xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 0f93242d96ff5a04fe02c4978e8dddb014235971)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 
73 static const char version[] =
74 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
75 
76 MODULE_LICENSE("GPL");
77 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79 
80 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
81 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
82 #define BNXT_RX_COPY_THRESH 256
83 
84 #define BNXT_TX_PUSH_THRESH 164
85 
86 enum board_idx {
87 	BCM57301,
88 	BCM57302,
89 	BCM57304,
90 	BCM57417_NPAR,
91 	BCM58700,
92 	BCM57311,
93 	BCM57312,
94 	BCM57402,
95 	BCM57404,
96 	BCM57406,
97 	BCM57402_NPAR,
98 	BCM57407,
99 	BCM57412,
100 	BCM57414,
101 	BCM57416,
102 	BCM57417,
103 	BCM57412_NPAR,
104 	BCM57314,
105 	BCM57417_SFP,
106 	BCM57416_SFP,
107 	BCM57404_NPAR,
108 	BCM57406_NPAR,
109 	BCM57407_SFP,
110 	BCM57407_NPAR,
111 	BCM57414_NPAR,
112 	BCM57416_NPAR,
113 	BCM57452,
114 	BCM57454,
115 	BCM5745x_NPAR,
116 	BCM57508,
117 	BCM57504,
118 	BCM57502,
119 	BCM58802,
120 	BCM58804,
121 	BCM58808,
122 	NETXTREME_E_VF,
123 	NETXTREME_C_VF,
124 	NETXTREME_S_VF,
125 	NETXTREME_E_P5_VF,
126 };
127 
128 /* indexed by enum above */
129 static const struct {
130 	char *name;
131 } board_info[] = {
132 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
133 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
134 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
135 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
136 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
137 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
138 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
139 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
140 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
143 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
144 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
145 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
146 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
148 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
149 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
151 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
152 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
153 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
154 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
155 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
156 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
157 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
158 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
159 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
160 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
161 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
163 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
164 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
165 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
166 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
167 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
168 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
169 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
170 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
171 };
172 
173 static const struct pci_device_id bnxt_pci_tbl[] = {
174 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
195 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
197 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
201 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
208 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
209 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
210 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
211 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
212 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
213 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
214 #ifdef CONFIG_BNXT_SRIOV
215 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
218 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
219 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
220 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
221 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
222 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
223 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
226 #endif
227 	{ 0 }
228 };
229 
230 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
231 
232 static const u16 bnxt_vf_req_snif[] = {
233 	HWRM_FUNC_CFG,
234 	HWRM_FUNC_VF_CFG,
235 	HWRM_PORT_PHY_QCFG,
236 	HWRM_CFA_L2_FILTER_ALLOC,
237 };
238 
239 static const u16 bnxt_async_events_arr[] = {
240 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
241 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
243 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
244 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
253 }
254 
255 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
256 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
257 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
258 
259 #define BNXT_CP_DB_IRQ_DIS(db)						\
260 		writel(DB_CP_IRQ_DIS_FLAGS, db)
261 
262 #define BNXT_DB_CQ(db, idx)						\
263 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
264 
265 #define BNXT_DB_NQ_P5(db, idx)						\
266 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
267 
268 #define BNXT_DB_CQ_ARM(db, idx)						\
269 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
270 
271 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
272 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
273 
274 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
275 {
276 	if (bp->flags & BNXT_FLAG_CHIP_P5)
277 		BNXT_DB_NQ_P5(db, idx);
278 	else
279 		BNXT_DB_CQ(db, idx);
280 }
281 
282 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 	if (bp->flags & BNXT_FLAG_CHIP_P5)
285 		BNXT_DB_NQ_ARM_P5(db, idx);
286 	else
287 		BNXT_DB_CQ_ARM(db, idx);
288 }
289 
290 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
291 {
292 	if (bp->flags & BNXT_FLAG_CHIP_P5)
293 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
294 		       db->doorbell);
295 	else
296 		BNXT_DB_CQ(db, idx);
297 }
298 
299 const u16 bnxt_lhint_arr[] = {
300 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
301 	TX_BD_FLAGS_LHINT_512_TO_1023,
302 	TX_BD_FLAGS_LHINT_1024_TO_2047,
303 	TX_BD_FLAGS_LHINT_1024_TO_2047,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 };
320 
321 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
322 {
323 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
324 
325 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
326 		return 0;
327 
328 	return md_dst->u.port_info.port_id;
329 }
330 
331 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
332 {
333 	struct bnxt *bp = netdev_priv(dev);
334 	struct tx_bd *txbd;
335 	struct tx_bd_ext *txbd1;
336 	struct netdev_queue *txq;
337 	int i;
338 	dma_addr_t mapping;
339 	unsigned int length, pad = 0;
340 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
341 	u16 prod, last_frag;
342 	struct pci_dev *pdev = bp->pdev;
343 	struct bnxt_tx_ring_info *txr;
344 	struct bnxt_sw_tx_bd *tx_buf;
345 
346 	i = skb_get_queue_mapping(skb);
347 	if (unlikely(i >= bp->tx_nr_rings)) {
348 		dev_kfree_skb_any(skb);
349 		return NETDEV_TX_OK;
350 	}
351 
352 	txq = netdev_get_tx_queue(dev, i);
353 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
354 	prod = txr->tx_prod;
355 
356 	free_size = bnxt_tx_avail(bp, txr);
357 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
358 		netif_tx_stop_queue(txq);
359 		return NETDEV_TX_BUSY;
360 	}
361 
362 	length = skb->len;
363 	len = skb_headlen(skb);
364 	last_frag = skb_shinfo(skb)->nr_frags;
365 
366 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
367 
368 	txbd->tx_bd_opaque = prod;
369 
370 	tx_buf = &txr->tx_buf_ring[prod];
371 	tx_buf->skb = skb;
372 	tx_buf->nr_frags = last_frag;
373 
374 	vlan_tag_flags = 0;
375 	cfa_action = bnxt_xmit_get_cfa_action(skb);
376 	if (skb_vlan_tag_present(skb)) {
377 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
378 				 skb_vlan_tag_get(skb);
379 		/* Currently supports 8021Q, 8021AD vlan offloads
380 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
381 		 */
382 		if (skb->vlan_proto == htons(ETH_P_8021Q))
383 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
384 	}
385 
386 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
387 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
388 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
389 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
390 		void __iomem *db = txr->tx_db.doorbell;
391 		void *pdata = tx_push_buf->data;
392 		u64 *end;
393 		int j, push_len;
394 
395 		/* Set COAL_NOW to be ready quickly for the next push */
396 		tx_push->tx_bd_len_flags_type =
397 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
398 					TX_BD_TYPE_LONG_TX_BD |
399 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
400 					TX_BD_FLAGS_COAL_NOW |
401 					TX_BD_FLAGS_PACKET_END |
402 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
403 
404 		if (skb->ip_summed == CHECKSUM_PARTIAL)
405 			tx_push1->tx_bd_hsize_lflags =
406 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
407 		else
408 			tx_push1->tx_bd_hsize_lflags = 0;
409 
410 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
411 		tx_push1->tx_bd_cfa_action =
412 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
413 
414 		end = pdata + length;
415 		end = PTR_ALIGN(end, 8) - 1;
416 		*end = 0;
417 
418 		skb_copy_from_linear_data(skb, pdata, len);
419 		pdata += len;
420 		for (j = 0; j < last_frag; j++) {
421 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
422 			void *fptr;
423 
424 			fptr = skb_frag_address_safe(frag);
425 			if (!fptr)
426 				goto normal_tx;
427 
428 			memcpy(pdata, fptr, skb_frag_size(frag));
429 			pdata += skb_frag_size(frag);
430 		}
431 
432 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
433 		txbd->tx_bd_haddr = txr->data_mapping;
434 		prod = NEXT_TX(prod);
435 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
436 		memcpy(txbd, tx_push1, sizeof(*txbd));
437 		prod = NEXT_TX(prod);
438 		tx_push->doorbell =
439 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
440 		txr->tx_prod = prod;
441 
442 		tx_buf->is_push = 1;
443 		netdev_tx_sent_queue(txq, skb->len);
444 		wmb();	/* Sync is_push and byte queue before pushing data */
445 
446 		push_len = (length + sizeof(*tx_push) + 7) / 8;
447 		if (push_len > 16) {
448 			__iowrite64_copy(db, tx_push_buf, 16);
449 			__iowrite32_copy(db + 4, tx_push_buf + 1,
450 					 (push_len - 16) << 1);
451 		} else {
452 			__iowrite64_copy(db, tx_push_buf, push_len);
453 		}
454 
455 		goto tx_done;
456 	}
457 
458 normal_tx:
459 	if (length < BNXT_MIN_PKT_SIZE) {
460 		pad = BNXT_MIN_PKT_SIZE - length;
461 		if (skb_pad(skb, pad)) {
462 			/* SKB already freed. */
463 			tx_buf->skb = NULL;
464 			return NETDEV_TX_OK;
465 		}
466 		length = BNXT_MIN_PKT_SIZE;
467 	}
468 
469 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
470 
471 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
472 		dev_kfree_skb_any(skb);
473 		tx_buf->skb = NULL;
474 		return NETDEV_TX_OK;
475 	}
476 
477 	dma_unmap_addr_set(tx_buf, mapping, mapping);
478 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
479 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
480 
481 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
482 
483 	prod = NEXT_TX(prod);
484 	txbd1 = (struct tx_bd_ext *)
485 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
486 
487 	txbd1->tx_bd_hsize_lflags = 0;
488 	if (skb_is_gso(skb)) {
489 		u32 hdr_len;
490 
491 		if (skb->encapsulation)
492 			hdr_len = skb_inner_network_offset(skb) +
493 				skb_inner_network_header_len(skb) +
494 				inner_tcp_hdrlen(skb);
495 		else
496 			hdr_len = skb_transport_offset(skb) +
497 				tcp_hdrlen(skb);
498 
499 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
500 					TX_BD_FLAGS_T_IPID |
501 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
502 		length = skb_shinfo(skb)->gso_size;
503 		txbd1->tx_bd_mss = cpu_to_le32(length);
504 		length += hdr_len;
505 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
506 		txbd1->tx_bd_hsize_lflags =
507 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
508 		txbd1->tx_bd_mss = 0;
509 	}
510 
511 	length >>= 9;
512 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
513 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
514 				     skb->len);
515 		i = 0;
516 		goto tx_dma_error;
517 	}
518 	flags |= bnxt_lhint_arr[length];
519 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
520 
521 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
522 	txbd1->tx_bd_cfa_action =
523 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
524 	for (i = 0; i < last_frag; i++) {
525 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
526 
527 		prod = NEXT_TX(prod);
528 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
529 
530 		len = skb_frag_size(frag);
531 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
532 					   DMA_TO_DEVICE);
533 
534 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
535 			goto tx_dma_error;
536 
537 		tx_buf = &txr->tx_buf_ring[prod];
538 		dma_unmap_addr_set(tx_buf, mapping, mapping);
539 
540 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
541 
542 		flags = len << TX_BD_LEN_SHIFT;
543 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
544 	}
545 
546 	flags &= ~TX_BD_LEN;
547 	txbd->tx_bd_len_flags_type =
548 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
549 			    TX_BD_FLAGS_PACKET_END);
550 
551 	netdev_tx_sent_queue(txq, skb->len);
552 
553 	/* Sync BD data before updating doorbell */
554 	wmb();
555 
556 	prod = NEXT_TX(prod);
557 	txr->tx_prod = prod;
558 
559 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
560 		bnxt_db_write(bp, &txr->tx_db, prod);
561 
562 tx_done:
563 
564 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
565 		if (netdev_xmit_more() && !tx_buf->is_push)
566 			bnxt_db_write(bp, &txr->tx_db, prod);
567 
568 		netif_tx_stop_queue(txq);
569 
570 		/* netif_tx_stop_queue() must be done before checking
571 		 * tx index in bnxt_tx_avail() below, because in
572 		 * bnxt_tx_int(), we update tx index before checking for
573 		 * netif_tx_queue_stopped().
574 		 */
575 		smp_mb();
576 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
577 			netif_tx_wake_queue(txq);
578 	}
579 	return NETDEV_TX_OK;
580 
581 tx_dma_error:
582 	last_frag = i;
583 
584 	/* start back at beginning and unmap skb */
585 	prod = txr->tx_prod;
586 	tx_buf = &txr->tx_buf_ring[prod];
587 	tx_buf->skb = NULL;
588 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
589 			 skb_headlen(skb), PCI_DMA_TODEVICE);
590 	prod = NEXT_TX(prod);
591 
592 	/* unmap remaining mapped pages */
593 	for (i = 0; i < last_frag; i++) {
594 		prod = NEXT_TX(prod);
595 		tx_buf = &txr->tx_buf_ring[prod];
596 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
597 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
598 			       PCI_DMA_TODEVICE);
599 	}
600 
601 	dev_kfree_skb_any(skb);
602 	return NETDEV_TX_OK;
603 }
604 
605 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
606 {
607 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
608 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
609 	u16 cons = txr->tx_cons;
610 	struct pci_dev *pdev = bp->pdev;
611 	int i;
612 	unsigned int tx_bytes = 0;
613 
614 	for (i = 0; i < nr_pkts; i++) {
615 		struct bnxt_sw_tx_bd *tx_buf;
616 		struct sk_buff *skb;
617 		int j, last;
618 
619 		tx_buf = &txr->tx_buf_ring[cons];
620 		cons = NEXT_TX(cons);
621 		skb = tx_buf->skb;
622 		tx_buf->skb = NULL;
623 
624 		if (tx_buf->is_push) {
625 			tx_buf->is_push = 0;
626 			goto next_tx_int;
627 		}
628 
629 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
630 				 skb_headlen(skb), PCI_DMA_TODEVICE);
631 		last = tx_buf->nr_frags;
632 
633 		for (j = 0; j < last; j++) {
634 			cons = NEXT_TX(cons);
635 			tx_buf = &txr->tx_buf_ring[cons];
636 			dma_unmap_page(
637 				&pdev->dev,
638 				dma_unmap_addr(tx_buf, mapping),
639 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
640 				PCI_DMA_TODEVICE);
641 		}
642 
643 next_tx_int:
644 		cons = NEXT_TX(cons);
645 
646 		tx_bytes += skb->len;
647 		dev_kfree_skb_any(skb);
648 	}
649 
650 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
651 	txr->tx_cons = cons;
652 
653 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
654 	 * before checking for netif_tx_queue_stopped().  Without the
655 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
656 	 * will miss it and cause the queue to be stopped forever.
657 	 */
658 	smp_mb();
659 
660 	if (unlikely(netif_tx_queue_stopped(txq)) &&
661 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
662 		__netif_tx_lock(txq, smp_processor_id());
663 		if (netif_tx_queue_stopped(txq) &&
664 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
665 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
666 			netif_tx_wake_queue(txq);
667 		__netif_tx_unlock(txq);
668 	}
669 }
670 
671 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
672 					 struct bnxt_rx_ring_info *rxr,
673 					 gfp_t gfp)
674 {
675 	struct device *dev = &bp->pdev->dev;
676 	struct page *page;
677 
678 	page = page_pool_dev_alloc_pages(rxr->page_pool);
679 	if (!page)
680 		return NULL;
681 
682 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
683 				      DMA_ATTR_WEAK_ORDERING);
684 	if (dma_mapping_error(dev, *mapping)) {
685 		page_pool_recycle_direct(rxr->page_pool, page);
686 		return NULL;
687 	}
688 	*mapping += bp->rx_dma_offset;
689 	return page;
690 }
691 
692 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
693 				       gfp_t gfp)
694 {
695 	u8 *data;
696 	struct pci_dev *pdev = bp->pdev;
697 
698 	data = kmalloc(bp->rx_buf_size, gfp);
699 	if (!data)
700 		return NULL;
701 
702 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
703 					bp->rx_buf_use_size, bp->rx_dir,
704 					DMA_ATTR_WEAK_ORDERING);
705 
706 	if (dma_mapping_error(&pdev->dev, *mapping)) {
707 		kfree(data);
708 		data = NULL;
709 	}
710 	return data;
711 }
712 
713 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
714 		       u16 prod, gfp_t gfp)
715 {
716 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
717 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
718 	dma_addr_t mapping;
719 
720 	if (BNXT_RX_PAGE_MODE(bp)) {
721 		struct page *page =
722 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
723 
724 		if (!page)
725 			return -ENOMEM;
726 
727 		rx_buf->data = page;
728 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
729 	} else {
730 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
731 
732 		if (!data)
733 			return -ENOMEM;
734 
735 		rx_buf->data = data;
736 		rx_buf->data_ptr = data + bp->rx_offset;
737 	}
738 	rx_buf->mapping = mapping;
739 
740 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
741 	return 0;
742 }
743 
744 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
745 {
746 	u16 prod = rxr->rx_prod;
747 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
748 	struct rx_bd *cons_bd, *prod_bd;
749 
750 	prod_rx_buf = &rxr->rx_buf_ring[prod];
751 	cons_rx_buf = &rxr->rx_buf_ring[cons];
752 
753 	prod_rx_buf->data = data;
754 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
755 
756 	prod_rx_buf->mapping = cons_rx_buf->mapping;
757 
758 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
759 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
760 
761 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
762 }
763 
764 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
765 {
766 	u16 next, max = rxr->rx_agg_bmap_size;
767 
768 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
769 	if (next >= max)
770 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
771 	return next;
772 }
773 
774 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
775 				     struct bnxt_rx_ring_info *rxr,
776 				     u16 prod, gfp_t gfp)
777 {
778 	struct rx_bd *rxbd =
779 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
780 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
781 	struct pci_dev *pdev = bp->pdev;
782 	struct page *page;
783 	dma_addr_t mapping;
784 	u16 sw_prod = rxr->rx_sw_agg_prod;
785 	unsigned int offset = 0;
786 
787 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
788 		page = rxr->rx_page;
789 		if (!page) {
790 			page = alloc_page(gfp);
791 			if (!page)
792 				return -ENOMEM;
793 			rxr->rx_page = page;
794 			rxr->rx_page_offset = 0;
795 		}
796 		offset = rxr->rx_page_offset;
797 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
798 		if (rxr->rx_page_offset == PAGE_SIZE)
799 			rxr->rx_page = NULL;
800 		else
801 			get_page(page);
802 	} else {
803 		page = alloc_page(gfp);
804 		if (!page)
805 			return -ENOMEM;
806 	}
807 
808 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
809 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
810 				     DMA_ATTR_WEAK_ORDERING);
811 	if (dma_mapping_error(&pdev->dev, mapping)) {
812 		__free_page(page);
813 		return -EIO;
814 	}
815 
816 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
817 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
818 
819 	__set_bit(sw_prod, rxr->rx_agg_bmap);
820 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
821 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
822 
823 	rx_agg_buf->page = page;
824 	rx_agg_buf->offset = offset;
825 	rx_agg_buf->mapping = mapping;
826 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
827 	rxbd->rx_bd_opaque = sw_prod;
828 	return 0;
829 }
830 
831 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
832 				   u32 agg_bufs)
833 {
834 	struct bnxt_napi *bnapi = cpr->bnapi;
835 	struct bnxt *bp = bnapi->bp;
836 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
837 	u16 prod = rxr->rx_agg_prod;
838 	u16 sw_prod = rxr->rx_sw_agg_prod;
839 	u32 i;
840 
841 	for (i = 0; i < agg_bufs; i++) {
842 		u16 cons;
843 		struct rx_agg_cmp *agg;
844 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
845 		struct rx_bd *prod_bd;
846 		struct page *page;
847 
848 		agg = (struct rx_agg_cmp *)
849 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
850 		cons = agg->rx_agg_cmp_opaque;
851 		__clear_bit(cons, rxr->rx_agg_bmap);
852 
853 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
854 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
855 
856 		__set_bit(sw_prod, rxr->rx_agg_bmap);
857 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
858 		cons_rx_buf = &rxr->rx_agg_ring[cons];
859 
860 		/* It is possible for sw_prod to be equal to cons, so
861 		 * set cons_rx_buf->page to NULL first.
862 		 */
863 		page = cons_rx_buf->page;
864 		cons_rx_buf->page = NULL;
865 		prod_rx_buf->page = page;
866 		prod_rx_buf->offset = cons_rx_buf->offset;
867 
868 		prod_rx_buf->mapping = cons_rx_buf->mapping;
869 
870 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
871 
872 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
873 		prod_bd->rx_bd_opaque = sw_prod;
874 
875 		prod = NEXT_RX_AGG(prod);
876 		sw_prod = NEXT_RX_AGG(sw_prod);
877 		cp_cons = NEXT_CMP(cp_cons);
878 	}
879 	rxr->rx_agg_prod = prod;
880 	rxr->rx_sw_agg_prod = sw_prod;
881 }
882 
883 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
884 					struct bnxt_rx_ring_info *rxr,
885 					u16 cons, void *data, u8 *data_ptr,
886 					dma_addr_t dma_addr,
887 					unsigned int offset_and_len)
888 {
889 	unsigned int payload = offset_and_len >> 16;
890 	unsigned int len = offset_and_len & 0xffff;
891 	struct skb_frag_struct *frag;
892 	struct page *page = data;
893 	u16 prod = rxr->rx_prod;
894 	struct sk_buff *skb;
895 	int off, err;
896 
897 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
898 	if (unlikely(err)) {
899 		bnxt_reuse_rx_data(rxr, cons, data);
900 		return NULL;
901 	}
902 	dma_addr -= bp->rx_dma_offset;
903 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
904 			     DMA_ATTR_WEAK_ORDERING);
905 
906 	if (unlikely(!payload))
907 		payload = eth_get_headlen(bp->dev, data_ptr, len);
908 
909 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
910 	if (!skb) {
911 		__free_page(page);
912 		return NULL;
913 	}
914 
915 	off = (void *)data_ptr - page_address(page);
916 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
917 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
918 	       payload + NET_IP_ALIGN);
919 
920 	frag = &skb_shinfo(skb)->frags[0];
921 	skb_frag_size_sub(frag, payload);
922 	frag->page_offset += payload;
923 	skb->data_len -= payload;
924 	skb->tail += payload;
925 
926 	return skb;
927 }
928 
929 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
930 				   struct bnxt_rx_ring_info *rxr, u16 cons,
931 				   void *data, u8 *data_ptr,
932 				   dma_addr_t dma_addr,
933 				   unsigned int offset_and_len)
934 {
935 	u16 prod = rxr->rx_prod;
936 	struct sk_buff *skb;
937 	int err;
938 
939 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
940 	if (unlikely(err)) {
941 		bnxt_reuse_rx_data(rxr, cons, data);
942 		return NULL;
943 	}
944 
945 	skb = build_skb(data, 0);
946 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
947 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
948 	if (!skb) {
949 		kfree(data);
950 		return NULL;
951 	}
952 
953 	skb_reserve(skb, bp->rx_offset);
954 	skb_put(skb, offset_and_len & 0xffff);
955 	return skb;
956 }
957 
958 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
959 				     struct bnxt_cp_ring_info *cpr,
960 				     struct sk_buff *skb, u16 cp_cons,
961 				     u32 agg_bufs)
962 {
963 	struct bnxt_napi *bnapi = cpr->bnapi;
964 	struct pci_dev *pdev = bp->pdev;
965 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
966 	u16 prod = rxr->rx_agg_prod;
967 	u32 i;
968 
969 	for (i = 0; i < agg_bufs; i++) {
970 		u16 cons, frag_len;
971 		struct rx_agg_cmp *agg;
972 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
973 		struct page *page;
974 		dma_addr_t mapping;
975 
976 		agg = (struct rx_agg_cmp *)
977 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
978 		cons = agg->rx_agg_cmp_opaque;
979 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
980 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
981 
982 		cons_rx_buf = &rxr->rx_agg_ring[cons];
983 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
984 				   cons_rx_buf->offset, frag_len);
985 		__clear_bit(cons, rxr->rx_agg_bmap);
986 
987 		/* It is possible for bnxt_alloc_rx_page() to allocate
988 		 * a sw_prod index that equals the cons index, so we
989 		 * need to clear the cons entry now.
990 		 */
991 		mapping = cons_rx_buf->mapping;
992 		page = cons_rx_buf->page;
993 		cons_rx_buf->page = NULL;
994 
995 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
996 			struct skb_shared_info *shinfo;
997 			unsigned int nr_frags;
998 
999 			shinfo = skb_shinfo(skb);
1000 			nr_frags = --shinfo->nr_frags;
1001 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1002 
1003 			dev_kfree_skb(skb);
1004 
1005 			cons_rx_buf->page = page;
1006 
1007 			/* Update prod since possibly some pages have been
1008 			 * allocated already.
1009 			 */
1010 			rxr->rx_agg_prod = prod;
1011 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs - i);
1012 			return NULL;
1013 		}
1014 
1015 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1016 				     PCI_DMA_FROMDEVICE,
1017 				     DMA_ATTR_WEAK_ORDERING);
1018 
1019 		skb->data_len += frag_len;
1020 		skb->len += frag_len;
1021 		skb->truesize += PAGE_SIZE;
1022 
1023 		prod = NEXT_RX_AGG(prod);
1024 		cp_cons = NEXT_CMP(cp_cons);
1025 	}
1026 	rxr->rx_agg_prod = prod;
1027 	return skb;
1028 }
1029 
1030 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1031 			       u8 agg_bufs, u32 *raw_cons)
1032 {
1033 	u16 last;
1034 	struct rx_agg_cmp *agg;
1035 
1036 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1037 	last = RING_CMP(*raw_cons);
1038 	agg = (struct rx_agg_cmp *)
1039 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1040 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1041 }
1042 
1043 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1044 					    unsigned int len,
1045 					    dma_addr_t mapping)
1046 {
1047 	struct bnxt *bp = bnapi->bp;
1048 	struct pci_dev *pdev = bp->pdev;
1049 	struct sk_buff *skb;
1050 
1051 	skb = napi_alloc_skb(&bnapi->napi, len);
1052 	if (!skb)
1053 		return NULL;
1054 
1055 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1056 				bp->rx_dir);
1057 
1058 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1059 	       len + NET_IP_ALIGN);
1060 
1061 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1062 				   bp->rx_dir);
1063 
1064 	skb_put(skb, len);
1065 	return skb;
1066 }
1067 
1068 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1069 			   u32 *raw_cons, void *cmp)
1070 {
1071 	struct rx_cmp *rxcmp = cmp;
1072 	u32 tmp_raw_cons = *raw_cons;
1073 	u8 cmp_type, agg_bufs = 0;
1074 
1075 	cmp_type = RX_CMP_TYPE(rxcmp);
1076 
1077 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1078 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1079 			    RX_CMP_AGG_BUFS) >>
1080 			   RX_CMP_AGG_BUFS_SHIFT;
1081 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1082 		struct rx_tpa_end_cmp *tpa_end = cmp;
1083 
1084 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1085 			    RX_TPA_END_CMP_AGG_BUFS) >>
1086 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1087 	}
1088 
1089 	if (agg_bufs) {
1090 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1091 			return -EBUSY;
1092 	}
1093 	*raw_cons = tmp_raw_cons;
1094 	return 0;
1095 }
1096 
1097 static void bnxt_queue_sp_work(struct bnxt *bp)
1098 {
1099 	if (BNXT_PF(bp))
1100 		queue_work(bnxt_pf_wq, &bp->sp_task);
1101 	else
1102 		schedule_work(&bp->sp_task);
1103 }
1104 
1105 static void bnxt_cancel_sp_work(struct bnxt *bp)
1106 {
1107 	if (BNXT_PF(bp))
1108 		flush_workqueue(bnxt_pf_wq);
1109 	else
1110 		cancel_work_sync(&bp->sp_task);
1111 }
1112 
1113 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1114 {
1115 	if (!rxr->bnapi->in_reset) {
1116 		rxr->bnapi->in_reset = true;
1117 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1118 		bnxt_queue_sp_work(bp);
1119 	}
1120 	rxr->rx_next_cons = 0xffff;
1121 }
1122 
1123 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1124 			   struct rx_tpa_start_cmp *tpa_start,
1125 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1126 {
1127 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1128 	u16 cons, prod;
1129 	struct bnxt_tpa_info *tpa_info;
1130 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1131 	struct rx_bd *prod_bd;
1132 	dma_addr_t mapping;
1133 
1134 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1135 	prod = rxr->rx_prod;
1136 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1137 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1138 	tpa_info = &rxr->rx_tpa[agg_id];
1139 
1140 	if (unlikely(cons != rxr->rx_next_cons)) {
1141 		netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n",
1142 			    cons, rxr->rx_next_cons);
1143 		bnxt_sched_reset(bp, rxr);
1144 		return;
1145 	}
1146 	/* Store cfa_code in tpa_info to use in tpa_end
1147 	 * completion processing.
1148 	 */
1149 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1150 	prod_rx_buf->data = tpa_info->data;
1151 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1152 
1153 	mapping = tpa_info->mapping;
1154 	prod_rx_buf->mapping = mapping;
1155 
1156 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1157 
1158 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1159 
1160 	tpa_info->data = cons_rx_buf->data;
1161 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1162 	cons_rx_buf->data = NULL;
1163 	tpa_info->mapping = cons_rx_buf->mapping;
1164 
1165 	tpa_info->len =
1166 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1167 				RX_TPA_START_CMP_LEN_SHIFT;
1168 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1169 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1170 
1171 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1172 		tpa_info->gso_type = SKB_GSO_TCPV4;
1173 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1174 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1175 			tpa_info->gso_type = SKB_GSO_TCPV6;
1176 		tpa_info->rss_hash =
1177 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1178 	} else {
1179 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1180 		tpa_info->gso_type = 0;
1181 		if (netif_msg_rx_err(bp))
1182 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1183 	}
1184 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1185 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1186 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1187 
1188 	rxr->rx_prod = NEXT_RX(prod);
1189 	cons = NEXT_RX(cons);
1190 	rxr->rx_next_cons = NEXT_RX(cons);
1191 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1192 
1193 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1194 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1195 	cons_rx_buf->data = NULL;
1196 }
1197 
1198 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
1199 			   u32 agg_bufs)
1200 {
1201 	if (agg_bufs)
1202 		bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1203 }
1204 
1205 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1206 					   int payload_off, int tcp_ts,
1207 					   struct sk_buff *skb)
1208 {
1209 #ifdef CONFIG_INET
1210 	struct tcphdr *th;
1211 	int len, nw_off;
1212 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1213 	u32 hdr_info = tpa_info->hdr_info;
1214 	bool loopback = false;
1215 
1216 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1217 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1218 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1219 
1220 	/* If the packet is an internal loopback packet, the offsets will
1221 	 * have an extra 4 bytes.
1222 	 */
1223 	if (inner_mac_off == 4) {
1224 		loopback = true;
1225 	} else if (inner_mac_off > 4) {
1226 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1227 					    ETH_HLEN - 2));
1228 
1229 		/* We only support inner iPv4/ipv6.  If we don't see the
1230 		 * correct protocol ID, it must be a loopback packet where
1231 		 * the offsets are off by 4.
1232 		 */
1233 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1234 			loopback = true;
1235 	}
1236 	if (loopback) {
1237 		/* internal loopback packet, subtract all offsets by 4 */
1238 		inner_ip_off -= 4;
1239 		inner_mac_off -= 4;
1240 		outer_ip_off -= 4;
1241 	}
1242 
1243 	nw_off = inner_ip_off - ETH_HLEN;
1244 	skb_set_network_header(skb, nw_off);
1245 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1246 		struct ipv6hdr *iph = ipv6_hdr(skb);
1247 
1248 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1249 		len = skb->len - skb_transport_offset(skb);
1250 		th = tcp_hdr(skb);
1251 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1252 	} else {
1253 		struct iphdr *iph = ip_hdr(skb);
1254 
1255 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1256 		len = skb->len - skb_transport_offset(skb);
1257 		th = tcp_hdr(skb);
1258 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1259 	}
1260 
1261 	if (inner_mac_off) { /* tunnel */
1262 		struct udphdr *uh = NULL;
1263 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1264 					    ETH_HLEN - 2));
1265 
1266 		if (proto == htons(ETH_P_IP)) {
1267 			struct iphdr *iph = (struct iphdr *)skb->data;
1268 
1269 			if (iph->protocol == IPPROTO_UDP)
1270 				uh = (struct udphdr *)(iph + 1);
1271 		} else {
1272 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1273 
1274 			if (iph->nexthdr == IPPROTO_UDP)
1275 				uh = (struct udphdr *)(iph + 1);
1276 		}
1277 		if (uh) {
1278 			if (uh->check)
1279 				skb_shinfo(skb)->gso_type |=
1280 					SKB_GSO_UDP_TUNNEL_CSUM;
1281 			else
1282 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1283 		}
1284 	}
1285 #endif
1286 	return skb;
1287 }
1288 
1289 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1290 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1291 
1292 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1293 					   int payload_off, int tcp_ts,
1294 					   struct sk_buff *skb)
1295 {
1296 #ifdef CONFIG_INET
1297 	struct tcphdr *th;
1298 	int len, nw_off, tcp_opt_len = 0;
1299 
1300 	if (tcp_ts)
1301 		tcp_opt_len = 12;
1302 
1303 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1304 		struct iphdr *iph;
1305 
1306 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1307 			 ETH_HLEN;
1308 		skb_set_network_header(skb, nw_off);
1309 		iph = ip_hdr(skb);
1310 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1311 		len = skb->len - skb_transport_offset(skb);
1312 		th = tcp_hdr(skb);
1313 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1314 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1315 		struct ipv6hdr *iph;
1316 
1317 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1318 			 ETH_HLEN;
1319 		skb_set_network_header(skb, nw_off);
1320 		iph = ipv6_hdr(skb);
1321 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1322 		len = skb->len - skb_transport_offset(skb);
1323 		th = tcp_hdr(skb);
1324 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1325 	} else {
1326 		dev_kfree_skb_any(skb);
1327 		return NULL;
1328 	}
1329 
1330 	if (nw_off) { /* tunnel */
1331 		struct udphdr *uh = NULL;
1332 
1333 		if (skb->protocol == htons(ETH_P_IP)) {
1334 			struct iphdr *iph = (struct iphdr *)skb->data;
1335 
1336 			if (iph->protocol == IPPROTO_UDP)
1337 				uh = (struct udphdr *)(iph + 1);
1338 		} else {
1339 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1340 
1341 			if (iph->nexthdr == IPPROTO_UDP)
1342 				uh = (struct udphdr *)(iph + 1);
1343 		}
1344 		if (uh) {
1345 			if (uh->check)
1346 				skb_shinfo(skb)->gso_type |=
1347 					SKB_GSO_UDP_TUNNEL_CSUM;
1348 			else
1349 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1350 		}
1351 	}
1352 #endif
1353 	return skb;
1354 }
1355 
1356 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1357 					   struct bnxt_tpa_info *tpa_info,
1358 					   struct rx_tpa_end_cmp *tpa_end,
1359 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1360 					   struct sk_buff *skb)
1361 {
1362 #ifdef CONFIG_INET
1363 	int payload_off;
1364 	u16 segs;
1365 
1366 	segs = TPA_END_TPA_SEGS(tpa_end);
1367 	if (segs == 1)
1368 		return skb;
1369 
1370 	NAPI_GRO_CB(skb)->count = segs;
1371 	skb_shinfo(skb)->gso_size =
1372 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1373 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1374 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1375 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1376 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1377 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1378 	if (likely(skb))
1379 		tcp_gro_complete(skb);
1380 #endif
1381 	return skb;
1382 }
1383 
1384 /* Given the cfa_code of a received packet determine which
1385  * netdev (vf-rep or PF) the packet is destined to.
1386  */
1387 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1388 {
1389 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1390 
1391 	/* if vf-rep dev is NULL, the must belongs to the PF */
1392 	return dev ? dev : bp->dev;
1393 }
1394 
1395 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1396 					   struct bnxt_cp_ring_info *cpr,
1397 					   u32 *raw_cons,
1398 					   struct rx_tpa_end_cmp *tpa_end,
1399 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1400 					   u8 *event)
1401 {
1402 	struct bnxt_napi *bnapi = cpr->bnapi;
1403 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1404 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1405 	u8 *data_ptr, agg_bufs;
1406 	u16 cp_cons = RING_CMP(*raw_cons);
1407 	unsigned int len;
1408 	struct bnxt_tpa_info *tpa_info;
1409 	dma_addr_t mapping;
1410 	struct sk_buff *skb;
1411 	void *data;
1412 
1413 	if (unlikely(bnapi->in_reset)) {
1414 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1415 
1416 		if (rc < 0)
1417 			return ERR_PTR(-EBUSY);
1418 		return NULL;
1419 	}
1420 
1421 	tpa_info = &rxr->rx_tpa[agg_id];
1422 	data = tpa_info->data;
1423 	data_ptr = tpa_info->data_ptr;
1424 	prefetch(data_ptr);
1425 	len = tpa_info->len;
1426 	mapping = tpa_info->mapping;
1427 
1428 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1429 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1430 
1431 	if (agg_bufs) {
1432 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1433 			return ERR_PTR(-EBUSY);
1434 
1435 		*event |= BNXT_AGG_EVENT;
1436 		cp_cons = NEXT_CMP(cp_cons);
1437 	}
1438 
1439 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1440 		bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1441 		if (agg_bufs > MAX_SKB_FRAGS)
1442 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1443 				    agg_bufs, (int)MAX_SKB_FRAGS);
1444 		return NULL;
1445 	}
1446 
1447 	if (len <= bp->rx_copy_thresh) {
1448 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1449 		if (!skb) {
1450 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1451 			return NULL;
1452 		}
1453 	} else {
1454 		u8 *new_data;
1455 		dma_addr_t new_mapping;
1456 
1457 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1458 		if (!new_data) {
1459 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1460 			return NULL;
1461 		}
1462 
1463 		tpa_info->data = new_data;
1464 		tpa_info->data_ptr = new_data + bp->rx_offset;
1465 		tpa_info->mapping = new_mapping;
1466 
1467 		skb = build_skb(data, 0);
1468 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1469 				       bp->rx_buf_use_size, bp->rx_dir,
1470 				       DMA_ATTR_WEAK_ORDERING);
1471 
1472 		if (!skb) {
1473 			kfree(data);
1474 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1475 			return NULL;
1476 		}
1477 		skb_reserve(skb, bp->rx_offset);
1478 		skb_put(skb, len);
1479 	}
1480 
1481 	if (agg_bufs) {
1482 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1483 		if (!skb) {
1484 			/* Page reuse already handled by bnxt_rx_pages(). */
1485 			return NULL;
1486 		}
1487 	}
1488 
1489 	skb->protocol =
1490 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1491 
1492 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1493 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1494 
1495 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1496 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1497 		u16 vlan_proto = tpa_info->metadata >>
1498 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1499 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1500 
1501 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1502 	}
1503 
1504 	skb_checksum_none_assert(skb);
1505 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1506 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1507 		skb->csum_level =
1508 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1509 	}
1510 
1511 	if (TPA_END_GRO(tpa_end))
1512 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1513 
1514 	return skb;
1515 }
1516 
1517 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1518 			     struct sk_buff *skb)
1519 {
1520 	if (skb->dev != bp->dev) {
1521 		/* this packet belongs to a vf-rep */
1522 		bnxt_vf_rep_rx(bp, skb);
1523 		return;
1524 	}
1525 	skb_record_rx_queue(skb, bnapi->index);
1526 	napi_gro_receive(&bnapi->napi, skb);
1527 }
1528 
1529 /* returns the following:
1530  * 1       - 1 packet successfully received
1531  * 0       - successful TPA_START, packet not completed yet
1532  * -EBUSY  - completion ring does not have all the agg buffers yet
1533  * -ENOMEM - packet aborted due to out of memory
1534  * -EIO    - packet aborted due to hw error indicated in BD
1535  */
1536 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1537 		       u32 *raw_cons, u8 *event)
1538 {
1539 	struct bnxt_napi *bnapi = cpr->bnapi;
1540 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1541 	struct net_device *dev = bp->dev;
1542 	struct rx_cmp *rxcmp;
1543 	struct rx_cmp_ext *rxcmp1;
1544 	u32 tmp_raw_cons = *raw_cons;
1545 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1546 	struct bnxt_sw_rx_bd *rx_buf;
1547 	unsigned int len;
1548 	u8 *data_ptr, agg_bufs, cmp_type;
1549 	dma_addr_t dma_addr;
1550 	struct sk_buff *skb;
1551 	void *data;
1552 	int rc = 0;
1553 	u32 misc;
1554 
1555 	rxcmp = (struct rx_cmp *)
1556 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1557 
1558 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1559 	cp_cons = RING_CMP(tmp_raw_cons);
1560 	rxcmp1 = (struct rx_cmp_ext *)
1561 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1562 
1563 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1564 		return -EBUSY;
1565 
1566 	cmp_type = RX_CMP_TYPE(rxcmp);
1567 
1568 	prod = rxr->rx_prod;
1569 
1570 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1571 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1572 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1573 
1574 		*event |= BNXT_RX_EVENT;
1575 		goto next_rx_no_prod_no_len;
1576 
1577 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1578 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1579 				   (struct rx_tpa_end_cmp *)rxcmp,
1580 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1581 
1582 		if (IS_ERR(skb))
1583 			return -EBUSY;
1584 
1585 		rc = -ENOMEM;
1586 		if (likely(skb)) {
1587 			bnxt_deliver_skb(bp, bnapi, skb);
1588 			rc = 1;
1589 		}
1590 		*event |= BNXT_RX_EVENT;
1591 		goto next_rx_no_prod_no_len;
1592 	}
1593 
1594 	cons = rxcmp->rx_cmp_opaque;
1595 	if (unlikely(cons != rxr->rx_next_cons)) {
1596 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1597 
1598 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1599 			    cons, rxr->rx_next_cons);
1600 		bnxt_sched_reset(bp, rxr);
1601 		return rc1;
1602 	}
1603 	rx_buf = &rxr->rx_buf_ring[cons];
1604 	data = rx_buf->data;
1605 	data_ptr = rx_buf->data_ptr;
1606 	prefetch(data_ptr);
1607 
1608 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1609 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1610 
1611 	if (agg_bufs) {
1612 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1613 			return -EBUSY;
1614 
1615 		cp_cons = NEXT_CMP(cp_cons);
1616 		*event |= BNXT_AGG_EVENT;
1617 	}
1618 	*event |= BNXT_RX_EVENT;
1619 
1620 	rx_buf->data = NULL;
1621 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1622 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1623 
1624 		bnxt_reuse_rx_data(rxr, cons, data);
1625 		if (agg_bufs)
1626 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1627 
1628 		rc = -EIO;
1629 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1630 			netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
1631 			bnxt_sched_reset(bp, rxr);
1632 		}
1633 		goto next_rx_no_len;
1634 	}
1635 
1636 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1637 	dma_addr = rx_buf->mapping;
1638 
1639 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1640 		rc = 1;
1641 		goto next_rx;
1642 	}
1643 
1644 	if (len <= bp->rx_copy_thresh) {
1645 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1646 		bnxt_reuse_rx_data(rxr, cons, data);
1647 		if (!skb) {
1648 			if (agg_bufs)
1649 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1650 			rc = -ENOMEM;
1651 			goto next_rx;
1652 		}
1653 	} else {
1654 		u32 payload;
1655 
1656 		if (rx_buf->data_ptr == data_ptr)
1657 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1658 		else
1659 			payload = 0;
1660 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1661 				      payload | len);
1662 		if (!skb) {
1663 			rc = -ENOMEM;
1664 			goto next_rx;
1665 		}
1666 	}
1667 
1668 	if (agg_bufs) {
1669 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1670 		if (!skb) {
1671 			rc = -ENOMEM;
1672 			goto next_rx;
1673 		}
1674 	}
1675 
1676 	if (RX_CMP_HASH_VALID(rxcmp)) {
1677 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1678 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1679 
1680 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1681 		if (hash_type != 1 && hash_type != 3)
1682 			type = PKT_HASH_TYPE_L3;
1683 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1684 	}
1685 
1686 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1687 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1688 
1689 	if ((rxcmp1->rx_cmp_flags2 &
1690 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1691 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1692 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1693 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1694 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1695 
1696 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1697 	}
1698 
1699 	skb_checksum_none_assert(skb);
1700 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1701 		if (dev->features & NETIF_F_RXCSUM) {
1702 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1703 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1704 		}
1705 	} else {
1706 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1707 			if (dev->features & NETIF_F_RXCSUM)
1708 				bnapi->cp_ring.rx_l4_csum_errors++;
1709 		}
1710 	}
1711 
1712 	bnxt_deliver_skb(bp, bnapi, skb);
1713 	rc = 1;
1714 
1715 next_rx:
1716 	cpr->rx_packets += 1;
1717 	cpr->rx_bytes += len;
1718 
1719 next_rx_no_len:
1720 	rxr->rx_prod = NEXT_RX(prod);
1721 	rxr->rx_next_cons = NEXT_RX(cons);
1722 
1723 next_rx_no_prod_no_len:
1724 	*raw_cons = tmp_raw_cons;
1725 
1726 	return rc;
1727 }
1728 
1729 /* In netpoll mode, if we are using a combined completion ring, we need to
1730  * discard the rx packets and recycle the buffers.
1731  */
1732 static int bnxt_force_rx_discard(struct bnxt *bp,
1733 				 struct bnxt_cp_ring_info *cpr,
1734 				 u32 *raw_cons, u8 *event)
1735 {
1736 	u32 tmp_raw_cons = *raw_cons;
1737 	struct rx_cmp_ext *rxcmp1;
1738 	struct rx_cmp *rxcmp;
1739 	u16 cp_cons;
1740 	u8 cmp_type;
1741 
1742 	cp_cons = RING_CMP(tmp_raw_cons);
1743 	rxcmp = (struct rx_cmp *)
1744 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1745 
1746 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1747 	cp_cons = RING_CMP(tmp_raw_cons);
1748 	rxcmp1 = (struct rx_cmp_ext *)
1749 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1750 
1751 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1752 		return -EBUSY;
1753 
1754 	cmp_type = RX_CMP_TYPE(rxcmp);
1755 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1756 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1757 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1758 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1759 		struct rx_tpa_end_cmp_ext *tpa_end1;
1760 
1761 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1762 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1763 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1764 	}
1765 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1766 }
1767 
1768 #define BNXT_GET_EVENT_PORT(data)	\
1769 	((data) &			\
1770 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1771 
1772 static int bnxt_async_event_process(struct bnxt *bp,
1773 				    struct hwrm_async_event_cmpl *cmpl)
1774 {
1775 	u16 event_id = le16_to_cpu(cmpl->event_id);
1776 
1777 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1778 	switch (event_id) {
1779 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1780 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1781 		struct bnxt_link_info *link_info = &bp->link_info;
1782 
1783 		if (BNXT_VF(bp))
1784 			goto async_event_process_exit;
1785 
1786 		/* print unsupported speed warning in forced speed mode only */
1787 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1788 		    (data1 & 0x20000)) {
1789 			u16 fw_speed = link_info->force_link_speed;
1790 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1791 
1792 			if (speed != SPEED_UNKNOWN)
1793 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1794 					    speed);
1795 		}
1796 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1797 	}
1798 	/* fall through */
1799 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1800 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1801 		break;
1802 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1803 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1804 		break;
1805 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1806 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1807 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1808 
1809 		if (BNXT_VF(bp))
1810 			break;
1811 
1812 		if (bp->pf.port_id != port_id)
1813 			break;
1814 
1815 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1816 		break;
1817 	}
1818 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1819 		if (BNXT_PF(bp))
1820 			goto async_event_process_exit;
1821 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1822 		break;
1823 	default:
1824 		goto async_event_process_exit;
1825 	}
1826 	bnxt_queue_sp_work(bp);
1827 async_event_process_exit:
1828 	bnxt_ulp_async_events(bp, cmpl);
1829 	return 0;
1830 }
1831 
1832 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1833 {
1834 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1835 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1836 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1837 				(struct hwrm_fwd_req_cmpl *)txcmp;
1838 
1839 	switch (cmpl_type) {
1840 	case CMPL_BASE_TYPE_HWRM_DONE:
1841 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1842 		if (seq_id == bp->hwrm_intr_seq_id)
1843 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
1844 		else
1845 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1846 		break;
1847 
1848 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1849 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1850 
1851 		if ((vf_id < bp->pf.first_vf_id) ||
1852 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1853 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1854 				   vf_id);
1855 			return -EINVAL;
1856 		}
1857 
1858 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1859 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1860 		bnxt_queue_sp_work(bp);
1861 		break;
1862 
1863 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1864 		bnxt_async_event_process(bp,
1865 					 (struct hwrm_async_event_cmpl *)txcmp);
1866 
1867 	default:
1868 		break;
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1875 {
1876 	struct bnxt_napi *bnapi = dev_instance;
1877 	struct bnxt *bp = bnapi->bp;
1878 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1879 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1880 
1881 	cpr->event_ctr++;
1882 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1883 	napi_schedule(&bnapi->napi);
1884 	return IRQ_HANDLED;
1885 }
1886 
1887 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1888 {
1889 	u32 raw_cons = cpr->cp_raw_cons;
1890 	u16 cons = RING_CMP(raw_cons);
1891 	struct tx_cmp *txcmp;
1892 
1893 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1894 
1895 	return TX_CMP_VALID(txcmp, raw_cons);
1896 }
1897 
1898 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1899 {
1900 	struct bnxt_napi *bnapi = dev_instance;
1901 	struct bnxt *bp = bnapi->bp;
1902 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1903 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1904 	u32 int_status;
1905 
1906 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1907 
1908 	if (!bnxt_has_work(bp, cpr)) {
1909 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1910 		/* return if erroneous interrupt */
1911 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1912 			return IRQ_NONE;
1913 	}
1914 
1915 	/* disable ring IRQ */
1916 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
1917 
1918 	/* Return here if interrupt is shared and is disabled. */
1919 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1920 		return IRQ_HANDLED;
1921 
1922 	napi_schedule(&bnapi->napi);
1923 	return IRQ_HANDLED;
1924 }
1925 
1926 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1927 			    int budget)
1928 {
1929 	struct bnxt_napi *bnapi = cpr->bnapi;
1930 	u32 raw_cons = cpr->cp_raw_cons;
1931 	u32 cons;
1932 	int tx_pkts = 0;
1933 	int rx_pkts = 0;
1934 	u8 event = 0;
1935 	struct tx_cmp *txcmp;
1936 
1937 	cpr->has_more_work = 0;
1938 	while (1) {
1939 		int rc;
1940 
1941 		cons = RING_CMP(raw_cons);
1942 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1943 
1944 		if (!TX_CMP_VALID(txcmp, raw_cons))
1945 			break;
1946 
1947 		/* The valid test of the entry must be done first before
1948 		 * reading any further.
1949 		 */
1950 		dma_rmb();
1951 		cpr->had_work_done = 1;
1952 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1953 			tx_pkts++;
1954 			/* return full budget so NAPI will complete. */
1955 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1956 				rx_pkts = budget;
1957 				raw_cons = NEXT_RAW_CMP(raw_cons);
1958 				if (budget)
1959 					cpr->has_more_work = 1;
1960 				break;
1961 			}
1962 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1963 			if (likely(budget))
1964 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
1965 			else
1966 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
1967 							   &event);
1968 			if (likely(rc >= 0))
1969 				rx_pkts += rc;
1970 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1971 			 * the NAPI budget.  Otherwise, we may potentially loop
1972 			 * here forever if we consistently cannot allocate
1973 			 * buffers.
1974 			 */
1975 			else if (rc == -ENOMEM && budget)
1976 				rx_pkts++;
1977 			else if (rc == -EBUSY)	/* partial completion */
1978 				break;
1979 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1980 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1981 				    (TX_CMP_TYPE(txcmp) ==
1982 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1983 				    (TX_CMP_TYPE(txcmp) ==
1984 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1985 			bnxt_hwrm_handler(bp, txcmp);
1986 		}
1987 		raw_cons = NEXT_RAW_CMP(raw_cons);
1988 
1989 		if (rx_pkts && rx_pkts == budget) {
1990 			cpr->has_more_work = 1;
1991 			break;
1992 		}
1993 	}
1994 
1995 	if (event & BNXT_REDIRECT_EVENT)
1996 		xdp_do_flush_map();
1997 
1998 	if (event & BNXT_TX_EVENT) {
1999 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2000 		u16 prod = txr->tx_prod;
2001 
2002 		/* Sync BD data before updating doorbell */
2003 		wmb();
2004 
2005 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2006 	}
2007 
2008 	cpr->cp_raw_cons = raw_cons;
2009 	bnapi->tx_pkts += tx_pkts;
2010 	bnapi->events |= event;
2011 	return rx_pkts;
2012 }
2013 
2014 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2015 {
2016 	if (bnapi->tx_pkts) {
2017 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2018 		bnapi->tx_pkts = 0;
2019 	}
2020 
2021 	if (bnapi->events & BNXT_RX_EVENT) {
2022 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2023 
2024 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2025 		if (bnapi->events & BNXT_AGG_EVENT)
2026 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2027 	}
2028 	bnapi->events = 0;
2029 }
2030 
2031 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2032 			  int budget)
2033 {
2034 	struct bnxt_napi *bnapi = cpr->bnapi;
2035 	int rx_pkts;
2036 
2037 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2038 
2039 	/* ACK completion ring before freeing tx ring and producing new
2040 	 * buffers in rx/agg rings to prevent overflowing the completion
2041 	 * ring.
2042 	 */
2043 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2044 
2045 	__bnxt_poll_work_done(bp, bnapi);
2046 	return rx_pkts;
2047 }
2048 
2049 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2050 {
2051 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2052 	struct bnxt *bp = bnapi->bp;
2053 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2054 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2055 	struct tx_cmp *txcmp;
2056 	struct rx_cmp_ext *rxcmp1;
2057 	u32 cp_cons, tmp_raw_cons;
2058 	u32 raw_cons = cpr->cp_raw_cons;
2059 	u32 rx_pkts = 0;
2060 	u8 event = 0;
2061 
2062 	while (1) {
2063 		int rc;
2064 
2065 		cp_cons = RING_CMP(raw_cons);
2066 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2067 
2068 		if (!TX_CMP_VALID(txcmp, raw_cons))
2069 			break;
2070 
2071 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2072 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2073 			cp_cons = RING_CMP(tmp_raw_cons);
2074 			rxcmp1 = (struct rx_cmp_ext *)
2075 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2076 
2077 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2078 				break;
2079 
2080 			/* force an error to recycle the buffer */
2081 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2082 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2083 
2084 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2085 			if (likely(rc == -EIO) && budget)
2086 				rx_pkts++;
2087 			else if (rc == -EBUSY)	/* partial completion */
2088 				break;
2089 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2090 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2091 			bnxt_hwrm_handler(bp, txcmp);
2092 		} else {
2093 			netdev_err(bp->dev,
2094 				   "Invalid completion received on special ring\n");
2095 		}
2096 		raw_cons = NEXT_RAW_CMP(raw_cons);
2097 
2098 		if (rx_pkts == budget)
2099 			break;
2100 	}
2101 
2102 	cpr->cp_raw_cons = raw_cons;
2103 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2104 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2105 
2106 	if (event & BNXT_AGG_EVENT)
2107 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2108 
2109 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2110 		napi_complete_done(napi, rx_pkts);
2111 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2112 	}
2113 	return rx_pkts;
2114 }
2115 
2116 static int bnxt_poll(struct napi_struct *napi, int budget)
2117 {
2118 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2119 	struct bnxt *bp = bnapi->bp;
2120 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2121 	int work_done = 0;
2122 
2123 	while (1) {
2124 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2125 
2126 		if (work_done >= budget) {
2127 			if (!budget)
2128 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2129 			break;
2130 		}
2131 
2132 		if (!bnxt_has_work(bp, cpr)) {
2133 			if (napi_complete_done(napi, work_done))
2134 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2135 			break;
2136 		}
2137 	}
2138 	if (bp->flags & BNXT_FLAG_DIM) {
2139 		struct dim_sample dim_sample;
2140 
2141 		dim_update_sample(cpr->event_ctr,
2142 				  cpr->rx_packets,
2143 				  cpr->rx_bytes,
2144 				  &dim_sample);
2145 		net_dim(&cpr->dim, dim_sample);
2146 	}
2147 	return work_done;
2148 }
2149 
2150 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2151 {
2152 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2153 	int i, work_done = 0;
2154 
2155 	for (i = 0; i < 2; i++) {
2156 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2157 
2158 		if (cpr2) {
2159 			work_done += __bnxt_poll_work(bp, cpr2,
2160 						      budget - work_done);
2161 			cpr->has_more_work |= cpr2->has_more_work;
2162 		}
2163 	}
2164 	return work_done;
2165 }
2166 
2167 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2168 				 u64 dbr_type, bool all)
2169 {
2170 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2171 	int i;
2172 
2173 	for (i = 0; i < 2; i++) {
2174 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2175 		struct bnxt_db_info *db;
2176 
2177 		if (cpr2 && (all || cpr2->had_work_done)) {
2178 			db = &cpr2->cp_db;
2179 			writeq(db->db_key64 | dbr_type |
2180 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2181 			cpr2->had_work_done = 0;
2182 		}
2183 	}
2184 	__bnxt_poll_work_done(bp, bnapi);
2185 }
2186 
2187 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2188 {
2189 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2190 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2191 	u32 raw_cons = cpr->cp_raw_cons;
2192 	struct bnxt *bp = bnapi->bp;
2193 	struct nqe_cn *nqcmp;
2194 	int work_done = 0;
2195 	u32 cons;
2196 
2197 	if (cpr->has_more_work) {
2198 		cpr->has_more_work = 0;
2199 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2200 		if (cpr->has_more_work) {
2201 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2202 			return work_done;
2203 		}
2204 		__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2205 		if (napi_complete_done(napi, work_done))
2206 			BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2207 		return work_done;
2208 	}
2209 	while (1) {
2210 		cons = RING_CMP(raw_cons);
2211 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2212 
2213 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2214 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2215 					     false);
2216 			cpr->cp_raw_cons = raw_cons;
2217 			if (napi_complete_done(napi, work_done))
2218 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2219 						  cpr->cp_raw_cons);
2220 			return work_done;
2221 		}
2222 
2223 		/* The valid test of the entry must be done first before
2224 		 * reading any further.
2225 		 */
2226 		dma_rmb();
2227 
2228 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2229 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2230 			struct bnxt_cp_ring_info *cpr2;
2231 
2232 			cpr2 = cpr->cp_ring_arr[idx];
2233 			work_done += __bnxt_poll_work(bp, cpr2,
2234 						      budget - work_done);
2235 			cpr->has_more_work = cpr2->has_more_work;
2236 		} else {
2237 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2238 		}
2239 		raw_cons = NEXT_RAW_CMP(raw_cons);
2240 		if (cpr->has_more_work)
2241 			break;
2242 	}
2243 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2244 	cpr->cp_raw_cons = raw_cons;
2245 	return work_done;
2246 }
2247 
2248 static void bnxt_free_tx_skbs(struct bnxt *bp)
2249 {
2250 	int i, max_idx;
2251 	struct pci_dev *pdev = bp->pdev;
2252 
2253 	if (!bp->tx_ring)
2254 		return;
2255 
2256 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2257 	for (i = 0; i < bp->tx_nr_rings; i++) {
2258 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2259 		int j;
2260 
2261 		for (j = 0; j < max_idx;) {
2262 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2263 			struct sk_buff *skb;
2264 			int k, last;
2265 
2266 			if (i < bp->tx_nr_rings_xdp &&
2267 			    tx_buf->action == XDP_REDIRECT) {
2268 				dma_unmap_single(&pdev->dev,
2269 					dma_unmap_addr(tx_buf, mapping),
2270 					dma_unmap_len(tx_buf, len),
2271 					PCI_DMA_TODEVICE);
2272 				xdp_return_frame(tx_buf->xdpf);
2273 				tx_buf->action = 0;
2274 				tx_buf->xdpf = NULL;
2275 				j++;
2276 				continue;
2277 			}
2278 
2279 			skb = tx_buf->skb;
2280 			if (!skb) {
2281 				j++;
2282 				continue;
2283 			}
2284 
2285 			tx_buf->skb = NULL;
2286 
2287 			if (tx_buf->is_push) {
2288 				dev_kfree_skb(skb);
2289 				j += 2;
2290 				continue;
2291 			}
2292 
2293 			dma_unmap_single(&pdev->dev,
2294 					 dma_unmap_addr(tx_buf, mapping),
2295 					 skb_headlen(skb),
2296 					 PCI_DMA_TODEVICE);
2297 
2298 			last = tx_buf->nr_frags;
2299 			j += 2;
2300 			for (k = 0; k < last; k++, j++) {
2301 				int ring_idx = j & bp->tx_ring_mask;
2302 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2303 
2304 				tx_buf = &txr->tx_buf_ring[ring_idx];
2305 				dma_unmap_page(
2306 					&pdev->dev,
2307 					dma_unmap_addr(tx_buf, mapping),
2308 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2309 			}
2310 			dev_kfree_skb(skb);
2311 		}
2312 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2313 	}
2314 }
2315 
2316 static void bnxt_free_rx_skbs(struct bnxt *bp)
2317 {
2318 	int i, max_idx, max_agg_idx;
2319 	struct pci_dev *pdev = bp->pdev;
2320 
2321 	if (!bp->rx_ring)
2322 		return;
2323 
2324 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2325 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2326 	for (i = 0; i < bp->rx_nr_rings; i++) {
2327 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2328 		int j;
2329 
2330 		if (rxr->rx_tpa) {
2331 			for (j = 0; j < MAX_TPA; j++) {
2332 				struct bnxt_tpa_info *tpa_info =
2333 							&rxr->rx_tpa[j];
2334 				u8 *data = tpa_info->data;
2335 
2336 				if (!data)
2337 					continue;
2338 
2339 				dma_unmap_single_attrs(&pdev->dev,
2340 						       tpa_info->mapping,
2341 						       bp->rx_buf_use_size,
2342 						       bp->rx_dir,
2343 						       DMA_ATTR_WEAK_ORDERING);
2344 
2345 				tpa_info->data = NULL;
2346 
2347 				kfree(data);
2348 			}
2349 		}
2350 
2351 		for (j = 0; j < max_idx; j++) {
2352 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2353 			dma_addr_t mapping = rx_buf->mapping;
2354 			void *data = rx_buf->data;
2355 
2356 			if (!data)
2357 				continue;
2358 
2359 			rx_buf->data = NULL;
2360 
2361 			if (BNXT_RX_PAGE_MODE(bp)) {
2362 				mapping -= bp->rx_dma_offset;
2363 				dma_unmap_page_attrs(&pdev->dev, mapping,
2364 						     PAGE_SIZE, bp->rx_dir,
2365 						     DMA_ATTR_WEAK_ORDERING);
2366 				page_pool_recycle_direct(rxr->page_pool, data);
2367 			} else {
2368 				dma_unmap_single_attrs(&pdev->dev, mapping,
2369 						       bp->rx_buf_use_size,
2370 						       bp->rx_dir,
2371 						       DMA_ATTR_WEAK_ORDERING);
2372 				kfree(data);
2373 			}
2374 		}
2375 
2376 		for (j = 0; j < max_agg_idx; j++) {
2377 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2378 				&rxr->rx_agg_ring[j];
2379 			struct page *page = rx_agg_buf->page;
2380 
2381 			if (!page)
2382 				continue;
2383 
2384 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2385 					     BNXT_RX_PAGE_SIZE,
2386 					     PCI_DMA_FROMDEVICE,
2387 					     DMA_ATTR_WEAK_ORDERING);
2388 
2389 			rx_agg_buf->page = NULL;
2390 			__clear_bit(j, rxr->rx_agg_bmap);
2391 
2392 			__free_page(page);
2393 		}
2394 		if (rxr->rx_page) {
2395 			__free_page(rxr->rx_page);
2396 			rxr->rx_page = NULL;
2397 		}
2398 	}
2399 }
2400 
2401 static void bnxt_free_skbs(struct bnxt *bp)
2402 {
2403 	bnxt_free_tx_skbs(bp);
2404 	bnxt_free_rx_skbs(bp);
2405 }
2406 
2407 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2408 {
2409 	struct pci_dev *pdev = bp->pdev;
2410 	int i;
2411 
2412 	for (i = 0; i < rmem->nr_pages; i++) {
2413 		if (!rmem->pg_arr[i])
2414 			continue;
2415 
2416 		dma_free_coherent(&pdev->dev, rmem->page_size,
2417 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2418 
2419 		rmem->pg_arr[i] = NULL;
2420 	}
2421 	if (rmem->pg_tbl) {
2422 		size_t pg_tbl_size = rmem->nr_pages * 8;
2423 
2424 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2425 			pg_tbl_size = rmem->page_size;
2426 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2427 				  rmem->pg_tbl, rmem->pg_tbl_map);
2428 		rmem->pg_tbl = NULL;
2429 	}
2430 	if (rmem->vmem_size && *rmem->vmem) {
2431 		vfree(*rmem->vmem);
2432 		*rmem->vmem = NULL;
2433 	}
2434 }
2435 
2436 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2437 {
2438 	struct pci_dev *pdev = bp->pdev;
2439 	u64 valid_bit = 0;
2440 	int i;
2441 
2442 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2443 		valid_bit = PTU_PTE_VALID;
2444 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2445 		size_t pg_tbl_size = rmem->nr_pages * 8;
2446 
2447 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2448 			pg_tbl_size = rmem->page_size;
2449 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2450 						  &rmem->pg_tbl_map,
2451 						  GFP_KERNEL);
2452 		if (!rmem->pg_tbl)
2453 			return -ENOMEM;
2454 	}
2455 
2456 	for (i = 0; i < rmem->nr_pages; i++) {
2457 		u64 extra_bits = valid_bit;
2458 
2459 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2460 						     rmem->page_size,
2461 						     &rmem->dma_arr[i],
2462 						     GFP_KERNEL);
2463 		if (!rmem->pg_arr[i])
2464 			return -ENOMEM;
2465 
2466 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2467 			if (i == rmem->nr_pages - 2 &&
2468 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2469 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2470 			else if (i == rmem->nr_pages - 1 &&
2471 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2472 				extra_bits |= PTU_PTE_LAST;
2473 			rmem->pg_tbl[i] =
2474 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2475 		}
2476 	}
2477 
2478 	if (rmem->vmem_size) {
2479 		*rmem->vmem = vzalloc(rmem->vmem_size);
2480 		if (!(*rmem->vmem))
2481 			return -ENOMEM;
2482 	}
2483 	return 0;
2484 }
2485 
2486 static void bnxt_free_rx_rings(struct bnxt *bp)
2487 {
2488 	int i;
2489 
2490 	if (!bp->rx_ring)
2491 		return;
2492 
2493 	for (i = 0; i < bp->rx_nr_rings; i++) {
2494 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2495 		struct bnxt_ring_struct *ring;
2496 
2497 		if (rxr->xdp_prog)
2498 			bpf_prog_put(rxr->xdp_prog);
2499 
2500 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2501 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2502 
2503 		rxr->page_pool = NULL;
2504 
2505 		kfree(rxr->rx_tpa);
2506 		rxr->rx_tpa = NULL;
2507 
2508 		kfree(rxr->rx_agg_bmap);
2509 		rxr->rx_agg_bmap = NULL;
2510 
2511 		ring = &rxr->rx_ring_struct;
2512 		bnxt_free_ring(bp, &ring->ring_mem);
2513 
2514 		ring = &rxr->rx_agg_ring_struct;
2515 		bnxt_free_ring(bp, &ring->ring_mem);
2516 	}
2517 }
2518 
2519 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2520 				   struct bnxt_rx_ring_info *rxr)
2521 {
2522 	struct page_pool_params pp = { 0 };
2523 
2524 	pp.pool_size = bp->rx_ring_size;
2525 	pp.nid = dev_to_node(&bp->pdev->dev);
2526 	pp.dev = &bp->pdev->dev;
2527 	pp.dma_dir = DMA_BIDIRECTIONAL;
2528 
2529 	rxr->page_pool = page_pool_create(&pp);
2530 	if (IS_ERR(rxr->page_pool)) {
2531 		int err = PTR_ERR(rxr->page_pool);
2532 
2533 		rxr->page_pool = NULL;
2534 		return err;
2535 	}
2536 	return 0;
2537 }
2538 
2539 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2540 {
2541 	int i, rc, agg_rings = 0, tpa_rings = 0;
2542 
2543 	if (!bp->rx_ring)
2544 		return -ENOMEM;
2545 
2546 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2547 		agg_rings = 1;
2548 
2549 	if (bp->flags & BNXT_FLAG_TPA)
2550 		tpa_rings = 1;
2551 
2552 	for (i = 0; i < bp->rx_nr_rings; i++) {
2553 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2554 		struct bnxt_ring_struct *ring;
2555 
2556 		ring = &rxr->rx_ring_struct;
2557 
2558 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2559 		if (rc)
2560 			return rc;
2561 
2562 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2563 		if (rc < 0) {
2564 			page_pool_free(rxr->page_pool);
2565 			rxr->page_pool = NULL;
2566 			return rc;
2567 		}
2568 
2569 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2570 						MEM_TYPE_PAGE_POOL,
2571 						rxr->page_pool);
2572 		if (rc) {
2573 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2574 			page_pool_free(rxr->page_pool);
2575 			rxr->page_pool = NULL;
2576 			return rc;
2577 		}
2578 
2579 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2580 		if (rc)
2581 			return rc;
2582 
2583 		ring->grp_idx = i;
2584 		if (agg_rings) {
2585 			u16 mem_size;
2586 
2587 			ring = &rxr->rx_agg_ring_struct;
2588 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2589 			if (rc)
2590 				return rc;
2591 
2592 			ring->grp_idx = i;
2593 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2594 			mem_size = rxr->rx_agg_bmap_size / 8;
2595 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2596 			if (!rxr->rx_agg_bmap)
2597 				return -ENOMEM;
2598 
2599 			if (tpa_rings) {
2600 				rxr->rx_tpa = kcalloc(MAX_TPA,
2601 						sizeof(struct bnxt_tpa_info),
2602 						GFP_KERNEL);
2603 				if (!rxr->rx_tpa)
2604 					return -ENOMEM;
2605 			}
2606 		}
2607 	}
2608 	return 0;
2609 }
2610 
2611 static void bnxt_free_tx_rings(struct bnxt *bp)
2612 {
2613 	int i;
2614 	struct pci_dev *pdev = bp->pdev;
2615 
2616 	if (!bp->tx_ring)
2617 		return;
2618 
2619 	for (i = 0; i < bp->tx_nr_rings; i++) {
2620 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2621 		struct bnxt_ring_struct *ring;
2622 
2623 		if (txr->tx_push) {
2624 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2625 					  txr->tx_push, txr->tx_push_mapping);
2626 			txr->tx_push = NULL;
2627 		}
2628 
2629 		ring = &txr->tx_ring_struct;
2630 
2631 		bnxt_free_ring(bp, &ring->ring_mem);
2632 	}
2633 }
2634 
2635 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2636 {
2637 	int i, j, rc;
2638 	struct pci_dev *pdev = bp->pdev;
2639 
2640 	bp->tx_push_size = 0;
2641 	if (bp->tx_push_thresh) {
2642 		int push_size;
2643 
2644 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2645 					bp->tx_push_thresh);
2646 
2647 		if (push_size > 256) {
2648 			push_size = 0;
2649 			bp->tx_push_thresh = 0;
2650 		}
2651 
2652 		bp->tx_push_size = push_size;
2653 	}
2654 
2655 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2656 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2657 		struct bnxt_ring_struct *ring;
2658 		u8 qidx;
2659 
2660 		ring = &txr->tx_ring_struct;
2661 
2662 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2663 		if (rc)
2664 			return rc;
2665 
2666 		ring->grp_idx = txr->bnapi->index;
2667 		if (bp->tx_push_size) {
2668 			dma_addr_t mapping;
2669 
2670 			/* One pre-allocated DMA buffer to backup
2671 			 * TX push operation
2672 			 */
2673 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2674 						bp->tx_push_size,
2675 						&txr->tx_push_mapping,
2676 						GFP_KERNEL);
2677 
2678 			if (!txr->tx_push)
2679 				return -ENOMEM;
2680 
2681 			mapping = txr->tx_push_mapping +
2682 				sizeof(struct tx_push_bd);
2683 			txr->data_mapping = cpu_to_le64(mapping);
2684 
2685 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2686 		}
2687 		qidx = bp->tc_to_qidx[j];
2688 		ring->queue_id = bp->q_info[qidx].queue_id;
2689 		if (i < bp->tx_nr_rings_xdp)
2690 			continue;
2691 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2692 			j++;
2693 	}
2694 	return 0;
2695 }
2696 
2697 static void bnxt_free_cp_rings(struct bnxt *bp)
2698 {
2699 	int i;
2700 
2701 	if (!bp->bnapi)
2702 		return;
2703 
2704 	for (i = 0; i < bp->cp_nr_rings; i++) {
2705 		struct bnxt_napi *bnapi = bp->bnapi[i];
2706 		struct bnxt_cp_ring_info *cpr;
2707 		struct bnxt_ring_struct *ring;
2708 		int j;
2709 
2710 		if (!bnapi)
2711 			continue;
2712 
2713 		cpr = &bnapi->cp_ring;
2714 		ring = &cpr->cp_ring_struct;
2715 
2716 		bnxt_free_ring(bp, &ring->ring_mem);
2717 
2718 		for (j = 0; j < 2; j++) {
2719 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2720 
2721 			if (cpr2) {
2722 				ring = &cpr2->cp_ring_struct;
2723 				bnxt_free_ring(bp, &ring->ring_mem);
2724 				kfree(cpr2);
2725 				cpr->cp_ring_arr[j] = NULL;
2726 			}
2727 		}
2728 	}
2729 }
2730 
2731 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2732 {
2733 	struct bnxt_ring_mem_info *rmem;
2734 	struct bnxt_ring_struct *ring;
2735 	struct bnxt_cp_ring_info *cpr;
2736 	int rc;
2737 
2738 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2739 	if (!cpr)
2740 		return NULL;
2741 
2742 	ring = &cpr->cp_ring_struct;
2743 	rmem = &ring->ring_mem;
2744 	rmem->nr_pages = bp->cp_nr_pages;
2745 	rmem->page_size = HW_CMPD_RING_SIZE;
2746 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
2747 	rmem->dma_arr = cpr->cp_desc_mapping;
2748 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
2749 	rc = bnxt_alloc_ring(bp, rmem);
2750 	if (rc) {
2751 		bnxt_free_ring(bp, rmem);
2752 		kfree(cpr);
2753 		cpr = NULL;
2754 	}
2755 	return cpr;
2756 }
2757 
2758 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2759 {
2760 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
2761 	int i, rc, ulp_base_vec, ulp_msix;
2762 
2763 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2764 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2765 	for (i = 0; i < bp->cp_nr_rings; i++) {
2766 		struct bnxt_napi *bnapi = bp->bnapi[i];
2767 		struct bnxt_cp_ring_info *cpr;
2768 		struct bnxt_ring_struct *ring;
2769 
2770 		if (!bnapi)
2771 			continue;
2772 
2773 		cpr = &bnapi->cp_ring;
2774 		cpr->bnapi = bnapi;
2775 		ring = &cpr->cp_ring_struct;
2776 
2777 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2778 		if (rc)
2779 			return rc;
2780 
2781 		if (ulp_msix && i >= ulp_base_vec)
2782 			ring->map_idx = i + ulp_msix;
2783 		else
2784 			ring->map_idx = i;
2785 
2786 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2787 			continue;
2788 
2789 		if (i < bp->rx_nr_rings) {
2790 			struct bnxt_cp_ring_info *cpr2 =
2791 				bnxt_alloc_cp_sub_ring(bp);
2792 
2793 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
2794 			if (!cpr2)
2795 				return -ENOMEM;
2796 			cpr2->bnapi = bnapi;
2797 		}
2798 		if ((sh && i < bp->tx_nr_rings) ||
2799 		    (!sh && i >= bp->rx_nr_rings)) {
2800 			struct bnxt_cp_ring_info *cpr2 =
2801 				bnxt_alloc_cp_sub_ring(bp);
2802 
2803 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
2804 			if (!cpr2)
2805 				return -ENOMEM;
2806 			cpr2->bnapi = bnapi;
2807 		}
2808 	}
2809 	return 0;
2810 }
2811 
2812 static void bnxt_init_ring_struct(struct bnxt *bp)
2813 {
2814 	int i;
2815 
2816 	for (i = 0; i < bp->cp_nr_rings; i++) {
2817 		struct bnxt_napi *bnapi = bp->bnapi[i];
2818 		struct bnxt_ring_mem_info *rmem;
2819 		struct bnxt_cp_ring_info *cpr;
2820 		struct bnxt_rx_ring_info *rxr;
2821 		struct bnxt_tx_ring_info *txr;
2822 		struct bnxt_ring_struct *ring;
2823 
2824 		if (!bnapi)
2825 			continue;
2826 
2827 		cpr = &bnapi->cp_ring;
2828 		ring = &cpr->cp_ring_struct;
2829 		rmem = &ring->ring_mem;
2830 		rmem->nr_pages = bp->cp_nr_pages;
2831 		rmem->page_size = HW_CMPD_RING_SIZE;
2832 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
2833 		rmem->dma_arr = cpr->cp_desc_mapping;
2834 		rmem->vmem_size = 0;
2835 
2836 		rxr = bnapi->rx_ring;
2837 		if (!rxr)
2838 			goto skip_rx;
2839 
2840 		ring = &rxr->rx_ring_struct;
2841 		rmem = &ring->ring_mem;
2842 		rmem->nr_pages = bp->rx_nr_pages;
2843 		rmem->page_size = HW_RXBD_RING_SIZE;
2844 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
2845 		rmem->dma_arr = rxr->rx_desc_mapping;
2846 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2847 		rmem->vmem = (void **)&rxr->rx_buf_ring;
2848 
2849 		ring = &rxr->rx_agg_ring_struct;
2850 		rmem = &ring->ring_mem;
2851 		rmem->nr_pages = bp->rx_agg_nr_pages;
2852 		rmem->page_size = HW_RXBD_RING_SIZE;
2853 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
2854 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
2855 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2856 		rmem->vmem = (void **)&rxr->rx_agg_ring;
2857 
2858 skip_rx:
2859 		txr = bnapi->tx_ring;
2860 		if (!txr)
2861 			continue;
2862 
2863 		ring = &txr->tx_ring_struct;
2864 		rmem = &ring->ring_mem;
2865 		rmem->nr_pages = bp->tx_nr_pages;
2866 		rmem->page_size = HW_RXBD_RING_SIZE;
2867 		rmem->pg_arr = (void **)txr->tx_desc_ring;
2868 		rmem->dma_arr = txr->tx_desc_mapping;
2869 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2870 		rmem->vmem = (void **)&txr->tx_buf_ring;
2871 	}
2872 }
2873 
2874 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2875 {
2876 	int i;
2877 	u32 prod;
2878 	struct rx_bd **rx_buf_ring;
2879 
2880 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
2881 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
2882 		int j;
2883 		struct rx_bd *rxbd;
2884 
2885 		rxbd = rx_buf_ring[i];
2886 		if (!rxbd)
2887 			continue;
2888 
2889 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2890 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2891 			rxbd->rx_bd_opaque = prod;
2892 		}
2893 	}
2894 }
2895 
2896 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2897 {
2898 	struct net_device *dev = bp->dev;
2899 	struct bnxt_rx_ring_info *rxr;
2900 	struct bnxt_ring_struct *ring;
2901 	u32 prod, type;
2902 	int i;
2903 
2904 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2905 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2906 
2907 	if (NET_IP_ALIGN == 2)
2908 		type |= RX_BD_FLAGS_SOP;
2909 
2910 	rxr = &bp->rx_ring[ring_nr];
2911 	ring = &rxr->rx_ring_struct;
2912 	bnxt_init_rxbd_pages(ring, type);
2913 
2914 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2915 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2916 		if (IS_ERR(rxr->xdp_prog)) {
2917 			int rc = PTR_ERR(rxr->xdp_prog);
2918 
2919 			rxr->xdp_prog = NULL;
2920 			return rc;
2921 		}
2922 	}
2923 	prod = rxr->rx_prod;
2924 	for (i = 0; i < bp->rx_ring_size; i++) {
2925 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2926 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2927 				    ring_nr, i, bp->rx_ring_size);
2928 			break;
2929 		}
2930 		prod = NEXT_RX(prod);
2931 	}
2932 	rxr->rx_prod = prod;
2933 	ring->fw_ring_id = INVALID_HW_RING_ID;
2934 
2935 	ring = &rxr->rx_agg_ring_struct;
2936 	ring->fw_ring_id = INVALID_HW_RING_ID;
2937 
2938 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2939 		return 0;
2940 
2941 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2942 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2943 
2944 	bnxt_init_rxbd_pages(ring, type);
2945 
2946 	prod = rxr->rx_agg_prod;
2947 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2948 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2949 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2950 				    ring_nr, i, bp->rx_ring_size);
2951 			break;
2952 		}
2953 		prod = NEXT_RX_AGG(prod);
2954 	}
2955 	rxr->rx_agg_prod = prod;
2956 
2957 	if (bp->flags & BNXT_FLAG_TPA) {
2958 		if (rxr->rx_tpa) {
2959 			u8 *data;
2960 			dma_addr_t mapping;
2961 
2962 			for (i = 0; i < MAX_TPA; i++) {
2963 				data = __bnxt_alloc_rx_data(bp, &mapping,
2964 							    GFP_KERNEL);
2965 				if (!data)
2966 					return -ENOMEM;
2967 
2968 				rxr->rx_tpa[i].data = data;
2969 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2970 				rxr->rx_tpa[i].mapping = mapping;
2971 			}
2972 		} else {
2973 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2974 			return -ENOMEM;
2975 		}
2976 	}
2977 
2978 	return 0;
2979 }
2980 
2981 static void bnxt_init_cp_rings(struct bnxt *bp)
2982 {
2983 	int i, j;
2984 
2985 	for (i = 0; i < bp->cp_nr_rings; i++) {
2986 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2987 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2988 
2989 		ring->fw_ring_id = INVALID_HW_RING_ID;
2990 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2991 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2992 		for (j = 0; j < 2; j++) {
2993 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2994 
2995 			if (!cpr2)
2996 				continue;
2997 
2998 			ring = &cpr2->cp_ring_struct;
2999 			ring->fw_ring_id = INVALID_HW_RING_ID;
3000 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3001 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3002 		}
3003 	}
3004 }
3005 
3006 static int bnxt_init_rx_rings(struct bnxt *bp)
3007 {
3008 	int i, rc = 0;
3009 
3010 	if (BNXT_RX_PAGE_MODE(bp)) {
3011 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3012 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3013 	} else {
3014 		bp->rx_offset = BNXT_RX_OFFSET;
3015 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3016 	}
3017 
3018 	for (i = 0; i < bp->rx_nr_rings; i++) {
3019 		rc = bnxt_init_one_rx_ring(bp, i);
3020 		if (rc)
3021 			break;
3022 	}
3023 
3024 	return rc;
3025 }
3026 
3027 static int bnxt_init_tx_rings(struct bnxt *bp)
3028 {
3029 	u16 i;
3030 
3031 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3032 				   MAX_SKB_FRAGS + 1);
3033 
3034 	for (i = 0; i < bp->tx_nr_rings; i++) {
3035 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3036 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3037 
3038 		ring->fw_ring_id = INVALID_HW_RING_ID;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static void bnxt_free_ring_grps(struct bnxt *bp)
3045 {
3046 	kfree(bp->grp_info);
3047 	bp->grp_info = NULL;
3048 }
3049 
3050 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3051 {
3052 	int i;
3053 
3054 	if (irq_re_init) {
3055 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3056 				       sizeof(struct bnxt_ring_grp_info),
3057 				       GFP_KERNEL);
3058 		if (!bp->grp_info)
3059 			return -ENOMEM;
3060 	}
3061 	for (i = 0; i < bp->cp_nr_rings; i++) {
3062 		if (irq_re_init)
3063 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3064 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3065 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3066 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3067 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3068 	}
3069 	return 0;
3070 }
3071 
3072 static void bnxt_free_vnics(struct bnxt *bp)
3073 {
3074 	kfree(bp->vnic_info);
3075 	bp->vnic_info = NULL;
3076 	bp->nr_vnics = 0;
3077 }
3078 
3079 static int bnxt_alloc_vnics(struct bnxt *bp)
3080 {
3081 	int num_vnics = 1;
3082 
3083 #ifdef CONFIG_RFS_ACCEL
3084 	if (bp->flags & BNXT_FLAG_RFS)
3085 		num_vnics += bp->rx_nr_rings;
3086 #endif
3087 
3088 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3089 		num_vnics++;
3090 
3091 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3092 				GFP_KERNEL);
3093 	if (!bp->vnic_info)
3094 		return -ENOMEM;
3095 
3096 	bp->nr_vnics = num_vnics;
3097 	return 0;
3098 }
3099 
3100 static void bnxt_init_vnics(struct bnxt *bp)
3101 {
3102 	int i;
3103 
3104 	for (i = 0; i < bp->nr_vnics; i++) {
3105 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3106 		int j;
3107 
3108 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3109 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3110 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3111 
3112 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3113 
3114 		if (bp->vnic_info[i].rss_hash_key) {
3115 			if (i == 0)
3116 				prandom_bytes(vnic->rss_hash_key,
3117 					      HW_HASH_KEY_SIZE);
3118 			else
3119 				memcpy(vnic->rss_hash_key,
3120 				       bp->vnic_info[0].rss_hash_key,
3121 				       HW_HASH_KEY_SIZE);
3122 		}
3123 	}
3124 }
3125 
3126 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3127 {
3128 	int pages;
3129 
3130 	pages = ring_size / desc_per_pg;
3131 
3132 	if (!pages)
3133 		return 1;
3134 
3135 	pages++;
3136 
3137 	while (pages & (pages - 1))
3138 		pages++;
3139 
3140 	return pages;
3141 }
3142 
3143 void bnxt_set_tpa_flags(struct bnxt *bp)
3144 {
3145 	bp->flags &= ~BNXT_FLAG_TPA;
3146 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3147 		return;
3148 	if (bp->dev->features & NETIF_F_LRO)
3149 		bp->flags |= BNXT_FLAG_LRO;
3150 	else if (bp->dev->features & NETIF_F_GRO_HW)
3151 		bp->flags |= BNXT_FLAG_GRO;
3152 }
3153 
3154 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3155  * be set on entry.
3156  */
3157 void bnxt_set_ring_params(struct bnxt *bp)
3158 {
3159 	u32 ring_size, rx_size, rx_space;
3160 	u32 agg_factor = 0, agg_ring_size = 0;
3161 
3162 	/* 8 for CRC and VLAN */
3163 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3164 
3165 	rx_space = rx_size + NET_SKB_PAD +
3166 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3167 
3168 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3169 	ring_size = bp->rx_ring_size;
3170 	bp->rx_agg_ring_size = 0;
3171 	bp->rx_agg_nr_pages = 0;
3172 
3173 	if (bp->flags & BNXT_FLAG_TPA)
3174 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3175 
3176 	bp->flags &= ~BNXT_FLAG_JUMBO;
3177 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3178 		u32 jumbo_factor;
3179 
3180 		bp->flags |= BNXT_FLAG_JUMBO;
3181 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3182 		if (jumbo_factor > agg_factor)
3183 			agg_factor = jumbo_factor;
3184 	}
3185 	agg_ring_size = ring_size * agg_factor;
3186 
3187 	if (agg_ring_size) {
3188 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3189 							RX_DESC_CNT);
3190 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3191 			u32 tmp = agg_ring_size;
3192 
3193 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3194 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3195 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3196 				    tmp, agg_ring_size);
3197 		}
3198 		bp->rx_agg_ring_size = agg_ring_size;
3199 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3200 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3201 		rx_space = rx_size + NET_SKB_PAD +
3202 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3203 	}
3204 
3205 	bp->rx_buf_use_size = rx_size;
3206 	bp->rx_buf_size = rx_space;
3207 
3208 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3209 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3210 
3211 	ring_size = bp->tx_ring_size;
3212 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3213 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3214 
3215 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3216 	bp->cp_ring_size = ring_size;
3217 
3218 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3219 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3220 		bp->cp_nr_pages = MAX_CP_PAGES;
3221 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3222 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3223 			    ring_size, bp->cp_ring_size);
3224 	}
3225 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3226 	bp->cp_ring_mask = bp->cp_bit - 1;
3227 }
3228 
3229 /* Changing allocation mode of RX rings.
3230  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3231  */
3232 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3233 {
3234 	if (page_mode) {
3235 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3236 			return -EOPNOTSUPP;
3237 		bp->dev->max_mtu =
3238 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3239 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3240 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3241 		bp->rx_dir = DMA_BIDIRECTIONAL;
3242 		bp->rx_skb_func = bnxt_rx_page_skb;
3243 		/* Disable LRO or GRO_HW */
3244 		netdev_update_features(bp->dev);
3245 	} else {
3246 		bp->dev->max_mtu = bp->max_mtu;
3247 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3248 		bp->rx_dir = DMA_FROM_DEVICE;
3249 		bp->rx_skb_func = bnxt_rx_skb;
3250 	}
3251 	return 0;
3252 }
3253 
3254 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3255 {
3256 	int i;
3257 	struct bnxt_vnic_info *vnic;
3258 	struct pci_dev *pdev = bp->pdev;
3259 
3260 	if (!bp->vnic_info)
3261 		return;
3262 
3263 	for (i = 0; i < bp->nr_vnics; i++) {
3264 		vnic = &bp->vnic_info[i];
3265 
3266 		kfree(vnic->fw_grp_ids);
3267 		vnic->fw_grp_ids = NULL;
3268 
3269 		kfree(vnic->uc_list);
3270 		vnic->uc_list = NULL;
3271 
3272 		if (vnic->mc_list) {
3273 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3274 					  vnic->mc_list, vnic->mc_list_mapping);
3275 			vnic->mc_list = NULL;
3276 		}
3277 
3278 		if (vnic->rss_table) {
3279 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3280 					  vnic->rss_table,
3281 					  vnic->rss_table_dma_addr);
3282 			vnic->rss_table = NULL;
3283 		}
3284 
3285 		vnic->rss_hash_key = NULL;
3286 		vnic->flags = 0;
3287 	}
3288 }
3289 
3290 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3291 {
3292 	int i, rc = 0, size;
3293 	struct bnxt_vnic_info *vnic;
3294 	struct pci_dev *pdev = bp->pdev;
3295 	int max_rings;
3296 
3297 	for (i = 0; i < bp->nr_vnics; i++) {
3298 		vnic = &bp->vnic_info[i];
3299 
3300 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3301 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3302 
3303 			if (mem_size > 0) {
3304 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3305 				if (!vnic->uc_list) {
3306 					rc = -ENOMEM;
3307 					goto out;
3308 				}
3309 			}
3310 		}
3311 
3312 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3313 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3314 			vnic->mc_list =
3315 				dma_alloc_coherent(&pdev->dev,
3316 						   vnic->mc_list_size,
3317 						   &vnic->mc_list_mapping,
3318 						   GFP_KERNEL);
3319 			if (!vnic->mc_list) {
3320 				rc = -ENOMEM;
3321 				goto out;
3322 			}
3323 		}
3324 
3325 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3326 			goto vnic_skip_grps;
3327 
3328 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3329 			max_rings = bp->rx_nr_rings;
3330 		else
3331 			max_rings = 1;
3332 
3333 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3334 		if (!vnic->fw_grp_ids) {
3335 			rc = -ENOMEM;
3336 			goto out;
3337 		}
3338 vnic_skip_grps:
3339 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3340 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3341 			continue;
3342 
3343 		/* Allocate rss table and hash key */
3344 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3345 						     &vnic->rss_table_dma_addr,
3346 						     GFP_KERNEL);
3347 		if (!vnic->rss_table) {
3348 			rc = -ENOMEM;
3349 			goto out;
3350 		}
3351 
3352 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3353 
3354 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3355 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3356 	}
3357 	return 0;
3358 
3359 out:
3360 	return rc;
3361 }
3362 
3363 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3364 {
3365 	struct pci_dev *pdev = bp->pdev;
3366 
3367 	if (bp->hwrm_cmd_resp_addr) {
3368 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3369 				  bp->hwrm_cmd_resp_dma_addr);
3370 		bp->hwrm_cmd_resp_addr = NULL;
3371 	}
3372 
3373 	if (bp->hwrm_cmd_kong_resp_addr) {
3374 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3375 				  bp->hwrm_cmd_kong_resp_addr,
3376 				  bp->hwrm_cmd_kong_resp_dma_addr);
3377 		bp->hwrm_cmd_kong_resp_addr = NULL;
3378 	}
3379 }
3380 
3381 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3382 {
3383 	struct pci_dev *pdev = bp->pdev;
3384 
3385 	bp->hwrm_cmd_kong_resp_addr =
3386 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3387 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3388 				   GFP_KERNEL);
3389 	if (!bp->hwrm_cmd_kong_resp_addr)
3390 		return -ENOMEM;
3391 
3392 	return 0;
3393 }
3394 
3395 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3396 {
3397 	struct pci_dev *pdev = bp->pdev;
3398 
3399 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3400 						   &bp->hwrm_cmd_resp_dma_addr,
3401 						   GFP_KERNEL);
3402 	if (!bp->hwrm_cmd_resp_addr)
3403 		return -ENOMEM;
3404 
3405 	return 0;
3406 }
3407 
3408 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3409 {
3410 	if (bp->hwrm_short_cmd_req_addr) {
3411 		struct pci_dev *pdev = bp->pdev;
3412 
3413 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3414 				  bp->hwrm_short_cmd_req_addr,
3415 				  bp->hwrm_short_cmd_req_dma_addr);
3416 		bp->hwrm_short_cmd_req_addr = NULL;
3417 	}
3418 }
3419 
3420 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3421 {
3422 	struct pci_dev *pdev = bp->pdev;
3423 
3424 	bp->hwrm_short_cmd_req_addr =
3425 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3426 				   &bp->hwrm_short_cmd_req_dma_addr,
3427 				   GFP_KERNEL);
3428 	if (!bp->hwrm_short_cmd_req_addr)
3429 		return -ENOMEM;
3430 
3431 	return 0;
3432 }
3433 
3434 static void bnxt_free_port_stats(struct bnxt *bp)
3435 {
3436 	struct pci_dev *pdev = bp->pdev;
3437 
3438 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3439 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3440 
3441 	if (bp->hw_rx_port_stats) {
3442 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3443 				  bp->hw_rx_port_stats,
3444 				  bp->hw_rx_port_stats_map);
3445 		bp->hw_rx_port_stats = NULL;
3446 	}
3447 
3448 	if (bp->hw_tx_port_stats_ext) {
3449 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3450 				  bp->hw_tx_port_stats_ext,
3451 				  bp->hw_tx_port_stats_ext_map);
3452 		bp->hw_tx_port_stats_ext = NULL;
3453 	}
3454 
3455 	if (bp->hw_rx_port_stats_ext) {
3456 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3457 				  bp->hw_rx_port_stats_ext,
3458 				  bp->hw_rx_port_stats_ext_map);
3459 		bp->hw_rx_port_stats_ext = NULL;
3460 	}
3461 
3462 	if (bp->hw_pcie_stats) {
3463 		dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3464 				  bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3465 		bp->hw_pcie_stats = NULL;
3466 	}
3467 }
3468 
3469 static void bnxt_free_ring_stats(struct bnxt *bp)
3470 {
3471 	struct pci_dev *pdev = bp->pdev;
3472 	int size, i;
3473 
3474 	if (!bp->bnapi)
3475 		return;
3476 
3477 	size = sizeof(struct ctx_hw_stats);
3478 
3479 	for (i = 0; i < bp->cp_nr_rings; i++) {
3480 		struct bnxt_napi *bnapi = bp->bnapi[i];
3481 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3482 
3483 		if (cpr->hw_stats) {
3484 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3485 					  cpr->hw_stats_map);
3486 			cpr->hw_stats = NULL;
3487 		}
3488 	}
3489 }
3490 
3491 static int bnxt_alloc_stats(struct bnxt *bp)
3492 {
3493 	u32 size, i;
3494 	struct pci_dev *pdev = bp->pdev;
3495 
3496 	size = sizeof(struct ctx_hw_stats);
3497 
3498 	for (i = 0; i < bp->cp_nr_rings; i++) {
3499 		struct bnxt_napi *bnapi = bp->bnapi[i];
3500 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3501 
3502 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3503 						   &cpr->hw_stats_map,
3504 						   GFP_KERNEL);
3505 		if (!cpr->hw_stats)
3506 			return -ENOMEM;
3507 
3508 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3509 	}
3510 
3511 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3512 		return 0;
3513 
3514 	if (bp->hw_rx_port_stats)
3515 		goto alloc_ext_stats;
3516 
3517 	bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3518 				 sizeof(struct tx_port_stats) + 1024;
3519 
3520 	bp->hw_rx_port_stats =
3521 		dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3522 				   &bp->hw_rx_port_stats_map,
3523 				   GFP_KERNEL);
3524 	if (!bp->hw_rx_port_stats)
3525 		return -ENOMEM;
3526 
3527 	bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3528 	bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3529 				   sizeof(struct rx_port_stats) + 512;
3530 	bp->flags |= BNXT_FLAG_PORT_STATS;
3531 
3532 alloc_ext_stats:
3533 	/* Display extended statistics only if FW supports it */
3534 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3535 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3536 			return 0;
3537 
3538 	if (bp->hw_rx_port_stats_ext)
3539 		goto alloc_tx_ext_stats;
3540 
3541 	bp->hw_rx_port_stats_ext =
3542 		dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3543 				   &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3544 	if (!bp->hw_rx_port_stats_ext)
3545 		return 0;
3546 
3547 alloc_tx_ext_stats:
3548 	if (bp->hw_tx_port_stats_ext)
3549 		goto alloc_pcie_stats;
3550 
3551 	if (bp->hwrm_spec_code >= 0x10902 ||
3552 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3553 		bp->hw_tx_port_stats_ext =
3554 			dma_alloc_coherent(&pdev->dev,
3555 					   sizeof(struct tx_port_stats_ext),
3556 					   &bp->hw_tx_port_stats_ext_map,
3557 					   GFP_KERNEL);
3558 	}
3559 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3560 
3561 alloc_pcie_stats:
3562 	if (bp->hw_pcie_stats ||
3563 	    !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3564 		return 0;
3565 
3566 	bp->hw_pcie_stats =
3567 		dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3568 				   &bp->hw_pcie_stats_map, GFP_KERNEL);
3569 	if (!bp->hw_pcie_stats)
3570 		return 0;
3571 
3572 	bp->flags |= BNXT_FLAG_PCIE_STATS;
3573 	return 0;
3574 }
3575 
3576 static void bnxt_clear_ring_indices(struct bnxt *bp)
3577 {
3578 	int i;
3579 
3580 	if (!bp->bnapi)
3581 		return;
3582 
3583 	for (i = 0; i < bp->cp_nr_rings; i++) {
3584 		struct bnxt_napi *bnapi = bp->bnapi[i];
3585 		struct bnxt_cp_ring_info *cpr;
3586 		struct bnxt_rx_ring_info *rxr;
3587 		struct bnxt_tx_ring_info *txr;
3588 
3589 		if (!bnapi)
3590 			continue;
3591 
3592 		cpr = &bnapi->cp_ring;
3593 		cpr->cp_raw_cons = 0;
3594 
3595 		txr = bnapi->tx_ring;
3596 		if (txr) {
3597 			txr->tx_prod = 0;
3598 			txr->tx_cons = 0;
3599 		}
3600 
3601 		rxr = bnapi->rx_ring;
3602 		if (rxr) {
3603 			rxr->rx_prod = 0;
3604 			rxr->rx_agg_prod = 0;
3605 			rxr->rx_sw_agg_prod = 0;
3606 			rxr->rx_next_cons = 0;
3607 		}
3608 	}
3609 }
3610 
3611 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3612 {
3613 #ifdef CONFIG_RFS_ACCEL
3614 	int i;
3615 
3616 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3617 	 * safe to delete the hash table.
3618 	 */
3619 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3620 		struct hlist_head *head;
3621 		struct hlist_node *tmp;
3622 		struct bnxt_ntuple_filter *fltr;
3623 
3624 		head = &bp->ntp_fltr_hash_tbl[i];
3625 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3626 			hlist_del(&fltr->hash);
3627 			kfree(fltr);
3628 		}
3629 	}
3630 	if (irq_reinit) {
3631 		kfree(bp->ntp_fltr_bmap);
3632 		bp->ntp_fltr_bmap = NULL;
3633 	}
3634 	bp->ntp_fltr_count = 0;
3635 #endif
3636 }
3637 
3638 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3639 {
3640 #ifdef CONFIG_RFS_ACCEL
3641 	int i, rc = 0;
3642 
3643 	if (!(bp->flags & BNXT_FLAG_RFS))
3644 		return 0;
3645 
3646 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3647 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3648 
3649 	bp->ntp_fltr_count = 0;
3650 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3651 				    sizeof(long),
3652 				    GFP_KERNEL);
3653 
3654 	if (!bp->ntp_fltr_bmap)
3655 		rc = -ENOMEM;
3656 
3657 	return rc;
3658 #else
3659 	return 0;
3660 #endif
3661 }
3662 
3663 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3664 {
3665 	bnxt_free_vnic_attributes(bp);
3666 	bnxt_free_tx_rings(bp);
3667 	bnxt_free_rx_rings(bp);
3668 	bnxt_free_cp_rings(bp);
3669 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3670 	if (irq_re_init) {
3671 		bnxt_free_ring_stats(bp);
3672 		bnxt_free_ring_grps(bp);
3673 		bnxt_free_vnics(bp);
3674 		kfree(bp->tx_ring_map);
3675 		bp->tx_ring_map = NULL;
3676 		kfree(bp->tx_ring);
3677 		bp->tx_ring = NULL;
3678 		kfree(bp->rx_ring);
3679 		bp->rx_ring = NULL;
3680 		kfree(bp->bnapi);
3681 		bp->bnapi = NULL;
3682 	} else {
3683 		bnxt_clear_ring_indices(bp);
3684 	}
3685 }
3686 
3687 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3688 {
3689 	int i, j, rc, size, arr_size;
3690 	void *bnapi;
3691 
3692 	if (irq_re_init) {
3693 		/* Allocate bnapi mem pointer array and mem block for
3694 		 * all queues
3695 		 */
3696 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3697 				bp->cp_nr_rings);
3698 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3699 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3700 		if (!bnapi)
3701 			return -ENOMEM;
3702 
3703 		bp->bnapi = bnapi;
3704 		bnapi += arr_size;
3705 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3706 			bp->bnapi[i] = bnapi;
3707 			bp->bnapi[i]->index = i;
3708 			bp->bnapi[i]->bp = bp;
3709 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3710 				struct bnxt_cp_ring_info *cpr =
3711 					&bp->bnapi[i]->cp_ring;
3712 
3713 				cpr->cp_ring_struct.ring_mem.flags =
3714 					BNXT_RMEM_RING_PTE_FLAG;
3715 			}
3716 		}
3717 
3718 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3719 				      sizeof(struct bnxt_rx_ring_info),
3720 				      GFP_KERNEL);
3721 		if (!bp->rx_ring)
3722 			return -ENOMEM;
3723 
3724 		for (i = 0; i < bp->rx_nr_rings; i++) {
3725 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3726 
3727 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3728 				rxr->rx_ring_struct.ring_mem.flags =
3729 					BNXT_RMEM_RING_PTE_FLAG;
3730 				rxr->rx_agg_ring_struct.ring_mem.flags =
3731 					BNXT_RMEM_RING_PTE_FLAG;
3732 			}
3733 			rxr->bnapi = bp->bnapi[i];
3734 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3735 		}
3736 
3737 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3738 				      sizeof(struct bnxt_tx_ring_info),
3739 				      GFP_KERNEL);
3740 		if (!bp->tx_ring)
3741 			return -ENOMEM;
3742 
3743 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3744 					  GFP_KERNEL);
3745 
3746 		if (!bp->tx_ring_map)
3747 			return -ENOMEM;
3748 
3749 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3750 			j = 0;
3751 		else
3752 			j = bp->rx_nr_rings;
3753 
3754 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3755 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3756 
3757 			if (bp->flags & BNXT_FLAG_CHIP_P5)
3758 				txr->tx_ring_struct.ring_mem.flags =
3759 					BNXT_RMEM_RING_PTE_FLAG;
3760 			txr->bnapi = bp->bnapi[j];
3761 			bp->bnapi[j]->tx_ring = txr;
3762 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3763 			if (i >= bp->tx_nr_rings_xdp) {
3764 				txr->txq_index = i - bp->tx_nr_rings_xdp;
3765 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3766 			} else {
3767 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3768 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3769 			}
3770 		}
3771 
3772 		rc = bnxt_alloc_stats(bp);
3773 		if (rc)
3774 			goto alloc_mem_err;
3775 
3776 		rc = bnxt_alloc_ntp_fltrs(bp);
3777 		if (rc)
3778 			goto alloc_mem_err;
3779 
3780 		rc = bnxt_alloc_vnics(bp);
3781 		if (rc)
3782 			goto alloc_mem_err;
3783 	}
3784 
3785 	bnxt_init_ring_struct(bp);
3786 
3787 	rc = bnxt_alloc_rx_rings(bp);
3788 	if (rc)
3789 		goto alloc_mem_err;
3790 
3791 	rc = bnxt_alloc_tx_rings(bp);
3792 	if (rc)
3793 		goto alloc_mem_err;
3794 
3795 	rc = bnxt_alloc_cp_rings(bp);
3796 	if (rc)
3797 		goto alloc_mem_err;
3798 
3799 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3800 				  BNXT_VNIC_UCAST_FLAG;
3801 	rc = bnxt_alloc_vnic_attributes(bp);
3802 	if (rc)
3803 		goto alloc_mem_err;
3804 	return 0;
3805 
3806 alloc_mem_err:
3807 	bnxt_free_mem(bp, true);
3808 	return rc;
3809 }
3810 
3811 static void bnxt_disable_int(struct bnxt *bp)
3812 {
3813 	int i;
3814 
3815 	if (!bp->bnapi)
3816 		return;
3817 
3818 	for (i = 0; i < bp->cp_nr_rings; i++) {
3819 		struct bnxt_napi *bnapi = bp->bnapi[i];
3820 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3821 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3822 
3823 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3824 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3825 	}
3826 }
3827 
3828 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3829 {
3830 	struct bnxt_napi *bnapi = bp->bnapi[n];
3831 	struct bnxt_cp_ring_info *cpr;
3832 
3833 	cpr = &bnapi->cp_ring;
3834 	return cpr->cp_ring_struct.map_idx;
3835 }
3836 
3837 static void bnxt_disable_int_sync(struct bnxt *bp)
3838 {
3839 	int i;
3840 
3841 	atomic_inc(&bp->intr_sem);
3842 
3843 	bnxt_disable_int(bp);
3844 	for (i = 0; i < bp->cp_nr_rings; i++) {
3845 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3846 
3847 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3848 	}
3849 }
3850 
3851 static void bnxt_enable_int(struct bnxt *bp)
3852 {
3853 	int i;
3854 
3855 	atomic_set(&bp->intr_sem, 0);
3856 	for (i = 0; i < bp->cp_nr_rings; i++) {
3857 		struct bnxt_napi *bnapi = bp->bnapi[i];
3858 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3859 
3860 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
3861 	}
3862 }
3863 
3864 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3865 			    u16 cmpl_ring, u16 target_id)
3866 {
3867 	struct input *req = request;
3868 
3869 	req->req_type = cpu_to_le16(req_type);
3870 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3871 	req->target_id = cpu_to_le16(target_id);
3872 	if (bnxt_kong_hwrm_message(bp, req))
3873 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
3874 	else
3875 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3876 }
3877 
3878 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3879 				 int timeout, bool silent)
3880 {
3881 	int i, intr_process, rc, tmo_count;
3882 	struct input *req = msg;
3883 	u32 *data = msg;
3884 	__le32 *resp_len;
3885 	u8 *valid;
3886 	u16 cp_ring_id, len = 0;
3887 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3888 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3889 	struct hwrm_short_input short_input = {0};
3890 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
3891 	u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
3892 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
3893 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
3894 
3895 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3896 		if (msg_len > bp->hwrm_max_ext_req_len ||
3897 		    !bp->hwrm_short_cmd_req_addr)
3898 			return -EINVAL;
3899 	}
3900 
3901 	if (bnxt_hwrm_kong_chnl(bp, req)) {
3902 		dst = BNXT_HWRM_CHNL_KONG;
3903 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
3904 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
3905 		resp = bp->hwrm_cmd_kong_resp_addr;
3906 		resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
3907 	}
3908 
3909 	memset(resp, 0, PAGE_SIZE);
3910 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3911 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3912 
3913 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
3914 	/* currently supports only one outstanding message */
3915 	if (intr_process)
3916 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3917 
3918 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
3919 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3920 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3921 		u16 max_msg_len;
3922 
3923 		/* Set boundary for maximum extended request length for short
3924 		 * cmd format. If passed up from device use the max supported
3925 		 * internal req length.
3926 		 */
3927 		max_msg_len = bp->hwrm_max_ext_req_len;
3928 
3929 		memcpy(short_cmd_req, req, msg_len);
3930 		if (msg_len < max_msg_len)
3931 			memset(short_cmd_req + msg_len, 0,
3932 			       max_msg_len - msg_len);
3933 
3934 		short_input.req_type = req->req_type;
3935 		short_input.signature =
3936 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3937 		short_input.size = cpu_to_le16(msg_len);
3938 		short_input.req_addr =
3939 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3940 
3941 		data = (u32 *)&short_input;
3942 		msg_len = sizeof(short_input);
3943 
3944 		/* Sync memory write before updating doorbell */
3945 		wmb();
3946 
3947 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3948 	}
3949 
3950 	/* Write request msg to hwrm channel */
3951 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
3952 
3953 	for (i = msg_len; i < max_req_len; i += 4)
3954 		writel(0, bp->bar0 + bar_offset + i);
3955 
3956 	/* Ring channel doorbell */
3957 	writel(1, bp->bar0 + doorbell_offset);
3958 
3959 	if (!timeout)
3960 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3961 	/* convert timeout to usec */
3962 	timeout *= 1000;
3963 
3964 	i = 0;
3965 	/* Short timeout for the first few iterations:
3966 	 * number of loops = number of loops for short timeout +
3967 	 * number of loops for standard timeout.
3968 	 */
3969 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3970 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3971 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3972 	resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
3973 
3974 	if (intr_process) {
3975 		u16 seq_id = bp->hwrm_intr_seq_id;
3976 
3977 		/* Wait until hwrm response cmpl interrupt is processed */
3978 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
3979 		       i++ < tmo_count) {
3980 			/* on first few passes, just barely sleep */
3981 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3982 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3983 					     HWRM_SHORT_MAX_TIMEOUT);
3984 			else
3985 				usleep_range(HWRM_MIN_TIMEOUT,
3986 					     HWRM_MAX_TIMEOUT);
3987 		}
3988 
3989 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
3990 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3991 				   le16_to_cpu(req->req_type));
3992 			return -1;
3993 		}
3994 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3995 		      HWRM_RESP_LEN_SFT;
3996 		valid = resp_addr + len - 1;
3997 	} else {
3998 		int j;
3999 
4000 		/* Check if response len is updated */
4001 		for (i = 0; i < tmo_count; i++) {
4002 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4003 			      HWRM_RESP_LEN_SFT;
4004 			if (len)
4005 				break;
4006 			/* on first few passes, just barely sleep */
4007 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4008 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4009 					     HWRM_SHORT_MAX_TIMEOUT);
4010 			else
4011 				usleep_range(HWRM_MIN_TIMEOUT,
4012 					     HWRM_MAX_TIMEOUT);
4013 		}
4014 
4015 		if (i >= tmo_count) {
4016 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4017 				   HWRM_TOTAL_TIMEOUT(i),
4018 				   le16_to_cpu(req->req_type),
4019 				   le16_to_cpu(req->seq_id), len);
4020 			return -1;
4021 		}
4022 
4023 		/* Last byte of resp contains valid bit */
4024 		valid = resp_addr + len - 1;
4025 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4026 			/* make sure we read from updated DMA memory */
4027 			dma_rmb();
4028 			if (*valid)
4029 				break;
4030 			usleep_range(1, 5);
4031 		}
4032 
4033 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4034 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4035 				   HWRM_TOTAL_TIMEOUT(i),
4036 				   le16_to_cpu(req->req_type),
4037 				   le16_to_cpu(req->seq_id), len, *valid);
4038 			return -1;
4039 		}
4040 	}
4041 
4042 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4043 	 * may become a new field in a newer spec.  We must make sure that
4044 	 * a new field not implemented by old spec will read zero.
4045 	 */
4046 	*valid = 0;
4047 	rc = le16_to_cpu(resp->error_code);
4048 	if (rc && !silent)
4049 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4050 			   le16_to_cpu(resp->req_type),
4051 			   le16_to_cpu(resp->seq_id), rc);
4052 	return rc;
4053 }
4054 
4055 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4056 {
4057 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4058 }
4059 
4060 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4061 			      int timeout)
4062 {
4063 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4064 }
4065 
4066 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4067 {
4068 	int rc;
4069 
4070 	mutex_lock(&bp->hwrm_cmd_lock);
4071 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4072 	mutex_unlock(&bp->hwrm_cmd_lock);
4073 	return rc;
4074 }
4075 
4076 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4077 			     int timeout)
4078 {
4079 	int rc;
4080 
4081 	mutex_lock(&bp->hwrm_cmd_lock);
4082 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4083 	mutex_unlock(&bp->hwrm_cmd_lock);
4084 	return rc;
4085 }
4086 
4087 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
4088 				     int bmap_size)
4089 {
4090 	struct hwrm_func_drv_rgtr_input req = {0};
4091 	DECLARE_BITMAP(async_events_bmap, 256);
4092 	u32 *events = (u32 *)async_events_bmap;
4093 	int i;
4094 
4095 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4096 
4097 	req.enables =
4098 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4099 
4100 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4101 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
4102 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4103 
4104 	if (bmap && bmap_size) {
4105 		for (i = 0; i < bmap_size; i++) {
4106 			if (test_bit(i, bmap))
4107 				__set_bit(i, async_events_bmap);
4108 		}
4109 	}
4110 
4111 	for (i = 0; i < 8; i++)
4112 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4113 
4114 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4115 }
4116 
4117 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4118 {
4119 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4120 	struct hwrm_func_drv_rgtr_input req = {0};
4121 	int rc;
4122 
4123 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4124 
4125 	req.enables =
4126 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4127 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
4128 
4129 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4130 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
4131 	req.ver_maj_8b = DRV_VER_MAJ;
4132 	req.ver_min_8b = DRV_VER_MIN;
4133 	req.ver_upd_8b = DRV_VER_UPD;
4134 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4135 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4136 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4137 
4138 	if (BNXT_PF(bp)) {
4139 		u32 data[8];
4140 		int i;
4141 
4142 		memset(data, 0, sizeof(data));
4143 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4144 			u16 cmd = bnxt_vf_req_snif[i];
4145 			unsigned int bit, idx;
4146 
4147 			idx = cmd / 32;
4148 			bit = cmd % 32;
4149 			data[idx] |= 1 << bit;
4150 		}
4151 
4152 		for (i = 0; i < 8; i++)
4153 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4154 
4155 		req.enables |=
4156 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4157 	}
4158 
4159 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4160 		req.flags |= cpu_to_le32(
4161 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4162 
4163 	mutex_lock(&bp->hwrm_cmd_lock);
4164 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4165 	if (rc)
4166 		rc = -EIO;
4167 	else if (resp->flags &
4168 		 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4169 		bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4170 	mutex_unlock(&bp->hwrm_cmd_lock);
4171 	return rc;
4172 }
4173 
4174 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4175 {
4176 	struct hwrm_func_drv_unrgtr_input req = {0};
4177 
4178 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4179 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4180 }
4181 
4182 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4183 {
4184 	u32 rc = 0;
4185 	struct hwrm_tunnel_dst_port_free_input req = {0};
4186 
4187 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4188 	req.tunnel_type = tunnel_type;
4189 
4190 	switch (tunnel_type) {
4191 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4192 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4193 		break;
4194 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4195 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4196 		break;
4197 	default:
4198 		break;
4199 	}
4200 
4201 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4202 	if (rc)
4203 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4204 			   rc);
4205 	return rc;
4206 }
4207 
4208 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4209 					   u8 tunnel_type)
4210 {
4211 	u32 rc = 0;
4212 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4213 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4214 
4215 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4216 
4217 	req.tunnel_type = tunnel_type;
4218 	req.tunnel_dst_port_val = port;
4219 
4220 	mutex_lock(&bp->hwrm_cmd_lock);
4221 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4222 	if (rc) {
4223 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4224 			   rc);
4225 		goto err_out;
4226 	}
4227 
4228 	switch (tunnel_type) {
4229 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4230 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4231 		break;
4232 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4233 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4234 		break;
4235 	default:
4236 		break;
4237 	}
4238 
4239 err_out:
4240 	mutex_unlock(&bp->hwrm_cmd_lock);
4241 	return rc;
4242 }
4243 
4244 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4245 {
4246 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4247 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4248 
4249 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4250 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4251 
4252 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4253 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4254 	req.mask = cpu_to_le32(vnic->rx_mask);
4255 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4256 }
4257 
4258 #ifdef CONFIG_RFS_ACCEL
4259 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4260 					    struct bnxt_ntuple_filter *fltr)
4261 {
4262 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4263 
4264 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4265 	req.ntuple_filter_id = fltr->filter_id;
4266 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4267 }
4268 
4269 #define BNXT_NTP_FLTR_FLAGS					\
4270 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4271 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4272 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4273 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4274 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4275 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4276 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4277 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4278 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4279 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4280 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4281 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4282 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4283 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4284 
4285 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4286 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4287 
4288 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4289 					     struct bnxt_ntuple_filter *fltr)
4290 {
4291 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4292 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4293 	struct flow_keys *keys = &fltr->fkeys;
4294 	struct bnxt_vnic_info *vnic;
4295 	u32 dst_ena = 0;
4296 	int rc = 0;
4297 
4298 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4299 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4300 
4301 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX) {
4302 		dst_ena = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
4303 		req.rfs_ring_tbl_idx = cpu_to_le16(fltr->rxq);
4304 		vnic = &bp->vnic_info[0];
4305 	} else {
4306 		vnic = &bp->vnic_info[fltr->rxq + 1];
4307 	}
4308 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4309 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS | dst_ena);
4310 
4311 	req.ethertype = htons(ETH_P_IP);
4312 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4313 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4314 	req.ip_protocol = keys->basic.ip_proto;
4315 
4316 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4317 		int i;
4318 
4319 		req.ethertype = htons(ETH_P_IPV6);
4320 		req.ip_addr_type =
4321 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4322 		*(struct in6_addr *)&req.src_ipaddr[0] =
4323 			keys->addrs.v6addrs.src;
4324 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4325 			keys->addrs.v6addrs.dst;
4326 		for (i = 0; i < 4; i++) {
4327 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4328 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4329 		}
4330 	} else {
4331 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4332 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4333 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4334 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4335 	}
4336 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4337 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4338 		req.tunnel_type =
4339 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4340 	}
4341 
4342 	req.src_port = keys->ports.src;
4343 	req.src_port_mask = cpu_to_be16(0xffff);
4344 	req.dst_port = keys->ports.dst;
4345 	req.dst_port_mask = cpu_to_be16(0xffff);
4346 
4347 	mutex_lock(&bp->hwrm_cmd_lock);
4348 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4349 	if (!rc) {
4350 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4351 		fltr->filter_id = resp->ntuple_filter_id;
4352 	}
4353 	mutex_unlock(&bp->hwrm_cmd_lock);
4354 	return rc;
4355 }
4356 #endif
4357 
4358 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4359 				     u8 *mac_addr)
4360 {
4361 	u32 rc = 0;
4362 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4363 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4364 
4365 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4366 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4367 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4368 		req.flags |=
4369 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4370 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4371 	req.enables =
4372 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4373 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4374 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4375 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4376 	req.l2_addr_mask[0] = 0xff;
4377 	req.l2_addr_mask[1] = 0xff;
4378 	req.l2_addr_mask[2] = 0xff;
4379 	req.l2_addr_mask[3] = 0xff;
4380 	req.l2_addr_mask[4] = 0xff;
4381 	req.l2_addr_mask[5] = 0xff;
4382 
4383 	mutex_lock(&bp->hwrm_cmd_lock);
4384 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4385 	if (!rc)
4386 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4387 							resp->l2_filter_id;
4388 	mutex_unlock(&bp->hwrm_cmd_lock);
4389 	return rc;
4390 }
4391 
4392 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4393 {
4394 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4395 	int rc = 0;
4396 
4397 	/* Any associated ntuple filters will also be cleared by firmware. */
4398 	mutex_lock(&bp->hwrm_cmd_lock);
4399 	for (i = 0; i < num_of_vnics; i++) {
4400 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4401 
4402 		for (j = 0; j < vnic->uc_filter_count; j++) {
4403 			struct hwrm_cfa_l2_filter_free_input req = {0};
4404 
4405 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4406 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4407 
4408 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4409 
4410 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4411 						HWRM_CMD_TIMEOUT);
4412 		}
4413 		vnic->uc_filter_count = 0;
4414 	}
4415 	mutex_unlock(&bp->hwrm_cmd_lock);
4416 
4417 	return rc;
4418 }
4419 
4420 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4421 {
4422 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4423 	struct hwrm_vnic_tpa_cfg_input req = {0};
4424 
4425 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4426 		return 0;
4427 
4428 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4429 
4430 	if (tpa_flags) {
4431 		u16 mss = bp->dev->mtu - 40;
4432 		u32 nsegs, n, segs = 0, flags;
4433 
4434 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4435 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4436 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4437 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4438 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4439 		if (tpa_flags & BNXT_FLAG_GRO)
4440 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4441 
4442 		req.flags = cpu_to_le32(flags);
4443 
4444 		req.enables =
4445 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4446 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4447 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4448 
4449 		/* Number of segs are log2 units, and first packet is not
4450 		 * included as part of this units.
4451 		 */
4452 		if (mss <= BNXT_RX_PAGE_SIZE) {
4453 			n = BNXT_RX_PAGE_SIZE / mss;
4454 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4455 		} else {
4456 			n = mss / BNXT_RX_PAGE_SIZE;
4457 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4458 				n++;
4459 			nsegs = (MAX_SKB_FRAGS - n) / n;
4460 		}
4461 
4462 		segs = ilog2(nsegs);
4463 		req.max_agg_segs = cpu_to_le16(segs);
4464 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
4465 
4466 		req.min_agg_len = cpu_to_le32(512);
4467 	}
4468 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4469 
4470 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4471 }
4472 
4473 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4474 {
4475 	struct bnxt_ring_grp_info *grp_info;
4476 
4477 	grp_info = &bp->grp_info[ring->grp_idx];
4478 	return grp_info->cp_fw_ring_id;
4479 }
4480 
4481 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4482 {
4483 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4484 		struct bnxt_napi *bnapi = rxr->bnapi;
4485 		struct bnxt_cp_ring_info *cpr;
4486 
4487 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4488 		return cpr->cp_ring_struct.fw_ring_id;
4489 	} else {
4490 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4491 	}
4492 }
4493 
4494 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4495 {
4496 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4497 		struct bnxt_napi *bnapi = txr->bnapi;
4498 		struct bnxt_cp_ring_info *cpr;
4499 
4500 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4501 		return cpr->cp_ring_struct.fw_ring_id;
4502 	} else {
4503 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4504 	}
4505 }
4506 
4507 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4508 {
4509 	u32 i, j, max_rings;
4510 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4511 	struct hwrm_vnic_rss_cfg_input req = {0};
4512 
4513 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4514 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4515 		return 0;
4516 
4517 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4518 	if (set_rss) {
4519 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4520 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4521 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4522 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4523 				max_rings = bp->rx_nr_rings - 1;
4524 			else
4525 				max_rings = bp->rx_nr_rings;
4526 		} else {
4527 			max_rings = 1;
4528 		}
4529 
4530 		/* Fill the RSS indirection table with ring group ids */
4531 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4532 			if (j == max_rings)
4533 				j = 0;
4534 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4535 		}
4536 
4537 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4538 		req.hash_key_tbl_addr =
4539 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4540 	}
4541 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4542 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4543 }
4544 
4545 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4546 {
4547 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4548 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4549 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4550 	struct hwrm_vnic_rss_cfg_input req = {0};
4551 
4552 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4553 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4554 	if (!set_rss) {
4555 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4556 		return 0;
4557 	}
4558 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4559 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4560 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4561 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4562 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4563 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4564 		__le16 *ring_tbl = vnic->rss_table;
4565 		int rc;
4566 
4567 		req.ring_table_pair_index = i;
4568 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4569 		for (j = 0; j < 64; j++) {
4570 			u16 ring_id;
4571 
4572 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4573 			*ring_tbl++ = cpu_to_le16(ring_id);
4574 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4575 			*ring_tbl++ = cpu_to_le16(ring_id);
4576 			rxr++;
4577 			k++;
4578 			if (k == max_rings) {
4579 				k = 0;
4580 				rxr = &bp->rx_ring[0];
4581 			}
4582 		}
4583 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4584 		if (rc)
4585 			return -EIO;
4586 	}
4587 	return 0;
4588 }
4589 
4590 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4591 {
4592 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4593 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4594 
4595 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4596 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4597 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4598 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4599 	req.enables =
4600 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4601 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4602 	/* thresholds not implemented in firmware yet */
4603 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4604 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4605 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4606 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4607 }
4608 
4609 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4610 					u16 ctx_idx)
4611 {
4612 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4613 
4614 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4615 	req.rss_cos_lb_ctx_id =
4616 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4617 
4618 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4619 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4620 }
4621 
4622 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4623 {
4624 	int i, j;
4625 
4626 	for (i = 0; i < bp->nr_vnics; i++) {
4627 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4628 
4629 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4630 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4631 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4632 		}
4633 	}
4634 	bp->rsscos_nr_ctxs = 0;
4635 }
4636 
4637 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4638 {
4639 	int rc;
4640 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4641 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4642 						bp->hwrm_cmd_resp_addr;
4643 
4644 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4645 			       -1);
4646 
4647 	mutex_lock(&bp->hwrm_cmd_lock);
4648 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4649 	if (!rc)
4650 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4651 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4652 	mutex_unlock(&bp->hwrm_cmd_lock);
4653 
4654 	return rc;
4655 }
4656 
4657 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4658 {
4659 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4660 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4661 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4662 }
4663 
4664 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4665 {
4666 	unsigned int ring = 0, grp_idx;
4667 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4668 	struct hwrm_vnic_cfg_input req = {0};
4669 	u16 def_vlan = 0;
4670 
4671 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4672 
4673 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4674 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4675 
4676 		req.default_rx_ring_id =
4677 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4678 		req.default_cmpl_ring_id =
4679 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4680 		req.enables =
4681 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4682 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4683 		goto vnic_mru;
4684 	}
4685 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4686 	/* Only RSS support for now TBD: COS & LB */
4687 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4688 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4689 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4690 					   VNIC_CFG_REQ_ENABLES_MRU);
4691 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4692 		req.rss_rule =
4693 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4694 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4695 					   VNIC_CFG_REQ_ENABLES_MRU);
4696 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4697 	} else {
4698 		req.rss_rule = cpu_to_le16(0xffff);
4699 	}
4700 
4701 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4702 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4703 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4704 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4705 	} else {
4706 		req.cos_rule = cpu_to_le16(0xffff);
4707 	}
4708 
4709 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4710 		ring = 0;
4711 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4712 		ring = vnic_id - 1;
4713 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4714 		ring = bp->rx_nr_rings - 1;
4715 
4716 	grp_idx = bp->rx_ring[ring].bnapi->index;
4717 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4718 	req.lb_rule = cpu_to_le16(0xffff);
4719 vnic_mru:
4720 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4721 			      VLAN_HLEN);
4722 
4723 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4724 #ifdef CONFIG_BNXT_SRIOV
4725 	if (BNXT_VF(bp))
4726 		def_vlan = bp->vf.vlan;
4727 #endif
4728 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4729 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4730 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4731 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4732 
4733 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4734 }
4735 
4736 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4737 {
4738 	u32 rc = 0;
4739 
4740 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4741 		struct hwrm_vnic_free_input req = {0};
4742 
4743 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4744 		req.vnic_id =
4745 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4746 
4747 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4748 		if (rc)
4749 			return rc;
4750 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4751 	}
4752 	return rc;
4753 }
4754 
4755 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4756 {
4757 	u16 i;
4758 
4759 	for (i = 0; i < bp->nr_vnics; i++)
4760 		bnxt_hwrm_vnic_free_one(bp, i);
4761 }
4762 
4763 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4764 				unsigned int start_rx_ring_idx,
4765 				unsigned int nr_rings)
4766 {
4767 	int rc = 0;
4768 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4769 	struct hwrm_vnic_alloc_input req = {0};
4770 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4771 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4772 
4773 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4774 		goto vnic_no_ring_grps;
4775 
4776 	/* map ring groups to this vnic */
4777 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4778 		grp_idx = bp->rx_ring[i].bnapi->index;
4779 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4780 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4781 				   j, nr_rings);
4782 			break;
4783 		}
4784 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
4785 	}
4786 
4787 vnic_no_ring_grps:
4788 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
4789 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
4790 	if (vnic_id == 0)
4791 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4792 
4793 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4794 
4795 	mutex_lock(&bp->hwrm_cmd_lock);
4796 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4797 	if (!rc)
4798 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
4799 	mutex_unlock(&bp->hwrm_cmd_lock);
4800 	return rc;
4801 }
4802 
4803 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4804 {
4805 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4806 	struct hwrm_vnic_qcaps_input req = {0};
4807 	int rc;
4808 
4809 	if (bp->hwrm_spec_code < 0x10600)
4810 		return 0;
4811 
4812 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4813 	mutex_lock(&bp->hwrm_cmd_lock);
4814 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4815 	if (!rc) {
4816 		u32 flags = le32_to_cpu(resp->flags);
4817 
4818 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
4819 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4820 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4821 		if (flags &
4822 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4823 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4824 	}
4825 	mutex_unlock(&bp->hwrm_cmd_lock);
4826 	return rc;
4827 }
4828 
4829 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4830 {
4831 	u16 i;
4832 	u32 rc = 0;
4833 
4834 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4835 		return 0;
4836 
4837 	mutex_lock(&bp->hwrm_cmd_lock);
4838 	for (i = 0; i < bp->rx_nr_rings; i++) {
4839 		struct hwrm_ring_grp_alloc_input req = {0};
4840 		struct hwrm_ring_grp_alloc_output *resp =
4841 					bp->hwrm_cmd_resp_addr;
4842 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4843 
4844 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4845 
4846 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4847 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4848 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4849 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4850 
4851 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4852 					HWRM_CMD_TIMEOUT);
4853 		if (rc)
4854 			break;
4855 
4856 		bp->grp_info[grp_idx].fw_grp_id =
4857 			le32_to_cpu(resp->ring_group_id);
4858 	}
4859 	mutex_unlock(&bp->hwrm_cmd_lock);
4860 	return rc;
4861 }
4862 
4863 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4864 {
4865 	u16 i;
4866 	u32 rc = 0;
4867 	struct hwrm_ring_grp_free_input req = {0};
4868 
4869 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
4870 		return 0;
4871 
4872 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4873 
4874 	mutex_lock(&bp->hwrm_cmd_lock);
4875 	for (i = 0; i < bp->cp_nr_rings; i++) {
4876 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4877 			continue;
4878 		req.ring_group_id =
4879 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4880 
4881 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4882 					HWRM_CMD_TIMEOUT);
4883 		if (rc)
4884 			break;
4885 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4886 	}
4887 	mutex_unlock(&bp->hwrm_cmd_lock);
4888 	return rc;
4889 }
4890 
4891 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4892 				    struct bnxt_ring_struct *ring,
4893 				    u32 ring_type, u32 map_index)
4894 {
4895 	int rc = 0, err = 0;
4896 	struct hwrm_ring_alloc_input req = {0};
4897 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4898 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
4899 	struct bnxt_ring_grp_info *grp_info;
4900 	u16 ring_id;
4901 
4902 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4903 
4904 	req.enables = 0;
4905 	if (rmem->nr_pages > 1) {
4906 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
4907 		/* Page size is in log2 units */
4908 		req.page_size = BNXT_PAGE_SHIFT;
4909 		req.page_tbl_depth = 1;
4910 	} else {
4911 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
4912 	}
4913 	req.fbo = 0;
4914 	/* Association of ring index with doorbell index and MSIX number */
4915 	req.logical_id = cpu_to_le16(map_index);
4916 
4917 	switch (ring_type) {
4918 	case HWRM_RING_ALLOC_TX: {
4919 		struct bnxt_tx_ring_info *txr;
4920 
4921 		txr = container_of(ring, struct bnxt_tx_ring_info,
4922 				   tx_ring_struct);
4923 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4924 		/* Association of transmit ring with completion ring */
4925 		grp_info = &bp->grp_info[ring->grp_idx];
4926 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
4927 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4928 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4929 		req.queue_id = cpu_to_le16(ring->queue_id);
4930 		break;
4931 	}
4932 	case HWRM_RING_ALLOC_RX:
4933 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4934 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4935 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4936 			u16 flags = 0;
4937 
4938 			/* Association of rx ring with stats context */
4939 			grp_info = &bp->grp_info[ring->grp_idx];
4940 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
4941 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4942 			req.enables |= cpu_to_le32(
4943 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4944 			if (NET_IP_ALIGN == 2)
4945 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
4946 			req.flags = cpu_to_le16(flags);
4947 		}
4948 		break;
4949 	case HWRM_RING_ALLOC_AGG:
4950 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4951 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
4952 			/* Association of agg ring with rx ring */
4953 			grp_info = &bp->grp_info[ring->grp_idx];
4954 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
4955 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
4956 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4957 			req.enables |= cpu_to_le32(
4958 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
4959 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4960 		} else {
4961 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4962 		}
4963 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4964 		break;
4965 	case HWRM_RING_ALLOC_CMPL:
4966 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4967 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4968 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4969 			/* Association of cp ring with nq */
4970 			grp_info = &bp->grp_info[map_index];
4971 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4972 			req.cq_handle = cpu_to_le64(ring->handle);
4973 			req.enables |= cpu_to_le32(
4974 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
4975 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
4976 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4977 		}
4978 		break;
4979 	case HWRM_RING_ALLOC_NQ:
4980 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
4981 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4982 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4983 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4984 		break;
4985 	default:
4986 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4987 			   ring_type);
4988 		return -1;
4989 	}
4990 
4991 	mutex_lock(&bp->hwrm_cmd_lock);
4992 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4993 	err = le16_to_cpu(resp->error_code);
4994 	ring_id = le16_to_cpu(resp->ring_id);
4995 	mutex_unlock(&bp->hwrm_cmd_lock);
4996 
4997 	if (rc || err) {
4998 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4999 			   ring_type, rc, err);
5000 		return -EIO;
5001 	}
5002 	ring->fw_ring_id = ring_id;
5003 	return rc;
5004 }
5005 
5006 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5007 {
5008 	int rc;
5009 
5010 	if (BNXT_PF(bp)) {
5011 		struct hwrm_func_cfg_input req = {0};
5012 
5013 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5014 		req.fid = cpu_to_le16(0xffff);
5015 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5016 		req.async_event_cr = cpu_to_le16(idx);
5017 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5018 	} else {
5019 		struct hwrm_func_vf_cfg_input req = {0};
5020 
5021 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5022 		req.enables =
5023 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5024 		req.async_event_cr = cpu_to_le16(idx);
5025 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5026 	}
5027 	return rc;
5028 }
5029 
5030 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5031 			u32 map_idx, u32 xid)
5032 {
5033 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5034 		if (BNXT_PF(bp))
5035 			db->doorbell = bp->bar1 + 0x10000;
5036 		else
5037 			db->doorbell = bp->bar1 + 0x4000;
5038 		switch (ring_type) {
5039 		case HWRM_RING_ALLOC_TX:
5040 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5041 			break;
5042 		case HWRM_RING_ALLOC_RX:
5043 		case HWRM_RING_ALLOC_AGG:
5044 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5045 			break;
5046 		case HWRM_RING_ALLOC_CMPL:
5047 			db->db_key64 = DBR_PATH_L2;
5048 			break;
5049 		case HWRM_RING_ALLOC_NQ:
5050 			db->db_key64 = DBR_PATH_L2;
5051 			break;
5052 		}
5053 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5054 	} else {
5055 		db->doorbell = bp->bar1 + map_idx * 0x80;
5056 		switch (ring_type) {
5057 		case HWRM_RING_ALLOC_TX:
5058 			db->db_key32 = DB_KEY_TX;
5059 			break;
5060 		case HWRM_RING_ALLOC_RX:
5061 		case HWRM_RING_ALLOC_AGG:
5062 			db->db_key32 = DB_KEY_RX;
5063 			break;
5064 		case HWRM_RING_ALLOC_CMPL:
5065 			db->db_key32 = DB_KEY_CP;
5066 			break;
5067 		}
5068 	}
5069 }
5070 
5071 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5072 {
5073 	int i, rc = 0;
5074 	u32 type;
5075 
5076 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5077 		type = HWRM_RING_ALLOC_NQ;
5078 	else
5079 		type = HWRM_RING_ALLOC_CMPL;
5080 	for (i = 0; i < bp->cp_nr_rings; i++) {
5081 		struct bnxt_napi *bnapi = bp->bnapi[i];
5082 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5083 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5084 		u32 map_idx = ring->map_idx;
5085 		unsigned int vector;
5086 
5087 		vector = bp->irq_tbl[map_idx].vector;
5088 		disable_irq_nosync(vector);
5089 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5090 		if (rc) {
5091 			enable_irq(vector);
5092 			goto err_out;
5093 		}
5094 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5095 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5096 		enable_irq(vector);
5097 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5098 
5099 		if (!i) {
5100 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5101 			if (rc)
5102 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5103 		}
5104 	}
5105 
5106 	type = HWRM_RING_ALLOC_TX;
5107 	for (i = 0; i < bp->tx_nr_rings; i++) {
5108 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5109 		struct bnxt_ring_struct *ring;
5110 		u32 map_idx;
5111 
5112 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5113 			struct bnxt_napi *bnapi = txr->bnapi;
5114 			struct bnxt_cp_ring_info *cpr, *cpr2;
5115 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5116 
5117 			cpr = &bnapi->cp_ring;
5118 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5119 			ring = &cpr2->cp_ring_struct;
5120 			ring->handle = BNXT_TX_HDL;
5121 			map_idx = bnapi->index;
5122 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5123 			if (rc)
5124 				goto err_out;
5125 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5126 				    ring->fw_ring_id);
5127 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5128 		}
5129 		ring = &txr->tx_ring_struct;
5130 		map_idx = i;
5131 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5132 		if (rc)
5133 			goto err_out;
5134 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5135 	}
5136 
5137 	type = HWRM_RING_ALLOC_RX;
5138 	for (i = 0; i < bp->rx_nr_rings; i++) {
5139 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5140 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5141 		struct bnxt_napi *bnapi = rxr->bnapi;
5142 		u32 map_idx = bnapi->index;
5143 
5144 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5145 		if (rc)
5146 			goto err_out;
5147 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5148 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5149 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5150 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5151 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5152 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5153 			struct bnxt_cp_ring_info *cpr2;
5154 
5155 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5156 			ring = &cpr2->cp_ring_struct;
5157 			ring->handle = BNXT_RX_HDL;
5158 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5159 			if (rc)
5160 				goto err_out;
5161 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5162 				    ring->fw_ring_id);
5163 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5164 		}
5165 	}
5166 
5167 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5168 		type = HWRM_RING_ALLOC_AGG;
5169 		for (i = 0; i < bp->rx_nr_rings; i++) {
5170 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5171 			struct bnxt_ring_struct *ring =
5172 						&rxr->rx_agg_ring_struct;
5173 			u32 grp_idx = ring->grp_idx;
5174 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5175 
5176 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5177 			if (rc)
5178 				goto err_out;
5179 
5180 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5181 				    ring->fw_ring_id);
5182 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5183 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5184 		}
5185 	}
5186 err_out:
5187 	return rc;
5188 }
5189 
5190 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5191 				   struct bnxt_ring_struct *ring,
5192 				   u32 ring_type, int cmpl_ring_id)
5193 {
5194 	int rc;
5195 	struct hwrm_ring_free_input req = {0};
5196 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5197 	u16 error_code;
5198 
5199 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5200 	req.ring_type = ring_type;
5201 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5202 
5203 	mutex_lock(&bp->hwrm_cmd_lock);
5204 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5205 	error_code = le16_to_cpu(resp->error_code);
5206 	mutex_unlock(&bp->hwrm_cmd_lock);
5207 
5208 	if (rc || error_code) {
5209 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5210 			   ring_type, rc, error_code);
5211 		return -EIO;
5212 	}
5213 	return 0;
5214 }
5215 
5216 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5217 {
5218 	u32 type;
5219 	int i;
5220 
5221 	if (!bp->bnapi)
5222 		return;
5223 
5224 	for (i = 0; i < bp->tx_nr_rings; i++) {
5225 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5226 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5227 
5228 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5229 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5230 
5231 			hwrm_ring_free_send_msg(bp, ring,
5232 						RING_FREE_REQ_RING_TYPE_TX,
5233 						close_path ? cmpl_ring_id :
5234 						INVALID_HW_RING_ID);
5235 			ring->fw_ring_id = INVALID_HW_RING_ID;
5236 		}
5237 	}
5238 
5239 	for (i = 0; i < bp->rx_nr_rings; i++) {
5240 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5241 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5242 		u32 grp_idx = rxr->bnapi->index;
5243 
5244 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5245 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5246 
5247 			hwrm_ring_free_send_msg(bp, ring,
5248 						RING_FREE_REQ_RING_TYPE_RX,
5249 						close_path ? cmpl_ring_id :
5250 						INVALID_HW_RING_ID);
5251 			ring->fw_ring_id = INVALID_HW_RING_ID;
5252 			bp->grp_info[grp_idx].rx_fw_ring_id =
5253 				INVALID_HW_RING_ID;
5254 		}
5255 	}
5256 
5257 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5258 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5259 	else
5260 		type = RING_FREE_REQ_RING_TYPE_RX;
5261 	for (i = 0; i < bp->rx_nr_rings; i++) {
5262 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5263 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5264 		u32 grp_idx = rxr->bnapi->index;
5265 
5266 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5267 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5268 
5269 			hwrm_ring_free_send_msg(bp, ring, type,
5270 						close_path ? cmpl_ring_id :
5271 						INVALID_HW_RING_ID);
5272 			ring->fw_ring_id = INVALID_HW_RING_ID;
5273 			bp->grp_info[grp_idx].agg_fw_ring_id =
5274 				INVALID_HW_RING_ID;
5275 		}
5276 	}
5277 
5278 	/* The completion rings are about to be freed.  After that the
5279 	 * IRQ doorbell will not work anymore.  So we need to disable
5280 	 * IRQ here.
5281 	 */
5282 	bnxt_disable_int_sync(bp);
5283 
5284 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5285 		type = RING_FREE_REQ_RING_TYPE_NQ;
5286 	else
5287 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5288 	for (i = 0; i < bp->cp_nr_rings; i++) {
5289 		struct bnxt_napi *bnapi = bp->bnapi[i];
5290 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5291 		struct bnxt_ring_struct *ring;
5292 		int j;
5293 
5294 		for (j = 0; j < 2; j++) {
5295 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5296 
5297 			if (cpr2) {
5298 				ring = &cpr2->cp_ring_struct;
5299 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5300 					continue;
5301 				hwrm_ring_free_send_msg(bp, ring,
5302 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5303 					INVALID_HW_RING_ID);
5304 				ring->fw_ring_id = INVALID_HW_RING_ID;
5305 			}
5306 		}
5307 		ring = &cpr->cp_ring_struct;
5308 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5309 			hwrm_ring_free_send_msg(bp, ring, type,
5310 						INVALID_HW_RING_ID);
5311 			ring->fw_ring_id = INVALID_HW_RING_ID;
5312 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5313 		}
5314 	}
5315 }
5316 
5317 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5318 			   bool shared);
5319 
5320 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5321 {
5322 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5323 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5324 	struct hwrm_func_qcfg_input req = {0};
5325 	int rc;
5326 
5327 	if (bp->hwrm_spec_code < 0x10601)
5328 		return 0;
5329 
5330 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5331 	req.fid = cpu_to_le16(0xffff);
5332 	mutex_lock(&bp->hwrm_cmd_lock);
5333 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5334 	if (rc) {
5335 		mutex_unlock(&bp->hwrm_cmd_lock);
5336 		return -EIO;
5337 	}
5338 
5339 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5340 	if (BNXT_NEW_RM(bp)) {
5341 		u16 cp, stats;
5342 
5343 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5344 		hw_resc->resv_hw_ring_grps =
5345 			le32_to_cpu(resp->alloc_hw_ring_grps);
5346 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5347 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5348 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5349 		hw_resc->resv_irqs = cp;
5350 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5351 			int rx = hw_resc->resv_rx_rings;
5352 			int tx = hw_resc->resv_tx_rings;
5353 
5354 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5355 				rx >>= 1;
5356 			if (cp < (rx + tx)) {
5357 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5358 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5359 					rx <<= 1;
5360 				hw_resc->resv_rx_rings = rx;
5361 				hw_resc->resv_tx_rings = tx;
5362 			}
5363 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5364 			hw_resc->resv_hw_ring_grps = rx;
5365 		}
5366 		hw_resc->resv_cp_rings = cp;
5367 		hw_resc->resv_stat_ctxs = stats;
5368 	}
5369 	mutex_unlock(&bp->hwrm_cmd_lock);
5370 	return 0;
5371 }
5372 
5373 /* Caller must hold bp->hwrm_cmd_lock */
5374 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5375 {
5376 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5377 	struct hwrm_func_qcfg_input req = {0};
5378 	int rc;
5379 
5380 	if (bp->hwrm_spec_code < 0x10601)
5381 		return 0;
5382 
5383 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5384 	req.fid = cpu_to_le16(fid);
5385 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5386 	if (!rc)
5387 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5388 
5389 	return rc;
5390 }
5391 
5392 static bool bnxt_rfs_supported(struct bnxt *bp);
5393 
5394 static void
5395 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5396 			     int tx_rings, int rx_rings, int ring_grps,
5397 			     int cp_rings, int stats, int vnics)
5398 {
5399 	u32 enables = 0;
5400 
5401 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5402 	req->fid = cpu_to_le16(0xffff);
5403 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5404 	req->num_tx_rings = cpu_to_le16(tx_rings);
5405 	if (BNXT_NEW_RM(bp)) {
5406 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5407 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5408 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5409 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5410 			enables |= tx_rings + ring_grps ?
5411 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5412 			enables |= rx_rings ?
5413 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5414 		} else {
5415 			enables |= cp_rings ?
5416 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5417 			enables |= ring_grps ?
5418 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5419 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5420 		}
5421 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5422 
5423 		req->num_rx_rings = cpu_to_le16(rx_rings);
5424 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5425 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5426 			req->num_msix = cpu_to_le16(cp_rings);
5427 			req->num_rsscos_ctxs =
5428 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5429 		} else {
5430 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5431 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5432 			req->num_rsscos_ctxs = cpu_to_le16(1);
5433 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5434 			    bnxt_rfs_supported(bp))
5435 				req->num_rsscos_ctxs =
5436 					cpu_to_le16(ring_grps + 1);
5437 		}
5438 		req->num_stat_ctxs = cpu_to_le16(stats);
5439 		req->num_vnics = cpu_to_le16(vnics);
5440 	}
5441 	req->enables = cpu_to_le32(enables);
5442 }
5443 
5444 static void
5445 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5446 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5447 			     int rx_rings, int ring_grps, int cp_rings,
5448 			     int stats, int vnics)
5449 {
5450 	u32 enables = 0;
5451 
5452 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5453 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5454 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5455 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5456 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5457 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5458 		enables |= tx_rings + ring_grps ?
5459 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5460 	} else {
5461 		enables |= cp_rings ?
5462 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5463 		enables |= ring_grps ?
5464 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5465 	}
5466 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5467 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5468 
5469 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5470 	req->num_tx_rings = cpu_to_le16(tx_rings);
5471 	req->num_rx_rings = cpu_to_le16(rx_rings);
5472 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5473 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5474 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5475 	} else {
5476 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5477 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5478 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5479 	}
5480 	req->num_stat_ctxs = cpu_to_le16(stats);
5481 	req->num_vnics = cpu_to_le16(vnics);
5482 
5483 	req->enables = cpu_to_le32(enables);
5484 }
5485 
5486 static int
5487 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5488 			   int ring_grps, int cp_rings, int stats, int vnics)
5489 {
5490 	struct hwrm_func_cfg_input req = {0};
5491 	int rc;
5492 
5493 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5494 				     cp_rings, stats, vnics);
5495 	if (!req.enables)
5496 		return 0;
5497 
5498 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5499 	if (rc)
5500 		return -ENOMEM;
5501 
5502 	if (bp->hwrm_spec_code < 0x10601)
5503 		bp->hw_resc.resv_tx_rings = tx_rings;
5504 
5505 	rc = bnxt_hwrm_get_rings(bp);
5506 	return rc;
5507 }
5508 
5509 static int
5510 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5511 			   int ring_grps, int cp_rings, int stats, int vnics)
5512 {
5513 	struct hwrm_func_vf_cfg_input req = {0};
5514 	int rc;
5515 
5516 	if (!BNXT_NEW_RM(bp)) {
5517 		bp->hw_resc.resv_tx_rings = tx_rings;
5518 		return 0;
5519 	}
5520 
5521 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5522 				     cp_rings, stats, vnics);
5523 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5524 	if (rc)
5525 		return -ENOMEM;
5526 
5527 	rc = bnxt_hwrm_get_rings(bp);
5528 	return rc;
5529 }
5530 
5531 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5532 				   int cp, int stat, int vnic)
5533 {
5534 	if (BNXT_PF(bp))
5535 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5536 						  vnic);
5537 	else
5538 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5539 						  vnic);
5540 }
5541 
5542 int bnxt_nq_rings_in_use(struct bnxt *bp)
5543 {
5544 	int cp = bp->cp_nr_rings;
5545 	int ulp_msix, ulp_base;
5546 
5547 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5548 	if (ulp_msix) {
5549 		ulp_base = bnxt_get_ulp_msix_base(bp);
5550 		cp += ulp_msix;
5551 		if ((ulp_base + ulp_msix) > cp)
5552 			cp = ulp_base + ulp_msix;
5553 	}
5554 	return cp;
5555 }
5556 
5557 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5558 {
5559 	int cp;
5560 
5561 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5562 		return bnxt_nq_rings_in_use(bp);
5563 
5564 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5565 	return cp;
5566 }
5567 
5568 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5569 {
5570 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5571 	int cp = bp->cp_nr_rings;
5572 
5573 	if (!ulp_stat)
5574 		return cp;
5575 
5576 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5577 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5578 
5579 	return cp + ulp_stat;
5580 }
5581 
5582 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5583 {
5584 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5585 	int cp = bnxt_cp_rings_in_use(bp);
5586 	int nq = bnxt_nq_rings_in_use(bp);
5587 	int rx = bp->rx_nr_rings, stat;
5588 	int vnic = 1, grp = rx;
5589 
5590 	if (bp->hwrm_spec_code < 0x10601)
5591 		return false;
5592 
5593 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5594 		return true;
5595 
5596 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5597 		vnic = rx + 1;
5598 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5599 		rx <<= 1;
5600 	stat = bnxt_get_func_stat_ctxs(bp);
5601 	if (BNXT_NEW_RM(bp) &&
5602 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5603 	     hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5604 	     (hw_resc->resv_hw_ring_grps != grp &&
5605 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5606 		return true;
5607 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5608 	    hw_resc->resv_irqs != nq)
5609 		return true;
5610 	return false;
5611 }
5612 
5613 static int __bnxt_reserve_rings(struct bnxt *bp)
5614 {
5615 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5616 	int cp = bnxt_nq_rings_in_use(bp);
5617 	int tx = bp->tx_nr_rings;
5618 	int rx = bp->rx_nr_rings;
5619 	int grp, rx_rings, rc;
5620 	int vnic = 1, stat;
5621 	bool sh = false;
5622 
5623 	if (!bnxt_need_reserve_rings(bp))
5624 		return 0;
5625 
5626 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5627 		sh = true;
5628 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5629 		vnic = rx + 1;
5630 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5631 		rx <<= 1;
5632 	grp = bp->rx_nr_rings;
5633 	stat = bnxt_get_func_stat_ctxs(bp);
5634 
5635 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5636 	if (rc)
5637 		return rc;
5638 
5639 	tx = hw_resc->resv_tx_rings;
5640 	if (BNXT_NEW_RM(bp)) {
5641 		rx = hw_resc->resv_rx_rings;
5642 		cp = hw_resc->resv_irqs;
5643 		grp = hw_resc->resv_hw_ring_grps;
5644 		vnic = hw_resc->resv_vnics;
5645 		stat = hw_resc->resv_stat_ctxs;
5646 	}
5647 
5648 	rx_rings = rx;
5649 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5650 		if (rx >= 2) {
5651 			rx_rings = rx >> 1;
5652 		} else {
5653 			if (netif_running(bp->dev))
5654 				return -ENOMEM;
5655 
5656 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5657 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5658 			bp->dev->hw_features &= ~NETIF_F_LRO;
5659 			bp->dev->features &= ~NETIF_F_LRO;
5660 			bnxt_set_ring_params(bp);
5661 		}
5662 	}
5663 	rx_rings = min_t(int, rx_rings, grp);
5664 	cp = min_t(int, cp, bp->cp_nr_rings);
5665 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5666 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5667 	cp = min_t(int, cp, stat);
5668 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5669 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5670 		rx = rx_rings << 1;
5671 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5672 	bp->tx_nr_rings = tx;
5673 	bp->rx_nr_rings = rx_rings;
5674 	bp->cp_nr_rings = cp;
5675 
5676 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
5677 		return -ENOMEM;
5678 
5679 	return rc;
5680 }
5681 
5682 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5683 				    int ring_grps, int cp_rings, int stats,
5684 				    int vnics)
5685 {
5686 	struct hwrm_func_vf_cfg_input req = {0};
5687 	u32 flags;
5688 	int rc;
5689 
5690 	if (!BNXT_NEW_RM(bp))
5691 		return 0;
5692 
5693 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5694 				     cp_rings, stats, vnics);
5695 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
5696 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5697 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5698 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5699 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
5700 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
5701 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5702 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5703 
5704 	req.flags = cpu_to_le32(flags);
5705 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5706 	if (rc)
5707 		return -ENOMEM;
5708 	return 0;
5709 }
5710 
5711 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5712 				    int ring_grps, int cp_rings, int stats,
5713 				    int vnics)
5714 {
5715 	struct hwrm_func_cfg_input req = {0};
5716 	u32 flags;
5717 	int rc;
5718 
5719 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5720 				     cp_rings, stats, vnics);
5721 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
5722 	if (BNXT_NEW_RM(bp)) {
5723 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5724 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5725 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5726 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
5727 		if (bp->flags & BNXT_FLAG_CHIP_P5)
5728 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
5729 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
5730 		else
5731 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5732 	}
5733 
5734 	req.flags = cpu_to_le32(flags);
5735 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5736 	if (rc)
5737 		return -ENOMEM;
5738 	return 0;
5739 }
5740 
5741 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5742 				 int ring_grps, int cp_rings, int stats,
5743 				 int vnics)
5744 {
5745 	if (bp->hwrm_spec_code < 0x10801)
5746 		return 0;
5747 
5748 	if (BNXT_PF(bp))
5749 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
5750 						ring_grps, cp_rings, stats,
5751 						vnics);
5752 
5753 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
5754 					cp_rings, stats, vnics);
5755 }
5756 
5757 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
5758 {
5759 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5760 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5761 	struct hwrm_ring_aggint_qcaps_input req = {0};
5762 	int rc;
5763 
5764 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
5765 	coal_cap->num_cmpl_dma_aggr_max = 63;
5766 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
5767 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
5768 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
5769 	coal_cap->int_lat_tmr_min_max = 65535;
5770 	coal_cap->int_lat_tmr_max_max = 65535;
5771 	coal_cap->num_cmpl_aggr_int_max = 65535;
5772 	coal_cap->timer_units = 80;
5773 
5774 	if (bp->hwrm_spec_code < 0x10902)
5775 		return;
5776 
5777 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
5778 	mutex_lock(&bp->hwrm_cmd_lock);
5779 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5780 	if (!rc) {
5781 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
5782 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
5783 		coal_cap->num_cmpl_dma_aggr_max =
5784 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
5785 		coal_cap->num_cmpl_dma_aggr_during_int_max =
5786 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
5787 		coal_cap->cmpl_aggr_dma_tmr_max =
5788 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
5789 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
5790 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
5791 		coal_cap->int_lat_tmr_min_max =
5792 			le16_to_cpu(resp->int_lat_tmr_min_max);
5793 		coal_cap->int_lat_tmr_max_max =
5794 			le16_to_cpu(resp->int_lat_tmr_max_max);
5795 		coal_cap->num_cmpl_aggr_int_max =
5796 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
5797 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
5798 	}
5799 	mutex_unlock(&bp->hwrm_cmd_lock);
5800 }
5801 
5802 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
5803 {
5804 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5805 
5806 	return usec * 1000 / coal_cap->timer_units;
5807 }
5808 
5809 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
5810 	struct bnxt_coal *hw_coal,
5811 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
5812 {
5813 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5814 	u32 cmpl_params = coal_cap->cmpl_params;
5815 	u16 val, tmr, max, flags = 0;
5816 
5817 	max = hw_coal->bufs_per_record * 128;
5818 	if (hw_coal->budget)
5819 		max = hw_coal->bufs_per_record * hw_coal->budget;
5820 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
5821 
5822 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
5823 	req->num_cmpl_aggr_int = cpu_to_le16(val);
5824 
5825 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
5826 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
5827 
5828 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
5829 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
5830 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
5831 
5832 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
5833 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
5834 	req->int_lat_tmr_max = cpu_to_le16(tmr);
5835 
5836 	/* min timer set to 1/2 of interrupt timer */
5837 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
5838 		val = tmr / 2;
5839 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
5840 		req->int_lat_tmr_min = cpu_to_le16(val);
5841 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5842 	}
5843 
5844 	/* buf timer set to 1/4 of interrupt timer */
5845 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
5846 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
5847 
5848 	if (cmpl_params &
5849 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
5850 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
5851 		val = clamp_t(u16, tmr, 1,
5852 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
5853 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
5854 		req->enables |=
5855 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
5856 	}
5857 
5858 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
5859 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
5860 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
5861 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
5862 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
5863 	req->flags = cpu_to_le16(flags);
5864 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
5865 }
5866 
5867 /* Caller holds bp->hwrm_cmd_lock */
5868 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
5869 				   struct bnxt_coal *hw_coal)
5870 {
5871 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
5872 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5873 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5874 	u32 nq_params = coal_cap->nq_params;
5875 	u16 tmr;
5876 
5877 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
5878 		return 0;
5879 
5880 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
5881 			       -1, -1);
5882 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
5883 	req.flags =
5884 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
5885 
5886 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
5887 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
5888 	req.int_lat_tmr_min = cpu_to_le16(tmr);
5889 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5890 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5891 }
5892 
5893 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
5894 {
5895 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
5896 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5897 	struct bnxt_coal coal;
5898 
5899 	/* Tick values in micro seconds.
5900 	 * 1 coal_buf x bufs_per_record = 1 completion record.
5901 	 */
5902 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
5903 
5904 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
5905 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
5906 
5907 	if (!bnapi->rx_ring)
5908 		return -ENODEV;
5909 
5910 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5911 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5912 
5913 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
5914 
5915 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
5916 
5917 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
5918 				 HWRM_CMD_TIMEOUT);
5919 }
5920 
5921 int bnxt_hwrm_set_coal(struct bnxt *bp)
5922 {
5923 	int i, rc = 0;
5924 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
5925 							   req_tx = {0}, *req;
5926 
5927 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5928 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5929 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
5930 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5931 
5932 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
5933 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
5934 
5935 	mutex_lock(&bp->hwrm_cmd_lock);
5936 	for (i = 0; i < bp->cp_nr_rings; i++) {
5937 		struct bnxt_napi *bnapi = bp->bnapi[i];
5938 		struct bnxt_coal *hw_coal;
5939 		u16 ring_id;
5940 
5941 		req = &req_rx;
5942 		if (!bnapi->rx_ring) {
5943 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5944 			req = &req_tx;
5945 		} else {
5946 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
5947 		}
5948 		req->ring_id = cpu_to_le16(ring_id);
5949 
5950 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5951 					HWRM_CMD_TIMEOUT);
5952 		if (rc)
5953 			break;
5954 
5955 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5956 			continue;
5957 
5958 		if (bnapi->rx_ring && bnapi->tx_ring) {
5959 			req = &req_tx;
5960 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5961 			req->ring_id = cpu_to_le16(ring_id);
5962 			rc = _hwrm_send_message(bp, req, sizeof(*req),
5963 						HWRM_CMD_TIMEOUT);
5964 			if (rc)
5965 				break;
5966 		}
5967 		if (bnapi->rx_ring)
5968 			hw_coal = &bp->rx_coal;
5969 		else
5970 			hw_coal = &bp->tx_coal;
5971 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
5972 	}
5973 	mutex_unlock(&bp->hwrm_cmd_lock);
5974 	return rc;
5975 }
5976 
5977 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5978 {
5979 	int rc = 0, i;
5980 	struct hwrm_stat_ctx_free_input req = {0};
5981 
5982 	if (!bp->bnapi)
5983 		return 0;
5984 
5985 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5986 		return 0;
5987 
5988 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5989 
5990 	mutex_lock(&bp->hwrm_cmd_lock);
5991 	for (i = 0; i < bp->cp_nr_rings; i++) {
5992 		struct bnxt_napi *bnapi = bp->bnapi[i];
5993 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5994 
5995 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5996 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5997 
5998 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5999 						HWRM_CMD_TIMEOUT);
6000 			if (rc)
6001 				break;
6002 
6003 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6004 		}
6005 	}
6006 	mutex_unlock(&bp->hwrm_cmd_lock);
6007 	return rc;
6008 }
6009 
6010 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6011 {
6012 	int rc = 0, i;
6013 	struct hwrm_stat_ctx_alloc_input req = {0};
6014 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6015 
6016 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6017 		return 0;
6018 
6019 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6020 
6021 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6022 
6023 	mutex_lock(&bp->hwrm_cmd_lock);
6024 	for (i = 0; i < bp->cp_nr_rings; i++) {
6025 		struct bnxt_napi *bnapi = bp->bnapi[i];
6026 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6027 
6028 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6029 
6030 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6031 					HWRM_CMD_TIMEOUT);
6032 		if (rc)
6033 			break;
6034 
6035 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6036 
6037 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6038 	}
6039 	mutex_unlock(&bp->hwrm_cmd_lock);
6040 	return rc;
6041 }
6042 
6043 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6044 {
6045 	struct hwrm_func_qcfg_input req = {0};
6046 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6047 	u16 flags;
6048 	int rc;
6049 
6050 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6051 	req.fid = cpu_to_le16(0xffff);
6052 	mutex_lock(&bp->hwrm_cmd_lock);
6053 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6054 	if (rc)
6055 		goto func_qcfg_exit;
6056 
6057 #ifdef CONFIG_BNXT_SRIOV
6058 	if (BNXT_VF(bp)) {
6059 		struct bnxt_vf_info *vf = &bp->vf;
6060 
6061 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6062 	}
6063 #endif
6064 	flags = le16_to_cpu(resp->flags);
6065 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6066 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6067 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6068 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6069 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6070 	}
6071 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6072 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6073 
6074 	switch (resp->port_partition_type) {
6075 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6076 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6077 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6078 		bp->port_partition_type = resp->port_partition_type;
6079 		break;
6080 	}
6081 	if (bp->hwrm_spec_code < 0x10707 ||
6082 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6083 		bp->br_mode = BRIDGE_MODE_VEB;
6084 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6085 		bp->br_mode = BRIDGE_MODE_VEPA;
6086 	else
6087 		bp->br_mode = BRIDGE_MODE_UNDEF;
6088 
6089 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6090 	if (!bp->max_mtu)
6091 		bp->max_mtu = BNXT_MAX_MTU;
6092 
6093 func_qcfg_exit:
6094 	mutex_unlock(&bp->hwrm_cmd_lock);
6095 	return rc;
6096 }
6097 
6098 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6099 {
6100 	struct hwrm_func_backing_store_qcaps_input req = {0};
6101 	struct hwrm_func_backing_store_qcaps_output *resp =
6102 		bp->hwrm_cmd_resp_addr;
6103 	int rc;
6104 
6105 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6106 		return 0;
6107 
6108 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6109 	mutex_lock(&bp->hwrm_cmd_lock);
6110 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6111 	if (!rc) {
6112 		struct bnxt_ctx_pg_info *ctx_pg;
6113 		struct bnxt_ctx_mem_info *ctx;
6114 		int i;
6115 
6116 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6117 		if (!ctx) {
6118 			rc = -ENOMEM;
6119 			goto ctx_err;
6120 		}
6121 		ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6122 		if (!ctx_pg) {
6123 			kfree(ctx);
6124 			rc = -ENOMEM;
6125 			goto ctx_err;
6126 		}
6127 		for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6128 			ctx->tqm_mem[i] = ctx_pg;
6129 
6130 		bp->ctx = ctx;
6131 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6132 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6133 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6134 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6135 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6136 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6137 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6138 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6139 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6140 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6141 		ctx->vnic_max_vnic_entries =
6142 			le16_to_cpu(resp->vnic_max_vnic_entries);
6143 		ctx->vnic_max_ring_table_entries =
6144 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6145 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6146 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6147 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6148 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6149 		ctx->tqm_min_entries_per_ring =
6150 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6151 		ctx->tqm_max_entries_per_ring =
6152 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6153 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6154 		if (!ctx->tqm_entries_multiple)
6155 			ctx->tqm_entries_multiple = 1;
6156 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6157 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6158 		ctx->mrav_num_entries_units =
6159 			le16_to_cpu(resp->mrav_num_entries_units);
6160 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6161 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6162 	} else {
6163 		rc = 0;
6164 	}
6165 ctx_err:
6166 	mutex_unlock(&bp->hwrm_cmd_lock);
6167 	return rc;
6168 }
6169 
6170 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6171 				  __le64 *pg_dir)
6172 {
6173 	u8 pg_size = 0;
6174 
6175 	if (BNXT_PAGE_SHIFT == 13)
6176 		pg_size = 1 << 4;
6177 	else if (BNXT_PAGE_SIZE == 16)
6178 		pg_size = 2 << 4;
6179 
6180 	*pg_attr = pg_size;
6181 	if (rmem->depth >= 1) {
6182 		if (rmem->depth == 2)
6183 			*pg_attr |= 2;
6184 		else
6185 			*pg_attr |= 1;
6186 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6187 	} else {
6188 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6189 	}
6190 }
6191 
6192 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6193 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6194 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6195 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6196 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6197 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6198 
6199 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6200 {
6201 	struct hwrm_func_backing_store_cfg_input req = {0};
6202 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6203 	struct bnxt_ctx_pg_info *ctx_pg;
6204 	__le32 *num_entries;
6205 	__le64 *pg_dir;
6206 	u32 flags = 0;
6207 	u8 *pg_attr;
6208 	int i, rc;
6209 	u32 ena;
6210 
6211 	if (!ctx)
6212 		return 0;
6213 
6214 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6215 	req.enables = cpu_to_le32(enables);
6216 
6217 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6218 		ctx_pg = &ctx->qp_mem;
6219 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6220 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6221 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6222 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6223 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6224 				      &req.qpc_pg_size_qpc_lvl,
6225 				      &req.qpc_page_dir);
6226 	}
6227 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6228 		ctx_pg = &ctx->srq_mem;
6229 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6230 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6231 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6232 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6233 				      &req.srq_pg_size_srq_lvl,
6234 				      &req.srq_page_dir);
6235 	}
6236 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6237 		ctx_pg = &ctx->cq_mem;
6238 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6239 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6240 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6241 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6242 				      &req.cq_page_dir);
6243 	}
6244 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6245 		ctx_pg = &ctx->vnic_mem;
6246 		req.vnic_num_vnic_entries =
6247 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6248 		req.vnic_num_ring_table_entries =
6249 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6250 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6251 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6252 				      &req.vnic_pg_size_vnic_lvl,
6253 				      &req.vnic_page_dir);
6254 	}
6255 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6256 		ctx_pg = &ctx->stat_mem;
6257 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6258 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6259 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6260 				      &req.stat_pg_size_stat_lvl,
6261 				      &req.stat_page_dir);
6262 	}
6263 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6264 		ctx_pg = &ctx->mrav_mem;
6265 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6266 		if (ctx->mrav_num_entries_units)
6267 			flags |=
6268 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6269 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6270 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6271 				      &req.mrav_pg_size_mrav_lvl,
6272 				      &req.mrav_page_dir);
6273 	}
6274 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6275 		ctx_pg = &ctx->tim_mem;
6276 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6277 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6278 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6279 				      &req.tim_pg_size_tim_lvl,
6280 				      &req.tim_page_dir);
6281 	}
6282 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6283 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6284 	     pg_dir = &req.tqm_sp_page_dir,
6285 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6286 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6287 		if (!(enables & ena))
6288 			continue;
6289 
6290 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6291 		ctx_pg = ctx->tqm_mem[i];
6292 		*num_entries = cpu_to_le32(ctx_pg->entries);
6293 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6294 	}
6295 	req.flags = cpu_to_le32(flags);
6296 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6297 	if (rc)
6298 		rc = -EIO;
6299 	return rc;
6300 }
6301 
6302 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6303 				  struct bnxt_ctx_pg_info *ctx_pg)
6304 {
6305 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6306 
6307 	rmem->page_size = BNXT_PAGE_SIZE;
6308 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6309 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6310 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6311 	if (rmem->depth >= 1)
6312 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6313 	return bnxt_alloc_ring(bp, rmem);
6314 }
6315 
6316 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6317 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6318 				  u8 depth)
6319 {
6320 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6321 	int rc;
6322 
6323 	if (!mem_size)
6324 		return 0;
6325 
6326 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6327 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6328 		ctx_pg->nr_pages = 0;
6329 		return -EINVAL;
6330 	}
6331 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6332 		int nr_tbls, i;
6333 
6334 		rmem->depth = 2;
6335 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6336 					     GFP_KERNEL);
6337 		if (!ctx_pg->ctx_pg_tbl)
6338 			return -ENOMEM;
6339 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6340 		rmem->nr_pages = nr_tbls;
6341 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6342 		if (rc)
6343 			return rc;
6344 		for (i = 0; i < nr_tbls; i++) {
6345 			struct bnxt_ctx_pg_info *pg_tbl;
6346 
6347 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6348 			if (!pg_tbl)
6349 				return -ENOMEM;
6350 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6351 			rmem = &pg_tbl->ring_mem;
6352 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6353 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6354 			rmem->depth = 1;
6355 			rmem->nr_pages = MAX_CTX_PAGES;
6356 			if (i == (nr_tbls - 1)) {
6357 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6358 
6359 				if (rem)
6360 					rmem->nr_pages = rem;
6361 			}
6362 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6363 			if (rc)
6364 				break;
6365 		}
6366 	} else {
6367 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6368 		if (rmem->nr_pages > 1 || depth)
6369 			rmem->depth = 1;
6370 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6371 	}
6372 	return rc;
6373 }
6374 
6375 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6376 				  struct bnxt_ctx_pg_info *ctx_pg)
6377 {
6378 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6379 
6380 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6381 	    ctx_pg->ctx_pg_tbl) {
6382 		int i, nr_tbls = rmem->nr_pages;
6383 
6384 		for (i = 0; i < nr_tbls; i++) {
6385 			struct bnxt_ctx_pg_info *pg_tbl;
6386 			struct bnxt_ring_mem_info *rmem2;
6387 
6388 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6389 			if (!pg_tbl)
6390 				continue;
6391 			rmem2 = &pg_tbl->ring_mem;
6392 			bnxt_free_ring(bp, rmem2);
6393 			ctx_pg->ctx_pg_arr[i] = NULL;
6394 			kfree(pg_tbl);
6395 			ctx_pg->ctx_pg_tbl[i] = NULL;
6396 		}
6397 		kfree(ctx_pg->ctx_pg_tbl);
6398 		ctx_pg->ctx_pg_tbl = NULL;
6399 	}
6400 	bnxt_free_ring(bp, rmem);
6401 	ctx_pg->nr_pages = 0;
6402 }
6403 
6404 static void bnxt_free_ctx_mem(struct bnxt *bp)
6405 {
6406 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6407 	int i;
6408 
6409 	if (!ctx)
6410 		return;
6411 
6412 	if (ctx->tqm_mem[0]) {
6413 		for (i = 0; i < bp->max_q + 1; i++)
6414 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6415 		kfree(ctx->tqm_mem[0]);
6416 		ctx->tqm_mem[0] = NULL;
6417 	}
6418 
6419 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6420 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6421 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6422 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6423 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6424 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6425 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6426 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6427 }
6428 
6429 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6430 {
6431 	struct bnxt_ctx_pg_info *ctx_pg;
6432 	struct bnxt_ctx_mem_info *ctx;
6433 	u32 mem_size, ena, entries;
6434 	u32 num_mr, num_ah;
6435 	u32 extra_srqs = 0;
6436 	u32 extra_qps = 0;
6437 	u8 pg_lvl = 1;
6438 	int i, rc;
6439 
6440 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6441 	if (rc) {
6442 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6443 			   rc);
6444 		return rc;
6445 	}
6446 	ctx = bp->ctx;
6447 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6448 		return 0;
6449 
6450 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6451 		pg_lvl = 2;
6452 		extra_qps = 65536;
6453 		extra_srqs = 8192;
6454 	}
6455 
6456 	ctx_pg = &ctx->qp_mem;
6457 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6458 			  extra_qps;
6459 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6460 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6461 	if (rc)
6462 		return rc;
6463 
6464 	ctx_pg = &ctx->srq_mem;
6465 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6466 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6467 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6468 	if (rc)
6469 		return rc;
6470 
6471 	ctx_pg = &ctx->cq_mem;
6472 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6473 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6474 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6475 	if (rc)
6476 		return rc;
6477 
6478 	ctx_pg = &ctx->vnic_mem;
6479 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6480 			  ctx->vnic_max_ring_table_entries;
6481 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6482 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6483 	if (rc)
6484 		return rc;
6485 
6486 	ctx_pg = &ctx->stat_mem;
6487 	ctx_pg->entries = ctx->stat_max_entries;
6488 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6489 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6490 	if (rc)
6491 		return rc;
6492 
6493 	ena = 0;
6494 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6495 		goto skip_rdma;
6496 
6497 	ctx_pg = &ctx->mrav_mem;
6498 	/* 128K extra is needed to accommodate static AH context
6499 	 * allocation by f/w.
6500 	 */
6501 	num_mr = 1024 * 256;
6502 	num_ah = 1024 * 128;
6503 	ctx_pg->entries = num_mr + num_ah;
6504 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6505 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6506 	if (rc)
6507 		return rc;
6508 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6509 	if (ctx->mrav_num_entries_units)
6510 		ctx_pg->entries =
6511 			((num_mr / ctx->mrav_num_entries_units) << 16) |
6512 			 (num_ah / ctx->mrav_num_entries_units);
6513 
6514 	ctx_pg = &ctx->tim_mem;
6515 	ctx_pg->entries = ctx->qp_mem.entries;
6516 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6517 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6518 	if (rc)
6519 		return rc;
6520 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6521 
6522 skip_rdma:
6523 	entries = ctx->qp_max_l2_entries + extra_qps;
6524 	entries = roundup(entries, ctx->tqm_entries_multiple);
6525 	entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6526 			  ctx->tqm_max_entries_per_ring);
6527 	for (i = 0; i < bp->max_q + 1; i++) {
6528 		ctx_pg = ctx->tqm_mem[i];
6529 		ctx_pg->entries = entries;
6530 		mem_size = ctx->tqm_entry_size * entries;
6531 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6532 		if (rc)
6533 			return rc;
6534 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6535 	}
6536 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6537 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6538 	if (rc)
6539 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6540 			   rc);
6541 	else
6542 		ctx->flags |= BNXT_CTX_FLAG_INITED;
6543 
6544 	return 0;
6545 }
6546 
6547 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6548 {
6549 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6550 	struct hwrm_func_resource_qcaps_input req = {0};
6551 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6552 	int rc;
6553 
6554 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6555 	req.fid = cpu_to_le16(0xffff);
6556 
6557 	mutex_lock(&bp->hwrm_cmd_lock);
6558 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6559 				       HWRM_CMD_TIMEOUT);
6560 	if (rc) {
6561 		rc = -EIO;
6562 		goto hwrm_func_resc_qcaps_exit;
6563 	}
6564 
6565 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6566 	if (!all)
6567 		goto hwrm_func_resc_qcaps_exit;
6568 
6569 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6570 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6571 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6572 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6573 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6574 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6575 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6576 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6577 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6578 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6579 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6580 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6581 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6582 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6583 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6584 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6585 
6586 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6587 		u16 max_msix = le16_to_cpu(resp->max_msix);
6588 
6589 		hw_resc->max_nqs = max_msix;
6590 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6591 	}
6592 
6593 	if (BNXT_PF(bp)) {
6594 		struct bnxt_pf_info *pf = &bp->pf;
6595 
6596 		pf->vf_resv_strategy =
6597 			le16_to_cpu(resp->vf_reservation_strategy);
6598 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6599 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6600 	}
6601 hwrm_func_resc_qcaps_exit:
6602 	mutex_unlock(&bp->hwrm_cmd_lock);
6603 	return rc;
6604 }
6605 
6606 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6607 {
6608 	int rc = 0;
6609 	struct hwrm_func_qcaps_input req = {0};
6610 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6611 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6612 	u32 flags;
6613 
6614 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6615 	req.fid = cpu_to_le16(0xffff);
6616 
6617 	mutex_lock(&bp->hwrm_cmd_lock);
6618 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6619 	if (rc)
6620 		goto hwrm_func_qcaps_exit;
6621 
6622 	flags = le32_to_cpu(resp->flags);
6623 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6624 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6625 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6626 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6627 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6628 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6629 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6630 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6631 
6632 	bp->tx_push_thresh = 0;
6633 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6634 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6635 
6636 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6637 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6638 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6639 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6640 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6641 	if (!hw_resc->max_hw_ring_grps)
6642 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6643 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6644 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6645 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6646 
6647 	if (BNXT_PF(bp)) {
6648 		struct bnxt_pf_info *pf = &bp->pf;
6649 
6650 		pf->fw_fid = le16_to_cpu(resp->fid);
6651 		pf->port_id = le16_to_cpu(resp->port_id);
6652 		bp->dev->dev_port = pf->port_id;
6653 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6654 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6655 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
6656 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6657 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6658 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6659 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6660 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6661 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6662 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6663 			bp->flags |= BNXT_FLAG_WOL_CAP;
6664 	} else {
6665 #ifdef CONFIG_BNXT_SRIOV
6666 		struct bnxt_vf_info *vf = &bp->vf;
6667 
6668 		vf->fw_fid = le16_to_cpu(resp->fid);
6669 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6670 #endif
6671 	}
6672 
6673 hwrm_func_qcaps_exit:
6674 	mutex_unlock(&bp->hwrm_cmd_lock);
6675 	return rc;
6676 }
6677 
6678 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
6679 
6680 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
6681 {
6682 	int rc;
6683 
6684 	rc = __bnxt_hwrm_func_qcaps(bp);
6685 	if (rc)
6686 		return rc;
6687 	rc = bnxt_hwrm_queue_qportcfg(bp);
6688 	if (rc) {
6689 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
6690 		return rc;
6691 	}
6692 	if (bp->hwrm_spec_code >= 0x10803) {
6693 		rc = bnxt_alloc_ctx_mem(bp);
6694 		if (rc)
6695 			return rc;
6696 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6697 		if (!rc)
6698 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
6699 	}
6700 	return 0;
6701 }
6702 
6703 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
6704 {
6705 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
6706 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
6707 	int rc = 0;
6708 	u32 flags;
6709 
6710 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
6711 		return 0;
6712 
6713 	resp = bp->hwrm_cmd_resp_addr;
6714 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
6715 
6716 	mutex_lock(&bp->hwrm_cmd_lock);
6717 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6718 	if (rc)
6719 		goto hwrm_cfa_adv_qcaps_exit;
6720 
6721 	flags = le32_to_cpu(resp->flags);
6722 	if (flags &
6723 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_SUPPORTED)
6724 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX;
6725 
6726 hwrm_cfa_adv_qcaps_exit:
6727 	mutex_unlock(&bp->hwrm_cmd_lock);
6728 	return rc;
6729 }
6730 
6731 static int bnxt_hwrm_func_reset(struct bnxt *bp)
6732 {
6733 	struct hwrm_func_reset_input req = {0};
6734 
6735 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
6736 	req.enables = 0;
6737 
6738 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
6739 }
6740 
6741 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
6742 {
6743 	int rc = 0;
6744 	struct hwrm_queue_qportcfg_input req = {0};
6745 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
6746 	u8 i, j, *qptr;
6747 	bool no_rdma;
6748 
6749 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
6750 
6751 	mutex_lock(&bp->hwrm_cmd_lock);
6752 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6753 	if (rc)
6754 		goto qportcfg_exit;
6755 
6756 	if (!resp->max_configurable_queues) {
6757 		rc = -EINVAL;
6758 		goto qportcfg_exit;
6759 	}
6760 	bp->max_tc = resp->max_configurable_queues;
6761 	bp->max_lltc = resp->max_configurable_lossless_queues;
6762 	if (bp->max_tc > BNXT_MAX_QUEUE)
6763 		bp->max_tc = BNXT_MAX_QUEUE;
6764 
6765 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
6766 	qptr = &resp->queue_id0;
6767 	for (i = 0, j = 0; i < bp->max_tc; i++) {
6768 		bp->q_info[j].queue_id = *qptr;
6769 		bp->q_ids[i] = *qptr++;
6770 		bp->q_info[j].queue_profile = *qptr++;
6771 		bp->tc_to_qidx[j] = j;
6772 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
6773 		    (no_rdma && BNXT_PF(bp)))
6774 			j++;
6775 	}
6776 	bp->max_q = bp->max_tc;
6777 	bp->max_tc = max_t(u8, j, 1);
6778 
6779 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
6780 		bp->max_tc = 1;
6781 
6782 	if (bp->max_lltc > bp->max_tc)
6783 		bp->max_lltc = bp->max_tc;
6784 
6785 qportcfg_exit:
6786 	mutex_unlock(&bp->hwrm_cmd_lock);
6787 	return rc;
6788 }
6789 
6790 static int bnxt_hwrm_ver_get(struct bnxt *bp)
6791 {
6792 	int rc;
6793 	struct hwrm_ver_get_input req = {0};
6794 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
6795 	u32 dev_caps_cfg;
6796 
6797 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
6798 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
6799 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
6800 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
6801 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
6802 	mutex_lock(&bp->hwrm_cmd_lock);
6803 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6804 	if (rc)
6805 		goto hwrm_ver_get_exit;
6806 
6807 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
6808 
6809 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
6810 			     resp->hwrm_intf_min_8b << 8 |
6811 			     resp->hwrm_intf_upd_8b;
6812 	if (resp->hwrm_intf_maj_8b < 1) {
6813 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
6814 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
6815 			    resp->hwrm_intf_upd_8b);
6816 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
6817 	}
6818 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
6819 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
6820 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
6821 
6822 	if (strlen(resp->active_pkg_name)) {
6823 		int fw_ver_len = strlen(bp->fw_ver_str);
6824 
6825 		snprintf(bp->fw_ver_str + fw_ver_len,
6826 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
6827 			 resp->active_pkg_name);
6828 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
6829 	}
6830 
6831 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
6832 	if (!bp->hwrm_cmd_timeout)
6833 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
6834 
6835 	if (resp->hwrm_intf_maj_8b >= 1) {
6836 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
6837 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
6838 	}
6839 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
6840 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
6841 
6842 	bp->chip_num = le16_to_cpu(resp->chip_num);
6843 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
6844 	    !resp->chip_metal)
6845 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
6846 
6847 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
6848 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
6849 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
6850 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
6851 
6852 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
6853 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
6854 
6855 	if (dev_caps_cfg &
6856 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
6857 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
6858 
6859 	if (dev_caps_cfg &
6860 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
6861 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
6862 
6863 	if (dev_caps_cfg &
6864 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
6865 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
6866 
6867 hwrm_ver_get_exit:
6868 	mutex_unlock(&bp->hwrm_cmd_lock);
6869 	return rc;
6870 }
6871 
6872 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
6873 {
6874 	struct hwrm_fw_set_time_input req = {0};
6875 	struct tm tm;
6876 	time64_t now = ktime_get_real_seconds();
6877 
6878 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
6879 	    bp->hwrm_spec_code < 0x10400)
6880 		return -EOPNOTSUPP;
6881 
6882 	time64_to_tm(now, 0, &tm);
6883 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
6884 	req.year = cpu_to_le16(1900 + tm.tm_year);
6885 	req.month = 1 + tm.tm_mon;
6886 	req.day = tm.tm_mday;
6887 	req.hour = tm.tm_hour;
6888 	req.minute = tm.tm_min;
6889 	req.second = tm.tm_sec;
6890 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6891 }
6892 
6893 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
6894 {
6895 	int rc;
6896 	struct bnxt_pf_info *pf = &bp->pf;
6897 	struct hwrm_port_qstats_input req = {0};
6898 
6899 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
6900 		return 0;
6901 
6902 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
6903 	req.port_id = cpu_to_le16(pf->port_id);
6904 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
6905 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
6906 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6907 	return rc;
6908 }
6909 
6910 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
6911 {
6912 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
6913 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
6914 	struct hwrm_port_qstats_ext_input req = {0};
6915 	struct bnxt_pf_info *pf = &bp->pf;
6916 	u32 tx_stat_size;
6917 	int rc;
6918 
6919 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
6920 		return 0;
6921 
6922 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
6923 	req.port_id = cpu_to_le16(pf->port_id);
6924 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
6925 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
6926 	tx_stat_size = bp->hw_tx_port_stats_ext ?
6927 		       sizeof(*bp->hw_tx_port_stats_ext) : 0;
6928 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
6929 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
6930 	mutex_lock(&bp->hwrm_cmd_lock);
6931 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6932 	if (!rc) {
6933 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
6934 		bp->fw_tx_stats_ext_size = tx_stat_size ?
6935 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
6936 	} else {
6937 		bp->fw_rx_stats_ext_size = 0;
6938 		bp->fw_tx_stats_ext_size = 0;
6939 	}
6940 	if (bp->fw_tx_stats_ext_size <=
6941 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
6942 		mutex_unlock(&bp->hwrm_cmd_lock);
6943 		bp->pri2cos_valid = 0;
6944 		return rc;
6945 	}
6946 
6947 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
6948 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
6949 
6950 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
6951 	if (!rc) {
6952 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
6953 		u8 *pri2cos;
6954 		int i, j;
6955 
6956 		resp2 = bp->hwrm_cmd_resp_addr;
6957 		pri2cos = &resp2->pri0_cos_queue_id;
6958 		for (i = 0; i < 8; i++) {
6959 			u8 queue_id = pri2cos[i];
6960 
6961 			for (j = 0; j < bp->max_q; j++) {
6962 				if (bp->q_ids[j] == queue_id)
6963 					bp->pri2cos[i] = j;
6964 			}
6965 		}
6966 		bp->pri2cos_valid = 1;
6967 	}
6968 	mutex_unlock(&bp->hwrm_cmd_lock);
6969 	return rc;
6970 }
6971 
6972 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
6973 {
6974 	struct hwrm_pcie_qstats_input req = {0};
6975 
6976 	if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
6977 		return 0;
6978 
6979 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
6980 	req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
6981 	req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
6982 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6983 }
6984 
6985 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
6986 {
6987 	if (bp->vxlan_port_cnt) {
6988 		bnxt_hwrm_tunnel_dst_port_free(
6989 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6990 	}
6991 	bp->vxlan_port_cnt = 0;
6992 	if (bp->nge_port_cnt) {
6993 		bnxt_hwrm_tunnel_dst_port_free(
6994 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6995 	}
6996 	bp->nge_port_cnt = 0;
6997 }
6998 
6999 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7000 {
7001 	int rc, i;
7002 	u32 tpa_flags = 0;
7003 
7004 	if (set_tpa)
7005 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7006 	for (i = 0; i < bp->nr_vnics; i++) {
7007 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7008 		if (rc) {
7009 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7010 				   i, rc);
7011 			return rc;
7012 		}
7013 	}
7014 	return 0;
7015 }
7016 
7017 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7018 {
7019 	int i;
7020 
7021 	for (i = 0; i < bp->nr_vnics; i++)
7022 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7023 }
7024 
7025 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7026 				    bool irq_re_init)
7027 {
7028 	if (bp->vnic_info) {
7029 		bnxt_hwrm_clear_vnic_filter(bp);
7030 		/* clear all RSS setting before free vnic ctx */
7031 		bnxt_hwrm_clear_vnic_rss(bp);
7032 		bnxt_hwrm_vnic_ctx_free(bp);
7033 		/* before free the vnic, undo the vnic tpa settings */
7034 		if (bp->flags & BNXT_FLAG_TPA)
7035 			bnxt_set_tpa(bp, false);
7036 		bnxt_hwrm_vnic_free(bp);
7037 	}
7038 	bnxt_hwrm_ring_free(bp, close_path);
7039 	bnxt_hwrm_ring_grp_free(bp);
7040 	if (irq_re_init) {
7041 		bnxt_hwrm_stat_ctx_free(bp);
7042 		bnxt_hwrm_free_tunnel_ports(bp);
7043 	}
7044 }
7045 
7046 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7047 {
7048 	struct hwrm_func_cfg_input req = {0};
7049 	int rc;
7050 
7051 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7052 	req.fid = cpu_to_le16(0xffff);
7053 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7054 	if (br_mode == BRIDGE_MODE_VEB)
7055 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7056 	else if (br_mode == BRIDGE_MODE_VEPA)
7057 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7058 	else
7059 		return -EINVAL;
7060 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7061 	if (rc)
7062 		rc = -EIO;
7063 	return rc;
7064 }
7065 
7066 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7067 {
7068 	struct hwrm_func_cfg_input req = {0};
7069 	int rc;
7070 
7071 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7072 		return 0;
7073 
7074 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7075 	req.fid = cpu_to_le16(0xffff);
7076 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7077 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7078 	if (size == 128)
7079 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7080 
7081 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7082 	if (rc)
7083 		rc = -EIO;
7084 	return rc;
7085 }
7086 
7087 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7088 {
7089 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7090 	int rc;
7091 
7092 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7093 		goto skip_rss_ctx;
7094 
7095 	/* allocate context for vnic */
7096 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7097 	if (rc) {
7098 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7099 			   vnic_id, rc);
7100 		goto vnic_setup_err;
7101 	}
7102 	bp->rsscos_nr_ctxs++;
7103 
7104 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7105 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7106 		if (rc) {
7107 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7108 				   vnic_id, rc);
7109 			goto vnic_setup_err;
7110 		}
7111 		bp->rsscos_nr_ctxs++;
7112 	}
7113 
7114 skip_rss_ctx:
7115 	/* configure default vnic, ring grp */
7116 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7117 	if (rc) {
7118 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7119 			   vnic_id, rc);
7120 		goto vnic_setup_err;
7121 	}
7122 
7123 	/* Enable RSS hashing on vnic */
7124 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7125 	if (rc) {
7126 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7127 			   vnic_id, rc);
7128 		goto vnic_setup_err;
7129 	}
7130 
7131 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7132 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7133 		if (rc) {
7134 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7135 				   vnic_id, rc);
7136 		}
7137 	}
7138 
7139 vnic_setup_err:
7140 	return rc;
7141 }
7142 
7143 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7144 {
7145 	int rc, i, nr_ctxs;
7146 
7147 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7148 	for (i = 0; i < nr_ctxs; i++) {
7149 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7150 		if (rc) {
7151 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7152 				   vnic_id, i, rc);
7153 			break;
7154 		}
7155 		bp->rsscos_nr_ctxs++;
7156 	}
7157 	if (i < nr_ctxs)
7158 		return -ENOMEM;
7159 
7160 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7161 	if (rc) {
7162 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7163 			   vnic_id, rc);
7164 		return rc;
7165 	}
7166 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7167 	if (rc) {
7168 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7169 			   vnic_id, rc);
7170 		return rc;
7171 	}
7172 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7173 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7174 		if (rc) {
7175 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7176 				   vnic_id, rc);
7177 		}
7178 	}
7179 	return rc;
7180 }
7181 
7182 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7183 {
7184 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7185 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7186 	else
7187 		return __bnxt_setup_vnic(bp, vnic_id);
7188 }
7189 
7190 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7191 {
7192 #ifdef CONFIG_RFS_ACCEL
7193 	int i, rc = 0;
7194 
7195 	for (i = 0; i < bp->rx_nr_rings; i++) {
7196 		struct bnxt_vnic_info *vnic;
7197 		u16 vnic_id = i + 1;
7198 		u16 ring_id = i;
7199 
7200 		if (vnic_id >= bp->nr_vnics)
7201 			break;
7202 
7203 		vnic = &bp->vnic_info[vnic_id];
7204 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7205 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7206 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7207 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7208 		if (rc) {
7209 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7210 				   vnic_id, rc);
7211 			break;
7212 		}
7213 		rc = bnxt_setup_vnic(bp, vnic_id);
7214 		if (rc)
7215 			break;
7216 	}
7217 	return rc;
7218 #else
7219 	return 0;
7220 #endif
7221 }
7222 
7223 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7224 static bool bnxt_promisc_ok(struct bnxt *bp)
7225 {
7226 #ifdef CONFIG_BNXT_SRIOV
7227 	if (BNXT_VF(bp) && !bp->vf.vlan)
7228 		return false;
7229 #endif
7230 	return true;
7231 }
7232 
7233 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7234 {
7235 	unsigned int rc = 0;
7236 
7237 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7238 	if (rc) {
7239 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7240 			   rc);
7241 		return rc;
7242 	}
7243 
7244 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7245 	if (rc) {
7246 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7247 			   rc);
7248 		return rc;
7249 	}
7250 	return rc;
7251 }
7252 
7253 static int bnxt_cfg_rx_mode(struct bnxt *);
7254 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7255 
7256 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7257 {
7258 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7259 	int rc = 0;
7260 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7261 
7262 	if (irq_re_init) {
7263 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7264 		if (rc) {
7265 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7266 				   rc);
7267 			goto err_out;
7268 		}
7269 	}
7270 
7271 	rc = bnxt_hwrm_ring_alloc(bp);
7272 	if (rc) {
7273 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7274 		goto err_out;
7275 	}
7276 
7277 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7278 	if (rc) {
7279 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7280 		goto err_out;
7281 	}
7282 
7283 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7284 		rx_nr_rings--;
7285 
7286 	/* default vnic 0 */
7287 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7288 	if (rc) {
7289 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7290 		goto err_out;
7291 	}
7292 
7293 	rc = bnxt_setup_vnic(bp, 0);
7294 	if (rc)
7295 		goto err_out;
7296 
7297 	if (bp->flags & BNXT_FLAG_RFS) {
7298 		rc = bnxt_alloc_rfs_vnics(bp);
7299 		if (rc)
7300 			goto err_out;
7301 	}
7302 
7303 	if (bp->flags & BNXT_FLAG_TPA) {
7304 		rc = bnxt_set_tpa(bp, true);
7305 		if (rc)
7306 			goto err_out;
7307 	}
7308 
7309 	if (BNXT_VF(bp))
7310 		bnxt_update_vf_mac(bp);
7311 
7312 	/* Filter for default vnic 0 */
7313 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7314 	if (rc) {
7315 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7316 		goto err_out;
7317 	}
7318 	vnic->uc_filter_count = 1;
7319 
7320 	vnic->rx_mask = 0;
7321 	if (bp->dev->flags & IFF_BROADCAST)
7322 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7323 
7324 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7325 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7326 
7327 	if (bp->dev->flags & IFF_ALLMULTI) {
7328 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7329 		vnic->mc_list_count = 0;
7330 	} else {
7331 		u32 mask = 0;
7332 
7333 		bnxt_mc_list_updated(bp, &mask);
7334 		vnic->rx_mask |= mask;
7335 	}
7336 
7337 	rc = bnxt_cfg_rx_mode(bp);
7338 	if (rc)
7339 		goto err_out;
7340 
7341 	rc = bnxt_hwrm_set_coal(bp);
7342 	if (rc)
7343 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7344 				rc);
7345 
7346 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7347 		rc = bnxt_setup_nitroa0_vnic(bp);
7348 		if (rc)
7349 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7350 				   rc);
7351 	}
7352 
7353 	if (BNXT_VF(bp)) {
7354 		bnxt_hwrm_func_qcfg(bp);
7355 		netdev_update_features(bp->dev);
7356 	}
7357 
7358 	return 0;
7359 
7360 err_out:
7361 	bnxt_hwrm_resource_free(bp, 0, true);
7362 
7363 	return rc;
7364 }
7365 
7366 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7367 {
7368 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7369 	return 0;
7370 }
7371 
7372 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7373 {
7374 	bnxt_init_cp_rings(bp);
7375 	bnxt_init_rx_rings(bp);
7376 	bnxt_init_tx_rings(bp);
7377 	bnxt_init_ring_grps(bp, irq_re_init);
7378 	bnxt_init_vnics(bp);
7379 
7380 	return bnxt_init_chip(bp, irq_re_init);
7381 }
7382 
7383 static int bnxt_set_real_num_queues(struct bnxt *bp)
7384 {
7385 	int rc;
7386 	struct net_device *dev = bp->dev;
7387 
7388 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7389 					  bp->tx_nr_rings_xdp);
7390 	if (rc)
7391 		return rc;
7392 
7393 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7394 	if (rc)
7395 		return rc;
7396 
7397 #ifdef CONFIG_RFS_ACCEL
7398 	if (bp->flags & BNXT_FLAG_RFS)
7399 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7400 #endif
7401 
7402 	return rc;
7403 }
7404 
7405 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7406 			   bool shared)
7407 {
7408 	int _rx = *rx, _tx = *tx;
7409 
7410 	if (shared) {
7411 		*rx = min_t(int, _rx, max);
7412 		*tx = min_t(int, _tx, max);
7413 	} else {
7414 		if (max < 2)
7415 			return -ENOMEM;
7416 
7417 		while (_rx + _tx > max) {
7418 			if (_rx > _tx && _rx > 1)
7419 				_rx--;
7420 			else if (_tx > 1)
7421 				_tx--;
7422 		}
7423 		*rx = _rx;
7424 		*tx = _tx;
7425 	}
7426 	return 0;
7427 }
7428 
7429 static void bnxt_setup_msix(struct bnxt *bp)
7430 {
7431 	const int len = sizeof(bp->irq_tbl[0].name);
7432 	struct net_device *dev = bp->dev;
7433 	int tcs, i;
7434 
7435 	tcs = netdev_get_num_tc(dev);
7436 	if (tcs > 1) {
7437 		int i, off, count;
7438 
7439 		for (i = 0; i < tcs; i++) {
7440 			count = bp->tx_nr_rings_per_tc;
7441 			off = i * count;
7442 			netdev_set_tc_queue(dev, i, count, off);
7443 		}
7444 	}
7445 
7446 	for (i = 0; i < bp->cp_nr_rings; i++) {
7447 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7448 		char *attr;
7449 
7450 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7451 			attr = "TxRx";
7452 		else if (i < bp->rx_nr_rings)
7453 			attr = "rx";
7454 		else
7455 			attr = "tx";
7456 
7457 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7458 			 attr, i);
7459 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7460 	}
7461 }
7462 
7463 static void bnxt_setup_inta(struct bnxt *bp)
7464 {
7465 	const int len = sizeof(bp->irq_tbl[0].name);
7466 
7467 	if (netdev_get_num_tc(bp->dev))
7468 		netdev_reset_tc(bp->dev);
7469 
7470 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7471 		 0);
7472 	bp->irq_tbl[0].handler = bnxt_inta;
7473 }
7474 
7475 static int bnxt_setup_int_mode(struct bnxt *bp)
7476 {
7477 	int rc;
7478 
7479 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7480 		bnxt_setup_msix(bp);
7481 	else
7482 		bnxt_setup_inta(bp);
7483 
7484 	rc = bnxt_set_real_num_queues(bp);
7485 	return rc;
7486 }
7487 
7488 #ifdef CONFIG_RFS_ACCEL
7489 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7490 {
7491 	return bp->hw_resc.max_rsscos_ctxs;
7492 }
7493 
7494 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7495 {
7496 	return bp->hw_resc.max_vnics;
7497 }
7498 #endif
7499 
7500 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7501 {
7502 	return bp->hw_resc.max_stat_ctxs;
7503 }
7504 
7505 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7506 {
7507 	return bp->hw_resc.max_cp_rings;
7508 }
7509 
7510 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7511 {
7512 	unsigned int cp = bp->hw_resc.max_cp_rings;
7513 
7514 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7515 		cp -= bnxt_get_ulp_msix_num(bp);
7516 
7517 	return cp;
7518 }
7519 
7520 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7521 {
7522 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7523 
7524 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7525 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7526 
7527 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7528 }
7529 
7530 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7531 {
7532 	bp->hw_resc.max_irqs = max_irqs;
7533 }
7534 
7535 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7536 {
7537 	unsigned int cp;
7538 
7539 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
7540 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7541 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7542 	else
7543 		return cp - bp->cp_nr_rings;
7544 }
7545 
7546 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7547 {
7548 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
7549 }
7550 
7551 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7552 {
7553 	int max_cp = bnxt_get_max_func_cp_rings(bp);
7554 	int max_irq = bnxt_get_max_func_irqs(bp);
7555 	int total_req = bp->cp_nr_rings + num;
7556 	int max_idx, avail_msix;
7557 
7558 	max_idx = bp->total_irqs;
7559 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7560 		max_idx = min_t(int, bp->total_irqs, max_cp);
7561 	avail_msix = max_idx - bp->cp_nr_rings;
7562 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7563 		return avail_msix;
7564 
7565 	if (max_irq < total_req) {
7566 		num = max_irq - bp->cp_nr_rings;
7567 		if (num <= 0)
7568 			return 0;
7569 	}
7570 	return num;
7571 }
7572 
7573 static int bnxt_get_num_msix(struct bnxt *bp)
7574 {
7575 	if (!BNXT_NEW_RM(bp))
7576 		return bnxt_get_max_func_irqs(bp);
7577 
7578 	return bnxt_nq_rings_in_use(bp);
7579 }
7580 
7581 static int bnxt_init_msix(struct bnxt *bp)
7582 {
7583 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
7584 	struct msix_entry *msix_ent;
7585 
7586 	total_vecs = bnxt_get_num_msix(bp);
7587 	max = bnxt_get_max_func_irqs(bp);
7588 	if (total_vecs > max)
7589 		total_vecs = max;
7590 
7591 	if (!total_vecs)
7592 		return 0;
7593 
7594 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
7595 	if (!msix_ent)
7596 		return -ENOMEM;
7597 
7598 	for (i = 0; i < total_vecs; i++) {
7599 		msix_ent[i].entry = i;
7600 		msix_ent[i].vector = 0;
7601 	}
7602 
7603 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
7604 		min = 2;
7605 
7606 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
7607 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7608 	if (total_vecs < 0 || total_vecs < ulp_msix) {
7609 		rc = -ENODEV;
7610 		goto msix_setup_exit;
7611 	}
7612 
7613 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
7614 	if (bp->irq_tbl) {
7615 		for (i = 0; i < total_vecs; i++)
7616 			bp->irq_tbl[i].vector = msix_ent[i].vector;
7617 
7618 		bp->total_irqs = total_vecs;
7619 		/* Trim rings based upon num of vectors allocated */
7620 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
7621 				     total_vecs - ulp_msix, min == 1);
7622 		if (rc)
7623 			goto msix_setup_exit;
7624 
7625 		bp->cp_nr_rings = (min == 1) ?
7626 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7627 				  bp->tx_nr_rings + bp->rx_nr_rings;
7628 
7629 	} else {
7630 		rc = -ENOMEM;
7631 		goto msix_setup_exit;
7632 	}
7633 	bp->flags |= BNXT_FLAG_USING_MSIX;
7634 	kfree(msix_ent);
7635 	return 0;
7636 
7637 msix_setup_exit:
7638 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
7639 	kfree(bp->irq_tbl);
7640 	bp->irq_tbl = NULL;
7641 	pci_disable_msix(bp->pdev);
7642 	kfree(msix_ent);
7643 	return rc;
7644 }
7645 
7646 static int bnxt_init_inta(struct bnxt *bp)
7647 {
7648 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
7649 	if (!bp->irq_tbl)
7650 		return -ENOMEM;
7651 
7652 	bp->total_irqs = 1;
7653 	bp->rx_nr_rings = 1;
7654 	bp->tx_nr_rings = 1;
7655 	bp->cp_nr_rings = 1;
7656 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
7657 	bp->irq_tbl[0].vector = bp->pdev->irq;
7658 	return 0;
7659 }
7660 
7661 static int bnxt_init_int_mode(struct bnxt *bp)
7662 {
7663 	int rc = 0;
7664 
7665 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
7666 		rc = bnxt_init_msix(bp);
7667 
7668 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
7669 		/* fallback to INTA */
7670 		rc = bnxt_init_inta(bp);
7671 	}
7672 	return rc;
7673 }
7674 
7675 static void bnxt_clear_int_mode(struct bnxt *bp)
7676 {
7677 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7678 		pci_disable_msix(bp->pdev);
7679 
7680 	kfree(bp->irq_tbl);
7681 	bp->irq_tbl = NULL;
7682 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
7683 }
7684 
7685 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
7686 {
7687 	int tcs = netdev_get_num_tc(bp->dev);
7688 	bool irq_cleared = false;
7689 	int rc;
7690 
7691 	if (!bnxt_need_reserve_rings(bp))
7692 		return 0;
7693 
7694 	if (irq_re_init && BNXT_NEW_RM(bp) &&
7695 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
7696 		bnxt_ulp_irq_stop(bp);
7697 		bnxt_clear_int_mode(bp);
7698 		irq_cleared = true;
7699 	}
7700 	rc = __bnxt_reserve_rings(bp);
7701 	if (irq_cleared) {
7702 		if (!rc)
7703 			rc = bnxt_init_int_mode(bp);
7704 		bnxt_ulp_irq_restart(bp, rc);
7705 	}
7706 	if (rc) {
7707 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
7708 		return rc;
7709 	}
7710 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
7711 		netdev_err(bp->dev, "tx ring reservation failure\n");
7712 		netdev_reset_tc(bp->dev);
7713 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
7714 		return -ENOMEM;
7715 	}
7716 	return 0;
7717 }
7718 
7719 static void bnxt_free_irq(struct bnxt *bp)
7720 {
7721 	struct bnxt_irq *irq;
7722 	int i;
7723 
7724 #ifdef CONFIG_RFS_ACCEL
7725 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
7726 	bp->dev->rx_cpu_rmap = NULL;
7727 #endif
7728 	if (!bp->irq_tbl || !bp->bnapi)
7729 		return;
7730 
7731 	for (i = 0; i < bp->cp_nr_rings; i++) {
7732 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7733 
7734 		irq = &bp->irq_tbl[map_idx];
7735 		if (irq->requested) {
7736 			if (irq->have_cpumask) {
7737 				irq_set_affinity_hint(irq->vector, NULL);
7738 				free_cpumask_var(irq->cpu_mask);
7739 				irq->have_cpumask = 0;
7740 			}
7741 			free_irq(irq->vector, bp->bnapi[i]);
7742 		}
7743 
7744 		irq->requested = 0;
7745 	}
7746 }
7747 
7748 static int bnxt_request_irq(struct bnxt *bp)
7749 {
7750 	int i, j, rc = 0;
7751 	unsigned long flags = 0;
7752 #ifdef CONFIG_RFS_ACCEL
7753 	struct cpu_rmap *rmap;
7754 #endif
7755 
7756 	rc = bnxt_setup_int_mode(bp);
7757 	if (rc) {
7758 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
7759 			   rc);
7760 		return rc;
7761 	}
7762 #ifdef CONFIG_RFS_ACCEL
7763 	rmap = bp->dev->rx_cpu_rmap;
7764 #endif
7765 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
7766 		flags = IRQF_SHARED;
7767 
7768 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
7769 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7770 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
7771 
7772 #ifdef CONFIG_RFS_ACCEL
7773 		if (rmap && bp->bnapi[i]->rx_ring) {
7774 			rc = irq_cpu_rmap_add(rmap, irq->vector);
7775 			if (rc)
7776 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
7777 					    j);
7778 			j++;
7779 		}
7780 #endif
7781 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
7782 				 bp->bnapi[i]);
7783 		if (rc)
7784 			break;
7785 
7786 		irq->requested = 1;
7787 
7788 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
7789 			int numa_node = dev_to_node(&bp->pdev->dev);
7790 
7791 			irq->have_cpumask = 1;
7792 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
7793 					irq->cpu_mask);
7794 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
7795 			if (rc) {
7796 				netdev_warn(bp->dev,
7797 					    "Set affinity failed, IRQ = %d\n",
7798 					    irq->vector);
7799 				break;
7800 			}
7801 		}
7802 	}
7803 	return rc;
7804 }
7805 
7806 static void bnxt_del_napi(struct bnxt *bp)
7807 {
7808 	int i;
7809 
7810 	if (!bp->bnapi)
7811 		return;
7812 
7813 	for (i = 0; i < bp->cp_nr_rings; i++) {
7814 		struct bnxt_napi *bnapi = bp->bnapi[i];
7815 
7816 		napi_hash_del(&bnapi->napi);
7817 		netif_napi_del(&bnapi->napi);
7818 	}
7819 	/* We called napi_hash_del() before netif_napi_del(), we need
7820 	 * to respect an RCU grace period before freeing napi structures.
7821 	 */
7822 	synchronize_net();
7823 }
7824 
7825 static void bnxt_init_napi(struct bnxt *bp)
7826 {
7827 	int i;
7828 	unsigned int cp_nr_rings = bp->cp_nr_rings;
7829 	struct bnxt_napi *bnapi;
7830 
7831 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
7832 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
7833 
7834 		if (bp->flags & BNXT_FLAG_CHIP_P5)
7835 			poll_fn = bnxt_poll_p5;
7836 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7837 			cp_nr_rings--;
7838 		for (i = 0; i < cp_nr_rings; i++) {
7839 			bnapi = bp->bnapi[i];
7840 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
7841 		}
7842 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7843 			bnapi = bp->bnapi[cp_nr_rings];
7844 			netif_napi_add(bp->dev, &bnapi->napi,
7845 				       bnxt_poll_nitroa0, 64);
7846 		}
7847 	} else {
7848 		bnapi = bp->bnapi[0];
7849 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
7850 	}
7851 }
7852 
7853 static void bnxt_disable_napi(struct bnxt *bp)
7854 {
7855 	int i;
7856 
7857 	if (!bp->bnapi)
7858 		return;
7859 
7860 	for (i = 0; i < bp->cp_nr_rings; i++) {
7861 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7862 
7863 		if (bp->bnapi[i]->rx_ring)
7864 			cancel_work_sync(&cpr->dim.work);
7865 
7866 		napi_disable(&bp->bnapi[i]->napi);
7867 	}
7868 }
7869 
7870 static void bnxt_enable_napi(struct bnxt *bp)
7871 {
7872 	int i;
7873 
7874 	for (i = 0; i < bp->cp_nr_rings; i++) {
7875 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7876 		bp->bnapi[i]->in_reset = false;
7877 
7878 		if (bp->bnapi[i]->rx_ring) {
7879 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
7880 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
7881 		}
7882 		napi_enable(&bp->bnapi[i]->napi);
7883 	}
7884 }
7885 
7886 void bnxt_tx_disable(struct bnxt *bp)
7887 {
7888 	int i;
7889 	struct bnxt_tx_ring_info *txr;
7890 
7891 	if (bp->tx_ring) {
7892 		for (i = 0; i < bp->tx_nr_rings; i++) {
7893 			txr = &bp->tx_ring[i];
7894 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
7895 		}
7896 	}
7897 	/* Stop all TX queues */
7898 	netif_tx_disable(bp->dev);
7899 	netif_carrier_off(bp->dev);
7900 }
7901 
7902 void bnxt_tx_enable(struct bnxt *bp)
7903 {
7904 	int i;
7905 	struct bnxt_tx_ring_info *txr;
7906 
7907 	for (i = 0; i < bp->tx_nr_rings; i++) {
7908 		txr = &bp->tx_ring[i];
7909 		txr->dev_state = 0;
7910 	}
7911 	netif_tx_wake_all_queues(bp->dev);
7912 	if (bp->link_info.link_up)
7913 		netif_carrier_on(bp->dev);
7914 }
7915 
7916 static void bnxt_report_link(struct bnxt *bp)
7917 {
7918 	if (bp->link_info.link_up) {
7919 		const char *duplex;
7920 		const char *flow_ctrl;
7921 		u32 speed;
7922 		u16 fec;
7923 
7924 		netif_carrier_on(bp->dev);
7925 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
7926 			duplex = "full";
7927 		else
7928 			duplex = "half";
7929 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
7930 			flow_ctrl = "ON - receive & transmit";
7931 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
7932 			flow_ctrl = "ON - transmit";
7933 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
7934 			flow_ctrl = "ON - receive";
7935 		else
7936 			flow_ctrl = "none";
7937 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
7938 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
7939 			    speed, duplex, flow_ctrl);
7940 		if (bp->flags & BNXT_FLAG_EEE_CAP)
7941 			netdev_info(bp->dev, "EEE is %s\n",
7942 				    bp->eee.eee_active ? "active" :
7943 							 "not active");
7944 		fec = bp->link_info.fec_cfg;
7945 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
7946 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
7947 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
7948 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
7949 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
7950 	} else {
7951 		netif_carrier_off(bp->dev);
7952 		netdev_err(bp->dev, "NIC Link is Down\n");
7953 	}
7954 }
7955 
7956 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
7957 {
7958 	int rc = 0;
7959 	struct hwrm_port_phy_qcaps_input req = {0};
7960 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7961 	struct bnxt_link_info *link_info = &bp->link_info;
7962 
7963 	if (bp->hwrm_spec_code < 0x10201)
7964 		return 0;
7965 
7966 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
7967 
7968 	mutex_lock(&bp->hwrm_cmd_lock);
7969 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7970 	if (rc)
7971 		goto hwrm_phy_qcaps_exit;
7972 
7973 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
7974 		struct ethtool_eee *eee = &bp->eee;
7975 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
7976 
7977 		bp->flags |= BNXT_FLAG_EEE_CAP;
7978 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7979 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
7980 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
7981 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
7982 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
7983 	}
7984 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
7985 		if (bp->test_info)
7986 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
7987 	}
7988 	if (resp->supported_speeds_auto_mode)
7989 		link_info->support_auto_speeds =
7990 			le16_to_cpu(resp->supported_speeds_auto_mode);
7991 
7992 	bp->port_count = resp->port_cnt;
7993 
7994 hwrm_phy_qcaps_exit:
7995 	mutex_unlock(&bp->hwrm_cmd_lock);
7996 	return rc;
7997 }
7998 
7999 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8000 {
8001 	int rc = 0;
8002 	struct bnxt_link_info *link_info = &bp->link_info;
8003 	struct hwrm_port_phy_qcfg_input req = {0};
8004 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8005 	u8 link_up = link_info->link_up;
8006 	u16 diff;
8007 
8008 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8009 
8010 	mutex_lock(&bp->hwrm_cmd_lock);
8011 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8012 	if (rc) {
8013 		mutex_unlock(&bp->hwrm_cmd_lock);
8014 		return rc;
8015 	}
8016 
8017 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8018 	link_info->phy_link_status = resp->link;
8019 	link_info->duplex = resp->duplex_cfg;
8020 	if (bp->hwrm_spec_code >= 0x10800)
8021 		link_info->duplex = resp->duplex_state;
8022 	link_info->pause = resp->pause;
8023 	link_info->auto_mode = resp->auto_mode;
8024 	link_info->auto_pause_setting = resp->auto_pause;
8025 	link_info->lp_pause = resp->link_partner_adv_pause;
8026 	link_info->force_pause_setting = resp->force_pause;
8027 	link_info->duplex_setting = resp->duplex_cfg;
8028 	if (link_info->phy_link_status == BNXT_LINK_LINK)
8029 		link_info->link_speed = le16_to_cpu(resp->link_speed);
8030 	else
8031 		link_info->link_speed = 0;
8032 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8033 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8034 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8035 	link_info->lp_auto_link_speeds =
8036 		le16_to_cpu(resp->link_partner_adv_speeds);
8037 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8038 	link_info->phy_ver[0] = resp->phy_maj;
8039 	link_info->phy_ver[1] = resp->phy_min;
8040 	link_info->phy_ver[2] = resp->phy_bld;
8041 	link_info->media_type = resp->media_type;
8042 	link_info->phy_type = resp->phy_type;
8043 	link_info->transceiver = resp->xcvr_pkg_type;
8044 	link_info->phy_addr = resp->eee_config_phy_addr &
8045 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8046 	link_info->module_status = resp->module_status;
8047 
8048 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
8049 		struct ethtool_eee *eee = &bp->eee;
8050 		u16 fw_speeds;
8051 
8052 		eee->eee_active = 0;
8053 		if (resp->eee_config_phy_addr &
8054 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8055 			eee->eee_active = 1;
8056 			fw_speeds = le16_to_cpu(
8057 				resp->link_partner_adv_eee_link_speed_mask);
8058 			eee->lp_advertised =
8059 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8060 		}
8061 
8062 		/* Pull initial EEE config */
8063 		if (!chng_link_state) {
8064 			if (resp->eee_config_phy_addr &
8065 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8066 				eee->eee_enabled = 1;
8067 
8068 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8069 			eee->advertised =
8070 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8071 
8072 			if (resp->eee_config_phy_addr &
8073 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8074 				__le32 tmr;
8075 
8076 				eee->tx_lpi_enabled = 1;
8077 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8078 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8079 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8080 			}
8081 		}
8082 	}
8083 
8084 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8085 	if (bp->hwrm_spec_code >= 0x10504)
8086 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8087 
8088 	/* TODO: need to add more logic to report VF link */
8089 	if (chng_link_state) {
8090 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8091 			link_info->link_up = 1;
8092 		else
8093 			link_info->link_up = 0;
8094 		if (link_up != link_info->link_up)
8095 			bnxt_report_link(bp);
8096 	} else {
8097 		/* alwasy link down if not require to update link state */
8098 		link_info->link_up = 0;
8099 	}
8100 	mutex_unlock(&bp->hwrm_cmd_lock);
8101 
8102 	if (!BNXT_SINGLE_PF(bp))
8103 		return 0;
8104 
8105 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8106 	if ((link_info->support_auto_speeds | diff) !=
8107 	    link_info->support_auto_speeds) {
8108 		/* An advertised speed is no longer supported, so we need to
8109 		 * update the advertisement settings.  Caller holds RTNL
8110 		 * so we can modify link settings.
8111 		 */
8112 		link_info->advertising = link_info->support_auto_speeds;
8113 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8114 			bnxt_hwrm_set_link_setting(bp, true, false);
8115 	}
8116 	return 0;
8117 }
8118 
8119 static void bnxt_get_port_module_status(struct bnxt *bp)
8120 {
8121 	struct bnxt_link_info *link_info = &bp->link_info;
8122 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8123 	u8 module_status;
8124 
8125 	if (bnxt_update_link(bp, true))
8126 		return;
8127 
8128 	module_status = link_info->module_status;
8129 	switch (module_status) {
8130 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8131 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8132 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8133 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8134 			    bp->pf.port_id);
8135 		if (bp->hwrm_spec_code >= 0x10201) {
8136 			netdev_warn(bp->dev, "Module part number %s\n",
8137 				    resp->phy_vendor_partnumber);
8138 		}
8139 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8140 			netdev_warn(bp->dev, "TX is disabled\n");
8141 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8142 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8143 	}
8144 }
8145 
8146 static void
8147 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8148 {
8149 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8150 		if (bp->hwrm_spec_code >= 0x10201)
8151 			req->auto_pause =
8152 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8153 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8154 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8155 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8156 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8157 		req->enables |=
8158 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8159 	} else {
8160 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8161 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8162 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8163 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8164 		req->enables |=
8165 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8166 		if (bp->hwrm_spec_code >= 0x10201) {
8167 			req->auto_pause = req->force_pause;
8168 			req->enables |= cpu_to_le32(
8169 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8170 		}
8171 	}
8172 }
8173 
8174 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8175 				      struct hwrm_port_phy_cfg_input *req)
8176 {
8177 	u8 autoneg = bp->link_info.autoneg;
8178 	u16 fw_link_speed = bp->link_info.req_link_speed;
8179 	u16 advertising = bp->link_info.advertising;
8180 
8181 	if (autoneg & BNXT_AUTONEG_SPEED) {
8182 		req->auto_mode |=
8183 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8184 
8185 		req->enables |= cpu_to_le32(
8186 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8187 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8188 
8189 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8190 		req->flags |=
8191 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8192 	} else {
8193 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8194 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8195 	}
8196 
8197 	/* tell chimp that the setting takes effect immediately */
8198 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8199 }
8200 
8201 int bnxt_hwrm_set_pause(struct bnxt *bp)
8202 {
8203 	struct hwrm_port_phy_cfg_input req = {0};
8204 	int rc;
8205 
8206 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8207 	bnxt_hwrm_set_pause_common(bp, &req);
8208 
8209 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8210 	    bp->link_info.force_link_chng)
8211 		bnxt_hwrm_set_link_common(bp, &req);
8212 
8213 	mutex_lock(&bp->hwrm_cmd_lock);
8214 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8215 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8216 		/* since changing of pause setting doesn't trigger any link
8217 		 * change event, the driver needs to update the current pause
8218 		 * result upon successfully return of the phy_cfg command
8219 		 */
8220 		bp->link_info.pause =
8221 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8222 		bp->link_info.auto_pause_setting = 0;
8223 		if (!bp->link_info.force_link_chng)
8224 			bnxt_report_link(bp);
8225 	}
8226 	bp->link_info.force_link_chng = false;
8227 	mutex_unlock(&bp->hwrm_cmd_lock);
8228 	return rc;
8229 }
8230 
8231 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8232 			      struct hwrm_port_phy_cfg_input *req)
8233 {
8234 	struct ethtool_eee *eee = &bp->eee;
8235 
8236 	if (eee->eee_enabled) {
8237 		u16 eee_speeds;
8238 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8239 
8240 		if (eee->tx_lpi_enabled)
8241 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8242 		else
8243 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8244 
8245 		req->flags |= cpu_to_le32(flags);
8246 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8247 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8248 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8249 	} else {
8250 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8251 	}
8252 }
8253 
8254 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8255 {
8256 	struct hwrm_port_phy_cfg_input req = {0};
8257 
8258 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8259 	if (set_pause)
8260 		bnxt_hwrm_set_pause_common(bp, &req);
8261 
8262 	bnxt_hwrm_set_link_common(bp, &req);
8263 
8264 	if (set_eee)
8265 		bnxt_hwrm_set_eee(bp, &req);
8266 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8267 }
8268 
8269 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8270 {
8271 	struct hwrm_port_phy_cfg_input req = {0};
8272 
8273 	if (!BNXT_SINGLE_PF(bp))
8274 		return 0;
8275 
8276 	if (pci_num_vf(bp->pdev))
8277 		return 0;
8278 
8279 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8280 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8281 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8282 }
8283 
8284 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8285 {
8286 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8287 	struct hwrm_func_drv_if_change_input req = {0};
8288 	bool resc_reinit = false;
8289 	int rc;
8290 
8291 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8292 		return 0;
8293 
8294 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8295 	if (up)
8296 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8297 	mutex_lock(&bp->hwrm_cmd_lock);
8298 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8299 	if (!rc && (resp->flags &
8300 		    cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
8301 		resc_reinit = true;
8302 	mutex_unlock(&bp->hwrm_cmd_lock);
8303 
8304 	if (up && resc_reinit && BNXT_NEW_RM(bp)) {
8305 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8306 
8307 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8308 		hw_resc->resv_cp_rings = 0;
8309 		hw_resc->resv_stat_ctxs = 0;
8310 		hw_resc->resv_irqs = 0;
8311 		hw_resc->resv_tx_rings = 0;
8312 		hw_resc->resv_rx_rings = 0;
8313 		hw_resc->resv_hw_ring_grps = 0;
8314 		hw_resc->resv_vnics = 0;
8315 		bp->tx_nr_rings = 0;
8316 		bp->rx_nr_rings = 0;
8317 	}
8318 	return rc;
8319 }
8320 
8321 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8322 {
8323 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8324 	struct hwrm_port_led_qcaps_input req = {0};
8325 	struct bnxt_pf_info *pf = &bp->pf;
8326 	int rc;
8327 
8328 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8329 		return 0;
8330 
8331 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8332 	req.port_id = cpu_to_le16(pf->port_id);
8333 	mutex_lock(&bp->hwrm_cmd_lock);
8334 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8335 	if (rc) {
8336 		mutex_unlock(&bp->hwrm_cmd_lock);
8337 		return rc;
8338 	}
8339 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8340 		int i;
8341 
8342 		bp->num_leds = resp->num_leds;
8343 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8344 						 bp->num_leds);
8345 		for (i = 0; i < bp->num_leds; i++) {
8346 			struct bnxt_led_info *led = &bp->leds[i];
8347 			__le16 caps = led->led_state_caps;
8348 
8349 			if (!led->led_group_id ||
8350 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8351 				bp->num_leds = 0;
8352 				break;
8353 			}
8354 		}
8355 	}
8356 	mutex_unlock(&bp->hwrm_cmd_lock);
8357 	return 0;
8358 }
8359 
8360 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8361 {
8362 	struct hwrm_wol_filter_alloc_input req = {0};
8363 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8364 	int rc;
8365 
8366 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8367 	req.port_id = cpu_to_le16(bp->pf.port_id);
8368 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8369 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8370 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8371 	mutex_lock(&bp->hwrm_cmd_lock);
8372 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8373 	if (!rc)
8374 		bp->wol_filter_id = resp->wol_filter_id;
8375 	mutex_unlock(&bp->hwrm_cmd_lock);
8376 	return rc;
8377 }
8378 
8379 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8380 {
8381 	struct hwrm_wol_filter_free_input req = {0};
8382 	int rc;
8383 
8384 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8385 	req.port_id = cpu_to_le16(bp->pf.port_id);
8386 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8387 	req.wol_filter_id = bp->wol_filter_id;
8388 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8389 	return rc;
8390 }
8391 
8392 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8393 {
8394 	struct hwrm_wol_filter_qcfg_input req = {0};
8395 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8396 	u16 next_handle = 0;
8397 	int rc;
8398 
8399 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8400 	req.port_id = cpu_to_le16(bp->pf.port_id);
8401 	req.handle = cpu_to_le16(handle);
8402 	mutex_lock(&bp->hwrm_cmd_lock);
8403 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8404 	if (!rc) {
8405 		next_handle = le16_to_cpu(resp->next_handle);
8406 		if (next_handle != 0) {
8407 			if (resp->wol_type ==
8408 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8409 				bp->wol = 1;
8410 				bp->wol_filter_id = resp->wol_filter_id;
8411 			}
8412 		}
8413 	}
8414 	mutex_unlock(&bp->hwrm_cmd_lock);
8415 	return next_handle;
8416 }
8417 
8418 static void bnxt_get_wol_settings(struct bnxt *bp)
8419 {
8420 	u16 handle = 0;
8421 
8422 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8423 		return;
8424 
8425 	do {
8426 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8427 	} while (handle && handle != 0xffff);
8428 }
8429 
8430 #ifdef CONFIG_BNXT_HWMON
8431 static ssize_t bnxt_show_temp(struct device *dev,
8432 			      struct device_attribute *devattr, char *buf)
8433 {
8434 	struct hwrm_temp_monitor_query_input req = {0};
8435 	struct hwrm_temp_monitor_query_output *resp;
8436 	struct bnxt *bp = dev_get_drvdata(dev);
8437 	u32 temp = 0;
8438 
8439 	resp = bp->hwrm_cmd_resp_addr;
8440 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8441 	mutex_lock(&bp->hwrm_cmd_lock);
8442 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8443 		temp = resp->temp * 1000; /* display millidegree */
8444 	mutex_unlock(&bp->hwrm_cmd_lock);
8445 
8446 	return sprintf(buf, "%u\n", temp);
8447 }
8448 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8449 
8450 static struct attribute *bnxt_attrs[] = {
8451 	&sensor_dev_attr_temp1_input.dev_attr.attr,
8452 	NULL
8453 };
8454 ATTRIBUTE_GROUPS(bnxt);
8455 
8456 static void bnxt_hwmon_close(struct bnxt *bp)
8457 {
8458 	if (bp->hwmon_dev) {
8459 		hwmon_device_unregister(bp->hwmon_dev);
8460 		bp->hwmon_dev = NULL;
8461 	}
8462 }
8463 
8464 static void bnxt_hwmon_open(struct bnxt *bp)
8465 {
8466 	struct pci_dev *pdev = bp->pdev;
8467 
8468 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8469 							  DRV_MODULE_NAME, bp,
8470 							  bnxt_groups);
8471 	if (IS_ERR(bp->hwmon_dev)) {
8472 		bp->hwmon_dev = NULL;
8473 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8474 	}
8475 }
8476 #else
8477 static void bnxt_hwmon_close(struct bnxt *bp)
8478 {
8479 }
8480 
8481 static void bnxt_hwmon_open(struct bnxt *bp)
8482 {
8483 }
8484 #endif
8485 
8486 static bool bnxt_eee_config_ok(struct bnxt *bp)
8487 {
8488 	struct ethtool_eee *eee = &bp->eee;
8489 	struct bnxt_link_info *link_info = &bp->link_info;
8490 
8491 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8492 		return true;
8493 
8494 	if (eee->eee_enabled) {
8495 		u32 advertising =
8496 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8497 
8498 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8499 			eee->eee_enabled = 0;
8500 			return false;
8501 		}
8502 		if (eee->advertised & ~advertising) {
8503 			eee->advertised = advertising & eee->supported;
8504 			return false;
8505 		}
8506 	}
8507 	return true;
8508 }
8509 
8510 static int bnxt_update_phy_setting(struct bnxt *bp)
8511 {
8512 	int rc;
8513 	bool update_link = false;
8514 	bool update_pause = false;
8515 	bool update_eee = false;
8516 	struct bnxt_link_info *link_info = &bp->link_info;
8517 
8518 	rc = bnxt_update_link(bp, true);
8519 	if (rc) {
8520 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
8521 			   rc);
8522 		return rc;
8523 	}
8524 	if (!BNXT_SINGLE_PF(bp))
8525 		return 0;
8526 
8527 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8528 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
8529 	    link_info->req_flow_ctrl)
8530 		update_pause = true;
8531 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8532 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
8533 		update_pause = true;
8534 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8535 		if (BNXT_AUTO_MODE(link_info->auto_mode))
8536 			update_link = true;
8537 		if (link_info->req_link_speed != link_info->force_link_speed)
8538 			update_link = true;
8539 		if (link_info->req_duplex != link_info->duplex_setting)
8540 			update_link = true;
8541 	} else {
8542 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
8543 			update_link = true;
8544 		if (link_info->advertising != link_info->auto_link_speeds)
8545 			update_link = true;
8546 	}
8547 
8548 	/* The last close may have shutdown the link, so need to call
8549 	 * PHY_CFG to bring it back up.
8550 	 */
8551 	if (!netif_carrier_ok(bp->dev))
8552 		update_link = true;
8553 
8554 	if (!bnxt_eee_config_ok(bp))
8555 		update_eee = true;
8556 
8557 	if (update_link)
8558 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
8559 	else if (update_pause)
8560 		rc = bnxt_hwrm_set_pause(bp);
8561 	if (rc) {
8562 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
8563 			   rc);
8564 		return rc;
8565 	}
8566 
8567 	return rc;
8568 }
8569 
8570 /* Common routine to pre-map certain register block to different GRC window.
8571  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
8572  * in PF and 3 windows in VF that can be customized to map in different
8573  * register blocks.
8574  */
8575 static void bnxt_preset_reg_win(struct bnxt *bp)
8576 {
8577 	if (BNXT_PF(bp)) {
8578 		/* CAG registers map to GRC window #4 */
8579 		writel(BNXT_CAG_REG_BASE,
8580 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
8581 	}
8582 }
8583 
8584 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
8585 
8586 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8587 {
8588 	int rc = 0;
8589 
8590 	bnxt_preset_reg_win(bp);
8591 	netif_carrier_off(bp->dev);
8592 	if (irq_re_init) {
8593 		/* Reserve rings now if none were reserved at driver probe. */
8594 		rc = bnxt_init_dflt_ring_mode(bp);
8595 		if (rc) {
8596 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
8597 			return rc;
8598 		}
8599 	}
8600 	rc = bnxt_reserve_rings(bp, irq_re_init);
8601 	if (rc)
8602 		return rc;
8603 	if ((bp->flags & BNXT_FLAG_RFS) &&
8604 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
8605 		/* disable RFS if falling back to INTA */
8606 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
8607 		bp->flags &= ~BNXT_FLAG_RFS;
8608 	}
8609 
8610 	rc = bnxt_alloc_mem(bp, irq_re_init);
8611 	if (rc) {
8612 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8613 		goto open_err_free_mem;
8614 	}
8615 
8616 	if (irq_re_init) {
8617 		bnxt_init_napi(bp);
8618 		rc = bnxt_request_irq(bp);
8619 		if (rc) {
8620 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
8621 			goto open_err_irq;
8622 		}
8623 	}
8624 
8625 	bnxt_enable_napi(bp);
8626 	bnxt_debug_dev_init(bp);
8627 
8628 	rc = bnxt_init_nic(bp, irq_re_init);
8629 	if (rc) {
8630 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8631 		goto open_err;
8632 	}
8633 
8634 	if (link_re_init) {
8635 		mutex_lock(&bp->link_lock);
8636 		rc = bnxt_update_phy_setting(bp);
8637 		mutex_unlock(&bp->link_lock);
8638 		if (rc) {
8639 			netdev_warn(bp->dev, "failed to update phy settings\n");
8640 			if (BNXT_SINGLE_PF(bp)) {
8641 				bp->link_info.phy_retry = true;
8642 				bp->link_info.phy_retry_expires =
8643 					jiffies + 5 * HZ;
8644 			}
8645 		}
8646 	}
8647 
8648 	if (irq_re_init)
8649 		udp_tunnel_get_rx_info(bp->dev);
8650 
8651 	set_bit(BNXT_STATE_OPEN, &bp->state);
8652 	bnxt_enable_int(bp);
8653 	/* Enable TX queues */
8654 	bnxt_tx_enable(bp);
8655 	mod_timer(&bp->timer, jiffies + bp->current_interval);
8656 	/* Poll link status and check for SFP+ module status */
8657 	bnxt_get_port_module_status(bp);
8658 
8659 	/* VF-reps may need to be re-opened after the PF is re-opened */
8660 	if (BNXT_PF(bp))
8661 		bnxt_vf_reps_open(bp);
8662 	return 0;
8663 
8664 open_err:
8665 	bnxt_debug_dev_exit(bp);
8666 	bnxt_disable_napi(bp);
8667 
8668 open_err_irq:
8669 	bnxt_del_napi(bp);
8670 
8671 open_err_free_mem:
8672 	bnxt_free_skbs(bp);
8673 	bnxt_free_irq(bp);
8674 	bnxt_free_mem(bp, true);
8675 	return rc;
8676 }
8677 
8678 /* rtnl_lock held */
8679 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8680 {
8681 	int rc = 0;
8682 
8683 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
8684 	if (rc) {
8685 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
8686 		dev_close(bp->dev);
8687 	}
8688 	return rc;
8689 }
8690 
8691 /* rtnl_lock held, open the NIC half way by allocating all resources, but
8692  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
8693  * self tests.
8694  */
8695 int bnxt_half_open_nic(struct bnxt *bp)
8696 {
8697 	int rc = 0;
8698 
8699 	rc = bnxt_alloc_mem(bp, false);
8700 	if (rc) {
8701 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8702 		goto half_open_err;
8703 	}
8704 	rc = bnxt_init_nic(bp, false);
8705 	if (rc) {
8706 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8707 		goto half_open_err;
8708 	}
8709 	return 0;
8710 
8711 half_open_err:
8712 	bnxt_free_skbs(bp);
8713 	bnxt_free_mem(bp, false);
8714 	dev_close(bp->dev);
8715 	return rc;
8716 }
8717 
8718 /* rtnl_lock held, this call can only be made after a previous successful
8719  * call to bnxt_half_open_nic().
8720  */
8721 void bnxt_half_close_nic(struct bnxt *bp)
8722 {
8723 	bnxt_hwrm_resource_free(bp, false, false);
8724 	bnxt_free_skbs(bp);
8725 	bnxt_free_mem(bp, false);
8726 }
8727 
8728 static int bnxt_open(struct net_device *dev)
8729 {
8730 	struct bnxt *bp = netdev_priv(dev);
8731 	int rc;
8732 
8733 	bnxt_hwrm_if_change(bp, true);
8734 	rc = __bnxt_open_nic(bp, true, true);
8735 	if (rc)
8736 		bnxt_hwrm_if_change(bp, false);
8737 
8738 	bnxt_hwmon_open(bp);
8739 
8740 	return rc;
8741 }
8742 
8743 static bool bnxt_drv_busy(struct bnxt *bp)
8744 {
8745 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
8746 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
8747 }
8748 
8749 static void bnxt_get_ring_stats(struct bnxt *bp,
8750 				struct rtnl_link_stats64 *stats);
8751 
8752 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
8753 			     bool link_re_init)
8754 {
8755 	/* Close the VF-reps before closing PF */
8756 	if (BNXT_PF(bp))
8757 		bnxt_vf_reps_close(bp);
8758 
8759 	/* Change device state to avoid TX queue wake up's */
8760 	bnxt_tx_disable(bp);
8761 
8762 	clear_bit(BNXT_STATE_OPEN, &bp->state);
8763 	smp_mb__after_atomic();
8764 	while (bnxt_drv_busy(bp))
8765 		msleep(20);
8766 
8767 	/* Flush rings and and disable interrupts */
8768 	bnxt_shutdown_nic(bp, irq_re_init);
8769 
8770 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
8771 
8772 	bnxt_debug_dev_exit(bp);
8773 	bnxt_disable_napi(bp);
8774 	del_timer_sync(&bp->timer);
8775 	bnxt_free_skbs(bp);
8776 
8777 	/* Save ring stats before shutdown */
8778 	if (bp->bnapi)
8779 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
8780 	if (irq_re_init) {
8781 		bnxt_free_irq(bp);
8782 		bnxt_del_napi(bp);
8783 	}
8784 	bnxt_free_mem(bp, irq_re_init);
8785 }
8786 
8787 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8788 {
8789 	int rc = 0;
8790 
8791 #ifdef CONFIG_BNXT_SRIOV
8792 	if (bp->sriov_cfg) {
8793 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
8794 						      !bp->sriov_cfg,
8795 						      BNXT_SRIOV_CFG_WAIT_TMO);
8796 		if (rc)
8797 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
8798 	}
8799 #endif
8800 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
8801 	return rc;
8802 }
8803 
8804 static int bnxt_close(struct net_device *dev)
8805 {
8806 	struct bnxt *bp = netdev_priv(dev);
8807 
8808 	bnxt_hwmon_close(bp);
8809 	bnxt_close_nic(bp, true, true);
8810 	bnxt_hwrm_shutdown_link(bp);
8811 	bnxt_hwrm_if_change(bp, false);
8812 	return 0;
8813 }
8814 
8815 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
8816 				   u16 *val)
8817 {
8818 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
8819 	struct hwrm_port_phy_mdio_read_input req = {0};
8820 	int rc;
8821 
8822 	if (bp->hwrm_spec_code < 0x10a00)
8823 		return -EOPNOTSUPP;
8824 
8825 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
8826 	req.port_id = cpu_to_le16(bp->pf.port_id);
8827 	req.phy_addr = phy_addr;
8828 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8829 	if (mdio_phy_id_is_c45(phy_addr)) {
8830 		req.cl45_mdio = 1;
8831 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8832 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8833 		req.reg_addr = cpu_to_le16(reg);
8834 	}
8835 
8836 	mutex_lock(&bp->hwrm_cmd_lock);
8837 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8838 	if (!rc)
8839 		*val = le16_to_cpu(resp->reg_data);
8840 	mutex_unlock(&bp->hwrm_cmd_lock);
8841 	return rc;
8842 }
8843 
8844 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
8845 				    u16 val)
8846 {
8847 	struct hwrm_port_phy_mdio_write_input req = {0};
8848 
8849 	if (bp->hwrm_spec_code < 0x10a00)
8850 		return -EOPNOTSUPP;
8851 
8852 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
8853 	req.port_id = cpu_to_le16(bp->pf.port_id);
8854 	req.phy_addr = phy_addr;
8855 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8856 	if (mdio_phy_id_is_c45(phy_addr)) {
8857 		req.cl45_mdio = 1;
8858 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8859 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8860 		req.reg_addr = cpu_to_le16(reg);
8861 	}
8862 	req.reg_data = cpu_to_le16(val);
8863 
8864 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8865 }
8866 
8867 /* rtnl_lock held */
8868 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
8869 {
8870 	struct mii_ioctl_data *mdio = if_mii(ifr);
8871 	struct bnxt *bp = netdev_priv(dev);
8872 	int rc;
8873 
8874 	switch (cmd) {
8875 	case SIOCGMIIPHY:
8876 		mdio->phy_id = bp->link_info.phy_addr;
8877 
8878 		/* fallthru */
8879 	case SIOCGMIIREG: {
8880 		u16 mii_regval = 0;
8881 
8882 		if (!netif_running(dev))
8883 			return -EAGAIN;
8884 
8885 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
8886 					     &mii_regval);
8887 		mdio->val_out = mii_regval;
8888 		return rc;
8889 	}
8890 
8891 	case SIOCSMIIREG:
8892 		if (!netif_running(dev))
8893 			return -EAGAIN;
8894 
8895 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
8896 						mdio->val_in);
8897 
8898 	default:
8899 		/* do nothing */
8900 		break;
8901 	}
8902 	return -EOPNOTSUPP;
8903 }
8904 
8905 static void bnxt_get_ring_stats(struct bnxt *bp,
8906 				struct rtnl_link_stats64 *stats)
8907 {
8908 	int i;
8909 
8910 
8911 	for (i = 0; i < bp->cp_nr_rings; i++) {
8912 		struct bnxt_napi *bnapi = bp->bnapi[i];
8913 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8914 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
8915 
8916 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
8917 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
8918 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
8919 
8920 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
8921 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
8922 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
8923 
8924 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
8925 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
8926 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
8927 
8928 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
8929 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
8930 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
8931 
8932 		stats->rx_missed_errors +=
8933 			le64_to_cpu(hw_stats->rx_discard_pkts);
8934 
8935 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
8936 
8937 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
8938 	}
8939 }
8940 
8941 static void bnxt_add_prev_stats(struct bnxt *bp,
8942 				struct rtnl_link_stats64 *stats)
8943 {
8944 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
8945 
8946 	stats->rx_packets += prev_stats->rx_packets;
8947 	stats->tx_packets += prev_stats->tx_packets;
8948 	stats->rx_bytes += prev_stats->rx_bytes;
8949 	stats->tx_bytes += prev_stats->tx_bytes;
8950 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
8951 	stats->multicast += prev_stats->multicast;
8952 	stats->tx_dropped += prev_stats->tx_dropped;
8953 }
8954 
8955 static void
8956 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
8957 {
8958 	struct bnxt *bp = netdev_priv(dev);
8959 
8960 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
8961 	/* Make sure bnxt_close_nic() sees that we are reading stats before
8962 	 * we check the BNXT_STATE_OPEN flag.
8963 	 */
8964 	smp_mb__after_atomic();
8965 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
8966 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8967 		*stats = bp->net_stats_prev;
8968 		return;
8969 	}
8970 
8971 	bnxt_get_ring_stats(bp, stats);
8972 	bnxt_add_prev_stats(bp, stats);
8973 
8974 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8975 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
8976 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
8977 
8978 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
8979 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
8980 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
8981 					  le64_to_cpu(rx->rx_ovrsz_frames) +
8982 					  le64_to_cpu(rx->rx_runt_frames);
8983 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
8984 				   le64_to_cpu(rx->rx_jbr_frames);
8985 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
8986 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
8987 		stats->tx_errors = le64_to_cpu(tx->tx_err);
8988 	}
8989 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8990 }
8991 
8992 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
8993 {
8994 	struct net_device *dev = bp->dev;
8995 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8996 	struct netdev_hw_addr *ha;
8997 	u8 *haddr;
8998 	int mc_count = 0;
8999 	bool update = false;
9000 	int off = 0;
9001 
9002 	netdev_for_each_mc_addr(ha, dev) {
9003 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
9004 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9005 			vnic->mc_list_count = 0;
9006 			return false;
9007 		}
9008 		haddr = ha->addr;
9009 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9010 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9011 			update = true;
9012 		}
9013 		off += ETH_ALEN;
9014 		mc_count++;
9015 	}
9016 	if (mc_count)
9017 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9018 
9019 	if (mc_count != vnic->mc_list_count) {
9020 		vnic->mc_list_count = mc_count;
9021 		update = true;
9022 	}
9023 	return update;
9024 }
9025 
9026 static bool bnxt_uc_list_updated(struct bnxt *bp)
9027 {
9028 	struct net_device *dev = bp->dev;
9029 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9030 	struct netdev_hw_addr *ha;
9031 	int off = 0;
9032 
9033 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9034 		return true;
9035 
9036 	netdev_for_each_uc_addr(ha, dev) {
9037 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9038 			return true;
9039 
9040 		off += ETH_ALEN;
9041 	}
9042 	return false;
9043 }
9044 
9045 static void bnxt_set_rx_mode(struct net_device *dev)
9046 {
9047 	struct bnxt *bp = netdev_priv(dev);
9048 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9049 	u32 mask = vnic->rx_mask;
9050 	bool mc_update = false;
9051 	bool uc_update;
9052 
9053 	if (!netif_running(dev))
9054 		return;
9055 
9056 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9057 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9058 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9059 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9060 
9061 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9062 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9063 
9064 	uc_update = bnxt_uc_list_updated(bp);
9065 
9066 	if (dev->flags & IFF_BROADCAST)
9067 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9068 	if (dev->flags & IFF_ALLMULTI) {
9069 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9070 		vnic->mc_list_count = 0;
9071 	} else {
9072 		mc_update = bnxt_mc_list_updated(bp, &mask);
9073 	}
9074 
9075 	if (mask != vnic->rx_mask || uc_update || mc_update) {
9076 		vnic->rx_mask = mask;
9077 
9078 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9079 		bnxt_queue_sp_work(bp);
9080 	}
9081 }
9082 
9083 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9084 {
9085 	struct net_device *dev = bp->dev;
9086 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9087 	struct netdev_hw_addr *ha;
9088 	int i, off = 0, rc;
9089 	bool uc_update;
9090 
9091 	netif_addr_lock_bh(dev);
9092 	uc_update = bnxt_uc_list_updated(bp);
9093 	netif_addr_unlock_bh(dev);
9094 
9095 	if (!uc_update)
9096 		goto skip_uc;
9097 
9098 	mutex_lock(&bp->hwrm_cmd_lock);
9099 	for (i = 1; i < vnic->uc_filter_count; i++) {
9100 		struct hwrm_cfa_l2_filter_free_input req = {0};
9101 
9102 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9103 				       -1);
9104 
9105 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
9106 
9107 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9108 					HWRM_CMD_TIMEOUT);
9109 	}
9110 	mutex_unlock(&bp->hwrm_cmd_lock);
9111 
9112 	vnic->uc_filter_count = 1;
9113 
9114 	netif_addr_lock_bh(dev);
9115 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9116 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9117 	} else {
9118 		netdev_for_each_uc_addr(ha, dev) {
9119 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9120 			off += ETH_ALEN;
9121 			vnic->uc_filter_count++;
9122 		}
9123 	}
9124 	netif_addr_unlock_bh(dev);
9125 
9126 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9127 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9128 		if (rc) {
9129 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9130 				   rc);
9131 			vnic->uc_filter_count = i;
9132 			return rc;
9133 		}
9134 	}
9135 
9136 skip_uc:
9137 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9138 	if (rc && vnic->mc_list_count) {
9139 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9140 			    rc);
9141 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9142 		vnic->mc_list_count = 0;
9143 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9144 	}
9145 	if (rc)
9146 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9147 			   rc);
9148 
9149 	return rc;
9150 }
9151 
9152 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9153 {
9154 #ifdef CONFIG_BNXT_SRIOV
9155 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9156 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9157 
9158 		/* No minimum rings were provisioned by the PF.  Don't
9159 		 * reserve rings by default when device is down.
9160 		 */
9161 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9162 			return true;
9163 
9164 		if (!netif_running(bp->dev))
9165 			return false;
9166 	}
9167 #endif
9168 	return true;
9169 }
9170 
9171 /* If the chip and firmware supports RFS */
9172 static bool bnxt_rfs_supported(struct bnxt *bp)
9173 {
9174 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
9175 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX)
9176 			return true;
9177 		return false;
9178 	}
9179 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9180 		return true;
9181 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9182 		return true;
9183 	return false;
9184 }
9185 
9186 /* If runtime conditions support RFS */
9187 static bool bnxt_rfs_capable(struct bnxt *bp)
9188 {
9189 #ifdef CONFIG_RFS_ACCEL
9190 	int vnics, max_vnics, max_rss_ctxs;
9191 
9192 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9193 		return bnxt_rfs_supported(bp);
9194 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9195 		return false;
9196 
9197 	vnics = 1 + bp->rx_nr_rings;
9198 	max_vnics = bnxt_get_max_func_vnics(bp);
9199 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9200 
9201 	/* RSS contexts not a limiting factor */
9202 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9203 		max_rss_ctxs = max_vnics;
9204 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9205 		if (bp->rx_nr_rings > 1)
9206 			netdev_warn(bp->dev,
9207 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9208 				    min(max_rss_ctxs - 1, max_vnics - 1));
9209 		return false;
9210 	}
9211 
9212 	if (!BNXT_NEW_RM(bp))
9213 		return true;
9214 
9215 	if (vnics == bp->hw_resc.resv_vnics)
9216 		return true;
9217 
9218 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9219 	if (vnics <= bp->hw_resc.resv_vnics)
9220 		return true;
9221 
9222 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9223 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9224 	return false;
9225 #else
9226 	return false;
9227 #endif
9228 }
9229 
9230 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9231 					   netdev_features_t features)
9232 {
9233 	struct bnxt *bp = netdev_priv(dev);
9234 
9235 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9236 		features &= ~NETIF_F_NTUPLE;
9237 
9238 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9239 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9240 
9241 	if (!(features & NETIF_F_GRO))
9242 		features &= ~NETIF_F_GRO_HW;
9243 
9244 	if (features & NETIF_F_GRO_HW)
9245 		features &= ~NETIF_F_LRO;
9246 
9247 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9248 	 * turned on or off together.
9249 	 */
9250 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9251 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9252 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9253 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9254 				      NETIF_F_HW_VLAN_STAG_RX);
9255 		else
9256 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9257 				    NETIF_F_HW_VLAN_STAG_RX;
9258 	}
9259 #ifdef CONFIG_BNXT_SRIOV
9260 	if (BNXT_VF(bp)) {
9261 		if (bp->vf.vlan) {
9262 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9263 				      NETIF_F_HW_VLAN_STAG_RX);
9264 		}
9265 	}
9266 #endif
9267 	return features;
9268 }
9269 
9270 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9271 {
9272 	struct bnxt *bp = netdev_priv(dev);
9273 	u32 flags = bp->flags;
9274 	u32 changes;
9275 	int rc = 0;
9276 	bool re_init = false;
9277 	bool update_tpa = false;
9278 
9279 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9280 	if (features & NETIF_F_GRO_HW)
9281 		flags |= BNXT_FLAG_GRO;
9282 	else if (features & NETIF_F_LRO)
9283 		flags |= BNXT_FLAG_LRO;
9284 
9285 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9286 		flags &= ~BNXT_FLAG_TPA;
9287 
9288 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9289 		flags |= BNXT_FLAG_STRIP_VLAN;
9290 
9291 	if (features & NETIF_F_NTUPLE)
9292 		flags |= BNXT_FLAG_RFS;
9293 
9294 	changes = flags ^ bp->flags;
9295 	if (changes & BNXT_FLAG_TPA) {
9296 		update_tpa = true;
9297 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9298 		    (flags & BNXT_FLAG_TPA) == 0)
9299 			re_init = true;
9300 	}
9301 
9302 	if (changes & ~BNXT_FLAG_TPA)
9303 		re_init = true;
9304 
9305 	if (flags != bp->flags) {
9306 		u32 old_flags = bp->flags;
9307 
9308 		bp->flags = flags;
9309 
9310 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9311 			if (update_tpa)
9312 				bnxt_set_ring_params(bp);
9313 			return rc;
9314 		}
9315 
9316 		if (re_init) {
9317 			bnxt_close_nic(bp, false, false);
9318 			if (update_tpa)
9319 				bnxt_set_ring_params(bp);
9320 
9321 			return bnxt_open_nic(bp, false, false);
9322 		}
9323 		if (update_tpa) {
9324 			rc = bnxt_set_tpa(bp,
9325 					  (flags & BNXT_FLAG_TPA) ?
9326 					  true : false);
9327 			if (rc)
9328 				bp->flags = old_flags;
9329 		}
9330 	}
9331 	return rc;
9332 }
9333 
9334 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9335 				       u32 ring_id, u32 *prod, u32 *cons)
9336 {
9337 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9338 	struct hwrm_dbg_ring_info_get_input req = {0};
9339 	int rc;
9340 
9341 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9342 	req.ring_type = ring_type;
9343 	req.fw_ring_id = cpu_to_le32(ring_id);
9344 	mutex_lock(&bp->hwrm_cmd_lock);
9345 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9346 	if (!rc) {
9347 		*prod = le32_to_cpu(resp->producer_index);
9348 		*cons = le32_to_cpu(resp->consumer_index);
9349 	}
9350 	mutex_unlock(&bp->hwrm_cmd_lock);
9351 	return rc;
9352 }
9353 
9354 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9355 {
9356 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9357 	int i = bnapi->index;
9358 
9359 	if (!txr)
9360 		return;
9361 
9362 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9363 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9364 		    txr->tx_cons);
9365 }
9366 
9367 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9368 {
9369 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9370 	int i = bnapi->index;
9371 
9372 	if (!rxr)
9373 		return;
9374 
9375 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9376 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9377 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9378 		    rxr->rx_sw_agg_prod);
9379 }
9380 
9381 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9382 {
9383 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9384 	int i = bnapi->index;
9385 
9386 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9387 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9388 }
9389 
9390 static void bnxt_dbg_dump_states(struct bnxt *bp)
9391 {
9392 	int i;
9393 	struct bnxt_napi *bnapi;
9394 
9395 	for (i = 0; i < bp->cp_nr_rings; i++) {
9396 		bnapi = bp->bnapi[i];
9397 		if (netif_msg_drv(bp)) {
9398 			bnxt_dump_tx_sw_state(bnapi);
9399 			bnxt_dump_rx_sw_state(bnapi);
9400 			bnxt_dump_cp_sw_state(bnapi);
9401 		}
9402 	}
9403 }
9404 
9405 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9406 {
9407 	if (!silent)
9408 		bnxt_dbg_dump_states(bp);
9409 	if (netif_running(bp->dev)) {
9410 		int rc;
9411 
9412 		if (!silent)
9413 			bnxt_ulp_stop(bp);
9414 		bnxt_close_nic(bp, false, false);
9415 		rc = bnxt_open_nic(bp, false, false);
9416 		if (!silent && !rc)
9417 			bnxt_ulp_start(bp);
9418 	}
9419 }
9420 
9421 static void bnxt_tx_timeout(struct net_device *dev)
9422 {
9423 	struct bnxt *bp = netdev_priv(dev);
9424 
9425 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9426 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9427 	bnxt_queue_sp_work(bp);
9428 }
9429 
9430 static void bnxt_timer(struct timer_list *t)
9431 {
9432 	struct bnxt *bp = from_timer(bp, t, timer);
9433 	struct net_device *dev = bp->dev;
9434 
9435 	if (!netif_running(dev))
9436 		return;
9437 
9438 	if (atomic_read(&bp->intr_sem) != 0)
9439 		goto bnxt_restart_timer;
9440 
9441 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9442 	    bp->stats_coal_ticks) {
9443 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9444 		bnxt_queue_sp_work(bp);
9445 	}
9446 
9447 	if (bnxt_tc_flower_enabled(bp)) {
9448 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
9449 		bnxt_queue_sp_work(bp);
9450 	}
9451 
9452 	if (bp->link_info.phy_retry) {
9453 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
9454 			bp->link_info.phy_retry = 0;
9455 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
9456 		} else {
9457 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
9458 			bnxt_queue_sp_work(bp);
9459 		}
9460 	}
9461 
9462 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
9463 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
9464 		bnxt_queue_sp_work(bp);
9465 	}
9466 bnxt_restart_timer:
9467 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9468 }
9469 
9470 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
9471 {
9472 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
9473 	 * set.  If the device is being closed, bnxt_close() may be holding
9474 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
9475 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
9476 	 */
9477 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9478 	rtnl_lock();
9479 }
9480 
9481 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
9482 {
9483 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9484 	rtnl_unlock();
9485 }
9486 
9487 /* Only called from bnxt_sp_task() */
9488 static void bnxt_reset(struct bnxt *bp, bool silent)
9489 {
9490 	bnxt_rtnl_lock_sp(bp);
9491 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
9492 		bnxt_reset_task(bp, silent);
9493 	bnxt_rtnl_unlock_sp(bp);
9494 }
9495 
9496 static void bnxt_chk_missed_irq(struct bnxt *bp)
9497 {
9498 	int i;
9499 
9500 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9501 		return;
9502 
9503 	for (i = 0; i < bp->cp_nr_rings; i++) {
9504 		struct bnxt_napi *bnapi = bp->bnapi[i];
9505 		struct bnxt_cp_ring_info *cpr;
9506 		u32 fw_ring_id;
9507 		int j;
9508 
9509 		if (!bnapi)
9510 			continue;
9511 
9512 		cpr = &bnapi->cp_ring;
9513 		for (j = 0; j < 2; j++) {
9514 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
9515 			u32 val[2];
9516 
9517 			if (!cpr2 || cpr2->has_more_work ||
9518 			    !bnxt_has_work(bp, cpr2))
9519 				continue;
9520 
9521 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
9522 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
9523 				continue;
9524 			}
9525 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
9526 			bnxt_dbg_hwrm_ring_info_get(bp,
9527 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
9528 				fw_ring_id, &val[0], &val[1]);
9529 			cpr->missed_irqs++;
9530 		}
9531 	}
9532 }
9533 
9534 static void bnxt_cfg_ntp_filters(struct bnxt *);
9535 
9536 static void bnxt_sp_task(struct work_struct *work)
9537 {
9538 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
9539 
9540 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9541 	smp_mb__after_atomic();
9542 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9543 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9544 		return;
9545 	}
9546 
9547 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
9548 		bnxt_cfg_rx_mode(bp);
9549 
9550 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
9551 		bnxt_cfg_ntp_filters(bp);
9552 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
9553 		bnxt_hwrm_exec_fwd_req(bp);
9554 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9555 		bnxt_hwrm_tunnel_dst_port_alloc(
9556 			bp, bp->vxlan_port,
9557 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9558 	}
9559 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9560 		bnxt_hwrm_tunnel_dst_port_free(
9561 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9562 	}
9563 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9564 		bnxt_hwrm_tunnel_dst_port_alloc(
9565 			bp, bp->nge_port,
9566 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9567 	}
9568 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9569 		bnxt_hwrm_tunnel_dst_port_free(
9570 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9571 	}
9572 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
9573 		bnxt_hwrm_port_qstats(bp);
9574 		bnxt_hwrm_port_qstats_ext(bp);
9575 		bnxt_hwrm_pcie_qstats(bp);
9576 	}
9577 
9578 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
9579 		int rc;
9580 
9581 		mutex_lock(&bp->link_lock);
9582 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
9583 				       &bp->sp_event))
9584 			bnxt_hwrm_phy_qcaps(bp);
9585 
9586 		rc = bnxt_update_link(bp, true);
9587 		mutex_unlock(&bp->link_lock);
9588 		if (rc)
9589 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
9590 				   rc);
9591 	}
9592 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
9593 		int rc;
9594 
9595 		mutex_lock(&bp->link_lock);
9596 		rc = bnxt_update_phy_setting(bp);
9597 		mutex_unlock(&bp->link_lock);
9598 		if (rc) {
9599 			netdev_warn(bp->dev, "update phy settings retry failed\n");
9600 		} else {
9601 			bp->link_info.phy_retry = false;
9602 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
9603 		}
9604 	}
9605 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
9606 		mutex_lock(&bp->link_lock);
9607 		bnxt_get_port_module_status(bp);
9608 		mutex_unlock(&bp->link_lock);
9609 	}
9610 
9611 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
9612 		bnxt_tc_flow_stats_work(bp);
9613 
9614 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
9615 		bnxt_chk_missed_irq(bp);
9616 
9617 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
9618 	 * must be the last functions to be called before exiting.
9619 	 */
9620 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
9621 		bnxt_reset(bp, false);
9622 
9623 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
9624 		bnxt_reset(bp, true);
9625 
9626 	smp_mb__before_atomic();
9627 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9628 }
9629 
9630 /* Under rtnl_lock */
9631 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
9632 		     int tx_xdp)
9633 {
9634 	int max_rx, max_tx, tx_sets = 1;
9635 	int tx_rings_needed, stats;
9636 	int rx_rings = rx;
9637 	int cp, vnics, rc;
9638 
9639 	if (tcs)
9640 		tx_sets = tcs;
9641 
9642 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
9643 	if (rc)
9644 		return rc;
9645 
9646 	if (max_rx < rx)
9647 		return -ENOMEM;
9648 
9649 	tx_rings_needed = tx * tx_sets + tx_xdp;
9650 	if (max_tx < tx_rings_needed)
9651 		return -ENOMEM;
9652 
9653 	vnics = 1;
9654 	if (bp->flags & BNXT_FLAG_RFS)
9655 		vnics += rx_rings;
9656 
9657 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
9658 		rx_rings <<= 1;
9659 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
9660 	stats = cp;
9661 	if (BNXT_NEW_RM(bp)) {
9662 		cp += bnxt_get_ulp_msix_num(bp);
9663 		stats += bnxt_get_ulp_stat_ctxs(bp);
9664 	}
9665 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
9666 				     stats, vnics);
9667 }
9668 
9669 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
9670 {
9671 	if (bp->bar2) {
9672 		pci_iounmap(pdev, bp->bar2);
9673 		bp->bar2 = NULL;
9674 	}
9675 
9676 	if (bp->bar1) {
9677 		pci_iounmap(pdev, bp->bar1);
9678 		bp->bar1 = NULL;
9679 	}
9680 
9681 	if (bp->bar0) {
9682 		pci_iounmap(pdev, bp->bar0);
9683 		bp->bar0 = NULL;
9684 	}
9685 }
9686 
9687 static void bnxt_cleanup_pci(struct bnxt *bp)
9688 {
9689 	bnxt_unmap_bars(bp, bp->pdev);
9690 	pci_release_regions(bp->pdev);
9691 	pci_disable_device(bp->pdev);
9692 }
9693 
9694 static void bnxt_init_dflt_coal(struct bnxt *bp)
9695 {
9696 	struct bnxt_coal *coal;
9697 
9698 	/* Tick values in micro seconds.
9699 	 * 1 coal_buf x bufs_per_record = 1 completion record.
9700 	 */
9701 	coal = &bp->rx_coal;
9702 	coal->coal_ticks = 10;
9703 	coal->coal_bufs = 30;
9704 	coal->coal_ticks_irq = 1;
9705 	coal->coal_bufs_irq = 2;
9706 	coal->idle_thresh = 50;
9707 	coal->bufs_per_record = 2;
9708 	coal->budget = 64;		/* NAPI budget */
9709 
9710 	coal = &bp->tx_coal;
9711 	coal->coal_ticks = 28;
9712 	coal->coal_bufs = 30;
9713 	coal->coal_ticks_irq = 2;
9714 	coal->coal_bufs_irq = 2;
9715 	coal->bufs_per_record = 1;
9716 
9717 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
9718 }
9719 
9720 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
9721 {
9722 	int rc;
9723 	struct bnxt *bp = netdev_priv(dev);
9724 
9725 	SET_NETDEV_DEV(dev, &pdev->dev);
9726 
9727 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
9728 	rc = pci_enable_device(pdev);
9729 	if (rc) {
9730 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
9731 		goto init_err;
9732 	}
9733 
9734 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9735 		dev_err(&pdev->dev,
9736 			"Cannot find PCI device base address, aborting\n");
9737 		rc = -ENODEV;
9738 		goto init_err_disable;
9739 	}
9740 
9741 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
9742 	if (rc) {
9743 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
9744 		goto init_err_disable;
9745 	}
9746 
9747 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
9748 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
9749 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
9750 		goto init_err_disable;
9751 	}
9752 
9753 	pci_set_master(pdev);
9754 
9755 	bp->dev = dev;
9756 	bp->pdev = pdev;
9757 
9758 	bp->bar0 = pci_ioremap_bar(pdev, 0);
9759 	if (!bp->bar0) {
9760 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
9761 		rc = -ENOMEM;
9762 		goto init_err_release;
9763 	}
9764 
9765 	bp->bar1 = pci_ioremap_bar(pdev, 2);
9766 	if (!bp->bar1) {
9767 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
9768 		rc = -ENOMEM;
9769 		goto init_err_release;
9770 	}
9771 
9772 	bp->bar2 = pci_ioremap_bar(pdev, 4);
9773 	if (!bp->bar2) {
9774 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
9775 		rc = -ENOMEM;
9776 		goto init_err_release;
9777 	}
9778 
9779 	pci_enable_pcie_error_reporting(pdev);
9780 
9781 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
9782 
9783 	spin_lock_init(&bp->ntp_fltr_lock);
9784 #if BITS_PER_LONG == 32
9785 	spin_lock_init(&bp->db_lock);
9786 #endif
9787 
9788 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
9789 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
9790 
9791 	bnxt_init_dflt_coal(bp);
9792 
9793 	timer_setup(&bp->timer, bnxt_timer, 0);
9794 	bp->current_interval = BNXT_TIMER_INTERVAL;
9795 
9796 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9797 	return 0;
9798 
9799 init_err_release:
9800 	bnxt_unmap_bars(bp, pdev);
9801 	pci_release_regions(pdev);
9802 
9803 init_err_disable:
9804 	pci_disable_device(pdev);
9805 
9806 init_err:
9807 	return rc;
9808 }
9809 
9810 /* rtnl_lock held */
9811 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
9812 {
9813 	struct sockaddr *addr = p;
9814 	struct bnxt *bp = netdev_priv(dev);
9815 	int rc = 0;
9816 
9817 	if (!is_valid_ether_addr(addr->sa_data))
9818 		return -EADDRNOTAVAIL;
9819 
9820 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
9821 		return 0;
9822 
9823 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
9824 	if (rc)
9825 		return rc;
9826 
9827 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
9828 	if (netif_running(dev)) {
9829 		bnxt_close_nic(bp, false, false);
9830 		rc = bnxt_open_nic(bp, false, false);
9831 	}
9832 
9833 	return rc;
9834 }
9835 
9836 /* rtnl_lock held */
9837 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
9838 {
9839 	struct bnxt *bp = netdev_priv(dev);
9840 
9841 	if (netif_running(dev))
9842 		bnxt_close_nic(bp, false, false);
9843 
9844 	dev->mtu = new_mtu;
9845 	bnxt_set_ring_params(bp);
9846 
9847 	if (netif_running(dev))
9848 		return bnxt_open_nic(bp, false, false);
9849 
9850 	return 0;
9851 }
9852 
9853 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
9854 {
9855 	struct bnxt *bp = netdev_priv(dev);
9856 	bool sh = false;
9857 	int rc;
9858 
9859 	if (tc > bp->max_tc) {
9860 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
9861 			   tc, bp->max_tc);
9862 		return -EINVAL;
9863 	}
9864 
9865 	if (netdev_get_num_tc(dev) == tc)
9866 		return 0;
9867 
9868 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9869 		sh = true;
9870 
9871 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
9872 			      sh, tc, bp->tx_nr_rings_xdp);
9873 	if (rc)
9874 		return rc;
9875 
9876 	/* Needs to close the device and do hw resource re-allocations */
9877 	if (netif_running(bp->dev))
9878 		bnxt_close_nic(bp, true, false);
9879 
9880 	if (tc) {
9881 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
9882 		netdev_set_num_tc(dev, tc);
9883 	} else {
9884 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
9885 		netdev_reset_tc(dev);
9886 	}
9887 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
9888 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9889 			       bp->tx_nr_rings + bp->rx_nr_rings;
9890 
9891 	if (netif_running(bp->dev))
9892 		return bnxt_open_nic(bp, true, false);
9893 
9894 	return 0;
9895 }
9896 
9897 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
9898 				  void *cb_priv)
9899 {
9900 	struct bnxt *bp = cb_priv;
9901 
9902 	if (!bnxt_tc_flower_enabled(bp) ||
9903 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
9904 		return -EOPNOTSUPP;
9905 
9906 	switch (type) {
9907 	case TC_SETUP_CLSFLOWER:
9908 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
9909 	default:
9910 		return -EOPNOTSUPP;
9911 	}
9912 }
9913 
9914 static int bnxt_setup_tc_block(struct net_device *dev,
9915 			       struct tc_block_offload *f)
9916 {
9917 	struct bnxt *bp = netdev_priv(dev);
9918 
9919 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9920 		return -EOPNOTSUPP;
9921 
9922 	switch (f->command) {
9923 	case TC_BLOCK_BIND:
9924 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
9925 					     bp, bp, f->extack);
9926 	case TC_BLOCK_UNBIND:
9927 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
9928 		return 0;
9929 	default:
9930 		return -EOPNOTSUPP;
9931 	}
9932 }
9933 
9934 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
9935 			 void *type_data)
9936 {
9937 	switch (type) {
9938 	case TC_SETUP_BLOCK:
9939 		return bnxt_setup_tc_block(dev, type_data);
9940 	case TC_SETUP_QDISC_MQPRIO: {
9941 		struct tc_mqprio_qopt *mqprio = type_data;
9942 
9943 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
9944 
9945 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
9946 	}
9947 	default:
9948 		return -EOPNOTSUPP;
9949 	}
9950 }
9951 
9952 #ifdef CONFIG_RFS_ACCEL
9953 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
9954 			    struct bnxt_ntuple_filter *f2)
9955 {
9956 	struct flow_keys *keys1 = &f1->fkeys;
9957 	struct flow_keys *keys2 = &f2->fkeys;
9958 
9959 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
9960 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
9961 	    keys1->ports.ports == keys2->ports.ports &&
9962 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
9963 	    keys1->basic.n_proto == keys2->basic.n_proto &&
9964 	    keys1->control.flags == keys2->control.flags &&
9965 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
9966 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
9967 		return true;
9968 
9969 	return false;
9970 }
9971 
9972 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
9973 			      u16 rxq_index, u32 flow_id)
9974 {
9975 	struct bnxt *bp = netdev_priv(dev);
9976 	struct bnxt_ntuple_filter *fltr, *new_fltr;
9977 	struct flow_keys *fkeys;
9978 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
9979 	int rc = 0, idx, bit_id, l2_idx = 0;
9980 	struct hlist_head *head;
9981 
9982 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
9983 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9984 		int off = 0, j;
9985 
9986 		netif_addr_lock_bh(dev);
9987 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
9988 			if (ether_addr_equal(eth->h_dest,
9989 					     vnic->uc_list + off)) {
9990 				l2_idx = j + 1;
9991 				break;
9992 			}
9993 		}
9994 		netif_addr_unlock_bh(dev);
9995 		if (!l2_idx)
9996 			return -EINVAL;
9997 	}
9998 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
9999 	if (!new_fltr)
10000 		return -ENOMEM;
10001 
10002 	fkeys = &new_fltr->fkeys;
10003 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
10004 		rc = -EPROTONOSUPPORT;
10005 		goto err_free;
10006 	}
10007 
10008 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
10009 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
10010 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
10011 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
10012 		rc = -EPROTONOSUPPORT;
10013 		goto err_free;
10014 	}
10015 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
10016 	    bp->hwrm_spec_code < 0x10601) {
10017 		rc = -EPROTONOSUPPORT;
10018 		goto err_free;
10019 	}
10020 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
10021 	    bp->hwrm_spec_code < 0x10601) {
10022 		rc = -EPROTONOSUPPORT;
10023 		goto err_free;
10024 	}
10025 
10026 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
10027 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
10028 
10029 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
10030 	head = &bp->ntp_fltr_hash_tbl[idx];
10031 	rcu_read_lock();
10032 	hlist_for_each_entry_rcu(fltr, head, hash) {
10033 		if (bnxt_fltr_match(fltr, new_fltr)) {
10034 			rcu_read_unlock();
10035 			rc = 0;
10036 			goto err_free;
10037 		}
10038 	}
10039 	rcu_read_unlock();
10040 
10041 	spin_lock_bh(&bp->ntp_fltr_lock);
10042 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
10043 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
10044 	if (bit_id < 0) {
10045 		spin_unlock_bh(&bp->ntp_fltr_lock);
10046 		rc = -ENOMEM;
10047 		goto err_free;
10048 	}
10049 
10050 	new_fltr->sw_id = (u16)bit_id;
10051 	new_fltr->flow_id = flow_id;
10052 	new_fltr->l2_fltr_idx = l2_idx;
10053 	new_fltr->rxq = rxq_index;
10054 	hlist_add_head_rcu(&new_fltr->hash, head);
10055 	bp->ntp_fltr_count++;
10056 	spin_unlock_bh(&bp->ntp_fltr_lock);
10057 
10058 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10059 	bnxt_queue_sp_work(bp);
10060 
10061 	return new_fltr->sw_id;
10062 
10063 err_free:
10064 	kfree(new_fltr);
10065 	return rc;
10066 }
10067 
10068 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10069 {
10070 	int i;
10071 
10072 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
10073 		struct hlist_head *head;
10074 		struct hlist_node *tmp;
10075 		struct bnxt_ntuple_filter *fltr;
10076 		int rc;
10077 
10078 		head = &bp->ntp_fltr_hash_tbl[i];
10079 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
10080 			bool del = false;
10081 
10082 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
10083 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
10084 							fltr->flow_id,
10085 							fltr->sw_id)) {
10086 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
10087 									 fltr);
10088 					del = true;
10089 				}
10090 			} else {
10091 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
10092 								       fltr);
10093 				if (rc)
10094 					del = true;
10095 				else
10096 					set_bit(BNXT_FLTR_VALID, &fltr->state);
10097 			}
10098 
10099 			if (del) {
10100 				spin_lock_bh(&bp->ntp_fltr_lock);
10101 				hlist_del_rcu(&fltr->hash);
10102 				bp->ntp_fltr_count--;
10103 				spin_unlock_bh(&bp->ntp_fltr_lock);
10104 				synchronize_rcu();
10105 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
10106 				kfree(fltr);
10107 			}
10108 		}
10109 	}
10110 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
10111 		netdev_info(bp->dev, "Receive PF driver unload event!");
10112 }
10113 
10114 #else
10115 
10116 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10117 {
10118 }
10119 
10120 #endif /* CONFIG_RFS_ACCEL */
10121 
10122 static void bnxt_udp_tunnel_add(struct net_device *dev,
10123 				struct udp_tunnel_info *ti)
10124 {
10125 	struct bnxt *bp = netdev_priv(dev);
10126 
10127 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10128 		return;
10129 
10130 	if (!netif_running(dev))
10131 		return;
10132 
10133 	switch (ti->type) {
10134 	case UDP_TUNNEL_TYPE_VXLAN:
10135 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
10136 			return;
10137 
10138 		bp->vxlan_port_cnt++;
10139 		if (bp->vxlan_port_cnt == 1) {
10140 			bp->vxlan_port = ti->port;
10141 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
10142 			bnxt_queue_sp_work(bp);
10143 		}
10144 		break;
10145 	case UDP_TUNNEL_TYPE_GENEVE:
10146 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
10147 			return;
10148 
10149 		bp->nge_port_cnt++;
10150 		if (bp->nge_port_cnt == 1) {
10151 			bp->nge_port = ti->port;
10152 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
10153 		}
10154 		break;
10155 	default:
10156 		return;
10157 	}
10158 
10159 	bnxt_queue_sp_work(bp);
10160 }
10161 
10162 static void bnxt_udp_tunnel_del(struct net_device *dev,
10163 				struct udp_tunnel_info *ti)
10164 {
10165 	struct bnxt *bp = netdev_priv(dev);
10166 
10167 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10168 		return;
10169 
10170 	if (!netif_running(dev))
10171 		return;
10172 
10173 	switch (ti->type) {
10174 	case UDP_TUNNEL_TYPE_VXLAN:
10175 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
10176 			return;
10177 		bp->vxlan_port_cnt--;
10178 
10179 		if (bp->vxlan_port_cnt != 0)
10180 			return;
10181 
10182 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
10183 		break;
10184 	case UDP_TUNNEL_TYPE_GENEVE:
10185 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
10186 			return;
10187 		bp->nge_port_cnt--;
10188 
10189 		if (bp->nge_port_cnt != 0)
10190 			return;
10191 
10192 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
10193 		break;
10194 	default:
10195 		return;
10196 	}
10197 
10198 	bnxt_queue_sp_work(bp);
10199 }
10200 
10201 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
10202 			       struct net_device *dev, u32 filter_mask,
10203 			       int nlflags)
10204 {
10205 	struct bnxt *bp = netdev_priv(dev);
10206 
10207 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
10208 				       nlflags, filter_mask, NULL);
10209 }
10210 
10211 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
10212 			       u16 flags, struct netlink_ext_ack *extack)
10213 {
10214 	struct bnxt *bp = netdev_priv(dev);
10215 	struct nlattr *attr, *br_spec;
10216 	int rem, rc = 0;
10217 
10218 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
10219 		return -EOPNOTSUPP;
10220 
10221 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
10222 	if (!br_spec)
10223 		return -EINVAL;
10224 
10225 	nla_for_each_nested(attr, br_spec, rem) {
10226 		u16 mode;
10227 
10228 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
10229 			continue;
10230 
10231 		if (nla_len(attr) < sizeof(mode))
10232 			return -EINVAL;
10233 
10234 		mode = nla_get_u16(attr);
10235 		if (mode == bp->br_mode)
10236 			break;
10237 
10238 		rc = bnxt_hwrm_set_br_mode(bp, mode);
10239 		if (!rc)
10240 			bp->br_mode = mode;
10241 		break;
10242 	}
10243 	return rc;
10244 }
10245 
10246 int bnxt_get_port_parent_id(struct net_device *dev,
10247 			    struct netdev_phys_item_id *ppid)
10248 {
10249 	struct bnxt *bp = netdev_priv(dev);
10250 
10251 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
10252 		return -EOPNOTSUPP;
10253 
10254 	/* The PF and it's VF-reps only support the switchdev framework */
10255 	if (!BNXT_PF(bp))
10256 		return -EOPNOTSUPP;
10257 
10258 	ppid->id_len = sizeof(bp->switch_id);
10259 	memcpy(ppid->id, bp->switch_id, ppid->id_len);
10260 
10261 	return 0;
10262 }
10263 
10264 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
10265 {
10266 	struct bnxt *bp = netdev_priv(dev);
10267 
10268 	return &bp->dl_port;
10269 }
10270 
10271 static const struct net_device_ops bnxt_netdev_ops = {
10272 	.ndo_open		= bnxt_open,
10273 	.ndo_start_xmit		= bnxt_start_xmit,
10274 	.ndo_stop		= bnxt_close,
10275 	.ndo_get_stats64	= bnxt_get_stats64,
10276 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
10277 	.ndo_do_ioctl		= bnxt_ioctl,
10278 	.ndo_validate_addr	= eth_validate_addr,
10279 	.ndo_set_mac_address	= bnxt_change_mac_addr,
10280 	.ndo_change_mtu		= bnxt_change_mtu,
10281 	.ndo_fix_features	= bnxt_fix_features,
10282 	.ndo_set_features	= bnxt_set_features,
10283 	.ndo_tx_timeout		= bnxt_tx_timeout,
10284 #ifdef CONFIG_BNXT_SRIOV
10285 	.ndo_get_vf_config	= bnxt_get_vf_config,
10286 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
10287 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
10288 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
10289 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
10290 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
10291 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
10292 #endif
10293 	.ndo_setup_tc           = bnxt_setup_tc,
10294 #ifdef CONFIG_RFS_ACCEL
10295 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
10296 #endif
10297 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
10298 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
10299 	.ndo_bpf		= bnxt_xdp,
10300 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
10301 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
10302 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
10303 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
10304 };
10305 
10306 static void bnxt_remove_one(struct pci_dev *pdev)
10307 {
10308 	struct net_device *dev = pci_get_drvdata(pdev);
10309 	struct bnxt *bp = netdev_priv(dev);
10310 
10311 	if (BNXT_PF(bp)) {
10312 		bnxt_sriov_disable(bp);
10313 		bnxt_dl_unregister(bp);
10314 	}
10315 
10316 	pci_disable_pcie_error_reporting(pdev);
10317 	unregister_netdev(dev);
10318 	bnxt_shutdown_tc(bp);
10319 	bnxt_cancel_sp_work(bp);
10320 	bp->sp_event = 0;
10321 
10322 	bnxt_clear_int_mode(bp);
10323 	bnxt_hwrm_func_drv_unrgtr(bp);
10324 	bnxt_free_hwrm_resources(bp);
10325 	bnxt_free_hwrm_short_cmd_req(bp);
10326 	bnxt_ethtool_free(bp);
10327 	bnxt_dcb_free(bp);
10328 	kfree(bp->edev);
10329 	bp->edev = NULL;
10330 	bnxt_cleanup_pci(bp);
10331 	bnxt_free_ctx_mem(bp);
10332 	kfree(bp->ctx);
10333 	bp->ctx = NULL;
10334 	bnxt_free_port_stats(bp);
10335 	free_netdev(dev);
10336 }
10337 
10338 static int bnxt_probe_phy(struct bnxt *bp)
10339 {
10340 	int rc = 0;
10341 	struct bnxt_link_info *link_info = &bp->link_info;
10342 
10343 	rc = bnxt_hwrm_phy_qcaps(bp);
10344 	if (rc) {
10345 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
10346 			   rc);
10347 		return rc;
10348 	}
10349 	mutex_init(&bp->link_lock);
10350 
10351 	rc = bnxt_update_link(bp, false);
10352 	if (rc) {
10353 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
10354 			   rc);
10355 		return rc;
10356 	}
10357 
10358 	/* Older firmware does not have supported_auto_speeds, so assume
10359 	 * that all supported speeds can be autonegotiated.
10360 	 */
10361 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
10362 		link_info->support_auto_speeds = link_info->support_speeds;
10363 
10364 	/*initialize the ethool setting copy with NVM settings */
10365 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10366 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10367 		if (bp->hwrm_spec_code >= 0x10201) {
10368 			if (link_info->auto_pause_setting &
10369 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10370 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10371 		} else {
10372 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10373 		}
10374 		link_info->advertising = link_info->auto_link_speeds;
10375 	} else {
10376 		link_info->req_link_speed = link_info->force_link_speed;
10377 		link_info->req_duplex = link_info->duplex_setting;
10378 	}
10379 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10380 		link_info->req_flow_ctrl =
10381 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10382 	else
10383 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10384 	return rc;
10385 }
10386 
10387 static int bnxt_get_max_irq(struct pci_dev *pdev)
10388 {
10389 	u16 ctrl;
10390 
10391 	if (!pdev->msix_cap)
10392 		return 1;
10393 
10394 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
10395 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
10396 }
10397 
10398 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10399 				int *max_cp)
10400 {
10401 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10402 	int max_ring_grps = 0, max_irq;
10403 
10404 	*max_tx = hw_resc->max_tx_rings;
10405 	*max_rx = hw_resc->max_rx_rings;
10406 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
10407 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
10408 			bnxt_get_ulp_msix_num(bp),
10409 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
10410 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10411 		*max_cp = min_t(int, *max_cp, max_irq);
10412 	max_ring_grps = hw_resc->max_hw_ring_grps;
10413 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
10414 		*max_cp -= 1;
10415 		*max_rx -= 2;
10416 	}
10417 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10418 		*max_rx >>= 1;
10419 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10420 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
10421 		/* On P5 chips, max_cp output param should be available NQs */
10422 		*max_cp = max_irq;
10423 	}
10424 	*max_rx = min_t(int, *max_rx, max_ring_grps);
10425 }
10426 
10427 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
10428 {
10429 	int rx, tx, cp;
10430 
10431 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
10432 	*max_rx = rx;
10433 	*max_tx = tx;
10434 	if (!rx || !tx || !cp)
10435 		return -ENOMEM;
10436 
10437 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
10438 }
10439 
10440 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10441 			       bool shared)
10442 {
10443 	int rc;
10444 
10445 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10446 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
10447 		/* Not enough rings, try disabling agg rings. */
10448 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
10449 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10450 		if (rc) {
10451 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
10452 			bp->flags |= BNXT_FLAG_AGG_RINGS;
10453 			return rc;
10454 		}
10455 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
10456 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10457 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10458 		bnxt_set_ring_params(bp);
10459 	}
10460 
10461 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
10462 		int max_cp, max_stat, max_irq;
10463 
10464 		/* Reserve minimum resources for RoCE */
10465 		max_cp = bnxt_get_max_func_cp_rings(bp);
10466 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
10467 		max_irq = bnxt_get_max_func_irqs(bp);
10468 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
10469 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
10470 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
10471 			return 0;
10472 
10473 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
10474 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
10475 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
10476 		max_cp = min_t(int, max_cp, max_irq);
10477 		max_cp = min_t(int, max_cp, max_stat);
10478 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
10479 		if (rc)
10480 			rc = 0;
10481 	}
10482 	return rc;
10483 }
10484 
10485 /* In initial default shared ring setting, each shared ring must have a
10486  * RX/TX ring pair.
10487  */
10488 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
10489 {
10490 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
10491 	bp->rx_nr_rings = bp->cp_nr_rings;
10492 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
10493 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10494 }
10495 
10496 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
10497 {
10498 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
10499 
10500 	if (!bnxt_can_reserve_rings(bp))
10501 		return 0;
10502 
10503 	if (sh)
10504 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
10505 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
10506 	/* Reduce default rings on multi-port cards so that total default
10507 	 * rings do not exceed CPU count.
10508 	 */
10509 	if (bp->port_count > 1) {
10510 		int max_rings =
10511 			max_t(int, num_online_cpus() / bp->port_count, 1);
10512 
10513 		dflt_rings = min_t(int, dflt_rings, max_rings);
10514 	}
10515 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
10516 	if (rc)
10517 		return rc;
10518 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
10519 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
10520 	if (sh)
10521 		bnxt_trim_dflt_sh_rings(bp);
10522 	else
10523 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
10524 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10525 
10526 	rc = __bnxt_reserve_rings(bp);
10527 	if (rc)
10528 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
10529 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10530 	if (sh)
10531 		bnxt_trim_dflt_sh_rings(bp);
10532 
10533 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
10534 	if (bnxt_need_reserve_rings(bp)) {
10535 		rc = __bnxt_reserve_rings(bp);
10536 		if (rc)
10537 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
10538 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10539 	}
10540 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10541 		bp->rx_nr_rings++;
10542 		bp->cp_nr_rings++;
10543 	}
10544 	return rc;
10545 }
10546 
10547 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
10548 {
10549 	int rc;
10550 
10551 	if (bp->tx_nr_rings)
10552 		return 0;
10553 
10554 	bnxt_ulp_irq_stop(bp);
10555 	bnxt_clear_int_mode(bp);
10556 	rc = bnxt_set_dflt_rings(bp, true);
10557 	if (rc) {
10558 		netdev_err(bp->dev, "Not enough rings available.\n");
10559 		goto init_dflt_ring_err;
10560 	}
10561 	rc = bnxt_init_int_mode(bp);
10562 	if (rc)
10563 		goto init_dflt_ring_err;
10564 
10565 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10566 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
10567 		bp->flags |= BNXT_FLAG_RFS;
10568 		bp->dev->features |= NETIF_F_NTUPLE;
10569 	}
10570 init_dflt_ring_err:
10571 	bnxt_ulp_irq_restart(bp, rc);
10572 	return rc;
10573 }
10574 
10575 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
10576 {
10577 	int rc;
10578 
10579 	ASSERT_RTNL();
10580 	bnxt_hwrm_func_qcaps(bp);
10581 
10582 	if (netif_running(bp->dev))
10583 		__bnxt_close_nic(bp, true, false);
10584 
10585 	bnxt_ulp_irq_stop(bp);
10586 	bnxt_clear_int_mode(bp);
10587 	rc = bnxt_init_int_mode(bp);
10588 	bnxt_ulp_irq_restart(bp, rc);
10589 
10590 	if (netif_running(bp->dev)) {
10591 		if (rc)
10592 			dev_close(bp->dev);
10593 		else
10594 			rc = bnxt_open_nic(bp, true, false);
10595 	}
10596 
10597 	return rc;
10598 }
10599 
10600 static int bnxt_init_mac_addr(struct bnxt *bp)
10601 {
10602 	int rc = 0;
10603 
10604 	if (BNXT_PF(bp)) {
10605 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
10606 	} else {
10607 #ifdef CONFIG_BNXT_SRIOV
10608 		struct bnxt_vf_info *vf = &bp->vf;
10609 		bool strict_approval = true;
10610 
10611 		if (is_valid_ether_addr(vf->mac_addr)) {
10612 			/* overwrite netdev dev_addr with admin VF MAC */
10613 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
10614 			/* Older PF driver or firmware may not approve this
10615 			 * correctly.
10616 			 */
10617 			strict_approval = false;
10618 		} else {
10619 			eth_hw_addr_random(bp->dev);
10620 		}
10621 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
10622 #endif
10623 	}
10624 	return rc;
10625 }
10626 
10627 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
10628 {
10629 	struct pci_dev *pdev = bp->pdev;
10630 	int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
10631 	u32 dw;
10632 
10633 	if (!pos) {
10634 		netdev_info(bp->dev, "Unable do read adapter's DSN");
10635 		return -EOPNOTSUPP;
10636 	}
10637 
10638 	/* DSN (two dw) is at an offset of 4 from the cap pos */
10639 	pos += 4;
10640 	pci_read_config_dword(pdev, pos, &dw);
10641 	put_unaligned_le32(dw, &dsn[0]);
10642 	pci_read_config_dword(pdev, pos + 4, &dw);
10643 	put_unaligned_le32(dw, &dsn[4]);
10644 	return 0;
10645 }
10646 
10647 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
10648 {
10649 	static int version_printed;
10650 	struct net_device *dev;
10651 	struct bnxt *bp;
10652 	int rc, max_irqs;
10653 
10654 	if (pci_is_bridge(pdev))
10655 		return -ENODEV;
10656 
10657 	if (version_printed++ == 0)
10658 		pr_info("%s", version);
10659 
10660 	max_irqs = bnxt_get_max_irq(pdev);
10661 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
10662 	if (!dev)
10663 		return -ENOMEM;
10664 
10665 	bp = netdev_priv(dev);
10666 	bnxt_set_max_func_irqs(bp, max_irqs);
10667 
10668 	if (bnxt_vf_pciid(ent->driver_data))
10669 		bp->flags |= BNXT_FLAG_VF;
10670 
10671 	if (pdev->msix_cap)
10672 		bp->flags |= BNXT_FLAG_MSIX_CAP;
10673 
10674 	rc = bnxt_init_board(pdev, dev);
10675 	if (rc < 0)
10676 		goto init_err_free;
10677 
10678 	dev->netdev_ops = &bnxt_netdev_ops;
10679 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
10680 	dev->ethtool_ops = &bnxt_ethtool_ops;
10681 	pci_set_drvdata(pdev, dev);
10682 
10683 	rc = bnxt_alloc_hwrm_resources(bp);
10684 	if (rc)
10685 		goto init_err_pci_clean;
10686 
10687 	mutex_init(&bp->hwrm_cmd_lock);
10688 	rc = bnxt_hwrm_ver_get(bp);
10689 	if (rc)
10690 		goto init_err_pci_clean;
10691 
10692 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10693 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10694 		if (rc)
10695 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10696 	}
10697 
10698 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10699 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10700 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10701 		if (rc)
10702 			goto init_err_pci_clean;
10703 	}
10704 
10705 	if (BNXT_CHIP_P5(bp))
10706 		bp->flags |= BNXT_FLAG_CHIP_P5;
10707 
10708 	rc = bnxt_hwrm_func_reset(bp);
10709 	if (rc)
10710 		goto init_err_pci_clean;
10711 
10712 	bnxt_hwrm_fw_set_time(bp);
10713 
10714 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10715 			   NETIF_F_TSO | NETIF_F_TSO6 |
10716 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10717 			   NETIF_F_GSO_IPXIP4 |
10718 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10719 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
10720 			   NETIF_F_RXCSUM | NETIF_F_GRO;
10721 
10722 	if (BNXT_SUPPORTS_TPA(bp))
10723 		dev->hw_features |= NETIF_F_LRO;
10724 
10725 	dev->hw_enc_features =
10726 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10727 			NETIF_F_TSO | NETIF_F_TSO6 |
10728 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10729 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10730 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
10731 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
10732 				    NETIF_F_GSO_GRE_CSUM;
10733 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
10734 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
10735 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
10736 	if (BNXT_SUPPORTS_TPA(bp))
10737 		dev->hw_features |= NETIF_F_GRO_HW;
10738 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
10739 	if (dev->features & NETIF_F_GRO_HW)
10740 		dev->features &= ~NETIF_F_LRO;
10741 	dev->priv_flags |= IFF_UNICAST_FLT;
10742 
10743 #ifdef CONFIG_BNXT_SRIOV
10744 	init_waitqueue_head(&bp->sriov_cfg_wait);
10745 	mutex_init(&bp->sriov_lock);
10746 #endif
10747 	if (BNXT_SUPPORTS_TPA(bp)) {
10748 		bp->gro_func = bnxt_gro_func_5730x;
10749 		if (BNXT_CHIP_P4(bp))
10750 			bp->gro_func = bnxt_gro_func_5731x;
10751 	}
10752 	if (!BNXT_CHIP_P4_PLUS(bp))
10753 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
10754 
10755 	rc = bnxt_hwrm_func_drv_rgtr(bp);
10756 	if (rc)
10757 		goto init_err_pci_clean;
10758 
10759 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10760 	if (rc)
10761 		goto init_err_pci_clean;
10762 
10763 	bp->ulp_probe = bnxt_ulp_probe;
10764 
10765 	rc = bnxt_hwrm_queue_qportcfg(bp);
10766 	if (rc) {
10767 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
10768 			   rc);
10769 		rc = -1;
10770 		goto init_err_pci_clean;
10771 	}
10772 	/* Get the MAX capabilities for this function */
10773 	rc = bnxt_hwrm_func_qcaps(bp);
10774 	if (rc) {
10775 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10776 			   rc);
10777 		rc = -1;
10778 		goto init_err_pci_clean;
10779 	}
10780 
10781 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10782 	if (rc)
10783 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10784 			    rc);
10785 
10786 	rc = bnxt_init_mac_addr(bp);
10787 	if (rc) {
10788 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
10789 		rc = -EADDRNOTAVAIL;
10790 		goto init_err_pci_clean;
10791 	}
10792 
10793 	if (BNXT_PF(bp)) {
10794 		/* Read the adapter's DSN to use as the eswitch switch_id */
10795 		rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
10796 		if (rc)
10797 			goto init_err_pci_clean;
10798 	}
10799 	bnxt_hwrm_func_qcfg(bp);
10800 	bnxt_hwrm_vnic_qcaps(bp);
10801 	bnxt_hwrm_port_led_qcaps(bp);
10802 	bnxt_ethtool_init(bp);
10803 	bnxt_dcb_init(bp);
10804 
10805 	/* MTU range: 60 - FW defined max */
10806 	dev->min_mtu = ETH_ZLEN;
10807 	dev->max_mtu = bp->max_mtu;
10808 
10809 	rc = bnxt_probe_phy(bp);
10810 	if (rc)
10811 		goto init_err_pci_clean;
10812 
10813 	bnxt_set_rx_skb_mode(bp, false);
10814 	bnxt_set_tpa_flags(bp);
10815 	bnxt_set_ring_params(bp);
10816 	rc = bnxt_set_dflt_rings(bp, true);
10817 	if (rc) {
10818 		netdev_err(bp->dev, "Not enough rings available.\n");
10819 		rc = -ENOMEM;
10820 		goto init_err_pci_clean;
10821 	}
10822 
10823 	/* Default RSS hash cfg. */
10824 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10825 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10826 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10827 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10828 	if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10829 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10830 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10831 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10832 	}
10833 
10834 	if (bnxt_rfs_supported(bp)) {
10835 		dev->hw_features |= NETIF_F_NTUPLE;
10836 		if (bnxt_rfs_capable(bp)) {
10837 			bp->flags |= BNXT_FLAG_RFS;
10838 			dev->features |= NETIF_F_NTUPLE;
10839 		}
10840 	}
10841 
10842 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
10843 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
10844 
10845 	rc = bnxt_init_int_mode(bp);
10846 	if (rc)
10847 		goto init_err_pci_clean;
10848 
10849 	/* No TC has been set yet and rings may have been trimmed due to
10850 	 * limited MSIX, so we re-initialize the TX rings per TC.
10851 	 */
10852 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10853 
10854 	bnxt_get_wol_settings(bp);
10855 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10856 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10857 	else
10858 		device_set_wakeup_capable(&pdev->dev, false);
10859 
10860 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10861 
10862 	bnxt_hwrm_coal_params_qcaps(bp);
10863 
10864 	if (BNXT_PF(bp)) {
10865 		if (!bnxt_pf_wq) {
10866 			bnxt_pf_wq =
10867 				create_singlethread_workqueue("bnxt_pf_wq");
10868 			if (!bnxt_pf_wq) {
10869 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
10870 				goto init_err_pci_clean;
10871 			}
10872 		}
10873 		bnxt_init_tc(bp);
10874 	}
10875 
10876 	rc = register_netdev(dev);
10877 	if (rc)
10878 		goto init_err_cleanup_tc;
10879 
10880 	if (BNXT_PF(bp))
10881 		bnxt_dl_register(bp);
10882 
10883 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
10884 		    board_info[ent->driver_data].name,
10885 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
10886 	pcie_print_link_status(pdev);
10887 
10888 	return 0;
10889 
10890 init_err_cleanup_tc:
10891 	bnxt_shutdown_tc(bp);
10892 	bnxt_clear_int_mode(bp);
10893 
10894 init_err_pci_clean:
10895 	bnxt_free_hwrm_short_cmd_req(bp);
10896 	bnxt_free_hwrm_resources(bp);
10897 	bnxt_free_ctx_mem(bp);
10898 	kfree(bp->ctx);
10899 	bp->ctx = NULL;
10900 	bnxt_cleanup_pci(bp);
10901 
10902 init_err_free:
10903 	free_netdev(dev);
10904 	return rc;
10905 }
10906 
10907 static void bnxt_shutdown(struct pci_dev *pdev)
10908 {
10909 	struct net_device *dev = pci_get_drvdata(pdev);
10910 	struct bnxt *bp;
10911 
10912 	if (!dev)
10913 		return;
10914 
10915 	rtnl_lock();
10916 	bp = netdev_priv(dev);
10917 	if (!bp)
10918 		goto shutdown_exit;
10919 
10920 	if (netif_running(dev))
10921 		dev_close(dev);
10922 
10923 	bnxt_ulp_shutdown(bp);
10924 
10925 	if (system_state == SYSTEM_POWER_OFF) {
10926 		bnxt_clear_int_mode(bp);
10927 		pci_disable_device(pdev);
10928 		pci_wake_from_d3(pdev, bp->wol);
10929 		pci_set_power_state(pdev, PCI_D3hot);
10930 	}
10931 
10932 shutdown_exit:
10933 	rtnl_unlock();
10934 }
10935 
10936 #ifdef CONFIG_PM_SLEEP
10937 static int bnxt_suspend(struct device *device)
10938 {
10939 	struct pci_dev *pdev = to_pci_dev(device);
10940 	struct net_device *dev = pci_get_drvdata(pdev);
10941 	struct bnxt *bp = netdev_priv(dev);
10942 	int rc = 0;
10943 
10944 	rtnl_lock();
10945 	if (netif_running(dev)) {
10946 		netif_device_detach(dev);
10947 		rc = bnxt_close(dev);
10948 	}
10949 	bnxt_hwrm_func_drv_unrgtr(bp);
10950 	rtnl_unlock();
10951 	return rc;
10952 }
10953 
10954 static int bnxt_resume(struct device *device)
10955 {
10956 	struct pci_dev *pdev = to_pci_dev(device);
10957 	struct net_device *dev = pci_get_drvdata(pdev);
10958 	struct bnxt *bp = netdev_priv(dev);
10959 	int rc = 0;
10960 
10961 	rtnl_lock();
10962 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
10963 		rc = -ENODEV;
10964 		goto resume_exit;
10965 	}
10966 	rc = bnxt_hwrm_func_reset(bp);
10967 	if (rc) {
10968 		rc = -EBUSY;
10969 		goto resume_exit;
10970 	}
10971 	bnxt_get_wol_settings(bp);
10972 	if (netif_running(dev)) {
10973 		rc = bnxt_open(dev);
10974 		if (!rc)
10975 			netif_device_attach(dev);
10976 	}
10977 
10978 resume_exit:
10979 	rtnl_unlock();
10980 	return rc;
10981 }
10982 
10983 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
10984 #define BNXT_PM_OPS (&bnxt_pm_ops)
10985 
10986 #else
10987 
10988 #define BNXT_PM_OPS NULL
10989 
10990 #endif /* CONFIG_PM_SLEEP */
10991 
10992 /**
10993  * bnxt_io_error_detected - called when PCI error is detected
10994  * @pdev: Pointer to PCI device
10995  * @state: The current pci connection state
10996  *
10997  * This function is called after a PCI bus error affecting
10998  * this device has been detected.
10999  */
11000 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
11001 					       pci_channel_state_t state)
11002 {
11003 	struct net_device *netdev = pci_get_drvdata(pdev);
11004 	struct bnxt *bp = netdev_priv(netdev);
11005 
11006 	netdev_info(netdev, "PCI I/O error detected\n");
11007 
11008 	rtnl_lock();
11009 	netif_device_detach(netdev);
11010 
11011 	bnxt_ulp_stop(bp);
11012 
11013 	if (state == pci_channel_io_perm_failure) {
11014 		rtnl_unlock();
11015 		return PCI_ERS_RESULT_DISCONNECT;
11016 	}
11017 
11018 	if (netif_running(netdev))
11019 		bnxt_close(netdev);
11020 
11021 	pci_disable_device(pdev);
11022 	rtnl_unlock();
11023 
11024 	/* Request a slot slot reset. */
11025 	return PCI_ERS_RESULT_NEED_RESET;
11026 }
11027 
11028 /**
11029  * bnxt_io_slot_reset - called after the pci bus has been reset.
11030  * @pdev: Pointer to PCI device
11031  *
11032  * Restart the card from scratch, as if from a cold-boot.
11033  * At this point, the card has exprienced a hard reset,
11034  * followed by fixups by BIOS, and has its config space
11035  * set up identically to what it was at cold boot.
11036  */
11037 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
11038 {
11039 	struct net_device *netdev = pci_get_drvdata(pdev);
11040 	struct bnxt *bp = netdev_priv(netdev);
11041 	int err = 0;
11042 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
11043 
11044 	netdev_info(bp->dev, "PCI Slot Reset\n");
11045 
11046 	rtnl_lock();
11047 
11048 	if (pci_enable_device(pdev)) {
11049 		dev_err(&pdev->dev,
11050 			"Cannot re-enable PCI device after reset.\n");
11051 	} else {
11052 		pci_set_master(pdev);
11053 
11054 		err = bnxt_hwrm_func_reset(bp);
11055 		if (!err && netif_running(netdev))
11056 			err = bnxt_open(netdev);
11057 
11058 		if (!err) {
11059 			result = PCI_ERS_RESULT_RECOVERED;
11060 			bnxt_ulp_start(bp);
11061 		}
11062 	}
11063 
11064 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
11065 		dev_close(netdev);
11066 
11067 	rtnl_unlock();
11068 
11069 	return PCI_ERS_RESULT_RECOVERED;
11070 }
11071 
11072 /**
11073  * bnxt_io_resume - called when traffic can start flowing again.
11074  * @pdev: Pointer to PCI device
11075  *
11076  * This callback is called when the error recovery driver tells
11077  * us that its OK to resume normal operation.
11078  */
11079 static void bnxt_io_resume(struct pci_dev *pdev)
11080 {
11081 	struct net_device *netdev = pci_get_drvdata(pdev);
11082 
11083 	rtnl_lock();
11084 
11085 	netif_device_attach(netdev);
11086 
11087 	rtnl_unlock();
11088 }
11089 
11090 static const struct pci_error_handlers bnxt_err_handler = {
11091 	.error_detected	= bnxt_io_error_detected,
11092 	.slot_reset	= bnxt_io_slot_reset,
11093 	.resume		= bnxt_io_resume
11094 };
11095 
11096 static struct pci_driver bnxt_pci_driver = {
11097 	.name		= DRV_MODULE_NAME,
11098 	.id_table	= bnxt_pci_tbl,
11099 	.probe		= bnxt_init_one,
11100 	.remove		= bnxt_remove_one,
11101 	.shutdown	= bnxt_shutdown,
11102 	.driver.pm	= BNXT_PM_OPS,
11103 	.err_handler	= &bnxt_err_handler,
11104 #if defined(CONFIG_BNXT_SRIOV)
11105 	.sriov_configure = bnxt_sriov_configure,
11106 #endif
11107 };
11108 
11109 static int __init bnxt_init(void)
11110 {
11111 	bnxt_debug_init();
11112 	return pci_register_driver(&bnxt_pci_driver);
11113 }
11114 
11115 static void __exit bnxt_exit(void)
11116 {
11117 	pci_unregister_driver(&bnxt_pci_driver);
11118 	if (bnxt_pf_wq)
11119 		destroy_workqueue(bnxt_pf_wq);
11120 	bnxt_debug_exit();
11121 }
11122 
11123 module_init(bnxt_init);
11124 module_exit(bnxt_exit);
11125