xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_coredump.h"
73 #include "bnxt_hwmon.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom NetXtreme network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
125 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
126 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
127 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
128 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
129 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
130 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
131 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
132 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
134 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
135 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
136 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
137 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
138 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
139 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
140 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
141 	[NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" },
142 };
143 
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
149 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
186 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
187 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
194 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
195 #ifdef CONFIG_BNXT_SRIOV
196 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
198 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
212 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
214 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
215 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
216 	{ PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
218 #endif
219 	{ 0 }
220 };
221 
222 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
223 
224 static const u16 bnxt_vf_req_snif[] = {
225 	HWRM_FUNC_CFG,
226 	HWRM_FUNC_VF_CFG,
227 	HWRM_PORT_PHY_QCFG,
228 	HWRM_CFA_L2_FILTER_ALLOC,
229 };
230 
231 static const u16 bnxt_async_events_arr[] = {
232 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
236 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
237 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
238 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
239 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
240 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
241 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
242 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
243 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
244 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
245 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
246 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
247 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
248 };
249 
250 static struct workqueue_struct *bnxt_pf_wq;
251 
252 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \
253 			       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}
254 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}}
255 
256 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = {
257 	.ports = {
258 		.src = 0,
259 		.dst = 0,
260 	},
261 	.addrs = {
262 		.v6addrs = {
263 			.src = BNXT_IPV6_MASK_NONE,
264 			.dst = BNXT_IPV6_MASK_NONE,
265 		},
266 	},
267 };
268 
269 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = {
270 	.ports = {
271 		.src = cpu_to_be16(0xffff),
272 		.dst = cpu_to_be16(0xffff),
273 	},
274 	.addrs = {
275 		.v6addrs = {
276 			.src = BNXT_IPV6_MASK_ALL,
277 			.dst = BNXT_IPV6_MASK_ALL,
278 		},
279 	},
280 };
281 
282 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = {
283 	.ports = {
284 		.src = cpu_to_be16(0xffff),
285 		.dst = cpu_to_be16(0xffff),
286 	},
287 	.addrs = {
288 		.v4addrs = {
289 			.src = cpu_to_be32(0xffffffff),
290 			.dst = cpu_to_be32(0xffffffff),
291 		},
292 	},
293 };
294 
295 static bool bnxt_vf_pciid(enum board_idx idx)
296 {
297 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
298 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
299 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
300 		idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF);
301 }
302 
303 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
304 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
305 
306 #define BNXT_DB_CQ(db, idx)						\
307 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
308 
309 #define BNXT_DB_NQ_P5(db, idx)						\
310 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
311 		    (db)->doorbell)
312 
313 #define BNXT_DB_NQ_P7(db, idx)						\
314 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
315 		    DB_RING_IDX(db, idx), (db)->doorbell)
316 
317 #define BNXT_DB_CQ_ARM(db, idx)						\
318 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
319 
320 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
321 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
322 		    DB_RING_IDX(db, idx), (db)->doorbell)
323 
324 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
325 {
326 	if (bp->flags & BNXT_FLAG_CHIP_P7)
327 		BNXT_DB_NQ_P7(db, idx);
328 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
329 		BNXT_DB_NQ_P5(db, idx);
330 	else
331 		BNXT_DB_CQ(db, idx);
332 }
333 
334 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
335 {
336 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
337 		BNXT_DB_NQ_ARM_P5(db, idx);
338 	else
339 		BNXT_DB_CQ_ARM(db, idx);
340 }
341 
342 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
343 {
344 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
345 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
346 			    DB_RING_IDX(db, idx), db->doorbell);
347 	else
348 		BNXT_DB_CQ(db, idx);
349 }
350 
351 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
352 {
353 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
354 		return;
355 
356 	if (BNXT_PF(bp))
357 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
358 	else
359 		schedule_delayed_work(&bp->fw_reset_task, delay);
360 }
361 
362 static void __bnxt_queue_sp_work(struct bnxt *bp)
363 {
364 	if (BNXT_PF(bp))
365 		queue_work(bnxt_pf_wq, &bp->sp_task);
366 	else
367 		schedule_work(&bp->sp_task);
368 }
369 
370 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
371 {
372 	set_bit(event, &bp->sp_event);
373 	__bnxt_queue_sp_work(bp);
374 }
375 
376 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
377 {
378 	if (!rxr->bnapi->in_reset) {
379 		rxr->bnapi->in_reset = true;
380 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
381 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
382 		else
383 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
384 		__bnxt_queue_sp_work(bp);
385 	}
386 	rxr->rx_next_cons = 0xffff;
387 }
388 
389 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
390 			  u16 curr)
391 {
392 	struct bnxt_napi *bnapi = txr->bnapi;
393 
394 	if (bnapi->tx_fault)
395 		return;
396 
397 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
398 		   txr->txq_index, txr->tx_hw_cons,
399 		   txr->tx_cons, txr->tx_prod, curr);
400 	WARN_ON_ONCE(1);
401 	bnapi->tx_fault = 1;
402 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
403 }
404 
405 const u16 bnxt_lhint_arr[] = {
406 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
407 	TX_BD_FLAGS_LHINT_512_TO_1023,
408 	TX_BD_FLAGS_LHINT_1024_TO_2047,
409 	TX_BD_FLAGS_LHINT_1024_TO_2047,
410 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
411 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
412 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
413 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
414 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
415 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
416 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
417 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
418 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
419 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
420 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
421 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
422 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
423 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
424 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
425 };
426 
427 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
428 {
429 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
430 
431 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
432 		return 0;
433 
434 	return md_dst->u.port_info.port_id;
435 }
436 
437 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
438 			     u16 prod)
439 {
440 	/* Sync BD data before updating doorbell */
441 	wmb();
442 	bnxt_db_write(bp, &txr->tx_db, prod);
443 	txr->kick_pending = 0;
444 }
445 
446 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
447 {
448 	struct bnxt *bp = netdev_priv(dev);
449 	struct tx_bd *txbd, *txbd0;
450 	struct tx_bd_ext *txbd1;
451 	struct netdev_queue *txq;
452 	int i;
453 	dma_addr_t mapping;
454 	unsigned int length, pad = 0;
455 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
456 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
457 	struct pci_dev *pdev = bp->pdev;
458 	u16 prod, last_frag, txts_prod;
459 	struct bnxt_tx_ring_info *txr;
460 	struct bnxt_sw_tx_bd *tx_buf;
461 	__le32 lflags = 0;
462 
463 	i = skb_get_queue_mapping(skb);
464 	if (unlikely(i >= bp->tx_nr_rings)) {
465 		dev_kfree_skb_any(skb);
466 		dev_core_stats_tx_dropped_inc(dev);
467 		return NETDEV_TX_OK;
468 	}
469 
470 	txq = netdev_get_tx_queue(dev, i);
471 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
472 	prod = txr->tx_prod;
473 
474 	free_size = bnxt_tx_avail(bp, txr);
475 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
476 		/* We must have raced with NAPI cleanup */
477 		if (net_ratelimit() && txr->kick_pending)
478 			netif_warn(bp, tx_err, dev,
479 				   "bnxt: ring busy w/ flush pending!\n");
480 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
481 					bp->tx_wake_thresh))
482 			return NETDEV_TX_BUSY;
483 	}
484 
485 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
486 		goto tx_free;
487 
488 	length = skb->len;
489 	len = skb_headlen(skb);
490 	last_frag = skb_shinfo(skb)->nr_frags;
491 
492 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
493 
494 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
495 	tx_buf->skb = skb;
496 	tx_buf->nr_frags = last_frag;
497 
498 	vlan_tag_flags = 0;
499 	cfa_action = bnxt_xmit_get_cfa_action(skb);
500 	if (skb_vlan_tag_present(skb)) {
501 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
502 				 skb_vlan_tag_get(skb);
503 		/* Currently supports 8021Q, 8021AD vlan offloads
504 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
505 		 */
506 		if (skb->vlan_proto == htons(ETH_P_8021Q))
507 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
508 	}
509 
510 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp &&
511 	    ptp->tx_tstamp_en) {
512 		if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) {
513 			lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
514 			tx_buf->is_ts_pkt = 1;
515 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
516 		} else if (!skb_is_gso(skb)) {
517 			u16 seq_id, hdr_off;
518 
519 			if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) &&
520 			    !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) {
521 				if (vlan_tag_flags)
522 					hdr_off += VLAN_HLEN;
523 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
524 				tx_buf->is_ts_pkt = 1;
525 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
526 
527 				ptp->txts_req[txts_prod].tx_seqid = seq_id;
528 				ptp->txts_req[txts_prod].tx_hdr_off = hdr_off;
529 				tx_buf->txts_prod = txts_prod;
530 			}
531 		}
532 	}
533 	if (unlikely(skb->no_fcs))
534 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
535 
536 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
537 	    !lflags) {
538 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
539 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
540 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
541 		void __iomem *db = txr->tx_db.doorbell;
542 		void *pdata = tx_push_buf->data;
543 		u64 *end;
544 		int j, push_len;
545 
546 		/* Set COAL_NOW to be ready quickly for the next push */
547 		tx_push->tx_bd_len_flags_type =
548 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
549 					TX_BD_TYPE_LONG_TX_BD |
550 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
551 					TX_BD_FLAGS_COAL_NOW |
552 					TX_BD_FLAGS_PACKET_END |
553 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
554 
555 		if (skb->ip_summed == CHECKSUM_PARTIAL)
556 			tx_push1->tx_bd_hsize_lflags =
557 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
558 		else
559 			tx_push1->tx_bd_hsize_lflags = 0;
560 
561 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
562 		tx_push1->tx_bd_cfa_action =
563 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
564 
565 		end = pdata + length;
566 		end = PTR_ALIGN(end, 8) - 1;
567 		*end = 0;
568 
569 		skb_copy_from_linear_data(skb, pdata, len);
570 		pdata += len;
571 		for (j = 0; j < last_frag; j++) {
572 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
573 			void *fptr;
574 
575 			fptr = skb_frag_address_safe(frag);
576 			if (!fptr)
577 				goto normal_tx;
578 
579 			memcpy(pdata, fptr, skb_frag_size(frag));
580 			pdata += skb_frag_size(frag);
581 		}
582 
583 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
584 		txbd->tx_bd_haddr = txr->data_mapping;
585 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
586 		prod = NEXT_TX(prod);
587 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
588 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
589 		memcpy(txbd, tx_push1, sizeof(*txbd));
590 		prod = NEXT_TX(prod);
591 		tx_push->doorbell =
592 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
593 				    DB_RING_IDX(&txr->tx_db, prod));
594 		WRITE_ONCE(txr->tx_prod, prod);
595 
596 		tx_buf->is_push = 1;
597 		netdev_tx_sent_queue(txq, skb->len);
598 		wmb();	/* Sync is_push and byte queue before pushing data */
599 
600 		push_len = (length + sizeof(*tx_push) + 7) / 8;
601 		if (push_len > 16) {
602 			__iowrite64_copy(db, tx_push_buf, 16);
603 			__iowrite32_copy(db + 4, tx_push_buf + 1,
604 					 (push_len - 16) << 1);
605 		} else {
606 			__iowrite64_copy(db, tx_push_buf, push_len);
607 		}
608 
609 		goto tx_done;
610 	}
611 
612 normal_tx:
613 	if (length < BNXT_MIN_PKT_SIZE) {
614 		pad = BNXT_MIN_PKT_SIZE - length;
615 		if (skb_pad(skb, pad))
616 			/* SKB already freed. */
617 			goto tx_kick_pending;
618 		length = BNXT_MIN_PKT_SIZE;
619 	}
620 
621 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
622 
623 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
624 		goto tx_free;
625 
626 	dma_unmap_addr_set(tx_buf, mapping, mapping);
627 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
628 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
629 
630 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
631 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
632 
633 	prod = NEXT_TX(prod);
634 	txbd1 = (struct tx_bd_ext *)
635 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
636 
637 	txbd1->tx_bd_hsize_lflags = lflags;
638 	if (skb_is_gso(skb)) {
639 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
640 		u32 hdr_len;
641 
642 		if (skb->encapsulation) {
643 			if (udp_gso)
644 				hdr_len = skb_inner_transport_offset(skb) +
645 					  sizeof(struct udphdr);
646 			else
647 				hdr_len = skb_inner_tcp_all_headers(skb);
648 		} else if (udp_gso) {
649 			hdr_len = skb_transport_offset(skb) +
650 				  sizeof(struct udphdr);
651 		} else {
652 			hdr_len = skb_tcp_all_headers(skb);
653 		}
654 
655 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
656 					TX_BD_FLAGS_T_IPID |
657 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
658 		length = skb_shinfo(skb)->gso_size;
659 		txbd1->tx_bd_mss = cpu_to_le32(length);
660 		length += hdr_len;
661 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
662 		txbd1->tx_bd_hsize_lflags |=
663 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
664 		txbd1->tx_bd_mss = 0;
665 	}
666 
667 	length >>= 9;
668 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
669 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
670 				     skb->len);
671 		i = 0;
672 		goto tx_dma_error;
673 	}
674 	flags |= bnxt_lhint_arr[length];
675 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
676 
677 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
678 	txbd1->tx_bd_cfa_action =
679 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
680 	txbd0 = txbd;
681 	for (i = 0; i < last_frag; i++) {
682 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
683 
684 		prod = NEXT_TX(prod);
685 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
686 
687 		len = skb_frag_size(frag);
688 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
689 					   DMA_TO_DEVICE);
690 
691 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
692 			goto tx_dma_error;
693 
694 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
695 		dma_unmap_addr_set(tx_buf, mapping, mapping);
696 
697 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
698 
699 		flags = len << TX_BD_LEN_SHIFT;
700 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
701 	}
702 
703 	flags &= ~TX_BD_LEN;
704 	txbd->tx_bd_len_flags_type =
705 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
706 			    TX_BD_FLAGS_PACKET_END);
707 
708 	netdev_tx_sent_queue(txq, skb->len);
709 
710 	skb_tx_timestamp(skb);
711 
712 	prod = NEXT_TX(prod);
713 	WRITE_ONCE(txr->tx_prod, prod);
714 
715 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
716 		bnxt_txr_db_kick(bp, txr, prod);
717 	} else {
718 		if (free_size >= bp->tx_wake_thresh)
719 			txbd0->tx_bd_len_flags_type |=
720 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
721 		txr->kick_pending = 1;
722 	}
723 
724 tx_done:
725 
726 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
727 		if (netdev_xmit_more() && !tx_buf->is_push) {
728 			txbd0->tx_bd_len_flags_type &=
729 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
730 			bnxt_txr_db_kick(bp, txr, prod);
731 		}
732 
733 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
734 				   bp->tx_wake_thresh);
735 	}
736 	return NETDEV_TX_OK;
737 
738 tx_dma_error:
739 	last_frag = i;
740 
741 	/* start back at beginning and unmap skb */
742 	prod = txr->tx_prod;
743 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
744 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
745 			 skb_headlen(skb), DMA_TO_DEVICE);
746 	prod = NEXT_TX(prod);
747 
748 	/* unmap remaining mapped pages */
749 	for (i = 0; i < last_frag; i++) {
750 		prod = NEXT_TX(prod);
751 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
752 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
753 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
754 			       DMA_TO_DEVICE);
755 	}
756 
757 tx_free:
758 	dev_kfree_skb_any(skb);
759 tx_kick_pending:
760 	if (BNXT_TX_PTP_IS_SET(lflags)) {
761 		txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0;
762 		atomic64_inc(&bp->ptp_cfg->stats.ts_err);
763 		if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
764 			/* set SKB to err so PTP worker will clean up */
765 			ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO);
766 	}
767 	if (txr->kick_pending)
768 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
769 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
770 	dev_core_stats_tx_dropped_inc(dev);
771 	return NETDEV_TX_OK;
772 }
773 
774 /* Returns true if some remaining TX packets not processed. */
775 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
776 			  int budget)
777 {
778 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
779 	struct pci_dev *pdev = bp->pdev;
780 	u16 hw_cons = txr->tx_hw_cons;
781 	unsigned int tx_bytes = 0;
782 	u16 cons = txr->tx_cons;
783 	int tx_pkts = 0;
784 	bool rc = false;
785 
786 	while (RING_TX(bp, cons) != hw_cons) {
787 		struct bnxt_sw_tx_bd *tx_buf;
788 		struct sk_buff *skb;
789 		bool is_ts_pkt;
790 		int j, last;
791 
792 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
793 		skb = tx_buf->skb;
794 
795 		if (unlikely(!skb)) {
796 			bnxt_sched_reset_txr(bp, txr, cons);
797 			return rc;
798 		}
799 
800 		is_ts_pkt = tx_buf->is_ts_pkt;
801 		if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) {
802 			rc = true;
803 			break;
804 		}
805 
806 		cons = NEXT_TX(cons);
807 		tx_pkts++;
808 		tx_bytes += skb->len;
809 		tx_buf->skb = NULL;
810 		tx_buf->is_ts_pkt = 0;
811 
812 		if (tx_buf->is_push) {
813 			tx_buf->is_push = 0;
814 			goto next_tx_int;
815 		}
816 
817 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
818 				 skb_headlen(skb), DMA_TO_DEVICE);
819 		last = tx_buf->nr_frags;
820 
821 		for (j = 0; j < last; j++) {
822 			cons = NEXT_TX(cons);
823 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
824 			dma_unmap_page(
825 				&pdev->dev,
826 				dma_unmap_addr(tx_buf, mapping),
827 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
828 				DMA_TO_DEVICE);
829 		}
830 		if (unlikely(is_ts_pkt)) {
831 			if (BNXT_CHIP_P5(bp)) {
832 				/* PTP worker takes ownership of the skb */
833 				bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod);
834 				skb = NULL;
835 			}
836 		}
837 
838 next_tx_int:
839 		cons = NEXT_TX(cons);
840 
841 		dev_consume_skb_any(skb);
842 	}
843 
844 	WRITE_ONCE(txr->tx_cons, cons);
845 
846 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
847 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
848 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
849 
850 	return rc;
851 }
852 
853 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
854 {
855 	struct bnxt_tx_ring_info *txr;
856 	bool more = false;
857 	int i;
858 
859 	bnxt_for_each_napi_tx(i, bnapi, txr) {
860 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
861 			more |= __bnxt_tx_int(bp, txr, budget);
862 	}
863 	if (!more)
864 		bnapi->events &= ~BNXT_TX_CMP_EVENT;
865 }
866 
867 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
868 					 struct bnxt_rx_ring_info *rxr,
869 					 unsigned int *offset,
870 					 gfp_t gfp)
871 {
872 	struct page *page;
873 
874 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
875 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
876 						BNXT_RX_PAGE_SIZE);
877 	} else {
878 		page = page_pool_dev_alloc_pages(rxr->page_pool);
879 		*offset = 0;
880 	}
881 	if (!page)
882 		return NULL;
883 
884 	*mapping = page_pool_get_dma_addr(page) + *offset;
885 	return page;
886 }
887 
888 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
889 				       gfp_t gfp)
890 {
891 	u8 *data;
892 	struct pci_dev *pdev = bp->pdev;
893 
894 	if (gfp == GFP_ATOMIC)
895 		data = napi_alloc_frag(bp->rx_buf_size);
896 	else
897 		data = netdev_alloc_frag(bp->rx_buf_size);
898 	if (!data)
899 		return NULL;
900 
901 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
902 					bp->rx_buf_use_size, bp->rx_dir,
903 					DMA_ATTR_WEAK_ORDERING);
904 
905 	if (dma_mapping_error(&pdev->dev, *mapping)) {
906 		skb_free_frag(data);
907 		data = NULL;
908 	}
909 	return data;
910 }
911 
912 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
913 		       u16 prod, gfp_t gfp)
914 {
915 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
916 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
917 	dma_addr_t mapping;
918 
919 	if (BNXT_RX_PAGE_MODE(bp)) {
920 		unsigned int offset;
921 		struct page *page =
922 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
923 
924 		if (!page)
925 			return -ENOMEM;
926 
927 		mapping += bp->rx_dma_offset;
928 		rx_buf->data = page;
929 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
930 	} else {
931 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
932 
933 		if (!data)
934 			return -ENOMEM;
935 
936 		rx_buf->data = data;
937 		rx_buf->data_ptr = data + bp->rx_offset;
938 	}
939 	rx_buf->mapping = mapping;
940 
941 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
942 	return 0;
943 }
944 
945 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
946 {
947 	u16 prod = rxr->rx_prod;
948 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
949 	struct bnxt *bp = rxr->bnapi->bp;
950 	struct rx_bd *cons_bd, *prod_bd;
951 
952 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
953 	cons_rx_buf = &rxr->rx_buf_ring[cons];
954 
955 	prod_rx_buf->data = data;
956 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
957 
958 	prod_rx_buf->mapping = cons_rx_buf->mapping;
959 
960 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
961 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
962 
963 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
964 }
965 
966 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
967 {
968 	u16 next, max = rxr->rx_agg_bmap_size;
969 
970 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
971 	if (next >= max)
972 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
973 	return next;
974 }
975 
976 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
977 				     struct bnxt_rx_ring_info *rxr,
978 				     u16 prod, gfp_t gfp)
979 {
980 	struct rx_bd *rxbd =
981 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
982 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
983 	struct page *page;
984 	dma_addr_t mapping;
985 	u16 sw_prod = rxr->rx_sw_agg_prod;
986 	unsigned int offset = 0;
987 
988 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
989 
990 	if (!page)
991 		return -ENOMEM;
992 
993 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
994 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
995 
996 	__set_bit(sw_prod, rxr->rx_agg_bmap);
997 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
998 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
999 
1000 	rx_agg_buf->page = page;
1001 	rx_agg_buf->offset = offset;
1002 	rx_agg_buf->mapping = mapping;
1003 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
1004 	rxbd->rx_bd_opaque = sw_prod;
1005 	return 0;
1006 }
1007 
1008 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
1009 				       struct bnxt_cp_ring_info *cpr,
1010 				       u16 cp_cons, u16 curr)
1011 {
1012 	struct rx_agg_cmp *agg;
1013 
1014 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
1015 	agg = (struct rx_agg_cmp *)
1016 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1017 	return agg;
1018 }
1019 
1020 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
1021 					      struct bnxt_rx_ring_info *rxr,
1022 					      u16 agg_id, u16 curr)
1023 {
1024 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
1025 
1026 	return &tpa_info->agg_arr[curr];
1027 }
1028 
1029 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
1030 				   u16 start, u32 agg_bufs, bool tpa)
1031 {
1032 	struct bnxt_napi *bnapi = cpr->bnapi;
1033 	struct bnxt *bp = bnapi->bp;
1034 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1035 	u16 prod = rxr->rx_agg_prod;
1036 	u16 sw_prod = rxr->rx_sw_agg_prod;
1037 	bool p5_tpa = false;
1038 	u32 i;
1039 
1040 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1041 		p5_tpa = true;
1042 
1043 	for (i = 0; i < agg_bufs; i++) {
1044 		u16 cons;
1045 		struct rx_agg_cmp *agg;
1046 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
1047 		struct rx_bd *prod_bd;
1048 		struct page *page;
1049 
1050 		if (p5_tpa)
1051 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
1052 		else
1053 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
1054 		cons = agg->rx_agg_cmp_opaque;
1055 		__clear_bit(cons, rxr->rx_agg_bmap);
1056 
1057 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1058 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1059 
1060 		__set_bit(sw_prod, rxr->rx_agg_bmap);
1061 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
1062 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1063 
1064 		/* It is possible for sw_prod to be equal to cons, so
1065 		 * set cons_rx_buf->page to NULL first.
1066 		 */
1067 		page = cons_rx_buf->page;
1068 		cons_rx_buf->page = NULL;
1069 		prod_rx_buf->page = page;
1070 		prod_rx_buf->offset = cons_rx_buf->offset;
1071 
1072 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1073 
1074 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1075 
1076 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1077 		prod_bd->rx_bd_opaque = sw_prod;
1078 
1079 		prod = NEXT_RX_AGG(prod);
1080 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1081 	}
1082 	rxr->rx_agg_prod = prod;
1083 	rxr->rx_sw_agg_prod = sw_prod;
1084 }
1085 
1086 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1087 					      struct bnxt_rx_ring_info *rxr,
1088 					      u16 cons, void *data, u8 *data_ptr,
1089 					      dma_addr_t dma_addr,
1090 					      unsigned int offset_and_len)
1091 {
1092 	unsigned int len = offset_and_len & 0xffff;
1093 	struct page *page = data;
1094 	u16 prod = rxr->rx_prod;
1095 	struct sk_buff *skb;
1096 	int err;
1097 
1098 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1099 	if (unlikely(err)) {
1100 		bnxt_reuse_rx_data(rxr, cons, data);
1101 		return NULL;
1102 	}
1103 	dma_addr -= bp->rx_dma_offset;
1104 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1105 				bp->rx_dir);
1106 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1107 	if (!skb) {
1108 		page_pool_recycle_direct(rxr->page_pool, page);
1109 		return NULL;
1110 	}
1111 	skb_mark_for_recycle(skb);
1112 	skb_reserve(skb, bp->rx_offset);
1113 	__skb_put(skb, len);
1114 
1115 	return skb;
1116 }
1117 
1118 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1119 					struct bnxt_rx_ring_info *rxr,
1120 					u16 cons, void *data, u8 *data_ptr,
1121 					dma_addr_t dma_addr,
1122 					unsigned int offset_and_len)
1123 {
1124 	unsigned int payload = offset_and_len >> 16;
1125 	unsigned int len = offset_and_len & 0xffff;
1126 	skb_frag_t *frag;
1127 	struct page *page = data;
1128 	u16 prod = rxr->rx_prod;
1129 	struct sk_buff *skb;
1130 	int off, err;
1131 
1132 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1133 	if (unlikely(err)) {
1134 		bnxt_reuse_rx_data(rxr, cons, data);
1135 		return NULL;
1136 	}
1137 	dma_addr -= bp->rx_dma_offset;
1138 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1139 				bp->rx_dir);
1140 
1141 	if (unlikely(!payload))
1142 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1143 
1144 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1145 	if (!skb) {
1146 		page_pool_recycle_direct(rxr->page_pool, page);
1147 		return NULL;
1148 	}
1149 
1150 	skb_mark_for_recycle(skb);
1151 	off = (void *)data_ptr - page_address(page);
1152 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1153 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1154 	       payload + NET_IP_ALIGN);
1155 
1156 	frag = &skb_shinfo(skb)->frags[0];
1157 	skb_frag_size_sub(frag, payload);
1158 	skb_frag_off_add(frag, payload);
1159 	skb->data_len -= payload;
1160 	skb->tail += payload;
1161 
1162 	return skb;
1163 }
1164 
1165 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1166 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1167 				   void *data, u8 *data_ptr,
1168 				   dma_addr_t dma_addr,
1169 				   unsigned int offset_and_len)
1170 {
1171 	u16 prod = rxr->rx_prod;
1172 	struct sk_buff *skb;
1173 	int err;
1174 
1175 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1176 	if (unlikely(err)) {
1177 		bnxt_reuse_rx_data(rxr, cons, data);
1178 		return NULL;
1179 	}
1180 
1181 	skb = napi_build_skb(data, bp->rx_buf_size);
1182 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1183 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1184 	if (!skb) {
1185 		skb_free_frag(data);
1186 		return NULL;
1187 	}
1188 
1189 	skb_reserve(skb, bp->rx_offset);
1190 	skb_put(skb, offset_and_len & 0xffff);
1191 	return skb;
1192 }
1193 
1194 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1195 			       struct bnxt_cp_ring_info *cpr,
1196 			       struct skb_shared_info *shinfo,
1197 			       u16 idx, u32 agg_bufs, bool tpa,
1198 			       struct xdp_buff *xdp)
1199 {
1200 	struct bnxt_napi *bnapi = cpr->bnapi;
1201 	struct pci_dev *pdev = bp->pdev;
1202 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1203 	u16 prod = rxr->rx_agg_prod;
1204 	u32 i, total_frag_len = 0;
1205 	bool p5_tpa = false;
1206 
1207 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1208 		p5_tpa = true;
1209 
1210 	for (i = 0; i < agg_bufs; i++) {
1211 		skb_frag_t *frag = &shinfo->frags[i];
1212 		u16 cons, frag_len;
1213 		struct rx_agg_cmp *agg;
1214 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1215 		struct page *page;
1216 		dma_addr_t mapping;
1217 
1218 		if (p5_tpa)
1219 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1220 		else
1221 			agg = bnxt_get_agg(bp, cpr, idx, i);
1222 		cons = agg->rx_agg_cmp_opaque;
1223 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1224 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1225 
1226 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1227 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1228 					cons_rx_buf->offset, frag_len);
1229 		shinfo->nr_frags = i + 1;
1230 		__clear_bit(cons, rxr->rx_agg_bmap);
1231 
1232 		/* It is possible for bnxt_alloc_rx_page() to allocate
1233 		 * a sw_prod index that equals the cons index, so we
1234 		 * need to clear the cons entry now.
1235 		 */
1236 		mapping = cons_rx_buf->mapping;
1237 		page = cons_rx_buf->page;
1238 		cons_rx_buf->page = NULL;
1239 
1240 		if (xdp && page_is_pfmemalloc(page))
1241 			xdp_buff_set_frag_pfmemalloc(xdp);
1242 
1243 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1244 			--shinfo->nr_frags;
1245 			cons_rx_buf->page = page;
1246 
1247 			/* Update prod since possibly some pages have been
1248 			 * allocated already.
1249 			 */
1250 			rxr->rx_agg_prod = prod;
1251 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1252 			return 0;
1253 		}
1254 
1255 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1256 					bp->rx_dir);
1257 
1258 		total_frag_len += frag_len;
1259 		prod = NEXT_RX_AGG(prod);
1260 	}
1261 	rxr->rx_agg_prod = prod;
1262 	return total_frag_len;
1263 }
1264 
1265 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1266 					     struct bnxt_cp_ring_info *cpr,
1267 					     struct sk_buff *skb, u16 idx,
1268 					     u32 agg_bufs, bool tpa)
1269 {
1270 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1271 	u32 total_frag_len = 0;
1272 
1273 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1274 					     agg_bufs, tpa, NULL);
1275 	if (!total_frag_len) {
1276 		skb_mark_for_recycle(skb);
1277 		dev_kfree_skb(skb);
1278 		return NULL;
1279 	}
1280 
1281 	skb->data_len += total_frag_len;
1282 	skb->len += total_frag_len;
1283 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1284 	return skb;
1285 }
1286 
1287 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1288 				 struct bnxt_cp_ring_info *cpr,
1289 				 struct xdp_buff *xdp, u16 idx,
1290 				 u32 agg_bufs, bool tpa)
1291 {
1292 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1293 	u32 total_frag_len = 0;
1294 
1295 	if (!xdp_buff_has_frags(xdp))
1296 		shinfo->nr_frags = 0;
1297 
1298 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1299 					     idx, agg_bufs, tpa, xdp);
1300 	if (total_frag_len) {
1301 		xdp_buff_set_frags_flag(xdp);
1302 		shinfo->nr_frags = agg_bufs;
1303 		shinfo->xdp_frags_size = total_frag_len;
1304 	}
1305 	return total_frag_len;
1306 }
1307 
1308 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1309 			       u8 agg_bufs, u32 *raw_cons)
1310 {
1311 	u16 last;
1312 	struct rx_agg_cmp *agg;
1313 
1314 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1315 	last = RING_CMP(*raw_cons);
1316 	agg = (struct rx_agg_cmp *)
1317 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1318 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1319 }
1320 
1321 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data,
1322 				      unsigned int len,
1323 				      dma_addr_t mapping)
1324 {
1325 	struct bnxt *bp = bnapi->bp;
1326 	struct pci_dev *pdev = bp->pdev;
1327 	struct sk_buff *skb;
1328 
1329 	skb = napi_alloc_skb(&bnapi->napi, len);
1330 	if (!skb)
1331 		return NULL;
1332 
1333 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1334 				bp->rx_dir);
1335 
1336 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1337 	       len + NET_IP_ALIGN);
1338 
1339 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1340 				   bp->rx_dir);
1341 
1342 	skb_put(skb, len);
1343 
1344 	return skb;
1345 }
1346 
1347 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1348 				     unsigned int len,
1349 				     dma_addr_t mapping)
1350 {
1351 	return bnxt_copy_data(bnapi, data, len, mapping);
1352 }
1353 
1354 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi,
1355 				     struct xdp_buff *xdp,
1356 				     unsigned int len,
1357 				     dma_addr_t mapping)
1358 {
1359 	unsigned int metasize = 0;
1360 	u8 *data = xdp->data;
1361 	struct sk_buff *skb;
1362 
1363 	len = xdp->data_end - xdp->data_meta;
1364 	metasize = xdp->data - xdp->data_meta;
1365 	data = xdp->data_meta;
1366 
1367 	skb = bnxt_copy_data(bnapi, data, len, mapping);
1368 	if (!skb)
1369 		return skb;
1370 
1371 	if (metasize) {
1372 		skb_metadata_set(skb, metasize);
1373 		__skb_pull(skb, metasize);
1374 	}
1375 
1376 	return skb;
1377 }
1378 
1379 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1380 			   u32 *raw_cons, void *cmp)
1381 {
1382 	struct rx_cmp *rxcmp = cmp;
1383 	u32 tmp_raw_cons = *raw_cons;
1384 	u8 cmp_type, agg_bufs = 0;
1385 
1386 	cmp_type = RX_CMP_TYPE(rxcmp);
1387 
1388 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1389 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1390 			    RX_CMP_AGG_BUFS) >>
1391 			   RX_CMP_AGG_BUFS_SHIFT;
1392 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1393 		struct rx_tpa_end_cmp *tpa_end = cmp;
1394 
1395 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1396 			return 0;
1397 
1398 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1399 	}
1400 
1401 	if (agg_bufs) {
1402 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1403 			return -EBUSY;
1404 	}
1405 	*raw_cons = tmp_raw_cons;
1406 	return 0;
1407 }
1408 
1409 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1410 {
1411 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1412 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1413 
1414 	if (test_bit(idx, map->agg_idx_bmap))
1415 		idx = find_first_zero_bit(map->agg_idx_bmap,
1416 					  BNXT_AGG_IDX_BMAP_SIZE);
1417 	__set_bit(idx, map->agg_idx_bmap);
1418 	map->agg_id_tbl[agg_id] = idx;
1419 	return idx;
1420 }
1421 
1422 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1423 {
1424 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1425 
1426 	__clear_bit(idx, map->agg_idx_bmap);
1427 }
1428 
1429 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1430 {
1431 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1432 
1433 	return map->agg_id_tbl[agg_id];
1434 }
1435 
1436 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1437 			      struct rx_tpa_start_cmp *tpa_start,
1438 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1439 {
1440 	tpa_info->cfa_code_valid = 1;
1441 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1442 	tpa_info->vlan_valid = 0;
1443 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1444 		tpa_info->vlan_valid = 1;
1445 		tpa_info->metadata =
1446 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1447 	}
1448 }
1449 
1450 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1451 				 struct rx_tpa_start_cmp *tpa_start,
1452 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1453 {
1454 	tpa_info->vlan_valid = 0;
1455 	if (TPA_START_VLAN_VALID(tpa_start)) {
1456 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1457 		u32 vlan_proto = ETH_P_8021Q;
1458 
1459 		tpa_info->vlan_valid = 1;
1460 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1461 			vlan_proto = ETH_P_8021AD;
1462 		tpa_info->metadata = vlan_proto << 16 |
1463 				     TPA_START_METADATA0_TCI(tpa_start1);
1464 	}
1465 }
1466 
1467 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1468 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1469 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1470 {
1471 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1472 	struct bnxt_tpa_info *tpa_info;
1473 	u16 cons, prod, agg_id;
1474 	struct rx_bd *prod_bd;
1475 	dma_addr_t mapping;
1476 
1477 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1478 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1479 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1480 	} else {
1481 		agg_id = TPA_START_AGG_ID(tpa_start);
1482 	}
1483 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1484 	prod = rxr->rx_prod;
1485 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1486 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1487 	tpa_info = &rxr->rx_tpa[agg_id];
1488 
1489 	if (unlikely(cons != rxr->rx_next_cons ||
1490 		     TPA_START_ERROR(tpa_start))) {
1491 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1492 			    cons, rxr->rx_next_cons,
1493 			    TPA_START_ERROR_CODE(tpa_start1));
1494 		bnxt_sched_reset_rxr(bp, rxr);
1495 		return;
1496 	}
1497 	prod_rx_buf->data = tpa_info->data;
1498 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1499 
1500 	mapping = tpa_info->mapping;
1501 	prod_rx_buf->mapping = mapping;
1502 
1503 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1504 
1505 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1506 
1507 	tpa_info->data = cons_rx_buf->data;
1508 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1509 	cons_rx_buf->data = NULL;
1510 	tpa_info->mapping = cons_rx_buf->mapping;
1511 
1512 	tpa_info->len =
1513 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1514 				RX_TPA_START_CMP_LEN_SHIFT;
1515 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1516 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1517 		tpa_info->gso_type = SKB_GSO_TCPV4;
1518 		if (TPA_START_IS_IPV6(tpa_start1))
1519 			tpa_info->gso_type = SKB_GSO_TCPV6;
1520 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1522 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1523 			tpa_info->gso_type = SKB_GSO_TCPV6;
1524 		tpa_info->rss_hash =
1525 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1526 	} else {
1527 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1528 		tpa_info->gso_type = 0;
1529 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1530 	}
1531 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1532 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1533 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1534 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1535 	else
1536 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1537 	tpa_info->agg_count = 0;
1538 
1539 	rxr->rx_prod = NEXT_RX(prod);
1540 	cons = RING_RX(bp, NEXT_RX(cons));
1541 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1542 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1543 
1544 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1545 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1546 	cons_rx_buf->data = NULL;
1547 }
1548 
1549 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1550 {
1551 	if (agg_bufs)
1552 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1553 }
1554 
1555 #ifdef CONFIG_INET
1556 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1557 {
1558 	struct udphdr *uh = NULL;
1559 
1560 	if (ip_proto == htons(ETH_P_IP)) {
1561 		struct iphdr *iph = (struct iphdr *)skb->data;
1562 
1563 		if (iph->protocol == IPPROTO_UDP)
1564 			uh = (struct udphdr *)(iph + 1);
1565 	} else {
1566 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1567 
1568 		if (iph->nexthdr == IPPROTO_UDP)
1569 			uh = (struct udphdr *)(iph + 1);
1570 	}
1571 	if (uh) {
1572 		if (uh->check)
1573 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1574 		else
1575 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1576 	}
1577 }
1578 #endif
1579 
1580 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1581 					   int payload_off, int tcp_ts,
1582 					   struct sk_buff *skb)
1583 {
1584 #ifdef CONFIG_INET
1585 	struct tcphdr *th;
1586 	int len, nw_off;
1587 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1588 	u32 hdr_info = tpa_info->hdr_info;
1589 	bool loopback = false;
1590 
1591 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1592 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1593 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1594 
1595 	/* If the packet is an internal loopback packet, the offsets will
1596 	 * have an extra 4 bytes.
1597 	 */
1598 	if (inner_mac_off == 4) {
1599 		loopback = true;
1600 	} else if (inner_mac_off > 4) {
1601 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1602 					    ETH_HLEN - 2));
1603 
1604 		/* We only support inner iPv4/ipv6.  If we don't see the
1605 		 * correct protocol ID, it must be a loopback packet where
1606 		 * the offsets are off by 4.
1607 		 */
1608 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1609 			loopback = true;
1610 	}
1611 	if (loopback) {
1612 		/* internal loopback packet, subtract all offsets by 4 */
1613 		inner_ip_off -= 4;
1614 		inner_mac_off -= 4;
1615 		outer_ip_off -= 4;
1616 	}
1617 
1618 	nw_off = inner_ip_off - ETH_HLEN;
1619 	skb_set_network_header(skb, nw_off);
1620 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1621 		struct ipv6hdr *iph = ipv6_hdr(skb);
1622 
1623 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1624 		len = skb->len - skb_transport_offset(skb);
1625 		th = tcp_hdr(skb);
1626 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1627 	} else {
1628 		struct iphdr *iph = ip_hdr(skb);
1629 
1630 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1631 		len = skb->len - skb_transport_offset(skb);
1632 		th = tcp_hdr(skb);
1633 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1634 	}
1635 
1636 	if (inner_mac_off) { /* tunnel */
1637 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1638 					    ETH_HLEN - 2));
1639 
1640 		bnxt_gro_tunnel(skb, proto);
1641 	}
1642 #endif
1643 	return skb;
1644 }
1645 
1646 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1647 					   int payload_off, int tcp_ts,
1648 					   struct sk_buff *skb)
1649 {
1650 #ifdef CONFIG_INET
1651 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1652 	u32 hdr_info = tpa_info->hdr_info;
1653 	int iphdr_len, nw_off;
1654 
1655 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1656 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1657 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1658 
1659 	nw_off = inner_ip_off - ETH_HLEN;
1660 	skb_set_network_header(skb, nw_off);
1661 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1662 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1663 	skb_set_transport_header(skb, nw_off + iphdr_len);
1664 
1665 	if (inner_mac_off) { /* tunnel */
1666 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1667 					    ETH_HLEN - 2));
1668 
1669 		bnxt_gro_tunnel(skb, proto);
1670 	}
1671 #endif
1672 	return skb;
1673 }
1674 
1675 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1676 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1677 
1678 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1679 					   int payload_off, int tcp_ts,
1680 					   struct sk_buff *skb)
1681 {
1682 #ifdef CONFIG_INET
1683 	struct tcphdr *th;
1684 	int len, nw_off, tcp_opt_len = 0;
1685 
1686 	if (tcp_ts)
1687 		tcp_opt_len = 12;
1688 
1689 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1690 		struct iphdr *iph;
1691 
1692 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1693 			 ETH_HLEN;
1694 		skb_set_network_header(skb, nw_off);
1695 		iph = ip_hdr(skb);
1696 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1697 		len = skb->len - skb_transport_offset(skb);
1698 		th = tcp_hdr(skb);
1699 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1700 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1701 		struct ipv6hdr *iph;
1702 
1703 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1704 			 ETH_HLEN;
1705 		skb_set_network_header(skb, nw_off);
1706 		iph = ipv6_hdr(skb);
1707 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1708 		len = skb->len - skb_transport_offset(skb);
1709 		th = tcp_hdr(skb);
1710 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1711 	} else {
1712 		dev_kfree_skb_any(skb);
1713 		return NULL;
1714 	}
1715 
1716 	if (nw_off) /* tunnel */
1717 		bnxt_gro_tunnel(skb, skb->protocol);
1718 #endif
1719 	return skb;
1720 }
1721 
1722 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1723 					   struct bnxt_tpa_info *tpa_info,
1724 					   struct rx_tpa_end_cmp *tpa_end,
1725 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1726 					   struct sk_buff *skb)
1727 {
1728 #ifdef CONFIG_INET
1729 	int payload_off;
1730 	u16 segs;
1731 
1732 	segs = TPA_END_TPA_SEGS(tpa_end);
1733 	if (segs == 1)
1734 		return skb;
1735 
1736 	NAPI_GRO_CB(skb)->count = segs;
1737 	skb_shinfo(skb)->gso_size =
1738 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1739 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1740 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1741 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1742 	else
1743 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1744 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1745 	if (likely(skb))
1746 		tcp_gro_complete(skb);
1747 #endif
1748 	return skb;
1749 }
1750 
1751 /* Given the cfa_code of a received packet determine which
1752  * netdev (vf-rep or PF) the packet is destined to.
1753  */
1754 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1755 {
1756 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1757 
1758 	/* if vf-rep dev is NULL, the must belongs to the PF */
1759 	return dev ? dev : bp->dev;
1760 }
1761 
1762 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1763 					   struct bnxt_cp_ring_info *cpr,
1764 					   u32 *raw_cons,
1765 					   struct rx_tpa_end_cmp *tpa_end,
1766 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1767 					   u8 *event)
1768 {
1769 	struct bnxt_napi *bnapi = cpr->bnapi;
1770 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1771 	struct net_device *dev = bp->dev;
1772 	u8 *data_ptr, agg_bufs;
1773 	unsigned int len;
1774 	struct bnxt_tpa_info *tpa_info;
1775 	dma_addr_t mapping;
1776 	struct sk_buff *skb;
1777 	u16 idx = 0, agg_id;
1778 	void *data;
1779 	bool gro;
1780 
1781 	if (unlikely(bnapi->in_reset)) {
1782 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1783 
1784 		if (rc < 0)
1785 			return ERR_PTR(-EBUSY);
1786 		return NULL;
1787 	}
1788 
1789 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1790 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1791 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1792 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1793 		tpa_info = &rxr->rx_tpa[agg_id];
1794 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1795 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1796 				    agg_bufs, tpa_info->agg_count);
1797 			agg_bufs = tpa_info->agg_count;
1798 		}
1799 		tpa_info->agg_count = 0;
1800 		*event |= BNXT_AGG_EVENT;
1801 		bnxt_free_agg_idx(rxr, agg_id);
1802 		idx = agg_id;
1803 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1804 	} else {
1805 		agg_id = TPA_END_AGG_ID(tpa_end);
1806 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1807 		tpa_info = &rxr->rx_tpa[agg_id];
1808 		idx = RING_CMP(*raw_cons);
1809 		if (agg_bufs) {
1810 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1811 				return ERR_PTR(-EBUSY);
1812 
1813 			*event |= BNXT_AGG_EVENT;
1814 			idx = NEXT_CMP(idx);
1815 		}
1816 		gro = !!TPA_END_GRO(tpa_end);
1817 	}
1818 	data = tpa_info->data;
1819 	data_ptr = tpa_info->data_ptr;
1820 	prefetch(data_ptr);
1821 	len = tpa_info->len;
1822 	mapping = tpa_info->mapping;
1823 
1824 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1825 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1826 		if (agg_bufs > MAX_SKB_FRAGS)
1827 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1828 				    agg_bufs, (int)MAX_SKB_FRAGS);
1829 		return NULL;
1830 	}
1831 
1832 	if (len <= bp->rx_copy_thresh) {
1833 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1834 		if (!skb) {
1835 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1836 			cpr->sw_stats->rx.rx_oom_discards += 1;
1837 			return NULL;
1838 		}
1839 	} else {
1840 		u8 *new_data;
1841 		dma_addr_t new_mapping;
1842 
1843 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1844 		if (!new_data) {
1845 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1846 			cpr->sw_stats->rx.rx_oom_discards += 1;
1847 			return NULL;
1848 		}
1849 
1850 		tpa_info->data = new_data;
1851 		tpa_info->data_ptr = new_data + bp->rx_offset;
1852 		tpa_info->mapping = new_mapping;
1853 
1854 		skb = napi_build_skb(data, bp->rx_buf_size);
1855 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1856 				       bp->rx_buf_use_size, bp->rx_dir,
1857 				       DMA_ATTR_WEAK_ORDERING);
1858 
1859 		if (!skb) {
1860 			skb_free_frag(data);
1861 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1862 			cpr->sw_stats->rx.rx_oom_discards += 1;
1863 			return NULL;
1864 		}
1865 		skb_reserve(skb, bp->rx_offset);
1866 		skb_put(skb, len);
1867 	}
1868 
1869 	if (agg_bufs) {
1870 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1871 		if (!skb) {
1872 			/* Page reuse already handled by bnxt_rx_pages(). */
1873 			cpr->sw_stats->rx.rx_oom_discards += 1;
1874 			return NULL;
1875 		}
1876 	}
1877 
1878 	if (tpa_info->cfa_code_valid)
1879 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1880 	skb->protocol = eth_type_trans(skb, dev);
1881 
1882 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1883 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1884 
1885 	if (tpa_info->vlan_valid &&
1886 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1887 		__be16 vlan_proto = htons(tpa_info->metadata >>
1888 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1889 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1890 
1891 		if (eth_type_vlan(vlan_proto)) {
1892 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1893 		} else {
1894 			dev_kfree_skb(skb);
1895 			return NULL;
1896 		}
1897 	}
1898 
1899 	skb_checksum_none_assert(skb);
1900 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1901 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1902 		skb->csum_level =
1903 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1904 	}
1905 
1906 	if (gro)
1907 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1908 
1909 	return skb;
1910 }
1911 
1912 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1913 			 struct rx_agg_cmp *rx_agg)
1914 {
1915 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1916 	struct bnxt_tpa_info *tpa_info;
1917 
1918 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1919 	tpa_info = &rxr->rx_tpa[agg_id];
1920 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1921 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1922 }
1923 
1924 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1925 			     struct sk_buff *skb)
1926 {
1927 	skb_mark_for_recycle(skb);
1928 
1929 	if (skb->dev != bp->dev) {
1930 		/* this packet belongs to a vf-rep */
1931 		bnxt_vf_rep_rx(bp, skb);
1932 		return;
1933 	}
1934 	skb_record_rx_queue(skb, bnapi->index);
1935 	napi_gro_receive(&bnapi->napi, skb);
1936 }
1937 
1938 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1939 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1940 {
1941 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1942 
1943 	if (BNXT_PTP_RX_TS_VALID(flags))
1944 		goto ts_valid;
1945 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1946 		return false;
1947 
1948 ts_valid:
1949 	*cmpl_ts = ts;
1950 	return true;
1951 }
1952 
1953 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1954 				    struct rx_cmp *rxcmp,
1955 				    struct rx_cmp_ext *rxcmp1)
1956 {
1957 	__be16 vlan_proto;
1958 	u16 vtag;
1959 
1960 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1961 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1962 		u32 meta_data;
1963 
1964 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1965 			return skb;
1966 
1967 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1968 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1969 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1970 		if (eth_type_vlan(vlan_proto))
1971 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1972 		else
1973 			goto vlan_err;
1974 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1975 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1976 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1977 
1978 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1979 				vlan_proto = htons(ETH_P_8021Q);
1980 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1981 				vlan_proto = htons(ETH_P_8021AD);
1982 			else
1983 				goto vlan_err;
1984 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1985 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1986 		}
1987 	}
1988 	return skb;
1989 vlan_err:
1990 	dev_kfree_skb(skb);
1991 	return NULL;
1992 }
1993 
1994 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1995 					   struct rx_cmp *rxcmp)
1996 {
1997 	u8 ext_op;
1998 
1999 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
2000 	switch (ext_op) {
2001 	case EXT_OP_INNER_4:
2002 	case EXT_OP_OUTER_4:
2003 	case EXT_OP_INNFL_3:
2004 	case EXT_OP_OUTFL_3:
2005 		return PKT_HASH_TYPE_L4;
2006 	default:
2007 		return PKT_HASH_TYPE_L3;
2008 	}
2009 }
2010 
2011 /* returns the following:
2012  * 1       - 1 packet successfully received
2013  * 0       - successful TPA_START, packet not completed yet
2014  * -EBUSY  - completion ring does not have all the agg buffers yet
2015  * -ENOMEM - packet aborted due to out of memory
2016  * -EIO    - packet aborted due to hw error indicated in BD
2017  */
2018 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2019 		       u32 *raw_cons, u8 *event)
2020 {
2021 	struct bnxt_napi *bnapi = cpr->bnapi;
2022 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2023 	struct net_device *dev = bp->dev;
2024 	struct rx_cmp *rxcmp;
2025 	struct rx_cmp_ext *rxcmp1;
2026 	u32 tmp_raw_cons = *raw_cons;
2027 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
2028 	struct bnxt_sw_rx_bd *rx_buf;
2029 	unsigned int len;
2030 	u8 *data_ptr, agg_bufs, cmp_type;
2031 	bool xdp_active = false;
2032 	dma_addr_t dma_addr;
2033 	struct sk_buff *skb;
2034 	struct xdp_buff xdp;
2035 	u32 flags, misc;
2036 	u32 cmpl_ts;
2037 	void *data;
2038 	int rc = 0;
2039 
2040 	rxcmp = (struct rx_cmp *)
2041 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2042 
2043 	cmp_type = RX_CMP_TYPE(rxcmp);
2044 
2045 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
2046 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
2047 		goto next_rx_no_prod_no_len;
2048 	}
2049 
2050 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2051 	cp_cons = RING_CMP(tmp_raw_cons);
2052 	rxcmp1 = (struct rx_cmp_ext *)
2053 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2054 
2055 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2056 		return -EBUSY;
2057 
2058 	/* The valid test of the entry must be done first before
2059 	 * reading any further.
2060 	 */
2061 	dma_rmb();
2062 	prod = rxr->rx_prod;
2063 
2064 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
2065 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2066 		bnxt_tpa_start(bp, rxr, cmp_type,
2067 			       (struct rx_tpa_start_cmp *)rxcmp,
2068 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
2069 
2070 		*event |= BNXT_RX_EVENT;
2071 		goto next_rx_no_prod_no_len;
2072 
2073 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2074 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
2075 				   (struct rx_tpa_end_cmp *)rxcmp,
2076 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
2077 
2078 		if (IS_ERR(skb))
2079 			return -EBUSY;
2080 
2081 		rc = -ENOMEM;
2082 		if (likely(skb)) {
2083 			bnxt_deliver_skb(bp, bnapi, skb);
2084 			rc = 1;
2085 		}
2086 		*event |= BNXT_RX_EVENT;
2087 		goto next_rx_no_prod_no_len;
2088 	}
2089 
2090 	cons = rxcmp->rx_cmp_opaque;
2091 	if (unlikely(cons != rxr->rx_next_cons)) {
2092 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
2093 
2094 		/* 0xffff is forced error, don't print it */
2095 		if (rxr->rx_next_cons != 0xffff)
2096 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
2097 				    cons, rxr->rx_next_cons);
2098 		bnxt_sched_reset_rxr(bp, rxr);
2099 		if (rc1)
2100 			return rc1;
2101 		goto next_rx_no_prod_no_len;
2102 	}
2103 	rx_buf = &rxr->rx_buf_ring[cons];
2104 	data = rx_buf->data;
2105 	data_ptr = rx_buf->data_ptr;
2106 	prefetch(data_ptr);
2107 
2108 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2109 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2110 
2111 	if (agg_bufs) {
2112 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2113 			return -EBUSY;
2114 
2115 		cp_cons = NEXT_CMP(cp_cons);
2116 		*event |= BNXT_AGG_EVENT;
2117 	}
2118 	*event |= BNXT_RX_EVENT;
2119 
2120 	rx_buf->data = NULL;
2121 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2122 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2123 
2124 		bnxt_reuse_rx_data(rxr, cons, data);
2125 		if (agg_bufs)
2126 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2127 					       false);
2128 
2129 		rc = -EIO;
2130 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2131 			bnapi->cp_ring.sw_stats->rx.rx_buf_errors++;
2132 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2133 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2134 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2135 						 rx_err);
2136 				bnxt_sched_reset_rxr(bp, rxr);
2137 			}
2138 		}
2139 		goto next_rx_no_len;
2140 	}
2141 
2142 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2143 	len = flags >> RX_CMP_LEN_SHIFT;
2144 	dma_addr = rx_buf->mapping;
2145 
2146 	if (bnxt_xdp_attached(bp, rxr)) {
2147 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2148 		if (agg_bufs) {
2149 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2150 							     cp_cons, agg_bufs,
2151 							     false);
2152 			if (!frag_len)
2153 				goto oom_next_rx;
2154 		}
2155 		xdp_active = true;
2156 	}
2157 
2158 	if (xdp_active) {
2159 		if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) {
2160 			rc = 1;
2161 			goto next_rx;
2162 		}
2163 	}
2164 
2165 	if (len <= bp->rx_copy_thresh) {
2166 		if (!xdp_active)
2167 			skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2168 		else
2169 			skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr);
2170 		bnxt_reuse_rx_data(rxr, cons, data);
2171 		if (!skb) {
2172 			if (agg_bufs) {
2173 				if (!xdp_active)
2174 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2175 							       agg_bufs, false);
2176 				else
2177 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2178 			}
2179 			goto oom_next_rx;
2180 		}
2181 	} else {
2182 		u32 payload;
2183 
2184 		if (rx_buf->data_ptr == data_ptr)
2185 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2186 		else
2187 			payload = 0;
2188 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2189 				      payload | len);
2190 		if (!skb)
2191 			goto oom_next_rx;
2192 	}
2193 
2194 	if (agg_bufs) {
2195 		if (!xdp_active) {
2196 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2197 			if (!skb)
2198 				goto oom_next_rx;
2199 		} else {
2200 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2201 			if (!skb) {
2202 				/* we should be able to free the old skb here */
2203 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2204 				goto oom_next_rx;
2205 			}
2206 		}
2207 	}
2208 
2209 	if (RX_CMP_HASH_VALID(rxcmp)) {
2210 		enum pkt_hash_types type;
2211 
2212 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2213 			type = bnxt_rss_ext_op(bp, rxcmp);
2214 		} else {
2215 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2216 
2217 			/* RSS profiles 1 and 3 with extract code 0 for inner
2218 			 * 4-tuple
2219 			 */
2220 			if (hash_type != 1 && hash_type != 3)
2221 				type = PKT_HASH_TYPE_L3;
2222 			else
2223 				type = PKT_HASH_TYPE_L4;
2224 		}
2225 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2226 	}
2227 
2228 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2229 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2230 	skb->protocol = eth_type_trans(skb, dev);
2231 
2232 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2233 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2234 		if (!skb)
2235 			goto next_rx;
2236 	}
2237 
2238 	skb_checksum_none_assert(skb);
2239 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2240 		if (dev->features & NETIF_F_RXCSUM) {
2241 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2242 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2243 		}
2244 	} else {
2245 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2246 			if (dev->features & NETIF_F_RXCSUM)
2247 				bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++;
2248 		}
2249 	}
2250 
2251 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2252 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2253 			u64 ns, ts;
2254 
2255 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2256 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2257 				unsigned long flags;
2258 
2259 				spin_lock_irqsave(&ptp->ptp_lock, flags);
2260 				ns = timecounter_cyc2time(&ptp->tc, ts);
2261 				spin_unlock_irqrestore(&ptp->ptp_lock, flags);
2262 				memset(skb_hwtstamps(skb), 0,
2263 				       sizeof(*skb_hwtstamps(skb)));
2264 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2265 			}
2266 		}
2267 	}
2268 	bnxt_deliver_skb(bp, bnapi, skb);
2269 	rc = 1;
2270 
2271 next_rx:
2272 	cpr->rx_packets += 1;
2273 	cpr->rx_bytes += len;
2274 
2275 next_rx_no_len:
2276 	rxr->rx_prod = NEXT_RX(prod);
2277 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2278 
2279 next_rx_no_prod_no_len:
2280 	*raw_cons = tmp_raw_cons;
2281 
2282 	return rc;
2283 
2284 oom_next_rx:
2285 	cpr->sw_stats->rx.rx_oom_discards += 1;
2286 	rc = -ENOMEM;
2287 	goto next_rx;
2288 }
2289 
2290 /* In netpoll mode, if we are using a combined completion ring, we need to
2291  * discard the rx packets and recycle the buffers.
2292  */
2293 static int bnxt_force_rx_discard(struct bnxt *bp,
2294 				 struct bnxt_cp_ring_info *cpr,
2295 				 u32 *raw_cons, u8 *event)
2296 {
2297 	u32 tmp_raw_cons = *raw_cons;
2298 	struct rx_cmp_ext *rxcmp1;
2299 	struct rx_cmp *rxcmp;
2300 	u16 cp_cons;
2301 	u8 cmp_type;
2302 	int rc;
2303 
2304 	cp_cons = RING_CMP(tmp_raw_cons);
2305 	rxcmp = (struct rx_cmp *)
2306 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2307 
2308 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2309 	cp_cons = RING_CMP(tmp_raw_cons);
2310 	rxcmp1 = (struct rx_cmp_ext *)
2311 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2312 
2313 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2314 		return -EBUSY;
2315 
2316 	/* The valid test of the entry must be done first before
2317 	 * reading any further.
2318 	 */
2319 	dma_rmb();
2320 	cmp_type = RX_CMP_TYPE(rxcmp);
2321 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2322 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2323 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2324 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2325 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2326 		struct rx_tpa_end_cmp_ext *tpa_end1;
2327 
2328 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2329 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2330 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2331 	}
2332 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2333 	if (rc && rc != -EBUSY)
2334 		cpr->sw_stats->rx.rx_netpoll_discards += 1;
2335 	return rc;
2336 }
2337 
2338 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2339 {
2340 	struct bnxt_fw_health *fw_health = bp->fw_health;
2341 	u32 reg = fw_health->regs[reg_idx];
2342 	u32 reg_type, reg_off, val = 0;
2343 
2344 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2345 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2346 	switch (reg_type) {
2347 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2348 		pci_read_config_dword(bp->pdev, reg_off, &val);
2349 		break;
2350 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2351 		reg_off = fw_health->mapped_regs[reg_idx];
2352 		fallthrough;
2353 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2354 		val = readl(bp->bar0 + reg_off);
2355 		break;
2356 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2357 		val = readl(bp->bar1 + reg_off);
2358 		break;
2359 	}
2360 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2361 		val &= fw_health->fw_reset_inprog_reg_mask;
2362 	return val;
2363 }
2364 
2365 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2366 {
2367 	int i;
2368 
2369 	for (i = 0; i < bp->rx_nr_rings; i++) {
2370 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2371 		struct bnxt_ring_grp_info *grp_info;
2372 
2373 		grp_info = &bp->grp_info[grp_idx];
2374 		if (grp_info->agg_fw_ring_id == ring_id)
2375 			return grp_idx;
2376 	}
2377 	return INVALID_HW_RING_ID;
2378 }
2379 
2380 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2381 {
2382 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2383 
2384 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2385 		return link_info->force_link_speed2;
2386 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2387 		return link_info->force_pam4_link_speed;
2388 	return link_info->force_link_speed;
2389 }
2390 
2391 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2392 {
2393 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2394 
2395 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2396 		link_info->req_link_speed = link_info->force_link_speed2;
2397 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2398 		switch (link_info->req_link_speed) {
2399 		case BNXT_LINK_SPEED_50GB_PAM4:
2400 		case BNXT_LINK_SPEED_100GB_PAM4:
2401 		case BNXT_LINK_SPEED_200GB_PAM4:
2402 		case BNXT_LINK_SPEED_400GB_PAM4:
2403 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2404 			break;
2405 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2406 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2407 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2408 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2409 			break;
2410 		default:
2411 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2412 		}
2413 		return;
2414 	}
2415 	link_info->req_link_speed = link_info->force_link_speed;
2416 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2417 	if (link_info->force_pam4_link_speed) {
2418 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2419 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2420 	}
2421 }
2422 
2423 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2424 {
2425 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2426 
2427 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2428 		link_info->advertising = link_info->auto_link_speeds2;
2429 		return;
2430 	}
2431 	link_info->advertising = link_info->auto_link_speeds;
2432 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2433 }
2434 
2435 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2436 {
2437 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2438 
2439 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2440 		if (link_info->req_link_speed != link_info->force_link_speed2)
2441 			return true;
2442 		return false;
2443 	}
2444 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2445 	    link_info->req_link_speed != link_info->force_link_speed)
2446 		return true;
2447 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2448 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2449 		return true;
2450 	return false;
2451 }
2452 
2453 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2454 {
2455 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2456 
2457 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2458 		if (link_info->advertising != link_info->auto_link_speeds2)
2459 			return true;
2460 		return false;
2461 	}
2462 	if (link_info->advertising != link_info->auto_link_speeds ||
2463 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2464 		return true;
2465 	return false;
2466 }
2467 
2468 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2469 	((data2) &							\
2470 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2471 
2472 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2473 	(((data2) &							\
2474 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2475 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2476 
2477 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2478 	((data1) &							\
2479 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2480 
2481 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2482 	(((data1) &							\
2483 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2484 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2485 
2486 /* Return true if the workqueue has to be scheduled */
2487 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2488 {
2489 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2490 
2491 	switch (err_type) {
2492 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2493 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2494 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2495 		break;
2496 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2497 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2498 		break;
2499 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2500 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2501 		break;
2502 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2503 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2504 		char *threshold_type;
2505 		bool notify = false;
2506 		char *dir_str;
2507 
2508 		switch (type) {
2509 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2510 			threshold_type = "warning";
2511 			break;
2512 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2513 			threshold_type = "critical";
2514 			break;
2515 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2516 			threshold_type = "fatal";
2517 			break;
2518 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2519 			threshold_type = "shutdown";
2520 			break;
2521 		default:
2522 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2523 			return false;
2524 		}
2525 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2526 			dir_str = "above";
2527 			notify = true;
2528 		} else {
2529 			dir_str = "below";
2530 		}
2531 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2532 			    dir_str, threshold_type);
2533 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2534 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2535 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2536 		if (notify) {
2537 			bp->thermal_threshold_type = type;
2538 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2539 			return true;
2540 		}
2541 		return false;
2542 	}
2543 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED:
2544 		netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n");
2545 		break;
2546 	default:
2547 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2548 			   err_type);
2549 		break;
2550 	}
2551 	return false;
2552 }
2553 
2554 #define BNXT_GET_EVENT_PORT(data)	\
2555 	((data) &			\
2556 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2557 
2558 #define BNXT_EVENT_RING_TYPE(data2)	\
2559 	((data2) &			\
2560 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2561 
2562 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2563 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2564 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2565 
2566 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2567 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2568 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2569 
2570 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2571 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2572 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2573 
2574 #define BNXT_PHC_BITS	48
2575 
2576 static int bnxt_async_event_process(struct bnxt *bp,
2577 				    struct hwrm_async_event_cmpl *cmpl)
2578 {
2579 	u16 event_id = le16_to_cpu(cmpl->event_id);
2580 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2581 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2582 
2583 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2584 		   event_id, data1, data2);
2585 
2586 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2587 	switch (event_id) {
2588 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2589 		struct bnxt_link_info *link_info = &bp->link_info;
2590 
2591 		if (BNXT_VF(bp))
2592 			goto async_event_process_exit;
2593 
2594 		/* print unsupported speed warning in forced speed mode only */
2595 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2596 		    (data1 & 0x20000)) {
2597 			u16 fw_speed = bnxt_get_force_speed(link_info);
2598 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2599 
2600 			if (speed != SPEED_UNKNOWN)
2601 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2602 					    speed);
2603 		}
2604 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2605 	}
2606 		fallthrough;
2607 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2608 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2609 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2610 		fallthrough;
2611 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2612 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2613 		break;
2614 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2615 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2616 		break;
2617 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2618 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2619 
2620 		if (BNXT_VF(bp))
2621 			break;
2622 
2623 		if (bp->pf.port_id != port_id)
2624 			break;
2625 
2626 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2627 		break;
2628 	}
2629 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2630 		if (BNXT_PF(bp))
2631 			goto async_event_process_exit;
2632 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2633 		break;
2634 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2635 		char *type_str = "Solicited";
2636 
2637 		if (!bp->fw_health)
2638 			goto async_event_process_exit;
2639 
2640 		bp->fw_reset_timestamp = jiffies;
2641 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2642 		if (!bp->fw_reset_min_dsecs)
2643 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2644 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2645 		if (!bp->fw_reset_max_dsecs)
2646 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2647 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2648 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2649 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2650 			type_str = "Fatal";
2651 			bp->fw_health->fatalities++;
2652 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2653 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2654 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2655 			type_str = "Non-fatal";
2656 			bp->fw_health->survivals++;
2657 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2658 		}
2659 		netif_warn(bp, hw, bp->dev,
2660 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2661 			   type_str, data1, data2,
2662 			   bp->fw_reset_min_dsecs * 100,
2663 			   bp->fw_reset_max_dsecs * 100);
2664 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2665 		break;
2666 	}
2667 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2668 		struct bnxt_fw_health *fw_health = bp->fw_health;
2669 		char *status_desc = "healthy";
2670 		u32 status;
2671 
2672 		if (!fw_health)
2673 			goto async_event_process_exit;
2674 
2675 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2676 			fw_health->enabled = false;
2677 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2678 			break;
2679 		}
2680 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2681 		fw_health->tmr_multiplier =
2682 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2683 				     bp->current_interval * 10);
2684 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2685 		if (!fw_health->enabled)
2686 			fw_health->last_fw_heartbeat =
2687 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2688 		fw_health->last_fw_reset_cnt =
2689 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2690 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2691 		if (status != BNXT_FW_STATUS_HEALTHY)
2692 			status_desc = "unhealthy";
2693 		netif_info(bp, drv, bp->dev,
2694 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2695 			   fw_health->primary ? "primary" : "backup", status,
2696 			   status_desc, fw_health->last_fw_reset_cnt);
2697 		if (!fw_health->enabled) {
2698 			/* Make sure tmr_counter is set and visible to
2699 			 * bnxt_health_check() before setting enabled to true.
2700 			 */
2701 			smp_wmb();
2702 			fw_health->enabled = true;
2703 		}
2704 		goto async_event_process_exit;
2705 	}
2706 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2707 		netif_notice(bp, hw, bp->dev,
2708 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2709 			     data1, data2);
2710 		goto async_event_process_exit;
2711 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2712 		struct bnxt_rx_ring_info *rxr;
2713 		u16 grp_idx;
2714 
2715 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2716 			goto async_event_process_exit;
2717 
2718 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2719 			    BNXT_EVENT_RING_TYPE(data2), data1);
2720 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2721 			goto async_event_process_exit;
2722 
2723 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2724 		if (grp_idx == INVALID_HW_RING_ID) {
2725 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2726 				    data1);
2727 			goto async_event_process_exit;
2728 		}
2729 		rxr = bp->bnapi[grp_idx]->rx_ring;
2730 		bnxt_sched_reset_rxr(bp, rxr);
2731 		goto async_event_process_exit;
2732 	}
2733 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2734 		struct bnxt_fw_health *fw_health = bp->fw_health;
2735 
2736 		netif_notice(bp, hw, bp->dev,
2737 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2738 			     data1, data2);
2739 		if (fw_health) {
2740 			fw_health->echo_req_data1 = data1;
2741 			fw_health->echo_req_data2 = data2;
2742 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2743 			break;
2744 		}
2745 		goto async_event_process_exit;
2746 	}
2747 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2748 		bnxt_ptp_pps_event(bp, data1, data2);
2749 		goto async_event_process_exit;
2750 	}
2751 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2752 		if (bnxt_event_error_report(bp, data1, data2))
2753 			break;
2754 		goto async_event_process_exit;
2755 	}
2756 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2757 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2758 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2759 			if (BNXT_PTP_USE_RTC(bp)) {
2760 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2761 				unsigned long flags;
2762 				u64 ns;
2763 
2764 				if (!ptp)
2765 					goto async_event_process_exit;
2766 
2767 				spin_lock_irqsave(&ptp->ptp_lock, flags);
2768 				bnxt_ptp_update_current_time(bp);
2769 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2770 				       BNXT_PHC_BITS) | ptp->current_time);
2771 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2772 				spin_unlock_irqrestore(&ptp->ptp_lock, flags);
2773 			}
2774 			break;
2775 		}
2776 		goto async_event_process_exit;
2777 	}
2778 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2779 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2780 
2781 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2782 		goto async_event_process_exit;
2783 	}
2784 	default:
2785 		goto async_event_process_exit;
2786 	}
2787 	__bnxt_queue_sp_work(bp);
2788 async_event_process_exit:
2789 	return 0;
2790 }
2791 
2792 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2793 {
2794 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2795 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2796 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2797 				(struct hwrm_fwd_req_cmpl *)txcmp;
2798 
2799 	switch (cmpl_type) {
2800 	case CMPL_BASE_TYPE_HWRM_DONE:
2801 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2802 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2803 		break;
2804 
2805 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2806 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2807 
2808 		if ((vf_id < bp->pf.first_vf_id) ||
2809 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2810 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2811 				   vf_id);
2812 			return -EINVAL;
2813 		}
2814 
2815 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2816 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2817 		break;
2818 
2819 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2820 		bnxt_async_event_process(bp,
2821 					 (struct hwrm_async_event_cmpl *)txcmp);
2822 		break;
2823 
2824 	default:
2825 		break;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2832 {
2833 	struct bnxt_napi *bnapi = dev_instance;
2834 	struct bnxt *bp = bnapi->bp;
2835 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2836 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2837 
2838 	cpr->event_ctr++;
2839 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2840 	napi_schedule(&bnapi->napi);
2841 	return IRQ_HANDLED;
2842 }
2843 
2844 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2845 {
2846 	u32 raw_cons = cpr->cp_raw_cons;
2847 	u16 cons = RING_CMP(raw_cons);
2848 	struct tx_cmp *txcmp;
2849 
2850 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2851 
2852 	return TX_CMP_VALID(txcmp, raw_cons);
2853 }
2854 
2855 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2856 			    int budget)
2857 {
2858 	struct bnxt_napi *bnapi = cpr->bnapi;
2859 	u32 raw_cons = cpr->cp_raw_cons;
2860 	u32 cons;
2861 	int rx_pkts = 0;
2862 	u8 event = 0;
2863 	struct tx_cmp *txcmp;
2864 
2865 	cpr->has_more_work = 0;
2866 	cpr->had_work_done = 1;
2867 	while (1) {
2868 		u8 cmp_type;
2869 		int rc;
2870 
2871 		cons = RING_CMP(raw_cons);
2872 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2873 
2874 		if (!TX_CMP_VALID(txcmp, raw_cons))
2875 			break;
2876 
2877 		/* The valid test of the entry must be done first before
2878 		 * reading any further.
2879 		 */
2880 		dma_rmb();
2881 		cmp_type = TX_CMP_TYPE(txcmp);
2882 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2883 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2884 			u32 opaque = txcmp->tx_cmp_opaque;
2885 			struct bnxt_tx_ring_info *txr;
2886 			u16 tx_freed;
2887 
2888 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2889 			event |= BNXT_TX_CMP_EVENT;
2890 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2891 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2892 			else
2893 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2894 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2895 				   bp->tx_ring_mask;
2896 			/* return full budget so NAPI will complete. */
2897 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2898 				rx_pkts = budget;
2899 				raw_cons = NEXT_RAW_CMP(raw_cons);
2900 				if (budget)
2901 					cpr->has_more_work = 1;
2902 				break;
2903 			}
2904 		} else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) {
2905 			bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp);
2906 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2907 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2908 			if (likely(budget))
2909 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2910 			else
2911 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2912 							   &event);
2913 			if (likely(rc >= 0))
2914 				rx_pkts += rc;
2915 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2916 			 * the NAPI budget.  Otherwise, we may potentially loop
2917 			 * here forever if we consistently cannot allocate
2918 			 * buffers.
2919 			 */
2920 			else if (rc == -ENOMEM && budget)
2921 				rx_pkts++;
2922 			else if (rc == -EBUSY)	/* partial completion */
2923 				break;
2924 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2925 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2926 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2927 			bnxt_hwrm_handler(bp, txcmp);
2928 		}
2929 		raw_cons = NEXT_RAW_CMP(raw_cons);
2930 
2931 		if (rx_pkts && rx_pkts == budget) {
2932 			cpr->has_more_work = 1;
2933 			break;
2934 		}
2935 	}
2936 
2937 	if (event & BNXT_REDIRECT_EVENT) {
2938 		xdp_do_flush();
2939 		event &= ~BNXT_REDIRECT_EVENT;
2940 	}
2941 
2942 	if (event & BNXT_TX_EVENT) {
2943 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2944 		u16 prod = txr->tx_prod;
2945 
2946 		/* Sync BD data before updating doorbell */
2947 		wmb();
2948 
2949 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2950 		event &= ~BNXT_TX_EVENT;
2951 	}
2952 
2953 	cpr->cp_raw_cons = raw_cons;
2954 	bnapi->events |= event;
2955 	return rx_pkts;
2956 }
2957 
2958 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2959 				  int budget)
2960 {
2961 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2962 		bnapi->tx_int(bp, bnapi, budget);
2963 
2964 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2965 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2966 
2967 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2968 		bnapi->events &= ~BNXT_RX_EVENT;
2969 	}
2970 	if (bnapi->events & BNXT_AGG_EVENT) {
2971 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2972 
2973 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2974 		bnapi->events &= ~BNXT_AGG_EVENT;
2975 	}
2976 }
2977 
2978 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2979 			  int budget)
2980 {
2981 	struct bnxt_napi *bnapi = cpr->bnapi;
2982 	int rx_pkts;
2983 
2984 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2985 
2986 	/* ACK completion ring before freeing tx ring and producing new
2987 	 * buffers in rx/agg rings to prevent overflowing the completion
2988 	 * ring.
2989 	 */
2990 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2991 
2992 	__bnxt_poll_work_done(bp, bnapi, budget);
2993 	return rx_pkts;
2994 }
2995 
2996 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2997 {
2998 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2999 	struct bnxt *bp = bnapi->bp;
3000 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3001 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3002 	struct tx_cmp *txcmp;
3003 	struct rx_cmp_ext *rxcmp1;
3004 	u32 cp_cons, tmp_raw_cons;
3005 	u32 raw_cons = cpr->cp_raw_cons;
3006 	bool flush_xdp = false;
3007 	u32 rx_pkts = 0;
3008 	u8 event = 0;
3009 
3010 	while (1) {
3011 		int rc;
3012 
3013 		cp_cons = RING_CMP(raw_cons);
3014 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3015 
3016 		if (!TX_CMP_VALID(txcmp, raw_cons))
3017 			break;
3018 
3019 		/* The valid test of the entry must be done first before
3020 		 * reading any further.
3021 		 */
3022 		dma_rmb();
3023 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
3024 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
3025 			cp_cons = RING_CMP(tmp_raw_cons);
3026 			rxcmp1 = (struct rx_cmp_ext *)
3027 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3028 
3029 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
3030 				break;
3031 
3032 			/* force an error to recycle the buffer */
3033 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
3034 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
3035 
3036 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
3037 			if (likely(rc == -EIO) && budget)
3038 				rx_pkts++;
3039 			else if (rc == -EBUSY)	/* partial completion */
3040 				break;
3041 			if (event & BNXT_REDIRECT_EVENT)
3042 				flush_xdp = true;
3043 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
3044 				    CMPL_BASE_TYPE_HWRM_DONE)) {
3045 			bnxt_hwrm_handler(bp, txcmp);
3046 		} else {
3047 			netdev_err(bp->dev,
3048 				   "Invalid completion received on special ring\n");
3049 		}
3050 		raw_cons = NEXT_RAW_CMP(raw_cons);
3051 
3052 		if (rx_pkts == budget)
3053 			break;
3054 	}
3055 
3056 	cpr->cp_raw_cons = raw_cons;
3057 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
3058 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3059 
3060 	if (event & BNXT_AGG_EVENT)
3061 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3062 	if (flush_xdp)
3063 		xdp_do_flush();
3064 
3065 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
3066 		napi_complete_done(napi, rx_pkts);
3067 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3068 	}
3069 	return rx_pkts;
3070 }
3071 
3072 static int bnxt_poll(struct napi_struct *napi, int budget)
3073 {
3074 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3075 	struct bnxt *bp = bnapi->bp;
3076 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3077 	int work_done = 0;
3078 
3079 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3080 		napi_complete(napi);
3081 		return 0;
3082 	}
3083 	while (1) {
3084 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3085 
3086 		if (work_done >= budget) {
3087 			if (!budget)
3088 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3089 			break;
3090 		}
3091 
3092 		if (!bnxt_has_work(bp, cpr)) {
3093 			if (napi_complete_done(napi, work_done))
3094 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3095 			break;
3096 		}
3097 	}
3098 	if (bp->flags & BNXT_FLAG_DIM) {
3099 		struct dim_sample dim_sample = {};
3100 
3101 		dim_update_sample(cpr->event_ctr,
3102 				  cpr->rx_packets,
3103 				  cpr->rx_bytes,
3104 				  &dim_sample);
3105 		net_dim(&cpr->dim, dim_sample);
3106 	}
3107 	return work_done;
3108 }
3109 
3110 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3111 {
3112 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3113 	int i, work_done = 0;
3114 
3115 	for (i = 0; i < cpr->cp_ring_count; i++) {
3116 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3117 
3118 		if (cpr2->had_nqe_notify) {
3119 			work_done += __bnxt_poll_work(bp, cpr2,
3120 						      budget - work_done);
3121 			cpr->has_more_work |= cpr2->has_more_work;
3122 		}
3123 	}
3124 	return work_done;
3125 }
3126 
3127 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3128 				 u64 dbr_type, int budget)
3129 {
3130 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3131 	int i;
3132 
3133 	for (i = 0; i < cpr->cp_ring_count; i++) {
3134 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3135 		struct bnxt_db_info *db;
3136 
3137 		if (cpr2->had_work_done) {
3138 			u32 tgl = 0;
3139 
3140 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3141 				cpr2->had_nqe_notify = 0;
3142 				tgl = cpr2->toggle;
3143 			}
3144 			db = &cpr2->cp_db;
3145 			bnxt_writeq(bp,
3146 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3147 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3148 				    db->doorbell);
3149 			cpr2->had_work_done = 0;
3150 		}
3151 	}
3152 	__bnxt_poll_work_done(bp, bnapi, budget);
3153 }
3154 
3155 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3156 {
3157 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3158 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3159 	struct bnxt_cp_ring_info *cpr_rx;
3160 	u32 raw_cons = cpr->cp_raw_cons;
3161 	struct bnxt *bp = bnapi->bp;
3162 	struct nqe_cn *nqcmp;
3163 	int work_done = 0;
3164 	u32 cons;
3165 
3166 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3167 		napi_complete(napi);
3168 		return 0;
3169 	}
3170 	if (cpr->has_more_work) {
3171 		cpr->has_more_work = 0;
3172 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3173 	}
3174 	while (1) {
3175 		u16 type;
3176 
3177 		cons = RING_CMP(raw_cons);
3178 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3179 
3180 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3181 			if (cpr->has_more_work)
3182 				break;
3183 
3184 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3185 					     budget);
3186 			cpr->cp_raw_cons = raw_cons;
3187 			if (napi_complete_done(napi, work_done))
3188 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3189 						  cpr->cp_raw_cons);
3190 			goto poll_done;
3191 		}
3192 
3193 		/* The valid test of the entry must be done first before
3194 		 * reading any further.
3195 		 */
3196 		dma_rmb();
3197 
3198 		type = le16_to_cpu(nqcmp->type);
3199 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3200 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3201 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3202 			struct bnxt_cp_ring_info *cpr2;
3203 
3204 			/* No more budget for RX work */
3205 			if (budget && work_done >= budget &&
3206 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3207 				break;
3208 
3209 			idx = BNXT_NQ_HDL_IDX(idx);
3210 			cpr2 = &cpr->cp_ring_arr[idx];
3211 			cpr2->had_nqe_notify = 1;
3212 			cpr2->toggle = NQE_CN_TOGGLE(type);
3213 			work_done += __bnxt_poll_work(bp, cpr2,
3214 						      budget - work_done);
3215 			cpr->has_more_work |= cpr2->has_more_work;
3216 		} else {
3217 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3218 		}
3219 		raw_cons = NEXT_RAW_CMP(raw_cons);
3220 	}
3221 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3222 	if (raw_cons != cpr->cp_raw_cons) {
3223 		cpr->cp_raw_cons = raw_cons;
3224 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3225 	}
3226 poll_done:
3227 	cpr_rx = &cpr->cp_ring_arr[0];
3228 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3229 	    (bp->flags & BNXT_FLAG_DIM)) {
3230 		struct dim_sample dim_sample = {};
3231 
3232 		dim_update_sample(cpr->event_ctr,
3233 				  cpr_rx->rx_packets,
3234 				  cpr_rx->rx_bytes,
3235 				  &dim_sample);
3236 		net_dim(&cpr->dim, dim_sample);
3237 	}
3238 	return work_done;
3239 }
3240 
3241 static void bnxt_free_tx_skbs(struct bnxt *bp)
3242 {
3243 	int i, max_idx;
3244 	struct pci_dev *pdev = bp->pdev;
3245 
3246 	if (!bp->tx_ring)
3247 		return;
3248 
3249 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3250 	for (i = 0; i < bp->tx_nr_rings; i++) {
3251 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3252 		int j;
3253 
3254 		if (!txr->tx_buf_ring)
3255 			continue;
3256 
3257 		for (j = 0; j < max_idx;) {
3258 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3259 			struct sk_buff *skb;
3260 			int k, last;
3261 
3262 			if (i < bp->tx_nr_rings_xdp &&
3263 			    tx_buf->action == XDP_REDIRECT) {
3264 				dma_unmap_single(&pdev->dev,
3265 					dma_unmap_addr(tx_buf, mapping),
3266 					dma_unmap_len(tx_buf, len),
3267 					DMA_TO_DEVICE);
3268 				xdp_return_frame(tx_buf->xdpf);
3269 				tx_buf->action = 0;
3270 				tx_buf->xdpf = NULL;
3271 				j++;
3272 				continue;
3273 			}
3274 
3275 			skb = tx_buf->skb;
3276 			if (!skb) {
3277 				j++;
3278 				continue;
3279 			}
3280 
3281 			tx_buf->skb = NULL;
3282 
3283 			if (tx_buf->is_push) {
3284 				dev_kfree_skb(skb);
3285 				j += 2;
3286 				continue;
3287 			}
3288 
3289 			dma_unmap_single(&pdev->dev,
3290 					 dma_unmap_addr(tx_buf, mapping),
3291 					 skb_headlen(skb),
3292 					 DMA_TO_DEVICE);
3293 
3294 			last = tx_buf->nr_frags;
3295 			j += 2;
3296 			for (k = 0; k < last; k++, j++) {
3297 				int ring_idx = j & bp->tx_ring_mask;
3298 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3299 
3300 				tx_buf = &txr->tx_buf_ring[ring_idx];
3301 				dma_unmap_page(
3302 					&pdev->dev,
3303 					dma_unmap_addr(tx_buf, mapping),
3304 					skb_frag_size(frag), DMA_TO_DEVICE);
3305 			}
3306 			dev_kfree_skb(skb);
3307 		}
3308 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3309 	}
3310 }
3311 
3312 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3313 {
3314 	struct pci_dev *pdev = bp->pdev;
3315 	int i, max_idx;
3316 
3317 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3318 
3319 	for (i = 0; i < max_idx; i++) {
3320 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3321 		dma_addr_t mapping = rx_buf->mapping;
3322 		void *data = rx_buf->data;
3323 
3324 		if (!data)
3325 			continue;
3326 
3327 		rx_buf->data = NULL;
3328 		if (BNXT_RX_PAGE_MODE(bp)) {
3329 			page_pool_recycle_direct(rxr->page_pool, data);
3330 		} else {
3331 			dma_unmap_single_attrs(&pdev->dev, mapping,
3332 					       bp->rx_buf_use_size, bp->rx_dir,
3333 					       DMA_ATTR_WEAK_ORDERING);
3334 			skb_free_frag(data);
3335 		}
3336 	}
3337 }
3338 
3339 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3340 {
3341 	int i, max_idx;
3342 
3343 	max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3344 
3345 	for (i = 0; i < max_idx; i++) {
3346 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3347 		struct page *page = rx_agg_buf->page;
3348 
3349 		if (!page)
3350 			continue;
3351 
3352 		rx_agg_buf->page = NULL;
3353 		__clear_bit(i, rxr->rx_agg_bmap);
3354 
3355 		page_pool_recycle_direct(rxr->page_pool, page);
3356 	}
3357 }
3358 
3359 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3360 {
3361 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3362 	struct pci_dev *pdev = bp->pdev;
3363 	struct bnxt_tpa_idx_map *map;
3364 	int i;
3365 
3366 	if (!rxr->rx_tpa)
3367 		goto skip_rx_tpa_free;
3368 
3369 	for (i = 0; i < bp->max_tpa; i++) {
3370 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3371 		u8 *data = tpa_info->data;
3372 
3373 		if (!data)
3374 			continue;
3375 
3376 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3377 				       bp->rx_buf_use_size, bp->rx_dir,
3378 				       DMA_ATTR_WEAK_ORDERING);
3379 
3380 		tpa_info->data = NULL;
3381 
3382 		skb_free_frag(data);
3383 	}
3384 
3385 skip_rx_tpa_free:
3386 	if (!rxr->rx_buf_ring)
3387 		goto skip_rx_buf_free;
3388 
3389 	bnxt_free_one_rx_ring(bp, rxr);
3390 
3391 skip_rx_buf_free:
3392 	if (!rxr->rx_agg_ring)
3393 		goto skip_rx_agg_free;
3394 
3395 	bnxt_free_one_rx_agg_ring(bp, rxr);
3396 
3397 skip_rx_agg_free:
3398 	map = rxr->rx_tpa_idx_map;
3399 	if (map)
3400 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3401 }
3402 
3403 static void bnxt_free_rx_skbs(struct bnxt *bp)
3404 {
3405 	int i;
3406 
3407 	if (!bp->rx_ring)
3408 		return;
3409 
3410 	for (i = 0; i < bp->rx_nr_rings; i++)
3411 		bnxt_free_one_rx_ring_skbs(bp, i);
3412 }
3413 
3414 static void bnxt_free_skbs(struct bnxt *bp)
3415 {
3416 	bnxt_free_tx_skbs(bp);
3417 	bnxt_free_rx_skbs(bp);
3418 }
3419 
3420 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3421 {
3422 	u8 init_val = ctxm->init_value;
3423 	u16 offset = ctxm->init_offset;
3424 	u8 *p2 = p;
3425 	int i;
3426 
3427 	if (!init_val)
3428 		return;
3429 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3430 		memset(p, init_val, len);
3431 		return;
3432 	}
3433 	for (i = 0; i < len; i += ctxm->entry_size)
3434 		*(p2 + i + offset) = init_val;
3435 }
3436 
3437 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3438 {
3439 	struct pci_dev *pdev = bp->pdev;
3440 	int i;
3441 
3442 	if (!rmem->pg_arr)
3443 		goto skip_pages;
3444 
3445 	for (i = 0; i < rmem->nr_pages; i++) {
3446 		if (!rmem->pg_arr[i])
3447 			continue;
3448 
3449 		dma_free_coherent(&pdev->dev, rmem->page_size,
3450 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3451 
3452 		rmem->pg_arr[i] = NULL;
3453 	}
3454 skip_pages:
3455 	if (rmem->pg_tbl) {
3456 		size_t pg_tbl_size = rmem->nr_pages * 8;
3457 
3458 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3459 			pg_tbl_size = rmem->page_size;
3460 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3461 				  rmem->pg_tbl, rmem->pg_tbl_map);
3462 		rmem->pg_tbl = NULL;
3463 	}
3464 	if (rmem->vmem_size && *rmem->vmem) {
3465 		vfree(*rmem->vmem);
3466 		*rmem->vmem = NULL;
3467 	}
3468 }
3469 
3470 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3471 {
3472 	struct pci_dev *pdev = bp->pdev;
3473 	u64 valid_bit = 0;
3474 	int i;
3475 
3476 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3477 		valid_bit = PTU_PTE_VALID;
3478 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3479 		size_t pg_tbl_size = rmem->nr_pages * 8;
3480 
3481 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3482 			pg_tbl_size = rmem->page_size;
3483 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3484 						  &rmem->pg_tbl_map,
3485 						  GFP_KERNEL);
3486 		if (!rmem->pg_tbl)
3487 			return -ENOMEM;
3488 	}
3489 
3490 	for (i = 0; i < rmem->nr_pages; i++) {
3491 		u64 extra_bits = valid_bit;
3492 
3493 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3494 						     rmem->page_size,
3495 						     &rmem->dma_arr[i],
3496 						     GFP_KERNEL);
3497 		if (!rmem->pg_arr[i])
3498 			return -ENOMEM;
3499 
3500 		if (rmem->ctx_mem)
3501 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3502 					  rmem->page_size);
3503 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3504 			if (i == rmem->nr_pages - 2 &&
3505 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3506 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3507 			else if (i == rmem->nr_pages - 1 &&
3508 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3509 				extra_bits |= PTU_PTE_LAST;
3510 			rmem->pg_tbl[i] =
3511 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3512 		}
3513 	}
3514 
3515 	if (rmem->vmem_size) {
3516 		*rmem->vmem = vzalloc(rmem->vmem_size);
3517 		if (!(*rmem->vmem))
3518 			return -ENOMEM;
3519 	}
3520 	return 0;
3521 }
3522 
3523 static void bnxt_free_tpa_info(struct bnxt *bp)
3524 {
3525 	int i, j;
3526 
3527 	for (i = 0; i < bp->rx_nr_rings; i++) {
3528 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3529 
3530 		kfree(rxr->rx_tpa_idx_map);
3531 		rxr->rx_tpa_idx_map = NULL;
3532 		if (rxr->rx_tpa) {
3533 			for (j = 0; j < bp->max_tpa; j++) {
3534 				kfree(rxr->rx_tpa[j].agg_arr);
3535 				rxr->rx_tpa[j].agg_arr = NULL;
3536 			}
3537 		}
3538 		kfree(rxr->rx_tpa);
3539 		rxr->rx_tpa = NULL;
3540 	}
3541 }
3542 
3543 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3544 {
3545 	int i, j;
3546 
3547 	bp->max_tpa = MAX_TPA;
3548 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3549 		if (!bp->max_tpa_v2)
3550 			return 0;
3551 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3552 	}
3553 
3554 	for (i = 0; i < bp->rx_nr_rings; i++) {
3555 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3556 		struct rx_agg_cmp *agg;
3557 
3558 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3559 				      GFP_KERNEL);
3560 		if (!rxr->rx_tpa)
3561 			return -ENOMEM;
3562 
3563 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3564 			continue;
3565 		for (j = 0; j < bp->max_tpa; j++) {
3566 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3567 			if (!agg)
3568 				return -ENOMEM;
3569 			rxr->rx_tpa[j].agg_arr = agg;
3570 		}
3571 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3572 					      GFP_KERNEL);
3573 		if (!rxr->rx_tpa_idx_map)
3574 			return -ENOMEM;
3575 	}
3576 	return 0;
3577 }
3578 
3579 static void bnxt_free_rx_rings(struct bnxt *bp)
3580 {
3581 	int i;
3582 
3583 	if (!bp->rx_ring)
3584 		return;
3585 
3586 	bnxt_free_tpa_info(bp);
3587 	for (i = 0; i < bp->rx_nr_rings; i++) {
3588 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3589 		struct bnxt_ring_struct *ring;
3590 
3591 		if (rxr->xdp_prog)
3592 			bpf_prog_put(rxr->xdp_prog);
3593 
3594 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3595 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3596 
3597 		page_pool_destroy(rxr->page_pool);
3598 		rxr->page_pool = NULL;
3599 
3600 		kfree(rxr->rx_agg_bmap);
3601 		rxr->rx_agg_bmap = NULL;
3602 
3603 		ring = &rxr->rx_ring_struct;
3604 		bnxt_free_ring(bp, &ring->ring_mem);
3605 
3606 		ring = &rxr->rx_agg_ring_struct;
3607 		bnxt_free_ring(bp, &ring->ring_mem);
3608 	}
3609 }
3610 
3611 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3612 				   struct bnxt_rx_ring_info *rxr,
3613 				   int numa_node)
3614 {
3615 	struct page_pool_params pp = { 0 };
3616 
3617 	pp.pool_size = bp->rx_agg_ring_size;
3618 	if (BNXT_RX_PAGE_MODE(bp))
3619 		pp.pool_size += bp->rx_ring_size;
3620 	pp.nid = numa_node;
3621 	pp.napi = &rxr->bnapi->napi;
3622 	pp.netdev = bp->dev;
3623 	pp.dev = &bp->pdev->dev;
3624 	pp.dma_dir = bp->rx_dir;
3625 	pp.max_len = PAGE_SIZE;
3626 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3627 
3628 	rxr->page_pool = page_pool_create(&pp);
3629 	if (IS_ERR(rxr->page_pool)) {
3630 		int err = PTR_ERR(rxr->page_pool);
3631 
3632 		rxr->page_pool = NULL;
3633 		return err;
3634 	}
3635 	return 0;
3636 }
3637 
3638 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3639 {
3640 	int numa_node = dev_to_node(&bp->pdev->dev);
3641 	int i, rc = 0, agg_rings = 0, cpu;
3642 
3643 	if (!bp->rx_ring)
3644 		return -ENOMEM;
3645 
3646 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3647 		agg_rings = 1;
3648 
3649 	for (i = 0; i < bp->rx_nr_rings; i++) {
3650 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3651 		struct bnxt_ring_struct *ring;
3652 		int cpu_node;
3653 
3654 		ring = &rxr->rx_ring_struct;
3655 
3656 		cpu = cpumask_local_spread(i, numa_node);
3657 		cpu_node = cpu_to_node(cpu);
3658 		netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n",
3659 			   i, cpu_node);
3660 		rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node);
3661 		if (rc)
3662 			return rc;
3663 
3664 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3665 		if (rc < 0)
3666 			return rc;
3667 
3668 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3669 						MEM_TYPE_PAGE_POOL,
3670 						rxr->page_pool);
3671 		if (rc) {
3672 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3673 			return rc;
3674 		}
3675 
3676 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3677 		if (rc)
3678 			return rc;
3679 
3680 		ring->grp_idx = i;
3681 		if (agg_rings) {
3682 			u16 mem_size;
3683 
3684 			ring = &rxr->rx_agg_ring_struct;
3685 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3686 			if (rc)
3687 				return rc;
3688 
3689 			ring->grp_idx = i;
3690 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3691 			mem_size = rxr->rx_agg_bmap_size / 8;
3692 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3693 			if (!rxr->rx_agg_bmap)
3694 				return -ENOMEM;
3695 		}
3696 	}
3697 	if (bp->flags & BNXT_FLAG_TPA)
3698 		rc = bnxt_alloc_tpa_info(bp);
3699 	return rc;
3700 }
3701 
3702 static void bnxt_free_tx_rings(struct bnxt *bp)
3703 {
3704 	int i;
3705 	struct pci_dev *pdev = bp->pdev;
3706 
3707 	if (!bp->tx_ring)
3708 		return;
3709 
3710 	for (i = 0; i < bp->tx_nr_rings; i++) {
3711 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3712 		struct bnxt_ring_struct *ring;
3713 
3714 		if (txr->tx_push) {
3715 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3716 					  txr->tx_push, txr->tx_push_mapping);
3717 			txr->tx_push = NULL;
3718 		}
3719 
3720 		ring = &txr->tx_ring_struct;
3721 
3722 		bnxt_free_ring(bp, &ring->ring_mem);
3723 	}
3724 }
3725 
3726 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3727 	((tc) * (bp)->tx_nr_rings_per_tc)
3728 
3729 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3730 	((tx) % (bp)->tx_nr_rings_per_tc)
3731 
3732 #define BNXT_RING_TO_TC(bp, tx)		\
3733 	((tx) / (bp)->tx_nr_rings_per_tc)
3734 
3735 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3736 {
3737 	int i, j, rc;
3738 	struct pci_dev *pdev = bp->pdev;
3739 
3740 	bp->tx_push_size = 0;
3741 	if (bp->tx_push_thresh) {
3742 		int push_size;
3743 
3744 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3745 					bp->tx_push_thresh);
3746 
3747 		if (push_size > 256) {
3748 			push_size = 0;
3749 			bp->tx_push_thresh = 0;
3750 		}
3751 
3752 		bp->tx_push_size = push_size;
3753 	}
3754 
3755 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3756 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3757 		struct bnxt_ring_struct *ring;
3758 		u8 qidx;
3759 
3760 		ring = &txr->tx_ring_struct;
3761 
3762 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3763 		if (rc)
3764 			return rc;
3765 
3766 		ring->grp_idx = txr->bnapi->index;
3767 		if (bp->tx_push_size) {
3768 			dma_addr_t mapping;
3769 
3770 			/* One pre-allocated DMA buffer to backup
3771 			 * TX push operation
3772 			 */
3773 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3774 						bp->tx_push_size,
3775 						&txr->tx_push_mapping,
3776 						GFP_KERNEL);
3777 
3778 			if (!txr->tx_push)
3779 				return -ENOMEM;
3780 
3781 			mapping = txr->tx_push_mapping +
3782 				sizeof(struct tx_push_bd);
3783 			txr->data_mapping = cpu_to_le64(mapping);
3784 		}
3785 		qidx = bp->tc_to_qidx[j];
3786 		ring->queue_id = bp->q_info[qidx].queue_id;
3787 		spin_lock_init(&txr->xdp_tx_lock);
3788 		if (i < bp->tx_nr_rings_xdp)
3789 			continue;
3790 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3791 			j++;
3792 	}
3793 	return 0;
3794 }
3795 
3796 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3797 {
3798 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3799 
3800 	kfree(cpr->cp_desc_ring);
3801 	cpr->cp_desc_ring = NULL;
3802 	ring->ring_mem.pg_arr = NULL;
3803 	kfree(cpr->cp_desc_mapping);
3804 	cpr->cp_desc_mapping = NULL;
3805 	ring->ring_mem.dma_arr = NULL;
3806 }
3807 
3808 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3809 {
3810 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3811 	if (!cpr->cp_desc_ring)
3812 		return -ENOMEM;
3813 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3814 				       GFP_KERNEL);
3815 	if (!cpr->cp_desc_mapping)
3816 		return -ENOMEM;
3817 	return 0;
3818 }
3819 
3820 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3821 {
3822 	int i;
3823 
3824 	if (!bp->bnapi)
3825 		return;
3826 	for (i = 0; i < bp->cp_nr_rings; i++) {
3827 		struct bnxt_napi *bnapi = bp->bnapi[i];
3828 
3829 		if (!bnapi)
3830 			continue;
3831 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3832 	}
3833 }
3834 
3835 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3836 {
3837 	int i, n = bp->cp_nr_pages;
3838 
3839 	for (i = 0; i < bp->cp_nr_rings; i++) {
3840 		struct bnxt_napi *bnapi = bp->bnapi[i];
3841 		int rc;
3842 
3843 		if (!bnapi)
3844 			continue;
3845 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3846 		if (rc)
3847 			return rc;
3848 	}
3849 	return 0;
3850 }
3851 
3852 static void bnxt_free_cp_rings(struct bnxt *bp)
3853 {
3854 	int i;
3855 
3856 	if (!bp->bnapi)
3857 		return;
3858 
3859 	for (i = 0; i < bp->cp_nr_rings; i++) {
3860 		struct bnxt_napi *bnapi = bp->bnapi[i];
3861 		struct bnxt_cp_ring_info *cpr;
3862 		struct bnxt_ring_struct *ring;
3863 		int j;
3864 
3865 		if (!bnapi)
3866 			continue;
3867 
3868 		cpr = &bnapi->cp_ring;
3869 		ring = &cpr->cp_ring_struct;
3870 
3871 		bnxt_free_ring(bp, &ring->ring_mem);
3872 
3873 		if (!cpr->cp_ring_arr)
3874 			continue;
3875 
3876 		for (j = 0; j < cpr->cp_ring_count; j++) {
3877 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3878 
3879 			ring = &cpr2->cp_ring_struct;
3880 			bnxt_free_ring(bp, &ring->ring_mem);
3881 			bnxt_free_cp_arrays(cpr2);
3882 		}
3883 		kfree(cpr->cp_ring_arr);
3884 		cpr->cp_ring_arr = NULL;
3885 		cpr->cp_ring_count = 0;
3886 	}
3887 }
3888 
3889 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3890 				  struct bnxt_cp_ring_info *cpr)
3891 {
3892 	struct bnxt_ring_mem_info *rmem;
3893 	struct bnxt_ring_struct *ring;
3894 	int rc;
3895 
3896 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3897 	if (rc) {
3898 		bnxt_free_cp_arrays(cpr);
3899 		return -ENOMEM;
3900 	}
3901 	ring = &cpr->cp_ring_struct;
3902 	rmem = &ring->ring_mem;
3903 	rmem->nr_pages = bp->cp_nr_pages;
3904 	rmem->page_size = HW_CMPD_RING_SIZE;
3905 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3906 	rmem->dma_arr = cpr->cp_desc_mapping;
3907 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3908 	rc = bnxt_alloc_ring(bp, rmem);
3909 	if (rc) {
3910 		bnxt_free_ring(bp, rmem);
3911 		bnxt_free_cp_arrays(cpr);
3912 	}
3913 	return rc;
3914 }
3915 
3916 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3917 {
3918 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3919 	int i, j, rc, ulp_msix;
3920 	int tcs = bp->num_tc;
3921 
3922 	if (!tcs)
3923 		tcs = 1;
3924 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3925 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3926 		struct bnxt_napi *bnapi = bp->bnapi[i];
3927 		struct bnxt_cp_ring_info *cpr, *cpr2;
3928 		struct bnxt_ring_struct *ring;
3929 		int cp_count = 0, k;
3930 		int rx = 0, tx = 0;
3931 
3932 		if (!bnapi)
3933 			continue;
3934 
3935 		cpr = &bnapi->cp_ring;
3936 		cpr->bnapi = bnapi;
3937 		ring = &cpr->cp_ring_struct;
3938 
3939 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3940 		if (rc)
3941 			return rc;
3942 
3943 		ring->map_idx = ulp_msix + i;
3944 
3945 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3946 			continue;
3947 
3948 		if (i < bp->rx_nr_rings) {
3949 			cp_count++;
3950 			rx = 1;
3951 		}
3952 		if (i < bp->tx_nr_rings_xdp) {
3953 			cp_count++;
3954 			tx = 1;
3955 		} else if ((sh && i < bp->tx_nr_rings) ||
3956 			 (!sh && i >= bp->rx_nr_rings)) {
3957 			cp_count += tcs;
3958 			tx = 1;
3959 		}
3960 
3961 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3962 					   GFP_KERNEL);
3963 		if (!cpr->cp_ring_arr)
3964 			return -ENOMEM;
3965 		cpr->cp_ring_count = cp_count;
3966 
3967 		for (k = 0; k < cp_count; k++) {
3968 			cpr2 = &cpr->cp_ring_arr[k];
3969 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3970 			if (rc)
3971 				return rc;
3972 			cpr2->bnapi = bnapi;
3973 			cpr2->sw_stats = cpr->sw_stats;
3974 			cpr2->cp_idx = k;
3975 			if (!k && rx) {
3976 				bp->rx_ring[i].rx_cpr = cpr2;
3977 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3978 			} else {
3979 				int n, tc = k - rx;
3980 
3981 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3982 				bp->tx_ring[n].tx_cpr = cpr2;
3983 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3984 			}
3985 		}
3986 		if (tx)
3987 			j++;
3988 	}
3989 	return 0;
3990 }
3991 
3992 static void bnxt_init_rx_ring_struct(struct bnxt *bp,
3993 				     struct bnxt_rx_ring_info *rxr)
3994 {
3995 	struct bnxt_ring_mem_info *rmem;
3996 	struct bnxt_ring_struct *ring;
3997 
3998 	ring = &rxr->rx_ring_struct;
3999 	rmem = &ring->ring_mem;
4000 	rmem->nr_pages = bp->rx_nr_pages;
4001 	rmem->page_size = HW_RXBD_RING_SIZE;
4002 	rmem->pg_arr = (void **)rxr->rx_desc_ring;
4003 	rmem->dma_arr = rxr->rx_desc_mapping;
4004 	rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4005 	rmem->vmem = (void **)&rxr->rx_buf_ring;
4006 
4007 	ring = &rxr->rx_agg_ring_struct;
4008 	rmem = &ring->ring_mem;
4009 	rmem->nr_pages = bp->rx_agg_nr_pages;
4010 	rmem->page_size = HW_RXBD_RING_SIZE;
4011 	rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4012 	rmem->dma_arr = rxr->rx_agg_desc_mapping;
4013 	rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4014 	rmem->vmem = (void **)&rxr->rx_agg_ring;
4015 }
4016 
4017 static void bnxt_reset_rx_ring_struct(struct bnxt *bp,
4018 				      struct bnxt_rx_ring_info *rxr)
4019 {
4020 	struct bnxt_ring_mem_info *rmem;
4021 	struct bnxt_ring_struct *ring;
4022 	int i;
4023 
4024 	rxr->page_pool->p.napi = NULL;
4025 	rxr->page_pool = NULL;
4026 	memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info));
4027 
4028 	ring = &rxr->rx_ring_struct;
4029 	rmem = &ring->ring_mem;
4030 	rmem->pg_tbl = NULL;
4031 	rmem->pg_tbl_map = 0;
4032 	for (i = 0; i < rmem->nr_pages; i++) {
4033 		rmem->pg_arr[i] = NULL;
4034 		rmem->dma_arr[i] = 0;
4035 	}
4036 	*rmem->vmem = NULL;
4037 
4038 	ring = &rxr->rx_agg_ring_struct;
4039 	rmem = &ring->ring_mem;
4040 	rmem->pg_tbl = NULL;
4041 	rmem->pg_tbl_map = 0;
4042 	for (i = 0; i < rmem->nr_pages; i++) {
4043 		rmem->pg_arr[i] = NULL;
4044 		rmem->dma_arr[i] = 0;
4045 	}
4046 	*rmem->vmem = NULL;
4047 }
4048 
4049 static void bnxt_init_ring_struct(struct bnxt *bp)
4050 {
4051 	int i, j;
4052 
4053 	for (i = 0; i < bp->cp_nr_rings; i++) {
4054 		struct bnxt_napi *bnapi = bp->bnapi[i];
4055 		struct bnxt_ring_mem_info *rmem;
4056 		struct bnxt_cp_ring_info *cpr;
4057 		struct bnxt_rx_ring_info *rxr;
4058 		struct bnxt_tx_ring_info *txr;
4059 		struct bnxt_ring_struct *ring;
4060 
4061 		if (!bnapi)
4062 			continue;
4063 
4064 		cpr = &bnapi->cp_ring;
4065 		ring = &cpr->cp_ring_struct;
4066 		rmem = &ring->ring_mem;
4067 		rmem->nr_pages = bp->cp_nr_pages;
4068 		rmem->page_size = HW_CMPD_RING_SIZE;
4069 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
4070 		rmem->dma_arr = cpr->cp_desc_mapping;
4071 		rmem->vmem_size = 0;
4072 
4073 		rxr = bnapi->rx_ring;
4074 		if (!rxr)
4075 			goto skip_rx;
4076 
4077 		ring = &rxr->rx_ring_struct;
4078 		rmem = &ring->ring_mem;
4079 		rmem->nr_pages = bp->rx_nr_pages;
4080 		rmem->page_size = HW_RXBD_RING_SIZE;
4081 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
4082 		rmem->dma_arr = rxr->rx_desc_mapping;
4083 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4084 		rmem->vmem = (void **)&rxr->rx_buf_ring;
4085 
4086 		ring = &rxr->rx_agg_ring_struct;
4087 		rmem = &ring->ring_mem;
4088 		rmem->nr_pages = bp->rx_agg_nr_pages;
4089 		rmem->page_size = HW_RXBD_RING_SIZE;
4090 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4091 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
4092 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4093 		rmem->vmem = (void **)&rxr->rx_agg_ring;
4094 
4095 skip_rx:
4096 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4097 			ring = &txr->tx_ring_struct;
4098 			rmem = &ring->ring_mem;
4099 			rmem->nr_pages = bp->tx_nr_pages;
4100 			rmem->page_size = HW_TXBD_RING_SIZE;
4101 			rmem->pg_arr = (void **)txr->tx_desc_ring;
4102 			rmem->dma_arr = txr->tx_desc_mapping;
4103 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
4104 			rmem->vmem = (void **)&txr->tx_buf_ring;
4105 		}
4106 	}
4107 }
4108 
4109 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
4110 {
4111 	int i;
4112 	u32 prod;
4113 	struct rx_bd **rx_buf_ring;
4114 
4115 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
4116 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
4117 		int j;
4118 		struct rx_bd *rxbd;
4119 
4120 		rxbd = rx_buf_ring[i];
4121 		if (!rxbd)
4122 			continue;
4123 
4124 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
4125 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
4126 			rxbd->rx_bd_opaque = prod;
4127 		}
4128 	}
4129 }
4130 
4131 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp,
4132 				       struct bnxt_rx_ring_info *rxr,
4133 				       int ring_nr)
4134 {
4135 	u32 prod;
4136 	int i;
4137 
4138 	prod = rxr->rx_prod;
4139 	for (i = 0; i < bp->rx_ring_size; i++) {
4140 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
4141 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
4142 				    ring_nr, i, bp->rx_ring_size);
4143 			break;
4144 		}
4145 		prod = NEXT_RX(prod);
4146 	}
4147 	rxr->rx_prod = prod;
4148 }
4149 
4150 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp,
4151 					struct bnxt_rx_ring_info *rxr,
4152 					int ring_nr)
4153 {
4154 	u32 prod;
4155 	int i;
4156 
4157 	prod = rxr->rx_agg_prod;
4158 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4159 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4160 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n",
4161 				    ring_nr, i, bp->rx_ring_size);
4162 			break;
4163 		}
4164 		prod = NEXT_RX_AGG(prod);
4165 	}
4166 	rxr->rx_agg_prod = prod;
4167 }
4168 
4169 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
4170 {
4171 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
4172 	int i;
4173 
4174 	bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr);
4175 
4176 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
4177 		return 0;
4178 
4179 	bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr);
4180 
4181 	if (rxr->rx_tpa) {
4182 		dma_addr_t mapping;
4183 		u8 *data;
4184 
4185 		for (i = 0; i < bp->max_tpa; i++) {
4186 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4187 			if (!data)
4188 				return -ENOMEM;
4189 
4190 			rxr->rx_tpa[i].data = data;
4191 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4192 			rxr->rx_tpa[i].mapping = mapping;
4193 		}
4194 	}
4195 	return 0;
4196 }
4197 
4198 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp,
4199 				       struct bnxt_rx_ring_info *rxr)
4200 {
4201 	struct bnxt_ring_struct *ring;
4202 	u32 type;
4203 
4204 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4205 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4206 
4207 	if (NET_IP_ALIGN == 2)
4208 		type |= RX_BD_FLAGS_SOP;
4209 
4210 	ring = &rxr->rx_ring_struct;
4211 	bnxt_init_rxbd_pages(ring, type);
4212 	ring->fw_ring_id = INVALID_HW_RING_ID;
4213 }
4214 
4215 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp,
4216 					   struct bnxt_rx_ring_info *rxr)
4217 {
4218 	struct bnxt_ring_struct *ring;
4219 	u32 type;
4220 
4221 	ring = &rxr->rx_agg_ring_struct;
4222 	ring->fw_ring_id = INVALID_HW_RING_ID;
4223 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4224 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4225 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4226 
4227 		bnxt_init_rxbd_pages(ring, type);
4228 	}
4229 }
4230 
4231 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4232 {
4233 	struct bnxt_rx_ring_info *rxr;
4234 
4235 	rxr = &bp->rx_ring[ring_nr];
4236 	bnxt_init_one_rx_ring_rxbd(bp, rxr);
4237 
4238 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4239 			     &rxr->bnapi->napi);
4240 
4241 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4242 		bpf_prog_add(bp->xdp_prog, 1);
4243 		rxr->xdp_prog = bp->xdp_prog;
4244 	}
4245 
4246 	bnxt_init_one_rx_agg_ring_rxbd(bp, rxr);
4247 
4248 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4249 }
4250 
4251 static void bnxt_init_cp_rings(struct bnxt *bp)
4252 {
4253 	int i, j;
4254 
4255 	for (i = 0; i < bp->cp_nr_rings; i++) {
4256 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4257 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4258 
4259 		ring->fw_ring_id = INVALID_HW_RING_ID;
4260 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4261 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4262 		if (!cpr->cp_ring_arr)
4263 			continue;
4264 		for (j = 0; j < cpr->cp_ring_count; j++) {
4265 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4266 
4267 			ring = &cpr2->cp_ring_struct;
4268 			ring->fw_ring_id = INVALID_HW_RING_ID;
4269 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4270 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4271 		}
4272 	}
4273 }
4274 
4275 static int bnxt_init_rx_rings(struct bnxt *bp)
4276 {
4277 	int i, rc = 0;
4278 
4279 	if (BNXT_RX_PAGE_MODE(bp)) {
4280 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4281 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4282 	} else {
4283 		bp->rx_offset = BNXT_RX_OFFSET;
4284 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4285 	}
4286 
4287 	for (i = 0; i < bp->rx_nr_rings; i++) {
4288 		rc = bnxt_init_one_rx_ring(bp, i);
4289 		if (rc)
4290 			break;
4291 	}
4292 
4293 	return rc;
4294 }
4295 
4296 static int bnxt_init_tx_rings(struct bnxt *bp)
4297 {
4298 	u16 i;
4299 
4300 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4301 				   BNXT_MIN_TX_DESC_CNT);
4302 
4303 	for (i = 0; i < bp->tx_nr_rings; i++) {
4304 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4305 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4306 
4307 		ring->fw_ring_id = INVALID_HW_RING_ID;
4308 
4309 		if (i >= bp->tx_nr_rings_xdp)
4310 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4311 					     NETDEV_QUEUE_TYPE_TX,
4312 					     &txr->bnapi->napi);
4313 	}
4314 
4315 	return 0;
4316 }
4317 
4318 static void bnxt_free_ring_grps(struct bnxt *bp)
4319 {
4320 	kfree(bp->grp_info);
4321 	bp->grp_info = NULL;
4322 }
4323 
4324 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4325 {
4326 	int i;
4327 
4328 	if (irq_re_init) {
4329 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4330 				       sizeof(struct bnxt_ring_grp_info),
4331 				       GFP_KERNEL);
4332 		if (!bp->grp_info)
4333 			return -ENOMEM;
4334 	}
4335 	for (i = 0; i < bp->cp_nr_rings; i++) {
4336 		if (irq_re_init)
4337 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4338 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4339 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4340 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4341 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4342 	}
4343 	return 0;
4344 }
4345 
4346 static void bnxt_free_vnics(struct bnxt *bp)
4347 {
4348 	kfree(bp->vnic_info);
4349 	bp->vnic_info = NULL;
4350 	bp->nr_vnics = 0;
4351 }
4352 
4353 static int bnxt_alloc_vnics(struct bnxt *bp)
4354 {
4355 	int num_vnics = 1;
4356 
4357 #ifdef CONFIG_RFS_ACCEL
4358 	if (bp->flags & BNXT_FLAG_RFS) {
4359 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
4360 			num_vnics++;
4361 		else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4362 			num_vnics += bp->rx_nr_rings;
4363 	}
4364 #endif
4365 
4366 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4367 		num_vnics++;
4368 
4369 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4370 				GFP_KERNEL);
4371 	if (!bp->vnic_info)
4372 		return -ENOMEM;
4373 
4374 	bp->nr_vnics = num_vnics;
4375 	return 0;
4376 }
4377 
4378 static void bnxt_init_vnics(struct bnxt *bp)
4379 {
4380 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
4381 	int i;
4382 
4383 	for (i = 0; i < bp->nr_vnics; i++) {
4384 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4385 		int j;
4386 
4387 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4388 		vnic->vnic_id = i;
4389 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4390 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4391 
4392 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4393 
4394 		if (bp->vnic_info[i].rss_hash_key) {
4395 			if (i == BNXT_VNIC_DEFAULT) {
4396 				u8 *key = (void *)vnic->rss_hash_key;
4397 				int k;
4398 
4399 				if (!bp->rss_hash_key_valid &&
4400 				    !bp->rss_hash_key_updated) {
4401 					get_random_bytes(bp->rss_hash_key,
4402 							 HW_HASH_KEY_SIZE);
4403 					bp->rss_hash_key_updated = true;
4404 				}
4405 
4406 				memcpy(vnic->rss_hash_key, bp->rss_hash_key,
4407 				       HW_HASH_KEY_SIZE);
4408 
4409 				if (!bp->rss_hash_key_updated)
4410 					continue;
4411 
4412 				bp->rss_hash_key_updated = false;
4413 				bp->rss_hash_key_valid = true;
4414 
4415 				bp->toeplitz_prefix = 0;
4416 				for (k = 0; k < 8; k++) {
4417 					bp->toeplitz_prefix <<= 8;
4418 					bp->toeplitz_prefix |= key[k];
4419 				}
4420 			} else {
4421 				memcpy(vnic->rss_hash_key, vnic0->rss_hash_key,
4422 				       HW_HASH_KEY_SIZE);
4423 			}
4424 		}
4425 	}
4426 }
4427 
4428 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4429 {
4430 	int pages;
4431 
4432 	pages = ring_size / desc_per_pg;
4433 
4434 	if (!pages)
4435 		return 1;
4436 
4437 	pages++;
4438 
4439 	while (pages & (pages - 1))
4440 		pages++;
4441 
4442 	return pages;
4443 }
4444 
4445 void bnxt_set_tpa_flags(struct bnxt *bp)
4446 {
4447 	bp->flags &= ~BNXT_FLAG_TPA;
4448 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4449 		return;
4450 	if (bp->dev->features & NETIF_F_LRO)
4451 		bp->flags |= BNXT_FLAG_LRO;
4452 	else if (bp->dev->features & NETIF_F_GRO_HW)
4453 		bp->flags |= BNXT_FLAG_GRO;
4454 }
4455 
4456 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4457  * be set on entry.
4458  */
4459 void bnxt_set_ring_params(struct bnxt *bp)
4460 {
4461 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4462 	u32 agg_factor = 0, agg_ring_size = 0;
4463 
4464 	/* 8 for CRC and VLAN */
4465 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4466 
4467 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4468 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4469 
4470 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4471 	ring_size = bp->rx_ring_size;
4472 	bp->rx_agg_ring_size = 0;
4473 	bp->rx_agg_nr_pages = 0;
4474 
4475 	if (bp->flags & BNXT_FLAG_TPA)
4476 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4477 
4478 	bp->flags &= ~BNXT_FLAG_JUMBO;
4479 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4480 		u32 jumbo_factor;
4481 
4482 		bp->flags |= BNXT_FLAG_JUMBO;
4483 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4484 		if (jumbo_factor > agg_factor)
4485 			agg_factor = jumbo_factor;
4486 	}
4487 	if (agg_factor) {
4488 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4489 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4490 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4491 				    bp->rx_ring_size, ring_size);
4492 			bp->rx_ring_size = ring_size;
4493 		}
4494 		agg_ring_size = ring_size * agg_factor;
4495 
4496 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4497 							RX_DESC_CNT);
4498 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4499 			u32 tmp = agg_ring_size;
4500 
4501 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4502 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4503 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4504 				    tmp, agg_ring_size);
4505 		}
4506 		bp->rx_agg_ring_size = agg_ring_size;
4507 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4508 
4509 		if (BNXT_RX_PAGE_MODE(bp)) {
4510 			rx_space = PAGE_SIZE;
4511 			rx_size = PAGE_SIZE -
4512 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4513 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4514 		} else {
4515 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4516 			rx_space = rx_size + NET_SKB_PAD +
4517 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4518 		}
4519 	}
4520 
4521 	bp->rx_buf_use_size = rx_size;
4522 	bp->rx_buf_size = rx_space;
4523 
4524 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4525 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4526 
4527 	ring_size = bp->tx_ring_size;
4528 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4529 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4530 
4531 	max_rx_cmpl = bp->rx_ring_size;
4532 	/* MAX TPA needs to be added because TPA_START completions are
4533 	 * immediately recycled, so the TPA completions are not bound by
4534 	 * the RX ring size.
4535 	 */
4536 	if (bp->flags & BNXT_FLAG_TPA)
4537 		max_rx_cmpl += bp->max_tpa;
4538 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4539 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4540 	bp->cp_ring_size = ring_size;
4541 
4542 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4543 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4544 		bp->cp_nr_pages = MAX_CP_PAGES;
4545 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4546 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4547 			    ring_size, bp->cp_ring_size);
4548 	}
4549 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4550 	bp->cp_ring_mask = bp->cp_bit - 1;
4551 }
4552 
4553 /* Changing allocation mode of RX rings.
4554  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4555  */
4556 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4557 {
4558 	struct net_device *dev = bp->dev;
4559 
4560 	if (page_mode) {
4561 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4562 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4563 
4564 		if (bp->xdp_prog->aux->xdp_has_frags)
4565 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4566 		else
4567 			dev->max_mtu =
4568 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4569 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4570 			bp->flags |= BNXT_FLAG_JUMBO;
4571 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4572 		} else {
4573 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4574 			bp->rx_skb_func = bnxt_rx_page_skb;
4575 		}
4576 		bp->rx_dir = DMA_BIDIRECTIONAL;
4577 		/* Disable LRO or GRO_HW */
4578 		netdev_update_features(dev);
4579 	} else {
4580 		dev->max_mtu = bp->max_mtu;
4581 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4582 		bp->rx_dir = DMA_FROM_DEVICE;
4583 		bp->rx_skb_func = bnxt_rx_skb;
4584 	}
4585 	return 0;
4586 }
4587 
4588 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4589 {
4590 	int i;
4591 	struct bnxt_vnic_info *vnic;
4592 	struct pci_dev *pdev = bp->pdev;
4593 
4594 	if (!bp->vnic_info)
4595 		return;
4596 
4597 	for (i = 0; i < bp->nr_vnics; i++) {
4598 		vnic = &bp->vnic_info[i];
4599 
4600 		kfree(vnic->fw_grp_ids);
4601 		vnic->fw_grp_ids = NULL;
4602 
4603 		kfree(vnic->uc_list);
4604 		vnic->uc_list = NULL;
4605 
4606 		if (vnic->mc_list) {
4607 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4608 					  vnic->mc_list, vnic->mc_list_mapping);
4609 			vnic->mc_list = NULL;
4610 		}
4611 
4612 		if (vnic->rss_table) {
4613 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4614 					  vnic->rss_table,
4615 					  vnic->rss_table_dma_addr);
4616 			vnic->rss_table = NULL;
4617 		}
4618 
4619 		vnic->rss_hash_key = NULL;
4620 		vnic->flags = 0;
4621 	}
4622 }
4623 
4624 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4625 {
4626 	int i, rc = 0, size;
4627 	struct bnxt_vnic_info *vnic;
4628 	struct pci_dev *pdev = bp->pdev;
4629 	int max_rings;
4630 
4631 	for (i = 0; i < bp->nr_vnics; i++) {
4632 		vnic = &bp->vnic_info[i];
4633 
4634 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4635 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4636 
4637 			if (mem_size > 0) {
4638 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4639 				if (!vnic->uc_list) {
4640 					rc = -ENOMEM;
4641 					goto out;
4642 				}
4643 			}
4644 		}
4645 
4646 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4647 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4648 			vnic->mc_list =
4649 				dma_alloc_coherent(&pdev->dev,
4650 						   vnic->mc_list_size,
4651 						   &vnic->mc_list_mapping,
4652 						   GFP_KERNEL);
4653 			if (!vnic->mc_list) {
4654 				rc = -ENOMEM;
4655 				goto out;
4656 			}
4657 		}
4658 
4659 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4660 			goto vnic_skip_grps;
4661 
4662 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4663 			max_rings = bp->rx_nr_rings;
4664 		else
4665 			max_rings = 1;
4666 
4667 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4668 		if (!vnic->fw_grp_ids) {
4669 			rc = -ENOMEM;
4670 			goto out;
4671 		}
4672 vnic_skip_grps:
4673 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4674 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4675 			continue;
4676 
4677 		/* Allocate rss table and hash key */
4678 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4679 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4680 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4681 
4682 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4683 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4684 						     vnic->rss_table_size,
4685 						     &vnic->rss_table_dma_addr,
4686 						     GFP_KERNEL);
4687 		if (!vnic->rss_table) {
4688 			rc = -ENOMEM;
4689 			goto out;
4690 		}
4691 
4692 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4693 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4694 	}
4695 	return 0;
4696 
4697 out:
4698 	return rc;
4699 }
4700 
4701 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4702 {
4703 	struct bnxt_hwrm_wait_token *token;
4704 
4705 	dma_pool_destroy(bp->hwrm_dma_pool);
4706 	bp->hwrm_dma_pool = NULL;
4707 
4708 	rcu_read_lock();
4709 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4710 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4711 	rcu_read_unlock();
4712 }
4713 
4714 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4715 {
4716 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4717 					    BNXT_HWRM_DMA_SIZE,
4718 					    BNXT_HWRM_DMA_ALIGN, 0);
4719 	if (!bp->hwrm_dma_pool)
4720 		return -ENOMEM;
4721 
4722 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4723 
4724 	return 0;
4725 }
4726 
4727 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4728 {
4729 	kfree(stats->hw_masks);
4730 	stats->hw_masks = NULL;
4731 	kfree(stats->sw_stats);
4732 	stats->sw_stats = NULL;
4733 	if (stats->hw_stats) {
4734 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4735 				  stats->hw_stats_map);
4736 		stats->hw_stats = NULL;
4737 	}
4738 }
4739 
4740 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4741 				bool alloc_masks)
4742 {
4743 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4744 					     &stats->hw_stats_map, GFP_KERNEL);
4745 	if (!stats->hw_stats)
4746 		return -ENOMEM;
4747 
4748 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4749 	if (!stats->sw_stats)
4750 		goto stats_mem_err;
4751 
4752 	if (alloc_masks) {
4753 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4754 		if (!stats->hw_masks)
4755 			goto stats_mem_err;
4756 	}
4757 	return 0;
4758 
4759 stats_mem_err:
4760 	bnxt_free_stats_mem(bp, stats);
4761 	return -ENOMEM;
4762 }
4763 
4764 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4765 {
4766 	int i;
4767 
4768 	for (i = 0; i < count; i++)
4769 		mask_arr[i] = mask;
4770 }
4771 
4772 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4773 {
4774 	int i;
4775 
4776 	for (i = 0; i < count; i++)
4777 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4778 }
4779 
4780 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4781 				    struct bnxt_stats_mem *stats)
4782 {
4783 	struct hwrm_func_qstats_ext_output *resp;
4784 	struct hwrm_func_qstats_ext_input *req;
4785 	__le64 *hw_masks;
4786 	int rc;
4787 
4788 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4789 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4790 		return -EOPNOTSUPP;
4791 
4792 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4793 	if (rc)
4794 		return rc;
4795 
4796 	req->fid = cpu_to_le16(0xffff);
4797 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4798 
4799 	resp = hwrm_req_hold(bp, req);
4800 	rc = hwrm_req_send(bp, req);
4801 	if (!rc) {
4802 		hw_masks = &resp->rx_ucast_pkts;
4803 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4804 	}
4805 	hwrm_req_drop(bp, req);
4806 	return rc;
4807 }
4808 
4809 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4810 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4811 
4812 static void bnxt_init_stats(struct bnxt *bp)
4813 {
4814 	struct bnxt_napi *bnapi = bp->bnapi[0];
4815 	struct bnxt_cp_ring_info *cpr;
4816 	struct bnxt_stats_mem *stats;
4817 	__le64 *rx_stats, *tx_stats;
4818 	int rc, rx_count, tx_count;
4819 	u64 *rx_masks, *tx_masks;
4820 	u64 mask;
4821 	u8 flags;
4822 
4823 	cpr = &bnapi->cp_ring;
4824 	stats = &cpr->stats;
4825 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4826 	if (rc) {
4827 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4828 			mask = (1ULL << 48) - 1;
4829 		else
4830 			mask = -1ULL;
4831 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4832 	}
4833 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4834 		stats = &bp->port_stats;
4835 		rx_stats = stats->hw_stats;
4836 		rx_masks = stats->hw_masks;
4837 		rx_count = sizeof(struct rx_port_stats) / 8;
4838 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4839 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4840 		tx_count = sizeof(struct tx_port_stats) / 8;
4841 
4842 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4843 		rc = bnxt_hwrm_port_qstats(bp, flags);
4844 		if (rc) {
4845 			mask = (1ULL << 40) - 1;
4846 
4847 			bnxt_fill_masks(rx_masks, mask, rx_count);
4848 			bnxt_fill_masks(tx_masks, mask, tx_count);
4849 		} else {
4850 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4851 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4852 			bnxt_hwrm_port_qstats(bp, 0);
4853 		}
4854 	}
4855 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4856 		stats = &bp->rx_port_stats_ext;
4857 		rx_stats = stats->hw_stats;
4858 		rx_masks = stats->hw_masks;
4859 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4860 		stats = &bp->tx_port_stats_ext;
4861 		tx_stats = stats->hw_stats;
4862 		tx_masks = stats->hw_masks;
4863 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4864 
4865 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4866 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4867 		if (rc) {
4868 			mask = (1ULL << 40) - 1;
4869 
4870 			bnxt_fill_masks(rx_masks, mask, rx_count);
4871 			if (tx_stats)
4872 				bnxt_fill_masks(tx_masks, mask, tx_count);
4873 		} else {
4874 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4875 			if (tx_stats)
4876 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4877 						   tx_count);
4878 			bnxt_hwrm_port_qstats_ext(bp, 0);
4879 		}
4880 	}
4881 }
4882 
4883 static void bnxt_free_port_stats(struct bnxt *bp)
4884 {
4885 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4886 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4887 
4888 	bnxt_free_stats_mem(bp, &bp->port_stats);
4889 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4890 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4891 }
4892 
4893 static void bnxt_free_ring_stats(struct bnxt *bp)
4894 {
4895 	int i;
4896 
4897 	if (!bp->bnapi)
4898 		return;
4899 
4900 	for (i = 0; i < bp->cp_nr_rings; i++) {
4901 		struct bnxt_napi *bnapi = bp->bnapi[i];
4902 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4903 
4904 		bnxt_free_stats_mem(bp, &cpr->stats);
4905 
4906 		kfree(cpr->sw_stats);
4907 		cpr->sw_stats = NULL;
4908 	}
4909 }
4910 
4911 static int bnxt_alloc_stats(struct bnxt *bp)
4912 {
4913 	u32 size, i;
4914 	int rc;
4915 
4916 	size = bp->hw_ring_stats_size;
4917 
4918 	for (i = 0; i < bp->cp_nr_rings; i++) {
4919 		struct bnxt_napi *bnapi = bp->bnapi[i];
4920 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4921 
4922 		cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL);
4923 		if (!cpr->sw_stats)
4924 			return -ENOMEM;
4925 
4926 		cpr->stats.len = size;
4927 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4928 		if (rc)
4929 			return rc;
4930 
4931 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4932 	}
4933 
4934 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4935 		return 0;
4936 
4937 	if (bp->port_stats.hw_stats)
4938 		goto alloc_ext_stats;
4939 
4940 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4941 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4942 	if (rc)
4943 		return rc;
4944 
4945 	bp->flags |= BNXT_FLAG_PORT_STATS;
4946 
4947 alloc_ext_stats:
4948 	/* Display extended statistics only if FW supports it */
4949 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4950 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4951 			return 0;
4952 
4953 	if (bp->rx_port_stats_ext.hw_stats)
4954 		goto alloc_tx_ext_stats;
4955 
4956 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4957 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4958 	/* Extended stats are optional */
4959 	if (rc)
4960 		return 0;
4961 
4962 alloc_tx_ext_stats:
4963 	if (bp->tx_port_stats_ext.hw_stats)
4964 		return 0;
4965 
4966 	if (bp->hwrm_spec_code >= 0x10902 ||
4967 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4968 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4969 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4970 		/* Extended stats are optional */
4971 		if (rc)
4972 			return 0;
4973 	}
4974 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4975 	return 0;
4976 }
4977 
4978 static void bnxt_clear_ring_indices(struct bnxt *bp)
4979 {
4980 	int i, j;
4981 
4982 	if (!bp->bnapi)
4983 		return;
4984 
4985 	for (i = 0; i < bp->cp_nr_rings; i++) {
4986 		struct bnxt_napi *bnapi = bp->bnapi[i];
4987 		struct bnxt_cp_ring_info *cpr;
4988 		struct bnxt_rx_ring_info *rxr;
4989 		struct bnxt_tx_ring_info *txr;
4990 
4991 		if (!bnapi)
4992 			continue;
4993 
4994 		cpr = &bnapi->cp_ring;
4995 		cpr->cp_raw_cons = 0;
4996 
4997 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4998 			txr->tx_prod = 0;
4999 			txr->tx_cons = 0;
5000 			txr->tx_hw_cons = 0;
5001 		}
5002 
5003 		rxr = bnapi->rx_ring;
5004 		if (rxr) {
5005 			rxr->rx_prod = 0;
5006 			rxr->rx_agg_prod = 0;
5007 			rxr->rx_sw_agg_prod = 0;
5008 			rxr->rx_next_cons = 0;
5009 		}
5010 		bnapi->events = 0;
5011 	}
5012 }
5013 
5014 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5015 {
5016 	u8 type = fltr->type, flags = fltr->flags;
5017 
5018 	INIT_LIST_HEAD(&fltr->list);
5019 	if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) ||
5020 	    (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING))
5021 		list_add_tail(&fltr->list, &bp->usr_fltr_list);
5022 }
5023 
5024 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5025 {
5026 	if (!list_empty(&fltr->list))
5027 		list_del_init(&fltr->list);
5028 }
5029 
5030 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all)
5031 {
5032 	struct bnxt_filter_base *usr_fltr, *tmp;
5033 
5034 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
5035 		if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2)
5036 			continue;
5037 		bnxt_del_one_usr_fltr(bp, usr_fltr);
5038 	}
5039 }
5040 
5041 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5042 {
5043 	hlist_del(&fltr->hash);
5044 	bnxt_del_one_usr_fltr(bp, fltr);
5045 	if (fltr->flags) {
5046 		clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5047 		bp->ntp_fltr_count--;
5048 	}
5049 	kfree(fltr);
5050 }
5051 
5052 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
5053 {
5054 	int i;
5055 
5056 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
5057 	 * safe to delete the hash table.
5058 	 */
5059 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5060 		struct hlist_head *head;
5061 		struct hlist_node *tmp;
5062 		struct bnxt_ntuple_filter *fltr;
5063 
5064 		head = &bp->ntp_fltr_hash_tbl[i];
5065 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5066 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
5067 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5068 				     !list_empty(&fltr->base.list)))
5069 				continue;
5070 			bnxt_del_fltr(bp, &fltr->base);
5071 		}
5072 	}
5073 	if (!all)
5074 		return;
5075 
5076 	bitmap_free(bp->ntp_fltr_bmap);
5077 	bp->ntp_fltr_bmap = NULL;
5078 	bp->ntp_fltr_count = 0;
5079 }
5080 
5081 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
5082 {
5083 	int i, rc = 0;
5084 
5085 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
5086 		return 0;
5087 
5088 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
5089 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
5090 
5091 	bp->ntp_fltr_count = 0;
5092 	bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL);
5093 
5094 	if (!bp->ntp_fltr_bmap)
5095 		rc = -ENOMEM;
5096 
5097 	return rc;
5098 }
5099 
5100 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
5101 {
5102 	int i;
5103 
5104 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
5105 		struct hlist_head *head;
5106 		struct hlist_node *tmp;
5107 		struct bnxt_l2_filter *fltr;
5108 
5109 		head = &bp->l2_fltr_hash_tbl[i];
5110 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5111 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5112 				     !list_empty(&fltr->base.list)))
5113 				continue;
5114 			bnxt_del_fltr(bp, &fltr->base);
5115 		}
5116 	}
5117 }
5118 
5119 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
5120 {
5121 	int i;
5122 
5123 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
5124 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
5125 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
5126 }
5127 
5128 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
5129 {
5130 	bnxt_free_vnic_attributes(bp);
5131 	bnxt_free_tx_rings(bp);
5132 	bnxt_free_rx_rings(bp);
5133 	bnxt_free_cp_rings(bp);
5134 	bnxt_free_all_cp_arrays(bp);
5135 	bnxt_free_ntp_fltrs(bp, false);
5136 	bnxt_free_l2_filters(bp, false);
5137 	if (irq_re_init) {
5138 		bnxt_free_ring_stats(bp);
5139 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
5140 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
5141 			bnxt_free_port_stats(bp);
5142 		bnxt_free_ring_grps(bp);
5143 		bnxt_free_vnics(bp);
5144 		kfree(bp->tx_ring_map);
5145 		bp->tx_ring_map = NULL;
5146 		kfree(bp->tx_ring);
5147 		bp->tx_ring = NULL;
5148 		kfree(bp->rx_ring);
5149 		bp->rx_ring = NULL;
5150 		kfree(bp->bnapi);
5151 		bp->bnapi = NULL;
5152 	} else {
5153 		bnxt_clear_ring_indices(bp);
5154 	}
5155 }
5156 
5157 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
5158 {
5159 	int i, j, rc, size, arr_size;
5160 	void *bnapi;
5161 
5162 	if (irq_re_init) {
5163 		/* Allocate bnapi mem pointer array and mem block for
5164 		 * all queues
5165 		 */
5166 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
5167 				bp->cp_nr_rings);
5168 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
5169 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
5170 		if (!bnapi)
5171 			return -ENOMEM;
5172 
5173 		bp->bnapi = bnapi;
5174 		bnapi += arr_size;
5175 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
5176 			bp->bnapi[i] = bnapi;
5177 			bp->bnapi[i]->index = i;
5178 			bp->bnapi[i]->bp = bp;
5179 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5180 				struct bnxt_cp_ring_info *cpr =
5181 					&bp->bnapi[i]->cp_ring;
5182 
5183 				cpr->cp_ring_struct.ring_mem.flags =
5184 					BNXT_RMEM_RING_PTE_FLAG;
5185 			}
5186 		}
5187 
5188 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
5189 				      sizeof(struct bnxt_rx_ring_info),
5190 				      GFP_KERNEL);
5191 		if (!bp->rx_ring)
5192 			return -ENOMEM;
5193 
5194 		for (i = 0; i < bp->rx_nr_rings; i++) {
5195 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5196 
5197 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5198 				rxr->rx_ring_struct.ring_mem.flags =
5199 					BNXT_RMEM_RING_PTE_FLAG;
5200 				rxr->rx_agg_ring_struct.ring_mem.flags =
5201 					BNXT_RMEM_RING_PTE_FLAG;
5202 			} else {
5203 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
5204 			}
5205 			rxr->bnapi = bp->bnapi[i];
5206 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
5207 		}
5208 
5209 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
5210 				      sizeof(struct bnxt_tx_ring_info),
5211 				      GFP_KERNEL);
5212 		if (!bp->tx_ring)
5213 			return -ENOMEM;
5214 
5215 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
5216 					  GFP_KERNEL);
5217 
5218 		if (!bp->tx_ring_map)
5219 			return -ENOMEM;
5220 
5221 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5222 			j = 0;
5223 		else
5224 			j = bp->rx_nr_rings;
5225 
5226 		for (i = 0; i < bp->tx_nr_rings; i++) {
5227 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5228 			struct bnxt_napi *bnapi2;
5229 
5230 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5231 				txr->tx_ring_struct.ring_mem.flags =
5232 					BNXT_RMEM_RING_PTE_FLAG;
5233 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
5234 			if (i >= bp->tx_nr_rings_xdp) {
5235 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
5236 
5237 				bnapi2 = bp->bnapi[k];
5238 				txr->txq_index = i - bp->tx_nr_rings_xdp;
5239 				txr->tx_napi_idx =
5240 					BNXT_RING_TO_TC(bp, txr->txq_index);
5241 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
5242 				bnapi2->tx_int = bnxt_tx_int;
5243 			} else {
5244 				bnapi2 = bp->bnapi[j];
5245 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5246 				bnapi2->tx_ring[0] = txr;
5247 				bnapi2->tx_int = bnxt_tx_int_xdp;
5248 				j++;
5249 			}
5250 			txr->bnapi = bnapi2;
5251 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5252 				txr->tx_cpr = &bnapi2->cp_ring;
5253 		}
5254 
5255 		rc = bnxt_alloc_stats(bp);
5256 		if (rc)
5257 			goto alloc_mem_err;
5258 		bnxt_init_stats(bp);
5259 
5260 		rc = bnxt_alloc_ntp_fltrs(bp);
5261 		if (rc)
5262 			goto alloc_mem_err;
5263 
5264 		rc = bnxt_alloc_vnics(bp);
5265 		if (rc)
5266 			goto alloc_mem_err;
5267 	}
5268 
5269 	rc = bnxt_alloc_all_cp_arrays(bp);
5270 	if (rc)
5271 		goto alloc_mem_err;
5272 
5273 	bnxt_init_ring_struct(bp);
5274 
5275 	rc = bnxt_alloc_rx_rings(bp);
5276 	if (rc)
5277 		goto alloc_mem_err;
5278 
5279 	rc = bnxt_alloc_tx_rings(bp);
5280 	if (rc)
5281 		goto alloc_mem_err;
5282 
5283 	rc = bnxt_alloc_cp_rings(bp);
5284 	if (rc)
5285 		goto alloc_mem_err;
5286 
5287 	bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG |
5288 						  BNXT_VNIC_MCAST_FLAG |
5289 						  BNXT_VNIC_UCAST_FLAG;
5290 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS))
5291 		bp->vnic_info[BNXT_VNIC_NTUPLE].flags |=
5292 			BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG;
5293 
5294 	rc = bnxt_alloc_vnic_attributes(bp);
5295 	if (rc)
5296 		goto alloc_mem_err;
5297 	return 0;
5298 
5299 alloc_mem_err:
5300 	bnxt_free_mem(bp, true);
5301 	return rc;
5302 }
5303 
5304 static void bnxt_disable_int(struct bnxt *bp)
5305 {
5306 	int i;
5307 
5308 	if (!bp->bnapi)
5309 		return;
5310 
5311 	for (i = 0; i < bp->cp_nr_rings; i++) {
5312 		struct bnxt_napi *bnapi = bp->bnapi[i];
5313 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5314 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5315 
5316 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5317 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5318 	}
5319 }
5320 
5321 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5322 {
5323 	struct bnxt_napi *bnapi = bp->bnapi[n];
5324 	struct bnxt_cp_ring_info *cpr;
5325 
5326 	cpr = &bnapi->cp_ring;
5327 	return cpr->cp_ring_struct.map_idx;
5328 }
5329 
5330 static void bnxt_disable_int_sync(struct bnxt *bp)
5331 {
5332 	int i;
5333 
5334 	if (!bp->irq_tbl)
5335 		return;
5336 
5337 	atomic_inc(&bp->intr_sem);
5338 
5339 	bnxt_disable_int(bp);
5340 	for (i = 0; i < bp->cp_nr_rings; i++) {
5341 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5342 
5343 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5344 	}
5345 }
5346 
5347 static void bnxt_enable_int(struct bnxt *bp)
5348 {
5349 	int i;
5350 
5351 	atomic_set(&bp->intr_sem, 0);
5352 	for (i = 0; i < bp->cp_nr_rings; i++) {
5353 		struct bnxt_napi *bnapi = bp->bnapi[i];
5354 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5355 
5356 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5357 	}
5358 }
5359 
5360 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5361 			    bool async_only)
5362 {
5363 	DECLARE_BITMAP(async_events_bmap, 256);
5364 	u32 *events = (u32 *)async_events_bmap;
5365 	struct hwrm_func_drv_rgtr_output *resp;
5366 	struct hwrm_func_drv_rgtr_input *req;
5367 	u32 flags;
5368 	int rc, i;
5369 
5370 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5371 	if (rc)
5372 		return rc;
5373 
5374 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5375 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5376 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5377 
5378 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5379 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5380 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5381 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5382 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5383 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5384 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5385 	req->flags = cpu_to_le32(flags);
5386 	req->ver_maj_8b = DRV_VER_MAJ;
5387 	req->ver_min_8b = DRV_VER_MIN;
5388 	req->ver_upd_8b = DRV_VER_UPD;
5389 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5390 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5391 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5392 
5393 	if (BNXT_PF(bp)) {
5394 		u32 data[8];
5395 		int i;
5396 
5397 		memset(data, 0, sizeof(data));
5398 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5399 			u16 cmd = bnxt_vf_req_snif[i];
5400 			unsigned int bit, idx;
5401 
5402 			idx = cmd / 32;
5403 			bit = cmd % 32;
5404 			data[idx] |= 1 << bit;
5405 		}
5406 
5407 		for (i = 0; i < 8; i++)
5408 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5409 
5410 		req->enables |=
5411 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5412 	}
5413 
5414 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5415 		req->flags |= cpu_to_le32(
5416 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5417 
5418 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5419 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5420 		u16 event_id = bnxt_async_events_arr[i];
5421 
5422 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5423 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5424 			continue;
5425 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5426 		    !bp->ptp_cfg)
5427 			continue;
5428 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5429 	}
5430 	if (bmap && bmap_size) {
5431 		for (i = 0; i < bmap_size; i++) {
5432 			if (test_bit(i, bmap))
5433 				__set_bit(i, async_events_bmap);
5434 		}
5435 	}
5436 	for (i = 0; i < 8; i++)
5437 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5438 
5439 	if (async_only)
5440 		req->enables =
5441 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5442 
5443 	resp = hwrm_req_hold(bp, req);
5444 	rc = hwrm_req_send(bp, req);
5445 	if (!rc) {
5446 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5447 		if (resp->flags &
5448 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5449 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5450 	}
5451 	hwrm_req_drop(bp, req);
5452 	return rc;
5453 }
5454 
5455 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5456 {
5457 	struct hwrm_func_drv_unrgtr_input *req;
5458 	int rc;
5459 
5460 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5461 		return 0;
5462 
5463 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5464 	if (rc)
5465 		return rc;
5466 	return hwrm_req_send(bp, req);
5467 }
5468 
5469 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5470 
5471 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5472 {
5473 	struct hwrm_tunnel_dst_port_free_input *req;
5474 	int rc;
5475 
5476 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5477 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5478 		return 0;
5479 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5480 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5481 		return 0;
5482 
5483 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5484 	if (rc)
5485 		return rc;
5486 
5487 	req->tunnel_type = tunnel_type;
5488 
5489 	switch (tunnel_type) {
5490 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5491 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5492 		bp->vxlan_port = 0;
5493 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5494 		break;
5495 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5496 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5497 		bp->nge_port = 0;
5498 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5499 		break;
5500 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5501 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5502 		bp->vxlan_gpe_port = 0;
5503 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5504 		break;
5505 	default:
5506 		break;
5507 	}
5508 
5509 	rc = hwrm_req_send(bp, req);
5510 	if (rc)
5511 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5512 			   rc);
5513 	if (bp->flags & BNXT_FLAG_TPA)
5514 		bnxt_set_tpa(bp, true);
5515 	return rc;
5516 }
5517 
5518 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5519 					   u8 tunnel_type)
5520 {
5521 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5522 	struct hwrm_tunnel_dst_port_alloc_input *req;
5523 	int rc;
5524 
5525 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5526 	if (rc)
5527 		return rc;
5528 
5529 	req->tunnel_type = tunnel_type;
5530 	req->tunnel_dst_port_val = port;
5531 
5532 	resp = hwrm_req_hold(bp, req);
5533 	rc = hwrm_req_send(bp, req);
5534 	if (rc) {
5535 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5536 			   rc);
5537 		goto err_out;
5538 	}
5539 
5540 	switch (tunnel_type) {
5541 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5542 		bp->vxlan_port = port;
5543 		bp->vxlan_fw_dst_port_id =
5544 			le16_to_cpu(resp->tunnel_dst_port_id);
5545 		break;
5546 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5547 		bp->nge_port = port;
5548 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5549 		break;
5550 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5551 		bp->vxlan_gpe_port = port;
5552 		bp->vxlan_gpe_fw_dst_port_id =
5553 			le16_to_cpu(resp->tunnel_dst_port_id);
5554 		break;
5555 	default:
5556 		break;
5557 	}
5558 	if (bp->flags & BNXT_FLAG_TPA)
5559 		bnxt_set_tpa(bp, true);
5560 
5561 err_out:
5562 	hwrm_req_drop(bp, req);
5563 	return rc;
5564 }
5565 
5566 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5567 {
5568 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5569 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5570 	int rc;
5571 
5572 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5573 	if (rc)
5574 		return rc;
5575 
5576 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5577 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5578 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5579 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5580 	}
5581 	req->mask = cpu_to_le32(vnic->rx_mask);
5582 	return hwrm_req_send_silent(bp, req);
5583 }
5584 
5585 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5586 {
5587 	if (!atomic_dec_and_test(&fltr->refcnt))
5588 		return;
5589 	spin_lock_bh(&bp->ntp_fltr_lock);
5590 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5591 		spin_unlock_bh(&bp->ntp_fltr_lock);
5592 		return;
5593 	}
5594 	hlist_del_rcu(&fltr->base.hash);
5595 	bnxt_del_one_usr_fltr(bp, &fltr->base);
5596 	if (fltr->base.flags) {
5597 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5598 		bp->ntp_fltr_count--;
5599 	}
5600 	spin_unlock_bh(&bp->ntp_fltr_lock);
5601 	kfree_rcu(fltr, base.rcu);
5602 }
5603 
5604 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5605 						      struct bnxt_l2_key *key,
5606 						      u32 idx)
5607 {
5608 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5609 	struct bnxt_l2_filter *fltr;
5610 
5611 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5612 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5613 
5614 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5615 		    l2_key->vlan == key->vlan)
5616 			return fltr;
5617 	}
5618 	return NULL;
5619 }
5620 
5621 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5622 						    struct bnxt_l2_key *key,
5623 						    u32 idx)
5624 {
5625 	struct bnxt_l2_filter *fltr = NULL;
5626 
5627 	rcu_read_lock();
5628 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5629 	if (fltr)
5630 		atomic_inc(&fltr->refcnt);
5631 	rcu_read_unlock();
5632 	return fltr;
5633 }
5634 
5635 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5636 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5637 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5638 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5639 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5640 
5641 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5642 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5643 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5644 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5645 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5646 
5647 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5648 {
5649 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5650 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5651 			return sizeof(fkeys->addrs.v4addrs) +
5652 			       sizeof(fkeys->ports);
5653 
5654 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5655 			return sizeof(fkeys->addrs.v4addrs);
5656 	}
5657 
5658 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5659 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5660 			return sizeof(fkeys->addrs.v6addrs) +
5661 			       sizeof(fkeys->ports);
5662 
5663 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5664 			return sizeof(fkeys->addrs.v6addrs);
5665 	}
5666 
5667 	return 0;
5668 }
5669 
5670 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5671 			 const unsigned char *key)
5672 {
5673 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5674 	struct bnxt_ipv4_tuple tuple4;
5675 	struct bnxt_ipv6_tuple tuple6;
5676 	int i, j, len = 0;
5677 	u8 *four_tuple;
5678 
5679 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5680 	if (!len)
5681 		return 0;
5682 
5683 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5684 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5685 		tuple4.ports = fkeys->ports;
5686 		four_tuple = (unsigned char *)&tuple4;
5687 	} else {
5688 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5689 		tuple6.ports = fkeys->ports;
5690 		four_tuple = (unsigned char *)&tuple6;
5691 	}
5692 
5693 	for (i = 0, j = 8; i < len; i++, j++) {
5694 		u8 byte = four_tuple[i];
5695 		int bit;
5696 
5697 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5698 			if (byte & 0x80)
5699 				hash ^= prefix;
5700 		}
5701 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5702 	}
5703 
5704 	/* The valid part of the hash is in the upper 32 bits. */
5705 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5706 }
5707 
5708 #ifdef CONFIG_RFS_ACCEL
5709 static struct bnxt_l2_filter *
5710 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5711 {
5712 	struct bnxt_l2_filter *fltr;
5713 	u32 idx;
5714 
5715 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5716 	      BNXT_L2_FLTR_HASH_MASK;
5717 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5718 	return fltr;
5719 }
5720 #endif
5721 
5722 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5723 			       struct bnxt_l2_key *key, u32 idx)
5724 {
5725 	struct hlist_head *head;
5726 
5727 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5728 	fltr->l2_key.vlan = key->vlan;
5729 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5730 	if (fltr->base.flags) {
5731 		int bit_id;
5732 
5733 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5734 						 bp->max_fltr, 0);
5735 		if (bit_id < 0)
5736 			return -ENOMEM;
5737 		fltr->base.sw_id = (u16)bit_id;
5738 		bp->ntp_fltr_count++;
5739 	}
5740 	head = &bp->l2_fltr_hash_tbl[idx];
5741 	hlist_add_head_rcu(&fltr->base.hash, head);
5742 	bnxt_insert_usr_fltr(bp, &fltr->base);
5743 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5744 	atomic_set(&fltr->refcnt, 1);
5745 	return 0;
5746 }
5747 
5748 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5749 						   struct bnxt_l2_key *key,
5750 						   gfp_t gfp)
5751 {
5752 	struct bnxt_l2_filter *fltr;
5753 	u32 idx;
5754 	int rc;
5755 
5756 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5757 	      BNXT_L2_FLTR_HASH_MASK;
5758 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5759 	if (fltr)
5760 		return fltr;
5761 
5762 	fltr = kzalloc(sizeof(*fltr), gfp);
5763 	if (!fltr)
5764 		return ERR_PTR(-ENOMEM);
5765 	spin_lock_bh(&bp->ntp_fltr_lock);
5766 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5767 	spin_unlock_bh(&bp->ntp_fltr_lock);
5768 	if (rc) {
5769 		bnxt_del_l2_filter(bp, fltr);
5770 		fltr = ERR_PTR(rc);
5771 	}
5772 	return fltr;
5773 }
5774 
5775 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp,
5776 						struct bnxt_l2_key *key,
5777 						u16 flags)
5778 {
5779 	struct bnxt_l2_filter *fltr;
5780 	u32 idx;
5781 	int rc;
5782 
5783 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5784 	      BNXT_L2_FLTR_HASH_MASK;
5785 	spin_lock_bh(&bp->ntp_fltr_lock);
5786 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5787 	if (fltr) {
5788 		fltr = ERR_PTR(-EEXIST);
5789 		goto l2_filter_exit;
5790 	}
5791 	fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC);
5792 	if (!fltr) {
5793 		fltr = ERR_PTR(-ENOMEM);
5794 		goto l2_filter_exit;
5795 	}
5796 	fltr->base.flags = flags;
5797 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5798 	if (rc) {
5799 		spin_unlock_bh(&bp->ntp_fltr_lock);
5800 		bnxt_del_l2_filter(bp, fltr);
5801 		return ERR_PTR(rc);
5802 	}
5803 
5804 l2_filter_exit:
5805 	spin_unlock_bh(&bp->ntp_fltr_lock);
5806 	return fltr;
5807 }
5808 
5809 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5810 {
5811 #ifdef CONFIG_BNXT_SRIOV
5812 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5813 
5814 	return vf->fw_fid;
5815 #else
5816 	return INVALID_HW_RING_ID;
5817 #endif
5818 }
5819 
5820 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5821 {
5822 	struct hwrm_cfa_l2_filter_free_input *req;
5823 	u16 target_id = 0xffff;
5824 	int rc;
5825 
5826 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5827 		struct bnxt_pf_info *pf = &bp->pf;
5828 
5829 		if (fltr->base.vf_idx >= pf->active_vfs)
5830 			return -EINVAL;
5831 
5832 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5833 		if (target_id == INVALID_HW_RING_ID)
5834 			return -EINVAL;
5835 	}
5836 
5837 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5838 	if (rc)
5839 		return rc;
5840 
5841 	req->target_id = cpu_to_le16(target_id);
5842 	req->l2_filter_id = fltr->base.filter_id;
5843 	return hwrm_req_send(bp, req);
5844 }
5845 
5846 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5847 {
5848 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5849 	struct hwrm_cfa_l2_filter_alloc_input *req;
5850 	u16 target_id = 0xffff;
5851 	int rc;
5852 
5853 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5854 		struct bnxt_pf_info *pf = &bp->pf;
5855 
5856 		if (fltr->base.vf_idx >= pf->active_vfs)
5857 			return -EINVAL;
5858 
5859 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5860 	}
5861 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5862 	if (rc)
5863 		return rc;
5864 
5865 	req->target_id = cpu_to_le16(target_id);
5866 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5867 
5868 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5869 		req->flags |=
5870 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5871 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5872 	req->enables =
5873 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5874 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5875 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5876 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5877 	eth_broadcast_addr(req->l2_addr_mask);
5878 
5879 	if (fltr->l2_key.vlan) {
5880 		req->enables |=
5881 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5882 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5883 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5884 		req->num_vlans = 1;
5885 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5886 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5887 	}
5888 
5889 	resp = hwrm_req_hold(bp, req);
5890 	rc = hwrm_req_send(bp, req);
5891 	if (!rc) {
5892 		fltr->base.filter_id = resp->l2_filter_id;
5893 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5894 	}
5895 	hwrm_req_drop(bp, req);
5896 	return rc;
5897 }
5898 
5899 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5900 				     struct bnxt_ntuple_filter *fltr)
5901 {
5902 	struct hwrm_cfa_ntuple_filter_free_input *req;
5903 	int rc;
5904 
5905 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5906 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5907 	if (rc)
5908 		return rc;
5909 
5910 	req->ntuple_filter_id = fltr->base.filter_id;
5911 	return hwrm_req_send(bp, req);
5912 }
5913 
5914 #define BNXT_NTP_FLTR_FLAGS					\
5915 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5916 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5917 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5918 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5919 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5920 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5921 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5922 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5923 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5924 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5925 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5926 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5927 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5928 
5929 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5930 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5931 
5932 void bnxt_fill_ipv6_mask(__be32 mask[4])
5933 {
5934 	int i;
5935 
5936 	for (i = 0; i < 4; i++)
5937 		mask[i] = cpu_to_be32(~0);
5938 }
5939 
5940 static void
5941 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp,
5942 			  struct hwrm_cfa_ntuple_filter_alloc_input *req,
5943 			  struct bnxt_ntuple_filter *fltr)
5944 {
5945 	u16 rxq = fltr->base.rxq;
5946 
5947 	if (fltr->base.flags & BNXT_ACT_RSS_CTX) {
5948 		struct ethtool_rxfh_context *ctx;
5949 		struct bnxt_rss_ctx *rss_ctx;
5950 		struct bnxt_vnic_info *vnic;
5951 
5952 		ctx = xa_load(&bp->dev->ethtool->rss_ctx,
5953 			      fltr->base.fw_vnic_id);
5954 		if (ctx) {
5955 			rss_ctx = ethtool_rxfh_context_priv(ctx);
5956 			vnic = &rss_ctx->vnic;
5957 
5958 			req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5959 		}
5960 		return;
5961 	}
5962 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
5963 		struct bnxt_vnic_info *vnic;
5964 		u32 enables;
5965 
5966 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
5967 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5968 		enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
5969 		req->enables |= cpu_to_le32(enables);
5970 		req->rfs_ring_tbl_idx = cpu_to_le16(rxq);
5971 	} else {
5972 		u32 flags;
5973 
5974 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5975 		req->flags |= cpu_to_le32(flags);
5976 		req->dst_id = cpu_to_le16(rxq);
5977 	}
5978 }
5979 
5980 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5981 				      struct bnxt_ntuple_filter *fltr)
5982 {
5983 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5984 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5985 	struct bnxt_flow_masks *masks = &fltr->fmasks;
5986 	struct flow_keys *keys = &fltr->fkeys;
5987 	struct bnxt_l2_filter *l2_fltr;
5988 	struct bnxt_vnic_info *vnic;
5989 	int rc;
5990 
5991 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5992 	if (rc)
5993 		return rc;
5994 
5995 	l2_fltr = fltr->l2_fltr;
5996 	req->l2_filter_id = l2_fltr->base.filter_id;
5997 
5998 	if (fltr->base.flags & BNXT_ACT_DROP) {
5999 		req->flags =
6000 			cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP);
6001 	} else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
6002 		bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr);
6003 	} else {
6004 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
6005 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6006 	}
6007 	req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
6008 
6009 	req->ethertype = htons(ETH_P_IP);
6010 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
6011 	req->ip_protocol = keys->basic.ip_proto;
6012 
6013 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
6014 		req->ethertype = htons(ETH_P_IPV6);
6015 		req->ip_addr_type =
6016 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
6017 		*(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src;
6018 		*(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src;
6019 		*(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst;
6020 		*(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst;
6021 	} else {
6022 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
6023 		req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src;
6024 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
6025 		req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst;
6026 	}
6027 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
6028 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
6029 		req->tunnel_type =
6030 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
6031 	}
6032 
6033 	req->src_port = keys->ports.src;
6034 	req->src_port_mask = masks->ports.src;
6035 	req->dst_port = keys->ports.dst;
6036 	req->dst_port_mask = masks->ports.dst;
6037 
6038 	resp = hwrm_req_hold(bp, req);
6039 	rc = hwrm_req_send(bp, req);
6040 	if (!rc)
6041 		fltr->base.filter_id = resp->ntuple_filter_id;
6042 	hwrm_req_drop(bp, req);
6043 	return rc;
6044 }
6045 
6046 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
6047 				     const u8 *mac_addr)
6048 {
6049 	struct bnxt_l2_filter *fltr;
6050 	struct bnxt_l2_key key;
6051 	int rc;
6052 
6053 	ether_addr_copy(key.dst_mac_addr, mac_addr);
6054 	key.vlan = 0;
6055 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
6056 	if (IS_ERR(fltr))
6057 		return PTR_ERR(fltr);
6058 
6059 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
6060 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
6061 	if (rc)
6062 		bnxt_del_l2_filter(bp, fltr);
6063 	else
6064 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
6065 	return rc;
6066 }
6067 
6068 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
6069 {
6070 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
6071 
6072 	/* Any associated ntuple filters will also be cleared by firmware. */
6073 	for (i = 0; i < num_of_vnics; i++) {
6074 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6075 
6076 		for (j = 0; j < vnic->uc_filter_count; j++) {
6077 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
6078 
6079 			bnxt_hwrm_l2_filter_free(bp, fltr);
6080 			bnxt_del_l2_filter(bp, fltr);
6081 		}
6082 		vnic->uc_filter_count = 0;
6083 	}
6084 }
6085 
6086 #define BNXT_DFLT_TUNL_TPA_BMAP				\
6087 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
6088 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
6089 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
6090 
6091 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
6092 					   struct hwrm_vnic_tpa_cfg_input *req)
6093 {
6094 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
6095 
6096 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
6097 		return;
6098 
6099 	if (bp->vxlan_port)
6100 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
6101 	if (bp->vxlan_gpe_port)
6102 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
6103 	if (bp->nge_port)
6104 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
6105 
6106 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
6107 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
6108 }
6109 
6110 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6111 			   u32 tpa_flags)
6112 {
6113 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
6114 	struct hwrm_vnic_tpa_cfg_input *req;
6115 	int rc;
6116 
6117 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
6118 		return 0;
6119 
6120 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
6121 	if (rc)
6122 		return rc;
6123 
6124 	if (tpa_flags) {
6125 		u16 mss = bp->dev->mtu - 40;
6126 		u32 nsegs, n, segs = 0, flags;
6127 
6128 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
6129 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
6130 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
6131 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
6132 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
6133 		if (tpa_flags & BNXT_FLAG_GRO)
6134 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
6135 
6136 		req->flags = cpu_to_le32(flags);
6137 
6138 		req->enables =
6139 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
6140 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
6141 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
6142 
6143 		/* Number of segs are log2 units, and first packet is not
6144 		 * included as part of this units.
6145 		 */
6146 		if (mss <= BNXT_RX_PAGE_SIZE) {
6147 			n = BNXT_RX_PAGE_SIZE / mss;
6148 			nsegs = (MAX_SKB_FRAGS - 1) * n;
6149 		} else {
6150 			n = mss / BNXT_RX_PAGE_SIZE;
6151 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
6152 				n++;
6153 			nsegs = (MAX_SKB_FRAGS - n) / n;
6154 		}
6155 
6156 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6157 			segs = MAX_TPA_SEGS_P5;
6158 			max_aggs = bp->max_tpa;
6159 		} else {
6160 			segs = ilog2(nsegs);
6161 		}
6162 		req->max_agg_segs = cpu_to_le16(segs);
6163 		req->max_aggs = cpu_to_le16(max_aggs);
6164 
6165 		req->min_agg_len = cpu_to_le32(512);
6166 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
6167 	}
6168 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6169 
6170 	return hwrm_req_send(bp, req);
6171 }
6172 
6173 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
6174 {
6175 	struct bnxt_ring_grp_info *grp_info;
6176 
6177 	grp_info = &bp->grp_info[ring->grp_idx];
6178 	return grp_info->cp_fw_ring_id;
6179 }
6180 
6181 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
6182 {
6183 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6184 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
6185 	else
6186 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
6187 }
6188 
6189 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
6190 {
6191 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6192 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
6193 	else
6194 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
6195 }
6196 
6197 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
6198 {
6199 	int entries;
6200 
6201 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6202 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
6203 	else
6204 		entries = HW_HASH_INDEX_SIZE;
6205 
6206 	bp->rss_indir_tbl_entries = entries;
6207 	bp->rss_indir_tbl =
6208 		kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL);
6209 	if (!bp->rss_indir_tbl)
6210 		return -ENOMEM;
6211 
6212 	return 0;
6213 }
6214 
6215 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp,
6216 				 struct ethtool_rxfh_context *rss_ctx)
6217 {
6218 	u16 max_rings, max_entries, pad, i;
6219 	u32 *rss_indir_tbl;
6220 
6221 	if (!bp->rx_nr_rings)
6222 		return;
6223 
6224 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6225 		max_rings = bp->rx_nr_rings - 1;
6226 	else
6227 		max_rings = bp->rx_nr_rings;
6228 
6229 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
6230 	if (rss_ctx)
6231 		rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx);
6232 	else
6233 		rss_indir_tbl = &bp->rss_indir_tbl[0];
6234 
6235 	for (i = 0; i < max_entries; i++)
6236 		rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
6237 
6238 	pad = bp->rss_indir_tbl_entries - max_entries;
6239 	if (pad)
6240 		memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl));
6241 }
6242 
6243 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
6244 {
6245 	u32 i, tbl_size, max_ring = 0;
6246 
6247 	if (!bp->rss_indir_tbl)
6248 		return 0;
6249 
6250 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6251 	for (i = 0; i < tbl_size; i++)
6252 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
6253 	return max_ring;
6254 }
6255 
6256 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
6257 {
6258 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6259 		if (!rx_rings)
6260 			return 0;
6261 		return bnxt_calc_nr_ring_pages(rx_rings - 1,
6262 					       BNXT_RSS_TABLE_ENTRIES_P5);
6263 	}
6264 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6265 		return 2;
6266 	return 1;
6267 }
6268 
6269 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6270 {
6271 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
6272 	u16 i, j;
6273 
6274 	/* Fill the RSS indirection table with ring group ids */
6275 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
6276 		if (!no_rss)
6277 			j = bp->rss_indir_tbl[i];
6278 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
6279 	}
6280 }
6281 
6282 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
6283 				    struct bnxt_vnic_info *vnic)
6284 {
6285 	__le16 *ring_tbl = vnic->rss_table;
6286 	struct bnxt_rx_ring_info *rxr;
6287 	u16 tbl_size, i;
6288 
6289 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6290 
6291 	for (i = 0; i < tbl_size; i++) {
6292 		u16 ring_id, j;
6293 
6294 		if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG)
6295 			j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings);
6296 		else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG)
6297 			j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i];
6298 		else
6299 			j = bp->rss_indir_tbl[i];
6300 		rxr = &bp->rx_ring[j];
6301 
6302 		ring_id = rxr->rx_ring_struct.fw_ring_id;
6303 		*ring_tbl++ = cpu_to_le16(ring_id);
6304 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6305 		*ring_tbl++ = cpu_to_le16(ring_id);
6306 	}
6307 }
6308 
6309 static void
6310 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
6311 			 struct bnxt_vnic_info *vnic)
6312 {
6313 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6314 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
6315 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6316 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT;
6317 	} else {
6318 		bnxt_fill_hw_rss_tbl(bp, vnic);
6319 	}
6320 
6321 	if (bp->rss_hash_delta) {
6322 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
6323 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
6324 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
6325 		else
6326 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
6327 	} else {
6328 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6329 	}
6330 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6331 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6332 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6333 }
6334 
6335 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6336 				  bool set_rss)
6337 {
6338 	struct hwrm_vnic_rss_cfg_input *req;
6339 	int rc;
6340 
6341 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6342 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6343 		return 0;
6344 
6345 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6346 	if (rc)
6347 		return rc;
6348 
6349 	if (set_rss)
6350 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6351 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6352 	return hwrm_req_send(bp, req);
6353 }
6354 
6355 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp,
6356 				     struct bnxt_vnic_info *vnic, bool set_rss)
6357 {
6358 	struct hwrm_vnic_rss_cfg_input *req;
6359 	dma_addr_t ring_tbl_map;
6360 	u32 i, nr_ctxs;
6361 	int rc;
6362 
6363 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6364 	if (rc)
6365 		return rc;
6366 
6367 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6368 	if (!set_rss)
6369 		return hwrm_req_send(bp, req);
6370 
6371 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6372 	ring_tbl_map = vnic->rss_table_dma_addr;
6373 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6374 
6375 	hwrm_req_hold(bp, req);
6376 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6377 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6378 		req->ring_table_pair_index = i;
6379 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6380 		rc = hwrm_req_send(bp, req);
6381 		if (rc)
6382 			goto exit;
6383 	}
6384 
6385 exit:
6386 	hwrm_req_drop(bp, req);
6387 	return rc;
6388 }
6389 
6390 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6391 {
6392 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6393 	struct hwrm_vnic_rss_qcfg_output *resp;
6394 	struct hwrm_vnic_rss_qcfg_input *req;
6395 
6396 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6397 		return;
6398 
6399 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6400 	/* all contexts configured to same hash_type, zero always exists */
6401 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6402 	resp = hwrm_req_hold(bp, req);
6403 	if (!hwrm_req_send(bp, req)) {
6404 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6405 		bp->rss_hash_delta = 0;
6406 	}
6407 	hwrm_req_drop(bp, req);
6408 }
6409 
6410 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6411 {
6412 	struct hwrm_vnic_plcmodes_cfg_input *req;
6413 	int rc;
6414 
6415 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6416 	if (rc)
6417 		return rc;
6418 
6419 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6420 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6421 
6422 	if (BNXT_RX_PAGE_MODE(bp)) {
6423 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6424 	} else {
6425 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6426 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6427 		req->enables |=
6428 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6429 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6430 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6431 	}
6432 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6433 	return hwrm_req_send(bp, req);
6434 }
6435 
6436 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp,
6437 					struct bnxt_vnic_info *vnic,
6438 					u16 ctx_idx)
6439 {
6440 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6441 
6442 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6443 		return;
6444 
6445 	req->rss_cos_lb_ctx_id =
6446 		cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]);
6447 
6448 	hwrm_req_send(bp, req);
6449 	vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6450 }
6451 
6452 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6453 {
6454 	int i, j;
6455 
6456 	for (i = 0; i < bp->nr_vnics; i++) {
6457 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6458 
6459 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6460 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6461 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j);
6462 		}
6463 	}
6464 	bp->rsscos_nr_ctxs = 0;
6465 }
6466 
6467 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp,
6468 				    struct bnxt_vnic_info *vnic, u16 ctx_idx)
6469 {
6470 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6471 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6472 	int rc;
6473 
6474 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6475 	if (rc)
6476 		return rc;
6477 
6478 	resp = hwrm_req_hold(bp, req);
6479 	rc = hwrm_req_send(bp, req);
6480 	if (!rc)
6481 		vnic->fw_rss_cos_lb_ctx[ctx_idx] =
6482 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6483 	hwrm_req_drop(bp, req);
6484 
6485 	return rc;
6486 }
6487 
6488 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6489 {
6490 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6491 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6492 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6493 }
6494 
6495 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6496 {
6497 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6498 	struct hwrm_vnic_cfg_input *req;
6499 	unsigned int ring = 0, grp_idx;
6500 	u16 def_vlan = 0;
6501 	int rc;
6502 
6503 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6504 	if (rc)
6505 		return rc;
6506 
6507 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6508 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6509 
6510 		req->default_rx_ring_id =
6511 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6512 		req->default_cmpl_ring_id =
6513 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6514 		req->enables =
6515 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6516 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6517 		goto vnic_mru;
6518 	}
6519 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6520 	/* Only RSS support for now TBD: COS & LB */
6521 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6522 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6523 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6524 					   VNIC_CFG_REQ_ENABLES_MRU);
6525 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6526 		req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]);
6527 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6528 					   VNIC_CFG_REQ_ENABLES_MRU);
6529 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6530 	} else {
6531 		req->rss_rule = cpu_to_le16(0xffff);
6532 	}
6533 
6534 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6535 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6536 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6537 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6538 	} else {
6539 		req->cos_rule = cpu_to_le16(0xffff);
6540 	}
6541 
6542 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6543 		ring = 0;
6544 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6545 		ring = vnic->vnic_id - 1;
6546 	else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6547 		ring = bp->rx_nr_rings - 1;
6548 
6549 	grp_idx = bp->rx_ring[ring].bnapi->index;
6550 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6551 	req->lb_rule = cpu_to_le16(0xffff);
6552 vnic_mru:
6553 	vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
6554 	req->mru = cpu_to_le16(vnic->mru);
6555 
6556 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6557 #ifdef CONFIG_BNXT_SRIOV
6558 	if (BNXT_VF(bp))
6559 		def_vlan = bp->vf.vlan;
6560 #endif
6561 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6562 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6563 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev))
6564 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6565 
6566 	return hwrm_req_send(bp, req);
6567 }
6568 
6569 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp,
6570 				    struct bnxt_vnic_info *vnic)
6571 {
6572 	if (vnic->fw_vnic_id != INVALID_HW_RING_ID) {
6573 		struct hwrm_vnic_free_input *req;
6574 
6575 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6576 			return;
6577 
6578 		req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6579 
6580 		hwrm_req_send(bp, req);
6581 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
6582 	}
6583 }
6584 
6585 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6586 {
6587 	u16 i;
6588 
6589 	for (i = 0; i < bp->nr_vnics; i++)
6590 		bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]);
6591 }
6592 
6593 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6594 			 unsigned int start_rx_ring_idx,
6595 			 unsigned int nr_rings)
6596 {
6597 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6598 	struct hwrm_vnic_alloc_output *resp;
6599 	struct hwrm_vnic_alloc_input *req;
6600 	int rc;
6601 
6602 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6603 	if (rc)
6604 		return rc;
6605 
6606 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6607 		goto vnic_no_ring_grps;
6608 
6609 	/* map ring groups to this vnic */
6610 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6611 		grp_idx = bp->rx_ring[i].bnapi->index;
6612 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6613 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6614 				   j, nr_rings);
6615 			break;
6616 		}
6617 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6618 	}
6619 
6620 vnic_no_ring_grps:
6621 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6622 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6623 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT)
6624 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6625 
6626 	resp = hwrm_req_hold(bp, req);
6627 	rc = hwrm_req_send(bp, req);
6628 	if (!rc)
6629 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6630 	hwrm_req_drop(bp, req);
6631 	return rc;
6632 }
6633 
6634 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6635 {
6636 	struct hwrm_vnic_qcaps_output *resp;
6637 	struct hwrm_vnic_qcaps_input *req;
6638 	int rc;
6639 
6640 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6641 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6642 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6643 	if (bp->hwrm_spec_code < 0x10600)
6644 		return 0;
6645 
6646 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6647 	if (rc)
6648 		return rc;
6649 
6650 	resp = hwrm_req_hold(bp, req);
6651 	rc = hwrm_req_send(bp, req);
6652 	if (!rc) {
6653 		u32 flags = le32_to_cpu(resp->flags);
6654 
6655 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6656 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6657 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6658 		if (flags &
6659 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6660 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6661 
6662 		/* Older P5 fw before EXT_HW_STATS support did not set
6663 		 * VLAN_STRIP_CAP properly.
6664 		 */
6665 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6666 		    (BNXT_CHIP_P5(bp) &&
6667 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6668 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6669 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6670 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6671 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6672 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6673 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6674 		if (bp->max_tpa_v2) {
6675 			if (BNXT_CHIP_P5(bp))
6676 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6677 			else
6678 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6679 		}
6680 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6681 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6682 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP)
6683 			bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP;
6684 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP)
6685 			bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP;
6686 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP)
6687 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP;
6688 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP)
6689 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP;
6690 		if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP)
6691 			bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH;
6692 	}
6693 	hwrm_req_drop(bp, req);
6694 	return rc;
6695 }
6696 
6697 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6698 {
6699 	struct hwrm_ring_grp_alloc_output *resp;
6700 	struct hwrm_ring_grp_alloc_input *req;
6701 	int rc;
6702 	u16 i;
6703 
6704 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6705 		return 0;
6706 
6707 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6708 	if (rc)
6709 		return rc;
6710 
6711 	resp = hwrm_req_hold(bp, req);
6712 	for (i = 0; i < bp->rx_nr_rings; i++) {
6713 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6714 
6715 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6716 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6717 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6718 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6719 
6720 		rc = hwrm_req_send(bp, req);
6721 
6722 		if (rc)
6723 			break;
6724 
6725 		bp->grp_info[grp_idx].fw_grp_id =
6726 			le32_to_cpu(resp->ring_group_id);
6727 	}
6728 	hwrm_req_drop(bp, req);
6729 	return rc;
6730 }
6731 
6732 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6733 {
6734 	struct hwrm_ring_grp_free_input *req;
6735 	u16 i;
6736 
6737 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6738 		return;
6739 
6740 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6741 		return;
6742 
6743 	hwrm_req_hold(bp, req);
6744 	for (i = 0; i < bp->cp_nr_rings; i++) {
6745 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6746 			continue;
6747 		req->ring_group_id =
6748 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6749 
6750 		hwrm_req_send(bp, req);
6751 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6752 	}
6753 	hwrm_req_drop(bp, req);
6754 }
6755 
6756 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6757 				    struct bnxt_ring_struct *ring,
6758 				    u32 ring_type, u32 map_index)
6759 {
6760 	struct hwrm_ring_alloc_output *resp;
6761 	struct hwrm_ring_alloc_input *req;
6762 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6763 	struct bnxt_ring_grp_info *grp_info;
6764 	int rc, err = 0;
6765 	u16 ring_id;
6766 
6767 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6768 	if (rc)
6769 		goto exit;
6770 
6771 	req->enables = 0;
6772 	if (rmem->nr_pages > 1) {
6773 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6774 		/* Page size is in log2 units */
6775 		req->page_size = BNXT_PAGE_SHIFT;
6776 		req->page_tbl_depth = 1;
6777 	} else {
6778 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6779 	}
6780 	req->fbo = 0;
6781 	/* Association of ring index with doorbell index and MSIX number */
6782 	req->logical_id = cpu_to_le16(map_index);
6783 
6784 	switch (ring_type) {
6785 	case HWRM_RING_ALLOC_TX: {
6786 		struct bnxt_tx_ring_info *txr;
6787 		u16 flags = 0;
6788 
6789 		txr = container_of(ring, struct bnxt_tx_ring_info,
6790 				   tx_ring_struct);
6791 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6792 		/* Association of transmit ring with completion ring */
6793 		grp_info = &bp->grp_info[ring->grp_idx];
6794 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6795 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6796 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6797 		req->queue_id = cpu_to_le16(ring->queue_id);
6798 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6799 			req->cmpl_coal_cnt =
6800 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6801 		if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg)
6802 			flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE;
6803 		req->flags = cpu_to_le16(flags);
6804 		break;
6805 	}
6806 	case HWRM_RING_ALLOC_RX:
6807 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6808 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6809 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6810 			u16 flags = 0;
6811 
6812 			/* Association of rx ring with stats context */
6813 			grp_info = &bp->grp_info[ring->grp_idx];
6814 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6815 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6816 			req->enables |= cpu_to_le32(
6817 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6818 			if (NET_IP_ALIGN == 2)
6819 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6820 			req->flags = cpu_to_le16(flags);
6821 		}
6822 		break;
6823 	case HWRM_RING_ALLOC_AGG:
6824 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6825 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6826 			/* Association of agg ring with rx ring */
6827 			grp_info = &bp->grp_info[ring->grp_idx];
6828 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6829 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6830 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6831 			req->enables |= cpu_to_le32(
6832 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6833 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6834 		} else {
6835 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6836 		}
6837 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6838 		break;
6839 	case HWRM_RING_ALLOC_CMPL:
6840 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6841 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6842 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6843 			/* Association of cp ring with nq */
6844 			grp_info = &bp->grp_info[map_index];
6845 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6846 			req->cq_handle = cpu_to_le64(ring->handle);
6847 			req->enables |= cpu_to_le32(
6848 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6849 		} else {
6850 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6851 		}
6852 		break;
6853 	case HWRM_RING_ALLOC_NQ:
6854 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6855 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6856 		req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6857 		break;
6858 	default:
6859 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6860 			   ring_type);
6861 		return -1;
6862 	}
6863 
6864 	resp = hwrm_req_hold(bp, req);
6865 	rc = hwrm_req_send(bp, req);
6866 	err = le16_to_cpu(resp->error_code);
6867 	ring_id = le16_to_cpu(resp->ring_id);
6868 	hwrm_req_drop(bp, req);
6869 
6870 exit:
6871 	if (rc || err) {
6872 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6873 			   ring_type, rc, err);
6874 		return -EIO;
6875 	}
6876 	ring->fw_ring_id = ring_id;
6877 	return rc;
6878 }
6879 
6880 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6881 {
6882 	int rc;
6883 
6884 	if (BNXT_PF(bp)) {
6885 		struct hwrm_func_cfg_input *req;
6886 
6887 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6888 		if (rc)
6889 			return rc;
6890 
6891 		req->fid = cpu_to_le16(0xffff);
6892 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6893 		req->async_event_cr = cpu_to_le16(idx);
6894 		return hwrm_req_send(bp, req);
6895 	} else {
6896 		struct hwrm_func_vf_cfg_input *req;
6897 
6898 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6899 		if (rc)
6900 			return rc;
6901 
6902 		req->enables =
6903 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6904 		req->async_event_cr = cpu_to_le16(idx);
6905 		return hwrm_req_send(bp, req);
6906 	}
6907 }
6908 
6909 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6910 			     u32 ring_type)
6911 {
6912 	switch (ring_type) {
6913 	case HWRM_RING_ALLOC_TX:
6914 		db->db_ring_mask = bp->tx_ring_mask;
6915 		break;
6916 	case HWRM_RING_ALLOC_RX:
6917 		db->db_ring_mask = bp->rx_ring_mask;
6918 		break;
6919 	case HWRM_RING_ALLOC_AGG:
6920 		db->db_ring_mask = bp->rx_agg_ring_mask;
6921 		break;
6922 	case HWRM_RING_ALLOC_CMPL:
6923 	case HWRM_RING_ALLOC_NQ:
6924 		db->db_ring_mask = bp->cp_ring_mask;
6925 		break;
6926 	}
6927 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6928 		db->db_epoch_mask = db->db_ring_mask + 1;
6929 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6930 	}
6931 }
6932 
6933 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6934 			u32 map_idx, u32 xid)
6935 {
6936 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6937 		switch (ring_type) {
6938 		case HWRM_RING_ALLOC_TX:
6939 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6940 			break;
6941 		case HWRM_RING_ALLOC_RX:
6942 		case HWRM_RING_ALLOC_AGG:
6943 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6944 			break;
6945 		case HWRM_RING_ALLOC_CMPL:
6946 			db->db_key64 = DBR_PATH_L2;
6947 			break;
6948 		case HWRM_RING_ALLOC_NQ:
6949 			db->db_key64 = DBR_PATH_L2;
6950 			break;
6951 		}
6952 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6953 
6954 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6955 			db->db_key64 |= DBR_VALID;
6956 
6957 		db->doorbell = bp->bar1 + bp->db_offset;
6958 	} else {
6959 		db->doorbell = bp->bar1 + map_idx * 0x80;
6960 		switch (ring_type) {
6961 		case HWRM_RING_ALLOC_TX:
6962 			db->db_key32 = DB_KEY_TX;
6963 			break;
6964 		case HWRM_RING_ALLOC_RX:
6965 		case HWRM_RING_ALLOC_AGG:
6966 			db->db_key32 = DB_KEY_RX;
6967 			break;
6968 		case HWRM_RING_ALLOC_CMPL:
6969 			db->db_key32 = DB_KEY_CP;
6970 			break;
6971 		}
6972 	}
6973 	bnxt_set_db_mask(bp, db, ring_type);
6974 }
6975 
6976 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp,
6977 				   struct bnxt_rx_ring_info *rxr)
6978 {
6979 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6980 	struct bnxt_napi *bnapi = rxr->bnapi;
6981 	u32 type = HWRM_RING_ALLOC_RX;
6982 	u32 map_idx = bnapi->index;
6983 	int rc;
6984 
6985 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6986 	if (rc)
6987 		return rc;
6988 
6989 	bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6990 	bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6991 
6992 	return 0;
6993 }
6994 
6995 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp,
6996 				       struct bnxt_rx_ring_info *rxr)
6997 {
6998 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6999 	u32 type = HWRM_RING_ALLOC_AGG;
7000 	u32 grp_idx = ring->grp_idx;
7001 	u32 map_idx;
7002 	int rc;
7003 
7004 	map_idx = grp_idx + bp->rx_nr_rings;
7005 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7006 	if (rc)
7007 		return rc;
7008 
7009 	bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
7010 		    ring->fw_ring_id);
7011 	bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
7012 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7013 	bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
7014 
7015 	return 0;
7016 }
7017 
7018 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
7019 {
7020 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
7021 	int i, rc = 0;
7022 	u32 type;
7023 
7024 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7025 		type = HWRM_RING_ALLOC_NQ;
7026 	else
7027 		type = HWRM_RING_ALLOC_CMPL;
7028 	for (i = 0; i < bp->cp_nr_rings; i++) {
7029 		struct bnxt_napi *bnapi = bp->bnapi[i];
7030 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7031 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
7032 		u32 map_idx = ring->map_idx;
7033 		unsigned int vector;
7034 
7035 		vector = bp->irq_tbl[map_idx].vector;
7036 		disable_irq_nosync(vector);
7037 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7038 		if (rc) {
7039 			enable_irq(vector);
7040 			goto err_out;
7041 		}
7042 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
7043 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
7044 		enable_irq(vector);
7045 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
7046 
7047 		if (!i) {
7048 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
7049 			if (rc)
7050 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
7051 		}
7052 	}
7053 
7054 	type = HWRM_RING_ALLOC_TX;
7055 	for (i = 0; i < bp->tx_nr_rings; i++) {
7056 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7057 		struct bnxt_ring_struct *ring;
7058 		u32 map_idx;
7059 
7060 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7061 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
7062 			struct bnxt_napi *bnapi = txr->bnapi;
7063 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7064 
7065 			ring = &cpr2->cp_ring_struct;
7066 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7067 			map_idx = bnapi->index;
7068 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7069 			if (rc)
7070 				goto err_out;
7071 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7072 				    ring->fw_ring_id);
7073 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7074 		}
7075 		ring = &txr->tx_ring_struct;
7076 		map_idx = i;
7077 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7078 		if (rc)
7079 			goto err_out;
7080 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
7081 	}
7082 
7083 	for (i = 0; i < bp->rx_nr_rings; i++) {
7084 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
7085 
7086 		rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
7087 		if (rc)
7088 			goto err_out;
7089 		/* If we have agg rings, post agg buffers first. */
7090 		if (!agg_rings)
7091 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7092 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7093 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
7094 			struct bnxt_napi *bnapi = rxr->bnapi;
7095 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7096 			struct bnxt_ring_struct *ring;
7097 			u32 map_idx = bnapi->index;
7098 
7099 			ring = &cpr2->cp_ring_struct;
7100 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7101 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7102 			if (rc)
7103 				goto err_out;
7104 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7105 				    ring->fw_ring_id);
7106 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7107 		}
7108 	}
7109 
7110 	if (agg_rings) {
7111 		for (i = 0; i < bp->rx_nr_rings; i++) {
7112 			rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]);
7113 			if (rc)
7114 				goto err_out;
7115 		}
7116 	}
7117 err_out:
7118 	return rc;
7119 }
7120 
7121 static int hwrm_ring_free_send_msg(struct bnxt *bp,
7122 				   struct bnxt_ring_struct *ring,
7123 				   u32 ring_type, int cmpl_ring_id)
7124 {
7125 	struct hwrm_ring_free_output *resp;
7126 	struct hwrm_ring_free_input *req;
7127 	u16 error_code = 0;
7128 	int rc;
7129 
7130 	if (BNXT_NO_FW_ACCESS(bp))
7131 		return 0;
7132 
7133 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
7134 	if (rc)
7135 		goto exit;
7136 
7137 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
7138 	req->ring_type = ring_type;
7139 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
7140 
7141 	resp = hwrm_req_hold(bp, req);
7142 	rc = hwrm_req_send(bp, req);
7143 	error_code = le16_to_cpu(resp->error_code);
7144 	hwrm_req_drop(bp, req);
7145 exit:
7146 	if (rc || error_code) {
7147 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
7148 			   ring_type, rc, error_code);
7149 		return -EIO;
7150 	}
7151 	return 0;
7152 }
7153 
7154 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp,
7155 				   struct bnxt_rx_ring_info *rxr,
7156 				   bool close_path)
7157 {
7158 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7159 	u32 grp_idx = rxr->bnapi->index;
7160 	u32 cmpl_ring_id;
7161 
7162 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7163 		return;
7164 
7165 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7166 	hwrm_ring_free_send_msg(bp, ring,
7167 				RING_FREE_REQ_RING_TYPE_RX,
7168 				close_path ? cmpl_ring_id :
7169 				INVALID_HW_RING_ID);
7170 	ring->fw_ring_id = INVALID_HW_RING_ID;
7171 	bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID;
7172 }
7173 
7174 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp,
7175 				       struct bnxt_rx_ring_info *rxr,
7176 				       bool close_path)
7177 {
7178 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7179 	u32 grp_idx = rxr->bnapi->index;
7180 	u32 type, cmpl_ring_id;
7181 
7182 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7183 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
7184 	else
7185 		type = RING_FREE_REQ_RING_TYPE_RX;
7186 
7187 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7188 		return;
7189 
7190 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7191 	hwrm_ring_free_send_msg(bp, ring, type,
7192 				close_path ? cmpl_ring_id :
7193 				INVALID_HW_RING_ID);
7194 	ring->fw_ring_id = INVALID_HW_RING_ID;
7195 	bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID;
7196 }
7197 
7198 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
7199 {
7200 	u32 type;
7201 	int i;
7202 
7203 	if (!bp->bnapi)
7204 		return;
7205 
7206 	for (i = 0; i < bp->tx_nr_rings; i++) {
7207 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7208 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
7209 
7210 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7211 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
7212 
7213 			hwrm_ring_free_send_msg(bp, ring,
7214 						RING_FREE_REQ_RING_TYPE_TX,
7215 						close_path ? cmpl_ring_id :
7216 						INVALID_HW_RING_ID);
7217 			ring->fw_ring_id = INVALID_HW_RING_ID;
7218 		}
7219 	}
7220 
7221 	for (i = 0; i < bp->rx_nr_rings; i++) {
7222 		bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path);
7223 		bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path);
7224 	}
7225 
7226 	/* The completion rings are about to be freed.  After that the
7227 	 * IRQ doorbell will not work anymore.  So we need to disable
7228 	 * IRQ here.
7229 	 */
7230 	bnxt_disable_int_sync(bp);
7231 
7232 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7233 		type = RING_FREE_REQ_RING_TYPE_NQ;
7234 	else
7235 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
7236 	for (i = 0; i < bp->cp_nr_rings; i++) {
7237 		struct bnxt_napi *bnapi = bp->bnapi[i];
7238 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7239 		struct bnxt_ring_struct *ring;
7240 		int j;
7241 
7242 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
7243 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
7244 
7245 			ring = &cpr2->cp_ring_struct;
7246 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
7247 				continue;
7248 			hwrm_ring_free_send_msg(bp, ring,
7249 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
7250 						INVALID_HW_RING_ID);
7251 			ring->fw_ring_id = INVALID_HW_RING_ID;
7252 		}
7253 		ring = &cpr->cp_ring_struct;
7254 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7255 			hwrm_ring_free_send_msg(bp, ring, type,
7256 						INVALID_HW_RING_ID);
7257 			ring->fw_ring_id = INVALID_HW_RING_ID;
7258 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
7259 		}
7260 	}
7261 }
7262 
7263 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7264 			     bool shared);
7265 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7266 			   bool shared);
7267 
7268 static int bnxt_hwrm_get_rings(struct bnxt *bp)
7269 {
7270 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7271 	struct hwrm_func_qcfg_output *resp;
7272 	struct hwrm_func_qcfg_input *req;
7273 	int rc;
7274 
7275 	if (bp->hwrm_spec_code < 0x10601)
7276 		return 0;
7277 
7278 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7279 	if (rc)
7280 		return rc;
7281 
7282 	req->fid = cpu_to_le16(0xffff);
7283 	resp = hwrm_req_hold(bp, req);
7284 	rc = hwrm_req_send(bp, req);
7285 	if (rc) {
7286 		hwrm_req_drop(bp, req);
7287 		return rc;
7288 	}
7289 
7290 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7291 	if (BNXT_NEW_RM(bp)) {
7292 		u16 cp, stats;
7293 
7294 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
7295 		hw_resc->resv_hw_ring_grps =
7296 			le32_to_cpu(resp->alloc_hw_ring_grps);
7297 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
7298 		hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx);
7299 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
7300 		stats = le16_to_cpu(resp->alloc_stat_ctx);
7301 		hw_resc->resv_irqs = cp;
7302 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7303 			int rx = hw_resc->resv_rx_rings;
7304 			int tx = hw_resc->resv_tx_rings;
7305 
7306 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
7307 				rx >>= 1;
7308 			if (cp < (rx + tx)) {
7309 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
7310 				if (rc)
7311 					goto get_rings_exit;
7312 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
7313 					rx <<= 1;
7314 				hw_resc->resv_rx_rings = rx;
7315 				hw_resc->resv_tx_rings = tx;
7316 			}
7317 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
7318 			hw_resc->resv_hw_ring_grps = rx;
7319 		}
7320 		hw_resc->resv_cp_rings = cp;
7321 		hw_resc->resv_stat_ctxs = stats;
7322 	}
7323 get_rings_exit:
7324 	hwrm_req_drop(bp, req);
7325 	return rc;
7326 }
7327 
7328 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
7329 {
7330 	struct hwrm_func_qcfg_output *resp;
7331 	struct hwrm_func_qcfg_input *req;
7332 	int rc;
7333 
7334 	if (bp->hwrm_spec_code < 0x10601)
7335 		return 0;
7336 
7337 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7338 	if (rc)
7339 		return rc;
7340 
7341 	req->fid = cpu_to_le16(fid);
7342 	resp = hwrm_req_hold(bp, req);
7343 	rc = hwrm_req_send(bp, req);
7344 	if (!rc)
7345 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7346 
7347 	hwrm_req_drop(bp, req);
7348 	return rc;
7349 }
7350 
7351 static bool bnxt_rfs_supported(struct bnxt *bp);
7352 
7353 static struct hwrm_func_cfg_input *
7354 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7355 {
7356 	struct hwrm_func_cfg_input *req;
7357 	u32 enables = 0;
7358 
7359 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
7360 		return NULL;
7361 
7362 	req->fid = cpu_to_le16(0xffff);
7363 	enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7364 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7365 	if (BNXT_NEW_RM(bp)) {
7366 		enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
7367 		enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7368 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7369 			enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
7370 			enables |= hwr->cp_p5 ?
7371 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7372 		} else {
7373 			enables |= hwr->cp ?
7374 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7375 			enables |= hwr->grp ?
7376 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7377 		}
7378 		enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7379 		enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS :
7380 					  0;
7381 		req->num_rx_rings = cpu_to_le16(hwr->rx);
7382 		req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7383 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7384 			req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7385 			req->num_msix = cpu_to_le16(hwr->cp);
7386 		} else {
7387 			req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7388 			req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7389 		}
7390 		req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7391 		req->num_vnics = cpu_to_le16(hwr->vnic);
7392 	}
7393 	req->enables = cpu_to_le32(enables);
7394 	return req;
7395 }
7396 
7397 static struct hwrm_func_vf_cfg_input *
7398 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7399 {
7400 	struct hwrm_func_vf_cfg_input *req;
7401 	u32 enables = 0;
7402 
7403 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7404 		return NULL;
7405 
7406 	enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7407 	enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7408 			     FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7409 	enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7410 	enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7411 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7412 		enables |= hwr->cp_p5 ?
7413 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7414 	} else {
7415 		enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7416 		enables |= hwr->grp ?
7417 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7418 	}
7419 	enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7420 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7421 
7422 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7423 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7424 	req->num_rx_rings = cpu_to_le16(hwr->rx);
7425 	req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7426 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7427 		req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7428 	} else {
7429 		req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7430 		req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7431 	}
7432 	req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7433 	req->num_vnics = cpu_to_le16(hwr->vnic);
7434 
7435 	req->enables = cpu_to_le32(enables);
7436 	return req;
7437 }
7438 
7439 static int
7440 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7441 {
7442 	struct hwrm_func_cfg_input *req;
7443 	int rc;
7444 
7445 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7446 	if (!req)
7447 		return -ENOMEM;
7448 
7449 	if (!req->enables) {
7450 		hwrm_req_drop(bp, req);
7451 		return 0;
7452 	}
7453 
7454 	rc = hwrm_req_send(bp, req);
7455 	if (rc)
7456 		return rc;
7457 
7458 	if (bp->hwrm_spec_code < 0x10601)
7459 		bp->hw_resc.resv_tx_rings = hwr->tx;
7460 
7461 	return bnxt_hwrm_get_rings(bp);
7462 }
7463 
7464 static int
7465 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7466 {
7467 	struct hwrm_func_vf_cfg_input *req;
7468 	int rc;
7469 
7470 	if (!BNXT_NEW_RM(bp)) {
7471 		bp->hw_resc.resv_tx_rings = hwr->tx;
7472 		return 0;
7473 	}
7474 
7475 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7476 	if (!req)
7477 		return -ENOMEM;
7478 
7479 	rc = hwrm_req_send(bp, req);
7480 	if (rc)
7481 		return rc;
7482 
7483 	return bnxt_hwrm_get_rings(bp);
7484 }
7485 
7486 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7487 {
7488 	if (BNXT_PF(bp))
7489 		return bnxt_hwrm_reserve_pf_rings(bp, hwr);
7490 	else
7491 		return bnxt_hwrm_reserve_vf_rings(bp, hwr);
7492 }
7493 
7494 int bnxt_nq_rings_in_use(struct bnxt *bp)
7495 {
7496 	return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp);
7497 }
7498 
7499 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7500 {
7501 	int cp;
7502 
7503 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7504 		return bnxt_nq_rings_in_use(bp);
7505 
7506 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7507 	return cp;
7508 }
7509 
7510 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7511 {
7512 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
7513 }
7514 
7515 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7516 {
7517 	if (!hwr->grp)
7518 		return 0;
7519 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7520 		int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp);
7521 
7522 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7523 			rss_ctx *= hwr->vnic;
7524 		return rss_ctx;
7525 	}
7526 	if (BNXT_VF(bp))
7527 		return BNXT_VF_MAX_RSS_CTX;
7528 	if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp))
7529 		return hwr->grp + 1;
7530 	return 1;
7531 }
7532 
7533 /* Check if a default RSS map needs to be setup.  This function is only
7534  * used on older firmware that does not require reserving RX rings.
7535  */
7536 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7537 {
7538 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7539 
7540 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7541 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7542 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7543 		if (!netif_is_rxfh_configured(bp->dev))
7544 			bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7545 	}
7546 }
7547 
7548 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings)
7549 {
7550 	if (bp->flags & BNXT_FLAG_RFS) {
7551 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7552 			return 2 + bp->num_rss_ctx;
7553 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7554 			return rx_rings + 1;
7555 	}
7556 	return 1;
7557 }
7558 
7559 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7560 {
7561 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7562 	int cp = bnxt_cp_rings_in_use(bp);
7563 	int nq = bnxt_nq_rings_in_use(bp);
7564 	int rx = bp->rx_nr_rings, stat;
7565 	int vnic, grp = rx;
7566 
7567 	/* Old firmware does not need RX ring reservations but we still
7568 	 * need to setup a default RSS map when needed.  With new firmware
7569 	 * we go through RX ring reservations first and then set up the
7570 	 * RSS map for the successfully reserved RX rings when needed.
7571 	 */
7572 	if (!BNXT_NEW_RM(bp))
7573 		bnxt_check_rss_tbl_no_rmgr(bp);
7574 
7575 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7576 	    bp->hwrm_spec_code >= 0x10601)
7577 		return true;
7578 
7579 	if (!BNXT_NEW_RM(bp))
7580 		return false;
7581 
7582 	vnic = bnxt_get_total_vnics(bp, rx);
7583 
7584 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7585 		rx <<= 1;
7586 	stat = bnxt_get_func_stat_ctxs(bp);
7587 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7588 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7589 	    (hw_resc->resv_hw_ring_grps != grp &&
7590 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7591 		return true;
7592 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7593 	    hw_resc->resv_irqs != nq)
7594 		return true;
7595 	return false;
7596 }
7597 
7598 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7599 {
7600 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7601 
7602 	hwr->tx = hw_resc->resv_tx_rings;
7603 	if (BNXT_NEW_RM(bp)) {
7604 		hwr->rx = hw_resc->resv_rx_rings;
7605 		hwr->cp = hw_resc->resv_irqs;
7606 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7607 			hwr->cp_p5 = hw_resc->resv_cp_rings;
7608 		hwr->grp = hw_resc->resv_hw_ring_grps;
7609 		hwr->vnic = hw_resc->resv_vnics;
7610 		hwr->stat = hw_resc->resv_stat_ctxs;
7611 		hwr->rss_ctx = hw_resc->resv_rsscos_ctxs;
7612 	}
7613 }
7614 
7615 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7616 {
7617 	return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic &&
7618 	       hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS));
7619 }
7620 
7621 static int bnxt_get_avail_msix(struct bnxt *bp, int num);
7622 
7623 static int __bnxt_reserve_rings(struct bnxt *bp)
7624 {
7625 	struct bnxt_hw_rings hwr = {0};
7626 	int rx_rings, old_rx_rings, rc;
7627 	int cp = bp->cp_nr_rings;
7628 	int ulp_msix = 0;
7629 	bool sh = false;
7630 	int tx_cp;
7631 
7632 	if (!bnxt_need_reserve_rings(bp))
7633 		return 0;
7634 
7635 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
7636 		ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
7637 		if (!ulp_msix)
7638 			bnxt_set_ulp_stat_ctxs(bp, 0);
7639 
7640 		if (ulp_msix > bp->ulp_num_msix_want)
7641 			ulp_msix = bp->ulp_num_msix_want;
7642 		hwr.cp = cp + ulp_msix;
7643 	} else {
7644 		hwr.cp = bnxt_nq_rings_in_use(bp);
7645 	}
7646 
7647 	hwr.tx = bp->tx_nr_rings;
7648 	hwr.rx = bp->rx_nr_rings;
7649 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7650 		sh = true;
7651 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7652 		hwr.cp_p5 = hwr.rx + hwr.tx;
7653 
7654 	hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx);
7655 
7656 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7657 		hwr.rx <<= 1;
7658 	hwr.grp = bp->rx_nr_rings;
7659 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
7660 	hwr.stat = bnxt_get_func_stat_ctxs(bp);
7661 	old_rx_rings = bp->hw_resc.resv_rx_rings;
7662 
7663 	rc = bnxt_hwrm_reserve_rings(bp, &hwr);
7664 	if (rc)
7665 		return rc;
7666 
7667 	bnxt_copy_reserved_rings(bp, &hwr);
7668 
7669 	rx_rings = hwr.rx;
7670 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7671 		if (hwr.rx >= 2) {
7672 			rx_rings = hwr.rx >> 1;
7673 		} else {
7674 			if (netif_running(bp->dev))
7675 				return -ENOMEM;
7676 
7677 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7678 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7679 			bp->dev->hw_features &= ~NETIF_F_LRO;
7680 			bp->dev->features &= ~NETIF_F_LRO;
7681 			bnxt_set_ring_params(bp);
7682 		}
7683 	}
7684 	rx_rings = min_t(int, rx_rings, hwr.grp);
7685 	hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings);
7686 	if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp))
7687 		hwr.stat -= bnxt_get_ulp_stat_ctxs(bp);
7688 	hwr.cp = min_t(int, hwr.cp, hwr.stat);
7689 	rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh);
7690 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7691 		hwr.rx = rx_rings << 1;
7692 	tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx);
7693 	hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7694 	bp->tx_nr_rings = hwr.tx;
7695 
7696 	/* If we cannot reserve all the RX rings, reset the RSS map only
7697 	 * if absolutely necessary
7698 	 */
7699 	if (rx_rings != bp->rx_nr_rings) {
7700 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7701 			    rx_rings, bp->rx_nr_rings);
7702 		if (netif_is_rxfh_configured(bp->dev) &&
7703 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7704 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7705 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7706 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7707 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7708 		}
7709 	}
7710 	bp->rx_nr_rings = rx_rings;
7711 	bp->cp_nr_rings = hwr.cp;
7712 
7713 	if (!bnxt_rings_ok(bp, &hwr))
7714 		return -ENOMEM;
7715 
7716 	if (old_rx_rings != bp->hw_resc.resv_rx_rings &&
7717 	    !netif_is_rxfh_configured(bp->dev))
7718 		bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7719 
7720 	if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) {
7721 		int resv_msix, resv_ctx, ulp_ctxs;
7722 		struct bnxt_hw_resc *hw_resc;
7723 
7724 		hw_resc = &bp->hw_resc;
7725 		resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings;
7726 		ulp_msix = min_t(int, resv_msix, ulp_msix);
7727 		bnxt_set_ulp_msix_num(bp, ulp_msix);
7728 		resv_ctx = hw_resc->resv_stat_ctxs  - bp->cp_nr_rings;
7729 		ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp));
7730 		bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs);
7731 	}
7732 
7733 	return rc;
7734 }
7735 
7736 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7737 {
7738 	struct hwrm_func_vf_cfg_input *req;
7739 	u32 flags;
7740 
7741 	if (!BNXT_NEW_RM(bp))
7742 		return 0;
7743 
7744 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7745 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7746 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7747 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7748 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7749 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7750 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7751 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7752 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7753 
7754 	req->flags = cpu_to_le32(flags);
7755 	return hwrm_req_send_silent(bp, req);
7756 }
7757 
7758 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7759 {
7760 	struct hwrm_func_cfg_input *req;
7761 	u32 flags;
7762 
7763 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7764 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7765 	if (BNXT_NEW_RM(bp)) {
7766 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7767 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7768 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7769 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7770 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7771 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7772 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7773 		else
7774 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7775 	}
7776 
7777 	req->flags = cpu_to_le32(flags);
7778 	return hwrm_req_send_silent(bp, req);
7779 }
7780 
7781 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7782 {
7783 	if (bp->hwrm_spec_code < 0x10801)
7784 		return 0;
7785 
7786 	if (BNXT_PF(bp))
7787 		return bnxt_hwrm_check_pf_rings(bp, hwr);
7788 
7789 	return bnxt_hwrm_check_vf_rings(bp, hwr);
7790 }
7791 
7792 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7793 {
7794 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7795 	struct hwrm_ring_aggint_qcaps_output *resp;
7796 	struct hwrm_ring_aggint_qcaps_input *req;
7797 	int rc;
7798 
7799 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7800 	coal_cap->num_cmpl_dma_aggr_max = 63;
7801 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7802 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7803 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7804 	coal_cap->int_lat_tmr_min_max = 65535;
7805 	coal_cap->int_lat_tmr_max_max = 65535;
7806 	coal_cap->num_cmpl_aggr_int_max = 65535;
7807 	coal_cap->timer_units = 80;
7808 
7809 	if (bp->hwrm_spec_code < 0x10902)
7810 		return;
7811 
7812 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7813 		return;
7814 
7815 	resp = hwrm_req_hold(bp, req);
7816 	rc = hwrm_req_send_silent(bp, req);
7817 	if (!rc) {
7818 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7819 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7820 		coal_cap->num_cmpl_dma_aggr_max =
7821 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7822 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7823 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7824 		coal_cap->cmpl_aggr_dma_tmr_max =
7825 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7826 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7827 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7828 		coal_cap->int_lat_tmr_min_max =
7829 			le16_to_cpu(resp->int_lat_tmr_min_max);
7830 		coal_cap->int_lat_tmr_max_max =
7831 			le16_to_cpu(resp->int_lat_tmr_max_max);
7832 		coal_cap->num_cmpl_aggr_int_max =
7833 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7834 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7835 	}
7836 	hwrm_req_drop(bp, req);
7837 }
7838 
7839 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7840 {
7841 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7842 
7843 	return usec * 1000 / coal_cap->timer_units;
7844 }
7845 
7846 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7847 	struct bnxt_coal *hw_coal,
7848 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7849 {
7850 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7851 	u16 val, tmr, max, flags = hw_coal->flags;
7852 	u32 cmpl_params = coal_cap->cmpl_params;
7853 
7854 	max = hw_coal->bufs_per_record * 128;
7855 	if (hw_coal->budget)
7856 		max = hw_coal->bufs_per_record * hw_coal->budget;
7857 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7858 
7859 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7860 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7861 
7862 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7863 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7864 
7865 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7866 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7867 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7868 
7869 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7870 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7871 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7872 
7873 	/* min timer set to 1/2 of interrupt timer */
7874 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7875 		val = tmr / 2;
7876 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7877 		req->int_lat_tmr_min = cpu_to_le16(val);
7878 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7879 	}
7880 
7881 	/* buf timer set to 1/4 of interrupt timer */
7882 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7883 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7884 
7885 	if (cmpl_params &
7886 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7887 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7888 		val = clamp_t(u16, tmr, 1,
7889 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7890 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7891 		req->enables |=
7892 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7893 	}
7894 
7895 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7896 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7897 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7898 	req->flags = cpu_to_le16(flags);
7899 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7900 }
7901 
7902 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7903 				   struct bnxt_coal *hw_coal)
7904 {
7905 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7906 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7907 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7908 	u32 nq_params = coal_cap->nq_params;
7909 	u16 tmr;
7910 	int rc;
7911 
7912 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7913 		return 0;
7914 
7915 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7916 	if (rc)
7917 		return rc;
7918 
7919 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7920 	req->flags =
7921 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7922 
7923 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7924 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7925 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7926 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7927 	return hwrm_req_send(bp, req);
7928 }
7929 
7930 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7931 {
7932 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7933 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7934 	struct bnxt_coal coal;
7935 	int rc;
7936 
7937 	/* Tick values in micro seconds.
7938 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7939 	 */
7940 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7941 
7942 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7943 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7944 
7945 	if (!bnapi->rx_ring)
7946 		return -ENODEV;
7947 
7948 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7949 	if (rc)
7950 		return rc;
7951 
7952 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7953 
7954 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7955 
7956 	return hwrm_req_send(bp, req_rx);
7957 }
7958 
7959 static int
7960 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7961 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7962 {
7963 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7964 
7965 	req->ring_id = cpu_to_le16(ring_id);
7966 	return hwrm_req_send(bp, req);
7967 }
7968 
7969 static int
7970 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7971 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7972 {
7973 	struct bnxt_tx_ring_info *txr;
7974 	int i, rc;
7975 
7976 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7977 		u16 ring_id;
7978 
7979 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7980 		req->ring_id = cpu_to_le16(ring_id);
7981 		rc = hwrm_req_send(bp, req);
7982 		if (rc)
7983 			return rc;
7984 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7985 			return 0;
7986 	}
7987 	return 0;
7988 }
7989 
7990 int bnxt_hwrm_set_coal(struct bnxt *bp)
7991 {
7992 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7993 	int i, rc;
7994 
7995 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7996 	if (rc)
7997 		return rc;
7998 
7999 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8000 	if (rc) {
8001 		hwrm_req_drop(bp, req_rx);
8002 		return rc;
8003 	}
8004 
8005 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
8006 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
8007 
8008 	hwrm_req_hold(bp, req_rx);
8009 	hwrm_req_hold(bp, req_tx);
8010 	for (i = 0; i < bp->cp_nr_rings; i++) {
8011 		struct bnxt_napi *bnapi = bp->bnapi[i];
8012 		struct bnxt_coal *hw_coal;
8013 
8014 		if (!bnapi->rx_ring)
8015 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8016 		else
8017 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
8018 		if (rc)
8019 			break;
8020 
8021 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8022 			continue;
8023 
8024 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
8025 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8026 			if (rc)
8027 				break;
8028 		}
8029 		if (bnapi->rx_ring)
8030 			hw_coal = &bp->rx_coal;
8031 		else
8032 			hw_coal = &bp->tx_coal;
8033 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
8034 	}
8035 	hwrm_req_drop(bp, req_rx);
8036 	hwrm_req_drop(bp, req_tx);
8037 	return rc;
8038 }
8039 
8040 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
8041 {
8042 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
8043 	struct hwrm_stat_ctx_free_input *req;
8044 	int i;
8045 
8046 	if (!bp->bnapi)
8047 		return;
8048 
8049 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8050 		return;
8051 
8052 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
8053 		return;
8054 	if (BNXT_FW_MAJ(bp) <= 20) {
8055 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
8056 			hwrm_req_drop(bp, req);
8057 			return;
8058 		}
8059 		hwrm_req_hold(bp, req0);
8060 	}
8061 	hwrm_req_hold(bp, req);
8062 	for (i = 0; i < bp->cp_nr_rings; i++) {
8063 		struct bnxt_napi *bnapi = bp->bnapi[i];
8064 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8065 
8066 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
8067 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
8068 			if (req0) {
8069 				req0->stat_ctx_id = req->stat_ctx_id;
8070 				hwrm_req_send(bp, req0);
8071 			}
8072 			hwrm_req_send(bp, req);
8073 
8074 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
8075 		}
8076 	}
8077 	hwrm_req_drop(bp, req);
8078 	if (req0)
8079 		hwrm_req_drop(bp, req0);
8080 }
8081 
8082 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
8083 {
8084 	struct hwrm_stat_ctx_alloc_output *resp;
8085 	struct hwrm_stat_ctx_alloc_input *req;
8086 	int rc, i;
8087 
8088 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8089 		return 0;
8090 
8091 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
8092 	if (rc)
8093 		return rc;
8094 
8095 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
8096 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
8097 
8098 	resp = hwrm_req_hold(bp, req);
8099 	for (i = 0; i < bp->cp_nr_rings; i++) {
8100 		struct bnxt_napi *bnapi = bp->bnapi[i];
8101 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8102 
8103 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
8104 
8105 		rc = hwrm_req_send(bp, req);
8106 		if (rc)
8107 			break;
8108 
8109 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
8110 
8111 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
8112 	}
8113 	hwrm_req_drop(bp, req);
8114 	return rc;
8115 }
8116 
8117 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
8118 {
8119 	struct hwrm_func_qcfg_output *resp;
8120 	struct hwrm_func_qcfg_input *req;
8121 	u16 flags;
8122 	int rc;
8123 
8124 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
8125 	if (rc)
8126 		return rc;
8127 
8128 	req->fid = cpu_to_le16(0xffff);
8129 	resp = hwrm_req_hold(bp, req);
8130 	rc = hwrm_req_send(bp, req);
8131 	if (rc)
8132 		goto func_qcfg_exit;
8133 
8134 #ifdef CONFIG_BNXT_SRIOV
8135 	if (BNXT_VF(bp)) {
8136 		struct bnxt_vf_info *vf = &bp->vf;
8137 
8138 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
8139 	} else {
8140 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
8141 	}
8142 #endif
8143 	flags = le16_to_cpu(resp->flags);
8144 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
8145 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
8146 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
8147 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
8148 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
8149 	}
8150 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
8151 		bp->flags |= BNXT_FLAG_MULTI_HOST;
8152 
8153 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
8154 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
8155 
8156 	switch (resp->port_partition_type) {
8157 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
8158 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
8159 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
8160 		bp->port_partition_type = resp->port_partition_type;
8161 		break;
8162 	}
8163 	if (bp->hwrm_spec_code < 0x10707 ||
8164 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
8165 		bp->br_mode = BRIDGE_MODE_VEB;
8166 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
8167 		bp->br_mode = BRIDGE_MODE_VEPA;
8168 	else
8169 		bp->br_mode = BRIDGE_MODE_UNDEF;
8170 
8171 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
8172 	if (!bp->max_mtu)
8173 		bp->max_mtu = BNXT_MAX_MTU;
8174 
8175 	if (bp->db_size)
8176 		goto func_qcfg_exit;
8177 
8178 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
8179 	if (BNXT_CHIP_P5(bp)) {
8180 		if (BNXT_PF(bp))
8181 			bp->db_offset = DB_PF_OFFSET_P5;
8182 		else
8183 			bp->db_offset = DB_VF_OFFSET_P5;
8184 	}
8185 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
8186 				 1024);
8187 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
8188 	    bp->db_size <= bp->db_offset)
8189 		bp->db_size = pci_resource_len(bp->pdev, 2);
8190 
8191 func_qcfg_exit:
8192 	hwrm_req_drop(bp, req);
8193 	return rc;
8194 }
8195 
8196 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
8197 				      u8 init_val, u8 init_offset,
8198 				      bool init_mask_set)
8199 {
8200 	ctxm->init_value = init_val;
8201 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
8202 	if (init_mask_set)
8203 		ctxm->init_offset = init_offset * 4;
8204 	else
8205 		ctxm->init_value = 0;
8206 }
8207 
8208 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
8209 {
8210 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8211 	u16 type;
8212 
8213 	for (type = 0; type < ctx_max; type++) {
8214 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8215 		int n = 1;
8216 
8217 		if (!ctxm->max_entries)
8218 			continue;
8219 
8220 		if (ctxm->instance_bmap)
8221 			n = hweight32(ctxm->instance_bmap);
8222 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
8223 		if (!ctxm->pg_info)
8224 			return -ENOMEM;
8225 	}
8226 	return 0;
8227 }
8228 
8229 #define BNXT_CTX_INIT_VALID(flags)	\
8230 	(!!((flags) &			\
8231 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
8232 
8233 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
8234 {
8235 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
8236 	struct hwrm_func_backing_store_qcaps_v2_input *req;
8237 	struct bnxt_ctx_mem_info *ctx;
8238 	u16 type;
8239 	int rc;
8240 
8241 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
8242 	if (rc)
8243 		return rc;
8244 
8245 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8246 	if (!ctx)
8247 		return -ENOMEM;
8248 	bp->ctx = ctx;
8249 
8250 	resp = hwrm_req_hold(bp, req);
8251 
8252 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
8253 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8254 		u8 init_val, init_off, i;
8255 		__le32 *p;
8256 		u32 flags;
8257 
8258 		req->type = cpu_to_le16(type);
8259 		rc = hwrm_req_send(bp, req);
8260 		if (rc)
8261 			goto ctx_done;
8262 		flags = le32_to_cpu(resp->flags);
8263 		type = le16_to_cpu(resp->next_valid_type);
8264 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
8265 			continue;
8266 
8267 		ctxm->type = le16_to_cpu(resp->type);
8268 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
8269 		ctxm->flags = flags;
8270 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
8271 		ctxm->entry_multiple = resp->entry_multiple;
8272 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
8273 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
8274 		init_val = resp->ctx_init_value;
8275 		init_off = resp->ctx_init_offset;
8276 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
8277 					  BNXT_CTX_INIT_VALID(flags));
8278 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
8279 					      BNXT_MAX_SPLIT_ENTRY);
8280 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
8281 		     i++, p++)
8282 			ctxm->split[i] = le32_to_cpu(*p);
8283 	}
8284 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
8285 
8286 ctx_done:
8287 	hwrm_req_drop(bp, req);
8288 	return rc;
8289 }
8290 
8291 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
8292 {
8293 	struct hwrm_func_backing_store_qcaps_output *resp;
8294 	struct hwrm_func_backing_store_qcaps_input *req;
8295 	int rc;
8296 
8297 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
8298 		return 0;
8299 
8300 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8301 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
8302 
8303 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
8304 	if (rc)
8305 		return rc;
8306 
8307 	resp = hwrm_req_hold(bp, req);
8308 	rc = hwrm_req_send_silent(bp, req);
8309 	if (!rc) {
8310 		struct bnxt_ctx_mem_type *ctxm;
8311 		struct bnxt_ctx_mem_info *ctx;
8312 		u8 init_val, init_idx = 0;
8313 		u16 init_mask;
8314 
8315 		ctx = bp->ctx;
8316 		if (!ctx) {
8317 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8318 			if (!ctx) {
8319 				rc = -ENOMEM;
8320 				goto ctx_err;
8321 			}
8322 			bp->ctx = ctx;
8323 		}
8324 		init_val = resp->ctx_kind_initializer;
8325 		init_mask = le16_to_cpu(resp->ctx_init_mask);
8326 
8327 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8328 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
8329 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
8330 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
8331 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
8332 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
8333 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
8334 					  (init_mask & (1 << init_idx++)) != 0);
8335 
8336 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8337 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
8338 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
8339 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
8340 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
8341 					  (init_mask & (1 << init_idx++)) != 0);
8342 
8343 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8344 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
8345 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
8346 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
8347 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
8348 					  (init_mask & (1 << init_idx++)) != 0);
8349 
8350 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8351 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
8352 		ctxm->max_entries = ctxm->vnic_entries +
8353 			le16_to_cpu(resp->vnic_max_ring_table_entries);
8354 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
8355 		bnxt_init_ctx_initializer(ctxm, init_val,
8356 					  resp->vnic_init_offset,
8357 					  (init_mask & (1 << init_idx++)) != 0);
8358 
8359 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8360 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
8361 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
8362 		bnxt_init_ctx_initializer(ctxm, init_val,
8363 					  resp->stat_init_offset,
8364 					  (init_mask & (1 << init_idx++)) != 0);
8365 
8366 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8367 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
8368 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
8369 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
8370 		ctxm->entry_multiple = resp->tqm_entries_multiple;
8371 		if (!ctxm->entry_multiple)
8372 			ctxm->entry_multiple = 1;
8373 
8374 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
8375 
8376 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8377 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
8378 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
8379 		ctxm->mrav_num_entries_units =
8380 			le16_to_cpu(resp->mrav_num_entries_units);
8381 		bnxt_init_ctx_initializer(ctxm, init_val,
8382 					  resp->mrav_init_offset,
8383 					  (init_mask & (1 << init_idx++)) != 0);
8384 
8385 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8386 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
8387 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
8388 
8389 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
8390 		if (!ctx->tqm_fp_rings_count)
8391 			ctx->tqm_fp_rings_count = bp->max_q;
8392 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
8393 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
8394 
8395 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8396 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
8397 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
8398 
8399 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
8400 	} else {
8401 		rc = 0;
8402 	}
8403 ctx_err:
8404 	hwrm_req_drop(bp, req);
8405 	return rc;
8406 }
8407 
8408 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
8409 				  __le64 *pg_dir)
8410 {
8411 	if (!rmem->nr_pages)
8412 		return;
8413 
8414 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8415 	if (rmem->depth >= 1) {
8416 		if (rmem->depth == 2)
8417 			*pg_attr |= 2;
8418 		else
8419 			*pg_attr |= 1;
8420 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8421 	} else {
8422 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8423 	}
8424 }
8425 
8426 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8427 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8428 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8429 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8430 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8431 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8432 
8433 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8434 {
8435 	struct hwrm_func_backing_store_cfg_input *req;
8436 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8437 	struct bnxt_ctx_pg_info *ctx_pg;
8438 	struct bnxt_ctx_mem_type *ctxm;
8439 	void **__req = (void **)&req;
8440 	u32 req_len = sizeof(*req);
8441 	__le32 *num_entries;
8442 	__le64 *pg_dir;
8443 	u32 flags = 0;
8444 	u8 *pg_attr;
8445 	u32 ena;
8446 	int rc;
8447 	int i;
8448 
8449 	if (!ctx)
8450 		return 0;
8451 
8452 	if (req_len > bp->hwrm_max_ext_req_len)
8453 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8454 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8455 	if (rc)
8456 		return rc;
8457 
8458 	req->enables = cpu_to_le32(enables);
8459 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8460 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8461 		ctx_pg = ctxm->pg_info;
8462 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8463 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8464 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8465 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8466 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8467 				      &req->qpc_pg_size_qpc_lvl,
8468 				      &req->qpc_page_dir);
8469 
8470 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8471 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8472 	}
8473 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8474 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8475 		ctx_pg = ctxm->pg_info;
8476 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8477 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8478 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8479 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8480 				      &req->srq_pg_size_srq_lvl,
8481 				      &req->srq_page_dir);
8482 	}
8483 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8484 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8485 		ctx_pg = ctxm->pg_info;
8486 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8487 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8488 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8489 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8490 				      &req->cq_pg_size_cq_lvl,
8491 				      &req->cq_page_dir);
8492 	}
8493 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8494 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8495 		ctx_pg = ctxm->pg_info;
8496 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8497 		req->vnic_num_ring_table_entries =
8498 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8499 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8500 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8501 				      &req->vnic_pg_size_vnic_lvl,
8502 				      &req->vnic_page_dir);
8503 	}
8504 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8505 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8506 		ctx_pg = ctxm->pg_info;
8507 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8508 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8509 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8510 				      &req->stat_pg_size_stat_lvl,
8511 				      &req->stat_page_dir);
8512 	}
8513 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8514 		u32 units;
8515 
8516 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8517 		ctx_pg = ctxm->pg_info;
8518 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8519 		units = ctxm->mrav_num_entries_units;
8520 		if (units) {
8521 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8522 			u32 entries;
8523 
8524 			num_mr = ctx_pg->entries - num_ah;
8525 			entries = ((num_mr / units) << 16) | (num_ah / units);
8526 			req->mrav_num_entries = cpu_to_le32(entries);
8527 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8528 		}
8529 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8530 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8531 				      &req->mrav_pg_size_mrav_lvl,
8532 				      &req->mrav_page_dir);
8533 	}
8534 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8535 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8536 		ctx_pg = ctxm->pg_info;
8537 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8538 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8539 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8540 				      &req->tim_pg_size_tim_lvl,
8541 				      &req->tim_page_dir);
8542 	}
8543 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8544 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8545 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8546 	     pg_dir = &req->tqm_sp_page_dir,
8547 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8548 	     ctx_pg = ctxm->pg_info;
8549 	     i < BNXT_MAX_TQM_RINGS;
8550 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8551 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8552 		if (!(enables & ena))
8553 			continue;
8554 
8555 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8556 		*num_entries = cpu_to_le32(ctx_pg->entries);
8557 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8558 	}
8559 	req->flags = cpu_to_le32(flags);
8560 	return hwrm_req_send(bp, req);
8561 }
8562 
8563 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8564 				  struct bnxt_ctx_pg_info *ctx_pg)
8565 {
8566 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8567 
8568 	rmem->page_size = BNXT_PAGE_SIZE;
8569 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8570 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8571 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8572 	if (rmem->depth >= 1)
8573 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8574 	return bnxt_alloc_ring(bp, rmem);
8575 }
8576 
8577 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8578 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8579 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8580 {
8581 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8582 	int rc;
8583 
8584 	if (!mem_size)
8585 		return -EINVAL;
8586 
8587 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8588 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8589 		ctx_pg->nr_pages = 0;
8590 		return -EINVAL;
8591 	}
8592 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8593 		int nr_tbls, i;
8594 
8595 		rmem->depth = 2;
8596 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8597 					     GFP_KERNEL);
8598 		if (!ctx_pg->ctx_pg_tbl)
8599 			return -ENOMEM;
8600 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8601 		rmem->nr_pages = nr_tbls;
8602 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8603 		if (rc)
8604 			return rc;
8605 		for (i = 0; i < nr_tbls; i++) {
8606 			struct bnxt_ctx_pg_info *pg_tbl;
8607 
8608 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8609 			if (!pg_tbl)
8610 				return -ENOMEM;
8611 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8612 			rmem = &pg_tbl->ring_mem;
8613 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8614 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8615 			rmem->depth = 1;
8616 			rmem->nr_pages = MAX_CTX_PAGES;
8617 			rmem->ctx_mem = ctxm;
8618 			if (i == (nr_tbls - 1)) {
8619 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8620 
8621 				if (rem)
8622 					rmem->nr_pages = rem;
8623 			}
8624 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8625 			if (rc)
8626 				break;
8627 		}
8628 	} else {
8629 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8630 		if (rmem->nr_pages > 1 || depth)
8631 			rmem->depth = 1;
8632 		rmem->ctx_mem = ctxm;
8633 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8634 	}
8635 	return rc;
8636 }
8637 
8638 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8639 				  struct bnxt_ctx_pg_info *ctx_pg)
8640 {
8641 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8642 
8643 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8644 	    ctx_pg->ctx_pg_tbl) {
8645 		int i, nr_tbls = rmem->nr_pages;
8646 
8647 		for (i = 0; i < nr_tbls; i++) {
8648 			struct bnxt_ctx_pg_info *pg_tbl;
8649 			struct bnxt_ring_mem_info *rmem2;
8650 
8651 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8652 			if (!pg_tbl)
8653 				continue;
8654 			rmem2 = &pg_tbl->ring_mem;
8655 			bnxt_free_ring(bp, rmem2);
8656 			ctx_pg->ctx_pg_arr[i] = NULL;
8657 			kfree(pg_tbl);
8658 			ctx_pg->ctx_pg_tbl[i] = NULL;
8659 		}
8660 		kfree(ctx_pg->ctx_pg_tbl);
8661 		ctx_pg->ctx_pg_tbl = NULL;
8662 	}
8663 	bnxt_free_ring(bp, rmem);
8664 	ctx_pg->nr_pages = 0;
8665 }
8666 
8667 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8668 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8669 				   u8 pg_lvl)
8670 {
8671 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8672 	int i, rc = 0, n = 1;
8673 	u32 mem_size;
8674 
8675 	if (!ctxm->entry_size || !ctx_pg)
8676 		return -EINVAL;
8677 	if (ctxm->instance_bmap)
8678 		n = hweight32(ctxm->instance_bmap);
8679 	if (ctxm->entry_multiple)
8680 		entries = roundup(entries, ctxm->entry_multiple);
8681 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8682 	mem_size = entries * ctxm->entry_size;
8683 	for (i = 0; i < n && !rc; i++) {
8684 		ctx_pg[i].entries = entries;
8685 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8686 					    ctxm->init_value ? ctxm : NULL);
8687 	}
8688 	return rc;
8689 }
8690 
8691 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8692 					       struct bnxt_ctx_mem_type *ctxm,
8693 					       bool last)
8694 {
8695 	struct hwrm_func_backing_store_cfg_v2_input *req;
8696 	u32 instance_bmap = ctxm->instance_bmap;
8697 	int i, j, rc = 0, n = 1;
8698 	__le32 *p;
8699 
8700 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8701 		return 0;
8702 
8703 	if (instance_bmap)
8704 		n = hweight32(ctxm->instance_bmap);
8705 	else
8706 		instance_bmap = 1;
8707 
8708 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8709 	if (rc)
8710 		return rc;
8711 	hwrm_req_hold(bp, req);
8712 	req->type = cpu_to_le16(ctxm->type);
8713 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8714 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8715 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8716 		p[i] = cpu_to_le32(ctxm->split[i]);
8717 	for (i = 0, j = 0; j < n && !rc; i++) {
8718 		struct bnxt_ctx_pg_info *ctx_pg;
8719 
8720 		if (!(instance_bmap & (1 << i)))
8721 			continue;
8722 		req->instance = cpu_to_le16(i);
8723 		ctx_pg = &ctxm->pg_info[j++];
8724 		if (!ctx_pg->entries)
8725 			continue;
8726 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8727 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8728 				      &req->page_size_pbl_level,
8729 				      &req->page_dir);
8730 		if (last && j == n)
8731 			req->flags =
8732 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8733 		rc = hwrm_req_send(bp, req);
8734 	}
8735 	hwrm_req_drop(bp, req);
8736 	return rc;
8737 }
8738 
8739 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8740 {
8741 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8742 	struct bnxt_ctx_mem_type *ctxm;
8743 	u16 last_type;
8744 	int rc = 0;
8745 	u16 type;
8746 
8747 	if (!ena)
8748 		return 0;
8749 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8750 		last_type = BNXT_CTX_MAX - 1;
8751 	else
8752 		last_type = BNXT_CTX_L2_MAX - 1;
8753 	ctx->ctx_arr[last_type].last = 1;
8754 
8755 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8756 		ctxm = &ctx->ctx_arr[type];
8757 
8758 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8759 		if (rc)
8760 			return rc;
8761 	}
8762 	return 0;
8763 }
8764 
8765 void bnxt_free_ctx_mem(struct bnxt *bp)
8766 {
8767 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8768 	u16 type;
8769 
8770 	if (!ctx)
8771 		return;
8772 
8773 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8774 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8775 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8776 		int i, n = 1;
8777 
8778 		if (!ctx_pg)
8779 			continue;
8780 		if (ctxm->instance_bmap)
8781 			n = hweight32(ctxm->instance_bmap);
8782 		for (i = 0; i < n; i++)
8783 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8784 
8785 		kfree(ctx_pg);
8786 		ctxm->pg_info = NULL;
8787 	}
8788 
8789 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8790 	kfree(ctx);
8791 	bp->ctx = NULL;
8792 }
8793 
8794 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8795 {
8796 	struct bnxt_ctx_mem_type *ctxm;
8797 	struct bnxt_ctx_mem_info *ctx;
8798 	u32 l2_qps, qp1_qps, max_qps;
8799 	u32 ena, entries_sp, entries;
8800 	u32 srqs, max_srqs, min;
8801 	u32 num_mr, num_ah;
8802 	u32 extra_srqs = 0;
8803 	u32 extra_qps = 0;
8804 	u32 fast_qpmd_qps;
8805 	u8 pg_lvl = 1;
8806 	int i, rc;
8807 
8808 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8809 	if (rc) {
8810 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8811 			   rc);
8812 		return rc;
8813 	}
8814 	ctx = bp->ctx;
8815 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8816 		return 0;
8817 
8818 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8819 	l2_qps = ctxm->qp_l2_entries;
8820 	qp1_qps = ctxm->qp_qp1_entries;
8821 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8822 	max_qps = ctxm->max_entries;
8823 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8824 	srqs = ctxm->srq_l2_entries;
8825 	max_srqs = ctxm->max_entries;
8826 	ena = 0;
8827 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8828 		pg_lvl = 2;
8829 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8830 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8831 		extra_qps += fast_qpmd_qps;
8832 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8833 		if (fast_qpmd_qps)
8834 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8835 	}
8836 
8837 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8838 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8839 				     pg_lvl);
8840 	if (rc)
8841 		return rc;
8842 
8843 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8844 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8845 	if (rc)
8846 		return rc;
8847 
8848 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8849 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8850 				     extra_qps * 2, pg_lvl);
8851 	if (rc)
8852 		return rc;
8853 
8854 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8855 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8856 	if (rc)
8857 		return rc;
8858 
8859 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8860 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8861 	if (rc)
8862 		return rc;
8863 
8864 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8865 		goto skip_rdma;
8866 
8867 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8868 	/* 128K extra is needed to accommodate static AH context
8869 	 * allocation by f/w.
8870 	 */
8871 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8872 	num_ah = min_t(u32, num_mr, 1024 * 128);
8873 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8874 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8875 		ctxm->mrav_av_entries = num_ah;
8876 
8877 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8878 	if (rc)
8879 		return rc;
8880 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8881 
8882 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8883 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8884 	if (rc)
8885 		return rc;
8886 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8887 
8888 skip_rdma:
8889 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8890 	min = ctxm->min_entries;
8891 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8892 		     2 * (extra_qps + qp1_qps) + min;
8893 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8894 	if (rc)
8895 		return rc;
8896 
8897 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8898 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8899 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8900 	if (rc)
8901 		return rc;
8902 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8903 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8904 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8905 
8906 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8907 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8908 	else
8909 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8910 	if (rc) {
8911 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8912 			   rc);
8913 		return rc;
8914 	}
8915 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8916 	return 0;
8917 }
8918 
8919 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp)
8920 {
8921 	struct hwrm_dbg_crashdump_medium_cfg_input *req;
8922 	u16 page_attr;
8923 	int rc;
8924 
8925 	if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR))
8926 		return 0;
8927 
8928 	rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG);
8929 	if (rc)
8930 		return rc;
8931 
8932 	if (BNXT_PAGE_SIZE == 0x2000)
8933 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K;
8934 	else if (BNXT_PAGE_SIZE == 0x10000)
8935 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K;
8936 	else
8937 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K;
8938 	req->pg_size_lvl = cpu_to_le16(page_attr |
8939 				       bp->fw_crash_mem->ring_mem.depth);
8940 	req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map);
8941 	req->size = cpu_to_le32(bp->fw_crash_len);
8942 	req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR);
8943 	return hwrm_req_send(bp, req);
8944 }
8945 
8946 static void bnxt_free_crash_dump_mem(struct bnxt *bp)
8947 {
8948 	if (bp->fw_crash_mem) {
8949 		bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem);
8950 		kfree(bp->fw_crash_mem);
8951 		bp->fw_crash_mem = NULL;
8952 	}
8953 }
8954 
8955 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp)
8956 {
8957 	u32 mem_size = 0;
8958 	int rc;
8959 
8960 	if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR))
8961 		return 0;
8962 
8963 	rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size);
8964 	if (rc)
8965 		return rc;
8966 
8967 	mem_size = round_up(mem_size, 4);
8968 
8969 	/* keep and use the existing pages */
8970 	if (bp->fw_crash_mem &&
8971 	    mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE)
8972 		goto alloc_done;
8973 
8974 	if (bp->fw_crash_mem)
8975 		bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem);
8976 	else
8977 		bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem),
8978 					   GFP_KERNEL);
8979 	if (!bp->fw_crash_mem)
8980 		return -ENOMEM;
8981 
8982 	rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL);
8983 	if (rc) {
8984 		bnxt_free_crash_dump_mem(bp);
8985 		return rc;
8986 	}
8987 
8988 alloc_done:
8989 	bp->fw_crash_len = mem_size;
8990 	return 0;
8991 }
8992 
8993 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8994 {
8995 	struct hwrm_func_resource_qcaps_output *resp;
8996 	struct hwrm_func_resource_qcaps_input *req;
8997 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8998 	int rc;
8999 
9000 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
9001 	if (rc)
9002 		return rc;
9003 
9004 	req->fid = cpu_to_le16(0xffff);
9005 	resp = hwrm_req_hold(bp, req);
9006 	rc = hwrm_req_send_silent(bp, req);
9007 	if (rc)
9008 		goto hwrm_func_resc_qcaps_exit;
9009 
9010 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
9011 	if (!all)
9012 		goto hwrm_func_resc_qcaps_exit;
9013 
9014 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
9015 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9016 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
9017 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9018 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
9019 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9020 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
9021 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9022 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
9023 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
9024 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
9025 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9026 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
9027 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9028 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
9029 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9030 
9031 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
9032 		u16 max_msix = le16_to_cpu(resp->max_msix);
9033 
9034 		hw_resc->max_nqs = max_msix;
9035 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
9036 	}
9037 
9038 	if (BNXT_PF(bp)) {
9039 		struct bnxt_pf_info *pf = &bp->pf;
9040 
9041 		pf->vf_resv_strategy =
9042 			le16_to_cpu(resp->vf_reservation_strategy);
9043 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
9044 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
9045 	}
9046 hwrm_func_resc_qcaps_exit:
9047 	hwrm_req_drop(bp, req);
9048 	return rc;
9049 }
9050 
9051 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
9052 {
9053 	struct hwrm_port_mac_ptp_qcfg_output *resp;
9054 	struct hwrm_port_mac_ptp_qcfg_input *req;
9055 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
9056 	bool phc_cfg;
9057 	u8 flags;
9058 	int rc;
9059 
9060 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) {
9061 		rc = -ENODEV;
9062 		goto no_ptp;
9063 	}
9064 
9065 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
9066 	if (rc)
9067 		goto no_ptp;
9068 
9069 	req->port_id = cpu_to_le16(bp->pf.port_id);
9070 	resp = hwrm_req_hold(bp, req);
9071 	rc = hwrm_req_send(bp, req);
9072 	if (rc)
9073 		goto exit;
9074 
9075 	flags = resp->flags;
9076 	if (BNXT_CHIP_P5_AND_MINUS(bp) &&
9077 	    !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
9078 		rc = -ENODEV;
9079 		goto exit;
9080 	}
9081 	if (!ptp) {
9082 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
9083 		if (!ptp) {
9084 			rc = -ENOMEM;
9085 			goto exit;
9086 		}
9087 		ptp->bp = bp;
9088 		bp->ptp_cfg = ptp;
9089 	}
9090 
9091 	if (flags &
9092 	    (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK |
9093 	     PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) {
9094 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
9095 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
9096 	} else if (BNXT_CHIP_P5(bp)) {
9097 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
9098 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
9099 	} else {
9100 		rc = -ENODEV;
9101 		goto exit;
9102 	}
9103 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
9104 	rc = bnxt_ptp_init(bp, phc_cfg);
9105 	if (rc)
9106 		netdev_warn(bp->dev, "PTP initialization failed.\n");
9107 exit:
9108 	hwrm_req_drop(bp, req);
9109 	if (!rc)
9110 		return 0;
9111 
9112 no_ptp:
9113 	bnxt_ptp_clear(bp);
9114 	kfree(ptp);
9115 	bp->ptp_cfg = NULL;
9116 	return rc;
9117 }
9118 
9119 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
9120 {
9121 	struct hwrm_func_qcaps_output *resp;
9122 	struct hwrm_func_qcaps_input *req;
9123 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9124 	u32 flags, flags_ext, flags_ext2;
9125 	int rc;
9126 
9127 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
9128 	if (rc)
9129 		return rc;
9130 
9131 	req->fid = cpu_to_le16(0xffff);
9132 	resp = hwrm_req_hold(bp, req);
9133 	rc = hwrm_req_send(bp, req);
9134 	if (rc)
9135 		goto hwrm_func_qcaps_exit;
9136 
9137 	flags = le32_to_cpu(resp->flags);
9138 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
9139 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
9140 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
9141 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
9142 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
9143 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
9144 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
9145 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
9146 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
9147 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
9148 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
9149 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
9150 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
9151 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
9152 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
9153 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
9154 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
9155 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
9156 
9157 	flags_ext = le32_to_cpu(resp->flags_ext);
9158 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
9159 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
9160 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
9161 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
9162 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
9163 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
9164 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
9165 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
9166 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
9167 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
9168 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED))
9169 		bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP;
9170 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
9171 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
9172 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
9173 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
9174 
9175 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
9176 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
9177 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
9178 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
9179 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
9180 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED)
9181 		bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP;
9182 
9183 	bp->tx_push_thresh = 0;
9184 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
9185 	    BNXT_FW_MAJ(bp) > 217)
9186 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
9187 
9188 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9189 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9190 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9191 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9192 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
9193 	if (!hw_resc->max_hw_ring_grps)
9194 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
9195 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9196 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9197 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9198 
9199 	hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records);
9200 	hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records);
9201 	hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
9202 	hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
9203 	hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
9204 	hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
9205 
9206 	if (BNXT_PF(bp)) {
9207 		struct bnxt_pf_info *pf = &bp->pf;
9208 
9209 		pf->fw_fid = le16_to_cpu(resp->fid);
9210 		pf->port_id = le16_to_cpu(resp->port_id);
9211 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
9212 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
9213 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
9214 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
9215 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
9216 			bp->flags |= BNXT_FLAG_WOL_CAP;
9217 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
9218 			bp->fw_cap |= BNXT_FW_CAP_PTP;
9219 		} else {
9220 			bnxt_ptp_clear(bp);
9221 			kfree(bp->ptp_cfg);
9222 			bp->ptp_cfg = NULL;
9223 		}
9224 	} else {
9225 #ifdef CONFIG_BNXT_SRIOV
9226 		struct bnxt_vf_info *vf = &bp->vf;
9227 
9228 		vf->fw_fid = le16_to_cpu(resp->fid);
9229 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
9230 #endif
9231 	}
9232 	bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs);
9233 
9234 hwrm_func_qcaps_exit:
9235 	hwrm_req_drop(bp, req);
9236 	return rc;
9237 }
9238 
9239 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
9240 {
9241 	struct hwrm_dbg_qcaps_output *resp;
9242 	struct hwrm_dbg_qcaps_input *req;
9243 	int rc;
9244 
9245 	bp->fw_dbg_cap = 0;
9246 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
9247 		return;
9248 
9249 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
9250 	if (rc)
9251 		return;
9252 
9253 	req->fid = cpu_to_le16(0xffff);
9254 	resp = hwrm_req_hold(bp, req);
9255 	rc = hwrm_req_send(bp, req);
9256 	if (rc)
9257 		goto hwrm_dbg_qcaps_exit;
9258 
9259 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
9260 
9261 hwrm_dbg_qcaps_exit:
9262 	hwrm_req_drop(bp, req);
9263 }
9264 
9265 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
9266 
9267 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
9268 {
9269 	int rc;
9270 
9271 	rc = __bnxt_hwrm_func_qcaps(bp);
9272 	if (rc)
9273 		return rc;
9274 
9275 	bnxt_hwrm_dbg_qcaps(bp);
9276 
9277 	rc = bnxt_hwrm_queue_qportcfg(bp);
9278 	if (rc) {
9279 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
9280 		return rc;
9281 	}
9282 	if (bp->hwrm_spec_code >= 0x10803) {
9283 		rc = bnxt_alloc_ctx_mem(bp);
9284 		if (rc)
9285 			return rc;
9286 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9287 		if (!rc)
9288 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
9289 	}
9290 	return 0;
9291 }
9292 
9293 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
9294 {
9295 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
9296 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
9297 	u32 flags;
9298 	int rc;
9299 
9300 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
9301 		return 0;
9302 
9303 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
9304 	if (rc)
9305 		return rc;
9306 
9307 	resp = hwrm_req_hold(bp, req);
9308 	rc = hwrm_req_send(bp, req);
9309 	if (rc)
9310 		goto hwrm_cfa_adv_qcaps_exit;
9311 
9312 	flags = le32_to_cpu(resp->flags);
9313 	if (flags &
9314 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
9315 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
9316 
9317 	if (flags &
9318 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED)
9319 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3;
9320 
9321 	if (flags &
9322 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED)
9323 		bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO;
9324 
9325 hwrm_cfa_adv_qcaps_exit:
9326 	hwrm_req_drop(bp, req);
9327 	return rc;
9328 }
9329 
9330 static int __bnxt_alloc_fw_health(struct bnxt *bp)
9331 {
9332 	if (bp->fw_health)
9333 		return 0;
9334 
9335 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
9336 	if (!bp->fw_health)
9337 		return -ENOMEM;
9338 
9339 	mutex_init(&bp->fw_health->lock);
9340 	return 0;
9341 }
9342 
9343 static int bnxt_alloc_fw_health(struct bnxt *bp)
9344 {
9345 	int rc;
9346 
9347 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
9348 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9349 		return 0;
9350 
9351 	rc = __bnxt_alloc_fw_health(bp);
9352 	if (rc) {
9353 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
9354 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9355 		return rc;
9356 	}
9357 
9358 	return 0;
9359 }
9360 
9361 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
9362 {
9363 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
9364 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
9365 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
9366 }
9367 
9368 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
9369 {
9370 	struct bnxt_fw_health *fw_health = bp->fw_health;
9371 	u32 reg_type;
9372 
9373 	if (!fw_health)
9374 		return;
9375 
9376 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
9377 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9378 		fw_health->status_reliable = false;
9379 
9380 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
9381 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9382 		fw_health->resets_reliable = false;
9383 }
9384 
9385 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
9386 {
9387 	void __iomem *hs;
9388 	u32 status_loc;
9389 	u32 reg_type;
9390 	u32 sig;
9391 
9392 	if (bp->fw_health)
9393 		bp->fw_health->status_reliable = false;
9394 
9395 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
9396 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
9397 
9398 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
9399 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
9400 		if (!bp->chip_num) {
9401 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
9402 			bp->chip_num = readl(bp->bar0 +
9403 					     BNXT_FW_HEALTH_WIN_BASE +
9404 					     BNXT_GRC_REG_CHIP_NUM);
9405 		}
9406 		if (!BNXT_CHIP_P5_PLUS(bp))
9407 			return;
9408 
9409 		status_loc = BNXT_GRC_REG_STATUS_P5 |
9410 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
9411 	} else {
9412 		status_loc = readl(hs + offsetof(struct hcomm_status,
9413 						 fw_status_loc));
9414 	}
9415 
9416 	if (__bnxt_alloc_fw_health(bp)) {
9417 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
9418 		return;
9419 	}
9420 
9421 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
9422 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
9423 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
9424 		__bnxt_map_fw_health_reg(bp, status_loc);
9425 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
9426 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
9427 	}
9428 
9429 	bp->fw_health->status_reliable = true;
9430 }
9431 
9432 static int bnxt_map_fw_health_regs(struct bnxt *bp)
9433 {
9434 	struct bnxt_fw_health *fw_health = bp->fw_health;
9435 	u32 reg_base = 0xffffffff;
9436 	int i;
9437 
9438 	bp->fw_health->status_reliable = false;
9439 	bp->fw_health->resets_reliable = false;
9440 	/* Only pre-map the monitoring GRC registers using window 3 */
9441 	for (i = 0; i < 4; i++) {
9442 		u32 reg = fw_health->regs[i];
9443 
9444 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
9445 			continue;
9446 		if (reg_base == 0xffffffff)
9447 			reg_base = reg & BNXT_GRC_BASE_MASK;
9448 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
9449 			return -ERANGE;
9450 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
9451 	}
9452 	bp->fw_health->status_reliable = true;
9453 	bp->fw_health->resets_reliable = true;
9454 	if (reg_base == 0xffffffff)
9455 		return 0;
9456 
9457 	__bnxt_map_fw_health_reg(bp, reg_base);
9458 	return 0;
9459 }
9460 
9461 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
9462 {
9463 	if (!bp->fw_health)
9464 		return;
9465 
9466 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
9467 		bp->fw_health->status_reliable = true;
9468 		bp->fw_health->resets_reliable = true;
9469 	} else {
9470 		bnxt_try_map_fw_health_reg(bp);
9471 	}
9472 }
9473 
9474 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
9475 {
9476 	struct bnxt_fw_health *fw_health = bp->fw_health;
9477 	struct hwrm_error_recovery_qcfg_output *resp;
9478 	struct hwrm_error_recovery_qcfg_input *req;
9479 	int rc, i;
9480 
9481 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9482 		return 0;
9483 
9484 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
9485 	if (rc)
9486 		return rc;
9487 
9488 	resp = hwrm_req_hold(bp, req);
9489 	rc = hwrm_req_send(bp, req);
9490 	if (rc)
9491 		goto err_recovery_out;
9492 	fw_health->flags = le32_to_cpu(resp->flags);
9493 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
9494 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
9495 		rc = -EINVAL;
9496 		goto err_recovery_out;
9497 	}
9498 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
9499 	fw_health->master_func_wait_dsecs =
9500 		le32_to_cpu(resp->master_func_wait_period);
9501 	fw_health->normal_func_wait_dsecs =
9502 		le32_to_cpu(resp->normal_func_wait_period);
9503 	fw_health->post_reset_wait_dsecs =
9504 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9505 	fw_health->post_reset_max_wait_dsecs =
9506 		le32_to_cpu(resp->max_bailout_time_after_reset);
9507 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9508 		le32_to_cpu(resp->fw_health_status_reg);
9509 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9510 		le32_to_cpu(resp->fw_heartbeat_reg);
9511 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9512 		le32_to_cpu(resp->fw_reset_cnt_reg);
9513 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9514 		le32_to_cpu(resp->reset_inprogress_reg);
9515 	fw_health->fw_reset_inprog_reg_mask =
9516 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9517 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9518 	if (fw_health->fw_reset_seq_cnt >= 16) {
9519 		rc = -EINVAL;
9520 		goto err_recovery_out;
9521 	}
9522 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9523 		fw_health->fw_reset_seq_regs[i] =
9524 			le32_to_cpu(resp->reset_reg[i]);
9525 		fw_health->fw_reset_seq_vals[i] =
9526 			le32_to_cpu(resp->reset_reg_val[i]);
9527 		fw_health->fw_reset_seq_delay_msec[i] =
9528 			resp->delay_after_reset[i];
9529 	}
9530 err_recovery_out:
9531 	hwrm_req_drop(bp, req);
9532 	if (!rc)
9533 		rc = bnxt_map_fw_health_regs(bp);
9534 	if (rc)
9535 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9536 	return rc;
9537 }
9538 
9539 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9540 {
9541 	struct hwrm_func_reset_input *req;
9542 	int rc;
9543 
9544 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9545 	if (rc)
9546 		return rc;
9547 
9548 	req->enables = 0;
9549 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9550 	return hwrm_req_send(bp, req);
9551 }
9552 
9553 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9554 {
9555 	struct hwrm_nvm_get_dev_info_output nvm_info;
9556 
9557 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9558 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9559 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9560 			 nvm_info.nvm_cfg_ver_upd);
9561 }
9562 
9563 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9564 {
9565 	struct hwrm_queue_qportcfg_output *resp;
9566 	struct hwrm_queue_qportcfg_input *req;
9567 	u8 i, j, *qptr;
9568 	bool no_rdma;
9569 	int rc = 0;
9570 
9571 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9572 	if (rc)
9573 		return rc;
9574 
9575 	resp = hwrm_req_hold(bp, req);
9576 	rc = hwrm_req_send(bp, req);
9577 	if (rc)
9578 		goto qportcfg_exit;
9579 
9580 	if (!resp->max_configurable_queues) {
9581 		rc = -EINVAL;
9582 		goto qportcfg_exit;
9583 	}
9584 	bp->max_tc = resp->max_configurable_queues;
9585 	bp->max_lltc = resp->max_configurable_lossless_queues;
9586 	if (bp->max_tc > BNXT_MAX_QUEUE)
9587 		bp->max_tc = BNXT_MAX_QUEUE;
9588 
9589 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9590 	qptr = &resp->queue_id0;
9591 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9592 		bp->q_info[j].queue_id = *qptr;
9593 		bp->q_ids[i] = *qptr++;
9594 		bp->q_info[j].queue_profile = *qptr++;
9595 		bp->tc_to_qidx[j] = j;
9596 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9597 		    (no_rdma && BNXT_PF(bp)))
9598 			j++;
9599 	}
9600 	bp->max_q = bp->max_tc;
9601 	bp->max_tc = max_t(u8, j, 1);
9602 
9603 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9604 		bp->max_tc = 1;
9605 
9606 	if (bp->max_lltc > bp->max_tc)
9607 		bp->max_lltc = bp->max_tc;
9608 
9609 qportcfg_exit:
9610 	hwrm_req_drop(bp, req);
9611 	return rc;
9612 }
9613 
9614 static int bnxt_hwrm_poll(struct bnxt *bp)
9615 {
9616 	struct hwrm_ver_get_input *req;
9617 	int rc;
9618 
9619 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9620 	if (rc)
9621 		return rc;
9622 
9623 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9624 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9625 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9626 
9627 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9628 	rc = hwrm_req_send(bp, req);
9629 	return rc;
9630 }
9631 
9632 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9633 {
9634 	struct hwrm_ver_get_output *resp;
9635 	struct hwrm_ver_get_input *req;
9636 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9637 	u32 dev_caps_cfg, hwrm_ver;
9638 	int rc, len;
9639 
9640 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9641 	if (rc)
9642 		return rc;
9643 
9644 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9645 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9646 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9647 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9648 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9649 
9650 	resp = hwrm_req_hold(bp, req);
9651 	rc = hwrm_req_send(bp, req);
9652 	if (rc)
9653 		goto hwrm_ver_get_exit;
9654 
9655 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9656 
9657 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9658 			     resp->hwrm_intf_min_8b << 8 |
9659 			     resp->hwrm_intf_upd_8b;
9660 	if (resp->hwrm_intf_maj_8b < 1) {
9661 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9662 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9663 			    resp->hwrm_intf_upd_8b);
9664 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9665 	}
9666 
9667 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9668 			HWRM_VERSION_UPDATE;
9669 
9670 	if (bp->hwrm_spec_code > hwrm_ver)
9671 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9672 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9673 			 HWRM_VERSION_UPDATE);
9674 	else
9675 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9676 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9677 			 resp->hwrm_intf_upd_8b);
9678 
9679 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9680 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9681 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9682 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9683 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9684 		len = FW_VER_STR_LEN;
9685 	} else {
9686 		fw_maj = resp->hwrm_fw_maj_8b;
9687 		fw_min = resp->hwrm_fw_min_8b;
9688 		fw_bld = resp->hwrm_fw_bld_8b;
9689 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9690 		len = BC_HWRM_STR_LEN;
9691 	}
9692 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9693 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9694 		 fw_rsv);
9695 
9696 	if (strlen(resp->active_pkg_name)) {
9697 		int fw_ver_len = strlen(bp->fw_ver_str);
9698 
9699 		snprintf(bp->fw_ver_str + fw_ver_len,
9700 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9701 			 resp->active_pkg_name);
9702 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9703 	}
9704 
9705 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9706 	if (!bp->hwrm_cmd_timeout)
9707 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9708 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9709 	if (!bp->hwrm_cmd_max_timeout)
9710 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9711 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9712 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9713 			    bp->hwrm_cmd_max_timeout / 1000);
9714 
9715 	if (resp->hwrm_intf_maj_8b >= 1) {
9716 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9717 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9718 	}
9719 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9720 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9721 
9722 	bp->chip_num = le16_to_cpu(resp->chip_num);
9723 	bp->chip_rev = resp->chip_rev;
9724 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9725 	    !resp->chip_metal)
9726 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9727 
9728 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9729 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9730 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9731 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9732 
9733 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9734 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9735 
9736 	if (dev_caps_cfg &
9737 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9738 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9739 
9740 	if (dev_caps_cfg &
9741 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9742 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9743 
9744 	if (dev_caps_cfg &
9745 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9746 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9747 
9748 hwrm_ver_get_exit:
9749 	hwrm_req_drop(bp, req);
9750 	return rc;
9751 }
9752 
9753 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9754 {
9755 	struct hwrm_fw_set_time_input *req;
9756 	struct tm tm;
9757 	time64_t now = ktime_get_real_seconds();
9758 	int rc;
9759 
9760 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9761 	    bp->hwrm_spec_code < 0x10400)
9762 		return -EOPNOTSUPP;
9763 
9764 	time64_to_tm(now, 0, &tm);
9765 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9766 	if (rc)
9767 		return rc;
9768 
9769 	req->year = cpu_to_le16(1900 + tm.tm_year);
9770 	req->month = 1 + tm.tm_mon;
9771 	req->day = tm.tm_mday;
9772 	req->hour = tm.tm_hour;
9773 	req->minute = tm.tm_min;
9774 	req->second = tm.tm_sec;
9775 	return hwrm_req_send(bp, req);
9776 }
9777 
9778 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9779 {
9780 	u64 sw_tmp;
9781 
9782 	hw &= mask;
9783 	sw_tmp = (*sw & ~mask) | hw;
9784 	if (hw < (*sw & mask))
9785 		sw_tmp += mask + 1;
9786 	WRITE_ONCE(*sw, sw_tmp);
9787 }
9788 
9789 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9790 				    int count, bool ignore_zero)
9791 {
9792 	int i;
9793 
9794 	for (i = 0; i < count; i++) {
9795 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9796 
9797 		if (ignore_zero && !hw)
9798 			continue;
9799 
9800 		if (masks[i] == -1ULL)
9801 			sw_stats[i] = hw;
9802 		else
9803 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9804 	}
9805 }
9806 
9807 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9808 {
9809 	if (!stats->hw_stats)
9810 		return;
9811 
9812 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9813 				stats->hw_masks, stats->len / 8, false);
9814 }
9815 
9816 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9817 {
9818 	struct bnxt_stats_mem *ring0_stats;
9819 	bool ignore_zero = false;
9820 	int i;
9821 
9822 	/* Chip bug.  Counter intermittently becomes 0. */
9823 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9824 		ignore_zero = true;
9825 
9826 	for (i = 0; i < bp->cp_nr_rings; i++) {
9827 		struct bnxt_napi *bnapi = bp->bnapi[i];
9828 		struct bnxt_cp_ring_info *cpr;
9829 		struct bnxt_stats_mem *stats;
9830 
9831 		cpr = &bnapi->cp_ring;
9832 		stats = &cpr->stats;
9833 		if (!i)
9834 			ring0_stats = stats;
9835 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9836 					ring0_stats->hw_masks,
9837 					ring0_stats->len / 8, ignore_zero);
9838 	}
9839 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9840 		struct bnxt_stats_mem *stats = &bp->port_stats;
9841 		__le64 *hw_stats = stats->hw_stats;
9842 		u64 *sw_stats = stats->sw_stats;
9843 		u64 *masks = stats->hw_masks;
9844 		int cnt;
9845 
9846 		cnt = sizeof(struct rx_port_stats) / 8;
9847 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9848 
9849 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9850 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9851 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9852 		cnt = sizeof(struct tx_port_stats) / 8;
9853 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9854 	}
9855 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9856 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9857 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9858 	}
9859 }
9860 
9861 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9862 {
9863 	struct hwrm_port_qstats_input *req;
9864 	struct bnxt_pf_info *pf = &bp->pf;
9865 	int rc;
9866 
9867 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9868 		return 0;
9869 
9870 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9871 		return -EOPNOTSUPP;
9872 
9873 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9874 	if (rc)
9875 		return rc;
9876 
9877 	req->flags = flags;
9878 	req->port_id = cpu_to_le16(pf->port_id);
9879 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9880 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9881 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9882 	return hwrm_req_send(bp, req);
9883 }
9884 
9885 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9886 {
9887 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9888 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9889 	struct hwrm_port_qstats_ext_output *resp_qs;
9890 	struct hwrm_port_qstats_ext_input *req_qs;
9891 	struct bnxt_pf_info *pf = &bp->pf;
9892 	u32 tx_stat_size;
9893 	int rc;
9894 
9895 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9896 		return 0;
9897 
9898 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9899 		return -EOPNOTSUPP;
9900 
9901 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9902 	if (rc)
9903 		return rc;
9904 
9905 	req_qs->flags = flags;
9906 	req_qs->port_id = cpu_to_le16(pf->port_id);
9907 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9908 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9909 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9910 		       sizeof(struct tx_port_stats_ext) : 0;
9911 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9912 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9913 	resp_qs = hwrm_req_hold(bp, req_qs);
9914 	rc = hwrm_req_send(bp, req_qs);
9915 	if (!rc) {
9916 		bp->fw_rx_stats_ext_size =
9917 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9918 		if (BNXT_FW_MAJ(bp) < 220 &&
9919 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9920 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9921 
9922 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9923 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9924 	} else {
9925 		bp->fw_rx_stats_ext_size = 0;
9926 		bp->fw_tx_stats_ext_size = 0;
9927 	}
9928 	hwrm_req_drop(bp, req_qs);
9929 
9930 	if (flags)
9931 		return rc;
9932 
9933 	if (bp->fw_tx_stats_ext_size <=
9934 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9935 		bp->pri2cos_valid = 0;
9936 		return rc;
9937 	}
9938 
9939 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9940 	if (rc)
9941 		return rc;
9942 
9943 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9944 
9945 	resp_qc = hwrm_req_hold(bp, req_qc);
9946 	rc = hwrm_req_send(bp, req_qc);
9947 	if (!rc) {
9948 		u8 *pri2cos;
9949 		int i, j;
9950 
9951 		pri2cos = &resp_qc->pri0_cos_queue_id;
9952 		for (i = 0; i < 8; i++) {
9953 			u8 queue_id = pri2cos[i];
9954 			u8 queue_idx;
9955 
9956 			/* Per port queue IDs start from 0, 10, 20, etc */
9957 			queue_idx = queue_id % 10;
9958 			if (queue_idx > BNXT_MAX_QUEUE) {
9959 				bp->pri2cos_valid = false;
9960 				hwrm_req_drop(bp, req_qc);
9961 				return rc;
9962 			}
9963 			for (j = 0; j < bp->max_q; j++) {
9964 				if (bp->q_ids[j] == queue_id)
9965 					bp->pri2cos_idx[i] = queue_idx;
9966 			}
9967 		}
9968 		bp->pri2cos_valid = true;
9969 	}
9970 	hwrm_req_drop(bp, req_qc);
9971 
9972 	return rc;
9973 }
9974 
9975 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9976 {
9977 	bnxt_hwrm_tunnel_dst_port_free(bp,
9978 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9979 	bnxt_hwrm_tunnel_dst_port_free(bp,
9980 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9981 }
9982 
9983 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9984 {
9985 	int rc, i;
9986 	u32 tpa_flags = 0;
9987 
9988 	if (set_tpa)
9989 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9990 	else if (BNXT_NO_FW_ACCESS(bp))
9991 		return 0;
9992 	for (i = 0; i < bp->nr_vnics; i++) {
9993 		rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags);
9994 		if (rc) {
9995 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9996 				   i, rc);
9997 			return rc;
9998 		}
9999 	}
10000 	return 0;
10001 }
10002 
10003 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
10004 {
10005 	int i;
10006 
10007 	for (i = 0; i < bp->nr_vnics; i++)
10008 		bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false);
10009 }
10010 
10011 static void bnxt_clear_vnic(struct bnxt *bp)
10012 {
10013 	if (!bp->vnic_info)
10014 		return;
10015 
10016 	bnxt_hwrm_clear_vnic_filter(bp);
10017 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
10018 		/* clear all RSS setting before free vnic ctx */
10019 		bnxt_hwrm_clear_vnic_rss(bp);
10020 		bnxt_hwrm_vnic_ctx_free(bp);
10021 	}
10022 	/* before free the vnic, undo the vnic tpa settings */
10023 	if (bp->flags & BNXT_FLAG_TPA)
10024 		bnxt_set_tpa(bp, false);
10025 	bnxt_hwrm_vnic_free(bp);
10026 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10027 		bnxt_hwrm_vnic_ctx_free(bp);
10028 }
10029 
10030 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
10031 				    bool irq_re_init)
10032 {
10033 	bnxt_clear_vnic(bp);
10034 	bnxt_hwrm_ring_free(bp, close_path);
10035 	bnxt_hwrm_ring_grp_free(bp);
10036 	if (irq_re_init) {
10037 		bnxt_hwrm_stat_ctx_free(bp);
10038 		bnxt_hwrm_free_tunnel_ports(bp);
10039 	}
10040 }
10041 
10042 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
10043 {
10044 	struct hwrm_func_cfg_input *req;
10045 	u8 evb_mode;
10046 	int rc;
10047 
10048 	if (br_mode == BRIDGE_MODE_VEB)
10049 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
10050 	else if (br_mode == BRIDGE_MODE_VEPA)
10051 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
10052 	else
10053 		return -EINVAL;
10054 
10055 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10056 	if (rc)
10057 		return rc;
10058 
10059 	req->fid = cpu_to_le16(0xffff);
10060 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
10061 	req->evb_mode = evb_mode;
10062 	return hwrm_req_send(bp, req);
10063 }
10064 
10065 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
10066 {
10067 	struct hwrm_func_cfg_input *req;
10068 	int rc;
10069 
10070 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
10071 		return 0;
10072 
10073 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10074 	if (rc)
10075 		return rc;
10076 
10077 	req->fid = cpu_to_le16(0xffff);
10078 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
10079 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
10080 	if (size == 128)
10081 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
10082 
10083 	return hwrm_req_send(bp, req);
10084 }
10085 
10086 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10087 {
10088 	int rc;
10089 
10090 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
10091 		goto skip_rss_ctx;
10092 
10093 	/* allocate context for vnic */
10094 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0);
10095 	if (rc) {
10096 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10097 			   vnic->vnic_id, rc);
10098 		goto vnic_setup_err;
10099 	}
10100 	bp->rsscos_nr_ctxs++;
10101 
10102 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10103 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1);
10104 		if (rc) {
10105 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
10106 				   vnic->vnic_id, rc);
10107 			goto vnic_setup_err;
10108 		}
10109 		bp->rsscos_nr_ctxs++;
10110 	}
10111 
10112 skip_rss_ctx:
10113 	/* configure default vnic, ring grp */
10114 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10115 	if (rc) {
10116 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10117 			   vnic->vnic_id, rc);
10118 		goto vnic_setup_err;
10119 	}
10120 
10121 	/* Enable RSS hashing on vnic */
10122 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true);
10123 	if (rc) {
10124 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
10125 			   vnic->vnic_id, rc);
10126 		goto vnic_setup_err;
10127 	}
10128 
10129 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10130 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10131 		if (rc) {
10132 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10133 				   vnic->vnic_id, rc);
10134 		}
10135 	}
10136 
10137 vnic_setup_err:
10138 	return rc;
10139 }
10140 
10141 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic,
10142 			  u8 valid)
10143 {
10144 	struct hwrm_vnic_update_input *req;
10145 	int rc;
10146 
10147 	rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE);
10148 	if (rc)
10149 		return rc;
10150 
10151 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
10152 
10153 	if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID)
10154 		req->mru = cpu_to_le16(vnic->mru);
10155 
10156 	req->enables = cpu_to_le32(valid);
10157 
10158 	return hwrm_req_send(bp, req);
10159 }
10160 
10161 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10162 {
10163 	int rc;
10164 
10165 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true);
10166 	if (rc) {
10167 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
10168 			   vnic->vnic_id, rc);
10169 		return rc;
10170 	}
10171 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10172 	if (rc)
10173 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10174 			   vnic->vnic_id, rc);
10175 	return rc;
10176 }
10177 
10178 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10179 {
10180 	int rc, i, nr_ctxs;
10181 
10182 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
10183 	for (i = 0; i < nr_ctxs; i++) {
10184 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i);
10185 		if (rc) {
10186 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
10187 				   vnic->vnic_id, i, rc);
10188 			break;
10189 		}
10190 		bp->rsscos_nr_ctxs++;
10191 	}
10192 	if (i < nr_ctxs)
10193 		return -ENOMEM;
10194 
10195 	rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic);
10196 	if (rc)
10197 		return rc;
10198 
10199 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10200 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10201 		if (rc) {
10202 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10203 				   vnic->vnic_id, rc);
10204 		}
10205 	}
10206 	return rc;
10207 }
10208 
10209 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10210 {
10211 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10212 		return __bnxt_setup_vnic_p5(bp, vnic);
10213 	else
10214 		return __bnxt_setup_vnic(bp, vnic);
10215 }
10216 
10217 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp,
10218 				     struct bnxt_vnic_info *vnic,
10219 				     u16 start_rx_ring_idx, int rx_rings)
10220 {
10221 	int rc;
10222 
10223 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings);
10224 	if (rc) {
10225 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10226 			   vnic->vnic_id, rc);
10227 		return rc;
10228 	}
10229 	return bnxt_setup_vnic(bp, vnic);
10230 }
10231 
10232 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
10233 {
10234 	struct bnxt_vnic_info *vnic;
10235 	int i, rc = 0;
10236 
10237 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
10238 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
10239 		return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings);
10240 	}
10241 
10242 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10243 		return 0;
10244 
10245 	for (i = 0; i < bp->rx_nr_rings; i++) {
10246 		u16 vnic_id = i + 1;
10247 		u16 ring_id = i;
10248 
10249 		if (vnic_id >= bp->nr_vnics)
10250 			break;
10251 
10252 		vnic = &bp->vnic_info[vnic_id];
10253 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
10254 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
10255 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
10256 		if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1))
10257 			break;
10258 	}
10259 	return rc;
10260 }
10261 
10262 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx,
10263 			  bool all)
10264 {
10265 	struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10266 	struct bnxt_filter_base *usr_fltr, *tmp;
10267 	struct bnxt_ntuple_filter *ntp_fltr;
10268 	int i;
10269 
10270 	if (netif_running(bp->dev)) {
10271 		bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic);
10272 		for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) {
10273 			if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID)
10274 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i);
10275 		}
10276 	}
10277 	if (!all)
10278 		return;
10279 
10280 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
10281 		if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) &&
10282 		    usr_fltr->fw_vnic_id == rss_ctx->index) {
10283 			ntp_fltr = container_of(usr_fltr,
10284 						struct bnxt_ntuple_filter,
10285 						base);
10286 			bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr);
10287 			bnxt_del_ntp_filter(bp, ntp_fltr);
10288 			bnxt_del_one_usr_fltr(bp, usr_fltr);
10289 		}
10290 	}
10291 
10292 	if (vnic->rss_table)
10293 		dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size,
10294 				  vnic->rss_table,
10295 				  vnic->rss_table_dma_addr);
10296 	bp->num_rss_ctx--;
10297 }
10298 
10299 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp)
10300 {
10301 	bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA);
10302 	struct ethtool_rxfh_context *ctx;
10303 	unsigned long context;
10304 
10305 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10306 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10307 		struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10308 
10309 		if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) ||
10310 		    bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) ||
10311 		    __bnxt_setup_vnic_p5(bp, vnic)) {
10312 			netdev_err(bp->dev, "Failed to restore RSS ctx %d\n",
10313 				   rss_ctx->index);
10314 			bnxt_del_one_rss_ctx(bp, rss_ctx, true);
10315 			ethtool_rxfh_context_lost(bp->dev, rss_ctx->index);
10316 		}
10317 	}
10318 }
10319 
10320 static void bnxt_clear_rss_ctxs(struct bnxt *bp)
10321 {
10322 	struct ethtool_rxfh_context *ctx;
10323 	unsigned long context;
10324 
10325 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10326 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10327 
10328 		bnxt_del_one_rss_ctx(bp, rss_ctx, false);
10329 	}
10330 }
10331 
10332 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
10333 static bool bnxt_promisc_ok(struct bnxt *bp)
10334 {
10335 #ifdef CONFIG_BNXT_SRIOV
10336 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
10337 		return false;
10338 #endif
10339 	return true;
10340 }
10341 
10342 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
10343 {
10344 	struct bnxt_vnic_info *vnic = &bp->vnic_info[1];
10345 	unsigned int rc = 0;
10346 
10347 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1);
10348 	if (rc) {
10349 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10350 			   rc);
10351 		return rc;
10352 	}
10353 
10354 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10355 	if (rc) {
10356 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10357 			   rc);
10358 		return rc;
10359 	}
10360 	return rc;
10361 }
10362 
10363 static int bnxt_cfg_rx_mode(struct bnxt *);
10364 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
10365 
10366 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
10367 {
10368 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
10369 	int rc = 0;
10370 	unsigned int rx_nr_rings = bp->rx_nr_rings;
10371 
10372 	if (irq_re_init) {
10373 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
10374 		if (rc) {
10375 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
10376 				   rc);
10377 			goto err_out;
10378 		}
10379 	}
10380 
10381 	rc = bnxt_hwrm_ring_alloc(bp);
10382 	if (rc) {
10383 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
10384 		goto err_out;
10385 	}
10386 
10387 	rc = bnxt_hwrm_ring_grp_alloc(bp);
10388 	if (rc) {
10389 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
10390 		goto err_out;
10391 	}
10392 
10393 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10394 		rx_nr_rings--;
10395 
10396 	/* default vnic 0 */
10397 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings);
10398 	if (rc) {
10399 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
10400 		goto err_out;
10401 	}
10402 
10403 	if (BNXT_VF(bp))
10404 		bnxt_hwrm_func_qcfg(bp);
10405 
10406 	rc = bnxt_setup_vnic(bp, vnic);
10407 	if (rc)
10408 		goto err_out;
10409 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
10410 		bnxt_hwrm_update_rss_hash_cfg(bp);
10411 
10412 	if (bp->flags & BNXT_FLAG_RFS) {
10413 		rc = bnxt_alloc_rfs_vnics(bp);
10414 		if (rc)
10415 			goto err_out;
10416 	}
10417 
10418 	if (bp->flags & BNXT_FLAG_TPA) {
10419 		rc = bnxt_set_tpa(bp, true);
10420 		if (rc)
10421 			goto err_out;
10422 	}
10423 
10424 	if (BNXT_VF(bp))
10425 		bnxt_update_vf_mac(bp);
10426 
10427 	/* Filter for default vnic 0 */
10428 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
10429 	if (rc) {
10430 		if (BNXT_VF(bp) && rc == -ENODEV)
10431 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
10432 		else
10433 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10434 		goto err_out;
10435 	}
10436 	vnic->uc_filter_count = 1;
10437 
10438 	vnic->rx_mask = 0;
10439 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
10440 		goto skip_rx_mask;
10441 
10442 	if (bp->dev->flags & IFF_BROADCAST)
10443 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10444 
10445 	if (bp->dev->flags & IFF_PROMISC)
10446 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10447 
10448 	if (bp->dev->flags & IFF_ALLMULTI) {
10449 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10450 		vnic->mc_list_count = 0;
10451 	} else if (bp->dev->flags & IFF_MULTICAST) {
10452 		u32 mask = 0;
10453 
10454 		bnxt_mc_list_updated(bp, &mask);
10455 		vnic->rx_mask |= mask;
10456 	}
10457 
10458 	rc = bnxt_cfg_rx_mode(bp);
10459 	if (rc)
10460 		goto err_out;
10461 
10462 skip_rx_mask:
10463 	rc = bnxt_hwrm_set_coal(bp);
10464 	if (rc)
10465 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
10466 				rc);
10467 
10468 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10469 		rc = bnxt_setup_nitroa0_vnic(bp);
10470 		if (rc)
10471 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
10472 				   rc);
10473 	}
10474 
10475 	if (BNXT_VF(bp)) {
10476 		bnxt_hwrm_func_qcfg(bp);
10477 		netdev_update_features(bp->dev);
10478 	}
10479 
10480 	return 0;
10481 
10482 err_out:
10483 	bnxt_hwrm_resource_free(bp, 0, true);
10484 
10485 	return rc;
10486 }
10487 
10488 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
10489 {
10490 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
10491 	return 0;
10492 }
10493 
10494 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
10495 {
10496 	bnxt_init_cp_rings(bp);
10497 	bnxt_init_rx_rings(bp);
10498 	bnxt_init_tx_rings(bp);
10499 	bnxt_init_ring_grps(bp, irq_re_init);
10500 	bnxt_init_vnics(bp);
10501 
10502 	return bnxt_init_chip(bp, irq_re_init);
10503 }
10504 
10505 static int bnxt_set_real_num_queues(struct bnxt *bp)
10506 {
10507 	int rc;
10508 	struct net_device *dev = bp->dev;
10509 
10510 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
10511 					  bp->tx_nr_rings_xdp);
10512 	if (rc)
10513 		return rc;
10514 
10515 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
10516 	if (rc)
10517 		return rc;
10518 
10519 #ifdef CONFIG_RFS_ACCEL
10520 	if (bp->flags & BNXT_FLAG_RFS)
10521 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
10522 #endif
10523 
10524 	return rc;
10525 }
10526 
10527 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10528 			     bool shared)
10529 {
10530 	int _rx = *rx, _tx = *tx;
10531 
10532 	if (shared) {
10533 		*rx = min_t(int, _rx, max);
10534 		*tx = min_t(int, _tx, max);
10535 	} else {
10536 		if (max < 2)
10537 			return -ENOMEM;
10538 
10539 		while (_rx + _tx > max) {
10540 			if (_rx > _tx && _rx > 1)
10541 				_rx--;
10542 			else if (_tx > 1)
10543 				_tx--;
10544 		}
10545 		*rx = _rx;
10546 		*tx = _tx;
10547 	}
10548 	return 0;
10549 }
10550 
10551 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
10552 {
10553 	return (tx - tx_xdp) / tx_sets + tx_xdp;
10554 }
10555 
10556 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
10557 {
10558 	int tcs = bp->num_tc;
10559 
10560 	if (!tcs)
10561 		tcs = 1;
10562 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
10563 }
10564 
10565 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
10566 {
10567 	int tcs = bp->num_tc;
10568 
10569 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
10570 	       bp->tx_nr_rings_xdp;
10571 }
10572 
10573 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10574 			   bool sh)
10575 {
10576 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
10577 
10578 	if (tx_cp != *tx) {
10579 		int tx_saved = tx_cp, rc;
10580 
10581 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
10582 		if (rc)
10583 			return rc;
10584 		if (tx_cp != tx_saved)
10585 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
10586 		return 0;
10587 	}
10588 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
10589 }
10590 
10591 static void bnxt_setup_msix(struct bnxt *bp)
10592 {
10593 	const int len = sizeof(bp->irq_tbl[0].name);
10594 	struct net_device *dev = bp->dev;
10595 	int tcs, i;
10596 
10597 	tcs = bp->num_tc;
10598 	if (tcs) {
10599 		int i, off, count;
10600 
10601 		for (i = 0; i < tcs; i++) {
10602 			count = bp->tx_nr_rings_per_tc;
10603 			off = BNXT_TC_TO_RING_BASE(bp, i);
10604 			netdev_set_tc_queue(dev, i, count, off);
10605 		}
10606 	}
10607 
10608 	for (i = 0; i < bp->cp_nr_rings; i++) {
10609 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10610 		char *attr;
10611 
10612 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10613 			attr = "TxRx";
10614 		else if (i < bp->rx_nr_rings)
10615 			attr = "rx";
10616 		else
10617 			attr = "tx";
10618 
10619 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10620 			 attr, i);
10621 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10622 	}
10623 }
10624 
10625 static int bnxt_init_int_mode(struct bnxt *bp);
10626 
10627 static int bnxt_change_msix(struct bnxt *bp, int total)
10628 {
10629 	struct msi_map map;
10630 	int i;
10631 
10632 	/* add MSIX to the end if needed */
10633 	for (i = bp->total_irqs; i < total; i++) {
10634 		map = pci_msix_alloc_irq_at(bp->pdev, i, NULL);
10635 		if (map.index < 0)
10636 			return bp->total_irqs;
10637 		bp->irq_tbl[i].vector = map.virq;
10638 		bp->total_irqs++;
10639 	}
10640 
10641 	/* trim MSIX from the end if needed */
10642 	for (i = bp->total_irqs; i > total; i--) {
10643 		map.index = i - 1;
10644 		map.virq = bp->irq_tbl[i - 1].vector;
10645 		pci_msix_free_irq(bp->pdev, map);
10646 		bp->total_irqs--;
10647 	}
10648 	return bp->total_irqs;
10649 }
10650 
10651 static int bnxt_setup_int_mode(struct bnxt *bp)
10652 {
10653 	int rc;
10654 
10655 	if (!bp->irq_tbl) {
10656 		rc = bnxt_init_int_mode(bp);
10657 		if (rc || !bp->irq_tbl)
10658 			return rc ?: -ENODEV;
10659 	}
10660 
10661 	bnxt_setup_msix(bp);
10662 
10663 	rc = bnxt_set_real_num_queues(bp);
10664 	return rc;
10665 }
10666 
10667 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10668 {
10669 	return bp->hw_resc.max_rsscos_ctxs;
10670 }
10671 
10672 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10673 {
10674 	return bp->hw_resc.max_vnics;
10675 }
10676 
10677 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10678 {
10679 	return bp->hw_resc.max_stat_ctxs;
10680 }
10681 
10682 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10683 {
10684 	return bp->hw_resc.max_cp_rings;
10685 }
10686 
10687 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10688 {
10689 	unsigned int cp = bp->hw_resc.max_cp_rings;
10690 
10691 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10692 		cp -= bnxt_get_ulp_msix_num(bp);
10693 
10694 	return cp;
10695 }
10696 
10697 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10698 {
10699 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10700 
10701 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10702 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10703 
10704 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10705 }
10706 
10707 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10708 {
10709 	bp->hw_resc.max_irqs = max_irqs;
10710 }
10711 
10712 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10713 {
10714 	unsigned int cp;
10715 
10716 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10717 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10718 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10719 	else
10720 		return cp - bp->cp_nr_rings;
10721 }
10722 
10723 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10724 {
10725 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10726 }
10727 
10728 static int bnxt_get_avail_msix(struct bnxt *bp, int num)
10729 {
10730 	int max_irq = bnxt_get_max_func_irqs(bp);
10731 	int total_req = bp->cp_nr_rings + num;
10732 
10733 	if (max_irq < total_req) {
10734 		num = max_irq - bp->cp_nr_rings;
10735 		if (num <= 0)
10736 			return 0;
10737 	}
10738 	return num;
10739 }
10740 
10741 static int bnxt_get_num_msix(struct bnxt *bp)
10742 {
10743 	if (!BNXT_NEW_RM(bp))
10744 		return bnxt_get_max_func_irqs(bp);
10745 
10746 	return bnxt_nq_rings_in_use(bp);
10747 }
10748 
10749 static int bnxt_init_int_mode(struct bnxt *bp)
10750 {
10751 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size;
10752 
10753 	total_vecs = bnxt_get_num_msix(bp);
10754 	max = bnxt_get_max_func_irqs(bp);
10755 	if (total_vecs > max)
10756 		total_vecs = max;
10757 
10758 	if (!total_vecs)
10759 		return 0;
10760 
10761 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10762 		min = 2;
10763 
10764 	total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs,
10765 					   PCI_IRQ_MSIX);
10766 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10767 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10768 		rc = -ENODEV;
10769 		goto msix_setup_exit;
10770 	}
10771 
10772 	tbl_size = total_vecs;
10773 	if (pci_msix_can_alloc_dyn(bp->pdev))
10774 		tbl_size = max;
10775 	bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL);
10776 	if (bp->irq_tbl) {
10777 		for (i = 0; i < total_vecs; i++)
10778 			bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i);
10779 
10780 		bp->total_irqs = total_vecs;
10781 		/* Trim rings based upon num of vectors allocated */
10782 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10783 				     total_vecs - ulp_msix, min == 1);
10784 		if (rc)
10785 			goto msix_setup_exit;
10786 
10787 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10788 		bp->cp_nr_rings = (min == 1) ?
10789 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10790 				  tx_cp + bp->rx_nr_rings;
10791 
10792 	} else {
10793 		rc = -ENOMEM;
10794 		goto msix_setup_exit;
10795 	}
10796 	return 0;
10797 
10798 msix_setup_exit:
10799 	netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc);
10800 	kfree(bp->irq_tbl);
10801 	bp->irq_tbl = NULL;
10802 	pci_free_irq_vectors(bp->pdev);
10803 	return rc;
10804 }
10805 
10806 static void bnxt_clear_int_mode(struct bnxt *bp)
10807 {
10808 	pci_free_irq_vectors(bp->pdev);
10809 
10810 	kfree(bp->irq_tbl);
10811 	bp->irq_tbl = NULL;
10812 }
10813 
10814 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10815 {
10816 	bool irq_cleared = false;
10817 	bool irq_change = false;
10818 	int tcs = bp->num_tc;
10819 	int irqs_required;
10820 	int rc;
10821 
10822 	if (!bnxt_need_reserve_rings(bp))
10823 		return 0;
10824 
10825 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
10826 		int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
10827 
10828 		if (ulp_msix > bp->ulp_num_msix_want)
10829 			ulp_msix = bp->ulp_num_msix_want;
10830 		irqs_required = ulp_msix + bp->cp_nr_rings;
10831 	} else {
10832 		irqs_required = bnxt_get_num_msix(bp);
10833 	}
10834 
10835 	if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) {
10836 		irq_change = true;
10837 		if (!pci_msix_can_alloc_dyn(bp->pdev)) {
10838 			bnxt_ulp_irq_stop(bp);
10839 			bnxt_clear_int_mode(bp);
10840 			irq_cleared = true;
10841 		}
10842 	}
10843 	rc = __bnxt_reserve_rings(bp);
10844 	if (irq_cleared) {
10845 		if (!rc)
10846 			rc = bnxt_init_int_mode(bp);
10847 		bnxt_ulp_irq_restart(bp, rc);
10848 	} else if (irq_change && !rc) {
10849 		if (bnxt_change_msix(bp, irqs_required) != irqs_required)
10850 			rc = -ENOSPC;
10851 	}
10852 	if (rc) {
10853 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10854 		return rc;
10855 	}
10856 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10857 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10858 		netdev_err(bp->dev, "tx ring reservation failure\n");
10859 		netdev_reset_tc(bp->dev);
10860 		bp->num_tc = 0;
10861 		if (bp->tx_nr_rings_xdp)
10862 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10863 		else
10864 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10865 		return -ENOMEM;
10866 	}
10867 	return 0;
10868 }
10869 
10870 static void bnxt_free_irq(struct bnxt *bp)
10871 {
10872 	struct bnxt_irq *irq;
10873 	int i;
10874 
10875 #ifdef CONFIG_RFS_ACCEL
10876 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10877 	bp->dev->rx_cpu_rmap = NULL;
10878 #endif
10879 	if (!bp->irq_tbl || !bp->bnapi)
10880 		return;
10881 
10882 	for (i = 0; i < bp->cp_nr_rings; i++) {
10883 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10884 
10885 		irq = &bp->irq_tbl[map_idx];
10886 		if (irq->requested) {
10887 			if (irq->have_cpumask) {
10888 				irq_set_affinity_hint(irq->vector, NULL);
10889 				free_cpumask_var(irq->cpu_mask);
10890 				irq->have_cpumask = 0;
10891 			}
10892 			free_irq(irq->vector, bp->bnapi[i]);
10893 		}
10894 
10895 		irq->requested = 0;
10896 	}
10897 }
10898 
10899 static int bnxt_request_irq(struct bnxt *bp)
10900 {
10901 	int i, j, rc = 0;
10902 	unsigned long flags = 0;
10903 #ifdef CONFIG_RFS_ACCEL
10904 	struct cpu_rmap *rmap;
10905 #endif
10906 
10907 	rc = bnxt_setup_int_mode(bp);
10908 	if (rc) {
10909 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10910 			   rc);
10911 		return rc;
10912 	}
10913 #ifdef CONFIG_RFS_ACCEL
10914 	rmap = bp->dev->rx_cpu_rmap;
10915 #endif
10916 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10917 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10918 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10919 
10920 #ifdef CONFIG_RFS_ACCEL
10921 		if (rmap && bp->bnapi[i]->rx_ring) {
10922 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10923 			if (rc)
10924 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10925 					    j);
10926 			j++;
10927 		}
10928 #endif
10929 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10930 				 bp->bnapi[i]);
10931 		if (rc)
10932 			break;
10933 
10934 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10935 		irq->requested = 1;
10936 
10937 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10938 			int numa_node = dev_to_node(&bp->pdev->dev);
10939 
10940 			irq->have_cpumask = 1;
10941 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10942 					irq->cpu_mask);
10943 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10944 			if (rc) {
10945 				netdev_warn(bp->dev,
10946 					    "Set affinity failed, IRQ = %d\n",
10947 					    irq->vector);
10948 				break;
10949 			}
10950 		}
10951 	}
10952 	return rc;
10953 }
10954 
10955 static void bnxt_del_napi(struct bnxt *bp)
10956 {
10957 	int i;
10958 
10959 	if (!bp->bnapi)
10960 		return;
10961 
10962 	for (i = 0; i < bp->rx_nr_rings; i++)
10963 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10964 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10965 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10966 
10967 	for (i = 0; i < bp->cp_nr_rings; i++) {
10968 		struct bnxt_napi *bnapi = bp->bnapi[i];
10969 
10970 		__netif_napi_del(&bnapi->napi);
10971 	}
10972 	/* We called __netif_napi_del(), we need
10973 	 * to respect an RCU grace period before freeing napi structures.
10974 	 */
10975 	synchronize_net();
10976 }
10977 
10978 static void bnxt_init_napi(struct bnxt *bp)
10979 {
10980 	int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10981 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10982 	struct bnxt_napi *bnapi;
10983 	int i;
10984 
10985 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10986 		poll_fn = bnxt_poll_p5;
10987 	else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10988 		cp_nr_rings--;
10989 	for (i = 0; i < cp_nr_rings; i++) {
10990 		bnapi = bp->bnapi[i];
10991 		netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10992 	}
10993 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10994 		bnapi = bp->bnapi[cp_nr_rings];
10995 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll_nitroa0);
10996 	}
10997 }
10998 
10999 static void bnxt_disable_napi(struct bnxt *bp)
11000 {
11001 	int i;
11002 
11003 	if (!bp->bnapi ||
11004 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
11005 		return;
11006 
11007 	for (i = 0; i < bp->cp_nr_rings; i++) {
11008 		struct bnxt_napi *bnapi = bp->bnapi[i];
11009 		struct bnxt_cp_ring_info *cpr;
11010 
11011 		cpr = &bnapi->cp_ring;
11012 		if (bnapi->tx_fault)
11013 			cpr->sw_stats->tx.tx_resets++;
11014 		if (bnapi->in_reset)
11015 			cpr->sw_stats->rx.rx_resets++;
11016 		napi_disable(&bnapi->napi);
11017 		if (bnapi->rx_ring)
11018 			cancel_work_sync(&cpr->dim.work);
11019 	}
11020 }
11021 
11022 static void bnxt_enable_napi(struct bnxt *bp)
11023 {
11024 	int i;
11025 
11026 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
11027 	for (i = 0; i < bp->cp_nr_rings; i++) {
11028 		struct bnxt_napi *bnapi = bp->bnapi[i];
11029 		struct bnxt_cp_ring_info *cpr;
11030 
11031 		bnapi->tx_fault = 0;
11032 
11033 		cpr = &bnapi->cp_ring;
11034 		bnapi->in_reset = false;
11035 
11036 		if (bnapi->rx_ring) {
11037 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
11038 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
11039 		}
11040 		napi_enable(&bnapi->napi);
11041 	}
11042 }
11043 
11044 void bnxt_tx_disable(struct bnxt *bp)
11045 {
11046 	int i;
11047 	struct bnxt_tx_ring_info *txr;
11048 
11049 	if (bp->tx_ring) {
11050 		for (i = 0; i < bp->tx_nr_rings; i++) {
11051 			txr = &bp->tx_ring[i];
11052 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
11053 		}
11054 	}
11055 	/* Make sure napi polls see @dev_state change */
11056 	synchronize_net();
11057 	/* Drop carrier first to prevent TX timeout */
11058 	netif_carrier_off(bp->dev);
11059 	/* Stop all TX queues */
11060 	netif_tx_disable(bp->dev);
11061 }
11062 
11063 void bnxt_tx_enable(struct bnxt *bp)
11064 {
11065 	int i;
11066 	struct bnxt_tx_ring_info *txr;
11067 
11068 	for (i = 0; i < bp->tx_nr_rings; i++) {
11069 		txr = &bp->tx_ring[i];
11070 		WRITE_ONCE(txr->dev_state, 0);
11071 	}
11072 	/* Make sure napi polls see @dev_state change */
11073 	synchronize_net();
11074 	netif_tx_wake_all_queues(bp->dev);
11075 	if (BNXT_LINK_IS_UP(bp))
11076 		netif_carrier_on(bp->dev);
11077 }
11078 
11079 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
11080 {
11081 	u8 active_fec = link_info->active_fec_sig_mode &
11082 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
11083 
11084 	switch (active_fec) {
11085 	default:
11086 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
11087 		return "None";
11088 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
11089 		return "Clause 74 BaseR";
11090 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
11091 		return "Clause 91 RS(528,514)";
11092 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
11093 		return "Clause 91 RS544_1XN";
11094 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
11095 		return "Clause 91 RS(544,514)";
11096 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
11097 		return "Clause 91 RS272_1XN";
11098 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
11099 		return "Clause 91 RS(272,257)";
11100 	}
11101 }
11102 
11103 void bnxt_report_link(struct bnxt *bp)
11104 {
11105 	if (BNXT_LINK_IS_UP(bp)) {
11106 		const char *signal = "";
11107 		const char *flow_ctrl;
11108 		const char *duplex;
11109 		u32 speed;
11110 		u16 fec;
11111 
11112 		netif_carrier_on(bp->dev);
11113 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
11114 		if (speed == SPEED_UNKNOWN) {
11115 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
11116 			return;
11117 		}
11118 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
11119 			duplex = "full";
11120 		else
11121 			duplex = "half";
11122 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
11123 			flow_ctrl = "ON - receive & transmit";
11124 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
11125 			flow_ctrl = "ON - transmit";
11126 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
11127 			flow_ctrl = "ON - receive";
11128 		else
11129 			flow_ctrl = "none";
11130 		if (bp->link_info.phy_qcfg_resp.option_flags &
11131 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
11132 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
11133 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
11134 			switch (sig_mode) {
11135 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
11136 				signal = "(NRZ) ";
11137 				break;
11138 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
11139 				signal = "(PAM4 56Gbps) ";
11140 				break;
11141 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
11142 				signal = "(PAM4 112Gbps) ";
11143 				break;
11144 			default:
11145 				break;
11146 			}
11147 		}
11148 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
11149 			    speed, signal, duplex, flow_ctrl);
11150 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
11151 			netdev_info(bp->dev, "EEE is %s\n",
11152 				    bp->eee.eee_active ? "active" :
11153 							 "not active");
11154 		fec = bp->link_info.fec_cfg;
11155 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
11156 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
11157 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
11158 				    bnxt_report_fec(&bp->link_info));
11159 	} else {
11160 		netif_carrier_off(bp->dev);
11161 		netdev_err(bp->dev, "NIC Link is Down\n");
11162 	}
11163 }
11164 
11165 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
11166 {
11167 	if (!resp->supported_speeds_auto_mode &&
11168 	    !resp->supported_speeds_force_mode &&
11169 	    !resp->supported_pam4_speeds_auto_mode &&
11170 	    !resp->supported_pam4_speeds_force_mode &&
11171 	    !resp->supported_speeds2_auto_mode &&
11172 	    !resp->supported_speeds2_force_mode)
11173 		return true;
11174 	return false;
11175 }
11176 
11177 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
11178 {
11179 	struct bnxt_link_info *link_info = &bp->link_info;
11180 	struct hwrm_port_phy_qcaps_output *resp;
11181 	struct hwrm_port_phy_qcaps_input *req;
11182 	int rc = 0;
11183 
11184 	if (bp->hwrm_spec_code < 0x10201)
11185 		return 0;
11186 
11187 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
11188 	if (rc)
11189 		return rc;
11190 
11191 	resp = hwrm_req_hold(bp, req);
11192 	rc = hwrm_req_send(bp, req);
11193 	if (rc)
11194 		goto hwrm_phy_qcaps_exit;
11195 
11196 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
11197 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
11198 		struct ethtool_keee *eee = &bp->eee;
11199 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
11200 
11201 		_bnxt_fw_to_linkmode(eee->supported, fw_speeds);
11202 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
11203 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
11204 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
11205 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
11206 	}
11207 
11208 	if (bp->hwrm_spec_code >= 0x10a01) {
11209 		if (bnxt_phy_qcaps_no_speed(resp)) {
11210 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
11211 			netdev_warn(bp->dev, "Ethernet link disabled\n");
11212 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
11213 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
11214 			netdev_info(bp->dev, "Ethernet link enabled\n");
11215 			/* Phy re-enabled, reprobe the speeds */
11216 			link_info->support_auto_speeds = 0;
11217 			link_info->support_pam4_auto_speeds = 0;
11218 			link_info->support_auto_speeds2 = 0;
11219 		}
11220 	}
11221 	if (resp->supported_speeds_auto_mode)
11222 		link_info->support_auto_speeds =
11223 			le16_to_cpu(resp->supported_speeds_auto_mode);
11224 	if (resp->supported_pam4_speeds_auto_mode)
11225 		link_info->support_pam4_auto_speeds =
11226 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
11227 	if (resp->supported_speeds2_auto_mode)
11228 		link_info->support_auto_speeds2 =
11229 			le16_to_cpu(resp->supported_speeds2_auto_mode);
11230 
11231 	bp->port_count = resp->port_cnt;
11232 
11233 hwrm_phy_qcaps_exit:
11234 	hwrm_req_drop(bp, req);
11235 	return rc;
11236 }
11237 
11238 static bool bnxt_support_dropped(u16 advertising, u16 supported)
11239 {
11240 	u16 diff = advertising ^ supported;
11241 
11242 	return ((supported | diff) != supported);
11243 }
11244 
11245 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
11246 {
11247 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
11248 
11249 	/* Check if any advertised speeds are no longer supported. The caller
11250 	 * holds the link_lock mutex, so we can modify link_info settings.
11251 	 */
11252 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11253 		if (bnxt_support_dropped(link_info->advertising,
11254 					 link_info->support_auto_speeds2)) {
11255 			link_info->advertising = link_info->support_auto_speeds2;
11256 			return true;
11257 		}
11258 		return false;
11259 	}
11260 	if (bnxt_support_dropped(link_info->advertising,
11261 				 link_info->support_auto_speeds)) {
11262 		link_info->advertising = link_info->support_auto_speeds;
11263 		return true;
11264 	}
11265 	if (bnxt_support_dropped(link_info->advertising_pam4,
11266 				 link_info->support_pam4_auto_speeds)) {
11267 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
11268 		return true;
11269 	}
11270 	return false;
11271 }
11272 
11273 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
11274 {
11275 	struct bnxt_link_info *link_info = &bp->link_info;
11276 	struct hwrm_port_phy_qcfg_output *resp;
11277 	struct hwrm_port_phy_qcfg_input *req;
11278 	u8 link_state = link_info->link_state;
11279 	bool support_changed;
11280 	int rc;
11281 
11282 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
11283 	if (rc)
11284 		return rc;
11285 
11286 	resp = hwrm_req_hold(bp, req);
11287 	rc = hwrm_req_send(bp, req);
11288 	if (rc) {
11289 		hwrm_req_drop(bp, req);
11290 		if (BNXT_VF(bp) && rc == -ENODEV) {
11291 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
11292 			rc = 0;
11293 		}
11294 		return rc;
11295 	}
11296 
11297 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
11298 	link_info->phy_link_status = resp->link;
11299 	link_info->duplex = resp->duplex_cfg;
11300 	if (bp->hwrm_spec_code >= 0x10800)
11301 		link_info->duplex = resp->duplex_state;
11302 	link_info->pause = resp->pause;
11303 	link_info->auto_mode = resp->auto_mode;
11304 	link_info->auto_pause_setting = resp->auto_pause;
11305 	link_info->lp_pause = resp->link_partner_adv_pause;
11306 	link_info->force_pause_setting = resp->force_pause;
11307 	link_info->duplex_setting = resp->duplex_cfg;
11308 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
11309 		link_info->link_speed = le16_to_cpu(resp->link_speed);
11310 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
11311 			link_info->active_lanes = resp->active_lanes;
11312 	} else {
11313 		link_info->link_speed = 0;
11314 		link_info->active_lanes = 0;
11315 	}
11316 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
11317 	link_info->force_pam4_link_speed =
11318 		le16_to_cpu(resp->force_pam4_link_speed);
11319 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
11320 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
11321 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
11322 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
11323 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
11324 	link_info->auto_pam4_link_speeds =
11325 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
11326 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
11327 	link_info->lp_auto_link_speeds =
11328 		le16_to_cpu(resp->link_partner_adv_speeds);
11329 	link_info->lp_auto_pam4_link_speeds =
11330 		resp->link_partner_pam4_adv_speeds;
11331 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
11332 	link_info->phy_ver[0] = resp->phy_maj;
11333 	link_info->phy_ver[1] = resp->phy_min;
11334 	link_info->phy_ver[2] = resp->phy_bld;
11335 	link_info->media_type = resp->media_type;
11336 	link_info->phy_type = resp->phy_type;
11337 	link_info->transceiver = resp->xcvr_pkg_type;
11338 	link_info->phy_addr = resp->eee_config_phy_addr &
11339 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
11340 	link_info->module_status = resp->module_status;
11341 
11342 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
11343 		struct ethtool_keee *eee = &bp->eee;
11344 		u16 fw_speeds;
11345 
11346 		eee->eee_active = 0;
11347 		if (resp->eee_config_phy_addr &
11348 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
11349 			eee->eee_active = 1;
11350 			fw_speeds = le16_to_cpu(
11351 				resp->link_partner_adv_eee_link_speed_mask);
11352 			_bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds);
11353 		}
11354 
11355 		/* Pull initial EEE config */
11356 		if (!chng_link_state) {
11357 			if (resp->eee_config_phy_addr &
11358 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
11359 				eee->eee_enabled = 1;
11360 
11361 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
11362 			_bnxt_fw_to_linkmode(eee->advertised, fw_speeds);
11363 
11364 			if (resp->eee_config_phy_addr &
11365 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
11366 				__le32 tmr;
11367 
11368 				eee->tx_lpi_enabled = 1;
11369 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
11370 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
11371 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
11372 			}
11373 		}
11374 	}
11375 
11376 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
11377 	if (bp->hwrm_spec_code >= 0x10504) {
11378 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
11379 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
11380 	}
11381 	/* TODO: need to add more logic to report VF link */
11382 	if (chng_link_state) {
11383 		if (link_info->phy_link_status == BNXT_LINK_LINK)
11384 			link_info->link_state = BNXT_LINK_STATE_UP;
11385 		else
11386 			link_info->link_state = BNXT_LINK_STATE_DOWN;
11387 		if (link_state != link_info->link_state)
11388 			bnxt_report_link(bp);
11389 	} else {
11390 		/* always link down if not require to update link state */
11391 		link_info->link_state = BNXT_LINK_STATE_DOWN;
11392 	}
11393 	hwrm_req_drop(bp, req);
11394 
11395 	if (!BNXT_PHY_CFG_ABLE(bp))
11396 		return 0;
11397 
11398 	support_changed = bnxt_support_speed_dropped(link_info);
11399 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
11400 		bnxt_hwrm_set_link_setting(bp, true, false);
11401 	return 0;
11402 }
11403 
11404 static void bnxt_get_port_module_status(struct bnxt *bp)
11405 {
11406 	struct bnxt_link_info *link_info = &bp->link_info;
11407 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
11408 	u8 module_status;
11409 
11410 	if (bnxt_update_link(bp, true))
11411 		return;
11412 
11413 	module_status = link_info->module_status;
11414 	switch (module_status) {
11415 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
11416 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
11417 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
11418 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
11419 			    bp->pf.port_id);
11420 		if (bp->hwrm_spec_code >= 0x10201) {
11421 			netdev_warn(bp->dev, "Module part number %s\n",
11422 				    resp->phy_vendor_partnumber);
11423 		}
11424 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
11425 			netdev_warn(bp->dev, "TX is disabled\n");
11426 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
11427 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
11428 	}
11429 }
11430 
11431 static void
11432 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11433 {
11434 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
11435 		if (bp->hwrm_spec_code >= 0x10201)
11436 			req->auto_pause =
11437 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
11438 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11439 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
11440 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11441 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
11442 		req->enables |=
11443 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11444 	} else {
11445 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11446 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
11447 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11448 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
11449 		req->enables |=
11450 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
11451 		if (bp->hwrm_spec_code >= 0x10201) {
11452 			req->auto_pause = req->force_pause;
11453 			req->enables |= cpu_to_le32(
11454 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11455 		}
11456 	}
11457 }
11458 
11459 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11460 {
11461 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
11462 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
11463 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11464 			req->enables |=
11465 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
11466 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
11467 		} else if (bp->link_info.advertising) {
11468 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
11469 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
11470 		}
11471 		if (bp->link_info.advertising_pam4) {
11472 			req->enables |=
11473 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
11474 			req->auto_link_pam4_speed_mask =
11475 				cpu_to_le16(bp->link_info.advertising_pam4);
11476 		}
11477 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
11478 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
11479 	} else {
11480 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
11481 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11482 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
11483 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
11484 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
11485 				   (u32)bp->link_info.req_link_speed);
11486 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
11487 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11488 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
11489 		} else {
11490 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11491 		}
11492 	}
11493 
11494 	/* tell chimp that the setting takes effect immediately */
11495 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
11496 }
11497 
11498 int bnxt_hwrm_set_pause(struct bnxt *bp)
11499 {
11500 	struct hwrm_port_phy_cfg_input *req;
11501 	int rc;
11502 
11503 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11504 	if (rc)
11505 		return rc;
11506 
11507 	bnxt_hwrm_set_pause_common(bp, req);
11508 
11509 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
11510 	    bp->link_info.force_link_chng)
11511 		bnxt_hwrm_set_link_common(bp, req);
11512 
11513 	rc = hwrm_req_send(bp, req);
11514 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
11515 		/* since changing of pause setting doesn't trigger any link
11516 		 * change event, the driver needs to update the current pause
11517 		 * result upon successfully return of the phy_cfg command
11518 		 */
11519 		bp->link_info.pause =
11520 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
11521 		bp->link_info.auto_pause_setting = 0;
11522 		if (!bp->link_info.force_link_chng)
11523 			bnxt_report_link(bp);
11524 	}
11525 	bp->link_info.force_link_chng = false;
11526 	return rc;
11527 }
11528 
11529 static void bnxt_hwrm_set_eee(struct bnxt *bp,
11530 			      struct hwrm_port_phy_cfg_input *req)
11531 {
11532 	struct ethtool_keee *eee = &bp->eee;
11533 
11534 	if (eee->eee_enabled) {
11535 		u16 eee_speeds;
11536 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
11537 
11538 		if (eee->tx_lpi_enabled)
11539 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
11540 		else
11541 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
11542 
11543 		req->flags |= cpu_to_le32(flags);
11544 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
11545 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
11546 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
11547 	} else {
11548 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
11549 	}
11550 }
11551 
11552 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
11553 {
11554 	struct hwrm_port_phy_cfg_input *req;
11555 	int rc;
11556 
11557 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11558 	if (rc)
11559 		return rc;
11560 
11561 	if (set_pause)
11562 		bnxt_hwrm_set_pause_common(bp, req);
11563 
11564 	bnxt_hwrm_set_link_common(bp, req);
11565 
11566 	if (set_eee)
11567 		bnxt_hwrm_set_eee(bp, req);
11568 	return hwrm_req_send(bp, req);
11569 }
11570 
11571 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
11572 {
11573 	struct hwrm_port_phy_cfg_input *req;
11574 	int rc;
11575 
11576 	if (!BNXT_SINGLE_PF(bp))
11577 		return 0;
11578 
11579 	if (pci_num_vf(bp->pdev) &&
11580 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11581 		return 0;
11582 
11583 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11584 	if (rc)
11585 		return rc;
11586 
11587 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11588 	rc = hwrm_req_send(bp, req);
11589 	if (!rc) {
11590 		mutex_lock(&bp->link_lock);
11591 		/* Device is not obliged link down in certain scenarios, even
11592 		 * when forced. Setting the state unknown is consistent with
11593 		 * driver startup and will force link state to be reported
11594 		 * during subsequent open based on PORT_PHY_QCFG.
11595 		 */
11596 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11597 		mutex_unlock(&bp->link_lock);
11598 	}
11599 	return rc;
11600 }
11601 
11602 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11603 {
11604 #ifdef CONFIG_TEE_BNXT_FW
11605 	int rc = tee_bnxt_fw_load();
11606 
11607 	if (rc)
11608 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11609 
11610 	return rc;
11611 #else
11612 	netdev_err(bp->dev, "OP-TEE not supported\n");
11613 	return -ENODEV;
11614 #endif
11615 }
11616 
11617 static int bnxt_try_recover_fw(struct bnxt *bp)
11618 {
11619 	if (bp->fw_health && bp->fw_health->status_reliable) {
11620 		int retry = 0, rc;
11621 		u32 sts;
11622 
11623 		do {
11624 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11625 			rc = bnxt_hwrm_poll(bp);
11626 			if (!BNXT_FW_IS_BOOTING(sts) &&
11627 			    !BNXT_FW_IS_RECOVERING(sts))
11628 				break;
11629 			retry++;
11630 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11631 
11632 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11633 			netdev_err(bp->dev,
11634 				   "Firmware not responding, status: 0x%x\n",
11635 				   sts);
11636 			rc = -ENODEV;
11637 		}
11638 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11639 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11640 			return bnxt_fw_reset_via_optee(bp);
11641 		}
11642 		return rc;
11643 	}
11644 
11645 	return -ENODEV;
11646 }
11647 
11648 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11649 {
11650 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11651 
11652 	if (!BNXT_NEW_RM(bp))
11653 		return; /* no resource reservations required */
11654 
11655 	hw_resc->resv_cp_rings = 0;
11656 	hw_resc->resv_stat_ctxs = 0;
11657 	hw_resc->resv_irqs = 0;
11658 	hw_resc->resv_tx_rings = 0;
11659 	hw_resc->resv_rx_rings = 0;
11660 	hw_resc->resv_hw_ring_grps = 0;
11661 	hw_resc->resv_vnics = 0;
11662 	hw_resc->resv_rsscos_ctxs = 0;
11663 	if (!fw_reset) {
11664 		bp->tx_nr_rings = 0;
11665 		bp->rx_nr_rings = 0;
11666 	}
11667 }
11668 
11669 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11670 {
11671 	int rc;
11672 
11673 	if (!BNXT_NEW_RM(bp))
11674 		return 0; /* no resource reservations required */
11675 
11676 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11677 	if (rc)
11678 		netdev_err(bp->dev, "resc_qcaps failed\n");
11679 
11680 	bnxt_clear_reservations(bp, fw_reset);
11681 
11682 	return rc;
11683 }
11684 
11685 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11686 {
11687 	struct hwrm_func_drv_if_change_output *resp;
11688 	struct hwrm_func_drv_if_change_input *req;
11689 	bool fw_reset = !bp->irq_tbl;
11690 	bool resc_reinit = false;
11691 	int rc, retry = 0;
11692 	u32 flags = 0;
11693 
11694 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11695 		return 0;
11696 
11697 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11698 	if (rc)
11699 		return rc;
11700 
11701 	if (up)
11702 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11703 	resp = hwrm_req_hold(bp, req);
11704 
11705 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11706 	while (retry < BNXT_FW_IF_RETRY) {
11707 		rc = hwrm_req_send(bp, req);
11708 		if (rc != -EAGAIN)
11709 			break;
11710 
11711 		msleep(50);
11712 		retry++;
11713 	}
11714 
11715 	if (rc == -EAGAIN) {
11716 		hwrm_req_drop(bp, req);
11717 		return rc;
11718 	} else if (!rc) {
11719 		flags = le32_to_cpu(resp->flags);
11720 	} else if (up) {
11721 		rc = bnxt_try_recover_fw(bp);
11722 		fw_reset = true;
11723 	}
11724 	hwrm_req_drop(bp, req);
11725 	if (rc)
11726 		return rc;
11727 
11728 	if (!up) {
11729 		bnxt_inv_fw_health_reg(bp);
11730 		return 0;
11731 	}
11732 
11733 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11734 		resc_reinit = true;
11735 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11736 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11737 		fw_reset = true;
11738 	else
11739 		bnxt_remap_fw_health_regs(bp);
11740 
11741 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11742 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11743 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11744 		return -ENODEV;
11745 	}
11746 	if (resc_reinit || fw_reset) {
11747 		if (fw_reset) {
11748 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11749 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11750 				bnxt_ulp_irq_stop(bp);
11751 			bnxt_free_ctx_mem(bp);
11752 			bnxt_dcb_free(bp);
11753 			rc = bnxt_fw_init_one(bp);
11754 			if (rc) {
11755 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11756 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11757 				return rc;
11758 			}
11759 			bnxt_clear_int_mode(bp);
11760 			rc = bnxt_init_int_mode(bp);
11761 			if (rc) {
11762 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11763 				netdev_err(bp->dev, "init int mode failed\n");
11764 				return rc;
11765 			}
11766 		}
11767 		rc = bnxt_cancel_reservations(bp, fw_reset);
11768 	}
11769 	return rc;
11770 }
11771 
11772 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11773 {
11774 	struct hwrm_port_led_qcaps_output *resp;
11775 	struct hwrm_port_led_qcaps_input *req;
11776 	struct bnxt_pf_info *pf = &bp->pf;
11777 	int rc;
11778 
11779 	bp->num_leds = 0;
11780 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11781 		return 0;
11782 
11783 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11784 	if (rc)
11785 		return rc;
11786 
11787 	req->port_id = cpu_to_le16(pf->port_id);
11788 	resp = hwrm_req_hold(bp, req);
11789 	rc = hwrm_req_send(bp, req);
11790 	if (rc) {
11791 		hwrm_req_drop(bp, req);
11792 		return rc;
11793 	}
11794 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11795 		int i;
11796 
11797 		bp->num_leds = resp->num_leds;
11798 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11799 						 bp->num_leds);
11800 		for (i = 0; i < bp->num_leds; i++) {
11801 			struct bnxt_led_info *led = &bp->leds[i];
11802 			__le16 caps = led->led_state_caps;
11803 
11804 			if (!led->led_group_id ||
11805 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11806 				bp->num_leds = 0;
11807 				break;
11808 			}
11809 		}
11810 	}
11811 	hwrm_req_drop(bp, req);
11812 	return 0;
11813 }
11814 
11815 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11816 {
11817 	struct hwrm_wol_filter_alloc_output *resp;
11818 	struct hwrm_wol_filter_alloc_input *req;
11819 	int rc;
11820 
11821 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11822 	if (rc)
11823 		return rc;
11824 
11825 	req->port_id = cpu_to_le16(bp->pf.port_id);
11826 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11827 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11828 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11829 
11830 	resp = hwrm_req_hold(bp, req);
11831 	rc = hwrm_req_send(bp, req);
11832 	if (!rc)
11833 		bp->wol_filter_id = resp->wol_filter_id;
11834 	hwrm_req_drop(bp, req);
11835 	return rc;
11836 }
11837 
11838 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11839 {
11840 	struct hwrm_wol_filter_free_input *req;
11841 	int rc;
11842 
11843 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11844 	if (rc)
11845 		return rc;
11846 
11847 	req->port_id = cpu_to_le16(bp->pf.port_id);
11848 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11849 	req->wol_filter_id = bp->wol_filter_id;
11850 
11851 	return hwrm_req_send(bp, req);
11852 }
11853 
11854 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11855 {
11856 	struct hwrm_wol_filter_qcfg_output *resp;
11857 	struct hwrm_wol_filter_qcfg_input *req;
11858 	u16 next_handle = 0;
11859 	int rc;
11860 
11861 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11862 	if (rc)
11863 		return rc;
11864 
11865 	req->port_id = cpu_to_le16(bp->pf.port_id);
11866 	req->handle = cpu_to_le16(handle);
11867 	resp = hwrm_req_hold(bp, req);
11868 	rc = hwrm_req_send(bp, req);
11869 	if (!rc) {
11870 		next_handle = le16_to_cpu(resp->next_handle);
11871 		if (next_handle != 0) {
11872 			if (resp->wol_type ==
11873 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11874 				bp->wol = 1;
11875 				bp->wol_filter_id = resp->wol_filter_id;
11876 			}
11877 		}
11878 	}
11879 	hwrm_req_drop(bp, req);
11880 	return next_handle;
11881 }
11882 
11883 static void bnxt_get_wol_settings(struct bnxt *bp)
11884 {
11885 	u16 handle = 0;
11886 
11887 	bp->wol = 0;
11888 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11889 		return;
11890 
11891 	do {
11892 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11893 	} while (handle && handle != 0xffff);
11894 }
11895 
11896 static bool bnxt_eee_config_ok(struct bnxt *bp)
11897 {
11898 	struct ethtool_keee *eee = &bp->eee;
11899 	struct bnxt_link_info *link_info = &bp->link_info;
11900 
11901 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11902 		return true;
11903 
11904 	if (eee->eee_enabled) {
11905 		__ETHTOOL_DECLARE_LINK_MODE_MASK(advertising);
11906 		__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp);
11907 
11908 		_bnxt_fw_to_linkmode(advertising, link_info->advertising);
11909 
11910 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11911 			eee->eee_enabled = 0;
11912 			return false;
11913 		}
11914 		if (linkmode_andnot(tmp, eee->advertised, advertising)) {
11915 			linkmode_and(eee->advertised, advertising,
11916 				     eee->supported);
11917 			return false;
11918 		}
11919 	}
11920 	return true;
11921 }
11922 
11923 static int bnxt_update_phy_setting(struct bnxt *bp)
11924 {
11925 	int rc;
11926 	bool update_link = false;
11927 	bool update_pause = false;
11928 	bool update_eee = false;
11929 	struct bnxt_link_info *link_info = &bp->link_info;
11930 
11931 	rc = bnxt_update_link(bp, true);
11932 	if (rc) {
11933 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11934 			   rc);
11935 		return rc;
11936 	}
11937 	if (!BNXT_SINGLE_PF(bp))
11938 		return 0;
11939 
11940 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11941 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11942 	    link_info->req_flow_ctrl)
11943 		update_pause = true;
11944 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11945 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11946 		update_pause = true;
11947 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11948 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11949 			update_link = true;
11950 		if (bnxt_force_speed_updated(link_info))
11951 			update_link = true;
11952 		if (link_info->req_duplex != link_info->duplex_setting)
11953 			update_link = true;
11954 	} else {
11955 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11956 			update_link = true;
11957 		if (bnxt_auto_speed_updated(link_info))
11958 			update_link = true;
11959 	}
11960 
11961 	/* The last close may have shutdown the link, so need to call
11962 	 * PHY_CFG to bring it back up.
11963 	 */
11964 	if (!BNXT_LINK_IS_UP(bp))
11965 		update_link = true;
11966 
11967 	if (!bnxt_eee_config_ok(bp))
11968 		update_eee = true;
11969 
11970 	if (update_link)
11971 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11972 	else if (update_pause)
11973 		rc = bnxt_hwrm_set_pause(bp);
11974 	if (rc) {
11975 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11976 			   rc);
11977 		return rc;
11978 	}
11979 
11980 	return rc;
11981 }
11982 
11983 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11984 
11985 static int bnxt_reinit_after_abort(struct bnxt *bp)
11986 {
11987 	int rc;
11988 
11989 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11990 		return -EBUSY;
11991 
11992 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11993 		return -ENODEV;
11994 
11995 	rc = bnxt_fw_init_one(bp);
11996 	if (!rc) {
11997 		bnxt_clear_int_mode(bp);
11998 		rc = bnxt_init_int_mode(bp);
11999 		if (!rc) {
12000 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12001 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
12002 		}
12003 	}
12004 	return rc;
12005 }
12006 
12007 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
12008 {
12009 	struct bnxt_ntuple_filter *ntp_fltr;
12010 	struct bnxt_l2_filter *l2_fltr;
12011 
12012 	if (list_empty(&fltr->list))
12013 		return;
12014 
12015 	if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) {
12016 		ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base);
12017 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
12018 		atomic_inc(&l2_fltr->refcnt);
12019 		ntp_fltr->l2_fltr = l2_fltr;
12020 		if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) {
12021 			bnxt_del_ntp_filter(bp, ntp_fltr);
12022 			netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n",
12023 				   fltr->sw_id);
12024 		}
12025 	} else if (fltr->type == BNXT_FLTR_TYPE_L2) {
12026 		l2_fltr = container_of(fltr, struct bnxt_l2_filter, base);
12027 		if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) {
12028 			bnxt_del_l2_filter(bp, l2_fltr);
12029 			netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n",
12030 				   fltr->sw_id);
12031 		}
12032 	}
12033 }
12034 
12035 static void bnxt_cfg_usr_fltrs(struct bnxt *bp)
12036 {
12037 	struct bnxt_filter_base *usr_fltr, *tmp;
12038 
12039 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list)
12040 		bnxt_cfg_one_usr_fltr(bp, usr_fltr);
12041 }
12042 
12043 static int bnxt_set_xps_mapping(struct bnxt *bp)
12044 {
12045 	int numa_node = dev_to_node(&bp->pdev->dev);
12046 	unsigned int q_idx, map_idx, cpu, i;
12047 	const struct cpumask *cpu_mask_ptr;
12048 	int nr_cpus = num_online_cpus();
12049 	cpumask_t *q_map;
12050 	int rc = 0;
12051 
12052 	q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL);
12053 	if (!q_map)
12054 		return -ENOMEM;
12055 
12056 	/* Create CPU mask for all TX queues across MQPRIO traffic classes.
12057 	 * Each TC has the same number of TX queues. The nth TX queue for each
12058 	 * TC will have the same CPU mask.
12059 	 */
12060 	for (i = 0; i < nr_cpus; i++) {
12061 		map_idx = i % bp->tx_nr_rings_per_tc;
12062 		cpu = cpumask_local_spread(i, numa_node);
12063 		cpu_mask_ptr = get_cpu_mask(cpu);
12064 		cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr);
12065 	}
12066 
12067 	/* Register CPU mask for each TX queue except the ones marked for XDP */
12068 	for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) {
12069 		map_idx = q_idx % bp->tx_nr_rings_per_tc;
12070 		rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx);
12071 		if (rc) {
12072 			netdev_warn(bp->dev, "Error setting XPS for q:%d\n",
12073 				    q_idx);
12074 			break;
12075 		}
12076 	}
12077 
12078 	kfree(q_map);
12079 
12080 	return rc;
12081 }
12082 
12083 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12084 {
12085 	int rc = 0;
12086 
12087 	netif_carrier_off(bp->dev);
12088 	if (irq_re_init) {
12089 		/* Reserve rings now if none were reserved at driver probe. */
12090 		rc = bnxt_init_dflt_ring_mode(bp);
12091 		if (rc) {
12092 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
12093 			return rc;
12094 		}
12095 	}
12096 	rc = bnxt_reserve_rings(bp, irq_re_init);
12097 	if (rc)
12098 		return rc;
12099 
12100 	rc = bnxt_alloc_mem(bp, irq_re_init);
12101 	if (rc) {
12102 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12103 		goto open_err_free_mem;
12104 	}
12105 
12106 	if (irq_re_init) {
12107 		bnxt_init_napi(bp);
12108 		rc = bnxt_request_irq(bp);
12109 		if (rc) {
12110 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
12111 			goto open_err_irq;
12112 		}
12113 	}
12114 
12115 	rc = bnxt_init_nic(bp, irq_re_init);
12116 	if (rc) {
12117 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12118 		goto open_err_irq;
12119 	}
12120 
12121 	bnxt_enable_napi(bp);
12122 	bnxt_debug_dev_init(bp);
12123 
12124 	if (link_re_init) {
12125 		mutex_lock(&bp->link_lock);
12126 		rc = bnxt_update_phy_setting(bp);
12127 		mutex_unlock(&bp->link_lock);
12128 		if (rc) {
12129 			netdev_warn(bp->dev, "failed to update phy settings\n");
12130 			if (BNXT_SINGLE_PF(bp)) {
12131 				bp->link_info.phy_retry = true;
12132 				bp->link_info.phy_retry_expires =
12133 					jiffies + 5 * HZ;
12134 			}
12135 		}
12136 	}
12137 
12138 	if (irq_re_init) {
12139 		udp_tunnel_nic_reset_ntf(bp->dev);
12140 		rc = bnxt_set_xps_mapping(bp);
12141 		if (rc)
12142 			netdev_warn(bp->dev, "failed to set xps mapping\n");
12143 	}
12144 
12145 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
12146 		if (!static_key_enabled(&bnxt_xdp_locking_key))
12147 			static_branch_enable(&bnxt_xdp_locking_key);
12148 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
12149 		static_branch_disable(&bnxt_xdp_locking_key);
12150 	}
12151 	set_bit(BNXT_STATE_OPEN, &bp->state);
12152 	bnxt_enable_int(bp);
12153 	/* Enable TX queues */
12154 	bnxt_tx_enable(bp);
12155 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12156 	/* Poll link status and check for SFP+ module status */
12157 	mutex_lock(&bp->link_lock);
12158 	bnxt_get_port_module_status(bp);
12159 	mutex_unlock(&bp->link_lock);
12160 
12161 	/* VF-reps may need to be re-opened after the PF is re-opened */
12162 	if (BNXT_PF(bp))
12163 		bnxt_vf_reps_open(bp);
12164 	if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
12165 		WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS);
12166 	bnxt_ptp_init_rtc(bp, true);
12167 	bnxt_ptp_cfg_tstamp_filters(bp);
12168 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12169 		bnxt_hwrm_realloc_rss_ctx_vnic(bp);
12170 	bnxt_cfg_usr_fltrs(bp);
12171 	return 0;
12172 
12173 open_err_irq:
12174 	bnxt_del_napi(bp);
12175 
12176 open_err_free_mem:
12177 	bnxt_free_skbs(bp);
12178 	bnxt_free_irq(bp);
12179 	bnxt_free_mem(bp, true);
12180 	return rc;
12181 }
12182 
12183 /* rtnl_lock held */
12184 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12185 {
12186 	int rc = 0;
12187 
12188 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
12189 		rc = -EIO;
12190 	if (!rc)
12191 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
12192 	if (rc) {
12193 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
12194 		dev_close(bp->dev);
12195 	}
12196 	return rc;
12197 }
12198 
12199 /* rtnl_lock held, open the NIC half way by allocating all resources, but
12200  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
12201  * self tests.
12202  */
12203 int bnxt_half_open_nic(struct bnxt *bp)
12204 {
12205 	int rc = 0;
12206 
12207 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12208 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
12209 		rc = -ENODEV;
12210 		goto half_open_err;
12211 	}
12212 
12213 	rc = bnxt_alloc_mem(bp, true);
12214 	if (rc) {
12215 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12216 		goto half_open_err;
12217 	}
12218 	bnxt_init_napi(bp);
12219 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12220 	rc = bnxt_init_nic(bp, true);
12221 	if (rc) {
12222 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12223 		bnxt_del_napi(bp);
12224 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12225 		goto half_open_err;
12226 	}
12227 	return 0;
12228 
12229 half_open_err:
12230 	bnxt_free_skbs(bp);
12231 	bnxt_free_mem(bp, true);
12232 	dev_close(bp->dev);
12233 	return rc;
12234 }
12235 
12236 /* rtnl_lock held, this call can only be made after a previous successful
12237  * call to bnxt_half_open_nic().
12238  */
12239 void bnxt_half_close_nic(struct bnxt *bp)
12240 {
12241 	bnxt_hwrm_resource_free(bp, false, true);
12242 	bnxt_del_napi(bp);
12243 	bnxt_free_skbs(bp);
12244 	bnxt_free_mem(bp, true);
12245 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12246 }
12247 
12248 void bnxt_reenable_sriov(struct bnxt *bp)
12249 {
12250 	if (BNXT_PF(bp)) {
12251 		struct bnxt_pf_info *pf = &bp->pf;
12252 		int n = pf->active_vfs;
12253 
12254 		if (n)
12255 			bnxt_cfg_hw_sriov(bp, &n, true);
12256 	}
12257 }
12258 
12259 static int bnxt_open(struct net_device *dev)
12260 {
12261 	struct bnxt *bp = netdev_priv(dev);
12262 	int rc;
12263 
12264 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12265 		rc = bnxt_reinit_after_abort(bp);
12266 		if (rc) {
12267 			if (rc == -EBUSY)
12268 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
12269 			else
12270 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
12271 			return -ENODEV;
12272 		}
12273 	}
12274 
12275 	rc = bnxt_hwrm_if_change(bp, true);
12276 	if (rc)
12277 		return rc;
12278 
12279 	rc = __bnxt_open_nic(bp, true, true);
12280 	if (rc) {
12281 		bnxt_hwrm_if_change(bp, false);
12282 	} else {
12283 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
12284 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12285 				bnxt_queue_sp_work(bp,
12286 						   BNXT_RESTART_ULP_SP_EVENT);
12287 		}
12288 	}
12289 
12290 	return rc;
12291 }
12292 
12293 static bool bnxt_drv_busy(struct bnxt *bp)
12294 {
12295 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
12296 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
12297 }
12298 
12299 static void bnxt_get_ring_stats(struct bnxt *bp,
12300 				struct rtnl_link_stats64 *stats);
12301 
12302 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
12303 			     bool link_re_init)
12304 {
12305 	/* Close the VF-reps before closing PF */
12306 	if (BNXT_PF(bp))
12307 		bnxt_vf_reps_close(bp);
12308 
12309 	/* Change device state to avoid TX queue wake up's */
12310 	bnxt_tx_disable(bp);
12311 
12312 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12313 	smp_mb__after_atomic();
12314 	while (bnxt_drv_busy(bp))
12315 		msleep(20);
12316 
12317 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12318 		bnxt_clear_rss_ctxs(bp);
12319 	/* Flush rings and disable interrupts */
12320 	bnxt_shutdown_nic(bp, irq_re_init);
12321 
12322 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
12323 
12324 	bnxt_debug_dev_exit(bp);
12325 	bnxt_disable_napi(bp);
12326 	del_timer_sync(&bp->timer);
12327 	bnxt_free_skbs(bp);
12328 
12329 	/* Save ring stats before shutdown */
12330 	if (bp->bnapi && irq_re_init) {
12331 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
12332 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
12333 	}
12334 	if (irq_re_init) {
12335 		bnxt_free_irq(bp);
12336 		bnxt_del_napi(bp);
12337 	}
12338 	bnxt_free_mem(bp, irq_re_init);
12339 }
12340 
12341 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12342 {
12343 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12344 		/* If we get here, it means firmware reset is in progress
12345 		 * while we are trying to close.  We can safely proceed with
12346 		 * the close because we are holding rtnl_lock().  Some firmware
12347 		 * messages may fail as we proceed to close.  We set the
12348 		 * ABORT_ERR flag here so that the FW reset thread will later
12349 		 * abort when it gets the rtnl_lock() and sees the flag.
12350 		 */
12351 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
12352 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12353 	}
12354 
12355 #ifdef CONFIG_BNXT_SRIOV
12356 	if (bp->sriov_cfg) {
12357 		int rc;
12358 
12359 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
12360 						      !bp->sriov_cfg,
12361 						      BNXT_SRIOV_CFG_WAIT_TMO);
12362 		if (!rc)
12363 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
12364 		else if (rc < 0)
12365 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
12366 	}
12367 #endif
12368 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
12369 }
12370 
12371 static int bnxt_close(struct net_device *dev)
12372 {
12373 	struct bnxt *bp = netdev_priv(dev);
12374 
12375 	bnxt_close_nic(bp, true, true);
12376 	bnxt_hwrm_shutdown_link(bp);
12377 	bnxt_hwrm_if_change(bp, false);
12378 	return 0;
12379 }
12380 
12381 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
12382 				   u16 *val)
12383 {
12384 	struct hwrm_port_phy_mdio_read_output *resp;
12385 	struct hwrm_port_phy_mdio_read_input *req;
12386 	int rc;
12387 
12388 	if (bp->hwrm_spec_code < 0x10a00)
12389 		return -EOPNOTSUPP;
12390 
12391 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
12392 	if (rc)
12393 		return rc;
12394 
12395 	req->port_id = cpu_to_le16(bp->pf.port_id);
12396 	req->phy_addr = phy_addr;
12397 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12398 	if (mdio_phy_id_is_c45(phy_addr)) {
12399 		req->cl45_mdio = 1;
12400 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12401 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12402 		req->reg_addr = cpu_to_le16(reg);
12403 	}
12404 
12405 	resp = hwrm_req_hold(bp, req);
12406 	rc = hwrm_req_send(bp, req);
12407 	if (!rc)
12408 		*val = le16_to_cpu(resp->reg_data);
12409 	hwrm_req_drop(bp, req);
12410 	return rc;
12411 }
12412 
12413 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
12414 				    u16 val)
12415 {
12416 	struct hwrm_port_phy_mdio_write_input *req;
12417 	int rc;
12418 
12419 	if (bp->hwrm_spec_code < 0x10a00)
12420 		return -EOPNOTSUPP;
12421 
12422 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
12423 	if (rc)
12424 		return rc;
12425 
12426 	req->port_id = cpu_to_le16(bp->pf.port_id);
12427 	req->phy_addr = phy_addr;
12428 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12429 	if (mdio_phy_id_is_c45(phy_addr)) {
12430 		req->cl45_mdio = 1;
12431 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12432 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12433 		req->reg_addr = cpu_to_le16(reg);
12434 	}
12435 	req->reg_data = cpu_to_le16(val);
12436 
12437 	return hwrm_req_send(bp, req);
12438 }
12439 
12440 /* rtnl_lock held */
12441 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12442 {
12443 	struct mii_ioctl_data *mdio = if_mii(ifr);
12444 	struct bnxt *bp = netdev_priv(dev);
12445 	int rc;
12446 
12447 	switch (cmd) {
12448 	case SIOCGMIIPHY:
12449 		mdio->phy_id = bp->link_info.phy_addr;
12450 
12451 		fallthrough;
12452 	case SIOCGMIIREG: {
12453 		u16 mii_regval = 0;
12454 
12455 		if (!netif_running(dev))
12456 			return -EAGAIN;
12457 
12458 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
12459 					     &mii_regval);
12460 		mdio->val_out = mii_regval;
12461 		return rc;
12462 	}
12463 
12464 	case SIOCSMIIREG:
12465 		if (!netif_running(dev))
12466 			return -EAGAIN;
12467 
12468 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
12469 						mdio->val_in);
12470 
12471 	case SIOCSHWTSTAMP:
12472 		return bnxt_hwtstamp_set(dev, ifr);
12473 
12474 	case SIOCGHWTSTAMP:
12475 		return bnxt_hwtstamp_get(dev, ifr);
12476 
12477 	default:
12478 		/* do nothing */
12479 		break;
12480 	}
12481 	return -EOPNOTSUPP;
12482 }
12483 
12484 static void bnxt_get_ring_stats(struct bnxt *bp,
12485 				struct rtnl_link_stats64 *stats)
12486 {
12487 	int i;
12488 
12489 	for (i = 0; i < bp->cp_nr_rings; i++) {
12490 		struct bnxt_napi *bnapi = bp->bnapi[i];
12491 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12492 		u64 *sw = cpr->stats.sw_stats;
12493 
12494 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
12495 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12496 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
12497 
12498 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
12499 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
12500 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
12501 
12502 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
12503 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
12504 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
12505 
12506 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
12507 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
12508 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
12509 
12510 		stats->rx_missed_errors +=
12511 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
12512 
12513 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12514 
12515 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
12516 
12517 		stats->rx_dropped +=
12518 			cpr->sw_stats->rx.rx_netpoll_discards +
12519 			cpr->sw_stats->rx.rx_oom_discards;
12520 	}
12521 }
12522 
12523 static void bnxt_add_prev_stats(struct bnxt *bp,
12524 				struct rtnl_link_stats64 *stats)
12525 {
12526 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
12527 
12528 	stats->rx_packets += prev_stats->rx_packets;
12529 	stats->tx_packets += prev_stats->tx_packets;
12530 	stats->rx_bytes += prev_stats->rx_bytes;
12531 	stats->tx_bytes += prev_stats->tx_bytes;
12532 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
12533 	stats->multicast += prev_stats->multicast;
12534 	stats->rx_dropped += prev_stats->rx_dropped;
12535 	stats->tx_dropped += prev_stats->tx_dropped;
12536 }
12537 
12538 static void
12539 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
12540 {
12541 	struct bnxt *bp = netdev_priv(dev);
12542 
12543 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
12544 	/* Make sure bnxt_close_nic() sees that we are reading stats before
12545 	 * we check the BNXT_STATE_OPEN flag.
12546 	 */
12547 	smp_mb__after_atomic();
12548 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12549 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12550 		*stats = bp->net_stats_prev;
12551 		return;
12552 	}
12553 
12554 	bnxt_get_ring_stats(bp, stats);
12555 	bnxt_add_prev_stats(bp, stats);
12556 
12557 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
12558 		u64 *rx = bp->port_stats.sw_stats;
12559 		u64 *tx = bp->port_stats.sw_stats +
12560 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
12561 
12562 		stats->rx_crc_errors =
12563 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
12564 		stats->rx_frame_errors =
12565 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
12566 		stats->rx_length_errors =
12567 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
12568 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
12569 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
12570 		stats->rx_errors =
12571 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
12572 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
12573 		stats->collisions =
12574 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
12575 		stats->tx_fifo_errors =
12576 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
12577 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
12578 	}
12579 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12580 }
12581 
12582 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
12583 					struct bnxt_total_ring_err_stats *stats,
12584 					struct bnxt_cp_ring_info *cpr)
12585 {
12586 	struct bnxt_sw_stats *sw_stats = cpr->sw_stats;
12587 	u64 *hw_stats = cpr->stats.sw_stats;
12588 
12589 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
12590 	stats->rx_total_resets += sw_stats->rx.rx_resets;
12591 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
12592 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
12593 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
12594 	stats->rx_total_ring_discards +=
12595 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
12596 	stats->tx_total_resets += sw_stats->tx.tx_resets;
12597 	stats->tx_total_ring_discards +=
12598 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
12599 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
12600 }
12601 
12602 void bnxt_get_ring_err_stats(struct bnxt *bp,
12603 			     struct bnxt_total_ring_err_stats *stats)
12604 {
12605 	int i;
12606 
12607 	for (i = 0; i < bp->cp_nr_rings; i++)
12608 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
12609 }
12610 
12611 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
12612 {
12613 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12614 	struct net_device *dev = bp->dev;
12615 	struct netdev_hw_addr *ha;
12616 	u8 *haddr;
12617 	int mc_count = 0;
12618 	bool update = false;
12619 	int off = 0;
12620 
12621 	netdev_for_each_mc_addr(ha, dev) {
12622 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
12623 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12624 			vnic->mc_list_count = 0;
12625 			return false;
12626 		}
12627 		haddr = ha->addr;
12628 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
12629 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
12630 			update = true;
12631 		}
12632 		off += ETH_ALEN;
12633 		mc_count++;
12634 	}
12635 	if (mc_count)
12636 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12637 
12638 	if (mc_count != vnic->mc_list_count) {
12639 		vnic->mc_list_count = mc_count;
12640 		update = true;
12641 	}
12642 	return update;
12643 }
12644 
12645 static bool bnxt_uc_list_updated(struct bnxt *bp)
12646 {
12647 	struct net_device *dev = bp->dev;
12648 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12649 	struct netdev_hw_addr *ha;
12650 	int off = 0;
12651 
12652 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12653 		return true;
12654 
12655 	netdev_for_each_uc_addr(ha, dev) {
12656 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12657 			return true;
12658 
12659 		off += ETH_ALEN;
12660 	}
12661 	return false;
12662 }
12663 
12664 static void bnxt_set_rx_mode(struct net_device *dev)
12665 {
12666 	struct bnxt *bp = netdev_priv(dev);
12667 	struct bnxt_vnic_info *vnic;
12668 	bool mc_update = false;
12669 	bool uc_update;
12670 	u32 mask;
12671 
12672 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12673 		return;
12674 
12675 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12676 	mask = vnic->rx_mask;
12677 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12678 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12679 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12680 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12681 
12682 	if (dev->flags & IFF_PROMISC)
12683 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12684 
12685 	uc_update = bnxt_uc_list_updated(bp);
12686 
12687 	if (dev->flags & IFF_BROADCAST)
12688 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12689 	if (dev->flags & IFF_ALLMULTI) {
12690 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12691 		vnic->mc_list_count = 0;
12692 	} else if (dev->flags & IFF_MULTICAST) {
12693 		mc_update = bnxt_mc_list_updated(bp, &mask);
12694 	}
12695 
12696 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12697 		vnic->rx_mask = mask;
12698 
12699 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12700 	}
12701 }
12702 
12703 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12704 {
12705 	struct net_device *dev = bp->dev;
12706 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12707 	struct netdev_hw_addr *ha;
12708 	int i, off = 0, rc;
12709 	bool uc_update;
12710 
12711 	netif_addr_lock_bh(dev);
12712 	uc_update = bnxt_uc_list_updated(bp);
12713 	netif_addr_unlock_bh(dev);
12714 
12715 	if (!uc_update)
12716 		goto skip_uc;
12717 
12718 	for (i = 1; i < vnic->uc_filter_count; i++) {
12719 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12720 
12721 		bnxt_hwrm_l2_filter_free(bp, fltr);
12722 		bnxt_del_l2_filter(bp, fltr);
12723 	}
12724 
12725 	vnic->uc_filter_count = 1;
12726 
12727 	netif_addr_lock_bh(dev);
12728 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12729 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12730 	} else {
12731 		netdev_for_each_uc_addr(ha, dev) {
12732 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12733 			off += ETH_ALEN;
12734 			vnic->uc_filter_count++;
12735 		}
12736 	}
12737 	netif_addr_unlock_bh(dev);
12738 
12739 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12740 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12741 		if (rc) {
12742 			if (BNXT_VF(bp) && rc == -ENODEV) {
12743 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12744 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12745 				else
12746 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12747 				rc = 0;
12748 			} else {
12749 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12750 			}
12751 			vnic->uc_filter_count = i;
12752 			return rc;
12753 		}
12754 	}
12755 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12756 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12757 
12758 skip_uc:
12759 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12760 	    !bnxt_promisc_ok(bp))
12761 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12762 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12763 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12764 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12765 			    rc);
12766 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12767 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12768 		vnic->mc_list_count = 0;
12769 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12770 	}
12771 	if (rc)
12772 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12773 			   rc);
12774 
12775 	return rc;
12776 }
12777 
12778 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12779 {
12780 #ifdef CONFIG_BNXT_SRIOV
12781 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12782 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12783 
12784 		/* No minimum rings were provisioned by the PF.  Don't
12785 		 * reserve rings by default when device is down.
12786 		 */
12787 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12788 			return true;
12789 
12790 		if (!netif_running(bp->dev))
12791 			return false;
12792 	}
12793 #endif
12794 	return true;
12795 }
12796 
12797 /* If the chip and firmware supports RFS */
12798 static bool bnxt_rfs_supported(struct bnxt *bp)
12799 {
12800 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12801 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12802 			return true;
12803 		return false;
12804 	}
12805 	/* 212 firmware is broken for aRFS */
12806 	if (BNXT_FW_MAJ(bp) == 212)
12807 		return false;
12808 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12809 		return true;
12810 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12811 		return true;
12812 	return false;
12813 }
12814 
12815 /* If runtime conditions support RFS */
12816 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx)
12817 {
12818 	struct bnxt_hw_rings hwr = {0};
12819 	int max_vnics, max_rss_ctxs;
12820 
12821 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12822 	    !BNXT_SUPPORTS_NTUPLE_VNIC(bp))
12823 		return bnxt_rfs_supported(bp);
12824 
12825 	if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12826 		return false;
12827 
12828 	hwr.grp = bp->rx_nr_rings;
12829 	hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings);
12830 	if (new_rss_ctx)
12831 		hwr.vnic++;
12832 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
12833 	max_vnics = bnxt_get_max_func_vnics(bp);
12834 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12835 
12836 	if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) {
12837 		if (bp->rx_nr_rings > 1)
12838 			netdev_warn(bp->dev,
12839 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12840 				    min(max_rss_ctxs - 1, max_vnics - 1));
12841 		return false;
12842 	}
12843 
12844 	if (!BNXT_NEW_RM(bp))
12845 		return true;
12846 
12847 	/* Do not reduce VNIC and RSS ctx reservations.  There is a FW
12848 	 * issue that will mess up the default VNIC if we reduce the
12849 	 * reservations.
12850 	 */
12851 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12852 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12853 		return true;
12854 
12855 	bnxt_hwrm_reserve_rings(bp, &hwr);
12856 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12857 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12858 		return true;
12859 
12860 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12861 	hwr.vnic = 1;
12862 	hwr.rss_ctx = 0;
12863 	bnxt_hwrm_reserve_rings(bp, &hwr);
12864 	return false;
12865 }
12866 
12867 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12868 					   netdev_features_t features)
12869 {
12870 	struct bnxt *bp = netdev_priv(dev);
12871 	netdev_features_t vlan_features;
12872 
12873 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false))
12874 		features &= ~NETIF_F_NTUPLE;
12875 
12876 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12877 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12878 
12879 	if (!(features & NETIF_F_GRO))
12880 		features &= ~NETIF_F_GRO_HW;
12881 
12882 	if (features & NETIF_F_GRO_HW)
12883 		features &= ~NETIF_F_LRO;
12884 
12885 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12886 	 * turned on or off together.
12887 	 */
12888 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12889 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12890 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12891 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12892 		else if (vlan_features)
12893 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12894 	}
12895 #ifdef CONFIG_BNXT_SRIOV
12896 	if (BNXT_VF(bp) && bp->vf.vlan)
12897 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12898 #endif
12899 	return features;
12900 }
12901 
12902 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init,
12903 				bool link_re_init, u32 flags, bool update_tpa)
12904 {
12905 	bnxt_close_nic(bp, irq_re_init, link_re_init);
12906 	bp->flags = flags;
12907 	if (update_tpa)
12908 		bnxt_set_ring_params(bp);
12909 	return bnxt_open_nic(bp, irq_re_init, link_re_init);
12910 }
12911 
12912 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12913 {
12914 	bool update_tpa = false, update_ntuple = false;
12915 	struct bnxt *bp = netdev_priv(dev);
12916 	u32 flags = bp->flags;
12917 	u32 changes;
12918 	int rc = 0;
12919 	bool re_init = false;
12920 
12921 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12922 	if (features & NETIF_F_GRO_HW)
12923 		flags |= BNXT_FLAG_GRO;
12924 	else if (features & NETIF_F_LRO)
12925 		flags |= BNXT_FLAG_LRO;
12926 
12927 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12928 		flags &= ~BNXT_FLAG_TPA;
12929 
12930 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12931 		flags |= BNXT_FLAG_STRIP_VLAN;
12932 
12933 	if (features & NETIF_F_NTUPLE)
12934 		flags |= BNXT_FLAG_RFS;
12935 	else
12936 		bnxt_clear_usr_fltrs(bp, true);
12937 
12938 	changes = flags ^ bp->flags;
12939 	if (changes & BNXT_FLAG_TPA) {
12940 		update_tpa = true;
12941 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12942 		    (flags & BNXT_FLAG_TPA) == 0 ||
12943 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12944 			re_init = true;
12945 	}
12946 
12947 	if (changes & ~BNXT_FLAG_TPA)
12948 		re_init = true;
12949 
12950 	if (changes & BNXT_FLAG_RFS)
12951 		update_ntuple = true;
12952 
12953 	if (flags != bp->flags) {
12954 		u32 old_flags = bp->flags;
12955 
12956 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12957 			bp->flags = flags;
12958 			if (update_tpa)
12959 				bnxt_set_ring_params(bp);
12960 			return rc;
12961 		}
12962 
12963 		if (update_ntuple)
12964 			return bnxt_reinit_features(bp, true, false, flags, update_tpa);
12965 
12966 		if (re_init)
12967 			return bnxt_reinit_features(bp, false, false, flags, update_tpa);
12968 
12969 		if (update_tpa) {
12970 			bp->flags = flags;
12971 			rc = bnxt_set_tpa(bp,
12972 					  (flags & BNXT_FLAG_TPA) ?
12973 					  true : false);
12974 			if (rc)
12975 				bp->flags = old_flags;
12976 		}
12977 	}
12978 	return rc;
12979 }
12980 
12981 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12982 			      u8 **nextp)
12983 {
12984 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12985 	struct hop_jumbo_hdr *jhdr;
12986 	int hdr_count = 0;
12987 	u8 *nexthdr;
12988 	int start;
12989 
12990 	/* Check that there are at most 2 IPv6 extension headers, no
12991 	 * fragment header, and each is <= 64 bytes.
12992 	 */
12993 	start = nw_off + sizeof(*ip6h);
12994 	nexthdr = &ip6h->nexthdr;
12995 	while (ipv6_ext_hdr(*nexthdr)) {
12996 		struct ipv6_opt_hdr *hp;
12997 		int hdrlen;
12998 
12999 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
13000 		    *nexthdr == NEXTHDR_FRAGMENT)
13001 			return false;
13002 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
13003 					  skb_headlen(skb), NULL);
13004 		if (!hp)
13005 			return false;
13006 		if (*nexthdr == NEXTHDR_AUTH)
13007 			hdrlen = ipv6_authlen(hp);
13008 		else
13009 			hdrlen = ipv6_optlen(hp);
13010 
13011 		if (hdrlen > 64)
13012 			return false;
13013 
13014 		/* The ext header may be a hop-by-hop header inserted for
13015 		 * big TCP purposes. This will be removed before sending
13016 		 * from NIC, so do not count it.
13017 		 */
13018 		if (*nexthdr == NEXTHDR_HOP) {
13019 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
13020 				goto increment_hdr;
13021 
13022 			jhdr = (struct hop_jumbo_hdr *)hp;
13023 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
13024 			    jhdr->nexthdr != IPPROTO_TCP)
13025 				goto increment_hdr;
13026 
13027 			goto next_hdr;
13028 		}
13029 increment_hdr:
13030 		hdr_count++;
13031 next_hdr:
13032 		nexthdr = &hp->nexthdr;
13033 		start += hdrlen;
13034 	}
13035 	if (nextp) {
13036 		/* Caller will check inner protocol */
13037 		if (skb->encapsulation) {
13038 			*nextp = nexthdr;
13039 			return true;
13040 		}
13041 		*nextp = NULL;
13042 	}
13043 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
13044 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
13045 }
13046 
13047 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
13048 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
13049 {
13050 	struct udphdr *uh = udp_hdr(skb);
13051 	__be16 udp_port = uh->dest;
13052 
13053 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
13054 	    udp_port != bp->vxlan_gpe_port)
13055 		return false;
13056 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
13057 		struct ethhdr *eh = inner_eth_hdr(skb);
13058 
13059 		switch (eh->h_proto) {
13060 		case htons(ETH_P_IP):
13061 			return true;
13062 		case htons(ETH_P_IPV6):
13063 			return bnxt_exthdr_check(bp, skb,
13064 						 skb_inner_network_offset(skb),
13065 						 NULL);
13066 		}
13067 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
13068 		return true;
13069 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
13070 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13071 					 NULL);
13072 	}
13073 	return false;
13074 }
13075 
13076 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
13077 {
13078 	switch (l4_proto) {
13079 	case IPPROTO_UDP:
13080 		return bnxt_udp_tunl_check(bp, skb);
13081 	case IPPROTO_IPIP:
13082 		return true;
13083 	case IPPROTO_GRE: {
13084 		switch (skb->inner_protocol) {
13085 		default:
13086 			return false;
13087 		case htons(ETH_P_IP):
13088 			return true;
13089 		case htons(ETH_P_IPV6):
13090 			fallthrough;
13091 		}
13092 	}
13093 	case IPPROTO_IPV6:
13094 		/* Check ext headers of inner ipv6 */
13095 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13096 					 NULL);
13097 	}
13098 	return false;
13099 }
13100 
13101 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
13102 					     struct net_device *dev,
13103 					     netdev_features_t features)
13104 {
13105 	struct bnxt *bp = netdev_priv(dev);
13106 	u8 *l4_proto;
13107 
13108 	features = vlan_features_check(skb, features);
13109 	switch (vlan_get_protocol(skb)) {
13110 	case htons(ETH_P_IP):
13111 		if (!skb->encapsulation)
13112 			return features;
13113 		l4_proto = &ip_hdr(skb)->protocol;
13114 		if (bnxt_tunl_check(bp, skb, *l4_proto))
13115 			return features;
13116 		break;
13117 	case htons(ETH_P_IPV6):
13118 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
13119 				       &l4_proto))
13120 			break;
13121 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
13122 			return features;
13123 		break;
13124 	}
13125 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13126 }
13127 
13128 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
13129 			 u32 *reg_buf)
13130 {
13131 	struct hwrm_dbg_read_direct_output *resp;
13132 	struct hwrm_dbg_read_direct_input *req;
13133 	__le32 *dbg_reg_buf;
13134 	dma_addr_t mapping;
13135 	int rc, i;
13136 
13137 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
13138 	if (rc)
13139 		return rc;
13140 
13141 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
13142 					 &mapping);
13143 	if (!dbg_reg_buf) {
13144 		rc = -ENOMEM;
13145 		goto dbg_rd_reg_exit;
13146 	}
13147 
13148 	req->host_dest_addr = cpu_to_le64(mapping);
13149 
13150 	resp = hwrm_req_hold(bp, req);
13151 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
13152 	req->read_len32 = cpu_to_le32(num_words);
13153 
13154 	rc = hwrm_req_send(bp, req);
13155 	if (rc || resp->error_code) {
13156 		rc = -EIO;
13157 		goto dbg_rd_reg_exit;
13158 	}
13159 	for (i = 0; i < num_words; i++)
13160 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
13161 
13162 dbg_rd_reg_exit:
13163 	hwrm_req_drop(bp, req);
13164 	return rc;
13165 }
13166 
13167 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
13168 				       u32 ring_id, u32 *prod, u32 *cons)
13169 {
13170 	struct hwrm_dbg_ring_info_get_output *resp;
13171 	struct hwrm_dbg_ring_info_get_input *req;
13172 	int rc;
13173 
13174 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
13175 	if (rc)
13176 		return rc;
13177 
13178 	req->ring_type = ring_type;
13179 	req->fw_ring_id = cpu_to_le32(ring_id);
13180 	resp = hwrm_req_hold(bp, req);
13181 	rc = hwrm_req_send(bp, req);
13182 	if (!rc) {
13183 		*prod = le32_to_cpu(resp->producer_index);
13184 		*cons = le32_to_cpu(resp->consumer_index);
13185 	}
13186 	hwrm_req_drop(bp, req);
13187 	return rc;
13188 }
13189 
13190 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
13191 {
13192 	struct bnxt_tx_ring_info *txr;
13193 	int i = bnapi->index, j;
13194 
13195 	bnxt_for_each_napi_tx(j, bnapi, txr)
13196 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
13197 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
13198 			    txr->tx_cons);
13199 }
13200 
13201 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
13202 {
13203 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
13204 	int i = bnapi->index;
13205 
13206 	if (!rxr)
13207 		return;
13208 
13209 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
13210 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
13211 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
13212 		    rxr->rx_sw_agg_prod);
13213 }
13214 
13215 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
13216 {
13217 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
13218 	int i = bnapi->index;
13219 
13220 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
13221 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
13222 }
13223 
13224 static void bnxt_dbg_dump_states(struct bnxt *bp)
13225 {
13226 	int i;
13227 	struct bnxt_napi *bnapi;
13228 
13229 	for (i = 0; i < bp->cp_nr_rings; i++) {
13230 		bnapi = bp->bnapi[i];
13231 		if (netif_msg_drv(bp)) {
13232 			bnxt_dump_tx_sw_state(bnapi);
13233 			bnxt_dump_rx_sw_state(bnapi);
13234 			bnxt_dump_cp_sw_state(bnapi);
13235 		}
13236 	}
13237 }
13238 
13239 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
13240 {
13241 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
13242 	struct hwrm_ring_reset_input *req;
13243 	struct bnxt_napi *bnapi = rxr->bnapi;
13244 	struct bnxt_cp_ring_info *cpr;
13245 	u16 cp_ring_id;
13246 	int rc;
13247 
13248 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
13249 	if (rc)
13250 		return rc;
13251 
13252 	cpr = &bnapi->cp_ring;
13253 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
13254 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
13255 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
13256 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
13257 	return hwrm_req_send_silent(bp, req);
13258 }
13259 
13260 static void bnxt_reset_task(struct bnxt *bp, bool silent)
13261 {
13262 	if (!silent)
13263 		bnxt_dbg_dump_states(bp);
13264 	if (netif_running(bp->dev)) {
13265 		bnxt_close_nic(bp, !silent, false);
13266 		bnxt_open_nic(bp, !silent, false);
13267 	}
13268 }
13269 
13270 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
13271 {
13272 	struct bnxt *bp = netdev_priv(dev);
13273 
13274 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
13275 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
13276 }
13277 
13278 static void bnxt_fw_health_check(struct bnxt *bp)
13279 {
13280 	struct bnxt_fw_health *fw_health = bp->fw_health;
13281 	struct pci_dev *pdev = bp->pdev;
13282 	u32 val;
13283 
13284 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13285 		return;
13286 
13287 	/* Make sure it is enabled before checking the tmr_counter. */
13288 	smp_rmb();
13289 	if (fw_health->tmr_counter) {
13290 		fw_health->tmr_counter--;
13291 		return;
13292 	}
13293 
13294 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13295 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
13296 		fw_health->arrests++;
13297 		goto fw_reset;
13298 	}
13299 
13300 	fw_health->last_fw_heartbeat = val;
13301 
13302 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13303 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
13304 		fw_health->discoveries++;
13305 		goto fw_reset;
13306 	}
13307 
13308 	fw_health->tmr_counter = fw_health->tmr_multiplier;
13309 	return;
13310 
13311 fw_reset:
13312 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
13313 }
13314 
13315 static void bnxt_timer(struct timer_list *t)
13316 {
13317 	struct bnxt *bp = from_timer(bp, t, timer);
13318 	struct net_device *dev = bp->dev;
13319 
13320 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
13321 		return;
13322 
13323 	if (atomic_read(&bp->intr_sem) != 0)
13324 		goto bnxt_restart_timer;
13325 
13326 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
13327 		bnxt_fw_health_check(bp);
13328 
13329 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
13330 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
13331 
13332 	if (bnxt_tc_flower_enabled(bp))
13333 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
13334 
13335 #ifdef CONFIG_RFS_ACCEL
13336 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
13337 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13338 #endif /*CONFIG_RFS_ACCEL*/
13339 
13340 	if (bp->link_info.phy_retry) {
13341 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
13342 			bp->link_info.phy_retry = false;
13343 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
13344 		} else {
13345 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
13346 		}
13347 	}
13348 
13349 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
13350 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
13351 
13352 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
13353 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
13354 
13355 bnxt_restart_timer:
13356 	mod_timer(&bp->timer, jiffies + bp->current_interval);
13357 }
13358 
13359 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
13360 {
13361 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
13362 	 * set.  If the device is being closed, bnxt_close() may be holding
13363 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
13364 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
13365 	 */
13366 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13367 	rtnl_lock();
13368 }
13369 
13370 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
13371 {
13372 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13373 	rtnl_unlock();
13374 }
13375 
13376 /* Only called from bnxt_sp_task() */
13377 static void bnxt_reset(struct bnxt *bp, bool silent)
13378 {
13379 	bnxt_rtnl_lock_sp(bp);
13380 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
13381 		bnxt_reset_task(bp, silent);
13382 	bnxt_rtnl_unlock_sp(bp);
13383 }
13384 
13385 /* Only called from bnxt_sp_task() */
13386 static void bnxt_rx_ring_reset(struct bnxt *bp)
13387 {
13388 	int i;
13389 
13390 	bnxt_rtnl_lock_sp(bp);
13391 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13392 		bnxt_rtnl_unlock_sp(bp);
13393 		return;
13394 	}
13395 	/* Disable and flush TPA before resetting the RX ring */
13396 	if (bp->flags & BNXT_FLAG_TPA)
13397 		bnxt_set_tpa(bp, false);
13398 	for (i = 0; i < bp->rx_nr_rings; i++) {
13399 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
13400 		struct bnxt_cp_ring_info *cpr;
13401 		int rc;
13402 
13403 		if (!rxr->bnapi->in_reset)
13404 			continue;
13405 
13406 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
13407 		if (rc) {
13408 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
13409 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
13410 			else
13411 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
13412 					    rc);
13413 			bnxt_reset_task(bp, true);
13414 			break;
13415 		}
13416 		bnxt_free_one_rx_ring_skbs(bp, i);
13417 		rxr->rx_prod = 0;
13418 		rxr->rx_agg_prod = 0;
13419 		rxr->rx_sw_agg_prod = 0;
13420 		rxr->rx_next_cons = 0;
13421 		rxr->bnapi->in_reset = false;
13422 		bnxt_alloc_one_rx_ring(bp, i);
13423 		cpr = &rxr->bnapi->cp_ring;
13424 		cpr->sw_stats->rx.rx_resets++;
13425 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
13426 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
13427 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
13428 	}
13429 	if (bp->flags & BNXT_FLAG_TPA)
13430 		bnxt_set_tpa(bp, true);
13431 	bnxt_rtnl_unlock_sp(bp);
13432 }
13433 
13434 static void bnxt_fw_fatal_close(struct bnxt *bp)
13435 {
13436 	bnxt_tx_disable(bp);
13437 	bnxt_disable_napi(bp);
13438 	bnxt_disable_int_sync(bp);
13439 	bnxt_free_irq(bp);
13440 	bnxt_clear_int_mode(bp);
13441 	pci_disable_device(bp->pdev);
13442 }
13443 
13444 static void bnxt_fw_reset_close(struct bnxt *bp)
13445 {
13446 	/* When firmware is in fatal state, quiesce device and disable
13447 	 * bus master to prevent any potential bad DMAs before freeing
13448 	 * kernel memory.
13449 	 */
13450 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
13451 		u16 val = 0;
13452 
13453 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13454 		if (val == 0xffff)
13455 			bp->fw_reset_min_dsecs = 0;
13456 		bnxt_fw_fatal_close(bp);
13457 	}
13458 	__bnxt_close_nic(bp, true, false);
13459 	bnxt_vf_reps_free(bp);
13460 	bnxt_clear_int_mode(bp);
13461 	bnxt_hwrm_func_drv_unrgtr(bp);
13462 	if (pci_is_enabled(bp->pdev))
13463 		pci_disable_device(bp->pdev);
13464 	bnxt_free_ctx_mem(bp);
13465 }
13466 
13467 static bool is_bnxt_fw_ok(struct bnxt *bp)
13468 {
13469 	struct bnxt_fw_health *fw_health = bp->fw_health;
13470 	bool no_heartbeat = false, has_reset = false;
13471 	u32 val;
13472 
13473 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13474 	if (val == fw_health->last_fw_heartbeat)
13475 		no_heartbeat = true;
13476 
13477 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13478 	if (val != fw_health->last_fw_reset_cnt)
13479 		has_reset = true;
13480 
13481 	if (!no_heartbeat && has_reset)
13482 		return true;
13483 
13484 	return false;
13485 }
13486 
13487 /* rtnl_lock is acquired before calling this function */
13488 static void bnxt_force_fw_reset(struct bnxt *bp)
13489 {
13490 	struct bnxt_fw_health *fw_health = bp->fw_health;
13491 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13492 	u32 wait_dsecs;
13493 
13494 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
13495 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13496 		return;
13497 
13498 	if (ptp) {
13499 		unsigned long flags;
13500 
13501 		spin_lock_irqsave(&ptp->ptp_lock, flags);
13502 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13503 		spin_unlock_irqrestore(&ptp->ptp_lock, flags);
13504 	} else {
13505 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13506 	}
13507 	bnxt_fw_reset_close(bp);
13508 	wait_dsecs = fw_health->master_func_wait_dsecs;
13509 	if (fw_health->primary) {
13510 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
13511 			wait_dsecs = 0;
13512 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13513 	} else {
13514 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
13515 		wait_dsecs = fw_health->normal_func_wait_dsecs;
13516 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13517 	}
13518 
13519 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
13520 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
13521 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13522 }
13523 
13524 void bnxt_fw_exception(struct bnxt *bp)
13525 {
13526 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
13527 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13528 	bnxt_ulp_stop(bp);
13529 	bnxt_rtnl_lock_sp(bp);
13530 	bnxt_force_fw_reset(bp);
13531 	bnxt_rtnl_unlock_sp(bp);
13532 }
13533 
13534 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
13535  * < 0 on error.
13536  */
13537 static int bnxt_get_registered_vfs(struct bnxt *bp)
13538 {
13539 #ifdef CONFIG_BNXT_SRIOV
13540 	int rc;
13541 
13542 	if (!BNXT_PF(bp))
13543 		return 0;
13544 
13545 	rc = bnxt_hwrm_func_qcfg(bp);
13546 	if (rc) {
13547 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
13548 		return rc;
13549 	}
13550 	if (bp->pf.registered_vfs)
13551 		return bp->pf.registered_vfs;
13552 	if (bp->sriov_cfg)
13553 		return 1;
13554 #endif
13555 	return 0;
13556 }
13557 
13558 void bnxt_fw_reset(struct bnxt *bp)
13559 {
13560 	bnxt_ulp_stop(bp);
13561 	bnxt_rtnl_lock_sp(bp);
13562 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
13563 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13564 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13565 		int n = 0, tmo;
13566 
13567 		if (ptp) {
13568 			unsigned long flags;
13569 
13570 			spin_lock_irqsave(&ptp->ptp_lock, flags);
13571 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13572 			spin_unlock_irqrestore(&ptp->ptp_lock, flags);
13573 		} else {
13574 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13575 		}
13576 		if (bp->pf.active_vfs &&
13577 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
13578 			n = bnxt_get_registered_vfs(bp);
13579 		if (n < 0) {
13580 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
13581 				   n);
13582 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13583 			dev_close(bp->dev);
13584 			goto fw_reset_exit;
13585 		} else if (n > 0) {
13586 			u16 vf_tmo_dsecs = n * 10;
13587 
13588 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
13589 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
13590 			bp->fw_reset_state =
13591 				BNXT_FW_RESET_STATE_POLL_VF;
13592 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13593 			goto fw_reset_exit;
13594 		}
13595 		bnxt_fw_reset_close(bp);
13596 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13597 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13598 			tmo = HZ / 10;
13599 		} else {
13600 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13601 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13602 		}
13603 		bnxt_queue_fw_reset_work(bp, tmo);
13604 	}
13605 fw_reset_exit:
13606 	bnxt_rtnl_unlock_sp(bp);
13607 }
13608 
13609 static void bnxt_chk_missed_irq(struct bnxt *bp)
13610 {
13611 	int i;
13612 
13613 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13614 		return;
13615 
13616 	for (i = 0; i < bp->cp_nr_rings; i++) {
13617 		struct bnxt_napi *bnapi = bp->bnapi[i];
13618 		struct bnxt_cp_ring_info *cpr;
13619 		u32 fw_ring_id;
13620 		int j;
13621 
13622 		if (!bnapi)
13623 			continue;
13624 
13625 		cpr = &bnapi->cp_ring;
13626 		for (j = 0; j < cpr->cp_ring_count; j++) {
13627 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
13628 			u32 val[2];
13629 
13630 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
13631 				continue;
13632 
13633 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
13634 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
13635 				continue;
13636 			}
13637 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
13638 			bnxt_dbg_hwrm_ring_info_get(bp,
13639 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
13640 				fw_ring_id, &val[0], &val[1]);
13641 			cpr->sw_stats->cmn.missed_irqs++;
13642 		}
13643 	}
13644 }
13645 
13646 static void bnxt_cfg_ntp_filters(struct bnxt *);
13647 
13648 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
13649 {
13650 	struct bnxt_link_info *link_info = &bp->link_info;
13651 
13652 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
13653 		link_info->autoneg = BNXT_AUTONEG_SPEED;
13654 		if (bp->hwrm_spec_code >= 0x10201) {
13655 			if (link_info->auto_pause_setting &
13656 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
13657 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13658 		} else {
13659 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13660 		}
13661 		bnxt_set_auto_speed(link_info);
13662 	} else {
13663 		bnxt_set_force_speed(link_info);
13664 		link_info->req_duplex = link_info->duplex_setting;
13665 	}
13666 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
13667 		link_info->req_flow_ctrl =
13668 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
13669 	else
13670 		link_info->req_flow_ctrl = link_info->force_pause_setting;
13671 }
13672 
13673 static void bnxt_fw_echo_reply(struct bnxt *bp)
13674 {
13675 	struct bnxt_fw_health *fw_health = bp->fw_health;
13676 	struct hwrm_func_echo_response_input *req;
13677 	int rc;
13678 
13679 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13680 	if (rc)
13681 		return;
13682 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13683 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13684 	hwrm_req_send(bp, req);
13685 }
13686 
13687 static void bnxt_ulp_restart(struct bnxt *bp)
13688 {
13689 	bnxt_ulp_stop(bp);
13690 	bnxt_ulp_start(bp, 0);
13691 }
13692 
13693 static void bnxt_sp_task(struct work_struct *work)
13694 {
13695 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13696 
13697 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13698 	smp_mb__after_atomic();
13699 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13700 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13701 		return;
13702 	}
13703 
13704 	if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) {
13705 		bnxt_ulp_restart(bp);
13706 		bnxt_reenable_sriov(bp);
13707 	}
13708 
13709 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13710 		bnxt_cfg_rx_mode(bp);
13711 
13712 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13713 		bnxt_cfg_ntp_filters(bp);
13714 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13715 		bnxt_hwrm_exec_fwd_req(bp);
13716 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13717 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13718 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13719 		bnxt_hwrm_port_qstats(bp, 0);
13720 		bnxt_hwrm_port_qstats_ext(bp, 0);
13721 		bnxt_accumulate_all_stats(bp);
13722 	}
13723 
13724 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13725 		int rc;
13726 
13727 		mutex_lock(&bp->link_lock);
13728 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13729 				       &bp->sp_event))
13730 			bnxt_hwrm_phy_qcaps(bp);
13731 
13732 		rc = bnxt_update_link(bp, true);
13733 		if (rc)
13734 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13735 				   rc);
13736 
13737 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13738 				       &bp->sp_event))
13739 			bnxt_init_ethtool_link_settings(bp);
13740 		mutex_unlock(&bp->link_lock);
13741 	}
13742 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13743 		int rc;
13744 
13745 		mutex_lock(&bp->link_lock);
13746 		rc = bnxt_update_phy_setting(bp);
13747 		mutex_unlock(&bp->link_lock);
13748 		if (rc) {
13749 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13750 		} else {
13751 			bp->link_info.phy_retry = false;
13752 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13753 		}
13754 	}
13755 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13756 		mutex_lock(&bp->link_lock);
13757 		bnxt_get_port_module_status(bp);
13758 		mutex_unlock(&bp->link_lock);
13759 	}
13760 
13761 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13762 		bnxt_tc_flow_stats_work(bp);
13763 
13764 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13765 		bnxt_chk_missed_irq(bp);
13766 
13767 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13768 		bnxt_fw_echo_reply(bp);
13769 
13770 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13771 		bnxt_hwmon_notify_event(bp);
13772 
13773 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13774 	 * must be the last functions to be called before exiting.
13775 	 */
13776 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13777 		bnxt_reset(bp, false);
13778 
13779 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13780 		bnxt_reset(bp, true);
13781 
13782 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13783 		bnxt_rx_ring_reset(bp);
13784 
13785 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13786 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13787 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13788 			bnxt_devlink_health_fw_report(bp);
13789 		else
13790 			bnxt_fw_reset(bp);
13791 	}
13792 
13793 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13794 		if (!is_bnxt_fw_ok(bp))
13795 			bnxt_devlink_health_fw_report(bp);
13796 	}
13797 
13798 	smp_mb__before_atomic();
13799 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13800 }
13801 
13802 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13803 				int *max_cp);
13804 
13805 /* Under rtnl_lock */
13806 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13807 		     int tx_xdp)
13808 {
13809 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13810 	struct bnxt_hw_rings hwr = {0};
13811 	int rx_rings = rx;
13812 	int rc;
13813 
13814 	if (tcs)
13815 		tx_sets = tcs;
13816 
13817 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13818 
13819 	if (max_rx < rx_rings)
13820 		return -ENOMEM;
13821 
13822 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13823 		rx_rings <<= 1;
13824 
13825 	hwr.rx = rx_rings;
13826 	hwr.tx = tx * tx_sets + tx_xdp;
13827 	if (max_tx < hwr.tx)
13828 		return -ENOMEM;
13829 
13830 	hwr.vnic = bnxt_get_total_vnics(bp, rx);
13831 
13832 	tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp);
13833 	hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13834 	if (max_cp < hwr.cp)
13835 		return -ENOMEM;
13836 	hwr.stat = hwr.cp;
13837 	if (BNXT_NEW_RM(bp)) {
13838 		hwr.cp += bnxt_get_ulp_msix_num_in_use(bp);
13839 		hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp);
13840 		hwr.grp = rx;
13841 		hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
13842 	}
13843 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
13844 		hwr.cp_p5 = hwr.tx + rx;
13845 	rc = bnxt_hwrm_check_rings(bp, &hwr);
13846 	if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) {
13847 		if (!bnxt_ulp_registered(bp->edev)) {
13848 			hwr.cp += bnxt_get_ulp_msix_num(bp);
13849 			hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp));
13850 		}
13851 		if (hwr.cp > bp->total_irqs) {
13852 			int total_msix = bnxt_change_msix(bp, hwr.cp);
13853 
13854 			if (total_msix < hwr.cp) {
13855 				netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n",
13856 					    hwr.cp, total_msix);
13857 				rc = -ENOSPC;
13858 			}
13859 		}
13860 	}
13861 	return rc;
13862 }
13863 
13864 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13865 {
13866 	if (bp->bar2) {
13867 		pci_iounmap(pdev, bp->bar2);
13868 		bp->bar2 = NULL;
13869 	}
13870 
13871 	if (bp->bar1) {
13872 		pci_iounmap(pdev, bp->bar1);
13873 		bp->bar1 = NULL;
13874 	}
13875 
13876 	if (bp->bar0) {
13877 		pci_iounmap(pdev, bp->bar0);
13878 		bp->bar0 = NULL;
13879 	}
13880 }
13881 
13882 static void bnxt_cleanup_pci(struct bnxt *bp)
13883 {
13884 	bnxt_unmap_bars(bp, bp->pdev);
13885 	pci_release_regions(bp->pdev);
13886 	if (pci_is_enabled(bp->pdev))
13887 		pci_disable_device(bp->pdev);
13888 }
13889 
13890 static void bnxt_init_dflt_coal(struct bnxt *bp)
13891 {
13892 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13893 	struct bnxt_coal *coal;
13894 	u16 flags = 0;
13895 
13896 	if (coal_cap->cmpl_params &
13897 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13898 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13899 
13900 	/* Tick values in micro seconds.
13901 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13902 	 */
13903 	coal = &bp->rx_coal;
13904 	coal->coal_ticks = 10;
13905 	coal->coal_bufs = 30;
13906 	coal->coal_ticks_irq = 1;
13907 	coal->coal_bufs_irq = 2;
13908 	coal->idle_thresh = 50;
13909 	coal->bufs_per_record = 2;
13910 	coal->budget = 64;		/* NAPI budget */
13911 	coal->flags = flags;
13912 
13913 	coal = &bp->tx_coal;
13914 	coal->coal_ticks = 28;
13915 	coal->coal_bufs = 30;
13916 	coal->coal_ticks_irq = 2;
13917 	coal->coal_bufs_irq = 2;
13918 	coal->bufs_per_record = 1;
13919 	coal->flags = flags;
13920 
13921 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13922 }
13923 
13924 /* FW that pre-reserves 1 VNIC per function */
13925 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13926 {
13927 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13928 
13929 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13930 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13931 		return true;
13932 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13933 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13934 		return true;
13935 	return false;
13936 }
13937 
13938 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13939 {
13940 	int rc;
13941 
13942 	bp->fw_cap = 0;
13943 	rc = bnxt_hwrm_ver_get(bp);
13944 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
13945 	 * so wait before continuing with recovery.
13946 	 */
13947 	if (rc)
13948 		msleep(100);
13949 	bnxt_try_map_fw_health_reg(bp);
13950 	if (rc) {
13951 		rc = bnxt_try_recover_fw(bp);
13952 		if (rc)
13953 			return rc;
13954 		rc = bnxt_hwrm_ver_get(bp);
13955 		if (rc)
13956 			return rc;
13957 	}
13958 
13959 	bnxt_nvm_cfg_ver_get(bp);
13960 
13961 	rc = bnxt_hwrm_func_reset(bp);
13962 	if (rc)
13963 		return -ENODEV;
13964 
13965 	bnxt_hwrm_fw_set_time(bp);
13966 	return 0;
13967 }
13968 
13969 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13970 {
13971 	int rc;
13972 
13973 	/* Get the MAX capabilities for this function */
13974 	rc = bnxt_hwrm_func_qcaps(bp);
13975 	if (rc) {
13976 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13977 			   rc);
13978 		return -ENODEV;
13979 	}
13980 
13981 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13982 	if (rc)
13983 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13984 			    rc);
13985 
13986 	if (bnxt_alloc_fw_health(bp)) {
13987 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13988 	} else {
13989 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13990 		if (rc)
13991 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13992 				    rc);
13993 	}
13994 
13995 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13996 	if (rc)
13997 		return -ENODEV;
13998 
13999 	rc = bnxt_alloc_crash_dump_mem(bp);
14000 	if (rc)
14001 		netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n",
14002 			    rc);
14003 	if (!rc) {
14004 		rc = bnxt_hwrm_crash_dump_mem_cfg(bp);
14005 		if (rc) {
14006 			bnxt_free_crash_dump_mem(bp);
14007 			netdev_warn(bp->dev,
14008 				    "hwrm crash dump mem failure rc: %d\n", rc);
14009 		}
14010 	}
14011 
14012 	if (bnxt_fw_pre_resv_vnics(bp))
14013 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
14014 
14015 	bnxt_hwrm_func_qcfg(bp);
14016 	bnxt_hwrm_vnic_qcaps(bp);
14017 	bnxt_hwrm_port_led_qcaps(bp);
14018 	bnxt_ethtool_init(bp);
14019 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
14020 		__bnxt_hwrm_ptp_qcfg(bp);
14021 	bnxt_dcb_init(bp);
14022 	bnxt_hwmon_init(bp);
14023 	return 0;
14024 }
14025 
14026 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
14027 {
14028 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
14029 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
14030 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
14031 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
14032 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
14033 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
14034 		bp->rss_hash_delta = bp->rss_hash_cfg;
14035 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
14036 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
14037 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
14038 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
14039 	}
14040 }
14041 
14042 static void bnxt_set_dflt_rfs(struct bnxt *bp)
14043 {
14044 	struct net_device *dev = bp->dev;
14045 
14046 	dev->hw_features &= ~NETIF_F_NTUPLE;
14047 	dev->features &= ~NETIF_F_NTUPLE;
14048 	bp->flags &= ~BNXT_FLAG_RFS;
14049 	if (bnxt_rfs_supported(bp)) {
14050 		dev->hw_features |= NETIF_F_NTUPLE;
14051 		if (bnxt_rfs_capable(bp, false)) {
14052 			bp->flags |= BNXT_FLAG_RFS;
14053 			dev->features |= NETIF_F_NTUPLE;
14054 		}
14055 	}
14056 }
14057 
14058 static void bnxt_fw_init_one_p3(struct bnxt *bp)
14059 {
14060 	struct pci_dev *pdev = bp->pdev;
14061 
14062 	bnxt_set_dflt_rss_hash_type(bp);
14063 	bnxt_set_dflt_rfs(bp);
14064 
14065 	bnxt_get_wol_settings(bp);
14066 	if (bp->flags & BNXT_FLAG_WOL_CAP)
14067 		device_set_wakeup_enable(&pdev->dev, bp->wol);
14068 	else
14069 		device_set_wakeup_capable(&pdev->dev, false);
14070 
14071 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
14072 	bnxt_hwrm_coal_params_qcaps(bp);
14073 }
14074 
14075 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
14076 
14077 int bnxt_fw_init_one(struct bnxt *bp)
14078 {
14079 	int rc;
14080 
14081 	rc = bnxt_fw_init_one_p1(bp);
14082 	if (rc) {
14083 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
14084 		return rc;
14085 	}
14086 	rc = bnxt_fw_init_one_p2(bp);
14087 	if (rc) {
14088 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
14089 		return rc;
14090 	}
14091 	rc = bnxt_probe_phy(bp, false);
14092 	if (rc)
14093 		return rc;
14094 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
14095 	if (rc)
14096 		return rc;
14097 
14098 	bnxt_fw_init_one_p3(bp);
14099 	return 0;
14100 }
14101 
14102 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
14103 {
14104 	struct bnxt_fw_health *fw_health = bp->fw_health;
14105 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
14106 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
14107 	u32 reg_type, reg_off, delay_msecs;
14108 
14109 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
14110 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
14111 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
14112 	switch (reg_type) {
14113 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
14114 		pci_write_config_dword(bp->pdev, reg_off, val);
14115 		break;
14116 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
14117 		writel(reg_off & BNXT_GRC_BASE_MASK,
14118 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
14119 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
14120 		fallthrough;
14121 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
14122 		writel(val, bp->bar0 + reg_off);
14123 		break;
14124 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
14125 		writel(val, bp->bar1 + reg_off);
14126 		break;
14127 	}
14128 	if (delay_msecs) {
14129 		pci_read_config_dword(bp->pdev, 0, &val);
14130 		msleep(delay_msecs);
14131 	}
14132 }
14133 
14134 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
14135 {
14136 	struct hwrm_func_qcfg_output *resp;
14137 	struct hwrm_func_qcfg_input *req;
14138 	bool result = true; /* firmware will enforce if unknown */
14139 
14140 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
14141 		return result;
14142 
14143 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
14144 		return result;
14145 
14146 	req->fid = cpu_to_le16(0xffff);
14147 	resp = hwrm_req_hold(bp, req);
14148 	if (!hwrm_req_send(bp, req))
14149 		result = !!(le16_to_cpu(resp->flags) &
14150 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
14151 	hwrm_req_drop(bp, req);
14152 	return result;
14153 }
14154 
14155 static void bnxt_reset_all(struct bnxt *bp)
14156 {
14157 	struct bnxt_fw_health *fw_health = bp->fw_health;
14158 	int i, rc;
14159 
14160 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14161 		bnxt_fw_reset_via_optee(bp);
14162 		bp->fw_reset_timestamp = jiffies;
14163 		return;
14164 	}
14165 
14166 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
14167 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
14168 			bnxt_fw_reset_writel(bp, i);
14169 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
14170 		struct hwrm_fw_reset_input *req;
14171 
14172 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
14173 		if (!rc) {
14174 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
14175 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
14176 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
14177 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
14178 			rc = hwrm_req_send(bp, req);
14179 		}
14180 		if (rc != -ENODEV)
14181 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
14182 	}
14183 	bp->fw_reset_timestamp = jiffies;
14184 }
14185 
14186 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
14187 {
14188 	return time_after(jiffies, bp->fw_reset_timestamp +
14189 			  (bp->fw_reset_max_dsecs * HZ / 10));
14190 }
14191 
14192 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
14193 {
14194 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14195 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
14196 		bnxt_dl_health_fw_status_update(bp, false);
14197 	bp->fw_reset_state = 0;
14198 	dev_close(bp->dev);
14199 }
14200 
14201 static void bnxt_fw_reset_task(struct work_struct *work)
14202 {
14203 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
14204 	int rc = 0;
14205 
14206 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
14207 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
14208 		return;
14209 	}
14210 
14211 	switch (bp->fw_reset_state) {
14212 	case BNXT_FW_RESET_STATE_POLL_VF: {
14213 		int n = bnxt_get_registered_vfs(bp);
14214 		int tmo;
14215 
14216 		if (n < 0) {
14217 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
14218 				   n, jiffies_to_msecs(jiffies -
14219 				   bp->fw_reset_timestamp));
14220 			goto fw_reset_abort;
14221 		} else if (n > 0) {
14222 			if (bnxt_fw_reset_timeout(bp)) {
14223 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14224 				bp->fw_reset_state = 0;
14225 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
14226 					   n);
14227 				goto ulp_start;
14228 			}
14229 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14230 			return;
14231 		}
14232 		bp->fw_reset_timestamp = jiffies;
14233 		rtnl_lock();
14234 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
14235 			bnxt_fw_reset_abort(bp, rc);
14236 			rtnl_unlock();
14237 			goto ulp_start;
14238 		}
14239 		bnxt_fw_reset_close(bp);
14240 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14241 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
14242 			tmo = HZ / 10;
14243 		} else {
14244 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14245 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
14246 		}
14247 		rtnl_unlock();
14248 		bnxt_queue_fw_reset_work(bp, tmo);
14249 		return;
14250 	}
14251 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
14252 		u32 val;
14253 
14254 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14255 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
14256 		    !bnxt_fw_reset_timeout(bp)) {
14257 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14258 			return;
14259 		}
14260 
14261 		if (!bp->fw_health->primary) {
14262 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
14263 
14264 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14265 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
14266 			return;
14267 		}
14268 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
14269 	}
14270 		fallthrough;
14271 	case BNXT_FW_RESET_STATE_RESET_FW:
14272 		bnxt_reset_all(bp);
14273 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14274 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
14275 		return;
14276 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
14277 		bnxt_inv_fw_health_reg(bp);
14278 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
14279 		    !bp->fw_reset_min_dsecs) {
14280 			u16 val;
14281 
14282 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
14283 			if (val == 0xffff) {
14284 				if (bnxt_fw_reset_timeout(bp)) {
14285 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
14286 					rc = -ETIMEDOUT;
14287 					goto fw_reset_abort;
14288 				}
14289 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
14290 				return;
14291 			}
14292 		}
14293 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
14294 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
14295 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
14296 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
14297 			bnxt_dl_remote_reload(bp);
14298 		if (pci_enable_device(bp->pdev)) {
14299 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
14300 			rc = -ENODEV;
14301 			goto fw_reset_abort;
14302 		}
14303 		pci_set_master(bp->pdev);
14304 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
14305 		fallthrough;
14306 	case BNXT_FW_RESET_STATE_POLL_FW:
14307 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
14308 		rc = bnxt_hwrm_poll(bp);
14309 		if (rc) {
14310 			if (bnxt_fw_reset_timeout(bp)) {
14311 				netdev_err(bp->dev, "Firmware reset aborted\n");
14312 				goto fw_reset_abort_status;
14313 			}
14314 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14315 			return;
14316 		}
14317 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
14318 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
14319 		fallthrough;
14320 	case BNXT_FW_RESET_STATE_OPENING:
14321 		while (!rtnl_trylock()) {
14322 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14323 			return;
14324 		}
14325 		rc = bnxt_open(bp->dev);
14326 		if (rc) {
14327 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
14328 			bnxt_fw_reset_abort(bp, rc);
14329 			rtnl_unlock();
14330 			goto ulp_start;
14331 		}
14332 
14333 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
14334 		    bp->fw_health->enabled) {
14335 			bp->fw_health->last_fw_reset_cnt =
14336 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
14337 		}
14338 		bp->fw_reset_state = 0;
14339 		/* Make sure fw_reset_state is 0 before clearing the flag */
14340 		smp_mb__before_atomic();
14341 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14342 		bnxt_ptp_reapply_pps(bp);
14343 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
14344 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
14345 			bnxt_dl_health_fw_recovery_done(bp);
14346 			bnxt_dl_health_fw_status_update(bp, true);
14347 		}
14348 		rtnl_unlock();
14349 		bnxt_ulp_start(bp, 0);
14350 		bnxt_reenable_sriov(bp);
14351 		rtnl_lock();
14352 		bnxt_vf_reps_alloc(bp);
14353 		bnxt_vf_reps_open(bp);
14354 		rtnl_unlock();
14355 		break;
14356 	}
14357 	return;
14358 
14359 fw_reset_abort_status:
14360 	if (bp->fw_health->status_reliable ||
14361 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
14362 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14363 
14364 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
14365 	}
14366 fw_reset_abort:
14367 	rtnl_lock();
14368 	bnxt_fw_reset_abort(bp, rc);
14369 	rtnl_unlock();
14370 ulp_start:
14371 	bnxt_ulp_start(bp, rc);
14372 }
14373 
14374 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
14375 {
14376 	int rc;
14377 	struct bnxt *bp = netdev_priv(dev);
14378 
14379 	SET_NETDEV_DEV(dev, &pdev->dev);
14380 
14381 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
14382 	rc = pci_enable_device(pdev);
14383 	if (rc) {
14384 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
14385 		goto init_err;
14386 	}
14387 
14388 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
14389 		dev_err(&pdev->dev,
14390 			"Cannot find PCI device base address, aborting\n");
14391 		rc = -ENODEV;
14392 		goto init_err_disable;
14393 	}
14394 
14395 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
14396 	if (rc) {
14397 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
14398 		goto init_err_disable;
14399 	}
14400 
14401 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
14402 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
14403 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
14404 		rc = -EIO;
14405 		goto init_err_release;
14406 	}
14407 
14408 	pci_set_master(pdev);
14409 
14410 	bp->dev = dev;
14411 	bp->pdev = pdev;
14412 
14413 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
14414 	 * determines the BAR size.
14415 	 */
14416 	bp->bar0 = pci_ioremap_bar(pdev, 0);
14417 	if (!bp->bar0) {
14418 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
14419 		rc = -ENOMEM;
14420 		goto init_err_release;
14421 	}
14422 
14423 	bp->bar2 = pci_ioremap_bar(pdev, 4);
14424 	if (!bp->bar2) {
14425 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
14426 		rc = -ENOMEM;
14427 		goto init_err_release;
14428 	}
14429 
14430 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
14431 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
14432 
14433 	spin_lock_init(&bp->ntp_fltr_lock);
14434 #if BITS_PER_LONG == 32
14435 	spin_lock_init(&bp->db_lock);
14436 #endif
14437 
14438 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
14439 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
14440 
14441 	timer_setup(&bp->timer, bnxt_timer, 0);
14442 	bp->current_interval = BNXT_TIMER_INTERVAL;
14443 
14444 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
14445 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
14446 
14447 	clear_bit(BNXT_STATE_OPEN, &bp->state);
14448 	return 0;
14449 
14450 init_err_release:
14451 	bnxt_unmap_bars(bp, pdev);
14452 	pci_release_regions(pdev);
14453 
14454 init_err_disable:
14455 	pci_disable_device(pdev);
14456 
14457 init_err:
14458 	return rc;
14459 }
14460 
14461 /* rtnl_lock held */
14462 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
14463 {
14464 	struct sockaddr *addr = p;
14465 	struct bnxt *bp = netdev_priv(dev);
14466 	int rc = 0;
14467 
14468 	if (!is_valid_ether_addr(addr->sa_data))
14469 		return -EADDRNOTAVAIL;
14470 
14471 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
14472 		return 0;
14473 
14474 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
14475 	if (rc)
14476 		return rc;
14477 
14478 	eth_hw_addr_set(dev, addr->sa_data);
14479 	bnxt_clear_usr_fltrs(bp, true);
14480 	if (netif_running(dev)) {
14481 		bnxt_close_nic(bp, false, false);
14482 		rc = bnxt_open_nic(bp, false, false);
14483 	}
14484 
14485 	return rc;
14486 }
14487 
14488 /* rtnl_lock held */
14489 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
14490 {
14491 	struct bnxt *bp = netdev_priv(dev);
14492 
14493 	if (netif_running(dev))
14494 		bnxt_close_nic(bp, true, false);
14495 
14496 	WRITE_ONCE(dev->mtu, new_mtu);
14497 	bnxt_set_ring_params(bp);
14498 
14499 	if (netif_running(dev))
14500 		return bnxt_open_nic(bp, true, false);
14501 
14502 	return 0;
14503 }
14504 
14505 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
14506 {
14507 	struct bnxt *bp = netdev_priv(dev);
14508 	bool sh = false;
14509 	int rc, tx_cp;
14510 
14511 	if (tc > bp->max_tc) {
14512 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
14513 			   tc, bp->max_tc);
14514 		return -EINVAL;
14515 	}
14516 
14517 	if (bp->num_tc == tc)
14518 		return 0;
14519 
14520 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
14521 		sh = true;
14522 
14523 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
14524 			      sh, tc, bp->tx_nr_rings_xdp);
14525 	if (rc)
14526 		return rc;
14527 
14528 	/* Needs to close the device and do hw resource re-allocations */
14529 	if (netif_running(bp->dev))
14530 		bnxt_close_nic(bp, true, false);
14531 
14532 	if (tc) {
14533 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
14534 		netdev_set_num_tc(dev, tc);
14535 		bp->num_tc = tc;
14536 	} else {
14537 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14538 		netdev_reset_tc(dev);
14539 		bp->num_tc = 0;
14540 	}
14541 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
14542 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
14543 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
14544 			       tx_cp + bp->rx_nr_rings;
14545 
14546 	if (netif_running(bp->dev))
14547 		return bnxt_open_nic(bp, true, false);
14548 
14549 	return 0;
14550 }
14551 
14552 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
14553 				  void *cb_priv)
14554 {
14555 	struct bnxt *bp = cb_priv;
14556 
14557 	if (!bnxt_tc_flower_enabled(bp) ||
14558 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
14559 		return -EOPNOTSUPP;
14560 
14561 	switch (type) {
14562 	case TC_SETUP_CLSFLOWER:
14563 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
14564 	default:
14565 		return -EOPNOTSUPP;
14566 	}
14567 }
14568 
14569 LIST_HEAD(bnxt_block_cb_list);
14570 
14571 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
14572 			 void *type_data)
14573 {
14574 	struct bnxt *bp = netdev_priv(dev);
14575 
14576 	switch (type) {
14577 	case TC_SETUP_BLOCK:
14578 		return flow_block_cb_setup_simple(type_data,
14579 						  &bnxt_block_cb_list,
14580 						  bnxt_setup_tc_block_cb,
14581 						  bp, bp, true);
14582 	case TC_SETUP_QDISC_MQPRIO: {
14583 		struct tc_mqprio_qopt *mqprio = type_data;
14584 
14585 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
14586 
14587 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
14588 	}
14589 	default:
14590 		return -EOPNOTSUPP;
14591 	}
14592 }
14593 
14594 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
14595 			    const struct sk_buff *skb)
14596 {
14597 	struct bnxt_vnic_info *vnic;
14598 
14599 	if (skb)
14600 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
14601 
14602 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
14603 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
14604 }
14605 
14606 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
14607 			   u32 idx)
14608 {
14609 	struct hlist_head *head;
14610 	int bit_id;
14611 
14612 	spin_lock_bh(&bp->ntp_fltr_lock);
14613 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0);
14614 	if (bit_id < 0) {
14615 		spin_unlock_bh(&bp->ntp_fltr_lock);
14616 		return -ENOMEM;
14617 	}
14618 
14619 	fltr->base.sw_id = (u16)bit_id;
14620 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
14621 	fltr->base.flags |= BNXT_ACT_RING_DST;
14622 	head = &bp->ntp_fltr_hash_tbl[idx];
14623 	hlist_add_head_rcu(&fltr->base.hash, head);
14624 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
14625 	bnxt_insert_usr_fltr(bp, &fltr->base);
14626 	bp->ntp_fltr_count++;
14627 	spin_unlock_bh(&bp->ntp_fltr_lock);
14628 	return 0;
14629 }
14630 
14631 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
14632 			    struct bnxt_ntuple_filter *f2)
14633 {
14634 	struct bnxt_flow_masks *masks1 = &f1->fmasks;
14635 	struct bnxt_flow_masks *masks2 = &f2->fmasks;
14636 	struct flow_keys *keys1 = &f1->fkeys;
14637 	struct flow_keys *keys2 = &f2->fkeys;
14638 
14639 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
14640 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
14641 		return false;
14642 
14643 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
14644 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
14645 		    masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src ||
14646 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst ||
14647 		    masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst)
14648 			return false;
14649 	} else {
14650 		if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src,
14651 				     &keys2->addrs.v6addrs.src) ||
14652 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.src,
14653 				     &masks2->addrs.v6addrs.src) ||
14654 		    !ipv6_addr_equal(&keys1->addrs.v6addrs.dst,
14655 				     &keys2->addrs.v6addrs.dst) ||
14656 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.dst,
14657 				     &masks2->addrs.v6addrs.dst))
14658 			return false;
14659 	}
14660 
14661 	return keys1->ports.src == keys2->ports.src &&
14662 	       masks1->ports.src == masks2->ports.src &&
14663 	       keys1->ports.dst == keys2->ports.dst &&
14664 	       masks1->ports.dst == masks2->ports.dst &&
14665 	       keys1->control.flags == keys2->control.flags &&
14666 	       f1->l2_fltr == f2->l2_fltr;
14667 }
14668 
14669 struct bnxt_ntuple_filter *
14670 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
14671 				struct bnxt_ntuple_filter *fltr, u32 idx)
14672 {
14673 	struct bnxt_ntuple_filter *f;
14674 	struct hlist_head *head;
14675 
14676 	head = &bp->ntp_fltr_hash_tbl[idx];
14677 	hlist_for_each_entry_rcu(f, head, base.hash) {
14678 		if (bnxt_fltr_match(f, fltr))
14679 			return f;
14680 	}
14681 	return NULL;
14682 }
14683 
14684 #ifdef CONFIG_RFS_ACCEL
14685 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
14686 			      u16 rxq_index, u32 flow_id)
14687 {
14688 	struct bnxt *bp = netdev_priv(dev);
14689 	struct bnxt_ntuple_filter *fltr, *new_fltr;
14690 	struct flow_keys *fkeys;
14691 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
14692 	struct bnxt_l2_filter *l2_fltr;
14693 	int rc = 0, idx;
14694 	u32 flags;
14695 
14696 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
14697 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
14698 		atomic_inc(&l2_fltr->refcnt);
14699 	} else {
14700 		struct bnxt_l2_key key;
14701 
14702 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
14703 		key.vlan = 0;
14704 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
14705 		if (!l2_fltr)
14706 			return -EINVAL;
14707 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
14708 			bnxt_del_l2_filter(bp, l2_fltr);
14709 			return -EINVAL;
14710 		}
14711 	}
14712 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
14713 	if (!new_fltr) {
14714 		bnxt_del_l2_filter(bp, l2_fltr);
14715 		return -ENOMEM;
14716 	}
14717 
14718 	fkeys = &new_fltr->fkeys;
14719 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
14720 		rc = -EPROTONOSUPPORT;
14721 		goto err_free;
14722 	}
14723 
14724 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
14725 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14726 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14727 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14728 		rc = -EPROTONOSUPPORT;
14729 		goto err_free;
14730 	}
14731 	new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL;
14732 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
14733 		if (bp->hwrm_spec_code < 0x10601) {
14734 			rc = -EPROTONOSUPPORT;
14735 			goto err_free;
14736 		}
14737 		new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL;
14738 	}
14739 	flags = fkeys->control.flags;
14740 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14741 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14742 		rc = -EPROTONOSUPPORT;
14743 		goto err_free;
14744 	}
14745 	new_fltr->l2_fltr = l2_fltr;
14746 
14747 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14748 	rcu_read_lock();
14749 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14750 	if (fltr) {
14751 		rc = fltr->base.sw_id;
14752 		rcu_read_unlock();
14753 		goto err_free;
14754 	}
14755 	rcu_read_unlock();
14756 
14757 	new_fltr->flow_id = flow_id;
14758 	new_fltr->base.rxq = rxq_index;
14759 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14760 	if (!rc) {
14761 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14762 		return new_fltr->base.sw_id;
14763 	}
14764 
14765 err_free:
14766 	bnxt_del_l2_filter(bp, l2_fltr);
14767 	kfree(new_fltr);
14768 	return rc;
14769 }
14770 #endif
14771 
14772 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14773 {
14774 	spin_lock_bh(&bp->ntp_fltr_lock);
14775 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14776 		spin_unlock_bh(&bp->ntp_fltr_lock);
14777 		return;
14778 	}
14779 	hlist_del_rcu(&fltr->base.hash);
14780 	bnxt_del_one_usr_fltr(bp, &fltr->base);
14781 	bp->ntp_fltr_count--;
14782 	spin_unlock_bh(&bp->ntp_fltr_lock);
14783 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14784 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14785 	kfree_rcu(fltr, base.rcu);
14786 }
14787 
14788 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14789 {
14790 #ifdef CONFIG_RFS_ACCEL
14791 	int i;
14792 
14793 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14794 		struct hlist_head *head;
14795 		struct hlist_node *tmp;
14796 		struct bnxt_ntuple_filter *fltr;
14797 		int rc;
14798 
14799 		head = &bp->ntp_fltr_hash_tbl[i];
14800 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14801 			bool del = false;
14802 
14803 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14804 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14805 					continue;
14806 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14807 							fltr->flow_id,
14808 							fltr->base.sw_id)) {
14809 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14810 									 fltr);
14811 					del = true;
14812 				}
14813 			} else {
14814 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14815 								       fltr);
14816 				if (rc)
14817 					del = true;
14818 				else
14819 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14820 			}
14821 
14822 			if (del)
14823 				bnxt_del_ntp_filter(bp, fltr);
14824 		}
14825 	}
14826 #endif
14827 }
14828 
14829 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14830 				    unsigned int entry, struct udp_tunnel_info *ti)
14831 {
14832 	struct bnxt *bp = netdev_priv(netdev);
14833 	unsigned int cmd;
14834 
14835 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14836 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14837 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14838 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14839 	else
14840 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14841 
14842 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14843 }
14844 
14845 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14846 				      unsigned int entry, struct udp_tunnel_info *ti)
14847 {
14848 	struct bnxt *bp = netdev_priv(netdev);
14849 	unsigned int cmd;
14850 
14851 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14852 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14853 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14854 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14855 	else
14856 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14857 
14858 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14859 }
14860 
14861 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14862 	.set_port	= bnxt_udp_tunnel_set_port,
14863 	.unset_port	= bnxt_udp_tunnel_unset_port,
14864 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14865 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14866 	.tables		= {
14867 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14868 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14869 	},
14870 }, bnxt_udp_tunnels_p7 = {
14871 	.set_port	= bnxt_udp_tunnel_set_port,
14872 	.unset_port	= bnxt_udp_tunnel_unset_port,
14873 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14874 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14875 	.tables		= {
14876 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14877 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14878 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14879 	},
14880 };
14881 
14882 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14883 			       struct net_device *dev, u32 filter_mask,
14884 			       int nlflags)
14885 {
14886 	struct bnxt *bp = netdev_priv(dev);
14887 
14888 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14889 				       nlflags, filter_mask, NULL);
14890 }
14891 
14892 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14893 			       u16 flags, struct netlink_ext_ack *extack)
14894 {
14895 	struct bnxt *bp = netdev_priv(dev);
14896 	struct nlattr *attr, *br_spec;
14897 	int rem, rc = 0;
14898 
14899 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14900 		return -EOPNOTSUPP;
14901 
14902 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14903 	if (!br_spec)
14904 		return -EINVAL;
14905 
14906 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
14907 		u16 mode;
14908 
14909 		mode = nla_get_u16(attr);
14910 		if (mode == bp->br_mode)
14911 			break;
14912 
14913 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14914 		if (!rc)
14915 			bp->br_mode = mode;
14916 		break;
14917 	}
14918 	return rc;
14919 }
14920 
14921 int bnxt_get_port_parent_id(struct net_device *dev,
14922 			    struct netdev_phys_item_id *ppid)
14923 {
14924 	struct bnxt *bp = netdev_priv(dev);
14925 
14926 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14927 		return -EOPNOTSUPP;
14928 
14929 	/* The PF and it's VF-reps only support the switchdev framework */
14930 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14931 		return -EOPNOTSUPP;
14932 
14933 	ppid->id_len = sizeof(bp->dsn);
14934 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14935 
14936 	return 0;
14937 }
14938 
14939 static const struct net_device_ops bnxt_netdev_ops = {
14940 	.ndo_open		= bnxt_open,
14941 	.ndo_start_xmit		= bnxt_start_xmit,
14942 	.ndo_stop		= bnxt_close,
14943 	.ndo_get_stats64	= bnxt_get_stats64,
14944 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14945 	.ndo_eth_ioctl		= bnxt_ioctl,
14946 	.ndo_validate_addr	= eth_validate_addr,
14947 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14948 	.ndo_change_mtu		= bnxt_change_mtu,
14949 	.ndo_fix_features	= bnxt_fix_features,
14950 	.ndo_set_features	= bnxt_set_features,
14951 	.ndo_features_check	= bnxt_features_check,
14952 	.ndo_tx_timeout		= bnxt_tx_timeout,
14953 #ifdef CONFIG_BNXT_SRIOV
14954 	.ndo_get_vf_config	= bnxt_get_vf_config,
14955 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14956 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14957 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14958 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14959 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14960 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14961 #endif
14962 	.ndo_setup_tc           = bnxt_setup_tc,
14963 #ifdef CONFIG_RFS_ACCEL
14964 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14965 #endif
14966 	.ndo_bpf		= bnxt_xdp,
14967 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14968 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14969 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14970 };
14971 
14972 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i,
14973 				    struct netdev_queue_stats_rx *stats)
14974 {
14975 	struct bnxt *bp = netdev_priv(dev);
14976 	struct bnxt_cp_ring_info *cpr;
14977 	u64 *sw;
14978 
14979 	cpr = &bp->bnapi[i]->cp_ring;
14980 	sw = cpr->stats.sw_stats;
14981 
14982 	stats->packets = 0;
14983 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
14984 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
14985 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
14986 
14987 	stats->bytes = 0;
14988 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
14989 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
14990 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
14991 
14992 	stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards;
14993 }
14994 
14995 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i,
14996 				    struct netdev_queue_stats_tx *stats)
14997 {
14998 	struct bnxt *bp = netdev_priv(dev);
14999 	struct bnxt_napi *bnapi;
15000 	u64 *sw;
15001 
15002 	bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi;
15003 	sw = bnapi->cp_ring.stats.sw_stats;
15004 
15005 	stats->packets = 0;
15006 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
15007 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
15008 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
15009 
15010 	stats->bytes = 0;
15011 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
15012 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
15013 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
15014 }
15015 
15016 static void bnxt_get_base_stats(struct net_device *dev,
15017 				struct netdev_queue_stats_rx *rx,
15018 				struct netdev_queue_stats_tx *tx)
15019 {
15020 	struct bnxt *bp = netdev_priv(dev);
15021 
15022 	rx->packets = bp->net_stats_prev.rx_packets;
15023 	rx->bytes = bp->net_stats_prev.rx_bytes;
15024 	rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards;
15025 
15026 	tx->packets = bp->net_stats_prev.tx_packets;
15027 	tx->bytes = bp->net_stats_prev.tx_bytes;
15028 }
15029 
15030 static const struct netdev_stat_ops bnxt_stat_ops = {
15031 	.get_queue_stats_rx	= bnxt_get_queue_stats_rx,
15032 	.get_queue_stats_tx	= bnxt_get_queue_stats_tx,
15033 	.get_base_stats		= bnxt_get_base_stats,
15034 };
15035 
15036 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
15037 {
15038 	u16 mem_size;
15039 
15040 	rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
15041 	mem_size = rxr->rx_agg_bmap_size / 8;
15042 	rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
15043 	if (!rxr->rx_agg_bmap)
15044 		return -ENOMEM;
15045 
15046 	return 0;
15047 }
15048 
15049 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx)
15050 {
15051 	struct bnxt_rx_ring_info *rxr, *clone;
15052 	struct bnxt *bp = netdev_priv(dev);
15053 	struct bnxt_ring_struct *ring;
15054 	int rc;
15055 
15056 	rxr = &bp->rx_ring[idx];
15057 	clone = qmem;
15058 	memcpy(clone, rxr, sizeof(*rxr));
15059 	bnxt_init_rx_ring_struct(bp, clone);
15060 	bnxt_reset_rx_ring_struct(bp, clone);
15061 
15062 	clone->rx_prod = 0;
15063 	clone->rx_agg_prod = 0;
15064 	clone->rx_sw_agg_prod = 0;
15065 	clone->rx_next_cons = 0;
15066 
15067 	rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid);
15068 	if (rc)
15069 		return rc;
15070 
15071 	rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0);
15072 	if (rc < 0)
15073 		goto err_page_pool_destroy;
15074 
15075 	rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq,
15076 					MEM_TYPE_PAGE_POOL,
15077 					clone->page_pool);
15078 	if (rc)
15079 		goto err_rxq_info_unreg;
15080 
15081 	ring = &clone->rx_ring_struct;
15082 	rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15083 	if (rc)
15084 		goto err_free_rx_ring;
15085 
15086 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
15087 		ring = &clone->rx_agg_ring_struct;
15088 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15089 		if (rc)
15090 			goto err_free_rx_agg_ring;
15091 
15092 		rc = bnxt_alloc_rx_agg_bmap(bp, clone);
15093 		if (rc)
15094 			goto err_free_rx_agg_ring;
15095 	}
15096 
15097 	bnxt_init_one_rx_ring_rxbd(bp, clone);
15098 	bnxt_init_one_rx_agg_ring_rxbd(bp, clone);
15099 
15100 	bnxt_alloc_one_rx_ring_skb(bp, clone, idx);
15101 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15102 		bnxt_alloc_one_rx_ring_page(bp, clone, idx);
15103 
15104 	return 0;
15105 
15106 err_free_rx_agg_ring:
15107 	bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem);
15108 err_free_rx_ring:
15109 	bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem);
15110 err_rxq_info_unreg:
15111 	xdp_rxq_info_unreg(&clone->xdp_rxq);
15112 err_page_pool_destroy:
15113 	clone->page_pool->p.napi = NULL;
15114 	page_pool_destroy(clone->page_pool);
15115 	clone->page_pool = NULL;
15116 	return rc;
15117 }
15118 
15119 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem)
15120 {
15121 	struct bnxt_rx_ring_info *rxr = qmem;
15122 	struct bnxt *bp = netdev_priv(dev);
15123 	struct bnxt_ring_struct *ring;
15124 
15125 	bnxt_free_one_rx_ring(bp, rxr);
15126 	bnxt_free_one_rx_agg_ring(bp, rxr);
15127 
15128 	xdp_rxq_info_unreg(&rxr->xdp_rxq);
15129 
15130 	page_pool_destroy(rxr->page_pool);
15131 	rxr->page_pool = NULL;
15132 
15133 	ring = &rxr->rx_ring_struct;
15134 	bnxt_free_ring(bp, &ring->ring_mem);
15135 
15136 	ring = &rxr->rx_agg_ring_struct;
15137 	bnxt_free_ring(bp, &ring->ring_mem);
15138 
15139 	kfree(rxr->rx_agg_bmap);
15140 	rxr->rx_agg_bmap = NULL;
15141 }
15142 
15143 static void bnxt_copy_rx_ring(struct bnxt *bp,
15144 			      struct bnxt_rx_ring_info *dst,
15145 			      struct bnxt_rx_ring_info *src)
15146 {
15147 	struct bnxt_ring_mem_info *dst_rmem, *src_rmem;
15148 	struct bnxt_ring_struct *dst_ring, *src_ring;
15149 	int i;
15150 
15151 	dst_ring = &dst->rx_ring_struct;
15152 	dst_rmem = &dst_ring->ring_mem;
15153 	src_ring = &src->rx_ring_struct;
15154 	src_rmem = &src_ring->ring_mem;
15155 
15156 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15157 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15158 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15159 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15160 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15161 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15162 
15163 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15164 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15165 	*dst_rmem->vmem = *src_rmem->vmem;
15166 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15167 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15168 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15169 	}
15170 
15171 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
15172 		return;
15173 
15174 	dst_ring = &dst->rx_agg_ring_struct;
15175 	dst_rmem = &dst_ring->ring_mem;
15176 	src_ring = &src->rx_agg_ring_struct;
15177 	src_rmem = &src_ring->ring_mem;
15178 
15179 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15180 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15181 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15182 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15183 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15184 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15185 	WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size);
15186 
15187 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15188 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15189 	*dst_rmem->vmem = *src_rmem->vmem;
15190 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15191 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15192 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15193 	}
15194 
15195 	dst->rx_agg_bmap = src->rx_agg_bmap;
15196 }
15197 
15198 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx)
15199 {
15200 	struct bnxt *bp = netdev_priv(dev);
15201 	struct bnxt_rx_ring_info *rxr, *clone;
15202 	struct bnxt_cp_ring_info *cpr;
15203 	struct bnxt_vnic_info *vnic;
15204 	int i, rc;
15205 
15206 	rxr = &bp->rx_ring[idx];
15207 	clone = qmem;
15208 
15209 	rxr->rx_prod = clone->rx_prod;
15210 	rxr->rx_agg_prod = clone->rx_agg_prod;
15211 	rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod;
15212 	rxr->rx_next_cons = clone->rx_next_cons;
15213 	rxr->page_pool = clone->page_pool;
15214 	rxr->xdp_rxq = clone->xdp_rxq;
15215 
15216 	bnxt_copy_rx_ring(bp, rxr, clone);
15217 
15218 	rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
15219 	if (rc)
15220 		return rc;
15221 	rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr);
15222 	if (rc)
15223 		goto err_free_hwrm_rx_ring;
15224 
15225 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
15226 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15227 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
15228 
15229 	cpr = &rxr->bnapi->cp_ring;
15230 	cpr->sw_stats->rx.rx_resets++;
15231 
15232 	for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) {
15233 		vnic = &bp->vnic_info[i];
15234 		vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
15235 		bnxt_hwrm_vnic_update(bp, vnic,
15236 				      VNIC_UPDATE_REQ_ENABLES_MRU_VALID);
15237 	}
15238 
15239 	return 0;
15240 
15241 err_free_hwrm_rx_ring:
15242 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15243 	return rc;
15244 }
15245 
15246 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx)
15247 {
15248 	struct bnxt *bp = netdev_priv(dev);
15249 	struct bnxt_rx_ring_info *rxr;
15250 	struct bnxt_vnic_info *vnic;
15251 	int i;
15252 
15253 	for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) {
15254 		vnic = &bp->vnic_info[i];
15255 		vnic->mru = 0;
15256 		bnxt_hwrm_vnic_update(bp, vnic,
15257 				      VNIC_UPDATE_REQ_ENABLES_MRU_VALID);
15258 	}
15259 
15260 	rxr = &bp->rx_ring[idx];
15261 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15262 	bnxt_hwrm_rx_agg_ring_free(bp, rxr, false);
15263 	rxr->rx_next_cons = 0;
15264 	page_pool_disable_direct_recycling(rxr->page_pool);
15265 
15266 	memcpy(qmem, rxr, sizeof(*rxr));
15267 	bnxt_init_rx_ring_struct(bp, qmem);
15268 
15269 	return 0;
15270 }
15271 
15272 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = {
15273 	.ndo_queue_mem_size	= sizeof(struct bnxt_rx_ring_info),
15274 	.ndo_queue_mem_alloc	= bnxt_queue_mem_alloc,
15275 	.ndo_queue_mem_free	= bnxt_queue_mem_free,
15276 	.ndo_queue_start	= bnxt_queue_start,
15277 	.ndo_queue_stop		= bnxt_queue_stop,
15278 };
15279 
15280 static void bnxt_remove_one(struct pci_dev *pdev)
15281 {
15282 	struct net_device *dev = pci_get_drvdata(pdev);
15283 	struct bnxt *bp = netdev_priv(dev);
15284 
15285 	if (BNXT_PF(bp))
15286 		bnxt_sriov_disable(bp);
15287 
15288 	bnxt_rdma_aux_device_del(bp);
15289 
15290 	bnxt_ptp_clear(bp);
15291 	unregister_netdev(dev);
15292 
15293 	bnxt_rdma_aux_device_uninit(bp);
15294 
15295 	bnxt_free_l2_filters(bp, true);
15296 	bnxt_free_ntp_fltrs(bp, true);
15297 	WARN_ON(bp->num_rss_ctx);
15298 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
15299 	/* Flush any pending tasks */
15300 	cancel_work_sync(&bp->sp_task);
15301 	cancel_delayed_work_sync(&bp->fw_reset_task);
15302 	bp->sp_event = 0;
15303 
15304 	bnxt_dl_fw_reporters_destroy(bp);
15305 	bnxt_dl_unregister(bp);
15306 	bnxt_shutdown_tc(bp);
15307 
15308 	bnxt_clear_int_mode(bp);
15309 	bnxt_hwrm_func_drv_unrgtr(bp);
15310 	bnxt_free_hwrm_resources(bp);
15311 	bnxt_hwmon_uninit(bp);
15312 	bnxt_ethtool_free(bp);
15313 	bnxt_dcb_free(bp);
15314 	kfree(bp->ptp_cfg);
15315 	bp->ptp_cfg = NULL;
15316 	kfree(bp->fw_health);
15317 	bp->fw_health = NULL;
15318 	bnxt_cleanup_pci(bp);
15319 	bnxt_free_ctx_mem(bp);
15320 	bnxt_free_crash_dump_mem(bp);
15321 	kfree(bp->rss_indir_tbl);
15322 	bp->rss_indir_tbl = NULL;
15323 	bnxt_free_port_stats(bp);
15324 	free_netdev(dev);
15325 }
15326 
15327 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
15328 {
15329 	int rc = 0;
15330 	struct bnxt_link_info *link_info = &bp->link_info;
15331 
15332 	bp->phy_flags = 0;
15333 	rc = bnxt_hwrm_phy_qcaps(bp);
15334 	if (rc) {
15335 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
15336 			   rc);
15337 		return rc;
15338 	}
15339 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
15340 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
15341 	else
15342 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
15343 	if (!fw_dflt)
15344 		return 0;
15345 
15346 	mutex_lock(&bp->link_lock);
15347 	rc = bnxt_update_link(bp, false);
15348 	if (rc) {
15349 		mutex_unlock(&bp->link_lock);
15350 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
15351 			   rc);
15352 		return rc;
15353 	}
15354 
15355 	/* Older firmware does not have supported_auto_speeds, so assume
15356 	 * that all supported speeds can be autonegotiated.
15357 	 */
15358 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
15359 		link_info->support_auto_speeds = link_info->support_speeds;
15360 
15361 	bnxt_init_ethtool_link_settings(bp);
15362 	mutex_unlock(&bp->link_lock);
15363 	return 0;
15364 }
15365 
15366 static int bnxt_get_max_irq(struct pci_dev *pdev)
15367 {
15368 	u16 ctrl;
15369 
15370 	if (!pdev->msix_cap)
15371 		return 1;
15372 
15373 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
15374 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
15375 }
15376 
15377 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15378 				int *max_cp)
15379 {
15380 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
15381 	int max_ring_grps = 0, max_irq;
15382 
15383 	*max_tx = hw_resc->max_tx_rings;
15384 	*max_rx = hw_resc->max_rx_rings;
15385 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
15386 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
15387 			bnxt_get_ulp_msix_num_in_use(bp),
15388 			hw_resc->max_stat_ctxs -
15389 			bnxt_get_ulp_stat_ctxs_in_use(bp));
15390 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
15391 		*max_cp = min_t(int, *max_cp, max_irq);
15392 	max_ring_grps = hw_resc->max_hw_ring_grps;
15393 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
15394 		*max_cp -= 1;
15395 		*max_rx -= 2;
15396 	}
15397 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15398 		*max_rx >>= 1;
15399 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
15400 		int rc;
15401 
15402 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
15403 		if (rc) {
15404 			*max_rx = 0;
15405 			*max_tx = 0;
15406 		}
15407 		/* On P5 chips, max_cp output param should be available NQs */
15408 		*max_cp = max_irq;
15409 	}
15410 	*max_rx = min_t(int, *max_rx, max_ring_grps);
15411 }
15412 
15413 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
15414 {
15415 	int rx, tx, cp;
15416 
15417 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
15418 	*max_rx = rx;
15419 	*max_tx = tx;
15420 	if (!rx || !tx || !cp)
15421 		return -ENOMEM;
15422 
15423 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
15424 }
15425 
15426 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15427 			       bool shared)
15428 {
15429 	int rc;
15430 
15431 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15432 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
15433 		/* Not enough rings, try disabling agg rings. */
15434 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
15435 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15436 		if (rc) {
15437 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
15438 			bp->flags |= BNXT_FLAG_AGG_RINGS;
15439 			return rc;
15440 		}
15441 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
15442 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15443 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15444 		bnxt_set_ring_params(bp);
15445 	}
15446 
15447 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
15448 		int max_cp, max_stat, max_irq;
15449 
15450 		/* Reserve minimum resources for RoCE */
15451 		max_cp = bnxt_get_max_func_cp_rings(bp);
15452 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
15453 		max_irq = bnxt_get_max_func_irqs(bp);
15454 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
15455 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
15456 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
15457 			return 0;
15458 
15459 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
15460 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
15461 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
15462 		max_cp = min_t(int, max_cp, max_irq);
15463 		max_cp = min_t(int, max_cp, max_stat);
15464 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
15465 		if (rc)
15466 			rc = 0;
15467 	}
15468 	return rc;
15469 }
15470 
15471 /* In initial default shared ring setting, each shared ring must have a
15472  * RX/TX ring pair.
15473  */
15474 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
15475 {
15476 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
15477 	bp->rx_nr_rings = bp->cp_nr_rings;
15478 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
15479 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15480 }
15481 
15482 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
15483 {
15484 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
15485 	int avail_msix;
15486 
15487 	if (!bnxt_can_reserve_rings(bp))
15488 		return 0;
15489 
15490 	if (sh)
15491 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
15492 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
15493 	/* Reduce default rings on multi-port cards so that total default
15494 	 * rings do not exceed CPU count.
15495 	 */
15496 	if (bp->port_count > 1) {
15497 		int max_rings =
15498 			max_t(int, num_online_cpus() / bp->port_count, 1);
15499 
15500 		dflt_rings = min_t(int, dflt_rings, max_rings);
15501 	}
15502 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
15503 	if (rc)
15504 		return rc;
15505 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
15506 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
15507 	if (sh)
15508 		bnxt_trim_dflt_sh_rings(bp);
15509 	else
15510 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
15511 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15512 
15513 	avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings;
15514 	if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) {
15515 		int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want);
15516 
15517 		bnxt_set_ulp_msix_num(bp, ulp_num_msix);
15518 		bnxt_set_dflt_ulp_stat_ctxs(bp);
15519 	}
15520 
15521 	rc = __bnxt_reserve_rings(bp);
15522 	if (rc && rc != -ENODEV)
15523 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
15524 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15525 	if (sh)
15526 		bnxt_trim_dflt_sh_rings(bp);
15527 
15528 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
15529 	if (bnxt_need_reserve_rings(bp)) {
15530 		rc = __bnxt_reserve_rings(bp);
15531 		if (rc && rc != -ENODEV)
15532 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
15533 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15534 	}
15535 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
15536 		bp->rx_nr_rings++;
15537 		bp->cp_nr_rings++;
15538 	}
15539 	if (rc) {
15540 		bp->tx_nr_rings = 0;
15541 		bp->rx_nr_rings = 0;
15542 	}
15543 	return rc;
15544 }
15545 
15546 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
15547 {
15548 	int rc;
15549 
15550 	if (bp->tx_nr_rings)
15551 		return 0;
15552 
15553 	bnxt_ulp_irq_stop(bp);
15554 	bnxt_clear_int_mode(bp);
15555 	rc = bnxt_set_dflt_rings(bp, true);
15556 	if (rc) {
15557 		if (BNXT_VF(bp) && rc == -ENODEV)
15558 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15559 		else
15560 			netdev_err(bp->dev, "Not enough rings available.\n");
15561 		goto init_dflt_ring_err;
15562 	}
15563 	rc = bnxt_init_int_mode(bp);
15564 	if (rc)
15565 		goto init_dflt_ring_err;
15566 
15567 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15568 
15569 	bnxt_set_dflt_rfs(bp);
15570 
15571 init_dflt_ring_err:
15572 	bnxt_ulp_irq_restart(bp, rc);
15573 	return rc;
15574 }
15575 
15576 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
15577 {
15578 	int rc;
15579 
15580 	ASSERT_RTNL();
15581 	bnxt_hwrm_func_qcaps(bp);
15582 
15583 	if (netif_running(bp->dev))
15584 		__bnxt_close_nic(bp, true, false);
15585 
15586 	bnxt_ulp_irq_stop(bp);
15587 	bnxt_clear_int_mode(bp);
15588 	rc = bnxt_init_int_mode(bp);
15589 	bnxt_ulp_irq_restart(bp, rc);
15590 
15591 	if (netif_running(bp->dev)) {
15592 		if (rc)
15593 			dev_close(bp->dev);
15594 		else
15595 			rc = bnxt_open_nic(bp, true, false);
15596 	}
15597 
15598 	return rc;
15599 }
15600 
15601 static int bnxt_init_mac_addr(struct bnxt *bp)
15602 {
15603 	int rc = 0;
15604 
15605 	if (BNXT_PF(bp)) {
15606 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
15607 	} else {
15608 #ifdef CONFIG_BNXT_SRIOV
15609 		struct bnxt_vf_info *vf = &bp->vf;
15610 		bool strict_approval = true;
15611 
15612 		if (is_valid_ether_addr(vf->mac_addr)) {
15613 			/* overwrite netdev dev_addr with admin VF MAC */
15614 			eth_hw_addr_set(bp->dev, vf->mac_addr);
15615 			/* Older PF driver or firmware may not approve this
15616 			 * correctly.
15617 			 */
15618 			strict_approval = false;
15619 		} else {
15620 			eth_hw_addr_random(bp->dev);
15621 		}
15622 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
15623 #endif
15624 	}
15625 	return rc;
15626 }
15627 
15628 static void bnxt_vpd_read_info(struct bnxt *bp)
15629 {
15630 	struct pci_dev *pdev = bp->pdev;
15631 	unsigned int vpd_size, kw_len;
15632 	int pos, size;
15633 	u8 *vpd_data;
15634 
15635 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
15636 	if (IS_ERR(vpd_data)) {
15637 		pci_warn(pdev, "Unable to read VPD\n");
15638 		return;
15639 	}
15640 
15641 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15642 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
15643 	if (pos < 0)
15644 		goto read_sn;
15645 
15646 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15647 	memcpy(bp->board_partno, &vpd_data[pos], size);
15648 
15649 read_sn:
15650 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15651 					   PCI_VPD_RO_KEYWORD_SERIALNO,
15652 					   &kw_len);
15653 	if (pos < 0)
15654 		goto exit;
15655 
15656 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15657 	memcpy(bp->board_serialno, &vpd_data[pos], size);
15658 exit:
15659 	kfree(vpd_data);
15660 }
15661 
15662 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
15663 {
15664 	struct pci_dev *pdev = bp->pdev;
15665 	u64 qword;
15666 
15667 	qword = pci_get_dsn(pdev);
15668 	if (!qword) {
15669 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
15670 		return -EOPNOTSUPP;
15671 	}
15672 
15673 	put_unaligned_le64(qword, dsn);
15674 
15675 	bp->flags |= BNXT_FLAG_DSN_VALID;
15676 	return 0;
15677 }
15678 
15679 static int bnxt_map_db_bar(struct bnxt *bp)
15680 {
15681 	if (!bp->db_size)
15682 		return -ENODEV;
15683 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
15684 	if (!bp->bar1)
15685 		return -ENOMEM;
15686 	return 0;
15687 }
15688 
15689 void bnxt_print_device_info(struct bnxt *bp)
15690 {
15691 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
15692 		    board_info[bp->board_idx].name,
15693 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
15694 
15695 	pcie_print_link_status(bp->pdev);
15696 }
15697 
15698 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
15699 {
15700 	struct bnxt_hw_resc *hw_resc;
15701 	struct net_device *dev;
15702 	struct bnxt *bp;
15703 	int rc, max_irqs;
15704 
15705 	if (pci_is_bridge(pdev))
15706 		return -ENODEV;
15707 
15708 	if (!pdev->msix_cap) {
15709 		dev_err(&pdev->dev, "MSIX capability not found, aborting\n");
15710 		return -ENODEV;
15711 	}
15712 
15713 	/* Clear any pending DMA transactions from crash kernel
15714 	 * while loading driver in capture kernel.
15715 	 */
15716 	if (is_kdump_kernel()) {
15717 		pci_clear_master(pdev);
15718 		pcie_flr(pdev);
15719 	}
15720 
15721 	max_irqs = bnxt_get_max_irq(pdev);
15722 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
15723 				 max_irqs);
15724 	if (!dev)
15725 		return -ENOMEM;
15726 
15727 	bp = netdev_priv(dev);
15728 	bp->board_idx = ent->driver_data;
15729 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
15730 	bnxt_set_max_func_irqs(bp, max_irqs);
15731 
15732 	if (bnxt_vf_pciid(bp->board_idx))
15733 		bp->flags |= BNXT_FLAG_VF;
15734 
15735 	/* No devlink port registration in case of a VF */
15736 	if (BNXT_PF(bp))
15737 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
15738 
15739 	rc = bnxt_init_board(pdev, dev);
15740 	if (rc < 0)
15741 		goto init_err_free;
15742 
15743 	dev->netdev_ops = &bnxt_netdev_ops;
15744 	dev->stat_ops = &bnxt_stat_ops;
15745 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
15746 	dev->ethtool_ops = &bnxt_ethtool_ops;
15747 	pci_set_drvdata(pdev, dev);
15748 
15749 	rc = bnxt_alloc_hwrm_resources(bp);
15750 	if (rc)
15751 		goto init_err_pci_clean;
15752 
15753 	mutex_init(&bp->hwrm_cmd_lock);
15754 	mutex_init(&bp->link_lock);
15755 
15756 	rc = bnxt_fw_init_one_p1(bp);
15757 	if (rc)
15758 		goto init_err_pci_clean;
15759 
15760 	if (BNXT_PF(bp))
15761 		bnxt_vpd_read_info(bp);
15762 
15763 	if (BNXT_CHIP_P5_PLUS(bp)) {
15764 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
15765 		if (BNXT_CHIP_P7(bp))
15766 			bp->flags |= BNXT_FLAG_CHIP_P7;
15767 	}
15768 
15769 	rc = bnxt_alloc_rss_indir_tbl(bp);
15770 	if (rc)
15771 		goto init_err_pci_clean;
15772 
15773 	rc = bnxt_fw_init_one_p2(bp);
15774 	if (rc)
15775 		goto init_err_pci_clean;
15776 
15777 	rc = bnxt_map_db_bar(bp);
15778 	if (rc) {
15779 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
15780 			rc);
15781 		goto init_err_pci_clean;
15782 	}
15783 
15784 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15785 			   NETIF_F_TSO | NETIF_F_TSO6 |
15786 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15787 			   NETIF_F_GSO_IPXIP4 |
15788 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15789 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
15790 			   NETIF_F_RXCSUM | NETIF_F_GRO;
15791 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15792 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
15793 
15794 	if (BNXT_SUPPORTS_TPA(bp))
15795 		dev->hw_features |= NETIF_F_LRO;
15796 
15797 	dev->hw_enc_features =
15798 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15799 			NETIF_F_TSO | NETIF_F_TSO6 |
15800 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15801 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15802 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
15803 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15804 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
15805 	if (bp->flags & BNXT_FLAG_CHIP_P7)
15806 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
15807 	else
15808 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
15809 
15810 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
15811 				    NETIF_F_GSO_GRE_CSUM;
15812 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
15813 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
15814 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
15815 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
15816 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
15817 	if (BNXT_SUPPORTS_TPA(bp))
15818 		dev->hw_features |= NETIF_F_GRO_HW;
15819 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
15820 	if (dev->features & NETIF_F_GRO_HW)
15821 		dev->features &= ~NETIF_F_LRO;
15822 	dev->priv_flags |= IFF_UNICAST_FLT;
15823 
15824 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
15825 	if (bp->tso_max_segs)
15826 		netif_set_tso_max_segs(dev, bp->tso_max_segs);
15827 
15828 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
15829 			    NETDEV_XDP_ACT_RX_SG;
15830 
15831 #ifdef CONFIG_BNXT_SRIOV
15832 	init_waitqueue_head(&bp->sriov_cfg_wait);
15833 #endif
15834 	if (BNXT_SUPPORTS_TPA(bp)) {
15835 		bp->gro_func = bnxt_gro_func_5730x;
15836 		if (BNXT_CHIP_P4(bp))
15837 			bp->gro_func = bnxt_gro_func_5731x;
15838 		else if (BNXT_CHIP_P5_PLUS(bp))
15839 			bp->gro_func = bnxt_gro_func_5750x;
15840 	}
15841 	if (!BNXT_CHIP_P4_PLUS(bp))
15842 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
15843 
15844 	rc = bnxt_init_mac_addr(bp);
15845 	if (rc) {
15846 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
15847 		rc = -EADDRNOTAVAIL;
15848 		goto init_err_pci_clean;
15849 	}
15850 
15851 	if (BNXT_PF(bp)) {
15852 		/* Read the adapter's DSN to use as the eswitch switch_id */
15853 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
15854 	}
15855 
15856 	/* MTU range: 60 - FW defined max */
15857 	dev->min_mtu = ETH_ZLEN;
15858 	dev->max_mtu = bp->max_mtu;
15859 
15860 	rc = bnxt_probe_phy(bp, true);
15861 	if (rc)
15862 		goto init_err_pci_clean;
15863 
15864 	hw_resc = &bp->hw_resc;
15865 	bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows +
15866 		       BNXT_L2_FLTR_MAX_FLTR;
15867 	/* Older firmware may not report these filters properly */
15868 	if (bp->max_fltr < BNXT_MAX_FLTR)
15869 		bp->max_fltr = BNXT_MAX_FLTR;
15870 	bnxt_init_l2_fltr_tbl(bp);
15871 	bnxt_set_rx_skb_mode(bp, false);
15872 	bnxt_set_tpa_flags(bp);
15873 	bnxt_set_ring_params(bp);
15874 	bnxt_rdma_aux_device_init(bp);
15875 	rc = bnxt_set_dflt_rings(bp, true);
15876 	if (rc) {
15877 		if (BNXT_VF(bp) && rc == -ENODEV) {
15878 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15879 		} else {
15880 			netdev_err(bp->dev, "Not enough rings available.\n");
15881 			rc = -ENOMEM;
15882 		}
15883 		goto init_err_pci_clean;
15884 	}
15885 
15886 	bnxt_fw_init_one_p3(bp);
15887 
15888 	bnxt_init_dflt_coal(bp);
15889 
15890 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
15891 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
15892 
15893 	rc = bnxt_init_int_mode(bp);
15894 	if (rc)
15895 		goto init_err_pci_clean;
15896 
15897 	/* No TC has been set yet and rings may have been trimmed due to
15898 	 * limited MSIX, so we re-initialize the TX rings per TC.
15899 	 */
15900 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15901 
15902 	if (BNXT_PF(bp)) {
15903 		if (!bnxt_pf_wq) {
15904 			bnxt_pf_wq =
15905 				create_singlethread_workqueue("bnxt_pf_wq");
15906 			if (!bnxt_pf_wq) {
15907 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
15908 				rc = -ENOMEM;
15909 				goto init_err_pci_clean;
15910 			}
15911 		}
15912 		rc = bnxt_init_tc(bp);
15913 		if (rc)
15914 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
15915 				   rc);
15916 	}
15917 
15918 	bnxt_inv_fw_health_reg(bp);
15919 	rc = bnxt_dl_register(bp);
15920 	if (rc)
15921 		goto init_err_dl;
15922 
15923 	INIT_LIST_HEAD(&bp->usr_fltr_list);
15924 
15925 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
15926 		bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX;
15927 	if (BNXT_SUPPORTS_QUEUE_API(bp))
15928 		dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops;
15929 
15930 	rc = register_netdev(dev);
15931 	if (rc)
15932 		goto init_err_cleanup;
15933 
15934 	bnxt_dl_fw_reporters_create(bp);
15935 
15936 	bnxt_rdma_aux_device_add(bp);
15937 
15938 	bnxt_print_device_info(bp);
15939 
15940 	pci_save_state(pdev);
15941 
15942 	return 0;
15943 init_err_cleanup:
15944 	bnxt_rdma_aux_device_uninit(bp);
15945 	bnxt_dl_unregister(bp);
15946 init_err_dl:
15947 	bnxt_shutdown_tc(bp);
15948 	bnxt_clear_int_mode(bp);
15949 
15950 init_err_pci_clean:
15951 	bnxt_hwrm_func_drv_unrgtr(bp);
15952 	bnxt_free_hwrm_resources(bp);
15953 	bnxt_hwmon_uninit(bp);
15954 	bnxt_ethtool_free(bp);
15955 	bnxt_ptp_clear(bp);
15956 	kfree(bp->ptp_cfg);
15957 	bp->ptp_cfg = NULL;
15958 	kfree(bp->fw_health);
15959 	bp->fw_health = NULL;
15960 	bnxt_cleanup_pci(bp);
15961 	bnxt_free_ctx_mem(bp);
15962 	bnxt_free_crash_dump_mem(bp);
15963 	kfree(bp->rss_indir_tbl);
15964 	bp->rss_indir_tbl = NULL;
15965 
15966 init_err_free:
15967 	free_netdev(dev);
15968 	return rc;
15969 }
15970 
15971 static void bnxt_shutdown(struct pci_dev *pdev)
15972 {
15973 	struct net_device *dev = pci_get_drvdata(pdev);
15974 	struct bnxt *bp;
15975 
15976 	if (!dev)
15977 		return;
15978 
15979 	rtnl_lock();
15980 	bp = netdev_priv(dev);
15981 	if (!bp)
15982 		goto shutdown_exit;
15983 
15984 	if (netif_running(dev))
15985 		dev_close(dev);
15986 
15987 	bnxt_clear_int_mode(bp);
15988 	pci_disable_device(pdev);
15989 
15990 	if (system_state == SYSTEM_POWER_OFF) {
15991 		pci_wake_from_d3(pdev, bp->wol);
15992 		pci_set_power_state(pdev, PCI_D3hot);
15993 	}
15994 
15995 shutdown_exit:
15996 	rtnl_unlock();
15997 }
15998 
15999 #ifdef CONFIG_PM_SLEEP
16000 static int bnxt_suspend(struct device *device)
16001 {
16002 	struct net_device *dev = dev_get_drvdata(device);
16003 	struct bnxt *bp = netdev_priv(dev);
16004 	int rc = 0;
16005 
16006 	bnxt_ulp_stop(bp);
16007 
16008 	rtnl_lock();
16009 	if (netif_running(dev)) {
16010 		netif_device_detach(dev);
16011 		rc = bnxt_close(dev);
16012 	}
16013 	bnxt_hwrm_func_drv_unrgtr(bp);
16014 	pci_disable_device(bp->pdev);
16015 	bnxt_free_ctx_mem(bp);
16016 	rtnl_unlock();
16017 	return rc;
16018 }
16019 
16020 static int bnxt_resume(struct device *device)
16021 {
16022 	struct net_device *dev = dev_get_drvdata(device);
16023 	struct bnxt *bp = netdev_priv(dev);
16024 	int rc = 0;
16025 
16026 	rtnl_lock();
16027 	rc = pci_enable_device(bp->pdev);
16028 	if (rc) {
16029 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
16030 			   rc);
16031 		goto resume_exit;
16032 	}
16033 	pci_set_master(bp->pdev);
16034 	if (bnxt_hwrm_ver_get(bp)) {
16035 		rc = -ENODEV;
16036 		goto resume_exit;
16037 	}
16038 	rc = bnxt_hwrm_func_reset(bp);
16039 	if (rc) {
16040 		rc = -EBUSY;
16041 		goto resume_exit;
16042 	}
16043 
16044 	rc = bnxt_hwrm_func_qcaps(bp);
16045 	if (rc)
16046 		goto resume_exit;
16047 
16048 	bnxt_clear_reservations(bp, true);
16049 
16050 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
16051 		rc = -ENODEV;
16052 		goto resume_exit;
16053 	}
16054 	if (bp->fw_crash_mem)
16055 		bnxt_hwrm_crash_dump_mem_cfg(bp);
16056 
16057 	bnxt_get_wol_settings(bp);
16058 	if (netif_running(dev)) {
16059 		rc = bnxt_open(dev);
16060 		if (!rc)
16061 			netif_device_attach(dev);
16062 	}
16063 
16064 resume_exit:
16065 	rtnl_unlock();
16066 	bnxt_ulp_start(bp, rc);
16067 	if (!rc)
16068 		bnxt_reenable_sriov(bp);
16069 	return rc;
16070 }
16071 
16072 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
16073 #define BNXT_PM_OPS (&bnxt_pm_ops)
16074 
16075 #else
16076 
16077 #define BNXT_PM_OPS NULL
16078 
16079 #endif /* CONFIG_PM_SLEEP */
16080 
16081 /**
16082  * bnxt_io_error_detected - called when PCI error is detected
16083  * @pdev: Pointer to PCI device
16084  * @state: The current pci connection state
16085  *
16086  * This function is called after a PCI bus error affecting
16087  * this device has been detected.
16088  */
16089 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
16090 					       pci_channel_state_t state)
16091 {
16092 	struct net_device *netdev = pci_get_drvdata(pdev);
16093 	struct bnxt *bp = netdev_priv(netdev);
16094 	bool abort = false;
16095 
16096 	netdev_info(netdev, "PCI I/O error detected\n");
16097 
16098 	bnxt_ulp_stop(bp);
16099 
16100 	rtnl_lock();
16101 	netif_device_detach(netdev);
16102 
16103 	if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
16104 		netdev_err(bp->dev, "Firmware reset already in progress\n");
16105 		abort = true;
16106 	}
16107 
16108 	if (abort || state == pci_channel_io_perm_failure) {
16109 		rtnl_unlock();
16110 		return PCI_ERS_RESULT_DISCONNECT;
16111 	}
16112 
16113 	/* Link is not reliable anymore if state is pci_channel_io_frozen
16114 	 * so we disable bus master to prevent any potential bad DMAs before
16115 	 * freeing kernel memory.
16116 	 */
16117 	if (state == pci_channel_io_frozen) {
16118 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
16119 		bnxt_fw_fatal_close(bp);
16120 	}
16121 
16122 	if (netif_running(netdev))
16123 		__bnxt_close_nic(bp, true, true);
16124 
16125 	if (pci_is_enabled(pdev))
16126 		pci_disable_device(pdev);
16127 	bnxt_free_ctx_mem(bp);
16128 	rtnl_unlock();
16129 
16130 	/* Request a slot slot reset. */
16131 	return PCI_ERS_RESULT_NEED_RESET;
16132 }
16133 
16134 /**
16135  * bnxt_io_slot_reset - called after the pci bus has been reset.
16136  * @pdev: Pointer to PCI device
16137  *
16138  * Restart the card from scratch, as if from a cold-boot.
16139  * At this point, the card has exprienced a hard reset,
16140  * followed by fixups by BIOS, and has its config space
16141  * set up identically to what it was at cold boot.
16142  */
16143 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
16144 {
16145 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
16146 	struct net_device *netdev = pci_get_drvdata(pdev);
16147 	struct bnxt *bp = netdev_priv(netdev);
16148 	int retry = 0;
16149 	int err = 0;
16150 	int off;
16151 
16152 	netdev_info(bp->dev, "PCI Slot Reset\n");
16153 
16154 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
16155 	    test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state))
16156 		msleep(900);
16157 
16158 	rtnl_lock();
16159 
16160 	if (pci_enable_device(pdev)) {
16161 		dev_err(&pdev->dev,
16162 			"Cannot re-enable PCI device after reset.\n");
16163 	} else {
16164 		pci_set_master(pdev);
16165 		/* Upon fatal error, our device internal logic that latches to
16166 		 * BAR value is getting reset and will restore only upon
16167 		 * rewritting the BARs.
16168 		 *
16169 		 * As pci_restore_state() does not re-write the BARs if the
16170 		 * value is same as saved value earlier, driver needs to
16171 		 * write the BARs to 0 to force restore, in case of fatal error.
16172 		 */
16173 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
16174 				       &bp->state)) {
16175 			for (off = PCI_BASE_ADDRESS_0;
16176 			     off <= PCI_BASE_ADDRESS_5; off += 4)
16177 				pci_write_config_dword(bp->pdev, off, 0);
16178 		}
16179 		pci_restore_state(pdev);
16180 		pci_save_state(pdev);
16181 
16182 		bnxt_inv_fw_health_reg(bp);
16183 		bnxt_try_map_fw_health_reg(bp);
16184 
16185 		/* In some PCIe AER scenarios, firmware may take up to
16186 		 * 10 seconds to become ready in the worst case.
16187 		 */
16188 		do {
16189 			err = bnxt_try_recover_fw(bp);
16190 			if (!err)
16191 				break;
16192 			retry++;
16193 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
16194 
16195 		if (err) {
16196 			dev_err(&pdev->dev, "Firmware not ready\n");
16197 			goto reset_exit;
16198 		}
16199 
16200 		err = bnxt_hwrm_func_reset(bp);
16201 		if (!err)
16202 			result = PCI_ERS_RESULT_RECOVERED;
16203 
16204 		bnxt_ulp_irq_stop(bp);
16205 		bnxt_clear_int_mode(bp);
16206 		err = bnxt_init_int_mode(bp);
16207 		bnxt_ulp_irq_restart(bp, err);
16208 	}
16209 
16210 reset_exit:
16211 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
16212 	bnxt_clear_reservations(bp, true);
16213 	rtnl_unlock();
16214 
16215 	return result;
16216 }
16217 
16218 /**
16219  * bnxt_io_resume - called when traffic can start flowing again.
16220  * @pdev: Pointer to PCI device
16221  *
16222  * This callback is called when the error recovery driver tells
16223  * us that its OK to resume normal operation.
16224  */
16225 static void bnxt_io_resume(struct pci_dev *pdev)
16226 {
16227 	struct net_device *netdev = pci_get_drvdata(pdev);
16228 	struct bnxt *bp = netdev_priv(netdev);
16229 	int err;
16230 
16231 	netdev_info(bp->dev, "PCI Slot Resume\n");
16232 	rtnl_lock();
16233 
16234 	err = bnxt_hwrm_func_qcaps(bp);
16235 	if (!err && netif_running(netdev))
16236 		err = bnxt_open(netdev);
16237 
16238 	if (!err)
16239 		netif_device_attach(netdev);
16240 
16241 	rtnl_unlock();
16242 	bnxt_ulp_start(bp, err);
16243 	if (!err)
16244 		bnxt_reenable_sriov(bp);
16245 }
16246 
16247 static const struct pci_error_handlers bnxt_err_handler = {
16248 	.error_detected	= bnxt_io_error_detected,
16249 	.slot_reset	= bnxt_io_slot_reset,
16250 	.resume		= bnxt_io_resume
16251 };
16252 
16253 static struct pci_driver bnxt_pci_driver = {
16254 	.name		= DRV_MODULE_NAME,
16255 	.id_table	= bnxt_pci_tbl,
16256 	.probe		= bnxt_init_one,
16257 	.remove		= bnxt_remove_one,
16258 	.shutdown	= bnxt_shutdown,
16259 	.driver.pm	= BNXT_PM_OPS,
16260 	.err_handler	= &bnxt_err_handler,
16261 #if defined(CONFIG_BNXT_SRIOV)
16262 	.sriov_configure = bnxt_sriov_configure,
16263 #endif
16264 };
16265 
16266 static int __init bnxt_init(void)
16267 {
16268 	int err;
16269 
16270 	bnxt_debug_init();
16271 	err = pci_register_driver(&bnxt_pci_driver);
16272 	if (err) {
16273 		bnxt_debug_exit();
16274 		return err;
16275 	}
16276 
16277 	return 0;
16278 }
16279 
16280 static void __exit bnxt_exit(void)
16281 {
16282 	pci_unregister_driver(&bnxt_pci_driver);
16283 	if (bnxt_pf_wq)
16284 		destroy_workqueue(bnxt_pf_wq);
16285 	bnxt_debug_exit();
16286 }
16287 
16288 module_init(bnxt_init);
16289 module_exit(bnxt_exit);
16290