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
14671 		rc = -ENOMEM;
14672 		goto init_err_release;
14673 	}
14674 
14675 	bp->bar2 = pci_ioremap_bar(pdev, 4);
14676 	if (!bp->bar2) {
14677 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
14678 		rc = -ENOMEM;
14679 		goto init_err_release;
14680 	}
14681 
14682 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
14683 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
14684 
14685 	spin_lock_init(&bp->ntp_fltr_lock);
14686 #if BITS_PER_LONG == 32
14687 	spin_lock_init(&bp->db_lock);
14688 #endif
14689 
14690 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
14691 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
14692 
14693 	timer_setup(&bp->timer, bnxt_timer, 0);
14694 	bp->current_interval = BNXT_TIMER_INTERVAL;
14695 
14696 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
14697 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
14698 
14699 	clear_bit(BNXT_STATE_OPEN, &bp->state);
14700 	return 0;
14701 
14702 init_err_release:
14703 	bnxt_unmap_bars(bp, pdev);
14704 	pci_release_regions(pdev);
14705 
14706 init_err_disable:
14707 	pci_disable_device(pdev);
14708 
14709 init_err:
14710 	return rc;
14711 }
14712 
14713 /* rtnl_lock held */
14714 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
14715 {
14716 	struct sockaddr *addr = p;
14717 	struct bnxt *bp = netdev_priv(dev);
14718 	int rc = 0;
14719 
14720 	if (!is_valid_ether_addr(addr->sa_data))
14721 		return -EADDRNOTAVAIL;
14722 
14723 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
14724 		return 0;
14725 
14726 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
14727 	if (rc)
14728 		return rc;
14729 
14730 	eth_hw_addr_set(dev, addr->sa_data);
14731 	bnxt_clear_usr_fltrs(bp, true);
14732 	if (netif_running(dev)) {
14733 		bnxt_close_nic(bp, false, false);
14734 		rc = bnxt_open_nic(bp, false, false);
14735 	}
14736 
14737 	return rc;
14738 }
14739 
14740 /* rtnl_lock held */
14741 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
14742 {
14743 	struct bnxt *bp = netdev_priv(dev);
14744 
14745 	if (netif_running(dev))
14746 		bnxt_close_nic(bp, true, false);
14747 
14748 	WRITE_ONCE(dev->mtu, new_mtu);
14749 
14750 	/* MTU change may change the AGG ring settings if an XDP multi-buffer
14751 	 * program is attached.  We need to set the AGG rings settings and
14752 	 * rx_skb_func accordingly.
14753 	 */
14754 	if (READ_ONCE(bp->xdp_prog))
14755 		bnxt_set_rx_skb_mode(bp, true);
14756 
14757 	bnxt_set_ring_params(bp);
14758 
14759 	if (netif_running(dev))
14760 		return bnxt_open_nic(bp, true, false);
14761 
14762 	return 0;
14763 }
14764 
14765 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
14766 {
14767 	struct bnxt *bp = netdev_priv(dev);
14768 	bool sh = false;
14769 	int rc, tx_cp;
14770 
14771 	if (tc > bp->max_tc) {
14772 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
14773 			   tc, bp->max_tc);
14774 		return -EINVAL;
14775 	}
14776 
14777 	if (bp->num_tc == tc)
14778 		return 0;
14779 
14780 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
14781 		sh = true;
14782 
14783 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
14784 			      sh, tc, bp->tx_nr_rings_xdp);
14785 	if (rc)
14786 		return rc;
14787 
14788 	/* Needs to close the device and do hw resource re-allocations */
14789 	if (netif_running(bp->dev))
14790 		bnxt_close_nic(bp, true, false);
14791 
14792 	if (tc) {
14793 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
14794 		netdev_set_num_tc(dev, tc);
14795 		bp->num_tc = tc;
14796 	} else {
14797 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14798 		netdev_reset_tc(dev);
14799 		bp->num_tc = 0;
14800 	}
14801 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
14802 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
14803 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
14804 			       tx_cp + bp->rx_nr_rings;
14805 
14806 	if (netif_running(bp->dev))
14807 		return bnxt_open_nic(bp, true, false);
14808 
14809 	return 0;
14810 }
14811 
14812 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
14813 				  void *cb_priv)
14814 {
14815 	struct bnxt *bp = cb_priv;
14816 
14817 	if (!bnxt_tc_flower_enabled(bp) ||
14818 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
14819 		return -EOPNOTSUPP;
14820 
14821 	switch (type) {
14822 	case TC_SETUP_CLSFLOWER:
14823 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
14824 	default:
14825 		return -EOPNOTSUPP;
14826 	}
14827 }
14828 
14829 LIST_HEAD(bnxt_block_cb_list);
14830 
14831 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
14832 			 void *type_data)
14833 {
14834 	struct bnxt *bp = netdev_priv(dev);
14835 
14836 	switch (type) {
14837 	case TC_SETUP_BLOCK:
14838 		return flow_block_cb_setup_simple(type_data,
14839 						  &bnxt_block_cb_list,
14840 						  bnxt_setup_tc_block_cb,
14841 						  bp, bp, true);
14842 	case TC_SETUP_QDISC_MQPRIO: {
14843 		struct tc_mqprio_qopt *mqprio = type_data;
14844 
14845 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
14846 
14847 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
14848 	}
14849 	default:
14850 		return -EOPNOTSUPP;
14851 	}
14852 }
14853 
14854 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
14855 			    const struct sk_buff *skb)
14856 {
14857 	struct bnxt_vnic_info *vnic;
14858 
14859 	if (skb)
14860 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
14861 
14862 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
14863 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
14864 }
14865 
14866 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
14867 			   u32 idx)
14868 {
14869 	struct hlist_head *head;
14870 	int bit_id;
14871 
14872 	spin_lock_bh(&bp->ntp_fltr_lock);
14873 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0);
14874 	if (bit_id < 0) {
14875 		spin_unlock_bh(&bp->ntp_fltr_lock);
14876 		return -ENOMEM;
14877 	}
14878 
14879 	fltr->base.sw_id = (u16)bit_id;
14880 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
14881 	fltr->base.flags |= BNXT_ACT_RING_DST;
14882 	head = &bp->ntp_fltr_hash_tbl[idx];
14883 	hlist_add_head_rcu(&fltr->base.hash, head);
14884 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
14885 	bnxt_insert_usr_fltr(bp, &fltr->base);
14886 	bp->ntp_fltr_count++;
14887 	spin_unlock_bh(&bp->ntp_fltr_lock);
14888 	return 0;
14889 }
14890 
14891 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
14892 			    struct bnxt_ntuple_filter *f2)
14893 {
14894 	struct bnxt_flow_masks *masks1 = &f1->fmasks;
14895 	struct bnxt_flow_masks *masks2 = &f2->fmasks;
14896 	struct flow_keys *keys1 = &f1->fkeys;
14897 	struct flow_keys *keys2 = &f2->fkeys;
14898 
14899 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
14900 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
14901 		return false;
14902 
14903 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
14904 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
14905 		    masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src ||
14906 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst ||
14907 		    masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst)
14908 			return false;
14909 	} else {
14910 		if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src,
14911 				     &keys2->addrs.v6addrs.src) ||
14912 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.src,
14913 				     &masks2->addrs.v6addrs.src) ||
14914 		    !ipv6_addr_equal(&keys1->addrs.v6addrs.dst,
14915 				     &keys2->addrs.v6addrs.dst) ||
14916 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.dst,
14917 				     &masks2->addrs.v6addrs.dst))
14918 			return false;
14919 	}
14920 
14921 	return keys1->ports.src == keys2->ports.src &&
14922 	       masks1->ports.src == masks2->ports.src &&
14923 	       keys1->ports.dst == keys2->ports.dst &&
14924 	       masks1->ports.dst == masks2->ports.dst &&
14925 	       keys1->control.flags == keys2->control.flags &&
14926 	       f1->l2_fltr == f2->l2_fltr;
14927 }
14928 
14929 struct bnxt_ntuple_filter *
14930 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
14931 				struct bnxt_ntuple_filter *fltr, u32 idx)
14932 {
14933 	struct bnxt_ntuple_filter *f;
14934 	struct hlist_head *head;
14935 
14936 	head = &bp->ntp_fltr_hash_tbl[idx];
14937 	hlist_for_each_entry_rcu(f, head, base.hash) {
14938 		if (bnxt_fltr_match(f, fltr))
14939 			return f;
14940 	}
14941 	return NULL;
14942 }
14943 
14944 #ifdef CONFIG_RFS_ACCEL
14945 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
14946 			      u16 rxq_index, u32 flow_id)
14947 {
14948 	struct bnxt *bp = netdev_priv(dev);
14949 	struct bnxt_ntuple_filter *fltr, *new_fltr;
14950 	struct flow_keys *fkeys;
14951 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
14952 	struct bnxt_l2_filter *l2_fltr;
14953 	int rc = 0, idx;
14954 	u32 flags;
14955 
14956 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
14957 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
14958 		atomic_inc(&l2_fltr->refcnt);
14959 	} else {
14960 		struct bnxt_l2_key key;
14961 
14962 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
14963 		key.vlan = 0;
14964 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
14965 		if (!l2_fltr)
14966 			return -EINVAL;
14967 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
14968 			bnxt_del_l2_filter(bp, l2_fltr);
14969 			return -EINVAL;
14970 		}
14971 	}
14972 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
14973 	if (!new_fltr) {
14974 		bnxt_del_l2_filter(bp, l2_fltr);
14975 		return -ENOMEM;
14976 	}
14977 
14978 	fkeys = &new_fltr->fkeys;
14979 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
14980 		rc = -EPROTONOSUPPORT;
14981 		goto err_free;
14982 	}
14983 
14984 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
14985 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14986 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14987 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14988 		rc = -EPROTONOSUPPORT;
14989 		goto err_free;
14990 	}
14991 	new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL;
14992 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
14993 		if (bp->hwrm_spec_code < 0x10601) {
14994 			rc = -EPROTONOSUPPORT;
14995 			goto err_free;
14996 		}
14997 		new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL;
14998 	}
14999 	flags = fkeys->control.flags;
15000 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
15001 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
15002 		rc = -EPROTONOSUPPORT;
15003 		goto err_free;
15004 	}
15005 	new_fltr->l2_fltr = l2_fltr;
15006 
15007 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
15008 	rcu_read_lock();
15009 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
15010 	if (fltr) {
15011 		rc = fltr->base.sw_id;
15012 		rcu_read_unlock();
15013 		goto err_free;
15014 	}
15015 	rcu_read_unlock();
15016 
15017 	new_fltr->flow_id = flow_id;
15018 	new_fltr->base.rxq = rxq_index;
15019 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
15020 	if (!rc) {
15021 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
15022 		return new_fltr->base.sw_id;
15023 	}
15024 
15025 err_free:
15026 	bnxt_del_l2_filter(bp, l2_fltr);
15027 	kfree(new_fltr);
15028 	return rc;
15029 }
15030 #endif
15031 
15032 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
15033 {
15034 	spin_lock_bh(&bp->ntp_fltr_lock);
15035 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
15036 		spin_unlock_bh(&bp->ntp_fltr_lock);
15037 		return;
15038 	}
15039 	hlist_del_rcu(&fltr->base.hash);
15040 	bnxt_del_one_usr_fltr(bp, &fltr->base);
15041 	bp->ntp_fltr_count--;
15042 	spin_unlock_bh(&bp->ntp_fltr_lock);
15043 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
15044 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
15045 	kfree_rcu(fltr, base.rcu);
15046 }
15047 
15048 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
15049 {
15050 #ifdef CONFIG_RFS_ACCEL
15051 	int i;
15052 
15053 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
15054 		struct hlist_head *head;
15055 		struct hlist_node *tmp;
15056 		struct bnxt_ntuple_filter *fltr;
15057 		int rc;
15058 
15059 		head = &bp->ntp_fltr_hash_tbl[i];
15060 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
15061 			bool del = false;
15062 
15063 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
15064 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
15065 					continue;
15066 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
15067 							fltr->flow_id,
15068 							fltr->base.sw_id)) {
15069 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
15070 									 fltr);
15071 					del = true;
15072 				}
15073 			} else {
15074 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
15075 								       fltr);
15076 				if (rc)
15077 					del = true;
15078 				else
15079 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
15080 			}
15081 
15082 			if (del)
15083 				bnxt_del_ntp_filter(bp, fltr);
15084 		}
15085 	}
15086 #endif
15087 }
15088 
15089 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
15090 				    unsigned int entry, struct udp_tunnel_info *ti)
15091 {
15092 	struct bnxt *bp = netdev_priv(netdev);
15093 	unsigned int cmd;
15094 
15095 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
15096 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
15097 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
15098 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
15099 	else
15100 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
15101 
15102 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
15103 }
15104 
15105 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
15106 				      unsigned int entry, struct udp_tunnel_info *ti)
15107 {
15108 	struct bnxt *bp = netdev_priv(netdev);
15109 	unsigned int cmd;
15110 
15111 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
15112 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
15113 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
15114 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
15115 	else
15116 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
15117 
15118 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
15119 }
15120 
15121 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
15122 	.set_port	= bnxt_udp_tunnel_set_port,
15123 	.unset_port	= bnxt_udp_tunnel_unset_port,
15124 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
15125 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
15126 	.tables		= {
15127 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
15128 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
15129 	},
15130 }, bnxt_udp_tunnels_p7 = {
15131 	.set_port	= bnxt_udp_tunnel_set_port,
15132 	.unset_port	= bnxt_udp_tunnel_unset_port,
15133 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
15134 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
15135 	.tables		= {
15136 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
15137 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
15138 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
15139 	},
15140 };
15141 
15142 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
15143 			       struct net_device *dev, u32 filter_mask,
15144 			       int nlflags)
15145 {
15146 	struct bnxt *bp = netdev_priv(dev);
15147 
15148 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
15149 				       nlflags, filter_mask, NULL);
15150 }
15151 
15152 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
15153 			       u16 flags, struct netlink_ext_ack *extack)
15154 {
15155 	struct bnxt *bp = netdev_priv(dev);
15156 	struct nlattr *attr, *br_spec;
15157 	int rem, rc = 0;
15158 
15159 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
15160 		return -EOPNOTSUPP;
15161 
15162 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
15163 	if (!br_spec)
15164 		return -EINVAL;
15165 
15166 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
15167 		u16 mode;
15168 
15169 		mode = nla_get_u16(attr);
15170 		if (mode == bp->br_mode)
15171 			break;
15172 
15173 		rc = bnxt_hwrm_set_br_mode(bp, mode);
15174 		if (!rc)
15175 			bp->br_mode = mode;
15176 		break;
15177 	}
15178 	return rc;
15179 }
15180 
15181 int bnxt_get_port_parent_id(struct net_device *dev,
15182 			    struct netdev_phys_item_id *ppid)
15183 {
15184 	struct bnxt *bp = netdev_priv(dev);
15185 
15186 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
15187 		return -EOPNOTSUPP;
15188 
15189 	/* The PF and it's VF-reps only support the switchdev framework */
15190 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
15191 		return -EOPNOTSUPP;
15192 
15193 	ppid->id_len = sizeof(bp->dsn);
15194 	memcpy(ppid->id, bp->dsn, ppid->id_len);
15195 
15196 	return 0;
15197 }
15198 
15199 static const struct net_device_ops bnxt_netdev_ops = {
15200 	.ndo_open		= bnxt_open,
15201 	.ndo_start_xmit		= bnxt_start_xmit,
15202 	.ndo_stop		= bnxt_close,
15203 	.ndo_get_stats64	= bnxt_get_stats64,
15204 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
15205 	.ndo_eth_ioctl		= bnxt_ioctl,
15206 	.ndo_validate_addr	= eth_validate_addr,
15207 	.ndo_set_mac_address	= bnxt_change_mac_addr,
15208 	.ndo_change_mtu		= bnxt_change_mtu,
15209 	.ndo_fix_features	= bnxt_fix_features,
15210 	.ndo_set_features	= bnxt_set_features,
15211 	.ndo_features_check	= bnxt_features_check,
15212 	.ndo_tx_timeout		= bnxt_tx_timeout,
15213 #ifdef CONFIG_BNXT_SRIOV
15214 	.ndo_get_vf_config	= bnxt_get_vf_config,
15215 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
15216 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
15217 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
15218 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
15219 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
15220 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
15221 #endif
15222 	.ndo_setup_tc           = bnxt_setup_tc,
15223 #ifdef CONFIG_RFS_ACCEL
15224 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
15225 #endif
15226 	.ndo_bpf		= bnxt_xdp,
15227 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
15228 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
15229 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
15230 };
15231 
15232 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i,
15233 				    struct netdev_queue_stats_rx *stats)
15234 {
15235 	struct bnxt *bp = netdev_priv(dev);
15236 	struct bnxt_cp_ring_info *cpr;
15237 	u64 *sw;
15238 
15239 	cpr = &bp->bnapi[i]->cp_ring;
15240 	sw = cpr->stats.sw_stats;
15241 
15242 	stats->packets = 0;
15243 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
15244 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
15245 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
15246 
15247 	stats->bytes = 0;
15248 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
15249 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
15250 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
15251 
15252 	stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards;
15253 }
15254 
15255 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i,
15256 				    struct netdev_queue_stats_tx *stats)
15257 {
15258 	struct bnxt *bp = netdev_priv(dev);
15259 	struct bnxt_napi *bnapi;
15260 	u64 *sw;
15261 
15262 	bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi;
15263 	sw = bnapi->cp_ring.stats.sw_stats;
15264 
15265 	stats->packets = 0;
15266 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
15267 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
15268 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
15269 
15270 	stats->bytes = 0;
15271 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
15272 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
15273 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
15274 }
15275 
15276 static void bnxt_get_base_stats(struct net_device *dev,
15277 				struct netdev_queue_stats_rx *rx,
15278 				struct netdev_queue_stats_tx *tx)
15279 {
15280 	struct bnxt *bp = netdev_priv(dev);
15281 
15282 	rx->packets = bp->net_stats_prev.rx_packets;
15283 	rx->bytes = bp->net_stats_prev.rx_bytes;
15284 	rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards;
15285 
15286 	tx->packets = bp->net_stats_prev.tx_packets;
15287 	tx->bytes = bp->net_stats_prev.tx_bytes;
15288 }
15289 
15290 static const struct netdev_stat_ops bnxt_stat_ops = {
15291 	.get_queue_stats_rx	= bnxt_get_queue_stats_rx,
15292 	.get_queue_stats_tx	= bnxt_get_queue_stats_tx,
15293 	.get_base_stats		= bnxt_get_base_stats,
15294 };
15295 
15296 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
15297 {
15298 	u16 mem_size;
15299 
15300 	rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
15301 	mem_size = rxr->rx_agg_bmap_size / 8;
15302 	rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
15303 	if (!rxr->rx_agg_bmap)
15304 		return -ENOMEM;
15305 
15306 	return 0;
15307 }
15308 
15309 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx)
15310 {
15311 	struct bnxt_rx_ring_info *rxr, *clone;
15312 	struct bnxt *bp = netdev_priv(dev);
15313 	struct bnxt_ring_struct *ring;
15314 	int rc;
15315 
15316 	rxr = &bp->rx_ring[idx];
15317 	clone = qmem;
15318 	memcpy(clone, rxr, sizeof(*rxr));
15319 	bnxt_init_rx_ring_struct(bp, clone);
15320 	bnxt_reset_rx_ring_struct(bp, clone);
15321 
15322 	clone->rx_prod = 0;
15323 	clone->rx_agg_prod = 0;
15324 	clone->rx_sw_agg_prod = 0;
15325 	clone->rx_next_cons = 0;
15326 
15327 	rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid);
15328 	if (rc)
15329 		return rc;
15330 
15331 	rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0);
15332 	if (rc < 0)
15333 		goto err_page_pool_destroy;
15334 
15335 	rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq,
15336 					MEM_TYPE_PAGE_POOL,
15337 					clone->page_pool);
15338 	if (rc)
15339 		goto err_rxq_info_unreg;
15340 
15341 	ring = &clone->rx_ring_struct;
15342 	rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15343 	if (rc)
15344 		goto err_free_rx_ring;
15345 
15346 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
15347 		ring = &clone->rx_agg_ring_struct;
15348 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15349 		if (rc)
15350 			goto err_free_rx_agg_ring;
15351 
15352 		rc = bnxt_alloc_rx_agg_bmap(bp, clone);
15353 		if (rc)
15354 			goto err_free_rx_agg_ring;
15355 	}
15356 
15357 	bnxt_init_one_rx_ring_rxbd(bp, clone);
15358 	bnxt_init_one_rx_agg_ring_rxbd(bp, clone);
15359 
15360 	bnxt_alloc_one_rx_ring_skb(bp, clone, idx);
15361 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15362 		bnxt_alloc_one_rx_ring_page(bp, clone, idx);
15363 
15364 	return 0;
15365 
15366 err_free_rx_agg_ring:
15367 	bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem);
15368 err_free_rx_ring:
15369 	bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem);
15370 err_rxq_info_unreg:
15371 	xdp_rxq_info_unreg(&clone->xdp_rxq);
15372 err_page_pool_destroy:
15373 	clone->page_pool->p.napi = NULL;
15374 	page_pool_destroy(clone->page_pool);
15375 	clone->page_pool = NULL;
15376 	return rc;
15377 }
15378 
15379 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem)
15380 {
15381 	struct bnxt_rx_ring_info *rxr = qmem;
15382 	struct bnxt *bp = netdev_priv(dev);
15383 	struct bnxt_ring_struct *ring;
15384 
15385 	bnxt_free_one_rx_ring(bp, rxr);
15386 	bnxt_free_one_rx_agg_ring(bp, rxr);
15387 
15388 	xdp_rxq_info_unreg(&rxr->xdp_rxq);
15389 
15390 	page_pool_destroy(rxr->page_pool);
15391 	rxr->page_pool = NULL;
15392 
15393 	ring = &rxr->rx_ring_struct;
15394 	bnxt_free_ring(bp, &ring->ring_mem);
15395 
15396 	ring = &rxr->rx_agg_ring_struct;
15397 	bnxt_free_ring(bp, &ring->ring_mem);
15398 
15399 	kfree(rxr->rx_agg_bmap);
15400 	rxr->rx_agg_bmap = NULL;
15401 }
15402 
15403 static void bnxt_copy_rx_ring(struct bnxt *bp,
15404 			      struct bnxt_rx_ring_info *dst,
15405 			      struct bnxt_rx_ring_info *src)
15406 {
15407 	struct bnxt_ring_mem_info *dst_rmem, *src_rmem;
15408 	struct bnxt_ring_struct *dst_ring, *src_ring;
15409 	int i;
15410 
15411 	dst_ring = &dst->rx_ring_struct;
15412 	dst_rmem = &dst_ring->ring_mem;
15413 	src_ring = &src->rx_ring_struct;
15414 	src_rmem = &src_ring->ring_mem;
15415 
15416 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15417 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15418 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15419 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15420 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15421 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15422 
15423 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15424 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15425 	*dst_rmem->vmem = *src_rmem->vmem;
15426 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15427 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15428 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15429 	}
15430 
15431 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
15432 		return;
15433 
15434 	dst_ring = &dst->rx_agg_ring_struct;
15435 	dst_rmem = &dst_ring->ring_mem;
15436 	src_ring = &src->rx_agg_ring_struct;
15437 	src_rmem = &src_ring->ring_mem;
15438 
15439 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15440 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15441 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15442 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15443 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15444 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15445 	WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size);
15446 
15447 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15448 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15449 	*dst_rmem->vmem = *src_rmem->vmem;
15450 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15451 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15452 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15453 	}
15454 
15455 	dst->rx_agg_bmap = src->rx_agg_bmap;
15456 }
15457 
15458 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx)
15459 {
15460 	struct bnxt *bp = netdev_priv(dev);
15461 	struct bnxt_rx_ring_info *rxr, *clone;
15462 	struct bnxt_cp_ring_info *cpr;
15463 	struct bnxt_vnic_info *vnic;
15464 	int i, rc;
15465 
15466 	rxr = &bp->rx_ring[idx];
15467 	clone = qmem;
15468 
15469 	rxr->rx_prod = clone->rx_prod;
15470 	rxr->rx_agg_prod = clone->rx_agg_prod;
15471 	rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod;
15472 	rxr->rx_next_cons = clone->rx_next_cons;
15473 	rxr->page_pool = clone->page_pool;
15474 	rxr->xdp_rxq = clone->xdp_rxq;
15475 
15476 	bnxt_copy_rx_ring(bp, rxr, clone);
15477 
15478 	rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
15479 	if (rc)
15480 		return rc;
15481 	rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr);
15482 	if (rc)
15483 		goto err_free_hwrm_rx_ring;
15484 
15485 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
15486 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15487 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
15488 
15489 	cpr = &rxr->bnapi->cp_ring;
15490 	cpr->sw_stats->rx.rx_resets++;
15491 
15492 	for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) {
15493 		vnic = &bp->vnic_info[i];
15494 
15495 		rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true);
15496 		if (rc) {
15497 			netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
15498 				   vnic->vnic_id, rc);
15499 			return rc;
15500 		}
15501 		vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
15502 		bnxt_hwrm_vnic_update(bp, vnic,
15503 				      VNIC_UPDATE_REQ_ENABLES_MRU_VALID);
15504 	}
15505 
15506 	return 0;
15507 
15508 err_free_hwrm_rx_ring:
15509 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15510 	return rc;
15511 }
15512 
15513 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx)
15514 {
15515 	struct bnxt *bp = netdev_priv(dev);
15516 	struct bnxt_rx_ring_info *rxr;
15517 	struct bnxt_vnic_info *vnic;
15518 	int i;
15519 
15520 	for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) {
15521 		vnic = &bp->vnic_info[i];
15522 		vnic->mru = 0;
15523 		bnxt_hwrm_vnic_update(bp, vnic,
15524 				      VNIC_UPDATE_REQ_ENABLES_MRU_VALID);
15525 	}
15526 
15527 	rxr = &bp->rx_ring[idx];
15528 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15529 	bnxt_hwrm_rx_agg_ring_free(bp, rxr, false);
15530 	rxr->rx_next_cons = 0;
15531 	page_pool_disable_direct_recycling(rxr->page_pool);
15532 
15533 	memcpy(qmem, rxr, sizeof(*rxr));
15534 	bnxt_init_rx_ring_struct(bp, qmem);
15535 
15536 	return 0;
15537 }
15538 
15539 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = {
15540 	.ndo_queue_mem_size	= sizeof(struct bnxt_rx_ring_info),
15541 	.ndo_queue_mem_alloc	= bnxt_queue_mem_alloc,
15542 	.ndo_queue_mem_free	= bnxt_queue_mem_free,
15543 	.ndo_queue_start	= bnxt_queue_start,
15544 	.ndo_queue_stop		= bnxt_queue_stop,
15545 };
15546 
15547 static void bnxt_remove_one(struct pci_dev *pdev)
15548 {
15549 	struct net_device *dev = pci_get_drvdata(pdev);
15550 	struct bnxt *bp = netdev_priv(dev);
15551 
15552 	if (BNXT_PF(bp))
15553 		bnxt_sriov_disable(bp);
15554 
15555 	bnxt_rdma_aux_device_del(bp);
15556 
15557 	bnxt_ptp_clear(bp);
15558 	unregister_netdev(dev);
15559 
15560 	bnxt_rdma_aux_device_uninit(bp);
15561 
15562 	bnxt_free_l2_filters(bp, true);
15563 	bnxt_free_ntp_fltrs(bp, true);
15564 	WARN_ON(bp->num_rss_ctx);
15565 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
15566 	/* Flush any pending tasks */
15567 	cancel_work_sync(&bp->sp_task);
15568 	cancel_delayed_work_sync(&bp->fw_reset_task);
15569 	bp->sp_event = 0;
15570 
15571 	bnxt_dl_fw_reporters_destroy(bp);
15572 	bnxt_dl_unregister(bp);
15573 	bnxt_shutdown_tc(bp);
15574 
15575 	bnxt_clear_int_mode(bp);
15576 	bnxt_hwrm_func_drv_unrgtr(bp);
15577 	bnxt_free_hwrm_resources(bp);
15578 	bnxt_hwmon_uninit(bp);
15579 	bnxt_ethtool_free(bp);
15580 	bnxt_dcb_free(bp);
15581 	kfree(bp->ptp_cfg);
15582 	bp->ptp_cfg = NULL;
15583 	kfree(bp->fw_health);
15584 	bp->fw_health = NULL;
15585 	bnxt_cleanup_pci(bp);
15586 	bnxt_free_ctx_mem(bp, true);
15587 	bnxt_free_crash_dump_mem(bp);
15588 	kfree(bp->rss_indir_tbl);
15589 	bp->rss_indir_tbl = NULL;
15590 	bnxt_free_port_stats(bp);
15591 	free_netdev(dev);
15592 }
15593 
15594 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
15595 {
15596 	int rc = 0;
15597 	struct bnxt_link_info *link_info = &bp->link_info;
15598 
15599 	bp->phy_flags = 0;
15600 	rc = bnxt_hwrm_phy_qcaps(bp);
15601 	if (rc) {
15602 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
15603 			   rc);
15604 		return rc;
15605 	}
15606 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
15607 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
15608 	else
15609 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
15610 	if (!fw_dflt)
15611 		return 0;
15612 
15613 	mutex_lock(&bp->link_lock);
15614 	rc = bnxt_update_link(bp, false);
15615 	if (rc) {
15616 		mutex_unlock(&bp->link_lock);
15617 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
15618 			   rc);
15619 		return rc;
15620 	}
15621 
15622 	/* Older firmware does not have supported_auto_speeds, so assume
15623 	 * that all supported speeds can be autonegotiated.
15624 	 */
15625 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
15626 		link_info->support_auto_speeds = link_info->support_speeds;
15627 
15628 	bnxt_init_ethtool_link_settings(bp);
15629 	mutex_unlock(&bp->link_lock);
15630 	return 0;
15631 }
15632 
15633 static int bnxt_get_max_irq(struct pci_dev *pdev)
15634 {
15635 	u16 ctrl;
15636 
15637 	if (!pdev->msix_cap)
15638 		return 1;
15639 
15640 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
15641 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
15642 }
15643 
15644 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15645 				int *max_cp)
15646 {
15647 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
15648 	int max_ring_grps = 0, max_irq;
15649 
15650 	*max_tx = hw_resc->max_tx_rings;
15651 	*max_rx = hw_resc->max_rx_rings;
15652 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
15653 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
15654 			bnxt_get_ulp_msix_num_in_use(bp),
15655 			hw_resc->max_stat_ctxs -
15656 			bnxt_get_ulp_stat_ctxs_in_use(bp));
15657 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
15658 		*max_cp = min_t(int, *max_cp, max_irq);
15659 	max_ring_grps = hw_resc->max_hw_ring_grps;
15660 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
15661 		*max_cp -= 1;
15662 		*max_rx -= 2;
15663 	}
15664 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15665 		*max_rx >>= 1;
15666 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
15667 		int rc;
15668 
15669 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
15670 		if (rc) {
15671 			*max_rx = 0;
15672 			*max_tx = 0;
15673 		}
15674 		/* On P5 chips, max_cp output param should be available NQs */
15675 		*max_cp = max_irq;
15676 	}
15677 	*max_rx = min_t(int, *max_rx, max_ring_grps);
15678 }
15679 
15680 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
15681 {
15682 	int rx, tx, cp;
15683 
15684 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
15685 	*max_rx = rx;
15686 	*max_tx = tx;
15687 	if (!rx || !tx || !cp)
15688 		return -ENOMEM;
15689 
15690 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
15691 }
15692 
15693 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15694 			       bool shared)
15695 {
15696 	int rc;
15697 
15698 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15699 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
15700 		/* Not enough rings, try disabling agg rings. */
15701 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
15702 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15703 		if (rc) {
15704 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
15705 			bp->flags |= BNXT_FLAG_AGG_RINGS;
15706 			return rc;
15707 		}
15708 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
15709 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15710 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15711 		bnxt_set_ring_params(bp);
15712 	}
15713 
15714 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
15715 		int max_cp, max_stat, max_irq;
15716 
15717 		/* Reserve minimum resources for RoCE */
15718 		max_cp = bnxt_get_max_func_cp_rings(bp);
15719 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
15720 		max_irq = bnxt_get_max_func_irqs(bp);
15721 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
15722 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
15723 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
15724 			return 0;
15725 
15726 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
15727 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
15728 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
15729 		max_cp = min_t(int, max_cp, max_irq);
15730 		max_cp = min_t(int, max_cp, max_stat);
15731 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
15732 		if (rc)
15733 			rc = 0;
15734 	}
15735 	return rc;
15736 }
15737 
15738 /* In initial default shared ring setting, each shared ring must have a
15739  * RX/TX ring pair.
15740  */
15741 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
15742 {
15743 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
15744 	bp->rx_nr_rings = bp->cp_nr_rings;
15745 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
15746 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15747 }
15748 
15749 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
15750 {
15751 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
15752 	int avail_msix;
15753 
15754 	if (!bnxt_can_reserve_rings(bp))
15755 		return 0;
15756 
15757 	if (sh)
15758 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
15759 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
15760 	/* Reduce default rings on multi-port cards so that total default
15761 	 * rings do not exceed CPU count.
15762 	 */
15763 	if (bp->port_count > 1) {
15764 		int max_rings =
15765 			max_t(int, num_online_cpus() / bp->port_count, 1);
15766 
15767 		dflt_rings = min_t(int, dflt_rings, max_rings);
15768 	}
15769 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
15770 	if (rc)
15771 		return rc;
15772 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
15773 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
15774 	if (sh)
15775 		bnxt_trim_dflt_sh_rings(bp);
15776 	else
15777 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
15778 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15779 
15780 	avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings;
15781 	if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) {
15782 		int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want);
15783 
15784 		bnxt_set_ulp_msix_num(bp, ulp_num_msix);
15785 		bnxt_set_dflt_ulp_stat_ctxs(bp);
15786 	}
15787 
15788 	rc = __bnxt_reserve_rings(bp);
15789 	if (rc && rc != -ENODEV)
15790 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
15791 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15792 	if (sh)
15793 		bnxt_trim_dflt_sh_rings(bp);
15794 
15795 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
15796 	if (bnxt_need_reserve_rings(bp)) {
15797 		rc = __bnxt_reserve_rings(bp);
15798 		if (rc && rc != -ENODEV)
15799 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
15800 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15801 	}
15802 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
15803 		bp->rx_nr_rings++;
15804 		bp->cp_nr_rings++;
15805 	}
15806 	if (rc) {
15807 		bp->tx_nr_rings = 0;
15808 		bp->rx_nr_rings = 0;
15809 	}
15810 	return rc;
15811 }
15812 
15813 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
15814 {
15815 	int rc;
15816 
15817 	if (bp->tx_nr_rings)
15818 		return 0;
15819 
15820 	bnxt_ulp_irq_stop(bp);
15821 	bnxt_clear_int_mode(bp);
15822 	rc = bnxt_set_dflt_rings(bp, true);
15823 	if (rc) {
15824 		if (BNXT_VF(bp) && rc == -ENODEV)
15825 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15826 		else
15827 			netdev_err(bp->dev, "Not enough rings available.\n");
15828 		goto init_dflt_ring_err;
15829 	}
15830 	rc = bnxt_init_int_mode(bp);
15831 	if (rc)
15832 		goto init_dflt_ring_err;
15833 
15834 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15835 
15836 	bnxt_set_dflt_rfs(bp);
15837 
15838 init_dflt_ring_err:
15839 	bnxt_ulp_irq_restart(bp, rc);
15840 	return rc;
15841 }
15842 
15843 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
15844 {
15845 	int rc;
15846 
15847 	ASSERT_RTNL();
15848 	bnxt_hwrm_func_qcaps(bp);
15849 
15850 	if (netif_running(bp->dev))
15851 		__bnxt_close_nic(bp, true, false);
15852 
15853 	bnxt_ulp_irq_stop(bp);
15854 	bnxt_clear_int_mode(bp);
15855 	rc = bnxt_init_int_mode(bp);
15856 	bnxt_ulp_irq_restart(bp, rc);
15857 
15858 	if (netif_running(bp->dev)) {
15859 		if (rc)
15860 			dev_close(bp->dev);
15861 		else
15862 			rc = bnxt_open_nic(bp, true, false);
15863 	}
15864 
15865 	return rc;
15866 }
15867 
15868 static int bnxt_init_mac_addr(struct bnxt *bp)
15869 {
15870 	int rc = 0;
15871 
15872 	if (BNXT_PF(bp)) {
15873 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
15874 	} else {
15875 #ifdef CONFIG_BNXT_SRIOV
15876 		struct bnxt_vf_info *vf = &bp->vf;
15877 		bool strict_approval = true;
15878 
15879 		if (is_valid_ether_addr(vf->mac_addr)) {
15880 			/* overwrite netdev dev_addr with admin VF MAC */
15881 			eth_hw_addr_set(bp->dev, vf->mac_addr);
15882 			/* Older PF driver or firmware may not approve this
15883 			 * correctly.
15884 			 */
15885 			strict_approval = false;
15886 		} else {
15887 			eth_hw_addr_random(bp->dev);
15888 		}
15889 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
15890 #endif
15891 	}
15892 	return rc;
15893 }
15894 
15895 static void bnxt_vpd_read_info(struct bnxt *bp)
15896 {
15897 	struct pci_dev *pdev = bp->pdev;
15898 	unsigned int vpd_size, kw_len;
15899 	int pos, size;
15900 	u8 *vpd_data;
15901 
15902 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
15903 	if (IS_ERR(vpd_data)) {
15904 		pci_warn(pdev, "Unable to read VPD\n");
15905 		return;
15906 	}
15907 
15908 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15909 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
15910 	if (pos < 0)
15911 		goto read_sn;
15912 
15913 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15914 	memcpy(bp->board_partno, &vpd_data[pos], size);
15915 
15916 read_sn:
15917 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15918 					   PCI_VPD_RO_KEYWORD_SERIALNO,
15919 					   &kw_len);
15920 	if (pos < 0)
15921 		goto exit;
15922 
15923 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15924 	memcpy(bp->board_serialno, &vpd_data[pos], size);
15925 exit:
15926 	kfree(vpd_data);
15927 }
15928 
15929 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
15930 {
15931 	struct pci_dev *pdev = bp->pdev;
15932 	u64 qword;
15933 
15934 	qword = pci_get_dsn(pdev);
15935 	if (!qword) {
15936 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
15937 		return -EOPNOTSUPP;
15938 	}
15939 
15940 	put_unaligned_le64(qword, dsn);
15941 
15942 	bp->flags |= BNXT_FLAG_DSN_VALID;
15943 	return 0;
15944 }
15945 
15946 static int bnxt_map_db_bar(struct bnxt *bp)
15947 {
15948 	if (!bp->db_size)
15949 		return -ENODEV;
15950 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
15951 	if (!bp->bar1)
15952 		return -ENOMEM;
15953 	return 0;
15954 }
15955 
15956 void bnxt_print_device_info(struct bnxt *bp)
15957 {
15958 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
15959 		    board_info[bp->board_idx].name,
15960 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
15961 
15962 	pcie_print_link_status(bp->pdev);
15963 }
15964 
15965 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
15966 {
15967 	struct bnxt_hw_resc *hw_resc;
15968 	struct net_device *dev;
15969 	struct bnxt *bp;
15970 	int rc, max_irqs;
15971 
15972 	if (pci_is_bridge(pdev))
15973 		return -ENODEV;
15974 
15975 	if (!pdev->msix_cap) {
15976 		dev_err(&pdev->dev, "MSIX capability not found, aborting\n");
15977 		return -ENODEV;
15978 	}
15979 
15980 	/* Clear any pending DMA transactions from crash kernel
15981 	 * while loading driver in capture kernel.
15982 	 */
15983 	if (is_kdump_kernel()) {
15984 		pci_clear_master(pdev);
15985 		pcie_flr(pdev);
15986 	}
15987 
15988 	max_irqs = bnxt_get_max_irq(pdev);
15989 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
15990 				 max_irqs);
15991 	if (!dev)
15992 		return -ENOMEM;
15993 
15994 	bp = netdev_priv(dev);
15995 	bp->board_idx = ent->driver_data;
15996 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
15997 	bnxt_set_max_func_irqs(bp, max_irqs);
15998 
15999 	if (bnxt_vf_pciid(bp->board_idx))
16000 		bp->flags |= BNXT_FLAG_VF;
16001 
16002 	/* No devlink port registration in case of a VF */
16003 	if (BNXT_PF(bp))
16004 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
16005 
16006 	rc = bnxt_init_board(pdev, dev);
16007 	if (rc < 0)
16008 		goto init_err_free;
16009 
16010 	dev->netdev_ops = &bnxt_netdev_ops;
16011 	dev->stat_ops = &bnxt_stat_ops;
16012 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
16013 	dev->ethtool_ops = &bnxt_ethtool_ops;
16014 	pci_set_drvdata(pdev, dev);
16015 
16016 	rc = bnxt_alloc_hwrm_resources(bp);
16017 	if (rc)
16018 		goto init_err_pci_clean;
16019 
16020 	mutex_init(&bp->hwrm_cmd_lock);
16021 	mutex_init(&bp->link_lock);
16022 
16023 	rc = bnxt_fw_init_one_p1(bp);
16024 	if (rc)
16025 		goto init_err_pci_clean;
16026 
16027 	if (BNXT_PF(bp))
16028 		bnxt_vpd_read_info(bp);
16029 
16030 	if (BNXT_CHIP_P5_PLUS(bp)) {
16031 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
16032 		if (BNXT_CHIP_P7(bp))
16033 			bp->flags |= BNXT_FLAG_CHIP_P7;
16034 	}
16035 
16036 	rc = bnxt_alloc_rss_indir_tbl(bp);
16037 	if (rc)
16038 		goto init_err_pci_clean;
16039 
16040 	rc = bnxt_fw_init_one_p2(bp);
16041 	if (rc)
16042 		goto init_err_pci_clean;
16043 
16044 	rc = bnxt_map_db_bar(bp);
16045 	if (rc) {
16046 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
16047 			rc);
16048 		goto init_err_pci_clean;
16049 	}
16050 
16051 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
16052 			   NETIF_F_TSO | NETIF_F_TSO6 |
16053 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
16054 			   NETIF_F_GSO_IPXIP4 |
16055 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
16056 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
16057 			   NETIF_F_RXCSUM | NETIF_F_GRO;
16058 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
16059 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
16060 
16061 	if (BNXT_SUPPORTS_TPA(bp))
16062 		dev->hw_features |= NETIF_F_LRO;
16063 
16064 	dev->hw_enc_features =
16065 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
16066 			NETIF_F_TSO | NETIF_F_TSO6 |
16067 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
16068 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
16069 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
16070 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
16071 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
16072 	if (bp->flags & BNXT_FLAG_CHIP_P7)
16073 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
16074 	else
16075 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
16076 
16077 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
16078 				    NETIF_F_GSO_GRE_CSUM;
16079 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
16080 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
16081 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
16082 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
16083 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
16084 	if (BNXT_SUPPORTS_TPA(bp))
16085 		dev->hw_features |= NETIF_F_GRO_HW;
16086 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
16087 	if (dev->features & NETIF_F_GRO_HW)
16088 		dev->features &= ~NETIF_F_LRO;
16089 	dev->priv_flags |= IFF_UNICAST_FLT;
16090 
16091 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
16092 	if (bp->tso_max_segs)
16093 		netif_set_tso_max_segs(dev, bp->tso_max_segs);
16094 
16095 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
16096 			    NETDEV_XDP_ACT_RX_SG;
16097 
16098 #ifdef CONFIG_BNXT_SRIOV
16099 	init_waitqueue_head(&bp->sriov_cfg_wait);
16100 #endif
16101 	if (BNXT_SUPPORTS_TPA(bp)) {
16102 		bp->gro_func = bnxt_gro_func_5730x;
16103 		if (BNXT_CHIP_P4(bp))
16104 			bp->gro_func = bnxt_gro_func_5731x;
16105 		else if (BNXT_CHIP_P5_PLUS(bp))
16106 			bp->gro_func = bnxt_gro_func_5750x;
16107 	}
16108 	if (!BNXT_CHIP_P4_PLUS(bp))
16109 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
16110 
16111 	rc = bnxt_init_mac_addr(bp);
16112 	if (rc) {
16113 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
16114 		rc = -EADDRNOTAVAIL;
16115 		goto init_err_pci_clean;
16116 	}
16117 
16118 	if (BNXT_PF(bp)) {
16119 		/* Read the adapter's DSN to use as the eswitch switch_id */
16120 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
16121 	}
16122 
16123 	/* MTU range: 60 - FW defined max */
16124 	dev->min_mtu = ETH_ZLEN;
16125 	dev->max_mtu = bp->max_mtu;
16126 
16127 	rc = bnxt_probe_phy(bp, true);
16128 	if (rc)
16129 		goto init_err_pci_clean;
16130 
16131 	hw_resc = &bp->hw_resc;
16132 	bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows +
16133 		       BNXT_L2_FLTR_MAX_FLTR;
16134 	/* Older firmware may not report these filters properly */
16135 	if (bp->max_fltr < BNXT_MAX_FLTR)
16136 		bp->max_fltr = BNXT_MAX_FLTR;
16137 	bnxt_init_l2_fltr_tbl(bp);
16138 	bnxt_set_rx_skb_mode(bp, false);
16139 	bnxt_set_tpa_flags(bp);
16140 	bnxt_set_ring_params(bp);
16141 	bnxt_rdma_aux_device_init(bp);
16142 	rc = bnxt_set_dflt_rings(bp, true);
16143 	if (rc) {
16144 		if (BNXT_VF(bp) && rc == -ENODEV) {
16145 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
16146 		} else {
16147 			netdev_err(bp->dev, "Not enough rings available.\n");
16148 			rc = -ENOMEM;
16149 		}
16150 		goto init_err_pci_clean;
16151 	}
16152 
16153 	bnxt_fw_init_one_p3(bp);
16154 
16155 	bnxt_init_dflt_coal(bp);
16156 
16157 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
16158 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
16159 
16160 	rc = bnxt_init_int_mode(bp);
16161 	if (rc)
16162 		goto init_err_pci_clean;
16163 
16164 	/* No TC has been set yet and rings may have been trimmed due to
16165 	 * limited MSIX, so we re-initialize the TX rings per TC.
16166 	 */
16167 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
16168 
16169 	if (BNXT_PF(bp)) {
16170 		if (!bnxt_pf_wq) {
16171 			bnxt_pf_wq =
16172 				create_singlethread_workqueue("bnxt_pf_wq");
16173 			if (!bnxt_pf_wq) {
16174 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
16175 				rc = -ENOMEM;
16176 				goto init_err_pci_clean;
16177 			}
16178 		}
16179 		rc = bnxt_init_tc(bp);
16180 		if (rc)
16181 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
16182 				   rc);
16183 	}
16184 
16185 	bnxt_inv_fw_health_reg(bp);
16186 	rc = bnxt_dl_register(bp);
16187 	if (rc)
16188 		goto init_err_dl;
16189 
16190 	INIT_LIST_HEAD(&bp->usr_fltr_list);
16191 
16192 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
16193 		bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX;
16194 	if (BNXT_SUPPORTS_QUEUE_API(bp))
16195 		dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops;
16196 
16197 	rc = register_netdev(dev);
16198 	if (rc)
16199 		goto init_err_cleanup;
16200 
16201 	bnxt_dl_fw_reporters_create(bp);
16202 
16203 	bnxt_rdma_aux_device_add(bp);
16204 
16205 	bnxt_print_device_info(bp);
16206 
16207 	pci_save_state(pdev);
16208 
16209 	return 0;
16210 init_err_cleanup:
16211 	bnxt_rdma_aux_device_uninit(bp);
16212 	bnxt_dl_unregister(bp);
16213 init_err_dl:
16214 	bnxt_shutdown_tc(bp);
16215 	bnxt_clear_int_mode(bp);
16216 
16217 init_err_pci_clean:
16218 	bnxt_hwrm_func_drv_unrgtr(bp);
16219 	bnxt_free_hwrm_resources(bp);
16220 	bnxt_hwmon_uninit(bp);
16221 	bnxt_ethtool_free(bp);
16222 	bnxt_ptp_clear(bp);
16223 	kfree(bp->ptp_cfg);
16224 	bp->ptp_cfg = NULL;
16225 	kfree(bp->fw_health);
16226 	bp->fw_health = NULL;
16227 	bnxt_cleanup_pci(bp);
16228 	bnxt_free_ctx_mem(bp, true);
16229 	bnxt_free_crash_dump_mem(bp);
16230 	kfree(bp->rss_indir_tbl);
16231 	bp->rss_indir_tbl = NULL;
16232 
16233 init_err_free:
16234 	free_netdev(dev);
16235 	return rc;
16236 }
16237 
16238 static void bnxt_shutdown(struct pci_dev *pdev)
16239 {
16240 	struct net_device *dev = pci_get_drvdata(pdev);
16241 	struct bnxt *bp;
16242 
16243 	if (!dev)
16244 		return;
16245 
16246 	rtnl_lock();
16247 	bp = netdev_priv(dev);
16248 	if (!bp)
16249 		goto shutdown_exit;
16250 
16251 	if (netif_running(dev))
16252 		dev_close(dev);
16253 
16254 	bnxt_ptp_clear(bp);
16255 	bnxt_clear_int_mode(bp);
16256 	pci_disable_device(pdev);
16257 
16258 	if (system_state == SYSTEM_POWER_OFF) {
16259 		pci_wake_from_d3(pdev, bp->wol);
16260 		pci_set_power_state(pdev, PCI_D3hot);
16261 	}
16262 
16263 shutdown_exit:
16264 	rtnl_unlock();
16265 }
16266 
16267 #ifdef CONFIG_PM_SLEEP
16268 static int bnxt_suspend(struct device *device)
16269 {
16270 	struct net_device *dev = dev_get_drvdata(device);
16271 	struct bnxt *bp = netdev_priv(dev);
16272 	int rc = 0;
16273 
16274 	bnxt_ulp_stop(bp);
16275 
16276 	rtnl_lock();
16277 	if (netif_running(dev)) {
16278 		netif_device_detach(dev);
16279 		rc = bnxt_close(dev);
16280 	}
16281 	bnxt_hwrm_func_drv_unrgtr(bp);
16282 	bnxt_ptp_clear(bp);
16283 	pci_disable_device(bp->pdev);
16284 	bnxt_free_ctx_mem(bp, false);
16285 	rtnl_unlock();
16286 	return rc;
16287 }
16288 
16289 static int bnxt_resume(struct device *device)
16290 {
16291 	struct net_device *dev = dev_get_drvdata(device);
16292 	struct bnxt *bp = netdev_priv(dev);
16293 	int rc = 0;
16294 
16295 	rtnl_lock();
16296 	rc = pci_enable_device(bp->pdev);
16297 	if (rc) {
16298 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
16299 			   rc);
16300 		goto resume_exit;
16301 	}
16302 	pci_set_master(bp->pdev);
16303 	if (bnxt_hwrm_ver_get(bp)) {
16304 		rc = -ENODEV;
16305 		goto resume_exit;
16306 	}
16307 	rc = bnxt_hwrm_func_reset(bp);
16308 	if (rc) {
16309 		rc = -EBUSY;
16310 		goto resume_exit;
16311 	}
16312 
16313 	rc = bnxt_hwrm_func_qcaps(bp);
16314 	if (rc)
16315 		goto resume_exit;
16316 
16317 	bnxt_clear_reservations(bp, true);
16318 
16319 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
16320 		rc = -ENODEV;
16321 		goto resume_exit;
16322 	}
16323 	if (bp->fw_crash_mem)
16324 		bnxt_hwrm_crash_dump_mem_cfg(bp);
16325 
16326 	if (bnxt_ptp_init(bp)) {
16327 		kfree(bp->ptp_cfg);
16328 		bp->ptp_cfg = NULL;
16329 	}
16330 	bnxt_get_wol_settings(bp);
16331 	if (netif_running(dev)) {
16332 		rc = bnxt_open(dev);
16333 		if (!rc)
16334 			netif_device_attach(dev);
16335 	}
16336 
16337 resume_exit:
16338 	rtnl_unlock();
16339 	bnxt_ulp_start(bp, rc);
16340 	if (!rc)
16341 		bnxt_reenable_sriov(bp);
16342 	return rc;
16343 }
16344 
16345 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
16346 #define BNXT_PM_OPS (&bnxt_pm_ops)
16347 
16348 #else
16349 
16350 #define BNXT_PM_OPS NULL
16351 
16352 #endif /* CONFIG_PM_SLEEP */
16353 
16354 /**
16355  * bnxt_io_error_detected - called when PCI error is detected
16356  * @pdev: Pointer to PCI device
16357  * @state: The current pci connection state
16358  *
16359  * This function is called after a PCI bus error affecting
16360  * this device has been detected.
16361  */
16362 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
16363 					       pci_channel_state_t state)
16364 {
16365 	struct net_device *netdev = pci_get_drvdata(pdev);
16366 	struct bnxt *bp = netdev_priv(netdev);
16367 	bool abort = false;
16368 
16369 	netdev_info(netdev, "PCI I/O error detected\n");
16370 
16371 	bnxt_ulp_stop(bp);
16372 
16373 	rtnl_lock();
16374 	netif_device_detach(netdev);
16375 
16376 	if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
16377 		netdev_err(bp->dev, "Firmware reset already in progress\n");
16378 		abort = true;
16379 	}
16380 
16381 	if (abort || state == pci_channel_io_perm_failure) {
16382 		rtnl_unlock();
16383 		return PCI_ERS_RESULT_DISCONNECT;
16384 	}
16385 
16386 	/* Link is not reliable anymore if state is pci_channel_io_frozen
16387 	 * so we disable bus master to prevent any potential bad DMAs before
16388 	 * freeing kernel memory.
16389 	 */
16390 	if (state == pci_channel_io_frozen) {
16391 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
16392 		bnxt_fw_fatal_close(bp);
16393 	}
16394 
16395 	if (netif_running(netdev))
16396 		__bnxt_close_nic(bp, true, true);
16397 
16398 	if (pci_is_enabled(pdev))
16399 		pci_disable_device(pdev);
16400 	bnxt_free_ctx_mem(bp, false);
16401 	rtnl_unlock();
16402 
16403 	/* Request a slot slot reset. */
16404 	return PCI_ERS_RESULT_NEED_RESET;
16405 }
16406 
16407 /**
16408  * bnxt_io_slot_reset - called after the pci bus has been reset.
16409  * @pdev: Pointer to PCI device
16410  *
16411  * Restart the card from scratch, as if from a cold-boot.
16412  * At this point, the card has experienced a hard reset,
16413  * followed by fixups by BIOS, and has its config space
16414  * set up identically to what it was at cold boot.
16415  */
16416 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
16417 {
16418 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
16419 	struct net_device *netdev = pci_get_drvdata(pdev);
16420 	struct bnxt *bp = netdev_priv(netdev);
16421 	int retry = 0;
16422 	int err = 0;
16423 	int off;
16424 
16425 	netdev_info(bp->dev, "PCI Slot Reset\n");
16426 
16427 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
16428 	    test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state))
16429 		msleep(900);
16430 
16431 	rtnl_lock();
16432 
16433 	if (pci_enable_device(pdev)) {
16434 		dev_err(&pdev->dev,
16435 			"Cannot re-enable PCI device after reset.\n");
16436 	} else {
16437 		pci_set_master(pdev);
16438 		/* Upon fatal error, our device internal logic that latches to
16439 		 * BAR value is getting reset and will restore only upon
16440 		 * rewriting the BARs.
16441 		 *
16442 		 * As pci_restore_state() does not re-write the BARs if the
16443 		 * value is same as saved value earlier, driver needs to
16444 		 * write the BARs to 0 to force restore, in case of fatal error.
16445 		 */
16446 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
16447 				       &bp->state)) {
16448 			for (off = PCI_BASE_ADDRESS_0;
16449 			     off <= PCI_BASE_ADDRESS_5; off += 4)
16450 				pci_write_config_dword(bp->pdev, off, 0);
16451 		}
16452 		pci_restore_state(pdev);
16453 		pci_save_state(pdev);
16454 
16455 		bnxt_inv_fw_health_reg(bp);
16456 		bnxt_try_map_fw_health_reg(bp);
16457 
16458 		/* In some PCIe AER scenarios, firmware may take up to
16459 		 * 10 seconds to become ready in the worst case.
16460 		 */
16461 		do {
16462 			err = bnxt_try_recover_fw(bp);
16463 			if (!err)
16464 				break;
16465 			retry++;
16466 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
16467 
16468 		if (err) {
16469 			dev_err(&pdev->dev, "Firmware not ready\n");
16470 			goto reset_exit;
16471 		}
16472 
16473 		err = bnxt_hwrm_func_reset(bp);
16474 		if (!err)
16475 			result = PCI_ERS_RESULT_RECOVERED;
16476 
16477 		bnxt_ulp_irq_stop(bp);
16478 		bnxt_clear_int_mode(bp);
16479 		err = bnxt_init_int_mode(bp);
16480 		bnxt_ulp_irq_restart(bp, err);
16481 	}
16482 
16483 reset_exit:
16484 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
16485 	bnxt_clear_reservations(bp, true);
16486 	rtnl_unlock();
16487 
16488 	return result;
16489 }
16490 
16491 /**
16492  * bnxt_io_resume - called when traffic can start flowing again.
16493  * @pdev: Pointer to PCI device
16494  *
16495  * This callback is called when the error recovery driver tells
16496  * us that its OK to resume normal operation.
16497  */
16498 static void bnxt_io_resume(struct pci_dev *pdev)
16499 {
16500 	struct net_device *netdev = pci_get_drvdata(pdev);
16501 	struct bnxt *bp = netdev_priv(netdev);
16502 	int err;
16503 
16504 	netdev_info(bp->dev, "PCI Slot Resume\n");
16505 	rtnl_lock();
16506 
16507 	err = bnxt_hwrm_func_qcaps(bp);
16508 	if (!err) {
16509 		if (netif_running(netdev))
16510 			err = bnxt_open(netdev);
16511 		else
16512 			err = bnxt_reserve_rings(bp, true);
16513 	}
16514 
16515 	if (!err)
16516 		netif_device_attach(netdev);
16517 
16518 	rtnl_unlock();
16519 	bnxt_ulp_start(bp, err);
16520 	if (!err)
16521 		bnxt_reenable_sriov(bp);
16522 }
16523 
16524 static const struct pci_error_handlers bnxt_err_handler = {
16525 	.error_detected	= bnxt_io_error_detected,
16526 	.slot_reset	= bnxt_io_slot_reset,
16527 	.resume		= bnxt_io_resume
16528 };
16529 
16530 static struct pci_driver bnxt_pci_driver = {
16531 	.name		= DRV_MODULE_NAME,
16532 	.id_table	= bnxt_pci_tbl,
16533 	.probe		= bnxt_init_one,
16534 	.remove		= bnxt_remove_one,
16535 	.shutdown	= bnxt_shutdown,
16536 	.driver.pm	= BNXT_PM_OPS,
16537 	.err_handler	= &bnxt_err_handler,
16538 #if defined(CONFIG_BNXT_SRIOV)
16539 	.sriov_configure = bnxt_sriov_configure,
16540 #endif
16541 };
16542 
16543 static int __init bnxt_init(void)
16544 {
16545 	int err;
16546 
16547 	bnxt_debug_init();
16548 	err = pci_register_driver(&bnxt_pci_driver);
16549 	if (err) {
16550 		bnxt_debug_exit();
16551 		return err;
16552 	}
16553 
16554 	return 0;
16555 }
16556 
16557 static void __exit bnxt_exit(void)
16558 {
16559 	pci_unregister_driver(&bnxt_pci_driver);
16560 	if (bnxt_pf_wq)
16561 		destroy_workqueue(bnxt_pf_wq);
16562 	bnxt_debug_exit();
16563 }
16564 
16565 module_init(bnxt_init);
16566 module_exit(bnxt_exit);
16567