1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 124 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 125 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 126 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 127 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 128 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 129 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 130 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 131 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 132 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 133 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 134 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 135 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 136 }; 137 138 static const struct pci_device_id bnxt_pci_tbl[] = { 139 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 140 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 141 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 142 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 143 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 144 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 145 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 146 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 148 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 149 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 150 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 154 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 159 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 160 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 161 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 162 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 163 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 167 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 173 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 174 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 175 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 176 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 177 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 183 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 184 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 185 #ifdef CONFIG_BNXT_SRIOV 186 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 187 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 188 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 189 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 190 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 191 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 192 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 193 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 207 #endif 208 { 0 } 209 }; 210 211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 212 213 static const u16 bnxt_vf_req_snif[] = { 214 HWRM_FUNC_CFG, 215 HWRM_FUNC_VF_CFG, 216 HWRM_PORT_PHY_QCFG, 217 HWRM_CFA_L2_FILTER_ALLOC, 218 }; 219 220 static const u16 bnxt_async_events_arr[] = { 221 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 222 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 223 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 224 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 225 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 226 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 228 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 229 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 230 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 231 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 232 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 233 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 234 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 235 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 236 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 237 }; 238 239 static struct workqueue_struct *bnxt_pf_wq; 240 241 static bool bnxt_vf_pciid(enum board_idx idx) 242 { 243 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 244 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 245 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 246 idx == NETXTREME_E_P5_VF_HV); 247 } 248 249 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 250 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 251 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 252 253 #define BNXT_CP_DB_IRQ_DIS(db) \ 254 writel(DB_CP_IRQ_DIS_FLAGS, db) 255 256 #define BNXT_DB_CQ(db, idx) \ 257 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 258 259 #define BNXT_DB_NQ_P5(db, idx) \ 260 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 261 (db)->doorbell) 262 263 #define BNXT_DB_CQ_ARM(db, idx) \ 264 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 265 266 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 267 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 268 (db)->doorbell) 269 270 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 271 { 272 if (bp->flags & BNXT_FLAG_CHIP_P5) 273 BNXT_DB_NQ_P5(db, idx); 274 else 275 BNXT_DB_CQ(db, idx); 276 } 277 278 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 279 { 280 if (bp->flags & BNXT_FLAG_CHIP_P5) 281 BNXT_DB_NQ_ARM_P5(db, idx); 282 else 283 BNXT_DB_CQ_ARM(db, idx); 284 } 285 286 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 287 { 288 if (bp->flags & BNXT_FLAG_CHIP_P5) 289 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 290 RING_CMP(idx), db->doorbell); 291 else 292 BNXT_DB_CQ(db, idx); 293 } 294 295 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 296 { 297 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 298 return; 299 300 if (BNXT_PF(bp)) 301 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 302 else 303 schedule_delayed_work(&bp->fw_reset_task, delay); 304 } 305 306 static void __bnxt_queue_sp_work(struct bnxt *bp) 307 { 308 if (BNXT_PF(bp)) 309 queue_work(bnxt_pf_wq, &bp->sp_task); 310 else 311 schedule_work(&bp->sp_task); 312 } 313 314 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 315 { 316 set_bit(event, &bp->sp_event); 317 __bnxt_queue_sp_work(bp); 318 } 319 320 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 321 { 322 if (!rxr->bnapi->in_reset) { 323 rxr->bnapi->in_reset = true; 324 if (bp->flags & BNXT_FLAG_CHIP_P5) 325 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 326 else 327 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 328 __bnxt_queue_sp_work(bp); 329 } 330 rxr->rx_next_cons = 0xffff; 331 } 332 333 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 334 int idx) 335 { 336 struct bnxt_napi *bnapi = txr->bnapi; 337 338 if (bnapi->tx_fault) 339 return; 340 341 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_pkts:%d cons:%u prod:%u i:%d)", 342 txr->txq_index, bnapi->tx_pkts, 343 txr->tx_cons, txr->tx_prod, idx); 344 WARN_ON_ONCE(1); 345 bnapi->tx_fault = 1; 346 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 347 } 348 349 const u16 bnxt_lhint_arr[] = { 350 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 351 TX_BD_FLAGS_LHINT_512_TO_1023, 352 TX_BD_FLAGS_LHINT_1024_TO_2047, 353 TX_BD_FLAGS_LHINT_1024_TO_2047, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 359 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 360 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 361 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 362 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 363 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 364 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 365 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 366 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 367 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 368 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 369 }; 370 371 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 372 { 373 struct metadata_dst *md_dst = skb_metadata_dst(skb); 374 375 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 376 return 0; 377 378 return md_dst->u.port_info.port_id; 379 } 380 381 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 382 u16 prod) 383 { 384 bnxt_db_write(bp, &txr->tx_db, prod); 385 txr->kick_pending = 0; 386 } 387 388 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 389 { 390 struct bnxt *bp = netdev_priv(dev); 391 struct tx_bd *txbd; 392 struct tx_bd_ext *txbd1; 393 struct netdev_queue *txq; 394 int i; 395 dma_addr_t mapping; 396 unsigned int length, pad = 0; 397 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 398 u16 prod, last_frag; 399 struct pci_dev *pdev = bp->pdev; 400 struct bnxt_tx_ring_info *txr; 401 struct bnxt_sw_tx_bd *tx_buf; 402 __le32 lflags = 0; 403 404 i = skb_get_queue_mapping(skb); 405 if (unlikely(i >= bp->tx_nr_rings)) { 406 dev_kfree_skb_any(skb); 407 dev_core_stats_tx_dropped_inc(dev); 408 return NETDEV_TX_OK; 409 } 410 411 txq = netdev_get_tx_queue(dev, i); 412 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 413 prod = txr->tx_prod; 414 415 free_size = bnxt_tx_avail(bp, txr); 416 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 417 /* We must have raced with NAPI cleanup */ 418 if (net_ratelimit() && txr->kick_pending) 419 netif_warn(bp, tx_err, dev, 420 "bnxt: ring busy w/ flush pending!\n"); 421 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 422 bp->tx_wake_thresh)) 423 return NETDEV_TX_BUSY; 424 } 425 426 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 427 goto tx_free; 428 429 length = skb->len; 430 len = skb_headlen(skb); 431 last_frag = skb_shinfo(skb)->nr_frags; 432 433 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 434 435 txbd->tx_bd_opaque = prod; 436 437 tx_buf = &txr->tx_buf_ring[prod]; 438 tx_buf->skb = skb; 439 tx_buf->nr_frags = last_frag; 440 441 vlan_tag_flags = 0; 442 cfa_action = bnxt_xmit_get_cfa_action(skb); 443 if (skb_vlan_tag_present(skb)) { 444 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 445 skb_vlan_tag_get(skb); 446 /* Currently supports 8021Q, 8021AD vlan offloads 447 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 448 */ 449 if (skb->vlan_proto == htons(ETH_P_8021Q)) 450 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 451 } 452 453 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 454 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 455 456 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 457 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 458 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 459 &ptp->tx_hdr_off)) { 460 if (vlan_tag_flags) 461 ptp->tx_hdr_off += VLAN_HLEN; 462 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 463 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 464 } else { 465 atomic_inc(&bp->ptp_cfg->tx_avail); 466 } 467 } 468 } 469 470 if (unlikely(skb->no_fcs)) 471 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 472 473 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 474 !lflags) { 475 struct tx_push_buffer *tx_push_buf = txr->tx_push; 476 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 477 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 478 void __iomem *db = txr->tx_db.doorbell; 479 void *pdata = tx_push_buf->data; 480 u64 *end; 481 int j, push_len; 482 483 /* Set COAL_NOW to be ready quickly for the next push */ 484 tx_push->tx_bd_len_flags_type = 485 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 486 TX_BD_TYPE_LONG_TX_BD | 487 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 488 TX_BD_FLAGS_COAL_NOW | 489 TX_BD_FLAGS_PACKET_END | 490 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 491 492 if (skb->ip_summed == CHECKSUM_PARTIAL) 493 tx_push1->tx_bd_hsize_lflags = 494 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 495 else 496 tx_push1->tx_bd_hsize_lflags = 0; 497 498 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 499 tx_push1->tx_bd_cfa_action = 500 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 501 502 end = pdata + length; 503 end = PTR_ALIGN(end, 8) - 1; 504 *end = 0; 505 506 skb_copy_from_linear_data(skb, pdata, len); 507 pdata += len; 508 for (j = 0; j < last_frag; j++) { 509 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 510 void *fptr; 511 512 fptr = skb_frag_address_safe(frag); 513 if (!fptr) 514 goto normal_tx; 515 516 memcpy(pdata, fptr, skb_frag_size(frag)); 517 pdata += skb_frag_size(frag); 518 } 519 520 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 521 txbd->tx_bd_haddr = txr->data_mapping; 522 prod = NEXT_TX(prod); 523 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 524 memcpy(txbd, tx_push1, sizeof(*txbd)); 525 prod = NEXT_TX(prod); 526 tx_push->doorbell = 527 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 528 WRITE_ONCE(txr->tx_prod, prod); 529 530 tx_buf->is_push = 1; 531 netdev_tx_sent_queue(txq, skb->len); 532 wmb(); /* Sync is_push and byte queue before pushing data */ 533 534 push_len = (length + sizeof(*tx_push) + 7) / 8; 535 if (push_len > 16) { 536 __iowrite64_copy(db, tx_push_buf, 16); 537 __iowrite32_copy(db + 4, tx_push_buf + 1, 538 (push_len - 16) << 1); 539 } else { 540 __iowrite64_copy(db, tx_push_buf, push_len); 541 } 542 543 goto tx_done; 544 } 545 546 normal_tx: 547 if (length < BNXT_MIN_PKT_SIZE) { 548 pad = BNXT_MIN_PKT_SIZE - length; 549 if (skb_pad(skb, pad)) 550 /* SKB already freed. */ 551 goto tx_kick_pending; 552 length = BNXT_MIN_PKT_SIZE; 553 } 554 555 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 556 557 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 558 goto tx_free; 559 560 dma_unmap_addr_set(tx_buf, mapping, mapping); 561 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 562 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 563 564 txbd->tx_bd_haddr = cpu_to_le64(mapping); 565 566 prod = NEXT_TX(prod); 567 txbd1 = (struct tx_bd_ext *) 568 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 569 570 txbd1->tx_bd_hsize_lflags = lflags; 571 if (skb_is_gso(skb)) { 572 u32 hdr_len; 573 574 if (skb->encapsulation) 575 hdr_len = skb_inner_tcp_all_headers(skb); 576 else 577 hdr_len = skb_tcp_all_headers(skb); 578 579 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 580 TX_BD_FLAGS_T_IPID | 581 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 582 length = skb_shinfo(skb)->gso_size; 583 txbd1->tx_bd_mss = cpu_to_le32(length); 584 length += hdr_len; 585 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 586 txbd1->tx_bd_hsize_lflags |= 587 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 588 txbd1->tx_bd_mss = 0; 589 } 590 591 length >>= 9; 592 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 593 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 594 skb->len); 595 i = 0; 596 goto tx_dma_error; 597 } 598 flags |= bnxt_lhint_arr[length]; 599 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 600 601 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 602 txbd1->tx_bd_cfa_action = 603 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 604 for (i = 0; i < last_frag; i++) { 605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 606 607 prod = NEXT_TX(prod); 608 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 609 610 len = skb_frag_size(frag); 611 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 612 DMA_TO_DEVICE); 613 614 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 615 goto tx_dma_error; 616 617 tx_buf = &txr->tx_buf_ring[prod]; 618 dma_unmap_addr_set(tx_buf, mapping, mapping); 619 620 txbd->tx_bd_haddr = cpu_to_le64(mapping); 621 622 flags = len << TX_BD_LEN_SHIFT; 623 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 624 } 625 626 flags &= ~TX_BD_LEN; 627 txbd->tx_bd_len_flags_type = 628 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 629 TX_BD_FLAGS_PACKET_END); 630 631 netdev_tx_sent_queue(txq, skb->len); 632 633 skb_tx_timestamp(skb); 634 635 /* Sync BD data before updating doorbell */ 636 wmb(); 637 638 prod = NEXT_TX(prod); 639 WRITE_ONCE(txr->tx_prod, prod); 640 641 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 642 bnxt_txr_db_kick(bp, txr, prod); 643 else 644 txr->kick_pending = 1; 645 646 tx_done: 647 648 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 649 if (netdev_xmit_more() && !tx_buf->is_push) 650 bnxt_txr_db_kick(bp, txr, prod); 651 652 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 653 bp->tx_wake_thresh); 654 } 655 return NETDEV_TX_OK; 656 657 tx_dma_error: 658 if (BNXT_TX_PTP_IS_SET(lflags)) 659 atomic_inc(&bp->ptp_cfg->tx_avail); 660 661 last_frag = i; 662 663 /* start back at beginning and unmap skb */ 664 prod = txr->tx_prod; 665 tx_buf = &txr->tx_buf_ring[prod]; 666 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 667 skb_headlen(skb), DMA_TO_DEVICE); 668 prod = NEXT_TX(prod); 669 670 /* unmap remaining mapped pages */ 671 for (i = 0; i < last_frag; i++) { 672 prod = NEXT_TX(prod); 673 tx_buf = &txr->tx_buf_ring[prod]; 674 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 675 skb_frag_size(&skb_shinfo(skb)->frags[i]), 676 DMA_TO_DEVICE); 677 } 678 679 tx_free: 680 dev_kfree_skb_any(skb); 681 tx_kick_pending: 682 if (txr->kick_pending) 683 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 684 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 685 dev_core_stats_tx_dropped_inc(dev); 686 return NETDEV_TX_OK; 687 } 688 689 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 690 { 691 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 692 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 693 u16 cons = txr->tx_cons; 694 struct pci_dev *pdev = bp->pdev; 695 int nr_pkts = bnapi->tx_pkts; 696 int i; 697 unsigned int tx_bytes = 0; 698 699 for (i = 0; i < nr_pkts; i++) { 700 struct bnxt_sw_tx_bd *tx_buf; 701 struct sk_buff *skb; 702 int j, last; 703 704 tx_buf = &txr->tx_buf_ring[cons]; 705 cons = NEXT_TX(cons); 706 skb = tx_buf->skb; 707 tx_buf->skb = NULL; 708 709 if (unlikely(!skb)) { 710 bnxt_sched_reset_txr(bp, txr, i); 711 return; 712 } 713 714 tx_bytes += skb->len; 715 716 if (tx_buf->is_push) { 717 tx_buf->is_push = 0; 718 goto next_tx_int; 719 } 720 721 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 722 skb_headlen(skb), DMA_TO_DEVICE); 723 last = tx_buf->nr_frags; 724 725 for (j = 0; j < last; j++) { 726 cons = NEXT_TX(cons); 727 tx_buf = &txr->tx_buf_ring[cons]; 728 dma_unmap_page( 729 &pdev->dev, 730 dma_unmap_addr(tx_buf, mapping), 731 skb_frag_size(&skb_shinfo(skb)->frags[j]), 732 DMA_TO_DEVICE); 733 } 734 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 735 if (bp->flags & BNXT_FLAG_CHIP_P5) { 736 /* PTP worker takes ownership of the skb */ 737 if (!bnxt_get_tx_ts_p5(bp, skb)) 738 skb = NULL; 739 else 740 atomic_inc(&bp->ptp_cfg->tx_avail); 741 } 742 } 743 744 next_tx_int: 745 cons = NEXT_TX(cons); 746 747 dev_consume_skb_any(skb); 748 } 749 750 bnapi->tx_pkts = 0; 751 WRITE_ONCE(txr->tx_cons, cons); 752 753 __netif_txq_completed_wake(txq, nr_pkts, tx_bytes, 754 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 755 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 756 } 757 758 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 759 struct bnxt_rx_ring_info *rxr, 760 unsigned int *offset, 761 gfp_t gfp) 762 { 763 struct page *page; 764 765 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 766 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 767 BNXT_RX_PAGE_SIZE); 768 } else { 769 page = page_pool_dev_alloc_pages(rxr->page_pool); 770 *offset = 0; 771 } 772 if (!page) 773 return NULL; 774 775 *mapping = page_pool_get_dma_addr(page) + *offset; 776 return page; 777 } 778 779 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 780 gfp_t gfp) 781 { 782 u8 *data; 783 struct pci_dev *pdev = bp->pdev; 784 785 if (gfp == GFP_ATOMIC) 786 data = napi_alloc_frag(bp->rx_buf_size); 787 else 788 data = netdev_alloc_frag(bp->rx_buf_size); 789 if (!data) 790 return NULL; 791 792 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 793 bp->rx_buf_use_size, bp->rx_dir, 794 DMA_ATTR_WEAK_ORDERING); 795 796 if (dma_mapping_error(&pdev->dev, *mapping)) { 797 skb_free_frag(data); 798 data = NULL; 799 } 800 return data; 801 } 802 803 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 804 u16 prod, gfp_t gfp) 805 { 806 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 807 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 808 dma_addr_t mapping; 809 810 if (BNXT_RX_PAGE_MODE(bp)) { 811 unsigned int offset; 812 struct page *page = 813 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 814 815 if (!page) 816 return -ENOMEM; 817 818 mapping += bp->rx_dma_offset; 819 rx_buf->data = page; 820 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 821 } else { 822 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 823 824 if (!data) 825 return -ENOMEM; 826 827 rx_buf->data = data; 828 rx_buf->data_ptr = data + bp->rx_offset; 829 } 830 rx_buf->mapping = mapping; 831 832 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 833 return 0; 834 } 835 836 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 837 { 838 u16 prod = rxr->rx_prod; 839 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 840 struct rx_bd *cons_bd, *prod_bd; 841 842 prod_rx_buf = &rxr->rx_buf_ring[prod]; 843 cons_rx_buf = &rxr->rx_buf_ring[cons]; 844 845 prod_rx_buf->data = data; 846 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 847 848 prod_rx_buf->mapping = cons_rx_buf->mapping; 849 850 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 851 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 852 853 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 854 } 855 856 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 857 { 858 u16 next, max = rxr->rx_agg_bmap_size; 859 860 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 861 if (next >= max) 862 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 863 return next; 864 } 865 866 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 867 struct bnxt_rx_ring_info *rxr, 868 u16 prod, gfp_t gfp) 869 { 870 struct rx_bd *rxbd = 871 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 872 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 873 struct page *page; 874 dma_addr_t mapping; 875 u16 sw_prod = rxr->rx_sw_agg_prod; 876 unsigned int offset = 0; 877 878 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 879 880 if (!page) 881 return -ENOMEM; 882 883 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 884 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 885 886 __set_bit(sw_prod, rxr->rx_agg_bmap); 887 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 888 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 889 890 rx_agg_buf->page = page; 891 rx_agg_buf->offset = offset; 892 rx_agg_buf->mapping = mapping; 893 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 894 rxbd->rx_bd_opaque = sw_prod; 895 return 0; 896 } 897 898 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 899 struct bnxt_cp_ring_info *cpr, 900 u16 cp_cons, u16 curr) 901 { 902 struct rx_agg_cmp *agg; 903 904 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 905 agg = (struct rx_agg_cmp *) 906 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 907 return agg; 908 } 909 910 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 911 struct bnxt_rx_ring_info *rxr, 912 u16 agg_id, u16 curr) 913 { 914 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 915 916 return &tpa_info->agg_arr[curr]; 917 } 918 919 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 920 u16 start, u32 agg_bufs, bool tpa) 921 { 922 struct bnxt_napi *bnapi = cpr->bnapi; 923 struct bnxt *bp = bnapi->bp; 924 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 925 u16 prod = rxr->rx_agg_prod; 926 u16 sw_prod = rxr->rx_sw_agg_prod; 927 bool p5_tpa = false; 928 u32 i; 929 930 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 931 p5_tpa = true; 932 933 for (i = 0; i < agg_bufs; i++) { 934 u16 cons; 935 struct rx_agg_cmp *agg; 936 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 937 struct rx_bd *prod_bd; 938 struct page *page; 939 940 if (p5_tpa) 941 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 942 else 943 agg = bnxt_get_agg(bp, cpr, idx, start + i); 944 cons = agg->rx_agg_cmp_opaque; 945 __clear_bit(cons, rxr->rx_agg_bmap); 946 947 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 948 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 949 950 __set_bit(sw_prod, rxr->rx_agg_bmap); 951 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 952 cons_rx_buf = &rxr->rx_agg_ring[cons]; 953 954 /* It is possible for sw_prod to be equal to cons, so 955 * set cons_rx_buf->page to NULL first. 956 */ 957 page = cons_rx_buf->page; 958 cons_rx_buf->page = NULL; 959 prod_rx_buf->page = page; 960 prod_rx_buf->offset = cons_rx_buf->offset; 961 962 prod_rx_buf->mapping = cons_rx_buf->mapping; 963 964 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 965 966 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 967 prod_bd->rx_bd_opaque = sw_prod; 968 969 prod = NEXT_RX_AGG(prod); 970 sw_prod = NEXT_RX_AGG(sw_prod); 971 } 972 rxr->rx_agg_prod = prod; 973 rxr->rx_sw_agg_prod = sw_prod; 974 } 975 976 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 977 struct bnxt_rx_ring_info *rxr, 978 u16 cons, void *data, u8 *data_ptr, 979 dma_addr_t dma_addr, 980 unsigned int offset_and_len) 981 { 982 unsigned int len = offset_and_len & 0xffff; 983 struct page *page = data; 984 u16 prod = rxr->rx_prod; 985 struct sk_buff *skb; 986 int err; 987 988 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 989 if (unlikely(err)) { 990 bnxt_reuse_rx_data(rxr, cons, data); 991 return NULL; 992 } 993 dma_addr -= bp->rx_dma_offset; 994 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 995 bp->rx_dir); 996 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 997 if (!skb) { 998 page_pool_recycle_direct(rxr->page_pool, page); 999 return NULL; 1000 } 1001 skb_mark_for_recycle(skb); 1002 skb_reserve(skb, bp->rx_offset); 1003 __skb_put(skb, len); 1004 1005 return skb; 1006 } 1007 1008 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1009 struct bnxt_rx_ring_info *rxr, 1010 u16 cons, void *data, u8 *data_ptr, 1011 dma_addr_t dma_addr, 1012 unsigned int offset_and_len) 1013 { 1014 unsigned int payload = offset_and_len >> 16; 1015 unsigned int len = offset_and_len & 0xffff; 1016 skb_frag_t *frag; 1017 struct page *page = data; 1018 u16 prod = rxr->rx_prod; 1019 struct sk_buff *skb; 1020 int off, err; 1021 1022 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1023 if (unlikely(err)) { 1024 bnxt_reuse_rx_data(rxr, cons, data); 1025 return NULL; 1026 } 1027 dma_addr -= bp->rx_dma_offset; 1028 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1029 bp->rx_dir); 1030 1031 if (unlikely(!payload)) 1032 payload = eth_get_headlen(bp->dev, data_ptr, len); 1033 1034 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1035 if (!skb) { 1036 page_pool_recycle_direct(rxr->page_pool, page); 1037 return NULL; 1038 } 1039 1040 skb_mark_for_recycle(skb); 1041 off = (void *)data_ptr - page_address(page); 1042 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1043 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1044 payload + NET_IP_ALIGN); 1045 1046 frag = &skb_shinfo(skb)->frags[0]; 1047 skb_frag_size_sub(frag, payload); 1048 skb_frag_off_add(frag, payload); 1049 skb->data_len -= payload; 1050 skb->tail += payload; 1051 1052 return skb; 1053 } 1054 1055 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1056 struct bnxt_rx_ring_info *rxr, u16 cons, 1057 void *data, u8 *data_ptr, 1058 dma_addr_t dma_addr, 1059 unsigned int offset_and_len) 1060 { 1061 u16 prod = rxr->rx_prod; 1062 struct sk_buff *skb; 1063 int err; 1064 1065 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1066 if (unlikely(err)) { 1067 bnxt_reuse_rx_data(rxr, cons, data); 1068 return NULL; 1069 } 1070 1071 skb = napi_build_skb(data, bp->rx_buf_size); 1072 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1073 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1074 if (!skb) { 1075 skb_free_frag(data); 1076 return NULL; 1077 } 1078 1079 skb_reserve(skb, bp->rx_offset); 1080 skb_put(skb, offset_and_len & 0xffff); 1081 return skb; 1082 } 1083 1084 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1085 struct bnxt_cp_ring_info *cpr, 1086 struct skb_shared_info *shinfo, 1087 u16 idx, u32 agg_bufs, bool tpa, 1088 struct xdp_buff *xdp) 1089 { 1090 struct bnxt_napi *bnapi = cpr->bnapi; 1091 struct pci_dev *pdev = bp->pdev; 1092 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1093 u16 prod = rxr->rx_agg_prod; 1094 u32 i, total_frag_len = 0; 1095 bool p5_tpa = false; 1096 1097 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1098 p5_tpa = true; 1099 1100 for (i = 0; i < agg_bufs; i++) { 1101 skb_frag_t *frag = &shinfo->frags[i]; 1102 u16 cons, frag_len; 1103 struct rx_agg_cmp *agg; 1104 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1105 struct page *page; 1106 dma_addr_t mapping; 1107 1108 if (p5_tpa) 1109 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1110 else 1111 agg = bnxt_get_agg(bp, cpr, idx, i); 1112 cons = agg->rx_agg_cmp_opaque; 1113 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1114 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1115 1116 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1117 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1118 cons_rx_buf->offset, frag_len); 1119 shinfo->nr_frags = i + 1; 1120 __clear_bit(cons, rxr->rx_agg_bmap); 1121 1122 /* It is possible for bnxt_alloc_rx_page() to allocate 1123 * a sw_prod index that equals the cons index, so we 1124 * need to clear the cons entry now. 1125 */ 1126 mapping = cons_rx_buf->mapping; 1127 page = cons_rx_buf->page; 1128 cons_rx_buf->page = NULL; 1129 1130 if (xdp && page_is_pfmemalloc(page)) 1131 xdp_buff_set_frag_pfmemalloc(xdp); 1132 1133 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1134 --shinfo->nr_frags; 1135 cons_rx_buf->page = page; 1136 1137 /* Update prod since possibly some pages have been 1138 * allocated already. 1139 */ 1140 rxr->rx_agg_prod = prod; 1141 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1142 return 0; 1143 } 1144 1145 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1146 bp->rx_dir); 1147 1148 total_frag_len += frag_len; 1149 prod = NEXT_RX_AGG(prod); 1150 } 1151 rxr->rx_agg_prod = prod; 1152 return total_frag_len; 1153 } 1154 1155 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1156 struct bnxt_cp_ring_info *cpr, 1157 struct sk_buff *skb, u16 idx, 1158 u32 agg_bufs, bool tpa) 1159 { 1160 struct skb_shared_info *shinfo = skb_shinfo(skb); 1161 u32 total_frag_len = 0; 1162 1163 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1164 agg_bufs, tpa, NULL); 1165 if (!total_frag_len) { 1166 skb_mark_for_recycle(skb); 1167 dev_kfree_skb(skb); 1168 return NULL; 1169 } 1170 1171 skb->data_len += total_frag_len; 1172 skb->len += total_frag_len; 1173 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1174 return skb; 1175 } 1176 1177 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1178 struct bnxt_cp_ring_info *cpr, 1179 struct xdp_buff *xdp, u16 idx, 1180 u32 agg_bufs, bool tpa) 1181 { 1182 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1183 u32 total_frag_len = 0; 1184 1185 if (!xdp_buff_has_frags(xdp)) 1186 shinfo->nr_frags = 0; 1187 1188 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1189 idx, agg_bufs, tpa, xdp); 1190 if (total_frag_len) { 1191 xdp_buff_set_frags_flag(xdp); 1192 shinfo->nr_frags = agg_bufs; 1193 shinfo->xdp_frags_size = total_frag_len; 1194 } 1195 return total_frag_len; 1196 } 1197 1198 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1199 u8 agg_bufs, u32 *raw_cons) 1200 { 1201 u16 last; 1202 struct rx_agg_cmp *agg; 1203 1204 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1205 last = RING_CMP(*raw_cons); 1206 agg = (struct rx_agg_cmp *) 1207 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1208 return RX_AGG_CMP_VALID(agg, *raw_cons); 1209 } 1210 1211 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1212 unsigned int len, 1213 dma_addr_t mapping) 1214 { 1215 struct bnxt *bp = bnapi->bp; 1216 struct pci_dev *pdev = bp->pdev; 1217 struct sk_buff *skb; 1218 1219 skb = napi_alloc_skb(&bnapi->napi, len); 1220 if (!skb) 1221 return NULL; 1222 1223 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1224 bp->rx_dir); 1225 1226 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1227 len + NET_IP_ALIGN); 1228 1229 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1230 bp->rx_dir); 1231 1232 skb_put(skb, len); 1233 return skb; 1234 } 1235 1236 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1237 u32 *raw_cons, void *cmp) 1238 { 1239 struct rx_cmp *rxcmp = cmp; 1240 u32 tmp_raw_cons = *raw_cons; 1241 u8 cmp_type, agg_bufs = 0; 1242 1243 cmp_type = RX_CMP_TYPE(rxcmp); 1244 1245 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1246 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1247 RX_CMP_AGG_BUFS) >> 1248 RX_CMP_AGG_BUFS_SHIFT; 1249 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1250 struct rx_tpa_end_cmp *tpa_end = cmp; 1251 1252 if (bp->flags & BNXT_FLAG_CHIP_P5) 1253 return 0; 1254 1255 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1256 } 1257 1258 if (agg_bufs) { 1259 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1260 return -EBUSY; 1261 } 1262 *raw_cons = tmp_raw_cons; 1263 return 0; 1264 } 1265 1266 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1267 { 1268 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1269 u16 idx = agg_id & MAX_TPA_P5_MASK; 1270 1271 if (test_bit(idx, map->agg_idx_bmap)) 1272 idx = find_first_zero_bit(map->agg_idx_bmap, 1273 BNXT_AGG_IDX_BMAP_SIZE); 1274 __set_bit(idx, map->agg_idx_bmap); 1275 map->agg_id_tbl[agg_id] = idx; 1276 return idx; 1277 } 1278 1279 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1280 { 1281 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1282 1283 __clear_bit(idx, map->agg_idx_bmap); 1284 } 1285 1286 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1287 { 1288 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1289 1290 return map->agg_id_tbl[agg_id]; 1291 } 1292 1293 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1294 struct rx_tpa_start_cmp *tpa_start, 1295 struct rx_tpa_start_cmp_ext *tpa_start1) 1296 { 1297 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1298 struct bnxt_tpa_info *tpa_info; 1299 u16 cons, prod, agg_id; 1300 struct rx_bd *prod_bd; 1301 dma_addr_t mapping; 1302 1303 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1304 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1305 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1306 } else { 1307 agg_id = TPA_START_AGG_ID(tpa_start); 1308 } 1309 cons = tpa_start->rx_tpa_start_cmp_opaque; 1310 prod = rxr->rx_prod; 1311 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1312 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1313 tpa_info = &rxr->rx_tpa[agg_id]; 1314 1315 if (unlikely(cons != rxr->rx_next_cons || 1316 TPA_START_ERROR(tpa_start))) { 1317 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1318 cons, rxr->rx_next_cons, 1319 TPA_START_ERROR_CODE(tpa_start1)); 1320 bnxt_sched_reset_rxr(bp, rxr); 1321 return; 1322 } 1323 /* Store cfa_code in tpa_info to use in tpa_end 1324 * completion processing. 1325 */ 1326 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1327 prod_rx_buf->data = tpa_info->data; 1328 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1329 1330 mapping = tpa_info->mapping; 1331 prod_rx_buf->mapping = mapping; 1332 1333 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1334 1335 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1336 1337 tpa_info->data = cons_rx_buf->data; 1338 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1339 cons_rx_buf->data = NULL; 1340 tpa_info->mapping = cons_rx_buf->mapping; 1341 1342 tpa_info->len = 1343 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1344 RX_TPA_START_CMP_LEN_SHIFT; 1345 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1346 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1347 1348 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1349 tpa_info->gso_type = SKB_GSO_TCPV4; 1350 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1351 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1352 tpa_info->gso_type = SKB_GSO_TCPV6; 1353 tpa_info->rss_hash = 1354 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1355 } else { 1356 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1357 tpa_info->gso_type = 0; 1358 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1359 } 1360 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1361 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1362 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1363 tpa_info->agg_count = 0; 1364 1365 rxr->rx_prod = NEXT_RX(prod); 1366 cons = NEXT_RX(cons); 1367 rxr->rx_next_cons = NEXT_RX(cons); 1368 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1369 1370 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1371 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1372 cons_rx_buf->data = NULL; 1373 } 1374 1375 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1376 { 1377 if (agg_bufs) 1378 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1379 } 1380 1381 #ifdef CONFIG_INET 1382 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1383 { 1384 struct udphdr *uh = NULL; 1385 1386 if (ip_proto == htons(ETH_P_IP)) { 1387 struct iphdr *iph = (struct iphdr *)skb->data; 1388 1389 if (iph->protocol == IPPROTO_UDP) 1390 uh = (struct udphdr *)(iph + 1); 1391 } else { 1392 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1393 1394 if (iph->nexthdr == IPPROTO_UDP) 1395 uh = (struct udphdr *)(iph + 1); 1396 } 1397 if (uh) { 1398 if (uh->check) 1399 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1400 else 1401 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1402 } 1403 } 1404 #endif 1405 1406 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1407 int payload_off, int tcp_ts, 1408 struct sk_buff *skb) 1409 { 1410 #ifdef CONFIG_INET 1411 struct tcphdr *th; 1412 int len, nw_off; 1413 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1414 u32 hdr_info = tpa_info->hdr_info; 1415 bool loopback = false; 1416 1417 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1418 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1419 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1420 1421 /* If the packet is an internal loopback packet, the offsets will 1422 * have an extra 4 bytes. 1423 */ 1424 if (inner_mac_off == 4) { 1425 loopback = true; 1426 } else if (inner_mac_off > 4) { 1427 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1428 ETH_HLEN - 2)); 1429 1430 /* We only support inner iPv4/ipv6. If we don't see the 1431 * correct protocol ID, it must be a loopback packet where 1432 * the offsets are off by 4. 1433 */ 1434 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1435 loopback = true; 1436 } 1437 if (loopback) { 1438 /* internal loopback packet, subtract all offsets by 4 */ 1439 inner_ip_off -= 4; 1440 inner_mac_off -= 4; 1441 outer_ip_off -= 4; 1442 } 1443 1444 nw_off = inner_ip_off - ETH_HLEN; 1445 skb_set_network_header(skb, nw_off); 1446 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1447 struct ipv6hdr *iph = ipv6_hdr(skb); 1448 1449 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1450 len = skb->len - skb_transport_offset(skb); 1451 th = tcp_hdr(skb); 1452 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1453 } else { 1454 struct iphdr *iph = ip_hdr(skb); 1455 1456 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1457 len = skb->len - skb_transport_offset(skb); 1458 th = tcp_hdr(skb); 1459 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1460 } 1461 1462 if (inner_mac_off) { /* tunnel */ 1463 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1464 ETH_HLEN - 2)); 1465 1466 bnxt_gro_tunnel(skb, proto); 1467 } 1468 #endif 1469 return skb; 1470 } 1471 1472 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1473 int payload_off, int tcp_ts, 1474 struct sk_buff *skb) 1475 { 1476 #ifdef CONFIG_INET 1477 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1478 u32 hdr_info = tpa_info->hdr_info; 1479 int iphdr_len, nw_off; 1480 1481 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1482 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1483 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1484 1485 nw_off = inner_ip_off - ETH_HLEN; 1486 skb_set_network_header(skb, nw_off); 1487 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1488 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1489 skb_set_transport_header(skb, nw_off + iphdr_len); 1490 1491 if (inner_mac_off) { /* tunnel */ 1492 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1493 ETH_HLEN - 2)); 1494 1495 bnxt_gro_tunnel(skb, proto); 1496 } 1497 #endif 1498 return skb; 1499 } 1500 1501 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1502 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1503 1504 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1505 int payload_off, int tcp_ts, 1506 struct sk_buff *skb) 1507 { 1508 #ifdef CONFIG_INET 1509 struct tcphdr *th; 1510 int len, nw_off, tcp_opt_len = 0; 1511 1512 if (tcp_ts) 1513 tcp_opt_len = 12; 1514 1515 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1516 struct iphdr *iph; 1517 1518 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1519 ETH_HLEN; 1520 skb_set_network_header(skb, nw_off); 1521 iph = ip_hdr(skb); 1522 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1523 len = skb->len - skb_transport_offset(skb); 1524 th = tcp_hdr(skb); 1525 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1526 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1527 struct ipv6hdr *iph; 1528 1529 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1530 ETH_HLEN; 1531 skb_set_network_header(skb, nw_off); 1532 iph = ipv6_hdr(skb); 1533 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1534 len = skb->len - skb_transport_offset(skb); 1535 th = tcp_hdr(skb); 1536 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1537 } else { 1538 dev_kfree_skb_any(skb); 1539 return NULL; 1540 } 1541 1542 if (nw_off) /* tunnel */ 1543 bnxt_gro_tunnel(skb, skb->protocol); 1544 #endif 1545 return skb; 1546 } 1547 1548 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1549 struct bnxt_tpa_info *tpa_info, 1550 struct rx_tpa_end_cmp *tpa_end, 1551 struct rx_tpa_end_cmp_ext *tpa_end1, 1552 struct sk_buff *skb) 1553 { 1554 #ifdef CONFIG_INET 1555 int payload_off; 1556 u16 segs; 1557 1558 segs = TPA_END_TPA_SEGS(tpa_end); 1559 if (segs == 1) 1560 return skb; 1561 1562 NAPI_GRO_CB(skb)->count = segs; 1563 skb_shinfo(skb)->gso_size = 1564 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1565 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1566 if (bp->flags & BNXT_FLAG_CHIP_P5) 1567 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1568 else 1569 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1570 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1571 if (likely(skb)) 1572 tcp_gro_complete(skb); 1573 #endif 1574 return skb; 1575 } 1576 1577 /* Given the cfa_code of a received packet determine which 1578 * netdev (vf-rep or PF) the packet is destined to. 1579 */ 1580 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1581 { 1582 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1583 1584 /* if vf-rep dev is NULL, the must belongs to the PF */ 1585 return dev ? dev : bp->dev; 1586 } 1587 1588 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1589 struct bnxt_cp_ring_info *cpr, 1590 u32 *raw_cons, 1591 struct rx_tpa_end_cmp *tpa_end, 1592 struct rx_tpa_end_cmp_ext *tpa_end1, 1593 u8 *event) 1594 { 1595 struct bnxt_napi *bnapi = cpr->bnapi; 1596 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1597 u8 *data_ptr, agg_bufs; 1598 unsigned int len; 1599 struct bnxt_tpa_info *tpa_info; 1600 dma_addr_t mapping; 1601 struct sk_buff *skb; 1602 u16 idx = 0, agg_id; 1603 void *data; 1604 bool gro; 1605 1606 if (unlikely(bnapi->in_reset)) { 1607 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1608 1609 if (rc < 0) 1610 return ERR_PTR(-EBUSY); 1611 return NULL; 1612 } 1613 1614 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1615 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1616 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1617 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1618 tpa_info = &rxr->rx_tpa[agg_id]; 1619 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1620 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1621 agg_bufs, tpa_info->agg_count); 1622 agg_bufs = tpa_info->agg_count; 1623 } 1624 tpa_info->agg_count = 0; 1625 *event |= BNXT_AGG_EVENT; 1626 bnxt_free_agg_idx(rxr, agg_id); 1627 idx = agg_id; 1628 gro = !!(bp->flags & BNXT_FLAG_GRO); 1629 } else { 1630 agg_id = TPA_END_AGG_ID(tpa_end); 1631 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1632 tpa_info = &rxr->rx_tpa[agg_id]; 1633 idx = RING_CMP(*raw_cons); 1634 if (agg_bufs) { 1635 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1636 return ERR_PTR(-EBUSY); 1637 1638 *event |= BNXT_AGG_EVENT; 1639 idx = NEXT_CMP(idx); 1640 } 1641 gro = !!TPA_END_GRO(tpa_end); 1642 } 1643 data = tpa_info->data; 1644 data_ptr = tpa_info->data_ptr; 1645 prefetch(data_ptr); 1646 len = tpa_info->len; 1647 mapping = tpa_info->mapping; 1648 1649 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1650 bnxt_abort_tpa(cpr, idx, agg_bufs); 1651 if (agg_bufs > MAX_SKB_FRAGS) 1652 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1653 agg_bufs, (int)MAX_SKB_FRAGS); 1654 return NULL; 1655 } 1656 1657 if (len <= bp->rx_copy_thresh) { 1658 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1659 if (!skb) { 1660 bnxt_abort_tpa(cpr, idx, agg_bufs); 1661 cpr->sw_stats.rx.rx_oom_discards += 1; 1662 return NULL; 1663 } 1664 } else { 1665 u8 *new_data; 1666 dma_addr_t new_mapping; 1667 1668 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1669 if (!new_data) { 1670 bnxt_abort_tpa(cpr, idx, agg_bufs); 1671 cpr->sw_stats.rx.rx_oom_discards += 1; 1672 return NULL; 1673 } 1674 1675 tpa_info->data = new_data; 1676 tpa_info->data_ptr = new_data + bp->rx_offset; 1677 tpa_info->mapping = new_mapping; 1678 1679 skb = napi_build_skb(data, bp->rx_buf_size); 1680 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1681 bp->rx_buf_use_size, bp->rx_dir, 1682 DMA_ATTR_WEAK_ORDERING); 1683 1684 if (!skb) { 1685 skb_free_frag(data); 1686 bnxt_abort_tpa(cpr, idx, agg_bufs); 1687 cpr->sw_stats.rx.rx_oom_discards += 1; 1688 return NULL; 1689 } 1690 skb_reserve(skb, bp->rx_offset); 1691 skb_put(skb, len); 1692 } 1693 1694 if (agg_bufs) { 1695 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1696 if (!skb) { 1697 /* Page reuse already handled by bnxt_rx_pages(). */ 1698 cpr->sw_stats.rx.rx_oom_discards += 1; 1699 return NULL; 1700 } 1701 } 1702 1703 skb->protocol = 1704 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1705 1706 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1707 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1708 1709 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1710 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1711 __be16 vlan_proto = htons(tpa_info->metadata >> 1712 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1713 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1714 1715 if (eth_type_vlan(vlan_proto)) { 1716 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1717 } else { 1718 dev_kfree_skb(skb); 1719 return NULL; 1720 } 1721 } 1722 1723 skb_checksum_none_assert(skb); 1724 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1725 skb->ip_summed = CHECKSUM_UNNECESSARY; 1726 skb->csum_level = 1727 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1728 } 1729 1730 if (gro) 1731 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1732 1733 return skb; 1734 } 1735 1736 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1737 struct rx_agg_cmp *rx_agg) 1738 { 1739 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1740 struct bnxt_tpa_info *tpa_info; 1741 1742 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1743 tpa_info = &rxr->rx_tpa[agg_id]; 1744 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1745 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1746 } 1747 1748 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1749 struct sk_buff *skb) 1750 { 1751 if (skb->dev != bp->dev) { 1752 /* this packet belongs to a vf-rep */ 1753 bnxt_vf_rep_rx(bp, skb); 1754 return; 1755 } 1756 skb_record_rx_queue(skb, bnapi->index); 1757 skb_mark_for_recycle(skb); 1758 napi_gro_receive(&bnapi->napi, skb); 1759 } 1760 1761 /* returns the following: 1762 * 1 - 1 packet successfully received 1763 * 0 - successful TPA_START, packet not completed yet 1764 * -EBUSY - completion ring does not have all the agg buffers yet 1765 * -ENOMEM - packet aborted due to out of memory 1766 * -EIO - packet aborted due to hw error indicated in BD 1767 */ 1768 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1769 u32 *raw_cons, u8 *event) 1770 { 1771 struct bnxt_napi *bnapi = cpr->bnapi; 1772 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1773 struct net_device *dev = bp->dev; 1774 struct rx_cmp *rxcmp; 1775 struct rx_cmp_ext *rxcmp1; 1776 u32 tmp_raw_cons = *raw_cons; 1777 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1778 struct bnxt_sw_rx_bd *rx_buf; 1779 unsigned int len; 1780 u8 *data_ptr, agg_bufs, cmp_type; 1781 bool xdp_active = false; 1782 dma_addr_t dma_addr; 1783 struct sk_buff *skb; 1784 struct xdp_buff xdp; 1785 u32 flags, misc; 1786 void *data; 1787 int rc = 0; 1788 1789 rxcmp = (struct rx_cmp *) 1790 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1791 1792 cmp_type = RX_CMP_TYPE(rxcmp); 1793 1794 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1795 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1796 goto next_rx_no_prod_no_len; 1797 } 1798 1799 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1800 cp_cons = RING_CMP(tmp_raw_cons); 1801 rxcmp1 = (struct rx_cmp_ext *) 1802 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1803 1804 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1805 return -EBUSY; 1806 1807 /* The valid test of the entry must be done first before 1808 * reading any further. 1809 */ 1810 dma_rmb(); 1811 prod = rxr->rx_prod; 1812 1813 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1814 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1815 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1816 1817 *event |= BNXT_RX_EVENT; 1818 goto next_rx_no_prod_no_len; 1819 1820 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1821 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1822 (struct rx_tpa_end_cmp *)rxcmp, 1823 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1824 1825 if (IS_ERR(skb)) 1826 return -EBUSY; 1827 1828 rc = -ENOMEM; 1829 if (likely(skb)) { 1830 bnxt_deliver_skb(bp, bnapi, skb); 1831 rc = 1; 1832 } 1833 *event |= BNXT_RX_EVENT; 1834 goto next_rx_no_prod_no_len; 1835 } 1836 1837 cons = rxcmp->rx_cmp_opaque; 1838 if (unlikely(cons != rxr->rx_next_cons)) { 1839 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1840 1841 /* 0xffff is forced error, don't print it */ 1842 if (rxr->rx_next_cons != 0xffff) 1843 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1844 cons, rxr->rx_next_cons); 1845 bnxt_sched_reset_rxr(bp, rxr); 1846 if (rc1) 1847 return rc1; 1848 goto next_rx_no_prod_no_len; 1849 } 1850 rx_buf = &rxr->rx_buf_ring[cons]; 1851 data = rx_buf->data; 1852 data_ptr = rx_buf->data_ptr; 1853 prefetch(data_ptr); 1854 1855 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1856 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1857 1858 if (agg_bufs) { 1859 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1860 return -EBUSY; 1861 1862 cp_cons = NEXT_CMP(cp_cons); 1863 *event |= BNXT_AGG_EVENT; 1864 } 1865 *event |= BNXT_RX_EVENT; 1866 1867 rx_buf->data = NULL; 1868 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1869 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1870 1871 bnxt_reuse_rx_data(rxr, cons, data); 1872 if (agg_bufs) 1873 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1874 false); 1875 1876 rc = -EIO; 1877 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1878 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1879 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1880 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1881 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1882 rx_err); 1883 bnxt_sched_reset_rxr(bp, rxr); 1884 } 1885 } 1886 goto next_rx_no_len; 1887 } 1888 1889 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1890 len = flags >> RX_CMP_LEN_SHIFT; 1891 dma_addr = rx_buf->mapping; 1892 1893 if (bnxt_xdp_attached(bp, rxr)) { 1894 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 1895 if (agg_bufs) { 1896 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 1897 cp_cons, agg_bufs, 1898 false); 1899 if (!frag_len) { 1900 cpr->sw_stats.rx.rx_oom_discards += 1; 1901 rc = -ENOMEM; 1902 goto next_rx; 1903 } 1904 } 1905 xdp_active = true; 1906 } 1907 1908 if (xdp_active) { 1909 if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) { 1910 rc = 1; 1911 goto next_rx; 1912 } 1913 } 1914 1915 if (len <= bp->rx_copy_thresh) { 1916 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1917 bnxt_reuse_rx_data(rxr, cons, data); 1918 if (!skb) { 1919 if (agg_bufs) { 1920 if (!xdp_active) 1921 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1922 agg_bufs, false); 1923 else 1924 bnxt_xdp_buff_frags_free(rxr, &xdp); 1925 } 1926 cpr->sw_stats.rx.rx_oom_discards += 1; 1927 rc = -ENOMEM; 1928 goto next_rx; 1929 } 1930 } else { 1931 u32 payload; 1932 1933 if (rx_buf->data_ptr == data_ptr) 1934 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1935 else 1936 payload = 0; 1937 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1938 payload | len); 1939 if (!skb) { 1940 cpr->sw_stats.rx.rx_oom_discards += 1; 1941 rc = -ENOMEM; 1942 goto next_rx; 1943 } 1944 } 1945 1946 if (agg_bufs) { 1947 if (!xdp_active) { 1948 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 1949 if (!skb) { 1950 cpr->sw_stats.rx.rx_oom_discards += 1; 1951 rc = -ENOMEM; 1952 goto next_rx; 1953 } 1954 } else { 1955 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 1956 if (!skb) { 1957 /* we should be able to free the old skb here */ 1958 bnxt_xdp_buff_frags_free(rxr, &xdp); 1959 cpr->sw_stats.rx.rx_oom_discards += 1; 1960 rc = -ENOMEM; 1961 goto next_rx; 1962 } 1963 } 1964 } 1965 1966 if (RX_CMP_HASH_VALID(rxcmp)) { 1967 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1968 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1969 1970 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1971 if (hash_type != 1 && hash_type != 3) 1972 type = PKT_HASH_TYPE_L3; 1973 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1974 } 1975 1976 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1977 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1978 1979 if ((rxcmp1->rx_cmp_flags2 & 1980 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1981 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1982 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1983 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1984 __be16 vlan_proto = htons(meta_data >> 1985 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1986 1987 if (eth_type_vlan(vlan_proto)) { 1988 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1989 } else { 1990 dev_kfree_skb(skb); 1991 goto next_rx; 1992 } 1993 } 1994 1995 skb_checksum_none_assert(skb); 1996 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1997 if (dev->features & NETIF_F_RXCSUM) { 1998 skb->ip_summed = CHECKSUM_UNNECESSARY; 1999 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2000 } 2001 } else { 2002 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2003 if (dev->features & NETIF_F_RXCSUM) 2004 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2005 } 2006 } 2007 2008 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 2009 RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) { 2010 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2011 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2012 u64 ns, ts; 2013 2014 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2015 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2016 2017 spin_lock_bh(&ptp->ptp_lock); 2018 ns = timecounter_cyc2time(&ptp->tc, ts); 2019 spin_unlock_bh(&ptp->ptp_lock); 2020 memset(skb_hwtstamps(skb), 0, 2021 sizeof(*skb_hwtstamps(skb))); 2022 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2023 } 2024 } 2025 } 2026 bnxt_deliver_skb(bp, bnapi, skb); 2027 rc = 1; 2028 2029 next_rx: 2030 cpr->rx_packets += 1; 2031 cpr->rx_bytes += len; 2032 2033 next_rx_no_len: 2034 rxr->rx_prod = NEXT_RX(prod); 2035 rxr->rx_next_cons = NEXT_RX(cons); 2036 2037 next_rx_no_prod_no_len: 2038 *raw_cons = tmp_raw_cons; 2039 2040 return rc; 2041 } 2042 2043 /* In netpoll mode, if we are using a combined completion ring, we need to 2044 * discard the rx packets and recycle the buffers. 2045 */ 2046 static int bnxt_force_rx_discard(struct bnxt *bp, 2047 struct bnxt_cp_ring_info *cpr, 2048 u32 *raw_cons, u8 *event) 2049 { 2050 u32 tmp_raw_cons = *raw_cons; 2051 struct rx_cmp_ext *rxcmp1; 2052 struct rx_cmp *rxcmp; 2053 u16 cp_cons; 2054 u8 cmp_type; 2055 int rc; 2056 2057 cp_cons = RING_CMP(tmp_raw_cons); 2058 rxcmp = (struct rx_cmp *) 2059 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2060 2061 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2062 cp_cons = RING_CMP(tmp_raw_cons); 2063 rxcmp1 = (struct rx_cmp_ext *) 2064 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2065 2066 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2067 return -EBUSY; 2068 2069 /* The valid test of the entry must be done first before 2070 * reading any further. 2071 */ 2072 dma_rmb(); 2073 cmp_type = RX_CMP_TYPE(rxcmp); 2074 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2075 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2076 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2077 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2078 struct rx_tpa_end_cmp_ext *tpa_end1; 2079 2080 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2081 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2082 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2083 } 2084 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2085 if (rc && rc != -EBUSY) 2086 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2087 return rc; 2088 } 2089 2090 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2091 { 2092 struct bnxt_fw_health *fw_health = bp->fw_health; 2093 u32 reg = fw_health->regs[reg_idx]; 2094 u32 reg_type, reg_off, val = 0; 2095 2096 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2097 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2098 switch (reg_type) { 2099 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2100 pci_read_config_dword(bp->pdev, reg_off, &val); 2101 break; 2102 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2103 reg_off = fw_health->mapped_regs[reg_idx]; 2104 fallthrough; 2105 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2106 val = readl(bp->bar0 + reg_off); 2107 break; 2108 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2109 val = readl(bp->bar1 + reg_off); 2110 break; 2111 } 2112 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2113 val &= fw_health->fw_reset_inprog_reg_mask; 2114 return val; 2115 } 2116 2117 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2118 { 2119 int i; 2120 2121 for (i = 0; i < bp->rx_nr_rings; i++) { 2122 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2123 struct bnxt_ring_grp_info *grp_info; 2124 2125 grp_info = &bp->grp_info[grp_idx]; 2126 if (grp_info->agg_fw_ring_id == ring_id) 2127 return grp_idx; 2128 } 2129 return INVALID_HW_RING_ID; 2130 } 2131 2132 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2133 { 2134 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2135 return link_info->force_pam4_link_speed; 2136 return link_info->force_link_speed; 2137 } 2138 2139 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2140 { 2141 link_info->req_link_speed = link_info->force_link_speed; 2142 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2143 if (link_info->force_pam4_link_speed) { 2144 link_info->req_link_speed = link_info->force_pam4_link_speed; 2145 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2146 } 2147 } 2148 2149 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2150 { 2151 link_info->advertising = link_info->auto_link_speeds; 2152 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2153 } 2154 2155 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2156 { 2157 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2158 link_info->req_link_speed != link_info->force_link_speed) 2159 return true; 2160 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2161 link_info->req_link_speed != link_info->force_pam4_link_speed) 2162 return true; 2163 return false; 2164 } 2165 2166 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2167 { 2168 if (link_info->advertising != link_info->auto_link_speeds || 2169 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2170 return true; 2171 return false; 2172 } 2173 2174 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2175 ((data2) & \ 2176 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2177 2178 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2179 (((data2) & \ 2180 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2181 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2182 2183 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2184 ((data1) & \ 2185 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2186 2187 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2188 (((data1) & \ 2189 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2190 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2191 2192 /* Return true if the workqueue has to be scheduled */ 2193 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2194 { 2195 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2196 2197 switch (err_type) { 2198 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2199 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2200 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2201 break; 2202 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2203 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2204 break; 2205 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2206 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2207 break; 2208 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2209 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2210 char *threshold_type; 2211 bool notify = false; 2212 char *dir_str; 2213 2214 switch (type) { 2215 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2216 threshold_type = "warning"; 2217 break; 2218 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2219 threshold_type = "critical"; 2220 break; 2221 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2222 threshold_type = "fatal"; 2223 break; 2224 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2225 threshold_type = "shutdown"; 2226 break; 2227 default: 2228 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2229 return false; 2230 } 2231 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2232 dir_str = "above"; 2233 notify = true; 2234 } else { 2235 dir_str = "below"; 2236 } 2237 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2238 dir_str, threshold_type); 2239 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2240 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2241 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2242 if (notify) { 2243 bp->thermal_threshold_type = type; 2244 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2245 return true; 2246 } 2247 return false; 2248 } 2249 default: 2250 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2251 err_type); 2252 break; 2253 } 2254 return false; 2255 } 2256 2257 #define BNXT_GET_EVENT_PORT(data) \ 2258 ((data) & \ 2259 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2260 2261 #define BNXT_EVENT_RING_TYPE(data2) \ 2262 ((data2) & \ 2263 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2264 2265 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2266 (BNXT_EVENT_RING_TYPE(data2) == \ 2267 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2268 2269 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2270 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2271 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2272 2273 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2274 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2275 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2276 2277 #define BNXT_PHC_BITS 48 2278 2279 static int bnxt_async_event_process(struct bnxt *bp, 2280 struct hwrm_async_event_cmpl *cmpl) 2281 { 2282 u16 event_id = le16_to_cpu(cmpl->event_id); 2283 u32 data1 = le32_to_cpu(cmpl->event_data1); 2284 u32 data2 = le32_to_cpu(cmpl->event_data2); 2285 2286 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2287 event_id, data1, data2); 2288 2289 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2290 switch (event_id) { 2291 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2292 struct bnxt_link_info *link_info = &bp->link_info; 2293 2294 if (BNXT_VF(bp)) 2295 goto async_event_process_exit; 2296 2297 /* print unsupported speed warning in forced speed mode only */ 2298 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2299 (data1 & 0x20000)) { 2300 u16 fw_speed = bnxt_get_force_speed(link_info); 2301 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2302 2303 if (speed != SPEED_UNKNOWN) 2304 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2305 speed); 2306 } 2307 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2308 } 2309 fallthrough; 2310 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2311 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2312 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2313 fallthrough; 2314 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2315 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2316 break; 2317 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2318 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2319 break; 2320 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2321 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2322 2323 if (BNXT_VF(bp)) 2324 break; 2325 2326 if (bp->pf.port_id != port_id) 2327 break; 2328 2329 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2330 break; 2331 } 2332 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2333 if (BNXT_PF(bp)) 2334 goto async_event_process_exit; 2335 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2336 break; 2337 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2338 char *type_str = "Solicited"; 2339 2340 if (!bp->fw_health) 2341 goto async_event_process_exit; 2342 2343 bp->fw_reset_timestamp = jiffies; 2344 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2345 if (!bp->fw_reset_min_dsecs) 2346 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2347 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2348 if (!bp->fw_reset_max_dsecs) 2349 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2350 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2351 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2352 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2353 type_str = "Fatal"; 2354 bp->fw_health->fatalities++; 2355 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2356 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2357 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2358 type_str = "Non-fatal"; 2359 bp->fw_health->survivals++; 2360 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2361 } 2362 netif_warn(bp, hw, bp->dev, 2363 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2364 type_str, data1, data2, 2365 bp->fw_reset_min_dsecs * 100, 2366 bp->fw_reset_max_dsecs * 100); 2367 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2368 break; 2369 } 2370 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2371 struct bnxt_fw_health *fw_health = bp->fw_health; 2372 char *status_desc = "healthy"; 2373 u32 status; 2374 2375 if (!fw_health) 2376 goto async_event_process_exit; 2377 2378 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2379 fw_health->enabled = false; 2380 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2381 break; 2382 } 2383 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2384 fw_health->tmr_multiplier = 2385 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2386 bp->current_interval * 10); 2387 fw_health->tmr_counter = fw_health->tmr_multiplier; 2388 if (!fw_health->enabled) 2389 fw_health->last_fw_heartbeat = 2390 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2391 fw_health->last_fw_reset_cnt = 2392 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2393 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2394 if (status != BNXT_FW_STATUS_HEALTHY) 2395 status_desc = "unhealthy"; 2396 netif_info(bp, drv, bp->dev, 2397 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2398 fw_health->primary ? "primary" : "backup", status, 2399 status_desc, fw_health->last_fw_reset_cnt); 2400 if (!fw_health->enabled) { 2401 /* Make sure tmr_counter is set and visible to 2402 * bnxt_health_check() before setting enabled to true. 2403 */ 2404 smp_wmb(); 2405 fw_health->enabled = true; 2406 } 2407 goto async_event_process_exit; 2408 } 2409 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2410 netif_notice(bp, hw, bp->dev, 2411 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2412 data1, data2); 2413 goto async_event_process_exit; 2414 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2415 struct bnxt_rx_ring_info *rxr; 2416 u16 grp_idx; 2417 2418 if (bp->flags & BNXT_FLAG_CHIP_P5) 2419 goto async_event_process_exit; 2420 2421 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2422 BNXT_EVENT_RING_TYPE(data2), data1); 2423 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2424 goto async_event_process_exit; 2425 2426 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2427 if (grp_idx == INVALID_HW_RING_ID) { 2428 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2429 data1); 2430 goto async_event_process_exit; 2431 } 2432 rxr = bp->bnapi[grp_idx]->rx_ring; 2433 bnxt_sched_reset_rxr(bp, rxr); 2434 goto async_event_process_exit; 2435 } 2436 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2437 struct bnxt_fw_health *fw_health = bp->fw_health; 2438 2439 netif_notice(bp, hw, bp->dev, 2440 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2441 data1, data2); 2442 if (fw_health) { 2443 fw_health->echo_req_data1 = data1; 2444 fw_health->echo_req_data2 = data2; 2445 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2446 break; 2447 } 2448 goto async_event_process_exit; 2449 } 2450 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2451 bnxt_ptp_pps_event(bp, data1, data2); 2452 goto async_event_process_exit; 2453 } 2454 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2455 if (bnxt_event_error_report(bp, data1, data2)) 2456 break; 2457 goto async_event_process_exit; 2458 } 2459 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2460 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2461 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2462 if (BNXT_PTP_USE_RTC(bp)) { 2463 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2464 u64 ns; 2465 2466 if (!ptp) 2467 goto async_event_process_exit; 2468 2469 spin_lock_bh(&ptp->ptp_lock); 2470 bnxt_ptp_update_current_time(bp); 2471 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2472 BNXT_PHC_BITS) | ptp->current_time); 2473 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2474 spin_unlock_bh(&ptp->ptp_lock); 2475 } 2476 break; 2477 } 2478 goto async_event_process_exit; 2479 } 2480 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2481 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2482 2483 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2484 goto async_event_process_exit; 2485 } 2486 default: 2487 goto async_event_process_exit; 2488 } 2489 __bnxt_queue_sp_work(bp); 2490 async_event_process_exit: 2491 return 0; 2492 } 2493 2494 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2495 { 2496 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2497 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2498 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2499 (struct hwrm_fwd_req_cmpl *)txcmp; 2500 2501 switch (cmpl_type) { 2502 case CMPL_BASE_TYPE_HWRM_DONE: 2503 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2504 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2505 break; 2506 2507 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2508 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2509 2510 if ((vf_id < bp->pf.first_vf_id) || 2511 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2512 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2513 vf_id); 2514 return -EINVAL; 2515 } 2516 2517 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2518 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2519 break; 2520 2521 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2522 bnxt_async_event_process(bp, 2523 (struct hwrm_async_event_cmpl *)txcmp); 2524 break; 2525 2526 default: 2527 break; 2528 } 2529 2530 return 0; 2531 } 2532 2533 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2534 { 2535 struct bnxt_napi *bnapi = dev_instance; 2536 struct bnxt *bp = bnapi->bp; 2537 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2538 u32 cons = RING_CMP(cpr->cp_raw_cons); 2539 2540 cpr->event_ctr++; 2541 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2542 napi_schedule(&bnapi->napi); 2543 return IRQ_HANDLED; 2544 } 2545 2546 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2547 { 2548 u32 raw_cons = cpr->cp_raw_cons; 2549 u16 cons = RING_CMP(raw_cons); 2550 struct tx_cmp *txcmp; 2551 2552 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2553 2554 return TX_CMP_VALID(txcmp, raw_cons); 2555 } 2556 2557 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2558 { 2559 struct bnxt_napi *bnapi = dev_instance; 2560 struct bnxt *bp = bnapi->bp; 2561 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2562 u32 cons = RING_CMP(cpr->cp_raw_cons); 2563 u32 int_status; 2564 2565 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2566 2567 if (!bnxt_has_work(bp, cpr)) { 2568 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2569 /* return if erroneous interrupt */ 2570 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2571 return IRQ_NONE; 2572 } 2573 2574 /* disable ring IRQ */ 2575 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2576 2577 /* Return here if interrupt is shared and is disabled. */ 2578 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2579 return IRQ_HANDLED; 2580 2581 napi_schedule(&bnapi->napi); 2582 return IRQ_HANDLED; 2583 } 2584 2585 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2586 int budget) 2587 { 2588 struct bnxt_napi *bnapi = cpr->bnapi; 2589 u32 raw_cons = cpr->cp_raw_cons; 2590 u32 cons; 2591 int tx_pkts = 0; 2592 int rx_pkts = 0; 2593 u8 event = 0; 2594 struct tx_cmp *txcmp; 2595 2596 cpr->has_more_work = 0; 2597 cpr->had_work_done = 1; 2598 while (1) { 2599 int rc; 2600 2601 cons = RING_CMP(raw_cons); 2602 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2603 2604 if (!TX_CMP_VALID(txcmp, raw_cons)) 2605 break; 2606 2607 /* The valid test of the entry must be done first before 2608 * reading any further. 2609 */ 2610 dma_rmb(); 2611 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2612 tx_pkts++; 2613 /* return full budget so NAPI will complete. */ 2614 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2615 rx_pkts = budget; 2616 raw_cons = NEXT_RAW_CMP(raw_cons); 2617 if (budget) 2618 cpr->has_more_work = 1; 2619 break; 2620 } 2621 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2622 if (likely(budget)) 2623 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2624 else 2625 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2626 &event); 2627 if (likely(rc >= 0)) 2628 rx_pkts += rc; 2629 /* Increment rx_pkts when rc is -ENOMEM to count towards 2630 * the NAPI budget. Otherwise, we may potentially loop 2631 * here forever if we consistently cannot allocate 2632 * buffers. 2633 */ 2634 else if (rc == -ENOMEM && budget) 2635 rx_pkts++; 2636 else if (rc == -EBUSY) /* partial completion */ 2637 break; 2638 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2639 CMPL_BASE_TYPE_HWRM_DONE) || 2640 (TX_CMP_TYPE(txcmp) == 2641 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2642 (TX_CMP_TYPE(txcmp) == 2643 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2644 bnxt_hwrm_handler(bp, txcmp); 2645 } 2646 raw_cons = NEXT_RAW_CMP(raw_cons); 2647 2648 if (rx_pkts && rx_pkts == budget) { 2649 cpr->has_more_work = 1; 2650 break; 2651 } 2652 } 2653 2654 if (event & BNXT_REDIRECT_EVENT) 2655 xdp_do_flush(); 2656 2657 if (event & BNXT_TX_EVENT) { 2658 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2659 u16 prod = txr->tx_prod; 2660 2661 /* Sync BD data before updating doorbell */ 2662 wmb(); 2663 2664 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2665 } 2666 2667 cpr->cp_raw_cons = raw_cons; 2668 bnapi->tx_pkts += tx_pkts; 2669 bnapi->events |= event; 2670 return rx_pkts; 2671 } 2672 2673 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2674 int budget) 2675 { 2676 if (bnapi->tx_pkts && !bnapi->tx_fault) 2677 bnapi->tx_int(bp, bnapi, budget); 2678 2679 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2680 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2681 2682 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2683 } 2684 if (bnapi->events & BNXT_AGG_EVENT) { 2685 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2686 2687 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2688 } 2689 bnapi->events = 0; 2690 } 2691 2692 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2693 int budget) 2694 { 2695 struct bnxt_napi *bnapi = cpr->bnapi; 2696 int rx_pkts; 2697 2698 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2699 2700 /* ACK completion ring before freeing tx ring and producing new 2701 * buffers in rx/agg rings to prevent overflowing the completion 2702 * ring. 2703 */ 2704 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2705 2706 __bnxt_poll_work_done(bp, bnapi, budget); 2707 return rx_pkts; 2708 } 2709 2710 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2711 { 2712 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2713 struct bnxt *bp = bnapi->bp; 2714 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2715 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2716 struct tx_cmp *txcmp; 2717 struct rx_cmp_ext *rxcmp1; 2718 u32 cp_cons, tmp_raw_cons; 2719 u32 raw_cons = cpr->cp_raw_cons; 2720 bool flush_xdp = false; 2721 u32 rx_pkts = 0; 2722 u8 event = 0; 2723 2724 while (1) { 2725 int rc; 2726 2727 cp_cons = RING_CMP(raw_cons); 2728 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2729 2730 if (!TX_CMP_VALID(txcmp, raw_cons)) 2731 break; 2732 2733 /* The valid test of the entry must be done first before 2734 * reading any further. 2735 */ 2736 dma_rmb(); 2737 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2738 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2739 cp_cons = RING_CMP(tmp_raw_cons); 2740 rxcmp1 = (struct rx_cmp_ext *) 2741 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2742 2743 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2744 break; 2745 2746 /* force an error to recycle the buffer */ 2747 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2748 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2749 2750 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2751 if (likely(rc == -EIO) && budget) 2752 rx_pkts++; 2753 else if (rc == -EBUSY) /* partial completion */ 2754 break; 2755 if (event & BNXT_REDIRECT_EVENT) 2756 flush_xdp = true; 2757 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2758 CMPL_BASE_TYPE_HWRM_DONE)) { 2759 bnxt_hwrm_handler(bp, txcmp); 2760 } else { 2761 netdev_err(bp->dev, 2762 "Invalid completion received on special ring\n"); 2763 } 2764 raw_cons = NEXT_RAW_CMP(raw_cons); 2765 2766 if (rx_pkts == budget) 2767 break; 2768 } 2769 2770 cpr->cp_raw_cons = raw_cons; 2771 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2772 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2773 2774 if (event & BNXT_AGG_EVENT) 2775 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2776 if (flush_xdp) 2777 xdp_do_flush(); 2778 2779 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2780 napi_complete_done(napi, rx_pkts); 2781 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2782 } 2783 return rx_pkts; 2784 } 2785 2786 static int bnxt_poll(struct napi_struct *napi, int budget) 2787 { 2788 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2789 struct bnxt *bp = bnapi->bp; 2790 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2791 int work_done = 0; 2792 2793 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2794 napi_complete(napi); 2795 return 0; 2796 } 2797 while (1) { 2798 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2799 2800 if (work_done >= budget) { 2801 if (!budget) 2802 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2803 break; 2804 } 2805 2806 if (!bnxt_has_work(bp, cpr)) { 2807 if (napi_complete_done(napi, work_done)) 2808 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2809 break; 2810 } 2811 } 2812 if (bp->flags & BNXT_FLAG_DIM) { 2813 struct dim_sample dim_sample = {}; 2814 2815 dim_update_sample(cpr->event_ctr, 2816 cpr->rx_packets, 2817 cpr->rx_bytes, 2818 &dim_sample); 2819 net_dim(&cpr->dim, dim_sample); 2820 } 2821 return work_done; 2822 } 2823 2824 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2825 { 2826 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2827 int i, work_done = 0; 2828 2829 for (i = 0; i < 2; i++) { 2830 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2831 2832 if (cpr2) { 2833 work_done += __bnxt_poll_work(bp, cpr2, 2834 budget - work_done); 2835 cpr->has_more_work |= cpr2->has_more_work; 2836 } 2837 } 2838 return work_done; 2839 } 2840 2841 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2842 u64 dbr_type, int budget) 2843 { 2844 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2845 int i; 2846 2847 for (i = 0; i < 2; i++) { 2848 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2849 struct bnxt_db_info *db; 2850 2851 if (cpr2 && cpr2->had_work_done) { 2852 db = &cpr2->cp_db; 2853 bnxt_writeq(bp, db->db_key64 | dbr_type | 2854 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2855 cpr2->had_work_done = 0; 2856 } 2857 } 2858 __bnxt_poll_work_done(bp, bnapi, budget); 2859 } 2860 2861 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2862 { 2863 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2864 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2865 struct bnxt_cp_ring_info *cpr_rx; 2866 u32 raw_cons = cpr->cp_raw_cons; 2867 struct bnxt *bp = bnapi->bp; 2868 struct nqe_cn *nqcmp; 2869 int work_done = 0; 2870 u32 cons; 2871 2872 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2873 napi_complete(napi); 2874 return 0; 2875 } 2876 if (cpr->has_more_work) { 2877 cpr->has_more_work = 0; 2878 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2879 } 2880 while (1) { 2881 cons = RING_CMP(raw_cons); 2882 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2883 2884 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2885 if (cpr->has_more_work) 2886 break; 2887 2888 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 2889 budget); 2890 cpr->cp_raw_cons = raw_cons; 2891 if (napi_complete_done(napi, work_done)) 2892 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2893 cpr->cp_raw_cons); 2894 goto poll_done; 2895 } 2896 2897 /* The valid test of the entry must be done first before 2898 * reading any further. 2899 */ 2900 dma_rmb(); 2901 2902 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2903 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2904 struct bnxt_cp_ring_info *cpr2; 2905 2906 /* No more budget for RX work */ 2907 if (budget && work_done >= budget && idx == BNXT_RX_HDL) 2908 break; 2909 2910 cpr2 = cpr->cp_ring_arr[idx]; 2911 work_done += __bnxt_poll_work(bp, cpr2, 2912 budget - work_done); 2913 cpr->has_more_work |= cpr2->has_more_work; 2914 } else { 2915 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2916 } 2917 raw_cons = NEXT_RAW_CMP(raw_cons); 2918 } 2919 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 2920 if (raw_cons != cpr->cp_raw_cons) { 2921 cpr->cp_raw_cons = raw_cons; 2922 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2923 } 2924 poll_done: 2925 cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL]; 2926 if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) { 2927 struct dim_sample dim_sample = {}; 2928 2929 dim_update_sample(cpr->event_ctr, 2930 cpr_rx->rx_packets, 2931 cpr_rx->rx_bytes, 2932 &dim_sample); 2933 net_dim(&cpr->dim, dim_sample); 2934 } 2935 return work_done; 2936 } 2937 2938 static void bnxt_free_tx_skbs(struct bnxt *bp) 2939 { 2940 int i, max_idx; 2941 struct pci_dev *pdev = bp->pdev; 2942 2943 if (!bp->tx_ring) 2944 return; 2945 2946 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2947 for (i = 0; i < bp->tx_nr_rings; i++) { 2948 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2949 int j; 2950 2951 if (!txr->tx_buf_ring) 2952 continue; 2953 2954 for (j = 0; j < max_idx;) { 2955 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2956 struct sk_buff *skb; 2957 int k, last; 2958 2959 if (i < bp->tx_nr_rings_xdp && 2960 tx_buf->action == XDP_REDIRECT) { 2961 dma_unmap_single(&pdev->dev, 2962 dma_unmap_addr(tx_buf, mapping), 2963 dma_unmap_len(tx_buf, len), 2964 DMA_TO_DEVICE); 2965 xdp_return_frame(tx_buf->xdpf); 2966 tx_buf->action = 0; 2967 tx_buf->xdpf = NULL; 2968 j++; 2969 continue; 2970 } 2971 2972 skb = tx_buf->skb; 2973 if (!skb) { 2974 j++; 2975 continue; 2976 } 2977 2978 tx_buf->skb = NULL; 2979 2980 if (tx_buf->is_push) { 2981 dev_kfree_skb(skb); 2982 j += 2; 2983 continue; 2984 } 2985 2986 dma_unmap_single(&pdev->dev, 2987 dma_unmap_addr(tx_buf, mapping), 2988 skb_headlen(skb), 2989 DMA_TO_DEVICE); 2990 2991 last = tx_buf->nr_frags; 2992 j += 2; 2993 for (k = 0; k < last; k++, j++) { 2994 int ring_idx = j & bp->tx_ring_mask; 2995 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2996 2997 tx_buf = &txr->tx_buf_ring[ring_idx]; 2998 dma_unmap_page( 2999 &pdev->dev, 3000 dma_unmap_addr(tx_buf, mapping), 3001 skb_frag_size(frag), DMA_TO_DEVICE); 3002 } 3003 dev_kfree_skb(skb); 3004 } 3005 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3006 } 3007 } 3008 3009 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3010 { 3011 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3012 struct pci_dev *pdev = bp->pdev; 3013 struct bnxt_tpa_idx_map *map; 3014 int i, max_idx, max_agg_idx; 3015 3016 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3017 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3018 if (!rxr->rx_tpa) 3019 goto skip_rx_tpa_free; 3020 3021 for (i = 0; i < bp->max_tpa; i++) { 3022 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3023 u8 *data = tpa_info->data; 3024 3025 if (!data) 3026 continue; 3027 3028 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3029 bp->rx_buf_use_size, bp->rx_dir, 3030 DMA_ATTR_WEAK_ORDERING); 3031 3032 tpa_info->data = NULL; 3033 3034 skb_free_frag(data); 3035 } 3036 3037 skip_rx_tpa_free: 3038 if (!rxr->rx_buf_ring) 3039 goto skip_rx_buf_free; 3040 3041 for (i = 0; i < max_idx; i++) { 3042 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3043 dma_addr_t mapping = rx_buf->mapping; 3044 void *data = rx_buf->data; 3045 3046 if (!data) 3047 continue; 3048 3049 rx_buf->data = NULL; 3050 if (BNXT_RX_PAGE_MODE(bp)) { 3051 page_pool_recycle_direct(rxr->page_pool, data); 3052 } else { 3053 dma_unmap_single_attrs(&pdev->dev, mapping, 3054 bp->rx_buf_use_size, bp->rx_dir, 3055 DMA_ATTR_WEAK_ORDERING); 3056 skb_free_frag(data); 3057 } 3058 } 3059 3060 skip_rx_buf_free: 3061 if (!rxr->rx_agg_ring) 3062 goto skip_rx_agg_free; 3063 3064 for (i = 0; i < max_agg_idx; i++) { 3065 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3066 struct page *page = rx_agg_buf->page; 3067 3068 if (!page) 3069 continue; 3070 3071 rx_agg_buf->page = NULL; 3072 __clear_bit(i, rxr->rx_agg_bmap); 3073 3074 page_pool_recycle_direct(rxr->page_pool, page); 3075 } 3076 3077 skip_rx_agg_free: 3078 map = rxr->rx_tpa_idx_map; 3079 if (map) 3080 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3081 } 3082 3083 static void bnxt_free_rx_skbs(struct bnxt *bp) 3084 { 3085 int i; 3086 3087 if (!bp->rx_ring) 3088 return; 3089 3090 for (i = 0; i < bp->rx_nr_rings; i++) 3091 bnxt_free_one_rx_ring_skbs(bp, i); 3092 } 3093 3094 static void bnxt_free_skbs(struct bnxt *bp) 3095 { 3096 bnxt_free_tx_skbs(bp); 3097 bnxt_free_rx_skbs(bp); 3098 } 3099 3100 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 3101 { 3102 u8 init_val = mem_init->init_val; 3103 u16 offset = mem_init->offset; 3104 u8 *p2 = p; 3105 int i; 3106 3107 if (!init_val) 3108 return; 3109 if (offset == BNXT_MEM_INVALID_OFFSET) { 3110 memset(p, init_val, len); 3111 return; 3112 } 3113 for (i = 0; i < len; i += mem_init->size) 3114 *(p2 + i + offset) = init_val; 3115 } 3116 3117 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3118 { 3119 struct pci_dev *pdev = bp->pdev; 3120 int i; 3121 3122 if (!rmem->pg_arr) 3123 goto skip_pages; 3124 3125 for (i = 0; i < rmem->nr_pages; i++) { 3126 if (!rmem->pg_arr[i]) 3127 continue; 3128 3129 dma_free_coherent(&pdev->dev, rmem->page_size, 3130 rmem->pg_arr[i], rmem->dma_arr[i]); 3131 3132 rmem->pg_arr[i] = NULL; 3133 } 3134 skip_pages: 3135 if (rmem->pg_tbl) { 3136 size_t pg_tbl_size = rmem->nr_pages * 8; 3137 3138 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3139 pg_tbl_size = rmem->page_size; 3140 dma_free_coherent(&pdev->dev, pg_tbl_size, 3141 rmem->pg_tbl, rmem->pg_tbl_map); 3142 rmem->pg_tbl = NULL; 3143 } 3144 if (rmem->vmem_size && *rmem->vmem) { 3145 vfree(*rmem->vmem); 3146 *rmem->vmem = NULL; 3147 } 3148 } 3149 3150 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3151 { 3152 struct pci_dev *pdev = bp->pdev; 3153 u64 valid_bit = 0; 3154 int i; 3155 3156 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3157 valid_bit = PTU_PTE_VALID; 3158 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3159 size_t pg_tbl_size = rmem->nr_pages * 8; 3160 3161 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3162 pg_tbl_size = rmem->page_size; 3163 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3164 &rmem->pg_tbl_map, 3165 GFP_KERNEL); 3166 if (!rmem->pg_tbl) 3167 return -ENOMEM; 3168 } 3169 3170 for (i = 0; i < rmem->nr_pages; i++) { 3171 u64 extra_bits = valid_bit; 3172 3173 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3174 rmem->page_size, 3175 &rmem->dma_arr[i], 3176 GFP_KERNEL); 3177 if (!rmem->pg_arr[i]) 3178 return -ENOMEM; 3179 3180 if (rmem->mem_init) 3181 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 3182 rmem->page_size); 3183 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3184 if (i == rmem->nr_pages - 2 && 3185 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3186 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3187 else if (i == rmem->nr_pages - 1 && 3188 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3189 extra_bits |= PTU_PTE_LAST; 3190 rmem->pg_tbl[i] = 3191 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3192 } 3193 } 3194 3195 if (rmem->vmem_size) { 3196 *rmem->vmem = vzalloc(rmem->vmem_size); 3197 if (!(*rmem->vmem)) 3198 return -ENOMEM; 3199 } 3200 return 0; 3201 } 3202 3203 static void bnxt_free_tpa_info(struct bnxt *bp) 3204 { 3205 int i, j; 3206 3207 for (i = 0; i < bp->rx_nr_rings; i++) { 3208 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3209 3210 kfree(rxr->rx_tpa_idx_map); 3211 rxr->rx_tpa_idx_map = NULL; 3212 if (rxr->rx_tpa) { 3213 for (j = 0; j < bp->max_tpa; j++) { 3214 kfree(rxr->rx_tpa[j].agg_arr); 3215 rxr->rx_tpa[j].agg_arr = NULL; 3216 } 3217 } 3218 kfree(rxr->rx_tpa); 3219 rxr->rx_tpa = NULL; 3220 } 3221 } 3222 3223 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3224 { 3225 int i, j; 3226 3227 bp->max_tpa = MAX_TPA; 3228 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3229 if (!bp->max_tpa_v2) 3230 return 0; 3231 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3232 } 3233 3234 for (i = 0; i < bp->rx_nr_rings; i++) { 3235 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3236 struct rx_agg_cmp *agg; 3237 3238 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3239 GFP_KERNEL); 3240 if (!rxr->rx_tpa) 3241 return -ENOMEM; 3242 3243 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3244 continue; 3245 for (j = 0; j < bp->max_tpa; j++) { 3246 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3247 if (!agg) 3248 return -ENOMEM; 3249 rxr->rx_tpa[j].agg_arr = agg; 3250 } 3251 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3252 GFP_KERNEL); 3253 if (!rxr->rx_tpa_idx_map) 3254 return -ENOMEM; 3255 } 3256 return 0; 3257 } 3258 3259 static void bnxt_free_rx_rings(struct bnxt *bp) 3260 { 3261 int i; 3262 3263 if (!bp->rx_ring) 3264 return; 3265 3266 bnxt_free_tpa_info(bp); 3267 for (i = 0; i < bp->rx_nr_rings; i++) { 3268 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3269 struct bnxt_ring_struct *ring; 3270 3271 if (rxr->xdp_prog) 3272 bpf_prog_put(rxr->xdp_prog); 3273 3274 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3275 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3276 3277 page_pool_destroy(rxr->page_pool); 3278 rxr->page_pool = NULL; 3279 3280 kfree(rxr->rx_agg_bmap); 3281 rxr->rx_agg_bmap = NULL; 3282 3283 ring = &rxr->rx_ring_struct; 3284 bnxt_free_ring(bp, &ring->ring_mem); 3285 3286 ring = &rxr->rx_agg_ring_struct; 3287 bnxt_free_ring(bp, &ring->ring_mem); 3288 } 3289 } 3290 3291 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3292 struct bnxt_rx_ring_info *rxr) 3293 { 3294 struct page_pool_params pp = { 0 }; 3295 3296 pp.pool_size = bp->rx_agg_ring_size; 3297 if (BNXT_RX_PAGE_MODE(bp)) 3298 pp.pool_size += bp->rx_ring_size; 3299 pp.nid = dev_to_node(&bp->pdev->dev); 3300 pp.napi = &rxr->bnapi->napi; 3301 pp.dev = &bp->pdev->dev; 3302 pp.dma_dir = bp->rx_dir; 3303 pp.max_len = PAGE_SIZE; 3304 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3305 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) 3306 pp.flags |= PP_FLAG_PAGE_FRAG; 3307 3308 rxr->page_pool = page_pool_create(&pp); 3309 if (IS_ERR(rxr->page_pool)) { 3310 int err = PTR_ERR(rxr->page_pool); 3311 3312 rxr->page_pool = NULL; 3313 return err; 3314 } 3315 return 0; 3316 } 3317 3318 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3319 { 3320 int i, rc = 0, agg_rings = 0; 3321 3322 if (!bp->rx_ring) 3323 return -ENOMEM; 3324 3325 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3326 agg_rings = 1; 3327 3328 for (i = 0; i < bp->rx_nr_rings; i++) { 3329 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3330 struct bnxt_ring_struct *ring; 3331 3332 ring = &rxr->rx_ring_struct; 3333 3334 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3335 if (rc) 3336 return rc; 3337 3338 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3339 if (rc < 0) 3340 return rc; 3341 3342 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3343 MEM_TYPE_PAGE_POOL, 3344 rxr->page_pool); 3345 if (rc) { 3346 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3347 return rc; 3348 } 3349 3350 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3351 if (rc) 3352 return rc; 3353 3354 ring->grp_idx = i; 3355 if (agg_rings) { 3356 u16 mem_size; 3357 3358 ring = &rxr->rx_agg_ring_struct; 3359 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3360 if (rc) 3361 return rc; 3362 3363 ring->grp_idx = i; 3364 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3365 mem_size = rxr->rx_agg_bmap_size / 8; 3366 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3367 if (!rxr->rx_agg_bmap) 3368 return -ENOMEM; 3369 } 3370 } 3371 if (bp->flags & BNXT_FLAG_TPA) 3372 rc = bnxt_alloc_tpa_info(bp); 3373 return rc; 3374 } 3375 3376 static void bnxt_free_tx_rings(struct bnxt *bp) 3377 { 3378 int i; 3379 struct pci_dev *pdev = bp->pdev; 3380 3381 if (!bp->tx_ring) 3382 return; 3383 3384 for (i = 0; i < bp->tx_nr_rings; i++) { 3385 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3386 struct bnxt_ring_struct *ring; 3387 3388 if (txr->tx_push) { 3389 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3390 txr->tx_push, txr->tx_push_mapping); 3391 txr->tx_push = NULL; 3392 } 3393 3394 ring = &txr->tx_ring_struct; 3395 3396 bnxt_free_ring(bp, &ring->ring_mem); 3397 } 3398 } 3399 3400 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3401 { 3402 int i, j, rc; 3403 struct pci_dev *pdev = bp->pdev; 3404 3405 bp->tx_push_size = 0; 3406 if (bp->tx_push_thresh) { 3407 int push_size; 3408 3409 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3410 bp->tx_push_thresh); 3411 3412 if (push_size > 256) { 3413 push_size = 0; 3414 bp->tx_push_thresh = 0; 3415 } 3416 3417 bp->tx_push_size = push_size; 3418 } 3419 3420 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3421 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3422 struct bnxt_ring_struct *ring; 3423 u8 qidx; 3424 3425 ring = &txr->tx_ring_struct; 3426 3427 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3428 if (rc) 3429 return rc; 3430 3431 ring->grp_idx = txr->bnapi->index; 3432 if (bp->tx_push_size) { 3433 dma_addr_t mapping; 3434 3435 /* One pre-allocated DMA buffer to backup 3436 * TX push operation 3437 */ 3438 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3439 bp->tx_push_size, 3440 &txr->tx_push_mapping, 3441 GFP_KERNEL); 3442 3443 if (!txr->tx_push) 3444 return -ENOMEM; 3445 3446 mapping = txr->tx_push_mapping + 3447 sizeof(struct tx_push_bd); 3448 txr->data_mapping = cpu_to_le64(mapping); 3449 } 3450 qidx = bp->tc_to_qidx[j]; 3451 ring->queue_id = bp->q_info[qidx].queue_id; 3452 spin_lock_init(&txr->xdp_tx_lock); 3453 if (i < bp->tx_nr_rings_xdp) 3454 continue; 3455 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3456 j++; 3457 } 3458 return 0; 3459 } 3460 3461 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3462 { 3463 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3464 3465 kfree(cpr->cp_desc_ring); 3466 cpr->cp_desc_ring = NULL; 3467 ring->ring_mem.pg_arr = NULL; 3468 kfree(cpr->cp_desc_mapping); 3469 cpr->cp_desc_mapping = NULL; 3470 ring->ring_mem.dma_arr = NULL; 3471 } 3472 3473 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3474 { 3475 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3476 if (!cpr->cp_desc_ring) 3477 return -ENOMEM; 3478 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3479 GFP_KERNEL); 3480 if (!cpr->cp_desc_mapping) 3481 return -ENOMEM; 3482 return 0; 3483 } 3484 3485 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3486 { 3487 int i; 3488 3489 if (!bp->bnapi) 3490 return; 3491 for (i = 0; i < bp->cp_nr_rings; i++) { 3492 struct bnxt_napi *bnapi = bp->bnapi[i]; 3493 3494 if (!bnapi) 3495 continue; 3496 bnxt_free_cp_arrays(&bnapi->cp_ring); 3497 } 3498 } 3499 3500 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3501 { 3502 int i, n = bp->cp_nr_pages; 3503 3504 for (i = 0; i < bp->cp_nr_rings; i++) { 3505 struct bnxt_napi *bnapi = bp->bnapi[i]; 3506 int rc; 3507 3508 if (!bnapi) 3509 continue; 3510 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3511 if (rc) 3512 return rc; 3513 } 3514 return 0; 3515 } 3516 3517 static void bnxt_free_cp_rings(struct bnxt *bp) 3518 { 3519 int i; 3520 3521 if (!bp->bnapi) 3522 return; 3523 3524 for (i = 0; i < bp->cp_nr_rings; i++) { 3525 struct bnxt_napi *bnapi = bp->bnapi[i]; 3526 struct bnxt_cp_ring_info *cpr; 3527 struct bnxt_ring_struct *ring; 3528 int j; 3529 3530 if (!bnapi) 3531 continue; 3532 3533 cpr = &bnapi->cp_ring; 3534 ring = &cpr->cp_ring_struct; 3535 3536 bnxt_free_ring(bp, &ring->ring_mem); 3537 3538 for (j = 0; j < 2; j++) { 3539 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3540 3541 if (cpr2) { 3542 ring = &cpr2->cp_ring_struct; 3543 bnxt_free_ring(bp, &ring->ring_mem); 3544 bnxt_free_cp_arrays(cpr2); 3545 kfree(cpr2); 3546 cpr->cp_ring_arr[j] = NULL; 3547 } 3548 } 3549 } 3550 } 3551 3552 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3553 { 3554 struct bnxt_ring_mem_info *rmem; 3555 struct bnxt_ring_struct *ring; 3556 struct bnxt_cp_ring_info *cpr; 3557 int rc; 3558 3559 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3560 if (!cpr) 3561 return NULL; 3562 3563 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3564 if (rc) { 3565 bnxt_free_cp_arrays(cpr); 3566 kfree(cpr); 3567 return NULL; 3568 } 3569 ring = &cpr->cp_ring_struct; 3570 rmem = &ring->ring_mem; 3571 rmem->nr_pages = bp->cp_nr_pages; 3572 rmem->page_size = HW_CMPD_RING_SIZE; 3573 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3574 rmem->dma_arr = cpr->cp_desc_mapping; 3575 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3576 rc = bnxt_alloc_ring(bp, rmem); 3577 if (rc) { 3578 bnxt_free_ring(bp, rmem); 3579 bnxt_free_cp_arrays(cpr); 3580 kfree(cpr); 3581 cpr = NULL; 3582 } 3583 return cpr; 3584 } 3585 3586 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3587 { 3588 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3589 int i, rc, ulp_base_vec, ulp_msix; 3590 3591 ulp_msix = bnxt_get_ulp_msix_num(bp); 3592 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3593 for (i = 0; i < bp->cp_nr_rings; i++) { 3594 struct bnxt_napi *bnapi = bp->bnapi[i]; 3595 struct bnxt_cp_ring_info *cpr; 3596 struct bnxt_ring_struct *ring; 3597 3598 if (!bnapi) 3599 continue; 3600 3601 cpr = &bnapi->cp_ring; 3602 cpr->bnapi = bnapi; 3603 ring = &cpr->cp_ring_struct; 3604 3605 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3606 if (rc) 3607 return rc; 3608 3609 if (ulp_msix && i >= ulp_base_vec) 3610 ring->map_idx = i + ulp_msix; 3611 else 3612 ring->map_idx = i; 3613 3614 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3615 continue; 3616 3617 if (i < bp->rx_nr_rings) { 3618 struct bnxt_cp_ring_info *cpr2 = 3619 bnxt_alloc_cp_sub_ring(bp); 3620 3621 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3622 if (!cpr2) 3623 return -ENOMEM; 3624 cpr2->bnapi = bnapi; 3625 } 3626 if ((sh && i < bp->tx_nr_rings) || 3627 (!sh && i >= bp->rx_nr_rings)) { 3628 struct bnxt_cp_ring_info *cpr2 = 3629 bnxt_alloc_cp_sub_ring(bp); 3630 3631 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3632 if (!cpr2) 3633 return -ENOMEM; 3634 cpr2->bnapi = bnapi; 3635 } 3636 } 3637 return 0; 3638 } 3639 3640 static void bnxt_init_ring_struct(struct bnxt *bp) 3641 { 3642 int i; 3643 3644 for (i = 0; i < bp->cp_nr_rings; i++) { 3645 struct bnxt_napi *bnapi = bp->bnapi[i]; 3646 struct bnxt_ring_mem_info *rmem; 3647 struct bnxt_cp_ring_info *cpr; 3648 struct bnxt_rx_ring_info *rxr; 3649 struct bnxt_tx_ring_info *txr; 3650 struct bnxt_ring_struct *ring; 3651 3652 if (!bnapi) 3653 continue; 3654 3655 cpr = &bnapi->cp_ring; 3656 ring = &cpr->cp_ring_struct; 3657 rmem = &ring->ring_mem; 3658 rmem->nr_pages = bp->cp_nr_pages; 3659 rmem->page_size = HW_CMPD_RING_SIZE; 3660 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3661 rmem->dma_arr = cpr->cp_desc_mapping; 3662 rmem->vmem_size = 0; 3663 3664 rxr = bnapi->rx_ring; 3665 if (!rxr) 3666 goto skip_rx; 3667 3668 ring = &rxr->rx_ring_struct; 3669 rmem = &ring->ring_mem; 3670 rmem->nr_pages = bp->rx_nr_pages; 3671 rmem->page_size = HW_RXBD_RING_SIZE; 3672 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3673 rmem->dma_arr = rxr->rx_desc_mapping; 3674 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3675 rmem->vmem = (void **)&rxr->rx_buf_ring; 3676 3677 ring = &rxr->rx_agg_ring_struct; 3678 rmem = &ring->ring_mem; 3679 rmem->nr_pages = bp->rx_agg_nr_pages; 3680 rmem->page_size = HW_RXBD_RING_SIZE; 3681 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3682 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3683 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3684 rmem->vmem = (void **)&rxr->rx_agg_ring; 3685 3686 skip_rx: 3687 txr = bnapi->tx_ring; 3688 if (!txr) 3689 continue; 3690 3691 ring = &txr->tx_ring_struct; 3692 rmem = &ring->ring_mem; 3693 rmem->nr_pages = bp->tx_nr_pages; 3694 rmem->page_size = HW_RXBD_RING_SIZE; 3695 rmem->pg_arr = (void **)txr->tx_desc_ring; 3696 rmem->dma_arr = txr->tx_desc_mapping; 3697 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3698 rmem->vmem = (void **)&txr->tx_buf_ring; 3699 } 3700 } 3701 3702 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3703 { 3704 int i; 3705 u32 prod; 3706 struct rx_bd **rx_buf_ring; 3707 3708 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3709 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3710 int j; 3711 struct rx_bd *rxbd; 3712 3713 rxbd = rx_buf_ring[i]; 3714 if (!rxbd) 3715 continue; 3716 3717 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3718 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3719 rxbd->rx_bd_opaque = prod; 3720 } 3721 } 3722 } 3723 3724 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3725 { 3726 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3727 struct net_device *dev = bp->dev; 3728 u32 prod; 3729 int i; 3730 3731 prod = rxr->rx_prod; 3732 for (i = 0; i < bp->rx_ring_size; i++) { 3733 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3734 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3735 ring_nr, i, bp->rx_ring_size); 3736 break; 3737 } 3738 prod = NEXT_RX(prod); 3739 } 3740 rxr->rx_prod = prod; 3741 3742 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3743 return 0; 3744 3745 prod = rxr->rx_agg_prod; 3746 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3747 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3748 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3749 ring_nr, i, bp->rx_ring_size); 3750 break; 3751 } 3752 prod = NEXT_RX_AGG(prod); 3753 } 3754 rxr->rx_agg_prod = prod; 3755 3756 if (rxr->rx_tpa) { 3757 dma_addr_t mapping; 3758 u8 *data; 3759 3760 for (i = 0; i < bp->max_tpa; i++) { 3761 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 3762 if (!data) 3763 return -ENOMEM; 3764 3765 rxr->rx_tpa[i].data = data; 3766 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3767 rxr->rx_tpa[i].mapping = mapping; 3768 } 3769 } 3770 return 0; 3771 } 3772 3773 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3774 { 3775 struct bnxt_rx_ring_info *rxr; 3776 struct bnxt_ring_struct *ring; 3777 u32 type; 3778 3779 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3780 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3781 3782 if (NET_IP_ALIGN == 2) 3783 type |= RX_BD_FLAGS_SOP; 3784 3785 rxr = &bp->rx_ring[ring_nr]; 3786 ring = &rxr->rx_ring_struct; 3787 bnxt_init_rxbd_pages(ring, type); 3788 3789 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3790 bpf_prog_add(bp->xdp_prog, 1); 3791 rxr->xdp_prog = bp->xdp_prog; 3792 } 3793 ring->fw_ring_id = INVALID_HW_RING_ID; 3794 3795 ring = &rxr->rx_agg_ring_struct; 3796 ring->fw_ring_id = INVALID_HW_RING_ID; 3797 3798 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3799 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3800 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3801 3802 bnxt_init_rxbd_pages(ring, type); 3803 } 3804 3805 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3806 } 3807 3808 static void bnxt_init_cp_rings(struct bnxt *bp) 3809 { 3810 int i, j; 3811 3812 for (i = 0; i < bp->cp_nr_rings; i++) { 3813 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3814 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3815 3816 ring->fw_ring_id = INVALID_HW_RING_ID; 3817 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3818 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3819 for (j = 0; j < 2; j++) { 3820 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3821 3822 if (!cpr2) 3823 continue; 3824 3825 ring = &cpr2->cp_ring_struct; 3826 ring->fw_ring_id = INVALID_HW_RING_ID; 3827 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3828 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3829 } 3830 } 3831 } 3832 3833 static int bnxt_init_rx_rings(struct bnxt *bp) 3834 { 3835 int i, rc = 0; 3836 3837 if (BNXT_RX_PAGE_MODE(bp)) { 3838 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3839 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3840 } else { 3841 bp->rx_offset = BNXT_RX_OFFSET; 3842 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3843 } 3844 3845 for (i = 0; i < bp->rx_nr_rings; i++) { 3846 rc = bnxt_init_one_rx_ring(bp, i); 3847 if (rc) 3848 break; 3849 } 3850 3851 return rc; 3852 } 3853 3854 static int bnxt_init_tx_rings(struct bnxt *bp) 3855 { 3856 u16 i; 3857 3858 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3859 BNXT_MIN_TX_DESC_CNT); 3860 3861 for (i = 0; i < bp->tx_nr_rings; i++) { 3862 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3863 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3864 3865 ring->fw_ring_id = INVALID_HW_RING_ID; 3866 } 3867 3868 return 0; 3869 } 3870 3871 static void bnxt_free_ring_grps(struct bnxt *bp) 3872 { 3873 kfree(bp->grp_info); 3874 bp->grp_info = NULL; 3875 } 3876 3877 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3878 { 3879 int i; 3880 3881 if (irq_re_init) { 3882 bp->grp_info = kcalloc(bp->cp_nr_rings, 3883 sizeof(struct bnxt_ring_grp_info), 3884 GFP_KERNEL); 3885 if (!bp->grp_info) 3886 return -ENOMEM; 3887 } 3888 for (i = 0; i < bp->cp_nr_rings; i++) { 3889 if (irq_re_init) 3890 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3891 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3892 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3893 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3894 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3895 } 3896 return 0; 3897 } 3898 3899 static void bnxt_free_vnics(struct bnxt *bp) 3900 { 3901 kfree(bp->vnic_info); 3902 bp->vnic_info = NULL; 3903 bp->nr_vnics = 0; 3904 } 3905 3906 static int bnxt_alloc_vnics(struct bnxt *bp) 3907 { 3908 int num_vnics = 1; 3909 3910 #ifdef CONFIG_RFS_ACCEL 3911 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3912 num_vnics += bp->rx_nr_rings; 3913 #endif 3914 3915 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3916 num_vnics++; 3917 3918 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3919 GFP_KERNEL); 3920 if (!bp->vnic_info) 3921 return -ENOMEM; 3922 3923 bp->nr_vnics = num_vnics; 3924 return 0; 3925 } 3926 3927 static void bnxt_init_vnics(struct bnxt *bp) 3928 { 3929 int i; 3930 3931 for (i = 0; i < bp->nr_vnics; i++) { 3932 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3933 int j; 3934 3935 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3936 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3937 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3938 3939 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3940 3941 if (bp->vnic_info[i].rss_hash_key) { 3942 if (i == 0) 3943 get_random_bytes(vnic->rss_hash_key, 3944 HW_HASH_KEY_SIZE); 3945 else 3946 memcpy(vnic->rss_hash_key, 3947 bp->vnic_info[0].rss_hash_key, 3948 HW_HASH_KEY_SIZE); 3949 } 3950 } 3951 } 3952 3953 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3954 { 3955 int pages; 3956 3957 pages = ring_size / desc_per_pg; 3958 3959 if (!pages) 3960 return 1; 3961 3962 pages++; 3963 3964 while (pages & (pages - 1)) 3965 pages++; 3966 3967 return pages; 3968 } 3969 3970 void bnxt_set_tpa_flags(struct bnxt *bp) 3971 { 3972 bp->flags &= ~BNXT_FLAG_TPA; 3973 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3974 return; 3975 if (bp->dev->features & NETIF_F_LRO) 3976 bp->flags |= BNXT_FLAG_LRO; 3977 else if (bp->dev->features & NETIF_F_GRO_HW) 3978 bp->flags |= BNXT_FLAG_GRO; 3979 } 3980 3981 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3982 * be set on entry. 3983 */ 3984 void bnxt_set_ring_params(struct bnxt *bp) 3985 { 3986 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3987 u32 agg_factor = 0, agg_ring_size = 0; 3988 3989 /* 8 for CRC and VLAN */ 3990 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3991 3992 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 3993 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3994 3995 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3996 ring_size = bp->rx_ring_size; 3997 bp->rx_agg_ring_size = 0; 3998 bp->rx_agg_nr_pages = 0; 3999 4000 if (bp->flags & BNXT_FLAG_TPA) 4001 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4002 4003 bp->flags &= ~BNXT_FLAG_JUMBO; 4004 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4005 u32 jumbo_factor; 4006 4007 bp->flags |= BNXT_FLAG_JUMBO; 4008 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4009 if (jumbo_factor > agg_factor) 4010 agg_factor = jumbo_factor; 4011 } 4012 if (agg_factor) { 4013 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4014 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4015 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4016 bp->rx_ring_size, ring_size); 4017 bp->rx_ring_size = ring_size; 4018 } 4019 agg_ring_size = ring_size * agg_factor; 4020 4021 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4022 RX_DESC_CNT); 4023 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4024 u32 tmp = agg_ring_size; 4025 4026 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4027 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4028 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4029 tmp, agg_ring_size); 4030 } 4031 bp->rx_agg_ring_size = agg_ring_size; 4032 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4033 4034 if (BNXT_RX_PAGE_MODE(bp)) { 4035 rx_space = PAGE_SIZE; 4036 rx_size = PAGE_SIZE - 4037 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4038 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4039 } else { 4040 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4041 rx_space = rx_size + NET_SKB_PAD + 4042 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4043 } 4044 } 4045 4046 bp->rx_buf_use_size = rx_size; 4047 bp->rx_buf_size = rx_space; 4048 4049 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4050 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4051 4052 ring_size = bp->tx_ring_size; 4053 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4054 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4055 4056 max_rx_cmpl = bp->rx_ring_size; 4057 /* MAX TPA needs to be added because TPA_START completions are 4058 * immediately recycled, so the TPA completions are not bound by 4059 * the RX ring size. 4060 */ 4061 if (bp->flags & BNXT_FLAG_TPA) 4062 max_rx_cmpl += bp->max_tpa; 4063 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4064 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4065 bp->cp_ring_size = ring_size; 4066 4067 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4068 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4069 bp->cp_nr_pages = MAX_CP_PAGES; 4070 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4071 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4072 ring_size, bp->cp_ring_size); 4073 } 4074 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4075 bp->cp_ring_mask = bp->cp_bit - 1; 4076 } 4077 4078 /* Changing allocation mode of RX rings. 4079 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4080 */ 4081 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4082 { 4083 struct net_device *dev = bp->dev; 4084 4085 if (page_mode) { 4086 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4087 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4088 4089 if (bp->xdp_prog->aux->xdp_has_frags) 4090 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4091 else 4092 dev->max_mtu = 4093 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4094 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4095 bp->flags |= BNXT_FLAG_JUMBO; 4096 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4097 } else { 4098 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4099 bp->rx_skb_func = bnxt_rx_page_skb; 4100 } 4101 bp->rx_dir = DMA_BIDIRECTIONAL; 4102 /* Disable LRO or GRO_HW */ 4103 netdev_update_features(dev); 4104 } else { 4105 dev->max_mtu = bp->max_mtu; 4106 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4107 bp->rx_dir = DMA_FROM_DEVICE; 4108 bp->rx_skb_func = bnxt_rx_skb; 4109 } 4110 return 0; 4111 } 4112 4113 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4114 { 4115 int i; 4116 struct bnxt_vnic_info *vnic; 4117 struct pci_dev *pdev = bp->pdev; 4118 4119 if (!bp->vnic_info) 4120 return; 4121 4122 for (i = 0; i < bp->nr_vnics; i++) { 4123 vnic = &bp->vnic_info[i]; 4124 4125 kfree(vnic->fw_grp_ids); 4126 vnic->fw_grp_ids = NULL; 4127 4128 kfree(vnic->uc_list); 4129 vnic->uc_list = NULL; 4130 4131 if (vnic->mc_list) { 4132 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4133 vnic->mc_list, vnic->mc_list_mapping); 4134 vnic->mc_list = NULL; 4135 } 4136 4137 if (vnic->rss_table) { 4138 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4139 vnic->rss_table, 4140 vnic->rss_table_dma_addr); 4141 vnic->rss_table = NULL; 4142 } 4143 4144 vnic->rss_hash_key = NULL; 4145 vnic->flags = 0; 4146 } 4147 } 4148 4149 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4150 { 4151 int i, rc = 0, size; 4152 struct bnxt_vnic_info *vnic; 4153 struct pci_dev *pdev = bp->pdev; 4154 int max_rings; 4155 4156 for (i = 0; i < bp->nr_vnics; i++) { 4157 vnic = &bp->vnic_info[i]; 4158 4159 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4160 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4161 4162 if (mem_size > 0) { 4163 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4164 if (!vnic->uc_list) { 4165 rc = -ENOMEM; 4166 goto out; 4167 } 4168 } 4169 } 4170 4171 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4172 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4173 vnic->mc_list = 4174 dma_alloc_coherent(&pdev->dev, 4175 vnic->mc_list_size, 4176 &vnic->mc_list_mapping, 4177 GFP_KERNEL); 4178 if (!vnic->mc_list) { 4179 rc = -ENOMEM; 4180 goto out; 4181 } 4182 } 4183 4184 if (bp->flags & BNXT_FLAG_CHIP_P5) 4185 goto vnic_skip_grps; 4186 4187 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4188 max_rings = bp->rx_nr_rings; 4189 else 4190 max_rings = 1; 4191 4192 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4193 if (!vnic->fw_grp_ids) { 4194 rc = -ENOMEM; 4195 goto out; 4196 } 4197 vnic_skip_grps: 4198 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 4199 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4200 continue; 4201 4202 /* Allocate rss table and hash key */ 4203 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4204 if (bp->flags & BNXT_FLAG_CHIP_P5) 4205 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4206 4207 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4208 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4209 vnic->rss_table_size, 4210 &vnic->rss_table_dma_addr, 4211 GFP_KERNEL); 4212 if (!vnic->rss_table) { 4213 rc = -ENOMEM; 4214 goto out; 4215 } 4216 4217 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4218 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4219 } 4220 return 0; 4221 4222 out: 4223 return rc; 4224 } 4225 4226 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4227 { 4228 struct bnxt_hwrm_wait_token *token; 4229 4230 dma_pool_destroy(bp->hwrm_dma_pool); 4231 bp->hwrm_dma_pool = NULL; 4232 4233 rcu_read_lock(); 4234 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4235 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4236 rcu_read_unlock(); 4237 } 4238 4239 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4240 { 4241 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4242 BNXT_HWRM_DMA_SIZE, 4243 BNXT_HWRM_DMA_ALIGN, 0); 4244 if (!bp->hwrm_dma_pool) 4245 return -ENOMEM; 4246 4247 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4248 4249 return 0; 4250 } 4251 4252 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4253 { 4254 kfree(stats->hw_masks); 4255 stats->hw_masks = NULL; 4256 kfree(stats->sw_stats); 4257 stats->sw_stats = NULL; 4258 if (stats->hw_stats) { 4259 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4260 stats->hw_stats_map); 4261 stats->hw_stats = NULL; 4262 } 4263 } 4264 4265 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4266 bool alloc_masks) 4267 { 4268 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4269 &stats->hw_stats_map, GFP_KERNEL); 4270 if (!stats->hw_stats) 4271 return -ENOMEM; 4272 4273 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4274 if (!stats->sw_stats) 4275 goto stats_mem_err; 4276 4277 if (alloc_masks) { 4278 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4279 if (!stats->hw_masks) 4280 goto stats_mem_err; 4281 } 4282 return 0; 4283 4284 stats_mem_err: 4285 bnxt_free_stats_mem(bp, stats); 4286 return -ENOMEM; 4287 } 4288 4289 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4290 { 4291 int i; 4292 4293 for (i = 0; i < count; i++) 4294 mask_arr[i] = mask; 4295 } 4296 4297 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4298 { 4299 int i; 4300 4301 for (i = 0; i < count; i++) 4302 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4303 } 4304 4305 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4306 struct bnxt_stats_mem *stats) 4307 { 4308 struct hwrm_func_qstats_ext_output *resp; 4309 struct hwrm_func_qstats_ext_input *req; 4310 __le64 *hw_masks; 4311 int rc; 4312 4313 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4314 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4315 return -EOPNOTSUPP; 4316 4317 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4318 if (rc) 4319 return rc; 4320 4321 req->fid = cpu_to_le16(0xffff); 4322 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4323 4324 resp = hwrm_req_hold(bp, req); 4325 rc = hwrm_req_send(bp, req); 4326 if (!rc) { 4327 hw_masks = &resp->rx_ucast_pkts; 4328 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4329 } 4330 hwrm_req_drop(bp, req); 4331 return rc; 4332 } 4333 4334 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4335 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4336 4337 static void bnxt_init_stats(struct bnxt *bp) 4338 { 4339 struct bnxt_napi *bnapi = bp->bnapi[0]; 4340 struct bnxt_cp_ring_info *cpr; 4341 struct bnxt_stats_mem *stats; 4342 __le64 *rx_stats, *tx_stats; 4343 int rc, rx_count, tx_count; 4344 u64 *rx_masks, *tx_masks; 4345 u64 mask; 4346 u8 flags; 4347 4348 cpr = &bnapi->cp_ring; 4349 stats = &cpr->stats; 4350 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4351 if (rc) { 4352 if (bp->flags & BNXT_FLAG_CHIP_P5) 4353 mask = (1ULL << 48) - 1; 4354 else 4355 mask = -1ULL; 4356 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4357 } 4358 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4359 stats = &bp->port_stats; 4360 rx_stats = stats->hw_stats; 4361 rx_masks = stats->hw_masks; 4362 rx_count = sizeof(struct rx_port_stats) / 8; 4363 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4364 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4365 tx_count = sizeof(struct tx_port_stats) / 8; 4366 4367 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4368 rc = bnxt_hwrm_port_qstats(bp, flags); 4369 if (rc) { 4370 mask = (1ULL << 40) - 1; 4371 4372 bnxt_fill_masks(rx_masks, mask, rx_count); 4373 bnxt_fill_masks(tx_masks, mask, tx_count); 4374 } else { 4375 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4376 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4377 bnxt_hwrm_port_qstats(bp, 0); 4378 } 4379 } 4380 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4381 stats = &bp->rx_port_stats_ext; 4382 rx_stats = stats->hw_stats; 4383 rx_masks = stats->hw_masks; 4384 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4385 stats = &bp->tx_port_stats_ext; 4386 tx_stats = stats->hw_stats; 4387 tx_masks = stats->hw_masks; 4388 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4389 4390 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4391 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4392 if (rc) { 4393 mask = (1ULL << 40) - 1; 4394 4395 bnxt_fill_masks(rx_masks, mask, rx_count); 4396 if (tx_stats) 4397 bnxt_fill_masks(tx_masks, mask, tx_count); 4398 } else { 4399 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4400 if (tx_stats) 4401 bnxt_copy_hw_masks(tx_masks, tx_stats, 4402 tx_count); 4403 bnxt_hwrm_port_qstats_ext(bp, 0); 4404 } 4405 } 4406 } 4407 4408 static void bnxt_free_port_stats(struct bnxt *bp) 4409 { 4410 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4411 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4412 4413 bnxt_free_stats_mem(bp, &bp->port_stats); 4414 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4415 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4416 } 4417 4418 static void bnxt_free_ring_stats(struct bnxt *bp) 4419 { 4420 int i; 4421 4422 if (!bp->bnapi) 4423 return; 4424 4425 for (i = 0; i < bp->cp_nr_rings; i++) { 4426 struct bnxt_napi *bnapi = bp->bnapi[i]; 4427 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4428 4429 bnxt_free_stats_mem(bp, &cpr->stats); 4430 } 4431 } 4432 4433 static int bnxt_alloc_stats(struct bnxt *bp) 4434 { 4435 u32 size, i; 4436 int rc; 4437 4438 size = bp->hw_ring_stats_size; 4439 4440 for (i = 0; i < bp->cp_nr_rings; i++) { 4441 struct bnxt_napi *bnapi = bp->bnapi[i]; 4442 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4443 4444 cpr->stats.len = size; 4445 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4446 if (rc) 4447 return rc; 4448 4449 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4450 } 4451 4452 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4453 return 0; 4454 4455 if (bp->port_stats.hw_stats) 4456 goto alloc_ext_stats; 4457 4458 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4459 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4460 if (rc) 4461 return rc; 4462 4463 bp->flags |= BNXT_FLAG_PORT_STATS; 4464 4465 alloc_ext_stats: 4466 /* Display extended statistics only if FW supports it */ 4467 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4468 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4469 return 0; 4470 4471 if (bp->rx_port_stats_ext.hw_stats) 4472 goto alloc_tx_ext_stats; 4473 4474 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4475 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4476 /* Extended stats are optional */ 4477 if (rc) 4478 return 0; 4479 4480 alloc_tx_ext_stats: 4481 if (bp->tx_port_stats_ext.hw_stats) 4482 return 0; 4483 4484 if (bp->hwrm_spec_code >= 0x10902 || 4485 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4486 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4487 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4488 /* Extended stats are optional */ 4489 if (rc) 4490 return 0; 4491 } 4492 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4493 return 0; 4494 } 4495 4496 static void bnxt_clear_ring_indices(struct bnxt *bp) 4497 { 4498 int i; 4499 4500 if (!bp->bnapi) 4501 return; 4502 4503 for (i = 0; i < bp->cp_nr_rings; i++) { 4504 struct bnxt_napi *bnapi = bp->bnapi[i]; 4505 struct bnxt_cp_ring_info *cpr; 4506 struct bnxt_rx_ring_info *rxr; 4507 struct bnxt_tx_ring_info *txr; 4508 4509 if (!bnapi) 4510 continue; 4511 4512 cpr = &bnapi->cp_ring; 4513 cpr->cp_raw_cons = 0; 4514 4515 txr = bnapi->tx_ring; 4516 if (txr) { 4517 txr->tx_prod = 0; 4518 txr->tx_cons = 0; 4519 } 4520 4521 rxr = bnapi->rx_ring; 4522 if (rxr) { 4523 rxr->rx_prod = 0; 4524 rxr->rx_agg_prod = 0; 4525 rxr->rx_sw_agg_prod = 0; 4526 rxr->rx_next_cons = 0; 4527 } 4528 } 4529 } 4530 4531 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4532 { 4533 #ifdef CONFIG_RFS_ACCEL 4534 int i; 4535 4536 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4537 * safe to delete the hash table. 4538 */ 4539 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4540 struct hlist_head *head; 4541 struct hlist_node *tmp; 4542 struct bnxt_ntuple_filter *fltr; 4543 4544 head = &bp->ntp_fltr_hash_tbl[i]; 4545 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4546 hlist_del(&fltr->hash); 4547 kfree(fltr); 4548 } 4549 } 4550 if (irq_reinit) { 4551 bitmap_free(bp->ntp_fltr_bmap); 4552 bp->ntp_fltr_bmap = NULL; 4553 } 4554 bp->ntp_fltr_count = 0; 4555 #endif 4556 } 4557 4558 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4559 { 4560 #ifdef CONFIG_RFS_ACCEL 4561 int i, rc = 0; 4562 4563 if (!(bp->flags & BNXT_FLAG_RFS)) 4564 return 0; 4565 4566 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4567 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4568 4569 bp->ntp_fltr_count = 0; 4570 bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL); 4571 4572 if (!bp->ntp_fltr_bmap) 4573 rc = -ENOMEM; 4574 4575 return rc; 4576 #else 4577 return 0; 4578 #endif 4579 } 4580 4581 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4582 { 4583 bnxt_free_vnic_attributes(bp); 4584 bnxt_free_tx_rings(bp); 4585 bnxt_free_rx_rings(bp); 4586 bnxt_free_cp_rings(bp); 4587 bnxt_free_all_cp_arrays(bp); 4588 bnxt_free_ntp_fltrs(bp, irq_re_init); 4589 if (irq_re_init) { 4590 bnxt_free_ring_stats(bp); 4591 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4592 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4593 bnxt_free_port_stats(bp); 4594 bnxt_free_ring_grps(bp); 4595 bnxt_free_vnics(bp); 4596 kfree(bp->tx_ring_map); 4597 bp->tx_ring_map = NULL; 4598 kfree(bp->tx_ring); 4599 bp->tx_ring = NULL; 4600 kfree(bp->rx_ring); 4601 bp->rx_ring = NULL; 4602 kfree(bp->bnapi); 4603 bp->bnapi = NULL; 4604 } else { 4605 bnxt_clear_ring_indices(bp); 4606 } 4607 } 4608 4609 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4610 { 4611 int i, j, rc, size, arr_size; 4612 void *bnapi; 4613 4614 if (irq_re_init) { 4615 /* Allocate bnapi mem pointer array and mem block for 4616 * all queues 4617 */ 4618 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4619 bp->cp_nr_rings); 4620 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4621 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4622 if (!bnapi) 4623 return -ENOMEM; 4624 4625 bp->bnapi = bnapi; 4626 bnapi += arr_size; 4627 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4628 bp->bnapi[i] = bnapi; 4629 bp->bnapi[i]->index = i; 4630 bp->bnapi[i]->bp = bp; 4631 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4632 struct bnxt_cp_ring_info *cpr = 4633 &bp->bnapi[i]->cp_ring; 4634 4635 cpr->cp_ring_struct.ring_mem.flags = 4636 BNXT_RMEM_RING_PTE_FLAG; 4637 } 4638 } 4639 4640 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4641 sizeof(struct bnxt_rx_ring_info), 4642 GFP_KERNEL); 4643 if (!bp->rx_ring) 4644 return -ENOMEM; 4645 4646 for (i = 0; i < bp->rx_nr_rings; i++) { 4647 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4648 4649 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4650 rxr->rx_ring_struct.ring_mem.flags = 4651 BNXT_RMEM_RING_PTE_FLAG; 4652 rxr->rx_agg_ring_struct.ring_mem.flags = 4653 BNXT_RMEM_RING_PTE_FLAG; 4654 } 4655 rxr->bnapi = bp->bnapi[i]; 4656 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4657 } 4658 4659 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4660 sizeof(struct bnxt_tx_ring_info), 4661 GFP_KERNEL); 4662 if (!bp->tx_ring) 4663 return -ENOMEM; 4664 4665 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4666 GFP_KERNEL); 4667 4668 if (!bp->tx_ring_map) 4669 return -ENOMEM; 4670 4671 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4672 j = 0; 4673 else 4674 j = bp->rx_nr_rings; 4675 4676 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4677 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4678 4679 if (bp->flags & BNXT_FLAG_CHIP_P5) 4680 txr->tx_ring_struct.ring_mem.flags = 4681 BNXT_RMEM_RING_PTE_FLAG; 4682 txr->bnapi = bp->bnapi[j]; 4683 bp->bnapi[j]->tx_ring = txr; 4684 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4685 if (i >= bp->tx_nr_rings_xdp) { 4686 txr->txq_index = i - bp->tx_nr_rings_xdp; 4687 bp->bnapi[j]->tx_int = bnxt_tx_int; 4688 } else { 4689 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4690 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4691 } 4692 } 4693 4694 rc = bnxt_alloc_stats(bp); 4695 if (rc) 4696 goto alloc_mem_err; 4697 bnxt_init_stats(bp); 4698 4699 rc = bnxt_alloc_ntp_fltrs(bp); 4700 if (rc) 4701 goto alloc_mem_err; 4702 4703 rc = bnxt_alloc_vnics(bp); 4704 if (rc) 4705 goto alloc_mem_err; 4706 } 4707 4708 rc = bnxt_alloc_all_cp_arrays(bp); 4709 if (rc) 4710 goto alloc_mem_err; 4711 4712 bnxt_init_ring_struct(bp); 4713 4714 rc = bnxt_alloc_rx_rings(bp); 4715 if (rc) 4716 goto alloc_mem_err; 4717 4718 rc = bnxt_alloc_tx_rings(bp); 4719 if (rc) 4720 goto alloc_mem_err; 4721 4722 rc = bnxt_alloc_cp_rings(bp); 4723 if (rc) 4724 goto alloc_mem_err; 4725 4726 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4727 BNXT_VNIC_UCAST_FLAG; 4728 rc = bnxt_alloc_vnic_attributes(bp); 4729 if (rc) 4730 goto alloc_mem_err; 4731 return 0; 4732 4733 alloc_mem_err: 4734 bnxt_free_mem(bp, true); 4735 return rc; 4736 } 4737 4738 static void bnxt_disable_int(struct bnxt *bp) 4739 { 4740 int i; 4741 4742 if (!bp->bnapi) 4743 return; 4744 4745 for (i = 0; i < bp->cp_nr_rings; i++) { 4746 struct bnxt_napi *bnapi = bp->bnapi[i]; 4747 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4748 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4749 4750 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4751 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4752 } 4753 } 4754 4755 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4756 { 4757 struct bnxt_napi *bnapi = bp->bnapi[n]; 4758 struct bnxt_cp_ring_info *cpr; 4759 4760 cpr = &bnapi->cp_ring; 4761 return cpr->cp_ring_struct.map_idx; 4762 } 4763 4764 static void bnxt_disable_int_sync(struct bnxt *bp) 4765 { 4766 int i; 4767 4768 if (!bp->irq_tbl) 4769 return; 4770 4771 atomic_inc(&bp->intr_sem); 4772 4773 bnxt_disable_int(bp); 4774 for (i = 0; i < bp->cp_nr_rings; i++) { 4775 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4776 4777 synchronize_irq(bp->irq_tbl[map_idx].vector); 4778 } 4779 } 4780 4781 static void bnxt_enable_int(struct bnxt *bp) 4782 { 4783 int i; 4784 4785 atomic_set(&bp->intr_sem, 0); 4786 for (i = 0; i < bp->cp_nr_rings; i++) { 4787 struct bnxt_napi *bnapi = bp->bnapi[i]; 4788 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4789 4790 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4791 } 4792 } 4793 4794 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4795 bool async_only) 4796 { 4797 DECLARE_BITMAP(async_events_bmap, 256); 4798 u32 *events = (u32 *)async_events_bmap; 4799 struct hwrm_func_drv_rgtr_output *resp; 4800 struct hwrm_func_drv_rgtr_input *req; 4801 u32 flags; 4802 int rc, i; 4803 4804 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4805 if (rc) 4806 return rc; 4807 4808 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4809 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4810 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4811 4812 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4813 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4814 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4815 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4816 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4817 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4818 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4819 req->flags = cpu_to_le32(flags); 4820 req->ver_maj_8b = DRV_VER_MAJ; 4821 req->ver_min_8b = DRV_VER_MIN; 4822 req->ver_upd_8b = DRV_VER_UPD; 4823 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4824 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4825 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4826 4827 if (BNXT_PF(bp)) { 4828 u32 data[8]; 4829 int i; 4830 4831 memset(data, 0, sizeof(data)); 4832 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4833 u16 cmd = bnxt_vf_req_snif[i]; 4834 unsigned int bit, idx; 4835 4836 idx = cmd / 32; 4837 bit = cmd % 32; 4838 data[idx] |= 1 << bit; 4839 } 4840 4841 for (i = 0; i < 8; i++) 4842 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4843 4844 req->enables |= 4845 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4846 } 4847 4848 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4849 req->flags |= cpu_to_le32( 4850 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4851 4852 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4853 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4854 u16 event_id = bnxt_async_events_arr[i]; 4855 4856 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4857 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4858 continue; 4859 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 4860 !bp->ptp_cfg) 4861 continue; 4862 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4863 } 4864 if (bmap && bmap_size) { 4865 for (i = 0; i < bmap_size; i++) { 4866 if (test_bit(i, bmap)) 4867 __set_bit(i, async_events_bmap); 4868 } 4869 } 4870 for (i = 0; i < 8; i++) 4871 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4872 4873 if (async_only) 4874 req->enables = 4875 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4876 4877 resp = hwrm_req_hold(bp, req); 4878 rc = hwrm_req_send(bp, req); 4879 if (!rc) { 4880 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4881 if (resp->flags & 4882 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4883 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4884 } 4885 hwrm_req_drop(bp, req); 4886 return rc; 4887 } 4888 4889 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4890 { 4891 struct hwrm_func_drv_unrgtr_input *req; 4892 int rc; 4893 4894 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4895 return 0; 4896 4897 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4898 if (rc) 4899 return rc; 4900 return hwrm_req_send(bp, req); 4901 } 4902 4903 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4904 { 4905 struct hwrm_tunnel_dst_port_free_input *req; 4906 int rc; 4907 4908 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4909 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4910 return 0; 4911 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4912 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4913 return 0; 4914 4915 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4916 if (rc) 4917 return rc; 4918 4919 req->tunnel_type = tunnel_type; 4920 4921 switch (tunnel_type) { 4922 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4923 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4924 bp->vxlan_port = 0; 4925 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4926 break; 4927 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4928 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4929 bp->nge_port = 0; 4930 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4931 break; 4932 default: 4933 break; 4934 } 4935 4936 rc = hwrm_req_send(bp, req); 4937 if (rc) 4938 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4939 rc); 4940 return rc; 4941 } 4942 4943 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4944 u8 tunnel_type) 4945 { 4946 struct hwrm_tunnel_dst_port_alloc_output *resp; 4947 struct hwrm_tunnel_dst_port_alloc_input *req; 4948 int rc; 4949 4950 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4951 if (rc) 4952 return rc; 4953 4954 req->tunnel_type = tunnel_type; 4955 req->tunnel_dst_port_val = port; 4956 4957 resp = hwrm_req_hold(bp, req); 4958 rc = hwrm_req_send(bp, req); 4959 if (rc) { 4960 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4961 rc); 4962 goto err_out; 4963 } 4964 4965 switch (tunnel_type) { 4966 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4967 bp->vxlan_port = port; 4968 bp->vxlan_fw_dst_port_id = 4969 le16_to_cpu(resp->tunnel_dst_port_id); 4970 break; 4971 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4972 bp->nge_port = port; 4973 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4974 break; 4975 default: 4976 break; 4977 } 4978 4979 err_out: 4980 hwrm_req_drop(bp, req); 4981 return rc; 4982 } 4983 4984 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4985 { 4986 struct hwrm_cfa_l2_set_rx_mask_input *req; 4987 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4988 int rc; 4989 4990 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4991 if (rc) 4992 return rc; 4993 4994 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4995 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 4996 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4997 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4998 } 4999 req->mask = cpu_to_le32(vnic->rx_mask); 5000 return hwrm_req_send_silent(bp, req); 5001 } 5002 5003 #ifdef CONFIG_RFS_ACCEL 5004 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5005 struct bnxt_ntuple_filter *fltr) 5006 { 5007 struct hwrm_cfa_ntuple_filter_free_input *req; 5008 int rc; 5009 5010 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5011 if (rc) 5012 return rc; 5013 5014 req->ntuple_filter_id = fltr->filter_id; 5015 return hwrm_req_send(bp, req); 5016 } 5017 5018 #define BNXT_NTP_FLTR_FLAGS \ 5019 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5020 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5021 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 5022 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5023 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5024 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5025 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5026 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5027 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5028 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5029 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5030 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5031 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5032 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5033 5034 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5035 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5036 5037 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5038 struct bnxt_ntuple_filter *fltr) 5039 { 5040 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5041 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5042 struct flow_keys *keys = &fltr->fkeys; 5043 struct bnxt_vnic_info *vnic; 5044 u32 flags = 0; 5045 int rc; 5046 5047 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5048 if (rc) 5049 return rc; 5050 5051 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 5052 5053 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5054 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5055 req->dst_id = cpu_to_le16(fltr->rxq); 5056 } else { 5057 vnic = &bp->vnic_info[fltr->rxq + 1]; 5058 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5059 } 5060 req->flags = cpu_to_le32(flags); 5061 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5062 5063 req->ethertype = htons(ETH_P_IP); 5064 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 5065 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5066 req->ip_protocol = keys->basic.ip_proto; 5067 5068 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5069 int i; 5070 5071 req->ethertype = htons(ETH_P_IPV6); 5072 req->ip_addr_type = 5073 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5074 *(struct in6_addr *)&req->src_ipaddr[0] = 5075 keys->addrs.v6addrs.src; 5076 *(struct in6_addr *)&req->dst_ipaddr[0] = 5077 keys->addrs.v6addrs.dst; 5078 for (i = 0; i < 4; i++) { 5079 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5080 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5081 } 5082 } else { 5083 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5084 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5085 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5086 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5087 } 5088 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5089 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5090 req->tunnel_type = 5091 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5092 } 5093 5094 req->src_port = keys->ports.src; 5095 req->src_port_mask = cpu_to_be16(0xffff); 5096 req->dst_port = keys->ports.dst; 5097 req->dst_port_mask = cpu_to_be16(0xffff); 5098 5099 resp = hwrm_req_hold(bp, req); 5100 rc = hwrm_req_send(bp, req); 5101 if (!rc) 5102 fltr->filter_id = resp->ntuple_filter_id; 5103 hwrm_req_drop(bp, req); 5104 return rc; 5105 } 5106 #endif 5107 5108 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5109 const u8 *mac_addr) 5110 { 5111 struct hwrm_cfa_l2_filter_alloc_output *resp; 5112 struct hwrm_cfa_l2_filter_alloc_input *req; 5113 int rc; 5114 5115 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5116 if (rc) 5117 return rc; 5118 5119 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5120 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5121 req->flags |= 5122 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5123 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5124 req->enables = 5125 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5126 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5127 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5128 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 5129 req->l2_addr_mask[0] = 0xff; 5130 req->l2_addr_mask[1] = 0xff; 5131 req->l2_addr_mask[2] = 0xff; 5132 req->l2_addr_mask[3] = 0xff; 5133 req->l2_addr_mask[4] = 0xff; 5134 req->l2_addr_mask[5] = 0xff; 5135 5136 resp = hwrm_req_hold(bp, req); 5137 rc = hwrm_req_send(bp, req); 5138 if (!rc) 5139 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5140 resp->l2_filter_id; 5141 hwrm_req_drop(bp, req); 5142 return rc; 5143 } 5144 5145 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5146 { 5147 struct hwrm_cfa_l2_filter_free_input *req; 5148 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5149 int rc; 5150 5151 /* Any associated ntuple filters will also be cleared by firmware. */ 5152 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5153 if (rc) 5154 return rc; 5155 hwrm_req_hold(bp, req); 5156 for (i = 0; i < num_of_vnics; i++) { 5157 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5158 5159 for (j = 0; j < vnic->uc_filter_count; j++) { 5160 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 5161 5162 rc = hwrm_req_send(bp, req); 5163 } 5164 vnic->uc_filter_count = 0; 5165 } 5166 hwrm_req_drop(bp, req); 5167 return rc; 5168 } 5169 5170 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5171 { 5172 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5173 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5174 struct hwrm_vnic_tpa_cfg_input *req; 5175 int rc; 5176 5177 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5178 return 0; 5179 5180 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 5181 if (rc) 5182 return rc; 5183 5184 if (tpa_flags) { 5185 u16 mss = bp->dev->mtu - 40; 5186 u32 nsegs, n, segs = 0, flags; 5187 5188 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5189 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5190 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5191 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5192 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5193 if (tpa_flags & BNXT_FLAG_GRO) 5194 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5195 5196 req->flags = cpu_to_le32(flags); 5197 5198 req->enables = 5199 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5200 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5201 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5202 5203 /* Number of segs are log2 units, and first packet is not 5204 * included as part of this units. 5205 */ 5206 if (mss <= BNXT_RX_PAGE_SIZE) { 5207 n = BNXT_RX_PAGE_SIZE / mss; 5208 nsegs = (MAX_SKB_FRAGS - 1) * n; 5209 } else { 5210 n = mss / BNXT_RX_PAGE_SIZE; 5211 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5212 n++; 5213 nsegs = (MAX_SKB_FRAGS - n) / n; 5214 } 5215 5216 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5217 segs = MAX_TPA_SEGS_P5; 5218 max_aggs = bp->max_tpa; 5219 } else { 5220 segs = ilog2(nsegs); 5221 } 5222 req->max_agg_segs = cpu_to_le16(segs); 5223 req->max_aggs = cpu_to_le16(max_aggs); 5224 5225 req->min_agg_len = cpu_to_le32(512); 5226 } 5227 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5228 5229 return hwrm_req_send(bp, req); 5230 } 5231 5232 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5233 { 5234 struct bnxt_ring_grp_info *grp_info; 5235 5236 grp_info = &bp->grp_info[ring->grp_idx]; 5237 return grp_info->cp_fw_ring_id; 5238 } 5239 5240 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5241 { 5242 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5243 struct bnxt_napi *bnapi = rxr->bnapi; 5244 struct bnxt_cp_ring_info *cpr; 5245 5246 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5247 return cpr->cp_ring_struct.fw_ring_id; 5248 } else { 5249 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5250 } 5251 } 5252 5253 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5254 { 5255 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5256 struct bnxt_napi *bnapi = txr->bnapi; 5257 struct bnxt_cp_ring_info *cpr; 5258 5259 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5260 return cpr->cp_ring_struct.fw_ring_id; 5261 } else { 5262 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5263 } 5264 } 5265 5266 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5267 { 5268 int entries; 5269 5270 if (bp->flags & BNXT_FLAG_CHIP_P5) 5271 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5272 else 5273 entries = HW_HASH_INDEX_SIZE; 5274 5275 bp->rss_indir_tbl_entries = entries; 5276 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5277 GFP_KERNEL); 5278 if (!bp->rss_indir_tbl) 5279 return -ENOMEM; 5280 return 0; 5281 } 5282 5283 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5284 { 5285 u16 max_rings, max_entries, pad, i; 5286 5287 if (!bp->rx_nr_rings) 5288 return; 5289 5290 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5291 max_rings = bp->rx_nr_rings - 1; 5292 else 5293 max_rings = bp->rx_nr_rings; 5294 5295 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5296 5297 for (i = 0; i < max_entries; i++) 5298 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5299 5300 pad = bp->rss_indir_tbl_entries - max_entries; 5301 if (pad) 5302 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5303 } 5304 5305 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5306 { 5307 u16 i, tbl_size, max_ring = 0; 5308 5309 if (!bp->rss_indir_tbl) 5310 return 0; 5311 5312 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5313 for (i = 0; i < tbl_size; i++) 5314 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5315 return max_ring; 5316 } 5317 5318 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5319 { 5320 if (bp->flags & BNXT_FLAG_CHIP_P5) 5321 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5322 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5323 return 2; 5324 return 1; 5325 } 5326 5327 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5328 { 5329 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5330 u16 i, j; 5331 5332 /* Fill the RSS indirection table with ring group ids */ 5333 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5334 if (!no_rss) 5335 j = bp->rss_indir_tbl[i]; 5336 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5337 } 5338 } 5339 5340 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5341 struct bnxt_vnic_info *vnic) 5342 { 5343 __le16 *ring_tbl = vnic->rss_table; 5344 struct bnxt_rx_ring_info *rxr; 5345 u16 tbl_size, i; 5346 5347 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5348 5349 for (i = 0; i < tbl_size; i++) { 5350 u16 ring_id, j; 5351 5352 j = bp->rss_indir_tbl[i]; 5353 rxr = &bp->rx_ring[j]; 5354 5355 ring_id = rxr->rx_ring_struct.fw_ring_id; 5356 *ring_tbl++ = cpu_to_le16(ring_id); 5357 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5358 *ring_tbl++ = cpu_to_le16(ring_id); 5359 } 5360 } 5361 5362 static void 5363 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 5364 struct bnxt_vnic_info *vnic) 5365 { 5366 if (bp->flags & BNXT_FLAG_CHIP_P5) 5367 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5368 else 5369 bnxt_fill_hw_rss_tbl(bp, vnic); 5370 5371 if (bp->rss_hash_delta) { 5372 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 5373 if (bp->rss_hash_cfg & bp->rss_hash_delta) 5374 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 5375 else 5376 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 5377 } else { 5378 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5379 } 5380 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5381 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5382 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5383 } 5384 5385 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5386 { 5387 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5388 struct hwrm_vnic_rss_cfg_input *req; 5389 int rc; 5390 5391 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5392 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5393 return 0; 5394 5395 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5396 if (rc) 5397 return rc; 5398 5399 if (set_rss) 5400 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5401 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5402 return hwrm_req_send(bp, req); 5403 } 5404 5405 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5406 { 5407 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5408 struct hwrm_vnic_rss_cfg_input *req; 5409 dma_addr_t ring_tbl_map; 5410 u32 i, nr_ctxs; 5411 int rc; 5412 5413 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5414 if (rc) 5415 return rc; 5416 5417 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5418 if (!set_rss) 5419 return hwrm_req_send(bp, req); 5420 5421 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5422 ring_tbl_map = vnic->rss_table_dma_addr; 5423 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5424 5425 hwrm_req_hold(bp, req); 5426 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5427 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5428 req->ring_table_pair_index = i; 5429 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5430 rc = hwrm_req_send(bp, req); 5431 if (rc) 5432 goto exit; 5433 } 5434 5435 exit: 5436 hwrm_req_drop(bp, req); 5437 return rc; 5438 } 5439 5440 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 5441 { 5442 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5443 struct hwrm_vnic_rss_qcfg_output *resp; 5444 struct hwrm_vnic_rss_qcfg_input *req; 5445 5446 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 5447 return; 5448 5449 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5450 /* all contexts configured to same hash_type, zero always exists */ 5451 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5452 resp = hwrm_req_hold(bp, req); 5453 if (!hwrm_req_send(bp, req)) { 5454 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 5455 bp->rss_hash_delta = 0; 5456 } 5457 hwrm_req_drop(bp, req); 5458 } 5459 5460 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5461 { 5462 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5463 struct hwrm_vnic_plcmodes_cfg_input *req; 5464 int rc; 5465 5466 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5467 if (rc) 5468 return rc; 5469 5470 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 5471 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 5472 5473 if (BNXT_RX_PAGE_MODE(bp)) { 5474 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 5475 } else { 5476 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5477 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5478 req->enables |= 5479 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5480 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5481 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5482 } 5483 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5484 return hwrm_req_send(bp, req); 5485 } 5486 5487 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5488 u16 ctx_idx) 5489 { 5490 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5491 5492 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5493 return; 5494 5495 req->rss_cos_lb_ctx_id = 5496 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5497 5498 hwrm_req_send(bp, req); 5499 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5500 } 5501 5502 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5503 { 5504 int i, j; 5505 5506 for (i = 0; i < bp->nr_vnics; i++) { 5507 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5508 5509 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5510 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5511 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5512 } 5513 } 5514 bp->rsscos_nr_ctxs = 0; 5515 } 5516 5517 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5518 { 5519 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5520 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5521 int rc; 5522 5523 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5524 if (rc) 5525 return rc; 5526 5527 resp = hwrm_req_hold(bp, req); 5528 rc = hwrm_req_send(bp, req); 5529 if (!rc) 5530 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5531 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5532 hwrm_req_drop(bp, req); 5533 5534 return rc; 5535 } 5536 5537 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5538 { 5539 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5540 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5541 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5542 } 5543 5544 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5545 { 5546 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5547 struct hwrm_vnic_cfg_input *req; 5548 unsigned int ring = 0, grp_idx; 5549 u16 def_vlan = 0; 5550 int rc; 5551 5552 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5553 if (rc) 5554 return rc; 5555 5556 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5557 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5558 5559 req->default_rx_ring_id = 5560 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5561 req->default_cmpl_ring_id = 5562 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5563 req->enables = 5564 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5565 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5566 goto vnic_mru; 5567 } 5568 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5569 /* Only RSS support for now TBD: COS & LB */ 5570 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5571 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5572 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5573 VNIC_CFG_REQ_ENABLES_MRU); 5574 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5575 req->rss_rule = 5576 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5577 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5578 VNIC_CFG_REQ_ENABLES_MRU); 5579 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5580 } else { 5581 req->rss_rule = cpu_to_le16(0xffff); 5582 } 5583 5584 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5585 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5586 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5587 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5588 } else { 5589 req->cos_rule = cpu_to_le16(0xffff); 5590 } 5591 5592 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5593 ring = 0; 5594 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5595 ring = vnic_id - 1; 5596 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5597 ring = bp->rx_nr_rings - 1; 5598 5599 grp_idx = bp->rx_ring[ring].bnapi->index; 5600 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5601 req->lb_rule = cpu_to_le16(0xffff); 5602 vnic_mru: 5603 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5604 5605 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5606 #ifdef CONFIG_BNXT_SRIOV 5607 if (BNXT_VF(bp)) 5608 def_vlan = bp->vf.vlan; 5609 #endif 5610 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5611 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5612 if (!vnic_id && bnxt_ulp_registered(bp->edev)) 5613 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5614 5615 return hwrm_req_send(bp, req); 5616 } 5617 5618 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5619 { 5620 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5621 struct hwrm_vnic_free_input *req; 5622 5623 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5624 return; 5625 5626 req->vnic_id = 5627 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5628 5629 hwrm_req_send(bp, req); 5630 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5631 } 5632 } 5633 5634 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5635 { 5636 u16 i; 5637 5638 for (i = 0; i < bp->nr_vnics; i++) 5639 bnxt_hwrm_vnic_free_one(bp, i); 5640 } 5641 5642 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5643 unsigned int start_rx_ring_idx, 5644 unsigned int nr_rings) 5645 { 5646 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5647 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5648 struct hwrm_vnic_alloc_output *resp; 5649 struct hwrm_vnic_alloc_input *req; 5650 int rc; 5651 5652 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5653 if (rc) 5654 return rc; 5655 5656 if (bp->flags & BNXT_FLAG_CHIP_P5) 5657 goto vnic_no_ring_grps; 5658 5659 /* map ring groups to this vnic */ 5660 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5661 grp_idx = bp->rx_ring[i].bnapi->index; 5662 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5663 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5664 j, nr_rings); 5665 break; 5666 } 5667 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5668 } 5669 5670 vnic_no_ring_grps: 5671 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5672 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5673 if (vnic_id == 0) 5674 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5675 5676 resp = hwrm_req_hold(bp, req); 5677 rc = hwrm_req_send(bp, req); 5678 if (!rc) 5679 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5680 hwrm_req_drop(bp, req); 5681 return rc; 5682 } 5683 5684 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5685 { 5686 struct hwrm_vnic_qcaps_output *resp; 5687 struct hwrm_vnic_qcaps_input *req; 5688 int rc; 5689 5690 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5691 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5692 if (bp->hwrm_spec_code < 0x10600) 5693 return 0; 5694 5695 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5696 if (rc) 5697 return rc; 5698 5699 resp = hwrm_req_hold(bp, req); 5700 rc = hwrm_req_send(bp, req); 5701 if (!rc) { 5702 u32 flags = le32_to_cpu(resp->flags); 5703 5704 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5705 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5706 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5707 if (flags & 5708 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5709 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5710 5711 /* Older P5 fw before EXT_HW_STATS support did not set 5712 * VLAN_STRIP_CAP properly. 5713 */ 5714 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5715 (BNXT_CHIP_P5_THOR(bp) && 5716 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5717 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5718 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 5719 bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA; 5720 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5721 if (bp->max_tpa_v2) { 5722 if (BNXT_CHIP_P5_THOR(bp)) 5723 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5724 else 5725 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5726 } 5727 } 5728 hwrm_req_drop(bp, req); 5729 return rc; 5730 } 5731 5732 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5733 { 5734 struct hwrm_ring_grp_alloc_output *resp; 5735 struct hwrm_ring_grp_alloc_input *req; 5736 int rc; 5737 u16 i; 5738 5739 if (bp->flags & BNXT_FLAG_CHIP_P5) 5740 return 0; 5741 5742 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5743 if (rc) 5744 return rc; 5745 5746 resp = hwrm_req_hold(bp, req); 5747 for (i = 0; i < bp->rx_nr_rings; i++) { 5748 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5749 5750 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5751 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5752 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5753 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5754 5755 rc = hwrm_req_send(bp, req); 5756 5757 if (rc) 5758 break; 5759 5760 bp->grp_info[grp_idx].fw_grp_id = 5761 le32_to_cpu(resp->ring_group_id); 5762 } 5763 hwrm_req_drop(bp, req); 5764 return rc; 5765 } 5766 5767 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5768 { 5769 struct hwrm_ring_grp_free_input *req; 5770 u16 i; 5771 5772 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5773 return; 5774 5775 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5776 return; 5777 5778 hwrm_req_hold(bp, req); 5779 for (i = 0; i < bp->cp_nr_rings; i++) { 5780 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5781 continue; 5782 req->ring_group_id = 5783 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5784 5785 hwrm_req_send(bp, req); 5786 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5787 } 5788 hwrm_req_drop(bp, req); 5789 } 5790 5791 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5792 struct bnxt_ring_struct *ring, 5793 u32 ring_type, u32 map_index) 5794 { 5795 struct hwrm_ring_alloc_output *resp; 5796 struct hwrm_ring_alloc_input *req; 5797 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5798 struct bnxt_ring_grp_info *grp_info; 5799 int rc, err = 0; 5800 u16 ring_id; 5801 5802 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5803 if (rc) 5804 goto exit; 5805 5806 req->enables = 0; 5807 if (rmem->nr_pages > 1) { 5808 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5809 /* Page size is in log2 units */ 5810 req->page_size = BNXT_PAGE_SHIFT; 5811 req->page_tbl_depth = 1; 5812 } else { 5813 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5814 } 5815 req->fbo = 0; 5816 /* Association of ring index with doorbell index and MSIX number */ 5817 req->logical_id = cpu_to_le16(map_index); 5818 5819 switch (ring_type) { 5820 case HWRM_RING_ALLOC_TX: { 5821 struct bnxt_tx_ring_info *txr; 5822 5823 txr = container_of(ring, struct bnxt_tx_ring_info, 5824 tx_ring_struct); 5825 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5826 /* Association of transmit ring with completion ring */ 5827 grp_info = &bp->grp_info[ring->grp_idx]; 5828 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5829 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5830 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5831 req->queue_id = cpu_to_le16(ring->queue_id); 5832 break; 5833 } 5834 case HWRM_RING_ALLOC_RX: 5835 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5836 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5837 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5838 u16 flags = 0; 5839 5840 /* Association of rx ring with stats context */ 5841 grp_info = &bp->grp_info[ring->grp_idx]; 5842 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5843 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5844 req->enables |= cpu_to_le32( 5845 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5846 if (NET_IP_ALIGN == 2) 5847 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5848 req->flags = cpu_to_le16(flags); 5849 } 5850 break; 5851 case HWRM_RING_ALLOC_AGG: 5852 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5853 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5854 /* Association of agg ring with rx ring */ 5855 grp_info = &bp->grp_info[ring->grp_idx]; 5856 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5857 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5858 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5859 req->enables |= cpu_to_le32( 5860 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5861 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5862 } else { 5863 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5864 } 5865 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5866 break; 5867 case HWRM_RING_ALLOC_CMPL: 5868 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5869 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5870 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5871 /* Association of cp ring with nq */ 5872 grp_info = &bp->grp_info[map_index]; 5873 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5874 req->cq_handle = cpu_to_le64(ring->handle); 5875 req->enables |= cpu_to_le32( 5876 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5877 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5878 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5879 } 5880 break; 5881 case HWRM_RING_ALLOC_NQ: 5882 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5883 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5884 if (bp->flags & BNXT_FLAG_USING_MSIX) 5885 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5886 break; 5887 default: 5888 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5889 ring_type); 5890 return -1; 5891 } 5892 5893 resp = hwrm_req_hold(bp, req); 5894 rc = hwrm_req_send(bp, req); 5895 err = le16_to_cpu(resp->error_code); 5896 ring_id = le16_to_cpu(resp->ring_id); 5897 hwrm_req_drop(bp, req); 5898 5899 exit: 5900 if (rc || err) { 5901 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5902 ring_type, rc, err); 5903 return -EIO; 5904 } 5905 ring->fw_ring_id = ring_id; 5906 return rc; 5907 } 5908 5909 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5910 { 5911 int rc; 5912 5913 if (BNXT_PF(bp)) { 5914 struct hwrm_func_cfg_input *req; 5915 5916 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 5917 if (rc) 5918 return rc; 5919 5920 req->fid = cpu_to_le16(0xffff); 5921 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5922 req->async_event_cr = cpu_to_le16(idx); 5923 return hwrm_req_send(bp, req); 5924 } else { 5925 struct hwrm_func_vf_cfg_input *req; 5926 5927 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5928 if (rc) 5929 return rc; 5930 5931 req->enables = 5932 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5933 req->async_event_cr = cpu_to_le16(idx); 5934 return hwrm_req_send(bp, req); 5935 } 5936 } 5937 5938 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5939 u32 map_idx, u32 xid) 5940 { 5941 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5942 if (BNXT_PF(bp)) 5943 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5944 else 5945 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5946 switch (ring_type) { 5947 case HWRM_RING_ALLOC_TX: 5948 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5949 break; 5950 case HWRM_RING_ALLOC_RX: 5951 case HWRM_RING_ALLOC_AGG: 5952 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5953 break; 5954 case HWRM_RING_ALLOC_CMPL: 5955 db->db_key64 = DBR_PATH_L2; 5956 break; 5957 case HWRM_RING_ALLOC_NQ: 5958 db->db_key64 = DBR_PATH_L2; 5959 break; 5960 } 5961 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5962 } else { 5963 db->doorbell = bp->bar1 + map_idx * 0x80; 5964 switch (ring_type) { 5965 case HWRM_RING_ALLOC_TX: 5966 db->db_key32 = DB_KEY_TX; 5967 break; 5968 case HWRM_RING_ALLOC_RX: 5969 case HWRM_RING_ALLOC_AGG: 5970 db->db_key32 = DB_KEY_RX; 5971 break; 5972 case HWRM_RING_ALLOC_CMPL: 5973 db->db_key32 = DB_KEY_CP; 5974 break; 5975 } 5976 } 5977 } 5978 5979 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5980 { 5981 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5982 int i, rc = 0; 5983 u32 type; 5984 5985 if (bp->flags & BNXT_FLAG_CHIP_P5) 5986 type = HWRM_RING_ALLOC_NQ; 5987 else 5988 type = HWRM_RING_ALLOC_CMPL; 5989 for (i = 0; i < bp->cp_nr_rings; i++) { 5990 struct bnxt_napi *bnapi = bp->bnapi[i]; 5991 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5992 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5993 u32 map_idx = ring->map_idx; 5994 unsigned int vector; 5995 5996 vector = bp->irq_tbl[map_idx].vector; 5997 disable_irq_nosync(vector); 5998 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5999 if (rc) { 6000 enable_irq(vector); 6001 goto err_out; 6002 } 6003 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 6004 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 6005 enable_irq(vector); 6006 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 6007 6008 if (!i) { 6009 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 6010 if (rc) 6011 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 6012 } 6013 } 6014 6015 type = HWRM_RING_ALLOC_TX; 6016 for (i = 0; i < bp->tx_nr_rings; i++) { 6017 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6018 struct bnxt_ring_struct *ring; 6019 u32 map_idx; 6020 6021 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6022 struct bnxt_napi *bnapi = txr->bnapi; 6023 struct bnxt_cp_ring_info *cpr, *cpr2; 6024 u32 type2 = HWRM_RING_ALLOC_CMPL; 6025 6026 cpr = &bnapi->cp_ring; 6027 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 6028 ring = &cpr2->cp_ring_struct; 6029 ring->handle = BNXT_TX_HDL; 6030 map_idx = bnapi->index; 6031 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6032 if (rc) 6033 goto err_out; 6034 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6035 ring->fw_ring_id); 6036 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6037 } 6038 ring = &txr->tx_ring_struct; 6039 map_idx = i; 6040 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6041 if (rc) 6042 goto err_out; 6043 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 6044 } 6045 6046 type = HWRM_RING_ALLOC_RX; 6047 for (i = 0; i < bp->rx_nr_rings; i++) { 6048 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6049 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6050 struct bnxt_napi *bnapi = rxr->bnapi; 6051 u32 map_idx = bnapi->index; 6052 6053 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6054 if (rc) 6055 goto err_out; 6056 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6057 /* If we have agg rings, post agg buffers first. */ 6058 if (!agg_rings) 6059 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6060 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6061 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6062 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6063 u32 type2 = HWRM_RING_ALLOC_CMPL; 6064 struct bnxt_cp_ring_info *cpr2; 6065 6066 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 6067 ring = &cpr2->cp_ring_struct; 6068 ring->handle = BNXT_RX_HDL; 6069 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6070 if (rc) 6071 goto err_out; 6072 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6073 ring->fw_ring_id); 6074 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6075 } 6076 } 6077 6078 if (agg_rings) { 6079 type = HWRM_RING_ALLOC_AGG; 6080 for (i = 0; i < bp->rx_nr_rings; i++) { 6081 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6082 struct bnxt_ring_struct *ring = 6083 &rxr->rx_agg_ring_struct; 6084 u32 grp_idx = ring->grp_idx; 6085 u32 map_idx = grp_idx + bp->rx_nr_rings; 6086 6087 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6088 if (rc) 6089 goto err_out; 6090 6091 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6092 ring->fw_ring_id); 6093 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6094 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6095 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6096 } 6097 } 6098 err_out: 6099 return rc; 6100 } 6101 6102 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6103 struct bnxt_ring_struct *ring, 6104 u32 ring_type, int cmpl_ring_id) 6105 { 6106 struct hwrm_ring_free_output *resp; 6107 struct hwrm_ring_free_input *req; 6108 u16 error_code = 0; 6109 int rc; 6110 6111 if (BNXT_NO_FW_ACCESS(bp)) 6112 return 0; 6113 6114 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6115 if (rc) 6116 goto exit; 6117 6118 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 6119 req->ring_type = ring_type; 6120 req->ring_id = cpu_to_le16(ring->fw_ring_id); 6121 6122 resp = hwrm_req_hold(bp, req); 6123 rc = hwrm_req_send(bp, req); 6124 error_code = le16_to_cpu(resp->error_code); 6125 hwrm_req_drop(bp, req); 6126 exit: 6127 if (rc || error_code) { 6128 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6129 ring_type, rc, error_code); 6130 return -EIO; 6131 } 6132 return 0; 6133 } 6134 6135 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6136 { 6137 u32 type; 6138 int i; 6139 6140 if (!bp->bnapi) 6141 return; 6142 6143 for (i = 0; i < bp->tx_nr_rings; i++) { 6144 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6145 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6146 6147 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6148 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6149 6150 hwrm_ring_free_send_msg(bp, ring, 6151 RING_FREE_REQ_RING_TYPE_TX, 6152 close_path ? cmpl_ring_id : 6153 INVALID_HW_RING_ID); 6154 ring->fw_ring_id = INVALID_HW_RING_ID; 6155 } 6156 } 6157 6158 for (i = 0; i < bp->rx_nr_rings; i++) { 6159 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6160 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6161 u32 grp_idx = rxr->bnapi->index; 6162 6163 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6164 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6165 6166 hwrm_ring_free_send_msg(bp, ring, 6167 RING_FREE_REQ_RING_TYPE_RX, 6168 close_path ? cmpl_ring_id : 6169 INVALID_HW_RING_ID); 6170 ring->fw_ring_id = INVALID_HW_RING_ID; 6171 bp->grp_info[grp_idx].rx_fw_ring_id = 6172 INVALID_HW_RING_ID; 6173 } 6174 } 6175 6176 if (bp->flags & BNXT_FLAG_CHIP_P5) 6177 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6178 else 6179 type = RING_FREE_REQ_RING_TYPE_RX; 6180 for (i = 0; i < bp->rx_nr_rings; i++) { 6181 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6182 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6183 u32 grp_idx = rxr->bnapi->index; 6184 6185 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6186 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6187 6188 hwrm_ring_free_send_msg(bp, ring, type, 6189 close_path ? cmpl_ring_id : 6190 INVALID_HW_RING_ID); 6191 ring->fw_ring_id = INVALID_HW_RING_ID; 6192 bp->grp_info[grp_idx].agg_fw_ring_id = 6193 INVALID_HW_RING_ID; 6194 } 6195 } 6196 6197 /* The completion rings are about to be freed. After that the 6198 * IRQ doorbell will not work anymore. So we need to disable 6199 * IRQ here. 6200 */ 6201 bnxt_disable_int_sync(bp); 6202 6203 if (bp->flags & BNXT_FLAG_CHIP_P5) 6204 type = RING_FREE_REQ_RING_TYPE_NQ; 6205 else 6206 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6207 for (i = 0; i < bp->cp_nr_rings; i++) { 6208 struct bnxt_napi *bnapi = bp->bnapi[i]; 6209 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6210 struct bnxt_ring_struct *ring; 6211 int j; 6212 6213 for (j = 0; j < 2; j++) { 6214 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6215 6216 if (cpr2) { 6217 ring = &cpr2->cp_ring_struct; 6218 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6219 continue; 6220 hwrm_ring_free_send_msg(bp, ring, 6221 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6222 INVALID_HW_RING_ID); 6223 ring->fw_ring_id = INVALID_HW_RING_ID; 6224 } 6225 } 6226 ring = &cpr->cp_ring_struct; 6227 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6228 hwrm_ring_free_send_msg(bp, ring, type, 6229 INVALID_HW_RING_ID); 6230 ring->fw_ring_id = INVALID_HW_RING_ID; 6231 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6232 } 6233 } 6234 } 6235 6236 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6237 bool shared); 6238 6239 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6240 { 6241 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6242 struct hwrm_func_qcfg_output *resp; 6243 struct hwrm_func_qcfg_input *req; 6244 int rc; 6245 6246 if (bp->hwrm_spec_code < 0x10601) 6247 return 0; 6248 6249 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6250 if (rc) 6251 return rc; 6252 6253 req->fid = cpu_to_le16(0xffff); 6254 resp = hwrm_req_hold(bp, req); 6255 rc = hwrm_req_send(bp, req); 6256 if (rc) { 6257 hwrm_req_drop(bp, req); 6258 return rc; 6259 } 6260 6261 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6262 if (BNXT_NEW_RM(bp)) { 6263 u16 cp, stats; 6264 6265 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6266 hw_resc->resv_hw_ring_grps = 6267 le32_to_cpu(resp->alloc_hw_ring_grps); 6268 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6269 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6270 stats = le16_to_cpu(resp->alloc_stat_ctx); 6271 hw_resc->resv_irqs = cp; 6272 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6273 int rx = hw_resc->resv_rx_rings; 6274 int tx = hw_resc->resv_tx_rings; 6275 6276 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6277 rx >>= 1; 6278 if (cp < (rx + tx)) { 6279 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6280 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6281 rx <<= 1; 6282 hw_resc->resv_rx_rings = rx; 6283 hw_resc->resv_tx_rings = tx; 6284 } 6285 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6286 hw_resc->resv_hw_ring_grps = rx; 6287 } 6288 hw_resc->resv_cp_rings = cp; 6289 hw_resc->resv_stat_ctxs = stats; 6290 } 6291 hwrm_req_drop(bp, req); 6292 return 0; 6293 } 6294 6295 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6296 { 6297 struct hwrm_func_qcfg_output *resp; 6298 struct hwrm_func_qcfg_input *req; 6299 int rc; 6300 6301 if (bp->hwrm_spec_code < 0x10601) 6302 return 0; 6303 6304 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6305 if (rc) 6306 return rc; 6307 6308 req->fid = cpu_to_le16(fid); 6309 resp = hwrm_req_hold(bp, req); 6310 rc = hwrm_req_send(bp, req); 6311 if (!rc) 6312 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6313 6314 hwrm_req_drop(bp, req); 6315 return rc; 6316 } 6317 6318 static bool bnxt_rfs_supported(struct bnxt *bp); 6319 6320 static struct hwrm_func_cfg_input * 6321 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6322 int ring_grps, int cp_rings, int stats, int vnics) 6323 { 6324 struct hwrm_func_cfg_input *req; 6325 u32 enables = 0; 6326 6327 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 6328 return NULL; 6329 6330 req->fid = cpu_to_le16(0xffff); 6331 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6332 req->num_tx_rings = cpu_to_le16(tx_rings); 6333 if (BNXT_NEW_RM(bp)) { 6334 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6335 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6336 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6337 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6338 enables |= tx_rings + ring_grps ? 6339 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6340 enables |= rx_rings ? 6341 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6342 } else { 6343 enables |= cp_rings ? 6344 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6345 enables |= ring_grps ? 6346 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6347 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6348 } 6349 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6350 6351 req->num_rx_rings = cpu_to_le16(rx_rings); 6352 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6353 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6354 req->num_msix = cpu_to_le16(cp_rings); 6355 req->num_rsscos_ctxs = 6356 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6357 } else { 6358 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6359 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6360 req->num_rsscos_ctxs = cpu_to_le16(1); 6361 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6362 bnxt_rfs_supported(bp)) 6363 req->num_rsscos_ctxs = 6364 cpu_to_le16(ring_grps + 1); 6365 } 6366 req->num_stat_ctxs = cpu_to_le16(stats); 6367 req->num_vnics = cpu_to_le16(vnics); 6368 } 6369 req->enables = cpu_to_le32(enables); 6370 return req; 6371 } 6372 6373 static struct hwrm_func_vf_cfg_input * 6374 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6375 int ring_grps, int cp_rings, int stats, int vnics) 6376 { 6377 struct hwrm_func_vf_cfg_input *req; 6378 u32 enables = 0; 6379 6380 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6381 return NULL; 6382 6383 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6384 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6385 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6386 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6387 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6388 enables |= tx_rings + ring_grps ? 6389 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6390 } else { 6391 enables |= cp_rings ? 6392 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6393 enables |= ring_grps ? 6394 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6395 } 6396 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6397 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6398 6399 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6400 req->num_tx_rings = cpu_to_le16(tx_rings); 6401 req->num_rx_rings = cpu_to_le16(rx_rings); 6402 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6403 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6404 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6405 } else { 6406 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6407 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6408 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6409 } 6410 req->num_stat_ctxs = cpu_to_le16(stats); 6411 req->num_vnics = cpu_to_le16(vnics); 6412 6413 req->enables = cpu_to_le32(enables); 6414 return req; 6415 } 6416 6417 static int 6418 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6419 int ring_grps, int cp_rings, int stats, int vnics) 6420 { 6421 struct hwrm_func_cfg_input *req; 6422 int rc; 6423 6424 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6425 cp_rings, stats, vnics); 6426 if (!req) 6427 return -ENOMEM; 6428 6429 if (!req->enables) { 6430 hwrm_req_drop(bp, req); 6431 return 0; 6432 } 6433 6434 rc = hwrm_req_send(bp, req); 6435 if (rc) 6436 return rc; 6437 6438 if (bp->hwrm_spec_code < 0x10601) 6439 bp->hw_resc.resv_tx_rings = tx_rings; 6440 6441 return bnxt_hwrm_get_rings(bp); 6442 } 6443 6444 static int 6445 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6446 int ring_grps, int cp_rings, int stats, int vnics) 6447 { 6448 struct hwrm_func_vf_cfg_input *req; 6449 int rc; 6450 6451 if (!BNXT_NEW_RM(bp)) { 6452 bp->hw_resc.resv_tx_rings = tx_rings; 6453 return 0; 6454 } 6455 6456 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6457 cp_rings, stats, vnics); 6458 if (!req) 6459 return -ENOMEM; 6460 6461 rc = hwrm_req_send(bp, req); 6462 if (rc) 6463 return rc; 6464 6465 return bnxt_hwrm_get_rings(bp); 6466 } 6467 6468 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6469 int cp, int stat, int vnic) 6470 { 6471 if (BNXT_PF(bp)) 6472 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6473 vnic); 6474 else 6475 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6476 vnic); 6477 } 6478 6479 int bnxt_nq_rings_in_use(struct bnxt *bp) 6480 { 6481 int cp = bp->cp_nr_rings; 6482 int ulp_msix, ulp_base; 6483 6484 ulp_msix = bnxt_get_ulp_msix_num(bp); 6485 if (ulp_msix) { 6486 ulp_base = bnxt_get_ulp_msix_base(bp); 6487 cp += ulp_msix; 6488 if ((ulp_base + ulp_msix) > cp) 6489 cp = ulp_base + ulp_msix; 6490 } 6491 return cp; 6492 } 6493 6494 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6495 { 6496 int cp; 6497 6498 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6499 return bnxt_nq_rings_in_use(bp); 6500 6501 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6502 return cp; 6503 } 6504 6505 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6506 { 6507 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6508 int cp = bp->cp_nr_rings; 6509 6510 if (!ulp_stat) 6511 return cp; 6512 6513 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6514 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6515 6516 return cp + ulp_stat; 6517 } 6518 6519 /* Check if a default RSS map needs to be setup. This function is only 6520 * used on older firmware that does not require reserving RX rings. 6521 */ 6522 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6523 { 6524 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6525 6526 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6527 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6528 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6529 if (!netif_is_rxfh_configured(bp->dev)) 6530 bnxt_set_dflt_rss_indir_tbl(bp); 6531 } 6532 } 6533 6534 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6535 { 6536 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6537 int cp = bnxt_cp_rings_in_use(bp); 6538 int nq = bnxt_nq_rings_in_use(bp); 6539 int rx = bp->rx_nr_rings, stat; 6540 int vnic = 1, grp = rx; 6541 6542 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6543 bp->hwrm_spec_code >= 0x10601) 6544 return true; 6545 6546 /* Old firmware does not need RX ring reservations but we still 6547 * need to setup a default RSS map when needed. With new firmware 6548 * we go through RX ring reservations first and then set up the 6549 * RSS map for the successfully reserved RX rings when needed. 6550 */ 6551 if (!BNXT_NEW_RM(bp)) { 6552 bnxt_check_rss_tbl_no_rmgr(bp); 6553 return false; 6554 } 6555 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6556 vnic = rx + 1; 6557 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6558 rx <<= 1; 6559 stat = bnxt_get_func_stat_ctxs(bp); 6560 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6561 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6562 (hw_resc->resv_hw_ring_grps != grp && 6563 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6564 return true; 6565 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6566 hw_resc->resv_irqs != nq) 6567 return true; 6568 return false; 6569 } 6570 6571 static int __bnxt_reserve_rings(struct bnxt *bp) 6572 { 6573 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6574 int cp = bnxt_nq_rings_in_use(bp); 6575 int tx = bp->tx_nr_rings; 6576 int rx = bp->rx_nr_rings; 6577 int grp, rx_rings, rc; 6578 int vnic = 1, stat; 6579 bool sh = false; 6580 6581 if (!bnxt_need_reserve_rings(bp)) 6582 return 0; 6583 6584 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6585 sh = true; 6586 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6587 vnic = rx + 1; 6588 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6589 rx <<= 1; 6590 grp = bp->rx_nr_rings; 6591 stat = bnxt_get_func_stat_ctxs(bp); 6592 6593 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6594 if (rc) 6595 return rc; 6596 6597 tx = hw_resc->resv_tx_rings; 6598 if (BNXT_NEW_RM(bp)) { 6599 rx = hw_resc->resv_rx_rings; 6600 cp = hw_resc->resv_irqs; 6601 grp = hw_resc->resv_hw_ring_grps; 6602 vnic = hw_resc->resv_vnics; 6603 stat = hw_resc->resv_stat_ctxs; 6604 } 6605 6606 rx_rings = rx; 6607 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6608 if (rx >= 2) { 6609 rx_rings = rx >> 1; 6610 } else { 6611 if (netif_running(bp->dev)) 6612 return -ENOMEM; 6613 6614 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6615 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6616 bp->dev->hw_features &= ~NETIF_F_LRO; 6617 bp->dev->features &= ~NETIF_F_LRO; 6618 bnxt_set_ring_params(bp); 6619 } 6620 } 6621 rx_rings = min_t(int, rx_rings, grp); 6622 cp = min_t(int, cp, bp->cp_nr_rings); 6623 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6624 stat -= bnxt_get_ulp_stat_ctxs(bp); 6625 cp = min_t(int, cp, stat); 6626 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6627 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6628 rx = rx_rings << 1; 6629 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6630 bp->tx_nr_rings = tx; 6631 6632 /* If we cannot reserve all the RX rings, reset the RSS map only 6633 * if absolutely necessary 6634 */ 6635 if (rx_rings != bp->rx_nr_rings) { 6636 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6637 rx_rings, bp->rx_nr_rings); 6638 if (netif_is_rxfh_configured(bp->dev) && 6639 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6640 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6641 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6642 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6643 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6644 } 6645 } 6646 bp->rx_nr_rings = rx_rings; 6647 bp->cp_nr_rings = cp; 6648 6649 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6650 return -ENOMEM; 6651 6652 if (!netif_is_rxfh_configured(bp->dev)) 6653 bnxt_set_dflt_rss_indir_tbl(bp); 6654 6655 return rc; 6656 } 6657 6658 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6659 int ring_grps, int cp_rings, int stats, 6660 int vnics) 6661 { 6662 struct hwrm_func_vf_cfg_input *req; 6663 u32 flags; 6664 6665 if (!BNXT_NEW_RM(bp)) 6666 return 0; 6667 6668 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6669 cp_rings, stats, vnics); 6670 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6671 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6672 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6673 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6674 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6675 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6676 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6677 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6678 6679 req->flags = cpu_to_le32(flags); 6680 return hwrm_req_send_silent(bp, req); 6681 } 6682 6683 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6684 int ring_grps, int cp_rings, int stats, 6685 int vnics) 6686 { 6687 struct hwrm_func_cfg_input *req; 6688 u32 flags; 6689 6690 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6691 cp_rings, stats, vnics); 6692 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6693 if (BNXT_NEW_RM(bp)) { 6694 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6695 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6696 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6697 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6698 if (bp->flags & BNXT_FLAG_CHIP_P5) 6699 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6700 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6701 else 6702 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6703 } 6704 6705 req->flags = cpu_to_le32(flags); 6706 return hwrm_req_send_silent(bp, req); 6707 } 6708 6709 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6710 int ring_grps, int cp_rings, int stats, 6711 int vnics) 6712 { 6713 if (bp->hwrm_spec_code < 0x10801) 6714 return 0; 6715 6716 if (BNXT_PF(bp)) 6717 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6718 ring_grps, cp_rings, stats, 6719 vnics); 6720 6721 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6722 cp_rings, stats, vnics); 6723 } 6724 6725 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6726 { 6727 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6728 struct hwrm_ring_aggint_qcaps_output *resp; 6729 struct hwrm_ring_aggint_qcaps_input *req; 6730 int rc; 6731 6732 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6733 coal_cap->num_cmpl_dma_aggr_max = 63; 6734 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6735 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6736 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6737 coal_cap->int_lat_tmr_min_max = 65535; 6738 coal_cap->int_lat_tmr_max_max = 65535; 6739 coal_cap->num_cmpl_aggr_int_max = 65535; 6740 coal_cap->timer_units = 80; 6741 6742 if (bp->hwrm_spec_code < 0x10902) 6743 return; 6744 6745 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6746 return; 6747 6748 resp = hwrm_req_hold(bp, req); 6749 rc = hwrm_req_send_silent(bp, req); 6750 if (!rc) { 6751 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6752 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6753 coal_cap->num_cmpl_dma_aggr_max = 6754 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6755 coal_cap->num_cmpl_dma_aggr_during_int_max = 6756 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6757 coal_cap->cmpl_aggr_dma_tmr_max = 6758 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6759 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6760 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6761 coal_cap->int_lat_tmr_min_max = 6762 le16_to_cpu(resp->int_lat_tmr_min_max); 6763 coal_cap->int_lat_tmr_max_max = 6764 le16_to_cpu(resp->int_lat_tmr_max_max); 6765 coal_cap->num_cmpl_aggr_int_max = 6766 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6767 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6768 } 6769 hwrm_req_drop(bp, req); 6770 } 6771 6772 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6773 { 6774 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6775 6776 return usec * 1000 / coal_cap->timer_units; 6777 } 6778 6779 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6780 struct bnxt_coal *hw_coal, 6781 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6782 { 6783 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6784 u16 val, tmr, max, flags = hw_coal->flags; 6785 u32 cmpl_params = coal_cap->cmpl_params; 6786 6787 max = hw_coal->bufs_per_record * 128; 6788 if (hw_coal->budget) 6789 max = hw_coal->bufs_per_record * hw_coal->budget; 6790 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6791 6792 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6793 req->num_cmpl_aggr_int = cpu_to_le16(val); 6794 6795 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6796 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6797 6798 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6799 coal_cap->num_cmpl_dma_aggr_during_int_max); 6800 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6801 6802 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6803 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6804 req->int_lat_tmr_max = cpu_to_le16(tmr); 6805 6806 /* min timer set to 1/2 of interrupt timer */ 6807 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6808 val = tmr / 2; 6809 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6810 req->int_lat_tmr_min = cpu_to_le16(val); 6811 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6812 } 6813 6814 /* buf timer set to 1/4 of interrupt timer */ 6815 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6816 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6817 6818 if (cmpl_params & 6819 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6820 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6821 val = clamp_t(u16, tmr, 1, 6822 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6823 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6824 req->enables |= 6825 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6826 } 6827 6828 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6829 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6830 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6831 req->flags = cpu_to_le16(flags); 6832 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6833 } 6834 6835 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6836 struct bnxt_coal *hw_coal) 6837 { 6838 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6839 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6840 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6841 u32 nq_params = coal_cap->nq_params; 6842 u16 tmr; 6843 int rc; 6844 6845 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6846 return 0; 6847 6848 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6849 if (rc) 6850 return rc; 6851 6852 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6853 req->flags = 6854 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6855 6856 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6857 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6858 req->int_lat_tmr_min = cpu_to_le16(tmr); 6859 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6860 return hwrm_req_send(bp, req); 6861 } 6862 6863 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6864 { 6865 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6866 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6867 struct bnxt_coal coal; 6868 int rc; 6869 6870 /* Tick values in micro seconds. 6871 * 1 coal_buf x bufs_per_record = 1 completion record. 6872 */ 6873 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6874 6875 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6876 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6877 6878 if (!bnapi->rx_ring) 6879 return -ENODEV; 6880 6881 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6882 if (rc) 6883 return rc; 6884 6885 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6886 6887 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6888 6889 return hwrm_req_send(bp, req_rx); 6890 } 6891 6892 int bnxt_hwrm_set_coal(struct bnxt *bp) 6893 { 6894 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6895 *req; 6896 int i, rc; 6897 6898 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6899 if (rc) 6900 return rc; 6901 6902 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6903 if (rc) { 6904 hwrm_req_drop(bp, req_rx); 6905 return rc; 6906 } 6907 6908 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6909 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6910 6911 hwrm_req_hold(bp, req_rx); 6912 hwrm_req_hold(bp, req_tx); 6913 for (i = 0; i < bp->cp_nr_rings; i++) { 6914 struct bnxt_napi *bnapi = bp->bnapi[i]; 6915 struct bnxt_coal *hw_coal; 6916 u16 ring_id; 6917 6918 req = req_rx; 6919 if (!bnapi->rx_ring) { 6920 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6921 req = req_tx; 6922 } else { 6923 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6924 } 6925 req->ring_id = cpu_to_le16(ring_id); 6926 6927 rc = hwrm_req_send(bp, req); 6928 if (rc) 6929 break; 6930 6931 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6932 continue; 6933 6934 if (bnapi->rx_ring && bnapi->tx_ring) { 6935 req = req_tx; 6936 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6937 req->ring_id = cpu_to_le16(ring_id); 6938 rc = hwrm_req_send(bp, req); 6939 if (rc) 6940 break; 6941 } 6942 if (bnapi->rx_ring) 6943 hw_coal = &bp->rx_coal; 6944 else 6945 hw_coal = &bp->tx_coal; 6946 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6947 } 6948 hwrm_req_drop(bp, req_rx); 6949 hwrm_req_drop(bp, req_tx); 6950 return rc; 6951 } 6952 6953 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6954 { 6955 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6956 struct hwrm_stat_ctx_free_input *req; 6957 int i; 6958 6959 if (!bp->bnapi) 6960 return; 6961 6962 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6963 return; 6964 6965 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6966 return; 6967 if (BNXT_FW_MAJ(bp) <= 20) { 6968 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6969 hwrm_req_drop(bp, req); 6970 return; 6971 } 6972 hwrm_req_hold(bp, req0); 6973 } 6974 hwrm_req_hold(bp, req); 6975 for (i = 0; i < bp->cp_nr_rings; i++) { 6976 struct bnxt_napi *bnapi = bp->bnapi[i]; 6977 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6978 6979 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6980 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6981 if (req0) { 6982 req0->stat_ctx_id = req->stat_ctx_id; 6983 hwrm_req_send(bp, req0); 6984 } 6985 hwrm_req_send(bp, req); 6986 6987 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6988 } 6989 } 6990 hwrm_req_drop(bp, req); 6991 if (req0) 6992 hwrm_req_drop(bp, req0); 6993 } 6994 6995 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6996 { 6997 struct hwrm_stat_ctx_alloc_output *resp; 6998 struct hwrm_stat_ctx_alloc_input *req; 6999 int rc, i; 7000 7001 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7002 return 0; 7003 7004 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 7005 if (rc) 7006 return rc; 7007 7008 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 7009 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 7010 7011 resp = hwrm_req_hold(bp, req); 7012 for (i = 0; i < bp->cp_nr_rings; i++) { 7013 struct bnxt_napi *bnapi = bp->bnapi[i]; 7014 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7015 7016 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 7017 7018 rc = hwrm_req_send(bp, req); 7019 if (rc) 7020 break; 7021 7022 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 7023 7024 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 7025 } 7026 hwrm_req_drop(bp, req); 7027 return rc; 7028 } 7029 7030 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 7031 { 7032 struct hwrm_func_qcfg_output *resp; 7033 struct hwrm_func_qcfg_input *req; 7034 u32 min_db_offset = 0; 7035 u16 flags; 7036 int rc; 7037 7038 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7039 if (rc) 7040 return rc; 7041 7042 req->fid = cpu_to_le16(0xffff); 7043 resp = hwrm_req_hold(bp, req); 7044 rc = hwrm_req_send(bp, req); 7045 if (rc) 7046 goto func_qcfg_exit; 7047 7048 #ifdef CONFIG_BNXT_SRIOV 7049 if (BNXT_VF(bp)) { 7050 struct bnxt_vf_info *vf = &bp->vf; 7051 7052 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 7053 } else { 7054 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 7055 } 7056 #endif 7057 flags = le16_to_cpu(resp->flags); 7058 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 7059 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 7060 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 7061 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 7062 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 7063 } 7064 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 7065 bp->flags |= BNXT_FLAG_MULTI_HOST; 7066 7067 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 7068 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 7069 7070 switch (resp->port_partition_type) { 7071 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 7072 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 7073 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 7074 bp->port_partition_type = resp->port_partition_type; 7075 break; 7076 } 7077 if (bp->hwrm_spec_code < 0x10707 || 7078 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 7079 bp->br_mode = BRIDGE_MODE_VEB; 7080 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 7081 bp->br_mode = BRIDGE_MODE_VEPA; 7082 else 7083 bp->br_mode = BRIDGE_MODE_UNDEF; 7084 7085 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 7086 if (!bp->max_mtu) 7087 bp->max_mtu = BNXT_MAX_MTU; 7088 7089 if (bp->db_size) 7090 goto func_qcfg_exit; 7091 7092 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7093 if (BNXT_PF(bp)) 7094 min_db_offset = DB_PF_OFFSET_P5; 7095 else 7096 min_db_offset = DB_VF_OFFSET_P5; 7097 } 7098 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7099 1024); 7100 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7101 bp->db_size <= min_db_offset) 7102 bp->db_size = pci_resource_len(bp->pdev, 2); 7103 7104 func_qcfg_exit: 7105 hwrm_req_drop(bp, req); 7106 return rc; 7107 } 7108 7109 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 7110 struct hwrm_func_backing_store_qcaps_output *resp) 7111 { 7112 struct bnxt_mem_init *mem_init; 7113 u16 init_mask; 7114 u8 init_val; 7115 u8 *offset; 7116 int i; 7117 7118 init_val = resp->ctx_kind_initializer; 7119 init_mask = le16_to_cpu(resp->ctx_init_mask); 7120 offset = &resp->qp_init_offset; 7121 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7122 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 7123 mem_init->init_val = init_val; 7124 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 7125 if (!init_mask) 7126 continue; 7127 if (i == BNXT_CTX_MEM_INIT_STAT) 7128 offset = &resp->stat_init_offset; 7129 if (init_mask & (1 << i)) 7130 mem_init->offset = *offset * 4; 7131 else 7132 mem_init->init_val = 0; 7133 } 7134 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 7135 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 7136 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 7137 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 7138 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 7139 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 7140 } 7141 7142 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7143 { 7144 struct hwrm_func_backing_store_qcaps_output *resp; 7145 struct hwrm_func_backing_store_qcaps_input *req; 7146 int rc; 7147 7148 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7149 return 0; 7150 7151 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 7152 if (rc) 7153 return rc; 7154 7155 resp = hwrm_req_hold(bp, req); 7156 rc = hwrm_req_send_silent(bp, req); 7157 if (!rc) { 7158 struct bnxt_ctx_pg_info *ctx_pg; 7159 struct bnxt_ctx_mem_info *ctx; 7160 int i, tqm_rings; 7161 7162 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7163 if (!ctx) { 7164 rc = -ENOMEM; 7165 goto ctx_err; 7166 } 7167 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 7168 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7169 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7170 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 7171 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7172 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 7173 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 7174 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7175 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 7176 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 7177 ctx->vnic_max_vnic_entries = 7178 le16_to_cpu(resp->vnic_max_vnic_entries); 7179 ctx->vnic_max_ring_table_entries = 7180 le16_to_cpu(resp->vnic_max_ring_table_entries); 7181 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 7182 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 7183 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 7184 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 7185 ctx->tqm_min_entries_per_ring = 7186 le32_to_cpu(resp->tqm_min_entries_per_ring); 7187 ctx->tqm_max_entries_per_ring = 7188 le32_to_cpu(resp->tqm_max_entries_per_ring); 7189 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 7190 if (!ctx->tqm_entries_multiple) 7191 ctx->tqm_entries_multiple = 1; 7192 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 7193 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7194 ctx->mrav_num_entries_units = 7195 le16_to_cpu(resp->mrav_num_entries_units); 7196 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7197 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7198 7199 bnxt_init_ctx_initializer(ctx, resp); 7200 7201 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7202 if (!ctx->tqm_fp_rings_count) 7203 ctx->tqm_fp_rings_count = bp->max_q; 7204 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7205 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7206 7207 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7208 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7209 if (!ctx_pg) { 7210 kfree(ctx); 7211 rc = -ENOMEM; 7212 goto ctx_err; 7213 } 7214 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7215 ctx->tqm_mem[i] = ctx_pg; 7216 bp->ctx = ctx; 7217 } else { 7218 rc = 0; 7219 } 7220 ctx_err: 7221 hwrm_req_drop(bp, req); 7222 return rc; 7223 } 7224 7225 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7226 __le64 *pg_dir) 7227 { 7228 if (!rmem->nr_pages) 7229 return; 7230 7231 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7232 if (rmem->depth >= 1) { 7233 if (rmem->depth == 2) 7234 *pg_attr |= 2; 7235 else 7236 *pg_attr |= 1; 7237 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7238 } else { 7239 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7240 } 7241 } 7242 7243 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7244 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7245 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7246 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7247 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7248 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7249 7250 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7251 { 7252 struct hwrm_func_backing_store_cfg_input *req; 7253 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7254 struct bnxt_ctx_pg_info *ctx_pg; 7255 void **__req = (void **)&req; 7256 u32 req_len = sizeof(*req); 7257 __le32 *num_entries; 7258 __le64 *pg_dir; 7259 u32 flags = 0; 7260 u8 *pg_attr; 7261 u32 ena; 7262 int rc; 7263 int i; 7264 7265 if (!ctx) 7266 return 0; 7267 7268 if (req_len > bp->hwrm_max_ext_req_len) 7269 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7270 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7271 if (rc) 7272 return rc; 7273 7274 req->enables = cpu_to_le32(enables); 7275 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7276 ctx_pg = &ctx->qp_mem; 7277 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7278 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7279 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7280 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7281 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7282 &req->qpc_pg_size_qpc_lvl, 7283 &req->qpc_page_dir); 7284 } 7285 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7286 ctx_pg = &ctx->srq_mem; 7287 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7288 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7289 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7290 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7291 &req->srq_pg_size_srq_lvl, 7292 &req->srq_page_dir); 7293 } 7294 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7295 ctx_pg = &ctx->cq_mem; 7296 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7297 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7298 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7299 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7300 &req->cq_pg_size_cq_lvl, 7301 &req->cq_page_dir); 7302 } 7303 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7304 ctx_pg = &ctx->vnic_mem; 7305 req->vnic_num_vnic_entries = 7306 cpu_to_le16(ctx->vnic_max_vnic_entries); 7307 req->vnic_num_ring_table_entries = 7308 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7309 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7310 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7311 &req->vnic_pg_size_vnic_lvl, 7312 &req->vnic_page_dir); 7313 } 7314 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7315 ctx_pg = &ctx->stat_mem; 7316 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7317 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7318 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7319 &req->stat_pg_size_stat_lvl, 7320 &req->stat_page_dir); 7321 } 7322 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7323 ctx_pg = &ctx->mrav_mem; 7324 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7325 if (ctx->mrav_num_entries_units) 7326 flags |= 7327 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7328 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7329 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7330 &req->mrav_pg_size_mrav_lvl, 7331 &req->mrav_page_dir); 7332 } 7333 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7334 ctx_pg = &ctx->tim_mem; 7335 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7336 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7337 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7338 &req->tim_pg_size_tim_lvl, 7339 &req->tim_page_dir); 7340 } 7341 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7342 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7343 pg_dir = &req->tqm_sp_page_dir, 7344 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7345 i < BNXT_MAX_TQM_RINGS; 7346 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7347 if (!(enables & ena)) 7348 continue; 7349 7350 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7351 ctx_pg = ctx->tqm_mem[i]; 7352 *num_entries = cpu_to_le32(ctx_pg->entries); 7353 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7354 } 7355 req->flags = cpu_to_le32(flags); 7356 return hwrm_req_send(bp, req); 7357 } 7358 7359 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7360 struct bnxt_ctx_pg_info *ctx_pg) 7361 { 7362 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7363 7364 rmem->page_size = BNXT_PAGE_SIZE; 7365 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7366 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7367 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7368 if (rmem->depth >= 1) 7369 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7370 return bnxt_alloc_ring(bp, rmem); 7371 } 7372 7373 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7374 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7375 u8 depth, struct bnxt_mem_init *mem_init) 7376 { 7377 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7378 int rc; 7379 7380 if (!mem_size) 7381 return -EINVAL; 7382 7383 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7384 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7385 ctx_pg->nr_pages = 0; 7386 return -EINVAL; 7387 } 7388 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7389 int nr_tbls, i; 7390 7391 rmem->depth = 2; 7392 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7393 GFP_KERNEL); 7394 if (!ctx_pg->ctx_pg_tbl) 7395 return -ENOMEM; 7396 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7397 rmem->nr_pages = nr_tbls; 7398 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7399 if (rc) 7400 return rc; 7401 for (i = 0; i < nr_tbls; i++) { 7402 struct bnxt_ctx_pg_info *pg_tbl; 7403 7404 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7405 if (!pg_tbl) 7406 return -ENOMEM; 7407 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7408 rmem = &pg_tbl->ring_mem; 7409 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7410 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7411 rmem->depth = 1; 7412 rmem->nr_pages = MAX_CTX_PAGES; 7413 rmem->mem_init = mem_init; 7414 if (i == (nr_tbls - 1)) { 7415 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7416 7417 if (rem) 7418 rmem->nr_pages = rem; 7419 } 7420 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7421 if (rc) 7422 break; 7423 } 7424 } else { 7425 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7426 if (rmem->nr_pages > 1 || depth) 7427 rmem->depth = 1; 7428 rmem->mem_init = mem_init; 7429 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7430 } 7431 return rc; 7432 } 7433 7434 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7435 struct bnxt_ctx_pg_info *ctx_pg) 7436 { 7437 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7438 7439 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7440 ctx_pg->ctx_pg_tbl) { 7441 int i, nr_tbls = rmem->nr_pages; 7442 7443 for (i = 0; i < nr_tbls; i++) { 7444 struct bnxt_ctx_pg_info *pg_tbl; 7445 struct bnxt_ring_mem_info *rmem2; 7446 7447 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7448 if (!pg_tbl) 7449 continue; 7450 rmem2 = &pg_tbl->ring_mem; 7451 bnxt_free_ring(bp, rmem2); 7452 ctx_pg->ctx_pg_arr[i] = NULL; 7453 kfree(pg_tbl); 7454 ctx_pg->ctx_pg_tbl[i] = NULL; 7455 } 7456 kfree(ctx_pg->ctx_pg_tbl); 7457 ctx_pg->ctx_pg_tbl = NULL; 7458 } 7459 bnxt_free_ring(bp, rmem); 7460 ctx_pg->nr_pages = 0; 7461 } 7462 7463 void bnxt_free_ctx_mem(struct bnxt *bp) 7464 { 7465 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7466 int i; 7467 7468 if (!ctx) 7469 return; 7470 7471 if (ctx->tqm_mem[0]) { 7472 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7473 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7474 kfree(ctx->tqm_mem[0]); 7475 ctx->tqm_mem[0] = NULL; 7476 } 7477 7478 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7479 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7480 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7481 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7482 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7483 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7484 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7485 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7486 } 7487 7488 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7489 { 7490 struct bnxt_ctx_pg_info *ctx_pg; 7491 struct bnxt_ctx_mem_info *ctx; 7492 struct bnxt_mem_init *init; 7493 u32 mem_size, ena, entries; 7494 u32 entries_sp, min; 7495 u32 num_mr, num_ah; 7496 u32 extra_srqs = 0; 7497 u32 extra_qps = 0; 7498 u8 pg_lvl = 1; 7499 int i, rc; 7500 7501 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7502 if (rc) { 7503 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7504 rc); 7505 return rc; 7506 } 7507 ctx = bp->ctx; 7508 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7509 return 0; 7510 7511 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7512 pg_lvl = 2; 7513 extra_qps = 65536; 7514 extra_srqs = 8192; 7515 } 7516 7517 ctx_pg = &ctx->qp_mem; 7518 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7519 extra_qps; 7520 if (ctx->qp_entry_size) { 7521 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7522 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7523 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7524 if (rc) 7525 return rc; 7526 } 7527 7528 ctx_pg = &ctx->srq_mem; 7529 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7530 if (ctx->srq_entry_size) { 7531 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7532 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7533 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7534 if (rc) 7535 return rc; 7536 } 7537 7538 ctx_pg = &ctx->cq_mem; 7539 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7540 if (ctx->cq_entry_size) { 7541 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7542 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7543 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7544 if (rc) 7545 return rc; 7546 } 7547 7548 ctx_pg = &ctx->vnic_mem; 7549 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7550 ctx->vnic_max_ring_table_entries; 7551 if (ctx->vnic_entry_size) { 7552 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7553 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7554 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7555 if (rc) 7556 return rc; 7557 } 7558 7559 ctx_pg = &ctx->stat_mem; 7560 ctx_pg->entries = ctx->stat_max_entries; 7561 if (ctx->stat_entry_size) { 7562 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7563 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7564 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7565 if (rc) 7566 return rc; 7567 } 7568 7569 ena = 0; 7570 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7571 goto skip_rdma; 7572 7573 ctx_pg = &ctx->mrav_mem; 7574 /* 128K extra is needed to accommodate static AH context 7575 * allocation by f/w. 7576 */ 7577 num_mr = 1024 * 256; 7578 num_ah = 1024 * 128; 7579 ctx_pg->entries = num_mr + num_ah; 7580 if (ctx->mrav_entry_size) { 7581 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7582 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7583 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7584 if (rc) 7585 return rc; 7586 } 7587 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7588 if (ctx->mrav_num_entries_units) 7589 ctx_pg->entries = 7590 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7591 (num_ah / ctx->mrav_num_entries_units); 7592 7593 ctx_pg = &ctx->tim_mem; 7594 ctx_pg->entries = ctx->qp_mem.entries; 7595 if (ctx->tim_entry_size) { 7596 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7597 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7598 if (rc) 7599 return rc; 7600 } 7601 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7602 7603 skip_rdma: 7604 min = ctx->tqm_min_entries_per_ring; 7605 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7606 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7607 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7608 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7609 entries = roundup(entries, ctx->tqm_entries_multiple); 7610 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7611 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7612 ctx_pg = ctx->tqm_mem[i]; 7613 ctx_pg->entries = i ? entries : entries_sp; 7614 if (ctx->tqm_entry_size) { 7615 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7616 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7617 NULL); 7618 if (rc) 7619 return rc; 7620 } 7621 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7622 } 7623 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7624 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7625 if (rc) { 7626 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7627 rc); 7628 return rc; 7629 } 7630 ctx->flags |= BNXT_CTX_FLAG_INITED; 7631 return 0; 7632 } 7633 7634 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7635 { 7636 struct hwrm_func_resource_qcaps_output *resp; 7637 struct hwrm_func_resource_qcaps_input *req; 7638 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7639 int rc; 7640 7641 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7642 if (rc) 7643 return rc; 7644 7645 req->fid = cpu_to_le16(0xffff); 7646 resp = hwrm_req_hold(bp, req); 7647 rc = hwrm_req_send_silent(bp, req); 7648 if (rc) 7649 goto hwrm_func_resc_qcaps_exit; 7650 7651 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7652 if (!all) 7653 goto hwrm_func_resc_qcaps_exit; 7654 7655 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7656 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7657 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7658 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7659 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7660 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7661 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7662 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7663 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7664 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7665 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7666 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7667 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7668 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7669 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7670 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7671 7672 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7673 u16 max_msix = le16_to_cpu(resp->max_msix); 7674 7675 hw_resc->max_nqs = max_msix; 7676 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7677 } 7678 7679 if (BNXT_PF(bp)) { 7680 struct bnxt_pf_info *pf = &bp->pf; 7681 7682 pf->vf_resv_strategy = 7683 le16_to_cpu(resp->vf_reservation_strategy); 7684 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7685 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7686 } 7687 hwrm_func_resc_qcaps_exit: 7688 hwrm_req_drop(bp, req); 7689 return rc; 7690 } 7691 7692 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7693 { 7694 struct hwrm_port_mac_ptp_qcfg_output *resp; 7695 struct hwrm_port_mac_ptp_qcfg_input *req; 7696 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7697 bool phc_cfg; 7698 u8 flags; 7699 int rc; 7700 7701 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) { 7702 rc = -ENODEV; 7703 goto no_ptp; 7704 } 7705 7706 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7707 if (rc) 7708 goto no_ptp; 7709 7710 req->port_id = cpu_to_le16(bp->pf.port_id); 7711 resp = hwrm_req_hold(bp, req); 7712 rc = hwrm_req_send(bp, req); 7713 if (rc) 7714 goto exit; 7715 7716 flags = resp->flags; 7717 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7718 rc = -ENODEV; 7719 goto exit; 7720 } 7721 if (!ptp) { 7722 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7723 if (!ptp) { 7724 rc = -ENOMEM; 7725 goto exit; 7726 } 7727 ptp->bp = bp; 7728 bp->ptp_cfg = ptp; 7729 } 7730 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7731 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7732 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7733 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7734 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7735 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7736 } else { 7737 rc = -ENODEV; 7738 goto exit; 7739 } 7740 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 7741 rc = bnxt_ptp_init(bp, phc_cfg); 7742 if (rc) 7743 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7744 exit: 7745 hwrm_req_drop(bp, req); 7746 if (!rc) 7747 return 0; 7748 7749 no_ptp: 7750 bnxt_ptp_clear(bp); 7751 kfree(ptp); 7752 bp->ptp_cfg = NULL; 7753 return rc; 7754 } 7755 7756 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7757 { 7758 struct hwrm_func_qcaps_output *resp; 7759 struct hwrm_func_qcaps_input *req; 7760 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7761 u32 flags, flags_ext, flags_ext2; 7762 int rc; 7763 7764 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7765 if (rc) 7766 return rc; 7767 7768 req->fid = cpu_to_le16(0xffff); 7769 resp = hwrm_req_hold(bp, req); 7770 rc = hwrm_req_send(bp, req); 7771 if (rc) 7772 goto hwrm_func_qcaps_exit; 7773 7774 flags = le32_to_cpu(resp->flags); 7775 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7776 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7777 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7778 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7779 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7780 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7781 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7782 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7783 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7784 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7785 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7786 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7787 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7788 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7789 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7790 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7791 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7792 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7793 7794 flags_ext = le32_to_cpu(resp->flags_ext); 7795 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7796 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7797 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7798 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7799 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 7800 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 7801 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7802 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7803 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7804 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7805 7806 flags_ext2 = le32_to_cpu(resp->flags_ext2); 7807 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 7808 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 7809 7810 bp->tx_push_thresh = 0; 7811 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7812 BNXT_FW_MAJ(bp) > 217) 7813 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7814 7815 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7816 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7817 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7818 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7819 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7820 if (!hw_resc->max_hw_ring_grps) 7821 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7822 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7823 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7824 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7825 7826 if (BNXT_PF(bp)) { 7827 struct bnxt_pf_info *pf = &bp->pf; 7828 7829 pf->fw_fid = le16_to_cpu(resp->fid); 7830 pf->port_id = le16_to_cpu(resp->port_id); 7831 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7832 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7833 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7834 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7835 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7836 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7837 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7838 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7839 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7840 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7841 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7842 bp->flags |= BNXT_FLAG_WOL_CAP; 7843 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7844 bp->fw_cap |= BNXT_FW_CAP_PTP; 7845 } else { 7846 bnxt_ptp_clear(bp); 7847 kfree(bp->ptp_cfg); 7848 bp->ptp_cfg = NULL; 7849 } 7850 } else { 7851 #ifdef CONFIG_BNXT_SRIOV 7852 struct bnxt_vf_info *vf = &bp->vf; 7853 7854 vf->fw_fid = le16_to_cpu(resp->fid); 7855 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7856 #endif 7857 } 7858 7859 hwrm_func_qcaps_exit: 7860 hwrm_req_drop(bp, req); 7861 return rc; 7862 } 7863 7864 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7865 { 7866 struct hwrm_dbg_qcaps_output *resp; 7867 struct hwrm_dbg_qcaps_input *req; 7868 int rc; 7869 7870 bp->fw_dbg_cap = 0; 7871 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7872 return; 7873 7874 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7875 if (rc) 7876 return; 7877 7878 req->fid = cpu_to_le16(0xffff); 7879 resp = hwrm_req_hold(bp, req); 7880 rc = hwrm_req_send(bp, req); 7881 if (rc) 7882 goto hwrm_dbg_qcaps_exit; 7883 7884 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7885 7886 hwrm_dbg_qcaps_exit: 7887 hwrm_req_drop(bp, req); 7888 } 7889 7890 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7891 7892 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7893 { 7894 int rc; 7895 7896 rc = __bnxt_hwrm_func_qcaps(bp); 7897 if (rc) 7898 return rc; 7899 7900 bnxt_hwrm_dbg_qcaps(bp); 7901 7902 rc = bnxt_hwrm_queue_qportcfg(bp); 7903 if (rc) { 7904 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7905 return rc; 7906 } 7907 if (bp->hwrm_spec_code >= 0x10803) { 7908 rc = bnxt_alloc_ctx_mem(bp); 7909 if (rc) 7910 return rc; 7911 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7912 if (!rc) 7913 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7914 } 7915 return 0; 7916 } 7917 7918 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7919 { 7920 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7921 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7922 u32 flags; 7923 int rc; 7924 7925 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7926 return 0; 7927 7928 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7929 if (rc) 7930 return rc; 7931 7932 resp = hwrm_req_hold(bp, req); 7933 rc = hwrm_req_send(bp, req); 7934 if (rc) 7935 goto hwrm_cfa_adv_qcaps_exit; 7936 7937 flags = le32_to_cpu(resp->flags); 7938 if (flags & 7939 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7940 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7941 7942 hwrm_cfa_adv_qcaps_exit: 7943 hwrm_req_drop(bp, req); 7944 return rc; 7945 } 7946 7947 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7948 { 7949 if (bp->fw_health) 7950 return 0; 7951 7952 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7953 if (!bp->fw_health) 7954 return -ENOMEM; 7955 7956 mutex_init(&bp->fw_health->lock); 7957 return 0; 7958 } 7959 7960 static int bnxt_alloc_fw_health(struct bnxt *bp) 7961 { 7962 int rc; 7963 7964 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7965 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7966 return 0; 7967 7968 rc = __bnxt_alloc_fw_health(bp); 7969 if (rc) { 7970 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7971 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7972 return rc; 7973 } 7974 7975 return 0; 7976 } 7977 7978 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7979 { 7980 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7981 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7982 BNXT_FW_HEALTH_WIN_MAP_OFF); 7983 } 7984 7985 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7986 { 7987 struct bnxt_fw_health *fw_health = bp->fw_health; 7988 u32 reg_type; 7989 7990 if (!fw_health) 7991 return; 7992 7993 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7994 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7995 fw_health->status_reliable = false; 7996 7997 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 7998 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7999 fw_health->resets_reliable = false; 8000 } 8001 8002 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 8003 { 8004 void __iomem *hs; 8005 u32 status_loc; 8006 u32 reg_type; 8007 u32 sig; 8008 8009 if (bp->fw_health) 8010 bp->fw_health->status_reliable = false; 8011 8012 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 8013 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 8014 8015 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 8016 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 8017 if (!bp->chip_num) { 8018 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 8019 bp->chip_num = readl(bp->bar0 + 8020 BNXT_FW_HEALTH_WIN_BASE + 8021 BNXT_GRC_REG_CHIP_NUM); 8022 } 8023 if (!BNXT_CHIP_P5(bp)) 8024 return; 8025 8026 status_loc = BNXT_GRC_REG_STATUS_P5 | 8027 BNXT_FW_HEALTH_REG_TYPE_BAR0; 8028 } else { 8029 status_loc = readl(hs + offsetof(struct hcomm_status, 8030 fw_status_loc)); 8031 } 8032 8033 if (__bnxt_alloc_fw_health(bp)) { 8034 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 8035 return; 8036 } 8037 8038 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 8039 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 8040 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 8041 __bnxt_map_fw_health_reg(bp, status_loc); 8042 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 8043 BNXT_FW_HEALTH_WIN_OFF(status_loc); 8044 } 8045 8046 bp->fw_health->status_reliable = true; 8047 } 8048 8049 static int bnxt_map_fw_health_regs(struct bnxt *bp) 8050 { 8051 struct bnxt_fw_health *fw_health = bp->fw_health; 8052 u32 reg_base = 0xffffffff; 8053 int i; 8054 8055 bp->fw_health->status_reliable = false; 8056 bp->fw_health->resets_reliable = false; 8057 /* Only pre-map the monitoring GRC registers using window 3 */ 8058 for (i = 0; i < 4; i++) { 8059 u32 reg = fw_health->regs[i]; 8060 8061 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 8062 continue; 8063 if (reg_base == 0xffffffff) 8064 reg_base = reg & BNXT_GRC_BASE_MASK; 8065 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 8066 return -ERANGE; 8067 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 8068 } 8069 bp->fw_health->status_reliable = true; 8070 bp->fw_health->resets_reliable = true; 8071 if (reg_base == 0xffffffff) 8072 return 0; 8073 8074 __bnxt_map_fw_health_reg(bp, reg_base); 8075 return 0; 8076 } 8077 8078 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 8079 { 8080 if (!bp->fw_health) 8081 return; 8082 8083 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 8084 bp->fw_health->status_reliable = true; 8085 bp->fw_health->resets_reliable = true; 8086 } else { 8087 bnxt_try_map_fw_health_reg(bp); 8088 } 8089 } 8090 8091 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 8092 { 8093 struct bnxt_fw_health *fw_health = bp->fw_health; 8094 struct hwrm_error_recovery_qcfg_output *resp; 8095 struct hwrm_error_recovery_qcfg_input *req; 8096 int rc, i; 8097 8098 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 8099 return 0; 8100 8101 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 8102 if (rc) 8103 return rc; 8104 8105 resp = hwrm_req_hold(bp, req); 8106 rc = hwrm_req_send(bp, req); 8107 if (rc) 8108 goto err_recovery_out; 8109 fw_health->flags = le32_to_cpu(resp->flags); 8110 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 8111 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 8112 rc = -EINVAL; 8113 goto err_recovery_out; 8114 } 8115 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 8116 fw_health->master_func_wait_dsecs = 8117 le32_to_cpu(resp->master_func_wait_period); 8118 fw_health->normal_func_wait_dsecs = 8119 le32_to_cpu(resp->normal_func_wait_period); 8120 fw_health->post_reset_wait_dsecs = 8121 le32_to_cpu(resp->master_func_wait_period_after_reset); 8122 fw_health->post_reset_max_wait_dsecs = 8123 le32_to_cpu(resp->max_bailout_time_after_reset); 8124 fw_health->regs[BNXT_FW_HEALTH_REG] = 8125 le32_to_cpu(resp->fw_health_status_reg); 8126 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 8127 le32_to_cpu(resp->fw_heartbeat_reg); 8128 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 8129 le32_to_cpu(resp->fw_reset_cnt_reg); 8130 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 8131 le32_to_cpu(resp->reset_inprogress_reg); 8132 fw_health->fw_reset_inprog_reg_mask = 8133 le32_to_cpu(resp->reset_inprogress_reg_mask); 8134 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 8135 if (fw_health->fw_reset_seq_cnt >= 16) { 8136 rc = -EINVAL; 8137 goto err_recovery_out; 8138 } 8139 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 8140 fw_health->fw_reset_seq_regs[i] = 8141 le32_to_cpu(resp->reset_reg[i]); 8142 fw_health->fw_reset_seq_vals[i] = 8143 le32_to_cpu(resp->reset_reg_val[i]); 8144 fw_health->fw_reset_seq_delay_msec[i] = 8145 resp->delay_after_reset[i]; 8146 } 8147 err_recovery_out: 8148 hwrm_req_drop(bp, req); 8149 if (!rc) 8150 rc = bnxt_map_fw_health_regs(bp); 8151 if (rc) 8152 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 8153 return rc; 8154 } 8155 8156 static int bnxt_hwrm_func_reset(struct bnxt *bp) 8157 { 8158 struct hwrm_func_reset_input *req; 8159 int rc; 8160 8161 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 8162 if (rc) 8163 return rc; 8164 8165 req->enables = 0; 8166 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 8167 return hwrm_req_send(bp, req); 8168 } 8169 8170 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 8171 { 8172 struct hwrm_nvm_get_dev_info_output nvm_info; 8173 8174 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 8175 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 8176 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 8177 nvm_info.nvm_cfg_ver_upd); 8178 } 8179 8180 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 8181 { 8182 struct hwrm_queue_qportcfg_output *resp; 8183 struct hwrm_queue_qportcfg_input *req; 8184 u8 i, j, *qptr; 8185 bool no_rdma; 8186 int rc = 0; 8187 8188 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 8189 if (rc) 8190 return rc; 8191 8192 resp = hwrm_req_hold(bp, req); 8193 rc = hwrm_req_send(bp, req); 8194 if (rc) 8195 goto qportcfg_exit; 8196 8197 if (!resp->max_configurable_queues) { 8198 rc = -EINVAL; 8199 goto qportcfg_exit; 8200 } 8201 bp->max_tc = resp->max_configurable_queues; 8202 bp->max_lltc = resp->max_configurable_lossless_queues; 8203 if (bp->max_tc > BNXT_MAX_QUEUE) 8204 bp->max_tc = BNXT_MAX_QUEUE; 8205 8206 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 8207 qptr = &resp->queue_id0; 8208 for (i = 0, j = 0; i < bp->max_tc; i++) { 8209 bp->q_info[j].queue_id = *qptr; 8210 bp->q_ids[i] = *qptr++; 8211 bp->q_info[j].queue_profile = *qptr++; 8212 bp->tc_to_qidx[j] = j; 8213 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8214 (no_rdma && BNXT_PF(bp))) 8215 j++; 8216 } 8217 bp->max_q = bp->max_tc; 8218 bp->max_tc = max_t(u8, j, 1); 8219 8220 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8221 bp->max_tc = 1; 8222 8223 if (bp->max_lltc > bp->max_tc) 8224 bp->max_lltc = bp->max_tc; 8225 8226 qportcfg_exit: 8227 hwrm_req_drop(bp, req); 8228 return rc; 8229 } 8230 8231 static int bnxt_hwrm_poll(struct bnxt *bp) 8232 { 8233 struct hwrm_ver_get_input *req; 8234 int rc; 8235 8236 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8237 if (rc) 8238 return rc; 8239 8240 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8241 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8242 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8243 8244 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 8245 rc = hwrm_req_send(bp, req); 8246 return rc; 8247 } 8248 8249 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8250 { 8251 struct hwrm_ver_get_output *resp; 8252 struct hwrm_ver_get_input *req; 8253 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8254 u32 dev_caps_cfg, hwrm_ver; 8255 int rc, len; 8256 8257 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8258 if (rc) 8259 return rc; 8260 8261 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 8262 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8263 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8264 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8265 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8266 8267 resp = hwrm_req_hold(bp, req); 8268 rc = hwrm_req_send(bp, req); 8269 if (rc) 8270 goto hwrm_ver_get_exit; 8271 8272 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8273 8274 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8275 resp->hwrm_intf_min_8b << 8 | 8276 resp->hwrm_intf_upd_8b; 8277 if (resp->hwrm_intf_maj_8b < 1) { 8278 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8279 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8280 resp->hwrm_intf_upd_8b); 8281 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8282 } 8283 8284 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8285 HWRM_VERSION_UPDATE; 8286 8287 if (bp->hwrm_spec_code > hwrm_ver) 8288 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8289 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8290 HWRM_VERSION_UPDATE); 8291 else 8292 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8293 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8294 resp->hwrm_intf_upd_8b); 8295 8296 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8297 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8298 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8299 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8300 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8301 len = FW_VER_STR_LEN; 8302 } else { 8303 fw_maj = resp->hwrm_fw_maj_8b; 8304 fw_min = resp->hwrm_fw_min_8b; 8305 fw_bld = resp->hwrm_fw_bld_8b; 8306 fw_rsv = resp->hwrm_fw_rsvd_8b; 8307 len = BC_HWRM_STR_LEN; 8308 } 8309 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8310 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8311 fw_rsv); 8312 8313 if (strlen(resp->active_pkg_name)) { 8314 int fw_ver_len = strlen(bp->fw_ver_str); 8315 8316 snprintf(bp->fw_ver_str + fw_ver_len, 8317 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8318 resp->active_pkg_name); 8319 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8320 } 8321 8322 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8323 if (!bp->hwrm_cmd_timeout) 8324 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8325 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 8326 if (!bp->hwrm_cmd_max_timeout) 8327 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 8328 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 8329 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 8330 bp->hwrm_cmd_max_timeout / 1000); 8331 8332 if (resp->hwrm_intf_maj_8b >= 1) { 8333 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8334 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8335 } 8336 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8337 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8338 8339 bp->chip_num = le16_to_cpu(resp->chip_num); 8340 bp->chip_rev = resp->chip_rev; 8341 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8342 !resp->chip_metal) 8343 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8344 8345 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8346 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8347 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8348 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8349 8350 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8351 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8352 8353 if (dev_caps_cfg & 8354 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8355 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8356 8357 if (dev_caps_cfg & 8358 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8359 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8360 8361 if (dev_caps_cfg & 8362 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8363 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8364 8365 hwrm_ver_get_exit: 8366 hwrm_req_drop(bp, req); 8367 return rc; 8368 } 8369 8370 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8371 { 8372 struct hwrm_fw_set_time_input *req; 8373 struct tm tm; 8374 time64_t now = ktime_get_real_seconds(); 8375 int rc; 8376 8377 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8378 bp->hwrm_spec_code < 0x10400) 8379 return -EOPNOTSUPP; 8380 8381 time64_to_tm(now, 0, &tm); 8382 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8383 if (rc) 8384 return rc; 8385 8386 req->year = cpu_to_le16(1900 + tm.tm_year); 8387 req->month = 1 + tm.tm_mon; 8388 req->day = tm.tm_mday; 8389 req->hour = tm.tm_hour; 8390 req->minute = tm.tm_min; 8391 req->second = tm.tm_sec; 8392 return hwrm_req_send(bp, req); 8393 } 8394 8395 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8396 { 8397 u64 sw_tmp; 8398 8399 hw &= mask; 8400 sw_tmp = (*sw & ~mask) | hw; 8401 if (hw < (*sw & mask)) 8402 sw_tmp += mask + 1; 8403 WRITE_ONCE(*sw, sw_tmp); 8404 } 8405 8406 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8407 int count, bool ignore_zero) 8408 { 8409 int i; 8410 8411 for (i = 0; i < count; i++) { 8412 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8413 8414 if (ignore_zero && !hw) 8415 continue; 8416 8417 if (masks[i] == -1ULL) 8418 sw_stats[i] = hw; 8419 else 8420 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8421 } 8422 } 8423 8424 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8425 { 8426 if (!stats->hw_stats) 8427 return; 8428 8429 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8430 stats->hw_masks, stats->len / 8, false); 8431 } 8432 8433 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8434 { 8435 struct bnxt_stats_mem *ring0_stats; 8436 bool ignore_zero = false; 8437 int i; 8438 8439 /* Chip bug. Counter intermittently becomes 0. */ 8440 if (bp->flags & BNXT_FLAG_CHIP_P5) 8441 ignore_zero = true; 8442 8443 for (i = 0; i < bp->cp_nr_rings; i++) { 8444 struct bnxt_napi *bnapi = bp->bnapi[i]; 8445 struct bnxt_cp_ring_info *cpr; 8446 struct bnxt_stats_mem *stats; 8447 8448 cpr = &bnapi->cp_ring; 8449 stats = &cpr->stats; 8450 if (!i) 8451 ring0_stats = stats; 8452 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8453 ring0_stats->hw_masks, 8454 ring0_stats->len / 8, ignore_zero); 8455 } 8456 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8457 struct bnxt_stats_mem *stats = &bp->port_stats; 8458 __le64 *hw_stats = stats->hw_stats; 8459 u64 *sw_stats = stats->sw_stats; 8460 u64 *masks = stats->hw_masks; 8461 int cnt; 8462 8463 cnt = sizeof(struct rx_port_stats) / 8; 8464 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8465 8466 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8467 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8468 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8469 cnt = sizeof(struct tx_port_stats) / 8; 8470 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8471 } 8472 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8473 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8474 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8475 } 8476 } 8477 8478 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8479 { 8480 struct hwrm_port_qstats_input *req; 8481 struct bnxt_pf_info *pf = &bp->pf; 8482 int rc; 8483 8484 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8485 return 0; 8486 8487 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8488 return -EOPNOTSUPP; 8489 8490 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8491 if (rc) 8492 return rc; 8493 8494 req->flags = flags; 8495 req->port_id = cpu_to_le16(pf->port_id); 8496 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8497 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8498 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8499 return hwrm_req_send(bp, req); 8500 } 8501 8502 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8503 { 8504 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8505 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8506 struct hwrm_port_qstats_ext_output *resp_qs; 8507 struct hwrm_port_qstats_ext_input *req_qs; 8508 struct bnxt_pf_info *pf = &bp->pf; 8509 u32 tx_stat_size; 8510 int rc; 8511 8512 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8513 return 0; 8514 8515 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8516 return -EOPNOTSUPP; 8517 8518 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8519 if (rc) 8520 return rc; 8521 8522 req_qs->flags = flags; 8523 req_qs->port_id = cpu_to_le16(pf->port_id); 8524 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8525 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8526 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8527 sizeof(struct tx_port_stats_ext) : 0; 8528 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8529 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8530 resp_qs = hwrm_req_hold(bp, req_qs); 8531 rc = hwrm_req_send(bp, req_qs); 8532 if (!rc) { 8533 bp->fw_rx_stats_ext_size = 8534 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8535 if (BNXT_FW_MAJ(bp) < 220 && 8536 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8537 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8538 8539 bp->fw_tx_stats_ext_size = tx_stat_size ? 8540 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8541 } else { 8542 bp->fw_rx_stats_ext_size = 0; 8543 bp->fw_tx_stats_ext_size = 0; 8544 } 8545 hwrm_req_drop(bp, req_qs); 8546 8547 if (flags) 8548 return rc; 8549 8550 if (bp->fw_tx_stats_ext_size <= 8551 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8552 bp->pri2cos_valid = 0; 8553 return rc; 8554 } 8555 8556 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8557 if (rc) 8558 return rc; 8559 8560 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8561 8562 resp_qc = hwrm_req_hold(bp, req_qc); 8563 rc = hwrm_req_send(bp, req_qc); 8564 if (!rc) { 8565 u8 *pri2cos; 8566 int i, j; 8567 8568 pri2cos = &resp_qc->pri0_cos_queue_id; 8569 for (i = 0; i < 8; i++) { 8570 u8 queue_id = pri2cos[i]; 8571 u8 queue_idx; 8572 8573 /* Per port queue IDs start from 0, 10, 20, etc */ 8574 queue_idx = queue_id % 10; 8575 if (queue_idx > BNXT_MAX_QUEUE) { 8576 bp->pri2cos_valid = false; 8577 hwrm_req_drop(bp, req_qc); 8578 return rc; 8579 } 8580 for (j = 0; j < bp->max_q; j++) { 8581 if (bp->q_ids[j] == queue_id) 8582 bp->pri2cos_idx[i] = queue_idx; 8583 } 8584 } 8585 bp->pri2cos_valid = true; 8586 } 8587 hwrm_req_drop(bp, req_qc); 8588 8589 return rc; 8590 } 8591 8592 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8593 { 8594 bnxt_hwrm_tunnel_dst_port_free(bp, 8595 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8596 bnxt_hwrm_tunnel_dst_port_free(bp, 8597 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8598 } 8599 8600 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8601 { 8602 int rc, i; 8603 u32 tpa_flags = 0; 8604 8605 if (set_tpa) 8606 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8607 else if (BNXT_NO_FW_ACCESS(bp)) 8608 return 0; 8609 for (i = 0; i < bp->nr_vnics; i++) { 8610 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8611 if (rc) { 8612 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8613 i, rc); 8614 return rc; 8615 } 8616 } 8617 return 0; 8618 } 8619 8620 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8621 { 8622 int i; 8623 8624 for (i = 0; i < bp->nr_vnics; i++) 8625 bnxt_hwrm_vnic_set_rss(bp, i, false); 8626 } 8627 8628 static void bnxt_clear_vnic(struct bnxt *bp) 8629 { 8630 if (!bp->vnic_info) 8631 return; 8632 8633 bnxt_hwrm_clear_vnic_filter(bp); 8634 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8635 /* clear all RSS setting before free vnic ctx */ 8636 bnxt_hwrm_clear_vnic_rss(bp); 8637 bnxt_hwrm_vnic_ctx_free(bp); 8638 } 8639 /* before free the vnic, undo the vnic tpa settings */ 8640 if (bp->flags & BNXT_FLAG_TPA) 8641 bnxt_set_tpa(bp, false); 8642 bnxt_hwrm_vnic_free(bp); 8643 if (bp->flags & BNXT_FLAG_CHIP_P5) 8644 bnxt_hwrm_vnic_ctx_free(bp); 8645 } 8646 8647 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8648 bool irq_re_init) 8649 { 8650 bnxt_clear_vnic(bp); 8651 bnxt_hwrm_ring_free(bp, close_path); 8652 bnxt_hwrm_ring_grp_free(bp); 8653 if (irq_re_init) { 8654 bnxt_hwrm_stat_ctx_free(bp); 8655 bnxt_hwrm_free_tunnel_ports(bp); 8656 } 8657 } 8658 8659 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8660 { 8661 struct hwrm_func_cfg_input *req; 8662 u8 evb_mode; 8663 int rc; 8664 8665 if (br_mode == BRIDGE_MODE_VEB) 8666 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8667 else if (br_mode == BRIDGE_MODE_VEPA) 8668 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8669 else 8670 return -EINVAL; 8671 8672 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 8673 if (rc) 8674 return rc; 8675 8676 req->fid = cpu_to_le16(0xffff); 8677 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8678 req->evb_mode = evb_mode; 8679 return hwrm_req_send(bp, req); 8680 } 8681 8682 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8683 { 8684 struct hwrm_func_cfg_input *req; 8685 int rc; 8686 8687 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8688 return 0; 8689 8690 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 8691 if (rc) 8692 return rc; 8693 8694 req->fid = cpu_to_le16(0xffff); 8695 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8696 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8697 if (size == 128) 8698 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8699 8700 return hwrm_req_send(bp, req); 8701 } 8702 8703 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8704 { 8705 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8706 int rc; 8707 8708 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8709 goto skip_rss_ctx; 8710 8711 /* allocate context for vnic */ 8712 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8713 if (rc) { 8714 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8715 vnic_id, rc); 8716 goto vnic_setup_err; 8717 } 8718 bp->rsscos_nr_ctxs++; 8719 8720 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8721 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8722 if (rc) { 8723 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8724 vnic_id, rc); 8725 goto vnic_setup_err; 8726 } 8727 bp->rsscos_nr_ctxs++; 8728 } 8729 8730 skip_rss_ctx: 8731 /* configure default vnic, ring grp */ 8732 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8733 if (rc) { 8734 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8735 vnic_id, rc); 8736 goto vnic_setup_err; 8737 } 8738 8739 /* Enable RSS hashing on vnic */ 8740 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8741 if (rc) { 8742 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8743 vnic_id, rc); 8744 goto vnic_setup_err; 8745 } 8746 8747 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8748 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8749 if (rc) { 8750 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8751 vnic_id, rc); 8752 } 8753 } 8754 8755 vnic_setup_err: 8756 return rc; 8757 } 8758 8759 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8760 { 8761 int rc, i, nr_ctxs; 8762 8763 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8764 for (i = 0; i < nr_ctxs; i++) { 8765 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8766 if (rc) { 8767 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8768 vnic_id, i, rc); 8769 break; 8770 } 8771 bp->rsscos_nr_ctxs++; 8772 } 8773 if (i < nr_ctxs) 8774 return -ENOMEM; 8775 8776 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8777 if (rc) { 8778 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8779 vnic_id, rc); 8780 return rc; 8781 } 8782 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8783 if (rc) { 8784 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8785 vnic_id, rc); 8786 return rc; 8787 } 8788 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8789 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8790 if (rc) { 8791 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8792 vnic_id, rc); 8793 } 8794 } 8795 return rc; 8796 } 8797 8798 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8799 { 8800 if (bp->flags & BNXT_FLAG_CHIP_P5) 8801 return __bnxt_setup_vnic_p5(bp, vnic_id); 8802 else 8803 return __bnxt_setup_vnic(bp, vnic_id); 8804 } 8805 8806 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8807 { 8808 #ifdef CONFIG_RFS_ACCEL 8809 int i, rc = 0; 8810 8811 if (bp->flags & BNXT_FLAG_CHIP_P5) 8812 return 0; 8813 8814 for (i = 0; i < bp->rx_nr_rings; i++) { 8815 struct bnxt_vnic_info *vnic; 8816 u16 vnic_id = i + 1; 8817 u16 ring_id = i; 8818 8819 if (vnic_id >= bp->nr_vnics) 8820 break; 8821 8822 vnic = &bp->vnic_info[vnic_id]; 8823 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8824 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8825 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8826 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8827 if (rc) { 8828 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8829 vnic_id, rc); 8830 break; 8831 } 8832 rc = bnxt_setup_vnic(bp, vnic_id); 8833 if (rc) 8834 break; 8835 } 8836 return rc; 8837 #else 8838 return 0; 8839 #endif 8840 } 8841 8842 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8843 static bool bnxt_promisc_ok(struct bnxt *bp) 8844 { 8845 #ifdef CONFIG_BNXT_SRIOV 8846 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8847 return false; 8848 #endif 8849 return true; 8850 } 8851 8852 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8853 { 8854 unsigned int rc = 0; 8855 8856 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8857 if (rc) { 8858 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8859 rc); 8860 return rc; 8861 } 8862 8863 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8864 if (rc) { 8865 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8866 rc); 8867 return rc; 8868 } 8869 return rc; 8870 } 8871 8872 static int bnxt_cfg_rx_mode(struct bnxt *); 8873 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8874 8875 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8876 { 8877 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8878 int rc = 0; 8879 unsigned int rx_nr_rings = bp->rx_nr_rings; 8880 8881 if (irq_re_init) { 8882 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8883 if (rc) { 8884 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8885 rc); 8886 goto err_out; 8887 } 8888 } 8889 8890 rc = bnxt_hwrm_ring_alloc(bp); 8891 if (rc) { 8892 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8893 goto err_out; 8894 } 8895 8896 rc = bnxt_hwrm_ring_grp_alloc(bp); 8897 if (rc) { 8898 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8899 goto err_out; 8900 } 8901 8902 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8903 rx_nr_rings--; 8904 8905 /* default vnic 0 */ 8906 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8907 if (rc) { 8908 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8909 goto err_out; 8910 } 8911 8912 if (BNXT_VF(bp)) 8913 bnxt_hwrm_func_qcfg(bp); 8914 8915 rc = bnxt_setup_vnic(bp, 0); 8916 if (rc) 8917 goto err_out; 8918 if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA) 8919 bnxt_hwrm_update_rss_hash_cfg(bp); 8920 8921 if (bp->flags & BNXT_FLAG_RFS) { 8922 rc = bnxt_alloc_rfs_vnics(bp); 8923 if (rc) 8924 goto err_out; 8925 } 8926 8927 if (bp->flags & BNXT_FLAG_TPA) { 8928 rc = bnxt_set_tpa(bp, true); 8929 if (rc) 8930 goto err_out; 8931 } 8932 8933 if (BNXT_VF(bp)) 8934 bnxt_update_vf_mac(bp); 8935 8936 /* Filter for default vnic 0 */ 8937 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8938 if (rc) { 8939 if (BNXT_VF(bp) && rc == -ENODEV) 8940 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 8941 else 8942 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8943 goto err_out; 8944 } 8945 vnic->uc_filter_count = 1; 8946 8947 vnic->rx_mask = 0; 8948 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 8949 goto skip_rx_mask; 8950 8951 if (bp->dev->flags & IFF_BROADCAST) 8952 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8953 8954 if (bp->dev->flags & IFF_PROMISC) 8955 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8956 8957 if (bp->dev->flags & IFF_ALLMULTI) { 8958 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8959 vnic->mc_list_count = 0; 8960 } else if (bp->dev->flags & IFF_MULTICAST) { 8961 u32 mask = 0; 8962 8963 bnxt_mc_list_updated(bp, &mask); 8964 vnic->rx_mask |= mask; 8965 } 8966 8967 rc = bnxt_cfg_rx_mode(bp); 8968 if (rc) 8969 goto err_out; 8970 8971 skip_rx_mask: 8972 rc = bnxt_hwrm_set_coal(bp); 8973 if (rc) 8974 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8975 rc); 8976 8977 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8978 rc = bnxt_setup_nitroa0_vnic(bp); 8979 if (rc) 8980 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8981 rc); 8982 } 8983 8984 if (BNXT_VF(bp)) { 8985 bnxt_hwrm_func_qcfg(bp); 8986 netdev_update_features(bp->dev); 8987 } 8988 8989 return 0; 8990 8991 err_out: 8992 bnxt_hwrm_resource_free(bp, 0, true); 8993 8994 return rc; 8995 } 8996 8997 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8998 { 8999 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 9000 return 0; 9001 } 9002 9003 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 9004 { 9005 bnxt_init_cp_rings(bp); 9006 bnxt_init_rx_rings(bp); 9007 bnxt_init_tx_rings(bp); 9008 bnxt_init_ring_grps(bp, irq_re_init); 9009 bnxt_init_vnics(bp); 9010 9011 return bnxt_init_chip(bp, irq_re_init); 9012 } 9013 9014 static int bnxt_set_real_num_queues(struct bnxt *bp) 9015 { 9016 int rc; 9017 struct net_device *dev = bp->dev; 9018 9019 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 9020 bp->tx_nr_rings_xdp); 9021 if (rc) 9022 return rc; 9023 9024 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 9025 if (rc) 9026 return rc; 9027 9028 #ifdef CONFIG_RFS_ACCEL 9029 if (bp->flags & BNXT_FLAG_RFS) 9030 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 9031 #endif 9032 9033 return rc; 9034 } 9035 9036 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 9037 bool shared) 9038 { 9039 int _rx = *rx, _tx = *tx; 9040 9041 if (shared) { 9042 *rx = min_t(int, _rx, max); 9043 *tx = min_t(int, _tx, max); 9044 } else { 9045 if (max < 2) 9046 return -ENOMEM; 9047 9048 while (_rx + _tx > max) { 9049 if (_rx > _tx && _rx > 1) 9050 _rx--; 9051 else if (_tx > 1) 9052 _tx--; 9053 } 9054 *rx = _rx; 9055 *tx = _tx; 9056 } 9057 return 0; 9058 } 9059 9060 static void bnxt_setup_msix(struct bnxt *bp) 9061 { 9062 const int len = sizeof(bp->irq_tbl[0].name); 9063 struct net_device *dev = bp->dev; 9064 int tcs, i; 9065 9066 tcs = netdev_get_num_tc(dev); 9067 if (tcs) { 9068 int i, off, count; 9069 9070 for (i = 0; i < tcs; i++) { 9071 count = bp->tx_nr_rings_per_tc; 9072 off = i * count; 9073 netdev_set_tc_queue(dev, i, count, off); 9074 } 9075 } 9076 9077 for (i = 0; i < bp->cp_nr_rings; i++) { 9078 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9079 char *attr; 9080 9081 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 9082 attr = "TxRx"; 9083 else if (i < bp->rx_nr_rings) 9084 attr = "rx"; 9085 else 9086 attr = "tx"; 9087 9088 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 9089 attr, i); 9090 bp->irq_tbl[map_idx].handler = bnxt_msix; 9091 } 9092 } 9093 9094 static void bnxt_setup_inta(struct bnxt *bp) 9095 { 9096 const int len = sizeof(bp->irq_tbl[0].name); 9097 9098 if (netdev_get_num_tc(bp->dev)) 9099 netdev_reset_tc(bp->dev); 9100 9101 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 9102 0); 9103 bp->irq_tbl[0].handler = bnxt_inta; 9104 } 9105 9106 static int bnxt_init_int_mode(struct bnxt *bp); 9107 9108 static int bnxt_setup_int_mode(struct bnxt *bp) 9109 { 9110 int rc; 9111 9112 if (!bp->irq_tbl) { 9113 rc = bnxt_init_int_mode(bp); 9114 if (rc || !bp->irq_tbl) 9115 return rc ?: -ENODEV; 9116 } 9117 9118 if (bp->flags & BNXT_FLAG_USING_MSIX) 9119 bnxt_setup_msix(bp); 9120 else 9121 bnxt_setup_inta(bp); 9122 9123 rc = bnxt_set_real_num_queues(bp); 9124 return rc; 9125 } 9126 9127 #ifdef CONFIG_RFS_ACCEL 9128 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 9129 { 9130 return bp->hw_resc.max_rsscos_ctxs; 9131 } 9132 9133 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 9134 { 9135 return bp->hw_resc.max_vnics; 9136 } 9137 #endif 9138 9139 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 9140 { 9141 return bp->hw_resc.max_stat_ctxs; 9142 } 9143 9144 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 9145 { 9146 return bp->hw_resc.max_cp_rings; 9147 } 9148 9149 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 9150 { 9151 unsigned int cp = bp->hw_resc.max_cp_rings; 9152 9153 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9154 cp -= bnxt_get_ulp_msix_num(bp); 9155 9156 return cp; 9157 } 9158 9159 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 9160 { 9161 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9162 9163 if (bp->flags & BNXT_FLAG_CHIP_P5) 9164 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 9165 9166 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 9167 } 9168 9169 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 9170 { 9171 bp->hw_resc.max_irqs = max_irqs; 9172 } 9173 9174 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 9175 { 9176 unsigned int cp; 9177 9178 cp = bnxt_get_max_func_cp_rings_for_en(bp); 9179 if (bp->flags & BNXT_FLAG_CHIP_P5) 9180 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 9181 else 9182 return cp - bp->cp_nr_rings; 9183 } 9184 9185 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 9186 { 9187 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 9188 } 9189 9190 int bnxt_get_avail_msix(struct bnxt *bp, int num) 9191 { 9192 int max_cp = bnxt_get_max_func_cp_rings(bp); 9193 int max_irq = bnxt_get_max_func_irqs(bp); 9194 int total_req = bp->cp_nr_rings + num; 9195 int max_idx, avail_msix; 9196 9197 max_idx = bp->total_irqs; 9198 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9199 max_idx = min_t(int, bp->total_irqs, max_cp); 9200 avail_msix = max_idx - bp->cp_nr_rings; 9201 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 9202 return avail_msix; 9203 9204 if (max_irq < total_req) { 9205 num = max_irq - bp->cp_nr_rings; 9206 if (num <= 0) 9207 return 0; 9208 } 9209 return num; 9210 } 9211 9212 static int bnxt_get_num_msix(struct bnxt *bp) 9213 { 9214 if (!BNXT_NEW_RM(bp)) 9215 return bnxt_get_max_func_irqs(bp); 9216 9217 return bnxt_nq_rings_in_use(bp); 9218 } 9219 9220 static int bnxt_init_msix(struct bnxt *bp) 9221 { 9222 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 9223 struct msix_entry *msix_ent; 9224 9225 total_vecs = bnxt_get_num_msix(bp); 9226 max = bnxt_get_max_func_irqs(bp); 9227 if (total_vecs > max) 9228 total_vecs = max; 9229 9230 if (!total_vecs) 9231 return 0; 9232 9233 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 9234 if (!msix_ent) 9235 return -ENOMEM; 9236 9237 for (i = 0; i < total_vecs; i++) { 9238 msix_ent[i].entry = i; 9239 msix_ent[i].vector = 0; 9240 } 9241 9242 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 9243 min = 2; 9244 9245 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 9246 ulp_msix = bnxt_get_ulp_msix_num(bp); 9247 if (total_vecs < 0 || total_vecs < ulp_msix) { 9248 rc = -ENODEV; 9249 goto msix_setup_exit; 9250 } 9251 9252 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9253 if (bp->irq_tbl) { 9254 for (i = 0; i < total_vecs; i++) 9255 bp->irq_tbl[i].vector = msix_ent[i].vector; 9256 9257 bp->total_irqs = total_vecs; 9258 /* Trim rings based upon num of vectors allocated */ 9259 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9260 total_vecs - ulp_msix, min == 1); 9261 if (rc) 9262 goto msix_setup_exit; 9263 9264 bp->cp_nr_rings = (min == 1) ? 9265 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 9266 bp->tx_nr_rings + bp->rx_nr_rings; 9267 9268 } else { 9269 rc = -ENOMEM; 9270 goto msix_setup_exit; 9271 } 9272 bp->flags |= BNXT_FLAG_USING_MSIX; 9273 kfree(msix_ent); 9274 return 0; 9275 9276 msix_setup_exit: 9277 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9278 kfree(bp->irq_tbl); 9279 bp->irq_tbl = NULL; 9280 pci_disable_msix(bp->pdev); 9281 kfree(msix_ent); 9282 return rc; 9283 } 9284 9285 static int bnxt_init_inta(struct bnxt *bp) 9286 { 9287 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9288 if (!bp->irq_tbl) 9289 return -ENOMEM; 9290 9291 bp->total_irqs = 1; 9292 bp->rx_nr_rings = 1; 9293 bp->tx_nr_rings = 1; 9294 bp->cp_nr_rings = 1; 9295 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9296 bp->irq_tbl[0].vector = bp->pdev->irq; 9297 return 0; 9298 } 9299 9300 static int bnxt_init_int_mode(struct bnxt *bp) 9301 { 9302 int rc = -ENODEV; 9303 9304 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9305 rc = bnxt_init_msix(bp); 9306 9307 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9308 /* fallback to INTA */ 9309 rc = bnxt_init_inta(bp); 9310 } 9311 return rc; 9312 } 9313 9314 static void bnxt_clear_int_mode(struct bnxt *bp) 9315 { 9316 if (bp->flags & BNXT_FLAG_USING_MSIX) 9317 pci_disable_msix(bp->pdev); 9318 9319 kfree(bp->irq_tbl); 9320 bp->irq_tbl = NULL; 9321 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9322 } 9323 9324 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9325 { 9326 int tcs = netdev_get_num_tc(bp->dev); 9327 bool irq_cleared = false; 9328 int rc; 9329 9330 if (!bnxt_need_reserve_rings(bp)) 9331 return 0; 9332 9333 if (irq_re_init && BNXT_NEW_RM(bp) && 9334 bnxt_get_num_msix(bp) != bp->total_irqs) { 9335 bnxt_ulp_irq_stop(bp); 9336 bnxt_clear_int_mode(bp); 9337 irq_cleared = true; 9338 } 9339 rc = __bnxt_reserve_rings(bp); 9340 if (irq_cleared) { 9341 if (!rc) 9342 rc = bnxt_init_int_mode(bp); 9343 bnxt_ulp_irq_restart(bp, rc); 9344 } 9345 if (rc) { 9346 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9347 return rc; 9348 } 9349 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 9350 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 9351 netdev_err(bp->dev, "tx ring reservation failure\n"); 9352 netdev_reset_tc(bp->dev); 9353 if (bp->tx_nr_rings_xdp) 9354 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 9355 else 9356 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9357 return -ENOMEM; 9358 } 9359 return 0; 9360 } 9361 9362 static void bnxt_free_irq(struct bnxt *bp) 9363 { 9364 struct bnxt_irq *irq; 9365 int i; 9366 9367 #ifdef CONFIG_RFS_ACCEL 9368 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9369 bp->dev->rx_cpu_rmap = NULL; 9370 #endif 9371 if (!bp->irq_tbl || !bp->bnapi) 9372 return; 9373 9374 for (i = 0; i < bp->cp_nr_rings; i++) { 9375 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9376 9377 irq = &bp->irq_tbl[map_idx]; 9378 if (irq->requested) { 9379 if (irq->have_cpumask) { 9380 irq_set_affinity_hint(irq->vector, NULL); 9381 free_cpumask_var(irq->cpu_mask); 9382 irq->have_cpumask = 0; 9383 } 9384 free_irq(irq->vector, bp->bnapi[i]); 9385 } 9386 9387 irq->requested = 0; 9388 } 9389 } 9390 9391 static int bnxt_request_irq(struct bnxt *bp) 9392 { 9393 int i, j, rc = 0; 9394 unsigned long flags = 0; 9395 #ifdef CONFIG_RFS_ACCEL 9396 struct cpu_rmap *rmap; 9397 #endif 9398 9399 rc = bnxt_setup_int_mode(bp); 9400 if (rc) { 9401 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9402 rc); 9403 return rc; 9404 } 9405 #ifdef CONFIG_RFS_ACCEL 9406 rmap = bp->dev->rx_cpu_rmap; 9407 #endif 9408 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9409 flags = IRQF_SHARED; 9410 9411 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9412 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9413 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9414 9415 #ifdef CONFIG_RFS_ACCEL 9416 if (rmap && bp->bnapi[i]->rx_ring) { 9417 rc = irq_cpu_rmap_add(rmap, irq->vector); 9418 if (rc) 9419 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9420 j); 9421 j++; 9422 } 9423 #endif 9424 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9425 bp->bnapi[i]); 9426 if (rc) 9427 break; 9428 9429 irq->requested = 1; 9430 9431 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9432 int numa_node = dev_to_node(&bp->pdev->dev); 9433 9434 irq->have_cpumask = 1; 9435 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9436 irq->cpu_mask); 9437 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9438 if (rc) { 9439 netdev_warn(bp->dev, 9440 "Set affinity failed, IRQ = %d\n", 9441 irq->vector); 9442 break; 9443 } 9444 } 9445 } 9446 return rc; 9447 } 9448 9449 static void bnxt_del_napi(struct bnxt *bp) 9450 { 9451 int i; 9452 9453 if (!bp->bnapi) 9454 return; 9455 9456 for (i = 0; i < bp->cp_nr_rings; i++) { 9457 struct bnxt_napi *bnapi = bp->bnapi[i]; 9458 9459 __netif_napi_del(&bnapi->napi); 9460 } 9461 /* We called __netif_napi_del(), we need 9462 * to respect an RCU grace period before freeing napi structures. 9463 */ 9464 synchronize_net(); 9465 } 9466 9467 static void bnxt_init_napi(struct bnxt *bp) 9468 { 9469 int i; 9470 unsigned int cp_nr_rings = bp->cp_nr_rings; 9471 struct bnxt_napi *bnapi; 9472 9473 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9474 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9475 9476 if (bp->flags & BNXT_FLAG_CHIP_P5) 9477 poll_fn = bnxt_poll_p5; 9478 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9479 cp_nr_rings--; 9480 for (i = 0; i < cp_nr_rings; i++) { 9481 bnapi = bp->bnapi[i]; 9482 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 9483 } 9484 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9485 bnapi = bp->bnapi[cp_nr_rings]; 9486 netif_napi_add(bp->dev, &bnapi->napi, 9487 bnxt_poll_nitroa0); 9488 } 9489 } else { 9490 bnapi = bp->bnapi[0]; 9491 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 9492 } 9493 } 9494 9495 static void bnxt_disable_napi(struct bnxt *bp) 9496 { 9497 int i; 9498 9499 if (!bp->bnapi || 9500 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9501 return; 9502 9503 for (i = 0; i < bp->cp_nr_rings; i++) { 9504 struct bnxt_napi *bnapi = bp->bnapi[i]; 9505 struct bnxt_cp_ring_info *cpr; 9506 9507 cpr = &bnapi->cp_ring; 9508 if (bnapi->tx_fault) 9509 cpr->sw_stats.tx.tx_resets++; 9510 if (bnapi->in_reset) 9511 cpr->sw_stats.rx.rx_resets++; 9512 napi_disable(&bnapi->napi); 9513 if (bnapi->rx_ring) 9514 cancel_work_sync(&cpr->dim.work); 9515 } 9516 } 9517 9518 static void bnxt_enable_napi(struct bnxt *bp) 9519 { 9520 int i; 9521 9522 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9523 for (i = 0; i < bp->cp_nr_rings; i++) { 9524 struct bnxt_napi *bnapi = bp->bnapi[i]; 9525 struct bnxt_cp_ring_info *cpr; 9526 9527 bnapi->tx_fault = 0; 9528 9529 cpr = &bnapi->cp_ring; 9530 bnapi->in_reset = false; 9531 9532 bnapi->tx_pkts = 0; 9533 9534 if (bnapi->rx_ring) { 9535 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9536 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9537 } 9538 napi_enable(&bnapi->napi); 9539 } 9540 } 9541 9542 void bnxt_tx_disable(struct bnxt *bp) 9543 { 9544 int i; 9545 struct bnxt_tx_ring_info *txr; 9546 9547 if (bp->tx_ring) { 9548 for (i = 0; i < bp->tx_nr_rings; i++) { 9549 txr = &bp->tx_ring[i]; 9550 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9551 } 9552 } 9553 /* Make sure napi polls see @dev_state change */ 9554 synchronize_net(); 9555 /* Drop carrier first to prevent TX timeout */ 9556 netif_carrier_off(bp->dev); 9557 /* Stop all TX queues */ 9558 netif_tx_disable(bp->dev); 9559 } 9560 9561 void bnxt_tx_enable(struct bnxt *bp) 9562 { 9563 int i; 9564 struct bnxt_tx_ring_info *txr; 9565 9566 for (i = 0; i < bp->tx_nr_rings; i++) { 9567 txr = &bp->tx_ring[i]; 9568 WRITE_ONCE(txr->dev_state, 0); 9569 } 9570 /* Make sure napi polls see @dev_state change */ 9571 synchronize_net(); 9572 netif_tx_wake_all_queues(bp->dev); 9573 if (BNXT_LINK_IS_UP(bp)) 9574 netif_carrier_on(bp->dev); 9575 } 9576 9577 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9578 { 9579 u8 active_fec = link_info->active_fec_sig_mode & 9580 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9581 9582 switch (active_fec) { 9583 default: 9584 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9585 return "None"; 9586 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9587 return "Clause 74 BaseR"; 9588 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9589 return "Clause 91 RS(528,514)"; 9590 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9591 return "Clause 91 RS544_1XN"; 9592 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9593 return "Clause 91 RS(544,514)"; 9594 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9595 return "Clause 91 RS272_1XN"; 9596 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9597 return "Clause 91 RS(272,257)"; 9598 } 9599 } 9600 9601 void bnxt_report_link(struct bnxt *bp) 9602 { 9603 if (BNXT_LINK_IS_UP(bp)) { 9604 const char *signal = ""; 9605 const char *flow_ctrl; 9606 const char *duplex; 9607 u32 speed; 9608 u16 fec; 9609 9610 netif_carrier_on(bp->dev); 9611 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9612 if (speed == SPEED_UNKNOWN) { 9613 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9614 return; 9615 } 9616 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9617 duplex = "full"; 9618 else 9619 duplex = "half"; 9620 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9621 flow_ctrl = "ON - receive & transmit"; 9622 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9623 flow_ctrl = "ON - transmit"; 9624 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9625 flow_ctrl = "ON - receive"; 9626 else 9627 flow_ctrl = "none"; 9628 if (bp->link_info.phy_qcfg_resp.option_flags & 9629 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9630 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9631 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9632 switch (sig_mode) { 9633 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9634 signal = "(NRZ) "; 9635 break; 9636 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9637 signal = "(PAM4) "; 9638 break; 9639 default: 9640 break; 9641 } 9642 } 9643 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9644 speed, signal, duplex, flow_ctrl); 9645 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9646 netdev_info(bp->dev, "EEE is %s\n", 9647 bp->eee.eee_active ? "active" : 9648 "not active"); 9649 fec = bp->link_info.fec_cfg; 9650 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9651 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9652 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9653 bnxt_report_fec(&bp->link_info)); 9654 } else { 9655 netif_carrier_off(bp->dev); 9656 netdev_err(bp->dev, "NIC Link is Down\n"); 9657 } 9658 } 9659 9660 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9661 { 9662 if (!resp->supported_speeds_auto_mode && 9663 !resp->supported_speeds_force_mode && 9664 !resp->supported_pam4_speeds_auto_mode && 9665 !resp->supported_pam4_speeds_force_mode) 9666 return true; 9667 return false; 9668 } 9669 9670 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9671 { 9672 struct bnxt_link_info *link_info = &bp->link_info; 9673 struct hwrm_port_phy_qcaps_output *resp; 9674 struct hwrm_port_phy_qcaps_input *req; 9675 int rc = 0; 9676 9677 if (bp->hwrm_spec_code < 0x10201) 9678 return 0; 9679 9680 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9681 if (rc) 9682 return rc; 9683 9684 resp = hwrm_req_hold(bp, req); 9685 rc = hwrm_req_send(bp, req); 9686 if (rc) 9687 goto hwrm_phy_qcaps_exit; 9688 9689 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 9690 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9691 struct ethtool_eee *eee = &bp->eee; 9692 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9693 9694 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9695 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9696 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9697 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9698 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9699 } 9700 9701 if (bp->hwrm_spec_code >= 0x10a01) { 9702 if (bnxt_phy_qcaps_no_speed(resp)) { 9703 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9704 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9705 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9706 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9707 netdev_info(bp->dev, "Ethernet link enabled\n"); 9708 /* Phy re-enabled, reprobe the speeds */ 9709 link_info->support_auto_speeds = 0; 9710 link_info->support_pam4_auto_speeds = 0; 9711 } 9712 } 9713 if (resp->supported_speeds_auto_mode) 9714 link_info->support_auto_speeds = 9715 le16_to_cpu(resp->supported_speeds_auto_mode); 9716 if (resp->supported_pam4_speeds_auto_mode) 9717 link_info->support_pam4_auto_speeds = 9718 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9719 9720 bp->port_count = resp->port_cnt; 9721 9722 hwrm_phy_qcaps_exit: 9723 hwrm_req_drop(bp, req); 9724 return rc; 9725 } 9726 9727 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9728 { 9729 u16 diff = advertising ^ supported; 9730 9731 return ((supported | diff) != supported); 9732 } 9733 9734 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 9735 { 9736 /* Check if any advertised speeds are no longer supported. The caller 9737 * holds the link_lock mutex, so we can modify link_info settings. 9738 */ 9739 if (bnxt_support_dropped(link_info->advertising, 9740 link_info->support_auto_speeds)) { 9741 link_info->advertising = link_info->support_auto_speeds; 9742 return true; 9743 } 9744 if (bnxt_support_dropped(link_info->advertising_pam4, 9745 link_info->support_pam4_auto_speeds)) { 9746 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9747 return true; 9748 } 9749 return false; 9750 } 9751 9752 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9753 { 9754 struct bnxt_link_info *link_info = &bp->link_info; 9755 struct hwrm_port_phy_qcfg_output *resp; 9756 struct hwrm_port_phy_qcfg_input *req; 9757 u8 link_state = link_info->link_state; 9758 bool support_changed; 9759 int rc; 9760 9761 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9762 if (rc) 9763 return rc; 9764 9765 resp = hwrm_req_hold(bp, req); 9766 rc = hwrm_req_send(bp, req); 9767 if (rc) { 9768 hwrm_req_drop(bp, req); 9769 if (BNXT_VF(bp) && rc == -ENODEV) { 9770 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 9771 rc = 0; 9772 } 9773 return rc; 9774 } 9775 9776 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9777 link_info->phy_link_status = resp->link; 9778 link_info->duplex = resp->duplex_cfg; 9779 if (bp->hwrm_spec_code >= 0x10800) 9780 link_info->duplex = resp->duplex_state; 9781 link_info->pause = resp->pause; 9782 link_info->auto_mode = resp->auto_mode; 9783 link_info->auto_pause_setting = resp->auto_pause; 9784 link_info->lp_pause = resp->link_partner_adv_pause; 9785 link_info->force_pause_setting = resp->force_pause; 9786 link_info->duplex_setting = resp->duplex_cfg; 9787 if (link_info->phy_link_status == BNXT_LINK_LINK) 9788 link_info->link_speed = le16_to_cpu(resp->link_speed); 9789 else 9790 link_info->link_speed = 0; 9791 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9792 link_info->force_pam4_link_speed = 9793 le16_to_cpu(resp->force_pam4_link_speed); 9794 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9795 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9796 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9797 link_info->auto_pam4_link_speeds = 9798 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9799 link_info->lp_auto_link_speeds = 9800 le16_to_cpu(resp->link_partner_adv_speeds); 9801 link_info->lp_auto_pam4_link_speeds = 9802 resp->link_partner_pam4_adv_speeds; 9803 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9804 link_info->phy_ver[0] = resp->phy_maj; 9805 link_info->phy_ver[1] = resp->phy_min; 9806 link_info->phy_ver[2] = resp->phy_bld; 9807 link_info->media_type = resp->media_type; 9808 link_info->phy_type = resp->phy_type; 9809 link_info->transceiver = resp->xcvr_pkg_type; 9810 link_info->phy_addr = resp->eee_config_phy_addr & 9811 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9812 link_info->module_status = resp->module_status; 9813 9814 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9815 struct ethtool_eee *eee = &bp->eee; 9816 u16 fw_speeds; 9817 9818 eee->eee_active = 0; 9819 if (resp->eee_config_phy_addr & 9820 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9821 eee->eee_active = 1; 9822 fw_speeds = le16_to_cpu( 9823 resp->link_partner_adv_eee_link_speed_mask); 9824 eee->lp_advertised = 9825 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9826 } 9827 9828 /* Pull initial EEE config */ 9829 if (!chng_link_state) { 9830 if (resp->eee_config_phy_addr & 9831 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9832 eee->eee_enabled = 1; 9833 9834 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9835 eee->advertised = 9836 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9837 9838 if (resp->eee_config_phy_addr & 9839 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9840 __le32 tmr; 9841 9842 eee->tx_lpi_enabled = 1; 9843 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9844 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9845 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9846 } 9847 } 9848 } 9849 9850 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9851 if (bp->hwrm_spec_code >= 0x10504) { 9852 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9853 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9854 } 9855 /* TODO: need to add more logic to report VF link */ 9856 if (chng_link_state) { 9857 if (link_info->phy_link_status == BNXT_LINK_LINK) 9858 link_info->link_state = BNXT_LINK_STATE_UP; 9859 else 9860 link_info->link_state = BNXT_LINK_STATE_DOWN; 9861 if (link_state != link_info->link_state) 9862 bnxt_report_link(bp); 9863 } else { 9864 /* always link down if not require to update link state */ 9865 link_info->link_state = BNXT_LINK_STATE_DOWN; 9866 } 9867 hwrm_req_drop(bp, req); 9868 9869 if (!BNXT_PHY_CFG_ABLE(bp)) 9870 return 0; 9871 9872 support_changed = bnxt_support_speed_dropped(link_info); 9873 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9874 bnxt_hwrm_set_link_setting(bp, true, false); 9875 return 0; 9876 } 9877 9878 static void bnxt_get_port_module_status(struct bnxt *bp) 9879 { 9880 struct bnxt_link_info *link_info = &bp->link_info; 9881 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9882 u8 module_status; 9883 9884 if (bnxt_update_link(bp, true)) 9885 return; 9886 9887 module_status = link_info->module_status; 9888 switch (module_status) { 9889 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9890 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9891 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9892 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9893 bp->pf.port_id); 9894 if (bp->hwrm_spec_code >= 0x10201) { 9895 netdev_warn(bp->dev, "Module part number %s\n", 9896 resp->phy_vendor_partnumber); 9897 } 9898 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9899 netdev_warn(bp->dev, "TX is disabled\n"); 9900 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9901 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9902 } 9903 } 9904 9905 static void 9906 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9907 { 9908 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9909 if (bp->hwrm_spec_code >= 0x10201) 9910 req->auto_pause = 9911 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9912 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9913 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9914 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9915 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9916 req->enables |= 9917 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9918 } else { 9919 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9920 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9921 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9922 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9923 req->enables |= 9924 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9925 if (bp->hwrm_spec_code >= 0x10201) { 9926 req->auto_pause = req->force_pause; 9927 req->enables |= cpu_to_le32( 9928 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9929 } 9930 } 9931 } 9932 9933 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9934 { 9935 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9936 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9937 if (bp->link_info.advertising) { 9938 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9939 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9940 } 9941 if (bp->link_info.advertising_pam4) { 9942 req->enables |= 9943 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9944 req->auto_link_pam4_speed_mask = 9945 cpu_to_le16(bp->link_info.advertising_pam4); 9946 } 9947 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9948 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9949 } else { 9950 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9951 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9952 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9953 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9954 } else { 9955 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9956 } 9957 } 9958 9959 /* tell chimp that the setting takes effect immediately */ 9960 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9961 } 9962 9963 int bnxt_hwrm_set_pause(struct bnxt *bp) 9964 { 9965 struct hwrm_port_phy_cfg_input *req; 9966 int rc; 9967 9968 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9969 if (rc) 9970 return rc; 9971 9972 bnxt_hwrm_set_pause_common(bp, req); 9973 9974 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9975 bp->link_info.force_link_chng) 9976 bnxt_hwrm_set_link_common(bp, req); 9977 9978 rc = hwrm_req_send(bp, req); 9979 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9980 /* since changing of pause setting doesn't trigger any link 9981 * change event, the driver needs to update the current pause 9982 * result upon successfully return of the phy_cfg command 9983 */ 9984 bp->link_info.pause = 9985 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9986 bp->link_info.auto_pause_setting = 0; 9987 if (!bp->link_info.force_link_chng) 9988 bnxt_report_link(bp); 9989 } 9990 bp->link_info.force_link_chng = false; 9991 return rc; 9992 } 9993 9994 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9995 struct hwrm_port_phy_cfg_input *req) 9996 { 9997 struct ethtool_eee *eee = &bp->eee; 9998 9999 if (eee->eee_enabled) { 10000 u16 eee_speeds; 10001 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 10002 10003 if (eee->tx_lpi_enabled) 10004 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 10005 else 10006 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 10007 10008 req->flags |= cpu_to_le32(flags); 10009 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 10010 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 10011 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 10012 } else { 10013 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 10014 } 10015 } 10016 10017 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 10018 { 10019 struct hwrm_port_phy_cfg_input *req; 10020 int rc; 10021 10022 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10023 if (rc) 10024 return rc; 10025 10026 if (set_pause) 10027 bnxt_hwrm_set_pause_common(bp, req); 10028 10029 bnxt_hwrm_set_link_common(bp, req); 10030 10031 if (set_eee) 10032 bnxt_hwrm_set_eee(bp, req); 10033 return hwrm_req_send(bp, req); 10034 } 10035 10036 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 10037 { 10038 struct hwrm_port_phy_cfg_input *req; 10039 int rc; 10040 10041 if (!BNXT_SINGLE_PF(bp)) 10042 return 0; 10043 10044 if (pci_num_vf(bp->pdev) && 10045 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 10046 return 0; 10047 10048 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10049 if (rc) 10050 return rc; 10051 10052 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 10053 rc = hwrm_req_send(bp, req); 10054 if (!rc) { 10055 mutex_lock(&bp->link_lock); 10056 /* Device is not obliged link down in certain scenarios, even 10057 * when forced. Setting the state unknown is consistent with 10058 * driver startup and will force link state to be reported 10059 * during subsequent open based on PORT_PHY_QCFG. 10060 */ 10061 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 10062 mutex_unlock(&bp->link_lock); 10063 } 10064 return rc; 10065 } 10066 10067 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 10068 { 10069 #ifdef CONFIG_TEE_BNXT_FW 10070 int rc = tee_bnxt_fw_load(); 10071 10072 if (rc) 10073 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 10074 10075 return rc; 10076 #else 10077 netdev_err(bp->dev, "OP-TEE not supported\n"); 10078 return -ENODEV; 10079 #endif 10080 } 10081 10082 static int bnxt_try_recover_fw(struct bnxt *bp) 10083 { 10084 if (bp->fw_health && bp->fw_health->status_reliable) { 10085 int retry = 0, rc; 10086 u32 sts; 10087 10088 do { 10089 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 10090 rc = bnxt_hwrm_poll(bp); 10091 if (!BNXT_FW_IS_BOOTING(sts) && 10092 !BNXT_FW_IS_RECOVERING(sts)) 10093 break; 10094 retry++; 10095 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 10096 10097 if (!BNXT_FW_IS_HEALTHY(sts)) { 10098 netdev_err(bp->dev, 10099 "Firmware not responding, status: 0x%x\n", 10100 sts); 10101 rc = -ENODEV; 10102 } 10103 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 10104 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 10105 return bnxt_fw_reset_via_optee(bp); 10106 } 10107 return rc; 10108 } 10109 10110 return -ENODEV; 10111 } 10112 10113 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 10114 { 10115 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10116 10117 if (!BNXT_NEW_RM(bp)) 10118 return; /* no resource reservations required */ 10119 10120 hw_resc->resv_cp_rings = 0; 10121 hw_resc->resv_stat_ctxs = 0; 10122 hw_resc->resv_irqs = 0; 10123 hw_resc->resv_tx_rings = 0; 10124 hw_resc->resv_rx_rings = 0; 10125 hw_resc->resv_hw_ring_grps = 0; 10126 hw_resc->resv_vnics = 0; 10127 if (!fw_reset) { 10128 bp->tx_nr_rings = 0; 10129 bp->rx_nr_rings = 0; 10130 } 10131 } 10132 10133 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 10134 { 10135 int rc; 10136 10137 if (!BNXT_NEW_RM(bp)) 10138 return 0; /* no resource reservations required */ 10139 10140 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 10141 if (rc) 10142 netdev_err(bp->dev, "resc_qcaps failed\n"); 10143 10144 bnxt_clear_reservations(bp, fw_reset); 10145 10146 return rc; 10147 } 10148 10149 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 10150 { 10151 struct hwrm_func_drv_if_change_output *resp; 10152 struct hwrm_func_drv_if_change_input *req; 10153 bool fw_reset = !bp->irq_tbl; 10154 bool resc_reinit = false; 10155 int rc, retry = 0; 10156 u32 flags = 0; 10157 10158 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 10159 return 0; 10160 10161 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 10162 if (rc) 10163 return rc; 10164 10165 if (up) 10166 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 10167 resp = hwrm_req_hold(bp, req); 10168 10169 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10170 while (retry < BNXT_FW_IF_RETRY) { 10171 rc = hwrm_req_send(bp, req); 10172 if (rc != -EAGAIN) 10173 break; 10174 10175 msleep(50); 10176 retry++; 10177 } 10178 10179 if (rc == -EAGAIN) { 10180 hwrm_req_drop(bp, req); 10181 return rc; 10182 } else if (!rc) { 10183 flags = le32_to_cpu(resp->flags); 10184 } else if (up) { 10185 rc = bnxt_try_recover_fw(bp); 10186 fw_reset = true; 10187 } 10188 hwrm_req_drop(bp, req); 10189 if (rc) 10190 return rc; 10191 10192 if (!up) { 10193 bnxt_inv_fw_health_reg(bp); 10194 return 0; 10195 } 10196 10197 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 10198 resc_reinit = true; 10199 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 10200 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 10201 fw_reset = true; 10202 else 10203 bnxt_remap_fw_health_regs(bp); 10204 10205 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 10206 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 10207 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10208 return -ENODEV; 10209 } 10210 if (resc_reinit || fw_reset) { 10211 if (fw_reset) { 10212 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10213 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10214 bnxt_ulp_stop(bp); 10215 bnxt_free_ctx_mem(bp); 10216 kfree(bp->ctx); 10217 bp->ctx = NULL; 10218 bnxt_dcb_free(bp); 10219 rc = bnxt_fw_init_one(bp); 10220 if (rc) { 10221 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10222 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10223 return rc; 10224 } 10225 bnxt_clear_int_mode(bp); 10226 rc = bnxt_init_int_mode(bp); 10227 if (rc) { 10228 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10229 netdev_err(bp->dev, "init int mode failed\n"); 10230 return rc; 10231 } 10232 } 10233 rc = bnxt_cancel_reservations(bp, fw_reset); 10234 } 10235 return rc; 10236 } 10237 10238 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 10239 { 10240 struct hwrm_port_led_qcaps_output *resp; 10241 struct hwrm_port_led_qcaps_input *req; 10242 struct bnxt_pf_info *pf = &bp->pf; 10243 int rc; 10244 10245 bp->num_leds = 0; 10246 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 10247 return 0; 10248 10249 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 10250 if (rc) 10251 return rc; 10252 10253 req->port_id = cpu_to_le16(pf->port_id); 10254 resp = hwrm_req_hold(bp, req); 10255 rc = hwrm_req_send(bp, req); 10256 if (rc) { 10257 hwrm_req_drop(bp, req); 10258 return rc; 10259 } 10260 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 10261 int i; 10262 10263 bp->num_leds = resp->num_leds; 10264 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 10265 bp->num_leds); 10266 for (i = 0; i < bp->num_leds; i++) { 10267 struct bnxt_led_info *led = &bp->leds[i]; 10268 __le16 caps = led->led_state_caps; 10269 10270 if (!led->led_group_id || 10271 !BNXT_LED_ALT_BLINK_CAP(caps)) { 10272 bp->num_leds = 0; 10273 break; 10274 } 10275 } 10276 } 10277 hwrm_req_drop(bp, req); 10278 return 0; 10279 } 10280 10281 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 10282 { 10283 struct hwrm_wol_filter_alloc_output *resp; 10284 struct hwrm_wol_filter_alloc_input *req; 10285 int rc; 10286 10287 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 10288 if (rc) 10289 return rc; 10290 10291 req->port_id = cpu_to_le16(bp->pf.port_id); 10292 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 10293 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 10294 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 10295 10296 resp = hwrm_req_hold(bp, req); 10297 rc = hwrm_req_send(bp, req); 10298 if (!rc) 10299 bp->wol_filter_id = resp->wol_filter_id; 10300 hwrm_req_drop(bp, req); 10301 return rc; 10302 } 10303 10304 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 10305 { 10306 struct hwrm_wol_filter_free_input *req; 10307 int rc; 10308 10309 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 10310 if (rc) 10311 return rc; 10312 10313 req->port_id = cpu_to_le16(bp->pf.port_id); 10314 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10315 req->wol_filter_id = bp->wol_filter_id; 10316 10317 return hwrm_req_send(bp, req); 10318 } 10319 10320 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10321 { 10322 struct hwrm_wol_filter_qcfg_output *resp; 10323 struct hwrm_wol_filter_qcfg_input *req; 10324 u16 next_handle = 0; 10325 int rc; 10326 10327 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 10328 if (rc) 10329 return rc; 10330 10331 req->port_id = cpu_to_le16(bp->pf.port_id); 10332 req->handle = cpu_to_le16(handle); 10333 resp = hwrm_req_hold(bp, req); 10334 rc = hwrm_req_send(bp, req); 10335 if (!rc) { 10336 next_handle = le16_to_cpu(resp->next_handle); 10337 if (next_handle != 0) { 10338 if (resp->wol_type == 10339 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10340 bp->wol = 1; 10341 bp->wol_filter_id = resp->wol_filter_id; 10342 } 10343 } 10344 } 10345 hwrm_req_drop(bp, req); 10346 return next_handle; 10347 } 10348 10349 static void bnxt_get_wol_settings(struct bnxt *bp) 10350 { 10351 u16 handle = 0; 10352 10353 bp->wol = 0; 10354 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10355 return; 10356 10357 do { 10358 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10359 } while (handle && handle != 0xffff); 10360 } 10361 10362 static bool bnxt_eee_config_ok(struct bnxt *bp) 10363 { 10364 struct ethtool_eee *eee = &bp->eee; 10365 struct bnxt_link_info *link_info = &bp->link_info; 10366 10367 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10368 return true; 10369 10370 if (eee->eee_enabled) { 10371 u32 advertising = 10372 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10373 10374 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10375 eee->eee_enabled = 0; 10376 return false; 10377 } 10378 if (eee->advertised & ~advertising) { 10379 eee->advertised = advertising & eee->supported; 10380 return false; 10381 } 10382 } 10383 return true; 10384 } 10385 10386 static int bnxt_update_phy_setting(struct bnxt *bp) 10387 { 10388 int rc; 10389 bool update_link = false; 10390 bool update_pause = false; 10391 bool update_eee = false; 10392 struct bnxt_link_info *link_info = &bp->link_info; 10393 10394 rc = bnxt_update_link(bp, true); 10395 if (rc) { 10396 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10397 rc); 10398 return rc; 10399 } 10400 if (!BNXT_SINGLE_PF(bp)) 10401 return 0; 10402 10403 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10404 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10405 link_info->req_flow_ctrl) 10406 update_pause = true; 10407 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10408 link_info->force_pause_setting != link_info->req_flow_ctrl) 10409 update_pause = true; 10410 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10411 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10412 update_link = true; 10413 if (bnxt_force_speed_updated(link_info)) 10414 update_link = true; 10415 if (link_info->req_duplex != link_info->duplex_setting) 10416 update_link = true; 10417 } else { 10418 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10419 update_link = true; 10420 if (bnxt_auto_speed_updated(link_info)) 10421 update_link = true; 10422 } 10423 10424 /* The last close may have shutdown the link, so need to call 10425 * PHY_CFG to bring it back up. 10426 */ 10427 if (!BNXT_LINK_IS_UP(bp)) 10428 update_link = true; 10429 10430 if (!bnxt_eee_config_ok(bp)) 10431 update_eee = true; 10432 10433 if (update_link) 10434 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10435 else if (update_pause) 10436 rc = bnxt_hwrm_set_pause(bp); 10437 if (rc) { 10438 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10439 rc); 10440 return rc; 10441 } 10442 10443 return rc; 10444 } 10445 10446 /* Common routine to pre-map certain register block to different GRC window. 10447 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10448 * in PF and 3 windows in VF that can be customized to map in different 10449 * register blocks. 10450 */ 10451 static void bnxt_preset_reg_win(struct bnxt *bp) 10452 { 10453 if (BNXT_PF(bp)) { 10454 /* CAG registers map to GRC window #4 */ 10455 writel(BNXT_CAG_REG_BASE, 10456 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10457 } 10458 } 10459 10460 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10461 10462 static int bnxt_reinit_after_abort(struct bnxt *bp) 10463 { 10464 int rc; 10465 10466 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10467 return -EBUSY; 10468 10469 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10470 return -ENODEV; 10471 10472 rc = bnxt_fw_init_one(bp); 10473 if (!rc) { 10474 bnxt_clear_int_mode(bp); 10475 rc = bnxt_init_int_mode(bp); 10476 if (!rc) { 10477 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10478 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10479 } 10480 } 10481 return rc; 10482 } 10483 10484 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10485 { 10486 int rc = 0; 10487 10488 bnxt_preset_reg_win(bp); 10489 netif_carrier_off(bp->dev); 10490 if (irq_re_init) { 10491 /* Reserve rings now if none were reserved at driver probe. */ 10492 rc = bnxt_init_dflt_ring_mode(bp); 10493 if (rc) { 10494 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10495 return rc; 10496 } 10497 } 10498 rc = bnxt_reserve_rings(bp, irq_re_init); 10499 if (rc) 10500 return rc; 10501 if ((bp->flags & BNXT_FLAG_RFS) && 10502 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10503 /* disable RFS if falling back to INTA */ 10504 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10505 bp->flags &= ~BNXT_FLAG_RFS; 10506 } 10507 10508 rc = bnxt_alloc_mem(bp, irq_re_init); 10509 if (rc) { 10510 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10511 goto open_err_free_mem; 10512 } 10513 10514 if (irq_re_init) { 10515 bnxt_init_napi(bp); 10516 rc = bnxt_request_irq(bp); 10517 if (rc) { 10518 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10519 goto open_err_irq; 10520 } 10521 } 10522 10523 rc = bnxt_init_nic(bp, irq_re_init); 10524 if (rc) { 10525 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10526 goto open_err_irq; 10527 } 10528 10529 bnxt_enable_napi(bp); 10530 bnxt_debug_dev_init(bp); 10531 10532 if (link_re_init) { 10533 mutex_lock(&bp->link_lock); 10534 rc = bnxt_update_phy_setting(bp); 10535 mutex_unlock(&bp->link_lock); 10536 if (rc) { 10537 netdev_warn(bp->dev, "failed to update phy settings\n"); 10538 if (BNXT_SINGLE_PF(bp)) { 10539 bp->link_info.phy_retry = true; 10540 bp->link_info.phy_retry_expires = 10541 jiffies + 5 * HZ; 10542 } 10543 } 10544 } 10545 10546 if (irq_re_init) 10547 udp_tunnel_nic_reset_ntf(bp->dev); 10548 10549 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 10550 if (!static_key_enabled(&bnxt_xdp_locking_key)) 10551 static_branch_enable(&bnxt_xdp_locking_key); 10552 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 10553 static_branch_disable(&bnxt_xdp_locking_key); 10554 } 10555 set_bit(BNXT_STATE_OPEN, &bp->state); 10556 bnxt_enable_int(bp); 10557 /* Enable TX queues */ 10558 bnxt_tx_enable(bp); 10559 mod_timer(&bp->timer, jiffies + bp->current_interval); 10560 /* Poll link status and check for SFP+ module status */ 10561 mutex_lock(&bp->link_lock); 10562 bnxt_get_port_module_status(bp); 10563 mutex_unlock(&bp->link_lock); 10564 10565 /* VF-reps may need to be re-opened after the PF is re-opened */ 10566 if (BNXT_PF(bp)) 10567 bnxt_vf_reps_open(bp); 10568 bnxt_ptp_init_rtc(bp, true); 10569 bnxt_ptp_cfg_tstamp_filters(bp); 10570 return 0; 10571 10572 open_err_irq: 10573 bnxt_del_napi(bp); 10574 10575 open_err_free_mem: 10576 bnxt_free_skbs(bp); 10577 bnxt_free_irq(bp); 10578 bnxt_free_mem(bp, true); 10579 return rc; 10580 } 10581 10582 /* rtnl_lock held */ 10583 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10584 { 10585 int rc = 0; 10586 10587 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10588 rc = -EIO; 10589 if (!rc) 10590 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10591 if (rc) { 10592 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10593 dev_close(bp->dev); 10594 } 10595 return rc; 10596 } 10597 10598 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10599 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10600 * self tests. 10601 */ 10602 int bnxt_half_open_nic(struct bnxt *bp) 10603 { 10604 int rc = 0; 10605 10606 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10607 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10608 rc = -ENODEV; 10609 goto half_open_err; 10610 } 10611 10612 rc = bnxt_alloc_mem(bp, true); 10613 if (rc) { 10614 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10615 goto half_open_err; 10616 } 10617 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10618 rc = bnxt_init_nic(bp, true); 10619 if (rc) { 10620 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10621 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10622 goto half_open_err; 10623 } 10624 return 0; 10625 10626 half_open_err: 10627 bnxt_free_skbs(bp); 10628 bnxt_free_mem(bp, true); 10629 dev_close(bp->dev); 10630 return rc; 10631 } 10632 10633 /* rtnl_lock held, this call can only be made after a previous successful 10634 * call to bnxt_half_open_nic(). 10635 */ 10636 void bnxt_half_close_nic(struct bnxt *bp) 10637 { 10638 bnxt_hwrm_resource_free(bp, false, true); 10639 bnxt_free_skbs(bp); 10640 bnxt_free_mem(bp, true); 10641 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10642 } 10643 10644 void bnxt_reenable_sriov(struct bnxt *bp) 10645 { 10646 if (BNXT_PF(bp)) { 10647 struct bnxt_pf_info *pf = &bp->pf; 10648 int n = pf->active_vfs; 10649 10650 if (n) 10651 bnxt_cfg_hw_sriov(bp, &n, true); 10652 } 10653 } 10654 10655 static int bnxt_open(struct net_device *dev) 10656 { 10657 struct bnxt *bp = netdev_priv(dev); 10658 int rc; 10659 10660 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10661 rc = bnxt_reinit_after_abort(bp); 10662 if (rc) { 10663 if (rc == -EBUSY) 10664 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10665 else 10666 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10667 return -ENODEV; 10668 } 10669 } 10670 10671 rc = bnxt_hwrm_if_change(bp, true); 10672 if (rc) 10673 return rc; 10674 10675 rc = __bnxt_open_nic(bp, true, true); 10676 if (rc) { 10677 bnxt_hwrm_if_change(bp, false); 10678 } else { 10679 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10680 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10681 bnxt_ulp_start(bp, 0); 10682 bnxt_reenable_sriov(bp); 10683 } 10684 } 10685 } 10686 10687 return rc; 10688 } 10689 10690 static bool bnxt_drv_busy(struct bnxt *bp) 10691 { 10692 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10693 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10694 } 10695 10696 static void bnxt_get_ring_stats(struct bnxt *bp, 10697 struct rtnl_link_stats64 *stats); 10698 10699 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10700 bool link_re_init) 10701 { 10702 /* Close the VF-reps before closing PF */ 10703 if (BNXT_PF(bp)) 10704 bnxt_vf_reps_close(bp); 10705 10706 /* Change device state to avoid TX queue wake up's */ 10707 bnxt_tx_disable(bp); 10708 10709 clear_bit(BNXT_STATE_OPEN, &bp->state); 10710 smp_mb__after_atomic(); 10711 while (bnxt_drv_busy(bp)) 10712 msleep(20); 10713 10714 /* Flush rings and disable interrupts */ 10715 bnxt_shutdown_nic(bp, irq_re_init); 10716 10717 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10718 10719 bnxt_debug_dev_exit(bp); 10720 bnxt_disable_napi(bp); 10721 del_timer_sync(&bp->timer); 10722 bnxt_free_skbs(bp); 10723 10724 /* Save ring stats before shutdown */ 10725 if (bp->bnapi && irq_re_init) { 10726 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10727 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 10728 } 10729 if (irq_re_init) { 10730 bnxt_free_irq(bp); 10731 bnxt_del_napi(bp); 10732 } 10733 bnxt_free_mem(bp, irq_re_init); 10734 } 10735 10736 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10737 { 10738 int rc = 0; 10739 10740 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10741 /* If we get here, it means firmware reset is in progress 10742 * while we are trying to close. We can safely proceed with 10743 * the close because we are holding rtnl_lock(). Some firmware 10744 * messages may fail as we proceed to close. We set the 10745 * ABORT_ERR flag here so that the FW reset thread will later 10746 * abort when it gets the rtnl_lock() and sees the flag. 10747 */ 10748 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10749 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10750 } 10751 10752 #ifdef CONFIG_BNXT_SRIOV 10753 if (bp->sriov_cfg) { 10754 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10755 !bp->sriov_cfg, 10756 BNXT_SRIOV_CFG_WAIT_TMO); 10757 if (rc) 10758 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10759 } 10760 #endif 10761 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10762 return rc; 10763 } 10764 10765 static int bnxt_close(struct net_device *dev) 10766 { 10767 struct bnxt *bp = netdev_priv(dev); 10768 10769 bnxt_close_nic(bp, true, true); 10770 bnxt_hwrm_shutdown_link(bp); 10771 bnxt_hwrm_if_change(bp, false); 10772 return 0; 10773 } 10774 10775 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10776 u16 *val) 10777 { 10778 struct hwrm_port_phy_mdio_read_output *resp; 10779 struct hwrm_port_phy_mdio_read_input *req; 10780 int rc; 10781 10782 if (bp->hwrm_spec_code < 0x10a00) 10783 return -EOPNOTSUPP; 10784 10785 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10786 if (rc) 10787 return rc; 10788 10789 req->port_id = cpu_to_le16(bp->pf.port_id); 10790 req->phy_addr = phy_addr; 10791 req->reg_addr = cpu_to_le16(reg & 0x1f); 10792 if (mdio_phy_id_is_c45(phy_addr)) { 10793 req->cl45_mdio = 1; 10794 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10795 req->dev_addr = mdio_phy_id_devad(phy_addr); 10796 req->reg_addr = cpu_to_le16(reg); 10797 } 10798 10799 resp = hwrm_req_hold(bp, req); 10800 rc = hwrm_req_send(bp, req); 10801 if (!rc) 10802 *val = le16_to_cpu(resp->reg_data); 10803 hwrm_req_drop(bp, req); 10804 return rc; 10805 } 10806 10807 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10808 u16 val) 10809 { 10810 struct hwrm_port_phy_mdio_write_input *req; 10811 int rc; 10812 10813 if (bp->hwrm_spec_code < 0x10a00) 10814 return -EOPNOTSUPP; 10815 10816 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10817 if (rc) 10818 return rc; 10819 10820 req->port_id = cpu_to_le16(bp->pf.port_id); 10821 req->phy_addr = phy_addr; 10822 req->reg_addr = cpu_to_le16(reg & 0x1f); 10823 if (mdio_phy_id_is_c45(phy_addr)) { 10824 req->cl45_mdio = 1; 10825 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10826 req->dev_addr = mdio_phy_id_devad(phy_addr); 10827 req->reg_addr = cpu_to_le16(reg); 10828 } 10829 req->reg_data = cpu_to_le16(val); 10830 10831 return hwrm_req_send(bp, req); 10832 } 10833 10834 /* rtnl_lock held */ 10835 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10836 { 10837 struct mii_ioctl_data *mdio = if_mii(ifr); 10838 struct bnxt *bp = netdev_priv(dev); 10839 int rc; 10840 10841 switch (cmd) { 10842 case SIOCGMIIPHY: 10843 mdio->phy_id = bp->link_info.phy_addr; 10844 10845 fallthrough; 10846 case SIOCGMIIREG: { 10847 u16 mii_regval = 0; 10848 10849 if (!netif_running(dev)) 10850 return -EAGAIN; 10851 10852 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10853 &mii_regval); 10854 mdio->val_out = mii_regval; 10855 return rc; 10856 } 10857 10858 case SIOCSMIIREG: 10859 if (!netif_running(dev)) 10860 return -EAGAIN; 10861 10862 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10863 mdio->val_in); 10864 10865 case SIOCSHWTSTAMP: 10866 return bnxt_hwtstamp_set(dev, ifr); 10867 10868 case SIOCGHWTSTAMP: 10869 return bnxt_hwtstamp_get(dev, ifr); 10870 10871 default: 10872 /* do nothing */ 10873 break; 10874 } 10875 return -EOPNOTSUPP; 10876 } 10877 10878 static void bnxt_get_ring_stats(struct bnxt *bp, 10879 struct rtnl_link_stats64 *stats) 10880 { 10881 int i; 10882 10883 for (i = 0; i < bp->cp_nr_rings; i++) { 10884 struct bnxt_napi *bnapi = bp->bnapi[i]; 10885 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10886 u64 *sw = cpr->stats.sw_stats; 10887 10888 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10889 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10890 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10891 10892 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10893 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10894 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10895 10896 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10897 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10898 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10899 10900 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10901 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10902 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10903 10904 stats->rx_missed_errors += 10905 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10906 10907 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10908 10909 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10910 10911 stats->rx_dropped += 10912 cpr->sw_stats.rx.rx_netpoll_discards + 10913 cpr->sw_stats.rx.rx_oom_discards; 10914 } 10915 } 10916 10917 static void bnxt_add_prev_stats(struct bnxt *bp, 10918 struct rtnl_link_stats64 *stats) 10919 { 10920 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10921 10922 stats->rx_packets += prev_stats->rx_packets; 10923 stats->tx_packets += prev_stats->tx_packets; 10924 stats->rx_bytes += prev_stats->rx_bytes; 10925 stats->tx_bytes += prev_stats->tx_bytes; 10926 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10927 stats->multicast += prev_stats->multicast; 10928 stats->rx_dropped += prev_stats->rx_dropped; 10929 stats->tx_dropped += prev_stats->tx_dropped; 10930 } 10931 10932 static void 10933 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10934 { 10935 struct bnxt *bp = netdev_priv(dev); 10936 10937 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10938 /* Make sure bnxt_close_nic() sees that we are reading stats before 10939 * we check the BNXT_STATE_OPEN flag. 10940 */ 10941 smp_mb__after_atomic(); 10942 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10943 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10944 *stats = bp->net_stats_prev; 10945 return; 10946 } 10947 10948 bnxt_get_ring_stats(bp, stats); 10949 bnxt_add_prev_stats(bp, stats); 10950 10951 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10952 u64 *rx = bp->port_stats.sw_stats; 10953 u64 *tx = bp->port_stats.sw_stats + 10954 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10955 10956 stats->rx_crc_errors = 10957 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10958 stats->rx_frame_errors = 10959 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10960 stats->rx_length_errors = 10961 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10962 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10963 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10964 stats->rx_errors = 10965 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10966 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10967 stats->collisions = 10968 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10969 stats->tx_fifo_errors = 10970 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10971 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10972 } 10973 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10974 } 10975 10976 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 10977 struct bnxt_total_ring_err_stats *stats, 10978 struct bnxt_cp_ring_info *cpr) 10979 { 10980 struct bnxt_sw_stats *sw_stats = &cpr->sw_stats; 10981 u64 *hw_stats = cpr->stats.sw_stats; 10982 10983 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 10984 stats->rx_total_resets += sw_stats->rx.rx_resets; 10985 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 10986 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 10987 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 10988 stats->rx_total_ring_discards += 10989 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 10990 stats->tx_total_resets += sw_stats->tx.tx_resets; 10991 stats->tx_total_ring_discards += 10992 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 10993 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 10994 } 10995 10996 void bnxt_get_ring_err_stats(struct bnxt *bp, 10997 struct bnxt_total_ring_err_stats *stats) 10998 { 10999 int i; 11000 11001 for (i = 0; i < bp->cp_nr_rings; i++) 11002 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 11003 } 11004 11005 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 11006 { 11007 struct net_device *dev = bp->dev; 11008 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11009 struct netdev_hw_addr *ha; 11010 u8 *haddr; 11011 int mc_count = 0; 11012 bool update = false; 11013 int off = 0; 11014 11015 netdev_for_each_mc_addr(ha, dev) { 11016 if (mc_count >= BNXT_MAX_MC_ADDRS) { 11017 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11018 vnic->mc_list_count = 0; 11019 return false; 11020 } 11021 haddr = ha->addr; 11022 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 11023 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 11024 update = true; 11025 } 11026 off += ETH_ALEN; 11027 mc_count++; 11028 } 11029 if (mc_count) 11030 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11031 11032 if (mc_count != vnic->mc_list_count) { 11033 vnic->mc_list_count = mc_count; 11034 update = true; 11035 } 11036 return update; 11037 } 11038 11039 static bool bnxt_uc_list_updated(struct bnxt *bp) 11040 { 11041 struct net_device *dev = bp->dev; 11042 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11043 struct netdev_hw_addr *ha; 11044 int off = 0; 11045 11046 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 11047 return true; 11048 11049 netdev_for_each_uc_addr(ha, dev) { 11050 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 11051 return true; 11052 11053 off += ETH_ALEN; 11054 } 11055 return false; 11056 } 11057 11058 static void bnxt_set_rx_mode(struct net_device *dev) 11059 { 11060 struct bnxt *bp = netdev_priv(dev); 11061 struct bnxt_vnic_info *vnic; 11062 bool mc_update = false; 11063 bool uc_update; 11064 u32 mask; 11065 11066 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 11067 return; 11068 11069 vnic = &bp->vnic_info[0]; 11070 mask = vnic->rx_mask; 11071 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 11072 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 11073 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 11074 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 11075 11076 if (dev->flags & IFF_PROMISC) 11077 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11078 11079 uc_update = bnxt_uc_list_updated(bp); 11080 11081 if (dev->flags & IFF_BROADCAST) 11082 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11083 if (dev->flags & IFF_ALLMULTI) { 11084 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11085 vnic->mc_list_count = 0; 11086 } else if (dev->flags & IFF_MULTICAST) { 11087 mc_update = bnxt_mc_list_updated(bp, &mask); 11088 } 11089 11090 if (mask != vnic->rx_mask || uc_update || mc_update) { 11091 vnic->rx_mask = mask; 11092 11093 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 11094 } 11095 } 11096 11097 static int bnxt_cfg_rx_mode(struct bnxt *bp) 11098 { 11099 struct net_device *dev = bp->dev; 11100 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11101 struct hwrm_cfa_l2_filter_free_input *req; 11102 struct netdev_hw_addr *ha; 11103 int i, off = 0, rc; 11104 bool uc_update; 11105 11106 netif_addr_lock_bh(dev); 11107 uc_update = bnxt_uc_list_updated(bp); 11108 netif_addr_unlock_bh(dev); 11109 11110 if (!uc_update) 11111 goto skip_uc; 11112 11113 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 11114 if (rc) 11115 return rc; 11116 hwrm_req_hold(bp, req); 11117 for (i = 1; i < vnic->uc_filter_count; i++) { 11118 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 11119 11120 rc = hwrm_req_send(bp, req); 11121 } 11122 hwrm_req_drop(bp, req); 11123 11124 vnic->uc_filter_count = 1; 11125 11126 netif_addr_lock_bh(dev); 11127 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 11128 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11129 } else { 11130 netdev_for_each_uc_addr(ha, dev) { 11131 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 11132 off += ETH_ALEN; 11133 vnic->uc_filter_count++; 11134 } 11135 } 11136 netif_addr_unlock_bh(dev); 11137 11138 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 11139 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 11140 if (rc) { 11141 if (BNXT_VF(bp) && rc == -ENODEV) { 11142 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11143 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 11144 else 11145 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 11146 rc = 0; 11147 } else { 11148 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11149 } 11150 vnic->uc_filter_count = i; 11151 return rc; 11152 } 11153 } 11154 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11155 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 11156 11157 skip_uc: 11158 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 11159 !bnxt_promisc_ok(bp)) 11160 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11161 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11162 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 11163 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 11164 rc); 11165 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11166 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11167 vnic->mc_list_count = 0; 11168 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11169 } 11170 if (rc) 11171 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 11172 rc); 11173 11174 return rc; 11175 } 11176 11177 static bool bnxt_can_reserve_rings(struct bnxt *bp) 11178 { 11179 #ifdef CONFIG_BNXT_SRIOV 11180 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 11181 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11182 11183 /* No minimum rings were provisioned by the PF. Don't 11184 * reserve rings by default when device is down. 11185 */ 11186 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 11187 return true; 11188 11189 if (!netif_running(bp->dev)) 11190 return false; 11191 } 11192 #endif 11193 return true; 11194 } 11195 11196 /* If the chip and firmware supports RFS */ 11197 static bool bnxt_rfs_supported(struct bnxt *bp) 11198 { 11199 if (bp->flags & BNXT_FLAG_CHIP_P5) { 11200 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 11201 return true; 11202 return false; 11203 } 11204 /* 212 firmware is broken for aRFS */ 11205 if (BNXT_FW_MAJ(bp) == 212) 11206 return false; 11207 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 11208 return true; 11209 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11210 return true; 11211 return false; 11212 } 11213 11214 /* If runtime conditions support RFS */ 11215 static bool bnxt_rfs_capable(struct bnxt *bp) 11216 { 11217 #ifdef CONFIG_RFS_ACCEL 11218 int vnics, max_vnics, max_rss_ctxs; 11219 11220 if (bp->flags & BNXT_FLAG_CHIP_P5) 11221 return bnxt_rfs_supported(bp); 11222 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 11223 return false; 11224 11225 vnics = 1 + bp->rx_nr_rings; 11226 max_vnics = bnxt_get_max_func_vnics(bp); 11227 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 11228 11229 /* RSS contexts not a limiting factor */ 11230 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11231 max_rss_ctxs = max_vnics; 11232 if (vnics > max_vnics || vnics > max_rss_ctxs) { 11233 if (bp->rx_nr_rings > 1) 11234 netdev_warn(bp->dev, 11235 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 11236 min(max_rss_ctxs - 1, max_vnics - 1)); 11237 return false; 11238 } 11239 11240 if (!BNXT_NEW_RM(bp)) 11241 return true; 11242 11243 if (vnics == bp->hw_resc.resv_vnics) 11244 return true; 11245 11246 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 11247 if (vnics <= bp->hw_resc.resv_vnics) 11248 return true; 11249 11250 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 11251 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 11252 return false; 11253 #else 11254 return false; 11255 #endif 11256 } 11257 11258 static netdev_features_t bnxt_fix_features(struct net_device *dev, 11259 netdev_features_t features) 11260 { 11261 struct bnxt *bp = netdev_priv(dev); 11262 netdev_features_t vlan_features; 11263 11264 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 11265 features &= ~NETIF_F_NTUPLE; 11266 11267 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 11268 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11269 11270 if (!(features & NETIF_F_GRO)) 11271 features &= ~NETIF_F_GRO_HW; 11272 11273 if (features & NETIF_F_GRO_HW) 11274 features &= ~NETIF_F_LRO; 11275 11276 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 11277 * turned on or off together. 11278 */ 11279 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 11280 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 11281 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11282 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11283 else if (vlan_features) 11284 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 11285 } 11286 #ifdef CONFIG_BNXT_SRIOV 11287 if (BNXT_VF(bp) && bp->vf.vlan) 11288 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11289 #endif 11290 return features; 11291 } 11292 11293 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 11294 { 11295 struct bnxt *bp = netdev_priv(dev); 11296 u32 flags = bp->flags; 11297 u32 changes; 11298 int rc = 0; 11299 bool re_init = false; 11300 bool update_tpa = false; 11301 11302 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11303 if (features & NETIF_F_GRO_HW) 11304 flags |= BNXT_FLAG_GRO; 11305 else if (features & NETIF_F_LRO) 11306 flags |= BNXT_FLAG_LRO; 11307 11308 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11309 flags &= ~BNXT_FLAG_TPA; 11310 11311 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11312 flags |= BNXT_FLAG_STRIP_VLAN; 11313 11314 if (features & NETIF_F_NTUPLE) 11315 flags |= BNXT_FLAG_RFS; 11316 11317 changes = flags ^ bp->flags; 11318 if (changes & BNXT_FLAG_TPA) { 11319 update_tpa = true; 11320 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11321 (flags & BNXT_FLAG_TPA) == 0 || 11322 (bp->flags & BNXT_FLAG_CHIP_P5)) 11323 re_init = true; 11324 } 11325 11326 if (changes & ~BNXT_FLAG_TPA) 11327 re_init = true; 11328 11329 if (flags != bp->flags) { 11330 u32 old_flags = bp->flags; 11331 11332 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11333 bp->flags = flags; 11334 if (update_tpa) 11335 bnxt_set_ring_params(bp); 11336 return rc; 11337 } 11338 11339 if (re_init) { 11340 bnxt_close_nic(bp, false, false); 11341 bp->flags = flags; 11342 if (update_tpa) 11343 bnxt_set_ring_params(bp); 11344 11345 return bnxt_open_nic(bp, false, false); 11346 } 11347 if (update_tpa) { 11348 bp->flags = flags; 11349 rc = bnxt_set_tpa(bp, 11350 (flags & BNXT_FLAG_TPA) ? 11351 true : false); 11352 if (rc) 11353 bp->flags = old_flags; 11354 } 11355 } 11356 return rc; 11357 } 11358 11359 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11360 u8 **nextp) 11361 { 11362 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11363 struct hop_jumbo_hdr *jhdr; 11364 int hdr_count = 0; 11365 u8 *nexthdr; 11366 int start; 11367 11368 /* Check that there are at most 2 IPv6 extension headers, no 11369 * fragment header, and each is <= 64 bytes. 11370 */ 11371 start = nw_off + sizeof(*ip6h); 11372 nexthdr = &ip6h->nexthdr; 11373 while (ipv6_ext_hdr(*nexthdr)) { 11374 struct ipv6_opt_hdr *hp; 11375 int hdrlen; 11376 11377 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11378 *nexthdr == NEXTHDR_FRAGMENT) 11379 return false; 11380 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11381 skb_headlen(skb), NULL); 11382 if (!hp) 11383 return false; 11384 if (*nexthdr == NEXTHDR_AUTH) 11385 hdrlen = ipv6_authlen(hp); 11386 else 11387 hdrlen = ipv6_optlen(hp); 11388 11389 if (hdrlen > 64) 11390 return false; 11391 11392 /* The ext header may be a hop-by-hop header inserted for 11393 * big TCP purposes. This will be removed before sending 11394 * from NIC, so do not count it. 11395 */ 11396 if (*nexthdr == NEXTHDR_HOP) { 11397 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 11398 goto increment_hdr; 11399 11400 jhdr = (struct hop_jumbo_hdr *)hp; 11401 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 11402 jhdr->nexthdr != IPPROTO_TCP) 11403 goto increment_hdr; 11404 11405 goto next_hdr; 11406 } 11407 increment_hdr: 11408 hdr_count++; 11409 next_hdr: 11410 nexthdr = &hp->nexthdr; 11411 start += hdrlen; 11412 } 11413 if (nextp) { 11414 /* Caller will check inner protocol */ 11415 if (skb->encapsulation) { 11416 *nextp = nexthdr; 11417 return true; 11418 } 11419 *nextp = NULL; 11420 } 11421 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11422 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11423 } 11424 11425 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11426 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11427 { 11428 struct udphdr *uh = udp_hdr(skb); 11429 __be16 udp_port = uh->dest; 11430 11431 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11432 return false; 11433 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11434 struct ethhdr *eh = inner_eth_hdr(skb); 11435 11436 switch (eh->h_proto) { 11437 case htons(ETH_P_IP): 11438 return true; 11439 case htons(ETH_P_IPV6): 11440 return bnxt_exthdr_check(bp, skb, 11441 skb_inner_network_offset(skb), 11442 NULL); 11443 } 11444 } 11445 return false; 11446 } 11447 11448 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11449 { 11450 switch (l4_proto) { 11451 case IPPROTO_UDP: 11452 return bnxt_udp_tunl_check(bp, skb); 11453 case IPPROTO_IPIP: 11454 return true; 11455 case IPPROTO_GRE: { 11456 switch (skb->inner_protocol) { 11457 default: 11458 return false; 11459 case htons(ETH_P_IP): 11460 return true; 11461 case htons(ETH_P_IPV6): 11462 fallthrough; 11463 } 11464 } 11465 case IPPROTO_IPV6: 11466 /* Check ext headers of inner ipv6 */ 11467 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11468 NULL); 11469 } 11470 return false; 11471 } 11472 11473 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11474 struct net_device *dev, 11475 netdev_features_t features) 11476 { 11477 struct bnxt *bp = netdev_priv(dev); 11478 u8 *l4_proto; 11479 11480 features = vlan_features_check(skb, features); 11481 switch (vlan_get_protocol(skb)) { 11482 case htons(ETH_P_IP): 11483 if (!skb->encapsulation) 11484 return features; 11485 l4_proto = &ip_hdr(skb)->protocol; 11486 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11487 return features; 11488 break; 11489 case htons(ETH_P_IPV6): 11490 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11491 &l4_proto)) 11492 break; 11493 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11494 return features; 11495 break; 11496 } 11497 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11498 } 11499 11500 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11501 u32 *reg_buf) 11502 { 11503 struct hwrm_dbg_read_direct_output *resp; 11504 struct hwrm_dbg_read_direct_input *req; 11505 __le32 *dbg_reg_buf; 11506 dma_addr_t mapping; 11507 int rc, i; 11508 11509 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11510 if (rc) 11511 return rc; 11512 11513 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11514 &mapping); 11515 if (!dbg_reg_buf) { 11516 rc = -ENOMEM; 11517 goto dbg_rd_reg_exit; 11518 } 11519 11520 req->host_dest_addr = cpu_to_le64(mapping); 11521 11522 resp = hwrm_req_hold(bp, req); 11523 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11524 req->read_len32 = cpu_to_le32(num_words); 11525 11526 rc = hwrm_req_send(bp, req); 11527 if (rc || resp->error_code) { 11528 rc = -EIO; 11529 goto dbg_rd_reg_exit; 11530 } 11531 for (i = 0; i < num_words; i++) 11532 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11533 11534 dbg_rd_reg_exit: 11535 hwrm_req_drop(bp, req); 11536 return rc; 11537 } 11538 11539 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11540 u32 ring_id, u32 *prod, u32 *cons) 11541 { 11542 struct hwrm_dbg_ring_info_get_output *resp; 11543 struct hwrm_dbg_ring_info_get_input *req; 11544 int rc; 11545 11546 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11547 if (rc) 11548 return rc; 11549 11550 req->ring_type = ring_type; 11551 req->fw_ring_id = cpu_to_le32(ring_id); 11552 resp = hwrm_req_hold(bp, req); 11553 rc = hwrm_req_send(bp, req); 11554 if (!rc) { 11555 *prod = le32_to_cpu(resp->producer_index); 11556 *cons = le32_to_cpu(resp->consumer_index); 11557 } 11558 hwrm_req_drop(bp, req); 11559 return rc; 11560 } 11561 11562 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11563 { 11564 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11565 int i = bnapi->index; 11566 11567 if (!txr) 11568 return; 11569 11570 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11571 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11572 txr->tx_cons); 11573 } 11574 11575 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11576 { 11577 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11578 int i = bnapi->index; 11579 11580 if (!rxr) 11581 return; 11582 11583 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11584 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11585 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11586 rxr->rx_sw_agg_prod); 11587 } 11588 11589 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11590 { 11591 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11592 int i = bnapi->index; 11593 11594 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11595 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11596 } 11597 11598 static void bnxt_dbg_dump_states(struct bnxt *bp) 11599 { 11600 int i; 11601 struct bnxt_napi *bnapi; 11602 11603 for (i = 0; i < bp->cp_nr_rings; i++) { 11604 bnapi = bp->bnapi[i]; 11605 if (netif_msg_drv(bp)) { 11606 bnxt_dump_tx_sw_state(bnapi); 11607 bnxt_dump_rx_sw_state(bnapi); 11608 bnxt_dump_cp_sw_state(bnapi); 11609 } 11610 } 11611 } 11612 11613 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11614 { 11615 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11616 struct hwrm_ring_reset_input *req; 11617 struct bnxt_napi *bnapi = rxr->bnapi; 11618 struct bnxt_cp_ring_info *cpr; 11619 u16 cp_ring_id; 11620 int rc; 11621 11622 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11623 if (rc) 11624 return rc; 11625 11626 cpr = &bnapi->cp_ring; 11627 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11628 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11629 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11630 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11631 return hwrm_req_send_silent(bp, req); 11632 } 11633 11634 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11635 { 11636 if (!silent) 11637 bnxt_dbg_dump_states(bp); 11638 if (netif_running(bp->dev)) { 11639 int rc; 11640 11641 if (silent) { 11642 bnxt_close_nic(bp, false, false); 11643 bnxt_open_nic(bp, false, false); 11644 } else { 11645 bnxt_ulp_stop(bp); 11646 bnxt_close_nic(bp, true, false); 11647 rc = bnxt_open_nic(bp, true, false); 11648 bnxt_ulp_start(bp, rc); 11649 } 11650 } 11651 } 11652 11653 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11654 { 11655 struct bnxt *bp = netdev_priv(dev); 11656 11657 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11658 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 11659 } 11660 11661 static void bnxt_fw_health_check(struct bnxt *bp) 11662 { 11663 struct bnxt_fw_health *fw_health = bp->fw_health; 11664 struct pci_dev *pdev = bp->pdev; 11665 u32 val; 11666 11667 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11668 return; 11669 11670 /* Make sure it is enabled before checking the tmr_counter. */ 11671 smp_rmb(); 11672 if (fw_health->tmr_counter) { 11673 fw_health->tmr_counter--; 11674 return; 11675 } 11676 11677 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11678 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 11679 fw_health->arrests++; 11680 goto fw_reset; 11681 } 11682 11683 fw_health->last_fw_heartbeat = val; 11684 11685 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11686 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 11687 fw_health->discoveries++; 11688 goto fw_reset; 11689 } 11690 11691 fw_health->tmr_counter = fw_health->tmr_multiplier; 11692 return; 11693 11694 fw_reset: 11695 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 11696 } 11697 11698 static void bnxt_timer(struct timer_list *t) 11699 { 11700 struct bnxt *bp = from_timer(bp, t, timer); 11701 struct net_device *dev = bp->dev; 11702 11703 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11704 return; 11705 11706 if (atomic_read(&bp->intr_sem) != 0) 11707 goto bnxt_restart_timer; 11708 11709 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11710 bnxt_fw_health_check(bp); 11711 11712 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 11713 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 11714 11715 if (bnxt_tc_flower_enabled(bp)) 11716 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 11717 11718 #ifdef CONFIG_RFS_ACCEL 11719 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 11720 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 11721 #endif /*CONFIG_RFS_ACCEL*/ 11722 11723 if (bp->link_info.phy_retry) { 11724 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11725 bp->link_info.phy_retry = false; 11726 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11727 } else { 11728 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 11729 } 11730 } 11731 11732 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11733 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 11734 11735 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11736 netif_carrier_ok(dev)) 11737 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 11738 11739 bnxt_restart_timer: 11740 mod_timer(&bp->timer, jiffies + bp->current_interval); 11741 } 11742 11743 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11744 { 11745 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11746 * set. If the device is being closed, bnxt_close() may be holding 11747 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11748 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11749 */ 11750 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11751 rtnl_lock(); 11752 } 11753 11754 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11755 { 11756 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11757 rtnl_unlock(); 11758 } 11759 11760 /* Only called from bnxt_sp_task() */ 11761 static void bnxt_reset(struct bnxt *bp, bool silent) 11762 { 11763 bnxt_rtnl_lock_sp(bp); 11764 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11765 bnxt_reset_task(bp, silent); 11766 bnxt_rtnl_unlock_sp(bp); 11767 } 11768 11769 /* Only called from bnxt_sp_task() */ 11770 static void bnxt_rx_ring_reset(struct bnxt *bp) 11771 { 11772 int i; 11773 11774 bnxt_rtnl_lock_sp(bp); 11775 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11776 bnxt_rtnl_unlock_sp(bp); 11777 return; 11778 } 11779 /* Disable and flush TPA before resetting the RX ring */ 11780 if (bp->flags & BNXT_FLAG_TPA) 11781 bnxt_set_tpa(bp, false); 11782 for (i = 0; i < bp->rx_nr_rings; i++) { 11783 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11784 struct bnxt_cp_ring_info *cpr; 11785 int rc; 11786 11787 if (!rxr->bnapi->in_reset) 11788 continue; 11789 11790 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11791 if (rc) { 11792 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11793 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11794 else 11795 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11796 rc); 11797 bnxt_reset_task(bp, true); 11798 break; 11799 } 11800 bnxt_free_one_rx_ring_skbs(bp, i); 11801 rxr->rx_prod = 0; 11802 rxr->rx_agg_prod = 0; 11803 rxr->rx_sw_agg_prod = 0; 11804 rxr->rx_next_cons = 0; 11805 rxr->bnapi->in_reset = false; 11806 bnxt_alloc_one_rx_ring(bp, i); 11807 cpr = &rxr->bnapi->cp_ring; 11808 cpr->sw_stats.rx.rx_resets++; 11809 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11810 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11811 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11812 } 11813 if (bp->flags & BNXT_FLAG_TPA) 11814 bnxt_set_tpa(bp, true); 11815 bnxt_rtnl_unlock_sp(bp); 11816 } 11817 11818 static void bnxt_fw_reset_close(struct bnxt *bp) 11819 { 11820 bnxt_ulp_stop(bp); 11821 /* When firmware is in fatal state, quiesce device and disable 11822 * bus master to prevent any potential bad DMAs before freeing 11823 * kernel memory. 11824 */ 11825 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11826 u16 val = 0; 11827 11828 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11829 if (val == 0xffff) 11830 bp->fw_reset_min_dsecs = 0; 11831 bnxt_tx_disable(bp); 11832 bnxt_disable_napi(bp); 11833 bnxt_disable_int_sync(bp); 11834 bnxt_free_irq(bp); 11835 bnxt_clear_int_mode(bp); 11836 pci_disable_device(bp->pdev); 11837 } 11838 __bnxt_close_nic(bp, true, false); 11839 bnxt_vf_reps_free(bp); 11840 bnxt_clear_int_mode(bp); 11841 bnxt_hwrm_func_drv_unrgtr(bp); 11842 if (pci_is_enabled(bp->pdev)) 11843 pci_disable_device(bp->pdev); 11844 bnxt_free_ctx_mem(bp); 11845 kfree(bp->ctx); 11846 bp->ctx = NULL; 11847 } 11848 11849 static bool is_bnxt_fw_ok(struct bnxt *bp) 11850 { 11851 struct bnxt_fw_health *fw_health = bp->fw_health; 11852 bool no_heartbeat = false, has_reset = false; 11853 u32 val; 11854 11855 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11856 if (val == fw_health->last_fw_heartbeat) 11857 no_heartbeat = true; 11858 11859 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11860 if (val != fw_health->last_fw_reset_cnt) 11861 has_reset = true; 11862 11863 if (!no_heartbeat && has_reset) 11864 return true; 11865 11866 return false; 11867 } 11868 11869 /* rtnl_lock is acquired before calling this function */ 11870 static void bnxt_force_fw_reset(struct bnxt *bp) 11871 { 11872 struct bnxt_fw_health *fw_health = bp->fw_health; 11873 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11874 u32 wait_dsecs; 11875 11876 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11877 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11878 return; 11879 11880 if (ptp) { 11881 spin_lock_bh(&ptp->ptp_lock); 11882 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11883 spin_unlock_bh(&ptp->ptp_lock); 11884 } else { 11885 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11886 } 11887 bnxt_fw_reset_close(bp); 11888 wait_dsecs = fw_health->master_func_wait_dsecs; 11889 if (fw_health->primary) { 11890 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11891 wait_dsecs = 0; 11892 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11893 } else { 11894 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11895 wait_dsecs = fw_health->normal_func_wait_dsecs; 11896 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11897 } 11898 11899 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11900 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11901 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11902 } 11903 11904 void bnxt_fw_exception(struct bnxt *bp) 11905 { 11906 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11907 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11908 bnxt_rtnl_lock_sp(bp); 11909 bnxt_force_fw_reset(bp); 11910 bnxt_rtnl_unlock_sp(bp); 11911 } 11912 11913 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11914 * < 0 on error. 11915 */ 11916 static int bnxt_get_registered_vfs(struct bnxt *bp) 11917 { 11918 #ifdef CONFIG_BNXT_SRIOV 11919 int rc; 11920 11921 if (!BNXT_PF(bp)) 11922 return 0; 11923 11924 rc = bnxt_hwrm_func_qcfg(bp); 11925 if (rc) { 11926 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11927 return rc; 11928 } 11929 if (bp->pf.registered_vfs) 11930 return bp->pf.registered_vfs; 11931 if (bp->sriov_cfg) 11932 return 1; 11933 #endif 11934 return 0; 11935 } 11936 11937 void bnxt_fw_reset(struct bnxt *bp) 11938 { 11939 bnxt_rtnl_lock_sp(bp); 11940 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11941 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11942 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11943 int n = 0, tmo; 11944 11945 if (ptp) { 11946 spin_lock_bh(&ptp->ptp_lock); 11947 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11948 spin_unlock_bh(&ptp->ptp_lock); 11949 } else { 11950 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11951 } 11952 if (bp->pf.active_vfs && 11953 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11954 n = bnxt_get_registered_vfs(bp); 11955 if (n < 0) { 11956 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11957 n); 11958 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11959 dev_close(bp->dev); 11960 goto fw_reset_exit; 11961 } else if (n > 0) { 11962 u16 vf_tmo_dsecs = n * 10; 11963 11964 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11965 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11966 bp->fw_reset_state = 11967 BNXT_FW_RESET_STATE_POLL_VF; 11968 bnxt_queue_fw_reset_work(bp, HZ / 10); 11969 goto fw_reset_exit; 11970 } 11971 bnxt_fw_reset_close(bp); 11972 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11973 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11974 tmo = HZ / 10; 11975 } else { 11976 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11977 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11978 } 11979 bnxt_queue_fw_reset_work(bp, tmo); 11980 } 11981 fw_reset_exit: 11982 bnxt_rtnl_unlock_sp(bp); 11983 } 11984 11985 static void bnxt_chk_missed_irq(struct bnxt *bp) 11986 { 11987 int i; 11988 11989 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11990 return; 11991 11992 for (i = 0; i < bp->cp_nr_rings; i++) { 11993 struct bnxt_napi *bnapi = bp->bnapi[i]; 11994 struct bnxt_cp_ring_info *cpr; 11995 u32 fw_ring_id; 11996 int j; 11997 11998 if (!bnapi) 11999 continue; 12000 12001 cpr = &bnapi->cp_ring; 12002 for (j = 0; j < 2; j++) { 12003 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 12004 u32 val[2]; 12005 12006 if (!cpr2 || cpr2->has_more_work || 12007 !bnxt_has_work(bp, cpr2)) 12008 continue; 12009 12010 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 12011 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 12012 continue; 12013 } 12014 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 12015 bnxt_dbg_hwrm_ring_info_get(bp, 12016 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 12017 fw_ring_id, &val[0], &val[1]); 12018 cpr->sw_stats.cmn.missed_irqs++; 12019 } 12020 } 12021 } 12022 12023 static void bnxt_cfg_ntp_filters(struct bnxt *); 12024 12025 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 12026 { 12027 struct bnxt_link_info *link_info = &bp->link_info; 12028 12029 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 12030 link_info->autoneg = BNXT_AUTONEG_SPEED; 12031 if (bp->hwrm_spec_code >= 0x10201) { 12032 if (link_info->auto_pause_setting & 12033 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 12034 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 12035 } else { 12036 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 12037 } 12038 bnxt_set_auto_speed(link_info); 12039 } else { 12040 bnxt_set_force_speed(link_info); 12041 link_info->req_duplex = link_info->duplex_setting; 12042 } 12043 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 12044 link_info->req_flow_ctrl = 12045 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 12046 else 12047 link_info->req_flow_ctrl = link_info->force_pause_setting; 12048 } 12049 12050 static void bnxt_fw_echo_reply(struct bnxt *bp) 12051 { 12052 struct bnxt_fw_health *fw_health = bp->fw_health; 12053 struct hwrm_func_echo_response_input *req; 12054 int rc; 12055 12056 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 12057 if (rc) 12058 return; 12059 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 12060 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 12061 hwrm_req_send(bp, req); 12062 } 12063 12064 static void bnxt_sp_task(struct work_struct *work) 12065 { 12066 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 12067 12068 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12069 smp_mb__after_atomic(); 12070 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12071 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12072 return; 12073 } 12074 12075 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 12076 bnxt_cfg_rx_mode(bp); 12077 12078 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 12079 bnxt_cfg_ntp_filters(bp); 12080 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 12081 bnxt_hwrm_exec_fwd_req(bp); 12082 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 12083 bnxt_hwrm_port_qstats(bp, 0); 12084 bnxt_hwrm_port_qstats_ext(bp, 0); 12085 bnxt_accumulate_all_stats(bp); 12086 } 12087 12088 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 12089 int rc; 12090 12091 mutex_lock(&bp->link_lock); 12092 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 12093 &bp->sp_event)) 12094 bnxt_hwrm_phy_qcaps(bp); 12095 12096 rc = bnxt_update_link(bp, true); 12097 if (rc) 12098 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 12099 rc); 12100 12101 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 12102 &bp->sp_event)) 12103 bnxt_init_ethtool_link_settings(bp); 12104 mutex_unlock(&bp->link_lock); 12105 } 12106 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 12107 int rc; 12108 12109 mutex_lock(&bp->link_lock); 12110 rc = bnxt_update_phy_setting(bp); 12111 mutex_unlock(&bp->link_lock); 12112 if (rc) { 12113 netdev_warn(bp->dev, "update phy settings retry failed\n"); 12114 } else { 12115 bp->link_info.phy_retry = false; 12116 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 12117 } 12118 } 12119 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 12120 mutex_lock(&bp->link_lock); 12121 bnxt_get_port_module_status(bp); 12122 mutex_unlock(&bp->link_lock); 12123 } 12124 12125 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 12126 bnxt_tc_flow_stats_work(bp); 12127 12128 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 12129 bnxt_chk_missed_irq(bp); 12130 12131 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 12132 bnxt_fw_echo_reply(bp); 12133 12134 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 12135 bnxt_hwmon_notify_event(bp); 12136 12137 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 12138 * must be the last functions to be called before exiting. 12139 */ 12140 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 12141 bnxt_reset(bp, false); 12142 12143 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 12144 bnxt_reset(bp, true); 12145 12146 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 12147 bnxt_rx_ring_reset(bp); 12148 12149 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 12150 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 12151 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 12152 bnxt_devlink_health_fw_report(bp); 12153 else 12154 bnxt_fw_reset(bp); 12155 } 12156 12157 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 12158 if (!is_bnxt_fw_ok(bp)) 12159 bnxt_devlink_health_fw_report(bp); 12160 } 12161 12162 smp_mb__before_atomic(); 12163 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12164 } 12165 12166 /* Under rtnl_lock */ 12167 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 12168 int tx_xdp) 12169 { 12170 int max_rx, max_tx, tx_sets = 1; 12171 int tx_rings_needed, stats; 12172 int rx_rings = rx; 12173 int cp, vnics, rc; 12174 12175 if (tcs) 12176 tx_sets = tcs; 12177 12178 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 12179 if (rc) 12180 return rc; 12181 12182 if (max_rx < rx) 12183 return -ENOMEM; 12184 12185 tx_rings_needed = tx * tx_sets + tx_xdp; 12186 if (max_tx < tx_rings_needed) 12187 return -ENOMEM; 12188 12189 vnics = 1; 12190 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 12191 vnics += rx_rings; 12192 12193 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12194 rx_rings <<= 1; 12195 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 12196 stats = cp; 12197 if (BNXT_NEW_RM(bp)) { 12198 cp += bnxt_get_ulp_msix_num(bp); 12199 stats += bnxt_get_ulp_stat_ctxs(bp); 12200 } 12201 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 12202 stats, vnics); 12203 } 12204 12205 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 12206 { 12207 if (bp->bar2) { 12208 pci_iounmap(pdev, bp->bar2); 12209 bp->bar2 = NULL; 12210 } 12211 12212 if (bp->bar1) { 12213 pci_iounmap(pdev, bp->bar1); 12214 bp->bar1 = NULL; 12215 } 12216 12217 if (bp->bar0) { 12218 pci_iounmap(pdev, bp->bar0); 12219 bp->bar0 = NULL; 12220 } 12221 } 12222 12223 static void bnxt_cleanup_pci(struct bnxt *bp) 12224 { 12225 bnxt_unmap_bars(bp, bp->pdev); 12226 pci_release_regions(bp->pdev); 12227 if (pci_is_enabled(bp->pdev)) 12228 pci_disable_device(bp->pdev); 12229 } 12230 12231 static void bnxt_init_dflt_coal(struct bnxt *bp) 12232 { 12233 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 12234 struct bnxt_coal *coal; 12235 u16 flags = 0; 12236 12237 if (coal_cap->cmpl_params & 12238 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 12239 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 12240 12241 /* Tick values in micro seconds. 12242 * 1 coal_buf x bufs_per_record = 1 completion record. 12243 */ 12244 coal = &bp->rx_coal; 12245 coal->coal_ticks = 10; 12246 coal->coal_bufs = 30; 12247 coal->coal_ticks_irq = 1; 12248 coal->coal_bufs_irq = 2; 12249 coal->idle_thresh = 50; 12250 coal->bufs_per_record = 2; 12251 coal->budget = 64; /* NAPI budget */ 12252 coal->flags = flags; 12253 12254 coal = &bp->tx_coal; 12255 coal->coal_ticks = 28; 12256 coal->coal_bufs = 30; 12257 coal->coal_ticks_irq = 2; 12258 coal->coal_bufs_irq = 2; 12259 coal->bufs_per_record = 1; 12260 coal->flags = flags; 12261 12262 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 12263 } 12264 12265 /* FW that pre-reserves 1 VNIC per function */ 12266 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 12267 { 12268 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 12269 12270 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 12271 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 12272 return true; 12273 if ((bp->flags & BNXT_FLAG_CHIP_P5) && 12274 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 12275 return true; 12276 return false; 12277 } 12278 12279 static int bnxt_fw_init_one_p1(struct bnxt *bp) 12280 { 12281 int rc; 12282 12283 bp->fw_cap = 0; 12284 rc = bnxt_hwrm_ver_get(bp); 12285 bnxt_try_map_fw_health_reg(bp); 12286 if (rc) { 12287 rc = bnxt_try_recover_fw(bp); 12288 if (rc) 12289 return rc; 12290 rc = bnxt_hwrm_ver_get(bp); 12291 if (rc) 12292 return rc; 12293 } 12294 12295 bnxt_nvm_cfg_ver_get(bp); 12296 12297 rc = bnxt_hwrm_func_reset(bp); 12298 if (rc) 12299 return -ENODEV; 12300 12301 bnxt_hwrm_fw_set_time(bp); 12302 return 0; 12303 } 12304 12305 static int bnxt_fw_init_one_p2(struct bnxt *bp) 12306 { 12307 int rc; 12308 12309 /* Get the MAX capabilities for this function */ 12310 rc = bnxt_hwrm_func_qcaps(bp); 12311 if (rc) { 12312 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 12313 rc); 12314 return -ENODEV; 12315 } 12316 12317 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 12318 if (rc) 12319 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 12320 rc); 12321 12322 if (bnxt_alloc_fw_health(bp)) { 12323 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 12324 } else { 12325 rc = bnxt_hwrm_error_recovery_qcfg(bp); 12326 if (rc) 12327 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 12328 rc); 12329 } 12330 12331 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 12332 if (rc) 12333 return -ENODEV; 12334 12335 if (bnxt_fw_pre_resv_vnics(bp)) 12336 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 12337 12338 bnxt_hwrm_func_qcfg(bp); 12339 bnxt_hwrm_vnic_qcaps(bp); 12340 bnxt_hwrm_port_led_qcaps(bp); 12341 bnxt_ethtool_init(bp); 12342 if (bp->fw_cap & BNXT_FW_CAP_PTP) 12343 __bnxt_hwrm_ptp_qcfg(bp); 12344 bnxt_dcb_init(bp); 12345 bnxt_hwmon_init(bp); 12346 return 0; 12347 } 12348 12349 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 12350 { 12351 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 12352 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 12353 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 12354 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 12355 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 12356 if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA) 12357 bp->rss_hash_delta = bp->rss_hash_cfg; 12358 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 12359 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 12360 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 12361 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 12362 } 12363 } 12364 12365 static void bnxt_set_dflt_rfs(struct bnxt *bp) 12366 { 12367 struct net_device *dev = bp->dev; 12368 12369 dev->hw_features &= ~NETIF_F_NTUPLE; 12370 dev->features &= ~NETIF_F_NTUPLE; 12371 bp->flags &= ~BNXT_FLAG_RFS; 12372 if (bnxt_rfs_supported(bp)) { 12373 dev->hw_features |= NETIF_F_NTUPLE; 12374 if (bnxt_rfs_capable(bp)) { 12375 bp->flags |= BNXT_FLAG_RFS; 12376 dev->features |= NETIF_F_NTUPLE; 12377 } 12378 } 12379 } 12380 12381 static void bnxt_fw_init_one_p3(struct bnxt *bp) 12382 { 12383 struct pci_dev *pdev = bp->pdev; 12384 12385 bnxt_set_dflt_rss_hash_type(bp); 12386 bnxt_set_dflt_rfs(bp); 12387 12388 bnxt_get_wol_settings(bp); 12389 if (bp->flags & BNXT_FLAG_WOL_CAP) 12390 device_set_wakeup_enable(&pdev->dev, bp->wol); 12391 else 12392 device_set_wakeup_capable(&pdev->dev, false); 12393 12394 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12395 bnxt_hwrm_coal_params_qcaps(bp); 12396 } 12397 12398 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12399 12400 int bnxt_fw_init_one(struct bnxt *bp) 12401 { 12402 int rc; 12403 12404 rc = bnxt_fw_init_one_p1(bp); 12405 if (rc) { 12406 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12407 return rc; 12408 } 12409 rc = bnxt_fw_init_one_p2(bp); 12410 if (rc) { 12411 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12412 return rc; 12413 } 12414 rc = bnxt_probe_phy(bp, false); 12415 if (rc) 12416 return rc; 12417 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12418 if (rc) 12419 return rc; 12420 12421 bnxt_fw_init_one_p3(bp); 12422 return 0; 12423 } 12424 12425 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12426 { 12427 struct bnxt_fw_health *fw_health = bp->fw_health; 12428 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12429 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12430 u32 reg_type, reg_off, delay_msecs; 12431 12432 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12433 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12434 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12435 switch (reg_type) { 12436 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12437 pci_write_config_dword(bp->pdev, reg_off, val); 12438 break; 12439 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12440 writel(reg_off & BNXT_GRC_BASE_MASK, 12441 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12442 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12443 fallthrough; 12444 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12445 writel(val, bp->bar0 + reg_off); 12446 break; 12447 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12448 writel(val, bp->bar1 + reg_off); 12449 break; 12450 } 12451 if (delay_msecs) { 12452 pci_read_config_dword(bp->pdev, 0, &val); 12453 msleep(delay_msecs); 12454 } 12455 } 12456 12457 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12458 { 12459 struct hwrm_func_qcfg_output *resp; 12460 struct hwrm_func_qcfg_input *req; 12461 bool result = true; /* firmware will enforce if unknown */ 12462 12463 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12464 return result; 12465 12466 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12467 return result; 12468 12469 req->fid = cpu_to_le16(0xffff); 12470 resp = hwrm_req_hold(bp, req); 12471 if (!hwrm_req_send(bp, req)) 12472 result = !!(le16_to_cpu(resp->flags) & 12473 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12474 hwrm_req_drop(bp, req); 12475 return result; 12476 } 12477 12478 static void bnxt_reset_all(struct bnxt *bp) 12479 { 12480 struct bnxt_fw_health *fw_health = bp->fw_health; 12481 int i, rc; 12482 12483 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12484 bnxt_fw_reset_via_optee(bp); 12485 bp->fw_reset_timestamp = jiffies; 12486 return; 12487 } 12488 12489 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12490 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12491 bnxt_fw_reset_writel(bp, i); 12492 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12493 struct hwrm_fw_reset_input *req; 12494 12495 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12496 if (!rc) { 12497 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12498 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12499 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12500 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12501 rc = hwrm_req_send(bp, req); 12502 } 12503 if (rc != -ENODEV) 12504 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12505 } 12506 bp->fw_reset_timestamp = jiffies; 12507 } 12508 12509 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12510 { 12511 return time_after(jiffies, bp->fw_reset_timestamp + 12512 (bp->fw_reset_max_dsecs * HZ / 10)); 12513 } 12514 12515 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12516 { 12517 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12518 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12519 bnxt_ulp_start(bp, rc); 12520 bnxt_dl_health_fw_status_update(bp, false); 12521 } 12522 bp->fw_reset_state = 0; 12523 dev_close(bp->dev); 12524 } 12525 12526 static void bnxt_fw_reset_task(struct work_struct *work) 12527 { 12528 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12529 int rc = 0; 12530 12531 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12532 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12533 return; 12534 } 12535 12536 switch (bp->fw_reset_state) { 12537 case BNXT_FW_RESET_STATE_POLL_VF: { 12538 int n = bnxt_get_registered_vfs(bp); 12539 int tmo; 12540 12541 if (n < 0) { 12542 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12543 n, jiffies_to_msecs(jiffies - 12544 bp->fw_reset_timestamp)); 12545 goto fw_reset_abort; 12546 } else if (n > 0) { 12547 if (bnxt_fw_reset_timeout(bp)) { 12548 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12549 bp->fw_reset_state = 0; 12550 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12551 n); 12552 return; 12553 } 12554 bnxt_queue_fw_reset_work(bp, HZ / 10); 12555 return; 12556 } 12557 bp->fw_reset_timestamp = jiffies; 12558 rtnl_lock(); 12559 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12560 bnxt_fw_reset_abort(bp, rc); 12561 rtnl_unlock(); 12562 return; 12563 } 12564 bnxt_fw_reset_close(bp); 12565 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12566 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12567 tmo = HZ / 10; 12568 } else { 12569 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12570 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12571 } 12572 rtnl_unlock(); 12573 bnxt_queue_fw_reset_work(bp, tmo); 12574 return; 12575 } 12576 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12577 u32 val; 12578 12579 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12580 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12581 !bnxt_fw_reset_timeout(bp)) { 12582 bnxt_queue_fw_reset_work(bp, HZ / 5); 12583 return; 12584 } 12585 12586 if (!bp->fw_health->primary) { 12587 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12588 12589 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12590 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12591 return; 12592 } 12593 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12594 } 12595 fallthrough; 12596 case BNXT_FW_RESET_STATE_RESET_FW: 12597 bnxt_reset_all(bp); 12598 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12599 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12600 return; 12601 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12602 bnxt_inv_fw_health_reg(bp); 12603 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12604 !bp->fw_reset_min_dsecs) { 12605 u16 val; 12606 12607 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12608 if (val == 0xffff) { 12609 if (bnxt_fw_reset_timeout(bp)) { 12610 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12611 rc = -ETIMEDOUT; 12612 goto fw_reset_abort; 12613 } 12614 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12615 return; 12616 } 12617 } 12618 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12619 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12620 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12621 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12622 bnxt_dl_remote_reload(bp); 12623 if (pci_enable_device(bp->pdev)) { 12624 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12625 rc = -ENODEV; 12626 goto fw_reset_abort; 12627 } 12628 pci_set_master(bp->pdev); 12629 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12630 fallthrough; 12631 case BNXT_FW_RESET_STATE_POLL_FW: 12632 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12633 rc = bnxt_hwrm_poll(bp); 12634 if (rc) { 12635 if (bnxt_fw_reset_timeout(bp)) { 12636 netdev_err(bp->dev, "Firmware reset aborted\n"); 12637 goto fw_reset_abort_status; 12638 } 12639 bnxt_queue_fw_reset_work(bp, HZ / 5); 12640 return; 12641 } 12642 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12643 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12644 fallthrough; 12645 case BNXT_FW_RESET_STATE_OPENING: 12646 while (!rtnl_trylock()) { 12647 bnxt_queue_fw_reset_work(bp, HZ / 10); 12648 return; 12649 } 12650 rc = bnxt_open(bp->dev); 12651 if (rc) { 12652 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12653 bnxt_fw_reset_abort(bp, rc); 12654 rtnl_unlock(); 12655 return; 12656 } 12657 12658 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12659 bp->fw_health->enabled) { 12660 bp->fw_health->last_fw_reset_cnt = 12661 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12662 } 12663 bp->fw_reset_state = 0; 12664 /* Make sure fw_reset_state is 0 before clearing the flag */ 12665 smp_mb__before_atomic(); 12666 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12667 bnxt_ulp_start(bp, 0); 12668 bnxt_reenable_sriov(bp); 12669 bnxt_vf_reps_alloc(bp); 12670 bnxt_vf_reps_open(bp); 12671 bnxt_ptp_reapply_pps(bp); 12672 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12673 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12674 bnxt_dl_health_fw_recovery_done(bp); 12675 bnxt_dl_health_fw_status_update(bp, true); 12676 } 12677 rtnl_unlock(); 12678 break; 12679 } 12680 return; 12681 12682 fw_reset_abort_status: 12683 if (bp->fw_health->status_reliable || 12684 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12685 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12686 12687 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12688 } 12689 fw_reset_abort: 12690 rtnl_lock(); 12691 bnxt_fw_reset_abort(bp, rc); 12692 rtnl_unlock(); 12693 } 12694 12695 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12696 { 12697 int rc; 12698 struct bnxt *bp = netdev_priv(dev); 12699 12700 SET_NETDEV_DEV(dev, &pdev->dev); 12701 12702 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12703 rc = pci_enable_device(pdev); 12704 if (rc) { 12705 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12706 goto init_err; 12707 } 12708 12709 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12710 dev_err(&pdev->dev, 12711 "Cannot find PCI device base address, aborting\n"); 12712 rc = -ENODEV; 12713 goto init_err_disable; 12714 } 12715 12716 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12717 if (rc) { 12718 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12719 goto init_err_disable; 12720 } 12721 12722 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12723 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12724 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12725 rc = -EIO; 12726 goto init_err_release; 12727 } 12728 12729 pci_set_master(pdev); 12730 12731 bp->dev = dev; 12732 bp->pdev = pdev; 12733 12734 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12735 * determines the BAR size. 12736 */ 12737 bp->bar0 = pci_ioremap_bar(pdev, 0); 12738 if (!bp->bar0) { 12739 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12740 rc = -ENOMEM; 12741 goto init_err_release; 12742 } 12743 12744 bp->bar2 = pci_ioremap_bar(pdev, 4); 12745 if (!bp->bar2) { 12746 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12747 rc = -ENOMEM; 12748 goto init_err_release; 12749 } 12750 12751 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12752 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12753 12754 spin_lock_init(&bp->ntp_fltr_lock); 12755 #if BITS_PER_LONG == 32 12756 spin_lock_init(&bp->db_lock); 12757 #endif 12758 12759 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12760 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12761 12762 timer_setup(&bp->timer, bnxt_timer, 0); 12763 bp->current_interval = BNXT_TIMER_INTERVAL; 12764 12765 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12766 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12767 12768 clear_bit(BNXT_STATE_OPEN, &bp->state); 12769 return 0; 12770 12771 init_err_release: 12772 bnxt_unmap_bars(bp, pdev); 12773 pci_release_regions(pdev); 12774 12775 init_err_disable: 12776 pci_disable_device(pdev); 12777 12778 init_err: 12779 return rc; 12780 } 12781 12782 /* rtnl_lock held */ 12783 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12784 { 12785 struct sockaddr *addr = p; 12786 struct bnxt *bp = netdev_priv(dev); 12787 int rc = 0; 12788 12789 if (!is_valid_ether_addr(addr->sa_data)) 12790 return -EADDRNOTAVAIL; 12791 12792 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12793 return 0; 12794 12795 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12796 if (rc) 12797 return rc; 12798 12799 eth_hw_addr_set(dev, addr->sa_data); 12800 if (netif_running(dev)) { 12801 bnxt_close_nic(bp, false, false); 12802 rc = bnxt_open_nic(bp, false, false); 12803 } 12804 12805 return rc; 12806 } 12807 12808 /* rtnl_lock held */ 12809 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12810 { 12811 struct bnxt *bp = netdev_priv(dev); 12812 12813 if (netif_running(dev)) 12814 bnxt_close_nic(bp, true, false); 12815 12816 dev->mtu = new_mtu; 12817 bnxt_set_ring_params(bp); 12818 12819 if (netif_running(dev)) 12820 return bnxt_open_nic(bp, true, false); 12821 12822 return 0; 12823 } 12824 12825 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12826 { 12827 struct bnxt *bp = netdev_priv(dev); 12828 bool sh = false; 12829 int rc; 12830 12831 if (tc > bp->max_tc) { 12832 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12833 tc, bp->max_tc); 12834 return -EINVAL; 12835 } 12836 12837 if (netdev_get_num_tc(dev) == tc) 12838 return 0; 12839 12840 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12841 sh = true; 12842 12843 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12844 sh, tc, bp->tx_nr_rings_xdp); 12845 if (rc) 12846 return rc; 12847 12848 /* Needs to close the device and do hw resource re-allocations */ 12849 if (netif_running(bp->dev)) 12850 bnxt_close_nic(bp, true, false); 12851 12852 if (tc) { 12853 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12854 netdev_set_num_tc(dev, tc); 12855 } else { 12856 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12857 netdev_reset_tc(dev); 12858 } 12859 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12860 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12861 bp->tx_nr_rings + bp->rx_nr_rings; 12862 12863 if (netif_running(bp->dev)) 12864 return bnxt_open_nic(bp, true, false); 12865 12866 return 0; 12867 } 12868 12869 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12870 void *cb_priv) 12871 { 12872 struct bnxt *bp = cb_priv; 12873 12874 if (!bnxt_tc_flower_enabled(bp) || 12875 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12876 return -EOPNOTSUPP; 12877 12878 switch (type) { 12879 case TC_SETUP_CLSFLOWER: 12880 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12881 default: 12882 return -EOPNOTSUPP; 12883 } 12884 } 12885 12886 LIST_HEAD(bnxt_block_cb_list); 12887 12888 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12889 void *type_data) 12890 { 12891 struct bnxt *bp = netdev_priv(dev); 12892 12893 switch (type) { 12894 case TC_SETUP_BLOCK: 12895 return flow_block_cb_setup_simple(type_data, 12896 &bnxt_block_cb_list, 12897 bnxt_setup_tc_block_cb, 12898 bp, bp, true); 12899 case TC_SETUP_QDISC_MQPRIO: { 12900 struct tc_mqprio_qopt *mqprio = type_data; 12901 12902 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12903 12904 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12905 } 12906 default: 12907 return -EOPNOTSUPP; 12908 } 12909 } 12910 12911 #ifdef CONFIG_RFS_ACCEL 12912 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12913 struct bnxt_ntuple_filter *f2) 12914 { 12915 struct flow_keys *keys1 = &f1->fkeys; 12916 struct flow_keys *keys2 = &f2->fkeys; 12917 12918 if (keys1->basic.n_proto != keys2->basic.n_proto || 12919 keys1->basic.ip_proto != keys2->basic.ip_proto) 12920 return false; 12921 12922 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12923 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12924 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12925 return false; 12926 } else { 12927 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12928 sizeof(keys1->addrs.v6addrs.src)) || 12929 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12930 sizeof(keys1->addrs.v6addrs.dst))) 12931 return false; 12932 } 12933 12934 if (keys1->ports.ports == keys2->ports.ports && 12935 keys1->control.flags == keys2->control.flags && 12936 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12937 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12938 return true; 12939 12940 return false; 12941 } 12942 12943 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12944 u16 rxq_index, u32 flow_id) 12945 { 12946 struct bnxt *bp = netdev_priv(dev); 12947 struct bnxt_ntuple_filter *fltr, *new_fltr; 12948 struct flow_keys *fkeys; 12949 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12950 int rc = 0, idx, bit_id, l2_idx = 0; 12951 struct hlist_head *head; 12952 u32 flags; 12953 12954 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12955 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12956 int off = 0, j; 12957 12958 netif_addr_lock_bh(dev); 12959 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12960 if (ether_addr_equal(eth->h_dest, 12961 vnic->uc_list + off)) { 12962 l2_idx = j + 1; 12963 break; 12964 } 12965 } 12966 netif_addr_unlock_bh(dev); 12967 if (!l2_idx) 12968 return -EINVAL; 12969 } 12970 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12971 if (!new_fltr) 12972 return -ENOMEM; 12973 12974 fkeys = &new_fltr->fkeys; 12975 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12976 rc = -EPROTONOSUPPORT; 12977 goto err_free; 12978 } 12979 12980 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12981 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12982 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12983 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12984 rc = -EPROTONOSUPPORT; 12985 goto err_free; 12986 } 12987 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12988 bp->hwrm_spec_code < 0x10601) { 12989 rc = -EPROTONOSUPPORT; 12990 goto err_free; 12991 } 12992 flags = fkeys->control.flags; 12993 if (((flags & FLOW_DIS_ENCAPSULATION) && 12994 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12995 rc = -EPROTONOSUPPORT; 12996 goto err_free; 12997 } 12998 12999 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 13000 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 13001 13002 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 13003 head = &bp->ntp_fltr_hash_tbl[idx]; 13004 rcu_read_lock(); 13005 hlist_for_each_entry_rcu(fltr, head, hash) { 13006 if (bnxt_fltr_match(fltr, new_fltr)) { 13007 rc = fltr->sw_id; 13008 rcu_read_unlock(); 13009 goto err_free; 13010 } 13011 } 13012 rcu_read_unlock(); 13013 13014 spin_lock_bh(&bp->ntp_fltr_lock); 13015 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 13016 BNXT_NTP_FLTR_MAX_FLTR, 0); 13017 if (bit_id < 0) { 13018 spin_unlock_bh(&bp->ntp_fltr_lock); 13019 rc = -ENOMEM; 13020 goto err_free; 13021 } 13022 13023 new_fltr->sw_id = (u16)bit_id; 13024 new_fltr->flow_id = flow_id; 13025 new_fltr->l2_fltr_idx = l2_idx; 13026 new_fltr->rxq = rxq_index; 13027 hlist_add_head_rcu(&new_fltr->hash, head); 13028 bp->ntp_fltr_count++; 13029 spin_unlock_bh(&bp->ntp_fltr_lock); 13030 13031 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13032 13033 return new_fltr->sw_id; 13034 13035 err_free: 13036 kfree(new_fltr); 13037 return rc; 13038 } 13039 13040 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13041 { 13042 int i; 13043 13044 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 13045 struct hlist_head *head; 13046 struct hlist_node *tmp; 13047 struct bnxt_ntuple_filter *fltr; 13048 int rc; 13049 13050 head = &bp->ntp_fltr_hash_tbl[i]; 13051 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 13052 bool del = false; 13053 13054 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 13055 if (rps_may_expire_flow(bp->dev, fltr->rxq, 13056 fltr->flow_id, 13057 fltr->sw_id)) { 13058 bnxt_hwrm_cfa_ntuple_filter_free(bp, 13059 fltr); 13060 del = true; 13061 } 13062 } else { 13063 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 13064 fltr); 13065 if (rc) 13066 del = true; 13067 else 13068 set_bit(BNXT_FLTR_VALID, &fltr->state); 13069 } 13070 13071 if (del) { 13072 spin_lock_bh(&bp->ntp_fltr_lock); 13073 hlist_del_rcu(&fltr->hash); 13074 bp->ntp_fltr_count--; 13075 spin_unlock_bh(&bp->ntp_fltr_lock); 13076 synchronize_rcu(); 13077 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 13078 kfree(fltr); 13079 } 13080 } 13081 } 13082 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13083 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13084 } 13085 13086 #else 13087 13088 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13089 { 13090 } 13091 13092 #endif /* CONFIG_RFS_ACCEL */ 13093 13094 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 13095 unsigned int entry, struct udp_tunnel_info *ti) 13096 { 13097 struct bnxt *bp = netdev_priv(netdev); 13098 unsigned int cmd; 13099 13100 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 13101 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13102 else 13103 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13104 13105 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 13106 } 13107 13108 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 13109 unsigned int entry, struct udp_tunnel_info *ti) 13110 { 13111 struct bnxt *bp = netdev_priv(netdev); 13112 unsigned int cmd; 13113 13114 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 13115 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13116 else 13117 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13118 13119 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 13120 } 13121 13122 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 13123 .set_port = bnxt_udp_tunnel_set_port, 13124 .unset_port = bnxt_udp_tunnel_unset_port, 13125 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 13126 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 13127 .tables = { 13128 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 13129 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 13130 }, 13131 }; 13132 13133 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13134 struct net_device *dev, u32 filter_mask, 13135 int nlflags) 13136 { 13137 struct bnxt *bp = netdev_priv(dev); 13138 13139 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 13140 nlflags, filter_mask, NULL); 13141 } 13142 13143 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 13144 u16 flags, struct netlink_ext_ack *extack) 13145 { 13146 struct bnxt *bp = netdev_priv(dev); 13147 struct nlattr *attr, *br_spec; 13148 int rem, rc = 0; 13149 13150 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 13151 return -EOPNOTSUPP; 13152 13153 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13154 if (!br_spec) 13155 return -EINVAL; 13156 13157 nla_for_each_nested(attr, br_spec, rem) { 13158 u16 mode; 13159 13160 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13161 continue; 13162 13163 mode = nla_get_u16(attr); 13164 if (mode == bp->br_mode) 13165 break; 13166 13167 rc = bnxt_hwrm_set_br_mode(bp, mode); 13168 if (!rc) 13169 bp->br_mode = mode; 13170 break; 13171 } 13172 return rc; 13173 } 13174 13175 int bnxt_get_port_parent_id(struct net_device *dev, 13176 struct netdev_phys_item_id *ppid) 13177 { 13178 struct bnxt *bp = netdev_priv(dev); 13179 13180 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 13181 return -EOPNOTSUPP; 13182 13183 /* The PF and it's VF-reps only support the switchdev framework */ 13184 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 13185 return -EOPNOTSUPP; 13186 13187 ppid->id_len = sizeof(bp->dsn); 13188 memcpy(ppid->id, bp->dsn, ppid->id_len); 13189 13190 return 0; 13191 } 13192 13193 static const struct net_device_ops bnxt_netdev_ops = { 13194 .ndo_open = bnxt_open, 13195 .ndo_start_xmit = bnxt_start_xmit, 13196 .ndo_stop = bnxt_close, 13197 .ndo_get_stats64 = bnxt_get_stats64, 13198 .ndo_set_rx_mode = bnxt_set_rx_mode, 13199 .ndo_eth_ioctl = bnxt_ioctl, 13200 .ndo_validate_addr = eth_validate_addr, 13201 .ndo_set_mac_address = bnxt_change_mac_addr, 13202 .ndo_change_mtu = bnxt_change_mtu, 13203 .ndo_fix_features = bnxt_fix_features, 13204 .ndo_set_features = bnxt_set_features, 13205 .ndo_features_check = bnxt_features_check, 13206 .ndo_tx_timeout = bnxt_tx_timeout, 13207 #ifdef CONFIG_BNXT_SRIOV 13208 .ndo_get_vf_config = bnxt_get_vf_config, 13209 .ndo_set_vf_mac = bnxt_set_vf_mac, 13210 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 13211 .ndo_set_vf_rate = bnxt_set_vf_bw, 13212 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 13213 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 13214 .ndo_set_vf_trust = bnxt_set_vf_trust, 13215 #endif 13216 .ndo_setup_tc = bnxt_setup_tc, 13217 #ifdef CONFIG_RFS_ACCEL 13218 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 13219 #endif 13220 .ndo_bpf = bnxt_xdp, 13221 .ndo_xdp_xmit = bnxt_xdp_xmit, 13222 .ndo_bridge_getlink = bnxt_bridge_getlink, 13223 .ndo_bridge_setlink = bnxt_bridge_setlink, 13224 }; 13225 13226 static void bnxt_remove_one(struct pci_dev *pdev) 13227 { 13228 struct net_device *dev = pci_get_drvdata(pdev); 13229 struct bnxt *bp = netdev_priv(dev); 13230 13231 if (BNXT_PF(bp)) 13232 bnxt_sriov_disable(bp); 13233 13234 bnxt_rdma_aux_device_uninit(bp); 13235 13236 bnxt_ptp_clear(bp); 13237 unregister_netdev(dev); 13238 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13239 /* Flush any pending tasks */ 13240 cancel_work_sync(&bp->sp_task); 13241 cancel_delayed_work_sync(&bp->fw_reset_task); 13242 bp->sp_event = 0; 13243 13244 bnxt_dl_fw_reporters_destroy(bp); 13245 bnxt_dl_unregister(bp); 13246 bnxt_shutdown_tc(bp); 13247 13248 bnxt_clear_int_mode(bp); 13249 bnxt_hwrm_func_drv_unrgtr(bp); 13250 bnxt_free_hwrm_resources(bp); 13251 bnxt_hwmon_uninit(bp); 13252 bnxt_ethtool_free(bp); 13253 bnxt_dcb_free(bp); 13254 kfree(bp->ptp_cfg); 13255 bp->ptp_cfg = NULL; 13256 kfree(bp->fw_health); 13257 bp->fw_health = NULL; 13258 bnxt_cleanup_pci(bp); 13259 bnxt_free_ctx_mem(bp); 13260 kfree(bp->ctx); 13261 bp->ctx = NULL; 13262 kfree(bp->rss_indir_tbl); 13263 bp->rss_indir_tbl = NULL; 13264 bnxt_free_port_stats(bp); 13265 free_netdev(dev); 13266 } 13267 13268 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 13269 { 13270 int rc = 0; 13271 struct bnxt_link_info *link_info = &bp->link_info; 13272 13273 bp->phy_flags = 0; 13274 rc = bnxt_hwrm_phy_qcaps(bp); 13275 if (rc) { 13276 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 13277 rc); 13278 return rc; 13279 } 13280 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 13281 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 13282 else 13283 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 13284 if (!fw_dflt) 13285 return 0; 13286 13287 mutex_lock(&bp->link_lock); 13288 rc = bnxt_update_link(bp, false); 13289 if (rc) { 13290 mutex_unlock(&bp->link_lock); 13291 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 13292 rc); 13293 return rc; 13294 } 13295 13296 /* Older firmware does not have supported_auto_speeds, so assume 13297 * that all supported speeds can be autonegotiated. 13298 */ 13299 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 13300 link_info->support_auto_speeds = link_info->support_speeds; 13301 13302 bnxt_init_ethtool_link_settings(bp); 13303 mutex_unlock(&bp->link_lock); 13304 return 0; 13305 } 13306 13307 static int bnxt_get_max_irq(struct pci_dev *pdev) 13308 { 13309 u16 ctrl; 13310 13311 if (!pdev->msix_cap) 13312 return 1; 13313 13314 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 13315 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 13316 } 13317 13318 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13319 int *max_cp) 13320 { 13321 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13322 int max_ring_grps = 0, max_irq; 13323 13324 *max_tx = hw_resc->max_tx_rings; 13325 *max_rx = hw_resc->max_rx_rings; 13326 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 13327 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 13328 bnxt_get_ulp_msix_num(bp), 13329 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 13330 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 13331 *max_cp = min_t(int, *max_cp, max_irq); 13332 max_ring_grps = hw_resc->max_hw_ring_grps; 13333 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 13334 *max_cp -= 1; 13335 *max_rx -= 2; 13336 } 13337 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13338 *max_rx >>= 1; 13339 if (bp->flags & BNXT_FLAG_CHIP_P5) { 13340 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 13341 /* On P5 chips, max_cp output param should be available NQs */ 13342 *max_cp = max_irq; 13343 } 13344 *max_rx = min_t(int, *max_rx, max_ring_grps); 13345 } 13346 13347 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 13348 { 13349 int rx, tx, cp; 13350 13351 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 13352 *max_rx = rx; 13353 *max_tx = tx; 13354 if (!rx || !tx || !cp) 13355 return -ENOMEM; 13356 13357 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 13358 } 13359 13360 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13361 bool shared) 13362 { 13363 int rc; 13364 13365 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13366 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 13367 /* Not enough rings, try disabling agg rings. */ 13368 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 13369 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13370 if (rc) { 13371 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13372 bp->flags |= BNXT_FLAG_AGG_RINGS; 13373 return rc; 13374 } 13375 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13376 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13377 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13378 bnxt_set_ring_params(bp); 13379 } 13380 13381 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13382 int max_cp, max_stat, max_irq; 13383 13384 /* Reserve minimum resources for RoCE */ 13385 max_cp = bnxt_get_max_func_cp_rings(bp); 13386 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13387 max_irq = bnxt_get_max_func_irqs(bp); 13388 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13389 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13390 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13391 return 0; 13392 13393 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13394 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13395 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13396 max_cp = min_t(int, max_cp, max_irq); 13397 max_cp = min_t(int, max_cp, max_stat); 13398 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13399 if (rc) 13400 rc = 0; 13401 } 13402 return rc; 13403 } 13404 13405 /* In initial default shared ring setting, each shared ring must have a 13406 * RX/TX ring pair. 13407 */ 13408 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13409 { 13410 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13411 bp->rx_nr_rings = bp->cp_nr_rings; 13412 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13413 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13414 } 13415 13416 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13417 { 13418 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13419 13420 if (!bnxt_can_reserve_rings(bp)) 13421 return 0; 13422 13423 if (sh) 13424 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13425 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13426 /* Reduce default rings on multi-port cards so that total default 13427 * rings do not exceed CPU count. 13428 */ 13429 if (bp->port_count > 1) { 13430 int max_rings = 13431 max_t(int, num_online_cpus() / bp->port_count, 1); 13432 13433 dflt_rings = min_t(int, dflt_rings, max_rings); 13434 } 13435 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13436 if (rc) 13437 return rc; 13438 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13439 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13440 if (sh) 13441 bnxt_trim_dflt_sh_rings(bp); 13442 else 13443 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13444 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13445 13446 rc = __bnxt_reserve_rings(bp); 13447 if (rc && rc != -ENODEV) 13448 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13449 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13450 if (sh) 13451 bnxt_trim_dflt_sh_rings(bp); 13452 13453 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13454 if (bnxt_need_reserve_rings(bp)) { 13455 rc = __bnxt_reserve_rings(bp); 13456 if (rc && rc != -ENODEV) 13457 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13458 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13459 } 13460 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13461 bp->rx_nr_rings++; 13462 bp->cp_nr_rings++; 13463 } 13464 if (rc) { 13465 bp->tx_nr_rings = 0; 13466 bp->rx_nr_rings = 0; 13467 } 13468 return rc; 13469 } 13470 13471 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13472 { 13473 int rc; 13474 13475 if (bp->tx_nr_rings) 13476 return 0; 13477 13478 bnxt_ulp_irq_stop(bp); 13479 bnxt_clear_int_mode(bp); 13480 rc = bnxt_set_dflt_rings(bp, true); 13481 if (rc) { 13482 if (BNXT_VF(bp) && rc == -ENODEV) 13483 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13484 else 13485 netdev_err(bp->dev, "Not enough rings available.\n"); 13486 goto init_dflt_ring_err; 13487 } 13488 rc = bnxt_init_int_mode(bp); 13489 if (rc) 13490 goto init_dflt_ring_err; 13491 13492 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13493 13494 bnxt_set_dflt_rfs(bp); 13495 13496 init_dflt_ring_err: 13497 bnxt_ulp_irq_restart(bp, rc); 13498 return rc; 13499 } 13500 13501 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13502 { 13503 int rc; 13504 13505 ASSERT_RTNL(); 13506 bnxt_hwrm_func_qcaps(bp); 13507 13508 if (netif_running(bp->dev)) 13509 __bnxt_close_nic(bp, true, false); 13510 13511 bnxt_ulp_irq_stop(bp); 13512 bnxt_clear_int_mode(bp); 13513 rc = bnxt_init_int_mode(bp); 13514 bnxt_ulp_irq_restart(bp, rc); 13515 13516 if (netif_running(bp->dev)) { 13517 if (rc) 13518 dev_close(bp->dev); 13519 else 13520 rc = bnxt_open_nic(bp, true, false); 13521 } 13522 13523 return rc; 13524 } 13525 13526 static int bnxt_init_mac_addr(struct bnxt *bp) 13527 { 13528 int rc = 0; 13529 13530 if (BNXT_PF(bp)) { 13531 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13532 } else { 13533 #ifdef CONFIG_BNXT_SRIOV 13534 struct bnxt_vf_info *vf = &bp->vf; 13535 bool strict_approval = true; 13536 13537 if (is_valid_ether_addr(vf->mac_addr)) { 13538 /* overwrite netdev dev_addr with admin VF MAC */ 13539 eth_hw_addr_set(bp->dev, vf->mac_addr); 13540 /* Older PF driver or firmware may not approve this 13541 * correctly. 13542 */ 13543 strict_approval = false; 13544 } else { 13545 eth_hw_addr_random(bp->dev); 13546 } 13547 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13548 #endif 13549 } 13550 return rc; 13551 } 13552 13553 static void bnxt_vpd_read_info(struct bnxt *bp) 13554 { 13555 struct pci_dev *pdev = bp->pdev; 13556 unsigned int vpd_size, kw_len; 13557 int pos, size; 13558 u8 *vpd_data; 13559 13560 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13561 if (IS_ERR(vpd_data)) { 13562 pci_warn(pdev, "Unable to read VPD\n"); 13563 return; 13564 } 13565 13566 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13567 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13568 if (pos < 0) 13569 goto read_sn; 13570 13571 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13572 memcpy(bp->board_partno, &vpd_data[pos], size); 13573 13574 read_sn: 13575 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13576 PCI_VPD_RO_KEYWORD_SERIALNO, 13577 &kw_len); 13578 if (pos < 0) 13579 goto exit; 13580 13581 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13582 memcpy(bp->board_serialno, &vpd_data[pos], size); 13583 exit: 13584 kfree(vpd_data); 13585 } 13586 13587 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13588 { 13589 struct pci_dev *pdev = bp->pdev; 13590 u64 qword; 13591 13592 qword = pci_get_dsn(pdev); 13593 if (!qword) { 13594 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13595 return -EOPNOTSUPP; 13596 } 13597 13598 put_unaligned_le64(qword, dsn); 13599 13600 bp->flags |= BNXT_FLAG_DSN_VALID; 13601 return 0; 13602 } 13603 13604 static int bnxt_map_db_bar(struct bnxt *bp) 13605 { 13606 if (!bp->db_size) 13607 return -ENODEV; 13608 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13609 if (!bp->bar1) 13610 return -ENOMEM; 13611 return 0; 13612 } 13613 13614 void bnxt_print_device_info(struct bnxt *bp) 13615 { 13616 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13617 board_info[bp->board_idx].name, 13618 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13619 13620 pcie_print_link_status(bp->pdev); 13621 } 13622 13623 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13624 { 13625 struct net_device *dev; 13626 struct bnxt *bp; 13627 int rc, max_irqs; 13628 13629 if (pci_is_bridge(pdev)) 13630 return -ENODEV; 13631 13632 /* Clear any pending DMA transactions from crash kernel 13633 * while loading driver in capture kernel. 13634 */ 13635 if (is_kdump_kernel()) { 13636 pci_clear_master(pdev); 13637 pcie_flr(pdev); 13638 } 13639 13640 max_irqs = bnxt_get_max_irq(pdev); 13641 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13642 if (!dev) 13643 return -ENOMEM; 13644 13645 bp = netdev_priv(dev); 13646 bp->board_idx = ent->driver_data; 13647 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13648 bnxt_set_max_func_irqs(bp, max_irqs); 13649 13650 if (bnxt_vf_pciid(bp->board_idx)) 13651 bp->flags |= BNXT_FLAG_VF; 13652 13653 /* No devlink port registration in case of a VF */ 13654 if (BNXT_PF(bp)) 13655 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 13656 13657 if (pdev->msix_cap) 13658 bp->flags |= BNXT_FLAG_MSIX_CAP; 13659 13660 rc = bnxt_init_board(pdev, dev); 13661 if (rc < 0) 13662 goto init_err_free; 13663 13664 dev->netdev_ops = &bnxt_netdev_ops; 13665 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13666 dev->ethtool_ops = &bnxt_ethtool_ops; 13667 pci_set_drvdata(pdev, dev); 13668 13669 rc = bnxt_alloc_hwrm_resources(bp); 13670 if (rc) 13671 goto init_err_pci_clean; 13672 13673 mutex_init(&bp->hwrm_cmd_lock); 13674 mutex_init(&bp->link_lock); 13675 13676 rc = bnxt_fw_init_one_p1(bp); 13677 if (rc) 13678 goto init_err_pci_clean; 13679 13680 if (BNXT_PF(bp)) 13681 bnxt_vpd_read_info(bp); 13682 13683 if (BNXT_CHIP_P5(bp)) { 13684 bp->flags |= BNXT_FLAG_CHIP_P5; 13685 if (BNXT_CHIP_SR2(bp)) 13686 bp->flags |= BNXT_FLAG_CHIP_SR2; 13687 } 13688 13689 rc = bnxt_alloc_rss_indir_tbl(bp); 13690 if (rc) 13691 goto init_err_pci_clean; 13692 13693 rc = bnxt_fw_init_one_p2(bp); 13694 if (rc) 13695 goto init_err_pci_clean; 13696 13697 rc = bnxt_map_db_bar(bp); 13698 if (rc) { 13699 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13700 rc); 13701 goto init_err_pci_clean; 13702 } 13703 13704 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13705 NETIF_F_TSO | NETIF_F_TSO6 | 13706 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13707 NETIF_F_GSO_IPXIP4 | 13708 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13709 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13710 NETIF_F_RXCSUM | NETIF_F_GRO; 13711 13712 if (BNXT_SUPPORTS_TPA(bp)) 13713 dev->hw_features |= NETIF_F_LRO; 13714 13715 dev->hw_enc_features = 13716 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13717 NETIF_F_TSO | NETIF_F_TSO6 | 13718 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13719 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13720 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13721 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13722 13723 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13724 NETIF_F_GSO_GRE_CSUM; 13725 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13726 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13727 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13728 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13729 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13730 if (BNXT_SUPPORTS_TPA(bp)) 13731 dev->hw_features |= NETIF_F_GRO_HW; 13732 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13733 if (dev->features & NETIF_F_GRO_HW) 13734 dev->features &= ~NETIF_F_LRO; 13735 dev->priv_flags |= IFF_UNICAST_FLT; 13736 13737 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 13738 13739 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 13740 NETDEV_XDP_ACT_RX_SG; 13741 13742 #ifdef CONFIG_BNXT_SRIOV 13743 init_waitqueue_head(&bp->sriov_cfg_wait); 13744 #endif 13745 if (BNXT_SUPPORTS_TPA(bp)) { 13746 bp->gro_func = bnxt_gro_func_5730x; 13747 if (BNXT_CHIP_P4(bp)) 13748 bp->gro_func = bnxt_gro_func_5731x; 13749 else if (BNXT_CHIP_P5(bp)) 13750 bp->gro_func = bnxt_gro_func_5750x; 13751 } 13752 if (!BNXT_CHIP_P4_PLUS(bp)) 13753 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13754 13755 rc = bnxt_init_mac_addr(bp); 13756 if (rc) { 13757 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13758 rc = -EADDRNOTAVAIL; 13759 goto init_err_pci_clean; 13760 } 13761 13762 if (BNXT_PF(bp)) { 13763 /* Read the adapter's DSN to use as the eswitch switch_id */ 13764 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13765 } 13766 13767 /* MTU range: 60 - FW defined max */ 13768 dev->min_mtu = ETH_ZLEN; 13769 dev->max_mtu = bp->max_mtu; 13770 13771 rc = bnxt_probe_phy(bp, true); 13772 if (rc) 13773 goto init_err_pci_clean; 13774 13775 bnxt_set_rx_skb_mode(bp, false); 13776 bnxt_set_tpa_flags(bp); 13777 bnxt_set_ring_params(bp); 13778 rc = bnxt_set_dflt_rings(bp, true); 13779 if (rc) { 13780 if (BNXT_VF(bp) && rc == -ENODEV) { 13781 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13782 } else { 13783 netdev_err(bp->dev, "Not enough rings available.\n"); 13784 rc = -ENOMEM; 13785 } 13786 goto init_err_pci_clean; 13787 } 13788 13789 bnxt_fw_init_one_p3(bp); 13790 13791 bnxt_init_dflt_coal(bp); 13792 13793 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13794 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13795 13796 rc = bnxt_init_int_mode(bp); 13797 if (rc) 13798 goto init_err_pci_clean; 13799 13800 /* No TC has been set yet and rings may have been trimmed due to 13801 * limited MSIX, so we re-initialize the TX rings per TC. 13802 */ 13803 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13804 13805 if (BNXT_PF(bp)) { 13806 if (!bnxt_pf_wq) { 13807 bnxt_pf_wq = 13808 create_singlethread_workqueue("bnxt_pf_wq"); 13809 if (!bnxt_pf_wq) { 13810 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13811 rc = -ENOMEM; 13812 goto init_err_pci_clean; 13813 } 13814 } 13815 rc = bnxt_init_tc(bp); 13816 if (rc) 13817 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13818 rc); 13819 } 13820 13821 bnxt_inv_fw_health_reg(bp); 13822 rc = bnxt_dl_register(bp); 13823 if (rc) 13824 goto init_err_dl; 13825 13826 rc = register_netdev(dev); 13827 if (rc) 13828 goto init_err_cleanup; 13829 13830 bnxt_dl_fw_reporters_create(bp); 13831 13832 bnxt_rdma_aux_device_init(bp); 13833 13834 bnxt_print_device_info(bp); 13835 13836 pci_save_state(pdev); 13837 13838 return 0; 13839 init_err_cleanup: 13840 bnxt_dl_unregister(bp); 13841 init_err_dl: 13842 bnxt_shutdown_tc(bp); 13843 bnxt_clear_int_mode(bp); 13844 13845 init_err_pci_clean: 13846 bnxt_hwrm_func_drv_unrgtr(bp); 13847 bnxt_free_hwrm_resources(bp); 13848 bnxt_hwmon_uninit(bp); 13849 bnxt_ethtool_free(bp); 13850 bnxt_ptp_clear(bp); 13851 kfree(bp->ptp_cfg); 13852 bp->ptp_cfg = NULL; 13853 kfree(bp->fw_health); 13854 bp->fw_health = NULL; 13855 bnxt_cleanup_pci(bp); 13856 bnxt_free_ctx_mem(bp); 13857 kfree(bp->ctx); 13858 bp->ctx = NULL; 13859 kfree(bp->rss_indir_tbl); 13860 bp->rss_indir_tbl = NULL; 13861 13862 init_err_free: 13863 free_netdev(dev); 13864 return rc; 13865 } 13866 13867 static void bnxt_shutdown(struct pci_dev *pdev) 13868 { 13869 struct net_device *dev = pci_get_drvdata(pdev); 13870 struct bnxt *bp; 13871 13872 if (!dev) 13873 return; 13874 13875 rtnl_lock(); 13876 bp = netdev_priv(dev); 13877 if (!bp) 13878 goto shutdown_exit; 13879 13880 if (netif_running(dev)) 13881 dev_close(dev); 13882 13883 bnxt_clear_int_mode(bp); 13884 pci_disable_device(pdev); 13885 13886 if (system_state == SYSTEM_POWER_OFF) { 13887 pci_wake_from_d3(pdev, bp->wol); 13888 pci_set_power_state(pdev, PCI_D3hot); 13889 } 13890 13891 shutdown_exit: 13892 rtnl_unlock(); 13893 } 13894 13895 #ifdef CONFIG_PM_SLEEP 13896 static int bnxt_suspend(struct device *device) 13897 { 13898 struct net_device *dev = dev_get_drvdata(device); 13899 struct bnxt *bp = netdev_priv(dev); 13900 int rc = 0; 13901 13902 rtnl_lock(); 13903 bnxt_ulp_stop(bp); 13904 if (netif_running(dev)) { 13905 netif_device_detach(dev); 13906 rc = bnxt_close(dev); 13907 } 13908 bnxt_hwrm_func_drv_unrgtr(bp); 13909 pci_disable_device(bp->pdev); 13910 bnxt_free_ctx_mem(bp); 13911 kfree(bp->ctx); 13912 bp->ctx = NULL; 13913 rtnl_unlock(); 13914 return rc; 13915 } 13916 13917 static int bnxt_resume(struct device *device) 13918 { 13919 struct net_device *dev = dev_get_drvdata(device); 13920 struct bnxt *bp = netdev_priv(dev); 13921 int rc = 0; 13922 13923 rtnl_lock(); 13924 rc = pci_enable_device(bp->pdev); 13925 if (rc) { 13926 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13927 rc); 13928 goto resume_exit; 13929 } 13930 pci_set_master(bp->pdev); 13931 if (bnxt_hwrm_ver_get(bp)) { 13932 rc = -ENODEV; 13933 goto resume_exit; 13934 } 13935 rc = bnxt_hwrm_func_reset(bp); 13936 if (rc) { 13937 rc = -EBUSY; 13938 goto resume_exit; 13939 } 13940 13941 rc = bnxt_hwrm_func_qcaps(bp); 13942 if (rc) 13943 goto resume_exit; 13944 13945 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13946 rc = -ENODEV; 13947 goto resume_exit; 13948 } 13949 13950 bnxt_get_wol_settings(bp); 13951 if (netif_running(dev)) { 13952 rc = bnxt_open(dev); 13953 if (!rc) 13954 netif_device_attach(dev); 13955 } 13956 13957 resume_exit: 13958 bnxt_ulp_start(bp, rc); 13959 if (!rc) 13960 bnxt_reenable_sriov(bp); 13961 rtnl_unlock(); 13962 return rc; 13963 } 13964 13965 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13966 #define BNXT_PM_OPS (&bnxt_pm_ops) 13967 13968 #else 13969 13970 #define BNXT_PM_OPS NULL 13971 13972 #endif /* CONFIG_PM_SLEEP */ 13973 13974 /** 13975 * bnxt_io_error_detected - called when PCI error is detected 13976 * @pdev: Pointer to PCI device 13977 * @state: The current pci connection state 13978 * 13979 * This function is called after a PCI bus error affecting 13980 * this device has been detected. 13981 */ 13982 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13983 pci_channel_state_t state) 13984 { 13985 struct net_device *netdev = pci_get_drvdata(pdev); 13986 struct bnxt *bp = netdev_priv(netdev); 13987 13988 netdev_info(netdev, "PCI I/O error detected\n"); 13989 13990 rtnl_lock(); 13991 netif_device_detach(netdev); 13992 13993 bnxt_ulp_stop(bp); 13994 13995 if (state == pci_channel_io_perm_failure) { 13996 rtnl_unlock(); 13997 return PCI_ERS_RESULT_DISCONNECT; 13998 } 13999 14000 if (state == pci_channel_io_frozen) 14001 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 14002 14003 if (netif_running(netdev)) 14004 bnxt_close(netdev); 14005 14006 if (pci_is_enabled(pdev)) 14007 pci_disable_device(pdev); 14008 bnxt_free_ctx_mem(bp); 14009 kfree(bp->ctx); 14010 bp->ctx = NULL; 14011 rtnl_unlock(); 14012 14013 /* Request a slot slot reset. */ 14014 return PCI_ERS_RESULT_NEED_RESET; 14015 } 14016 14017 /** 14018 * bnxt_io_slot_reset - called after the pci bus has been reset. 14019 * @pdev: Pointer to PCI device 14020 * 14021 * Restart the card from scratch, as if from a cold-boot. 14022 * At this point, the card has exprienced a hard reset, 14023 * followed by fixups by BIOS, and has its config space 14024 * set up identically to what it was at cold boot. 14025 */ 14026 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 14027 { 14028 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 14029 struct net_device *netdev = pci_get_drvdata(pdev); 14030 struct bnxt *bp = netdev_priv(netdev); 14031 int retry = 0; 14032 int err = 0; 14033 int off; 14034 14035 netdev_info(bp->dev, "PCI Slot Reset\n"); 14036 14037 rtnl_lock(); 14038 14039 if (pci_enable_device(pdev)) { 14040 dev_err(&pdev->dev, 14041 "Cannot re-enable PCI device after reset.\n"); 14042 } else { 14043 pci_set_master(pdev); 14044 /* Upon fatal error, our device internal logic that latches to 14045 * BAR value is getting reset and will restore only upon 14046 * rewritting the BARs. 14047 * 14048 * As pci_restore_state() does not re-write the BARs if the 14049 * value is same as saved value earlier, driver needs to 14050 * write the BARs to 0 to force restore, in case of fatal error. 14051 */ 14052 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 14053 &bp->state)) { 14054 for (off = PCI_BASE_ADDRESS_0; 14055 off <= PCI_BASE_ADDRESS_5; off += 4) 14056 pci_write_config_dword(bp->pdev, off, 0); 14057 } 14058 pci_restore_state(pdev); 14059 pci_save_state(pdev); 14060 14061 bnxt_inv_fw_health_reg(bp); 14062 bnxt_try_map_fw_health_reg(bp); 14063 14064 /* In some PCIe AER scenarios, firmware may take up to 14065 * 10 seconds to become ready in the worst case. 14066 */ 14067 do { 14068 err = bnxt_try_recover_fw(bp); 14069 if (!err) 14070 break; 14071 retry++; 14072 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 14073 14074 if (err) { 14075 dev_err(&pdev->dev, "Firmware not ready\n"); 14076 goto reset_exit; 14077 } 14078 14079 err = bnxt_hwrm_func_reset(bp); 14080 if (!err) 14081 result = PCI_ERS_RESULT_RECOVERED; 14082 14083 bnxt_ulp_irq_stop(bp); 14084 bnxt_clear_int_mode(bp); 14085 err = bnxt_init_int_mode(bp); 14086 bnxt_ulp_irq_restart(bp, err); 14087 } 14088 14089 reset_exit: 14090 bnxt_clear_reservations(bp, true); 14091 rtnl_unlock(); 14092 14093 return result; 14094 } 14095 14096 /** 14097 * bnxt_io_resume - called when traffic can start flowing again. 14098 * @pdev: Pointer to PCI device 14099 * 14100 * This callback is called when the error recovery driver tells 14101 * us that its OK to resume normal operation. 14102 */ 14103 static void bnxt_io_resume(struct pci_dev *pdev) 14104 { 14105 struct net_device *netdev = pci_get_drvdata(pdev); 14106 struct bnxt *bp = netdev_priv(netdev); 14107 int err; 14108 14109 netdev_info(bp->dev, "PCI Slot Resume\n"); 14110 rtnl_lock(); 14111 14112 err = bnxt_hwrm_func_qcaps(bp); 14113 if (!err && netif_running(netdev)) 14114 err = bnxt_open(netdev); 14115 14116 bnxt_ulp_start(bp, err); 14117 if (!err) { 14118 bnxt_reenable_sriov(bp); 14119 netif_device_attach(netdev); 14120 } 14121 14122 rtnl_unlock(); 14123 } 14124 14125 static const struct pci_error_handlers bnxt_err_handler = { 14126 .error_detected = bnxt_io_error_detected, 14127 .slot_reset = bnxt_io_slot_reset, 14128 .resume = bnxt_io_resume 14129 }; 14130 14131 static struct pci_driver bnxt_pci_driver = { 14132 .name = DRV_MODULE_NAME, 14133 .id_table = bnxt_pci_tbl, 14134 .probe = bnxt_init_one, 14135 .remove = bnxt_remove_one, 14136 .shutdown = bnxt_shutdown, 14137 .driver.pm = BNXT_PM_OPS, 14138 .err_handler = &bnxt_err_handler, 14139 #if defined(CONFIG_BNXT_SRIOV) 14140 .sriov_configure = bnxt_sriov_configure, 14141 #endif 14142 }; 14143 14144 static int __init bnxt_init(void) 14145 { 14146 int err; 14147 14148 bnxt_debug_init(); 14149 err = pci_register_driver(&bnxt_pci_driver); 14150 if (err) { 14151 bnxt_debug_exit(); 14152 return err; 14153 } 14154 14155 return 0; 14156 } 14157 14158 static void __exit bnxt_exit(void) 14159 { 14160 pci_unregister_driver(&bnxt_pci_driver); 14161 if (bnxt_pf_wq) 14162 destroy_workqueue(bnxt_pf_wq); 14163 bnxt_debug_exit(); 14164 } 14165 14166 module_init(bnxt_init); 14167 module_exit(bnxt_exit); 14168