xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 };
141 
142 static const struct pci_device_id bnxt_pci_tbl[] = {
143 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
193 #ifdef CONFIG_BNXT_SRIOV
194 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
195 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
210 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
213 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
215 #endif
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
220 
221 static const u16 bnxt_vf_req_snif[] = {
222 	HWRM_FUNC_CFG,
223 	HWRM_FUNC_VF_CFG,
224 	HWRM_PORT_PHY_QCFG,
225 	HWRM_CFA_L2_FILTER_ALLOC,
226 };
227 
228 static const u16 bnxt_async_events_arr[] = {
229 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
230 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
231 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
232 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
233 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
237 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
238 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
239 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
240 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
241 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \
250 			       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}
251 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}}
252 
253 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = {
254 	.ports = {
255 		.src = 0,
256 		.dst = 0,
257 	},
258 	.addrs = {
259 		.v6addrs = {
260 			.src = BNXT_IPV6_MASK_NONE,
261 			.dst = BNXT_IPV6_MASK_NONE,
262 		},
263 	},
264 };
265 
266 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = {
267 	.ports = {
268 		.src = cpu_to_be16(0xffff),
269 		.dst = cpu_to_be16(0xffff),
270 	},
271 	.addrs = {
272 		.v6addrs = {
273 			.src = BNXT_IPV6_MASK_ALL,
274 			.dst = BNXT_IPV6_MASK_ALL,
275 		},
276 	},
277 };
278 
279 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = {
280 	.ports = {
281 		.src = cpu_to_be16(0xffff),
282 		.dst = cpu_to_be16(0xffff),
283 	},
284 	.addrs = {
285 		.v4addrs = {
286 			.src = cpu_to_be32(0xffffffff),
287 			.dst = cpu_to_be32(0xffffffff),
288 		},
289 	},
290 };
291 
292 static bool bnxt_vf_pciid(enum board_idx idx)
293 {
294 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
295 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
296 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
297 		idx == NETXTREME_E_P5_VF_HV);
298 }
299 
300 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
301 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
302 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
303 
304 #define BNXT_CP_DB_IRQ_DIS(db)						\
305 		writel(DB_CP_IRQ_DIS_FLAGS, db)
306 
307 #define BNXT_DB_CQ(db, idx)						\
308 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
309 
310 #define BNXT_DB_NQ_P5(db, idx)						\
311 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
312 		    (db)->doorbell)
313 
314 #define BNXT_DB_NQ_P7(db, idx)						\
315 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
316 		    DB_RING_IDX(db, idx), (db)->doorbell)
317 
318 #define BNXT_DB_CQ_ARM(db, idx)						\
319 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
320 
321 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
322 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
323 		    DB_RING_IDX(db, idx), (db)->doorbell)
324 
325 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
326 {
327 	if (bp->flags & BNXT_FLAG_CHIP_P7)
328 		BNXT_DB_NQ_P7(db, idx);
329 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
330 		BNXT_DB_NQ_P5(db, idx);
331 	else
332 		BNXT_DB_CQ(db, idx);
333 }
334 
335 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
336 {
337 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
338 		BNXT_DB_NQ_ARM_P5(db, idx);
339 	else
340 		BNXT_DB_CQ_ARM(db, idx);
341 }
342 
343 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
344 {
345 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
346 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
347 			    DB_RING_IDX(db, idx), db->doorbell);
348 	else
349 		BNXT_DB_CQ(db, idx);
350 }
351 
352 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
353 {
354 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
355 		return;
356 
357 	if (BNXT_PF(bp))
358 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
359 	else
360 		schedule_delayed_work(&bp->fw_reset_task, delay);
361 }
362 
363 static void __bnxt_queue_sp_work(struct bnxt *bp)
364 {
365 	if (BNXT_PF(bp))
366 		queue_work(bnxt_pf_wq, &bp->sp_task);
367 	else
368 		schedule_work(&bp->sp_task);
369 }
370 
371 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
372 {
373 	set_bit(event, &bp->sp_event);
374 	__bnxt_queue_sp_work(bp);
375 }
376 
377 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
378 {
379 	if (!rxr->bnapi->in_reset) {
380 		rxr->bnapi->in_reset = true;
381 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
382 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
383 		else
384 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
385 		__bnxt_queue_sp_work(bp);
386 	}
387 	rxr->rx_next_cons = 0xffff;
388 }
389 
390 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
391 			  u16 curr)
392 {
393 	struct bnxt_napi *bnapi = txr->bnapi;
394 
395 	if (bnapi->tx_fault)
396 		return;
397 
398 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
399 		   txr->txq_index, txr->tx_hw_cons,
400 		   txr->tx_cons, txr->tx_prod, curr);
401 	WARN_ON_ONCE(1);
402 	bnapi->tx_fault = 1;
403 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
404 }
405 
406 const u16 bnxt_lhint_arr[] = {
407 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
408 	TX_BD_FLAGS_LHINT_512_TO_1023,
409 	TX_BD_FLAGS_LHINT_1024_TO_2047,
410 	TX_BD_FLAGS_LHINT_1024_TO_2047,
411 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
412 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
413 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
414 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
415 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
416 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
417 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
418 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
419 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
420 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
421 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
422 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
423 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
424 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
425 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
426 };
427 
428 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
429 {
430 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
431 
432 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
433 		return 0;
434 
435 	return md_dst->u.port_info.port_id;
436 }
437 
438 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
439 			     u16 prod)
440 {
441 	/* Sync BD data before updating doorbell */
442 	wmb();
443 	bnxt_db_write(bp, &txr->tx_db, prod);
444 	txr->kick_pending = 0;
445 }
446 
447 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
448 {
449 	struct bnxt *bp = netdev_priv(dev);
450 	struct tx_bd *txbd, *txbd0;
451 	struct tx_bd_ext *txbd1;
452 	struct netdev_queue *txq;
453 	int i;
454 	dma_addr_t mapping;
455 	unsigned int length, pad = 0;
456 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
457 	u16 prod, last_frag;
458 	struct pci_dev *pdev = bp->pdev;
459 	struct bnxt_tx_ring_info *txr;
460 	struct bnxt_sw_tx_bd *tx_buf;
461 	__le32 lflags = 0;
462 
463 	i = skb_get_queue_mapping(skb);
464 	if (unlikely(i >= bp->tx_nr_rings)) {
465 		dev_kfree_skb_any(skb);
466 		dev_core_stats_tx_dropped_inc(dev);
467 		return NETDEV_TX_OK;
468 	}
469 
470 	txq = netdev_get_tx_queue(dev, i);
471 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
472 	prod = txr->tx_prod;
473 
474 	free_size = bnxt_tx_avail(bp, txr);
475 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
476 		/* We must have raced with NAPI cleanup */
477 		if (net_ratelimit() && txr->kick_pending)
478 			netif_warn(bp, tx_err, dev,
479 				   "bnxt: ring busy w/ flush pending!\n");
480 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
481 					bp->tx_wake_thresh))
482 			return NETDEV_TX_BUSY;
483 	}
484 
485 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
486 		goto tx_free;
487 
488 	length = skb->len;
489 	len = skb_headlen(skb);
490 	last_frag = skb_shinfo(skb)->nr_frags;
491 
492 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
493 
494 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
495 	tx_buf->skb = skb;
496 	tx_buf->nr_frags = last_frag;
497 
498 	vlan_tag_flags = 0;
499 	cfa_action = bnxt_xmit_get_cfa_action(skb);
500 	if (skb_vlan_tag_present(skb)) {
501 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
502 				 skb_vlan_tag_get(skb);
503 		/* Currently supports 8021Q, 8021AD vlan offloads
504 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
505 		 */
506 		if (skb->vlan_proto == htons(ETH_P_8021Q))
507 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
508 	}
509 
510 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
511 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
512 
513 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
514 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
515 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
516 					    &ptp->tx_hdr_off)) {
517 				if (vlan_tag_flags)
518 					ptp->tx_hdr_off += VLAN_HLEN;
519 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
520 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
521 			} else {
522 				atomic_inc(&bp->ptp_cfg->tx_avail);
523 			}
524 		}
525 	}
526 
527 	if (unlikely(skb->no_fcs))
528 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
529 
530 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
531 	    !lflags) {
532 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
533 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
534 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
535 		void __iomem *db = txr->tx_db.doorbell;
536 		void *pdata = tx_push_buf->data;
537 		u64 *end;
538 		int j, push_len;
539 
540 		/* Set COAL_NOW to be ready quickly for the next push */
541 		tx_push->tx_bd_len_flags_type =
542 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
543 					TX_BD_TYPE_LONG_TX_BD |
544 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
545 					TX_BD_FLAGS_COAL_NOW |
546 					TX_BD_FLAGS_PACKET_END |
547 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
548 
549 		if (skb->ip_summed == CHECKSUM_PARTIAL)
550 			tx_push1->tx_bd_hsize_lflags =
551 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
552 		else
553 			tx_push1->tx_bd_hsize_lflags = 0;
554 
555 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
556 		tx_push1->tx_bd_cfa_action =
557 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
558 
559 		end = pdata + length;
560 		end = PTR_ALIGN(end, 8) - 1;
561 		*end = 0;
562 
563 		skb_copy_from_linear_data(skb, pdata, len);
564 		pdata += len;
565 		for (j = 0; j < last_frag; j++) {
566 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
567 			void *fptr;
568 
569 			fptr = skb_frag_address_safe(frag);
570 			if (!fptr)
571 				goto normal_tx;
572 
573 			memcpy(pdata, fptr, skb_frag_size(frag));
574 			pdata += skb_frag_size(frag);
575 		}
576 
577 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
578 		txbd->tx_bd_haddr = txr->data_mapping;
579 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
580 		prod = NEXT_TX(prod);
581 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
582 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
583 		memcpy(txbd, tx_push1, sizeof(*txbd));
584 		prod = NEXT_TX(prod);
585 		tx_push->doorbell =
586 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
587 				    DB_RING_IDX(&txr->tx_db, prod));
588 		WRITE_ONCE(txr->tx_prod, prod);
589 
590 		tx_buf->is_push = 1;
591 		netdev_tx_sent_queue(txq, skb->len);
592 		wmb();	/* Sync is_push and byte queue before pushing data */
593 
594 		push_len = (length + sizeof(*tx_push) + 7) / 8;
595 		if (push_len > 16) {
596 			__iowrite64_copy(db, tx_push_buf, 16);
597 			__iowrite32_copy(db + 4, tx_push_buf + 1,
598 					 (push_len - 16) << 1);
599 		} else {
600 			__iowrite64_copy(db, tx_push_buf, push_len);
601 		}
602 
603 		goto tx_done;
604 	}
605 
606 normal_tx:
607 	if (length < BNXT_MIN_PKT_SIZE) {
608 		pad = BNXT_MIN_PKT_SIZE - length;
609 		if (skb_pad(skb, pad))
610 			/* SKB already freed. */
611 			goto tx_kick_pending;
612 		length = BNXT_MIN_PKT_SIZE;
613 	}
614 
615 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
616 
617 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
618 		goto tx_free;
619 
620 	dma_unmap_addr_set(tx_buf, mapping, mapping);
621 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
622 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
623 
624 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
625 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
626 
627 	prod = NEXT_TX(prod);
628 	txbd1 = (struct tx_bd_ext *)
629 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
630 
631 	txbd1->tx_bd_hsize_lflags = lflags;
632 	if (skb_is_gso(skb)) {
633 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
634 		u32 hdr_len;
635 
636 		if (skb->encapsulation) {
637 			if (udp_gso)
638 				hdr_len = skb_inner_transport_offset(skb) +
639 					  sizeof(struct udphdr);
640 			else
641 				hdr_len = skb_inner_tcp_all_headers(skb);
642 		} else if (udp_gso) {
643 			hdr_len = skb_transport_offset(skb) +
644 				  sizeof(struct udphdr);
645 		} else {
646 			hdr_len = skb_tcp_all_headers(skb);
647 		}
648 
649 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
650 					TX_BD_FLAGS_T_IPID |
651 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
652 		length = skb_shinfo(skb)->gso_size;
653 		txbd1->tx_bd_mss = cpu_to_le32(length);
654 		length += hdr_len;
655 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
656 		txbd1->tx_bd_hsize_lflags |=
657 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
658 		txbd1->tx_bd_mss = 0;
659 	}
660 
661 	length >>= 9;
662 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
663 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
664 				     skb->len);
665 		i = 0;
666 		goto tx_dma_error;
667 	}
668 	flags |= bnxt_lhint_arr[length];
669 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
670 
671 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
672 	txbd1->tx_bd_cfa_action =
673 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
674 	txbd0 = txbd;
675 	for (i = 0; i < last_frag; i++) {
676 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
677 
678 		prod = NEXT_TX(prod);
679 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
680 
681 		len = skb_frag_size(frag);
682 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
683 					   DMA_TO_DEVICE);
684 
685 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
686 			goto tx_dma_error;
687 
688 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
689 		dma_unmap_addr_set(tx_buf, mapping, mapping);
690 
691 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
692 
693 		flags = len << TX_BD_LEN_SHIFT;
694 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
695 	}
696 
697 	flags &= ~TX_BD_LEN;
698 	txbd->tx_bd_len_flags_type =
699 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
700 			    TX_BD_FLAGS_PACKET_END);
701 
702 	netdev_tx_sent_queue(txq, skb->len);
703 
704 	skb_tx_timestamp(skb);
705 
706 	prod = NEXT_TX(prod);
707 	WRITE_ONCE(txr->tx_prod, prod);
708 
709 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
710 		bnxt_txr_db_kick(bp, txr, prod);
711 	} else {
712 		if (free_size >= bp->tx_wake_thresh)
713 			txbd0->tx_bd_len_flags_type |=
714 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
715 		txr->kick_pending = 1;
716 	}
717 
718 tx_done:
719 
720 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
721 		if (netdev_xmit_more() && !tx_buf->is_push) {
722 			txbd0->tx_bd_len_flags_type &=
723 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
724 			bnxt_txr_db_kick(bp, txr, prod);
725 		}
726 
727 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
728 				   bp->tx_wake_thresh);
729 	}
730 	return NETDEV_TX_OK;
731 
732 tx_dma_error:
733 	if (BNXT_TX_PTP_IS_SET(lflags))
734 		atomic_inc(&bp->ptp_cfg->tx_avail);
735 
736 	last_frag = i;
737 
738 	/* start back at beginning and unmap skb */
739 	prod = txr->tx_prod;
740 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
741 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
742 			 skb_headlen(skb), DMA_TO_DEVICE);
743 	prod = NEXT_TX(prod);
744 
745 	/* unmap remaining mapped pages */
746 	for (i = 0; i < last_frag; i++) {
747 		prod = NEXT_TX(prod);
748 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
749 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
750 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
751 			       DMA_TO_DEVICE);
752 	}
753 
754 tx_free:
755 	dev_kfree_skb_any(skb);
756 tx_kick_pending:
757 	if (txr->kick_pending)
758 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
759 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
760 	dev_core_stats_tx_dropped_inc(dev);
761 	return NETDEV_TX_OK;
762 }
763 
764 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
765 			  int budget)
766 {
767 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
768 	struct pci_dev *pdev = bp->pdev;
769 	u16 hw_cons = txr->tx_hw_cons;
770 	unsigned int tx_bytes = 0;
771 	u16 cons = txr->tx_cons;
772 	int tx_pkts = 0;
773 
774 	while (RING_TX(bp, cons) != hw_cons) {
775 		struct bnxt_sw_tx_bd *tx_buf;
776 		struct sk_buff *skb;
777 		int j, last;
778 
779 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
780 		cons = NEXT_TX(cons);
781 		skb = tx_buf->skb;
782 		tx_buf->skb = NULL;
783 
784 		if (unlikely(!skb)) {
785 			bnxt_sched_reset_txr(bp, txr, cons);
786 			return;
787 		}
788 
789 		tx_pkts++;
790 		tx_bytes += skb->len;
791 
792 		if (tx_buf->is_push) {
793 			tx_buf->is_push = 0;
794 			goto next_tx_int;
795 		}
796 
797 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
798 				 skb_headlen(skb), DMA_TO_DEVICE);
799 		last = tx_buf->nr_frags;
800 
801 		for (j = 0; j < last; j++) {
802 			cons = NEXT_TX(cons);
803 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
804 			dma_unmap_page(
805 				&pdev->dev,
806 				dma_unmap_addr(tx_buf, mapping),
807 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
808 				DMA_TO_DEVICE);
809 		}
810 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
811 			if (BNXT_CHIP_P5(bp)) {
812 				/* PTP worker takes ownership of the skb */
813 				if (!bnxt_get_tx_ts_p5(bp, skb))
814 					skb = NULL;
815 				else
816 					atomic_inc(&bp->ptp_cfg->tx_avail);
817 			}
818 		}
819 
820 next_tx_int:
821 		cons = NEXT_TX(cons);
822 
823 		dev_consume_skb_any(skb);
824 	}
825 
826 	WRITE_ONCE(txr->tx_cons, cons);
827 
828 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
829 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
830 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
831 }
832 
833 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
834 {
835 	struct bnxt_tx_ring_info *txr;
836 	int i;
837 
838 	bnxt_for_each_napi_tx(i, bnapi, txr) {
839 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
840 			__bnxt_tx_int(bp, txr, budget);
841 	}
842 	bnapi->events &= ~BNXT_TX_CMP_EVENT;
843 }
844 
845 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
846 					 struct bnxt_rx_ring_info *rxr,
847 					 unsigned int *offset,
848 					 gfp_t gfp)
849 {
850 	struct page *page;
851 
852 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
853 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
854 						BNXT_RX_PAGE_SIZE);
855 	} else {
856 		page = page_pool_dev_alloc_pages(rxr->page_pool);
857 		*offset = 0;
858 	}
859 	if (!page)
860 		return NULL;
861 
862 	*mapping = page_pool_get_dma_addr(page) + *offset;
863 	return page;
864 }
865 
866 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
867 				       gfp_t gfp)
868 {
869 	u8 *data;
870 	struct pci_dev *pdev = bp->pdev;
871 
872 	if (gfp == GFP_ATOMIC)
873 		data = napi_alloc_frag(bp->rx_buf_size);
874 	else
875 		data = netdev_alloc_frag(bp->rx_buf_size);
876 	if (!data)
877 		return NULL;
878 
879 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
880 					bp->rx_buf_use_size, bp->rx_dir,
881 					DMA_ATTR_WEAK_ORDERING);
882 
883 	if (dma_mapping_error(&pdev->dev, *mapping)) {
884 		skb_free_frag(data);
885 		data = NULL;
886 	}
887 	return data;
888 }
889 
890 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
891 		       u16 prod, gfp_t gfp)
892 {
893 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
894 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
895 	dma_addr_t mapping;
896 
897 	if (BNXT_RX_PAGE_MODE(bp)) {
898 		unsigned int offset;
899 		struct page *page =
900 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
901 
902 		if (!page)
903 			return -ENOMEM;
904 
905 		mapping += bp->rx_dma_offset;
906 		rx_buf->data = page;
907 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
908 	} else {
909 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
910 
911 		if (!data)
912 			return -ENOMEM;
913 
914 		rx_buf->data = data;
915 		rx_buf->data_ptr = data + bp->rx_offset;
916 	}
917 	rx_buf->mapping = mapping;
918 
919 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
920 	return 0;
921 }
922 
923 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
924 {
925 	u16 prod = rxr->rx_prod;
926 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
927 	struct bnxt *bp = rxr->bnapi->bp;
928 	struct rx_bd *cons_bd, *prod_bd;
929 
930 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
931 	cons_rx_buf = &rxr->rx_buf_ring[cons];
932 
933 	prod_rx_buf->data = data;
934 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
935 
936 	prod_rx_buf->mapping = cons_rx_buf->mapping;
937 
938 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
939 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
940 
941 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
942 }
943 
944 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
945 {
946 	u16 next, max = rxr->rx_agg_bmap_size;
947 
948 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
949 	if (next >= max)
950 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
951 	return next;
952 }
953 
954 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
955 				     struct bnxt_rx_ring_info *rxr,
956 				     u16 prod, gfp_t gfp)
957 {
958 	struct rx_bd *rxbd =
959 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
960 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
961 	struct page *page;
962 	dma_addr_t mapping;
963 	u16 sw_prod = rxr->rx_sw_agg_prod;
964 	unsigned int offset = 0;
965 
966 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
967 
968 	if (!page)
969 		return -ENOMEM;
970 
971 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
972 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
973 
974 	__set_bit(sw_prod, rxr->rx_agg_bmap);
975 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
976 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
977 
978 	rx_agg_buf->page = page;
979 	rx_agg_buf->offset = offset;
980 	rx_agg_buf->mapping = mapping;
981 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
982 	rxbd->rx_bd_opaque = sw_prod;
983 	return 0;
984 }
985 
986 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
987 				       struct bnxt_cp_ring_info *cpr,
988 				       u16 cp_cons, u16 curr)
989 {
990 	struct rx_agg_cmp *agg;
991 
992 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
993 	agg = (struct rx_agg_cmp *)
994 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
995 	return agg;
996 }
997 
998 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
999 					      struct bnxt_rx_ring_info *rxr,
1000 					      u16 agg_id, u16 curr)
1001 {
1002 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
1003 
1004 	return &tpa_info->agg_arr[curr];
1005 }
1006 
1007 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
1008 				   u16 start, u32 agg_bufs, bool tpa)
1009 {
1010 	struct bnxt_napi *bnapi = cpr->bnapi;
1011 	struct bnxt *bp = bnapi->bp;
1012 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1013 	u16 prod = rxr->rx_agg_prod;
1014 	u16 sw_prod = rxr->rx_sw_agg_prod;
1015 	bool p5_tpa = false;
1016 	u32 i;
1017 
1018 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1019 		p5_tpa = true;
1020 
1021 	for (i = 0; i < agg_bufs; i++) {
1022 		u16 cons;
1023 		struct rx_agg_cmp *agg;
1024 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
1025 		struct rx_bd *prod_bd;
1026 		struct page *page;
1027 
1028 		if (p5_tpa)
1029 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
1030 		else
1031 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
1032 		cons = agg->rx_agg_cmp_opaque;
1033 		__clear_bit(cons, rxr->rx_agg_bmap);
1034 
1035 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1036 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1037 
1038 		__set_bit(sw_prod, rxr->rx_agg_bmap);
1039 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
1040 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1041 
1042 		/* It is possible for sw_prod to be equal to cons, so
1043 		 * set cons_rx_buf->page to NULL first.
1044 		 */
1045 		page = cons_rx_buf->page;
1046 		cons_rx_buf->page = NULL;
1047 		prod_rx_buf->page = page;
1048 		prod_rx_buf->offset = cons_rx_buf->offset;
1049 
1050 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1051 
1052 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1053 
1054 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1055 		prod_bd->rx_bd_opaque = sw_prod;
1056 
1057 		prod = NEXT_RX_AGG(prod);
1058 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1059 	}
1060 	rxr->rx_agg_prod = prod;
1061 	rxr->rx_sw_agg_prod = sw_prod;
1062 }
1063 
1064 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1065 					      struct bnxt_rx_ring_info *rxr,
1066 					      u16 cons, void *data, u8 *data_ptr,
1067 					      dma_addr_t dma_addr,
1068 					      unsigned int offset_and_len)
1069 {
1070 	unsigned int len = offset_and_len & 0xffff;
1071 	struct page *page = data;
1072 	u16 prod = rxr->rx_prod;
1073 	struct sk_buff *skb;
1074 	int err;
1075 
1076 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1077 	if (unlikely(err)) {
1078 		bnxt_reuse_rx_data(rxr, cons, data);
1079 		return NULL;
1080 	}
1081 	dma_addr -= bp->rx_dma_offset;
1082 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1083 				bp->rx_dir);
1084 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1085 	if (!skb) {
1086 		page_pool_recycle_direct(rxr->page_pool, page);
1087 		return NULL;
1088 	}
1089 	skb_mark_for_recycle(skb);
1090 	skb_reserve(skb, bp->rx_offset);
1091 	__skb_put(skb, len);
1092 
1093 	return skb;
1094 }
1095 
1096 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1097 					struct bnxt_rx_ring_info *rxr,
1098 					u16 cons, void *data, u8 *data_ptr,
1099 					dma_addr_t dma_addr,
1100 					unsigned int offset_and_len)
1101 {
1102 	unsigned int payload = offset_and_len >> 16;
1103 	unsigned int len = offset_and_len & 0xffff;
1104 	skb_frag_t *frag;
1105 	struct page *page = data;
1106 	u16 prod = rxr->rx_prod;
1107 	struct sk_buff *skb;
1108 	int off, err;
1109 
1110 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1111 	if (unlikely(err)) {
1112 		bnxt_reuse_rx_data(rxr, cons, data);
1113 		return NULL;
1114 	}
1115 	dma_addr -= bp->rx_dma_offset;
1116 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1117 				bp->rx_dir);
1118 
1119 	if (unlikely(!payload))
1120 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1121 
1122 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1123 	if (!skb) {
1124 		page_pool_recycle_direct(rxr->page_pool, page);
1125 		return NULL;
1126 	}
1127 
1128 	skb_mark_for_recycle(skb);
1129 	off = (void *)data_ptr - page_address(page);
1130 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1131 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1132 	       payload + NET_IP_ALIGN);
1133 
1134 	frag = &skb_shinfo(skb)->frags[0];
1135 	skb_frag_size_sub(frag, payload);
1136 	skb_frag_off_add(frag, payload);
1137 	skb->data_len -= payload;
1138 	skb->tail += payload;
1139 
1140 	return skb;
1141 }
1142 
1143 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1144 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1145 				   void *data, u8 *data_ptr,
1146 				   dma_addr_t dma_addr,
1147 				   unsigned int offset_and_len)
1148 {
1149 	u16 prod = rxr->rx_prod;
1150 	struct sk_buff *skb;
1151 	int err;
1152 
1153 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1154 	if (unlikely(err)) {
1155 		bnxt_reuse_rx_data(rxr, cons, data);
1156 		return NULL;
1157 	}
1158 
1159 	skb = napi_build_skb(data, bp->rx_buf_size);
1160 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1161 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1162 	if (!skb) {
1163 		skb_free_frag(data);
1164 		return NULL;
1165 	}
1166 
1167 	skb_reserve(skb, bp->rx_offset);
1168 	skb_put(skb, offset_and_len & 0xffff);
1169 	return skb;
1170 }
1171 
1172 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1173 			       struct bnxt_cp_ring_info *cpr,
1174 			       struct skb_shared_info *shinfo,
1175 			       u16 idx, u32 agg_bufs, bool tpa,
1176 			       struct xdp_buff *xdp)
1177 {
1178 	struct bnxt_napi *bnapi = cpr->bnapi;
1179 	struct pci_dev *pdev = bp->pdev;
1180 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1181 	u16 prod = rxr->rx_agg_prod;
1182 	u32 i, total_frag_len = 0;
1183 	bool p5_tpa = false;
1184 
1185 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1186 		p5_tpa = true;
1187 
1188 	for (i = 0; i < agg_bufs; i++) {
1189 		skb_frag_t *frag = &shinfo->frags[i];
1190 		u16 cons, frag_len;
1191 		struct rx_agg_cmp *agg;
1192 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1193 		struct page *page;
1194 		dma_addr_t mapping;
1195 
1196 		if (p5_tpa)
1197 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1198 		else
1199 			agg = bnxt_get_agg(bp, cpr, idx, i);
1200 		cons = agg->rx_agg_cmp_opaque;
1201 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1202 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1203 
1204 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1205 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1206 					cons_rx_buf->offset, frag_len);
1207 		shinfo->nr_frags = i + 1;
1208 		__clear_bit(cons, rxr->rx_agg_bmap);
1209 
1210 		/* It is possible for bnxt_alloc_rx_page() to allocate
1211 		 * a sw_prod index that equals the cons index, so we
1212 		 * need to clear the cons entry now.
1213 		 */
1214 		mapping = cons_rx_buf->mapping;
1215 		page = cons_rx_buf->page;
1216 		cons_rx_buf->page = NULL;
1217 
1218 		if (xdp && page_is_pfmemalloc(page))
1219 			xdp_buff_set_frag_pfmemalloc(xdp);
1220 
1221 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1222 			--shinfo->nr_frags;
1223 			cons_rx_buf->page = page;
1224 
1225 			/* Update prod since possibly some pages have been
1226 			 * allocated already.
1227 			 */
1228 			rxr->rx_agg_prod = prod;
1229 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1230 			return 0;
1231 		}
1232 
1233 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1234 					bp->rx_dir);
1235 
1236 		total_frag_len += frag_len;
1237 		prod = NEXT_RX_AGG(prod);
1238 	}
1239 	rxr->rx_agg_prod = prod;
1240 	return total_frag_len;
1241 }
1242 
1243 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1244 					     struct bnxt_cp_ring_info *cpr,
1245 					     struct sk_buff *skb, u16 idx,
1246 					     u32 agg_bufs, bool tpa)
1247 {
1248 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1249 	u32 total_frag_len = 0;
1250 
1251 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1252 					     agg_bufs, tpa, NULL);
1253 	if (!total_frag_len) {
1254 		skb_mark_for_recycle(skb);
1255 		dev_kfree_skb(skb);
1256 		return NULL;
1257 	}
1258 
1259 	skb->data_len += total_frag_len;
1260 	skb->len += total_frag_len;
1261 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1262 	return skb;
1263 }
1264 
1265 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1266 				 struct bnxt_cp_ring_info *cpr,
1267 				 struct xdp_buff *xdp, u16 idx,
1268 				 u32 agg_bufs, bool tpa)
1269 {
1270 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1271 	u32 total_frag_len = 0;
1272 
1273 	if (!xdp_buff_has_frags(xdp))
1274 		shinfo->nr_frags = 0;
1275 
1276 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1277 					     idx, agg_bufs, tpa, xdp);
1278 	if (total_frag_len) {
1279 		xdp_buff_set_frags_flag(xdp);
1280 		shinfo->nr_frags = agg_bufs;
1281 		shinfo->xdp_frags_size = total_frag_len;
1282 	}
1283 	return total_frag_len;
1284 }
1285 
1286 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1287 			       u8 agg_bufs, u32 *raw_cons)
1288 {
1289 	u16 last;
1290 	struct rx_agg_cmp *agg;
1291 
1292 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1293 	last = RING_CMP(*raw_cons);
1294 	agg = (struct rx_agg_cmp *)
1295 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1296 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1297 }
1298 
1299 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1300 					    unsigned int len,
1301 					    dma_addr_t mapping)
1302 {
1303 	struct bnxt *bp = bnapi->bp;
1304 	struct pci_dev *pdev = bp->pdev;
1305 	struct sk_buff *skb;
1306 
1307 	skb = napi_alloc_skb(&bnapi->napi, len);
1308 	if (!skb)
1309 		return NULL;
1310 
1311 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1312 				bp->rx_dir);
1313 
1314 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1315 	       len + NET_IP_ALIGN);
1316 
1317 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1318 				   bp->rx_dir);
1319 
1320 	skb_put(skb, len);
1321 	return skb;
1322 }
1323 
1324 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1325 			   u32 *raw_cons, void *cmp)
1326 {
1327 	struct rx_cmp *rxcmp = cmp;
1328 	u32 tmp_raw_cons = *raw_cons;
1329 	u8 cmp_type, agg_bufs = 0;
1330 
1331 	cmp_type = RX_CMP_TYPE(rxcmp);
1332 
1333 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1334 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1335 			    RX_CMP_AGG_BUFS) >>
1336 			   RX_CMP_AGG_BUFS_SHIFT;
1337 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1338 		struct rx_tpa_end_cmp *tpa_end = cmp;
1339 
1340 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1341 			return 0;
1342 
1343 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1344 	}
1345 
1346 	if (agg_bufs) {
1347 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1348 			return -EBUSY;
1349 	}
1350 	*raw_cons = tmp_raw_cons;
1351 	return 0;
1352 }
1353 
1354 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1355 {
1356 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1357 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1358 
1359 	if (test_bit(idx, map->agg_idx_bmap))
1360 		idx = find_first_zero_bit(map->agg_idx_bmap,
1361 					  BNXT_AGG_IDX_BMAP_SIZE);
1362 	__set_bit(idx, map->agg_idx_bmap);
1363 	map->agg_id_tbl[agg_id] = idx;
1364 	return idx;
1365 }
1366 
1367 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1368 {
1369 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1370 
1371 	__clear_bit(idx, map->agg_idx_bmap);
1372 }
1373 
1374 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1375 {
1376 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1377 
1378 	return map->agg_id_tbl[agg_id];
1379 }
1380 
1381 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1382 			      struct rx_tpa_start_cmp *tpa_start,
1383 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1384 {
1385 	tpa_info->cfa_code_valid = 1;
1386 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1387 	tpa_info->vlan_valid = 0;
1388 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1389 		tpa_info->vlan_valid = 1;
1390 		tpa_info->metadata =
1391 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1392 	}
1393 }
1394 
1395 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1396 				 struct rx_tpa_start_cmp *tpa_start,
1397 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1398 {
1399 	tpa_info->vlan_valid = 0;
1400 	if (TPA_START_VLAN_VALID(tpa_start)) {
1401 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1402 		u32 vlan_proto = ETH_P_8021Q;
1403 
1404 		tpa_info->vlan_valid = 1;
1405 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1406 			vlan_proto = ETH_P_8021AD;
1407 		tpa_info->metadata = vlan_proto << 16 |
1408 				     TPA_START_METADATA0_TCI(tpa_start1);
1409 	}
1410 }
1411 
1412 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1413 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1414 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1415 {
1416 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1417 	struct bnxt_tpa_info *tpa_info;
1418 	u16 cons, prod, agg_id;
1419 	struct rx_bd *prod_bd;
1420 	dma_addr_t mapping;
1421 
1422 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1423 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1424 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1425 	} else {
1426 		agg_id = TPA_START_AGG_ID(tpa_start);
1427 	}
1428 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1429 	prod = rxr->rx_prod;
1430 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1431 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1432 	tpa_info = &rxr->rx_tpa[agg_id];
1433 
1434 	if (unlikely(cons != rxr->rx_next_cons ||
1435 		     TPA_START_ERROR(tpa_start))) {
1436 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1437 			    cons, rxr->rx_next_cons,
1438 			    TPA_START_ERROR_CODE(tpa_start1));
1439 		bnxt_sched_reset_rxr(bp, rxr);
1440 		return;
1441 	}
1442 	prod_rx_buf->data = tpa_info->data;
1443 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1444 
1445 	mapping = tpa_info->mapping;
1446 	prod_rx_buf->mapping = mapping;
1447 
1448 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1449 
1450 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1451 
1452 	tpa_info->data = cons_rx_buf->data;
1453 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1454 	cons_rx_buf->data = NULL;
1455 	tpa_info->mapping = cons_rx_buf->mapping;
1456 
1457 	tpa_info->len =
1458 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1459 				RX_TPA_START_CMP_LEN_SHIFT;
1460 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1461 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1462 		tpa_info->gso_type = SKB_GSO_TCPV4;
1463 		if (TPA_START_IS_IPV6(tpa_start1))
1464 			tpa_info->gso_type = SKB_GSO_TCPV6;
1465 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1466 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1467 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1468 			tpa_info->gso_type = SKB_GSO_TCPV6;
1469 		tpa_info->rss_hash =
1470 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1471 	} else {
1472 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1473 		tpa_info->gso_type = 0;
1474 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1475 	}
1476 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1477 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1478 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1479 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1480 	else
1481 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1482 	tpa_info->agg_count = 0;
1483 
1484 	rxr->rx_prod = NEXT_RX(prod);
1485 	cons = RING_RX(bp, NEXT_RX(cons));
1486 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1487 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1488 
1489 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1490 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1491 	cons_rx_buf->data = NULL;
1492 }
1493 
1494 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1495 {
1496 	if (agg_bufs)
1497 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1498 }
1499 
1500 #ifdef CONFIG_INET
1501 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1502 {
1503 	struct udphdr *uh = NULL;
1504 
1505 	if (ip_proto == htons(ETH_P_IP)) {
1506 		struct iphdr *iph = (struct iphdr *)skb->data;
1507 
1508 		if (iph->protocol == IPPROTO_UDP)
1509 			uh = (struct udphdr *)(iph + 1);
1510 	} else {
1511 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1512 
1513 		if (iph->nexthdr == IPPROTO_UDP)
1514 			uh = (struct udphdr *)(iph + 1);
1515 	}
1516 	if (uh) {
1517 		if (uh->check)
1518 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1519 		else
1520 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1521 	}
1522 }
1523 #endif
1524 
1525 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1526 					   int payload_off, int tcp_ts,
1527 					   struct sk_buff *skb)
1528 {
1529 #ifdef CONFIG_INET
1530 	struct tcphdr *th;
1531 	int len, nw_off;
1532 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1533 	u32 hdr_info = tpa_info->hdr_info;
1534 	bool loopback = false;
1535 
1536 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1537 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1538 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1539 
1540 	/* If the packet is an internal loopback packet, the offsets will
1541 	 * have an extra 4 bytes.
1542 	 */
1543 	if (inner_mac_off == 4) {
1544 		loopback = true;
1545 	} else if (inner_mac_off > 4) {
1546 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1547 					    ETH_HLEN - 2));
1548 
1549 		/* We only support inner iPv4/ipv6.  If we don't see the
1550 		 * correct protocol ID, it must be a loopback packet where
1551 		 * the offsets are off by 4.
1552 		 */
1553 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1554 			loopback = true;
1555 	}
1556 	if (loopback) {
1557 		/* internal loopback packet, subtract all offsets by 4 */
1558 		inner_ip_off -= 4;
1559 		inner_mac_off -= 4;
1560 		outer_ip_off -= 4;
1561 	}
1562 
1563 	nw_off = inner_ip_off - ETH_HLEN;
1564 	skb_set_network_header(skb, nw_off);
1565 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1566 		struct ipv6hdr *iph = ipv6_hdr(skb);
1567 
1568 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1569 		len = skb->len - skb_transport_offset(skb);
1570 		th = tcp_hdr(skb);
1571 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1572 	} else {
1573 		struct iphdr *iph = ip_hdr(skb);
1574 
1575 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1576 		len = skb->len - skb_transport_offset(skb);
1577 		th = tcp_hdr(skb);
1578 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1579 	}
1580 
1581 	if (inner_mac_off) { /* tunnel */
1582 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1583 					    ETH_HLEN - 2));
1584 
1585 		bnxt_gro_tunnel(skb, proto);
1586 	}
1587 #endif
1588 	return skb;
1589 }
1590 
1591 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1592 					   int payload_off, int tcp_ts,
1593 					   struct sk_buff *skb)
1594 {
1595 #ifdef CONFIG_INET
1596 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1597 	u32 hdr_info = tpa_info->hdr_info;
1598 	int iphdr_len, nw_off;
1599 
1600 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1601 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1602 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1603 
1604 	nw_off = inner_ip_off - ETH_HLEN;
1605 	skb_set_network_header(skb, nw_off);
1606 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1607 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1608 	skb_set_transport_header(skb, nw_off + iphdr_len);
1609 
1610 	if (inner_mac_off) { /* tunnel */
1611 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1612 					    ETH_HLEN - 2));
1613 
1614 		bnxt_gro_tunnel(skb, proto);
1615 	}
1616 #endif
1617 	return skb;
1618 }
1619 
1620 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1621 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1622 
1623 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1624 					   int payload_off, int tcp_ts,
1625 					   struct sk_buff *skb)
1626 {
1627 #ifdef CONFIG_INET
1628 	struct tcphdr *th;
1629 	int len, nw_off, tcp_opt_len = 0;
1630 
1631 	if (tcp_ts)
1632 		tcp_opt_len = 12;
1633 
1634 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1635 		struct iphdr *iph;
1636 
1637 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1638 			 ETH_HLEN;
1639 		skb_set_network_header(skb, nw_off);
1640 		iph = ip_hdr(skb);
1641 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1642 		len = skb->len - skb_transport_offset(skb);
1643 		th = tcp_hdr(skb);
1644 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1645 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1646 		struct ipv6hdr *iph;
1647 
1648 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1649 			 ETH_HLEN;
1650 		skb_set_network_header(skb, nw_off);
1651 		iph = ipv6_hdr(skb);
1652 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1653 		len = skb->len - skb_transport_offset(skb);
1654 		th = tcp_hdr(skb);
1655 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1656 	} else {
1657 		dev_kfree_skb_any(skb);
1658 		return NULL;
1659 	}
1660 
1661 	if (nw_off) /* tunnel */
1662 		bnxt_gro_tunnel(skb, skb->protocol);
1663 #endif
1664 	return skb;
1665 }
1666 
1667 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1668 					   struct bnxt_tpa_info *tpa_info,
1669 					   struct rx_tpa_end_cmp *tpa_end,
1670 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1671 					   struct sk_buff *skb)
1672 {
1673 #ifdef CONFIG_INET
1674 	int payload_off;
1675 	u16 segs;
1676 
1677 	segs = TPA_END_TPA_SEGS(tpa_end);
1678 	if (segs == 1)
1679 		return skb;
1680 
1681 	NAPI_GRO_CB(skb)->count = segs;
1682 	skb_shinfo(skb)->gso_size =
1683 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1684 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1685 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1686 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1687 	else
1688 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1689 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1690 	if (likely(skb))
1691 		tcp_gro_complete(skb);
1692 #endif
1693 	return skb;
1694 }
1695 
1696 /* Given the cfa_code of a received packet determine which
1697  * netdev (vf-rep or PF) the packet is destined to.
1698  */
1699 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1700 {
1701 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1702 
1703 	/* if vf-rep dev is NULL, the must belongs to the PF */
1704 	return dev ? dev : bp->dev;
1705 }
1706 
1707 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1708 					   struct bnxt_cp_ring_info *cpr,
1709 					   u32 *raw_cons,
1710 					   struct rx_tpa_end_cmp *tpa_end,
1711 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1712 					   u8 *event)
1713 {
1714 	struct bnxt_napi *bnapi = cpr->bnapi;
1715 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1716 	struct net_device *dev = bp->dev;
1717 	u8 *data_ptr, agg_bufs;
1718 	unsigned int len;
1719 	struct bnxt_tpa_info *tpa_info;
1720 	dma_addr_t mapping;
1721 	struct sk_buff *skb;
1722 	u16 idx = 0, agg_id;
1723 	void *data;
1724 	bool gro;
1725 
1726 	if (unlikely(bnapi->in_reset)) {
1727 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1728 
1729 		if (rc < 0)
1730 			return ERR_PTR(-EBUSY);
1731 		return NULL;
1732 	}
1733 
1734 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1735 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1736 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1737 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1738 		tpa_info = &rxr->rx_tpa[agg_id];
1739 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1740 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1741 				    agg_bufs, tpa_info->agg_count);
1742 			agg_bufs = tpa_info->agg_count;
1743 		}
1744 		tpa_info->agg_count = 0;
1745 		*event |= BNXT_AGG_EVENT;
1746 		bnxt_free_agg_idx(rxr, agg_id);
1747 		idx = agg_id;
1748 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1749 	} else {
1750 		agg_id = TPA_END_AGG_ID(tpa_end);
1751 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1752 		tpa_info = &rxr->rx_tpa[agg_id];
1753 		idx = RING_CMP(*raw_cons);
1754 		if (agg_bufs) {
1755 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1756 				return ERR_PTR(-EBUSY);
1757 
1758 			*event |= BNXT_AGG_EVENT;
1759 			idx = NEXT_CMP(idx);
1760 		}
1761 		gro = !!TPA_END_GRO(tpa_end);
1762 	}
1763 	data = tpa_info->data;
1764 	data_ptr = tpa_info->data_ptr;
1765 	prefetch(data_ptr);
1766 	len = tpa_info->len;
1767 	mapping = tpa_info->mapping;
1768 
1769 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1770 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1771 		if (agg_bufs > MAX_SKB_FRAGS)
1772 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1773 				    agg_bufs, (int)MAX_SKB_FRAGS);
1774 		return NULL;
1775 	}
1776 
1777 	if (len <= bp->rx_copy_thresh) {
1778 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1779 		if (!skb) {
1780 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1781 			cpr->sw_stats.rx.rx_oom_discards += 1;
1782 			return NULL;
1783 		}
1784 	} else {
1785 		u8 *new_data;
1786 		dma_addr_t new_mapping;
1787 
1788 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1789 		if (!new_data) {
1790 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1791 			cpr->sw_stats.rx.rx_oom_discards += 1;
1792 			return NULL;
1793 		}
1794 
1795 		tpa_info->data = new_data;
1796 		tpa_info->data_ptr = new_data + bp->rx_offset;
1797 		tpa_info->mapping = new_mapping;
1798 
1799 		skb = napi_build_skb(data, bp->rx_buf_size);
1800 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1801 				       bp->rx_buf_use_size, bp->rx_dir,
1802 				       DMA_ATTR_WEAK_ORDERING);
1803 
1804 		if (!skb) {
1805 			skb_free_frag(data);
1806 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1807 			cpr->sw_stats.rx.rx_oom_discards += 1;
1808 			return NULL;
1809 		}
1810 		skb_reserve(skb, bp->rx_offset);
1811 		skb_put(skb, len);
1812 	}
1813 
1814 	if (agg_bufs) {
1815 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1816 		if (!skb) {
1817 			/* Page reuse already handled by bnxt_rx_pages(). */
1818 			cpr->sw_stats.rx.rx_oom_discards += 1;
1819 			return NULL;
1820 		}
1821 	}
1822 
1823 	if (tpa_info->cfa_code_valid)
1824 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1825 	skb->protocol = eth_type_trans(skb, dev);
1826 
1827 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1828 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1829 
1830 	if (tpa_info->vlan_valid &&
1831 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1832 		__be16 vlan_proto = htons(tpa_info->metadata >>
1833 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1834 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1835 
1836 		if (eth_type_vlan(vlan_proto)) {
1837 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1838 		} else {
1839 			dev_kfree_skb(skb);
1840 			return NULL;
1841 		}
1842 	}
1843 
1844 	skb_checksum_none_assert(skb);
1845 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1846 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1847 		skb->csum_level =
1848 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1849 	}
1850 
1851 	if (gro)
1852 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1853 
1854 	return skb;
1855 }
1856 
1857 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1858 			 struct rx_agg_cmp *rx_agg)
1859 {
1860 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1861 	struct bnxt_tpa_info *tpa_info;
1862 
1863 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1864 	tpa_info = &rxr->rx_tpa[agg_id];
1865 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1866 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1867 }
1868 
1869 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1870 			     struct sk_buff *skb)
1871 {
1872 	skb_mark_for_recycle(skb);
1873 
1874 	if (skb->dev != bp->dev) {
1875 		/* this packet belongs to a vf-rep */
1876 		bnxt_vf_rep_rx(bp, skb);
1877 		return;
1878 	}
1879 	skb_record_rx_queue(skb, bnapi->index);
1880 	napi_gro_receive(&bnapi->napi, skb);
1881 }
1882 
1883 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1884 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1885 {
1886 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1887 
1888 	if (BNXT_PTP_RX_TS_VALID(flags))
1889 		goto ts_valid;
1890 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1891 		return false;
1892 
1893 ts_valid:
1894 	*cmpl_ts = ts;
1895 	return true;
1896 }
1897 
1898 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1899 				    struct rx_cmp *rxcmp,
1900 				    struct rx_cmp_ext *rxcmp1)
1901 {
1902 	__be16 vlan_proto;
1903 	u16 vtag;
1904 
1905 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1906 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1907 		u32 meta_data;
1908 
1909 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1910 			return skb;
1911 
1912 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1913 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1914 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1915 		if (eth_type_vlan(vlan_proto))
1916 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1917 		else
1918 			goto vlan_err;
1919 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1920 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1921 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1922 
1923 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1924 				vlan_proto = htons(ETH_P_8021Q);
1925 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1926 				vlan_proto = htons(ETH_P_8021AD);
1927 			else
1928 				goto vlan_err;
1929 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1930 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1931 		}
1932 	}
1933 	return skb;
1934 vlan_err:
1935 	dev_kfree_skb(skb);
1936 	return NULL;
1937 }
1938 
1939 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1940 					   struct rx_cmp *rxcmp)
1941 {
1942 	u8 ext_op;
1943 
1944 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
1945 	switch (ext_op) {
1946 	case EXT_OP_INNER_4:
1947 	case EXT_OP_OUTER_4:
1948 	case EXT_OP_INNFL_3:
1949 	case EXT_OP_OUTFL_3:
1950 		return PKT_HASH_TYPE_L4;
1951 	default:
1952 		return PKT_HASH_TYPE_L3;
1953 	}
1954 }
1955 
1956 /* returns the following:
1957  * 1       - 1 packet successfully received
1958  * 0       - successful TPA_START, packet not completed yet
1959  * -EBUSY  - completion ring does not have all the agg buffers yet
1960  * -ENOMEM - packet aborted due to out of memory
1961  * -EIO    - packet aborted due to hw error indicated in BD
1962  */
1963 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1964 		       u32 *raw_cons, u8 *event)
1965 {
1966 	struct bnxt_napi *bnapi = cpr->bnapi;
1967 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1968 	struct net_device *dev = bp->dev;
1969 	struct rx_cmp *rxcmp;
1970 	struct rx_cmp_ext *rxcmp1;
1971 	u32 tmp_raw_cons = *raw_cons;
1972 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1973 	struct bnxt_sw_rx_bd *rx_buf;
1974 	unsigned int len;
1975 	u8 *data_ptr, agg_bufs, cmp_type;
1976 	bool xdp_active = false;
1977 	dma_addr_t dma_addr;
1978 	struct sk_buff *skb;
1979 	struct xdp_buff xdp;
1980 	u32 flags, misc;
1981 	u32 cmpl_ts;
1982 	void *data;
1983 	int rc = 0;
1984 
1985 	rxcmp = (struct rx_cmp *)
1986 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1987 
1988 	cmp_type = RX_CMP_TYPE(rxcmp);
1989 
1990 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1991 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1992 		goto next_rx_no_prod_no_len;
1993 	}
1994 
1995 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1996 	cp_cons = RING_CMP(tmp_raw_cons);
1997 	rxcmp1 = (struct rx_cmp_ext *)
1998 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1999 
2000 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2001 		return -EBUSY;
2002 
2003 	/* The valid test of the entry must be done first before
2004 	 * reading any further.
2005 	 */
2006 	dma_rmb();
2007 	prod = rxr->rx_prod;
2008 
2009 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
2010 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2011 		bnxt_tpa_start(bp, rxr, cmp_type,
2012 			       (struct rx_tpa_start_cmp *)rxcmp,
2013 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
2014 
2015 		*event |= BNXT_RX_EVENT;
2016 		goto next_rx_no_prod_no_len;
2017 
2018 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2019 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
2020 				   (struct rx_tpa_end_cmp *)rxcmp,
2021 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
2022 
2023 		if (IS_ERR(skb))
2024 			return -EBUSY;
2025 
2026 		rc = -ENOMEM;
2027 		if (likely(skb)) {
2028 			bnxt_deliver_skb(bp, bnapi, skb);
2029 			rc = 1;
2030 		}
2031 		*event |= BNXT_RX_EVENT;
2032 		goto next_rx_no_prod_no_len;
2033 	}
2034 
2035 	cons = rxcmp->rx_cmp_opaque;
2036 	if (unlikely(cons != rxr->rx_next_cons)) {
2037 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
2038 
2039 		/* 0xffff is forced error, don't print it */
2040 		if (rxr->rx_next_cons != 0xffff)
2041 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
2042 				    cons, rxr->rx_next_cons);
2043 		bnxt_sched_reset_rxr(bp, rxr);
2044 		if (rc1)
2045 			return rc1;
2046 		goto next_rx_no_prod_no_len;
2047 	}
2048 	rx_buf = &rxr->rx_buf_ring[cons];
2049 	data = rx_buf->data;
2050 	data_ptr = rx_buf->data_ptr;
2051 	prefetch(data_ptr);
2052 
2053 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2054 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2055 
2056 	if (agg_bufs) {
2057 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2058 			return -EBUSY;
2059 
2060 		cp_cons = NEXT_CMP(cp_cons);
2061 		*event |= BNXT_AGG_EVENT;
2062 	}
2063 	*event |= BNXT_RX_EVENT;
2064 
2065 	rx_buf->data = NULL;
2066 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2067 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2068 
2069 		bnxt_reuse_rx_data(rxr, cons, data);
2070 		if (agg_bufs)
2071 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2072 					       false);
2073 
2074 		rc = -EIO;
2075 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2076 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
2077 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2078 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2079 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2080 						 rx_err);
2081 				bnxt_sched_reset_rxr(bp, rxr);
2082 			}
2083 		}
2084 		goto next_rx_no_len;
2085 	}
2086 
2087 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2088 	len = flags >> RX_CMP_LEN_SHIFT;
2089 	dma_addr = rx_buf->mapping;
2090 
2091 	if (bnxt_xdp_attached(bp, rxr)) {
2092 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2093 		if (agg_bufs) {
2094 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2095 							     cp_cons, agg_bufs,
2096 							     false);
2097 			if (!frag_len) {
2098 				cpr->sw_stats.rx.rx_oom_discards += 1;
2099 				rc = -ENOMEM;
2100 				goto next_rx;
2101 			}
2102 		}
2103 		xdp_active = true;
2104 	}
2105 
2106 	if (xdp_active) {
2107 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
2108 			rc = 1;
2109 			goto next_rx;
2110 		}
2111 	}
2112 
2113 	if (len <= bp->rx_copy_thresh) {
2114 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2115 		bnxt_reuse_rx_data(rxr, cons, data);
2116 		if (!skb) {
2117 			if (agg_bufs) {
2118 				if (!xdp_active)
2119 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2120 							       agg_bufs, false);
2121 				else
2122 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2123 			}
2124 			cpr->sw_stats.rx.rx_oom_discards += 1;
2125 			rc = -ENOMEM;
2126 			goto next_rx;
2127 		}
2128 	} else {
2129 		u32 payload;
2130 
2131 		if (rx_buf->data_ptr == data_ptr)
2132 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2133 		else
2134 			payload = 0;
2135 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2136 				      payload | len);
2137 		if (!skb) {
2138 			cpr->sw_stats.rx.rx_oom_discards += 1;
2139 			rc = -ENOMEM;
2140 			goto next_rx;
2141 		}
2142 	}
2143 
2144 	if (agg_bufs) {
2145 		if (!xdp_active) {
2146 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2147 			if (!skb) {
2148 				cpr->sw_stats.rx.rx_oom_discards += 1;
2149 				rc = -ENOMEM;
2150 				goto next_rx;
2151 			}
2152 		} else {
2153 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2154 			if (!skb) {
2155 				/* we should be able to free the old skb here */
2156 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2157 				cpr->sw_stats.rx.rx_oom_discards += 1;
2158 				rc = -ENOMEM;
2159 				goto next_rx;
2160 			}
2161 		}
2162 	}
2163 
2164 	if (RX_CMP_HASH_VALID(rxcmp)) {
2165 		enum pkt_hash_types type;
2166 
2167 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2168 			type = bnxt_rss_ext_op(bp, rxcmp);
2169 		} else {
2170 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2171 
2172 			/* RSS profiles 1 and 3 with extract code 0 for inner
2173 			 * 4-tuple
2174 			 */
2175 			if (hash_type != 1 && hash_type != 3)
2176 				type = PKT_HASH_TYPE_L3;
2177 			else
2178 				type = PKT_HASH_TYPE_L4;
2179 		}
2180 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2181 	}
2182 
2183 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2184 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2185 	skb->protocol = eth_type_trans(skb, dev);
2186 
2187 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2188 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2189 		if (!skb)
2190 			goto next_rx;
2191 	}
2192 
2193 	skb_checksum_none_assert(skb);
2194 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2195 		if (dev->features & NETIF_F_RXCSUM) {
2196 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2197 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2198 		}
2199 	} else {
2200 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2201 			if (dev->features & NETIF_F_RXCSUM)
2202 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2203 		}
2204 	}
2205 
2206 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2207 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2208 			u64 ns, ts;
2209 
2210 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2211 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2212 
2213 				spin_lock_bh(&ptp->ptp_lock);
2214 				ns = timecounter_cyc2time(&ptp->tc, ts);
2215 				spin_unlock_bh(&ptp->ptp_lock);
2216 				memset(skb_hwtstamps(skb), 0,
2217 				       sizeof(*skb_hwtstamps(skb)));
2218 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2219 			}
2220 		}
2221 	}
2222 	bnxt_deliver_skb(bp, bnapi, skb);
2223 	rc = 1;
2224 
2225 next_rx:
2226 	cpr->rx_packets += 1;
2227 	cpr->rx_bytes += len;
2228 
2229 next_rx_no_len:
2230 	rxr->rx_prod = NEXT_RX(prod);
2231 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2232 
2233 next_rx_no_prod_no_len:
2234 	*raw_cons = tmp_raw_cons;
2235 
2236 	return rc;
2237 }
2238 
2239 /* In netpoll mode, if we are using a combined completion ring, we need to
2240  * discard the rx packets and recycle the buffers.
2241  */
2242 static int bnxt_force_rx_discard(struct bnxt *bp,
2243 				 struct bnxt_cp_ring_info *cpr,
2244 				 u32 *raw_cons, u8 *event)
2245 {
2246 	u32 tmp_raw_cons = *raw_cons;
2247 	struct rx_cmp_ext *rxcmp1;
2248 	struct rx_cmp *rxcmp;
2249 	u16 cp_cons;
2250 	u8 cmp_type;
2251 	int rc;
2252 
2253 	cp_cons = RING_CMP(tmp_raw_cons);
2254 	rxcmp = (struct rx_cmp *)
2255 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2256 
2257 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2258 	cp_cons = RING_CMP(tmp_raw_cons);
2259 	rxcmp1 = (struct rx_cmp_ext *)
2260 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2261 
2262 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2263 		return -EBUSY;
2264 
2265 	/* The valid test of the entry must be done first before
2266 	 * reading any further.
2267 	 */
2268 	dma_rmb();
2269 	cmp_type = RX_CMP_TYPE(rxcmp);
2270 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2271 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2272 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2273 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2274 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2275 		struct rx_tpa_end_cmp_ext *tpa_end1;
2276 
2277 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2278 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2279 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2280 	}
2281 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2282 	if (rc && rc != -EBUSY)
2283 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2284 	return rc;
2285 }
2286 
2287 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2288 {
2289 	struct bnxt_fw_health *fw_health = bp->fw_health;
2290 	u32 reg = fw_health->regs[reg_idx];
2291 	u32 reg_type, reg_off, val = 0;
2292 
2293 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2294 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2295 	switch (reg_type) {
2296 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2297 		pci_read_config_dword(bp->pdev, reg_off, &val);
2298 		break;
2299 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2300 		reg_off = fw_health->mapped_regs[reg_idx];
2301 		fallthrough;
2302 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2303 		val = readl(bp->bar0 + reg_off);
2304 		break;
2305 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2306 		val = readl(bp->bar1 + reg_off);
2307 		break;
2308 	}
2309 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2310 		val &= fw_health->fw_reset_inprog_reg_mask;
2311 	return val;
2312 }
2313 
2314 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2315 {
2316 	int i;
2317 
2318 	for (i = 0; i < bp->rx_nr_rings; i++) {
2319 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2320 		struct bnxt_ring_grp_info *grp_info;
2321 
2322 		grp_info = &bp->grp_info[grp_idx];
2323 		if (grp_info->agg_fw_ring_id == ring_id)
2324 			return grp_idx;
2325 	}
2326 	return INVALID_HW_RING_ID;
2327 }
2328 
2329 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2330 {
2331 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2332 
2333 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2334 		return link_info->force_link_speed2;
2335 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2336 		return link_info->force_pam4_link_speed;
2337 	return link_info->force_link_speed;
2338 }
2339 
2340 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2341 {
2342 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2343 
2344 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2345 		link_info->req_link_speed = link_info->force_link_speed2;
2346 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2347 		switch (link_info->req_link_speed) {
2348 		case BNXT_LINK_SPEED_50GB_PAM4:
2349 		case BNXT_LINK_SPEED_100GB_PAM4:
2350 		case BNXT_LINK_SPEED_200GB_PAM4:
2351 		case BNXT_LINK_SPEED_400GB_PAM4:
2352 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2353 			break;
2354 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2355 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2356 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2357 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2358 			break;
2359 		default:
2360 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2361 		}
2362 		return;
2363 	}
2364 	link_info->req_link_speed = link_info->force_link_speed;
2365 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2366 	if (link_info->force_pam4_link_speed) {
2367 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2368 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2369 	}
2370 }
2371 
2372 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2373 {
2374 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2375 
2376 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2377 		link_info->advertising = link_info->auto_link_speeds2;
2378 		return;
2379 	}
2380 	link_info->advertising = link_info->auto_link_speeds;
2381 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2382 }
2383 
2384 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2385 {
2386 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2387 
2388 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2389 		if (link_info->req_link_speed != link_info->force_link_speed2)
2390 			return true;
2391 		return false;
2392 	}
2393 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2394 	    link_info->req_link_speed != link_info->force_link_speed)
2395 		return true;
2396 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2397 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2398 		return true;
2399 	return false;
2400 }
2401 
2402 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2403 {
2404 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2405 
2406 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2407 		if (link_info->advertising != link_info->auto_link_speeds2)
2408 			return true;
2409 		return false;
2410 	}
2411 	if (link_info->advertising != link_info->auto_link_speeds ||
2412 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2413 		return true;
2414 	return false;
2415 }
2416 
2417 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2418 	((data2) &							\
2419 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2420 
2421 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2422 	(((data2) &							\
2423 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2424 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2425 
2426 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2427 	((data1) &							\
2428 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2429 
2430 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2431 	(((data1) &							\
2432 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2433 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2434 
2435 /* Return true if the workqueue has to be scheduled */
2436 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2437 {
2438 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2439 
2440 	switch (err_type) {
2441 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2442 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2443 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2444 		break;
2445 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2446 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2447 		break;
2448 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2449 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2450 		break;
2451 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2452 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2453 		char *threshold_type;
2454 		bool notify = false;
2455 		char *dir_str;
2456 
2457 		switch (type) {
2458 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2459 			threshold_type = "warning";
2460 			break;
2461 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2462 			threshold_type = "critical";
2463 			break;
2464 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2465 			threshold_type = "fatal";
2466 			break;
2467 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2468 			threshold_type = "shutdown";
2469 			break;
2470 		default:
2471 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2472 			return false;
2473 		}
2474 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2475 			dir_str = "above";
2476 			notify = true;
2477 		} else {
2478 			dir_str = "below";
2479 		}
2480 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2481 			    dir_str, threshold_type);
2482 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2483 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2484 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2485 		if (notify) {
2486 			bp->thermal_threshold_type = type;
2487 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2488 			return true;
2489 		}
2490 		return false;
2491 	}
2492 	default:
2493 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2494 			   err_type);
2495 		break;
2496 	}
2497 	return false;
2498 }
2499 
2500 #define BNXT_GET_EVENT_PORT(data)	\
2501 	((data) &			\
2502 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2503 
2504 #define BNXT_EVENT_RING_TYPE(data2)	\
2505 	((data2) &			\
2506 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2507 
2508 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2509 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2510 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2511 
2512 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2513 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2514 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2515 
2516 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2517 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2518 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2519 
2520 #define BNXT_PHC_BITS	48
2521 
2522 static int bnxt_async_event_process(struct bnxt *bp,
2523 				    struct hwrm_async_event_cmpl *cmpl)
2524 {
2525 	u16 event_id = le16_to_cpu(cmpl->event_id);
2526 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2527 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2528 
2529 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2530 		   event_id, data1, data2);
2531 
2532 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2533 	switch (event_id) {
2534 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2535 		struct bnxt_link_info *link_info = &bp->link_info;
2536 
2537 		if (BNXT_VF(bp))
2538 			goto async_event_process_exit;
2539 
2540 		/* print unsupported speed warning in forced speed mode only */
2541 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2542 		    (data1 & 0x20000)) {
2543 			u16 fw_speed = bnxt_get_force_speed(link_info);
2544 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2545 
2546 			if (speed != SPEED_UNKNOWN)
2547 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2548 					    speed);
2549 		}
2550 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2551 	}
2552 		fallthrough;
2553 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2554 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2555 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2556 		fallthrough;
2557 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2558 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2559 		break;
2560 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2561 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2562 		break;
2563 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2564 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2565 
2566 		if (BNXT_VF(bp))
2567 			break;
2568 
2569 		if (bp->pf.port_id != port_id)
2570 			break;
2571 
2572 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2573 		break;
2574 	}
2575 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2576 		if (BNXT_PF(bp))
2577 			goto async_event_process_exit;
2578 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2579 		break;
2580 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2581 		char *type_str = "Solicited";
2582 
2583 		if (!bp->fw_health)
2584 			goto async_event_process_exit;
2585 
2586 		bp->fw_reset_timestamp = jiffies;
2587 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2588 		if (!bp->fw_reset_min_dsecs)
2589 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2590 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2591 		if (!bp->fw_reset_max_dsecs)
2592 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2593 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2594 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2595 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2596 			type_str = "Fatal";
2597 			bp->fw_health->fatalities++;
2598 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2599 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2600 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2601 			type_str = "Non-fatal";
2602 			bp->fw_health->survivals++;
2603 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2604 		}
2605 		netif_warn(bp, hw, bp->dev,
2606 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2607 			   type_str, data1, data2,
2608 			   bp->fw_reset_min_dsecs * 100,
2609 			   bp->fw_reset_max_dsecs * 100);
2610 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2611 		break;
2612 	}
2613 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2614 		struct bnxt_fw_health *fw_health = bp->fw_health;
2615 		char *status_desc = "healthy";
2616 		u32 status;
2617 
2618 		if (!fw_health)
2619 			goto async_event_process_exit;
2620 
2621 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2622 			fw_health->enabled = false;
2623 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2624 			break;
2625 		}
2626 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2627 		fw_health->tmr_multiplier =
2628 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2629 				     bp->current_interval * 10);
2630 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2631 		if (!fw_health->enabled)
2632 			fw_health->last_fw_heartbeat =
2633 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2634 		fw_health->last_fw_reset_cnt =
2635 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2636 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2637 		if (status != BNXT_FW_STATUS_HEALTHY)
2638 			status_desc = "unhealthy";
2639 		netif_info(bp, drv, bp->dev,
2640 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2641 			   fw_health->primary ? "primary" : "backup", status,
2642 			   status_desc, fw_health->last_fw_reset_cnt);
2643 		if (!fw_health->enabled) {
2644 			/* Make sure tmr_counter is set and visible to
2645 			 * bnxt_health_check() before setting enabled to true.
2646 			 */
2647 			smp_wmb();
2648 			fw_health->enabled = true;
2649 		}
2650 		goto async_event_process_exit;
2651 	}
2652 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2653 		netif_notice(bp, hw, bp->dev,
2654 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2655 			     data1, data2);
2656 		goto async_event_process_exit;
2657 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2658 		struct bnxt_rx_ring_info *rxr;
2659 		u16 grp_idx;
2660 
2661 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2662 			goto async_event_process_exit;
2663 
2664 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2665 			    BNXT_EVENT_RING_TYPE(data2), data1);
2666 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2667 			goto async_event_process_exit;
2668 
2669 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2670 		if (grp_idx == INVALID_HW_RING_ID) {
2671 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2672 				    data1);
2673 			goto async_event_process_exit;
2674 		}
2675 		rxr = bp->bnapi[grp_idx]->rx_ring;
2676 		bnxt_sched_reset_rxr(bp, rxr);
2677 		goto async_event_process_exit;
2678 	}
2679 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2680 		struct bnxt_fw_health *fw_health = bp->fw_health;
2681 
2682 		netif_notice(bp, hw, bp->dev,
2683 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2684 			     data1, data2);
2685 		if (fw_health) {
2686 			fw_health->echo_req_data1 = data1;
2687 			fw_health->echo_req_data2 = data2;
2688 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2689 			break;
2690 		}
2691 		goto async_event_process_exit;
2692 	}
2693 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2694 		bnxt_ptp_pps_event(bp, data1, data2);
2695 		goto async_event_process_exit;
2696 	}
2697 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2698 		if (bnxt_event_error_report(bp, data1, data2))
2699 			break;
2700 		goto async_event_process_exit;
2701 	}
2702 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2703 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2704 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2705 			if (BNXT_PTP_USE_RTC(bp)) {
2706 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2707 				u64 ns;
2708 
2709 				if (!ptp)
2710 					goto async_event_process_exit;
2711 
2712 				spin_lock_bh(&ptp->ptp_lock);
2713 				bnxt_ptp_update_current_time(bp);
2714 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2715 				       BNXT_PHC_BITS) | ptp->current_time);
2716 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2717 				spin_unlock_bh(&ptp->ptp_lock);
2718 			}
2719 			break;
2720 		}
2721 		goto async_event_process_exit;
2722 	}
2723 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2724 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2725 
2726 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2727 		goto async_event_process_exit;
2728 	}
2729 	default:
2730 		goto async_event_process_exit;
2731 	}
2732 	__bnxt_queue_sp_work(bp);
2733 async_event_process_exit:
2734 	return 0;
2735 }
2736 
2737 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2738 {
2739 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2740 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2741 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2742 				(struct hwrm_fwd_req_cmpl *)txcmp;
2743 
2744 	switch (cmpl_type) {
2745 	case CMPL_BASE_TYPE_HWRM_DONE:
2746 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2747 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2748 		break;
2749 
2750 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2751 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2752 
2753 		if ((vf_id < bp->pf.first_vf_id) ||
2754 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2755 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2756 				   vf_id);
2757 			return -EINVAL;
2758 		}
2759 
2760 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2761 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2762 		break;
2763 
2764 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2765 		bnxt_async_event_process(bp,
2766 					 (struct hwrm_async_event_cmpl *)txcmp);
2767 		break;
2768 
2769 	default:
2770 		break;
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2777 {
2778 	struct bnxt_napi *bnapi = dev_instance;
2779 	struct bnxt *bp = bnapi->bp;
2780 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2781 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2782 
2783 	cpr->event_ctr++;
2784 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2785 	napi_schedule(&bnapi->napi);
2786 	return IRQ_HANDLED;
2787 }
2788 
2789 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2790 {
2791 	u32 raw_cons = cpr->cp_raw_cons;
2792 	u16 cons = RING_CMP(raw_cons);
2793 	struct tx_cmp *txcmp;
2794 
2795 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2796 
2797 	return TX_CMP_VALID(txcmp, raw_cons);
2798 }
2799 
2800 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2801 {
2802 	struct bnxt_napi *bnapi = dev_instance;
2803 	struct bnxt *bp = bnapi->bp;
2804 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2805 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2806 	u32 int_status;
2807 
2808 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2809 
2810 	if (!bnxt_has_work(bp, cpr)) {
2811 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2812 		/* return if erroneous interrupt */
2813 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2814 			return IRQ_NONE;
2815 	}
2816 
2817 	/* disable ring IRQ */
2818 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2819 
2820 	/* Return here if interrupt is shared and is disabled. */
2821 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2822 		return IRQ_HANDLED;
2823 
2824 	napi_schedule(&bnapi->napi);
2825 	return IRQ_HANDLED;
2826 }
2827 
2828 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2829 			    int budget)
2830 {
2831 	struct bnxt_napi *bnapi = cpr->bnapi;
2832 	u32 raw_cons = cpr->cp_raw_cons;
2833 	u32 cons;
2834 	int rx_pkts = 0;
2835 	u8 event = 0;
2836 	struct tx_cmp *txcmp;
2837 
2838 	cpr->has_more_work = 0;
2839 	cpr->had_work_done = 1;
2840 	while (1) {
2841 		u8 cmp_type;
2842 		int rc;
2843 
2844 		cons = RING_CMP(raw_cons);
2845 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2846 
2847 		if (!TX_CMP_VALID(txcmp, raw_cons))
2848 			break;
2849 
2850 		/* The valid test of the entry must be done first before
2851 		 * reading any further.
2852 		 */
2853 		dma_rmb();
2854 		cmp_type = TX_CMP_TYPE(txcmp);
2855 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2856 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2857 			u32 opaque = txcmp->tx_cmp_opaque;
2858 			struct bnxt_tx_ring_info *txr;
2859 			u16 tx_freed;
2860 
2861 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2862 			event |= BNXT_TX_CMP_EVENT;
2863 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2864 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2865 			else
2866 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2867 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2868 				   bp->tx_ring_mask;
2869 			/* return full budget so NAPI will complete. */
2870 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2871 				rx_pkts = budget;
2872 				raw_cons = NEXT_RAW_CMP(raw_cons);
2873 				if (budget)
2874 					cpr->has_more_work = 1;
2875 				break;
2876 			}
2877 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2878 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2879 			if (likely(budget))
2880 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2881 			else
2882 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2883 							   &event);
2884 			if (likely(rc >= 0))
2885 				rx_pkts += rc;
2886 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2887 			 * the NAPI budget.  Otherwise, we may potentially loop
2888 			 * here forever if we consistently cannot allocate
2889 			 * buffers.
2890 			 */
2891 			else if (rc == -ENOMEM && budget)
2892 				rx_pkts++;
2893 			else if (rc == -EBUSY)	/* partial completion */
2894 				break;
2895 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2896 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2897 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2898 			bnxt_hwrm_handler(bp, txcmp);
2899 		}
2900 		raw_cons = NEXT_RAW_CMP(raw_cons);
2901 
2902 		if (rx_pkts && rx_pkts == budget) {
2903 			cpr->has_more_work = 1;
2904 			break;
2905 		}
2906 	}
2907 
2908 	if (event & BNXT_REDIRECT_EVENT)
2909 		xdp_do_flush();
2910 
2911 	if (event & BNXT_TX_EVENT) {
2912 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2913 		u16 prod = txr->tx_prod;
2914 
2915 		/* Sync BD data before updating doorbell */
2916 		wmb();
2917 
2918 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2919 	}
2920 
2921 	cpr->cp_raw_cons = raw_cons;
2922 	bnapi->events |= event;
2923 	return rx_pkts;
2924 }
2925 
2926 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2927 				  int budget)
2928 {
2929 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2930 		bnapi->tx_int(bp, bnapi, budget);
2931 
2932 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2933 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2934 
2935 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2936 	}
2937 	if (bnapi->events & BNXT_AGG_EVENT) {
2938 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2939 
2940 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2941 	}
2942 	bnapi->events &= BNXT_TX_CMP_EVENT;
2943 }
2944 
2945 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2946 			  int budget)
2947 {
2948 	struct bnxt_napi *bnapi = cpr->bnapi;
2949 	int rx_pkts;
2950 
2951 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2952 
2953 	/* ACK completion ring before freeing tx ring and producing new
2954 	 * buffers in rx/agg rings to prevent overflowing the completion
2955 	 * ring.
2956 	 */
2957 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2958 
2959 	__bnxt_poll_work_done(bp, bnapi, budget);
2960 	return rx_pkts;
2961 }
2962 
2963 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2964 {
2965 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2966 	struct bnxt *bp = bnapi->bp;
2967 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2968 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2969 	struct tx_cmp *txcmp;
2970 	struct rx_cmp_ext *rxcmp1;
2971 	u32 cp_cons, tmp_raw_cons;
2972 	u32 raw_cons = cpr->cp_raw_cons;
2973 	bool flush_xdp = false;
2974 	u32 rx_pkts = 0;
2975 	u8 event = 0;
2976 
2977 	while (1) {
2978 		int rc;
2979 
2980 		cp_cons = RING_CMP(raw_cons);
2981 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2982 
2983 		if (!TX_CMP_VALID(txcmp, raw_cons))
2984 			break;
2985 
2986 		/* The valid test of the entry must be done first before
2987 		 * reading any further.
2988 		 */
2989 		dma_rmb();
2990 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2991 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2992 			cp_cons = RING_CMP(tmp_raw_cons);
2993 			rxcmp1 = (struct rx_cmp_ext *)
2994 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2995 
2996 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2997 				break;
2998 
2999 			/* force an error to recycle the buffer */
3000 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
3001 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
3002 
3003 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
3004 			if (likely(rc == -EIO) && budget)
3005 				rx_pkts++;
3006 			else if (rc == -EBUSY)	/* partial completion */
3007 				break;
3008 			if (event & BNXT_REDIRECT_EVENT)
3009 				flush_xdp = true;
3010 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
3011 				    CMPL_BASE_TYPE_HWRM_DONE)) {
3012 			bnxt_hwrm_handler(bp, txcmp);
3013 		} else {
3014 			netdev_err(bp->dev,
3015 				   "Invalid completion received on special ring\n");
3016 		}
3017 		raw_cons = NEXT_RAW_CMP(raw_cons);
3018 
3019 		if (rx_pkts == budget)
3020 			break;
3021 	}
3022 
3023 	cpr->cp_raw_cons = raw_cons;
3024 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
3025 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3026 
3027 	if (event & BNXT_AGG_EVENT)
3028 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3029 	if (flush_xdp)
3030 		xdp_do_flush();
3031 
3032 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
3033 		napi_complete_done(napi, rx_pkts);
3034 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3035 	}
3036 	return rx_pkts;
3037 }
3038 
3039 static int bnxt_poll(struct napi_struct *napi, int budget)
3040 {
3041 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3042 	struct bnxt *bp = bnapi->bp;
3043 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3044 	int work_done = 0;
3045 
3046 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3047 		napi_complete(napi);
3048 		return 0;
3049 	}
3050 	while (1) {
3051 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3052 
3053 		if (work_done >= budget) {
3054 			if (!budget)
3055 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3056 			break;
3057 		}
3058 
3059 		if (!bnxt_has_work(bp, cpr)) {
3060 			if (napi_complete_done(napi, work_done))
3061 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3062 			break;
3063 		}
3064 	}
3065 	if (bp->flags & BNXT_FLAG_DIM) {
3066 		struct dim_sample dim_sample = {};
3067 
3068 		dim_update_sample(cpr->event_ctr,
3069 				  cpr->rx_packets,
3070 				  cpr->rx_bytes,
3071 				  &dim_sample);
3072 		net_dim(&cpr->dim, dim_sample);
3073 	}
3074 	return work_done;
3075 }
3076 
3077 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3078 {
3079 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3080 	int i, work_done = 0;
3081 
3082 	for (i = 0; i < cpr->cp_ring_count; i++) {
3083 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3084 
3085 		if (cpr2->had_nqe_notify) {
3086 			work_done += __bnxt_poll_work(bp, cpr2,
3087 						      budget - work_done);
3088 			cpr->has_more_work |= cpr2->has_more_work;
3089 		}
3090 	}
3091 	return work_done;
3092 }
3093 
3094 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3095 				 u64 dbr_type, int budget)
3096 {
3097 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3098 	int i;
3099 
3100 	for (i = 0; i < cpr->cp_ring_count; i++) {
3101 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3102 		struct bnxt_db_info *db;
3103 
3104 		if (cpr2->had_work_done) {
3105 			u32 tgl = 0;
3106 
3107 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3108 				cpr2->had_nqe_notify = 0;
3109 				tgl = cpr2->toggle;
3110 			}
3111 			db = &cpr2->cp_db;
3112 			bnxt_writeq(bp,
3113 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3114 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3115 				    db->doorbell);
3116 			cpr2->had_work_done = 0;
3117 		}
3118 	}
3119 	__bnxt_poll_work_done(bp, bnapi, budget);
3120 }
3121 
3122 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3123 {
3124 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3125 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3126 	struct bnxt_cp_ring_info *cpr_rx;
3127 	u32 raw_cons = cpr->cp_raw_cons;
3128 	struct bnxt *bp = bnapi->bp;
3129 	struct nqe_cn *nqcmp;
3130 	int work_done = 0;
3131 	u32 cons;
3132 
3133 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3134 		napi_complete(napi);
3135 		return 0;
3136 	}
3137 	if (cpr->has_more_work) {
3138 		cpr->has_more_work = 0;
3139 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3140 	}
3141 	while (1) {
3142 		u16 type;
3143 
3144 		cons = RING_CMP(raw_cons);
3145 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3146 
3147 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3148 			if (cpr->has_more_work)
3149 				break;
3150 
3151 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3152 					     budget);
3153 			cpr->cp_raw_cons = raw_cons;
3154 			if (napi_complete_done(napi, work_done))
3155 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3156 						  cpr->cp_raw_cons);
3157 			goto poll_done;
3158 		}
3159 
3160 		/* The valid test of the entry must be done first before
3161 		 * reading any further.
3162 		 */
3163 		dma_rmb();
3164 
3165 		type = le16_to_cpu(nqcmp->type);
3166 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3167 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3168 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3169 			struct bnxt_cp_ring_info *cpr2;
3170 
3171 			/* No more budget for RX work */
3172 			if (budget && work_done >= budget &&
3173 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3174 				break;
3175 
3176 			idx = BNXT_NQ_HDL_IDX(idx);
3177 			cpr2 = &cpr->cp_ring_arr[idx];
3178 			cpr2->had_nqe_notify = 1;
3179 			cpr2->toggle = NQE_CN_TOGGLE(type);
3180 			work_done += __bnxt_poll_work(bp, cpr2,
3181 						      budget - work_done);
3182 			cpr->has_more_work |= cpr2->has_more_work;
3183 		} else {
3184 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3185 		}
3186 		raw_cons = NEXT_RAW_CMP(raw_cons);
3187 	}
3188 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3189 	if (raw_cons != cpr->cp_raw_cons) {
3190 		cpr->cp_raw_cons = raw_cons;
3191 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3192 	}
3193 poll_done:
3194 	cpr_rx = &cpr->cp_ring_arr[0];
3195 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3196 	    (bp->flags & BNXT_FLAG_DIM)) {
3197 		struct dim_sample dim_sample = {};
3198 
3199 		dim_update_sample(cpr->event_ctr,
3200 				  cpr_rx->rx_packets,
3201 				  cpr_rx->rx_bytes,
3202 				  &dim_sample);
3203 		net_dim(&cpr->dim, dim_sample);
3204 	}
3205 	return work_done;
3206 }
3207 
3208 static void bnxt_free_tx_skbs(struct bnxt *bp)
3209 {
3210 	int i, max_idx;
3211 	struct pci_dev *pdev = bp->pdev;
3212 
3213 	if (!bp->tx_ring)
3214 		return;
3215 
3216 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3217 	for (i = 0; i < bp->tx_nr_rings; i++) {
3218 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3219 		int j;
3220 
3221 		if (!txr->tx_buf_ring)
3222 			continue;
3223 
3224 		for (j = 0; j < max_idx;) {
3225 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3226 			struct sk_buff *skb;
3227 			int k, last;
3228 
3229 			if (i < bp->tx_nr_rings_xdp &&
3230 			    tx_buf->action == XDP_REDIRECT) {
3231 				dma_unmap_single(&pdev->dev,
3232 					dma_unmap_addr(tx_buf, mapping),
3233 					dma_unmap_len(tx_buf, len),
3234 					DMA_TO_DEVICE);
3235 				xdp_return_frame(tx_buf->xdpf);
3236 				tx_buf->action = 0;
3237 				tx_buf->xdpf = NULL;
3238 				j++;
3239 				continue;
3240 			}
3241 
3242 			skb = tx_buf->skb;
3243 			if (!skb) {
3244 				j++;
3245 				continue;
3246 			}
3247 
3248 			tx_buf->skb = NULL;
3249 
3250 			if (tx_buf->is_push) {
3251 				dev_kfree_skb(skb);
3252 				j += 2;
3253 				continue;
3254 			}
3255 
3256 			dma_unmap_single(&pdev->dev,
3257 					 dma_unmap_addr(tx_buf, mapping),
3258 					 skb_headlen(skb),
3259 					 DMA_TO_DEVICE);
3260 
3261 			last = tx_buf->nr_frags;
3262 			j += 2;
3263 			for (k = 0; k < last; k++, j++) {
3264 				int ring_idx = j & bp->tx_ring_mask;
3265 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3266 
3267 				tx_buf = &txr->tx_buf_ring[ring_idx];
3268 				dma_unmap_page(
3269 					&pdev->dev,
3270 					dma_unmap_addr(tx_buf, mapping),
3271 					skb_frag_size(frag), DMA_TO_DEVICE);
3272 			}
3273 			dev_kfree_skb(skb);
3274 		}
3275 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3276 	}
3277 }
3278 
3279 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3280 {
3281 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3282 	struct pci_dev *pdev = bp->pdev;
3283 	struct bnxt_tpa_idx_map *map;
3284 	int i, max_idx, max_agg_idx;
3285 
3286 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3287 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3288 	if (!rxr->rx_tpa)
3289 		goto skip_rx_tpa_free;
3290 
3291 	for (i = 0; i < bp->max_tpa; i++) {
3292 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3293 		u8 *data = tpa_info->data;
3294 
3295 		if (!data)
3296 			continue;
3297 
3298 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3299 				       bp->rx_buf_use_size, bp->rx_dir,
3300 				       DMA_ATTR_WEAK_ORDERING);
3301 
3302 		tpa_info->data = NULL;
3303 
3304 		skb_free_frag(data);
3305 	}
3306 
3307 skip_rx_tpa_free:
3308 	if (!rxr->rx_buf_ring)
3309 		goto skip_rx_buf_free;
3310 
3311 	for (i = 0; i < max_idx; i++) {
3312 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3313 		dma_addr_t mapping = rx_buf->mapping;
3314 		void *data = rx_buf->data;
3315 
3316 		if (!data)
3317 			continue;
3318 
3319 		rx_buf->data = NULL;
3320 		if (BNXT_RX_PAGE_MODE(bp)) {
3321 			page_pool_recycle_direct(rxr->page_pool, data);
3322 		} else {
3323 			dma_unmap_single_attrs(&pdev->dev, mapping,
3324 					       bp->rx_buf_use_size, bp->rx_dir,
3325 					       DMA_ATTR_WEAK_ORDERING);
3326 			skb_free_frag(data);
3327 		}
3328 	}
3329 
3330 skip_rx_buf_free:
3331 	if (!rxr->rx_agg_ring)
3332 		goto skip_rx_agg_free;
3333 
3334 	for (i = 0; i < max_agg_idx; i++) {
3335 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3336 		struct page *page = rx_agg_buf->page;
3337 
3338 		if (!page)
3339 			continue;
3340 
3341 		rx_agg_buf->page = NULL;
3342 		__clear_bit(i, rxr->rx_agg_bmap);
3343 
3344 		page_pool_recycle_direct(rxr->page_pool, page);
3345 	}
3346 
3347 skip_rx_agg_free:
3348 	map = rxr->rx_tpa_idx_map;
3349 	if (map)
3350 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3351 }
3352 
3353 static void bnxt_free_rx_skbs(struct bnxt *bp)
3354 {
3355 	int i;
3356 
3357 	if (!bp->rx_ring)
3358 		return;
3359 
3360 	for (i = 0; i < bp->rx_nr_rings; i++)
3361 		bnxt_free_one_rx_ring_skbs(bp, i);
3362 }
3363 
3364 static void bnxt_free_skbs(struct bnxt *bp)
3365 {
3366 	bnxt_free_tx_skbs(bp);
3367 	bnxt_free_rx_skbs(bp);
3368 }
3369 
3370 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3371 {
3372 	u8 init_val = ctxm->init_value;
3373 	u16 offset = ctxm->init_offset;
3374 	u8 *p2 = p;
3375 	int i;
3376 
3377 	if (!init_val)
3378 		return;
3379 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3380 		memset(p, init_val, len);
3381 		return;
3382 	}
3383 	for (i = 0; i < len; i += ctxm->entry_size)
3384 		*(p2 + i + offset) = init_val;
3385 }
3386 
3387 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3388 {
3389 	struct pci_dev *pdev = bp->pdev;
3390 	int i;
3391 
3392 	if (!rmem->pg_arr)
3393 		goto skip_pages;
3394 
3395 	for (i = 0; i < rmem->nr_pages; i++) {
3396 		if (!rmem->pg_arr[i])
3397 			continue;
3398 
3399 		dma_free_coherent(&pdev->dev, rmem->page_size,
3400 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3401 
3402 		rmem->pg_arr[i] = NULL;
3403 	}
3404 skip_pages:
3405 	if (rmem->pg_tbl) {
3406 		size_t pg_tbl_size = rmem->nr_pages * 8;
3407 
3408 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3409 			pg_tbl_size = rmem->page_size;
3410 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3411 				  rmem->pg_tbl, rmem->pg_tbl_map);
3412 		rmem->pg_tbl = NULL;
3413 	}
3414 	if (rmem->vmem_size && *rmem->vmem) {
3415 		vfree(*rmem->vmem);
3416 		*rmem->vmem = NULL;
3417 	}
3418 }
3419 
3420 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3421 {
3422 	struct pci_dev *pdev = bp->pdev;
3423 	u64 valid_bit = 0;
3424 	int i;
3425 
3426 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3427 		valid_bit = PTU_PTE_VALID;
3428 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3429 		size_t pg_tbl_size = rmem->nr_pages * 8;
3430 
3431 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3432 			pg_tbl_size = rmem->page_size;
3433 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3434 						  &rmem->pg_tbl_map,
3435 						  GFP_KERNEL);
3436 		if (!rmem->pg_tbl)
3437 			return -ENOMEM;
3438 	}
3439 
3440 	for (i = 0; i < rmem->nr_pages; i++) {
3441 		u64 extra_bits = valid_bit;
3442 
3443 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3444 						     rmem->page_size,
3445 						     &rmem->dma_arr[i],
3446 						     GFP_KERNEL);
3447 		if (!rmem->pg_arr[i])
3448 			return -ENOMEM;
3449 
3450 		if (rmem->ctx_mem)
3451 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3452 					  rmem->page_size);
3453 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3454 			if (i == rmem->nr_pages - 2 &&
3455 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3456 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3457 			else if (i == rmem->nr_pages - 1 &&
3458 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3459 				extra_bits |= PTU_PTE_LAST;
3460 			rmem->pg_tbl[i] =
3461 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3462 		}
3463 	}
3464 
3465 	if (rmem->vmem_size) {
3466 		*rmem->vmem = vzalloc(rmem->vmem_size);
3467 		if (!(*rmem->vmem))
3468 			return -ENOMEM;
3469 	}
3470 	return 0;
3471 }
3472 
3473 static void bnxt_free_tpa_info(struct bnxt *bp)
3474 {
3475 	int i, j;
3476 
3477 	for (i = 0; i < bp->rx_nr_rings; i++) {
3478 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3479 
3480 		kfree(rxr->rx_tpa_idx_map);
3481 		rxr->rx_tpa_idx_map = NULL;
3482 		if (rxr->rx_tpa) {
3483 			for (j = 0; j < bp->max_tpa; j++) {
3484 				kfree(rxr->rx_tpa[j].agg_arr);
3485 				rxr->rx_tpa[j].agg_arr = NULL;
3486 			}
3487 		}
3488 		kfree(rxr->rx_tpa);
3489 		rxr->rx_tpa = NULL;
3490 	}
3491 }
3492 
3493 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3494 {
3495 	int i, j;
3496 
3497 	bp->max_tpa = MAX_TPA;
3498 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3499 		if (!bp->max_tpa_v2)
3500 			return 0;
3501 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3502 	}
3503 
3504 	for (i = 0; i < bp->rx_nr_rings; i++) {
3505 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3506 		struct rx_agg_cmp *agg;
3507 
3508 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3509 				      GFP_KERNEL);
3510 		if (!rxr->rx_tpa)
3511 			return -ENOMEM;
3512 
3513 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3514 			continue;
3515 		for (j = 0; j < bp->max_tpa; j++) {
3516 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3517 			if (!agg)
3518 				return -ENOMEM;
3519 			rxr->rx_tpa[j].agg_arr = agg;
3520 		}
3521 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3522 					      GFP_KERNEL);
3523 		if (!rxr->rx_tpa_idx_map)
3524 			return -ENOMEM;
3525 	}
3526 	return 0;
3527 }
3528 
3529 static void bnxt_free_rx_rings(struct bnxt *bp)
3530 {
3531 	int i;
3532 
3533 	if (!bp->rx_ring)
3534 		return;
3535 
3536 	bnxt_free_tpa_info(bp);
3537 	for (i = 0; i < bp->rx_nr_rings; i++) {
3538 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3539 		struct bnxt_ring_struct *ring;
3540 
3541 		if (rxr->xdp_prog)
3542 			bpf_prog_put(rxr->xdp_prog);
3543 
3544 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3545 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3546 
3547 		page_pool_destroy(rxr->page_pool);
3548 		rxr->page_pool = NULL;
3549 
3550 		kfree(rxr->rx_agg_bmap);
3551 		rxr->rx_agg_bmap = NULL;
3552 
3553 		ring = &rxr->rx_ring_struct;
3554 		bnxt_free_ring(bp, &ring->ring_mem);
3555 
3556 		ring = &rxr->rx_agg_ring_struct;
3557 		bnxt_free_ring(bp, &ring->ring_mem);
3558 	}
3559 }
3560 
3561 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3562 				   struct bnxt_rx_ring_info *rxr)
3563 {
3564 	struct page_pool_params pp = { 0 };
3565 
3566 	pp.pool_size = bp->rx_agg_ring_size;
3567 	if (BNXT_RX_PAGE_MODE(bp))
3568 		pp.pool_size += bp->rx_ring_size;
3569 	pp.nid = dev_to_node(&bp->pdev->dev);
3570 	pp.napi = &rxr->bnapi->napi;
3571 	pp.netdev = bp->dev;
3572 	pp.dev = &bp->pdev->dev;
3573 	pp.dma_dir = bp->rx_dir;
3574 	pp.max_len = PAGE_SIZE;
3575 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3576 
3577 	rxr->page_pool = page_pool_create(&pp);
3578 	if (IS_ERR(rxr->page_pool)) {
3579 		int err = PTR_ERR(rxr->page_pool);
3580 
3581 		rxr->page_pool = NULL;
3582 		return err;
3583 	}
3584 	return 0;
3585 }
3586 
3587 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3588 {
3589 	int i, rc = 0, agg_rings = 0;
3590 
3591 	if (!bp->rx_ring)
3592 		return -ENOMEM;
3593 
3594 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3595 		agg_rings = 1;
3596 
3597 	for (i = 0; i < bp->rx_nr_rings; i++) {
3598 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3599 		struct bnxt_ring_struct *ring;
3600 
3601 		ring = &rxr->rx_ring_struct;
3602 
3603 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3604 		if (rc)
3605 			return rc;
3606 
3607 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3608 		if (rc < 0)
3609 			return rc;
3610 
3611 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3612 						MEM_TYPE_PAGE_POOL,
3613 						rxr->page_pool);
3614 		if (rc) {
3615 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3616 			return rc;
3617 		}
3618 
3619 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3620 		if (rc)
3621 			return rc;
3622 
3623 		ring->grp_idx = i;
3624 		if (agg_rings) {
3625 			u16 mem_size;
3626 
3627 			ring = &rxr->rx_agg_ring_struct;
3628 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3629 			if (rc)
3630 				return rc;
3631 
3632 			ring->grp_idx = i;
3633 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3634 			mem_size = rxr->rx_agg_bmap_size / 8;
3635 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3636 			if (!rxr->rx_agg_bmap)
3637 				return -ENOMEM;
3638 		}
3639 	}
3640 	if (bp->flags & BNXT_FLAG_TPA)
3641 		rc = bnxt_alloc_tpa_info(bp);
3642 	return rc;
3643 }
3644 
3645 static void bnxt_free_tx_rings(struct bnxt *bp)
3646 {
3647 	int i;
3648 	struct pci_dev *pdev = bp->pdev;
3649 
3650 	if (!bp->tx_ring)
3651 		return;
3652 
3653 	for (i = 0; i < bp->tx_nr_rings; i++) {
3654 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3655 		struct bnxt_ring_struct *ring;
3656 
3657 		if (txr->tx_push) {
3658 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3659 					  txr->tx_push, txr->tx_push_mapping);
3660 			txr->tx_push = NULL;
3661 		}
3662 
3663 		ring = &txr->tx_ring_struct;
3664 
3665 		bnxt_free_ring(bp, &ring->ring_mem);
3666 	}
3667 }
3668 
3669 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3670 	((tc) * (bp)->tx_nr_rings_per_tc)
3671 
3672 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3673 	((tx) % (bp)->tx_nr_rings_per_tc)
3674 
3675 #define BNXT_RING_TO_TC(bp, tx)		\
3676 	((tx) / (bp)->tx_nr_rings_per_tc)
3677 
3678 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3679 {
3680 	int i, j, rc;
3681 	struct pci_dev *pdev = bp->pdev;
3682 
3683 	bp->tx_push_size = 0;
3684 	if (bp->tx_push_thresh) {
3685 		int push_size;
3686 
3687 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3688 					bp->tx_push_thresh);
3689 
3690 		if (push_size > 256) {
3691 			push_size = 0;
3692 			bp->tx_push_thresh = 0;
3693 		}
3694 
3695 		bp->tx_push_size = push_size;
3696 	}
3697 
3698 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3699 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3700 		struct bnxt_ring_struct *ring;
3701 		u8 qidx;
3702 
3703 		ring = &txr->tx_ring_struct;
3704 
3705 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3706 		if (rc)
3707 			return rc;
3708 
3709 		ring->grp_idx = txr->bnapi->index;
3710 		if (bp->tx_push_size) {
3711 			dma_addr_t mapping;
3712 
3713 			/* One pre-allocated DMA buffer to backup
3714 			 * TX push operation
3715 			 */
3716 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3717 						bp->tx_push_size,
3718 						&txr->tx_push_mapping,
3719 						GFP_KERNEL);
3720 
3721 			if (!txr->tx_push)
3722 				return -ENOMEM;
3723 
3724 			mapping = txr->tx_push_mapping +
3725 				sizeof(struct tx_push_bd);
3726 			txr->data_mapping = cpu_to_le64(mapping);
3727 		}
3728 		qidx = bp->tc_to_qidx[j];
3729 		ring->queue_id = bp->q_info[qidx].queue_id;
3730 		spin_lock_init(&txr->xdp_tx_lock);
3731 		if (i < bp->tx_nr_rings_xdp)
3732 			continue;
3733 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3734 			j++;
3735 	}
3736 	return 0;
3737 }
3738 
3739 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3740 {
3741 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3742 
3743 	kfree(cpr->cp_desc_ring);
3744 	cpr->cp_desc_ring = NULL;
3745 	ring->ring_mem.pg_arr = NULL;
3746 	kfree(cpr->cp_desc_mapping);
3747 	cpr->cp_desc_mapping = NULL;
3748 	ring->ring_mem.dma_arr = NULL;
3749 }
3750 
3751 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3752 {
3753 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3754 	if (!cpr->cp_desc_ring)
3755 		return -ENOMEM;
3756 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3757 				       GFP_KERNEL);
3758 	if (!cpr->cp_desc_mapping)
3759 		return -ENOMEM;
3760 	return 0;
3761 }
3762 
3763 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3764 {
3765 	int i;
3766 
3767 	if (!bp->bnapi)
3768 		return;
3769 	for (i = 0; i < bp->cp_nr_rings; i++) {
3770 		struct bnxt_napi *bnapi = bp->bnapi[i];
3771 
3772 		if (!bnapi)
3773 			continue;
3774 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3775 	}
3776 }
3777 
3778 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3779 {
3780 	int i, n = bp->cp_nr_pages;
3781 
3782 	for (i = 0; i < bp->cp_nr_rings; i++) {
3783 		struct bnxt_napi *bnapi = bp->bnapi[i];
3784 		int rc;
3785 
3786 		if (!bnapi)
3787 			continue;
3788 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3789 		if (rc)
3790 			return rc;
3791 	}
3792 	return 0;
3793 }
3794 
3795 static void bnxt_free_cp_rings(struct bnxt *bp)
3796 {
3797 	int i;
3798 
3799 	if (!bp->bnapi)
3800 		return;
3801 
3802 	for (i = 0; i < bp->cp_nr_rings; i++) {
3803 		struct bnxt_napi *bnapi = bp->bnapi[i];
3804 		struct bnxt_cp_ring_info *cpr;
3805 		struct bnxt_ring_struct *ring;
3806 		int j;
3807 
3808 		if (!bnapi)
3809 			continue;
3810 
3811 		cpr = &bnapi->cp_ring;
3812 		ring = &cpr->cp_ring_struct;
3813 
3814 		bnxt_free_ring(bp, &ring->ring_mem);
3815 
3816 		if (!cpr->cp_ring_arr)
3817 			continue;
3818 
3819 		for (j = 0; j < cpr->cp_ring_count; j++) {
3820 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3821 
3822 			ring = &cpr2->cp_ring_struct;
3823 			bnxt_free_ring(bp, &ring->ring_mem);
3824 			bnxt_free_cp_arrays(cpr2);
3825 		}
3826 		kfree(cpr->cp_ring_arr);
3827 		cpr->cp_ring_arr = NULL;
3828 		cpr->cp_ring_count = 0;
3829 	}
3830 }
3831 
3832 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3833 				  struct bnxt_cp_ring_info *cpr)
3834 {
3835 	struct bnxt_ring_mem_info *rmem;
3836 	struct bnxt_ring_struct *ring;
3837 	int rc;
3838 
3839 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3840 	if (rc) {
3841 		bnxt_free_cp_arrays(cpr);
3842 		return -ENOMEM;
3843 	}
3844 	ring = &cpr->cp_ring_struct;
3845 	rmem = &ring->ring_mem;
3846 	rmem->nr_pages = bp->cp_nr_pages;
3847 	rmem->page_size = HW_CMPD_RING_SIZE;
3848 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3849 	rmem->dma_arr = cpr->cp_desc_mapping;
3850 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3851 	rc = bnxt_alloc_ring(bp, rmem);
3852 	if (rc) {
3853 		bnxt_free_ring(bp, rmem);
3854 		bnxt_free_cp_arrays(cpr);
3855 	}
3856 	return rc;
3857 }
3858 
3859 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3860 {
3861 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3862 	int i, j, rc, ulp_base_vec, ulp_msix;
3863 	int tcs = bp->num_tc;
3864 
3865 	if (!tcs)
3866 		tcs = 1;
3867 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3868 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3869 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3870 		struct bnxt_napi *bnapi = bp->bnapi[i];
3871 		struct bnxt_cp_ring_info *cpr, *cpr2;
3872 		struct bnxt_ring_struct *ring;
3873 		int cp_count = 0, k;
3874 		int rx = 0, tx = 0;
3875 
3876 		if (!bnapi)
3877 			continue;
3878 
3879 		cpr = &bnapi->cp_ring;
3880 		cpr->bnapi = bnapi;
3881 		ring = &cpr->cp_ring_struct;
3882 
3883 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3884 		if (rc)
3885 			return rc;
3886 
3887 		if (ulp_msix && i >= ulp_base_vec)
3888 			ring->map_idx = i + ulp_msix;
3889 		else
3890 			ring->map_idx = i;
3891 
3892 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3893 			continue;
3894 
3895 		if (i < bp->rx_nr_rings) {
3896 			cp_count++;
3897 			rx = 1;
3898 		}
3899 		if (i < bp->tx_nr_rings_xdp) {
3900 			cp_count++;
3901 			tx = 1;
3902 		} else if ((sh && i < bp->tx_nr_rings) ||
3903 			 (!sh && i >= bp->rx_nr_rings)) {
3904 			cp_count += tcs;
3905 			tx = 1;
3906 		}
3907 
3908 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3909 					   GFP_KERNEL);
3910 		if (!cpr->cp_ring_arr)
3911 			return -ENOMEM;
3912 		cpr->cp_ring_count = cp_count;
3913 
3914 		for (k = 0; k < cp_count; k++) {
3915 			cpr2 = &cpr->cp_ring_arr[k];
3916 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3917 			if (rc)
3918 				return rc;
3919 			cpr2->bnapi = bnapi;
3920 			cpr2->cp_idx = k;
3921 			if (!k && rx) {
3922 				bp->rx_ring[i].rx_cpr = cpr2;
3923 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3924 			} else {
3925 				int n, tc = k - rx;
3926 
3927 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3928 				bp->tx_ring[n].tx_cpr = cpr2;
3929 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3930 			}
3931 		}
3932 		if (tx)
3933 			j++;
3934 	}
3935 	return 0;
3936 }
3937 
3938 static void bnxt_init_ring_struct(struct bnxt *bp)
3939 {
3940 	int i, j;
3941 
3942 	for (i = 0; i < bp->cp_nr_rings; i++) {
3943 		struct bnxt_napi *bnapi = bp->bnapi[i];
3944 		struct bnxt_ring_mem_info *rmem;
3945 		struct bnxt_cp_ring_info *cpr;
3946 		struct bnxt_rx_ring_info *rxr;
3947 		struct bnxt_tx_ring_info *txr;
3948 		struct bnxt_ring_struct *ring;
3949 
3950 		if (!bnapi)
3951 			continue;
3952 
3953 		cpr = &bnapi->cp_ring;
3954 		ring = &cpr->cp_ring_struct;
3955 		rmem = &ring->ring_mem;
3956 		rmem->nr_pages = bp->cp_nr_pages;
3957 		rmem->page_size = HW_CMPD_RING_SIZE;
3958 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3959 		rmem->dma_arr = cpr->cp_desc_mapping;
3960 		rmem->vmem_size = 0;
3961 
3962 		rxr = bnapi->rx_ring;
3963 		if (!rxr)
3964 			goto skip_rx;
3965 
3966 		ring = &rxr->rx_ring_struct;
3967 		rmem = &ring->ring_mem;
3968 		rmem->nr_pages = bp->rx_nr_pages;
3969 		rmem->page_size = HW_RXBD_RING_SIZE;
3970 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3971 		rmem->dma_arr = rxr->rx_desc_mapping;
3972 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3973 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3974 
3975 		ring = &rxr->rx_agg_ring_struct;
3976 		rmem = &ring->ring_mem;
3977 		rmem->nr_pages = bp->rx_agg_nr_pages;
3978 		rmem->page_size = HW_RXBD_RING_SIZE;
3979 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3980 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3981 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3982 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3983 
3984 skip_rx:
3985 		bnxt_for_each_napi_tx(j, bnapi, txr) {
3986 			ring = &txr->tx_ring_struct;
3987 			rmem = &ring->ring_mem;
3988 			rmem->nr_pages = bp->tx_nr_pages;
3989 			rmem->page_size = HW_TXBD_RING_SIZE;
3990 			rmem->pg_arr = (void **)txr->tx_desc_ring;
3991 			rmem->dma_arr = txr->tx_desc_mapping;
3992 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3993 			rmem->vmem = (void **)&txr->tx_buf_ring;
3994 		}
3995 	}
3996 }
3997 
3998 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3999 {
4000 	int i;
4001 	u32 prod;
4002 	struct rx_bd **rx_buf_ring;
4003 
4004 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
4005 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
4006 		int j;
4007 		struct rx_bd *rxbd;
4008 
4009 		rxbd = rx_buf_ring[i];
4010 		if (!rxbd)
4011 			continue;
4012 
4013 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
4014 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
4015 			rxbd->rx_bd_opaque = prod;
4016 		}
4017 	}
4018 }
4019 
4020 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
4021 {
4022 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
4023 	struct net_device *dev = bp->dev;
4024 	u32 prod;
4025 	int i;
4026 
4027 	prod = rxr->rx_prod;
4028 	for (i = 0; i < bp->rx_ring_size; i++) {
4029 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
4030 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
4031 				    ring_nr, i, bp->rx_ring_size);
4032 			break;
4033 		}
4034 		prod = NEXT_RX(prod);
4035 	}
4036 	rxr->rx_prod = prod;
4037 
4038 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
4039 		return 0;
4040 
4041 	prod = rxr->rx_agg_prod;
4042 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4043 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4044 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
4045 				    ring_nr, i, bp->rx_ring_size);
4046 			break;
4047 		}
4048 		prod = NEXT_RX_AGG(prod);
4049 	}
4050 	rxr->rx_agg_prod = prod;
4051 
4052 	if (rxr->rx_tpa) {
4053 		dma_addr_t mapping;
4054 		u8 *data;
4055 
4056 		for (i = 0; i < bp->max_tpa; i++) {
4057 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4058 			if (!data)
4059 				return -ENOMEM;
4060 
4061 			rxr->rx_tpa[i].data = data;
4062 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4063 			rxr->rx_tpa[i].mapping = mapping;
4064 		}
4065 	}
4066 	return 0;
4067 }
4068 
4069 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4070 {
4071 	struct bnxt_rx_ring_info *rxr;
4072 	struct bnxt_ring_struct *ring;
4073 	u32 type;
4074 
4075 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4076 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4077 
4078 	if (NET_IP_ALIGN == 2)
4079 		type |= RX_BD_FLAGS_SOP;
4080 
4081 	rxr = &bp->rx_ring[ring_nr];
4082 	ring = &rxr->rx_ring_struct;
4083 	bnxt_init_rxbd_pages(ring, type);
4084 
4085 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4086 			     &rxr->bnapi->napi);
4087 
4088 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4089 		bpf_prog_add(bp->xdp_prog, 1);
4090 		rxr->xdp_prog = bp->xdp_prog;
4091 	}
4092 	ring->fw_ring_id = INVALID_HW_RING_ID;
4093 
4094 	ring = &rxr->rx_agg_ring_struct;
4095 	ring->fw_ring_id = INVALID_HW_RING_ID;
4096 
4097 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4098 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4099 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4100 
4101 		bnxt_init_rxbd_pages(ring, type);
4102 	}
4103 
4104 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4105 }
4106 
4107 static void bnxt_init_cp_rings(struct bnxt *bp)
4108 {
4109 	int i, j;
4110 
4111 	for (i = 0; i < bp->cp_nr_rings; i++) {
4112 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4113 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4114 
4115 		ring->fw_ring_id = INVALID_HW_RING_ID;
4116 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4117 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4118 		if (!cpr->cp_ring_arr)
4119 			continue;
4120 		for (j = 0; j < cpr->cp_ring_count; j++) {
4121 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4122 
4123 			ring = &cpr2->cp_ring_struct;
4124 			ring->fw_ring_id = INVALID_HW_RING_ID;
4125 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4126 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4127 		}
4128 	}
4129 }
4130 
4131 static int bnxt_init_rx_rings(struct bnxt *bp)
4132 {
4133 	int i, rc = 0;
4134 
4135 	if (BNXT_RX_PAGE_MODE(bp)) {
4136 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4137 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4138 	} else {
4139 		bp->rx_offset = BNXT_RX_OFFSET;
4140 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4141 	}
4142 
4143 	for (i = 0; i < bp->rx_nr_rings; i++) {
4144 		rc = bnxt_init_one_rx_ring(bp, i);
4145 		if (rc)
4146 			break;
4147 	}
4148 
4149 	return rc;
4150 }
4151 
4152 static int bnxt_init_tx_rings(struct bnxt *bp)
4153 {
4154 	u16 i;
4155 
4156 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4157 				   BNXT_MIN_TX_DESC_CNT);
4158 
4159 	for (i = 0; i < bp->tx_nr_rings; i++) {
4160 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4161 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4162 
4163 		ring->fw_ring_id = INVALID_HW_RING_ID;
4164 
4165 		if (i >= bp->tx_nr_rings_xdp)
4166 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4167 					     NETDEV_QUEUE_TYPE_TX,
4168 					     &txr->bnapi->napi);
4169 	}
4170 
4171 	return 0;
4172 }
4173 
4174 static void bnxt_free_ring_grps(struct bnxt *bp)
4175 {
4176 	kfree(bp->grp_info);
4177 	bp->grp_info = NULL;
4178 }
4179 
4180 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4181 {
4182 	int i;
4183 
4184 	if (irq_re_init) {
4185 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4186 				       sizeof(struct bnxt_ring_grp_info),
4187 				       GFP_KERNEL);
4188 		if (!bp->grp_info)
4189 			return -ENOMEM;
4190 	}
4191 	for (i = 0; i < bp->cp_nr_rings; i++) {
4192 		if (irq_re_init)
4193 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4194 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4195 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4196 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4197 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4198 	}
4199 	return 0;
4200 }
4201 
4202 static void bnxt_free_vnics(struct bnxt *bp)
4203 {
4204 	kfree(bp->vnic_info);
4205 	bp->vnic_info = NULL;
4206 	bp->nr_vnics = 0;
4207 }
4208 
4209 static int bnxt_alloc_vnics(struct bnxt *bp)
4210 {
4211 	int num_vnics = 1;
4212 
4213 #ifdef CONFIG_RFS_ACCEL
4214 	if (bp->flags & BNXT_FLAG_RFS) {
4215 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
4216 			num_vnics++;
4217 		else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4218 			num_vnics += bp->rx_nr_rings;
4219 	}
4220 #endif
4221 
4222 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4223 		num_vnics++;
4224 
4225 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4226 				GFP_KERNEL);
4227 	if (!bp->vnic_info)
4228 		return -ENOMEM;
4229 
4230 	bp->nr_vnics = num_vnics;
4231 	return 0;
4232 }
4233 
4234 static void bnxt_init_vnics(struct bnxt *bp)
4235 {
4236 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
4237 	int i;
4238 
4239 	for (i = 0; i < bp->nr_vnics; i++) {
4240 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4241 		int j;
4242 
4243 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4244 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4245 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4246 
4247 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4248 
4249 		if (bp->vnic_info[i].rss_hash_key) {
4250 			if (i == BNXT_VNIC_DEFAULT) {
4251 				u8 *key = (void *)vnic->rss_hash_key;
4252 				int k;
4253 
4254 				if (!bp->rss_hash_key_valid &&
4255 				    !bp->rss_hash_key_updated) {
4256 					get_random_bytes(bp->rss_hash_key,
4257 							 HW_HASH_KEY_SIZE);
4258 					bp->rss_hash_key_updated = true;
4259 				}
4260 
4261 				memcpy(vnic->rss_hash_key, bp->rss_hash_key,
4262 				       HW_HASH_KEY_SIZE);
4263 
4264 				if (!bp->rss_hash_key_updated)
4265 					continue;
4266 
4267 				bp->rss_hash_key_updated = false;
4268 				bp->rss_hash_key_valid = true;
4269 
4270 				bp->toeplitz_prefix = 0;
4271 				for (k = 0; k < 8; k++) {
4272 					bp->toeplitz_prefix <<= 8;
4273 					bp->toeplitz_prefix |= key[k];
4274 				}
4275 			} else {
4276 				memcpy(vnic->rss_hash_key, vnic0->rss_hash_key,
4277 				       HW_HASH_KEY_SIZE);
4278 			}
4279 		}
4280 	}
4281 }
4282 
4283 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4284 {
4285 	int pages;
4286 
4287 	pages = ring_size / desc_per_pg;
4288 
4289 	if (!pages)
4290 		return 1;
4291 
4292 	pages++;
4293 
4294 	while (pages & (pages - 1))
4295 		pages++;
4296 
4297 	return pages;
4298 }
4299 
4300 void bnxt_set_tpa_flags(struct bnxt *bp)
4301 {
4302 	bp->flags &= ~BNXT_FLAG_TPA;
4303 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4304 		return;
4305 	if (bp->dev->features & NETIF_F_LRO)
4306 		bp->flags |= BNXT_FLAG_LRO;
4307 	else if (bp->dev->features & NETIF_F_GRO_HW)
4308 		bp->flags |= BNXT_FLAG_GRO;
4309 }
4310 
4311 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4312  * be set on entry.
4313  */
4314 void bnxt_set_ring_params(struct bnxt *bp)
4315 {
4316 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4317 	u32 agg_factor = 0, agg_ring_size = 0;
4318 
4319 	/* 8 for CRC and VLAN */
4320 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4321 
4322 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4323 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4324 
4325 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4326 	ring_size = bp->rx_ring_size;
4327 	bp->rx_agg_ring_size = 0;
4328 	bp->rx_agg_nr_pages = 0;
4329 
4330 	if (bp->flags & BNXT_FLAG_TPA)
4331 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4332 
4333 	bp->flags &= ~BNXT_FLAG_JUMBO;
4334 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4335 		u32 jumbo_factor;
4336 
4337 		bp->flags |= BNXT_FLAG_JUMBO;
4338 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4339 		if (jumbo_factor > agg_factor)
4340 			agg_factor = jumbo_factor;
4341 	}
4342 	if (agg_factor) {
4343 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4344 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4345 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4346 				    bp->rx_ring_size, ring_size);
4347 			bp->rx_ring_size = ring_size;
4348 		}
4349 		agg_ring_size = ring_size * agg_factor;
4350 
4351 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4352 							RX_DESC_CNT);
4353 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4354 			u32 tmp = agg_ring_size;
4355 
4356 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4357 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4358 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4359 				    tmp, agg_ring_size);
4360 		}
4361 		bp->rx_agg_ring_size = agg_ring_size;
4362 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4363 
4364 		if (BNXT_RX_PAGE_MODE(bp)) {
4365 			rx_space = PAGE_SIZE;
4366 			rx_size = PAGE_SIZE -
4367 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4368 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4369 		} else {
4370 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4371 			rx_space = rx_size + NET_SKB_PAD +
4372 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4373 		}
4374 	}
4375 
4376 	bp->rx_buf_use_size = rx_size;
4377 	bp->rx_buf_size = rx_space;
4378 
4379 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4380 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4381 
4382 	ring_size = bp->tx_ring_size;
4383 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4384 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4385 
4386 	max_rx_cmpl = bp->rx_ring_size;
4387 	/* MAX TPA needs to be added because TPA_START completions are
4388 	 * immediately recycled, so the TPA completions are not bound by
4389 	 * the RX ring size.
4390 	 */
4391 	if (bp->flags & BNXT_FLAG_TPA)
4392 		max_rx_cmpl += bp->max_tpa;
4393 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4394 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4395 	bp->cp_ring_size = ring_size;
4396 
4397 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4398 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4399 		bp->cp_nr_pages = MAX_CP_PAGES;
4400 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4401 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4402 			    ring_size, bp->cp_ring_size);
4403 	}
4404 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4405 	bp->cp_ring_mask = bp->cp_bit - 1;
4406 }
4407 
4408 /* Changing allocation mode of RX rings.
4409  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4410  */
4411 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4412 {
4413 	struct net_device *dev = bp->dev;
4414 
4415 	if (page_mode) {
4416 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4417 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4418 
4419 		if (bp->xdp_prog->aux->xdp_has_frags)
4420 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4421 		else
4422 			dev->max_mtu =
4423 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4424 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4425 			bp->flags |= BNXT_FLAG_JUMBO;
4426 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4427 		} else {
4428 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4429 			bp->rx_skb_func = bnxt_rx_page_skb;
4430 		}
4431 		bp->rx_dir = DMA_BIDIRECTIONAL;
4432 		/* Disable LRO or GRO_HW */
4433 		netdev_update_features(dev);
4434 	} else {
4435 		dev->max_mtu = bp->max_mtu;
4436 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4437 		bp->rx_dir = DMA_FROM_DEVICE;
4438 		bp->rx_skb_func = bnxt_rx_skb;
4439 	}
4440 	return 0;
4441 }
4442 
4443 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4444 {
4445 	int i;
4446 	struct bnxt_vnic_info *vnic;
4447 	struct pci_dev *pdev = bp->pdev;
4448 
4449 	if (!bp->vnic_info)
4450 		return;
4451 
4452 	for (i = 0; i < bp->nr_vnics; i++) {
4453 		vnic = &bp->vnic_info[i];
4454 
4455 		kfree(vnic->fw_grp_ids);
4456 		vnic->fw_grp_ids = NULL;
4457 
4458 		kfree(vnic->uc_list);
4459 		vnic->uc_list = NULL;
4460 
4461 		if (vnic->mc_list) {
4462 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4463 					  vnic->mc_list, vnic->mc_list_mapping);
4464 			vnic->mc_list = NULL;
4465 		}
4466 
4467 		if (vnic->rss_table) {
4468 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4469 					  vnic->rss_table,
4470 					  vnic->rss_table_dma_addr);
4471 			vnic->rss_table = NULL;
4472 		}
4473 
4474 		vnic->rss_hash_key = NULL;
4475 		vnic->flags = 0;
4476 	}
4477 }
4478 
4479 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4480 {
4481 	int i, rc = 0, size;
4482 	struct bnxt_vnic_info *vnic;
4483 	struct pci_dev *pdev = bp->pdev;
4484 	int max_rings;
4485 
4486 	for (i = 0; i < bp->nr_vnics; i++) {
4487 		vnic = &bp->vnic_info[i];
4488 
4489 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4490 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4491 
4492 			if (mem_size > 0) {
4493 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4494 				if (!vnic->uc_list) {
4495 					rc = -ENOMEM;
4496 					goto out;
4497 				}
4498 			}
4499 		}
4500 
4501 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4502 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4503 			vnic->mc_list =
4504 				dma_alloc_coherent(&pdev->dev,
4505 						   vnic->mc_list_size,
4506 						   &vnic->mc_list_mapping,
4507 						   GFP_KERNEL);
4508 			if (!vnic->mc_list) {
4509 				rc = -ENOMEM;
4510 				goto out;
4511 			}
4512 		}
4513 
4514 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4515 			goto vnic_skip_grps;
4516 
4517 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4518 			max_rings = bp->rx_nr_rings;
4519 		else
4520 			max_rings = 1;
4521 
4522 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4523 		if (!vnic->fw_grp_ids) {
4524 			rc = -ENOMEM;
4525 			goto out;
4526 		}
4527 vnic_skip_grps:
4528 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4529 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4530 			continue;
4531 
4532 		/* Allocate rss table and hash key */
4533 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4534 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4535 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4536 
4537 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4538 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4539 						     vnic->rss_table_size,
4540 						     &vnic->rss_table_dma_addr,
4541 						     GFP_KERNEL);
4542 		if (!vnic->rss_table) {
4543 			rc = -ENOMEM;
4544 			goto out;
4545 		}
4546 
4547 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4548 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4549 	}
4550 	return 0;
4551 
4552 out:
4553 	return rc;
4554 }
4555 
4556 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4557 {
4558 	struct bnxt_hwrm_wait_token *token;
4559 
4560 	dma_pool_destroy(bp->hwrm_dma_pool);
4561 	bp->hwrm_dma_pool = NULL;
4562 
4563 	rcu_read_lock();
4564 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4565 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4566 	rcu_read_unlock();
4567 }
4568 
4569 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4570 {
4571 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4572 					    BNXT_HWRM_DMA_SIZE,
4573 					    BNXT_HWRM_DMA_ALIGN, 0);
4574 	if (!bp->hwrm_dma_pool)
4575 		return -ENOMEM;
4576 
4577 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4578 
4579 	return 0;
4580 }
4581 
4582 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4583 {
4584 	kfree(stats->hw_masks);
4585 	stats->hw_masks = NULL;
4586 	kfree(stats->sw_stats);
4587 	stats->sw_stats = NULL;
4588 	if (stats->hw_stats) {
4589 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4590 				  stats->hw_stats_map);
4591 		stats->hw_stats = NULL;
4592 	}
4593 }
4594 
4595 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4596 				bool alloc_masks)
4597 {
4598 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4599 					     &stats->hw_stats_map, GFP_KERNEL);
4600 	if (!stats->hw_stats)
4601 		return -ENOMEM;
4602 
4603 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4604 	if (!stats->sw_stats)
4605 		goto stats_mem_err;
4606 
4607 	if (alloc_masks) {
4608 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4609 		if (!stats->hw_masks)
4610 			goto stats_mem_err;
4611 	}
4612 	return 0;
4613 
4614 stats_mem_err:
4615 	bnxt_free_stats_mem(bp, stats);
4616 	return -ENOMEM;
4617 }
4618 
4619 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4620 {
4621 	int i;
4622 
4623 	for (i = 0; i < count; i++)
4624 		mask_arr[i] = mask;
4625 }
4626 
4627 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4628 {
4629 	int i;
4630 
4631 	for (i = 0; i < count; i++)
4632 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4633 }
4634 
4635 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4636 				    struct bnxt_stats_mem *stats)
4637 {
4638 	struct hwrm_func_qstats_ext_output *resp;
4639 	struct hwrm_func_qstats_ext_input *req;
4640 	__le64 *hw_masks;
4641 	int rc;
4642 
4643 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4644 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4645 		return -EOPNOTSUPP;
4646 
4647 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4648 	if (rc)
4649 		return rc;
4650 
4651 	req->fid = cpu_to_le16(0xffff);
4652 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4653 
4654 	resp = hwrm_req_hold(bp, req);
4655 	rc = hwrm_req_send(bp, req);
4656 	if (!rc) {
4657 		hw_masks = &resp->rx_ucast_pkts;
4658 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4659 	}
4660 	hwrm_req_drop(bp, req);
4661 	return rc;
4662 }
4663 
4664 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4665 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4666 
4667 static void bnxt_init_stats(struct bnxt *bp)
4668 {
4669 	struct bnxt_napi *bnapi = bp->bnapi[0];
4670 	struct bnxt_cp_ring_info *cpr;
4671 	struct bnxt_stats_mem *stats;
4672 	__le64 *rx_stats, *tx_stats;
4673 	int rc, rx_count, tx_count;
4674 	u64 *rx_masks, *tx_masks;
4675 	u64 mask;
4676 	u8 flags;
4677 
4678 	cpr = &bnapi->cp_ring;
4679 	stats = &cpr->stats;
4680 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4681 	if (rc) {
4682 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4683 			mask = (1ULL << 48) - 1;
4684 		else
4685 			mask = -1ULL;
4686 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4687 	}
4688 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4689 		stats = &bp->port_stats;
4690 		rx_stats = stats->hw_stats;
4691 		rx_masks = stats->hw_masks;
4692 		rx_count = sizeof(struct rx_port_stats) / 8;
4693 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4694 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4695 		tx_count = sizeof(struct tx_port_stats) / 8;
4696 
4697 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4698 		rc = bnxt_hwrm_port_qstats(bp, flags);
4699 		if (rc) {
4700 			mask = (1ULL << 40) - 1;
4701 
4702 			bnxt_fill_masks(rx_masks, mask, rx_count);
4703 			bnxt_fill_masks(tx_masks, mask, tx_count);
4704 		} else {
4705 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4706 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4707 			bnxt_hwrm_port_qstats(bp, 0);
4708 		}
4709 	}
4710 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4711 		stats = &bp->rx_port_stats_ext;
4712 		rx_stats = stats->hw_stats;
4713 		rx_masks = stats->hw_masks;
4714 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4715 		stats = &bp->tx_port_stats_ext;
4716 		tx_stats = stats->hw_stats;
4717 		tx_masks = stats->hw_masks;
4718 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4719 
4720 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4721 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4722 		if (rc) {
4723 			mask = (1ULL << 40) - 1;
4724 
4725 			bnxt_fill_masks(rx_masks, mask, rx_count);
4726 			if (tx_stats)
4727 				bnxt_fill_masks(tx_masks, mask, tx_count);
4728 		} else {
4729 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4730 			if (tx_stats)
4731 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4732 						   tx_count);
4733 			bnxt_hwrm_port_qstats_ext(bp, 0);
4734 		}
4735 	}
4736 }
4737 
4738 static void bnxt_free_port_stats(struct bnxt *bp)
4739 {
4740 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4741 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4742 
4743 	bnxt_free_stats_mem(bp, &bp->port_stats);
4744 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4745 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4746 }
4747 
4748 static void bnxt_free_ring_stats(struct bnxt *bp)
4749 {
4750 	int i;
4751 
4752 	if (!bp->bnapi)
4753 		return;
4754 
4755 	for (i = 0; i < bp->cp_nr_rings; i++) {
4756 		struct bnxt_napi *bnapi = bp->bnapi[i];
4757 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4758 
4759 		bnxt_free_stats_mem(bp, &cpr->stats);
4760 	}
4761 }
4762 
4763 static int bnxt_alloc_stats(struct bnxt *bp)
4764 {
4765 	u32 size, i;
4766 	int rc;
4767 
4768 	size = bp->hw_ring_stats_size;
4769 
4770 	for (i = 0; i < bp->cp_nr_rings; i++) {
4771 		struct bnxt_napi *bnapi = bp->bnapi[i];
4772 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4773 
4774 		cpr->stats.len = size;
4775 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4776 		if (rc)
4777 			return rc;
4778 
4779 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4780 	}
4781 
4782 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4783 		return 0;
4784 
4785 	if (bp->port_stats.hw_stats)
4786 		goto alloc_ext_stats;
4787 
4788 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4789 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4790 	if (rc)
4791 		return rc;
4792 
4793 	bp->flags |= BNXT_FLAG_PORT_STATS;
4794 
4795 alloc_ext_stats:
4796 	/* Display extended statistics only if FW supports it */
4797 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4798 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4799 			return 0;
4800 
4801 	if (bp->rx_port_stats_ext.hw_stats)
4802 		goto alloc_tx_ext_stats;
4803 
4804 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4805 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4806 	/* Extended stats are optional */
4807 	if (rc)
4808 		return 0;
4809 
4810 alloc_tx_ext_stats:
4811 	if (bp->tx_port_stats_ext.hw_stats)
4812 		return 0;
4813 
4814 	if (bp->hwrm_spec_code >= 0x10902 ||
4815 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4816 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4817 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4818 		/* Extended stats are optional */
4819 		if (rc)
4820 			return 0;
4821 	}
4822 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4823 	return 0;
4824 }
4825 
4826 static void bnxt_clear_ring_indices(struct bnxt *bp)
4827 {
4828 	int i, j;
4829 
4830 	if (!bp->bnapi)
4831 		return;
4832 
4833 	for (i = 0; i < bp->cp_nr_rings; i++) {
4834 		struct bnxt_napi *bnapi = bp->bnapi[i];
4835 		struct bnxt_cp_ring_info *cpr;
4836 		struct bnxt_rx_ring_info *rxr;
4837 		struct bnxt_tx_ring_info *txr;
4838 
4839 		if (!bnapi)
4840 			continue;
4841 
4842 		cpr = &bnapi->cp_ring;
4843 		cpr->cp_raw_cons = 0;
4844 
4845 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4846 			txr->tx_prod = 0;
4847 			txr->tx_cons = 0;
4848 			txr->tx_hw_cons = 0;
4849 		}
4850 
4851 		rxr = bnapi->rx_ring;
4852 		if (rxr) {
4853 			rxr->rx_prod = 0;
4854 			rxr->rx_agg_prod = 0;
4855 			rxr->rx_sw_agg_prod = 0;
4856 			rxr->rx_next_cons = 0;
4857 		}
4858 		bnapi->events = 0;
4859 	}
4860 }
4861 
4862 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
4863 {
4864 	u8 type = fltr->type, flags = fltr->flags;
4865 
4866 	INIT_LIST_HEAD(&fltr->list);
4867 	if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) ||
4868 	    (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING))
4869 		list_add_tail(&fltr->list, &bp->usr_fltr_list);
4870 }
4871 
4872 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
4873 {
4874 	if (!list_empty(&fltr->list))
4875 		list_del_init(&fltr->list);
4876 }
4877 
4878 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all)
4879 {
4880 	struct bnxt_filter_base *usr_fltr, *tmp;
4881 
4882 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
4883 		if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2)
4884 			continue;
4885 		bnxt_del_one_usr_fltr(bp, usr_fltr);
4886 	}
4887 }
4888 
4889 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
4890 {
4891 	hlist_del(&fltr->hash);
4892 	bnxt_del_one_usr_fltr(bp, fltr);
4893 	if (fltr->flags) {
4894 		clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
4895 		bp->ntp_fltr_count--;
4896 	}
4897 	kfree(fltr);
4898 }
4899 
4900 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
4901 {
4902 	int i;
4903 
4904 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4905 	 * safe to delete the hash table.
4906 	 */
4907 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4908 		struct hlist_head *head;
4909 		struct hlist_node *tmp;
4910 		struct bnxt_ntuple_filter *fltr;
4911 
4912 		head = &bp->ntp_fltr_hash_tbl[i];
4913 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
4914 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
4915 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
4916 				     !list_empty(&fltr->base.list)))
4917 				continue;
4918 			bnxt_del_fltr(bp, &fltr->base);
4919 		}
4920 	}
4921 	if (!all)
4922 		return;
4923 
4924 	bitmap_free(bp->ntp_fltr_bmap);
4925 	bp->ntp_fltr_bmap = NULL;
4926 	bp->ntp_fltr_count = 0;
4927 }
4928 
4929 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4930 {
4931 	int i, rc = 0;
4932 
4933 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
4934 		return 0;
4935 
4936 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4937 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4938 
4939 	bp->ntp_fltr_count = 0;
4940 	bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL);
4941 
4942 	if (!bp->ntp_fltr_bmap)
4943 		rc = -ENOMEM;
4944 
4945 	return rc;
4946 }
4947 
4948 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
4949 {
4950 	int i;
4951 
4952 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
4953 		struct hlist_head *head;
4954 		struct hlist_node *tmp;
4955 		struct bnxt_l2_filter *fltr;
4956 
4957 		head = &bp->l2_fltr_hash_tbl[i];
4958 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
4959 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
4960 				     !list_empty(&fltr->base.list)))
4961 				continue;
4962 			bnxt_del_fltr(bp, &fltr->base);
4963 		}
4964 	}
4965 }
4966 
4967 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
4968 {
4969 	int i;
4970 
4971 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
4972 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
4973 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
4974 }
4975 
4976 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4977 {
4978 	bnxt_free_vnic_attributes(bp);
4979 	bnxt_free_tx_rings(bp);
4980 	bnxt_free_rx_rings(bp);
4981 	bnxt_free_cp_rings(bp);
4982 	bnxt_free_all_cp_arrays(bp);
4983 	bnxt_free_ntp_fltrs(bp, false);
4984 	bnxt_free_l2_filters(bp, false);
4985 	if (irq_re_init) {
4986 		bnxt_free_ring_stats(bp);
4987 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4988 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4989 			bnxt_free_port_stats(bp);
4990 		bnxt_free_ring_grps(bp);
4991 		bnxt_free_vnics(bp);
4992 		kfree(bp->tx_ring_map);
4993 		bp->tx_ring_map = NULL;
4994 		kfree(bp->tx_ring);
4995 		bp->tx_ring = NULL;
4996 		kfree(bp->rx_ring);
4997 		bp->rx_ring = NULL;
4998 		kfree(bp->bnapi);
4999 		bp->bnapi = NULL;
5000 	} else {
5001 		bnxt_clear_ring_indices(bp);
5002 	}
5003 }
5004 
5005 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
5006 {
5007 	int i, j, rc, size, arr_size;
5008 	void *bnapi;
5009 
5010 	if (irq_re_init) {
5011 		/* Allocate bnapi mem pointer array and mem block for
5012 		 * all queues
5013 		 */
5014 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
5015 				bp->cp_nr_rings);
5016 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
5017 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
5018 		if (!bnapi)
5019 			return -ENOMEM;
5020 
5021 		bp->bnapi = bnapi;
5022 		bnapi += arr_size;
5023 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
5024 			bp->bnapi[i] = bnapi;
5025 			bp->bnapi[i]->index = i;
5026 			bp->bnapi[i]->bp = bp;
5027 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5028 				struct bnxt_cp_ring_info *cpr =
5029 					&bp->bnapi[i]->cp_ring;
5030 
5031 				cpr->cp_ring_struct.ring_mem.flags =
5032 					BNXT_RMEM_RING_PTE_FLAG;
5033 			}
5034 		}
5035 
5036 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
5037 				      sizeof(struct bnxt_rx_ring_info),
5038 				      GFP_KERNEL);
5039 		if (!bp->rx_ring)
5040 			return -ENOMEM;
5041 
5042 		for (i = 0; i < bp->rx_nr_rings; i++) {
5043 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5044 
5045 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5046 				rxr->rx_ring_struct.ring_mem.flags =
5047 					BNXT_RMEM_RING_PTE_FLAG;
5048 				rxr->rx_agg_ring_struct.ring_mem.flags =
5049 					BNXT_RMEM_RING_PTE_FLAG;
5050 			} else {
5051 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
5052 			}
5053 			rxr->bnapi = bp->bnapi[i];
5054 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
5055 		}
5056 
5057 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
5058 				      sizeof(struct bnxt_tx_ring_info),
5059 				      GFP_KERNEL);
5060 		if (!bp->tx_ring)
5061 			return -ENOMEM;
5062 
5063 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
5064 					  GFP_KERNEL);
5065 
5066 		if (!bp->tx_ring_map)
5067 			return -ENOMEM;
5068 
5069 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5070 			j = 0;
5071 		else
5072 			j = bp->rx_nr_rings;
5073 
5074 		for (i = 0; i < bp->tx_nr_rings; i++) {
5075 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5076 			struct bnxt_napi *bnapi2;
5077 
5078 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5079 				txr->tx_ring_struct.ring_mem.flags =
5080 					BNXT_RMEM_RING_PTE_FLAG;
5081 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
5082 			if (i >= bp->tx_nr_rings_xdp) {
5083 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
5084 
5085 				bnapi2 = bp->bnapi[k];
5086 				txr->txq_index = i - bp->tx_nr_rings_xdp;
5087 				txr->tx_napi_idx =
5088 					BNXT_RING_TO_TC(bp, txr->txq_index);
5089 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
5090 				bnapi2->tx_int = bnxt_tx_int;
5091 			} else {
5092 				bnapi2 = bp->bnapi[j];
5093 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5094 				bnapi2->tx_ring[0] = txr;
5095 				bnapi2->tx_int = bnxt_tx_int_xdp;
5096 				j++;
5097 			}
5098 			txr->bnapi = bnapi2;
5099 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5100 				txr->tx_cpr = &bnapi2->cp_ring;
5101 		}
5102 
5103 		rc = bnxt_alloc_stats(bp);
5104 		if (rc)
5105 			goto alloc_mem_err;
5106 		bnxt_init_stats(bp);
5107 
5108 		rc = bnxt_alloc_ntp_fltrs(bp);
5109 		if (rc)
5110 			goto alloc_mem_err;
5111 
5112 		rc = bnxt_alloc_vnics(bp);
5113 		if (rc)
5114 			goto alloc_mem_err;
5115 	}
5116 
5117 	rc = bnxt_alloc_all_cp_arrays(bp);
5118 	if (rc)
5119 		goto alloc_mem_err;
5120 
5121 	bnxt_init_ring_struct(bp);
5122 
5123 	rc = bnxt_alloc_rx_rings(bp);
5124 	if (rc)
5125 		goto alloc_mem_err;
5126 
5127 	rc = bnxt_alloc_tx_rings(bp);
5128 	if (rc)
5129 		goto alloc_mem_err;
5130 
5131 	rc = bnxt_alloc_cp_rings(bp);
5132 	if (rc)
5133 		goto alloc_mem_err;
5134 
5135 	bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG |
5136 						  BNXT_VNIC_MCAST_FLAG |
5137 						  BNXT_VNIC_UCAST_FLAG;
5138 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS))
5139 		bp->vnic_info[BNXT_VNIC_NTUPLE].flags |=
5140 			BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG;
5141 
5142 	rc = bnxt_alloc_vnic_attributes(bp);
5143 	if (rc)
5144 		goto alloc_mem_err;
5145 	return 0;
5146 
5147 alloc_mem_err:
5148 	bnxt_free_mem(bp, true);
5149 	return rc;
5150 }
5151 
5152 static void bnxt_disable_int(struct bnxt *bp)
5153 {
5154 	int i;
5155 
5156 	if (!bp->bnapi)
5157 		return;
5158 
5159 	for (i = 0; i < bp->cp_nr_rings; i++) {
5160 		struct bnxt_napi *bnapi = bp->bnapi[i];
5161 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5162 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5163 
5164 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5165 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5166 	}
5167 }
5168 
5169 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5170 {
5171 	struct bnxt_napi *bnapi = bp->bnapi[n];
5172 	struct bnxt_cp_ring_info *cpr;
5173 
5174 	cpr = &bnapi->cp_ring;
5175 	return cpr->cp_ring_struct.map_idx;
5176 }
5177 
5178 static void bnxt_disable_int_sync(struct bnxt *bp)
5179 {
5180 	int i;
5181 
5182 	if (!bp->irq_tbl)
5183 		return;
5184 
5185 	atomic_inc(&bp->intr_sem);
5186 
5187 	bnxt_disable_int(bp);
5188 	for (i = 0; i < bp->cp_nr_rings; i++) {
5189 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5190 
5191 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5192 	}
5193 }
5194 
5195 static void bnxt_enable_int(struct bnxt *bp)
5196 {
5197 	int i;
5198 
5199 	atomic_set(&bp->intr_sem, 0);
5200 	for (i = 0; i < bp->cp_nr_rings; i++) {
5201 		struct bnxt_napi *bnapi = bp->bnapi[i];
5202 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5203 
5204 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5205 	}
5206 }
5207 
5208 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5209 			    bool async_only)
5210 {
5211 	DECLARE_BITMAP(async_events_bmap, 256);
5212 	u32 *events = (u32 *)async_events_bmap;
5213 	struct hwrm_func_drv_rgtr_output *resp;
5214 	struct hwrm_func_drv_rgtr_input *req;
5215 	u32 flags;
5216 	int rc, i;
5217 
5218 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5219 	if (rc)
5220 		return rc;
5221 
5222 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5223 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5224 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5225 
5226 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5227 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5228 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5229 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5230 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5231 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5232 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5233 	req->flags = cpu_to_le32(flags);
5234 	req->ver_maj_8b = DRV_VER_MAJ;
5235 	req->ver_min_8b = DRV_VER_MIN;
5236 	req->ver_upd_8b = DRV_VER_UPD;
5237 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5238 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5239 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5240 
5241 	if (BNXT_PF(bp)) {
5242 		u32 data[8];
5243 		int i;
5244 
5245 		memset(data, 0, sizeof(data));
5246 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5247 			u16 cmd = bnxt_vf_req_snif[i];
5248 			unsigned int bit, idx;
5249 
5250 			idx = cmd / 32;
5251 			bit = cmd % 32;
5252 			data[idx] |= 1 << bit;
5253 		}
5254 
5255 		for (i = 0; i < 8; i++)
5256 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5257 
5258 		req->enables |=
5259 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5260 	}
5261 
5262 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5263 		req->flags |= cpu_to_le32(
5264 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5265 
5266 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5267 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5268 		u16 event_id = bnxt_async_events_arr[i];
5269 
5270 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5271 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5272 			continue;
5273 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5274 		    !bp->ptp_cfg)
5275 			continue;
5276 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5277 	}
5278 	if (bmap && bmap_size) {
5279 		for (i = 0; i < bmap_size; i++) {
5280 			if (test_bit(i, bmap))
5281 				__set_bit(i, async_events_bmap);
5282 		}
5283 	}
5284 	for (i = 0; i < 8; i++)
5285 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5286 
5287 	if (async_only)
5288 		req->enables =
5289 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5290 
5291 	resp = hwrm_req_hold(bp, req);
5292 	rc = hwrm_req_send(bp, req);
5293 	if (!rc) {
5294 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5295 		if (resp->flags &
5296 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5297 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5298 	}
5299 	hwrm_req_drop(bp, req);
5300 	return rc;
5301 }
5302 
5303 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5304 {
5305 	struct hwrm_func_drv_unrgtr_input *req;
5306 	int rc;
5307 
5308 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5309 		return 0;
5310 
5311 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5312 	if (rc)
5313 		return rc;
5314 	return hwrm_req_send(bp, req);
5315 }
5316 
5317 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5318 
5319 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5320 {
5321 	struct hwrm_tunnel_dst_port_free_input *req;
5322 	int rc;
5323 
5324 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5325 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5326 		return 0;
5327 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5328 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5329 		return 0;
5330 
5331 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5332 	if (rc)
5333 		return rc;
5334 
5335 	req->tunnel_type = tunnel_type;
5336 
5337 	switch (tunnel_type) {
5338 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5339 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5340 		bp->vxlan_port = 0;
5341 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5342 		break;
5343 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5344 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5345 		bp->nge_port = 0;
5346 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5347 		break;
5348 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5349 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5350 		bp->vxlan_gpe_port = 0;
5351 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5352 		break;
5353 	default:
5354 		break;
5355 	}
5356 
5357 	rc = hwrm_req_send(bp, req);
5358 	if (rc)
5359 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5360 			   rc);
5361 	if (bp->flags & BNXT_FLAG_TPA)
5362 		bnxt_set_tpa(bp, true);
5363 	return rc;
5364 }
5365 
5366 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5367 					   u8 tunnel_type)
5368 {
5369 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5370 	struct hwrm_tunnel_dst_port_alloc_input *req;
5371 	int rc;
5372 
5373 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5374 	if (rc)
5375 		return rc;
5376 
5377 	req->tunnel_type = tunnel_type;
5378 	req->tunnel_dst_port_val = port;
5379 
5380 	resp = hwrm_req_hold(bp, req);
5381 	rc = hwrm_req_send(bp, req);
5382 	if (rc) {
5383 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5384 			   rc);
5385 		goto err_out;
5386 	}
5387 
5388 	switch (tunnel_type) {
5389 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5390 		bp->vxlan_port = port;
5391 		bp->vxlan_fw_dst_port_id =
5392 			le16_to_cpu(resp->tunnel_dst_port_id);
5393 		break;
5394 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5395 		bp->nge_port = port;
5396 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5397 		break;
5398 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5399 		bp->vxlan_gpe_port = port;
5400 		bp->vxlan_gpe_fw_dst_port_id =
5401 			le16_to_cpu(resp->tunnel_dst_port_id);
5402 		break;
5403 	default:
5404 		break;
5405 	}
5406 	if (bp->flags & BNXT_FLAG_TPA)
5407 		bnxt_set_tpa(bp, true);
5408 
5409 err_out:
5410 	hwrm_req_drop(bp, req);
5411 	return rc;
5412 }
5413 
5414 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5415 {
5416 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5417 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5418 	int rc;
5419 
5420 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5421 	if (rc)
5422 		return rc;
5423 
5424 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5425 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5426 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5427 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5428 	}
5429 	req->mask = cpu_to_le32(vnic->rx_mask);
5430 	return hwrm_req_send_silent(bp, req);
5431 }
5432 
5433 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5434 {
5435 	if (!atomic_dec_and_test(&fltr->refcnt))
5436 		return;
5437 	spin_lock_bh(&bp->ntp_fltr_lock);
5438 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5439 		spin_unlock_bh(&bp->ntp_fltr_lock);
5440 		return;
5441 	}
5442 	hlist_del_rcu(&fltr->base.hash);
5443 	bnxt_del_one_usr_fltr(bp, &fltr->base);
5444 	if (fltr->base.flags) {
5445 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5446 		bp->ntp_fltr_count--;
5447 	}
5448 	spin_unlock_bh(&bp->ntp_fltr_lock);
5449 	kfree_rcu(fltr, base.rcu);
5450 }
5451 
5452 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5453 						      struct bnxt_l2_key *key,
5454 						      u32 idx)
5455 {
5456 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5457 	struct bnxt_l2_filter *fltr;
5458 
5459 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5460 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5461 
5462 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5463 		    l2_key->vlan == key->vlan)
5464 			return fltr;
5465 	}
5466 	return NULL;
5467 }
5468 
5469 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5470 						    struct bnxt_l2_key *key,
5471 						    u32 idx)
5472 {
5473 	struct bnxt_l2_filter *fltr = NULL;
5474 
5475 	rcu_read_lock();
5476 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5477 	if (fltr)
5478 		atomic_inc(&fltr->refcnt);
5479 	rcu_read_unlock();
5480 	return fltr;
5481 }
5482 
5483 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5484 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5485 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5486 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5487 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5488 
5489 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5490 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5491 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5492 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5493 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5494 
5495 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5496 {
5497 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5498 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5499 			return sizeof(fkeys->addrs.v4addrs) +
5500 			       sizeof(fkeys->ports);
5501 
5502 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5503 			return sizeof(fkeys->addrs.v4addrs);
5504 	}
5505 
5506 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5507 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5508 			return sizeof(fkeys->addrs.v6addrs) +
5509 			       sizeof(fkeys->ports);
5510 
5511 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5512 			return sizeof(fkeys->addrs.v6addrs);
5513 	}
5514 
5515 	return 0;
5516 }
5517 
5518 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5519 			 const unsigned char *key)
5520 {
5521 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5522 	struct bnxt_ipv4_tuple tuple4;
5523 	struct bnxt_ipv6_tuple tuple6;
5524 	int i, j, len = 0;
5525 	u8 *four_tuple;
5526 
5527 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5528 	if (!len)
5529 		return 0;
5530 
5531 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5532 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5533 		tuple4.ports = fkeys->ports;
5534 		four_tuple = (unsigned char *)&tuple4;
5535 	} else {
5536 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5537 		tuple6.ports = fkeys->ports;
5538 		four_tuple = (unsigned char *)&tuple6;
5539 	}
5540 
5541 	for (i = 0, j = 8; i < len; i++, j++) {
5542 		u8 byte = four_tuple[i];
5543 		int bit;
5544 
5545 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5546 			if (byte & 0x80)
5547 				hash ^= prefix;
5548 		}
5549 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5550 	}
5551 
5552 	/* The valid part of the hash is in the upper 32 bits. */
5553 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5554 }
5555 
5556 #ifdef CONFIG_RFS_ACCEL
5557 static struct bnxt_l2_filter *
5558 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5559 {
5560 	struct bnxt_l2_filter *fltr;
5561 	u32 idx;
5562 
5563 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5564 	      BNXT_L2_FLTR_HASH_MASK;
5565 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5566 	return fltr;
5567 }
5568 #endif
5569 
5570 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5571 			       struct bnxt_l2_key *key, u32 idx)
5572 {
5573 	struct hlist_head *head;
5574 
5575 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5576 	fltr->l2_key.vlan = key->vlan;
5577 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5578 	if (fltr->base.flags) {
5579 		int bit_id;
5580 
5581 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5582 						 bp->max_fltr, 0);
5583 		if (bit_id < 0)
5584 			return -ENOMEM;
5585 		fltr->base.sw_id = (u16)bit_id;
5586 		bp->ntp_fltr_count++;
5587 	}
5588 	head = &bp->l2_fltr_hash_tbl[idx];
5589 	hlist_add_head_rcu(&fltr->base.hash, head);
5590 	bnxt_insert_usr_fltr(bp, &fltr->base);
5591 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5592 	atomic_set(&fltr->refcnt, 1);
5593 	return 0;
5594 }
5595 
5596 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5597 						   struct bnxt_l2_key *key,
5598 						   gfp_t gfp)
5599 {
5600 	struct bnxt_l2_filter *fltr;
5601 	u32 idx;
5602 	int rc;
5603 
5604 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5605 	      BNXT_L2_FLTR_HASH_MASK;
5606 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5607 	if (fltr)
5608 		return fltr;
5609 
5610 	fltr = kzalloc(sizeof(*fltr), gfp);
5611 	if (!fltr)
5612 		return ERR_PTR(-ENOMEM);
5613 	spin_lock_bh(&bp->ntp_fltr_lock);
5614 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5615 	spin_unlock_bh(&bp->ntp_fltr_lock);
5616 	if (rc) {
5617 		bnxt_del_l2_filter(bp, fltr);
5618 		fltr = ERR_PTR(rc);
5619 	}
5620 	return fltr;
5621 }
5622 
5623 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp,
5624 						struct bnxt_l2_key *key,
5625 						u16 flags)
5626 {
5627 	struct bnxt_l2_filter *fltr;
5628 	u32 idx;
5629 	int rc;
5630 
5631 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5632 	      BNXT_L2_FLTR_HASH_MASK;
5633 	spin_lock_bh(&bp->ntp_fltr_lock);
5634 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5635 	if (fltr) {
5636 		fltr = ERR_PTR(-EEXIST);
5637 		goto l2_filter_exit;
5638 	}
5639 	fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC);
5640 	if (!fltr) {
5641 		fltr = ERR_PTR(-ENOMEM);
5642 		goto l2_filter_exit;
5643 	}
5644 	fltr->base.flags = flags;
5645 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5646 	if (rc) {
5647 		spin_unlock_bh(&bp->ntp_fltr_lock);
5648 		bnxt_del_l2_filter(bp, fltr);
5649 		return ERR_PTR(rc);
5650 	}
5651 
5652 l2_filter_exit:
5653 	spin_unlock_bh(&bp->ntp_fltr_lock);
5654 	return fltr;
5655 }
5656 
5657 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5658 {
5659 #ifdef CONFIG_BNXT_SRIOV
5660 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5661 
5662 	return vf->fw_fid;
5663 #else
5664 	return INVALID_HW_RING_ID;
5665 #endif
5666 }
5667 
5668 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5669 {
5670 	struct hwrm_cfa_l2_filter_free_input *req;
5671 	u16 target_id = 0xffff;
5672 	int rc;
5673 
5674 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5675 		struct bnxt_pf_info *pf = &bp->pf;
5676 
5677 		if (fltr->base.vf_idx >= pf->active_vfs)
5678 			return -EINVAL;
5679 
5680 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5681 		if (target_id == INVALID_HW_RING_ID)
5682 			return -EINVAL;
5683 	}
5684 
5685 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5686 	if (rc)
5687 		return rc;
5688 
5689 	req->target_id = cpu_to_le16(target_id);
5690 	req->l2_filter_id = fltr->base.filter_id;
5691 	return hwrm_req_send(bp, req);
5692 }
5693 
5694 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5695 {
5696 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5697 	struct hwrm_cfa_l2_filter_alloc_input *req;
5698 	u16 target_id = 0xffff;
5699 	int rc;
5700 
5701 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5702 		struct bnxt_pf_info *pf = &bp->pf;
5703 
5704 		if (fltr->base.vf_idx >= pf->active_vfs)
5705 			return -EINVAL;
5706 
5707 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5708 	}
5709 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5710 	if (rc)
5711 		return rc;
5712 
5713 	req->target_id = cpu_to_le16(target_id);
5714 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5715 
5716 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5717 		req->flags |=
5718 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5719 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5720 	req->enables =
5721 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5722 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5723 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5724 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5725 	eth_broadcast_addr(req->l2_addr_mask);
5726 
5727 	if (fltr->l2_key.vlan) {
5728 		req->enables |=
5729 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5730 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5731 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5732 		req->num_vlans = 1;
5733 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5734 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5735 	}
5736 
5737 	resp = hwrm_req_hold(bp, req);
5738 	rc = hwrm_req_send(bp, req);
5739 	if (!rc) {
5740 		fltr->base.filter_id = resp->l2_filter_id;
5741 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5742 	}
5743 	hwrm_req_drop(bp, req);
5744 	return rc;
5745 }
5746 
5747 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5748 				     struct bnxt_ntuple_filter *fltr)
5749 {
5750 	struct hwrm_cfa_ntuple_filter_free_input *req;
5751 	int rc;
5752 
5753 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5754 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5755 	if (rc)
5756 		return rc;
5757 
5758 	req->ntuple_filter_id = fltr->base.filter_id;
5759 	return hwrm_req_send(bp, req);
5760 }
5761 
5762 #define BNXT_NTP_FLTR_FLAGS					\
5763 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5764 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5765 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5766 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5767 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5768 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5769 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5770 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5771 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5772 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5773 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5774 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5775 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5776 
5777 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5778 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5779 
5780 void bnxt_fill_ipv6_mask(__be32 mask[4])
5781 {
5782 	int i;
5783 
5784 	for (i = 0; i < 4; i++)
5785 		mask[i] = cpu_to_be32(~0);
5786 }
5787 
5788 static void
5789 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp,
5790 			  struct hwrm_cfa_ntuple_filter_alloc_input *req,
5791 			  u16 rxq)
5792 {
5793 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
5794 		struct bnxt_vnic_info *vnic;
5795 		u32 enables;
5796 
5797 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
5798 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5799 		enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
5800 		req->enables |= cpu_to_le32(enables);
5801 		req->rfs_ring_tbl_idx = cpu_to_le16(rxq);
5802 	} else {
5803 		u32 flags;
5804 
5805 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5806 		req->flags |= cpu_to_le32(flags);
5807 		req->dst_id = cpu_to_le16(rxq);
5808 	}
5809 }
5810 
5811 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5812 				      struct bnxt_ntuple_filter *fltr)
5813 {
5814 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5815 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5816 	struct bnxt_flow_masks *masks = &fltr->fmasks;
5817 	struct flow_keys *keys = &fltr->fkeys;
5818 	struct bnxt_l2_filter *l2_fltr;
5819 	struct bnxt_vnic_info *vnic;
5820 	int rc;
5821 
5822 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5823 	if (rc)
5824 		return rc;
5825 
5826 	l2_fltr = fltr->l2_fltr;
5827 	req->l2_filter_id = l2_fltr->base.filter_id;
5828 
5829 	if (fltr->base.flags & BNXT_ACT_DROP) {
5830 		req->flags =
5831 			cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP);
5832 	} else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
5833 		bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr->base.rxq);
5834 	} else {
5835 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
5836 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5837 	}
5838 	req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
5839 
5840 	req->ethertype = htons(ETH_P_IP);
5841 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
5842 	req->ip_protocol = keys->basic.ip_proto;
5843 
5844 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
5845 		req->ethertype = htons(ETH_P_IPV6);
5846 		req->ip_addr_type =
5847 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5848 		*(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src;
5849 		*(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src;
5850 		*(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst;
5851 		*(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst;
5852 	} else {
5853 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5854 		req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src;
5855 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5856 		req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst;
5857 	}
5858 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5859 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5860 		req->tunnel_type =
5861 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5862 	}
5863 
5864 	req->src_port = keys->ports.src;
5865 	req->src_port_mask = masks->ports.src;
5866 	req->dst_port = keys->ports.dst;
5867 	req->dst_port_mask = masks->ports.dst;
5868 
5869 	resp = hwrm_req_hold(bp, req);
5870 	rc = hwrm_req_send(bp, req);
5871 	if (!rc)
5872 		fltr->base.filter_id = resp->ntuple_filter_id;
5873 	hwrm_req_drop(bp, req);
5874 	return rc;
5875 }
5876 
5877 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5878 				     const u8 *mac_addr)
5879 {
5880 	struct bnxt_l2_filter *fltr;
5881 	struct bnxt_l2_key key;
5882 	int rc;
5883 
5884 	ether_addr_copy(key.dst_mac_addr, mac_addr);
5885 	key.vlan = 0;
5886 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
5887 	if (IS_ERR(fltr))
5888 		return PTR_ERR(fltr);
5889 
5890 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
5891 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
5892 	if (rc)
5893 		bnxt_del_l2_filter(bp, fltr);
5894 	else
5895 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
5896 	return rc;
5897 }
5898 
5899 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5900 {
5901 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5902 
5903 	/* Any associated ntuple filters will also be cleared by firmware. */
5904 	for (i = 0; i < num_of_vnics; i++) {
5905 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5906 
5907 		for (j = 0; j < vnic->uc_filter_count; j++) {
5908 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
5909 
5910 			bnxt_hwrm_l2_filter_free(bp, fltr);
5911 			bnxt_del_l2_filter(bp, fltr);
5912 		}
5913 		vnic->uc_filter_count = 0;
5914 	}
5915 }
5916 
5917 #define BNXT_DFLT_TUNL_TPA_BMAP				\
5918 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
5919 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
5920 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
5921 
5922 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
5923 					   struct hwrm_vnic_tpa_cfg_input *req)
5924 {
5925 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
5926 
5927 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
5928 		return;
5929 
5930 	if (bp->vxlan_port)
5931 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
5932 	if (bp->vxlan_gpe_port)
5933 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
5934 	if (bp->nge_port)
5935 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
5936 
5937 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
5938 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
5939 }
5940 
5941 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5942 {
5943 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5944 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5945 	struct hwrm_vnic_tpa_cfg_input *req;
5946 	int rc;
5947 
5948 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5949 		return 0;
5950 
5951 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5952 	if (rc)
5953 		return rc;
5954 
5955 	if (tpa_flags) {
5956 		u16 mss = bp->dev->mtu - 40;
5957 		u32 nsegs, n, segs = 0, flags;
5958 
5959 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5960 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5961 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5962 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5963 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5964 		if (tpa_flags & BNXT_FLAG_GRO)
5965 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5966 
5967 		req->flags = cpu_to_le32(flags);
5968 
5969 		req->enables =
5970 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5971 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5972 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5973 
5974 		/* Number of segs are log2 units, and first packet is not
5975 		 * included as part of this units.
5976 		 */
5977 		if (mss <= BNXT_RX_PAGE_SIZE) {
5978 			n = BNXT_RX_PAGE_SIZE / mss;
5979 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5980 		} else {
5981 			n = mss / BNXT_RX_PAGE_SIZE;
5982 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5983 				n++;
5984 			nsegs = (MAX_SKB_FRAGS - n) / n;
5985 		}
5986 
5987 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5988 			segs = MAX_TPA_SEGS_P5;
5989 			max_aggs = bp->max_tpa;
5990 		} else {
5991 			segs = ilog2(nsegs);
5992 		}
5993 		req->max_agg_segs = cpu_to_le16(segs);
5994 		req->max_aggs = cpu_to_le16(max_aggs);
5995 
5996 		req->min_agg_len = cpu_to_le32(512);
5997 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
5998 	}
5999 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6000 
6001 	return hwrm_req_send(bp, req);
6002 }
6003 
6004 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
6005 {
6006 	struct bnxt_ring_grp_info *grp_info;
6007 
6008 	grp_info = &bp->grp_info[ring->grp_idx];
6009 	return grp_info->cp_fw_ring_id;
6010 }
6011 
6012 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
6013 {
6014 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6015 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
6016 	else
6017 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
6018 }
6019 
6020 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
6021 {
6022 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6023 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
6024 	else
6025 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
6026 }
6027 
6028 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
6029 {
6030 	int entries;
6031 
6032 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6033 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
6034 	else
6035 		entries = HW_HASH_INDEX_SIZE;
6036 
6037 	bp->rss_indir_tbl_entries = entries;
6038 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
6039 					  GFP_KERNEL);
6040 	if (!bp->rss_indir_tbl)
6041 		return -ENOMEM;
6042 	return 0;
6043 }
6044 
6045 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
6046 {
6047 	u16 max_rings, max_entries, pad, i;
6048 
6049 	if (!bp->rx_nr_rings)
6050 		return;
6051 
6052 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6053 		max_rings = bp->rx_nr_rings - 1;
6054 	else
6055 		max_rings = bp->rx_nr_rings;
6056 
6057 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
6058 
6059 	for (i = 0; i < max_entries; i++)
6060 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
6061 
6062 	pad = bp->rss_indir_tbl_entries - max_entries;
6063 	if (pad)
6064 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
6065 }
6066 
6067 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
6068 {
6069 	u16 i, tbl_size, max_ring = 0;
6070 
6071 	if (!bp->rss_indir_tbl)
6072 		return 0;
6073 
6074 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6075 	for (i = 0; i < tbl_size; i++)
6076 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
6077 	return max_ring;
6078 }
6079 
6080 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
6081 {
6082 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6083 		if (!rx_rings)
6084 			return 0;
6085 		return bnxt_calc_nr_ring_pages(rx_rings - 1,
6086 					       BNXT_RSS_TABLE_ENTRIES_P5);
6087 	}
6088 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6089 		return 2;
6090 	return 1;
6091 }
6092 
6093 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6094 {
6095 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
6096 	u16 i, j;
6097 
6098 	/* Fill the RSS indirection table with ring group ids */
6099 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
6100 		if (!no_rss)
6101 			j = bp->rss_indir_tbl[i];
6102 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
6103 	}
6104 }
6105 
6106 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
6107 				    struct bnxt_vnic_info *vnic)
6108 {
6109 	__le16 *ring_tbl = vnic->rss_table;
6110 	struct bnxt_rx_ring_info *rxr;
6111 	u16 tbl_size, i;
6112 
6113 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6114 
6115 	for (i = 0; i < tbl_size; i++) {
6116 		u16 ring_id, j;
6117 
6118 		if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG)
6119 			j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings);
6120 		else
6121 			j = bp->rss_indir_tbl[i];
6122 		rxr = &bp->rx_ring[j];
6123 
6124 		ring_id = rxr->rx_ring_struct.fw_ring_id;
6125 		*ring_tbl++ = cpu_to_le16(ring_id);
6126 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6127 		*ring_tbl++ = cpu_to_le16(ring_id);
6128 	}
6129 }
6130 
6131 static void
6132 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
6133 			 struct bnxt_vnic_info *vnic)
6134 {
6135 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6136 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
6137 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6138 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT;
6139 	} else {
6140 		bnxt_fill_hw_rss_tbl(bp, vnic);
6141 	}
6142 
6143 	if (bp->rss_hash_delta) {
6144 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
6145 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
6146 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
6147 		else
6148 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
6149 	} else {
6150 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6151 	}
6152 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6153 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6154 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6155 }
6156 
6157 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
6158 {
6159 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6160 	struct hwrm_vnic_rss_cfg_input *req;
6161 	int rc;
6162 
6163 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6164 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6165 		return 0;
6166 
6167 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6168 	if (rc)
6169 		return rc;
6170 
6171 	if (set_rss)
6172 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6173 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6174 	return hwrm_req_send(bp, req);
6175 }
6176 
6177 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
6178 {
6179 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6180 	struct hwrm_vnic_rss_cfg_input *req;
6181 	dma_addr_t ring_tbl_map;
6182 	u32 i, nr_ctxs;
6183 	int rc;
6184 
6185 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6186 	if (rc)
6187 		return rc;
6188 
6189 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6190 	if (!set_rss)
6191 		return hwrm_req_send(bp, req);
6192 
6193 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6194 	ring_tbl_map = vnic->rss_table_dma_addr;
6195 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6196 
6197 	hwrm_req_hold(bp, req);
6198 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6199 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6200 		req->ring_table_pair_index = i;
6201 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6202 		rc = hwrm_req_send(bp, req);
6203 		if (rc)
6204 			goto exit;
6205 	}
6206 
6207 exit:
6208 	hwrm_req_drop(bp, req);
6209 	return rc;
6210 }
6211 
6212 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6213 {
6214 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6215 	struct hwrm_vnic_rss_qcfg_output *resp;
6216 	struct hwrm_vnic_rss_qcfg_input *req;
6217 
6218 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6219 		return;
6220 
6221 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6222 	/* all contexts configured to same hash_type, zero always exists */
6223 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6224 	resp = hwrm_req_hold(bp, req);
6225 	if (!hwrm_req_send(bp, req)) {
6226 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6227 		bp->rss_hash_delta = 0;
6228 	}
6229 	hwrm_req_drop(bp, req);
6230 }
6231 
6232 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
6233 {
6234 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6235 	struct hwrm_vnic_plcmodes_cfg_input *req;
6236 	int rc;
6237 
6238 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6239 	if (rc)
6240 		return rc;
6241 
6242 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6243 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6244 
6245 	if (BNXT_RX_PAGE_MODE(bp)) {
6246 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6247 	} else {
6248 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6249 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6250 		req->enables |=
6251 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6252 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6253 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6254 	}
6255 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6256 	return hwrm_req_send(bp, req);
6257 }
6258 
6259 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
6260 					u16 ctx_idx)
6261 {
6262 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6263 
6264 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6265 		return;
6266 
6267 	req->rss_cos_lb_ctx_id =
6268 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
6269 
6270 	hwrm_req_send(bp, req);
6271 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6272 }
6273 
6274 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6275 {
6276 	int i, j;
6277 
6278 	for (i = 0; i < bp->nr_vnics; i++) {
6279 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6280 
6281 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6282 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6283 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
6284 		}
6285 	}
6286 	bp->rsscos_nr_ctxs = 0;
6287 }
6288 
6289 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
6290 {
6291 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6292 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6293 	int rc;
6294 
6295 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6296 	if (rc)
6297 		return rc;
6298 
6299 	resp = hwrm_req_hold(bp, req);
6300 	rc = hwrm_req_send(bp, req);
6301 	if (!rc)
6302 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
6303 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6304 	hwrm_req_drop(bp, req);
6305 
6306 	return rc;
6307 }
6308 
6309 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6310 {
6311 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6312 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6313 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6314 }
6315 
6316 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
6317 {
6318 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6319 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6320 	struct hwrm_vnic_cfg_input *req;
6321 	unsigned int ring = 0, grp_idx;
6322 	u16 def_vlan = 0;
6323 	int rc;
6324 
6325 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6326 	if (rc)
6327 		return rc;
6328 
6329 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6330 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6331 
6332 		req->default_rx_ring_id =
6333 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6334 		req->default_cmpl_ring_id =
6335 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6336 		req->enables =
6337 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6338 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6339 		goto vnic_mru;
6340 	}
6341 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6342 	/* Only RSS support for now TBD: COS & LB */
6343 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6344 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6345 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6346 					   VNIC_CFG_REQ_ENABLES_MRU);
6347 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6348 		req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]);
6349 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6350 					   VNIC_CFG_REQ_ENABLES_MRU);
6351 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6352 	} else {
6353 		req->rss_rule = cpu_to_le16(0xffff);
6354 	}
6355 
6356 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6357 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6358 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6359 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6360 	} else {
6361 		req->cos_rule = cpu_to_le16(0xffff);
6362 	}
6363 
6364 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6365 		ring = 0;
6366 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6367 		ring = vnic_id - 1;
6368 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6369 		ring = bp->rx_nr_rings - 1;
6370 
6371 	grp_idx = bp->rx_ring[ring].bnapi->index;
6372 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6373 	req->lb_rule = cpu_to_le16(0xffff);
6374 vnic_mru:
6375 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
6376 
6377 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6378 #ifdef CONFIG_BNXT_SRIOV
6379 	if (BNXT_VF(bp))
6380 		def_vlan = bp->vf.vlan;
6381 #endif
6382 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6383 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6384 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
6385 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6386 
6387 	return hwrm_req_send(bp, req);
6388 }
6389 
6390 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
6391 {
6392 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
6393 		struct hwrm_vnic_free_input *req;
6394 
6395 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6396 			return;
6397 
6398 		req->vnic_id =
6399 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
6400 
6401 		hwrm_req_send(bp, req);
6402 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
6403 	}
6404 }
6405 
6406 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6407 {
6408 	u16 i;
6409 
6410 	for (i = 0; i < bp->nr_vnics; i++)
6411 		bnxt_hwrm_vnic_free_one(bp, i);
6412 }
6413 
6414 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
6415 				unsigned int start_rx_ring_idx,
6416 				unsigned int nr_rings)
6417 {
6418 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6419 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6420 	struct hwrm_vnic_alloc_output *resp;
6421 	struct hwrm_vnic_alloc_input *req;
6422 	int rc;
6423 
6424 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6425 	if (rc)
6426 		return rc;
6427 
6428 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6429 		goto vnic_no_ring_grps;
6430 
6431 	/* map ring groups to this vnic */
6432 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6433 		grp_idx = bp->rx_ring[i].bnapi->index;
6434 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6435 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6436 				   j, nr_rings);
6437 			break;
6438 		}
6439 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6440 	}
6441 
6442 vnic_no_ring_grps:
6443 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6444 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6445 	if (vnic_id == BNXT_VNIC_DEFAULT)
6446 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6447 
6448 	resp = hwrm_req_hold(bp, req);
6449 	rc = hwrm_req_send(bp, req);
6450 	if (!rc)
6451 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6452 	hwrm_req_drop(bp, req);
6453 	return rc;
6454 }
6455 
6456 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6457 {
6458 	struct hwrm_vnic_qcaps_output *resp;
6459 	struct hwrm_vnic_qcaps_input *req;
6460 	int rc;
6461 
6462 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6463 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6464 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6465 	if (bp->hwrm_spec_code < 0x10600)
6466 		return 0;
6467 
6468 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6469 	if (rc)
6470 		return rc;
6471 
6472 	resp = hwrm_req_hold(bp, req);
6473 	rc = hwrm_req_send(bp, req);
6474 	if (!rc) {
6475 		u32 flags = le32_to_cpu(resp->flags);
6476 
6477 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6478 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6479 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6480 		if (flags &
6481 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6482 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6483 
6484 		/* Older P5 fw before EXT_HW_STATS support did not set
6485 		 * VLAN_STRIP_CAP properly.
6486 		 */
6487 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6488 		    (BNXT_CHIP_P5(bp) &&
6489 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6490 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6491 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6492 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6493 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6494 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6495 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6496 		if (bp->max_tpa_v2) {
6497 			if (BNXT_CHIP_P5(bp))
6498 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6499 			else
6500 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6501 		}
6502 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6503 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6504 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP)
6505 			bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP;
6506 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP)
6507 			bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP;
6508 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP)
6509 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP;
6510 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP)
6511 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP;
6512 	}
6513 	hwrm_req_drop(bp, req);
6514 	return rc;
6515 }
6516 
6517 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6518 {
6519 	struct hwrm_ring_grp_alloc_output *resp;
6520 	struct hwrm_ring_grp_alloc_input *req;
6521 	int rc;
6522 	u16 i;
6523 
6524 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6525 		return 0;
6526 
6527 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6528 	if (rc)
6529 		return rc;
6530 
6531 	resp = hwrm_req_hold(bp, req);
6532 	for (i = 0; i < bp->rx_nr_rings; i++) {
6533 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6534 
6535 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6536 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6537 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6538 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6539 
6540 		rc = hwrm_req_send(bp, req);
6541 
6542 		if (rc)
6543 			break;
6544 
6545 		bp->grp_info[grp_idx].fw_grp_id =
6546 			le32_to_cpu(resp->ring_group_id);
6547 	}
6548 	hwrm_req_drop(bp, req);
6549 	return rc;
6550 }
6551 
6552 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6553 {
6554 	struct hwrm_ring_grp_free_input *req;
6555 	u16 i;
6556 
6557 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6558 		return;
6559 
6560 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6561 		return;
6562 
6563 	hwrm_req_hold(bp, req);
6564 	for (i = 0; i < bp->cp_nr_rings; i++) {
6565 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6566 			continue;
6567 		req->ring_group_id =
6568 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6569 
6570 		hwrm_req_send(bp, req);
6571 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6572 	}
6573 	hwrm_req_drop(bp, req);
6574 }
6575 
6576 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6577 				    struct bnxt_ring_struct *ring,
6578 				    u32 ring_type, u32 map_index)
6579 {
6580 	struct hwrm_ring_alloc_output *resp;
6581 	struct hwrm_ring_alloc_input *req;
6582 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6583 	struct bnxt_ring_grp_info *grp_info;
6584 	int rc, err = 0;
6585 	u16 ring_id;
6586 
6587 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6588 	if (rc)
6589 		goto exit;
6590 
6591 	req->enables = 0;
6592 	if (rmem->nr_pages > 1) {
6593 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6594 		/* Page size is in log2 units */
6595 		req->page_size = BNXT_PAGE_SHIFT;
6596 		req->page_tbl_depth = 1;
6597 	} else {
6598 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6599 	}
6600 	req->fbo = 0;
6601 	/* Association of ring index with doorbell index and MSIX number */
6602 	req->logical_id = cpu_to_le16(map_index);
6603 
6604 	switch (ring_type) {
6605 	case HWRM_RING_ALLOC_TX: {
6606 		struct bnxt_tx_ring_info *txr;
6607 
6608 		txr = container_of(ring, struct bnxt_tx_ring_info,
6609 				   tx_ring_struct);
6610 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6611 		/* Association of transmit ring with completion ring */
6612 		grp_info = &bp->grp_info[ring->grp_idx];
6613 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6614 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6615 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6616 		req->queue_id = cpu_to_le16(ring->queue_id);
6617 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6618 			req->cmpl_coal_cnt =
6619 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6620 		break;
6621 	}
6622 	case HWRM_RING_ALLOC_RX:
6623 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6624 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6625 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6626 			u16 flags = 0;
6627 
6628 			/* Association of rx ring with stats context */
6629 			grp_info = &bp->grp_info[ring->grp_idx];
6630 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6631 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6632 			req->enables |= cpu_to_le32(
6633 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6634 			if (NET_IP_ALIGN == 2)
6635 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6636 			req->flags = cpu_to_le16(flags);
6637 		}
6638 		break;
6639 	case HWRM_RING_ALLOC_AGG:
6640 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6641 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6642 			/* Association of agg ring with rx ring */
6643 			grp_info = &bp->grp_info[ring->grp_idx];
6644 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6645 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6646 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6647 			req->enables |= cpu_to_le32(
6648 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6649 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6650 		} else {
6651 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6652 		}
6653 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6654 		break;
6655 	case HWRM_RING_ALLOC_CMPL:
6656 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6657 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6658 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6659 			/* Association of cp ring with nq */
6660 			grp_info = &bp->grp_info[map_index];
6661 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6662 			req->cq_handle = cpu_to_le64(ring->handle);
6663 			req->enables |= cpu_to_le32(
6664 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6665 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6666 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6667 		}
6668 		break;
6669 	case HWRM_RING_ALLOC_NQ:
6670 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6671 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6672 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6673 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6674 		break;
6675 	default:
6676 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6677 			   ring_type);
6678 		return -1;
6679 	}
6680 
6681 	resp = hwrm_req_hold(bp, req);
6682 	rc = hwrm_req_send(bp, req);
6683 	err = le16_to_cpu(resp->error_code);
6684 	ring_id = le16_to_cpu(resp->ring_id);
6685 	hwrm_req_drop(bp, req);
6686 
6687 exit:
6688 	if (rc || err) {
6689 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6690 			   ring_type, rc, err);
6691 		return -EIO;
6692 	}
6693 	ring->fw_ring_id = ring_id;
6694 	return rc;
6695 }
6696 
6697 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6698 {
6699 	int rc;
6700 
6701 	if (BNXT_PF(bp)) {
6702 		struct hwrm_func_cfg_input *req;
6703 
6704 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6705 		if (rc)
6706 			return rc;
6707 
6708 		req->fid = cpu_to_le16(0xffff);
6709 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6710 		req->async_event_cr = cpu_to_le16(idx);
6711 		return hwrm_req_send(bp, req);
6712 	} else {
6713 		struct hwrm_func_vf_cfg_input *req;
6714 
6715 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6716 		if (rc)
6717 			return rc;
6718 
6719 		req->enables =
6720 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6721 		req->async_event_cr = cpu_to_le16(idx);
6722 		return hwrm_req_send(bp, req);
6723 	}
6724 }
6725 
6726 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6727 			     u32 ring_type)
6728 {
6729 	switch (ring_type) {
6730 	case HWRM_RING_ALLOC_TX:
6731 		db->db_ring_mask = bp->tx_ring_mask;
6732 		break;
6733 	case HWRM_RING_ALLOC_RX:
6734 		db->db_ring_mask = bp->rx_ring_mask;
6735 		break;
6736 	case HWRM_RING_ALLOC_AGG:
6737 		db->db_ring_mask = bp->rx_agg_ring_mask;
6738 		break;
6739 	case HWRM_RING_ALLOC_CMPL:
6740 	case HWRM_RING_ALLOC_NQ:
6741 		db->db_ring_mask = bp->cp_ring_mask;
6742 		break;
6743 	}
6744 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6745 		db->db_epoch_mask = db->db_ring_mask + 1;
6746 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6747 	}
6748 }
6749 
6750 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6751 			u32 map_idx, u32 xid)
6752 {
6753 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6754 		switch (ring_type) {
6755 		case HWRM_RING_ALLOC_TX:
6756 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6757 			break;
6758 		case HWRM_RING_ALLOC_RX:
6759 		case HWRM_RING_ALLOC_AGG:
6760 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6761 			break;
6762 		case HWRM_RING_ALLOC_CMPL:
6763 			db->db_key64 = DBR_PATH_L2;
6764 			break;
6765 		case HWRM_RING_ALLOC_NQ:
6766 			db->db_key64 = DBR_PATH_L2;
6767 			break;
6768 		}
6769 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6770 
6771 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6772 			db->db_key64 |= DBR_VALID;
6773 
6774 		db->doorbell = bp->bar1 + bp->db_offset;
6775 	} else {
6776 		db->doorbell = bp->bar1 + map_idx * 0x80;
6777 		switch (ring_type) {
6778 		case HWRM_RING_ALLOC_TX:
6779 			db->db_key32 = DB_KEY_TX;
6780 			break;
6781 		case HWRM_RING_ALLOC_RX:
6782 		case HWRM_RING_ALLOC_AGG:
6783 			db->db_key32 = DB_KEY_RX;
6784 			break;
6785 		case HWRM_RING_ALLOC_CMPL:
6786 			db->db_key32 = DB_KEY_CP;
6787 			break;
6788 		}
6789 	}
6790 	bnxt_set_db_mask(bp, db, ring_type);
6791 }
6792 
6793 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
6794 {
6795 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
6796 	int i, rc = 0;
6797 	u32 type;
6798 
6799 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6800 		type = HWRM_RING_ALLOC_NQ;
6801 	else
6802 		type = HWRM_RING_ALLOC_CMPL;
6803 	for (i = 0; i < bp->cp_nr_rings; i++) {
6804 		struct bnxt_napi *bnapi = bp->bnapi[i];
6805 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6806 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
6807 		u32 map_idx = ring->map_idx;
6808 		unsigned int vector;
6809 
6810 		vector = bp->irq_tbl[map_idx].vector;
6811 		disable_irq_nosync(vector);
6812 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6813 		if (rc) {
6814 			enable_irq(vector);
6815 			goto err_out;
6816 		}
6817 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
6818 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
6819 		enable_irq(vector);
6820 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
6821 
6822 		if (!i) {
6823 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
6824 			if (rc)
6825 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
6826 		}
6827 	}
6828 
6829 	type = HWRM_RING_ALLOC_TX;
6830 	for (i = 0; i < bp->tx_nr_rings; i++) {
6831 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6832 		struct bnxt_ring_struct *ring;
6833 		u32 map_idx;
6834 
6835 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6836 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
6837 			struct bnxt_napi *bnapi = txr->bnapi;
6838 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6839 
6840 			ring = &cpr2->cp_ring_struct;
6841 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6842 			map_idx = bnapi->index;
6843 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6844 			if (rc)
6845 				goto err_out;
6846 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6847 				    ring->fw_ring_id);
6848 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6849 		}
6850 		ring = &txr->tx_ring_struct;
6851 		map_idx = i;
6852 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6853 		if (rc)
6854 			goto err_out;
6855 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
6856 	}
6857 
6858 	type = HWRM_RING_ALLOC_RX;
6859 	for (i = 0; i < bp->rx_nr_rings; i++) {
6860 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6861 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6862 		struct bnxt_napi *bnapi = rxr->bnapi;
6863 		u32 map_idx = bnapi->index;
6864 
6865 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6866 		if (rc)
6867 			goto err_out;
6868 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6869 		/* If we have agg rings, post agg buffers first. */
6870 		if (!agg_rings)
6871 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6872 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6873 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6874 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
6875 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6876 
6877 			ring = &cpr2->cp_ring_struct;
6878 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6879 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6880 			if (rc)
6881 				goto err_out;
6882 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6883 				    ring->fw_ring_id);
6884 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6885 		}
6886 	}
6887 
6888 	if (agg_rings) {
6889 		type = HWRM_RING_ALLOC_AGG;
6890 		for (i = 0; i < bp->rx_nr_rings; i++) {
6891 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6892 			struct bnxt_ring_struct *ring =
6893 						&rxr->rx_agg_ring_struct;
6894 			u32 grp_idx = ring->grp_idx;
6895 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6896 
6897 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6898 			if (rc)
6899 				goto err_out;
6900 
6901 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6902 				    ring->fw_ring_id);
6903 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6904 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6905 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6906 		}
6907 	}
6908 err_out:
6909 	return rc;
6910 }
6911 
6912 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6913 				   struct bnxt_ring_struct *ring,
6914 				   u32 ring_type, int cmpl_ring_id)
6915 {
6916 	struct hwrm_ring_free_output *resp;
6917 	struct hwrm_ring_free_input *req;
6918 	u16 error_code = 0;
6919 	int rc;
6920 
6921 	if (BNXT_NO_FW_ACCESS(bp))
6922 		return 0;
6923 
6924 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6925 	if (rc)
6926 		goto exit;
6927 
6928 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6929 	req->ring_type = ring_type;
6930 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6931 
6932 	resp = hwrm_req_hold(bp, req);
6933 	rc = hwrm_req_send(bp, req);
6934 	error_code = le16_to_cpu(resp->error_code);
6935 	hwrm_req_drop(bp, req);
6936 exit:
6937 	if (rc || error_code) {
6938 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6939 			   ring_type, rc, error_code);
6940 		return -EIO;
6941 	}
6942 	return 0;
6943 }
6944 
6945 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6946 {
6947 	u32 type;
6948 	int i;
6949 
6950 	if (!bp->bnapi)
6951 		return;
6952 
6953 	for (i = 0; i < bp->tx_nr_rings; i++) {
6954 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6955 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6956 
6957 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6958 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6959 
6960 			hwrm_ring_free_send_msg(bp, ring,
6961 						RING_FREE_REQ_RING_TYPE_TX,
6962 						close_path ? cmpl_ring_id :
6963 						INVALID_HW_RING_ID);
6964 			ring->fw_ring_id = INVALID_HW_RING_ID;
6965 		}
6966 	}
6967 
6968 	for (i = 0; i < bp->rx_nr_rings; i++) {
6969 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6970 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6971 		u32 grp_idx = rxr->bnapi->index;
6972 
6973 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6974 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6975 
6976 			hwrm_ring_free_send_msg(bp, ring,
6977 						RING_FREE_REQ_RING_TYPE_RX,
6978 						close_path ? cmpl_ring_id :
6979 						INVALID_HW_RING_ID);
6980 			ring->fw_ring_id = INVALID_HW_RING_ID;
6981 			bp->grp_info[grp_idx].rx_fw_ring_id =
6982 				INVALID_HW_RING_ID;
6983 		}
6984 	}
6985 
6986 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6987 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6988 	else
6989 		type = RING_FREE_REQ_RING_TYPE_RX;
6990 	for (i = 0; i < bp->rx_nr_rings; i++) {
6991 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6992 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6993 		u32 grp_idx = rxr->bnapi->index;
6994 
6995 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6996 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6997 
6998 			hwrm_ring_free_send_msg(bp, ring, type,
6999 						close_path ? cmpl_ring_id :
7000 						INVALID_HW_RING_ID);
7001 			ring->fw_ring_id = INVALID_HW_RING_ID;
7002 			bp->grp_info[grp_idx].agg_fw_ring_id =
7003 				INVALID_HW_RING_ID;
7004 		}
7005 	}
7006 
7007 	/* The completion rings are about to be freed.  After that the
7008 	 * IRQ doorbell will not work anymore.  So we need to disable
7009 	 * IRQ here.
7010 	 */
7011 	bnxt_disable_int_sync(bp);
7012 
7013 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7014 		type = RING_FREE_REQ_RING_TYPE_NQ;
7015 	else
7016 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
7017 	for (i = 0; i < bp->cp_nr_rings; i++) {
7018 		struct bnxt_napi *bnapi = bp->bnapi[i];
7019 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7020 		struct bnxt_ring_struct *ring;
7021 		int j;
7022 
7023 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
7024 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
7025 
7026 			ring = &cpr2->cp_ring_struct;
7027 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
7028 				continue;
7029 			hwrm_ring_free_send_msg(bp, ring,
7030 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
7031 						INVALID_HW_RING_ID);
7032 			ring->fw_ring_id = INVALID_HW_RING_ID;
7033 		}
7034 		ring = &cpr->cp_ring_struct;
7035 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7036 			hwrm_ring_free_send_msg(bp, ring, type,
7037 						INVALID_HW_RING_ID);
7038 			ring->fw_ring_id = INVALID_HW_RING_ID;
7039 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
7040 		}
7041 	}
7042 }
7043 
7044 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7045 			     bool shared);
7046 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7047 			   bool shared);
7048 
7049 static int bnxt_hwrm_get_rings(struct bnxt *bp)
7050 {
7051 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7052 	struct hwrm_func_qcfg_output *resp;
7053 	struct hwrm_func_qcfg_input *req;
7054 	int rc;
7055 
7056 	if (bp->hwrm_spec_code < 0x10601)
7057 		return 0;
7058 
7059 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7060 	if (rc)
7061 		return rc;
7062 
7063 	req->fid = cpu_to_le16(0xffff);
7064 	resp = hwrm_req_hold(bp, req);
7065 	rc = hwrm_req_send(bp, req);
7066 	if (rc) {
7067 		hwrm_req_drop(bp, req);
7068 		return rc;
7069 	}
7070 
7071 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7072 	if (BNXT_NEW_RM(bp)) {
7073 		u16 cp, stats;
7074 
7075 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
7076 		hw_resc->resv_hw_ring_grps =
7077 			le32_to_cpu(resp->alloc_hw_ring_grps);
7078 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
7079 		hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx);
7080 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
7081 		stats = le16_to_cpu(resp->alloc_stat_ctx);
7082 		hw_resc->resv_irqs = cp;
7083 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7084 			int rx = hw_resc->resv_rx_rings;
7085 			int tx = hw_resc->resv_tx_rings;
7086 
7087 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
7088 				rx >>= 1;
7089 			if (cp < (rx + tx)) {
7090 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
7091 				if (rc)
7092 					goto get_rings_exit;
7093 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
7094 					rx <<= 1;
7095 				hw_resc->resv_rx_rings = rx;
7096 				hw_resc->resv_tx_rings = tx;
7097 			}
7098 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
7099 			hw_resc->resv_hw_ring_grps = rx;
7100 		}
7101 		hw_resc->resv_cp_rings = cp;
7102 		hw_resc->resv_stat_ctxs = stats;
7103 	}
7104 get_rings_exit:
7105 	hwrm_req_drop(bp, req);
7106 	return rc;
7107 }
7108 
7109 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
7110 {
7111 	struct hwrm_func_qcfg_output *resp;
7112 	struct hwrm_func_qcfg_input *req;
7113 	int rc;
7114 
7115 	if (bp->hwrm_spec_code < 0x10601)
7116 		return 0;
7117 
7118 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7119 	if (rc)
7120 		return rc;
7121 
7122 	req->fid = cpu_to_le16(fid);
7123 	resp = hwrm_req_hold(bp, req);
7124 	rc = hwrm_req_send(bp, req);
7125 	if (!rc)
7126 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7127 
7128 	hwrm_req_drop(bp, req);
7129 	return rc;
7130 }
7131 
7132 static bool bnxt_rfs_supported(struct bnxt *bp);
7133 
7134 static struct hwrm_func_cfg_input *
7135 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7136 {
7137 	struct hwrm_func_cfg_input *req;
7138 	u32 enables = 0;
7139 
7140 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
7141 		return NULL;
7142 
7143 	req->fid = cpu_to_le16(0xffff);
7144 	enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7145 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7146 	if (BNXT_NEW_RM(bp)) {
7147 		enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
7148 		enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7149 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7150 			enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
7151 			enables |= hwr->cp_p5 ?
7152 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7153 		} else {
7154 			enables |= hwr->cp ?
7155 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7156 			enables |= hwr->grp ?
7157 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7158 		}
7159 		enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7160 		enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS :
7161 					  0;
7162 		req->num_rx_rings = cpu_to_le16(hwr->rx);
7163 		req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7164 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7165 			req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7166 			req->num_msix = cpu_to_le16(hwr->cp);
7167 		} else {
7168 			req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7169 			req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7170 		}
7171 		req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7172 		req->num_vnics = cpu_to_le16(hwr->vnic);
7173 	}
7174 	req->enables = cpu_to_le32(enables);
7175 	return req;
7176 }
7177 
7178 static struct hwrm_func_vf_cfg_input *
7179 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7180 {
7181 	struct hwrm_func_vf_cfg_input *req;
7182 	u32 enables = 0;
7183 
7184 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7185 		return NULL;
7186 
7187 	enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7188 	enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7189 			     FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7190 	enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7191 	enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7192 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7193 		enables |= hwr->cp_p5 ?
7194 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7195 	} else {
7196 		enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7197 		enables |= hwr->grp ?
7198 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7199 	}
7200 	enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7201 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7202 
7203 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7204 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7205 	req->num_rx_rings = cpu_to_le16(hwr->rx);
7206 	req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7207 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7208 		req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7209 	} else {
7210 		req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7211 		req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7212 	}
7213 	req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7214 	req->num_vnics = cpu_to_le16(hwr->vnic);
7215 
7216 	req->enables = cpu_to_le32(enables);
7217 	return req;
7218 }
7219 
7220 static int
7221 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7222 {
7223 	struct hwrm_func_cfg_input *req;
7224 	int rc;
7225 
7226 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7227 	if (!req)
7228 		return -ENOMEM;
7229 
7230 	if (!req->enables) {
7231 		hwrm_req_drop(bp, req);
7232 		return 0;
7233 	}
7234 
7235 	rc = hwrm_req_send(bp, req);
7236 	if (rc)
7237 		return rc;
7238 
7239 	if (bp->hwrm_spec_code < 0x10601)
7240 		bp->hw_resc.resv_tx_rings = hwr->tx;
7241 
7242 	return bnxt_hwrm_get_rings(bp);
7243 }
7244 
7245 static int
7246 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7247 {
7248 	struct hwrm_func_vf_cfg_input *req;
7249 	int rc;
7250 
7251 	if (!BNXT_NEW_RM(bp)) {
7252 		bp->hw_resc.resv_tx_rings = hwr->tx;
7253 		return 0;
7254 	}
7255 
7256 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7257 	if (!req)
7258 		return -ENOMEM;
7259 
7260 	rc = hwrm_req_send(bp, req);
7261 	if (rc)
7262 		return rc;
7263 
7264 	return bnxt_hwrm_get_rings(bp);
7265 }
7266 
7267 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7268 {
7269 	if (BNXT_PF(bp))
7270 		return bnxt_hwrm_reserve_pf_rings(bp, hwr);
7271 	else
7272 		return bnxt_hwrm_reserve_vf_rings(bp, hwr);
7273 }
7274 
7275 int bnxt_nq_rings_in_use(struct bnxt *bp)
7276 {
7277 	int cp = bp->cp_nr_rings;
7278 	int ulp_msix, ulp_base;
7279 
7280 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7281 	if (ulp_msix) {
7282 		ulp_base = bnxt_get_ulp_msix_base(bp);
7283 		cp += ulp_msix;
7284 		if ((ulp_base + ulp_msix) > cp)
7285 			cp = ulp_base + ulp_msix;
7286 	}
7287 	return cp;
7288 }
7289 
7290 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7291 {
7292 	int cp;
7293 
7294 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7295 		return bnxt_nq_rings_in_use(bp);
7296 
7297 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7298 	return cp;
7299 }
7300 
7301 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7302 {
7303 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
7304 	int cp = bp->cp_nr_rings;
7305 
7306 	if (!ulp_stat)
7307 		return cp;
7308 
7309 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
7310 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
7311 
7312 	return cp + ulp_stat;
7313 }
7314 
7315 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7316 {
7317 	if (!hwr->grp)
7318 		return 0;
7319 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7320 		int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp);
7321 
7322 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7323 			rss_ctx *= hwr->vnic;
7324 		return rss_ctx;
7325 	}
7326 	if (BNXT_VF(bp))
7327 		return BNXT_VF_MAX_RSS_CTX;
7328 	if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp))
7329 		return hwr->grp + 1;
7330 	return 1;
7331 }
7332 
7333 /* Check if a default RSS map needs to be setup.  This function is only
7334  * used on older firmware that does not require reserving RX rings.
7335  */
7336 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7337 {
7338 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7339 
7340 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7341 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7342 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7343 		if (!netif_is_rxfh_configured(bp->dev))
7344 			bnxt_set_dflt_rss_indir_tbl(bp);
7345 	}
7346 }
7347 
7348 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings)
7349 {
7350 	if (bp->flags & BNXT_FLAG_RFS) {
7351 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7352 			return 2;
7353 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7354 			return rx_rings + 1;
7355 	}
7356 	return 1;
7357 }
7358 
7359 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7360 {
7361 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7362 	int cp = bnxt_cp_rings_in_use(bp);
7363 	int nq = bnxt_nq_rings_in_use(bp);
7364 	int rx = bp->rx_nr_rings, stat;
7365 	int vnic, grp = rx;
7366 
7367 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7368 	    bp->hwrm_spec_code >= 0x10601)
7369 		return true;
7370 
7371 	/* Old firmware does not need RX ring reservations but we still
7372 	 * need to setup a default RSS map when needed.  With new firmware
7373 	 * we go through RX ring reservations first and then set up the
7374 	 * RSS map for the successfully reserved RX rings when needed.
7375 	 */
7376 	if (!BNXT_NEW_RM(bp)) {
7377 		bnxt_check_rss_tbl_no_rmgr(bp);
7378 		return false;
7379 	}
7380 
7381 	vnic = bnxt_get_total_vnics(bp, rx);
7382 
7383 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7384 		rx <<= 1;
7385 	stat = bnxt_get_func_stat_ctxs(bp);
7386 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7387 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7388 	    (hw_resc->resv_hw_ring_grps != grp &&
7389 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7390 		return true;
7391 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7392 	    hw_resc->resv_irqs != nq)
7393 		return true;
7394 	return false;
7395 }
7396 
7397 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7398 {
7399 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7400 
7401 	hwr->tx = hw_resc->resv_tx_rings;
7402 	if (BNXT_NEW_RM(bp)) {
7403 		hwr->rx = hw_resc->resv_rx_rings;
7404 		hwr->cp = hw_resc->resv_irqs;
7405 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7406 			hwr->cp_p5 = hw_resc->resv_cp_rings;
7407 		hwr->grp = hw_resc->resv_hw_ring_grps;
7408 		hwr->vnic = hw_resc->resv_vnics;
7409 		hwr->stat = hw_resc->resv_stat_ctxs;
7410 		hwr->rss_ctx = hw_resc->resv_rsscos_ctxs;
7411 	}
7412 }
7413 
7414 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7415 {
7416 	return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic &&
7417 	       hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS));
7418 }
7419 
7420 static int __bnxt_reserve_rings(struct bnxt *bp)
7421 {
7422 	struct bnxt_hw_rings hwr = {0};
7423 	int rx_rings, rc;
7424 	bool sh = false;
7425 	int tx_cp;
7426 
7427 	if (!bnxt_need_reserve_rings(bp))
7428 		return 0;
7429 
7430 	hwr.cp = bnxt_nq_rings_in_use(bp);
7431 	hwr.tx = bp->tx_nr_rings;
7432 	hwr.rx = bp->rx_nr_rings;
7433 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7434 		sh = true;
7435 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7436 		hwr.cp_p5 = hwr.rx + hwr.tx;
7437 
7438 	hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx);
7439 
7440 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7441 		hwr.rx <<= 1;
7442 	hwr.grp = bp->rx_nr_rings;
7443 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
7444 	hwr.stat = bnxt_get_func_stat_ctxs(bp);
7445 
7446 	rc = bnxt_hwrm_reserve_rings(bp, &hwr);
7447 	if (rc)
7448 		return rc;
7449 
7450 	bnxt_copy_reserved_rings(bp, &hwr);
7451 
7452 	rx_rings = hwr.rx;
7453 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7454 		if (hwr.rx >= 2) {
7455 			rx_rings = hwr.rx >> 1;
7456 		} else {
7457 			if (netif_running(bp->dev))
7458 				return -ENOMEM;
7459 
7460 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7461 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7462 			bp->dev->hw_features &= ~NETIF_F_LRO;
7463 			bp->dev->features &= ~NETIF_F_LRO;
7464 			bnxt_set_ring_params(bp);
7465 		}
7466 	}
7467 	rx_rings = min_t(int, rx_rings, hwr.grp);
7468 	hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings);
7469 	if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp))
7470 		hwr.stat -= bnxt_get_ulp_stat_ctxs(bp);
7471 	hwr.cp = min_t(int, hwr.cp, hwr.stat);
7472 	rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh);
7473 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7474 		hwr.rx = rx_rings << 1;
7475 	tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx);
7476 	hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7477 	bp->tx_nr_rings = hwr.tx;
7478 
7479 	/* If we cannot reserve all the RX rings, reset the RSS map only
7480 	 * if absolutely necessary
7481 	 */
7482 	if (rx_rings != bp->rx_nr_rings) {
7483 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7484 			    rx_rings, bp->rx_nr_rings);
7485 		if (netif_is_rxfh_configured(bp->dev) &&
7486 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7487 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7488 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7489 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7490 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7491 		}
7492 	}
7493 	bp->rx_nr_rings = rx_rings;
7494 	bp->cp_nr_rings = hwr.cp;
7495 
7496 	if (!bnxt_rings_ok(bp, &hwr))
7497 		return -ENOMEM;
7498 
7499 	if (!netif_is_rxfh_configured(bp->dev))
7500 		bnxt_set_dflt_rss_indir_tbl(bp);
7501 
7502 	return rc;
7503 }
7504 
7505 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7506 {
7507 	struct hwrm_func_vf_cfg_input *req;
7508 	u32 flags;
7509 
7510 	if (!BNXT_NEW_RM(bp))
7511 		return 0;
7512 
7513 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7514 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7515 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7516 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7517 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7518 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7519 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7520 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7521 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7522 
7523 	req->flags = cpu_to_le32(flags);
7524 	return hwrm_req_send_silent(bp, req);
7525 }
7526 
7527 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7528 {
7529 	struct hwrm_func_cfg_input *req;
7530 	u32 flags;
7531 
7532 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7533 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7534 	if (BNXT_NEW_RM(bp)) {
7535 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7536 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7537 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7538 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7539 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7540 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7541 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7542 		else
7543 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7544 	}
7545 
7546 	req->flags = cpu_to_le32(flags);
7547 	return hwrm_req_send_silent(bp, req);
7548 }
7549 
7550 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7551 {
7552 	if (bp->hwrm_spec_code < 0x10801)
7553 		return 0;
7554 
7555 	if (BNXT_PF(bp))
7556 		return bnxt_hwrm_check_pf_rings(bp, hwr);
7557 
7558 	return bnxt_hwrm_check_vf_rings(bp, hwr);
7559 }
7560 
7561 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7562 {
7563 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7564 	struct hwrm_ring_aggint_qcaps_output *resp;
7565 	struct hwrm_ring_aggint_qcaps_input *req;
7566 	int rc;
7567 
7568 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7569 	coal_cap->num_cmpl_dma_aggr_max = 63;
7570 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7571 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7572 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7573 	coal_cap->int_lat_tmr_min_max = 65535;
7574 	coal_cap->int_lat_tmr_max_max = 65535;
7575 	coal_cap->num_cmpl_aggr_int_max = 65535;
7576 	coal_cap->timer_units = 80;
7577 
7578 	if (bp->hwrm_spec_code < 0x10902)
7579 		return;
7580 
7581 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7582 		return;
7583 
7584 	resp = hwrm_req_hold(bp, req);
7585 	rc = hwrm_req_send_silent(bp, req);
7586 	if (!rc) {
7587 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7588 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7589 		coal_cap->num_cmpl_dma_aggr_max =
7590 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7591 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7592 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7593 		coal_cap->cmpl_aggr_dma_tmr_max =
7594 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7595 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7596 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7597 		coal_cap->int_lat_tmr_min_max =
7598 			le16_to_cpu(resp->int_lat_tmr_min_max);
7599 		coal_cap->int_lat_tmr_max_max =
7600 			le16_to_cpu(resp->int_lat_tmr_max_max);
7601 		coal_cap->num_cmpl_aggr_int_max =
7602 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7603 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7604 	}
7605 	hwrm_req_drop(bp, req);
7606 }
7607 
7608 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7609 {
7610 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7611 
7612 	return usec * 1000 / coal_cap->timer_units;
7613 }
7614 
7615 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7616 	struct bnxt_coal *hw_coal,
7617 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7618 {
7619 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7620 	u16 val, tmr, max, flags = hw_coal->flags;
7621 	u32 cmpl_params = coal_cap->cmpl_params;
7622 
7623 	max = hw_coal->bufs_per_record * 128;
7624 	if (hw_coal->budget)
7625 		max = hw_coal->bufs_per_record * hw_coal->budget;
7626 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7627 
7628 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7629 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7630 
7631 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7632 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7633 
7634 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7635 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7636 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7637 
7638 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7639 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7640 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7641 
7642 	/* min timer set to 1/2 of interrupt timer */
7643 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7644 		val = tmr / 2;
7645 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7646 		req->int_lat_tmr_min = cpu_to_le16(val);
7647 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7648 	}
7649 
7650 	/* buf timer set to 1/4 of interrupt timer */
7651 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7652 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7653 
7654 	if (cmpl_params &
7655 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7656 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7657 		val = clamp_t(u16, tmr, 1,
7658 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7659 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7660 		req->enables |=
7661 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7662 	}
7663 
7664 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7665 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7666 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7667 	req->flags = cpu_to_le16(flags);
7668 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7669 }
7670 
7671 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7672 				   struct bnxt_coal *hw_coal)
7673 {
7674 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7675 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7676 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7677 	u32 nq_params = coal_cap->nq_params;
7678 	u16 tmr;
7679 	int rc;
7680 
7681 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7682 		return 0;
7683 
7684 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7685 	if (rc)
7686 		return rc;
7687 
7688 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7689 	req->flags =
7690 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7691 
7692 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7693 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7694 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7695 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7696 	return hwrm_req_send(bp, req);
7697 }
7698 
7699 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7700 {
7701 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7702 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7703 	struct bnxt_coal coal;
7704 	int rc;
7705 
7706 	/* Tick values in micro seconds.
7707 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7708 	 */
7709 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7710 
7711 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7712 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7713 
7714 	if (!bnapi->rx_ring)
7715 		return -ENODEV;
7716 
7717 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7718 	if (rc)
7719 		return rc;
7720 
7721 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7722 
7723 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7724 
7725 	return hwrm_req_send(bp, req_rx);
7726 }
7727 
7728 static int
7729 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7730 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7731 {
7732 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7733 
7734 	req->ring_id = cpu_to_le16(ring_id);
7735 	return hwrm_req_send(bp, req);
7736 }
7737 
7738 static int
7739 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7740 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7741 {
7742 	struct bnxt_tx_ring_info *txr;
7743 	int i, rc;
7744 
7745 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7746 		u16 ring_id;
7747 
7748 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7749 		req->ring_id = cpu_to_le16(ring_id);
7750 		rc = hwrm_req_send(bp, req);
7751 		if (rc)
7752 			return rc;
7753 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7754 			return 0;
7755 	}
7756 	return 0;
7757 }
7758 
7759 int bnxt_hwrm_set_coal(struct bnxt *bp)
7760 {
7761 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7762 	int i, rc;
7763 
7764 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7765 	if (rc)
7766 		return rc;
7767 
7768 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7769 	if (rc) {
7770 		hwrm_req_drop(bp, req_rx);
7771 		return rc;
7772 	}
7773 
7774 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
7775 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
7776 
7777 	hwrm_req_hold(bp, req_rx);
7778 	hwrm_req_hold(bp, req_tx);
7779 	for (i = 0; i < bp->cp_nr_rings; i++) {
7780 		struct bnxt_napi *bnapi = bp->bnapi[i];
7781 		struct bnxt_coal *hw_coal;
7782 
7783 		if (!bnapi->rx_ring)
7784 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7785 		else
7786 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
7787 		if (rc)
7788 			break;
7789 
7790 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7791 			continue;
7792 
7793 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
7794 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7795 			if (rc)
7796 				break;
7797 		}
7798 		if (bnapi->rx_ring)
7799 			hw_coal = &bp->rx_coal;
7800 		else
7801 			hw_coal = &bp->tx_coal;
7802 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
7803 	}
7804 	hwrm_req_drop(bp, req_rx);
7805 	hwrm_req_drop(bp, req_tx);
7806 	return rc;
7807 }
7808 
7809 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
7810 {
7811 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
7812 	struct hwrm_stat_ctx_free_input *req;
7813 	int i;
7814 
7815 	if (!bp->bnapi)
7816 		return;
7817 
7818 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7819 		return;
7820 
7821 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
7822 		return;
7823 	if (BNXT_FW_MAJ(bp) <= 20) {
7824 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
7825 			hwrm_req_drop(bp, req);
7826 			return;
7827 		}
7828 		hwrm_req_hold(bp, req0);
7829 	}
7830 	hwrm_req_hold(bp, req);
7831 	for (i = 0; i < bp->cp_nr_rings; i++) {
7832 		struct bnxt_napi *bnapi = bp->bnapi[i];
7833 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7834 
7835 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
7836 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
7837 			if (req0) {
7838 				req0->stat_ctx_id = req->stat_ctx_id;
7839 				hwrm_req_send(bp, req0);
7840 			}
7841 			hwrm_req_send(bp, req);
7842 
7843 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
7844 		}
7845 	}
7846 	hwrm_req_drop(bp, req);
7847 	if (req0)
7848 		hwrm_req_drop(bp, req0);
7849 }
7850 
7851 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
7852 {
7853 	struct hwrm_stat_ctx_alloc_output *resp;
7854 	struct hwrm_stat_ctx_alloc_input *req;
7855 	int rc, i;
7856 
7857 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7858 		return 0;
7859 
7860 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
7861 	if (rc)
7862 		return rc;
7863 
7864 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
7865 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
7866 
7867 	resp = hwrm_req_hold(bp, req);
7868 	for (i = 0; i < bp->cp_nr_rings; i++) {
7869 		struct bnxt_napi *bnapi = bp->bnapi[i];
7870 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7871 
7872 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
7873 
7874 		rc = hwrm_req_send(bp, req);
7875 		if (rc)
7876 			break;
7877 
7878 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
7879 
7880 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
7881 	}
7882 	hwrm_req_drop(bp, req);
7883 	return rc;
7884 }
7885 
7886 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
7887 {
7888 	struct hwrm_func_qcfg_output *resp;
7889 	struct hwrm_func_qcfg_input *req;
7890 	u16 flags;
7891 	int rc;
7892 
7893 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7894 	if (rc)
7895 		return rc;
7896 
7897 	req->fid = cpu_to_le16(0xffff);
7898 	resp = hwrm_req_hold(bp, req);
7899 	rc = hwrm_req_send(bp, req);
7900 	if (rc)
7901 		goto func_qcfg_exit;
7902 
7903 #ifdef CONFIG_BNXT_SRIOV
7904 	if (BNXT_VF(bp)) {
7905 		struct bnxt_vf_info *vf = &bp->vf;
7906 
7907 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
7908 	} else {
7909 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
7910 	}
7911 #endif
7912 	flags = le16_to_cpu(resp->flags);
7913 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
7914 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
7915 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
7916 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
7917 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
7918 	}
7919 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
7920 		bp->flags |= BNXT_FLAG_MULTI_HOST;
7921 
7922 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
7923 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
7924 
7925 	switch (resp->port_partition_type) {
7926 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7927 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7928 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7929 		bp->port_partition_type = resp->port_partition_type;
7930 		break;
7931 	}
7932 	if (bp->hwrm_spec_code < 0x10707 ||
7933 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7934 		bp->br_mode = BRIDGE_MODE_VEB;
7935 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7936 		bp->br_mode = BRIDGE_MODE_VEPA;
7937 	else
7938 		bp->br_mode = BRIDGE_MODE_UNDEF;
7939 
7940 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7941 	if (!bp->max_mtu)
7942 		bp->max_mtu = BNXT_MAX_MTU;
7943 
7944 	if (bp->db_size)
7945 		goto func_qcfg_exit;
7946 
7947 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
7948 	if (BNXT_CHIP_P5(bp)) {
7949 		if (BNXT_PF(bp))
7950 			bp->db_offset = DB_PF_OFFSET_P5;
7951 		else
7952 			bp->db_offset = DB_VF_OFFSET_P5;
7953 	}
7954 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7955 				 1024);
7956 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7957 	    bp->db_size <= bp->db_offset)
7958 		bp->db_size = pci_resource_len(bp->pdev, 2);
7959 
7960 func_qcfg_exit:
7961 	hwrm_req_drop(bp, req);
7962 	return rc;
7963 }
7964 
7965 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
7966 				      u8 init_val, u8 init_offset,
7967 				      bool init_mask_set)
7968 {
7969 	ctxm->init_value = init_val;
7970 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
7971 	if (init_mask_set)
7972 		ctxm->init_offset = init_offset * 4;
7973 	else
7974 		ctxm->init_value = 0;
7975 }
7976 
7977 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
7978 {
7979 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7980 	u16 type;
7981 
7982 	for (type = 0; type < ctx_max; type++) {
7983 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7984 		int n = 1;
7985 
7986 		if (!ctxm->max_entries)
7987 			continue;
7988 
7989 		if (ctxm->instance_bmap)
7990 			n = hweight32(ctxm->instance_bmap);
7991 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
7992 		if (!ctxm->pg_info)
7993 			return -ENOMEM;
7994 	}
7995 	return 0;
7996 }
7997 
7998 #define BNXT_CTX_INIT_VALID(flags)	\
7999 	(!!((flags) &			\
8000 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
8001 
8002 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
8003 {
8004 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
8005 	struct hwrm_func_backing_store_qcaps_v2_input *req;
8006 	struct bnxt_ctx_mem_info *ctx;
8007 	u16 type;
8008 	int rc;
8009 
8010 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
8011 	if (rc)
8012 		return rc;
8013 
8014 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8015 	if (!ctx)
8016 		return -ENOMEM;
8017 	bp->ctx = ctx;
8018 
8019 	resp = hwrm_req_hold(bp, req);
8020 
8021 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
8022 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8023 		u8 init_val, init_off, i;
8024 		__le32 *p;
8025 		u32 flags;
8026 
8027 		req->type = cpu_to_le16(type);
8028 		rc = hwrm_req_send(bp, req);
8029 		if (rc)
8030 			goto ctx_done;
8031 		flags = le32_to_cpu(resp->flags);
8032 		type = le16_to_cpu(resp->next_valid_type);
8033 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
8034 			continue;
8035 
8036 		ctxm->type = le16_to_cpu(resp->type);
8037 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
8038 		ctxm->flags = flags;
8039 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
8040 		ctxm->entry_multiple = resp->entry_multiple;
8041 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
8042 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
8043 		init_val = resp->ctx_init_value;
8044 		init_off = resp->ctx_init_offset;
8045 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
8046 					  BNXT_CTX_INIT_VALID(flags));
8047 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
8048 					      BNXT_MAX_SPLIT_ENTRY);
8049 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
8050 		     i++, p++)
8051 			ctxm->split[i] = le32_to_cpu(*p);
8052 	}
8053 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
8054 
8055 ctx_done:
8056 	hwrm_req_drop(bp, req);
8057 	return rc;
8058 }
8059 
8060 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
8061 {
8062 	struct hwrm_func_backing_store_qcaps_output *resp;
8063 	struct hwrm_func_backing_store_qcaps_input *req;
8064 	int rc;
8065 
8066 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
8067 		return 0;
8068 
8069 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8070 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
8071 
8072 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
8073 	if (rc)
8074 		return rc;
8075 
8076 	resp = hwrm_req_hold(bp, req);
8077 	rc = hwrm_req_send_silent(bp, req);
8078 	if (!rc) {
8079 		struct bnxt_ctx_mem_type *ctxm;
8080 		struct bnxt_ctx_mem_info *ctx;
8081 		u8 init_val, init_idx = 0;
8082 		u16 init_mask;
8083 
8084 		ctx = bp->ctx;
8085 		if (!ctx) {
8086 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8087 			if (!ctx) {
8088 				rc = -ENOMEM;
8089 				goto ctx_err;
8090 			}
8091 			bp->ctx = ctx;
8092 		}
8093 		init_val = resp->ctx_kind_initializer;
8094 		init_mask = le16_to_cpu(resp->ctx_init_mask);
8095 
8096 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8097 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
8098 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
8099 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
8100 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
8101 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
8102 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
8103 					  (init_mask & (1 << init_idx++)) != 0);
8104 
8105 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8106 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
8107 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
8108 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
8109 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
8110 					  (init_mask & (1 << init_idx++)) != 0);
8111 
8112 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8113 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
8114 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
8115 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
8116 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
8117 					  (init_mask & (1 << init_idx++)) != 0);
8118 
8119 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8120 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
8121 		ctxm->max_entries = ctxm->vnic_entries +
8122 			le16_to_cpu(resp->vnic_max_ring_table_entries);
8123 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
8124 		bnxt_init_ctx_initializer(ctxm, init_val,
8125 					  resp->vnic_init_offset,
8126 					  (init_mask & (1 << init_idx++)) != 0);
8127 
8128 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8129 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
8130 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
8131 		bnxt_init_ctx_initializer(ctxm, init_val,
8132 					  resp->stat_init_offset,
8133 					  (init_mask & (1 << init_idx++)) != 0);
8134 
8135 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8136 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
8137 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
8138 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
8139 		ctxm->entry_multiple = resp->tqm_entries_multiple;
8140 		if (!ctxm->entry_multiple)
8141 			ctxm->entry_multiple = 1;
8142 
8143 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
8144 
8145 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8146 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
8147 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
8148 		ctxm->mrav_num_entries_units =
8149 			le16_to_cpu(resp->mrav_num_entries_units);
8150 		bnxt_init_ctx_initializer(ctxm, init_val,
8151 					  resp->mrav_init_offset,
8152 					  (init_mask & (1 << init_idx++)) != 0);
8153 
8154 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8155 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
8156 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
8157 
8158 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
8159 		if (!ctx->tqm_fp_rings_count)
8160 			ctx->tqm_fp_rings_count = bp->max_q;
8161 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
8162 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
8163 
8164 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8165 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
8166 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
8167 
8168 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
8169 	} else {
8170 		rc = 0;
8171 	}
8172 ctx_err:
8173 	hwrm_req_drop(bp, req);
8174 	return rc;
8175 }
8176 
8177 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
8178 				  __le64 *pg_dir)
8179 {
8180 	if (!rmem->nr_pages)
8181 		return;
8182 
8183 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8184 	if (rmem->depth >= 1) {
8185 		if (rmem->depth == 2)
8186 			*pg_attr |= 2;
8187 		else
8188 			*pg_attr |= 1;
8189 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8190 	} else {
8191 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8192 	}
8193 }
8194 
8195 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8196 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8197 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8198 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8199 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8200 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8201 
8202 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8203 {
8204 	struct hwrm_func_backing_store_cfg_input *req;
8205 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8206 	struct bnxt_ctx_pg_info *ctx_pg;
8207 	struct bnxt_ctx_mem_type *ctxm;
8208 	void **__req = (void **)&req;
8209 	u32 req_len = sizeof(*req);
8210 	__le32 *num_entries;
8211 	__le64 *pg_dir;
8212 	u32 flags = 0;
8213 	u8 *pg_attr;
8214 	u32 ena;
8215 	int rc;
8216 	int i;
8217 
8218 	if (!ctx)
8219 		return 0;
8220 
8221 	if (req_len > bp->hwrm_max_ext_req_len)
8222 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8223 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8224 	if (rc)
8225 		return rc;
8226 
8227 	req->enables = cpu_to_le32(enables);
8228 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8229 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8230 		ctx_pg = ctxm->pg_info;
8231 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8232 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8233 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8234 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8235 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8236 				      &req->qpc_pg_size_qpc_lvl,
8237 				      &req->qpc_page_dir);
8238 
8239 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8240 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8241 	}
8242 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8243 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8244 		ctx_pg = ctxm->pg_info;
8245 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8246 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8247 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8248 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8249 				      &req->srq_pg_size_srq_lvl,
8250 				      &req->srq_page_dir);
8251 	}
8252 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8253 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8254 		ctx_pg = ctxm->pg_info;
8255 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8256 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8257 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8258 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8259 				      &req->cq_pg_size_cq_lvl,
8260 				      &req->cq_page_dir);
8261 	}
8262 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8263 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8264 		ctx_pg = ctxm->pg_info;
8265 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8266 		req->vnic_num_ring_table_entries =
8267 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8268 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8269 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8270 				      &req->vnic_pg_size_vnic_lvl,
8271 				      &req->vnic_page_dir);
8272 	}
8273 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8274 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8275 		ctx_pg = ctxm->pg_info;
8276 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8277 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8278 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8279 				      &req->stat_pg_size_stat_lvl,
8280 				      &req->stat_page_dir);
8281 	}
8282 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8283 		u32 units;
8284 
8285 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8286 		ctx_pg = ctxm->pg_info;
8287 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8288 		units = ctxm->mrav_num_entries_units;
8289 		if (units) {
8290 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8291 			u32 entries;
8292 
8293 			num_mr = ctx_pg->entries - num_ah;
8294 			entries = ((num_mr / units) << 16) | (num_ah / units);
8295 			req->mrav_num_entries = cpu_to_le32(entries);
8296 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8297 		}
8298 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8299 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8300 				      &req->mrav_pg_size_mrav_lvl,
8301 				      &req->mrav_page_dir);
8302 	}
8303 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8304 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8305 		ctx_pg = ctxm->pg_info;
8306 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8307 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8308 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8309 				      &req->tim_pg_size_tim_lvl,
8310 				      &req->tim_page_dir);
8311 	}
8312 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8313 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8314 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8315 	     pg_dir = &req->tqm_sp_page_dir,
8316 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8317 	     ctx_pg = ctxm->pg_info;
8318 	     i < BNXT_MAX_TQM_RINGS;
8319 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8320 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8321 		if (!(enables & ena))
8322 			continue;
8323 
8324 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8325 		*num_entries = cpu_to_le32(ctx_pg->entries);
8326 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8327 	}
8328 	req->flags = cpu_to_le32(flags);
8329 	return hwrm_req_send(bp, req);
8330 }
8331 
8332 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8333 				  struct bnxt_ctx_pg_info *ctx_pg)
8334 {
8335 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8336 
8337 	rmem->page_size = BNXT_PAGE_SIZE;
8338 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8339 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8340 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8341 	if (rmem->depth >= 1)
8342 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8343 	return bnxt_alloc_ring(bp, rmem);
8344 }
8345 
8346 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8347 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8348 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8349 {
8350 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8351 	int rc;
8352 
8353 	if (!mem_size)
8354 		return -EINVAL;
8355 
8356 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8357 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8358 		ctx_pg->nr_pages = 0;
8359 		return -EINVAL;
8360 	}
8361 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8362 		int nr_tbls, i;
8363 
8364 		rmem->depth = 2;
8365 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8366 					     GFP_KERNEL);
8367 		if (!ctx_pg->ctx_pg_tbl)
8368 			return -ENOMEM;
8369 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8370 		rmem->nr_pages = nr_tbls;
8371 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8372 		if (rc)
8373 			return rc;
8374 		for (i = 0; i < nr_tbls; i++) {
8375 			struct bnxt_ctx_pg_info *pg_tbl;
8376 
8377 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8378 			if (!pg_tbl)
8379 				return -ENOMEM;
8380 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8381 			rmem = &pg_tbl->ring_mem;
8382 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8383 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8384 			rmem->depth = 1;
8385 			rmem->nr_pages = MAX_CTX_PAGES;
8386 			rmem->ctx_mem = ctxm;
8387 			if (i == (nr_tbls - 1)) {
8388 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8389 
8390 				if (rem)
8391 					rmem->nr_pages = rem;
8392 			}
8393 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8394 			if (rc)
8395 				break;
8396 		}
8397 	} else {
8398 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8399 		if (rmem->nr_pages > 1 || depth)
8400 			rmem->depth = 1;
8401 		rmem->ctx_mem = ctxm;
8402 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8403 	}
8404 	return rc;
8405 }
8406 
8407 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8408 				  struct bnxt_ctx_pg_info *ctx_pg)
8409 {
8410 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8411 
8412 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8413 	    ctx_pg->ctx_pg_tbl) {
8414 		int i, nr_tbls = rmem->nr_pages;
8415 
8416 		for (i = 0; i < nr_tbls; i++) {
8417 			struct bnxt_ctx_pg_info *pg_tbl;
8418 			struct bnxt_ring_mem_info *rmem2;
8419 
8420 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8421 			if (!pg_tbl)
8422 				continue;
8423 			rmem2 = &pg_tbl->ring_mem;
8424 			bnxt_free_ring(bp, rmem2);
8425 			ctx_pg->ctx_pg_arr[i] = NULL;
8426 			kfree(pg_tbl);
8427 			ctx_pg->ctx_pg_tbl[i] = NULL;
8428 		}
8429 		kfree(ctx_pg->ctx_pg_tbl);
8430 		ctx_pg->ctx_pg_tbl = NULL;
8431 	}
8432 	bnxt_free_ring(bp, rmem);
8433 	ctx_pg->nr_pages = 0;
8434 }
8435 
8436 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8437 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8438 				   u8 pg_lvl)
8439 {
8440 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8441 	int i, rc = 0, n = 1;
8442 	u32 mem_size;
8443 
8444 	if (!ctxm->entry_size || !ctx_pg)
8445 		return -EINVAL;
8446 	if (ctxm->instance_bmap)
8447 		n = hweight32(ctxm->instance_bmap);
8448 	if (ctxm->entry_multiple)
8449 		entries = roundup(entries, ctxm->entry_multiple);
8450 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8451 	mem_size = entries * ctxm->entry_size;
8452 	for (i = 0; i < n && !rc; i++) {
8453 		ctx_pg[i].entries = entries;
8454 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8455 					    ctxm->init_value ? ctxm : NULL);
8456 	}
8457 	return rc;
8458 }
8459 
8460 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8461 					       struct bnxt_ctx_mem_type *ctxm,
8462 					       bool last)
8463 {
8464 	struct hwrm_func_backing_store_cfg_v2_input *req;
8465 	u32 instance_bmap = ctxm->instance_bmap;
8466 	int i, j, rc = 0, n = 1;
8467 	__le32 *p;
8468 
8469 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8470 		return 0;
8471 
8472 	if (instance_bmap)
8473 		n = hweight32(ctxm->instance_bmap);
8474 	else
8475 		instance_bmap = 1;
8476 
8477 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8478 	if (rc)
8479 		return rc;
8480 	hwrm_req_hold(bp, req);
8481 	req->type = cpu_to_le16(ctxm->type);
8482 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8483 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8484 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8485 		p[i] = cpu_to_le32(ctxm->split[i]);
8486 	for (i = 0, j = 0; j < n && !rc; i++) {
8487 		struct bnxt_ctx_pg_info *ctx_pg;
8488 
8489 		if (!(instance_bmap & (1 << i)))
8490 			continue;
8491 		req->instance = cpu_to_le16(i);
8492 		ctx_pg = &ctxm->pg_info[j++];
8493 		if (!ctx_pg->entries)
8494 			continue;
8495 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8496 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8497 				      &req->page_size_pbl_level,
8498 				      &req->page_dir);
8499 		if (last && j == n)
8500 			req->flags =
8501 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8502 		rc = hwrm_req_send(bp, req);
8503 	}
8504 	hwrm_req_drop(bp, req);
8505 	return rc;
8506 }
8507 
8508 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8509 {
8510 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8511 	struct bnxt_ctx_mem_type *ctxm;
8512 	u16 last_type;
8513 	int rc = 0;
8514 	u16 type;
8515 
8516 	if (!ena)
8517 		return 0;
8518 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8519 		last_type = BNXT_CTX_MAX - 1;
8520 	else
8521 		last_type = BNXT_CTX_L2_MAX - 1;
8522 	ctx->ctx_arr[last_type].last = 1;
8523 
8524 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8525 		ctxm = &ctx->ctx_arr[type];
8526 
8527 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8528 		if (rc)
8529 			return rc;
8530 	}
8531 	return 0;
8532 }
8533 
8534 void bnxt_free_ctx_mem(struct bnxt *bp)
8535 {
8536 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8537 	u16 type;
8538 
8539 	if (!ctx)
8540 		return;
8541 
8542 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8543 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8544 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8545 		int i, n = 1;
8546 
8547 		if (!ctx_pg)
8548 			continue;
8549 		if (ctxm->instance_bmap)
8550 			n = hweight32(ctxm->instance_bmap);
8551 		for (i = 0; i < n; i++)
8552 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8553 
8554 		kfree(ctx_pg);
8555 		ctxm->pg_info = NULL;
8556 	}
8557 
8558 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8559 	kfree(ctx);
8560 	bp->ctx = NULL;
8561 }
8562 
8563 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8564 {
8565 	struct bnxt_ctx_mem_type *ctxm;
8566 	struct bnxt_ctx_mem_info *ctx;
8567 	u32 l2_qps, qp1_qps, max_qps;
8568 	u32 ena, entries_sp, entries;
8569 	u32 srqs, max_srqs, min;
8570 	u32 num_mr, num_ah;
8571 	u32 extra_srqs = 0;
8572 	u32 extra_qps = 0;
8573 	u32 fast_qpmd_qps;
8574 	u8 pg_lvl = 1;
8575 	int i, rc;
8576 
8577 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8578 	if (rc) {
8579 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8580 			   rc);
8581 		return rc;
8582 	}
8583 	ctx = bp->ctx;
8584 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8585 		return 0;
8586 
8587 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8588 	l2_qps = ctxm->qp_l2_entries;
8589 	qp1_qps = ctxm->qp_qp1_entries;
8590 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8591 	max_qps = ctxm->max_entries;
8592 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8593 	srqs = ctxm->srq_l2_entries;
8594 	max_srqs = ctxm->max_entries;
8595 	ena = 0;
8596 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8597 		pg_lvl = 2;
8598 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8599 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8600 		extra_qps += fast_qpmd_qps;
8601 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8602 		if (fast_qpmd_qps)
8603 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8604 	}
8605 
8606 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8607 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8608 				     pg_lvl);
8609 	if (rc)
8610 		return rc;
8611 
8612 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8613 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8614 	if (rc)
8615 		return rc;
8616 
8617 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8618 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8619 				     extra_qps * 2, pg_lvl);
8620 	if (rc)
8621 		return rc;
8622 
8623 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8624 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8625 	if (rc)
8626 		return rc;
8627 
8628 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8629 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8630 	if (rc)
8631 		return rc;
8632 
8633 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8634 		goto skip_rdma;
8635 
8636 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8637 	/* 128K extra is needed to accommodate static AH context
8638 	 * allocation by f/w.
8639 	 */
8640 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8641 	num_ah = min_t(u32, num_mr, 1024 * 128);
8642 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8643 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8644 		ctxm->mrav_av_entries = num_ah;
8645 
8646 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8647 	if (rc)
8648 		return rc;
8649 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8650 
8651 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8652 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8653 	if (rc)
8654 		return rc;
8655 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8656 
8657 skip_rdma:
8658 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8659 	min = ctxm->min_entries;
8660 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8661 		     2 * (extra_qps + qp1_qps) + min;
8662 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8663 	if (rc)
8664 		return rc;
8665 
8666 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8667 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8668 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8669 	if (rc)
8670 		return rc;
8671 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8672 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8673 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8674 
8675 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8676 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8677 	else
8678 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8679 	if (rc) {
8680 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8681 			   rc);
8682 		return rc;
8683 	}
8684 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8685 	return 0;
8686 }
8687 
8688 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8689 {
8690 	struct hwrm_func_resource_qcaps_output *resp;
8691 	struct hwrm_func_resource_qcaps_input *req;
8692 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8693 	int rc;
8694 
8695 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8696 	if (rc)
8697 		return rc;
8698 
8699 	req->fid = cpu_to_le16(0xffff);
8700 	resp = hwrm_req_hold(bp, req);
8701 	rc = hwrm_req_send_silent(bp, req);
8702 	if (rc)
8703 		goto hwrm_func_resc_qcaps_exit;
8704 
8705 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8706 	if (!all)
8707 		goto hwrm_func_resc_qcaps_exit;
8708 
8709 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8710 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8711 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8712 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8713 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8714 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8715 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8716 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8717 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8718 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8719 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8720 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8721 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8722 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8723 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8724 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8725 
8726 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8727 		u16 max_msix = le16_to_cpu(resp->max_msix);
8728 
8729 		hw_resc->max_nqs = max_msix;
8730 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8731 	}
8732 
8733 	if (BNXT_PF(bp)) {
8734 		struct bnxt_pf_info *pf = &bp->pf;
8735 
8736 		pf->vf_resv_strategy =
8737 			le16_to_cpu(resp->vf_reservation_strategy);
8738 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8739 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8740 	}
8741 hwrm_func_resc_qcaps_exit:
8742 	hwrm_req_drop(bp, req);
8743 	return rc;
8744 }
8745 
8746 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
8747 {
8748 	struct hwrm_port_mac_ptp_qcfg_output *resp;
8749 	struct hwrm_port_mac_ptp_qcfg_input *req;
8750 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
8751 	bool phc_cfg;
8752 	u8 flags;
8753 	int rc;
8754 
8755 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) {
8756 		rc = -ENODEV;
8757 		goto no_ptp;
8758 	}
8759 
8760 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
8761 	if (rc)
8762 		goto no_ptp;
8763 
8764 	req->port_id = cpu_to_le16(bp->pf.port_id);
8765 	resp = hwrm_req_hold(bp, req);
8766 	rc = hwrm_req_send(bp, req);
8767 	if (rc)
8768 		goto exit;
8769 
8770 	flags = resp->flags;
8771 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
8772 		rc = -ENODEV;
8773 		goto exit;
8774 	}
8775 	if (!ptp) {
8776 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
8777 		if (!ptp) {
8778 			rc = -ENOMEM;
8779 			goto exit;
8780 		}
8781 		ptp->bp = bp;
8782 		bp->ptp_cfg = ptp;
8783 	}
8784 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
8785 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
8786 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
8787 	} else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8788 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
8789 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
8790 	} else {
8791 		rc = -ENODEV;
8792 		goto exit;
8793 	}
8794 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
8795 	rc = bnxt_ptp_init(bp, phc_cfg);
8796 	if (rc)
8797 		netdev_warn(bp->dev, "PTP initialization failed.\n");
8798 exit:
8799 	hwrm_req_drop(bp, req);
8800 	if (!rc)
8801 		return 0;
8802 
8803 no_ptp:
8804 	bnxt_ptp_clear(bp);
8805 	kfree(ptp);
8806 	bp->ptp_cfg = NULL;
8807 	return rc;
8808 }
8809 
8810 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
8811 {
8812 	struct hwrm_func_qcaps_output *resp;
8813 	struct hwrm_func_qcaps_input *req;
8814 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8815 	u32 flags, flags_ext, flags_ext2;
8816 	int rc;
8817 
8818 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
8819 	if (rc)
8820 		return rc;
8821 
8822 	req->fid = cpu_to_le16(0xffff);
8823 	resp = hwrm_req_hold(bp, req);
8824 	rc = hwrm_req_send(bp, req);
8825 	if (rc)
8826 		goto hwrm_func_qcaps_exit;
8827 
8828 	flags = le32_to_cpu(resp->flags);
8829 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
8830 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
8831 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
8832 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
8833 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
8834 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
8835 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
8836 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
8837 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
8838 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
8839 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
8840 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
8841 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
8842 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
8843 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
8844 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
8845 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
8846 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
8847 
8848 	flags_ext = le32_to_cpu(resp->flags_ext);
8849 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
8850 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
8851 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
8852 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
8853 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
8854 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
8855 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
8856 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
8857 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
8858 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
8859 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
8860 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
8861 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
8862 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
8863 
8864 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
8865 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
8866 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
8867 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
8868 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
8869 
8870 	bp->tx_push_thresh = 0;
8871 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
8872 	    BNXT_FW_MAJ(bp) > 217)
8873 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
8874 
8875 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8876 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8877 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8878 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8879 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
8880 	if (!hw_resc->max_hw_ring_grps)
8881 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
8882 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8883 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8884 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8885 
8886 	hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records);
8887 	hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records);
8888 	hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
8889 	hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
8890 	hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
8891 	hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
8892 
8893 	if (BNXT_PF(bp)) {
8894 		struct bnxt_pf_info *pf = &bp->pf;
8895 
8896 		pf->fw_fid = le16_to_cpu(resp->fid);
8897 		pf->port_id = le16_to_cpu(resp->port_id);
8898 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
8899 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
8900 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
8901 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
8902 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
8903 			bp->flags |= BNXT_FLAG_WOL_CAP;
8904 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
8905 			bp->fw_cap |= BNXT_FW_CAP_PTP;
8906 		} else {
8907 			bnxt_ptp_clear(bp);
8908 			kfree(bp->ptp_cfg);
8909 			bp->ptp_cfg = NULL;
8910 		}
8911 	} else {
8912 #ifdef CONFIG_BNXT_SRIOV
8913 		struct bnxt_vf_info *vf = &bp->vf;
8914 
8915 		vf->fw_fid = le16_to_cpu(resp->fid);
8916 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
8917 #endif
8918 	}
8919 
8920 hwrm_func_qcaps_exit:
8921 	hwrm_req_drop(bp, req);
8922 	return rc;
8923 }
8924 
8925 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
8926 {
8927 	struct hwrm_dbg_qcaps_output *resp;
8928 	struct hwrm_dbg_qcaps_input *req;
8929 	int rc;
8930 
8931 	bp->fw_dbg_cap = 0;
8932 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
8933 		return;
8934 
8935 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
8936 	if (rc)
8937 		return;
8938 
8939 	req->fid = cpu_to_le16(0xffff);
8940 	resp = hwrm_req_hold(bp, req);
8941 	rc = hwrm_req_send(bp, req);
8942 	if (rc)
8943 		goto hwrm_dbg_qcaps_exit;
8944 
8945 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
8946 
8947 hwrm_dbg_qcaps_exit:
8948 	hwrm_req_drop(bp, req);
8949 }
8950 
8951 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
8952 
8953 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
8954 {
8955 	int rc;
8956 
8957 	rc = __bnxt_hwrm_func_qcaps(bp);
8958 	if (rc)
8959 		return rc;
8960 
8961 	bnxt_hwrm_dbg_qcaps(bp);
8962 
8963 	rc = bnxt_hwrm_queue_qportcfg(bp);
8964 	if (rc) {
8965 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
8966 		return rc;
8967 	}
8968 	if (bp->hwrm_spec_code >= 0x10803) {
8969 		rc = bnxt_alloc_ctx_mem(bp);
8970 		if (rc)
8971 			return rc;
8972 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8973 		if (!rc)
8974 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
8975 	}
8976 	return 0;
8977 }
8978 
8979 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
8980 {
8981 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
8982 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
8983 	u32 flags;
8984 	int rc;
8985 
8986 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
8987 		return 0;
8988 
8989 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
8990 	if (rc)
8991 		return rc;
8992 
8993 	resp = hwrm_req_hold(bp, req);
8994 	rc = hwrm_req_send(bp, req);
8995 	if (rc)
8996 		goto hwrm_cfa_adv_qcaps_exit;
8997 
8998 	flags = le32_to_cpu(resp->flags);
8999 	if (flags &
9000 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
9001 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
9002 
9003 	if (flags &
9004 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED)
9005 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3;
9006 
9007 	if (flags &
9008 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED)
9009 		bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO;
9010 
9011 hwrm_cfa_adv_qcaps_exit:
9012 	hwrm_req_drop(bp, req);
9013 	return rc;
9014 }
9015 
9016 static int __bnxt_alloc_fw_health(struct bnxt *bp)
9017 {
9018 	if (bp->fw_health)
9019 		return 0;
9020 
9021 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
9022 	if (!bp->fw_health)
9023 		return -ENOMEM;
9024 
9025 	mutex_init(&bp->fw_health->lock);
9026 	return 0;
9027 }
9028 
9029 static int bnxt_alloc_fw_health(struct bnxt *bp)
9030 {
9031 	int rc;
9032 
9033 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
9034 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9035 		return 0;
9036 
9037 	rc = __bnxt_alloc_fw_health(bp);
9038 	if (rc) {
9039 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
9040 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9041 		return rc;
9042 	}
9043 
9044 	return 0;
9045 }
9046 
9047 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
9048 {
9049 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
9050 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
9051 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
9052 }
9053 
9054 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
9055 {
9056 	struct bnxt_fw_health *fw_health = bp->fw_health;
9057 	u32 reg_type;
9058 
9059 	if (!fw_health)
9060 		return;
9061 
9062 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
9063 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9064 		fw_health->status_reliable = false;
9065 
9066 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
9067 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9068 		fw_health->resets_reliable = false;
9069 }
9070 
9071 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
9072 {
9073 	void __iomem *hs;
9074 	u32 status_loc;
9075 	u32 reg_type;
9076 	u32 sig;
9077 
9078 	if (bp->fw_health)
9079 		bp->fw_health->status_reliable = false;
9080 
9081 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
9082 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
9083 
9084 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
9085 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
9086 		if (!bp->chip_num) {
9087 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
9088 			bp->chip_num = readl(bp->bar0 +
9089 					     BNXT_FW_HEALTH_WIN_BASE +
9090 					     BNXT_GRC_REG_CHIP_NUM);
9091 		}
9092 		if (!BNXT_CHIP_P5(bp))
9093 			return;
9094 
9095 		status_loc = BNXT_GRC_REG_STATUS_P5 |
9096 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
9097 	} else {
9098 		status_loc = readl(hs + offsetof(struct hcomm_status,
9099 						 fw_status_loc));
9100 	}
9101 
9102 	if (__bnxt_alloc_fw_health(bp)) {
9103 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
9104 		return;
9105 	}
9106 
9107 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
9108 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
9109 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
9110 		__bnxt_map_fw_health_reg(bp, status_loc);
9111 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
9112 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
9113 	}
9114 
9115 	bp->fw_health->status_reliable = true;
9116 }
9117 
9118 static int bnxt_map_fw_health_regs(struct bnxt *bp)
9119 {
9120 	struct bnxt_fw_health *fw_health = bp->fw_health;
9121 	u32 reg_base = 0xffffffff;
9122 	int i;
9123 
9124 	bp->fw_health->status_reliable = false;
9125 	bp->fw_health->resets_reliable = false;
9126 	/* Only pre-map the monitoring GRC registers using window 3 */
9127 	for (i = 0; i < 4; i++) {
9128 		u32 reg = fw_health->regs[i];
9129 
9130 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
9131 			continue;
9132 		if (reg_base == 0xffffffff)
9133 			reg_base = reg & BNXT_GRC_BASE_MASK;
9134 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
9135 			return -ERANGE;
9136 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
9137 	}
9138 	bp->fw_health->status_reliable = true;
9139 	bp->fw_health->resets_reliable = true;
9140 	if (reg_base == 0xffffffff)
9141 		return 0;
9142 
9143 	__bnxt_map_fw_health_reg(bp, reg_base);
9144 	return 0;
9145 }
9146 
9147 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
9148 {
9149 	if (!bp->fw_health)
9150 		return;
9151 
9152 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
9153 		bp->fw_health->status_reliable = true;
9154 		bp->fw_health->resets_reliable = true;
9155 	} else {
9156 		bnxt_try_map_fw_health_reg(bp);
9157 	}
9158 }
9159 
9160 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
9161 {
9162 	struct bnxt_fw_health *fw_health = bp->fw_health;
9163 	struct hwrm_error_recovery_qcfg_output *resp;
9164 	struct hwrm_error_recovery_qcfg_input *req;
9165 	int rc, i;
9166 
9167 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9168 		return 0;
9169 
9170 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
9171 	if (rc)
9172 		return rc;
9173 
9174 	resp = hwrm_req_hold(bp, req);
9175 	rc = hwrm_req_send(bp, req);
9176 	if (rc)
9177 		goto err_recovery_out;
9178 	fw_health->flags = le32_to_cpu(resp->flags);
9179 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
9180 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
9181 		rc = -EINVAL;
9182 		goto err_recovery_out;
9183 	}
9184 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
9185 	fw_health->master_func_wait_dsecs =
9186 		le32_to_cpu(resp->master_func_wait_period);
9187 	fw_health->normal_func_wait_dsecs =
9188 		le32_to_cpu(resp->normal_func_wait_period);
9189 	fw_health->post_reset_wait_dsecs =
9190 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9191 	fw_health->post_reset_max_wait_dsecs =
9192 		le32_to_cpu(resp->max_bailout_time_after_reset);
9193 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9194 		le32_to_cpu(resp->fw_health_status_reg);
9195 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9196 		le32_to_cpu(resp->fw_heartbeat_reg);
9197 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9198 		le32_to_cpu(resp->fw_reset_cnt_reg);
9199 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9200 		le32_to_cpu(resp->reset_inprogress_reg);
9201 	fw_health->fw_reset_inprog_reg_mask =
9202 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9203 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9204 	if (fw_health->fw_reset_seq_cnt >= 16) {
9205 		rc = -EINVAL;
9206 		goto err_recovery_out;
9207 	}
9208 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9209 		fw_health->fw_reset_seq_regs[i] =
9210 			le32_to_cpu(resp->reset_reg[i]);
9211 		fw_health->fw_reset_seq_vals[i] =
9212 			le32_to_cpu(resp->reset_reg_val[i]);
9213 		fw_health->fw_reset_seq_delay_msec[i] =
9214 			resp->delay_after_reset[i];
9215 	}
9216 err_recovery_out:
9217 	hwrm_req_drop(bp, req);
9218 	if (!rc)
9219 		rc = bnxt_map_fw_health_regs(bp);
9220 	if (rc)
9221 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9222 	return rc;
9223 }
9224 
9225 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9226 {
9227 	struct hwrm_func_reset_input *req;
9228 	int rc;
9229 
9230 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9231 	if (rc)
9232 		return rc;
9233 
9234 	req->enables = 0;
9235 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9236 	return hwrm_req_send(bp, req);
9237 }
9238 
9239 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9240 {
9241 	struct hwrm_nvm_get_dev_info_output nvm_info;
9242 
9243 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9244 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9245 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9246 			 nvm_info.nvm_cfg_ver_upd);
9247 }
9248 
9249 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9250 {
9251 	struct hwrm_queue_qportcfg_output *resp;
9252 	struct hwrm_queue_qportcfg_input *req;
9253 	u8 i, j, *qptr;
9254 	bool no_rdma;
9255 	int rc = 0;
9256 
9257 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9258 	if (rc)
9259 		return rc;
9260 
9261 	resp = hwrm_req_hold(bp, req);
9262 	rc = hwrm_req_send(bp, req);
9263 	if (rc)
9264 		goto qportcfg_exit;
9265 
9266 	if (!resp->max_configurable_queues) {
9267 		rc = -EINVAL;
9268 		goto qportcfg_exit;
9269 	}
9270 	bp->max_tc = resp->max_configurable_queues;
9271 	bp->max_lltc = resp->max_configurable_lossless_queues;
9272 	if (bp->max_tc > BNXT_MAX_QUEUE)
9273 		bp->max_tc = BNXT_MAX_QUEUE;
9274 
9275 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9276 	qptr = &resp->queue_id0;
9277 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9278 		bp->q_info[j].queue_id = *qptr;
9279 		bp->q_ids[i] = *qptr++;
9280 		bp->q_info[j].queue_profile = *qptr++;
9281 		bp->tc_to_qidx[j] = j;
9282 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9283 		    (no_rdma && BNXT_PF(bp)))
9284 			j++;
9285 	}
9286 	bp->max_q = bp->max_tc;
9287 	bp->max_tc = max_t(u8, j, 1);
9288 
9289 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9290 		bp->max_tc = 1;
9291 
9292 	if (bp->max_lltc > bp->max_tc)
9293 		bp->max_lltc = bp->max_tc;
9294 
9295 qportcfg_exit:
9296 	hwrm_req_drop(bp, req);
9297 	return rc;
9298 }
9299 
9300 static int bnxt_hwrm_poll(struct bnxt *bp)
9301 {
9302 	struct hwrm_ver_get_input *req;
9303 	int rc;
9304 
9305 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9306 	if (rc)
9307 		return rc;
9308 
9309 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9310 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9311 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9312 
9313 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9314 	rc = hwrm_req_send(bp, req);
9315 	return rc;
9316 }
9317 
9318 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9319 {
9320 	struct hwrm_ver_get_output *resp;
9321 	struct hwrm_ver_get_input *req;
9322 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9323 	u32 dev_caps_cfg, hwrm_ver;
9324 	int rc, len;
9325 
9326 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9327 	if (rc)
9328 		return rc;
9329 
9330 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9331 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9332 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9333 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9334 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9335 
9336 	resp = hwrm_req_hold(bp, req);
9337 	rc = hwrm_req_send(bp, req);
9338 	if (rc)
9339 		goto hwrm_ver_get_exit;
9340 
9341 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9342 
9343 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9344 			     resp->hwrm_intf_min_8b << 8 |
9345 			     resp->hwrm_intf_upd_8b;
9346 	if (resp->hwrm_intf_maj_8b < 1) {
9347 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9348 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9349 			    resp->hwrm_intf_upd_8b);
9350 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9351 	}
9352 
9353 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9354 			HWRM_VERSION_UPDATE;
9355 
9356 	if (bp->hwrm_spec_code > hwrm_ver)
9357 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9358 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9359 			 HWRM_VERSION_UPDATE);
9360 	else
9361 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9362 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9363 			 resp->hwrm_intf_upd_8b);
9364 
9365 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9366 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9367 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9368 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9369 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9370 		len = FW_VER_STR_LEN;
9371 	} else {
9372 		fw_maj = resp->hwrm_fw_maj_8b;
9373 		fw_min = resp->hwrm_fw_min_8b;
9374 		fw_bld = resp->hwrm_fw_bld_8b;
9375 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9376 		len = BC_HWRM_STR_LEN;
9377 	}
9378 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9379 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9380 		 fw_rsv);
9381 
9382 	if (strlen(resp->active_pkg_name)) {
9383 		int fw_ver_len = strlen(bp->fw_ver_str);
9384 
9385 		snprintf(bp->fw_ver_str + fw_ver_len,
9386 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9387 			 resp->active_pkg_name);
9388 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9389 	}
9390 
9391 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9392 	if (!bp->hwrm_cmd_timeout)
9393 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9394 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9395 	if (!bp->hwrm_cmd_max_timeout)
9396 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9397 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9398 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9399 			    bp->hwrm_cmd_max_timeout / 1000);
9400 
9401 	if (resp->hwrm_intf_maj_8b >= 1) {
9402 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9403 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9404 	}
9405 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9406 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9407 
9408 	bp->chip_num = le16_to_cpu(resp->chip_num);
9409 	bp->chip_rev = resp->chip_rev;
9410 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9411 	    !resp->chip_metal)
9412 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9413 
9414 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9415 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9416 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9417 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9418 
9419 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9420 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9421 
9422 	if (dev_caps_cfg &
9423 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9424 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9425 
9426 	if (dev_caps_cfg &
9427 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9428 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9429 
9430 	if (dev_caps_cfg &
9431 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9432 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9433 
9434 hwrm_ver_get_exit:
9435 	hwrm_req_drop(bp, req);
9436 	return rc;
9437 }
9438 
9439 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9440 {
9441 	struct hwrm_fw_set_time_input *req;
9442 	struct tm tm;
9443 	time64_t now = ktime_get_real_seconds();
9444 	int rc;
9445 
9446 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9447 	    bp->hwrm_spec_code < 0x10400)
9448 		return -EOPNOTSUPP;
9449 
9450 	time64_to_tm(now, 0, &tm);
9451 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9452 	if (rc)
9453 		return rc;
9454 
9455 	req->year = cpu_to_le16(1900 + tm.tm_year);
9456 	req->month = 1 + tm.tm_mon;
9457 	req->day = tm.tm_mday;
9458 	req->hour = tm.tm_hour;
9459 	req->minute = tm.tm_min;
9460 	req->second = tm.tm_sec;
9461 	return hwrm_req_send(bp, req);
9462 }
9463 
9464 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9465 {
9466 	u64 sw_tmp;
9467 
9468 	hw &= mask;
9469 	sw_tmp = (*sw & ~mask) | hw;
9470 	if (hw < (*sw & mask))
9471 		sw_tmp += mask + 1;
9472 	WRITE_ONCE(*sw, sw_tmp);
9473 }
9474 
9475 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9476 				    int count, bool ignore_zero)
9477 {
9478 	int i;
9479 
9480 	for (i = 0; i < count; i++) {
9481 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9482 
9483 		if (ignore_zero && !hw)
9484 			continue;
9485 
9486 		if (masks[i] == -1ULL)
9487 			sw_stats[i] = hw;
9488 		else
9489 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9490 	}
9491 }
9492 
9493 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9494 {
9495 	if (!stats->hw_stats)
9496 		return;
9497 
9498 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9499 				stats->hw_masks, stats->len / 8, false);
9500 }
9501 
9502 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9503 {
9504 	struct bnxt_stats_mem *ring0_stats;
9505 	bool ignore_zero = false;
9506 	int i;
9507 
9508 	/* Chip bug.  Counter intermittently becomes 0. */
9509 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9510 		ignore_zero = true;
9511 
9512 	for (i = 0; i < bp->cp_nr_rings; i++) {
9513 		struct bnxt_napi *bnapi = bp->bnapi[i];
9514 		struct bnxt_cp_ring_info *cpr;
9515 		struct bnxt_stats_mem *stats;
9516 
9517 		cpr = &bnapi->cp_ring;
9518 		stats = &cpr->stats;
9519 		if (!i)
9520 			ring0_stats = stats;
9521 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9522 					ring0_stats->hw_masks,
9523 					ring0_stats->len / 8, ignore_zero);
9524 	}
9525 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9526 		struct bnxt_stats_mem *stats = &bp->port_stats;
9527 		__le64 *hw_stats = stats->hw_stats;
9528 		u64 *sw_stats = stats->sw_stats;
9529 		u64 *masks = stats->hw_masks;
9530 		int cnt;
9531 
9532 		cnt = sizeof(struct rx_port_stats) / 8;
9533 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9534 
9535 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9536 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9537 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9538 		cnt = sizeof(struct tx_port_stats) / 8;
9539 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9540 	}
9541 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9542 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9543 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9544 	}
9545 }
9546 
9547 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9548 {
9549 	struct hwrm_port_qstats_input *req;
9550 	struct bnxt_pf_info *pf = &bp->pf;
9551 	int rc;
9552 
9553 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9554 		return 0;
9555 
9556 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9557 		return -EOPNOTSUPP;
9558 
9559 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9560 	if (rc)
9561 		return rc;
9562 
9563 	req->flags = flags;
9564 	req->port_id = cpu_to_le16(pf->port_id);
9565 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9566 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9567 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9568 	return hwrm_req_send(bp, req);
9569 }
9570 
9571 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9572 {
9573 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9574 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9575 	struct hwrm_port_qstats_ext_output *resp_qs;
9576 	struct hwrm_port_qstats_ext_input *req_qs;
9577 	struct bnxt_pf_info *pf = &bp->pf;
9578 	u32 tx_stat_size;
9579 	int rc;
9580 
9581 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9582 		return 0;
9583 
9584 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9585 		return -EOPNOTSUPP;
9586 
9587 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9588 	if (rc)
9589 		return rc;
9590 
9591 	req_qs->flags = flags;
9592 	req_qs->port_id = cpu_to_le16(pf->port_id);
9593 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9594 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9595 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9596 		       sizeof(struct tx_port_stats_ext) : 0;
9597 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9598 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9599 	resp_qs = hwrm_req_hold(bp, req_qs);
9600 	rc = hwrm_req_send(bp, req_qs);
9601 	if (!rc) {
9602 		bp->fw_rx_stats_ext_size =
9603 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9604 		if (BNXT_FW_MAJ(bp) < 220 &&
9605 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9606 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9607 
9608 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9609 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9610 	} else {
9611 		bp->fw_rx_stats_ext_size = 0;
9612 		bp->fw_tx_stats_ext_size = 0;
9613 	}
9614 	hwrm_req_drop(bp, req_qs);
9615 
9616 	if (flags)
9617 		return rc;
9618 
9619 	if (bp->fw_tx_stats_ext_size <=
9620 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9621 		bp->pri2cos_valid = 0;
9622 		return rc;
9623 	}
9624 
9625 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9626 	if (rc)
9627 		return rc;
9628 
9629 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9630 
9631 	resp_qc = hwrm_req_hold(bp, req_qc);
9632 	rc = hwrm_req_send(bp, req_qc);
9633 	if (!rc) {
9634 		u8 *pri2cos;
9635 		int i, j;
9636 
9637 		pri2cos = &resp_qc->pri0_cos_queue_id;
9638 		for (i = 0; i < 8; i++) {
9639 			u8 queue_id = pri2cos[i];
9640 			u8 queue_idx;
9641 
9642 			/* Per port queue IDs start from 0, 10, 20, etc */
9643 			queue_idx = queue_id % 10;
9644 			if (queue_idx > BNXT_MAX_QUEUE) {
9645 				bp->pri2cos_valid = false;
9646 				hwrm_req_drop(bp, req_qc);
9647 				return rc;
9648 			}
9649 			for (j = 0; j < bp->max_q; j++) {
9650 				if (bp->q_ids[j] == queue_id)
9651 					bp->pri2cos_idx[i] = queue_idx;
9652 			}
9653 		}
9654 		bp->pri2cos_valid = true;
9655 	}
9656 	hwrm_req_drop(bp, req_qc);
9657 
9658 	return rc;
9659 }
9660 
9661 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9662 {
9663 	bnxt_hwrm_tunnel_dst_port_free(bp,
9664 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9665 	bnxt_hwrm_tunnel_dst_port_free(bp,
9666 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9667 }
9668 
9669 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9670 {
9671 	int rc, i;
9672 	u32 tpa_flags = 0;
9673 
9674 	if (set_tpa)
9675 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9676 	else if (BNXT_NO_FW_ACCESS(bp))
9677 		return 0;
9678 	for (i = 0; i < bp->nr_vnics; i++) {
9679 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
9680 		if (rc) {
9681 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9682 				   i, rc);
9683 			return rc;
9684 		}
9685 	}
9686 	return 0;
9687 }
9688 
9689 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9690 {
9691 	int i;
9692 
9693 	for (i = 0; i < bp->nr_vnics; i++)
9694 		bnxt_hwrm_vnic_set_rss(bp, i, false);
9695 }
9696 
9697 static void bnxt_clear_vnic(struct bnxt *bp)
9698 {
9699 	if (!bp->vnic_info)
9700 		return;
9701 
9702 	bnxt_hwrm_clear_vnic_filter(bp);
9703 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9704 		/* clear all RSS setting before free vnic ctx */
9705 		bnxt_hwrm_clear_vnic_rss(bp);
9706 		bnxt_hwrm_vnic_ctx_free(bp);
9707 	}
9708 	/* before free the vnic, undo the vnic tpa settings */
9709 	if (bp->flags & BNXT_FLAG_TPA)
9710 		bnxt_set_tpa(bp, false);
9711 	bnxt_hwrm_vnic_free(bp);
9712 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9713 		bnxt_hwrm_vnic_ctx_free(bp);
9714 }
9715 
9716 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9717 				    bool irq_re_init)
9718 {
9719 	bnxt_clear_vnic(bp);
9720 	bnxt_hwrm_ring_free(bp, close_path);
9721 	bnxt_hwrm_ring_grp_free(bp);
9722 	if (irq_re_init) {
9723 		bnxt_hwrm_stat_ctx_free(bp);
9724 		bnxt_hwrm_free_tunnel_ports(bp);
9725 	}
9726 }
9727 
9728 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9729 {
9730 	struct hwrm_func_cfg_input *req;
9731 	u8 evb_mode;
9732 	int rc;
9733 
9734 	if (br_mode == BRIDGE_MODE_VEB)
9735 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
9736 	else if (br_mode == BRIDGE_MODE_VEPA)
9737 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
9738 	else
9739 		return -EINVAL;
9740 
9741 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9742 	if (rc)
9743 		return rc;
9744 
9745 	req->fid = cpu_to_le16(0xffff);
9746 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
9747 	req->evb_mode = evb_mode;
9748 	return hwrm_req_send(bp, req);
9749 }
9750 
9751 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
9752 {
9753 	struct hwrm_func_cfg_input *req;
9754 	int rc;
9755 
9756 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
9757 		return 0;
9758 
9759 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9760 	if (rc)
9761 		return rc;
9762 
9763 	req->fid = cpu_to_le16(0xffff);
9764 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
9765 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
9766 	if (size == 128)
9767 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
9768 
9769 	return hwrm_req_send(bp, req);
9770 }
9771 
9772 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9773 {
9774 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
9775 	int rc;
9776 
9777 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
9778 		goto skip_rss_ctx;
9779 
9780 	/* allocate context for vnic */
9781 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
9782 	if (rc) {
9783 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9784 			   vnic_id, rc);
9785 		goto vnic_setup_err;
9786 	}
9787 	bp->rsscos_nr_ctxs++;
9788 
9789 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9790 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
9791 		if (rc) {
9792 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
9793 				   vnic_id, rc);
9794 			goto vnic_setup_err;
9795 		}
9796 		bp->rsscos_nr_ctxs++;
9797 	}
9798 
9799 skip_rss_ctx:
9800 	/* configure default vnic, ring grp */
9801 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9802 	if (rc) {
9803 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9804 			   vnic_id, rc);
9805 		goto vnic_setup_err;
9806 	}
9807 
9808 	/* Enable RSS hashing on vnic */
9809 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
9810 	if (rc) {
9811 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
9812 			   vnic_id, rc);
9813 		goto vnic_setup_err;
9814 	}
9815 
9816 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9817 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9818 		if (rc) {
9819 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9820 				   vnic_id, rc);
9821 		}
9822 	}
9823 
9824 vnic_setup_err:
9825 	return rc;
9826 }
9827 
9828 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
9829 {
9830 	int rc, i, nr_ctxs;
9831 
9832 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
9833 	for (i = 0; i < nr_ctxs; i++) {
9834 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
9835 		if (rc) {
9836 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
9837 				   vnic_id, i, rc);
9838 			break;
9839 		}
9840 		bp->rsscos_nr_ctxs++;
9841 	}
9842 	if (i < nr_ctxs)
9843 		return -ENOMEM;
9844 
9845 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
9846 	if (rc) {
9847 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
9848 			   vnic_id, rc);
9849 		return rc;
9850 	}
9851 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9852 	if (rc) {
9853 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9854 			   vnic_id, rc);
9855 		return rc;
9856 	}
9857 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9858 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9859 		if (rc) {
9860 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9861 				   vnic_id, rc);
9862 		}
9863 	}
9864 	return rc;
9865 }
9866 
9867 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9868 {
9869 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9870 		return __bnxt_setup_vnic_p5(bp, vnic_id);
9871 	else
9872 		return __bnxt_setup_vnic(bp, vnic_id);
9873 }
9874 
9875 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, u16 vnic_id,
9876 				     u16 start_rx_ring_idx, int rx_rings)
9877 {
9878 	int rc;
9879 
9880 	rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, start_rx_ring_idx, rx_rings);
9881 	if (rc) {
9882 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9883 			   vnic_id, rc);
9884 		return rc;
9885 	}
9886 	return bnxt_setup_vnic(bp, vnic_id);
9887 }
9888 
9889 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
9890 {
9891 	int i, rc = 0;
9892 
9893 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
9894 		return bnxt_alloc_and_setup_vnic(bp, BNXT_VNIC_NTUPLE, 0,
9895 						 bp->rx_nr_rings);
9896 
9897 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9898 		return 0;
9899 
9900 	for (i = 0; i < bp->rx_nr_rings; i++) {
9901 		struct bnxt_vnic_info *vnic;
9902 		u16 vnic_id = i + 1;
9903 		u16 ring_id = i;
9904 
9905 		if (vnic_id >= bp->nr_vnics)
9906 			break;
9907 
9908 		vnic = &bp->vnic_info[vnic_id];
9909 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
9910 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
9911 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
9912 		if (bnxt_alloc_and_setup_vnic(bp, vnic_id, ring_id, 1))
9913 			break;
9914 	}
9915 	return rc;
9916 }
9917 
9918 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
9919 static bool bnxt_promisc_ok(struct bnxt *bp)
9920 {
9921 #ifdef CONFIG_BNXT_SRIOV
9922 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
9923 		return false;
9924 #endif
9925 	return true;
9926 }
9927 
9928 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
9929 {
9930 	unsigned int rc = 0;
9931 
9932 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
9933 	if (rc) {
9934 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9935 			   rc);
9936 		return rc;
9937 	}
9938 
9939 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
9940 	if (rc) {
9941 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9942 			   rc);
9943 		return rc;
9944 	}
9945 	return rc;
9946 }
9947 
9948 static int bnxt_cfg_rx_mode(struct bnxt *);
9949 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
9950 
9951 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
9952 {
9953 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
9954 	int rc = 0;
9955 	unsigned int rx_nr_rings = bp->rx_nr_rings;
9956 
9957 	if (irq_re_init) {
9958 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
9959 		if (rc) {
9960 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
9961 				   rc);
9962 			goto err_out;
9963 		}
9964 	}
9965 
9966 	rc = bnxt_hwrm_ring_alloc(bp);
9967 	if (rc) {
9968 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
9969 		goto err_out;
9970 	}
9971 
9972 	rc = bnxt_hwrm_ring_grp_alloc(bp);
9973 	if (rc) {
9974 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
9975 		goto err_out;
9976 	}
9977 
9978 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9979 		rx_nr_rings--;
9980 
9981 	/* default vnic 0 */
9982 	rc = bnxt_hwrm_vnic_alloc(bp, BNXT_VNIC_DEFAULT, 0, rx_nr_rings);
9983 	if (rc) {
9984 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
9985 		goto err_out;
9986 	}
9987 
9988 	if (BNXT_VF(bp))
9989 		bnxt_hwrm_func_qcfg(bp);
9990 
9991 	rc = bnxt_setup_vnic(bp, BNXT_VNIC_DEFAULT);
9992 	if (rc)
9993 		goto err_out;
9994 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
9995 		bnxt_hwrm_update_rss_hash_cfg(bp);
9996 
9997 	if (bp->flags & BNXT_FLAG_RFS) {
9998 		rc = bnxt_alloc_rfs_vnics(bp);
9999 		if (rc)
10000 			goto err_out;
10001 	}
10002 
10003 	if (bp->flags & BNXT_FLAG_TPA) {
10004 		rc = bnxt_set_tpa(bp, true);
10005 		if (rc)
10006 			goto err_out;
10007 	}
10008 
10009 	if (BNXT_VF(bp))
10010 		bnxt_update_vf_mac(bp);
10011 
10012 	/* Filter for default vnic 0 */
10013 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
10014 	if (rc) {
10015 		if (BNXT_VF(bp) && rc == -ENODEV)
10016 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
10017 		else
10018 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10019 		goto err_out;
10020 	}
10021 	vnic->uc_filter_count = 1;
10022 
10023 	vnic->rx_mask = 0;
10024 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
10025 		goto skip_rx_mask;
10026 
10027 	if (bp->dev->flags & IFF_BROADCAST)
10028 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10029 
10030 	if (bp->dev->flags & IFF_PROMISC)
10031 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10032 
10033 	if (bp->dev->flags & IFF_ALLMULTI) {
10034 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10035 		vnic->mc_list_count = 0;
10036 	} else if (bp->dev->flags & IFF_MULTICAST) {
10037 		u32 mask = 0;
10038 
10039 		bnxt_mc_list_updated(bp, &mask);
10040 		vnic->rx_mask |= mask;
10041 	}
10042 
10043 	rc = bnxt_cfg_rx_mode(bp);
10044 	if (rc)
10045 		goto err_out;
10046 
10047 skip_rx_mask:
10048 	rc = bnxt_hwrm_set_coal(bp);
10049 	if (rc)
10050 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
10051 				rc);
10052 
10053 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10054 		rc = bnxt_setup_nitroa0_vnic(bp);
10055 		if (rc)
10056 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
10057 				   rc);
10058 	}
10059 
10060 	if (BNXT_VF(bp)) {
10061 		bnxt_hwrm_func_qcfg(bp);
10062 		netdev_update_features(bp->dev);
10063 	}
10064 
10065 	return 0;
10066 
10067 err_out:
10068 	bnxt_hwrm_resource_free(bp, 0, true);
10069 
10070 	return rc;
10071 }
10072 
10073 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
10074 {
10075 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
10076 	return 0;
10077 }
10078 
10079 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
10080 {
10081 	bnxt_init_cp_rings(bp);
10082 	bnxt_init_rx_rings(bp);
10083 	bnxt_init_tx_rings(bp);
10084 	bnxt_init_ring_grps(bp, irq_re_init);
10085 	bnxt_init_vnics(bp);
10086 
10087 	return bnxt_init_chip(bp, irq_re_init);
10088 }
10089 
10090 static int bnxt_set_real_num_queues(struct bnxt *bp)
10091 {
10092 	int rc;
10093 	struct net_device *dev = bp->dev;
10094 
10095 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
10096 					  bp->tx_nr_rings_xdp);
10097 	if (rc)
10098 		return rc;
10099 
10100 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
10101 	if (rc)
10102 		return rc;
10103 
10104 #ifdef CONFIG_RFS_ACCEL
10105 	if (bp->flags & BNXT_FLAG_RFS)
10106 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
10107 #endif
10108 
10109 	return rc;
10110 }
10111 
10112 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10113 			     bool shared)
10114 {
10115 	int _rx = *rx, _tx = *tx;
10116 
10117 	if (shared) {
10118 		*rx = min_t(int, _rx, max);
10119 		*tx = min_t(int, _tx, max);
10120 	} else {
10121 		if (max < 2)
10122 			return -ENOMEM;
10123 
10124 		while (_rx + _tx > max) {
10125 			if (_rx > _tx && _rx > 1)
10126 				_rx--;
10127 			else if (_tx > 1)
10128 				_tx--;
10129 		}
10130 		*rx = _rx;
10131 		*tx = _tx;
10132 	}
10133 	return 0;
10134 }
10135 
10136 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
10137 {
10138 	return (tx - tx_xdp) / tx_sets + tx_xdp;
10139 }
10140 
10141 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
10142 {
10143 	int tcs = bp->num_tc;
10144 
10145 	if (!tcs)
10146 		tcs = 1;
10147 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
10148 }
10149 
10150 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
10151 {
10152 	int tcs = bp->num_tc;
10153 
10154 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
10155 	       bp->tx_nr_rings_xdp;
10156 }
10157 
10158 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10159 			   bool sh)
10160 {
10161 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
10162 
10163 	if (tx_cp != *tx) {
10164 		int tx_saved = tx_cp, rc;
10165 
10166 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
10167 		if (rc)
10168 			return rc;
10169 		if (tx_cp != tx_saved)
10170 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
10171 		return 0;
10172 	}
10173 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
10174 }
10175 
10176 static void bnxt_setup_msix(struct bnxt *bp)
10177 {
10178 	const int len = sizeof(bp->irq_tbl[0].name);
10179 	struct net_device *dev = bp->dev;
10180 	int tcs, i;
10181 
10182 	tcs = bp->num_tc;
10183 	if (tcs) {
10184 		int i, off, count;
10185 
10186 		for (i = 0; i < tcs; i++) {
10187 			count = bp->tx_nr_rings_per_tc;
10188 			off = BNXT_TC_TO_RING_BASE(bp, i);
10189 			netdev_set_tc_queue(dev, i, count, off);
10190 		}
10191 	}
10192 
10193 	for (i = 0; i < bp->cp_nr_rings; i++) {
10194 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10195 		char *attr;
10196 
10197 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10198 			attr = "TxRx";
10199 		else if (i < bp->rx_nr_rings)
10200 			attr = "rx";
10201 		else
10202 			attr = "tx";
10203 
10204 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10205 			 attr, i);
10206 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10207 	}
10208 }
10209 
10210 static void bnxt_setup_inta(struct bnxt *bp)
10211 {
10212 	const int len = sizeof(bp->irq_tbl[0].name);
10213 
10214 	if (bp->num_tc) {
10215 		netdev_reset_tc(bp->dev);
10216 		bp->num_tc = 0;
10217 	}
10218 
10219 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
10220 		 0);
10221 	bp->irq_tbl[0].handler = bnxt_inta;
10222 }
10223 
10224 static int bnxt_init_int_mode(struct bnxt *bp);
10225 
10226 static int bnxt_setup_int_mode(struct bnxt *bp)
10227 {
10228 	int rc;
10229 
10230 	if (!bp->irq_tbl) {
10231 		rc = bnxt_init_int_mode(bp);
10232 		if (rc || !bp->irq_tbl)
10233 			return rc ?: -ENODEV;
10234 	}
10235 
10236 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10237 		bnxt_setup_msix(bp);
10238 	else
10239 		bnxt_setup_inta(bp);
10240 
10241 	rc = bnxt_set_real_num_queues(bp);
10242 	return rc;
10243 }
10244 
10245 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10246 {
10247 	return bp->hw_resc.max_rsscos_ctxs;
10248 }
10249 
10250 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10251 {
10252 	return bp->hw_resc.max_vnics;
10253 }
10254 
10255 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10256 {
10257 	return bp->hw_resc.max_stat_ctxs;
10258 }
10259 
10260 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10261 {
10262 	return bp->hw_resc.max_cp_rings;
10263 }
10264 
10265 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10266 {
10267 	unsigned int cp = bp->hw_resc.max_cp_rings;
10268 
10269 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10270 		cp -= bnxt_get_ulp_msix_num(bp);
10271 
10272 	return cp;
10273 }
10274 
10275 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10276 {
10277 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10278 
10279 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10280 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10281 
10282 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10283 }
10284 
10285 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10286 {
10287 	bp->hw_resc.max_irqs = max_irqs;
10288 }
10289 
10290 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10291 {
10292 	unsigned int cp;
10293 
10294 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10295 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10296 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10297 	else
10298 		return cp - bp->cp_nr_rings;
10299 }
10300 
10301 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10302 {
10303 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10304 }
10305 
10306 int bnxt_get_avail_msix(struct bnxt *bp, int num)
10307 {
10308 	int max_cp = bnxt_get_max_func_cp_rings(bp);
10309 	int max_irq = bnxt_get_max_func_irqs(bp);
10310 	int total_req = bp->cp_nr_rings + num;
10311 	int max_idx, avail_msix;
10312 
10313 	max_idx = bp->total_irqs;
10314 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10315 		max_idx = min_t(int, bp->total_irqs, max_cp);
10316 	avail_msix = max_idx - bp->cp_nr_rings;
10317 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
10318 		return avail_msix;
10319 
10320 	if (max_irq < total_req) {
10321 		num = max_irq - bp->cp_nr_rings;
10322 		if (num <= 0)
10323 			return 0;
10324 	}
10325 	return num;
10326 }
10327 
10328 static int bnxt_get_num_msix(struct bnxt *bp)
10329 {
10330 	if (!BNXT_NEW_RM(bp))
10331 		return bnxt_get_max_func_irqs(bp);
10332 
10333 	return bnxt_nq_rings_in_use(bp);
10334 }
10335 
10336 static int bnxt_init_msix(struct bnxt *bp)
10337 {
10338 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
10339 	struct msix_entry *msix_ent;
10340 
10341 	total_vecs = bnxt_get_num_msix(bp);
10342 	max = bnxt_get_max_func_irqs(bp);
10343 	if (total_vecs > max)
10344 		total_vecs = max;
10345 
10346 	if (!total_vecs)
10347 		return 0;
10348 
10349 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
10350 	if (!msix_ent)
10351 		return -ENOMEM;
10352 
10353 	for (i = 0; i < total_vecs; i++) {
10354 		msix_ent[i].entry = i;
10355 		msix_ent[i].vector = 0;
10356 	}
10357 
10358 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10359 		min = 2;
10360 
10361 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
10362 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10363 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10364 		rc = -ENODEV;
10365 		goto msix_setup_exit;
10366 	}
10367 
10368 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
10369 	if (bp->irq_tbl) {
10370 		for (i = 0; i < total_vecs; i++)
10371 			bp->irq_tbl[i].vector = msix_ent[i].vector;
10372 
10373 		bp->total_irqs = total_vecs;
10374 		/* Trim rings based upon num of vectors allocated */
10375 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10376 				     total_vecs - ulp_msix, min == 1);
10377 		if (rc)
10378 			goto msix_setup_exit;
10379 
10380 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10381 		bp->cp_nr_rings = (min == 1) ?
10382 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10383 				  tx_cp + bp->rx_nr_rings;
10384 
10385 	} else {
10386 		rc = -ENOMEM;
10387 		goto msix_setup_exit;
10388 	}
10389 	bp->flags |= BNXT_FLAG_USING_MSIX;
10390 	kfree(msix_ent);
10391 	return 0;
10392 
10393 msix_setup_exit:
10394 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
10395 	kfree(bp->irq_tbl);
10396 	bp->irq_tbl = NULL;
10397 	pci_disable_msix(bp->pdev);
10398 	kfree(msix_ent);
10399 	return rc;
10400 }
10401 
10402 static int bnxt_init_inta(struct bnxt *bp)
10403 {
10404 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
10405 	if (!bp->irq_tbl)
10406 		return -ENOMEM;
10407 
10408 	bp->total_irqs = 1;
10409 	bp->rx_nr_rings = 1;
10410 	bp->tx_nr_rings = 1;
10411 	bp->cp_nr_rings = 1;
10412 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
10413 	bp->irq_tbl[0].vector = bp->pdev->irq;
10414 	return 0;
10415 }
10416 
10417 static int bnxt_init_int_mode(struct bnxt *bp)
10418 {
10419 	int rc = -ENODEV;
10420 
10421 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
10422 		rc = bnxt_init_msix(bp);
10423 
10424 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
10425 		/* fallback to INTA */
10426 		rc = bnxt_init_inta(bp);
10427 	}
10428 	return rc;
10429 }
10430 
10431 static void bnxt_clear_int_mode(struct bnxt *bp)
10432 {
10433 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10434 		pci_disable_msix(bp->pdev);
10435 
10436 	kfree(bp->irq_tbl);
10437 	bp->irq_tbl = NULL;
10438 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
10439 }
10440 
10441 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10442 {
10443 	bool irq_cleared = false;
10444 	int tcs = bp->num_tc;
10445 	int rc;
10446 
10447 	if (!bnxt_need_reserve_rings(bp))
10448 		return 0;
10449 
10450 	if (irq_re_init && BNXT_NEW_RM(bp) &&
10451 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
10452 		bnxt_ulp_irq_stop(bp);
10453 		bnxt_clear_int_mode(bp);
10454 		irq_cleared = true;
10455 	}
10456 	rc = __bnxt_reserve_rings(bp);
10457 	if (irq_cleared) {
10458 		if (!rc)
10459 			rc = bnxt_init_int_mode(bp);
10460 		bnxt_ulp_irq_restart(bp, rc);
10461 	}
10462 	if (rc) {
10463 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10464 		return rc;
10465 	}
10466 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10467 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10468 		netdev_err(bp->dev, "tx ring reservation failure\n");
10469 		netdev_reset_tc(bp->dev);
10470 		bp->num_tc = 0;
10471 		if (bp->tx_nr_rings_xdp)
10472 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10473 		else
10474 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10475 		return -ENOMEM;
10476 	}
10477 	return 0;
10478 }
10479 
10480 static void bnxt_free_irq(struct bnxt *bp)
10481 {
10482 	struct bnxt_irq *irq;
10483 	int i;
10484 
10485 #ifdef CONFIG_RFS_ACCEL
10486 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10487 	bp->dev->rx_cpu_rmap = NULL;
10488 #endif
10489 	if (!bp->irq_tbl || !bp->bnapi)
10490 		return;
10491 
10492 	for (i = 0; i < bp->cp_nr_rings; i++) {
10493 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10494 
10495 		irq = &bp->irq_tbl[map_idx];
10496 		if (irq->requested) {
10497 			if (irq->have_cpumask) {
10498 				irq_set_affinity_hint(irq->vector, NULL);
10499 				free_cpumask_var(irq->cpu_mask);
10500 				irq->have_cpumask = 0;
10501 			}
10502 			free_irq(irq->vector, bp->bnapi[i]);
10503 		}
10504 
10505 		irq->requested = 0;
10506 	}
10507 }
10508 
10509 static int bnxt_request_irq(struct bnxt *bp)
10510 {
10511 	int i, j, rc = 0;
10512 	unsigned long flags = 0;
10513 #ifdef CONFIG_RFS_ACCEL
10514 	struct cpu_rmap *rmap;
10515 #endif
10516 
10517 	rc = bnxt_setup_int_mode(bp);
10518 	if (rc) {
10519 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10520 			   rc);
10521 		return rc;
10522 	}
10523 #ifdef CONFIG_RFS_ACCEL
10524 	rmap = bp->dev->rx_cpu_rmap;
10525 #endif
10526 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
10527 		flags = IRQF_SHARED;
10528 
10529 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10530 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10531 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10532 
10533 #ifdef CONFIG_RFS_ACCEL
10534 		if (rmap && bp->bnapi[i]->rx_ring) {
10535 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10536 			if (rc)
10537 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10538 					    j);
10539 			j++;
10540 		}
10541 #endif
10542 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10543 				 bp->bnapi[i]);
10544 		if (rc)
10545 			break;
10546 
10547 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10548 		irq->requested = 1;
10549 
10550 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10551 			int numa_node = dev_to_node(&bp->pdev->dev);
10552 
10553 			irq->have_cpumask = 1;
10554 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10555 					irq->cpu_mask);
10556 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10557 			if (rc) {
10558 				netdev_warn(bp->dev,
10559 					    "Set affinity failed, IRQ = %d\n",
10560 					    irq->vector);
10561 				break;
10562 			}
10563 		}
10564 	}
10565 	return rc;
10566 }
10567 
10568 static void bnxt_del_napi(struct bnxt *bp)
10569 {
10570 	int i;
10571 
10572 	if (!bp->bnapi)
10573 		return;
10574 
10575 	for (i = 0; i < bp->rx_nr_rings; i++)
10576 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10577 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10578 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10579 
10580 	for (i = 0; i < bp->cp_nr_rings; i++) {
10581 		struct bnxt_napi *bnapi = bp->bnapi[i];
10582 
10583 		__netif_napi_del(&bnapi->napi);
10584 	}
10585 	/* We called __netif_napi_del(), we need
10586 	 * to respect an RCU grace period before freeing napi structures.
10587 	 */
10588 	synchronize_net();
10589 }
10590 
10591 static void bnxt_init_napi(struct bnxt *bp)
10592 {
10593 	int i;
10594 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10595 	struct bnxt_napi *bnapi;
10596 
10597 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
10598 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10599 
10600 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10601 			poll_fn = bnxt_poll_p5;
10602 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10603 			cp_nr_rings--;
10604 		for (i = 0; i < cp_nr_rings; i++) {
10605 			bnapi = bp->bnapi[i];
10606 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10607 		}
10608 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10609 			bnapi = bp->bnapi[cp_nr_rings];
10610 			netif_napi_add(bp->dev, &bnapi->napi,
10611 				       bnxt_poll_nitroa0);
10612 		}
10613 	} else {
10614 		bnapi = bp->bnapi[0];
10615 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10616 	}
10617 }
10618 
10619 static void bnxt_disable_napi(struct bnxt *bp)
10620 {
10621 	int i;
10622 
10623 	if (!bp->bnapi ||
10624 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10625 		return;
10626 
10627 	for (i = 0; i < bp->cp_nr_rings; i++) {
10628 		struct bnxt_napi *bnapi = bp->bnapi[i];
10629 		struct bnxt_cp_ring_info *cpr;
10630 
10631 		cpr = &bnapi->cp_ring;
10632 		if (bnapi->tx_fault)
10633 			cpr->sw_stats.tx.tx_resets++;
10634 		if (bnapi->in_reset)
10635 			cpr->sw_stats.rx.rx_resets++;
10636 		napi_disable(&bnapi->napi);
10637 		if (bnapi->rx_ring)
10638 			cancel_work_sync(&cpr->dim.work);
10639 	}
10640 }
10641 
10642 static void bnxt_enable_napi(struct bnxt *bp)
10643 {
10644 	int i;
10645 
10646 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
10647 	for (i = 0; i < bp->cp_nr_rings; i++) {
10648 		struct bnxt_napi *bnapi = bp->bnapi[i];
10649 		struct bnxt_cp_ring_info *cpr;
10650 
10651 		bnapi->tx_fault = 0;
10652 
10653 		cpr = &bnapi->cp_ring;
10654 		bnapi->in_reset = false;
10655 
10656 		if (bnapi->rx_ring) {
10657 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
10658 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
10659 		}
10660 		napi_enable(&bnapi->napi);
10661 	}
10662 }
10663 
10664 void bnxt_tx_disable(struct bnxt *bp)
10665 {
10666 	int i;
10667 	struct bnxt_tx_ring_info *txr;
10668 
10669 	if (bp->tx_ring) {
10670 		for (i = 0; i < bp->tx_nr_rings; i++) {
10671 			txr = &bp->tx_ring[i];
10672 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
10673 		}
10674 	}
10675 	/* Make sure napi polls see @dev_state change */
10676 	synchronize_net();
10677 	/* Drop carrier first to prevent TX timeout */
10678 	netif_carrier_off(bp->dev);
10679 	/* Stop all TX queues */
10680 	netif_tx_disable(bp->dev);
10681 }
10682 
10683 void bnxt_tx_enable(struct bnxt *bp)
10684 {
10685 	int i;
10686 	struct bnxt_tx_ring_info *txr;
10687 
10688 	for (i = 0; i < bp->tx_nr_rings; i++) {
10689 		txr = &bp->tx_ring[i];
10690 		WRITE_ONCE(txr->dev_state, 0);
10691 	}
10692 	/* Make sure napi polls see @dev_state change */
10693 	synchronize_net();
10694 	netif_tx_wake_all_queues(bp->dev);
10695 	if (BNXT_LINK_IS_UP(bp))
10696 		netif_carrier_on(bp->dev);
10697 }
10698 
10699 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
10700 {
10701 	u8 active_fec = link_info->active_fec_sig_mode &
10702 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
10703 
10704 	switch (active_fec) {
10705 	default:
10706 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
10707 		return "None";
10708 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
10709 		return "Clause 74 BaseR";
10710 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
10711 		return "Clause 91 RS(528,514)";
10712 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
10713 		return "Clause 91 RS544_1XN";
10714 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
10715 		return "Clause 91 RS(544,514)";
10716 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
10717 		return "Clause 91 RS272_1XN";
10718 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
10719 		return "Clause 91 RS(272,257)";
10720 	}
10721 }
10722 
10723 void bnxt_report_link(struct bnxt *bp)
10724 {
10725 	if (BNXT_LINK_IS_UP(bp)) {
10726 		const char *signal = "";
10727 		const char *flow_ctrl;
10728 		const char *duplex;
10729 		u32 speed;
10730 		u16 fec;
10731 
10732 		netif_carrier_on(bp->dev);
10733 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
10734 		if (speed == SPEED_UNKNOWN) {
10735 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
10736 			return;
10737 		}
10738 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
10739 			duplex = "full";
10740 		else
10741 			duplex = "half";
10742 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
10743 			flow_ctrl = "ON - receive & transmit";
10744 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
10745 			flow_ctrl = "ON - transmit";
10746 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
10747 			flow_ctrl = "ON - receive";
10748 		else
10749 			flow_ctrl = "none";
10750 		if (bp->link_info.phy_qcfg_resp.option_flags &
10751 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
10752 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
10753 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
10754 			switch (sig_mode) {
10755 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
10756 				signal = "(NRZ) ";
10757 				break;
10758 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
10759 				signal = "(PAM4 56Gbps) ";
10760 				break;
10761 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
10762 				signal = "(PAM4 112Gbps) ";
10763 				break;
10764 			default:
10765 				break;
10766 			}
10767 		}
10768 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
10769 			    speed, signal, duplex, flow_ctrl);
10770 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
10771 			netdev_info(bp->dev, "EEE is %s\n",
10772 				    bp->eee.eee_active ? "active" :
10773 							 "not active");
10774 		fec = bp->link_info.fec_cfg;
10775 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
10776 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
10777 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
10778 				    bnxt_report_fec(&bp->link_info));
10779 	} else {
10780 		netif_carrier_off(bp->dev);
10781 		netdev_err(bp->dev, "NIC Link is Down\n");
10782 	}
10783 }
10784 
10785 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
10786 {
10787 	if (!resp->supported_speeds_auto_mode &&
10788 	    !resp->supported_speeds_force_mode &&
10789 	    !resp->supported_pam4_speeds_auto_mode &&
10790 	    !resp->supported_pam4_speeds_force_mode &&
10791 	    !resp->supported_speeds2_auto_mode &&
10792 	    !resp->supported_speeds2_force_mode)
10793 		return true;
10794 	return false;
10795 }
10796 
10797 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
10798 {
10799 	struct bnxt_link_info *link_info = &bp->link_info;
10800 	struct hwrm_port_phy_qcaps_output *resp;
10801 	struct hwrm_port_phy_qcaps_input *req;
10802 	int rc = 0;
10803 
10804 	if (bp->hwrm_spec_code < 0x10201)
10805 		return 0;
10806 
10807 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
10808 	if (rc)
10809 		return rc;
10810 
10811 	resp = hwrm_req_hold(bp, req);
10812 	rc = hwrm_req_send(bp, req);
10813 	if (rc)
10814 		goto hwrm_phy_qcaps_exit;
10815 
10816 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
10817 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
10818 		struct ethtool_keee *eee = &bp->eee;
10819 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
10820 
10821 		_bnxt_fw_to_linkmode(eee->supported, fw_speeds);
10822 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
10823 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
10824 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
10825 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
10826 	}
10827 
10828 	if (bp->hwrm_spec_code >= 0x10a01) {
10829 		if (bnxt_phy_qcaps_no_speed(resp)) {
10830 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
10831 			netdev_warn(bp->dev, "Ethernet link disabled\n");
10832 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
10833 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
10834 			netdev_info(bp->dev, "Ethernet link enabled\n");
10835 			/* Phy re-enabled, reprobe the speeds */
10836 			link_info->support_auto_speeds = 0;
10837 			link_info->support_pam4_auto_speeds = 0;
10838 			link_info->support_auto_speeds2 = 0;
10839 		}
10840 	}
10841 	if (resp->supported_speeds_auto_mode)
10842 		link_info->support_auto_speeds =
10843 			le16_to_cpu(resp->supported_speeds_auto_mode);
10844 	if (resp->supported_pam4_speeds_auto_mode)
10845 		link_info->support_pam4_auto_speeds =
10846 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
10847 	if (resp->supported_speeds2_auto_mode)
10848 		link_info->support_auto_speeds2 =
10849 			le16_to_cpu(resp->supported_speeds2_auto_mode);
10850 
10851 	bp->port_count = resp->port_cnt;
10852 
10853 hwrm_phy_qcaps_exit:
10854 	hwrm_req_drop(bp, req);
10855 	return rc;
10856 }
10857 
10858 static bool bnxt_support_dropped(u16 advertising, u16 supported)
10859 {
10860 	u16 diff = advertising ^ supported;
10861 
10862 	return ((supported | diff) != supported);
10863 }
10864 
10865 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
10866 {
10867 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
10868 
10869 	/* Check if any advertised speeds are no longer supported. The caller
10870 	 * holds the link_lock mutex, so we can modify link_info settings.
10871 	 */
10872 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10873 		if (bnxt_support_dropped(link_info->advertising,
10874 					 link_info->support_auto_speeds2)) {
10875 			link_info->advertising = link_info->support_auto_speeds2;
10876 			return true;
10877 		}
10878 		return false;
10879 	}
10880 	if (bnxt_support_dropped(link_info->advertising,
10881 				 link_info->support_auto_speeds)) {
10882 		link_info->advertising = link_info->support_auto_speeds;
10883 		return true;
10884 	}
10885 	if (bnxt_support_dropped(link_info->advertising_pam4,
10886 				 link_info->support_pam4_auto_speeds)) {
10887 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
10888 		return true;
10889 	}
10890 	return false;
10891 }
10892 
10893 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
10894 {
10895 	struct bnxt_link_info *link_info = &bp->link_info;
10896 	struct hwrm_port_phy_qcfg_output *resp;
10897 	struct hwrm_port_phy_qcfg_input *req;
10898 	u8 link_state = link_info->link_state;
10899 	bool support_changed;
10900 	int rc;
10901 
10902 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
10903 	if (rc)
10904 		return rc;
10905 
10906 	resp = hwrm_req_hold(bp, req);
10907 	rc = hwrm_req_send(bp, req);
10908 	if (rc) {
10909 		hwrm_req_drop(bp, req);
10910 		if (BNXT_VF(bp) && rc == -ENODEV) {
10911 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
10912 			rc = 0;
10913 		}
10914 		return rc;
10915 	}
10916 
10917 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
10918 	link_info->phy_link_status = resp->link;
10919 	link_info->duplex = resp->duplex_cfg;
10920 	if (bp->hwrm_spec_code >= 0x10800)
10921 		link_info->duplex = resp->duplex_state;
10922 	link_info->pause = resp->pause;
10923 	link_info->auto_mode = resp->auto_mode;
10924 	link_info->auto_pause_setting = resp->auto_pause;
10925 	link_info->lp_pause = resp->link_partner_adv_pause;
10926 	link_info->force_pause_setting = resp->force_pause;
10927 	link_info->duplex_setting = resp->duplex_cfg;
10928 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
10929 		link_info->link_speed = le16_to_cpu(resp->link_speed);
10930 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
10931 			link_info->active_lanes = resp->active_lanes;
10932 	} else {
10933 		link_info->link_speed = 0;
10934 		link_info->active_lanes = 0;
10935 	}
10936 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
10937 	link_info->force_pam4_link_speed =
10938 		le16_to_cpu(resp->force_pam4_link_speed);
10939 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
10940 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
10941 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
10942 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
10943 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
10944 	link_info->auto_pam4_link_speeds =
10945 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
10946 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
10947 	link_info->lp_auto_link_speeds =
10948 		le16_to_cpu(resp->link_partner_adv_speeds);
10949 	link_info->lp_auto_pam4_link_speeds =
10950 		resp->link_partner_pam4_adv_speeds;
10951 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
10952 	link_info->phy_ver[0] = resp->phy_maj;
10953 	link_info->phy_ver[1] = resp->phy_min;
10954 	link_info->phy_ver[2] = resp->phy_bld;
10955 	link_info->media_type = resp->media_type;
10956 	link_info->phy_type = resp->phy_type;
10957 	link_info->transceiver = resp->xcvr_pkg_type;
10958 	link_info->phy_addr = resp->eee_config_phy_addr &
10959 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
10960 	link_info->module_status = resp->module_status;
10961 
10962 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
10963 		struct ethtool_keee *eee = &bp->eee;
10964 		u16 fw_speeds;
10965 
10966 		eee->eee_active = 0;
10967 		if (resp->eee_config_phy_addr &
10968 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
10969 			eee->eee_active = 1;
10970 			fw_speeds = le16_to_cpu(
10971 				resp->link_partner_adv_eee_link_speed_mask);
10972 			_bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds);
10973 		}
10974 
10975 		/* Pull initial EEE config */
10976 		if (!chng_link_state) {
10977 			if (resp->eee_config_phy_addr &
10978 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
10979 				eee->eee_enabled = 1;
10980 
10981 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
10982 			_bnxt_fw_to_linkmode(eee->advertised, fw_speeds);
10983 
10984 			if (resp->eee_config_phy_addr &
10985 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
10986 				__le32 tmr;
10987 
10988 				eee->tx_lpi_enabled = 1;
10989 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
10990 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
10991 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
10992 			}
10993 		}
10994 	}
10995 
10996 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
10997 	if (bp->hwrm_spec_code >= 0x10504) {
10998 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
10999 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
11000 	}
11001 	/* TODO: need to add more logic to report VF link */
11002 	if (chng_link_state) {
11003 		if (link_info->phy_link_status == BNXT_LINK_LINK)
11004 			link_info->link_state = BNXT_LINK_STATE_UP;
11005 		else
11006 			link_info->link_state = BNXT_LINK_STATE_DOWN;
11007 		if (link_state != link_info->link_state)
11008 			bnxt_report_link(bp);
11009 	} else {
11010 		/* always link down if not require to update link state */
11011 		link_info->link_state = BNXT_LINK_STATE_DOWN;
11012 	}
11013 	hwrm_req_drop(bp, req);
11014 
11015 	if (!BNXT_PHY_CFG_ABLE(bp))
11016 		return 0;
11017 
11018 	support_changed = bnxt_support_speed_dropped(link_info);
11019 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
11020 		bnxt_hwrm_set_link_setting(bp, true, false);
11021 	return 0;
11022 }
11023 
11024 static void bnxt_get_port_module_status(struct bnxt *bp)
11025 {
11026 	struct bnxt_link_info *link_info = &bp->link_info;
11027 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
11028 	u8 module_status;
11029 
11030 	if (bnxt_update_link(bp, true))
11031 		return;
11032 
11033 	module_status = link_info->module_status;
11034 	switch (module_status) {
11035 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
11036 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
11037 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
11038 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
11039 			    bp->pf.port_id);
11040 		if (bp->hwrm_spec_code >= 0x10201) {
11041 			netdev_warn(bp->dev, "Module part number %s\n",
11042 				    resp->phy_vendor_partnumber);
11043 		}
11044 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
11045 			netdev_warn(bp->dev, "TX is disabled\n");
11046 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
11047 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
11048 	}
11049 }
11050 
11051 static void
11052 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11053 {
11054 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
11055 		if (bp->hwrm_spec_code >= 0x10201)
11056 			req->auto_pause =
11057 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
11058 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11059 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
11060 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11061 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
11062 		req->enables |=
11063 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11064 	} else {
11065 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11066 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
11067 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11068 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
11069 		req->enables |=
11070 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
11071 		if (bp->hwrm_spec_code >= 0x10201) {
11072 			req->auto_pause = req->force_pause;
11073 			req->enables |= cpu_to_le32(
11074 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11075 		}
11076 	}
11077 }
11078 
11079 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11080 {
11081 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
11082 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
11083 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11084 			req->enables |=
11085 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
11086 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
11087 		} else if (bp->link_info.advertising) {
11088 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
11089 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
11090 		}
11091 		if (bp->link_info.advertising_pam4) {
11092 			req->enables |=
11093 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
11094 			req->auto_link_pam4_speed_mask =
11095 				cpu_to_le16(bp->link_info.advertising_pam4);
11096 		}
11097 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
11098 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
11099 	} else {
11100 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
11101 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11102 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
11103 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
11104 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
11105 				   (u32)bp->link_info.req_link_speed);
11106 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
11107 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11108 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
11109 		} else {
11110 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11111 		}
11112 	}
11113 
11114 	/* tell chimp that the setting takes effect immediately */
11115 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
11116 }
11117 
11118 int bnxt_hwrm_set_pause(struct bnxt *bp)
11119 {
11120 	struct hwrm_port_phy_cfg_input *req;
11121 	int rc;
11122 
11123 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11124 	if (rc)
11125 		return rc;
11126 
11127 	bnxt_hwrm_set_pause_common(bp, req);
11128 
11129 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
11130 	    bp->link_info.force_link_chng)
11131 		bnxt_hwrm_set_link_common(bp, req);
11132 
11133 	rc = hwrm_req_send(bp, req);
11134 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
11135 		/* since changing of pause setting doesn't trigger any link
11136 		 * change event, the driver needs to update the current pause
11137 		 * result upon successfully return of the phy_cfg command
11138 		 */
11139 		bp->link_info.pause =
11140 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
11141 		bp->link_info.auto_pause_setting = 0;
11142 		if (!bp->link_info.force_link_chng)
11143 			bnxt_report_link(bp);
11144 	}
11145 	bp->link_info.force_link_chng = false;
11146 	return rc;
11147 }
11148 
11149 static void bnxt_hwrm_set_eee(struct bnxt *bp,
11150 			      struct hwrm_port_phy_cfg_input *req)
11151 {
11152 	struct ethtool_keee *eee = &bp->eee;
11153 
11154 	if (eee->eee_enabled) {
11155 		u16 eee_speeds;
11156 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
11157 
11158 		if (eee->tx_lpi_enabled)
11159 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
11160 		else
11161 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
11162 
11163 		req->flags |= cpu_to_le32(flags);
11164 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
11165 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
11166 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
11167 	} else {
11168 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
11169 	}
11170 }
11171 
11172 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
11173 {
11174 	struct hwrm_port_phy_cfg_input *req;
11175 	int rc;
11176 
11177 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11178 	if (rc)
11179 		return rc;
11180 
11181 	if (set_pause)
11182 		bnxt_hwrm_set_pause_common(bp, req);
11183 
11184 	bnxt_hwrm_set_link_common(bp, req);
11185 
11186 	if (set_eee)
11187 		bnxt_hwrm_set_eee(bp, req);
11188 	return hwrm_req_send(bp, req);
11189 }
11190 
11191 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
11192 {
11193 	struct hwrm_port_phy_cfg_input *req;
11194 	int rc;
11195 
11196 	if (!BNXT_SINGLE_PF(bp))
11197 		return 0;
11198 
11199 	if (pci_num_vf(bp->pdev) &&
11200 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11201 		return 0;
11202 
11203 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11204 	if (rc)
11205 		return rc;
11206 
11207 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11208 	rc = hwrm_req_send(bp, req);
11209 	if (!rc) {
11210 		mutex_lock(&bp->link_lock);
11211 		/* Device is not obliged link down in certain scenarios, even
11212 		 * when forced. Setting the state unknown is consistent with
11213 		 * driver startup and will force link state to be reported
11214 		 * during subsequent open based on PORT_PHY_QCFG.
11215 		 */
11216 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11217 		mutex_unlock(&bp->link_lock);
11218 	}
11219 	return rc;
11220 }
11221 
11222 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11223 {
11224 #ifdef CONFIG_TEE_BNXT_FW
11225 	int rc = tee_bnxt_fw_load();
11226 
11227 	if (rc)
11228 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11229 
11230 	return rc;
11231 #else
11232 	netdev_err(bp->dev, "OP-TEE not supported\n");
11233 	return -ENODEV;
11234 #endif
11235 }
11236 
11237 static int bnxt_try_recover_fw(struct bnxt *bp)
11238 {
11239 	if (bp->fw_health && bp->fw_health->status_reliable) {
11240 		int retry = 0, rc;
11241 		u32 sts;
11242 
11243 		do {
11244 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11245 			rc = bnxt_hwrm_poll(bp);
11246 			if (!BNXT_FW_IS_BOOTING(sts) &&
11247 			    !BNXT_FW_IS_RECOVERING(sts))
11248 				break;
11249 			retry++;
11250 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11251 
11252 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11253 			netdev_err(bp->dev,
11254 				   "Firmware not responding, status: 0x%x\n",
11255 				   sts);
11256 			rc = -ENODEV;
11257 		}
11258 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11259 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11260 			return bnxt_fw_reset_via_optee(bp);
11261 		}
11262 		return rc;
11263 	}
11264 
11265 	return -ENODEV;
11266 }
11267 
11268 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11269 {
11270 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11271 
11272 	if (!BNXT_NEW_RM(bp))
11273 		return; /* no resource reservations required */
11274 
11275 	hw_resc->resv_cp_rings = 0;
11276 	hw_resc->resv_stat_ctxs = 0;
11277 	hw_resc->resv_irqs = 0;
11278 	hw_resc->resv_tx_rings = 0;
11279 	hw_resc->resv_rx_rings = 0;
11280 	hw_resc->resv_hw_ring_grps = 0;
11281 	hw_resc->resv_vnics = 0;
11282 	hw_resc->resv_rsscos_ctxs = 0;
11283 	if (!fw_reset) {
11284 		bp->tx_nr_rings = 0;
11285 		bp->rx_nr_rings = 0;
11286 	}
11287 }
11288 
11289 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11290 {
11291 	int rc;
11292 
11293 	if (!BNXT_NEW_RM(bp))
11294 		return 0; /* no resource reservations required */
11295 
11296 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11297 	if (rc)
11298 		netdev_err(bp->dev, "resc_qcaps failed\n");
11299 
11300 	bnxt_clear_reservations(bp, fw_reset);
11301 
11302 	return rc;
11303 }
11304 
11305 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11306 {
11307 	struct hwrm_func_drv_if_change_output *resp;
11308 	struct hwrm_func_drv_if_change_input *req;
11309 	bool fw_reset = !bp->irq_tbl;
11310 	bool resc_reinit = false;
11311 	int rc, retry = 0;
11312 	u32 flags = 0;
11313 
11314 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11315 		return 0;
11316 
11317 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11318 	if (rc)
11319 		return rc;
11320 
11321 	if (up)
11322 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11323 	resp = hwrm_req_hold(bp, req);
11324 
11325 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11326 	while (retry < BNXT_FW_IF_RETRY) {
11327 		rc = hwrm_req_send(bp, req);
11328 		if (rc != -EAGAIN)
11329 			break;
11330 
11331 		msleep(50);
11332 		retry++;
11333 	}
11334 
11335 	if (rc == -EAGAIN) {
11336 		hwrm_req_drop(bp, req);
11337 		return rc;
11338 	} else if (!rc) {
11339 		flags = le32_to_cpu(resp->flags);
11340 	} else if (up) {
11341 		rc = bnxt_try_recover_fw(bp);
11342 		fw_reset = true;
11343 	}
11344 	hwrm_req_drop(bp, req);
11345 	if (rc)
11346 		return rc;
11347 
11348 	if (!up) {
11349 		bnxt_inv_fw_health_reg(bp);
11350 		return 0;
11351 	}
11352 
11353 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11354 		resc_reinit = true;
11355 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11356 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11357 		fw_reset = true;
11358 	else
11359 		bnxt_remap_fw_health_regs(bp);
11360 
11361 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11362 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11363 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11364 		return -ENODEV;
11365 	}
11366 	if (resc_reinit || fw_reset) {
11367 		if (fw_reset) {
11368 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11369 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11370 				bnxt_ulp_stop(bp);
11371 			bnxt_free_ctx_mem(bp);
11372 			bnxt_dcb_free(bp);
11373 			rc = bnxt_fw_init_one(bp);
11374 			if (rc) {
11375 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11376 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11377 				return rc;
11378 			}
11379 			bnxt_clear_int_mode(bp);
11380 			rc = bnxt_init_int_mode(bp);
11381 			if (rc) {
11382 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11383 				netdev_err(bp->dev, "init int mode failed\n");
11384 				return rc;
11385 			}
11386 		}
11387 		rc = bnxt_cancel_reservations(bp, fw_reset);
11388 	}
11389 	return rc;
11390 }
11391 
11392 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11393 {
11394 	struct hwrm_port_led_qcaps_output *resp;
11395 	struct hwrm_port_led_qcaps_input *req;
11396 	struct bnxt_pf_info *pf = &bp->pf;
11397 	int rc;
11398 
11399 	bp->num_leds = 0;
11400 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11401 		return 0;
11402 
11403 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11404 	if (rc)
11405 		return rc;
11406 
11407 	req->port_id = cpu_to_le16(pf->port_id);
11408 	resp = hwrm_req_hold(bp, req);
11409 	rc = hwrm_req_send(bp, req);
11410 	if (rc) {
11411 		hwrm_req_drop(bp, req);
11412 		return rc;
11413 	}
11414 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11415 		int i;
11416 
11417 		bp->num_leds = resp->num_leds;
11418 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11419 						 bp->num_leds);
11420 		for (i = 0; i < bp->num_leds; i++) {
11421 			struct bnxt_led_info *led = &bp->leds[i];
11422 			__le16 caps = led->led_state_caps;
11423 
11424 			if (!led->led_group_id ||
11425 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11426 				bp->num_leds = 0;
11427 				break;
11428 			}
11429 		}
11430 	}
11431 	hwrm_req_drop(bp, req);
11432 	return 0;
11433 }
11434 
11435 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11436 {
11437 	struct hwrm_wol_filter_alloc_output *resp;
11438 	struct hwrm_wol_filter_alloc_input *req;
11439 	int rc;
11440 
11441 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11442 	if (rc)
11443 		return rc;
11444 
11445 	req->port_id = cpu_to_le16(bp->pf.port_id);
11446 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11447 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11448 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11449 
11450 	resp = hwrm_req_hold(bp, req);
11451 	rc = hwrm_req_send(bp, req);
11452 	if (!rc)
11453 		bp->wol_filter_id = resp->wol_filter_id;
11454 	hwrm_req_drop(bp, req);
11455 	return rc;
11456 }
11457 
11458 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11459 {
11460 	struct hwrm_wol_filter_free_input *req;
11461 	int rc;
11462 
11463 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11464 	if (rc)
11465 		return rc;
11466 
11467 	req->port_id = cpu_to_le16(bp->pf.port_id);
11468 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11469 	req->wol_filter_id = bp->wol_filter_id;
11470 
11471 	return hwrm_req_send(bp, req);
11472 }
11473 
11474 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11475 {
11476 	struct hwrm_wol_filter_qcfg_output *resp;
11477 	struct hwrm_wol_filter_qcfg_input *req;
11478 	u16 next_handle = 0;
11479 	int rc;
11480 
11481 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11482 	if (rc)
11483 		return rc;
11484 
11485 	req->port_id = cpu_to_le16(bp->pf.port_id);
11486 	req->handle = cpu_to_le16(handle);
11487 	resp = hwrm_req_hold(bp, req);
11488 	rc = hwrm_req_send(bp, req);
11489 	if (!rc) {
11490 		next_handle = le16_to_cpu(resp->next_handle);
11491 		if (next_handle != 0) {
11492 			if (resp->wol_type ==
11493 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11494 				bp->wol = 1;
11495 				bp->wol_filter_id = resp->wol_filter_id;
11496 			}
11497 		}
11498 	}
11499 	hwrm_req_drop(bp, req);
11500 	return next_handle;
11501 }
11502 
11503 static void bnxt_get_wol_settings(struct bnxt *bp)
11504 {
11505 	u16 handle = 0;
11506 
11507 	bp->wol = 0;
11508 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11509 		return;
11510 
11511 	do {
11512 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11513 	} while (handle && handle != 0xffff);
11514 }
11515 
11516 static bool bnxt_eee_config_ok(struct bnxt *bp)
11517 {
11518 	struct ethtool_keee *eee = &bp->eee;
11519 	struct bnxt_link_info *link_info = &bp->link_info;
11520 
11521 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11522 		return true;
11523 
11524 	if (eee->eee_enabled) {
11525 		__ETHTOOL_DECLARE_LINK_MODE_MASK(advertising);
11526 		__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp);
11527 
11528 		_bnxt_fw_to_linkmode(advertising, link_info->advertising);
11529 
11530 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11531 			eee->eee_enabled = 0;
11532 			return false;
11533 		}
11534 		if (linkmode_andnot(tmp, eee->advertised, advertising)) {
11535 			linkmode_and(eee->advertised, advertising,
11536 				     eee->supported);
11537 			return false;
11538 		}
11539 	}
11540 	return true;
11541 }
11542 
11543 static int bnxt_update_phy_setting(struct bnxt *bp)
11544 {
11545 	int rc;
11546 	bool update_link = false;
11547 	bool update_pause = false;
11548 	bool update_eee = false;
11549 	struct bnxt_link_info *link_info = &bp->link_info;
11550 
11551 	rc = bnxt_update_link(bp, true);
11552 	if (rc) {
11553 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11554 			   rc);
11555 		return rc;
11556 	}
11557 	if (!BNXT_SINGLE_PF(bp))
11558 		return 0;
11559 
11560 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11561 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11562 	    link_info->req_flow_ctrl)
11563 		update_pause = true;
11564 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11565 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11566 		update_pause = true;
11567 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11568 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11569 			update_link = true;
11570 		if (bnxt_force_speed_updated(link_info))
11571 			update_link = true;
11572 		if (link_info->req_duplex != link_info->duplex_setting)
11573 			update_link = true;
11574 	} else {
11575 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11576 			update_link = true;
11577 		if (bnxt_auto_speed_updated(link_info))
11578 			update_link = true;
11579 	}
11580 
11581 	/* The last close may have shutdown the link, so need to call
11582 	 * PHY_CFG to bring it back up.
11583 	 */
11584 	if (!BNXT_LINK_IS_UP(bp))
11585 		update_link = true;
11586 
11587 	if (!bnxt_eee_config_ok(bp))
11588 		update_eee = true;
11589 
11590 	if (update_link)
11591 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11592 	else if (update_pause)
11593 		rc = bnxt_hwrm_set_pause(bp);
11594 	if (rc) {
11595 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11596 			   rc);
11597 		return rc;
11598 	}
11599 
11600 	return rc;
11601 }
11602 
11603 /* Common routine to pre-map certain register block to different GRC window.
11604  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
11605  * in PF and 3 windows in VF that can be customized to map in different
11606  * register blocks.
11607  */
11608 static void bnxt_preset_reg_win(struct bnxt *bp)
11609 {
11610 	if (BNXT_PF(bp)) {
11611 		/* CAG registers map to GRC window #4 */
11612 		writel(BNXT_CAG_REG_BASE,
11613 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11614 	}
11615 }
11616 
11617 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11618 
11619 static int bnxt_reinit_after_abort(struct bnxt *bp)
11620 {
11621 	int rc;
11622 
11623 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11624 		return -EBUSY;
11625 
11626 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11627 		return -ENODEV;
11628 
11629 	rc = bnxt_fw_init_one(bp);
11630 	if (!rc) {
11631 		bnxt_clear_int_mode(bp);
11632 		rc = bnxt_init_int_mode(bp);
11633 		if (!rc) {
11634 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11635 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11636 		}
11637 	}
11638 	return rc;
11639 }
11640 
11641 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
11642 {
11643 	struct bnxt_ntuple_filter *ntp_fltr;
11644 	struct bnxt_l2_filter *l2_fltr;
11645 
11646 	if (list_empty(&fltr->list))
11647 		return;
11648 
11649 	if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) {
11650 		ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base);
11651 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
11652 		atomic_inc(&l2_fltr->refcnt);
11653 		ntp_fltr->l2_fltr = l2_fltr;
11654 		if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) {
11655 			bnxt_del_ntp_filter(bp, ntp_fltr);
11656 			netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n",
11657 				   fltr->sw_id);
11658 		}
11659 	} else if (fltr->type == BNXT_FLTR_TYPE_L2) {
11660 		l2_fltr = container_of(fltr, struct bnxt_l2_filter, base);
11661 		if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) {
11662 			bnxt_del_l2_filter(bp, l2_fltr);
11663 			netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n",
11664 				   fltr->sw_id);
11665 		}
11666 	}
11667 }
11668 
11669 static void bnxt_cfg_usr_fltrs(struct bnxt *bp)
11670 {
11671 	struct bnxt_filter_base *usr_fltr, *tmp;
11672 
11673 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list)
11674 		bnxt_cfg_one_usr_fltr(bp, usr_fltr);
11675 }
11676 
11677 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11678 {
11679 	int rc = 0;
11680 
11681 	bnxt_preset_reg_win(bp);
11682 	netif_carrier_off(bp->dev);
11683 	if (irq_re_init) {
11684 		/* Reserve rings now if none were reserved at driver probe. */
11685 		rc = bnxt_init_dflt_ring_mode(bp);
11686 		if (rc) {
11687 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
11688 			return rc;
11689 		}
11690 	}
11691 	rc = bnxt_reserve_rings(bp, irq_re_init);
11692 	if (rc)
11693 		return rc;
11694 	if ((bp->flags & BNXT_FLAG_RFS) &&
11695 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
11696 		/* disable RFS if falling back to INTA */
11697 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
11698 		bp->flags &= ~BNXT_FLAG_RFS;
11699 	}
11700 
11701 	rc = bnxt_alloc_mem(bp, irq_re_init);
11702 	if (rc) {
11703 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11704 		goto open_err_free_mem;
11705 	}
11706 
11707 	if (irq_re_init) {
11708 		bnxt_init_napi(bp);
11709 		rc = bnxt_request_irq(bp);
11710 		if (rc) {
11711 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
11712 			goto open_err_irq;
11713 		}
11714 	}
11715 
11716 	rc = bnxt_init_nic(bp, irq_re_init);
11717 	if (rc) {
11718 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11719 		goto open_err_irq;
11720 	}
11721 
11722 	bnxt_enable_napi(bp);
11723 	bnxt_debug_dev_init(bp);
11724 
11725 	if (link_re_init) {
11726 		mutex_lock(&bp->link_lock);
11727 		rc = bnxt_update_phy_setting(bp);
11728 		mutex_unlock(&bp->link_lock);
11729 		if (rc) {
11730 			netdev_warn(bp->dev, "failed to update phy settings\n");
11731 			if (BNXT_SINGLE_PF(bp)) {
11732 				bp->link_info.phy_retry = true;
11733 				bp->link_info.phy_retry_expires =
11734 					jiffies + 5 * HZ;
11735 			}
11736 		}
11737 	}
11738 
11739 	if (irq_re_init)
11740 		udp_tunnel_nic_reset_ntf(bp->dev);
11741 
11742 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
11743 		if (!static_key_enabled(&bnxt_xdp_locking_key))
11744 			static_branch_enable(&bnxt_xdp_locking_key);
11745 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
11746 		static_branch_disable(&bnxt_xdp_locking_key);
11747 	}
11748 	set_bit(BNXT_STATE_OPEN, &bp->state);
11749 	bnxt_enable_int(bp);
11750 	/* Enable TX queues */
11751 	bnxt_tx_enable(bp);
11752 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11753 	/* Poll link status and check for SFP+ module status */
11754 	mutex_lock(&bp->link_lock);
11755 	bnxt_get_port_module_status(bp);
11756 	mutex_unlock(&bp->link_lock);
11757 
11758 	/* VF-reps may need to be re-opened after the PF is re-opened */
11759 	if (BNXT_PF(bp))
11760 		bnxt_vf_reps_open(bp);
11761 	if (bp->ptp_cfg)
11762 		atomic_set(&bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS);
11763 	bnxt_ptp_init_rtc(bp, true);
11764 	bnxt_ptp_cfg_tstamp_filters(bp);
11765 	bnxt_cfg_usr_fltrs(bp);
11766 	return 0;
11767 
11768 open_err_irq:
11769 	bnxt_del_napi(bp);
11770 
11771 open_err_free_mem:
11772 	bnxt_free_skbs(bp);
11773 	bnxt_free_irq(bp);
11774 	bnxt_free_mem(bp, true);
11775 	return rc;
11776 }
11777 
11778 /* rtnl_lock held */
11779 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11780 {
11781 	int rc = 0;
11782 
11783 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
11784 		rc = -EIO;
11785 	if (!rc)
11786 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
11787 	if (rc) {
11788 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
11789 		dev_close(bp->dev);
11790 	}
11791 	return rc;
11792 }
11793 
11794 /* rtnl_lock held, open the NIC half way by allocating all resources, but
11795  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
11796  * self tests.
11797  */
11798 int bnxt_half_open_nic(struct bnxt *bp)
11799 {
11800 	int rc = 0;
11801 
11802 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11803 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
11804 		rc = -ENODEV;
11805 		goto half_open_err;
11806 	}
11807 
11808 	rc = bnxt_alloc_mem(bp, true);
11809 	if (rc) {
11810 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11811 		goto half_open_err;
11812 	}
11813 	bnxt_init_napi(bp);
11814 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11815 	rc = bnxt_init_nic(bp, true);
11816 	if (rc) {
11817 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11818 		bnxt_del_napi(bp);
11819 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11820 		goto half_open_err;
11821 	}
11822 	return 0;
11823 
11824 half_open_err:
11825 	bnxt_free_skbs(bp);
11826 	bnxt_free_mem(bp, true);
11827 	dev_close(bp->dev);
11828 	return rc;
11829 }
11830 
11831 /* rtnl_lock held, this call can only be made after a previous successful
11832  * call to bnxt_half_open_nic().
11833  */
11834 void bnxt_half_close_nic(struct bnxt *bp)
11835 {
11836 	bnxt_hwrm_resource_free(bp, false, true);
11837 	bnxt_del_napi(bp);
11838 	bnxt_free_skbs(bp);
11839 	bnxt_free_mem(bp, true);
11840 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11841 }
11842 
11843 void bnxt_reenable_sriov(struct bnxt *bp)
11844 {
11845 	if (BNXT_PF(bp)) {
11846 		struct bnxt_pf_info *pf = &bp->pf;
11847 		int n = pf->active_vfs;
11848 
11849 		if (n)
11850 			bnxt_cfg_hw_sriov(bp, &n, true);
11851 	}
11852 }
11853 
11854 static int bnxt_open(struct net_device *dev)
11855 {
11856 	struct bnxt *bp = netdev_priv(dev);
11857 	int rc;
11858 
11859 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11860 		rc = bnxt_reinit_after_abort(bp);
11861 		if (rc) {
11862 			if (rc == -EBUSY)
11863 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
11864 			else
11865 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
11866 			return -ENODEV;
11867 		}
11868 	}
11869 
11870 	rc = bnxt_hwrm_if_change(bp, true);
11871 	if (rc)
11872 		return rc;
11873 
11874 	rc = __bnxt_open_nic(bp, true, true);
11875 	if (rc) {
11876 		bnxt_hwrm_if_change(bp, false);
11877 	} else {
11878 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
11879 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11880 				bnxt_ulp_start(bp, 0);
11881 				bnxt_reenable_sriov(bp);
11882 			}
11883 		}
11884 	}
11885 
11886 	return rc;
11887 }
11888 
11889 static bool bnxt_drv_busy(struct bnxt *bp)
11890 {
11891 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
11892 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
11893 }
11894 
11895 static void bnxt_get_ring_stats(struct bnxt *bp,
11896 				struct rtnl_link_stats64 *stats);
11897 
11898 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
11899 			     bool link_re_init)
11900 {
11901 	/* Close the VF-reps before closing PF */
11902 	if (BNXT_PF(bp))
11903 		bnxt_vf_reps_close(bp);
11904 
11905 	/* Change device state to avoid TX queue wake up's */
11906 	bnxt_tx_disable(bp);
11907 
11908 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11909 	smp_mb__after_atomic();
11910 	while (bnxt_drv_busy(bp))
11911 		msleep(20);
11912 
11913 	/* Flush rings and disable interrupts */
11914 	bnxt_shutdown_nic(bp, irq_re_init);
11915 
11916 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
11917 
11918 	bnxt_debug_dev_exit(bp);
11919 	bnxt_disable_napi(bp);
11920 	del_timer_sync(&bp->timer);
11921 	bnxt_free_skbs(bp);
11922 
11923 	/* Save ring stats before shutdown */
11924 	if (bp->bnapi && irq_re_init) {
11925 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
11926 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
11927 	}
11928 	if (irq_re_init) {
11929 		bnxt_free_irq(bp);
11930 		bnxt_del_napi(bp);
11931 	}
11932 	bnxt_free_mem(bp, irq_re_init);
11933 }
11934 
11935 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11936 {
11937 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11938 		/* If we get here, it means firmware reset is in progress
11939 		 * while we are trying to close.  We can safely proceed with
11940 		 * the close because we are holding rtnl_lock().  Some firmware
11941 		 * messages may fail as we proceed to close.  We set the
11942 		 * ABORT_ERR flag here so that the FW reset thread will later
11943 		 * abort when it gets the rtnl_lock() and sees the flag.
11944 		 */
11945 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
11946 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11947 	}
11948 
11949 #ifdef CONFIG_BNXT_SRIOV
11950 	if (bp->sriov_cfg) {
11951 		int rc;
11952 
11953 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
11954 						      !bp->sriov_cfg,
11955 						      BNXT_SRIOV_CFG_WAIT_TMO);
11956 		if (!rc)
11957 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
11958 		else if (rc < 0)
11959 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
11960 	}
11961 #endif
11962 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
11963 }
11964 
11965 static int bnxt_close(struct net_device *dev)
11966 {
11967 	struct bnxt *bp = netdev_priv(dev);
11968 
11969 	bnxt_close_nic(bp, true, true);
11970 	bnxt_hwrm_shutdown_link(bp);
11971 	bnxt_hwrm_if_change(bp, false);
11972 	return 0;
11973 }
11974 
11975 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
11976 				   u16 *val)
11977 {
11978 	struct hwrm_port_phy_mdio_read_output *resp;
11979 	struct hwrm_port_phy_mdio_read_input *req;
11980 	int rc;
11981 
11982 	if (bp->hwrm_spec_code < 0x10a00)
11983 		return -EOPNOTSUPP;
11984 
11985 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
11986 	if (rc)
11987 		return rc;
11988 
11989 	req->port_id = cpu_to_le16(bp->pf.port_id);
11990 	req->phy_addr = phy_addr;
11991 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11992 	if (mdio_phy_id_is_c45(phy_addr)) {
11993 		req->cl45_mdio = 1;
11994 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11995 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11996 		req->reg_addr = cpu_to_le16(reg);
11997 	}
11998 
11999 	resp = hwrm_req_hold(bp, req);
12000 	rc = hwrm_req_send(bp, req);
12001 	if (!rc)
12002 		*val = le16_to_cpu(resp->reg_data);
12003 	hwrm_req_drop(bp, req);
12004 	return rc;
12005 }
12006 
12007 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
12008 				    u16 val)
12009 {
12010 	struct hwrm_port_phy_mdio_write_input *req;
12011 	int rc;
12012 
12013 	if (bp->hwrm_spec_code < 0x10a00)
12014 		return -EOPNOTSUPP;
12015 
12016 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
12017 	if (rc)
12018 		return rc;
12019 
12020 	req->port_id = cpu_to_le16(bp->pf.port_id);
12021 	req->phy_addr = phy_addr;
12022 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12023 	if (mdio_phy_id_is_c45(phy_addr)) {
12024 		req->cl45_mdio = 1;
12025 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12026 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12027 		req->reg_addr = cpu_to_le16(reg);
12028 	}
12029 	req->reg_data = cpu_to_le16(val);
12030 
12031 	return hwrm_req_send(bp, req);
12032 }
12033 
12034 /* rtnl_lock held */
12035 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12036 {
12037 	struct mii_ioctl_data *mdio = if_mii(ifr);
12038 	struct bnxt *bp = netdev_priv(dev);
12039 	int rc;
12040 
12041 	switch (cmd) {
12042 	case SIOCGMIIPHY:
12043 		mdio->phy_id = bp->link_info.phy_addr;
12044 
12045 		fallthrough;
12046 	case SIOCGMIIREG: {
12047 		u16 mii_regval = 0;
12048 
12049 		if (!netif_running(dev))
12050 			return -EAGAIN;
12051 
12052 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
12053 					     &mii_regval);
12054 		mdio->val_out = mii_regval;
12055 		return rc;
12056 	}
12057 
12058 	case SIOCSMIIREG:
12059 		if (!netif_running(dev))
12060 			return -EAGAIN;
12061 
12062 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
12063 						mdio->val_in);
12064 
12065 	case SIOCSHWTSTAMP:
12066 		return bnxt_hwtstamp_set(dev, ifr);
12067 
12068 	case SIOCGHWTSTAMP:
12069 		return bnxt_hwtstamp_get(dev, ifr);
12070 
12071 	default:
12072 		/* do nothing */
12073 		break;
12074 	}
12075 	return -EOPNOTSUPP;
12076 }
12077 
12078 static void bnxt_get_ring_stats(struct bnxt *bp,
12079 				struct rtnl_link_stats64 *stats)
12080 {
12081 	int i;
12082 
12083 	for (i = 0; i < bp->cp_nr_rings; i++) {
12084 		struct bnxt_napi *bnapi = bp->bnapi[i];
12085 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12086 		u64 *sw = cpr->stats.sw_stats;
12087 
12088 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
12089 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12090 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
12091 
12092 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
12093 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
12094 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
12095 
12096 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
12097 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
12098 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
12099 
12100 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
12101 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
12102 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
12103 
12104 		stats->rx_missed_errors +=
12105 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
12106 
12107 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12108 
12109 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
12110 
12111 		stats->rx_dropped +=
12112 			cpr->sw_stats.rx.rx_netpoll_discards +
12113 			cpr->sw_stats.rx.rx_oom_discards;
12114 	}
12115 }
12116 
12117 static void bnxt_add_prev_stats(struct bnxt *bp,
12118 				struct rtnl_link_stats64 *stats)
12119 {
12120 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
12121 
12122 	stats->rx_packets += prev_stats->rx_packets;
12123 	stats->tx_packets += prev_stats->tx_packets;
12124 	stats->rx_bytes += prev_stats->rx_bytes;
12125 	stats->tx_bytes += prev_stats->tx_bytes;
12126 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
12127 	stats->multicast += prev_stats->multicast;
12128 	stats->rx_dropped += prev_stats->rx_dropped;
12129 	stats->tx_dropped += prev_stats->tx_dropped;
12130 }
12131 
12132 static void
12133 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
12134 {
12135 	struct bnxt *bp = netdev_priv(dev);
12136 
12137 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
12138 	/* Make sure bnxt_close_nic() sees that we are reading stats before
12139 	 * we check the BNXT_STATE_OPEN flag.
12140 	 */
12141 	smp_mb__after_atomic();
12142 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12143 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12144 		*stats = bp->net_stats_prev;
12145 		return;
12146 	}
12147 
12148 	bnxt_get_ring_stats(bp, stats);
12149 	bnxt_add_prev_stats(bp, stats);
12150 
12151 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
12152 		u64 *rx = bp->port_stats.sw_stats;
12153 		u64 *tx = bp->port_stats.sw_stats +
12154 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
12155 
12156 		stats->rx_crc_errors =
12157 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
12158 		stats->rx_frame_errors =
12159 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
12160 		stats->rx_length_errors =
12161 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
12162 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
12163 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
12164 		stats->rx_errors =
12165 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
12166 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
12167 		stats->collisions =
12168 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
12169 		stats->tx_fifo_errors =
12170 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
12171 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
12172 	}
12173 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12174 }
12175 
12176 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
12177 					struct bnxt_total_ring_err_stats *stats,
12178 					struct bnxt_cp_ring_info *cpr)
12179 {
12180 	struct bnxt_sw_stats *sw_stats = &cpr->sw_stats;
12181 	u64 *hw_stats = cpr->stats.sw_stats;
12182 
12183 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
12184 	stats->rx_total_resets += sw_stats->rx.rx_resets;
12185 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
12186 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
12187 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
12188 	stats->rx_total_ring_discards +=
12189 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
12190 	stats->tx_total_resets += sw_stats->tx.tx_resets;
12191 	stats->tx_total_ring_discards +=
12192 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
12193 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
12194 }
12195 
12196 void bnxt_get_ring_err_stats(struct bnxt *bp,
12197 			     struct bnxt_total_ring_err_stats *stats)
12198 {
12199 	int i;
12200 
12201 	for (i = 0; i < bp->cp_nr_rings; i++)
12202 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
12203 }
12204 
12205 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
12206 {
12207 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12208 	struct net_device *dev = bp->dev;
12209 	struct netdev_hw_addr *ha;
12210 	u8 *haddr;
12211 	int mc_count = 0;
12212 	bool update = false;
12213 	int off = 0;
12214 
12215 	netdev_for_each_mc_addr(ha, dev) {
12216 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
12217 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12218 			vnic->mc_list_count = 0;
12219 			return false;
12220 		}
12221 		haddr = ha->addr;
12222 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
12223 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
12224 			update = true;
12225 		}
12226 		off += ETH_ALEN;
12227 		mc_count++;
12228 	}
12229 	if (mc_count)
12230 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12231 
12232 	if (mc_count != vnic->mc_list_count) {
12233 		vnic->mc_list_count = mc_count;
12234 		update = true;
12235 	}
12236 	return update;
12237 }
12238 
12239 static bool bnxt_uc_list_updated(struct bnxt *bp)
12240 {
12241 	struct net_device *dev = bp->dev;
12242 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12243 	struct netdev_hw_addr *ha;
12244 	int off = 0;
12245 
12246 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12247 		return true;
12248 
12249 	netdev_for_each_uc_addr(ha, dev) {
12250 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12251 			return true;
12252 
12253 		off += ETH_ALEN;
12254 	}
12255 	return false;
12256 }
12257 
12258 static void bnxt_set_rx_mode(struct net_device *dev)
12259 {
12260 	struct bnxt *bp = netdev_priv(dev);
12261 	struct bnxt_vnic_info *vnic;
12262 	bool mc_update = false;
12263 	bool uc_update;
12264 	u32 mask;
12265 
12266 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12267 		return;
12268 
12269 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12270 	mask = vnic->rx_mask;
12271 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12272 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12273 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12274 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12275 
12276 	if (dev->flags & IFF_PROMISC)
12277 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12278 
12279 	uc_update = bnxt_uc_list_updated(bp);
12280 
12281 	if (dev->flags & IFF_BROADCAST)
12282 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12283 	if (dev->flags & IFF_ALLMULTI) {
12284 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12285 		vnic->mc_list_count = 0;
12286 	} else if (dev->flags & IFF_MULTICAST) {
12287 		mc_update = bnxt_mc_list_updated(bp, &mask);
12288 	}
12289 
12290 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12291 		vnic->rx_mask = mask;
12292 
12293 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12294 	}
12295 }
12296 
12297 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12298 {
12299 	struct net_device *dev = bp->dev;
12300 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12301 	struct netdev_hw_addr *ha;
12302 	int i, off = 0, rc;
12303 	bool uc_update;
12304 
12305 	netif_addr_lock_bh(dev);
12306 	uc_update = bnxt_uc_list_updated(bp);
12307 	netif_addr_unlock_bh(dev);
12308 
12309 	if (!uc_update)
12310 		goto skip_uc;
12311 
12312 	for (i = 1; i < vnic->uc_filter_count; i++) {
12313 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12314 
12315 		bnxt_hwrm_l2_filter_free(bp, fltr);
12316 		bnxt_del_l2_filter(bp, fltr);
12317 	}
12318 
12319 	vnic->uc_filter_count = 1;
12320 
12321 	netif_addr_lock_bh(dev);
12322 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12323 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12324 	} else {
12325 		netdev_for_each_uc_addr(ha, dev) {
12326 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12327 			off += ETH_ALEN;
12328 			vnic->uc_filter_count++;
12329 		}
12330 	}
12331 	netif_addr_unlock_bh(dev);
12332 
12333 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12334 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12335 		if (rc) {
12336 			if (BNXT_VF(bp) && rc == -ENODEV) {
12337 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12338 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12339 				else
12340 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12341 				rc = 0;
12342 			} else {
12343 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12344 			}
12345 			vnic->uc_filter_count = i;
12346 			return rc;
12347 		}
12348 	}
12349 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12350 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12351 
12352 skip_uc:
12353 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12354 	    !bnxt_promisc_ok(bp))
12355 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12356 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12357 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12358 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12359 			    rc);
12360 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12361 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12362 		vnic->mc_list_count = 0;
12363 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12364 	}
12365 	if (rc)
12366 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12367 			   rc);
12368 
12369 	return rc;
12370 }
12371 
12372 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12373 {
12374 #ifdef CONFIG_BNXT_SRIOV
12375 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12376 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12377 
12378 		/* No minimum rings were provisioned by the PF.  Don't
12379 		 * reserve rings by default when device is down.
12380 		 */
12381 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12382 			return true;
12383 
12384 		if (!netif_running(bp->dev))
12385 			return false;
12386 	}
12387 #endif
12388 	return true;
12389 }
12390 
12391 /* If the chip and firmware supports RFS */
12392 static bool bnxt_rfs_supported(struct bnxt *bp)
12393 {
12394 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12395 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12396 			return true;
12397 		return false;
12398 	}
12399 	/* 212 firmware is broken for aRFS */
12400 	if (BNXT_FW_MAJ(bp) == 212)
12401 		return false;
12402 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12403 		return true;
12404 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12405 		return true;
12406 	return false;
12407 }
12408 
12409 /* If runtime conditions support RFS */
12410 static bool bnxt_rfs_capable(struct bnxt *bp)
12411 {
12412 	struct bnxt_hw_rings hwr = {0};
12413 	int max_vnics, max_rss_ctxs;
12414 
12415 	hwr.rss_ctx = 1;
12416 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
12417 		/* 2 VNICS: default + Ntuple */
12418 		hwr.vnic = 2;
12419 		hwr.rss_ctx = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) *
12420 			      hwr.vnic;
12421 		goto check_reserve_vnic;
12422 	}
12423 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
12424 		return bnxt_rfs_supported(bp);
12425 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12426 		return false;
12427 
12428 	hwr.vnic = 1 + bp->rx_nr_rings;
12429 check_reserve_vnic:
12430 	max_vnics = bnxt_get_max_func_vnics(bp);
12431 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12432 
12433 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12434 	    !(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP))
12435 		hwr.rss_ctx = hwr.vnic;
12436 
12437 	if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) {
12438 		if (bp->rx_nr_rings > 1)
12439 			netdev_warn(bp->dev,
12440 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12441 				    min(max_rss_ctxs - 1, max_vnics - 1));
12442 		return false;
12443 	}
12444 
12445 	if (!BNXT_NEW_RM(bp))
12446 		return true;
12447 
12448 	if (hwr.vnic == bp->hw_resc.resv_vnics &&
12449 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12450 		return true;
12451 
12452 	bnxt_hwrm_reserve_rings(bp, &hwr);
12453 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12454 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12455 		return true;
12456 
12457 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12458 	hwr.vnic = 1;
12459 	hwr.rss_ctx = 0;
12460 	bnxt_hwrm_reserve_rings(bp, &hwr);
12461 	return false;
12462 }
12463 
12464 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12465 					   netdev_features_t features)
12466 {
12467 	struct bnxt *bp = netdev_priv(dev);
12468 	netdev_features_t vlan_features;
12469 
12470 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
12471 		features &= ~NETIF_F_NTUPLE;
12472 
12473 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12474 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12475 
12476 	if (!(features & NETIF_F_GRO))
12477 		features &= ~NETIF_F_GRO_HW;
12478 
12479 	if (features & NETIF_F_GRO_HW)
12480 		features &= ~NETIF_F_LRO;
12481 
12482 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12483 	 * turned on or off together.
12484 	 */
12485 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12486 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12487 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12488 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12489 		else if (vlan_features)
12490 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12491 	}
12492 #ifdef CONFIG_BNXT_SRIOV
12493 	if (BNXT_VF(bp) && bp->vf.vlan)
12494 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12495 #endif
12496 	return features;
12497 }
12498 
12499 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init,
12500 				bool link_re_init, u32 flags, bool update_tpa)
12501 {
12502 	bnxt_close_nic(bp, irq_re_init, link_re_init);
12503 	bp->flags = flags;
12504 	if (update_tpa)
12505 		bnxt_set_ring_params(bp);
12506 	return bnxt_open_nic(bp, irq_re_init, link_re_init);
12507 }
12508 
12509 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12510 {
12511 	bool update_tpa = false, update_ntuple = false;
12512 	struct bnxt *bp = netdev_priv(dev);
12513 	u32 flags = bp->flags;
12514 	u32 changes;
12515 	int rc = 0;
12516 	bool re_init = false;
12517 
12518 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12519 	if (features & NETIF_F_GRO_HW)
12520 		flags |= BNXT_FLAG_GRO;
12521 	else if (features & NETIF_F_LRO)
12522 		flags |= BNXT_FLAG_LRO;
12523 
12524 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12525 		flags &= ~BNXT_FLAG_TPA;
12526 
12527 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12528 		flags |= BNXT_FLAG_STRIP_VLAN;
12529 
12530 	if (features & NETIF_F_NTUPLE)
12531 		flags |= BNXT_FLAG_RFS;
12532 	else
12533 		bnxt_clear_usr_fltrs(bp, true);
12534 
12535 	changes = flags ^ bp->flags;
12536 	if (changes & BNXT_FLAG_TPA) {
12537 		update_tpa = true;
12538 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12539 		    (flags & BNXT_FLAG_TPA) == 0 ||
12540 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12541 			re_init = true;
12542 	}
12543 
12544 	if (changes & ~BNXT_FLAG_TPA)
12545 		re_init = true;
12546 
12547 	if (changes & BNXT_FLAG_RFS)
12548 		update_ntuple = true;
12549 
12550 	if (flags != bp->flags) {
12551 		u32 old_flags = bp->flags;
12552 
12553 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12554 			bp->flags = flags;
12555 			if (update_tpa)
12556 				bnxt_set_ring_params(bp);
12557 			return rc;
12558 		}
12559 
12560 		if (update_ntuple)
12561 			return bnxt_reinit_features(bp, true, false, flags, update_tpa);
12562 
12563 		if (re_init)
12564 			return bnxt_reinit_features(bp, false, false, flags, update_tpa);
12565 
12566 		if (update_tpa) {
12567 			bp->flags = flags;
12568 			rc = bnxt_set_tpa(bp,
12569 					  (flags & BNXT_FLAG_TPA) ?
12570 					  true : false);
12571 			if (rc)
12572 				bp->flags = old_flags;
12573 		}
12574 	}
12575 	return rc;
12576 }
12577 
12578 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12579 			      u8 **nextp)
12580 {
12581 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12582 	struct hop_jumbo_hdr *jhdr;
12583 	int hdr_count = 0;
12584 	u8 *nexthdr;
12585 	int start;
12586 
12587 	/* Check that there are at most 2 IPv6 extension headers, no
12588 	 * fragment header, and each is <= 64 bytes.
12589 	 */
12590 	start = nw_off + sizeof(*ip6h);
12591 	nexthdr = &ip6h->nexthdr;
12592 	while (ipv6_ext_hdr(*nexthdr)) {
12593 		struct ipv6_opt_hdr *hp;
12594 		int hdrlen;
12595 
12596 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
12597 		    *nexthdr == NEXTHDR_FRAGMENT)
12598 			return false;
12599 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
12600 					  skb_headlen(skb), NULL);
12601 		if (!hp)
12602 			return false;
12603 		if (*nexthdr == NEXTHDR_AUTH)
12604 			hdrlen = ipv6_authlen(hp);
12605 		else
12606 			hdrlen = ipv6_optlen(hp);
12607 
12608 		if (hdrlen > 64)
12609 			return false;
12610 
12611 		/* The ext header may be a hop-by-hop header inserted for
12612 		 * big TCP purposes. This will be removed before sending
12613 		 * from NIC, so do not count it.
12614 		 */
12615 		if (*nexthdr == NEXTHDR_HOP) {
12616 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
12617 				goto increment_hdr;
12618 
12619 			jhdr = (struct hop_jumbo_hdr *)hp;
12620 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
12621 			    jhdr->nexthdr != IPPROTO_TCP)
12622 				goto increment_hdr;
12623 
12624 			goto next_hdr;
12625 		}
12626 increment_hdr:
12627 		hdr_count++;
12628 next_hdr:
12629 		nexthdr = &hp->nexthdr;
12630 		start += hdrlen;
12631 	}
12632 	if (nextp) {
12633 		/* Caller will check inner protocol */
12634 		if (skb->encapsulation) {
12635 			*nextp = nexthdr;
12636 			return true;
12637 		}
12638 		*nextp = NULL;
12639 	}
12640 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
12641 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
12642 }
12643 
12644 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
12645 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
12646 {
12647 	struct udphdr *uh = udp_hdr(skb);
12648 	__be16 udp_port = uh->dest;
12649 
12650 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
12651 	    udp_port != bp->vxlan_gpe_port)
12652 		return false;
12653 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
12654 		struct ethhdr *eh = inner_eth_hdr(skb);
12655 
12656 		switch (eh->h_proto) {
12657 		case htons(ETH_P_IP):
12658 			return true;
12659 		case htons(ETH_P_IPV6):
12660 			return bnxt_exthdr_check(bp, skb,
12661 						 skb_inner_network_offset(skb),
12662 						 NULL);
12663 		}
12664 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
12665 		return true;
12666 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
12667 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12668 					 NULL);
12669 	}
12670 	return false;
12671 }
12672 
12673 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
12674 {
12675 	switch (l4_proto) {
12676 	case IPPROTO_UDP:
12677 		return bnxt_udp_tunl_check(bp, skb);
12678 	case IPPROTO_IPIP:
12679 		return true;
12680 	case IPPROTO_GRE: {
12681 		switch (skb->inner_protocol) {
12682 		default:
12683 			return false;
12684 		case htons(ETH_P_IP):
12685 			return true;
12686 		case htons(ETH_P_IPV6):
12687 			fallthrough;
12688 		}
12689 	}
12690 	case IPPROTO_IPV6:
12691 		/* Check ext headers of inner ipv6 */
12692 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12693 					 NULL);
12694 	}
12695 	return false;
12696 }
12697 
12698 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
12699 					     struct net_device *dev,
12700 					     netdev_features_t features)
12701 {
12702 	struct bnxt *bp = netdev_priv(dev);
12703 	u8 *l4_proto;
12704 
12705 	features = vlan_features_check(skb, features);
12706 	switch (vlan_get_protocol(skb)) {
12707 	case htons(ETH_P_IP):
12708 		if (!skb->encapsulation)
12709 			return features;
12710 		l4_proto = &ip_hdr(skb)->protocol;
12711 		if (bnxt_tunl_check(bp, skb, *l4_proto))
12712 			return features;
12713 		break;
12714 	case htons(ETH_P_IPV6):
12715 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
12716 				       &l4_proto))
12717 			break;
12718 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
12719 			return features;
12720 		break;
12721 	}
12722 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
12723 }
12724 
12725 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
12726 			 u32 *reg_buf)
12727 {
12728 	struct hwrm_dbg_read_direct_output *resp;
12729 	struct hwrm_dbg_read_direct_input *req;
12730 	__le32 *dbg_reg_buf;
12731 	dma_addr_t mapping;
12732 	int rc, i;
12733 
12734 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
12735 	if (rc)
12736 		return rc;
12737 
12738 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
12739 					 &mapping);
12740 	if (!dbg_reg_buf) {
12741 		rc = -ENOMEM;
12742 		goto dbg_rd_reg_exit;
12743 	}
12744 
12745 	req->host_dest_addr = cpu_to_le64(mapping);
12746 
12747 	resp = hwrm_req_hold(bp, req);
12748 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
12749 	req->read_len32 = cpu_to_le32(num_words);
12750 
12751 	rc = hwrm_req_send(bp, req);
12752 	if (rc || resp->error_code) {
12753 		rc = -EIO;
12754 		goto dbg_rd_reg_exit;
12755 	}
12756 	for (i = 0; i < num_words; i++)
12757 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
12758 
12759 dbg_rd_reg_exit:
12760 	hwrm_req_drop(bp, req);
12761 	return rc;
12762 }
12763 
12764 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
12765 				       u32 ring_id, u32 *prod, u32 *cons)
12766 {
12767 	struct hwrm_dbg_ring_info_get_output *resp;
12768 	struct hwrm_dbg_ring_info_get_input *req;
12769 	int rc;
12770 
12771 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
12772 	if (rc)
12773 		return rc;
12774 
12775 	req->ring_type = ring_type;
12776 	req->fw_ring_id = cpu_to_le32(ring_id);
12777 	resp = hwrm_req_hold(bp, req);
12778 	rc = hwrm_req_send(bp, req);
12779 	if (!rc) {
12780 		*prod = le32_to_cpu(resp->producer_index);
12781 		*cons = le32_to_cpu(resp->consumer_index);
12782 	}
12783 	hwrm_req_drop(bp, req);
12784 	return rc;
12785 }
12786 
12787 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
12788 {
12789 	struct bnxt_tx_ring_info *txr;
12790 	int i = bnapi->index, j;
12791 
12792 	bnxt_for_each_napi_tx(j, bnapi, txr)
12793 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
12794 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
12795 			    txr->tx_cons);
12796 }
12797 
12798 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
12799 {
12800 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
12801 	int i = bnapi->index;
12802 
12803 	if (!rxr)
12804 		return;
12805 
12806 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
12807 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
12808 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
12809 		    rxr->rx_sw_agg_prod);
12810 }
12811 
12812 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
12813 {
12814 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12815 	int i = bnapi->index;
12816 
12817 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
12818 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
12819 }
12820 
12821 static void bnxt_dbg_dump_states(struct bnxt *bp)
12822 {
12823 	int i;
12824 	struct bnxt_napi *bnapi;
12825 
12826 	for (i = 0; i < bp->cp_nr_rings; i++) {
12827 		bnapi = bp->bnapi[i];
12828 		if (netif_msg_drv(bp)) {
12829 			bnxt_dump_tx_sw_state(bnapi);
12830 			bnxt_dump_rx_sw_state(bnapi);
12831 			bnxt_dump_cp_sw_state(bnapi);
12832 		}
12833 	}
12834 }
12835 
12836 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
12837 {
12838 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
12839 	struct hwrm_ring_reset_input *req;
12840 	struct bnxt_napi *bnapi = rxr->bnapi;
12841 	struct bnxt_cp_ring_info *cpr;
12842 	u16 cp_ring_id;
12843 	int rc;
12844 
12845 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
12846 	if (rc)
12847 		return rc;
12848 
12849 	cpr = &bnapi->cp_ring;
12850 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
12851 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
12852 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
12853 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
12854 	return hwrm_req_send_silent(bp, req);
12855 }
12856 
12857 static void bnxt_reset_task(struct bnxt *bp, bool silent)
12858 {
12859 	if (!silent)
12860 		bnxt_dbg_dump_states(bp);
12861 	if (netif_running(bp->dev)) {
12862 		int rc;
12863 
12864 		if (silent) {
12865 			bnxt_close_nic(bp, false, false);
12866 			bnxt_open_nic(bp, false, false);
12867 		} else {
12868 			bnxt_ulp_stop(bp);
12869 			bnxt_close_nic(bp, true, false);
12870 			rc = bnxt_open_nic(bp, true, false);
12871 			bnxt_ulp_start(bp, rc);
12872 		}
12873 	}
12874 }
12875 
12876 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
12877 {
12878 	struct bnxt *bp = netdev_priv(dev);
12879 
12880 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
12881 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
12882 }
12883 
12884 static void bnxt_fw_health_check(struct bnxt *bp)
12885 {
12886 	struct bnxt_fw_health *fw_health = bp->fw_health;
12887 	struct pci_dev *pdev = bp->pdev;
12888 	u32 val;
12889 
12890 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12891 		return;
12892 
12893 	/* Make sure it is enabled before checking the tmr_counter. */
12894 	smp_rmb();
12895 	if (fw_health->tmr_counter) {
12896 		fw_health->tmr_counter--;
12897 		return;
12898 	}
12899 
12900 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12901 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
12902 		fw_health->arrests++;
12903 		goto fw_reset;
12904 	}
12905 
12906 	fw_health->last_fw_heartbeat = val;
12907 
12908 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12909 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
12910 		fw_health->discoveries++;
12911 		goto fw_reset;
12912 	}
12913 
12914 	fw_health->tmr_counter = fw_health->tmr_multiplier;
12915 	return;
12916 
12917 fw_reset:
12918 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
12919 }
12920 
12921 static void bnxt_timer(struct timer_list *t)
12922 {
12923 	struct bnxt *bp = from_timer(bp, t, timer);
12924 	struct net_device *dev = bp->dev;
12925 
12926 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
12927 		return;
12928 
12929 	if (atomic_read(&bp->intr_sem) != 0)
12930 		goto bnxt_restart_timer;
12931 
12932 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
12933 		bnxt_fw_health_check(bp);
12934 
12935 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
12936 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
12937 
12938 	if (bnxt_tc_flower_enabled(bp))
12939 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
12940 
12941 #ifdef CONFIG_RFS_ACCEL
12942 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
12943 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
12944 #endif /*CONFIG_RFS_ACCEL*/
12945 
12946 	if (bp->link_info.phy_retry) {
12947 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
12948 			bp->link_info.phy_retry = false;
12949 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
12950 		} else {
12951 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
12952 		}
12953 	}
12954 
12955 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12956 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12957 
12958 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
12959 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
12960 
12961 bnxt_restart_timer:
12962 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12963 }
12964 
12965 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
12966 {
12967 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
12968 	 * set.  If the device is being closed, bnxt_close() may be holding
12969 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
12970 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
12971 	 */
12972 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12973 	rtnl_lock();
12974 }
12975 
12976 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
12977 {
12978 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12979 	rtnl_unlock();
12980 }
12981 
12982 /* Only called from bnxt_sp_task() */
12983 static void bnxt_reset(struct bnxt *bp, bool silent)
12984 {
12985 	bnxt_rtnl_lock_sp(bp);
12986 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
12987 		bnxt_reset_task(bp, silent);
12988 	bnxt_rtnl_unlock_sp(bp);
12989 }
12990 
12991 /* Only called from bnxt_sp_task() */
12992 static void bnxt_rx_ring_reset(struct bnxt *bp)
12993 {
12994 	int i;
12995 
12996 	bnxt_rtnl_lock_sp(bp);
12997 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12998 		bnxt_rtnl_unlock_sp(bp);
12999 		return;
13000 	}
13001 	/* Disable and flush TPA before resetting the RX ring */
13002 	if (bp->flags & BNXT_FLAG_TPA)
13003 		bnxt_set_tpa(bp, false);
13004 	for (i = 0; i < bp->rx_nr_rings; i++) {
13005 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
13006 		struct bnxt_cp_ring_info *cpr;
13007 		int rc;
13008 
13009 		if (!rxr->bnapi->in_reset)
13010 			continue;
13011 
13012 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
13013 		if (rc) {
13014 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
13015 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
13016 			else
13017 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
13018 					    rc);
13019 			bnxt_reset_task(bp, true);
13020 			break;
13021 		}
13022 		bnxt_free_one_rx_ring_skbs(bp, i);
13023 		rxr->rx_prod = 0;
13024 		rxr->rx_agg_prod = 0;
13025 		rxr->rx_sw_agg_prod = 0;
13026 		rxr->rx_next_cons = 0;
13027 		rxr->bnapi->in_reset = false;
13028 		bnxt_alloc_one_rx_ring(bp, i);
13029 		cpr = &rxr->bnapi->cp_ring;
13030 		cpr->sw_stats.rx.rx_resets++;
13031 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
13032 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
13033 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
13034 	}
13035 	if (bp->flags & BNXT_FLAG_TPA)
13036 		bnxt_set_tpa(bp, true);
13037 	bnxt_rtnl_unlock_sp(bp);
13038 }
13039 
13040 static void bnxt_fw_reset_close(struct bnxt *bp)
13041 {
13042 	bnxt_ulp_stop(bp);
13043 	/* When firmware is in fatal state, quiesce device and disable
13044 	 * bus master to prevent any potential bad DMAs before freeing
13045 	 * kernel memory.
13046 	 */
13047 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
13048 		u16 val = 0;
13049 
13050 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13051 		if (val == 0xffff)
13052 			bp->fw_reset_min_dsecs = 0;
13053 		bnxt_tx_disable(bp);
13054 		bnxt_disable_napi(bp);
13055 		bnxt_disable_int_sync(bp);
13056 		bnxt_free_irq(bp);
13057 		bnxt_clear_int_mode(bp);
13058 		pci_disable_device(bp->pdev);
13059 	}
13060 	__bnxt_close_nic(bp, true, false);
13061 	bnxt_vf_reps_free(bp);
13062 	bnxt_clear_int_mode(bp);
13063 	bnxt_hwrm_func_drv_unrgtr(bp);
13064 	if (pci_is_enabled(bp->pdev))
13065 		pci_disable_device(bp->pdev);
13066 	bnxt_free_ctx_mem(bp);
13067 }
13068 
13069 static bool is_bnxt_fw_ok(struct bnxt *bp)
13070 {
13071 	struct bnxt_fw_health *fw_health = bp->fw_health;
13072 	bool no_heartbeat = false, has_reset = false;
13073 	u32 val;
13074 
13075 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13076 	if (val == fw_health->last_fw_heartbeat)
13077 		no_heartbeat = true;
13078 
13079 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13080 	if (val != fw_health->last_fw_reset_cnt)
13081 		has_reset = true;
13082 
13083 	if (!no_heartbeat && has_reset)
13084 		return true;
13085 
13086 	return false;
13087 }
13088 
13089 /* rtnl_lock is acquired before calling this function */
13090 static void bnxt_force_fw_reset(struct bnxt *bp)
13091 {
13092 	struct bnxt_fw_health *fw_health = bp->fw_health;
13093 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13094 	u32 wait_dsecs;
13095 
13096 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
13097 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13098 		return;
13099 
13100 	if (ptp) {
13101 		spin_lock_bh(&ptp->ptp_lock);
13102 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13103 		spin_unlock_bh(&ptp->ptp_lock);
13104 	} else {
13105 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13106 	}
13107 	bnxt_fw_reset_close(bp);
13108 	wait_dsecs = fw_health->master_func_wait_dsecs;
13109 	if (fw_health->primary) {
13110 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
13111 			wait_dsecs = 0;
13112 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13113 	} else {
13114 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
13115 		wait_dsecs = fw_health->normal_func_wait_dsecs;
13116 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13117 	}
13118 
13119 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
13120 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
13121 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13122 }
13123 
13124 void bnxt_fw_exception(struct bnxt *bp)
13125 {
13126 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
13127 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13128 	bnxt_rtnl_lock_sp(bp);
13129 	bnxt_force_fw_reset(bp);
13130 	bnxt_rtnl_unlock_sp(bp);
13131 }
13132 
13133 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
13134  * < 0 on error.
13135  */
13136 static int bnxt_get_registered_vfs(struct bnxt *bp)
13137 {
13138 #ifdef CONFIG_BNXT_SRIOV
13139 	int rc;
13140 
13141 	if (!BNXT_PF(bp))
13142 		return 0;
13143 
13144 	rc = bnxt_hwrm_func_qcfg(bp);
13145 	if (rc) {
13146 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
13147 		return rc;
13148 	}
13149 	if (bp->pf.registered_vfs)
13150 		return bp->pf.registered_vfs;
13151 	if (bp->sriov_cfg)
13152 		return 1;
13153 #endif
13154 	return 0;
13155 }
13156 
13157 void bnxt_fw_reset(struct bnxt *bp)
13158 {
13159 	bnxt_rtnl_lock_sp(bp);
13160 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
13161 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13162 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13163 		int n = 0, tmo;
13164 
13165 		if (ptp) {
13166 			spin_lock_bh(&ptp->ptp_lock);
13167 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13168 			spin_unlock_bh(&ptp->ptp_lock);
13169 		} else {
13170 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13171 		}
13172 		if (bp->pf.active_vfs &&
13173 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
13174 			n = bnxt_get_registered_vfs(bp);
13175 		if (n < 0) {
13176 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
13177 				   n);
13178 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13179 			dev_close(bp->dev);
13180 			goto fw_reset_exit;
13181 		} else if (n > 0) {
13182 			u16 vf_tmo_dsecs = n * 10;
13183 
13184 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
13185 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
13186 			bp->fw_reset_state =
13187 				BNXT_FW_RESET_STATE_POLL_VF;
13188 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13189 			goto fw_reset_exit;
13190 		}
13191 		bnxt_fw_reset_close(bp);
13192 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13193 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13194 			tmo = HZ / 10;
13195 		} else {
13196 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13197 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13198 		}
13199 		bnxt_queue_fw_reset_work(bp, tmo);
13200 	}
13201 fw_reset_exit:
13202 	bnxt_rtnl_unlock_sp(bp);
13203 }
13204 
13205 static void bnxt_chk_missed_irq(struct bnxt *bp)
13206 {
13207 	int i;
13208 
13209 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13210 		return;
13211 
13212 	for (i = 0; i < bp->cp_nr_rings; i++) {
13213 		struct bnxt_napi *bnapi = bp->bnapi[i];
13214 		struct bnxt_cp_ring_info *cpr;
13215 		u32 fw_ring_id;
13216 		int j;
13217 
13218 		if (!bnapi)
13219 			continue;
13220 
13221 		cpr = &bnapi->cp_ring;
13222 		for (j = 0; j < cpr->cp_ring_count; j++) {
13223 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
13224 			u32 val[2];
13225 
13226 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
13227 				continue;
13228 
13229 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
13230 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
13231 				continue;
13232 			}
13233 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
13234 			bnxt_dbg_hwrm_ring_info_get(bp,
13235 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
13236 				fw_ring_id, &val[0], &val[1]);
13237 			cpr->sw_stats.cmn.missed_irqs++;
13238 		}
13239 	}
13240 }
13241 
13242 static void bnxt_cfg_ntp_filters(struct bnxt *);
13243 
13244 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
13245 {
13246 	struct bnxt_link_info *link_info = &bp->link_info;
13247 
13248 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
13249 		link_info->autoneg = BNXT_AUTONEG_SPEED;
13250 		if (bp->hwrm_spec_code >= 0x10201) {
13251 			if (link_info->auto_pause_setting &
13252 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
13253 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13254 		} else {
13255 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13256 		}
13257 		bnxt_set_auto_speed(link_info);
13258 	} else {
13259 		bnxt_set_force_speed(link_info);
13260 		link_info->req_duplex = link_info->duplex_setting;
13261 	}
13262 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
13263 		link_info->req_flow_ctrl =
13264 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
13265 	else
13266 		link_info->req_flow_ctrl = link_info->force_pause_setting;
13267 }
13268 
13269 static void bnxt_fw_echo_reply(struct bnxt *bp)
13270 {
13271 	struct bnxt_fw_health *fw_health = bp->fw_health;
13272 	struct hwrm_func_echo_response_input *req;
13273 	int rc;
13274 
13275 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13276 	if (rc)
13277 		return;
13278 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13279 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13280 	hwrm_req_send(bp, req);
13281 }
13282 
13283 static void bnxt_sp_task(struct work_struct *work)
13284 {
13285 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13286 
13287 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13288 	smp_mb__after_atomic();
13289 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13290 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13291 		return;
13292 	}
13293 
13294 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13295 		bnxt_cfg_rx_mode(bp);
13296 
13297 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13298 		bnxt_cfg_ntp_filters(bp);
13299 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13300 		bnxt_hwrm_exec_fwd_req(bp);
13301 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13302 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13303 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13304 		bnxt_hwrm_port_qstats(bp, 0);
13305 		bnxt_hwrm_port_qstats_ext(bp, 0);
13306 		bnxt_accumulate_all_stats(bp);
13307 	}
13308 
13309 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13310 		int rc;
13311 
13312 		mutex_lock(&bp->link_lock);
13313 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13314 				       &bp->sp_event))
13315 			bnxt_hwrm_phy_qcaps(bp);
13316 
13317 		rc = bnxt_update_link(bp, true);
13318 		if (rc)
13319 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13320 				   rc);
13321 
13322 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13323 				       &bp->sp_event))
13324 			bnxt_init_ethtool_link_settings(bp);
13325 		mutex_unlock(&bp->link_lock);
13326 	}
13327 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13328 		int rc;
13329 
13330 		mutex_lock(&bp->link_lock);
13331 		rc = bnxt_update_phy_setting(bp);
13332 		mutex_unlock(&bp->link_lock);
13333 		if (rc) {
13334 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13335 		} else {
13336 			bp->link_info.phy_retry = false;
13337 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13338 		}
13339 	}
13340 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13341 		mutex_lock(&bp->link_lock);
13342 		bnxt_get_port_module_status(bp);
13343 		mutex_unlock(&bp->link_lock);
13344 	}
13345 
13346 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13347 		bnxt_tc_flow_stats_work(bp);
13348 
13349 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13350 		bnxt_chk_missed_irq(bp);
13351 
13352 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13353 		bnxt_fw_echo_reply(bp);
13354 
13355 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13356 		bnxt_hwmon_notify_event(bp);
13357 
13358 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13359 	 * must be the last functions to be called before exiting.
13360 	 */
13361 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13362 		bnxt_reset(bp, false);
13363 
13364 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13365 		bnxt_reset(bp, true);
13366 
13367 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13368 		bnxt_rx_ring_reset(bp);
13369 
13370 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13371 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13372 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13373 			bnxt_devlink_health_fw_report(bp);
13374 		else
13375 			bnxt_fw_reset(bp);
13376 	}
13377 
13378 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13379 		if (!is_bnxt_fw_ok(bp))
13380 			bnxt_devlink_health_fw_report(bp);
13381 	}
13382 
13383 	smp_mb__before_atomic();
13384 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13385 }
13386 
13387 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13388 				int *max_cp);
13389 
13390 /* Under rtnl_lock */
13391 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13392 		     int tx_xdp)
13393 {
13394 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13395 	struct bnxt_hw_rings hwr = {0};
13396 	int rx_rings = rx;
13397 
13398 	if (tcs)
13399 		tx_sets = tcs;
13400 
13401 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13402 
13403 	if (max_rx < rx_rings)
13404 		return -ENOMEM;
13405 
13406 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13407 		rx_rings <<= 1;
13408 
13409 	hwr.rx = rx_rings;
13410 	hwr.tx = tx * tx_sets + tx_xdp;
13411 	if (max_tx < hwr.tx)
13412 		return -ENOMEM;
13413 
13414 	hwr.vnic = bnxt_get_total_vnics(bp, rx);
13415 
13416 	tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp);
13417 	hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13418 	if (max_cp < hwr.cp)
13419 		return -ENOMEM;
13420 	hwr.stat = hwr.cp;
13421 	if (BNXT_NEW_RM(bp)) {
13422 		hwr.cp += bnxt_get_ulp_msix_num(bp);
13423 		hwr.stat += bnxt_get_ulp_stat_ctxs(bp);
13424 		hwr.grp = rx;
13425 		hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
13426 	}
13427 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
13428 		hwr.cp_p5 = hwr.tx + rx;
13429 	return bnxt_hwrm_check_rings(bp, &hwr);
13430 }
13431 
13432 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13433 {
13434 	if (bp->bar2) {
13435 		pci_iounmap(pdev, bp->bar2);
13436 		bp->bar2 = NULL;
13437 	}
13438 
13439 	if (bp->bar1) {
13440 		pci_iounmap(pdev, bp->bar1);
13441 		bp->bar1 = NULL;
13442 	}
13443 
13444 	if (bp->bar0) {
13445 		pci_iounmap(pdev, bp->bar0);
13446 		bp->bar0 = NULL;
13447 	}
13448 }
13449 
13450 static void bnxt_cleanup_pci(struct bnxt *bp)
13451 {
13452 	bnxt_unmap_bars(bp, bp->pdev);
13453 	pci_release_regions(bp->pdev);
13454 	if (pci_is_enabled(bp->pdev))
13455 		pci_disable_device(bp->pdev);
13456 }
13457 
13458 static void bnxt_init_dflt_coal(struct bnxt *bp)
13459 {
13460 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13461 	struct bnxt_coal *coal;
13462 	u16 flags = 0;
13463 
13464 	if (coal_cap->cmpl_params &
13465 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13466 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13467 
13468 	/* Tick values in micro seconds.
13469 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13470 	 */
13471 	coal = &bp->rx_coal;
13472 	coal->coal_ticks = 10;
13473 	coal->coal_bufs = 30;
13474 	coal->coal_ticks_irq = 1;
13475 	coal->coal_bufs_irq = 2;
13476 	coal->idle_thresh = 50;
13477 	coal->bufs_per_record = 2;
13478 	coal->budget = 64;		/* NAPI budget */
13479 	coal->flags = flags;
13480 
13481 	coal = &bp->tx_coal;
13482 	coal->coal_ticks = 28;
13483 	coal->coal_bufs = 30;
13484 	coal->coal_ticks_irq = 2;
13485 	coal->coal_bufs_irq = 2;
13486 	coal->bufs_per_record = 1;
13487 	coal->flags = flags;
13488 
13489 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13490 }
13491 
13492 /* FW that pre-reserves 1 VNIC per function */
13493 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13494 {
13495 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13496 
13497 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13498 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13499 		return true;
13500 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13501 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13502 		return true;
13503 	return false;
13504 }
13505 
13506 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13507 {
13508 	int rc;
13509 
13510 	bp->fw_cap = 0;
13511 	rc = bnxt_hwrm_ver_get(bp);
13512 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
13513 	 * so wait before continuing with recovery.
13514 	 */
13515 	if (rc)
13516 		msleep(100);
13517 	bnxt_try_map_fw_health_reg(bp);
13518 	if (rc) {
13519 		rc = bnxt_try_recover_fw(bp);
13520 		if (rc)
13521 			return rc;
13522 		rc = bnxt_hwrm_ver_get(bp);
13523 		if (rc)
13524 			return rc;
13525 	}
13526 
13527 	bnxt_nvm_cfg_ver_get(bp);
13528 
13529 	rc = bnxt_hwrm_func_reset(bp);
13530 	if (rc)
13531 		return -ENODEV;
13532 
13533 	bnxt_hwrm_fw_set_time(bp);
13534 	return 0;
13535 }
13536 
13537 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13538 {
13539 	int rc;
13540 
13541 	/* Get the MAX capabilities for this function */
13542 	rc = bnxt_hwrm_func_qcaps(bp);
13543 	if (rc) {
13544 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13545 			   rc);
13546 		return -ENODEV;
13547 	}
13548 
13549 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13550 	if (rc)
13551 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13552 			    rc);
13553 
13554 	if (bnxt_alloc_fw_health(bp)) {
13555 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13556 	} else {
13557 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13558 		if (rc)
13559 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13560 				    rc);
13561 	}
13562 
13563 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13564 	if (rc)
13565 		return -ENODEV;
13566 
13567 	if (bnxt_fw_pre_resv_vnics(bp))
13568 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
13569 
13570 	bnxt_hwrm_func_qcfg(bp);
13571 	bnxt_hwrm_vnic_qcaps(bp);
13572 	bnxt_hwrm_port_led_qcaps(bp);
13573 	bnxt_ethtool_init(bp);
13574 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
13575 		__bnxt_hwrm_ptp_qcfg(bp);
13576 	bnxt_dcb_init(bp);
13577 	bnxt_hwmon_init(bp);
13578 	return 0;
13579 }
13580 
13581 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
13582 {
13583 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
13584 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
13585 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
13586 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
13587 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
13588 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
13589 		bp->rss_hash_delta = bp->rss_hash_cfg;
13590 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
13591 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
13592 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
13593 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
13594 	}
13595 }
13596 
13597 static void bnxt_set_dflt_rfs(struct bnxt *bp)
13598 {
13599 	struct net_device *dev = bp->dev;
13600 
13601 	dev->hw_features &= ~NETIF_F_NTUPLE;
13602 	dev->features &= ~NETIF_F_NTUPLE;
13603 	bp->flags &= ~BNXT_FLAG_RFS;
13604 	if (bnxt_rfs_supported(bp)) {
13605 		dev->hw_features |= NETIF_F_NTUPLE;
13606 		if (bnxt_rfs_capable(bp)) {
13607 			bp->flags |= BNXT_FLAG_RFS;
13608 			dev->features |= NETIF_F_NTUPLE;
13609 		}
13610 	}
13611 }
13612 
13613 static void bnxt_fw_init_one_p3(struct bnxt *bp)
13614 {
13615 	struct pci_dev *pdev = bp->pdev;
13616 
13617 	bnxt_set_dflt_rss_hash_type(bp);
13618 	bnxt_set_dflt_rfs(bp);
13619 
13620 	bnxt_get_wol_settings(bp);
13621 	if (bp->flags & BNXT_FLAG_WOL_CAP)
13622 		device_set_wakeup_enable(&pdev->dev, bp->wol);
13623 	else
13624 		device_set_wakeup_capable(&pdev->dev, false);
13625 
13626 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
13627 	bnxt_hwrm_coal_params_qcaps(bp);
13628 }
13629 
13630 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
13631 
13632 int bnxt_fw_init_one(struct bnxt *bp)
13633 {
13634 	int rc;
13635 
13636 	rc = bnxt_fw_init_one_p1(bp);
13637 	if (rc) {
13638 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
13639 		return rc;
13640 	}
13641 	rc = bnxt_fw_init_one_p2(bp);
13642 	if (rc) {
13643 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
13644 		return rc;
13645 	}
13646 	rc = bnxt_probe_phy(bp, false);
13647 	if (rc)
13648 		return rc;
13649 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
13650 	if (rc)
13651 		return rc;
13652 
13653 	bnxt_fw_init_one_p3(bp);
13654 	return 0;
13655 }
13656 
13657 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
13658 {
13659 	struct bnxt_fw_health *fw_health = bp->fw_health;
13660 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
13661 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
13662 	u32 reg_type, reg_off, delay_msecs;
13663 
13664 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
13665 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
13666 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
13667 	switch (reg_type) {
13668 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
13669 		pci_write_config_dword(bp->pdev, reg_off, val);
13670 		break;
13671 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
13672 		writel(reg_off & BNXT_GRC_BASE_MASK,
13673 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
13674 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
13675 		fallthrough;
13676 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
13677 		writel(val, bp->bar0 + reg_off);
13678 		break;
13679 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
13680 		writel(val, bp->bar1 + reg_off);
13681 		break;
13682 	}
13683 	if (delay_msecs) {
13684 		pci_read_config_dword(bp->pdev, 0, &val);
13685 		msleep(delay_msecs);
13686 	}
13687 }
13688 
13689 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
13690 {
13691 	struct hwrm_func_qcfg_output *resp;
13692 	struct hwrm_func_qcfg_input *req;
13693 	bool result = true; /* firmware will enforce if unknown */
13694 
13695 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
13696 		return result;
13697 
13698 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
13699 		return result;
13700 
13701 	req->fid = cpu_to_le16(0xffff);
13702 	resp = hwrm_req_hold(bp, req);
13703 	if (!hwrm_req_send(bp, req))
13704 		result = !!(le16_to_cpu(resp->flags) &
13705 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
13706 	hwrm_req_drop(bp, req);
13707 	return result;
13708 }
13709 
13710 static void bnxt_reset_all(struct bnxt *bp)
13711 {
13712 	struct bnxt_fw_health *fw_health = bp->fw_health;
13713 	int i, rc;
13714 
13715 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13716 		bnxt_fw_reset_via_optee(bp);
13717 		bp->fw_reset_timestamp = jiffies;
13718 		return;
13719 	}
13720 
13721 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
13722 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
13723 			bnxt_fw_reset_writel(bp, i);
13724 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
13725 		struct hwrm_fw_reset_input *req;
13726 
13727 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
13728 		if (!rc) {
13729 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
13730 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
13731 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
13732 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
13733 			rc = hwrm_req_send(bp, req);
13734 		}
13735 		if (rc != -ENODEV)
13736 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
13737 	}
13738 	bp->fw_reset_timestamp = jiffies;
13739 }
13740 
13741 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
13742 {
13743 	return time_after(jiffies, bp->fw_reset_timestamp +
13744 			  (bp->fw_reset_max_dsecs * HZ / 10));
13745 }
13746 
13747 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
13748 {
13749 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13750 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
13751 		bnxt_ulp_start(bp, rc);
13752 		bnxt_dl_health_fw_status_update(bp, false);
13753 	}
13754 	bp->fw_reset_state = 0;
13755 	dev_close(bp->dev);
13756 }
13757 
13758 static void bnxt_fw_reset_task(struct work_struct *work)
13759 {
13760 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
13761 	int rc = 0;
13762 
13763 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13764 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
13765 		return;
13766 	}
13767 
13768 	switch (bp->fw_reset_state) {
13769 	case BNXT_FW_RESET_STATE_POLL_VF: {
13770 		int n = bnxt_get_registered_vfs(bp);
13771 		int tmo;
13772 
13773 		if (n < 0) {
13774 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
13775 				   n, jiffies_to_msecs(jiffies -
13776 				   bp->fw_reset_timestamp));
13777 			goto fw_reset_abort;
13778 		} else if (n > 0) {
13779 			if (bnxt_fw_reset_timeout(bp)) {
13780 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13781 				bp->fw_reset_state = 0;
13782 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
13783 					   n);
13784 				return;
13785 			}
13786 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13787 			return;
13788 		}
13789 		bp->fw_reset_timestamp = jiffies;
13790 		rtnl_lock();
13791 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
13792 			bnxt_fw_reset_abort(bp, rc);
13793 			rtnl_unlock();
13794 			return;
13795 		}
13796 		bnxt_fw_reset_close(bp);
13797 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13798 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13799 			tmo = HZ / 10;
13800 		} else {
13801 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13802 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13803 		}
13804 		rtnl_unlock();
13805 		bnxt_queue_fw_reset_work(bp, tmo);
13806 		return;
13807 	}
13808 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
13809 		u32 val;
13810 
13811 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13812 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
13813 		    !bnxt_fw_reset_timeout(bp)) {
13814 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13815 			return;
13816 		}
13817 
13818 		if (!bp->fw_health->primary) {
13819 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
13820 
13821 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13822 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13823 			return;
13824 		}
13825 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13826 	}
13827 		fallthrough;
13828 	case BNXT_FW_RESET_STATE_RESET_FW:
13829 		bnxt_reset_all(bp);
13830 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13831 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
13832 		return;
13833 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
13834 		bnxt_inv_fw_health_reg(bp);
13835 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
13836 		    !bp->fw_reset_min_dsecs) {
13837 			u16 val;
13838 
13839 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13840 			if (val == 0xffff) {
13841 				if (bnxt_fw_reset_timeout(bp)) {
13842 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
13843 					rc = -ETIMEDOUT;
13844 					goto fw_reset_abort;
13845 				}
13846 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
13847 				return;
13848 			}
13849 		}
13850 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13851 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
13852 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
13853 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
13854 			bnxt_dl_remote_reload(bp);
13855 		if (pci_enable_device(bp->pdev)) {
13856 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
13857 			rc = -ENODEV;
13858 			goto fw_reset_abort;
13859 		}
13860 		pci_set_master(bp->pdev);
13861 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
13862 		fallthrough;
13863 	case BNXT_FW_RESET_STATE_POLL_FW:
13864 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
13865 		rc = bnxt_hwrm_poll(bp);
13866 		if (rc) {
13867 			if (bnxt_fw_reset_timeout(bp)) {
13868 				netdev_err(bp->dev, "Firmware reset aborted\n");
13869 				goto fw_reset_abort_status;
13870 			}
13871 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13872 			return;
13873 		}
13874 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
13875 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
13876 		fallthrough;
13877 	case BNXT_FW_RESET_STATE_OPENING:
13878 		while (!rtnl_trylock()) {
13879 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13880 			return;
13881 		}
13882 		rc = bnxt_open(bp->dev);
13883 		if (rc) {
13884 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
13885 			bnxt_fw_reset_abort(bp, rc);
13886 			rtnl_unlock();
13887 			return;
13888 		}
13889 
13890 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
13891 		    bp->fw_health->enabled) {
13892 			bp->fw_health->last_fw_reset_cnt =
13893 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13894 		}
13895 		bp->fw_reset_state = 0;
13896 		/* Make sure fw_reset_state is 0 before clearing the flag */
13897 		smp_mb__before_atomic();
13898 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13899 		bnxt_ulp_start(bp, 0);
13900 		bnxt_reenable_sriov(bp);
13901 		bnxt_vf_reps_alloc(bp);
13902 		bnxt_vf_reps_open(bp);
13903 		bnxt_ptp_reapply_pps(bp);
13904 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
13905 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
13906 			bnxt_dl_health_fw_recovery_done(bp);
13907 			bnxt_dl_health_fw_status_update(bp, true);
13908 		}
13909 		rtnl_unlock();
13910 		break;
13911 	}
13912 	return;
13913 
13914 fw_reset_abort_status:
13915 	if (bp->fw_health->status_reliable ||
13916 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
13917 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13918 
13919 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
13920 	}
13921 fw_reset_abort:
13922 	rtnl_lock();
13923 	bnxt_fw_reset_abort(bp, rc);
13924 	rtnl_unlock();
13925 }
13926 
13927 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
13928 {
13929 	int rc;
13930 	struct bnxt *bp = netdev_priv(dev);
13931 
13932 	SET_NETDEV_DEV(dev, &pdev->dev);
13933 
13934 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
13935 	rc = pci_enable_device(pdev);
13936 	if (rc) {
13937 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
13938 		goto init_err;
13939 	}
13940 
13941 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13942 		dev_err(&pdev->dev,
13943 			"Cannot find PCI device base address, aborting\n");
13944 		rc = -ENODEV;
13945 		goto init_err_disable;
13946 	}
13947 
13948 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13949 	if (rc) {
13950 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
13951 		goto init_err_disable;
13952 	}
13953 
13954 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
13955 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
13956 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
13957 		rc = -EIO;
13958 		goto init_err_release;
13959 	}
13960 
13961 	pci_set_master(pdev);
13962 
13963 	bp->dev = dev;
13964 	bp->pdev = pdev;
13965 
13966 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
13967 	 * determines the BAR size.
13968 	 */
13969 	bp->bar0 = pci_ioremap_bar(pdev, 0);
13970 	if (!bp->bar0) {
13971 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
13972 		rc = -ENOMEM;
13973 		goto init_err_release;
13974 	}
13975 
13976 	bp->bar2 = pci_ioremap_bar(pdev, 4);
13977 	if (!bp->bar2) {
13978 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
13979 		rc = -ENOMEM;
13980 		goto init_err_release;
13981 	}
13982 
13983 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
13984 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
13985 
13986 	spin_lock_init(&bp->ntp_fltr_lock);
13987 #if BITS_PER_LONG == 32
13988 	spin_lock_init(&bp->db_lock);
13989 #endif
13990 
13991 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
13992 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
13993 
13994 	timer_setup(&bp->timer, bnxt_timer, 0);
13995 	bp->current_interval = BNXT_TIMER_INTERVAL;
13996 
13997 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
13998 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
13999 
14000 	clear_bit(BNXT_STATE_OPEN, &bp->state);
14001 	return 0;
14002 
14003 init_err_release:
14004 	bnxt_unmap_bars(bp, pdev);
14005 	pci_release_regions(pdev);
14006 
14007 init_err_disable:
14008 	pci_disable_device(pdev);
14009 
14010 init_err:
14011 	return rc;
14012 }
14013 
14014 /* rtnl_lock held */
14015 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
14016 {
14017 	struct sockaddr *addr = p;
14018 	struct bnxt *bp = netdev_priv(dev);
14019 	int rc = 0;
14020 
14021 	if (!is_valid_ether_addr(addr->sa_data))
14022 		return -EADDRNOTAVAIL;
14023 
14024 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
14025 		return 0;
14026 
14027 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
14028 	if (rc)
14029 		return rc;
14030 
14031 	eth_hw_addr_set(dev, addr->sa_data);
14032 	bnxt_clear_usr_fltrs(bp, true);
14033 	if (netif_running(dev)) {
14034 		bnxt_close_nic(bp, false, false);
14035 		rc = bnxt_open_nic(bp, false, false);
14036 	}
14037 
14038 	return rc;
14039 }
14040 
14041 /* rtnl_lock held */
14042 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
14043 {
14044 	struct bnxt *bp = netdev_priv(dev);
14045 
14046 	if (netif_running(dev))
14047 		bnxt_close_nic(bp, true, false);
14048 
14049 	dev->mtu = new_mtu;
14050 	bnxt_set_ring_params(bp);
14051 
14052 	if (netif_running(dev))
14053 		return bnxt_open_nic(bp, true, false);
14054 
14055 	return 0;
14056 }
14057 
14058 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
14059 {
14060 	struct bnxt *bp = netdev_priv(dev);
14061 	bool sh = false;
14062 	int rc, tx_cp;
14063 
14064 	if (tc > bp->max_tc) {
14065 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
14066 			   tc, bp->max_tc);
14067 		return -EINVAL;
14068 	}
14069 
14070 	if (bp->num_tc == tc)
14071 		return 0;
14072 
14073 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
14074 		sh = true;
14075 
14076 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
14077 			      sh, tc, bp->tx_nr_rings_xdp);
14078 	if (rc)
14079 		return rc;
14080 
14081 	/* Needs to close the device and do hw resource re-allocations */
14082 	if (netif_running(bp->dev))
14083 		bnxt_close_nic(bp, true, false);
14084 
14085 	if (tc) {
14086 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
14087 		netdev_set_num_tc(dev, tc);
14088 		bp->num_tc = tc;
14089 	} else {
14090 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14091 		netdev_reset_tc(dev);
14092 		bp->num_tc = 0;
14093 	}
14094 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
14095 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
14096 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
14097 			       tx_cp + bp->rx_nr_rings;
14098 
14099 	if (netif_running(bp->dev))
14100 		return bnxt_open_nic(bp, true, false);
14101 
14102 	return 0;
14103 }
14104 
14105 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
14106 				  void *cb_priv)
14107 {
14108 	struct bnxt *bp = cb_priv;
14109 
14110 	if (!bnxt_tc_flower_enabled(bp) ||
14111 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
14112 		return -EOPNOTSUPP;
14113 
14114 	switch (type) {
14115 	case TC_SETUP_CLSFLOWER:
14116 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
14117 	default:
14118 		return -EOPNOTSUPP;
14119 	}
14120 }
14121 
14122 LIST_HEAD(bnxt_block_cb_list);
14123 
14124 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
14125 			 void *type_data)
14126 {
14127 	struct bnxt *bp = netdev_priv(dev);
14128 
14129 	switch (type) {
14130 	case TC_SETUP_BLOCK:
14131 		return flow_block_cb_setup_simple(type_data,
14132 						  &bnxt_block_cb_list,
14133 						  bnxt_setup_tc_block_cb,
14134 						  bp, bp, true);
14135 	case TC_SETUP_QDISC_MQPRIO: {
14136 		struct tc_mqprio_qopt *mqprio = type_data;
14137 
14138 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
14139 
14140 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
14141 	}
14142 	default:
14143 		return -EOPNOTSUPP;
14144 	}
14145 }
14146 
14147 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
14148 			    const struct sk_buff *skb)
14149 {
14150 	struct bnxt_vnic_info *vnic;
14151 
14152 	if (skb)
14153 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
14154 
14155 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
14156 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
14157 }
14158 
14159 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
14160 			   u32 idx)
14161 {
14162 	struct hlist_head *head;
14163 	int bit_id;
14164 
14165 	spin_lock_bh(&bp->ntp_fltr_lock);
14166 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0);
14167 	if (bit_id < 0) {
14168 		spin_unlock_bh(&bp->ntp_fltr_lock);
14169 		return -ENOMEM;
14170 	}
14171 
14172 	fltr->base.sw_id = (u16)bit_id;
14173 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
14174 	fltr->base.flags |= BNXT_ACT_RING_DST;
14175 	head = &bp->ntp_fltr_hash_tbl[idx];
14176 	hlist_add_head_rcu(&fltr->base.hash, head);
14177 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
14178 	bnxt_insert_usr_fltr(bp, &fltr->base);
14179 	bp->ntp_fltr_count++;
14180 	spin_unlock_bh(&bp->ntp_fltr_lock);
14181 	return 0;
14182 }
14183 
14184 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
14185 			    struct bnxt_ntuple_filter *f2)
14186 {
14187 	struct bnxt_flow_masks *masks1 = &f1->fmasks;
14188 	struct bnxt_flow_masks *masks2 = &f2->fmasks;
14189 	struct flow_keys *keys1 = &f1->fkeys;
14190 	struct flow_keys *keys2 = &f2->fkeys;
14191 
14192 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
14193 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
14194 		return false;
14195 
14196 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
14197 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
14198 		    masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src ||
14199 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst ||
14200 		    masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst)
14201 			return false;
14202 	} else {
14203 		if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src,
14204 				     &keys2->addrs.v6addrs.src) ||
14205 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.src,
14206 				     &masks2->addrs.v6addrs.src) ||
14207 		    !ipv6_addr_equal(&keys1->addrs.v6addrs.dst,
14208 				     &keys2->addrs.v6addrs.dst) ||
14209 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.dst,
14210 				     &masks2->addrs.v6addrs.dst))
14211 			return false;
14212 	}
14213 
14214 	return keys1->ports.src == keys2->ports.src &&
14215 	       masks1->ports.src == masks2->ports.src &&
14216 	       keys1->ports.dst == keys2->ports.dst &&
14217 	       masks1->ports.dst == masks2->ports.dst &&
14218 	       keys1->control.flags == keys2->control.flags &&
14219 	       f1->l2_fltr == f2->l2_fltr;
14220 }
14221 
14222 struct bnxt_ntuple_filter *
14223 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
14224 				struct bnxt_ntuple_filter *fltr, u32 idx)
14225 {
14226 	struct bnxt_ntuple_filter *f;
14227 	struct hlist_head *head;
14228 
14229 	head = &bp->ntp_fltr_hash_tbl[idx];
14230 	hlist_for_each_entry_rcu(f, head, base.hash) {
14231 		if (bnxt_fltr_match(f, fltr))
14232 			return f;
14233 	}
14234 	return NULL;
14235 }
14236 
14237 #ifdef CONFIG_RFS_ACCEL
14238 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
14239 			      u16 rxq_index, u32 flow_id)
14240 {
14241 	struct bnxt *bp = netdev_priv(dev);
14242 	struct bnxt_ntuple_filter *fltr, *new_fltr;
14243 	struct flow_keys *fkeys;
14244 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
14245 	struct bnxt_l2_filter *l2_fltr;
14246 	int rc = 0, idx;
14247 	u32 flags;
14248 
14249 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
14250 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
14251 		atomic_inc(&l2_fltr->refcnt);
14252 	} else {
14253 		struct bnxt_l2_key key;
14254 
14255 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
14256 		key.vlan = 0;
14257 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
14258 		if (!l2_fltr)
14259 			return -EINVAL;
14260 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
14261 			bnxt_del_l2_filter(bp, l2_fltr);
14262 			return -EINVAL;
14263 		}
14264 	}
14265 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
14266 	if (!new_fltr) {
14267 		bnxt_del_l2_filter(bp, l2_fltr);
14268 		return -ENOMEM;
14269 	}
14270 
14271 	fkeys = &new_fltr->fkeys;
14272 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
14273 		rc = -EPROTONOSUPPORT;
14274 		goto err_free;
14275 	}
14276 
14277 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
14278 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14279 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14280 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14281 		rc = -EPROTONOSUPPORT;
14282 		goto err_free;
14283 	}
14284 	new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL;
14285 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
14286 		if (bp->hwrm_spec_code < 0x10601) {
14287 			rc = -EPROTONOSUPPORT;
14288 			goto err_free;
14289 		}
14290 		new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL;
14291 	}
14292 	flags = fkeys->control.flags;
14293 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14294 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14295 		rc = -EPROTONOSUPPORT;
14296 		goto err_free;
14297 	}
14298 	new_fltr->l2_fltr = l2_fltr;
14299 
14300 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14301 	rcu_read_lock();
14302 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14303 	if (fltr) {
14304 		rc = fltr->base.sw_id;
14305 		rcu_read_unlock();
14306 		goto err_free;
14307 	}
14308 	rcu_read_unlock();
14309 
14310 	new_fltr->flow_id = flow_id;
14311 	new_fltr->base.rxq = rxq_index;
14312 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14313 	if (!rc) {
14314 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14315 		return new_fltr->base.sw_id;
14316 	}
14317 
14318 err_free:
14319 	bnxt_del_l2_filter(bp, l2_fltr);
14320 	kfree(new_fltr);
14321 	return rc;
14322 }
14323 #endif
14324 
14325 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14326 {
14327 	spin_lock_bh(&bp->ntp_fltr_lock);
14328 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14329 		spin_unlock_bh(&bp->ntp_fltr_lock);
14330 		return;
14331 	}
14332 	hlist_del_rcu(&fltr->base.hash);
14333 	bnxt_del_one_usr_fltr(bp, &fltr->base);
14334 	bp->ntp_fltr_count--;
14335 	spin_unlock_bh(&bp->ntp_fltr_lock);
14336 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14337 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14338 	kfree_rcu(fltr, base.rcu);
14339 }
14340 
14341 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14342 {
14343 #ifdef CONFIG_RFS_ACCEL
14344 	int i;
14345 
14346 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14347 		struct hlist_head *head;
14348 		struct hlist_node *tmp;
14349 		struct bnxt_ntuple_filter *fltr;
14350 		int rc;
14351 
14352 		head = &bp->ntp_fltr_hash_tbl[i];
14353 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14354 			bool del = false;
14355 
14356 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14357 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14358 					continue;
14359 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14360 							fltr->flow_id,
14361 							fltr->base.sw_id)) {
14362 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14363 									 fltr);
14364 					del = true;
14365 				}
14366 			} else {
14367 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14368 								       fltr);
14369 				if (rc)
14370 					del = true;
14371 				else
14372 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14373 			}
14374 
14375 			if (del)
14376 				bnxt_del_ntp_filter(bp, fltr);
14377 		}
14378 	}
14379 #endif
14380 }
14381 
14382 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14383 				    unsigned int entry, struct udp_tunnel_info *ti)
14384 {
14385 	struct bnxt *bp = netdev_priv(netdev);
14386 	unsigned int cmd;
14387 
14388 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14389 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14390 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14391 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14392 	else
14393 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14394 
14395 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14396 }
14397 
14398 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14399 				      unsigned int entry, struct udp_tunnel_info *ti)
14400 {
14401 	struct bnxt *bp = netdev_priv(netdev);
14402 	unsigned int cmd;
14403 
14404 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14405 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14406 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14407 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14408 	else
14409 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14410 
14411 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14412 }
14413 
14414 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14415 	.set_port	= bnxt_udp_tunnel_set_port,
14416 	.unset_port	= bnxt_udp_tunnel_unset_port,
14417 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14418 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14419 	.tables		= {
14420 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14421 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14422 	},
14423 }, bnxt_udp_tunnels_p7 = {
14424 	.set_port	= bnxt_udp_tunnel_set_port,
14425 	.unset_port	= bnxt_udp_tunnel_unset_port,
14426 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14427 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14428 	.tables		= {
14429 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14430 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14431 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14432 	},
14433 };
14434 
14435 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14436 			       struct net_device *dev, u32 filter_mask,
14437 			       int nlflags)
14438 {
14439 	struct bnxt *bp = netdev_priv(dev);
14440 
14441 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14442 				       nlflags, filter_mask, NULL);
14443 }
14444 
14445 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14446 			       u16 flags, struct netlink_ext_ack *extack)
14447 {
14448 	struct bnxt *bp = netdev_priv(dev);
14449 	struct nlattr *attr, *br_spec;
14450 	int rem, rc = 0;
14451 
14452 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14453 		return -EOPNOTSUPP;
14454 
14455 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14456 	if (!br_spec)
14457 		return -EINVAL;
14458 
14459 	nla_for_each_nested(attr, br_spec, rem) {
14460 		u16 mode;
14461 
14462 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
14463 			continue;
14464 
14465 		mode = nla_get_u16(attr);
14466 		if (mode == bp->br_mode)
14467 			break;
14468 
14469 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14470 		if (!rc)
14471 			bp->br_mode = mode;
14472 		break;
14473 	}
14474 	return rc;
14475 }
14476 
14477 int bnxt_get_port_parent_id(struct net_device *dev,
14478 			    struct netdev_phys_item_id *ppid)
14479 {
14480 	struct bnxt *bp = netdev_priv(dev);
14481 
14482 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14483 		return -EOPNOTSUPP;
14484 
14485 	/* The PF and it's VF-reps only support the switchdev framework */
14486 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14487 		return -EOPNOTSUPP;
14488 
14489 	ppid->id_len = sizeof(bp->dsn);
14490 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14491 
14492 	return 0;
14493 }
14494 
14495 static const struct net_device_ops bnxt_netdev_ops = {
14496 	.ndo_open		= bnxt_open,
14497 	.ndo_start_xmit		= bnxt_start_xmit,
14498 	.ndo_stop		= bnxt_close,
14499 	.ndo_get_stats64	= bnxt_get_stats64,
14500 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14501 	.ndo_eth_ioctl		= bnxt_ioctl,
14502 	.ndo_validate_addr	= eth_validate_addr,
14503 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14504 	.ndo_change_mtu		= bnxt_change_mtu,
14505 	.ndo_fix_features	= bnxt_fix_features,
14506 	.ndo_set_features	= bnxt_set_features,
14507 	.ndo_features_check	= bnxt_features_check,
14508 	.ndo_tx_timeout		= bnxt_tx_timeout,
14509 #ifdef CONFIG_BNXT_SRIOV
14510 	.ndo_get_vf_config	= bnxt_get_vf_config,
14511 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14512 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14513 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14514 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14515 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14516 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14517 #endif
14518 	.ndo_setup_tc           = bnxt_setup_tc,
14519 #ifdef CONFIG_RFS_ACCEL
14520 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14521 #endif
14522 	.ndo_bpf		= bnxt_xdp,
14523 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14524 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14525 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14526 };
14527 
14528 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i,
14529 				    struct netdev_queue_stats_rx *stats)
14530 {
14531 	struct bnxt *bp = netdev_priv(dev);
14532 	struct bnxt_cp_ring_info *cpr;
14533 	u64 *sw;
14534 
14535 	cpr = &bp->bnapi[i]->cp_ring;
14536 	sw = cpr->stats.sw_stats;
14537 
14538 	stats->packets = 0;
14539 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
14540 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
14541 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
14542 
14543 	stats->bytes = 0;
14544 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
14545 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
14546 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
14547 
14548 	stats->alloc_fail = cpr->sw_stats.rx.rx_oom_discards;
14549 }
14550 
14551 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i,
14552 				    struct netdev_queue_stats_tx *stats)
14553 {
14554 	struct bnxt *bp = netdev_priv(dev);
14555 	struct bnxt_napi *bnapi;
14556 	u64 *sw;
14557 
14558 	bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi;
14559 	sw = bnapi->cp_ring.stats.sw_stats;
14560 
14561 	stats->packets = 0;
14562 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
14563 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
14564 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
14565 
14566 	stats->bytes = 0;
14567 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
14568 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
14569 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
14570 }
14571 
14572 static void bnxt_get_base_stats(struct net_device *dev,
14573 				struct netdev_queue_stats_rx *rx,
14574 				struct netdev_queue_stats_tx *tx)
14575 {
14576 	struct bnxt *bp = netdev_priv(dev);
14577 
14578 	rx->packets = bp->net_stats_prev.rx_packets;
14579 	rx->bytes = bp->net_stats_prev.rx_bytes;
14580 	rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards;
14581 
14582 	tx->packets = bp->net_stats_prev.tx_packets;
14583 	tx->bytes = bp->net_stats_prev.tx_bytes;
14584 }
14585 
14586 static const struct netdev_stat_ops bnxt_stat_ops = {
14587 	.get_queue_stats_rx	= bnxt_get_queue_stats_rx,
14588 	.get_queue_stats_tx	= bnxt_get_queue_stats_tx,
14589 	.get_base_stats		= bnxt_get_base_stats,
14590 };
14591 
14592 static void bnxt_remove_one(struct pci_dev *pdev)
14593 {
14594 	struct net_device *dev = pci_get_drvdata(pdev);
14595 	struct bnxt *bp = netdev_priv(dev);
14596 
14597 	if (BNXT_PF(bp))
14598 		bnxt_sriov_disable(bp);
14599 
14600 	bnxt_rdma_aux_device_uninit(bp);
14601 
14602 	bnxt_ptp_clear(bp);
14603 	unregister_netdev(dev);
14604 	bnxt_free_l2_filters(bp, true);
14605 	bnxt_free_ntp_fltrs(bp, true);
14606 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14607 	/* Flush any pending tasks */
14608 	cancel_work_sync(&bp->sp_task);
14609 	cancel_delayed_work_sync(&bp->fw_reset_task);
14610 	bp->sp_event = 0;
14611 
14612 	bnxt_dl_fw_reporters_destroy(bp);
14613 	bnxt_dl_unregister(bp);
14614 	bnxt_shutdown_tc(bp);
14615 
14616 	bnxt_clear_int_mode(bp);
14617 	bnxt_hwrm_func_drv_unrgtr(bp);
14618 	bnxt_free_hwrm_resources(bp);
14619 	bnxt_hwmon_uninit(bp);
14620 	bnxt_ethtool_free(bp);
14621 	bnxt_dcb_free(bp);
14622 	kfree(bp->ptp_cfg);
14623 	bp->ptp_cfg = NULL;
14624 	kfree(bp->fw_health);
14625 	bp->fw_health = NULL;
14626 	bnxt_cleanup_pci(bp);
14627 	bnxt_free_ctx_mem(bp);
14628 	kfree(bp->rss_indir_tbl);
14629 	bp->rss_indir_tbl = NULL;
14630 	bnxt_free_port_stats(bp);
14631 	free_netdev(dev);
14632 }
14633 
14634 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
14635 {
14636 	int rc = 0;
14637 	struct bnxt_link_info *link_info = &bp->link_info;
14638 
14639 	bp->phy_flags = 0;
14640 	rc = bnxt_hwrm_phy_qcaps(bp);
14641 	if (rc) {
14642 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
14643 			   rc);
14644 		return rc;
14645 	}
14646 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
14647 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
14648 	else
14649 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
14650 	if (!fw_dflt)
14651 		return 0;
14652 
14653 	mutex_lock(&bp->link_lock);
14654 	rc = bnxt_update_link(bp, false);
14655 	if (rc) {
14656 		mutex_unlock(&bp->link_lock);
14657 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
14658 			   rc);
14659 		return rc;
14660 	}
14661 
14662 	/* Older firmware does not have supported_auto_speeds, so assume
14663 	 * that all supported speeds can be autonegotiated.
14664 	 */
14665 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
14666 		link_info->support_auto_speeds = link_info->support_speeds;
14667 
14668 	bnxt_init_ethtool_link_settings(bp);
14669 	mutex_unlock(&bp->link_lock);
14670 	return 0;
14671 }
14672 
14673 static int bnxt_get_max_irq(struct pci_dev *pdev)
14674 {
14675 	u16 ctrl;
14676 
14677 	if (!pdev->msix_cap)
14678 		return 1;
14679 
14680 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
14681 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
14682 }
14683 
14684 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14685 				int *max_cp)
14686 {
14687 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
14688 	int max_ring_grps = 0, max_irq;
14689 
14690 	*max_tx = hw_resc->max_tx_rings;
14691 	*max_rx = hw_resc->max_rx_rings;
14692 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
14693 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
14694 			bnxt_get_ulp_msix_num(bp),
14695 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
14696 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
14697 		*max_cp = min_t(int, *max_cp, max_irq);
14698 	max_ring_grps = hw_resc->max_hw_ring_grps;
14699 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
14700 		*max_cp -= 1;
14701 		*max_rx -= 2;
14702 	}
14703 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
14704 		*max_rx >>= 1;
14705 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
14706 		int rc;
14707 
14708 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
14709 		if (rc) {
14710 			*max_rx = 0;
14711 			*max_tx = 0;
14712 		}
14713 		/* On P5 chips, max_cp output param should be available NQs */
14714 		*max_cp = max_irq;
14715 	}
14716 	*max_rx = min_t(int, *max_rx, max_ring_grps);
14717 }
14718 
14719 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
14720 {
14721 	int rx, tx, cp;
14722 
14723 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
14724 	*max_rx = rx;
14725 	*max_tx = tx;
14726 	if (!rx || !tx || !cp)
14727 		return -ENOMEM;
14728 
14729 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
14730 }
14731 
14732 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14733 			       bool shared)
14734 {
14735 	int rc;
14736 
14737 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14738 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
14739 		/* Not enough rings, try disabling agg rings. */
14740 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
14741 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14742 		if (rc) {
14743 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
14744 			bp->flags |= BNXT_FLAG_AGG_RINGS;
14745 			return rc;
14746 		}
14747 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
14748 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14749 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14750 		bnxt_set_ring_params(bp);
14751 	}
14752 
14753 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
14754 		int max_cp, max_stat, max_irq;
14755 
14756 		/* Reserve minimum resources for RoCE */
14757 		max_cp = bnxt_get_max_func_cp_rings(bp);
14758 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
14759 		max_irq = bnxt_get_max_func_irqs(bp);
14760 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
14761 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
14762 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
14763 			return 0;
14764 
14765 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
14766 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
14767 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
14768 		max_cp = min_t(int, max_cp, max_irq);
14769 		max_cp = min_t(int, max_cp, max_stat);
14770 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
14771 		if (rc)
14772 			rc = 0;
14773 	}
14774 	return rc;
14775 }
14776 
14777 /* In initial default shared ring setting, each shared ring must have a
14778  * RX/TX ring pair.
14779  */
14780 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
14781 {
14782 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
14783 	bp->rx_nr_rings = bp->cp_nr_rings;
14784 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
14785 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14786 }
14787 
14788 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
14789 {
14790 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
14791 
14792 	if (!bnxt_can_reserve_rings(bp))
14793 		return 0;
14794 
14795 	if (sh)
14796 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
14797 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
14798 	/* Reduce default rings on multi-port cards so that total default
14799 	 * rings do not exceed CPU count.
14800 	 */
14801 	if (bp->port_count > 1) {
14802 		int max_rings =
14803 			max_t(int, num_online_cpus() / bp->port_count, 1);
14804 
14805 		dflt_rings = min_t(int, dflt_rings, max_rings);
14806 	}
14807 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
14808 	if (rc)
14809 		return rc;
14810 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
14811 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
14812 	if (sh)
14813 		bnxt_trim_dflt_sh_rings(bp);
14814 	else
14815 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
14816 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14817 
14818 	rc = __bnxt_reserve_rings(bp);
14819 	if (rc && rc != -ENODEV)
14820 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
14821 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14822 	if (sh)
14823 		bnxt_trim_dflt_sh_rings(bp);
14824 
14825 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
14826 	if (bnxt_need_reserve_rings(bp)) {
14827 		rc = __bnxt_reserve_rings(bp);
14828 		if (rc && rc != -ENODEV)
14829 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
14830 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14831 	}
14832 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
14833 		bp->rx_nr_rings++;
14834 		bp->cp_nr_rings++;
14835 	}
14836 	if (rc) {
14837 		bp->tx_nr_rings = 0;
14838 		bp->rx_nr_rings = 0;
14839 	}
14840 	return rc;
14841 }
14842 
14843 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
14844 {
14845 	int rc;
14846 
14847 	if (bp->tx_nr_rings)
14848 		return 0;
14849 
14850 	bnxt_ulp_irq_stop(bp);
14851 	bnxt_clear_int_mode(bp);
14852 	rc = bnxt_set_dflt_rings(bp, true);
14853 	if (rc) {
14854 		if (BNXT_VF(bp) && rc == -ENODEV)
14855 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14856 		else
14857 			netdev_err(bp->dev, "Not enough rings available.\n");
14858 		goto init_dflt_ring_err;
14859 	}
14860 	rc = bnxt_init_int_mode(bp);
14861 	if (rc)
14862 		goto init_dflt_ring_err;
14863 
14864 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14865 
14866 	bnxt_set_dflt_rfs(bp);
14867 
14868 init_dflt_ring_err:
14869 	bnxt_ulp_irq_restart(bp, rc);
14870 	return rc;
14871 }
14872 
14873 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
14874 {
14875 	int rc;
14876 
14877 	ASSERT_RTNL();
14878 	bnxt_hwrm_func_qcaps(bp);
14879 
14880 	if (netif_running(bp->dev))
14881 		__bnxt_close_nic(bp, true, false);
14882 
14883 	bnxt_ulp_irq_stop(bp);
14884 	bnxt_clear_int_mode(bp);
14885 	rc = bnxt_init_int_mode(bp);
14886 	bnxt_ulp_irq_restart(bp, rc);
14887 
14888 	if (netif_running(bp->dev)) {
14889 		if (rc)
14890 			dev_close(bp->dev);
14891 		else
14892 			rc = bnxt_open_nic(bp, true, false);
14893 	}
14894 
14895 	return rc;
14896 }
14897 
14898 static int bnxt_init_mac_addr(struct bnxt *bp)
14899 {
14900 	int rc = 0;
14901 
14902 	if (BNXT_PF(bp)) {
14903 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
14904 	} else {
14905 #ifdef CONFIG_BNXT_SRIOV
14906 		struct bnxt_vf_info *vf = &bp->vf;
14907 		bool strict_approval = true;
14908 
14909 		if (is_valid_ether_addr(vf->mac_addr)) {
14910 			/* overwrite netdev dev_addr with admin VF MAC */
14911 			eth_hw_addr_set(bp->dev, vf->mac_addr);
14912 			/* Older PF driver or firmware may not approve this
14913 			 * correctly.
14914 			 */
14915 			strict_approval = false;
14916 		} else {
14917 			eth_hw_addr_random(bp->dev);
14918 		}
14919 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
14920 #endif
14921 	}
14922 	return rc;
14923 }
14924 
14925 static void bnxt_vpd_read_info(struct bnxt *bp)
14926 {
14927 	struct pci_dev *pdev = bp->pdev;
14928 	unsigned int vpd_size, kw_len;
14929 	int pos, size;
14930 	u8 *vpd_data;
14931 
14932 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
14933 	if (IS_ERR(vpd_data)) {
14934 		pci_warn(pdev, "Unable to read VPD\n");
14935 		return;
14936 	}
14937 
14938 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14939 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
14940 	if (pos < 0)
14941 		goto read_sn;
14942 
14943 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14944 	memcpy(bp->board_partno, &vpd_data[pos], size);
14945 
14946 read_sn:
14947 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14948 					   PCI_VPD_RO_KEYWORD_SERIALNO,
14949 					   &kw_len);
14950 	if (pos < 0)
14951 		goto exit;
14952 
14953 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14954 	memcpy(bp->board_serialno, &vpd_data[pos], size);
14955 exit:
14956 	kfree(vpd_data);
14957 }
14958 
14959 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
14960 {
14961 	struct pci_dev *pdev = bp->pdev;
14962 	u64 qword;
14963 
14964 	qword = pci_get_dsn(pdev);
14965 	if (!qword) {
14966 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
14967 		return -EOPNOTSUPP;
14968 	}
14969 
14970 	put_unaligned_le64(qword, dsn);
14971 
14972 	bp->flags |= BNXT_FLAG_DSN_VALID;
14973 	return 0;
14974 }
14975 
14976 static int bnxt_map_db_bar(struct bnxt *bp)
14977 {
14978 	if (!bp->db_size)
14979 		return -ENODEV;
14980 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
14981 	if (!bp->bar1)
14982 		return -ENOMEM;
14983 	return 0;
14984 }
14985 
14986 void bnxt_print_device_info(struct bnxt *bp)
14987 {
14988 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
14989 		    board_info[bp->board_idx].name,
14990 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
14991 
14992 	pcie_print_link_status(bp->pdev);
14993 }
14994 
14995 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
14996 {
14997 	struct bnxt_hw_resc *hw_resc;
14998 	struct net_device *dev;
14999 	struct bnxt *bp;
15000 	int rc, max_irqs;
15001 
15002 	if (pci_is_bridge(pdev))
15003 		return -ENODEV;
15004 
15005 	/* Clear any pending DMA transactions from crash kernel
15006 	 * while loading driver in capture kernel.
15007 	 */
15008 	if (is_kdump_kernel()) {
15009 		pci_clear_master(pdev);
15010 		pcie_flr(pdev);
15011 	}
15012 
15013 	max_irqs = bnxt_get_max_irq(pdev);
15014 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
15015 				 max_irqs);
15016 	if (!dev)
15017 		return -ENOMEM;
15018 
15019 	bp = netdev_priv(dev);
15020 	bp->board_idx = ent->driver_data;
15021 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
15022 	bnxt_set_max_func_irqs(bp, max_irqs);
15023 
15024 	if (bnxt_vf_pciid(bp->board_idx))
15025 		bp->flags |= BNXT_FLAG_VF;
15026 
15027 	/* No devlink port registration in case of a VF */
15028 	if (BNXT_PF(bp))
15029 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
15030 
15031 	if (pdev->msix_cap)
15032 		bp->flags |= BNXT_FLAG_MSIX_CAP;
15033 
15034 	rc = bnxt_init_board(pdev, dev);
15035 	if (rc < 0)
15036 		goto init_err_free;
15037 
15038 	dev->netdev_ops = &bnxt_netdev_ops;
15039 	dev->stat_ops = &bnxt_stat_ops;
15040 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
15041 	dev->ethtool_ops = &bnxt_ethtool_ops;
15042 	pci_set_drvdata(pdev, dev);
15043 
15044 	rc = bnxt_alloc_hwrm_resources(bp);
15045 	if (rc)
15046 		goto init_err_pci_clean;
15047 
15048 	mutex_init(&bp->hwrm_cmd_lock);
15049 	mutex_init(&bp->link_lock);
15050 
15051 	rc = bnxt_fw_init_one_p1(bp);
15052 	if (rc)
15053 		goto init_err_pci_clean;
15054 
15055 	if (BNXT_PF(bp))
15056 		bnxt_vpd_read_info(bp);
15057 
15058 	if (BNXT_CHIP_P5_PLUS(bp)) {
15059 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
15060 		if (BNXT_CHIP_P7(bp))
15061 			bp->flags |= BNXT_FLAG_CHIP_P7;
15062 	}
15063 
15064 	rc = bnxt_alloc_rss_indir_tbl(bp);
15065 	if (rc)
15066 		goto init_err_pci_clean;
15067 
15068 	rc = bnxt_fw_init_one_p2(bp);
15069 	if (rc)
15070 		goto init_err_pci_clean;
15071 
15072 	rc = bnxt_map_db_bar(bp);
15073 	if (rc) {
15074 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
15075 			rc);
15076 		goto init_err_pci_clean;
15077 	}
15078 
15079 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15080 			   NETIF_F_TSO | NETIF_F_TSO6 |
15081 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15082 			   NETIF_F_GSO_IPXIP4 |
15083 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15084 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
15085 			   NETIF_F_RXCSUM | NETIF_F_GRO;
15086 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15087 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
15088 
15089 	if (BNXT_SUPPORTS_TPA(bp))
15090 		dev->hw_features |= NETIF_F_LRO;
15091 
15092 	dev->hw_enc_features =
15093 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15094 			NETIF_F_TSO | NETIF_F_TSO6 |
15095 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15096 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15097 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
15098 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15099 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
15100 	if (bp->flags & BNXT_FLAG_CHIP_P7)
15101 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
15102 	else
15103 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
15104 
15105 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
15106 				    NETIF_F_GSO_GRE_CSUM;
15107 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
15108 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
15109 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
15110 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
15111 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
15112 	if (BNXT_SUPPORTS_TPA(bp))
15113 		dev->hw_features |= NETIF_F_GRO_HW;
15114 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
15115 	if (dev->features & NETIF_F_GRO_HW)
15116 		dev->features &= ~NETIF_F_LRO;
15117 	dev->priv_flags |= IFF_UNICAST_FLT;
15118 
15119 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
15120 
15121 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
15122 			    NETDEV_XDP_ACT_RX_SG;
15123 
15124 #ifdef CONFIG_BNXT_SRIOV
15125 	init_waitqueue_head(&bp->sriov_cfg_wait);
15126 #endif
15127 	if (BNXT_SUPPORTS_TPA(bp)) {
15128 		bp->gro_func = bnxt_gro_func_5730x;
15129 		if (BNXT_CHIP_P4(bp))
15130 			bp->gro_func = bnxt_gro_func_5731x;
15131 		else if (BNXT_CHIP_P5_PLUS(bp))
15132 			bp->gro_func = bnxt_gro_func_5750x;
15133 	}
15134 	if (!BNXT_CHIP_P4_PLUS(bp))
15135 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
15136 
15137 	rc = bnxt_init_mac_addr(bp);
15138 	if (rc) {
15139 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
15140 		rc = -EADDRNOTAVAIL;
15141 		goto init_err_pci_clean;
15142 	}
15143 
15144 	if (BNXT_PF(bp)) {
15145 		/* Read the adapter's DSN to use as the eswitch switch_id */
15146 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
15147 	}
15148 
15149 	/* MTU range: 60 - FW defined max */
15150 	dev->min_mtu = ETH_ZLEN;
15151 	dev->max_mtu = bp->max_mtu;
15152 
15153 	rc = bnxt_probe_phy(bp, true);
15154 	if (rc)
15155 		goto init_err_pci_clean;
15156 
15157 	hw_resc = &bp->hw_resc;
15158 	bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows +
15159 		       BNXT_L2_FLTR_MAX_FLTR;
15160 	/* Older firmware may not report these filters properly */
15161 	if (bp->max_fltr < BNXT_MAX_FLTR)
15162 		bp->max_fltr = BNXT_MAX_FLTR;
15163 	bnxt_init_l2_fltr_tbl(bp);
15164 	bnxt_set_rx_skb_mode(bp, false);
15165 	bnxt_set_tpa_flags(bp);
15166 	bnxt_set_ring_params(bp);
15167 	rc = bnxt_set_dflt_rings(bp, true);
15168 	if (rc) {
15169 		if (BNXT_VF(bp) && rc == -ENODEV) {
15170 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15171 		} else {
15172 			netdev_err(bp->dev, "Not enough rings available.\n");
15173 			rc = -ENOMEM;
15174 		}
15175 		goto init_err_pci_clean;
15176 	}
15177 
15178 	bnxt_fw_init_one_p3(bp);
15179 
15180 	bnxt_init_dflt_coal(bp);
15181 
15182 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
15183 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
15184 
15185 	rc = bnxt_init_int_mode(bp);
15186 	if (rc)
15187 		goto init_err_pci_clean;
15188 
15189 	/* No TC has been set yet and rings may have been trimmed due to
15190 	 * limited MSIX, so we re-initialize the TX rings per TC.
15191 	 */
15192 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15193 
15194 	if (BNXT_PF(bp)) {
15195 		if (!bnxt_pf_wq) {
15196 			bnxt_pf_wq =
15197 				create_singlethread_workqueue("bnxt_pf_wq");
15198 			if (!bnxt_pf_wq) {
15199 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
15200 				rc = -ENOMEM;
15201 				goto init_err_pci_clean;
15202 			}
15203 		}
15204 		rc = bnxt_init_tc(bp);
15205 		if (rc)
15206 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
15207 				   rc);
15208 	}
15209 
15210 	bnxt_inv_fw_health_reg(bp);
15211 	rc = bnxt_dl_register(bp);
15212 	if (rc)
15213 		goto init_err_dl;
15214 
15215 	INIT_LIST_HEAD(&bp->usr_fltr_list);
15216 
15217 	rc = register_netdev(dev);
15218 	if (rc)
15219 		goto init_err_cleanup;
15220 
15221 	bnxt_dl_fw_reporters_create(bp);
15222 
15223 	bnxt_rdma_aux_device_init(bp);
15224 
15225 	bnxt_print_device_info(bp);
15226 
15227 	pci_save_state(pdev);
15228 
15229 	return 0;
15230 init_err_cleanup:
15231 	bnxt_dl_unregister(bp);
15232 init_err_dl:
15233 	bnxt_shutdown_tc(bp);
15234 	bnxt_clear_int_mode(bp);
15235 
15236 init_err_pci_clean:
15237 	bnxt_hwrm_func_drv_unrgtr(bp);
15238 	bnxt_free_hwrm_resources(bp);
15239 	bnxt_hwmon_uninit(bp);
15240 	bnxt_ethtool_free(bp);
15241 	bnxt_ptp_clear(bp);
15242 	kfree(bp->ptp_cfg);
15243 	bp->ptp_cfg = NULL;
15244 	kfree(bp->fw_health);
15245 	bp->fw_health = NULL;
15246 	bnxt_cleanup_pci(bp);
15247 	bnxt_free_ctx_mem(bp);
15248 	kfree(bp->rss_indir_tbl);
15249 	bp->rss_indir_tbl = NULL;
15250 
15251 init_err_free:
15252 	free_netdev(dev);
15253 	return rc;
15254 }
15255 
15256 static void bnxt_shutdown(struct pci_dev *pdev)
15257 {
15258 	struct net_device *dev = pci_get_drvdata(pdev);
15259 	struct bnxt *bp;
15260 
15261 	if (!dev)
15262 		return;
15263 
15264 	rtnl_lock();
15265 	bp = netdev_priv(dev);
15266 	if (!bp)
15267 		goto shutdown_exit;
15268 
15269 	if (netif_running(dev))
15270 		dev_close(dev);
15271 
15272 	bnxt_clear_int_mode(bp);
15273 	pci_disable_device(pdev);
15274 
15275 	if (system_state == SYSTEM_POWER_OFF) {
15276 		pci_wake_from_d3(pdev, bp->wol);
15277 		pci_set_power_state(pdev, PCI_D3hot);
15278 	}
15279 
15280 shutdown_exit:
15281 	rtnl_unlock();
15282 }
15283 
15284 #ifdef CONFIG_PM_SLEEP
15285 static int bnxt_suspend(struct device *device)
15286 {
15287 	struct net_device *dev = dev_get_drvdata(device);
15288 	struct bnxt *bp = netdev_priv(dev);
15289 	int rc = 0;
15290 
15291 	rtnl_lock();
15292 	bnxt_ulp_stop(bp);
15293 	if (netif_running(dev)) {
15294 		netif_device_detach(dev);
15295 		rc = bnxt_close(dev);
15296 	}
15297 	bnxt_hwrm_func_drv_unrgtr(bp);
15298 	pci_disable_device(bp->pdev);
15299 	bnxt_free_ctx_mem(bp);
15300 	rtnl_unlock();
15301 	return rc;
15302 }
15303 
15304 static int bnxt_resume(struct device *device)
15305 {
15306 	struct net_device *dev = dev_get_drvdata(device);
15307 	struct bnxt *bp = netdev_priv(dev);
15308 	int rc = 0;
15309 
15310 	rtnl_lock();
15311 	rc = pci_enable_device(bp->pdev);
15312 	if (rc) {
15313 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
15314 			   rc);
15315 		goto resume_exit;
15316 	}
15317 	pci_set_master(bp->pdev);
15318 	if (bnxt_hwrm_ver_get(bp)) {
15319 		rc = -ENODEV;
15320 		goto resume_exit;
15321 	}
15322 	rc = bnxt_hwrm_func_reset(bp);
15323 	if (rc) {
15324 		rc = -EBUSY;
15325 		goto resume_exit;
15326 	}
15327 
15328 	rc = bnxt_hwrm_func_qcaps(bp);
15329 	if (rc)
15330 		goto resume_exit;
15331 
15332 	bnxt_clear_reservations(bp, true);
15333 
15334 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
15335 		rc = -ENODEV;
15336 		goto resume_exit;
15337 	}
15338 
15339 	bnxt_get_wol_settings(bp);
15340 	if (netif_running(dev)) {
15341 		rc = bnxt_open(dev);
15342 		if (!rc)
15343 			netif_device_attach(dev);
15344 	}
15345 
15346 resume_exit:
15347 	bnxt_ulp_start(bp, rc);
15348 	if (!rc)
15349 		bnxt_reenable_sriov(bp);
15350 	rtnl_unlock();
15351 	return rc;
15352 }
15353 
15354 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
15355 #define BNXT_PM_OPS (&bnxt_pm_ops)
15356 
15357 #else
15358 
15359 #define BNXT_PM_OPS NULL
15360 
15361 #endif /* CONFIG_PM_SLEEP */
15362 
15363 /**
15364  * bnxt_io_error_detected - called when PCI error is detected
15365  * @pdev: Pointer to PCI device
15366  * @state: The current pci connection state
15367  *
15368  * This function is called after a PCI bus error affecting
15369  * this device has been detected.
15370  */
15371 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
15372 					       pci_channel_state_t state)
15373 {
15374 	struct net_device *netdev = pci_get_drvdata(pdev);
15375 	struct bnxt *bp = netdev_priv(netdev);
15376 
15377 	netdev_info(netdev, "PCI I/O error detected\n");
15378 
15379 	rtnl_lock();
15380 	netif_device_detach(netdev);
15381 
15382 	bnxt_ulp_stop(bp);
15383 
15384 	if (state == pci_channel_io_perm_failure) {
15385 		rtnl_unlock();
15386 		return PCI_ERS_RESULT_DISCONNECT;
15387 	}
15388 
15389 	if (state == pci_channel_io_frozen)
15390 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
15391 
15392 	if (netif_running(netdev))
15393 		bnxt_close(netdev);
15394 
15395 	if (pci_is_enabled(pdev))
15396 		pci_disable_device(pdev);
15397 	bnxt_free_ctx_mem(bp);
15398 	rtnl_unlock();
15399 
15400 	/* Request a slot slot reset. */
15401 	return PCI_ERS_RESULT_NEED_RESET;
15402 }
15403 
15404 /**
15405  * bnxt_io_slot_reset - called after the pci bus has been reset.
15406  * @pdev: Pointer to PCI device
15407  *
15408  * Restart the card from scratch, as if from a cold-boot.
15409  * At this point, the card has exprienced a hard reset,
15410  * followed by fixups by BIOS, and has its config space
15411  * set up identically to what it was at cold boot.
15412  */
15413 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
15414 {
15415 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
15416 	struct net_device *netdev = pci_get_drvdata(pdev);
15417 	struct bnxt *bp = netdev_priv(netdev);
15418 	int retry = 0;
15419 	int err = 0;
15420 	int off;
15421 
15422 	netdev_info(bp->dev, "PCI Slot Reset\n");
15423 
15424 	rtnl_lock();
15425 
15426 	if (pci_enable_device(pdev)) {
15427 		dev_err(&pdev->dev,
15428 			"Cannot re-enable PCI device after reset.\n");
15429 	} else {
15430 		pci_set_master(pdev);
15431 		/* Upon fatal error, our device internal logic that latches to
15432 		 * BAR value is getting reset and will restore only upon
15433 		 * rewritting the BARs.
15434 		 *
15435 		 * As pci_restore_state() does not re-write the BARs if the
15436 		 * value is same as saved value earlier, driver needs to
15437 		 * write the BARs to 0 to force restore, in case of fatal error.
15438 		 */
15439 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
15440 				       &bp->state)) {
15441 			for (off = PCI_BASE_ADDRESS_0;
15442 			     off <= PCI_BASE_ADDRESS_5; off += 4)
15443 				pci_write_config_dword(bp->pdev, off, 0);
15444 		}
15445 		pci_restore_state(pdev);
15446 		pci_save_state(pdev);
15447 
15448 		bnxt_inv_fw_health_reg(bp);
15449 		bnxt_try_map_fw_health_reg(bp);
15450 
15451 		/* In some PCIe AER scenarios, firmware may take up to
15452 		 * 10 seconds to become ready in the worst case.
15453 		 */
15454 		do {
15455 			err = bnxt_try_recover_fw(bp);
15456 			if (!err)
15457 				break;
15458 			retry++;
15459 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
15460 
15461 		if (err) {
15462 			dev_err(&pdev->dev, "Firmware not ready\n");
15463 			goto reset_exit;
15464 		}
15465 
15466 		err = bnxt_hwrm_func_reset(bp);
15467 		if (!err)
15468 			result = PCI_ERS_RESULT_RECOVERED;
15469 
15470 		bnxt_ulp_irq_stop(bp);
15471 		bnxt_clear_int_mode(bp);
15472 		err = bnxt_init_int_mode(bp);
15473 		bnxt_ulp_irq_restart(bp, err);
15474 	}
15475 
15476 reset_exit:
15477 	bnxt_clear_reservations(bp, true);
15478 	rtnl_unlock();
15479 
15480 	return result;
15481 }
15482 
15483 /**
15484  * bnxt_io_resume - called when traffic can start flowing again.
15485  * @pdev: Pointer to PCI device
15486  *
15487  * This callback is called when the error recovery driver tells
15488  * us that its OK to resume normal operation.
15489  */
15490 static void bnxt_io_resume(struct pci_dev *pdev)
15491 {
15492 	struct net_device *netdev = pci_get_drvdata(pdev);
15493 	struct bnxt *bp = netdev_priv(netdev);
15494 	int err;
15495 
15496 	netdev_info(bp->dev, "PCI Slot Resume\n");
15497 	rtnl_lock();
15498 
15499 	err = bnxt_hwrm_func_qcaps(bp);
15500 	if (!err && netif_running(netdev))
15501 		err = bnxt_open(netdev);
15502 
15503 	bnxt_ulp_start(bp, err);
15504 	if (!err) {
15505 		bnxt_reenable_sriov(bp);
15506 		netif_device_attach(netdev);
15507 	}
15508 
15509 	rtnl_unlock();
15510 }
15511 
15512 static const struct pci_error_handlers bnxt_err_handler = {
15513 	.error_detected	= bnxt_io_error_detected,
15514 	.slot_reset	= bnxt_io_slot_reset,
15515 	.resume		= bnxt_io_resume
15516 };
15517 
15518 static struct pci_driver bnxt_pci_driver = {
15519 	.name		= DRV_MODULE_NAME,
15520 	.id_table	= bnxt_pci_tbl,
15521 	.probe		= bnxt_init_one,
15522 	.remove		= bnxt_remove_one,
15523 	.shutdown	= bnxt_shutdown,
15524 	.driver.pm	= BNXT_PM_OPS,
15525 	.err_handler	= &bnxt_err_handler,
15526 #if defined(CONFIG_BNXT_SRIOV)
15527 	.sriov_configure = bnxt_sriov_configure,
15528 #endif
15529 };
15530 
15531 static int __init bnxt_init(void)
15532 {
15533 	int err;
15534 
15535 	bnxt_debug_init();
15536 	err = pci_register_driver(&bnxt_pci_driver);
15537 	if (err) {
15538 		bnxt_debug_exit();
15539 		return err;
15540 	}
15541 
15542 	return 0;
15543 }
15544 
15545 static void __exit bnxt_exit(void)
15546 {
15547 	pci_unregister_driver(&bnxt_pci_driver);
15548 	if (bnxt_pf_wq)
15549 		destroy_workqueue(bnxt_pf_wq);
15550 	bnxt_debug_exit();
15551 }
15552 
15553 module_init(bnxt_init);
15554 module_exit(bnxt_exit);
15555