xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 06b9cce42634a50f2840777a66553b02320db5ef)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 
60 #include "bnxt_hsi.h"
61 #include "bnxt.h"
62 #include "bnxt_hwrm.h"
63 #include "bnxt_ulp.h"
64 #include "bnxt_sriov.h"
65 #include "bnxt_ethtool.h"
66 #include "bnxt_dcb.h"
67 #include "bnxt_xdp.h"
68 #include "bnxt_ptp.h"
69 #include "bnxt_vfr.h"
70 #include "bnxt_tc.h"
71 #include "bnxt_devlink.h"
72 #include "bnxt_debugfs.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
124 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
125 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
126 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
127 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
128 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
130 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
131 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
132 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
133 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
134 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
135 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
136 };
137 
138 static const struct pci_device_id bnxt_pci_tbl[] = {
139 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
140 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
142 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
160 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
174 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
184 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
185 #ifdef CONFIG_BNXT_SRIOV
186 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
187 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
188 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
190 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
191 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
207 #endif
208 	{ 0 }
209 };
210 
211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
212 
213 static const u16 bnxt_vf_req_snif[] = {
214 	HWRM_FUNC_CFG,
215 	HWRM_FUNC_VF_CFG,
216 	HWRM_PORT_PHY_QCFG,
217 	HWRM_CFA_L2_FILTER_ALLOC,
218 };
219 
220 static const u16 bnxt_async_events_arr[] = {
221 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
225 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
226 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
229 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
232 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
233 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
235 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
236 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
237 };
238 
239 static struct workqueue_struct *bnxt_pf_wq;
240 
241 static bool bnxt_vf_pciid(enum board_idx idx)
242 {
243 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
244 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
245 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
246 		idx == NETXTREME_E_P5_VF_HV);
247 }
248 
249 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
250 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
251 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
252 
253 #define BNXT_CP_DB_IRQ_DIS(db)						\
254 		writel(DB_CP_IRQ_DIS_FLAGS, db)
255 
256 #define BNXT_DB_CQ(db, idx)						\
257 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
258 
259 #define BNXT_DB_NQ_P5(db, idx)						\
260 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
261 		    (db)->doorbell)
262 
263 #define BNXT_DB_CQ_ARM(db, idx)						\
264 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
265 
266 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
267 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
268 		    (db)->doorbell)
269 
270 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
271 {
272 	if (bp->flags & BNXT_FLAG_CHIP_P5)
273 		BNXT_DB_NQ_P5(db, idx);
274 	else
275 		BNXT_DB_CQ(db, idx);
276 }
277 
278 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
279 {
280 	if (bp->flags & BNXT_FLAG_CHIP_P5)
281 		BNXT_DB_NQ_ARM_P5(db, idx);
282 	else
283 		BNXT_DB_CQ_ARM(db, idx);
284 }
285 
286 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
289 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
290 			    RING_CMP(idx), db->doorbell);
291 	else
292 		BNXT_DB_CQ(db, idx);
293 }
294 
295 const u16 bnxt_lhint_arr[] = {
296 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
297 	TX_BD_FLAGS_LHINT_512_TO_1023,
298 	TX_BD_FLAGS_LHINT_1024_TO_2047,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 };
316 
317 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
318 {
319 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
320 
321 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
322 		return 0;
323 
324 	return md_dst->u.port_info.port_id;
325 }
326 
327 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
328 			     u16 prod)
329 {
330 	bnxt_db_write(bp, &txr->tx_db, prod);
331 	txr->kick_pending = 0;
332 }
333 
334 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
335 					  struct bnxt_tx_ring_info *txr,
336 					  struct netdev_queue *txq)
337 {
338 	netif_tx_stop_queue(txq);
339 
340 	/* netif_tx_stop_queue() must be done before checking
341 	 * tx index in bnxt_tx_avail() below, because in
342 	 * bnxt_tx_int(), we update tx index before checking for
343 	 * netif_tx_queue_stopped().
344 	 */
345 	smp_mb();
346 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
347 		netif_tx_wake_queue(txq);
348 		return false;
349 	}
350 
351 	return true;
352 }
353 
354 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
355 {
356 	struct bnxt *bp = netdev_priv(dev);
357 	struct tx_bd *txbd;
358 	struct tx_bd_ext *txbd1;
359 	struct netdev_queue *txq;
360 	int i;
361 	dma_addr_t mapping;
362 	unsigned int length, pad = 0;
363 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
364 	u16 prod, last_frag;
365 	struct pci_dev *pdev = bp->pdev;
366 	struct bnxt_tx_ring_info *txr;
367 	struct bnxt_sw_tx_bd *tx_buf;
368 	__le32 lflags = 0;
369 
370 	i = skb_get_queue_mapping(skb);
371 	if (unlikely(i >= bp->tx_nr_rings)) {
372 		dev_kfree_skb_any(skb);
373 		atomic_long_inc(&dev->tx_dropped);
374 		return NETDEV_TX_OK;
375 	}
376 
377 	txq = netdev_get_tx_queue(dev, i);
378 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
379 	prod = txr->tx_prod;
380 
381 	free_size = bnxt_tx_avail(bp, txr);
382 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
383 		/* We must have raced with NAPI cleanup */
384 		if (net_ratelimit() && txr->kick_pending)
385 			netif_warn(bp, tx_err, dev,
386 				   "bnxt: ring busy w/ flush pending!\n");
387 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
388 			return NETDEV_TX_BUSY;
389 	}
390 
391 	length = skb->len;
392 	len = skb_headlen(skb);
393 	last_frag = skb_shinfo(skb)->nr_frags;
394 
395 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
396 
397 	txbd->tx_bd_opaque = prod;
398 
399 	tx_buf = &txr->tx_buf_ring[prod];
400 	tx_buf->skb = skb;
401 	tx_buf->nr_frags = last_frag;
402 
403 	vlan_tag_flags = 0;
404 	cfa_action = bnxt_xmit_get_cfa_action(skb);
405 	if (skb_vlan_tag_present(skb)) {
406 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
407 				 skb_vlan_tag_get(skb);
408 		/* Currently supports 8021Q, 8021AD vlan offloads
409 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
410 		 */
411 		if (skb->vlan_proto == htons(ETH_P_8021Q))
412 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
413 	}
414 
415 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
416 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
417 
418 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
419 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
420 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
421 					    &ptp->tx_hdr_off)) {
422 				if (vlan_tag_flags)
423 					ptp->tx_hdr_off += VLAN_HLEN;
424 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
425 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
426 			} else {
427 				atomic_inc(&bp->ptp_cfg->tx_avail);
428 			}
429 		}
430 	}
431 
432 	if (unlikely(skb->no_fcs))
433 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
434 
435 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
436 	    !lflags) {
437 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
438 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
439 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
440 		void __iomem *db = txr->tx_db.doorbell;
441 		void *pdata = tx_push_buf->data;
442 		u64 *end;
443 		int j, push_len;
444 
445 		/* Set COAL_NOW to be ready quickly for the next push */
446 		tx_push->tx_bd_len_flags_type =
447 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
448 					TX_BD_TYPE_LONG_TX_BD |
449 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
450 					TX_BD_FLAGS_COAL_NOW |
451 					TX_BD_FLAGS_PACKET_END |
452 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
453 
454 		if (skb->ip_summed == CHECKSUM_PARTIAL)
455 			tx_push1->tx_bd_hsize_lflags =
456 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
457 		else
458 			tx_push1->tx_bd_hsize_lflags = 0;
459 
460 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
461 		tx_push1->tx_bd_cfa_action =
462 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
463 
464 		end = pdata + length;
465 		end = PTR_ALIGN(end, 8) - 1;
466 		*end = 0;
467 
468 		skb_copy_from_linear_data(skb, pdata, len);
469 		pdata += len;
470 		for (j = 0; j < last_frag; j++) {
471 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
472 			void *fptr;
473 
474 			fptr = skb_frag_address_safe(frag);
475 			if (!fptr)
476 				goto normal_tx;
477 
478 			memcpy(pdata, fptr, skb_frag_size(frag));
479 			pdata += skb_frag_size(frag);
480 		}
481 
482 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
483 		txbd->tx_bd_haddr = txr->data_mapping;
484 		prod = NEXT_TX(prod);
485 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
486 		memcpy(txbd, tx_push1, sizeof(*txbd));
487 		prod = NEXT_TX(prod);
488 		tx_push->doorbell =
489 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
490 		txr->tx_prod = prod;
491 
492 		tx_buf->is_push = 1;
493 		netdev_tx_sent_queue(txq, skb->len);
494 		wmb();	/* Sync is_push and byte queue before pushing data */
495 
496 		push_len = (length + sizeof(*tx_push) + 7) / 8;
497 		if (push_len > 16) {
498 			__iowrite64_copy(db, tx_push_buf, 16);
499 			__iowrite32_copy(db + 4, tx_push_buf + 1,
500 					 (push_len - 16) << 1);
501 		} else {
502 			__iowrite64_copy(db, tx_push_buf, push_len);
503 		}
504 
505 		goto tx_done;
506 	}
507 
508 normal_tx:
509 	if (length < BNXT_MIN_PKT_SIZE) {
510 		pad = BNXT_MIN_PKT_SIZE - length;
511 		if (skb_pad(skb, pad))
512 			/* SKB already freed. */
513 			goto tx_kick_pending;
514 		length = BNXT_MIN_PKT_SIZE;
515 	}
516 
517 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
518 
519 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
520 		goto tx_free;
521 
522 	dma_unmap_addr_set(tx_buf, mapping, mapping);
523 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
524 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
525 
526 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
527 
528 	prod = NEXT_TX(prod);
529 	txbd1 = (struct tx_bd_ext *)
530 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
531 
532 	txbd1->tx_bd_hsize_lflags = lflags;
533 	if (skb_is_gso(skb)) {
534 		u32 hdr_len;
535 
536 		if (skb->encapsulation)
537 			hdr_len = skb_inner_network_offset(skb) +
538 				skb_inner_network_header_len(skb) +
539 				inner_tcp_hdrlen(skb);
540 		else
541 			hdr_len = skb_transport_offset(skb) +
542 				tcp_hdrlen(skb);
543 
544 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
545 					TX_BD_FLAGS_T_IPID |
546 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
547 		length = skb_shinfo(skb)->gso_size;
548 		txbd1->tx_bd_mss = cpu_to_le32(length);
549 		length += hdr_len;
550 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
551 		txbd1->tx_bd_hsize_lflags |=
552 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
553 		txbd1->tx_bd_mss = 0;
554 	}
555 
556 	length >>= 9;
557 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
558 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
559 				     skb->len);
560 		i = 0;
561 		goto tx_dma_error;
562 	}
563 	flags |= bnxt_lhint_arr[length];
564 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
565 
566 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
567 	txbd1->tx_bd_cfa_action =
568 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
569 	for (i = 0; i < last_frag; i++) {
570 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
571 
572 		prod = NEXT_TX(prod);
573 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
574 
575 		len = skb_frag_size(frag);
576 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
577 					   DMA_TO_DEVICE);
578 
579 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
580 			goto tx_dma_error;
581 
582 		tx_buf = &txr->tx_buf_ring[prod];
583 		dma_unmap_addr_set(tx_buf, mapping, mapping);
584 
585 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
586 
587 		flags = len << TX_BD_LEN_SHIFT;
588 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
589 	}
590 
591 	flags &= ~TX_BD_LEN;
592 	txbd->tx_bd_len_flags_type =
593 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
594 			    TX_BD_FLAGS_PACKET_END);
595 
596 	netdev_tx_sent_queue(txq, skb->len);
597 
598 	skb_tx_timestamp(skb);
599 
600 	/* Sync BD data before updating doorbell */
601 	wmb();
602 
603 	prod = NEXT_TX(prod);
604 	txr->tx_prod = prod;
605 
606 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
607 		bnxt_txr_db_kick(bp, txr, prod);
608 	else
609 		txr->kick_pending = 1;
610 
611 tx_done:
612 
613 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
614 		if (netdev_xmit_more() && !tx_buf->is_push)
615 			bnxt_txr_db_kick(bp, txr, prod);
616 
617 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
618 	}
619 	return NETDEV_TX_OK;
620 
621 tx_dma_error:
622 	if (BNXT_TX_PTP_IS_SET(lflags))
623 		atomic_inc(&bp->ptp_cfg->tx_avail);
624 
625 	last_frag = i;
626 
627 	/* start back at beginning and unmap skb */
628 	prod = txr->tx_prod;
629 	tx_buf = &txr->tx_buf_ring[prod];
630 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
631 			 skb_headlen(skb), DMA_TO_DEVICE);
632 	prod = NEXT_TX(prod);
633 
634 	/* unmap remaining mapped pages */
635 	for (i = 0; i < last_frag; i++) {
636 		prod = NEXT_TX(prod);
637 		tx_buf = &txr->tx_buf_ring[prod];
638 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
639 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
640 			       DMA_TO_DEVICE);
641 	}
642 
643 tx_free:
644 	dev_kfree_skb_any(skb);
645 tx_kick_pending:
646 	if (txr->kick_pending)
647 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
648 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
649 	atomic_long_inc(&dev->tx_dropped);
650 	return NETDEV_TX_OK;
651 }
652 
653 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
654 {
655 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
656 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
657 	u16 cons = txr->tx_cons;
658 	struct pci_dev *pdev = bp->pdev;
659 	int i;
660 	unsigned int tx_bytes = 0;
661 
662 	for (i = 0; i < nr_pkts; i++) {
663 		struct bnxt_sw_tx_bd *tx_buf;
664 		bool compl_deferred = false;
665 		struct sk_buff *skb;
666 		int j, last;
667 
668 		tx_buf = &txr->tx_buf_ring[cons];
669 		cons = NEXT_TX(cons);
670 		skb = tx_buf->skb;
671 		tx_buf->skb = NULL;
672 
673 		if (tx_buf->is_push) {
674 			tx_buf->is_push = 0;
675 			goto next_tx_int;
676 		}
677 
678 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
679 				 skb_headlen(skb), DMA_TO_DEVICE);
680 		last = tx_buf->nr_frags;
681 
682 		for (j = 0; j < last; j++) {
683 			cons = NEXT_TX(cons);
684 			tx_buf = &txr->tx_buf_ring[cons];
685 			dma_unmap_page(
686 				&pdev->dev,
687 				dma_unmap_addr(tx_buf, mapping),
688 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
689 				DMA_TO_DEVICE);
690 		}
691 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
692 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
693 				if (!bnxt_get_tx_ts_p5(bp, skb))
694 					compl_deferred = true;
695 				else
696 					atomic_inc(&bp->ptp_cfg->tx_avail);
697 			}
698 		}
699 
700 next_tx_int:
701 		cons = NEXT_TX(cons);
702 
703 		tx_bytes += skb->len;
704 		if (!compl_deferred)
705 			dev_kfree_skb_any(skb);
706 	}
707 
708 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
709 	txr->tx_cons = cons;
710 
711 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
712 	 * before checking for netif_tx_queue_stopped().  Without the
713 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
714 	 * will miss it and cause the queue to be stopped forever.
715 	 */
716 	smp_mb();
717 
718 	if (unlikely(netif_tx_queue_stopped(txq)) &&
719 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
720 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
721 		netif_tx_wake_queue(txq);
722 }
723 
724 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
725 					 struct bnxt_rx_ring_info *rxr,
726 					 gfp_t gfp)
727 {
728 	struct device *dev = &bp->pdev->dev;
729 	struct page *page;
730 
731 	page = page_pool_dev_alloc_pages(rxr->page_pool);
732 	if (!page)
733 		return NULL;
734 
735 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
736 				      DMA_ATTR_WEAK_ORDERING);
737 	if (dma_mapping_error(dev, *mapping)) {
738 		page_pool_recycle_direct(rxr->page_pool, page);
739 		return NULL;
740 	}
741 	*mapping += bp->rx_dma_offset;
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		rx_buf->data = page;
784 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
785 	} else {
786 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
787 
788 		if (!data)
789 			return -ENOMEM;
790 
791 		rx_buf->data = data;
792 		rx_buf->data_ptr = data + bp->rx_offset;
793 	}
794 	rx_buf->mapping = mapping;
795 
796 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
797 	return 0;
798 }
799 
800 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
801 {
802 	u16 prod = rxr->rx_prod;
803 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
804 	struct rx_bd *cons_bd, *prod_bd;
805 
806 	prod_rx_buf = &rxr->rx_buf_ring[prod];
807 	cons_rx_buf = &rxr->rx_buf_ring[cons];
808 
809 	prod_rx_buf->data = data;
810 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
811 
812 	prod_rx_buf->mapping = cons_rx_buf->mapping;
813 
814 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
815 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
816 
817 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
818 }
819 
820 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
821 {
822 	u16 next, max = rxr->rx_agg_bmap_size;
823 
824 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
825 	if (next >= max)
826 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
827 	return next;
828 }
829 
830 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
831 				     struct bnxt_rx_ring_info *rxr,
832 				     u16 prod, gfp_t gfp)
833 {
834 	struct rx_bd *rxbd =
835 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
836 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
837 	struct pci_dev *pdev = bp->pdev;
838 	struct page *page;
839 	dma_addr_t mapping;
840 	u16 sw_prod = rxr->rx_sw_agg_prod;
841 	unsigned int offset = 0;
842 
843 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
844 		page = rxr->rx_page;
845 		if (!page) {
846 			page = alloc_page(gfp);
847 			if (!page)
848 				return -ENOMEM;
849 			rxr->rx_page = page;
850 			rxr->rx_page_offset = 0;
851 		}
852 		offset = rxr->rx_page_offset;
853 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
854 		if (rxr->rx_page_offset == PAGE_SIZE)
855 			rxr->rx_page = NULL;
856 		else
857 			get_page(page);
858 	} else {
859 		page = alloc_page(gfp);
860 		if (!page)
861 			return -ENOMEM;
862 	}
863 
864 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
865 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
866 				     DMA_ATTR_WEAK_ORDERING);
867 	if (dma_mapping_error(&pdev->dev, mapping)) {
868 		__free_page(page);
869 		return -EIO;
870 	}
871 
872 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
873 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
874 
875 	__set_bit(sw_prod, rxr->rx_agg_bmap);
876 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
877 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
878 
879 	rx_agg_buf->page = page;
880 	rx_agg_buf->offset = offset;
881 	rx_agg_buf->mapping = mapping;
882 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
883 	rxbd->rx_bd_opaque = sw_prod;
884 	return 0;
885 }
886 
887 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
888 				       struct bnxt_cp_ring_info *cpr,
889 				       u16 cp_cons, u16 curr)
890 {
891 	struct rx_agg_cmp *agg;
892 
893 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
894 	agg = (struct rx_agg_cmp *)
895 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
896 	return agg;
897 }
898 
899 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
900 					      struct bnxt_rx_ring_info *rxr,
901 					      u16 agg_id, u16 curr)
902 {
903 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
904 
905 	return &tpa_info->agg_arr[curr];
906 }
907 
908 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
909 				   u16 start, u32 agg_bufs, bool tpa)
910 {
911 	struct bnxt_napi *bnapi = cpr->bnapi;
912 	struct bnxt *bp = bnapi->bp;
913 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
914 	u16 prod = rxr->rx_agg_prod;
915 	u16 sw_prod = rxr->rx_sw_agg_prod;
916 	bool p5_tpa = false;
917 	u32 i;
918 
919 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
920 		p5_tpa = true;
921 
922 	for (i = 0; i < agg_bufs; i++) {
923 		u16 cons;
924 		struct rx_agg_cmp *agg;
925 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
926 		struct rx_bd *prod_bd;
927 		struct page *page;
928 
929 		if (p5_tpa)
930 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
931 		else
932 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
933 		cons = agg->rx_agg_cmp_opaque;
934 		__clear_bit(cons, rxr->rx_agg_bmap);
935 
936 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
937 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
938 
939 		__set_bit(sw_prod, rxr->rx_agg_bmap);
940 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
941 		cons_rx_buf = &rxr->rx_agg_ring[cons];
942 
943 		/* It is possible for sw_prod to be equal to cons, so
944 		 * set cons_rx_buf->page to NULL first.
945 		 */
946 		page = cons_rx_buf->page;
947 		cons_rx_buf->page = NULL;
948 		prod_rx_buf->page = page;
949 		prod_rx_buf->offset = cons_rx_buf->offset;
950 
951 		prod_rx_buf->mapping = cons_rx_buf->mapping;
952 
953 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
954 
955 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
956 		prod_bd->rx_bd_opaque = sw_prod;
957 
958 		prod = NEXT_RX_AGG(prod);
959 		sw_prod = NEXT_RX_AGG(sw_prod);
960 	}
961 	rxr->rx_agg_prod = prod;
962 	rxr->rx_sw_agg_prod = sw_prod;
963 }
964 
965 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
966 					struct bnxt_rx_ring_info *rxr,
967 					u16 cons, void *data, u8 *data_ptr,
968 					dma_addr_t dma_addr,
969 					unsigned int offset_and_len)
970 {
971 	unsigned int payload = offset_and_len >> 16;
972 	unsigned int len = offset_and_len & 0xffff;
973 	skb_frag_t *frag;
974 	struct page *page = data;
975 	u16 prod = rxr->rx_prod;
976 	struct sk_buff *skb;
977 	int off, err;
978 
979 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
980 	if (unlikely(err)) {
981 		bnxt_reuse_rx_data(rxr, cons, data);
982 		return NULL;
983 	}
984 	dma_addr -= bp->rx_dma_offset;
985 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
986 			     DMA_ATTR_WEAK_ORDERING);
987 	page_pool_release_page(rxr->page_pool, page);
988 
989 	if (unlikely(!payload))
990 		payload = eth_get_headlen(bp->dev, data_ptr, len);
991 
992 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
993 	if (!skb) {
994 		__free_page(page);
995 		return NULL;
996 	}
997 
998 	off = (void *)data_ptr - page_address(page);
999 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1000 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1001 	       payload + NET_IP_ALIGN);
1002 
1003 	frag = &skb_shinfo(skb)->frags[0];
1004 	skb_frag_size_sub(frag, payload);
1005 	skb_frag_off_add(frag, payload);
1006 	skb->data_len -= payload;
1007 	skb->tail += payload;
1008 
1009 	return skb;
1010 }
1011 
1012 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1013 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1014 				   void *data, u8 *data_ptr,
1015 				   dma_addr_t dma_addr,
1016 				   unsigned int offset_and_len)
1017 {
1018 	u16 prod = rxr->rx_prod;
1019 	struct sk_buff *skb;
1020 	int err;
1021 
1022 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1023 	if (unlikely(err)) {
1024 		bnxt_reuse_rx_data(rxr, cons, data);
1025 		return NULL;
1026 	}
1027 
1028 	skb = build_skb(data, bp->rx_buf_size);
1029 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1030 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1031 	if (!skb) {
1032 		skb_free_frag(data);
1033 		return NULL;
1034 	}
1035 
1036 	skb_reserve(skb, bp->rx_offset);
1037 	skb_put(skb, offset_and_len & 0xffff);
1038 	return skb;
1039 }
1040 
1041 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1042 				     struct bnxt_cp_ring_info *cpr,
1043 				     struct sk_buff *skb, u16 idx,
1044 				     u32 agg_bufs, bool tpa)
1045 {
1046 	struct bnxt_napi *bnapi = cpr->bnapi;
1047 	struct pci_dev *pdev = bp->pdev;
1048 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1049 	u16 prod = rxr->rx_agg_prod;
1050 	bool p5_tpa = false;
1051 	u32 i;
1052 
1053 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1054 		p5_tpa = true;
1055 
1056 	for (i = 0; i < agg_bufs; i++) {
1057 		u16 cons, frag_len;
1058 		struct rx_agg_cmp *agg;
1059 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1060 		struct page *page;
1061 		dma_addr_t mapping;
1062 
1063 		if (p5_tpa)
1064 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1065 		else
1066 			agg = bnxt_get_agg(bp, cpr, idx, i);
1067 		cons = agg->rx_agg_cmp_opaque;
1068 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1069 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1070 
1071 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1072 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1073 				   cons_rx_buf->offset, frag_len);
1074 		__clear_bit(cons, rxr->rx_agg_bmap);
1075 
1076 		/* It is possible for bnxt_alloc_rx_page() to allocate
1077 		 * a sw_prod index that equals the cons index, so we
1078 		 * need to clear the cons entry now.
1079 		 */
1080 		mapping = cons_rx_buf->mapping;
1081 		page = cons_rx_buf->page;
1082 		cons_rx_buf->page = NULL;
1083 
1084 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1085 			struct skb_shared_info *shinfo;
1086 			unsigned int nr_frags;
1087 
1088 			shinfo = skb_shinfo(skb);
1089 			nr_frags = --shinfo->nr_frags;
1090 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1091 
1092 			dev_kfree_skb(skb);
1093 
1094 			cons_rx_buf->page = page;
1095 
1096 			/* Update prod since possibly some pages have been
1097 			 * allocated already.
1098 			 */
1099 			rxr->rx_agg_prod = prod;
1100 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1101 			return NULL;
1102 		}
1103 
1104 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1105 				     DMA_FROM_DEVICE,
1106 				     DMA_ATTR_WEAK_ORDERING);
1107 
1108 		skb->data_len += frag_len;
1109 		skb->len += frag_len;
1110 		skb->truesize += PAGE_SIZE;
1111 
1112 		prod = NEXT_RX_AGG(prod);
1113 	}
1114 	rxr->rx_agg_prod = prod;
1115 	return skb;
1116 }
1117 
1118 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1119 			       u8 agg_bufs, u32 *raw_cons)
1120 {
1121 	u16 last;
1122 	struct rx_agg_cmp *agg;
1123 
1124 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1125 	last = RING_CMP(*raw_cons);
1126 	agg = (struct rx_agg_cmp *)
1127 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1128 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1129 }
1130 
1131 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1132 					    unsigned int len,
1133 					    dma_addr_t mapping)
1134 {
1135 	struct bnxt *bp = bnapi->bp;
1136 	struct pci_dev *pdev = bp->pdev;
1137 	struct sk_buff *skb;
1138 
1139 	skb = napi_alloc_skb(&bnapi->napi, len);
1140 	if (!skb)
1141 		return NULL;
1142 
1143 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1144 				bp->rx_dir);
1145 
1146 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1147 	       len + NET_IP_ALIGN);
1148 
1149 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1150 				   bp->rx_dir);
1151 
1152 	skb_put(skb, len);
1153 	return skb;
1154 }
1155 
1156 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1157 			   u32 *raw_cons, void *cmp)
1158 {
1159 	struct rx_cmp *rxcmp = cmp;
1160 	u32 tmp_raw_cons = *raw_cons;
1161 	u8 cmp_type, agg_bufs = 0;
1162 
1163 	cmp_type = RX_CMP_TYPE(rxcmp);
1164 
1165 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1166 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1167 			    RX_CMP_AGG_BUFS) >>
1168 			   RX_CMP_AGG_BUFS_SHIFT;
1169 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1170 		struct rx_tpa_end_cmp *tpa_end = cmp;
1171 
1172 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1173 			return 0;
1174 
1175 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1176 	}
1177 
1178 	if (agg_bufs) {
1179 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1180 			return -EBUSY;
1181 	}
1182 	*raw_cons = tmp_raw_cons;
1183 	return 0;
1184 }
1185 
1186 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1187 {
1188 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1189 		return;
1190 
1191 	if (BNXT_PF(bp))
1192 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1193 	else
1194 		schedule_delayed_work(&bp->fw_reset_task, delay);
1195 }
1196 
1197 static void bnxt_queue_sp_work(struct bnxt *bp)
1198 {
1199 	if (BNXT_PF(bp))
1200 		queue_work(bnxt_pf_wq, &bp->sp_task);
1201 	else
1202 		schedule_work(&bp->sp_task);
1203 }
1204 
1205 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1206 {
1207 	if (!rxr->bnapi->in_reset) {
1208 		rxr->bnapi->in_reset = true;
1209 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1210 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1211 		else
1212 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1213 		bnxt_queue_sp_work(bp);
1214 	}
1215 	rxr->rx_next_cons = 0xffff;
1216 }
1217 
1218 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1219 {
1220 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1221 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1222 
1223 	if (test_bit(idx, map->agg_idx_bmap))
1224 		idx = find_first_zero_bit(map->agg_idx_bmap,
1225 					  BNXT_AGG_IDX_BMAP_SIZE);
1226 	__set_bit(idx, map->agg_idx_bmap);
1227 	map->agg_id_tbl[agg_id] = idx;
1228 	return idx;
1229 }
1230 
1231 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1232 {
1233 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1234 
1235 	__clear_bit(idx, map->agg_idx_bmap);
1236 }
1237 
1238 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1239 {
1240 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1241 
1242 	return map->agg_id_tbl[agg_id];
1243 }
1244 
1245 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1246 			   struct rx_tpa_start_cmp *tpa_start,
1247 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1248 {
1249 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1250 	struct bnxt_tpa_info *tpa_info;
1251 	u16 cons, prod, agg_id;
1252 	struct rx_bd *prod_bd;
1253 	dma_addr_t mapping;
1254 
1255 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1256 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1257 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1258 	} else {
1259 		agg_id = TPA_START_AGG_ID(tpa_start);
1260 	}
1261 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1262 	prod = rxr->rx_prod;
1263 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1264 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1265 	tpa_info = &rxr->rx_tpa[agg_id];
1266 
1267 	if (unlikely(cons != rxr->rx_next_cons ||
1268 		     TPA_START_ERROR(tpa_start))) {
1269 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1270 			    cons, rxr->rx_next_cons,
1271 			    TPA_START_ERROR_CODE(tpa_start1));
1272 		bnxt_sched_reset(bp, rxr);
1273 		return;
1274 	}
1275 	/* Store cfa_code in tpa_info to use in tpa_end
1276 	 * completion processing.
1277 	 */
1278 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1279 	prod_rx_buf->data = tpa_info->data;
1280 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1281 
1282 	mapping = tpa_info->mapping;
1283 	prod_rx_buf->mapping = mapping;
1284 
1285 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1286 
1287 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1288 
1289 	tpa_info->data = cons_rx_buf->data;
1290 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1291 	cons_rx_buf->data = NULL;
1292 	tpa_info->mapping = cons_rx_buf->mapping;
1293 
1294 	tpa_info->len =
1295 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1296 				RX_TPA_START_CMP_LEN_SHIFT;
1297 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1298 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1299 
1300 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1301 		tpa_info->gso_type = SKB_GSO_TCPV4;
1302 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1303 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1304 			tpa_info->gso_type = SKB_GSO_TCPV6;
1305 		tpa_info->rss_hash =
1306 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1307 	} else {
1308 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1309 		tpa_info->gso_type = 0;
1310 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1311 	}
1312 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1313 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1314 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1315 	tpa_info->agg_count = 0;
1316 
1317 	rxr->rx_prod = NEXT_RX(prod);
1318 	cons = NEXT_RX(cons);
1319 	rxr->rx_next_cons = NEXT_RX(cons);
1320 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1321 
1322 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1323 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1324 	cons_rx_buf->data = NULL;
1325 }
1326 
1327 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1328 {
1329 	if (agg_bufs)
1330 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1331 }
1332 
1333 #ifdef CONFIG_INET
1334 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1335 {
1336 	struct udphdr *uh = NULL;
1337 
1338 	if (ip_proto == htons(ETH_P_IP)) {
1339 		struct iphdr *iph = (struct iphdr *)skb->data;
1340 
1341 		if (iph->protocol == IPPROTO_UDP)
1342 			uh = (struct udphdr *)(iph + 1);
1343 	} else {
1344 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1345 
1346 		if (iph->nexthdr == IPPROTO_UDP)
1347 			uh = (struct udphdr *)(iph + 1);
1348 	}
1349 	if (uh) {
1350 		if (uh->check)
1351 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1352 		else
1353 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1354 	}
1355 }
1356 #endif
1357 
1358 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1359 					   int payload_off, int tcp_ts,
1360 					   struct sk_buff *skb)
1361 {
1362 #ifdef CONFIG_INET
1363 	struct tcphdr *th;
1364 	int len, nw_off;
1365 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1366 	u32 hdr_info = tpa_info->hdr_info;
1367 	bool loopback = false;
1368 
1369 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1370 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1371 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1372 
1373 	/* If the packet is an internal loopback packet, the offsets will
1374 	 * have an extra 4 bytes.
1375 	 */
1376 	if (inner_mac_off == 4) {
1377 		loopback = true;
1378 	} else if (inner_mac_off > 4) {
1379 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1380 					    ETH_HLEN - 2));
1381 
1382 		/* We only support inner iPv4/ipv6.  If we don't see the
1383 		 * correct protocol ID, it must be a loopback packet where
1384 		 * the offsets are off by 4.
1385 		 */
1386 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1387 			loopback = true;
1388 	}
1389 	if (loopback) {
1390 		/* internal loopback packet, subtract all offsets by 4 */
1391 		inner_ip_off -= 4;
1392 		inner_mac_off -= 4;
1393 		outer_ip_off -= 4;
1394 	}
1395 
1396 	nw_off = inner_ip_off - ETH_HLEN;
1397 	skb_set_network_header(skb, nw_off);
1398 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1399 		struct ipv6hdr *iph = ipv6_hdr(skb);
1400 
1401 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1402 		len = skb->len - skb_transport_offset(skb);
1403 		th = tcp_hdr(skb);
1404 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1405 	} else {
1406 		struct iphdr *iph = ip_hdr(skb);
1407 
1408 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1409 		len = skb->len - skb_transport_offset(skb);
1410 		th = tcp_hdr(skb);
1411 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1412 	}
1413 
1414 	if (inner_mac_off) { /* tunnel */
1415 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1416 					    ETH_HLEN - 2));
1417 
1418 		bnxt_gro_tunnel(skb, proto);
1419 	}
1420 #endif
1421 	return skb;
1422 }
1423 
1424 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1425 					   int payload_off, int tcp_ts,
1426 					   struct sk_buff *skb)
1427 {
1428 #ifdef CONFIG_INET
1429 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1430 	u32 hdr_info = tpa_info->hdr_info;
1431 	int iphdr_len, nw_off;
1432 
1433 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1434 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1435 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1436 
1437 	nw_off = inner_ip_off - ETH_HLEN;
1438 	skb_set_network_header(skb, nw_off);
1439 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1440 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1441 	skb_set_transport_header(skb, nw_off + iphdr_len);
1442 
1443 	if (inner_mac_off) { /* tunnel */
1444 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1445 					    ETH_HLEN - 2));
1446 
1447 		bnxt_gro_tunnel(skb, proto);
1448 	}
1449 #endif
1450 	return skb;
1451 }
1452 
1453 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1454 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1455 
1456 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1457 					   int payload_off, int tcp_ts,
1458 					   struct sk_buff *skb)
1459 {
1460 #ifdef CONFIG_INET
1461 	struct tcphdr *th;
1462 	int len, nw_off, tcp_opt_len = 0;
1463 
1464 	if (tcp_ts)
1465 		tcp_opt_len = 12;
1466 
1467 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1468 		struct iphdr *iph;
1469 
1470 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1471 			 ETH_HLEN;
1472 		skb_set_network_header(skb, nw_off);
1473 		iph = ip_hdr(skb);
1474 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1475 		len = skb->len - skb_transport_offset(skb);
1476 		th = tcp_hdr(skb);
1477 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1478 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1479 		struct ipv6hdr *iph;
1480 
1481 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1482 			 ETH_HLEN;
1483 		skb_set_network_header(skb, nw_off);
1484 		iph = ipv6_hdr(skb);
1485 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1486 		len = skb->len - skb_transport_offset(skb);
1487 		th = tcp_hdr(skb);
1488 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1489 	} else {
1490 		dev_kfree_skb_any(skb);
1491 		return NULL;
1492 	}
1493 
1494 	if (nw_off) /* tunnel */
1495 		bnxt_gro_tunnel(skb, skb->protocol);
1496 #endif
1497 	return skb;
1498 }
1499 
1500 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1501 					   struct bnxt_tpa_info *tpa_info,
1502 					   struct rx_tpa_end_cmp *tpa_end,
1503 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1504 					   struct sk_buff *skb)
1505 {
1506 #ifdef CONFIG_INET
1507 	int payload_off;
1508 	u16 segs;
1509 
1510 	segs = TPA_END_TPA_SEGS(tpa_end);
1511 	if (segs == 1)
1512 		return skb;
1513 
1514 	NAPI_GRO_CB(skb)->count = segs;
1515 	skb_shinfo(skb)->gso_size =
1516 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1517 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1518 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1519 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1520 	else
1521 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1522 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1523 	if (likely(skb))
1524 		tcp_gro_complete(skb);
1525 #endif
1526 	return skb;
1527 }
1528 
1529 /* Given the cfa_code of a received packet determine which
1530  * netdev (vf-rep or PF) the packet is destined to.
1531  */
1532 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1533 {
1534 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1535 
1536 	/* if vf-rep dev is NULL, the must belongs to the PF */
1537 	return dev ? dev : bp->dev;
1538 }
1539 
1540 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1541 					   struct bnxt_cp_ring_info *cpr,
1542 					   u32 *raw_cons,
1543 					   struct rx_tpa_end_cmp *tpa_end,
1544 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1545 					   u8 *event)
1546 {
1547 	struct bnxt_napi *bnapi = cpr->bnapi;
1548 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1549 	u8 *data_ptr, agg_bufs;
1550 	unsigned int len;
1551 	struct bnxt_tpa_info *tpa_info;
1552 	dma_addr_t mapping;
1553 	struct sk_buff *skb;
1554 	u16 idx = 0, agg_id;
1555 	void *data;
1556 	bool gro;
1557 
1558 	if (unlikely(bnapi->in_reset)) {
1559 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1560 
1561 		if (rc < 0)
1562 			return ERR_PTR(-EBUSY);
1563 		return NULL;
1564 	}
1565 
1566 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1567 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1568 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1569 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1570 		tpa_info = &rxr->rx_tpa[agg_id];
1571 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1572 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1573 				    agg_bufs, tpa_info->agg_count);
1574 			agg_bufs = tpa_info->agg_count;
1575 		}
1576 		tpa_info->agg_count = 0;
1577 		*event |= BNXT_AGG_EVENT;
1578 		bnxt_free_agg_idx(rxr, agg_id);
1579 		idx = agg_id;
1580 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1581 	} else {
1582 		agg_id = TPA_END_AGG_ID(tpa_end);
1583 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1584 		tpa_info = &rxr->rx_tpa[agg_id];
1585 		idx = RING_CMP(*raw_cons);
1586 		if (agg_bufs) {
1587 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1588 				return ERR_PTR(-EBUSY);
1589 
1590 			*event |= BNXT_AGG_EVENT;
1591 			idx = NEXT_CMP(idx);
1592 		}
1593 		gro = !!TPA_END_GRO(tpa_end);
1594 	}
1595 	data = tpa_info->data;
1596 	data_ptr = tpa_info->data_ptr;
1597 	prefetch(data_ptr);
1598 	len = tpa_info->len;
1599 	mapping = tpa_info->mapping;
1600 
1601 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1602 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1603 		if (agg_bufs > MAX_SKB_FRAGS)
1604 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1605 				    agg_bufs, (int)MAX_SKB_FRAGS);
1606 		return NULL;
1607 	}
1608 
1609 	if (len <= bp->rx_copy_thresh) {
1610 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1611 		if (!skb) {
1612 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1613 			cpr->sw_stats.rx.rx_oom_discards += 1;
1614 			return NULL;
1615 		}
1616 	} else {
1617 		u8 *new_data;
1618 		dma_addr_t new_mapping;
1619 
1620 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1621 		if (!new_data) {
1622 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1623 			cpr->sw_stats.rx.rx_oom_discards += 1;
1624 			return NULL;
1625 		}
1626 
1627 		tpa_info->data = new_data;
1628 		tpa_info->data_ptr = new_data + bp->rx_offset;
1629 		tpa_info->mapping = new_mapping;
1630 
1631 		skb = build_skb(data, bp->rx_buf_size);
1632 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1633 				       bp->rx_buf_use_size, bp->rx_dir,
1634 				       DMA_ATTR_WEAK_ORDERING);
1635 
1636 		if (!skb) {
1637 			skb_free_frag(data);
1638 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1639 			cpr->sw_stats.rx.rx_oom_discards += 1;
1640 			return NULL;
1641 		}
1642 		skb_reserve(skb, bp->rx_offset);
1643 		skb_put(skb, len);
1644 	}
1645 
1646 	if (agg_bufs) {
1647 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1648 		if (!skb) {
1649 			/* Page reuse already handled by bnxt_rx_pages(). */
1650 			cpr->sw_stats.rx.rx_oom_discards += 1;
1651 			return NULL;
1652 		}
1653 	}
1654 
1655 	skb->protocol =
1656 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1657 
1658 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1659 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1660 
1661 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1662 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1663 		__be16 vlan_proto = htons(tpa_info->metadata >>
1664 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1665 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1666 
1667 		if (eth_type_vlan(vlan_proto)) {
1668 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1669 		} else {
1670 			dev_kfree_skb(skb);
1671 			return NULL;
1672 		}
1673 	}
1674 
1675 	skb_checksum_none_assert(skb);
1676 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1677 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1678 		skb->csum_level =
1679 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1680 	}
1681 
1682 	if (gro)
1683 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1684 
1685 	return skb;
1686 }
1687 
1688 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1689 			 struct rx_agg_cmp *rx_agg)
1690 {
1691 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1692 	struct bnxt_tpa_info *tpa_info;
1693 
1694 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1695 	tpa_info = &rxr->rx_tpa[agg_id];
1696 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1697 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1698 }
1699 
1700 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1701 			     struct sk_buff *skb)
1702 {
1703 	if (skb->dev != bp->dev) {
1704 		/* this packet belongs to a vf-rep */
1705 		bnxt_vf_rep_rx(bp, skb);
1706 		return;
1707 	}
1708 	skb_record_rx_queue(skb, bnapi->index);
1709 	napi_gro_receive(&bnapi->napi, skb);
1710 }
1711 
1712 /* returns the following:
1713  * 1       - 1 packet successfully received
1714  * 0       - successful TPA_START, packet not completed yet
1715  * -EBUSY  - completion ring does not have all the agg buffers yet
1716  * -ENOMEM - packet aborted due to out of memory
1717  * -EIO    - packet aborted due to hw error indicated in BD
1718  */
1719 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1720 		       u32 *raw_cons, u8 *event)
1721 {
1722 	struct bnxt_napi *bnapi = cpr->bnapi;
1723 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1724 	struct net_device *dev = bp->dev;
1725 	struct rx_cmp *rxcmp;
1726 	struct rx_cmp_ext *rxcmp1;
1727 	u32 tmp_raw_cons = *raw_cons;
1728 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1729 	struct bnxt_sw_rx_bd *rx_buf;
1730 	unsigned int len;
1731 	u8 *data_ptr, agg_bufs, cmp_type;
1732 	dma_addr_t dma_addr;
1733 	struct sk_buff *skb;
1734 	u32 flags, misc;
1735 	void *data;
1736 	int rc = 0;
1737 
1738 	rxcmp = (struct rx_cmp *)
1739 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1740 
1741 	cmp_type = RX_CMP_TYPE(rxcmp);
1742 
1743 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1744 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1745 		goto next_rx_no_prod_no_len;
1746 	}
1747 
1748 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1749 	cp_cons = RING_CMP(tmp_raw_cons);
1750 	rxcmp1 = (struct rx_cmp_ext *)
1751 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1752 
1753 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1754 		return -EBUSY;
1755 
1756 	/* The valid test of the entry must be done first before
1757 	 * reading any further.
1758 	 */
1759 	dma_rmb();
1760 	prod = rxr->rx_prod;
1761 
1762 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1763 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1764 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1765 
1766 		*event |= BNXT_RX_EVENT;
1767 		goto next_rx_no_prod_no_len;
1768 
1769 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1770 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1771 				   (struct rx_tpa_end_cmp *)rxcmp,
1772 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1773 
1774 		if (IS_ERR(skb))
1775 			return -EBUSY;
1776 
1777 		rc = -ENOMEM;
1778 		if (likely(skb)) {
1779 			bnxt_deliver_skb(bp, bnapi, skb);
1780 			rc = 1;
1781 		}
1782 		*event |= BNXT_RX_EVENT;
1783 		goto next_rx_no_prod_no_len;
1784 	}
1785 
1786 	cons = rxcmp->rx_cmp_opaque;
1787 	if (unlikely(cons != rxr->rx_next_cons)) {
1788 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1789 
1790 		/* 0xffff is forced error, don't print it */
1791 		if (rxr->rx_next_cons != 0xffff)
1792 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1793 				    cons, rxr->rx_next_cons);
1794 		bnxt_sched_reset(bp, rxr);
1795 		if (rc1)
1796 			return rc1;
1797 		goto next_rx_no_prod_no_len;
1798 	}
1799 	rx_buf = &rxr->rx_buf_ring[cons];
1800 	data = rx_buf->data;
1801 	data_ptr = rx_buf->data_ptr;
1802 	prefetch(data_ptr);
1803 
1804 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1805 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1806 
1807 	if (agg_bufs) {
1808 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1809 			return -EBUSY;
1810 
1811 		cp_cons = NEXT_CMP(cp_cons);
1812 		*event |= BNXT_AGG_EVENT;
1813 	}
1814 	*event |= BNXT_RX_EVENT;
1815 
1816 	rx_buf->data = NULL;
1817 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1818 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1819 
1820 		bnxt_reuse_rx_data(rxr, cons, data);
1821 		if (agg_bufs)
1822 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1823 					       false);
1824 
1825 		rc = -EIO;
1826 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1827 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1828 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1829 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1830 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1831 						 rx_err);
1832 				bnxt_sched_reset(bp, rxr);
1833 			}
1834 		}
1835 		goto next_rx_no_len;
1836 	}
1837 
1838 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1839 	len = flags >> RX_CMP_LEN_SHIFT;
1840 	dma_addr = rx_buf->mapping;
1841 
1842 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1843 		rc = 1;
1844 		goto next_rx;
1845 	}
1846 
1847 	if (len <= bp->rx_copy_thresh) {
1848 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1849 		bnxt_reuse_rx_data(rxr, cons, data);
1850 		if (!skb) {
1851 			if (agg_bufs)
1852 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1853 						       agg_bufs, false);
1854 			cpr->sw_stats.rx.rx_oom_discards += 1;
1855 			rc = -ENOMEM;
1856 			goto next_rx;
1857 		}
1858 	} else {
1859 		u32 payload;
1860 
1861 		if (rx_buf->data_ptr == data_ptr)
1862 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1863 		else
1864 			payload = 0;
1865 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1866 				      payload | len);
1867 		if (!skb) {
1868 			cpr->sw_stats.rx.rx_oom_discards += 1;
1869 			rc = -ENOMEM;
1870 			goto next_rx;
1871 		}
1872 	}
1873 
1874 	if (agg_bufs) {
1875 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1876 		if (!skb) {
1877 			cpr->sw_stats.rx.rx_oom_discards += 1;
1878 			rc = -ENOMEM;
1879 			goto next_rx;
1880 		}
1881 	}
1882 
1883 	if (RX_CMP_HASH_VALID(rxcmp)) {
1884 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1885 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1886 
1887 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1888 		if (hash_type != 1 && hash_type != 3)
1889 			type = PKT_HASH_TYPE_L3;
1890 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1891 	}
1892 
1893 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1894 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1895 
1896 	if ((rxcmp1->rx_cmp_flags2 &
1897 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1898 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1899 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1900 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1901 		__be16 vlan_proto = htons(meta_data >>
1902 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1903 
1904 		if (eth_type_vlan(vlan_proto)) {
1905 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1906 		} else {
1907 			dev_kfree_skb(skb);
1908 			goto next_rx;
1909 		}
1910 	}
1911 
1912 	skb_checksum_none_assert(skb);
1913 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1914 		if (dev->features & NETIF_F_RXCSUM) {
1915 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1916 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1917 		}
1918 	} else {
1919 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1920 			if (dev->features & NETIF_F_RXCSUM)
1921 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1922 		}
1923 	}
1924 
1925 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
1926 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
1927 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
1928 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1929 			u64 ns, ts;
1930 
1931 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
1932 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1933 
1934 				spin_lock_bh(&ptp->ptp_lock);
1935 				ns = timecounter_cyc2time(&ptp->tc, ts);
1936 				spin_unlock_bh(&ptp->ptp_lock);
1937 				memset(skb_hwtstamps(skb), 0,
1938 				       sizeof(*skb_hwtstamps(skb)));
1939 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
1940 			}
1941 		}
1942 	}
1943 	bnxt_deliver_skb(bp, bnapi, skb);
1944 	rc = 1;
1945 
1946 next_rx:
1947 	cpr->rx_packets += 1;
1948 	cpr->rx_bytes += len;
1949 
1950 next_rx_no_len:
1951 	rxr->rx_prod = NEXT_RX(prod);
1952 	rxr->rx_next_cons = NEXT_RX(cons);
1953 
1954 next_rx_no_prod_no_len:
1955 	*raw_cons = tmp_raw_cons;
1956 
1957 	return rc;
1958 }
1959 
1960 /* In netpoll mode, if we are using a combined completion ring, we need to
1961  * discard the rx packets and recycle the buffers.
1962  */
1963 static int bnxt_force_rx_discard(struct bnxt *bp,
1964 				 struct bnxt_cp_ring_info *cpr,
1965 				 u32 *raw_cons, u8 *event)
1966 {
1967 	u32 tmp_raw_cons = *raw_cons;
1968 	struct rx_cmp_ext *rxcmp1;
1969 	struct rx_cmp *rxcmp;
1970 	u16 cp_cons;
1971 	u8 cmp_type;
1972 	int rc;
1973 
1974 	cp_cons = RING_CMP(tmp_raw_cons);
1975 	rxcmp = (struct rx_cmp *)
1976 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1977 
1978 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1979 	cp_cons = RING_CMP(tmp_raw_cons);
1980 	rxcmp1 = (struct rx_cmp_ext *)
1981 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1982 
1983 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1984 		return -EBUSY;
1985 
1986 	/* The valid test of the entry must be done first before
1987 	 * reading any further.
1988 	 */
1989 	dma_rmb();
1990 	cmp_type = RX_CMP_TYPE(rxcmp);
1991 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1992 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1993 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1994 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1995 		struct rx_tpa_end_cmp_ext *tpa_end1;
1996 
1997 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1998 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1999 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2000 	}
2001 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2002 	if (rc && rc != -EBUSY)
2003 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2004 	return rc;
2005 }
2006 
2007 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2008 {
2009 	struct bnxt_fw_health *fw_health = bp->fw_health;
2010 	u32 reg = fw_health->regs[reg_idx];
2011 	u32 reg_type, reg_off, val = 0;
2012 
2013 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2014 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2015 	switch (reg_type) {
2016 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2017 		pci_read_config_dword(bp->pdev, reg_off, &val);
2018 		break;
2019 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2020 		reg_off = fw_health->mapped_regs[reg_idx];
2021 		fallthrough;
2022 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2023 		val = readl(bp->bar0 + reg_off);
2024 		break;
2025 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2026 		val = readl(bp->bar1 + reg_off);
2027 		break;
2028 	}
2029 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2030 		val &= fw_health->fw_reset_inprog_reg_mask;
2031 	return val;
2032 }
2033 
2034 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2035 {
2036 	int i;
2037 
2038 	for (i = 0; i < bp->rx_nr_rings; i++) {
2039 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2040 		struct bnxt_ring_grp_info *grp_info;
2041 
2042 		grp_info = &bp->grp_info[grp_idx];
2043 		if (grp_info->agg_fw_ring_id == ring_id)
2044 			return grp_idx;
2045 	}
2046 	return INVALID_HW_RING_ID;
2047 }
2048 
2049 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2050 {
2051 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2052 
2053 	switch (err_type) {
2054 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2055 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2056 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2057 		break;
2058 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2059 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2060 		break;
2061 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2062 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2063 		break;
2064 	default:
2065 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2066 			   err_type);
2067 		break;
2068 	}
2069 }
2070 
2071 #define BNXT_GET_EVENT_PORT(data)	\
2072 	((data) &			\
2073 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2074 
2075 #define BNXT_EVENT_RING_TYPE(data2)	\
2076 	((data2) &			\
2077 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2078 
2079 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2080 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2081 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2082 
2083 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2084 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2085 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2086 
2087 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2088 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2089 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2090 
2091 #define BNXT_PHC_BITS	48
2092 
2093 static int bnxt_async_event_process(struct bnxt *bp,
2094 				    struct hwrm_async_event_cmpl *cmpl)
2095 {
2096 	u16 event_id = le16_to_cpu(cmpl->event_id);
2097 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2098 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2099 
2100 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2101 		   event_id, data1, data2);
2102 
2103 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2104 	switch (event_id) {
2105 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2106 		struct bnxt_link_info *link_info = &bp->link_info;
2107 
2108 		if (BNXT_VF(bp))
2109 			goto async_event_process_exit;
2110 
2111 		/* print unsupported speed warning in forced speed mode only */
2112 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2113 		    (data1 & 0x20000)) {
2114 			u16 fw_speed = link_info->force_link_speed;
2115 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2116 
2117 			if (speed != SPEED_UNKNOWN)
2118 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2119 					    speed);
2120 		}
2121 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2122 	}
2123 		fallthrough;
2124 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2125 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2126 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2127 		fallthrough;
2128 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2129 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2130 		break;
2131 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2132 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2133 		break;
2134 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2135 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2136 
2137 		if (BNXT_VF(bp))
2138 			break;
2139 
2140 		if (bp->pf.port_id != port_id)
2141 			break;
2142 
2143 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2144 		break;
2145 	}
2146 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2147 		if (BNXT_PF(bp))
2148 			goto async_event_process_exit;
2149 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2150 		break;
2151 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2152 		char *type_str = "Solicited";
2153 
2154 		if (!bp->fw_health)
2155 			goto async_event_process_exit;
2156 
2157 		bp->fw_reset_timestamp = jiffies;
2158 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2159 		if (!bp->fw_reset_min_dsecs)
2160 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2161 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2162 		if (!bp->fw_reset_max_dsecs)
2163 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2164 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2165 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2166 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2167 			type_str = "Fatal";
2168 			bp->fw_health->fatalities++;
2169 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2170 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2171 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2172 			type_str = "Non-fatal";
2173 			bp->fw_health->survivals++;
2174 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2175 		}
2176 		netif_warn(bp, hw, bp->dev,
2177 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2178 			   type_str, data1, data2,
2179 			   bp->fw_reset_min_dsecs * 100,
2180 			   bp->fw_reset_max_dsecs * 100);
2181 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2182 		break;
2183 	}
2184 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2185 		struct bnxt_fw_health *fw_health = bp->fw_health;
2186 		char *status_desc = "healthy";
2187 		u32 status;
2188 
2189 		if (!fw_health)
2190 			goto async_event_process_exit;
2191 
2192 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2193 			fw_health->enabled = false;
2194 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2195 			break;
2196 		}
2197 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2198 		fw_health->tmr_multiplier =
2199 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2200 				     bp->current_interval * 10);
2201 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2202 		if (!fw_health->enabled)
2203 			fw_health->last_fw_heartbeat =
2204 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2205 		fw_health->last_fw_reset_cnt =
2206 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2207 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2208 		if (status != BNXT_FW_STATUS_HEALTHY)
2209 			status_desc = "unhealthy";
2210 		netif_info(bp, drv, bp->dev,
2211 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2212 			   fw_health->primary ? "primary" : "backup", status,
2213 			   status_desc, fw_health->last_fw_reset_cnt);
2214 		if (!fw_health->enabled) {
2215 			/* Make sure tmr_counter is set and visible to
2216 			 * bnxt_health_check() before setting enabled to true.
2217 			 */
2218 			smp_wmb();
2219 			fw_health->enabled = true;
2220 		}
2221 		goto async_event_process_exit;
2222 	}
2223 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2224 		netif_notice(bp, hw, bp->dev,
2225 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2226 			     data1, data2);
2227 		goto async_event_process_exit;
2228 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2229 		struct bnxt_rx_ring_info *rxr;
2230 		u16 grp_idx;
2231 
2232 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2233 			goto async_event_process_exit;
2234 
2235 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2236 			    BNXT_EVENT_RING_TYPE(data2), data1);
2237 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2238 			goto async_event_process_exit;
2239 
2240 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2241 		if (grp_idx == INVALID_HW_RING_ID) {
2242 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2243 				    data1);
2244 			goto async_event_process_exit;
2245 		}
2246 		rxr = bp->bnapi[grp_idx]->rx_ring;
2247 		bnxt_sched_reset(bp, rxr);
2248 		goto async_event_process_exit;
2249 	}
2250 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2251 		struct bnxt_fw_health *fw_health = bp->fw_health;
2252 
2253 		netif_notice(bp, hw, bp->dev,
2254 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2255 			     data1, data2);
2256 		if (fw_health) {
2257 			fw_health->echo_req_data1 = data1;
2258 			fw_health->echo_req_data2 = data2;
2259 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2260 			break;
2261 		}
2262 		goto async_event_process_exit;
2263 	}
2264 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2265 		bnxt_ptp_pps_event(bp, data1, data2);
2266 		goto async_event_process_exit;
2267 	}
2268 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2269 		bnxt_event_error_report(bp, data1, data2);
2270 		goto async_event_process_exit;
2271 	}
2272 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2273 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2274 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2275 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2276 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2277 				u64 ns;
2278 
2279 				spin_lock_bh(&ptp->ptp_lock);
2280 				bnxt_ptp_update_current_time(bp);
2281 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2282 				       BNXT_PHC_BITS) | ptp->current_time);
2283 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2284 				spin_unlock_bh(&ptp->ptp_lock);
2285 			}
2286 			break;
2287 		}
2288 		goto async_event_process_exit;
2289 	}
2290 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2291 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2292 
2293 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2294 		goto async_event_process_exit;
2295 	}
2296 	default:
2297 		goto async_event_process_exit;
2298 	}
2299 	bnxt_queue_sp_work(bp);
2300 async_event_process_exit:
2301 	bnxt_ulp_async_events(bp, cmpl);
2302 	return 0;
2303 }
2304 
2305 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2306 {
2307 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2308 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2309 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2310 				(struct hwrm_fwd_req_cmpl *)txcmp;
2311 
2312 	switch (cmpl_type) {
2313 	case CMPL_BASE_TYPE_HWRM_DONE:
2314 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2315 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2316 		break;
2317 
2318 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2319 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2320 
2321 		if ((vf_id < bp->pf.first_vf_id) ||
2322 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2323 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2324 				   vf_id);
2325 			return -EINVAL;
2326 		}
2327 
2328 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2329 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2330 		bnxt_queue_sp_work(bp);
2331 		break;
2332 
2333 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2334 		bnxt_async_event_process(bp,
2335 					 (struct hwrm_async_event_cmpl *)txcmp);
2336 		break;
2337 
2338 	default:
2339 		break;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2346 {
2347 	struct bnxt_napi *bnapi = dev_instance;
2348 	struct bnxt *bp = bnapi->bp;
2349 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2350 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2351 
2352 	cpr->event_ctr++;
2353 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2354 	napi_schedule(&bnapi->napi);
2355 	return IRQ_HANDLED;
2356 }
2357 
2358 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2359 {
2360 	u32 raw_cons = cpr->cp_raw_cons;
2361 	u16 cons = RING_CMP(raw_cons);
2362 	struct tx_cmp *txcmp;
2363 
2364 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2365 
2366 	return TX_CMP_VALID(txcmp, raw_cons);
2367 }
2368 
2369 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2370 {
2371 	struct bnxt_napi *bnapi = dev_instance;
2372 	struct bnxt *bp = bnapi->bp;
2373 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2374 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2375 	u32 int_status;
2376 
2377 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2378 
2379 	if (!bnxt_has_work(bp, cpr)) {
2380 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2381 		/* return if erroneous interrupt */
2382 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2383 			return IRQ_NONE;
2384 	}
2385 
2386 	/* disable ring IRQ */
2387 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2388 
2389 	/* Return here if interrupt is shared and is disabled. */
2390 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2391 		return IRQ_HANDLED;
2392 
2393 	napi_schedule(&bnapi->napi);
2394 	return IRQ_HANDLED;
2395 }
2396 
2397 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2398 			    int budget)
2399 {
2400 	struct bnxt_napi *bnapi = cpr->bnapi;
2401 	u32 raw_cons = cpr->cp_raw_cons;
2402 	u32 cons;
2403 	int tx_pkts = 0;
2404 	int rx_pkts = 0;
2405 	u8 event = 0;
2406 	struct tx_cmp *txcmp;
2407 
2408 	cpr->has_more_work = 0;
2409 	cpr->had_work_done = 1;
2410 	while (1) {
2411 		int rc;
2412 
2413 		cons = RING_CMP(raw_cons);
2414 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2415 
2416 		if (!TX_CMP_VALID(txcmp, raw_cons))
2417 			break;
2418 
2419 		/* The valid test of the entry must be done first before
2420 		 * reading any further.
2421 		 */
2422 		dma_rmb();
2423 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2424 			tx_pkts++;
2425 			/* return full budget so NAPI will complete. */
2426 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2427 				rx_pkts = budget;
2428 				raw_cons = NEXT_RAW_CMP(raw_cons);
2429 				if (budget)
2430 					cpr->has_more_work = 1;
2431 				break;
2432 			}
2433 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2434 			if (likely(budget))
2435 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2436 			else
2437 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2438 							   &event);
2439 			if (likely(rc >= 0))
2440 				rx_pkts += rc;
2441 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2442 			 * the NAPI budget.  Otherwise, we may potentially loop
2443 			 * here forever if we consistently cannot allocate
2444 			 * buffers.
2445 			 */
2446 			else if (rc == -ENOMEM && budget)
2447 				rx_pkts++;
2448 			else if (rc == -EBUSY)	/* partial completion */
2449 				break;
2450 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2451 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2452 				    (TX_CMP_TYPE(txcmp) ==
2453 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2454 				    (TX_CMP_TYPE(txcmp) ==
2455 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2456 			bnxt_hwrm_handler(bp, txcmp);
2457 		}
2458 		raw_cons = NEXT_RAW_CMP(raw_cons);
2459 
2460 		if (rx_pkts && rx_pkts == budget) {
2461 			cpr->has_more_work = 1;
2462 			break;
2463 		}
2464 	}
2465 
2466 	if (event & BNXT_REDIRECT_EVENT)
2467 		xdp_do_flush();
2468 
2469 	if (event & BNXT_TX_EVENT) {
2470 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2471 		u16 prod = txr->tx_prod;
2472 
2473 		/* Sync BD data before updating doorbell */
2474 		wmb();
2475 
2476 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2477 	}
2478 
2479 	cpr->cp_raw_cons = raw_cons;
2480 	bnapi->tx_pkts += tx_pkts;
2481 	bnapi->events |= event;
2482 	return rx_pkts;
2483 }
2484 
2485 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2486 {
2487 	if (bnapi->tx_pkts) {
2488 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2489 		bnapi->tx_pkts = 0;
2490 	}
2491 
2492 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2493 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2494 
2495 		if (bnapi->events & BNXT_AGG_EVENT)
2496 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2497 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2498 	}
2499 	bnapi->events = 0;
2500 }
2501 
2502 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2503 			  int budget)
2504 {
2505 	struct bnxt_napi *bnapi = cpr->bnapi;
2506 	int rx_pkts;
2507 
2508 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2509 
2510 	/* ACK completion ring before freeing tx ring and producing new
2511 	 * buffers in rx/agg rings to prevent overflowing the completion
2512 	 * ring.
2513 	 */
2514 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2515 
2516 	__bnxt_poll_work_done(bp, bnapi);
2517 	return rx_pkts;
2518 }
2519 
2520 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2521 {
2522 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2523 	struct bnxt *bp = bnapi->bp;
2524 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2525 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2526 	struct tx_cmp *txcmp;
2527 	struct rx_cmp_ext *rxcmp1;
2528 	u32 cp_cons, tmp_raw_cons;
2529 	u32 raw_cons = cpr->cp_raw_cons;
2530 	u32 rx_pkts = 0;
2531 	u8 event = 0;
2532 
2533 	while (1) {
2534 		int rc;
2535 
2536 		cp_cons = RING_CMP(raw_cons);
2537 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2538 
2539 		if (!TX_CMP_VALID(txcmp, raw_cons))
2540 			break;
2541 
2542 		/* The valid test of the entry must be done first before
2543 		 * reading any further.
2544 		 */
2545 		dma_rmb();
2546 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2547 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2548 			cp_cons = RING_CMP(tmp_raw_cons);
2549 			rxcmp1 = (struct rx_cmp_ext *)
2550 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2551 
2552 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2553 				break;
2554 
2555 			/* force an error to recycle the buffer */
2556 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2557 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2558 
2559 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2560 			if (likely(rc == -EIO) && budget)
2561 				rx_pkts++;
2562 			else if (rc == -EBUSY)	/* partial completion */
2563 				break;
2564 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2565 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2566 			bnxt_hwrm_handler(bp, txcmp);
2567 		} else {
2568 			netdev_err(bp->dev,
2569 				   "Invalid completion received on special ring\n");
2570 		}
2571 		raw_cons = NEXT_RAW_CMP(raw_cons);
2572 
2573 		if (rx_pkts == budget)
2574 			break;
2575 	}
2576 
2577 	cpr->cp_raw_cons = raw_cons;
2578 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2579 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2580 
2581 	if (event & BNXT_AGG_EVENT)
2582 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2583 
2584 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2585 		napi_complete_done(napi, rx_pkts);
2586 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2587 	}
2588 	return rx_pkts;
2589 }
2590 
2591 static int bnxt_poll(struct napi_struct *napi, int budget)
2592 {
2593 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2594 	struct bnxt *bp = bnapi->bp;
2595 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2596 	int work_done = 0;
2597 
2598 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2599 		napi_complete(napi);
2600 		return 0;
2601 	}
2602 	while (1) {
2603 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2604 
2605 		if (work_done >= budget) {
2606 			if (!budget)
2607 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2608 			break;
2609 		}
2610 
2611 		if (!bnxt_has_work(bp, cpr)) {
2612 			if (napi_complete_done(napi, work_done))
2613 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2614 			break;
2615 		}
2616 	}
2617 	if (bp->flags & BNXT_FLAG_DIM) {
2618 		struct dim_sample dim_sample = {};
2619 
2620 		dim_update_sample(cpr->event_ctr,
2621 				  cpr->rx_packets,
2622 				  cpr->rx_bytes,
2623 				  &dim_sample);
2624 		net_dim(&cpr->dim, dim_sample);
2625 	}
2626 	return work_done;
2627 }
2628 
2629 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2630 {
2631 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2632 	int i, work_done = 0;
2633 
2634 	for (i = 0; i < 2; i++) {
2635 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2636 
2637 		if (cpr2) {
2638 			work_done += __bnxt_poll_work(bp, cpr2,
2639 						      budget - work_done);
2640 			cpr->has_more_work |= cpr2->has_more_work;
2641 		}
2642 	}
2643 	return work_done;
2644 }
2645 
2646 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2647 				 u64 dbr_type)
2648 {
2649 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2650 	int i;
2651 
2652 	for (i = 0; i < 2; i++) {
2653 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2654 		struct bnxt_db_info *db;
2655 
2656 		if (cpr2 && cpr2->had_work_done) {
2657 			db = &cpr2->cp_db;
2658 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2659 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2660 			cpr2->had_work_done = 0;
2661 		}
2662 	}
2663 	__bnxt_poll_work_done(bp, bnapi);
2664 }
2665 
2666 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2667 {
2668 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2669 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2670 	struct bnxt_cp_ring_info *cpr_rx;
2671 	u32 raw_cons = cpr->cp_raw_cons;
2672 	struct bnxt *bp = bnapi->bp;
2673 	struct nqe_cn *nqcmp;
2674 	int work_done = 0;
2675 	u32 cons;
2676 
2677 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2678 		napi_complete(napi);
2679 		return 0;
2680 	}
2681 	if (cpr->has_more_work) {
2682 		cpr->has_more_work = 0;
2683 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2684 	}
2685 	while (1) {
2686 		cons = RING_CMP(raw_cons);
2687 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2688 
2689 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2690 			if (cpr->has_more_work)
2691 				break;
2692 
2693 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2694 			cpr->cp_raw_cons = raw_cons;
2695 			if (napi_complete_done(napi, work_done))
2696 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2697 						  cpr->cp_raw_cons);
2698 			goto poll_done;
2699 		}
2700 
2701 		/* The valid test of the entry must be done first before
2702 		 * reading any further.
2703 		 */
2704 		dma_rmb();
2705 
2706 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2707 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2708 			struct bnxt_cp_ring_info *cpr2;
2709 
2710 			cpr2 = cpr->cp_ring_arr[idx];
2711 			work_done += __bnxt_poll_work(bp, cpr2,
2712 						      budget - work_done);
2713 			cpr->has_more_work |= cpr2->has_more_work;
2714 		} else {
2715 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2716 		}
2717 		raw_cons = NEXT_RAW_CMP(raw_cons);
2718 	}
2719 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2720 	if (raw_cons != cpr->cp_raw_cons) {
2721 		cpr->cp_raw_cons = raw_cons;
2722 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2723 	}
2724 poll_done:
2725 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2726 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2727 		struct dim_sample dim_sample = {};
2728 
2729 		dim_update_sample(cpr->event_ctr,
2730 				  cpr_rx->rx_packets,
2731 				  cpr_rx->rx_bytes,
2732 				  &dim_sample);
2733 		net_dim(&cpr->dim, dim_sample);
2734 	}
2735 	return work_done;
2736 }
2737 
2738 static void bnxt_free_tx_skbs(struct bnxt *bp)
2739 {
2740 	int i, max_idx;
2741 	struct pci_dev *pdev = bp->pdev;
2742 
2743 	if (!bp->tx_ring)
2744 		return;
2745 
2746 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2747 	for (i = 0; i < bp->tx_nr_rings; i++) {
2748 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2749 		int j;
2750 
2751 		if (!txr->tx_buf_ring)
2752 			continue;
2753 
2754 		for (j = 0; j < max_idx;) {
2755 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2756 			struct sk_buff *skb;
2757 			int k, last;
2758 
2759 			if (i < bp->tx_nr_rings_xdp &&
2760 			    tx_buf->action == XDP_REDIRECT) {
2761 				dma_unmap_single(&pdev->dev,
2762 					dma_unmap_addr(tx_buf, mapping),
2763 					dma_unmap_len(tx_buf, len),
2764 					DMA_TO_DEVICE);
2765 				xdp_return_frame(tx_buf->xdpf);
2766 				tx_buf->action = 0;
2767 				tx_buf->xdpf = NULL;
2768 				j++;
2769 				continue;
2770 			}
2771 
2772 			skb = tx_buf->skb;
2773 			if (!skb) {
2774 				j++;
2775 				continue;
2776 			}
2777 
2778 			tx_buf->skb = NULL;
2779 
2780 			if (tx_buf->is_push) {
2781 				dev_kfree_skb(skb);
2782 				j += 2;
2783 				continue;
2784 			}
2785 
2786 			dma_unmap_single(&pdev->dev,
2787 					 dma_unmap_addr(tx_buf, mapping),
2788 					 skb_headlen(skb),
2789 					 DMA_TO_DEVICE);
2790 
2791 			last = tx_buf->nr_frags;
2792 			j += 2;
2793 			for (k = 0; k < last; k++, j++) {
2794 				int ring_idx = j & bp->tx_ring_mask;
2795 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2796 
2797 				tx_buf = &txr->tx_buf_ring[ring_idx];
2798 				dma_unmap_page(
2799 					&pdev->dev,
2800 					dma_unmap_addr(tx_buf, mapping),
2801 					skb_frag_size(frag), DMA_TO_DEVICE);
2802 			}
2803 			dev_kfree_skb(skb);
2804 		}
2805 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2806 	}
2807 }
2808 
2809 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2810 {
2811 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2812 	struct pci_dev *pdev = bp->pdev;
2813 	struct bnxt_tpa_idx_map *map;
2814 	int i, max_idx, max_agg_idx;
2815 
2816 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2817 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2818 	if (!rxr->rx_tpa)
2819 		goto skip_rx_tpa_free;
2820 
2821 	for (i = 0; i < bp->max_tpa; i++) {
2822 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2823 		u8 *data = tpa_info->data;
2824 
2825 		if (!data)
2826 			continue;
2827 
2828 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2829 				       bp->rx_buf_use_size, bp->rx_dir,
2830 				       DMA_ATTR_WEAK_ORDERING);
2831 
2832 		tpa_info->data = NULL;
2833 
2834 		skb_free_frag(data);
2835 	}
2836 
2837 skip_rx_tpa_free:
2838 	if (!rxr->rx_buf_ring)
2839 		goto skip_rx_buf_free;
2840 
2841 	for (i = 0; i < max_idx; i++) {
2842 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2843 		dma_addr_t mapping = rx_buf->mapping;
2844 		void *data = rx_buf->data;
2845 
2846 		if (!data)
2847 			continue;
2848 
2849 		rx_buf->data = NULL;
2850 		if (BNXT_RX_PAGE_MODE(bp)) {
2851 			mapping -= bp->rx_dma_offset;
2852 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2853 					     bp->rx_dir,
2854 					     DMA_ATTR_WEAK_ORDERING);
2855 			page_pool_recycle_direct(rxr->page_pool, data);
2856 		} else {
2857 			dma_unmap_single_attrs(&pdev->dev, mapping,
2858 					       bp->rx_buf_use_size, bp->rx_dir,
2859 					       DMA_ATTR_WEAK_ORDERING);
2860 			skb_free_frag(data);
2861 		}
2862 	}
2863 
2864 skip_rx_buf_free:
2865 	if (!rxr->rx_agg_ring)
2866 		goto skip_rx_agg_free;
2867 
2868 	for (i = 0; i < max_agg_idx; i++) {
2869 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2870 		struct page *page = rx_agg_buf->page;
2871 
2872 		if (!page)
2873 			continue;
2874 
2875 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2876 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2877 				     DMA_ATTR_WEAK_ORDERING);
2878 
2879 		rx_agg_buf->page = NULL;
2880 		__clear_bit(i, rxr->rx_agg_bmap);
2881 
2882 		__free_page(page);
2883 	}
2884 
2885 skip_rx_agg_free:
2886 	if (rxr->rx_page) {
2887 		__free_page(rxr->rx_page);
2888 		rxr->rx_page = NULL;
2889 	}
2890 	map = rxr->rx_tpa_idx_map;
2891 	if (map)
2892 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2893 }
2894 
2895 static void bnxt_free_rx_skbs(struct bnxt *bp)
2896 {
2897 	int i;
2898 
2899 	if (!bp->rx_ring)
2900 		return;
2901 
2902 	for (i = 0; i < bp->rx_nr_rings; i++)
2903 		bnxt_free_one_rx_ring_skbs(bp, i);
2904 }
2905 
2906 static void bnxt_free_skbs(struct bnxt *bp)
2907 {
2908 	bnxt_free_tx_skbs(bp);
2909 	bnxt_free_rx_skbs(bp);
2910 }
2911 
2912 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2913 {
2914 	u8 init_val = mem_init->init_val;
2915 	u16 offset = mem_init->offset;
2916 	u8 *p2 = p;
2917 	int i;
2918 
2919 	if (!init_val)
2920 		return;
2921 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2922 		memset(p, init_val, len);
2923 		return;
2924 	}
2925 	for (i = 0; i < len; i += mem_init->size)
2926 		*(p2 + i + offset) = init_val;
2927 }
2928 
2929 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2930 {
2931 	struct pci_dev *pdev = bp->pdev;
2932 	int i;
2933 
2934 	if (!rmem->pg_arr)
2935 		goto skip_pages;
2936 
2937 	for (i = 0; i < rmem->nr_pages; i++) {
2938 		if (!rmem->pg_arr[i])
2939 			continue;
2940 
2941 		dma_free_coherent(&pdev->dev, rmem->page_size,
2942 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2943 
2944 		rmem->pg_arr[i] = NULL;
2945 	}
2946 skip_pages:
2947 	if (rmem->pg_tbl) {
2948 		size_t pg_tbl_size = rmem->nr_pages * 8;
2949 
2950 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2951 			pg_tbl_size = rmem->page_size;
2952 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2953 				  rmem->pg_tbl, rmem->pg_tbl_map);
2954 		rmem->pg_tbl = NULL;
2955 	}
2956 	if (rmem->vmem_size && *rmem->vmem) {
2957 		vfree(*rmem->vmem);
2958 		*rmem->vmem = NULL;
2959 	}
2960 }
2961 
2962 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2963 {
2964 	struct pci_dev *pdev = bp->pdev;
2965 	u64 valid_bit = 0;
2966 	int i;
2967 
2968 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2969 		valid_bit = PTU_PTE_VALID;
2970 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2971 		size_t pg_tbl_size = rmem->nr_pages * 8;
2972 
2973 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2974 			pg_tbl_size = rmem->page_size;
2975 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2976 						  &rmem->pg_tbl_map,
2977 						  GFP_KERNEL);
2978 		if (!rmem->pg_tbl)
2979 			return -ENOMEM;
2980 	}
2981 
2982 	for (i = 0; i < rmem->nr_pages; i++) {
2983 		u64 extra_bits = valid_bit;
2984 
2985 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2986 						     rmem->page_size,
2987 						     &rmem->dma_arr[i],
2988 						     GFP_KERNEL);
2989 		if (!rmem->pg_arr[i])
2990 			return -ENOMEM;
2991 
2992 		if (rmem->mem_init)
2993 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2994 					  rmem->page_size);
2995 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2996 			if (i == rmem->nr_pages - 2 &&
2997 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2998 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2999 			else if (i == rmem->nr_pages - 1 &&
3000 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3001 				extra_bits |= PTU_PTE_LAST;
3002 			rmem->pg_tbl[i] =
3003 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3004 		}
3005 	}
3006 
3007 	if (rmem->vmem_size) {
3008 		*rmem->vmem = vzalloc(rmem->vmem_size);
3009 		if (!(*rmem->vmem))
3010 			return -ENOMEM;
3011 	}
3012 	return 0;
3013 }
3014 
3015 static void bnxt_free_tpa_info(struct bnxt *bp)
3016 {
3017 	int i;
3018 
3019 	for (i = 0; i < bp->rx_nr_rings; i++) {
3020 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3021 
3022 		kfree(rxr->rx_tpa_idx_map);
3023 		rxr->rx_tpa_idx_map = NULL;
3024 		if (rxr->rx_tpa) {
3025 			kfree(rxr->rx_tpa[0].agg_arr);
3026 			rxr->rx_tpa[0].agg_arr = NULL;
3027 		}
3028 		kfree(rxr->rx_tpa);
3029 		rxr->rx_tpa = NULL;
3030 	}
3031 }
3032 
3033 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3034 {
3035 	int i, j, total_aggs = 0;
3036 
3037 	bp->max_tpa = MAX_TPA;
3038 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3039 		if (!bp->max_tpa_v2)
3040 			return 0;
3041 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3042 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3043 	}
3044 
3045 	for (i = 0; i < bp->rx_nr_rings; i++) {
3046 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3047 		struct rx_agg_cmp *agg;
3048 
3049 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3050 				      GFP_KERNEL);
3051 		if (!rxr->rx_tpa)
3052 			return -ENOMEM;
3053 
3054 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3055 			continue;
3056 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3057 		rxr->rx_tpa[0].agg_arr = agg;
3058 		if (!agg)
3059 			return -ENOMEM;
3060 		for (j = 1; j < bp->max_tpa; j++)
3061 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3062 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3063 					      GFP_KERNEL);
3064 		if (!rxr->rx_tpa_idx_map)
3065 			return -ENOMEM;
3066 	}
3067 	return 0;
3068 }
3069 
3070 static void bnxt_free_rx_rings(struct bnxt *bp)
3071 {
3072 	int i;
3073 
3074 	if (!bp->rx_ring)
3075 		return;
3076 
3077 	bnxt_free_tpa_info(bp);
3078 	for (i = 0; i < bp->rx_nr_rings; i++) {
3079 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3080 		struct bnxt_ring_struct *ring;
3081 
3082 		if (rxr->xdp_prog)
3083 			bpf_prog_put(rxr->xdp_prog);
3084 
3085 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3086 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3087 
3088 		page_pool_destroy(rxr->page_pool);
3089 		rxr->page_pool = NULL;
3090 
3091 		kfree(rxr->rx_agg_bmap);
3092 		rxr->rx_agg_bmap = NULL;
3093 
3094 		ring = &rxr->rx_ring_struct;
3095 		bnxt_free_ring(bp, &ring->ring_mem);
3096 
3097 		ring = &rxr->rx_agg_ring_struct;
3098 		bnxt_free_ring(bp, &ring->ring_mem);
3099 	}
3100 }
3101 
3102 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3103 				   struct bnxt_rx_ring_info *rxr)
3104 {
3105 	struct page_pool_params pp = { 0 };
3106 
3107 	pp.pool_size = bp->rx_ring_size;
3108 	pp.nid = dev_to_node(&bp->pdev->dev);
3109 	pp.dev = &bp->pdev->dev;
3110 	pp.dma_dir = DMA_BIDIRECTIONAL;
3111 
3112 	rxr->page_pool = page_pool_create(&pp);
3113 	if (IS_ERR(rxr->page_pool)) {
3114 		int err = PTR_ERR(rxr->page_pool);
3115 
3116 		rxr->page_pool = NULL;
3117 		return err;
3118 	}
3119 	return 0;
3120 }
3121 
3122 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3123 {
3124 	int i, rc = 0, agg_rings = 0;
3125 
3126 	if (!bp->rx_ring)
3127 		return -ENOMEM;
3128 
3129 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3130 		agg_rings = 1;
3131 
3132 	for (i = 0; i < bp->rx_nr_rings; i++) {
3133 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3134 		struct bnxt_ring_struct *ring;
3135 
3136 		ring = &rxr->rx_ring_struct;
3137 
3138 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3139 		if (rc)
3140 			return rc;
3141 
3142 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3143 		if (rc < 0)
3144 			return rc;
3145 
3146 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3147 						MEM_TYPE_PAGE_POOL,
3148 						rxr->page_pool);
3149 		if (rc) {
3150 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3151 			return rc;
3152 		}
3153 
3154 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3155 		if (rc)
3156 			return rc;
3157 
3158 		ring->grp_idx = i;
3159 		if (agg_rings) {
3160 			u16 mem_size;
3161 
3162 			ring = &rxr->rx_agg_ring_struct;
3163 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3164 			if (rc)
3165 				return rc;
3166 
3167 			ring->grp_idx = i;
3168 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3169 			mem_size = rxr->rx_agg_bmap_size / 8;
3170 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3171 			if (!rxr->rx_agg_bmap)
3172 				return -ENOMEM;
3173 		}
3174 	}
3175 	if (bp->flags & BNXT_FLAG_TPA)
3176 		rc = bnxt_alloc_tpa_info(bp);
3177 	return rc;
3178 }
3179 
3180 static void bnxt_free_tx_rings(struct bnxt *bp)
3181 {
3182 	int i;
3183 	struct pci_dev *pdev = bp->pdev;
3184 
3185 	if (!bp->tx_ring)
3186 		return;
3187 
3188 	for (i = 0; i < bp->tx_nr_rings; i++) {
3189 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3190 		struct bnxt_ring_struct *ring;
3191 
3192 		if (txr->tx_push) {
3193 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3194 					  txr->tx_push, txr->tx_push_mapping);
3195 			txr->tx_push = NULL;
3196 		}
3197 
3198 		ring = &txr->tx_ring_struct;
3199 
3200 		bnxt_free_ring(bp, &ring->ring_mem);
3201 	}
3202 }
3203 
3204 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3205 {
3206 	int i, j, rc;
3207 	struct pci_dev *pdev = bp->pdev;
3208 
3209 	bp->tx_push_size = 0;
3210 	if (bp->tx_push_thresh) {
3211 		int push_size;
3212 
3213 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3214 					bp->tx_push_thresh);
3215 
3216 		if (push_size > 256) {
3217 			push_size = 0;
3218 			bp->tx_push_thresh = 0;
3219 		}
3220 
3221 		bp->tx_push_size = push_size;
3222 	}
3223 
3224 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3225 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3226 		struct bnxt_ring_struct *ring;
3227 		u8 qidx;
3228 
3229 		ring = &txr->tx_ring_struct;
3230 
3231 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3232 		if (rc)
3233 			return rc;
3234 
3235 		ring->grp_idx = txr->bnapi->index;
3236 		if (bp->tx_push_size) {
3237 			dma_addr_t mapping;
3238 
3239 			/* One pre-allocated DMA buffer to backup
3240 			 * TX push operation
3241 			 */
3242 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3243 						bp->tx_push_size,
3244 						&txr->tx_push_mapping,
3245 						GFP_KERNEL);
3246 
3247 			if (!txr->tx_push)
3248 				return -ENOMEM;
3249 
3250 			mapping = txr->tx_push_mapping +
3251 				sizeof(struct tx_push_bd);
3252 			txr->data_mapping = cpu_to_le64(mapping);
3253 		}
3254 		qidx = bp->tc_to_qidx[j];
3255 		ring->queue_id = bp->q_info[qidx].queue_id;
3256 		if (i < bp->tx_nr_rings_xdp)
3257 			continue;
3258 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3259 			j++;
3260 	}
3261 	return 0;
3262 }
3263 
3264 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3265 {
3266 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3267 
3268 	kfree(cpr->cp_desc_ring);
3269 	cpr->cp_desc_ring = NULL;
3270 	ring->ring_mem.pg_arr = NULL;
3271 	kfree(cpr->cp_desc_mapping);
3272 	cpr->cp_desc_mapping = NULL;
3273 	ring->ring_mem.dma_arr = NULL;
3274 }
3275 
3276 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3277 {
3278 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3279 	if (!cpr->cp_desc_ring)
3280 		return -ENOMEM;
3281 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3282 				       GFP_KERNEL);
3283 	if (!cpr->cp_desc_mapping)
3284 		return -ENOMEM;
3285 	return 0;
3286 }
3287 
3288 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3289 {
3290 	int i;
3291 
3292 	if (!bp->bnapi)
3293 		return;
3294 	for (i = 0; i < bp->cp_nr_rings; i++) {
3295 		struct bnxt_napi *bnapi = bp->bnapi[i];
3296 
3297 		if (!bnapi)
3298 			continue;
3299 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3300 	}
3301 }
3302 
3303 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3304 {
3305 	int i, n = bp->cp_nr_pages;
3306 
3307 	for (i = 0; i < bp->cp_nr_rings; i++) {
3308 		struct bnxt_napi *bnapi = bp->bnapi[i];
3309 		int rc;
3310 
3311 		if (!bnapi)
3312 			continue;
3313 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3314 		if (rc)
3315 			return rc;
3316 	}
3317 	return 0;
3318 }
3319 
3320 static void bnxt_free_cp_rings(struct bnxt *bp)
3321 {
3322 	int i;
3323 
3324 	if (!bp->bnapi)
3325 		return;
3326 
3327 	for (i = 0; i < bp->cp_nr_rings; i++) {
3328 		struct bnxt_napi *bnapi = bp->bnapi[i];
3329 		struct bnxt_cp_ring_info *cpr;
3330 		struct bnxt_ring_struct *ring;
3331 		int j;
3332 
3333 		if (!bnapi)
3334 			continue;
3335 
3336 		cpr = &bnapi->cp_ring;
3337 		ring = &cpr->cp_ring_struct;
3338 
3339 		bnxt_free_ring(bp, &ring->ring_mem);
3340 
3341 		for (j = 0; j < 2; j++) {
3342 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3343 
3344 			if (cpr2) {
3345 				ring = &cpr2->cp_ring_struct;
3346 				bnxt_free_ring(bp, &ring->ring_mem);
3347 				bnxt_free_cp_arrays(cpr2);
3348 				kfree(cpr2);
3349 				cpr->cp_ring_arr[j] = NULL;
3350 			}
3351 		}
3352 	}
3353 }
3354 
3355 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3356 {
3357 	struct bnxt_ring_mem_info *rmem;
3358 	struct bnxt_ring_struct *ring;
3359 	struct bnxt_cp_ring_info *cpr;
3360 	int rc;
3361 
3362 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3363 	if (!cpr)
3364 		return NULL;
3365 
3366 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3367 	if (rc) {
3368 		bnxt_free_cp_arrays(cpr);
3369 		kfree(cpr);
3370 		return NULL;
3371 	}
3372 	ring = &cpr->cp_ring_struct;
3373 	rmem = &ring->ring_mem;
3374 	rmem->nr_pages = bp->cp_nr_pages;
3375 	rmem->page_size = HW_CMPD_RING_SIZE;
3376 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3377 	rmem->dma_arr = cpr->cp_desc_mapping;
3378 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3379 	rc = bnxt_alloc_ring(bp, rmem);
3380 	if (rc) {
3381 		bnxt_free_ring(bp, rmem);
3382 		bnxt_free_cp_arrays(cpr);
3383 		kfree(cpr);
3384 		cpr = NULL;
3385 	}
3386 	return cpr;
3387 }
3388 
3389 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3390 {
3391 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3392 	int i, rc, ulp_base_vec, ulp_msix;
3393 
3394 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3395 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3396 	for (i = 0; i < bp->cp_nr_rings; i++) {
3397 		struct bnxt_napi *bnapi = bp->bnapi[i];
3398 		struct bnxt_cp_ring_info *cpr;
3399 		struct bnxt_ring_struct *ring;
3400 
3401 		if (!bnapi)
3402 			continue;
3403 
3404 		cpr = &bnapi->cp_ring;
3405 		cpr->bnapi = bnapi;
3406 		ring = &cpr->cp_ring_struct;
3407 
3408 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3409 		if (rc)
3410 			return rc;
3411 
3412 		if (ulp_msix && i >= ulp_base_vec)
3413 			ring->map_idx = i + ulp_msix;
3414 		else
3415 			ring->map_idx = i;
3416 
3417 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3418 			continue;
3419 
3420 		if (i < bp->rx_nr_rings) {
3421 			struct bnxt_cp_ring_info *cpr2 =
3422 				bnxt_alloc_cp_sub_ring(bp);
3423 
3424 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3425 			if (!cpr2)
3426 				return -ENOMEM;
3427 			cpr2->bnapi = bnapi;
3428 		}
3429 		if ((sh && i < bp->tx_nr_rings) ||
3430 		    (!sh && i >= bp->rx_nr_rings)) {
3431 			struct bnxt_cp_ring_info *cpr2 =
3432 				bnxt_alloc_cp_sub_ring(bp);
3433 
3434 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3435 			if (!cpr2)
3436 				return -ENOMEM;
3437 			cpr2->bnapi = bnapi;
3438 		}
3439 	}
3440 	return 0;
3441 }
3442 
3443 static void bnxt_init_ring_struct(struct bnxt *bp)
3444 {
3445 	int i;
3446 
3447 	for (i = 0; i < bp->cp_nr_rings; i++) {
3448 		struct bnxt_napi *bnapi = bp->bnapi[i];
3449 		struct bnxt_ring_mem_info *rmem;
3450 		struct bnxt_cp_ring_info *cpr;
3451 		struct bnxt_rx_ring_info *rxr;
3452 		struct bnxt_tx_ring_info *txr;
3453 		struct bnxt_ring_struct *ring;
3454 
3455 		if (!bnapi)
3456 			continue;
3457 
3458 		cpr = &bnapi->cp_ring;
3459 		ring = &cpr->cp_ring_struct;
3460 		rmem = &ring->ring_mem;
3461 		rmem->nr_pages = bp->cp_nr_pages;
3462 		rmem->page_size = HW_CMPD_RING_SIZE;
3463 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3464 		rmem->dma_arr = cpr->cp_desc_mapping;
3465 		rmem->vmem_size = 0;
3466 
3467 		rxr = bnapi->rx_ring;
3468 		if (!rxr)
3469 			goto skip_rx;
3470 
3471 		ring = &rxr->rx_ring_struct;
3472 		rmem = &ring->ring_mem;
3473 		rmem->nr_pages = bp->rx_nr_pages;
3474 		rmem->page_size = HW_RXBD_RING_SIZE;
3475 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3476 		rmem->dma_arr = rxr->rx_desc_mapping;
3477 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3478 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3479 
3480 		ring = &rxr->rx_agg_ring_struct;
3481 		rmem = &ring->ring_mem;
3482 		rmem->nr_pages = bp->rx_agg_nr_pages;
3483 		rmem->page_size = HW_RXBD_RING_SIZE;
3484 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3485 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3486 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3487 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3488 
3489 skip_rx:
3490 		txr = bnapi->tx_ring;
3491 		if (!txr)
3492 			continue;
3493 
3494 		ring = &txr->tx_ring_struct;
3495 		rmem = &ring->ring_mem;
3496 		rmem->nr_pages = bp->tx_nr_pages;
3497 		rmem->page_size = HW_RXBD_RING_SIZE;
3498 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3499 		rmem->dma_arr = txr->tx_desc_mapping;
3500 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3501 		rmem->vmem = (void **)&txr->tx_buf_ring;
3502 	}
3503 }
3504 
3505 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3506 {
3507 	int i;
3508 	u32 prod;
3509 	struct rx_bd **rx_buf_ring;
3510 
3511 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3512 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3513 		int j;
3514 		struct rx_bd *rxbd;
3515 
3516 		rxbd = rx_buf_ring[i];
3517 		if (!rxbd)
3518 			continue;
3519 
3520 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3521 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3522 			rxbd->rx_bd_opaque = prod;
3523 		}
3524 	}
3525 }
3526 
3527 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3528 {
3529 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3530 	struct net_device *dev = bp->dev;
3531 	u32 prod;
3532 	int i;
3533 
3534 	prod = rxr->rx_prod;
3535 	for (i = 0; i < bp->rx_ring_size; i++) {
3536 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3537 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3538 				    ring_nr, i, bp->rx_ring_size);
3539 			break;
3540 		}
3541 		prod = NEXT_RX(prod);
3542 	}
3543 	rxr->rx_prod = prod;
3544 
3545 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3546 		return 0;
3547 
3548 	prod = rxr->rx_agg_prod;
3549 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3550 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3551 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3552 				    ring_nr, i, bp->rx_ring_size);
3553 			break;
3554 		}
3555 		prod = NEXT_RX_AGG(prod);
3556 	}
3557 	rxr->rx_agg_prod = prod;
3558 
3559 	if (rxr->rx_tpa) {
3560 		dma_addr_t mapping;
3561 		u8 *data;
3562 
3563 		for (i = 0; i < bp->max_tpa; i++) {
3564 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3565 			if (!data)
3566 				return -ENOMEM;
3567 
3568 			rxr->rx_tpa[i].data = data;
3569 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3570 			rxr->rx_tpa[i].mapping = mapping;
3571 		}
3572 	}
3573 	return 0;
3574 }
3575 
3576 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3577 {
3578 	struct bnxt_rx_ring_info *rxr;
3579 	struct bnxt_ring_struct *ring;
3580 	u32 type;
3581 
3582 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3583 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3584 
3585 	if (NET_IP_ALIGN == 2)
3586 		type |= RX_BD_FLAGS_SOP;
3587 
3588 	rxr = &bp->rx_ring[ring_nr];
3589 	ring = &rxr->rx_ring_struct;
3590 	bnxt_init_rxbd_pages(ring, type);
3591 
3592 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3593 		bpf_prog_add(bp->xdp_prog, 1);
3594 		rxr->xdp_prog = bp->xdp_prog;
3595 	}
3596 	ring->fw_ring_id = INVALID_HW_RING_ID;
3597 
3598 	ring = &rxr->rx_agg_ring_struct;
3599 	ring->fw_ring_id = INVALID_HW_RING_ID;
3600 
3601 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3602 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3603 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3604 
3605 		bnxt_init_rxbd_pages(ring, type);
3606 	}
3607 
3608 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3609 }
3610 
3611 static void bnxt_init_cp_rings(struct bnxt *bp)
3612 {
3613 	int i, j;
3614 
3615 	for (i = 0; i < bp->cp_nr_rings; i++) {
3616 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3617 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3618 
3619 		ring->fw_ring_id = INVALID_HW_RING_ID;
3620 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3621 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3622 		for (j = 0; j < 2; j++) {
3623 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3624 
3625 			if (!cpr2)
3626 				continue;
3627 
3628 			ring = &cpr2->cp_ring_struct;
3629 			ring->fw_ring_id = INVALID_HW_RING_ID;
3630 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3631 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3632 		}
3633 	}
3634 }
3635 
3636 static int bnxt_init_rx_rings(struct bnxt *bp)
3637 {
3638 	int i, rc = 0;
3639 
3640 	if (BNXT_RX_PAGE_MODE(bp)) {
3641 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3642 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3643 	} else {
3644 		bp->rx_offset = BNXT_RX_OFFSET;
3645 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3646 	}
3647 
3648 	for (i = 0; i < bp->rx_nr_rings; i++) {
3649 		rc = bnxt_init_one_rx_ring(bp, i);
3650 		if (rc)
3651 			break;
3652 	}
3653 
3654 	return rc;
3655 }
3656 
3657 static int bnxt_init_tx_rings(struct bnxt *bp)
3658 {
3659 	u16 i;
3660 
3661 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3662 				   BNXT_MIN_TX_DESC_CNT);
3663 
3664 	for (i = 0; i < bp->tx_nr_rings; i++) {
3665 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3666 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3667 
3668 		ring->fw_ring_id = INVALID_HW_RING_ID;
3669 	}
3670 
3671 	return 0;
3672 }
3673 
3674 static void bnxt_free_ring_grps(struct bnxt *bp)
3675 {
3676 	kfree(bp->grp_info);
3677 	bp->grp_info = NULL;
3678 }
3679 
3680 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3681 {
3682 	int i;
3683 
3684 	if (irq_re_init) {
3685 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3686 				       sizeof(struct bnxt_ring_grp_info),
3687 				       GFP_KERNEL);
3688 		if (!bp->grp_info)
3689 			return -ENOMEM;
3690 	}
3691 	for (i = 0; i < bp->cp_nr_rings; i++) {
3692 		if (irq_re_init)
3693 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3694 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3695 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3696 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3697 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3698 	}
3699 	return 0;
3700 }
3701 
3702 static void bnxt_free_vnics(struct bnxt *bp)
3703 {
3704 	kfree(bp->vnic_info);
3705 	bp->vnic_info = NULL;
3706 	bp->nr_vnics = 0;
3707 }
3708 
3709 static int bnxt_alloc_vnics(struct bnxt *bp)
3710 {
3711 	int num_vnics = 1;
3712 
3713 #ifdef CONFIG_RFS_ACCEL
3714 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3715 		num_vnics += bp->rx_nr_rings;
3716 #endif
3717 
3718 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3719 		num_vnics++;
3720 
3721 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3722 				GFP_KERNEL);
3723 	if (!bp->vnic_info)
3724 		return -ENOMEM;
3725 
3726 	bp->nr_vnics = num_vnics;
3727 	return 0;
3728 }
3729 
3730 static void bnxt_init_vnics(struct bnxt *bp)
3731 {
3732 	int i;
3733 
3734 	for (i = 0; i < bp->nr_vnics; i++) {
3735 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3736 		int j;
3737 
3738 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3739 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3740 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3741 
3742 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3743 
3744 		if (bp->vnic_info[i].rss_hash_key) {
3745 			if (i == 0)
3746 				prandom_bytes(vnic->rss_hash_key,
3747 					      HW_HASH_KEY_SIZE);
3748 			else
3749 				memcpy(vnic->rss_hash_key,
3750 				       bp->vnic_info[0].rss_hash_key,
3751 				       HW_HASH_KEY_SIZE);
3752 		}
3753 	}
3754 }
3755 
3756 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3757 {
3758 	int pages;
3759 
3760 	pages = ring_size / desc_per_pg;
3761 
3762 	if (!pages)
3763 		return 1;
3764 
3765 	pages++;
3766 
3767 	while (pages & (pages - 1))
3768 		pages++;
3769 
3770 	return pages;
3771 }
3772 
3773 void bnxt_set_tpa_flags(struct bnxt *bp)
3774 {
3775 	bp->flags &= ~BNXT_FLAG_TPA;
3776 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3777 		return;
3778 	if (bp->dev->features & NETIF_F_LRO)
3779 		bp->flags |= BNXT_FLAG_LRO;
3780 	else if (bp->dev->features & NETIF_F_GRO_HW)
3781 		bp->flags |= BNXT_FLAG_GRO;
3782 }
3783 
3784 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3785  * be set on entry.
3786  */
3787 void bnxt_set_ring_params(struct bnxt *bp)
3788 {
3789 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3790 	u32 agg_factor = 0, agg_ring_size = 0;
3791 
3792 	/* 8 for CRC and VLAN */
3793 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3794 
3795 	rx_space = rx_size + NET_SKB_PAD +
3796 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3797 
3798 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3799 	ring_size = bp->rx_ring_size;
3800 	bp->rx_agg_ring_size = 0;
3801 	bp->rx_agg_nr_pages = 0;
3802 
3803 	if (bp->flags & BNXT_FLAG_TPA)
3804 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3805 
3806 	bp->flags &= ~BNXT_FLAG_JUMBO;
3807 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3808 		u32 jumbo_factor;
3809 
3810 		bp->flags |= BNXT_FLAG_JUMBO;
3811 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3812 		if (jumbo_factor > agg_factor)
3813 			agg_factor = jumbo_factor;
3814 	}
3815 	if (agg_factor) {
3816 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3817 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3818 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3819 				    bp->rx_ring_size, ring_size);
3820 			bp->rx_ring_size = ring_size;
3821 		}
3822 		agg_ring_size = ring_size * agg_factor;
3823 
3824 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3825 							RX_DESC_CNT);
3826 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3827 			u32 tmp = agg_ring_size;
3828 
3829 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3830 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3831 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3832 				    tmp, agg_ring_size);
3833 		}
3834 		bp->rx_agg_ring_size = agg_ring_size;
3835 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3836 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3837 		rx_space = rx_size + NET_SKB_PAD +
3838 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3839 	}
3840 
3841 	bp->rx_buf_use_size = rx_size;
3842 	bp->rx_buf_size = rx_space;
3843 
3844 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3845 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3846 
3847 	ring_size = bp->tx_ring_size;
3848 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3849 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3850 
3851 	max_rx_cmpl = bp->rx_ring_size;
3852 	/* MAX TPA needs to be added because TPA_START completions are
3853 	 * immediately recycled, so the TPA completions are not bound by
3854 	 * the RX ring size.
3855 	 */
3856 	if (bp->flags & BNXT_FLAG_TPA)
3857 		max_rx_cmpl += bp->max_tpa;
3858 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3859 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3860 	bp->cp_ring_size = ring_size;
3861 
3862 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3863 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3864 		bp->cp_nr_pages = MAX_CP_PAGES;
3865 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3866 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3867 			    ring_size, bp->cp_ring_size);
3868 	}
3869 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3870 	bp->cp_ring_mask = bp->cp_bit - 1;
3871 }
3872 
3873 /* Changing allocation mode of RX rings.
3874  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3875  */
3876 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3877 {
3878 	if (page_mode) {
3879 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3880 			return -EOPNOTSUPP;
3881 		bp->dev->max_mtu =
3882 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3883 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3884 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3885 		bp->rx_dir = DMA_BIDIRECTIONAL;
3886 		bp->rx_skb_func = bnxt_rx_page_skb;
3887 		/* Disable LRO or GRO_HW */
3888 		netdev_update_features(bp->dev);
3889 	} else {
3890 		bp->dev->max_mtu = bp->max_mtu;
3891 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3892 		bp->rx_dir = DMA_FROM_DEVICE;
3893 		bp->rx_skb_func = bnxt_rx_skb;
3894 	}
3895 	return 0;
3896 }
3897 
3898 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3899 {
3900 	int i;
3901 	struct bnxt_vnic_info *vnic;
3902 	struct pci_dev *pdev = bp->pdev;
3903 
3904 	if (!bp->vnic_info)
3905 		return;
3906 
3907 	for (i = 0; i < bp->nr_vnics; i++) {
3908 		vnic = &bp->vnic_info[i];
3909 
3910 		kfree(vnic->fw_grp_ids);
3911 		vnic->fw_grp_ids = NULL;
3912 
3913 		kfree(vnic->uc_list);
3914 		vnic->uc_list = NULL;
3915 
3916 		if (vnic->mc_list) {
3917 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3918 					  vnic->mc_list, vnic->mc_list_mapping);
3919 			vnic->mc_list = NULL;
3920 		}
3921 
3922 		if (vnic->rss_table) {
3923 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3924 					  vnic->rss_table,
3925 					  vnic->rss_table_dma_addr);
3926 			vnic->rss_table = NULL;
3927 		}
3928 
3929 		vnic->rss_hash_key = NULL;
3930 		vnic->flags = 0;
3931 	}
3932 }
3933 
3934 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3935 {
3936 	int i, rc = 0, size;
3937 	struct bnxt_vnic_info *vnic;
3938 	struct pci_dev *pdev = bp->pdev;
3939 	int max_rings;
3940 
3941 	for (i = 0; i < bp->nr_vnics; i++) {
3942 		vnic = &bp->vnic_info[i];
3943 
3944 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3945 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3946 
3947 			if (mem_size > 0) {
3948 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3949 				if (!vnic->uc_list) {
3950 					rc = -ENOMEM;
3951 					goto out;
3952 				}
3953 			}
3954 		}
3955 
3956 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3957 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3958 			vnic->mc_list =
3959 				dma_alloc_coherent(&pdev->dev,
3960 						   vnic->mc_list_size,
3961 						   &vnic->mc_list_mapping,
3962 						   GFP_KERNEL);
3963 			if (!vnic->mc_list) {
3964 				rc = -ENOMEM;
3965 				goto out;
3966 			}
3967 		}
3968 
3969 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3970 			goto vnic_skip_grps;
3971 
3972 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3973 			max_rings = bp->rx_nr_rings;
3974 		else
3975 			max_rings = 1;
3976 
3977 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3978 		if (!vnic->fw_grp_ids) {
3979 			rc = -ENOMEM;
3980 			goto out;
3981 		}
3982 vnic_skip_grps:
3983 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3984 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3985 			continue;
3986 
3987 		/* Allocate rss table and hash key */
3988 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3989 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3990 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3991 
3992 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3993 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3994 						     vnic->rss_table_size,
3995 						     &vnic->rss_table_dma_addr,
3996 						     GFP_KERNEL);
3997 		if (!vnic->rss_table) {
3998 			rc = -ENOMEM;
3999 			goto out;
4000 		}
4001 
4002 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4003 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4004 	}
4005 	return 0;
4006 
4007 out:
4008 	return rc;
4009 }
4010 
4011 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4012 {
4013 	struct bnxt_hwrm_wait_token *token;
4014 
4015 	dma_pool_destroy(bp->hwrm_dma_pool);
4016 	bp->hwrm_dma_pool = NULL;
4017 
4018 	rcu_read_lock();
4019 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4020 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4021 	rcu_read_unlock();
4022 }
4023 
4024 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4025 {
4026 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4027 					    BNXT_HWRM_DMA_SIZE,
4028 					    BNXT_HWRM_DMA_ALIGN, 0);
4029 	if (!bp->hwrm_dma_pool)
4030 		return -ENOMEM;
4031 
4032 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4033 
4034 	return 0;
4035 }
4036 
4037 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4038 {
4039 	kfree(stats->hw_masks);
4040 	stats->hw_masks = NULL;
4041 	kfree(stats->sw_stats);
4042 	stats->sw_stats = NULL;
4043 	if (stats->hw_stats) {
4044 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4045 				  stats->hw_stats_map);
4046 		stats->hw_stats = NULL;
4047 	}
4048 }
4049 
4050 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4051 				bool alloc_masks)
4052 {
4053 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4054 					     &stats->hw_stats_map, GFP_KERNEL);
4055 	if (!stats->hw_stats)
4056 		return -ENOMEM;
4057 
4058 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4059 	if (!stats->sw_stats)
4060 		goto stats_mem_err;
4061 
4062 	if (alloc_masks) {
4063 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4064 		if (!stats->hw_masks)
4065 			goto stats_mem_err;
4066 	}
4067 	return 0;
4068 
4069 stats_mem_err:
4070 	bnxt_free_stats_mem(bp, stats);
4071 	return -ENOMEM;
4072 }
4073 
4074 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4075 {
4076 	int i;
4077 
4078 	for (i = 0; i < count; i++)
4079 		mask_arr[i] = mask;
4080 }
4081 
4082 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4083 {
4084 	int i;
4085 
4086 	for (i = 0; i < count; i++)
4087 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4088 }
4089 
4090 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4091 				    struct bnxt_stats_mem *stats)
4092 {
4093 	struct hwrm_func_qstats_ext_output *resp;
4094 	struct hwrm_func_qstats_ext_input *req;
4095 	__le64 *hw_masks;
4096 	int rc;
4097 
4098 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4099 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4100 		return -EOPNOTSUPP;
4101 
4102 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4103 	if (rc)
4104 		return rc;
4105 
4106 	req->fid = cpu_to_le16(0xffff);
4107 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4108 
4109 	resp = hwrm_req_hold(bp, req);
4110 	rc = hwrm_req_send(bp, req);
4111 	if (!rc) {
4112 		hw_masks = &resp->rx_ucast_pkts;
4113 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4114 	}
4115 	hwrm_req_drop(bp, req);
4116 	return rc;
4117 }
4118 
4119 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4120 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4121 
4122 static void bnxt_init_stats(struct bnxt *bp)
4123 {
4124 	struct bnxt_napi *bnapi = bp->bnapi[0];
4125 	struct bnxt_cp_ring_info *cpr;
4126 	struct bnxt_stats_mem *stats;
4127 	__le64 *rx_stats, *tx_stats;
4128 	int rc, rx_count, tx_count;
4129 	u64 *rx_masks, *tx_masks;
4130 	u64 mask;
4131 	u8 flags;
4132 
4133 	cpr = &bnapi->cp_ring;
4134 	stats = &cpr->stats;
4135 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4136 	if (rc) {
4137 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4138 			mask = (1ULL << 48) - 1;
4139 		else
4140 			mask = -1ULL;
4141 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4142 	}
4143 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4144 		stats = &bp->port_stats;
4145 		rx_stats = stats->hw_stats;
4146 		rx_masks = stats->hw_masks;
4147 		rx_count = sizeof(struct rx_port_stats) / 8;
4148 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4149 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4150 		tx_count = sizeof(struct tx_port_stats) / 8;
4151 
4152 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4153 		rc = bnxt_hwrm_port_qstats(bp, flags);
4154 		if (rc) {
4155 			mask = (1ULL << 40) - 1;
4156 
4157 			bnxt_fill_masks(rx_masks, mask, rx_count);
4158 			bnxt_fill_masks(tx_masks, mask, tx_count);
4159 		} else {
4160 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4161 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4162 			bnxt_hwrm_port_qstats(bp, 0);
4163 		}
4164 	}
4165 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4166 		stats = &bp->rx_port_stats_ext;
4167 		rx_stats = stats->hw_stats;
4168 		rx_masks = stats->hw_masks;
4169 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4170 		stats = &bp->tx_port_stats_ext;
4171 		tx_stats = stats->hw_stats;
4172 		tx_masks = stats->hw_masks;
4173 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4174 
4175 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4176 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4177 		if (rc) {
4178 			mask = (1ULL << 40) - 1;
4179 
4180 			bnxt_fill_masks(rx_masks, mask, rx_count);
4181 			if (tx_stats)
4182 				bnxt_fill_masks(tx_masks, mask, tx_count);
4183 		} else {
4184 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4185 			if (tx_stats)
4186 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4187 						   tx_count);
4188 			bnxt_hwrm_port_qstats_ext(bp, 0);
4189 		}
4190 	}
4191 }
4192 
4193 static void bnxt_free_port_stats(struct bnxt *bp)
4194 {
4195 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4196 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4197 
4198 	bnxt_free_stats_mem(bp, &bp->port_stats);
4199 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4200 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4201 }
4202 
4203 static void bnxt_free_ring_stats(struct bnxt *bp)
4204 {
4205 	int i;
4206 
4207 	if (!bp->bnapi)
4208 		return;
4209 
4210 	for (i = 0; i < bp->cp_nr_rings; i++) {
4211 		struct bnxt_napi *bnapi = bp->bnapi[i];
4212 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4213 
4214 		bnxt_free_stats_mem(bp, &cpr->stats);
4215 	}
4216 }
4217 
4218 static int bnxt_alloc_stats(struct bnxt *bp)
4219 {
4220 	u32 size, i;
4221 	int rc;
4222 
4223 	size = bp->hw_ring_stats_size;
4224 
4225 	for (i = 0; i < bp->cp_nr_rings; i++) {
4226 		struct bnxt_napi *bnapi = bp->bnapi[i];
4227 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4228 
4229 		cpr->stats.len = size;
4230 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4231 		if (rc)
4232 			return rc;
4233 
4234 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4235 	}
4236 
4237 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4238 		return 0;
4239 
4240 	if (bp->port_stats.hw_stats)
4241 		goto alloc_ext_stats;
4242 
4243 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4244 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4245 	if (rc)
4246 		return rc;
4247 
4248 	bp->flags |= BNXT_FLAG_PORT_STATS;
4249 
4250 alloc_ext_stats:
4251 	/* Display extended statistics only if FW supports it */
4252 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4253 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4254 			return 0;
4255 
4256 	if (bp->rx_port_stats_ext.hw_stats)
4257 		goto alloc_tx_ext_stats;
4258 
4259 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4260 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4261 	/* Extended stats are optional */
4262 	if (rc)
4263 		return 0;
4264 
4265 alloc_tx_ext_stats:
4266 	if (bp->tx_port_stats_ext.hw_stats)
4267 		return 0;
4268 
4269 	if (bp->hwrm_spec_code >= 0x10902 ||
4270 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4271 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4272 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4273 		/* Extended stats are optional */
4274 		if (rc)
4275 			return 0;
4276 	}
4277 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4278 	return 0;
4279 }
4280 
4281 static void bnxt_clear_ring_indices(struct bnxt *bp)
4282 {
4283 	int i;
4284 
4285 	if (!bp->bnapi)
4286 		return;
4287 
4288 	for (i = 0; i < bp->cp_nr_rings; i++) {
4289 		struct bnxt_napi *bnapi = bp->bnapi[i];
4290 		struct bnxt_cp_ring_info *cpr;
4291 		struct bnxt_rx_ring_info *rxr;
4292 		struct bnxt_tx_ring_info *txr;
4293 
4294 		if (!bnapi)
4295 			continue;
4296 
4297 		cpr = &bnapi->cp_ring;
4298 		cpr->cp_raw_cons = 0;
4299 
4300 		txr = bnapi->tx_ring;
4301 		if (txr) {
4302 			txr->tx_prod = 0;
4303 			txr->tx_cons = 0;
4304 		}
4305 
4306 		rxr = bnapi->rx_ring;
4307 		if (rxr) {
4308 			rxr->rx_prod = 0;
4309 			rxr->rx_agg_prod = 0;
4310 			rxr->rx_sw_agg_prod = 0;
4311 			rxr->rx_next_cons = 0;
4312 		}
4313 	}
4314 }
4315 
4316 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4317 {
4318 #ifdef CONFIG_RFS_ACCEL
4319 	int i;
4320 
4321 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4322 	 * safe to delete the hash table.
4323 	 */
4324 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4325 		struct hlist_head *head;
4326 		struct hlist_node *tmp;
4327 		struct bnxt_ntuple_filter *fltr;
4328 
4329 		head = &bp->ntp_fltr_hash_tbl[i];
4330 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4331 			hlist_del(&fltr->hash);
4332 			kfree(fltr);
4333 		}
4334 	}
4335 	if (irq_reinit) {
4336 		kfree(bp->ntp_fltr_bmap);
4337 		bp->ntp_fltr_bmap = NULL;
4338 	}
4339 	bp->ntp_fltr_count = 0;
4340 #endif
4341 }
4342 
4343 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4344 {
4345 #ifdef CONFIG_RFS_ACCEL
4346 	int i, rc = 0;
4347 
4348 	if (!(bp->flags & BNXT_FLAG_RFS))
4349 		return 0;
4350 
4351 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4352 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4353 
4354 	bp->ntp_fltr_count = 0;
4355 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4356 				    sizeof(long),
4357 				    GFP_KERNEL);
4358 
4359 	if (!bp->ntp_fltr_bmap)
4360 		rc = -ENOMEM;
4361 
4362 	return rc;
4363 #else
4364 	return 0;
4365 #endif
4366 }
4367 
4368 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4369 {
4370 	bnxt_free_vnic_attributes(bp);
4371 	bnxt_free_tx_rings(bp);
4372 	bnxt_free_rx_rings(bp);
4373 	bnxt_free_cp_rings(bp);
4374 	bnxt_free_all_cp_arrays(bp);
4375 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4376 	if (irq_re_init) {
4377 		bnxt_free_ring_stats(bp);
4378 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4379 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4380 			bnxt_free_port_stats(bp);
4381 		bnxt_free_ring_grps(bp);
4382 		bnxt_free_vnics(bp);
4383 		kfree(bp->tx_ring_map);
4384 		bp->tx_ring_map = NULL;
4385 		kfree(bp->tx_ring);
4386 		bp->tx_ring = NULL;
4387 		kfree(bp->rx_ring);
4388 		bp->rx_ring = NULL;
4389 		kfree(bp->bnapi);
4390 		bp->bnapi = NULL;
4391 	} else {
4392 		bnxt_clear_ring_indices(bp);
4393 	}
4394 }
4395 
4396 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4397 {
4398 	int i, j, rc, size, arr_size;
4399 	void *bnapi;
4400 
4401 	if (irq_re_init) {
4402 		/* Allocate bnapi mem pointer array and mem block for
4403 		 * all queues
4404 		 */
4405 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4406 				bp->cp_nr_rings);
4407 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4408 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4409 		if (!bnapi)
4410 			return -ENOMEM;
4411 
4412 		bp->bnapi = bnapi;
4413 		bnapi += arr_size;
4414 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4415 			bp->bnapi[i] = bnapi;
4416 			bp->bnapi[i]->index = i;
4417 			bp->bnapi[i]->bp = bp;
4418 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4419 				struct bnxt_cp_ring_info *cpr =
4420 					&bp->bnapi[i]->cp_ring;
4421 
4422 				cpr->cp_ring_struct.ring_mem.flags =
4423 					BNXT_RMEM_RING_PTE_FLAG;
4424 			}
4425 		}
4426 
4427 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4428 				      sizeof(struct bnxt_rx_ring_info),
4429 				      GFP_KERNEL);
4430 		if (!bp->rx_ring)
4431 			return -ENOMEM;
4432 
4433 		for (i = 0; i < bp->rx_nr_rings; i++) {
4434 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4435 
4436 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4437 				rxr->rx_ring_struct.ring_mem.flags =
4438 					BNXT_RMEM_RING_PTE_FLAG;
4439 				rxr->rx_agg_ring_struct.ring_mem.flags =
4440 					BNXT_RMEM_RING_PTE_FLAG;
4441 			}
4442 			rxr->bnapi = bp->bnapi[i];
4443 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4444 		}
4445 
4446 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4447 				      sizeof(struct bnxt_tx_ring_info),
4448 				      GFP_KERNEL);
4449 		if (!bp->tx_ring)
4450 			return -ENOMEM;
4451 
4452 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4453 					  GFP_KERNEL);
4454 
4455 		if (!bp->tx_ring_map)
4456 			return -ENOMEM;
4457 
4458 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4459 			j = 0;
4460 		else
4461 			j = bp->rx_nr_rings;
4462 
4463 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4464 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4465 
4466 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4467 				txr->tx_ring_struct.ring_mem.flags =
4468 					BNXT_RMEM_RING_PTE_FLAG;
4469 			txr->bnapi = bp->bnapi[j];
4470 			bp->bnapi[j]->tx_ring = txr;
4471 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4472 			if (i >= bp->tx_nr_rings_xdp) {
4473 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4474 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4475 			} else {
4476 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4477 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4478 			}
4479 		}
4480 
4481 		rc = bnxt_alloc_stats(bp);
4482 		if (rc)
4483 			goto alloc_mem_err;
4484 		bnxt_init_stats(bp);
4485 
4486 		rc = bnxt_alloc_ntp_fltrs(bp);
4487 		if (rc)
4488 			goto alloc_mem_err;
4489 
4490 		rc = bnxt_alloc_vnics(bp);
4491 		if (rc)
4492 			goto alloc_mem_err;
4493 	}
4494 
4495 	rc = bnxt_alloc_all_cp_arrays(bp);
4496 	if (rc)
4497 		goto alloc_mem_err;
4498 
4499 	bnxt_init_ring_struct(bp);
4500 
4501 	rc = bnxt_alloc_rx_rings(bp);
4502 	if (rc)
4503 		goto alloc_mem_err;
4504 
4505 	rc = bnxt_alloc_tx_rings(bp);
4506 	if (rc)
4507 		goto alloc_mem_err;
4508 
4509 	rc = bnxt_alloc_cp_rings(bp);
4510 	if (rc)
4511 		goto alloc_mem_err;
4512 
4513 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4514 				  BNXT_VNIC_UCAST_FLAG;
4515 	rc = bnxt_alloc_vnic_attributes(bp);
4516 	if (rc)
4517 		goto alloc_mem_err;
4518 	return 0;
4519 
4520 alloc_mem_err:
4521 	bnxt_free_mem(bp, true);
4522 	return rc;
4523 }
4524 
4525 static void bnxt_disable_int(struct bnxt *bp)
4526 {
4527 	int i;
4528 
4529 	if (!bp->bnapi)
4530 		return;
4531 
4532 	for (i = 0; i < bp->cp_nr_rings; i++) {
4533 		struct bnxt_napi *bnapi = bp->bnapi[i];
4534 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4535 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4536 
4537 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4538 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4539 	}
4540 }
4541 
4542 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4543 {
4544 	struct bnxt_napi *bnapi = bp->bnapi[n];
4545 	struct bnxt_cp_ring_info *cpr;
4546 
4547 	cpr = &bnapi->cp_ring;
4548 	return cpr->cp_ring_struct.map_idx;
4549 }
4550 
4551 static void bnxt_disable_int_sync(struct bnxt *bp)
4552 {
4553 	int i;
4554 
4555 	if (!bp->irq_tbl)
4556 		return;
4557 
4558 	atomic_inc(&bp->intr_sem);
4559 
4560 	bnxt_disable_int(bp);
4561 	for (i = 0; i < bp->cp_nr_rings; i++) {
4562 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4563 
4564 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4565 	}
4566 }
4567 
4568 static void bnxt_enable_int(struct bnxt *bp)
4569 {
4570 	int i;
4571 
4572 	atomic_set(&bp->intr_sem, 0);
4573 	for (i = 0; i < bp->cp_nr_rings; i++) {
4574 		struct bnxt_napi *bnapi = bp->bnapi[i];
4575 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4576 
4577 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4578 	}
4579 }
4580 
4581 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4582 			    bool async_only)
4583 {
4584 	DECLARE_BITMAP(async_events_bmap, 256);
4585 	u32 *events = (u32 *)async_events_bmap;
4586 	struct hwrm_func_drv_rgtr_output *resp;
4587 	struct hwrm_func_drv_rgtr_input *req;
4588 	u32 flags;
4589 	int rc, i;
4590 
4591 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4592 	if (rc)
4593 		return rc;
4594 
4595 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4596 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4597 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4598 
4599 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4600 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4601 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4602 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4603 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4604 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4605 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4606 	req->flags = cpu_to_le32(flags);
4607 	req->ver_maj_8b = DRV_VER_MAJ;
4608 	req->ver_min_8b = DRV_VER_MIN;
4609 	req->ver_upd_8b = DRV_VER_UPD;
4610 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4611 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4612 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4613 
4614 	if (BNXT_PF(bp)) {
4615 		u32 data[8];
4616 		int i;
4617 
4618 		memset(data, 0, sizeof(data));
4619 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4620 			u16 cmd = bnxt_vf_req_snif[i];
4621 			unsigned int bit, idx;
4622 
4623 			idx = cmd / 32;
4624 			bit = cmd % 32;
4625 			data[idx] |= 1 << bit;
4626 		}
4627 
4628 		for (i = 0; i < 8; i++)
4629 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4630 
4631 		req->enables |=
4632 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4633 	}
4634 
4635 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4636 		req->flags |= cpu_to_le32(
4637 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4638 
4639 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4640 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4641 		u16 event_id = bnxt_async_events_arr[i];
4642 
4643 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4644 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4645 			continue;
4646 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4647 	}
4648 	if (bmap && bmap_size) {
4649 		for (i = 0; i < bmap_size; i++) {
4650 			if (test_bit(i, bmap))
4651 				__set_bit(i, async_events_bmap);
4652 		}
4653 	}
4654 	for (i = 0; i < 8; i++)
4655 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4656 
4657 	if (async_only)
4658 		req->enables =
4659 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4660 
4661 	resp = hwrm_req_hold(bp, req);
4662 	rc = hwrm_req_send(bp, req);
4663 	if (!rc) {
4664 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4665 		if (resp->flags &
4666 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4667 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4668 	}
4669 	hwrm_req_drop(bp, req);
4670 	return rc;
4671 }
4672 
4673 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4674 {
4675 	struct hwrm_func_drv_unrgtr_input *req;
4676 	int rc;
4677 
4678 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4679 		return 0;
4680 
4681 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4682 	if (rc)
4683 		return rc;
4684 	return hwrm_req_send(bp, req);
4685 }
4686 
4687 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4688 {
4689 	struct hwrm_tunnel_dst_port_free_input *req;
4690 	int rc;
4691 
4692 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4693 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4694 		return 0;
4695 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4696 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4697 		return 0;
4698 
4699 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4700 	if (rc)
4701 		return rc;
4702 
4703 	req->tunnel_type = tunnel_type;
4704 
4705 	switch (tunnel_type) {
4706 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4707 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4708 		bp->vxlan_port = 0;
4709 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4710 		break;
4711 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4712 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4713 		bp->nge_port = 0;
4714 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4715 		break;
4716 	default:
4717 		break;
4718 	}
4719 
4720 	rc = hwrm_req_send(bp, req);
4721 	if (rc)
4722 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4723 			   rc);
4724 	return rc;
4725 }
4726 
4727 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4728 					   u8 tunnel_type)
4729 {
4730 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4731 	struct hwrm_tunnel_dst_port_alloc_input *req;
4732 	int rc;
4733 
4734 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4735 	if (rc)
4736 		return rc;
4737 
4738 	req->tunnel_type = tunnel_type;
4739 	req->tunnel_dst_port_val = port;
4740 
4741 	resp = hwrm_req_hold(bp, req);
4742 	rc = hwrm_req_send(bp, req);
4743 	if (rc) {
4744 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4745 			   rc);
4746 		goto err_out;
4747 	}
4748 
4749 	switch (tunnel_type) {
4750 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4751 		bp->vxlan_port = port;
4752 		bp->vxlan_fw_dst_port_id =
4753 			le16_to_cpu(resp->tunnel_dst_port_id);
4754 		break;
4755 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4756 		bp->nge_port = port;
4757 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4758 		break;
4759 	default:
4760 		break;
4761 	}
4762 
4763 err_out:
4764 	hwrm_req_drop(bp, req);
4765 	return rc;
4766 }
4767 
4768 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4769 {
4770 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4771 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4772 	int rc;
4773 
4774 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4775 	if (rc)
4776 		return rc;
4777 
4778 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4779 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4780 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4781 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4782 	}
4783 	req->mask = cpu_to_le32(vnic->rx_mask);
4784 	return hwrm_req_send_silent(bp, req);
4785 }
4786 
4787 #ifdef CONFIG_RFS_ACCEL
4788 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4789 					    struct bnxt_ntuple_filter *fltr)
4790 {
4791 	struct hwrm_cfa_ntuple_filter_free_input *req;
4792 	int rc;
4793 
4794 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4795 	if (rc)
4796 		return rc;
4797 
4798 	req->ntuple_filter_id = fltr->filter_id;
4799 	return hwrm_req_send(bp, req);
4800 }
4801 
4802 #define BNXT_NTP_FLTR_FLAGS					\
4803 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4804 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4805 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4806 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4807 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4808 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4809 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4810 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4811 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4812 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4813 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4814 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4815 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4816 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4817 
4818 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4819 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4820 
4821 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4822 					     struct bnxt_ntuple_filter *fltr)
4823 {
4824 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4825 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4826 	struct flow_keys *keys = &fltr->fkeys;
4827 	struct bnxt_vnic_info *vnic;
4828 	u32 flags = 0;
4829 	int rc;
4830 
4831 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4832 	if (rc)
4833 		return rc;
4834 
4835 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4836 
4837 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4838 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4839 		req->dst_id = cpu_to_le16(fltr->rxq);
4840 	} else {
4841 		vnic = &bp->vnic_info[fltr->rxq + 1];
4842 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4843 	}
4844 	req->flags = cpu_to_le32(flags);
4845 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4846 
4847 	req->ethertype = htons(ETH_P_IP);
4848 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4849 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4850 	req->ip_protocol = keys->basic.ip_proto;
4851 
4852 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4853 		int i;
4854 
4855 		req->ethertype = htons(ETH_P_IPV6);
4856 		req->ip_addr_type =
4857 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4858 		*(struct in6_addr *)&req->src_ipaddr[0] =
4859 			keys->addrs.v6addrs.src;
4860 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4861 			keys->addrs.v6addrs.dst;
4862 		for (i = 0; i < 4; i++) {
4863 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4864 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4865 		}
4866 	} else {
4867 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4868 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4869 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4870 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4871 	}
4872 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4873 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4874 		req->tunnel_type =
4875 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4876 	}
4877 
4878 	req->src_port = keys->ports.src;
4879 	req->src_port_mask = cpu_to_be16(0xffff);
4880 	req->dst_port = keys->ports.dst;
4881 	req->dst_port_mask = cpu_to_be16(0xffff);
4882 
4883 	resp = hwrm_req_hold(bp, req);
4884 	rc = hwrm_req_send(bp, req);
4885 	if (!rc)
4886 		fltr->filter_id = resp->ntuple_filter_id;
4887 	hwrm_req_drop(bp, req);
4888 	return rc;
4889 }
4890 #endif
4891 
4892 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4893 				     const u8 *mac_addr)
4894 {
4895 	struct hwrm_cfa_l2_filter_alloc_output *resp;
4896 	struct hwrm_cfa_l2_filter_alloc_input *req;
4897 	int rc;
4898 
4899 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
4900 	if (rc)
4901 		return rc;
4902 
4903 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4904 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4905 		req->flags |=
4906 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4907 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4908 	req->enables =
4909 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4910 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4911 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4912 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
4913 	req->l2_addr_mask[0] = 0xff;
4914 	req->l2_addr_mask[1] = 0xff;
4915 	req->l2_addr_mask[2] = 0xff;
4916 	req->l2_addr_mask[3] = 0xff;
4917 	req->l2_addr_mask[4] = 0xff;
4918 	req->l2_addr_mask[5] = 0xff;
4919 
4920 	resp = hwrm_req_hold(bp, req);
4921 	rc = hwrm_req_send(bp, req);
4922 	if (!rc)
4923 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4924 							resp->l2_filter_id;
4925 	hwrm_req_drop(bp, req);
4926 	return rc;
4927 }
4928 
4929 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4930 {
4931 	struct hwrm_cfa_l2_filter_free_input *req;
4932 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4933 	int rc;
4934 
4935 	/* Any associated ntuple filters will also be cleared by firmware. */
4936 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
4937 	if (rc)
4938 		return rc;
4939 	hwrm_req_hold(bp, req);
4940 	for (i = 0; i < num_of_vnics; i++) {
4941 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4942 
4943 		for (j = 0; j < vnic->uc_filter_count; j++) {
4944 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
4945 
4946 			rc = hwrm_req_send(bp, req);
4947 		}
4948 		vnic->uc_filter_count = 0;
4949 	}
4950 	hwrm_req_drop(bp, req);
4951 	return rc;
4952 }
4953 
4954 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4955 {
4956 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4957 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4958 	struct hwrm_vnic_tpa_cfg_input *req;
4959 	int rc;
4960 
4961 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4962 		return 0;
4963 
4964 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
4965 	if (rc)
4966 		return rc;
4967 
4968 	if (tpa_flags) {
4969 		u16 mss = bp->dev->mtu - 40;
4970 		u32 nsegs, n, segs = 0, flags;
4971 
4972 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4973 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4974 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4975 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4976 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4977 		if (tpa_flags & BNXT_FLAG_GRO)
4978 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4979 
4980 		req->flags = cpu_to_le32(flags);
4981 
4982 		req->enables =
4983 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4984 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4985 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4986 
4987 		/* Number of segs are log2 units, and first packet is not
4988 		 * included as part of this units.
4989 		 */
4990 		if (mss <= BNXT_RX_PAGE_SIZE) {
4991 			n = BNXT_RX_PAGE_SIZE / mss;
4992 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4993 		} else {
4994 			n = mss / BNXT_RX_PAGE_SIZE;
4995 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4996 				n++;
4997 			nsegs = (MAX_SKB_FRAGS - n) / n;
4998 		}
4999 
5000 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5001 			segs = MAX_TPA_SEGS_P5;
5002 			max_aggs = bp->max_tpa;
5003 		} else {
5004 			segs = ilog2(nsegs);
5005 		}
5006 		req->max_agg_segs = cpu_to_le16(segs);
5007 		req->max_aggs = cpu_to_le16(max_aggs);
5008 
5009 		req->min_agg_len = cpu_to_le32(512);
5010 	}
5011 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5012 
5013 	return hwrm_req_send(bp, req);
5014 }
5015 
5016 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5017 {
5018 	struct bnxt_ring_grp_info *grp_info;
5019 
5020 	grp_info = &bp->grp_info[ring->grp_idx];
5021 	return grp_info->cp_fw_ring_id;
5022 }
5023 
5024 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5025 {
5026 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5027 		struct bnxt_napi *bnapi = rxr->bnapi;
5028 		struct bnxt_cp_ring_info *cpr;
5029 
5030 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5031 		return cpr->cp_ring_struct.fw_ring_id;
5032 	} else {
5033 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5034 	}
5035 }
5036 
5037 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5038 {
5039 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5040 		struct bnxt_napi *bnapi = txr->bnapi;
5041 		struct bnxt_cp_ring_info *cpr;
5042 
5043 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5044 		return cpr->cp_ring_struct.fw_ring_id;
5045 	} else {
5046 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5047 	}
5048 }
5049 
5050 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5051 {
5052 	int entries;
5053 
5054 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5055 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5056 	else
5057 		entries = HW_HASH_INDEX_SIZE;
5058 
5059 	bp->rss_indir_tbl_entries = entries;
5060 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5061 					  GFP_KERNEL);
5062 	if (!bp->rss_indir_tbl)
5063 		return -ENOMEM;
5064 	return 0;
5065 }
5066 
5067 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5068 {
5069 	u16 max_rings, max_entries, pad, i;
5070 
5071 	if (!bp->rx_nr_rings)
5072 		return;
5073 
5074 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5075 		max_rings = bp->rx_nr_rings - 1;
5076 	else
5077 		max_rings = bp->rx_nr_rings;
5078 
5079 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5080 
5081 	for (i = 0; i < max_entries; i++)
5082 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5083 
5084 	pad = bp->rss_indir_tbl_entries - max_entries;
5085 	if (pad)
5086 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5087 }
5088 
5089 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5090 {
5091 	u16 i, tbl_size, max_ring = 0;
5092 
5093 	if (!bp->rss_indir_tbl)
5094 		return 0;
5095 
5096 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5097 	for (i = 0; i < tbl_size; i++)
5098 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5099 	return max_ring;
5100 }
5101 
5102 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5103 {
5104 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5105 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5106 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5107 		return 2;
5108 	return 1;
5109 }
5110 
5111 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5112 {
5113 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5114 	u16 i, j;
5115 
5116 	/* Fill the RSS indirection table with ring group ids */
5117 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5118 		if (!no_rss)
5119 			j = bp->rss_indir_tbl[i];
5120 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5121 	}
5122 }
5123 
5124 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5125 				      struct bnxt_vnic_info *vnic)
5126 {
5127 	__le16 *ring_tbl = vnic->rss_table;
5128 	struct bnxt_rx_ring_info *rxr;
5129 	u16 tbl_size, i;
5130 
5131 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5132 
5133 	for (i = 0; i < tbl_size; i++) {
5134 		u16 ring_id, j;
5135 
5136 		j = bp->rss_indir_tbl[i];
5137 		rxr = &bp->rx_ring[j];
5138 
5139 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5140 		*ring_tbl++ = cpu_to_le16(ring_id);
5141 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5142 		*ring_tbl++ = cpu_to_le16(ring_id);
5143 	}
5144 }
5145 
5146 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5147 {
5148 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5149 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5150 	else
5151 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5152 }
5153 
5154 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5155 {
5156 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5157 	struct hwrm_vnic_rss_cfg_input *req;
5158 	int rc;
5159 
5160 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5161 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5162 		return 0;
5163 
5164 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5165 	if (rc)
5166 		return rc;
5167 
5168 	if (set_rss) {
5169 		bnxt_fill_hw_rss_tbl(bp, vnic);
5170 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5171 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5172 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5173 		req->hash_key_tbl_addr =
5174 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5175 	}
5176 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5177 	return hwrm_req_send(bp, req);
5178 }
5179 
5180 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5181 {
5182 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5183 	struct hwrm_vnic_rss_cfg_input *req;
5184 	dma_addr_t ring_tbl_map;
5185 	u32 i, nr_ctxs;
5186 	int rc;
5187 
5188 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5189 	if (rc)
5190 		return rc;
5191 
5192 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5193 	if (!set_rss)
5194 		return hwrm_req_send(bp, req);
5195 
5196 	bnxt_fill_hw_rss_tbl(bp, vnic);
5197 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5198 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5199 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5200 	ring_tbl_map = vnic->rss_table_dma_addr;
5201 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5202 
5203 	hwrm_req_hold(bp, req);
5204 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5205 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5206 		req->ring_table_pair_index = i;
5207 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5208 		rc = hwrm_req_send(bp, req);
5209 		if (rc)
5210 			goto exit;
5211 	}
5212 
5213 exit:
5214 	hwrm_req_drop(bp, req);
5215 	return rc;
5216 }
5217 
5218 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5219 {
5220 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5221 	struct hwrm_vnic_plcmodes_cfg_input *req;
5222 	int rc;
5223 
5224 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5225 	if (rc)
5226 		return rc;
5227 
5228 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5229 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5230 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5231 	req->enables =
5232 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5233 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5234 	/* thresholds not implemented in firmware yet */
5235 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5236 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5237 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5238 	return hwrm_req_send(bp, req);
5239 }
5240 
5241 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5242 					u16 ctx_idx)
5243 {
5244 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5245 
5246 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5247 		return;
5248 
5249 	req->rss_cos_lb_ctx_id =
5250 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5251 
5252 	hwrm_req_send(bp, req);
5253 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5254 }
5255 
5256 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5257 {
5258 	int i, j;
5259 
5260 	for (i = 0; i < bp->nr_vnics; i++) {
5261 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5262 
5263 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5264 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5265 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5266 		}
5267 	}
5268 	bp->rsscos_nr_ctxs = 0;
5269 }
5270 
5271 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5272 {
5273 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5274 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5275 	int rc;
5276 
5277 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5278 	if (rc)
5279 		return rc;
5280 
5281 	resp = hwrm_req_hold(bp, req);
5282 	rc = hwrm_req_send(bp, req);
5283 	if (!rc)
5284 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5285 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5286 	hwrm_req_drop(bp, req);
5287 
5288 	return rc;
5289 }
5290 
5291 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5292 {
5293 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5294 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5295 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5296 }
5297 
5298 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5299 {
5300 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5301 	struct hwrm_vnic_cfg_input *req;
5302 	unsigned int ring = 0, grp_idx;
5303 	u16 def_vlan = 0;
5304 	int rc;
5305 
5306 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5307 	if (rc)
5308 		return rc;
5309 
5310 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5311 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5312 
5313 		req->default_rx_ring_id =
5314 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5315 		req->default_cmpl_ring_id =
5316 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5317 		req->enables =
5318 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5319 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5320 		goto vnic_mru;
5321 	}
5322 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5323 	/* Only RSS support for now TBD: COS & LB */
5324 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5325 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5326 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5327 					   VNIC_CFG_REQ_ENABLES_MRU);
5328 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5329 		req->rss_rule =
5330 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5331 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5332 					   VNIC_CFG_REQ_ENABLES_MRU);
5333 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5334 	} else {
5335 		req->rss_rule = cpu_to_le16(0xffff);
5336 	}
5337 
5338 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5339 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5340 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5341 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5342 	} else {
5343 		req->cos_rule = cpu_to_le16(0xffff);
5344 	}
5345 
5346 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5347 		ring = 0;
5348 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5349 		ring = vnic_id - 1;
5350 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5351 		ring = bp->rx_nr_rings - 1;
5352 
5353 	grp_idx = bp->rx_ring[ring].bnapi->index;
5354 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5355 	req->lb_rule = cpu_to_le16(0xffff);
5356 vnic_mru:
5357 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5358 
5359 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5360 #ifdef CONFIG_BNXT_SRIOV
5361 	if (BNXT_VF(bp))
5362 		def_vlan = bp->vf.vlan;
5363 #endif
5364 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5365 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5366 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5367 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5368 
5369 	return hwrm_req_send(bp, req);
5370 }
5371 
5372 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5373 {
5374 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5375 		struct hwrm_vnic_free_input *req;
5376 
5377 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5378 			return;
5379 
5380 		req->vnic_id =
5381 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5382 
5383 		hwrm_req_send(bp, req);
5384 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5385 	}
5386 }
5387 
5388 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5389 {
5390 	u16 i;
5391 
5392 	for (i = 0; i < bp->nr_vnics; i++)
5393 		bnxt_hwrm_vnic_free_one(bp, i);
5394 }
5395 
5396 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5397 				unsigned int start_rx_ring_idx,
5398 				unsigned int nr_rings)
5399 {
5400 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5401 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5402 	struct hwrm_vnic_alloc_output *resp;
5403 	struct hwrm_vnic_alloc_input *req;
5404 	int rc;
5405 
5406 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5407 	if (rc)
5408 		return rc;
5409 
5410 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5411 		goto vnic_no_ring_grps;
5412 
5413 	/* map ring groups to this vnic */
5414 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5415 		grp_idx = bp->rx_ring[i].bnapi->index;
5416 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5417 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5418 				   j, nr_rings);
5419 			break;
5420 		}
5421 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5422 	}
5423 
5424 vnic_no_ring_grps:
5425 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5426 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5427 	if (vnic_id == 0)
5428 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5429 
5430 	resp = hwrm_req_hold(bp, req);
5431 	rc = hwrm_req_send(bp, req);
5432 	if (!rc)
5433 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5434 	hwrm_req_drop(bp, req);
5435 	return rc;
5436 }
5437 
5438 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5439 {
5440 	struct hwrm_vnic_qcaps_output *resp;
5441 	struct hwrm_vnic_qcaps_input *req;
5442 	int rc;
5443 
5444 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5445 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5446 	if (bp->hwrm_spec_code < 0x10600)
5447 		return 0;
5448 
5449 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5450 	if (rc)
5451 		return rc;
5452 
5453 	resp = hwrm_req_hold(bp, req);
5454 	rc = hwrm_req_send(bp, req);
5455 	if (!rc) {
5456 		u32 flags = le32_to_cpu(resp->flags);
5457 
5458 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5459 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5460 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5461 		if (flags &
5462 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5463 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5464 
5465 		/* Older P5 fw before EXT_HW_STATS support did not set
5466 		 * VLAN_STRIP_CAP properly.
5467 		 */
5468 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5469 		    (BNXT_CHIP_P5_THOR(bp) &&
5470 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5471 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5472 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5473 		if (bp->max_tpa_v2) {
5474 			if (BNXT_CHIP_P5_THOR(bp))
5475 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5476 			else
5477 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5478 		}
5479 	}
5480 	hwrm_req_drop(bp, req);
5481 	return rc;
5482 }
5483 
5484 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5485 {
5486 	struct hwrm_ring_grp_alloc_output *resp;
5487 	struct hwrm_ring_grp_alloc_input *req;
5488 	int rc;
5489 	u16 i;
5490 
5491 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5492 		return 0;
5493 
5494 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5495 	if (rc)
5496 		return rc;
5497 
5498 	resp = hwrm_req_hold(bp, req);
5499 	for (i = 0; i < bp->rx_nr_rings; i++) {
5500 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5501 
5502 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5503 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5504 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5505 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5506 
5507 		rc = hwrm_req_send(bp, req);
5508 
5509 		if (rc)
5510 			break;
5511 
5512 		bp->grp_info[grp_idx].fw_grp_id =
5513 			le32_to_cpu(resp->ring_group_id);
5514 	}
5515 	hwrm_req_drop(bp, req);
5516 	return rc;
5517 }
5518 
5519 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5520 {
5521 	struct hwrm_ring_grp_free_input *req;
5522 	u16 i;
5523 
5524 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5525 		return;
5526 
5527 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5528 		return;
5529 
5530 	hwrm_req_hold(bp, req);
5531 	for (i = 0; i < bp->cp_nr_rings; i++) {
5532 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5533 			continue;
5534 		req->ring_group_id =
5535 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5536 
5537 		hwrm_req_send(bp, req);
5538 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5539 	}
5540 	hwrm_req_drop(bp, req);
5541 }
5542 
5543 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5544 				    struct bnxt_ring_struct *ring,
5545 				    u32 ring_type, u32 map_index)
5546 {
5547 	struct hwrm_ring_alloc_output *resp;
5548 	struct hwrm_ring_alloc_input *req;
5549 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5550 	struct bnxt_ring_grp_info *grp_info;
5551 	int rc, err = 0;
5552 	u16 ring_id;
5553 
5554 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5555 	if (rc)
5556 		goto exit;
5557 
5558 	req->enables = 0;
5559 	if (rmem->nr_pages > 1) {
5560 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5561 		/* Page size is in log2 units */
5562 		req->page_size = BNXT_PAGE_SHIFT;
5563 		req->page_tbl_depth = 1;
5564 	} else {
5565 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5566 	}
5567 	req->fbo = 0;
5568 	/* Association of ring index with doorbell index and MSIX number */
5569 	req->logical_id = cpu_to_le16(map_index);
5570 
5571 	switch (ring_type) {
5572 	case HWRM_RING_ALLOC_TX: {
5573 		struct bnxt_tx_ring_info *txr;
5574 
5575 		txr = container_of(ring, struct bnxt_tx_ring_info,
5576 				   tx_ring_struct);
5577 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5578 		/* Association of transmit ring with completion ring */
5579 		grp_info = &bp->grp_info[ring->grp_idx];
5580 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5581 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5582 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5583 		req->queue_id = cpu_to_le16(ring->queue_id);
5584 		break;
5585 	}
5586 	case HWRM_RING_ALLOC_RX:
5587 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5588 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5589 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5590 			u16 flags = 0;
5591 
5592 			/* Association of rx ring with stats context */
5593 			grp_info = &bp->grp_info[ring->grp_idx];
5594 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5595 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5596 			req->enables |= cpu_to_le32(
5597 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5598 			if (NET_IP_ALIGN == 2)
5599 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5600 			req->flags = cpu_to_le16(flags);
5601 		}
5602 		break;
5603 	case HWRM_RING_ALLOC_AGG:
5604 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5605 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5606 			/* Association of agg ring with rx ring */
5607 			grp_info = &bp->grp_info[ring->grp_idx];
5608 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5609 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5610 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5611 			req->enables |= cpu_to_le32(
5612 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5613 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5614 		} else {
5615 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5616 		}
5617 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5618 		break;
5619 	case HWRM_RING_ALLOC_CMPL:
5620 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5621 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5622 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5623 			/* Association of cp ring with nq */
5624 			grp_info = &bp->grp_info[map_index];
5625 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5626 			req->cq_handle = cpu_to_le64(ring->handle);
5627 			req->enables |= cpu_to_le32(
5628 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5629 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5630 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5631 		}
5632 		break;
5633 	case HWRM_RING_ALLOC_NQ:
5634 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5635 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5636 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5637 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5638 		break;
5639 	default:
5640 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5641 			   ring_type);
5642 		return -1;
5643 	}
5644 
5645 	resp = hwrm_req_hold(bp, req);
5646 	rc = hwrm_req_send(bp, req);
5647 	err = le16_to_cpu(resp->error_code);
5648 	ring_id = le16_to_cpu(resp->ring_id);
5649 	hwrm_req_drop(bp, req);
5650 
5651 exit:
5652 	if (rc || err) {
5653 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5654 			   ring_type, rc, err);
5655 		return -EIO;
5656 	}
5657 	ring->fw_ring_id = ring_id;
5658 	return rc;
5659 }
5660 
5661 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5662 {
5663 	int rc;
5664 
5665 	if (BNXT_PF(bp)) {
5666 		struct hwrm_func_cfg_input *req;
5667 
5668 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5669 		if (rc)
5670 			return rc;
5671 
5672 		req->fid = cpu_to_le16(0xffff);
5673 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5674 		req->async_event_cr = cpu_to_le16(idx);
5675 		return hwrm_req_send(bp, req);
5676 	} else {
5677 		struct hwrm_func_vf_cfg_input *req;
5678 
5679 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5680 		if (rc)
5681 			return rc;
5682 
5683 		req->enables =
5684 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5685 		req->async_event_cr = cpu_to_le16(idx);
5686 		return hwrm_req_send(bp, req);
5687 	}
5688 }
5689 
5690 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5691 			u32 map_idx, u32 xid)
5692 {
5693 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5694 		if (BNXT_PF(bp))
5695 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5696 		else
5697 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5698 		switch (ring_type) {
5699 		case HWRM_RING_ALLOC_TX:
5700 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5701 			break;
5702 		case HWRM_RING_ALLOC_RX:
5703 		case HWRM_RING_ALLOC_AGG:
5704 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5705 			break;
5706 		case HWRM_RING_ALLOC_CMPL:
5707 			db->db_key64 = DBR_PATH_L2;
5708 			break;
5709 		case HWRM_RING_ALLOC_NQ:
5710 			db->db_key64 = DBR_PATH_L2;
5711 			break;
5712 		}
5713 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5714 	} else {
5715 		db->doorbell = bp->bar1 + map_idx * 0x80;
5716 		switch (ring_type) {
5717 		case HWRM_RING_ALLOC_TX:
5718 			db->db_key32 = DB_KEY_TX;
5719 			break;
5720 		case HWRM_RING_ALLOC_RX:
5721 		case HWRM_RING_ALLOC_AGG:
5722 			db->db_key32 = DB_KEY_RX;
5723 			break;
5724 		case HWRM_RING_ALLOC_CMPL:
5725 			db->db_key32 = DB_KEY_CP;
5726 			break;
5727 		}
5728 	}
5729 }
5730 
5731 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5732 {
5733 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5734 	int i, rc = 0;
5735 	u32 type;
5736 
5737 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5738 		type = HWRM_RING_ALLOC_NQ;
5739 	else
5740 		type = HWRM_RING_ALLOC_CMPL;
5741 	for (i = 0; i < bp->cp_nr_rings; i++) {
5742 		struct bnxt_napi *bnapi = bp->bnapi[i];
5743 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5744 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5745 		u32 map_idx = ring->map_idx;
5746 		unsigned int vector;
5747 
5748 		vector = bp->irq_tbl[map_idx].vector;
5749 		disable_irq_nosync(vector);
5750 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5751 		if (rc) {
5752 			enable_irq(vector);
5753 			goto err_out;
5754 		}
5755 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5756 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5757 		enable_irq(vector);
5758 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5759 
5760 		if (!i) {
5761 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5762 			if (rc)
5763 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5764 		}
5765 	}
5766 
5767 	type = HWRM_RING_ALLOC_TX;
5768 	for (i = 0; i < bp->tx_nr_rings; i++) {
5769 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5770 		struct bnxt_ring_struct *ring;
5771 		u32 map_idx;
5772 
5773 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5774 			struct bnxt_napi *bnapi = txr->bnapi;
5775 			struct bnxt_cp_ring_info *cpr, *cpr2;
5776 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5777 
5778 			cpr = &bnapi->cp_ring;
5779 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5780 			ring = &cpr2->cp_ring_struct;
5781 			ring->handle = BNXT_TX_HDL;
5782 			map_idx = bnapi->index;
5783 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5784 			if (rc)
5785 				goto err_out;
5786 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5787 				    ring->fw_ring_id);
5788 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5789 		}
5790 		ring = &txr->tx_ring_struct;
5791 		map_idx = i;
5792 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5793 		if (rc)
5794 			goto err_out;
5795 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5796 	}
5797 
5798 	type = HWRM_RING_ALLOC_RX;
5799 	for (i = 0; i < bp->rx_nr_rings; i++) {
5800 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5801 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5802 		struct bnxt_napi *bnapi = rxr->bnapi;
5803 		u32 map_idx = bnapi->index;
5804 
5805 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5806 		if (rc)
5807 			goto err_out;
5808 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5809 		/* If we have agg rings, post agg buffers first. */
5810 		if (!agg_rings)
5811 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5812 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5813 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5814 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5815 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5816 			struct bnxt_cp_ring_info *cpr2;
5817 
5818 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5819 			ring = &cpr2->cp_ring_struct;
5820 			ring->handle = BNXT_RX_HDL;
5821 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5822 			if (rc)
5823 				goto err_out;
5824 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5825 				    ring->fw_ring_id);
5826 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5827 		}
5828 	}
5829 
5830 	if (agg_rings) {
5831 		type = HWRM_RING_ALLOC_AGG;
5832 		for (i = 0; i < bp->rx_nr_rings; i++) {
5833 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5834 			struct bnxt_ring_struct *ring =
5835 						&rxr->rx_agg_ring_struct;
5836 			u32 grp_idx = ring->grp_idx;
5837 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5838 
5839 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5840 			if (rc)
5841 				goto err_out;
5842 
5843 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5844 				    ring->fw_ring_id);
5845 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5846 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5847 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5848 		}
5849 	}
5850 err_out:
5851 	return rc;
5852 }
5853 
5854 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5855 				   struct bnxt_ring_struct *ring,
5856 				   u32 ring_type, int cmpl_ring_id)
5857 {
5858 	struct hwrm_ring_free_output *resp;
5859 	struct hwrm_ring_free_input *req;
5860 	u16 error_code = 0;
5861 	int rc;
5862 
5863 	if (BNXT_NO_FW_ACCESS(bp))
5864 		return 0;
5865 
5866 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
5867 	if (rc)
5868 		goto exit;
5869 
5870 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
5871 	req->ring_type = ring_type;
5872 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
5873 
5874 	resp = hwrm_req_hold(bp, req);
5875 	rc = hwrm_req_send(bp, req);
5876 	error_code = le16_to_cpu(resp->error_code);
5877 	hwrm_req_drop(bp, req);
5878 exit:
5879 	if (rc || error_code) {
5880 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5881 			   ring_type, rc, error_code);
5882 		return -EIO;
5883 	}
5884 	return 0;
5885 }
5886 
5887 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5888 {
5889 	u32 type;
5890 	int i;
5891 
5892 	if (!bp->bnapi)
5893 		return;
5894 
5895 	for (i = 0; i < bp->tx_nr_rings; i++) {
5896 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5897 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5898 
5899 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5900 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5901 
5902 			hwrm_ring_free_send_msg(bp, ring,
5903 						RING_FREE_REQ_RING_TYPE_TX,
5904 						close_path ? cmpl_ring_id :
5905 						INVALID_HW_RING_ID);
5906 			ring->fw_ring_id = INVALID_HW_RING_ID;
5907 		}
5908 	}
5909 
5910 	for (i = 0; i < bp->rx_nr_rings; i++) {
5911 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5912 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5913 		u32 grp_idx = rxr->bnapi->index;
5914 
5915 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5916 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5917 
5918 			hwrm_ring_free_send_msg(bp, ring,
5919 						RING_FREE_REQ_RING_TYPE_RX,
5920 						close_path ? cmpl_ring_id :
5921 						INVALID_HW_RING_ID);
5922 			ring->fw_ring_id = INVALID_HW_RING_ID;
5923 			bp->grp_info[grp_idx].rx_fw_ring_id =
5924 				INVALID_HW_RING_ID;
5925 		}
5926 	}
5927 
5928 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5929 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5930 	else
5931 		type = RING_FREE_REQ_RING_TYPE_RX;
5932 	for (i = 0; i < bp->rx_nr_rings; i++) {
5933 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5934 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5935 		u32 grp_idx = rxr->bnapi->index;
5936 
5937 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5938 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5939 
5940 			hwrm_ring_free_send_msg(bp, ring, type,
5941 						close_path ? cmpl_ring_id :
5942 						INVALID_HW_RING_ID);
5943 			ring->fw_ring_id = INVALID_HW_RING_ID;
5944 			bp->grp_info[grp_idx].agg_fw_ring_id =
5945 				INVALID_HW_RING_ID;
5946 		}
5947 	}
5948 
5949 	/* The completion rings are about to be freed.  After that the
5950 	 * IRQ doorbell will not work anymore.  So we need to disable
5951 	 * IRQ here.
5952 	 */
5953 	bnxt_disable_int_sync(bp);
5954 
5955 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5956 		type = RING_FREE_REQ_RING_TYPE_NQ;
5957 	else
5958 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5959 	for (i = 0; i < bp->cp_nr_rings; i++) {
5960 		struct bnxt_napi *bnapi = bp->bnapi[i];
5961 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5962 		struct bnxt_ring_struct *ring;
5963 		int j;
5964 
5965 		for (j = 0; j < 2; j++) {
5966 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5967 
5968 			if (cpr2) {
5969 				ring = &cpr2->cp_ring_struct;
5970 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5971 					continue;
5972 				hwrm_ring_free_send_msg(bp, ring,
5973 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5974 					INVALID_HW_RING_ID);
5975 				ring->fw_ring_id = INVALID_HW_RING_ID;
5976 			}
5977 		}
5978 		ring = &cpr->cp_ring_struct;
5979 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5980 			hwrm_ring_free_send_msg(bp, ring, type,
5981 						INVALID_HW_RING_ID);
5982 			ring->fw_ring_id = INVALID_HW_RING_ID;
5983 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5984 		}
5985 	}
5986 }
5987 
5988 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5989 			   bool shared);
5990 
5991 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5992 {
5993 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5994 	struct hwrm_func_qcfg_output *resp;
5995 	struct hwrm_func_qcfg_input *req;
5996 	int rc;
5997 
5998 	if (bp->hwrm_spec_code < 0x10601)
5999 		return 0;
6000 
6001 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6002 	if (rc)
6003 		return rc;
6004 
6005 	req->fid = cpu_to_le16(0xffff);
6006 	resp = hwrm_req_hold(bp, req);
6007 	rc = hwrm_req_send(bp, req);
6008 	if (rc) {
6009 		hwrm_req_drop(bp, req);
6010 		return rc;
6011 	}
6012 
6013 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6014 	if (BNXT_NEW_RM(bp)) {
6015 		u16 cp, stats;
6016 
6017 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6018 		hw_resc->resv_hw_ring_grps =
6019 			le32_to_cpu(resp->alloc_hw_ring_grps);
6020 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6021 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6022 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6023 		hw_resc->resv_irqs = cp;
6024 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6025 			int rx = hw_resc->resv_rx_rings;
6026 			int tx = hw_resc->resv_tx_rings;
6027 
6028 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6029 				rx >>= 1;
6030 			if (cp < (rx + tx)) {
6031 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6032 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6033 					rx <<= 1;
6034 				hw_resc->resv_rx_rings = rx;
6035 				hw_resc->resv_tx_rings = tx;
6036 			}
6037 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6038 			hw_resc->resv_hw_ring_grps = rx;
6039 		}
6040 		hw_resc->resv_cp_rings = cp;
6041 		hw_resc->resv_stat_ctxs = stats;
6042 	}
6043 	hwrm_req_drop(bp, req);
6044 	return 0;
6045 }
6046 
6047 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6048 {
6049 	struct hwrm_func_qcfg_output *resp;
6050 	struct hwrm_func_qcfg_input *req;
6051 	int rc;
6052 
6053 	if (bp->hwrm_spec_code < 0x10601)
6054 		return 0;
6055 
6056 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6057 	if (rc)
6058 		return rc;
6059 
6060 	req->fid = cpu_to_le16(fid);
6061 	resp = hwrm_req_hold(bp, req);
6062 	rc = hwrm_req_send(bp, req);
6063 	if (!rc)
6064 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6065 
6066 	hwrm_req_drop(bp, req);
6067 	return rc;
6068 }
6069 
6070 static bool bnxt_rfs_supported(struct bnxt *bp);
6071 
6072 static struct hwrm_func_cfg_input *
6073 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6074 			     int ring_grps, int cp_rings, int stats, int vnics)
6075 {
6076 	struct hwrm_func_cfg_input *req;
6077 	u32 enables = 0;
6078 
6079 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6080 		return NULL;
6081 
6082 	req->fid = cpu_to_le16(0xffff);
6083 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6084 	req->num_tx_rings = cpu_to_le16(tx_rings);
6085 	if (BNXT_NEW_RM(bp)) {
6086 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6087 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6088 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6089 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6090 			enables |= tx_rings + ring_grps ?
6091 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6092 			enables |= rx_rings ?
6093 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6094 		} else {
6095 			enables |= cp_rings ?
6096 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6097 			enables |= ring_grps ?
6098 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6099 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6100 		}
6101 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6102 
6103 		req->num_rx_rings = cpu_to_le16(rx_rings);
6104 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6105 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6106 			req->num_msix = cpu_to_le16(cp_rings);
6107 			req->num_rsscos_ctxs =
6108 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6109 		} else {
6110 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6111 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6112 			req->num_rsscos_ctxs = cpu_to_le16(1);
6113 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6114 			    bnxt_rfs_supported(bp))
6115 				req->num_rsscos_ctxs =
6116 					cpu_to_le16(ring_grps + 1);
6117 		}
6118 		req->num_stat_ctxs = cpu_to_le16(stats);
6119 		req->num_vnics = cpu_to_le16(vnics);
6120 	}
6121 	req->enables = cpu_to_le32(enables);
6122 	return req;
6123 }
6124 
6125 static struct hwrm_func_vf_cfg_input *
6126 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6127 			     int ring_grps, int cp_rings, int stats, int vnics)
6128 {
6129 	struct hwrm_func_vf_cfg_input *req;
6130 	u32 enables = 0;
6131 
6132 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6133 		return NULL;
6134 
6135 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6136 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6137 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6138 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6139 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6140 		enables |= tx_rings + ring_grps ?
6141 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6142 	} else {
6143 		enables |= cp_rings ?
6144 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6145 		enables |= ring_grps ?
6146 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6147 	}
6148 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6149 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6150 
6151 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6152 	req->num_tx_rings = cpu_to_le16(tx_rings);
6153 	req->num_rx_rings = cpu_to_le16(rx_rings);
6154 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6155 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6156 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6157 	} else {
6158 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6159 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6160 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6161 	}
6162 	req->num_stat_ctxs = cpu_to_le16(stats);
6163 	req->num_vnics = cpu_to_le16(vnics);
6164 
6165 	req->enables = cpu_to_le32(enables);
6166 	return req;
6167 }
6168 
6169 static int
6170 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6171 			   int ring_grps, int cp_rings, int stats, int vnics)
6172 {
6173 	struct hwrm_func_cfg_input *req;
6174 	int rc;
6175 
6176 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6177 					   cp_rings, stats, vnics);
6178 	if (!req)
6179 		return -ENOMEM;
6180 
6181 	if (!req->enables) {
6182 		hwrm_req_drop(bp, req);
6183 		return 0;
6184 	}
6185 
6186 	rc = hwrm_req_send(bp, req);
6187 	if (rc)
6188 		return rc;
6189 
6190 	if (bp->hwrm_spec_code < 0x10601)
6191 		bp->hw_resc.resv_tx_rings = tx_rings;
6192 
6193 	return bnxt_hwrm_get_rings(bp);
6194 }
6195 
6196 static int
6197 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6198 			   int ring_grps, int cp_rings, int stats, int vnics)
6199 {
6200 	struct hwrm_func_vf_cfg_input *req;
6201 	int rc;
6202 
6203 	if (!BNXT_NEW_RM(bp)) {
6204 		bp->hw_resc.resv_tx_rings = tx_rings;
6205 		return 0;
6206 	}
6207 
6208 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6209 					   cp_rings, stats, vnics);
6210 	if (!req)
6211 		return -ENOMEM;
6212 
6213 	rc = hwrm_req_send(bp, req);
6214 	if (rc)
6215 		return rc;
6216 
6217 	return bnxt_hwrm_get_rings(bp);
6218 }
6219 
6220 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6221 				   int cp, int stat, int vnic)
6222 {
6223 	if (BNXT_PF(bp))
6224 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6225 						  vnic);
6226 	else
6227 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6228 						  vnic);
6229 }
6230 
6231 int bnxt_nq_rings_in_use(struct bnxt *bp)
6232 {
6233 	int cp = bp->cp_nr_rings;
6234 	int ulp_msix, ulp_base;
6235 
6236 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6237 	if (ulp_msix) {
6238 		ulp_base = bnxt_get_ulp_msix_base(bp);
6239 		cp += ulp_msix;
6240 		if ((ulp_base + ulp_msix) > cp)
6241 			cp = ulp_base + ulp_msix;
6242 	}
6243 	return cp;
6244 }
6245 
6246 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6247 {
6248 	int cp;
6249 
6250 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6251 		return bnxt_nq_rings_in_use(bp);
6252 
6253 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6254 	return cp;
6255 }
6256 
6257 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6258 {
6259 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6260 	int cp = bp->cp_nr_rings;
6261 
6262 	if (!ulp_stat)
6263 		return cp;
6264 
6265 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6266 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6267 
6268 	return cp + ulp_stat;
6269 }
6270 
6271 /* Check if a default RSS map needs to be setup.  This function is only
6272  * used on older firmware that does not require reserving RX rings.
6273  */
6274 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6275 {
6276 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6277 
6278 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6279 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6280 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6281 		if (!netif_is_rxfh_configured(bp->dev))
6282 			bnxt_set_dflt_rss_indir_tbl(bp);
6283 	}
6284 }
6285 
6286 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6287 {
6288 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6289 	int cp = bnxt_cp_rings_in_use(bp);
6290 	int nq = bnxt_nq_rings_in_use(bp);
6291 	int rx = bp->rx_nr_rings, stat;
6292 	int vnic = 1, grp = rx;
6293 
6294 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6295 	    bp->hwrm_spec_code >= 0x10601)
6296 		return true;
6297 
6298 	/* Old firmware does not need RX ring reservations but we still
6299 	 * need to setup a default RSS map when needed.  With new firmware
6300 	 * we go through RX ring reservations first and then set up the
6301 	 * RSS map for the successfully reserved RX rings when needed.
6302 	 */
6303 	if (!BNXT_NEW_RM(bp)) {
6304 		bnxt_check_rss_tbl_no_rmgr(bp);
6305 		return false;
6306 	}
6307 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6308 		vnic = rx + 1;
6309 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6310 		rx <<= 1;
6311 	stat = bnxt_get_func_stat_ctxs(bp);
6312 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6313 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6314 	    (hw_resc->resv_hw_ring_grps != grp &&
6315 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6316 		return true;
6317 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6318 	    hw_resc->resv_irqs != nq)
6319 		return true;
6320 	return false;
6321 }
6322 
6323 static int __bnxt_reserve_rings(struct bnxt *bp)
6324 {
6325 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6326 	int cp = bnxt_nq_rings_in_use(bp);
6327 	int tx = bp->tx_nr_rings;
6328 	int rx = bp->rx_nr_rings;
6329 	int grp, rx_rings, rc;
6330 	int vnic = 1, stat;
6331 	bool sh = false;
6332 
6333 	if (!bnxt_need_reserve_rings(bp))
6334 		return 0;
6335 
6336 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6337 		sh = true;
6338 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6339 		vnic = rx + 1;
6340 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6341 		rx <<= 1;
6342 	grp = bp->rx_nr_rings;
6343 	stat = bnxt_get_func_stat_ctxs(bp);
6344 
6345 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6346 	if (rc)
6347 		return rc;
6348 
6349 	tx = hw_resc->resv_tx_rings;
6350 	if (BNXT_NEW_RM(bp)) {
6351 		rx = hw_resc->resv_rx_rings;
6352 		cp = hw_resc->resv_irqs;
6353 		grp = hw_resc->resv_hw_ring_grps;
6354 		vnic = hw_resc->resv_vnics;
6355 		stat = hw_resc->resv_stat_ctxs;
6356 	}
6357 
6358 	rx_rings = rx;
6359 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6360 		if (rx >= 2) {
6361 			rx_rings = rx >> 1;
6362 		} else {
6363 			if (netif_running(bp->dev))
6364 				return -ENOMEM;
6365 
6366 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6367 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6368 			bp->dev->hw_features &= ~NETIF_F_LRO;
6369 			bp->dev->features &= ~NETIF_F_LRO;
6370 			bnxt_set_ring_params(bp);
6371 		}
6372 	}
6373 	rx_rings = min_t(int, rx_rings, grp);
6374 	cp = min_t(int, cp, bp->cp_nr_rings);
6375 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6376 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6377 	cp = min_t(int, cp, stat);
6378 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6379 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6380 		rx = rx_rings << 1;
6381 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6382 	bp->tx_nr_rings = tx;
6383 
6384 	/* If we cannot reserve all the RX rings, reset the RSS map only
6385 	 * if absolutely necessary
6386 	 */
6387 	if (rx_rings != bp->rx_nr_rings) {
6388 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6389 			    rx_rings, bp->rx_nr_rings);
6390 		if (netif_is_rxfh_configured(bp->dev) &&
6391 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6392 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6393 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6394 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6395 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6396 		}
6397 	}
6398 	bp->rx_nr_rings = rx_rings;
6399 	bp->cp_nr_rings = cp;
6400 
6401 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6402 		return -ENOMEM;
6403 
6404 	if (!netif_is_rxfh_configured(bp->dev))
6405 		bnxt_set_dflt_rss_indir_tbl(bp);
6406 
6407 	return rc;
6408 }
6409 
6410 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6411 				    int ring_grps, int cp_rings, int stats,
6412 				    int vnics)
6413 {
6414 	struct hwrm_func_vf_cfg_input *req;
6415 	u32 flags;
6416 
6417 	if (!BNXT_NEW_RM(bp))
6418 		return 0;
6419 
6420 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6421 					   cp_rings, stats, vnics);
6422 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6423 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6424 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6425 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6426 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6427 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6428 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6429 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6430 
6431 	req->flags = cpu_to_le32(flags);
6432 	return hwrm_req_send_silent(bp, req);
6433 }
6434 
6435 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6436 				    int ring_grps, int cp_rings, int stats,
6437 				    int vnics)
6438 {
6439 	struct hwrm_func_cfg_input *req;
6440 	u32 flags;
6441 
6442 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6443 					   cp_rings, stats, vnics);
6444 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6445 	if (BNXT_NEW_RM(bp)) {
6446 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6447 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6448 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6449 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6450 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6451 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6452 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6453 		else
6454 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6455 	}
6456 
6457 	req->flags = cpu_to_le32(flags);
6458 	return hwrm_req_send_silent(bp, req);
6459 }
6460 
6461 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6462 				 int ring_grps, int cp_rings, int stats,
6463 				 int vnics)
6464 {
6465 	if (bp->hwrm_spec_code < 0x10801)
6466 		return 0;
6467 
6468 	if (BNXT_PF(bp))
6469 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6470 						ring_grps, cp_rings, stats,
6471 						vnics);
6472 
6473 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6474 					cp_rings, stats, vnics);
6475 }
6476 
6477 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6478 {
6479 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6480 	struct hwrm_ring_aggint_qcaps_output *resp;
6481 	struct hwrm_ring_aggint_qcaps_input *req;
6482 	int rc;
6483 
6484 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6485 	coal_cap->num_cmpl_dma_aggr_max = 63;
6486 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6487 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6488 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6489 	coal_cap->int_lat_tmr_min_max = 65535;
6490 	coal_cap->int_lat_tmr_max_max = 65535;
6491 	coal_cap->num_cmpl_aggr_int_max = 65535;
6492 	coal_cap->timer_units = 80;
6493 
6494 	if (bp->hwrm_spec_code < 0x10902)
6495 		return;
6496 
6497 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6498 		return;
6499 
6500 	resp = hwrm_req_hold(bp, req);
6501 	rc = hwrm_req_send_silent(bp, req);
6502 	if (!rc) {
6503 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6504 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6505 		coal_cap->num_cmpl_dma_aggr_max =
6506 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6507 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6508 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6509 		coal_cap->cmpl_aggr_dma_tmr_max =
6510 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6511 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6512 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6513 		coal_cap->int_lat_tmr_min_max =
6514 			le16_to_cpu(resp->int_lat_tmr_min_max);
6515 		coal_cap->int_lat_tmr_max_max =
6516 			le16_to_cpu(resp->int_lat_tmr_max_max);
6517 		coal_cap->num_cmpl_aggr_int_max =
6518 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6519 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6520 	}
6521 	hwrm_req_drop(bp, req);
6522 }
6523 
6524 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6525 {
6526 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6527 
6528 	return usec * 1000 / coal_cap->timer_units;
6529 }
6530 
6531 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6532 	struct bnxt_coal *hw_coal,
6533 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6534 {
6535 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6536 	u16 val, tmr, max, flags = hw_coal->flags;
6537 	u32 cmpl_params = coal_cap->cmpl_params;
6538 
6539 	max = hw_coal->bufs_per_record * 128;
6540 	if (hw_coal->budget)
6541 		max = hw_coal->bufs_per_record * hw_coal->budget;
6542 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6543 
6544 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6545 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6546 
6547 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6548 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6549 
6550 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6551 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6552 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6553 
6554 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6555 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6556 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6557 
6558 	/* min timer set to 1/2 of interrupt timer */
6559 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6560 		val = tmr / 2;
6561 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6562 		req->int_lat_tmr_min = cpu_to_le16(val);
6563 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6564 	}
6565 
6566 	/* buf timer set to 1/4 of interrupt timer */
6567 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6568 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6569 
6570 	if (cmpl_params &
6571 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6572 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6573 		val = clamp_t(u16, tmr, 1,
6574 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6575 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6576 		req->enables |=
6577 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6578 	}
6579 
6580 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6581 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6582 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6583 	req->flags = cpu_to_le16(flags);
6584 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6585 }
6586 
6587 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6588 				   struct bnxt_coal *hw_coal)
6589 {
6590 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6591 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6592 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6593 	u32 nq_params = coal_cap->nq_params;
6594 	u16 tmr;
6595 	int rc;
6596 
6597 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6598 		return 0;
6599 
6600 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6601 	if (rc)
6602 		return rc;
6603 
6604 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6605 	req->flags =
6606 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6607 
6608 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6609 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6610 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6611 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6612 	return hwrm_req_send(bp, req);
6613 }
6614 
6615 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6616 {
6617 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6618 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6619 	struct bnxt_coal coal;
6620 	int rc;
6621 
6622 	/* Tick values in micro seconds.
6623 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6624 	 */
6625 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6626 
6627 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6628 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6629 
6630 	if (!bnapi->rx_ring)
6631 		return -ENODEV;
6632 
6633 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6634 	if (rc)
6635 		return rc;
6636 
6637 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6638 
6639 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6640 
6641 	return hwrm_req_send(bp, req_rx);
6642 }
6643 
6644 int bnxt_hwrm_set_coal(struct bnxt *bp)
6645 {
6646 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6647 							   *req;
6648 	int i, rc;
6649 
6650 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6651 	if (rc)
6652 		return rc;
6653 
6654 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6655 	if (rc) {
6656 		hwrm_req_drop(bp, req_rx);
6657 		return rc;
6658 	}
6659 
6660 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6661 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6662 
6663 	hwrm_req_hold(bp, req_rx);
6664 	hwrm_req_hold(bp, req_tx);
6665 	for (i = 0; i < bp->cp_nr_rings; i++) {
6666 		struct bnxt_napi *bnapi = bp->bnapi[i];
6667 		struct bnxt_coal *hw_coal;
6668 		u16 ring_id;
6669 
6670 		req = req_rx;
6671 		if (!bnapi->rx_ring) {
6672 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6673 			req = req_tx;
6674 		} else {
6675 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6676 		}
6677 		req->ring_id = cpu_to_le16(ring_id);
6678 
6679 		rc = hwrm_req_send(bp, req);
6680 		if (rc)
6681 			break;
6682 
6683 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6684 			continue;
6685 
6686 		if (bnapi->rx_ring && bnapi->tx_ring) {
6687 			req = req_tx;
6688 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6689 			req->ring_id = cpu_to_le16(ring_id);
6690 			rc = hwrm_req_send(bp, req);
6691 			if (rc)
6692 				break;
6693 		}
6694 		if (bnapi->rx_ring)
6695 			hw_coal = &bp->rx_coal;
6696 		else
6697 			hw_coal = &bp->tx_coal;
6698 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6699 	}
6700 	hwrm_req_drop(bp, req_rx);
6701 	hwrm_req_drop(bp, req_tx);
6702 	return rc;
6703 }
6704 
6705 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6706 {
6707 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6708 	struct hwrm_stat_ctx_free_input *req;
6709 	int i;
6710 
6711 	if (!bp->bnapi)
6712 		return;
6713 
6714 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6715 		return;
6716 
6717 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6718 		return;
6719 	if (BNXT_FW_MAJ(bp) <= 20) {
6720 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6721 			hwrm_req_drop(bp, req);
6722 			return;
6723 		}
6724 		hwrm_req_hold(bp, req0);
6725 	}
6726 	hwrm_req_hold(bp, req);
6727 	for (i = 0; i < bp->cp_nr_rings; i++) {
6728 		struct bnxt_napi *bnapi = bp->bnapi[i];
6729 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6730 
6731 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6732 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6733 			if (req0) {
6734 				req0->stat_ctx_id = req->stat_ctx_id;
6735 				hwrm_req_send(bp, req0);
6736 			}
6737 			hwrm_req_send(bp, req);
6738 
6739 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6740 		}
6741 	}
6742 	hwrm_req_drop(bp, req);
6743 	if (req0)
6744 		hwrm_req_drop(bp, req0);
6745 }
6746 
6747 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6748 {
6749 	struct hwrm_stat_ctx_alloc_output *resp;
6750 	struct hwrm_stat_ctx_alloc_input *req;
6751 	int rc, i;
6752 
6753 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6754 		return 0;
6755 
6756 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6757 	if (rc)
6758 		return rc;
6759 
6760 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6761 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6762 
6763 	resp = hwrm_req_hold(bp, req);
6764 	for (i = 0; i < bp->cp_nr_rings; i++) {
6765 		struct bnxt_napi *bnapi = bp->bnapi[i];
6766 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6767 
6768 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6769 
6770 		rc = hwrm_req_send(bp, req);
6771 		if (rc)
6772 			break;
6773 
6774 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6775 
6776 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6777 	}
6778 	hwrm_req_drop(bp, req);
6779 	return rc;
6780 }
6781 
6782 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6783 {
6784 	struct hwrm_func_qcfg_output *resp;
6785 	struct hwrm_func_qcfg_input *req;
6786 	u32 min_db_offset = 0;
6787 	u16 flags;
6788 	int rc;
6789 
6790 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6791 	if (rc)
6792 		return rc;
6793 
6794 	req->fid = cpu_to_le16(0xffff);
6795 	resp = hwrm_req_hold(bp, req);
6796 	rc = hwrm_req_send(bp, req);
6797 	if (rc)
6798 		goto func_qcfg_exit;
6799 
6800 #ifdef CONFIG_BNXT_SRIOV
6801 	if (BNXT_VF(bp)) {
6802 		struct bnxt_vf_info *vf = &bp->vf;
6803 
6804 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6805 	} else {
6806 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6807 	}
6808 #endif
6809 	flags = le16_to_cpu(resp->flags);
6810 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6811 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6812 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6813 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6814 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6815 	}
6816 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6817 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6818 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6819 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6820 
6821 	switch (resp->port_partition_type) {
6822 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6823 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6824 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6825 		bp->port_partition_type = resp->port_partition_type;
6826 		break;
6827 	}
6828 	if (bp->hwrm_spec_code < 0x10707 ||
6829 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6830 		bp->br_mode = BRIDGE_MODE_VEB;
6831 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6832 		bp->br_mode = BRIDGE_MODE_VEPA;
6833 	else
6834 		bp->br_mode = BRIDGE_MODE_UNDEF;
6835 
6836 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6837 	if (!bp->max_mtu)
6838 		bp->max_mtu = BNXT_MAX_MTU;
6839 
6840 	if (bp->db_size)
6841 		goto func_qcfg_exit;
6842 
6843 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6844 		if (BNXT_PF(bp))
6845 			min_db_offset = DB_PF_OFFSET_P5;
6846 		else
6847 			min_db_offset = DB_VF_OFFSET_P5;
6848 	}
6849 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6850 				 1024);
6851 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6852 	    bp->db_size <= min_db_offset)
6853 		bp->db_size = pci_resource_len(bp->pdev, 2);
6854 
6855 func_qcfg_exit:
6856 	hwrm_req_drop(bp, req);
6857 	return rc;
6858 }
6859 
6860 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6861 			struct hwrm_func_backing_store_qcaps_output *resp)
6862 {
6863 	struct bnxt_mem_init *mem_init;
6864 	u16 init_mask;
6865 	u8 init_val;
6866 	u8 *offset;
6867 	int i;
6868 
6869 	init_val = resp->ctx_kind_initializer;
6870 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6871 	offset = &resp->qp_init_offset;
6872 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6873 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6874 		mem_init->init_val = init_val;
6875 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6876 		if (!init_mask)
6877 			continue;
6878 		if (i == BNXT_CTX_MEM_INIT_STAT)
6879 			offset = &resp->stat_init_offset;
6880 		if (init_mask & (1 << i))
6881 			mem_init->offset = *offset * 4;
6882 		else
6883 			mem_init->init_val = 0;
6884 	}
6885 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6886 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6887 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6888 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6889 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6890 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6891 }
6892 
6893 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6894 {
6895 	struct hwrm_func_backing_store_qcaps_output *resp;
6896 	struct hwrm_func_backing_store_qcaps_input *req;
6897 	int rc;
6898 
6899 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6900 		return 0;
6901 
6902 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
6903 	if (rc)
6904 		return rc;
6905 
6906 	resp = hwrm_req_hold(bp, req);
6907 	rc = hwrm_req_send_silent(bp, req);
6908 	if (!rc) {
6909 		struct bnxt_ctx_pg_info *ctx_pg;
6910 		struct bnxt_ctx_mem_info *ctx;
6911 		int i, tqm_rings;
6912 
6913 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6914 		if (!ctx) {
6915 			rc = -ENOMEM;
6916 			goto ctx_err;
6917 		}
6918 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6919 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6920 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6921 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6922 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6923 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6924 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6925 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6926 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6927 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6928 		ctx->vnic_max_vnic_entries =
6929 			le16_to_cpu(resp->vnic_max_vnic_entries);
6930 		ctx->vnic_max_ring_table_entries =
6931 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6932 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6933 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6934 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6935 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6936 		ctx->tqm_min_entries_per_ring =
6937 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6938 		ctx->tqm_max_entries_per_ring =
6939 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6940 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6941 		if (!ctx->tqm_entries_multiple)
6942 			ctx->tqm_entries_multiple = 1;
6943 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6944 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6945 		ctx->mrav_num_entries_units =
6946 			le16_to_cpu(resp->mrav_num_entries_units);
6947 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6948 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6949 
6950 		bnxt_init_ctx_initializer(ctx, resp);
6951 
6952 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6953 		if (!ctx->tqm_fp_rings_count)
6954 			ctx->tqm_fp_rings_count = bp->max_q;
6955 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6956 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6957 
6958 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6959 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6960 		if (!ctx_pg) {
6961 			kfree(ctx);
6962 			rc = -ENOMEM;
6963 			goto ctx_err;
6964 		}
6965 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6966 			ctx->tqm_mem[i] = ctx_pg;
6967 		bp->ctx = ctx;
6968 	} else {
6969 		rc = 0;
6970 	}
6971 ctx_err:
6972 	hwrm_req_drop(bp, req);
6973 	return rc;
6974 }
6975 
6976 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6977 				  __le64 *pg_dir)
6978 {
6979 	if (!rmem->nr_pages)
6980 		return;
6981 
6982 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6983 	if (rmem->depth >= 1) {
6984 		if (rmem->depth == 2)
6985 			*pg_attr |= 2;
6986 		else
6987 			*pg_attr |= 1;
6988 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6989 	} else {
6990 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6991 	}
6992 }
6993 
6994 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6995 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6996 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6997 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6998 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6999 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7000 
7001 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7002 {
7003 	struct hwrm_func_backing_store_cfg_input *req;
7004 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7005 	struct bnxt_ctx_pg_info *ctx_pg;
7006 	void **__req = (void **)&req;
7007 	u32 req_len = sizeof(*req);
7008 	__le32 *num_entries;
7009 	__le64 *pg_dir;
7010 	u32 flags = 0;
7011 	u8 *pg_attr;
7012 	u32 ena;
7013 	int rc;
7014 	int i;
7015 
7016 	if (!ctx)
7017 		return 0;
7018 
7019 	if (req_len > bp->hwrm_max_ext_req_len)
7020 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7021 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7022 	if (rc)
7023 		return rc;
7024 
7025 	req->enables = cpu_to_le32(enables);
7026 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7027 		ctx_pg = &ctx->qp_mem;
7028 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7029 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7030 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7031 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7032 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7033 				      &req->qpc_pg_size_qpc_lvl,
7034 				      &req->qpc_page_dir);
7035 	}
7036 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7037 		ctx_pg = &ctx->srq_mem;
7038 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7039 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7040 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7041 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7042 				      &req->srq_pg_size_srq_lvl,
7043 				      &req->srq_page_dir);
7044 	}
7045 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7046 		ctx_pg = &ctx->cq_mem;
7047 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7048 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7049 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7050 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7051 				      &req->cq_pg_size_cq_lvl,
7052 				      &req->cq_page_dir);
7053 	}
7054 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7055 		ctx_pg = &ctx->vnic_mem;
7056 		req->vnic_num_vnic_entries =
7057 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7058 		req->vnic_num_ring_table_entries =
7059 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7060 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7061 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7062 				      &req->vnic_pg_size_vnic_lvl,
7063 				      &req->vnic_page_dir);
7064 	}
7065 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7066 		ctx_pg = &ctx->stat_mem;
7067 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7068 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7069 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7070 				      &req->stat_pg_size_stat_lvl,
7071 				      &req->stat_page_dir);
7072 	}
7073 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7074 		ctx_pg = &ctx->mrav_mem;
7075 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7076 		if (ctx->mrav_num_entries_units)
7077 			flags |=
7078 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7079 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7080 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7081 				      &req->mrav_pg_size_mrav_lvl,
7082 				      &req->mrav_page_dir);
7083 	}
7084 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7085 		ctx_pg = &ctx->tim_mem;
7086 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7087 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7088 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7089 				      &req->tim_pg_size_tim_lvl,
7090 				      &req->tim_page_dir);
7091 	}
7092 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7093 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7094 	     pg_dir = &req->tqm_sp_page_dir,
7095 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7096 	     i < BNXT_MAX_TQM_RINGS;
7097 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7098 		if (!(enables & ena))
7099 			continue;
7100 
7101 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7102 		ctx_pg = ctx->tqm_mem[i];
7103 		*num_entries = cpu_to_le32(ctx_pg->entries);
7104 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7105 	}
7106 	req->flags = cpu_to_le32(flags);
7107 	return hwrm_req_send(bp, req);
7108 }
7109 
7110 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7111 				  struct bnxt_ctx_pg_info *ctx_pg)
7112 {
7113 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7114 
7115 	rmem->page_size = BNXT_PAGE_SIZE;
7116 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7117 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7118 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7119 	if (rmem->depth >= 1)
7120 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7121 	return bnxt_alloc_ring(bp, rmem);
7122 }
7123 
7124 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7125 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7126 				  u8 depth, struct bnxt_mem_init *mem_init)
7127 {
7128 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7129 	int rc;
7130 
7131 	if (!mem_size)
7132 		return -EINVAL;
7133 
7134 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7135 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7136 		ctx_pg->nr_pages = 0;
7137 		return -EINVAL;
7138 	}
7139 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7140 		int nr_tbls, i;
7141 
7142 		rmem->depth = 2;
7143 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7144 					     GFP_KERNEL);
7145 		if (!ctx_pg->ctx_pg_tbl)
7146 			return -ENOMEM;
7147 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7148 		rmem->nr_pages = nr_tbls;
7149 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7150 		if (rc)
7151 			return rc;
7152 		for (i = 0; i < nr_tbls; i++) {
7153 			struct bnxt_ctx_pg_info *pg_tbl;
7154 
7155 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7156 			if (!pg_tbl)
7157 				return -ENOMEM;
7158 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7159 			rmem = &pg_tbl->ring_mem;
7160 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7161 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7162 			rmem->depth = 1;
7163 			rmem->nr_pages = MAX_CTX_PAGES;
7164 			rmem->mem_init = mem_init;
7165 			if (i == (nr_tbls - 1)) {
7166 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7167 
7168 				if (rem)
7169 					rmem->nr_pages = rem;
7170 			}
7171 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7172 			if (rc)
7173 				break;
7174 		}
7175 	} else {
7176 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7177 		if (rmem->nr_pages > 1 || depth)
7178 			rmem->depth = 1;
7179 		rmem->mem_init = mem_init;
7180 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7181 	}
7182 	return rc;
7183 }
7184 
7185 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7186 				  struct bnxt_ctx_pg_info *ctx_pg)
7187 {
7188 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7189 
7190 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7191 	    ctx_pg->ctx_pg_tbl) {
7192 		int i, nr_tbls = rmem->nr_pages;
7193 
7194 		for (i = 0; i < nr_tbls; i++) {
7195 			struct bnxt_ctx_pg_info *pg_tbl;
7196 			struct bnxt_ring_mem_info *rmem2;
7197 
7198 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7199 			if (!pg_tbl)
7200 				continue;
7201 			rmem2 = &pg_tbl->ring_mem;
7202 			bnxt_free_ring(bp, rmem2);
7203 			ctx_pg->ctx_pg_arr[i] = NULL;
7204 			kfree(pg_tbl);
7205 			ctx_pg->ctx_pg_tbl[i] = NULL;
7206 		}
7207 		kfree(ctx_pg->ctx_pg_tbl);
7208 		ctx_pg->ctx_pg_tbl = NULL;
7209 	}
7210 	bnxt_free_ring(bp, rmem);
7211 	ctx_pg->nr_pages = 0;
7212 }
7213 
7214 void bnxt_free_ctx_mem(struct bnxt *bp)
7215 {
7216 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7217 	int i;
7218 
7219 	if (!ctx)
7220 		return;
7221 
7222 	if (ctx->tqm_mem[0]) {
7223 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7224 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7225 		kfree(ctx->tqm_mem[0]);
7226 		ctx->tqm_mem[0] = NULL;
7227 	}
7228 
7229 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7230 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7231 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7232 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7233 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7234 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7235 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7236 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7237 }
7238 
7239 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7240 {
7241 	struct bnxt_ctx_pg_info *ctx_pg;
7242 	struct bnxt_ctx_mem_info *ctx;
7243 	struct bnxt_mem_init *init;
7244 	u32 mem_size, ena, entries;
7245 	u32 entries_sp, min;
7246 	u32 num_mr, num_ah;
7247 	u32 extra_srqs = 0;
7248 	u32 extra_qps = 0;
7249 	u8 pg_lvl = 1;
7250 	int i, rc;
7251 
7252 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7253 	if (rc) {
7254 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7255 			   rc);
7256 		return rc;
7257 	}
7258 	ctx = bp->ctx;
7259 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7260 		return 0;
7261 
7262 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7263 		pg_lvl = 2;
7264 		extra_qps = 65536;
7265 		extra_srqs = 8192;
7266 	}
7267 
7268 	ctx_pg = &ctx->qp_mem;
7269 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7270 			  extra_qps;
7271 	if (ctx->qp_entry_size) {
7272 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7273 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7274 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7275 		if (rc)
7276 			return rc;
7277 	}
7278 
7279 	ctx_pg = &ctx->srq_mem;
7280 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7281 	if (ctx->srq_entry_size) {
7282 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7283 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7284 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7285 		if (rc)
7286 			return rc;
7287 	}
7288 
7289 	ctx_pg = &ctx->cq_mem;
7290 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7291 	if (ctx->cq_entry_size) {
7292 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7293 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7294 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7295 		if (rc)
7296 			return rc;
7297 	}
7298 
7299 	ctx_pg = &ctx->vnic_mem;
7300 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7301 			  ctx->vnic_max_ring_table_entries;
7302 	if (ctx->vnic_entry_size) {
7303 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7304 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7305 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7306 		if (rc)
7307 			return rc;
7308 	}
7309 
7310 	ctx_pg = &ctx->stat_mem;
7311 	ctx_pg->entries = ctx->stat_max_entries;
7312 	if (ctx->stat_entry_size) {
7313 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7314 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7315 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7316 		if (rc)
7317 			return rc;
7318 	}
7319 
7320 	ena = 0;
7321 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7322 		goto skip_rdma;
7323 
7324 	ctx_pg = &ctx->mrav_mem;
7325 	/* 128K extra is needed to accommodate static AH context
7326 	 * allocation by f/w.
7327 	 */
7328 	num_mr = 1024 * 256;
7329 	num_ah = 1024 * 128;
7330 	ctx_pg->entries = num_mr + num_ah;
7331 	if (ctx->mrav_entry_size) {
7332 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7333 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7334 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7335 		if (rc)
7336 			return rc;
7337 	}
7338 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7339 	if (ctx->mrav_num_entries_units)
7340 		ctx_pg->entries =
7341 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7342 			 (num_ah / ctx->mrav_num_entries_units);
7343 
7344 	ctx_pg = &ctx->tim_mem;
7345 	ctx_pg->entries = ctx->qp_mem.entries;
7346 	if (ctx->tim_entry_size) {
7347 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7348 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7349 		if (rc)
7350 			return rc;
7351 	}
7352 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7353 
7354 skip_rdma:
7355 	min = ctx->tqm_min_entries_per_ring;
7356 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7357 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7358 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7359 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7360 	entries = roundup(entries, ctx->tqm_entries_multiple);
7361 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7362 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7363 		ctx_pg = ctx->tqm_mem[i];
7364 		ctx_pg->entries = i ? entries : entries_sp;
7365 		if (ctx->tqm_entry_size) {
7366 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7367 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7368 						    NULL);
7369 			if (rc)
7370 				return rc;
7371 		}
7372 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7373 	}
7374 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7375 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7376 	if (rc) {
7377 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7378 			   rc);
7379 		return rc;
7380 	}
7381 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7382 	return 0;
7383 }
7384 
7385 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7386 {
7387 	struct hwrm_func_resource_qcaps_output *resp;
7388 	struct hwrm_func_resource_qcaps_input *req;
7389 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7390 	int rc;
7391 
7392 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7393 	if (rc)
7394 		return rc;
7395 
7396 	req->fid = cpu_to_le16(0xffff);
7397 	resp = hwrm_req_hold(bp, req);
7398 	rc = hwrm_req_send_silent(bp, req);
7399 	if (rc)
7400 		goto hwrm_func_resc_qcaps_exit;
7401 
7402 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7403 	if (!all)
7404 		goto hwrm_func_resc_qcaps_exit;
7405 
7406 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7407 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7408 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7409 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7410 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7411 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7412 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7413 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7414 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7415 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7416 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7417 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7418 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7419 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7420 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7421 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7422 
7423 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7424 		u16 max_msix = le16_to_cpu(resp->max_msix);
7425 
7426 		hw_resc->max_nqs = max_msix;
7427 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7428 	}
7429 
7430 	if (BNXT_PF(bp)) {
7431 		struct bnxt_pf_info *pf = &bp->pf;
7432 
7433 		pf->vf_resv_strategy =
7434 			le16_to_cpu(resp->vf_reservation_strategy);
7435 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7436 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7437 	}
7438 hwrm_func_resc_qcaps_exit:
7439 	hwrm_req_drop(bp, req);
7440 	return rc;
7441 }
7442 
7443 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7444 {
7445 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7446 	struct hwrm_port_mac_ptp_qcfg_input *req;
7447 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7448 	bool phc_cfg;
7449 	u8 flags;
7450 	int rc;
7451 
7452 	if (bp->hwrm_spec_code < 0x10801) {
7453 		rc = -ENODEV;
7454 		goto no_ptp;
7455 	}
7456 
7457 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7458 	if (rc)
7459 		goto no_ptp;
7460 
7461 	req->port_id = cpu_to_le16(bp->pf.port_id);
7462 	resp = hwrm_req_hold(bp, req);
7463 	rc = hwrm_req_send(bp, req);
7464 	if (rc)
7465 		goto exit;
7466 
7467 	flags = resp->flags;
7468 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7469 		rc = -ENODEV;
7470 		goto exit;
7471 	}
7472 	if (!ptp) {
7473 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7474 		if (!ptp) {
7475 			rc = -ENOMEM;
7476 			goto exit;
7477 		}
7478 		ptp->bp = bp;
7479 		bp->ptp_cfg = ptp;
7480 	}
7481 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7482 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7483 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7484 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7485 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7486 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7487 	} else {
7488 		rc = -ENODEV;
7489 		goto exit;
7490 	}
7491 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7492 	rc = bnxt_ptp_init(bp, phc_cfg);
7493 	if (rc)
7494 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7495 exit:
7496 	hwrm_req_drop(bp, req);
7497 	if (!rc)
7498 		return 0;
7499 
7500 no_ptp:
7501 	bnxt_ptp_clear(bp);
7502 	kfree(ptp);
7503 	bp->ptp_cfg = NULL;
7504 	return rc;
7505 }
7506 
7507 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7508 {
7509 	struct hwrm_func_qcaps_output *resp;
7510 	struct hwrm_func_qcaps_input *req;
7511 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7512 	u32 flags, flags_ext;
7513 	int rc;
7514 
7515 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7516 	if (rc)
7517 		return rc;
7518 
7519 	req->fid = cpu_to_le16(0xffff);
7520 	resp = hwrm_req_hold(bp, req);
7521 	rc = hwrm_req_send(bp, req);
7522 	if (rc)
7523 		goto hwrm_func_qcaps_exit;
7524 
7525 	flags = le32_to_cpu(resp->flags);
7526 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7527 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7528 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7529 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7530 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7531 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7532 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7533 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7534 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7535 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7536 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7537 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7538 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7539 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7540 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7541 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7542 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7543 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7544 
7545 	flags_ext = le32_to_cpu(resp->flags_ext);
7546 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7547 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7548 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7549 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7550 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7551 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7552 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7553 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7554 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7555 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7556 
7557 	bp->tx_push_thresh = 0;
7558 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7559 	    BNXT_FW_MAJ(bp) > 217)
7560 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7561 
7562 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7563 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7564 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7565 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7566 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7567 	if (!hw_resc->max_hw_ring_grps)
7568 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7569 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7570 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7571 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7572 
7573 	if (BNXT_PF(bp)) {
7574 		struct bnxt_pf_info *pf = &bp->pf;
7575 
7576 		pf->fw_fid = le16_to_cpu(resp->fid);
7577 		pf->port_id = le16_to_cpu(resp->port_id);
7578 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7579 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7580 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7581 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7582 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7583 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7584 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7585 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7586 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7587 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7588 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7589 			bp->flags |= BNXT_FLAG_WOL_CAP;
7590 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7591 			__bnxt_hwrm_ptp_qcfg(bp);
7592 		} else {
7593 			bnxt_ptp_clear(bp);
7594 			kfree(bp->ptp_cfg);
7595 			bp->ptp_cfg = NULL;
7596 		}
7597 	} else {
7598 #ifdef CONFIG_BNXT_SRIOV
7599 		struct bnxt_vf_info *vf = &bp->vf;
7600 
7601 		vf->fw_fid = le16_to_cpu(resp->fid);
7602 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7603 #endif
7604 	}
7605 
7606 hwrm_func_qcaps_exit:
7607 	hwrm_req_drop(bp, req);
7608 	return rc;
7609 }
7610 
7611 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7612 {
7613 	struct hwrm_dbg_qcaps_output *resp;
7614 	struct hwrm_dbg_qcaps_input *req;
7615 	int rc;
7616 
7617 	bp->fw_dbg_cap = 0;
7618 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7619 		return;
7620 
7621 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7622 	if (rc)
7623 		return;
7624 
7625 	req->fid = cpu_to_le16(0xffff);
7626 	resp = hwrm_req_hold(bp, req);
7627 	rc = hwrm_req_send(bp, req);
7628 	if (rc)
7629 		goto hwrm_dbg_qcaps_exit;
7630 
7631 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7632 
7633 hwrm_dbg_qcaps_exit:
7634 	hwrm_req_drop(bp, req);
7635 }
7636 
7637 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7638 
7639 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7640 {
7641 	int rc;
7642 
7643 	rc = __bnxt_hwrm_func_qcaps(bp);
7644 	if (rc)
7645 		return rc;
7646 
7647 	bnxt_hwrm_dbg_qcaps(bp);
7648 
7649 	rc = bnxt_hwrm_queue_qportcfg(bp);
7650 	if (rc) {
7651 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7652 		return rc;
7653 	}
7654 	if (bp->hwrm_spec_code >= 0x10803) {
7655 		rc = bnxt_alloc_ctx_mem(bp);
7656 		if (rc)
7657 			return rc;
7658 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7659 		if (!rc)
7660 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7661 	}
7662 	return 0;
7663 }
7664 
7665 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7666 {
7667 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7668 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7669 	u32 flags;
7670 	int rc;
7671 
7672 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7673 		return 0;
7674 
7675 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7676 	if (rc)
7677 		return rc;
7678 
7679 	resp = hwrm_req_hold(bp, req);
7680 	rc = hwrm_req_send(bp, req);
7681 	if (rc)
7682 		goto hwrm_cfa_adv_qcaps_exit;
7683 
7684 	flags = le32_to_cpu(resp->flags);
7685 	if (flags &
7686 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7687 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7688 
7689 hwrm_cfa_adv_qcaps_exit:
7690 	hwrm_req_drop(bp, req);
7691 	return rc;
7692 }
7693 
7694 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7695 {
7696 	if (bp->fw_health)
7697 		return 0;
7698 
7699 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7700 	if (!bp->fw_health)
7701 		return -ENOMEM;
7702 
7703 	mutex_init(&bp->fw_health->lock);
7704 	return 0;
7705 }
7706 
7707 static int bnxt_alloc_fw_health(struct bnxt *bp)
7708 {
7709 	int rc;
7710 
7711 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7712 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7713 		return 0;
7714 
7715 	rc = __bnxt_alloc_fw_health(bp);
7716 	if (rc) {
7717 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7718 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7719 		return rc;
7720 	}
7721 
7722 	return 0;
7723 }
7724 
7725 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7726 {
7727 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7728 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7729 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7730 }
7731 
7732 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7733 {
7734 	struct bnxt_fw_health *fw_health = bp->fw_health;
7735 	u32 reg_type;
7736 
7737 	if (!fw_health)
7738 		return;
7739 
7740 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7741 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7742 		fw_health->status_reliable = false;
7743 
7744 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7745 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7746 		fw_health->resets_reliable = false;
7747 }
7748 
7749 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7750 {
7751 	void __iomem *hs;
7752 	u32 status_loc;
7753 	u32 reg_type;
7754 	u32 sig;
7755 
7756 	if (bp->fw_health)
7757 		bp->fw_health->status_reliable = false;
7758 
7759 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7760 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7761 
7762 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7763 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7764 		if (!bp->chip_num) {
7765 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7766 			bp->chip_num = readl(bp->bar0 +
7767 					     BNXT_FW_HEALTH_WIN_BASE +
7768 					     BNXT_GRC_REG_CHIP_NUM);
7769 		}
7770 		if (!BNXT_CHIP_P5(bp))
7771 			return;
7772 
7773 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7774 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7775 	} else {
7776 		status_loc = readl(hs + offsetof(struct hcomm_status,
7777 						 fw_status_loc));
7778 	}
7779 
7780 	if (__bnxt_alloc_fw_health(bp)) {
7781 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7782 		return;
7783 	}
7784 
7785 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7786 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7787 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7788 		__bnxt_map_fw_health_reg(bp, status_loc);
7789 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7790 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7791 	}
7792 
7793 	bp->fw_health->status_reliable = true;
7794 }
7795 
7796 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7797 {
7798 	struct bnxt_fw_health *fw_health = bp->fw_health;
7799 	u32 reg_base = 0xffffffff;
7800 	int i;
7801 
7802 	bp->fw_health->status_reliable = false;
7803 	bp->fw_health->resets_reliable = false;
7804 	/* Only pre-map the monitoring GRC registers using window 3 */
7805 	for (i = 0; i < 4; i++) {
7806 		u32 reg = fw_health->regs[i];
7807 
7808 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7809 			continue;
7810 		if (reg_base == 0xffffffff)
7811 			reg_base = reg & BNXT_GRC_BASE_MASK;
7812 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7813 			return -ERANGE;
7814 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7815 	}
7816 	bp->fw_health->status_reliable = true;
7817 	bp->fw_health->resets_reliable = true;
7818 	if (reg_base == 0xffffffff)
7819 		return 0;
7820 
7821 	__bnxt_map_fw_health_reg(bp, reg_base);
7822 	return 0;
7823 }
7824 
7825 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7826 {
7827 	if (!bp->fw_health)
7828 		return;
7829 
7830 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7831 		bp->fw_health->status_reliable = true;
7832 		bp->fw_health->resets_reliable = true;
7833 	} else {
7834 		bnxt_try_map_fw_health_reg(bp);
7835 	}
7836 }
7837 
7838 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7839 {
7840 	struct bnxt_fw_health *fw_health = bp->fw_health;
7841 	struct hwrm_error_recovery_qcfg_output *resp;
7842 	struct hwrm_error_recovery_qcfg_input *req;
7843 	int rc, i;
7844 
7845 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7846 		return 0;
7847 
7848 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7849 	if (rc)
7850 		return rc;
7851 
7852 	resp = hwrm_req_hold(bp, req);
7853 	rc = hwrm_req_send(bp, req);
7854 	if (rc)
7855 		goto err_recovery_out;
7856 	fw_health->flags = le32_to_cpu(resp->flags);
7857 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7858 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7859 		rc = -EINVAL;
7860 		goto err_recovery_out;
7861 	}
7862 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7863 	fw_health->master_func_wait_dsecs =
7864 		le32_to_cpu(resp->master_func_wait_period);
7865 	fw_health->normal_func_wait_dsecs =
7866 		le32_to_cpu(resp->normal_func_wait_period);
7867 	fw_health->post_reset_wait_dsecs =
7868 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7869 	fw_health->post_reset_max_wait_dsecs =
7870 		le32_to_cpu(resp->max_bailout_time_after_reset);
7871 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7872 		le32_to_cpu(resp->fw_health_status_reg);
7873 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7874 		le32_to_cpu(resp->fw_heartbeat_reg);
7875 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7876 		le32_to_cpu(resp->fw_reset_cnt_reg);
7877 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7878 		le32_to_cpu(resp->reset_inprogress_reg);
7879 	fw_health->fw_reset_inprog_reg_mask =
7880 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7881 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7882 	if (fw_health->fw_reset_seq_cnt >= 16) {
7883 		rc = -EINVAL;
7884 		goto err_recovery_out;
7885 	}
7886 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7887 		fw_health->fw_reset_seq_regs[i] =
7888 			le32_to_cpu(resp->reset_reg[i]);
7889 		fw_health->fw_reset_seq_vals[i] =
7890 			le32_to_cpu(resp->reset_reg_val[i]);
7891 		fw_health->fw_reset_seq_delay_msec[i] =
7892 			resp->delay_after_reset[i];
7893 	}
7894 err_recovery_out:
7895 	hwrm_req_drop(bp, req);
7896 	if (!rc)
7897 		rc = bnxt_map_fw_health_regs(bp);
7898 	if (rc)
7899 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7900 	return rc;
7901 }
7902 
7903 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7904 {
7905 	struct hwrm_func_reset_input *req;
7906 	int rc;
7907 
7908 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
7909 	if (rc)
7910 		return rc;
7911 
7912 	req->enables = 0;
7913 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
7914 	return hwrm_req_send(bp, req);
7915 }
7916 
7917 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7918 {
7919 	struct hwrm_nvm_get_dev_info_output nvm_info;
7920 
7921 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7922 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7923 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7924 			 nvm_info.nvm_cfg_ver_upd);
7925 }
7926 
7927 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7928 {
7929 	struct hwrm_queue_qportcfg_output *resp;
7930 	struct hwrm_queue_qportcfg_input *req;
7931 	u8 i, j, *qptr;
7932 	bool no_rdma;
7933 	int rc = 0;
7934 
7935 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
7936 	if (rc)
7937 		return rc;
7938 
7939 	resp = hwrm_req_hold(bp, req);
7940 	rc = hwrm_req_send(bp, req);
7941 	if (rc)
7942 		goto qportcfg_exit;
7943 
7944 	if (!resp->max_configurable_queues) {
7945 		rc = -EINVAL;
7946 		goto qportcfg_exit;
7947 	}
7948 	bp->max_tc = resp->max_configurable_queues;
7949 	bp->max_lltc = resp->max_configurable_lossless_queues;
7950 	if (bp->max_tc > BNXT_MAX_QUEUE)
7951 		bp->max_tc = BNXT_MAX_QUEUE;
7952 
7953 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7954 	qptr = &resp->queue_id0;
7955 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7956 		bp->q_info[j].queue_id = *qptr;
7957 		bp->q_ids[i] = *qptr++;
7958 		bp->q_info[j].queue_profile = *qptr++;
7959 		bp->tc_to_qidx[j] = j;
7960 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7961 		    (no_rdma && BNXT_PF(bp)))
7962 			j++;
7963 	}
7964 	bp->max_q = bp->max_tc;
7965 	bp->max_tc = max_t(u8, j, 1);
7966 
7967 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7968 		bp->max_tc = 1;
7969 
7970 	if (bp->max_lltc > bp->max_tc)
7971 		bp->max_lltc = bp->max_tc;
7972 
7973 qportcfg_exit:
7974 	hwrm_req_drop(bp, req);
7975 	return rc;
7976 }
7977 
7978 static int bnxt_hwrm_poll(struct bnxt *bp)
7979 {
7980 	struct hwrm_ver_get_input *req;
7981 	int rc;
7982 
7983 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7984 	if (rc)
7985 		return rc;
7986 
7987 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7988 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7989 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7990 
7991 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
7992 	rc = hwrm_req_send(bp, req);
7993 	return rc;
7994 }
7995 
7996 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7997 {
7998 	struct hwrm_ver_get_output *resp;
7999 	struct hwrm_ver_get_input *req;
8000 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8001 	u32 dev_caps_cfg, hwrm_ver;
8002 	int rc, len;
8003 
8004 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8005 	if (rc)
8006 		return rc;
8007 
8008 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8009 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8010 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8011 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8012 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8013 
8014 	resp = hwrm_req_hold(bp, req);
8015 	rc = hwrm_req_send(bp, req);
8016 	if (rc)
8017 		goto hwrm_ver_get_exit;
8018 
8019 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8020 
8021 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8022 			     resp->hwrm_intf_min_8b << 8 |
8023 			     resp->hwrm_intf_upd_8b;
8024 	if (resp->hwrm_intf_maj_8b < 1) {
8025 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8026 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8027 			    resp->hwrm_intf_upd_8b);
8028 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8029 	}
8030 
8031 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8032 			HWRM_VERSION_UPDATE;
8033 
8034 	if (bp->hwrm_spec_code > hwrm_ver)
8035 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8036 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8037 			 HWRM_VERSION_UPDATE);
8038 	else
8039 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8040 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8041 			 resp->hwrm_intf_upd_8b);
8042 
8043 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8044 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8045 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8046 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8047 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8048 		len = FW_VER_STR_LEN;
8049 	} else {
8050 		fw_maj = resp->hwrm_fw_maj_8b;
8051 		fw_min = resp->hwrm_fw_min_8b;
8052 		fw_bld = resp->hwrm_fw_bld_8b;
8053 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8054 		len = BC_HWRM_STR_LEN;
8055 	}
8056 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8057 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8058 		 fw_rsv);
8059 
8060 	if (strlen(resp->active_pkg_name)) {
8061 		int fw_ver_len = strlen(bp->fw_ver_str);
8062 
8063 		snprintf(bp->fw_ver_str + fw_ver_len,
8064 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8065 			 resp->active_pkg_name);
8066 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8067 	}
8068 
8069 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8070 	if (!bp->hwrm_cmd_timeout)
8071 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8072 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8073 	if (!bp->hwrm_cmd_max_timeout)
8074 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8075 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8076 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8077 			    bp->hwrm_cmd_max_timeout / 1000);
8078 
8079 	if (resp->hwrm_intf_maj_8b >= 1) {
8080 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8081 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8082 	}
8083 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8084 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8085 
8086 	bp->chip_num = le16_to_cpu(resp->chip_num);
8087 	bp->chip_rev = resp->chip_rev;
8088 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8089 	    !resp->chip_metal)
8090 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8091 
8092 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8093 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8094 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8095 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8096 
8097 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8098 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8099 
8100 	if (dev_caps_cfg &
8101 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8102 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8103 
8104 	if (dev_caps_cfg &
8105 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8106 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8107 
8108 	if (dev_caps_cfg &
8109 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8110 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8111 
8112 hwrm_ver_get_exit:
8113 	hwrm_req_drop(bp, req);
8114 	return rc;
8115 }
8116 
8117 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8118 {
8119 	struct hwrm_fw_set_time_input *req;
8120 	struct tm tm;
8121 	time64_t now = ktime_get_real_seconds();
8122 	int rc;
8123 
8124 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8125 	    bp->hwrm_spec_code < 0x10400)
8126 		return -EOPNOTSUPP;
8127 
8128 	time64_to_tm(now, 0, &tm);
8129 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8130 	if (rc)
8131 		return rc;
8132 
8133 	req->year = cpu_to_le16(1900 + tm.tm_year);
8134 	req->month = 1 + tm.tm_mon;
8135 	req->day = tm.tm_mday;
8136 	req->hour = tm.tm_hour;
8137 	req->minute = tm.tm_min;
8138 	req->second = tm.tm_sec;
8139 	return hwrm_req_send(bp, req);
8140 }
8141 
8142 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8143 {
8144 	u64 sw_tmp;
8145 
8146 	hw &= mask;
8147 	sw_tmp = (*sw & ~mask) | hw;
8148 	if (hw < (*sw & mask))
8149 		sw_tmp += mask + 1;
8150 	WRITE_ONCE(*sw, sw_tmp);
8151 }
8152 
8153 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8154 				    int count, bool ignore_zero)
8155 {
8156 	int i;
8157 
8158 	for (i = 0; i < count; i++) {
8159 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8160 
8161 		if (ignore_zero && !hw)
8162 			continue;
8163 
8164 		if (masks[i] == -1ULL)
8165 			sw_stats[i] = hw;
8166 		else
8167 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8168 	}
8169 }
8170 
8171 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8172 {
8173 	if (!stats->hw_stats)
8174 		return;
8175 
8176 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8177 				stats->hw_masks, stats->len / 8, false);
8178 }
8179 
8180 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8181 {
8182 	struct bnxt_stats_mem *ring0_stats;
8183 	bool ignore_zero = false;
8184 	int i;
8185 
8186 	/* Chip bug.  Counter intermittently becomes 0. */
8187 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8188 		ignore_zero = true;
8189 
8190 	for (i = 0; i < bp->cp_nr_rings; i++) {
8191 		struct bnxt_napi *bnapi = bp->bnapi[i];
8192 		struct bnxt_cp_ring_info *cpr;
8193 		struct bnxt_stats_mem *stats;
8194 
8195 		cpr = &bnapi->cp_ring;
8196 		stats = &cpr->stats;
8197 		if (!i)
8198 			ring0_stats = stats;
8199 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8200 					ring0_stats->hw_masks,
8201 					ring0_stats->len / 8, ignore_zero);
8202 	}
8203 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8204 		struct bnxt_stats_mem *stats = &bp->port_stats;
8205 		__le64 *hw_stats = stats->hw_stats;
8206 		u64 *sw_stats = stats->sw_stats;
8207 		u64 *masks = stats->hw_masks;
8208 		int cnt;
8209 
8210 		cnt = sizeof(struct rx_port_stats) / 8;
8211 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8212 
8213 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8214 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8215 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8216 		cnt = sizeof(struct tx_port_stats) / 8;
8217 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8218 	}
8219 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8220 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8221 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8222 	}
8223 }
8224 
8225 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8226 {
8227 	struct hwrm_port_qstats_input *req;
8228 	struct bnxt_pf_info *pf = &bp->pf;
8229 	int rc;
8230 
8231 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8232 		return 0;
8233 
8234 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8235 		return -EOPNOTSUPP;
8236 
8237 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8238 	if (rc)
8239 		return rc;
8240 
8241 	req->flags = flags;
8242 	req->port_id = cpu_to_le16(pf->port_id);
8243 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8244 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8245 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8246 	return hwrm_req_send(bp, req);
8247 }
8248 
8249 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8250 {
8251 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8252 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8253 	struct hwrm_port_qstats_ext_output *resp_qs;
8254 	struct hwrm_port_qstats_ext_input *req_qs;
8255 	struct bnxt_pf_info *pf = &bp->pf;
8256 	u32 tx_stat_size;
8257 	int rc;
8258 
8259 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8260 		return 0;
8261 
8262 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8263 		return -EOPNOTSUPP;
8264 
8265 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8266 	if (rc)
8267 		return rc;
8268 
8269 	req_qs->flags = flags;
8270 	req_qs->port_id = cpu_to_le16(pf->port_id);
8271 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8272 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8273 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8274 		       sizeof(struct tx_port_stats_ext) : 0;
8275 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8276 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8277 	resp_qs = hwrm_req_hold(bp, req_qs);
8278 	rc = hwrm_req_send(bp, req_qs);
8279 	if (!rc) {
8280 		bp->fw_rx_stats_ext_size =
8281 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8282 		if (BNXT_FW_MAJ(bp) < 220 &&
8283 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8284 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8285 
8286 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8287 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8288 	} else {
8289 		bp->fw_rx_stats_ext_size = 0;
8290 		bp->fw_tx_stats_ext_size = 0;
8291 	}
8292 	hwrm_req_drop(bp, req_qs);
8293 
8294 	if (flags)
8295 		return rc;
8296 
8297 	if (bp->fw_tx_stats_ext_size <=
8298 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8299 		bp->pri2cos_valid = 0;
8300 		return rc;
8301 	}
8302 
8303 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8304 	if (rc)
8305 		return rc;
8306 
8307 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8308 
8309 	resp_qc = hwrm_req_hold(bp, req_qc);
8310 	rc = hwrm_req_send(bp, req_qc);
8311 	if (!rc) {
8312 		u8 *pri2cos;
8313 		int i, j;
8314 
8315 		pri2cos = &resp_qc->pri0_cos_queue_id;
8316 		for (i = 0; i < 8; i++) {
8317 			u8 queue_id = pri2cos[i];
8318 			u8 queue_idx;
8319 
8320 			/* Per port queue IDs start from 0, 10, 20, etc */
8321 			queue_idx = queue_id % 10;
8322 			if (queue_idx > BNXT_MAX_QUEUE) {
8323 				bp->pri2cos_valid = false;
8324 				hwrm_req_drop(bp, req_qc);
8325 				return rc;
8326 			}
8327 			for (j = 0; j < bp->max_q; j++) {
8328 				if (bp->q_ids[j] == queue_id)
8329 					bp->pri2cos_idx[i] = queue_idx;
8330 			}
8331 		}
8332 		bp->pri2cos_valid = true;
8333 	}
8334 	hwrm_req_drop(bp, req_qc);
8335 
8336 	return rc;
8337 }
8338 
8339 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8340 {
8341 	bnxt_hwrm_tunnel_dst_port_free(bp,
8342 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8343 	bnxt_hwrm_tunnel_dst_port_free(bp,
8344 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8345 }
8346 
8347 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8348 {
8349 	int rc, i;
8350 	u32 tpa_flags = 0;
8351 
8352 	if (set_tpa)
8353 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8354 	else if (BNXT_NO_FW_ACCESS(bp))
8355 		return 0;
8356 	for (i = 0; i < bp->nr_vnics; i++) {
8357 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8358 		if (rc) {
8359 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8360 				   i, rc);
8361 			return rc;
8362 		}
8363 	}
8364 	return 0;
8365 }
8366 
8367 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8368 {
8369 	int i;
8370 
8371 	for (i = 0; i < bp->nr_vnics; i++)
8372 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8373 }
8374 
8375 static void bnxt_clear_vnic(struct bnxt *bp)
8376 {
8377 	if (!bp->vnic_info)
8378 		return;
8379 
8380 	bnxt_hwrm_clear_vnic_filter(bp);
8381 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8382 		/* clear all RSS setting before free vnic ctx */
8383 		bnxt_hwrm_clear_vnic_rss(bp);
8384 		bnxt_hwrm_vnic_ctx_free(bp);
8385 	}
8386 	/* before free the vnic, undo the vnic tpa settings */
8387 	if (bp->flags & BNXT_FLAG_TPA)
8388 		bnxt_set_tpa(bp, false);
8389 	bnxt_hwrm_vnic_free(bp);
8390 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8391 		bnxt_hwrm_vnic_ctx_free(bp);
8392 }
8393 
8394 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8395 				    bool irq_re_init)
8396 {
8397 	bnxt_clear_vnic(bp);
8398 	bnxt_hwrm_ring_free(bp, close_path);
8399 	bnxt_hwrm_ring_grp_free(bp);
8400 	if (irq_re_init) {
8401 		bnxt_hwrm_stat_ctx_free(bp);
8402 		bnxt_hwrm_free_tunnel_ports(bp);
8403 	}
8404 }
8405 
8406 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8407 {
8408 	struct hwrm_func_cfg_input *req;
8409 	u8 evb_mode;
8410 	int rc;
8411 
8412 	if (br_mode == BRIDGE_MODE_VEB)
8413 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8414 	else if (br_mode == BRIDGE_MODE_VEPA)
8415 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8416 	else
8417 		return -EINVAL;
8418 
8419 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8420 	if (rc)
8421 		return rc;
8422 
8423 	req->fid = cpu_to_le16(0xffff);
8424 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8425 	req->evb_mode = evb_mode;
8426 	return hwrm_req_send(bp, req);
8427 }
8428 
8429 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8430 {
8431 	struct hwrm_func_cfg_input *req;
8432 	int rc;
8433 
8434 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8435 		return 0;
8436 
8437 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8438 	if (rc)
8439 		return rc;
8440 
8441 	req->fid = cpu_to_le16(0xffff);
8442 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8443 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8444 	if (size == 128)
8445 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8446 
8447 	return hwrm_req_send(bp, req);
8448 }
8449 
8450 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8451 {
8452 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8453 	int rc;
8454 
8455 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8456 		goto skip_rss_ctx;
8457 
8458 	/* allocate context for vnic */
8459 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8460 	if (rc) {
8461 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8462 			   vnic_id, rc);
8463 		goto vnic_setup_err;
8464 	}
8465 	bp->rsscos_nr_ctxs++;
8466 
8467 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8468 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8469 		if (rc) {
8470 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8471 				   vnic_id, rc);
8472 			goto vnic_setup_err;
8473 		}
8474 		bp->rsscos_nr_ctxs++;
8475 	}
8476 
8477 skip_rss_ctx:
8478 	/* configure default vnic, ring grp */
8479 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8480 	if (rc) {
8481 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8482 			   vnic_id, rc);
8483 		goto vnic_setup_err;
8484 	}
8485 
8486 	/* Enable RSS hashing on vnic */
8487 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8488 	if (rc) {
8489 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8490 			   vnic_id, rc);
8491 		goto vnic_setup_err;
8492 	}
8493 
8494 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8495 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8496 		if (rc) {
8497 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8498 				   vnic_id, rc);
8499 		}
8500 	}
8501 
8502 vnic_setup_err:
8503 	return rc;
8504 }
8505 
8506 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8507 {
8508 	int rc, i, nr_ctxs;
8509 
8510 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8511 	for (i = 0; i < nr_ctxs; i++) {
8512 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8513 		if (rc) {
8514 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8515 				   vnic_id, i, rc);
8516 			break;
8517 		}
8518 		bp->rsscos_nr_ctxs++;
8519 	}
8520 	if (i < nr_ctxs)
8521 		return -ENOMEM;
8522 
8523 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8524 	if (rc) {
8525 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8526 			   vnic_id, rc);
8527 		return rc;
8528 	}
8529 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8530 	if (rc) {
8531 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8532 			   vnic_id, rc);
8533 		return rc;
8534 	}
8535 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8536 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8537 		if (rc) {
8538 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8539 				   vnic_id, rc);
8540 		}
8541 	}
8542 	return rc;
8543 }
8544 
8545 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8546 {
8547 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8548 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8549 	else
8550 		return __bnxt_setup_vnic(bp, vnic_id);
8551 }
8552 
8553 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8554 {
8555 #ifdef CONFIG_RFS_ACCEL
8556 	int i, rc = 0;
8557 
8558 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8559 		return 0;
8560 
8561 	for (i = 0; i < bp->rx_nr_rings; i++) {
8562 		struct bnxt_vnic_info *vnic;
8563 		u16 vnic_id = i + 1;
8564 		u16 ring_id = i;
8565 
8566 		if (vnic_id >= bp->nr_vnics)
8567 			break;
8568 
8569 		vnic = &bp->vnic_info[vnic_id];
8570 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8571 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8572 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8573 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8574 		if (rc) {
8575 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8576 				   vnic_id, rc);
8577 			break;
8578 		}
8579 		rc = bnxt_setup_vnic(bp, vnic_id);
8580 		if (rc)
8581 			break;
8582 	}
8583 	return rc;
8584 #else
8585 	return 0;
8586 #endif
8587 }
8588 
8589 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8590 static bool bnxt_promisc_ok(struct bnxt *bp)
8591 {
8592 #ifdef CONFIG_BNXT_SRIOV
8593 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8594 		return false;
8595 #endif
8596 	return true;
8597 }
8598 
8599 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8600 {
8601 	unsigned int rc = 0;
8602 
8603 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8604 	if (rc) {
8605 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8606 			   rc);
8607 		return rc;
8608 	}
8609 
8610 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8611 	if (rc) {
8612 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8613 			   rc);
8614 		return rc;
8615 	}
8616 	return rc;
8617 }
8618 
8619 static int bnxt_cfg_rx_mode(struct bnxt *);
8620 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8621 
8622 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8623 {
8624 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8625 	int rc = 0;
8626 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8627 
8628 	if (irq_re_init) {
8629 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8630 		if (rc) {
8631 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8632 				   rc);
8633 			goto err_out;
8634 		}
8635 	}
8636 
8637 	rc = bnxt_hwrm_ring_alloc(bp);
8638 	if (rc) {
8639 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8640 		goto err_out;
8641 	}
8642 
8643 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8644 	if (rc) {
8645 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8646 		goto err_out;
8647 	}
8648 
8649 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8650 		rx_nr_rings--;
8651 
8652 	/* default vnic 0 */
8653 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8654 	if (rc) {
8655 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8656 		goto err_out;
8657 	}
8658 
8659 	rc = bnxt_setup_vnic(bp, 0);
8660 	if (rc)
8661 		goto err_out;
8662 
8663 	if (bp->flags & BNXT_FLAG_RFS) {
8664 		rc = bnxt_alloc_rfs_vnics(bp);
8665 		if (rc)
8666 			goto err_out;
8667 	}
8668 
8669 	if (bp->flags & BNXT_FLAG_TPA) {
8670 		rc = bnxt_set_tpa(bp, true);
8671 		if (rc)
8672 			goto err_out;
8673 	}
8674 
8675 	if (BNXT_VF(bp))
8676 		bnxt_update_vf_mac(bp);
8677 
8678 	/* Filter for default vnic 0 */
8679 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8680 	if (rc) {
8681 		if (BNXT_VF(bp) && rc == -ENODEV)
8682 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8683 		else
8684 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8685 		goto err_out;
8686 	}
8687 	vnic->uc_filter_count = 1;
8688 
8689 	vnic->rx_mask = 0;
8690 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8691 		goto skip_rx_mask;
8692 
8693 	if (bp->dev->flags & IFF_BROADCAST)
8694 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8695 
8696 	if (bp->dev->flags & IFF_PROMISC)
8697 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8698 
8699 	if (bp->dev->flags & IFF_ALLMULTI) {
8700 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8701 		vnic->mc_list_count = 0;
8702 	} else if (bp->dev->flags & IFF_MULTICAST) {
8703 		u32 mask = 0;
8704 
8705 		bnxt_mc_list_updated(bp, &mask);
8706 		vnic->rx_mask |= mask;
8707 	}
8708 
8709 	rc = bnxt_cfg_rx_mode(bp);
8710 	if (rc)
8711 		goto err_out;
8712 
8713 skip_rx_mask:
8714 	rc = bnxt_hwrm_set_coal(bp);
8715 	if (rc)
8716 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8717 				rc);
8718 
8719 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8720 		rc = bnxt_setup_nitroa0_vnic(bp);
8721 		if (rc)
8722 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8723 				   rc);
8724 	}
8725 
8726 	if (BNXT_VF(bp)) {
8727 		bnxt_hwrm_func_qcfg(bp);
8728 		netdev_update_features(bp->dev);
8729 	}
8730 
8731 	return 0;
8732 
8733 err_out:
8734 	bnxt_hwrm_resource_free(bp, 0, true);
8735 
8736 	return rc;
8737 }
8738 
8739 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8740 {
8741 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8742 	return 0;
8743 }
8744 
8745 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8746 {
8747 	bnxt_init_cp_rings(bp);
8748 	bnxt_init_rx_rings(bp);
8749 	bnxt_init_tx_rings(bp);
8750 	bnxt_init_ring_grps(bp, irq_re_init);
8751 	bnxt_init_vnics(bp);
8752 
8753 	return bnxt_init_chip(bp, irq_re_init);
8754 }
8755 
8756 static int bnxt_set_real_num_queues(struct bnxt *bp)
8757 {
8758 	int rc;
8759 	struct net_device *dev = bp->dev;
8760 
8761 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8762 					  bp->tx_nr_rings_xdp);
8763 	if (rc)
8764 		return rc;
8765 
8766 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8767 	if (rc)
8768 		return rc;
8769 
8770 #ifdef CONFIG_RFS_ACCEL
8771 	if (bp->flags & BNXT_FLAG_RFS)
8772 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8773 #endif
8774 
8775 	return rc;
8776 }
8777 
8778 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8779 			   bool shared)
8780 {
8781 	int _rx = *rx, _tx = *tx;
8782 
8783 	if (shared) {
8784 		*rx = min_t(int, _rx, max);
8785 		*tx = min_t(int, _tx, max);
8786 	} else {
8787 		if (max < 2)
8788 			return -ENOMEM;
8789 
8790 		while (_rx + _tx > max) {
8791 			if (_rx > _tx && _rx > 1)
8792 				_rx--;
8793 			else if (_tx > 1)
8794 				_tx--;
8795 		}
8796 		*rx = _rx;
8797 		*tx = _tx;
8798 	}
8799 	return 0;
8800 }
8801 
8802 static void bnxt_setup_msix(struct bnxt *bp)
8803 {
8804 	const int len = sizeof(bp->irq_tbl[0].name);
8805 	struct net_device *dev = bp->dev;
8806 	int tcs, i;
8807 
8808 	tcs = netdev_get_num_tc(dev);
8809 	if (tcs) {
8810 		int i, off, count;
8811 
8812 		for (i = 0; i < tcs; i++) {
8813 			count = bp->tx_nr_rings_per_tc;
8814 			off = i * count;
8815 			netdev_set_tc_queue(dev, i, count, off);
8816 		}
8817 	}
8818 
8819 	for (i = 0; i < bp->cp_nr_rings; i++) {
8820 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8821 		char *attr;
8822 
8823 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8824 			attr = "TxRx";
8825 		else if (i < bp->rx_nr_rings)
8826 			attr = "rx";
8827 		else
8828 			attr = "tx";
8829 
8830 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8831 			 attr, i);
8832 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8833 	}
8834 }
8835 
8836 static void bnxt_setup_inta(struct bnxt *bp)
8837 {
8838 	const int len = sizeof(bp->irq_tbl[0].name);
8839 
8840 	if (netdev_get_num_tc(bp->dev))
8841 		netdev_reset_tc(bp->dev);
8842 
8843 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8844 		 0);
8845 	bp->irq_tbl[0].handler = bnxt_inta;
8846 }
8847 
8848 static int bnxt_init_int_mode(struct bnxt *bp);
8849 
8850 static int bnxt_setup_int_mode(struct bnxt *bp)
8851 {
8852 	int rc;
8853 
8854 	if (!bp->irq_tbl) {
8855 		rc = bnxt_init_int_mode(bp);
8856 		if (rc || !bp->irq_tbl)
8857 			return rc ?: -ENODEV;
8858 	}
8859 
8860 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8861 		bnxt_setup_msix(bp);
8862 	else
8863 		bnxt_setup_inta(bp);
8864 
8865 	rc = bnxt_set_real_num_queues(bp);
8866 	return rc;
8867 }
8868 
8869 #ifdef CONFIG_RFS_ACCEL
8870 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8871 {
8872 	return bp->hw_resc.max_rsscos_ctxs;
8873 }
8874 
8875 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8876 {
8877 	return bp->hw_resc.max_vnics;
8878 }
8879 #endif
8880 
8881 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8882 {
8883 	return bp->hw_resc.max_stat_ctxs;
8884 }
8885 
8886 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8887 {
8888 	return bp->hw_resc.max_cp_rings;
8889 }
8890 
8891 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8892 {
8893 	unsigned int cp = bp->hw_resc.max_cp_rings;
8894 
8895 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8896 		cp -= bnxt_get_ulp_msix_num(bp);
8897 
8898 	return cp;
8899 }
8900 
8901 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8902 {
8903 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8904 
8905 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8906 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8907 
8908 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8909 }
8910 
8911 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8912 {
8913 	bp->hw_resc.max_irqs = max_irqs;
8914 }
8915 
8916 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8917 {
8918 	unsigned int cp;
8919 
8920 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8921 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8922 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8923 	else
8924 		return cp - bp->cp_nr_rings;
8925 }
8926 
8927 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8928 {
8929 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8930 }
8931 
8932 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8933 {
8934 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8935 	int max_irq = bnxt_get_max_func_irqs(bp);
8936 	int total_req = bp->cp_nr_rings + num;
8937 	int max_idx, avail_msix;
8938 
8939 	max_idx = bp->total_irqs;
8940 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8941 		max_idx = min_t(int, bp->total_irqs, max_cp);
8942 	avail_msix = max_idx - bp->cp_nr_rings;
8943 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8944 		return avail_msix;
8945 
8946 	if (max_irq < total_req) {
8947 		num = max_irq - bp->cp_nr_rings;
8948 		if (num <= 0)
8949 			return 0;
8950 	}
8951 	return num;
8952 }
8953 
8954 static int bnxt_get_num_msix(struct bnxt *bp)
8955 {
8956 	if (!BNXT_NEW_RM(bp))
8957 		return bnxt_get_max_func_irqs(bp);
8958 
8959 	return bnxt_nq_rings_in_use(bp);
8960 }
8961 
8962 static int bnxt_init_msix(struct bnxt *bp)
8963 {
8964 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8965 	struct msix_entry *msix_ent;
8966 
8967 	total_vecs = bnxt_get_num_msix(bp);
8968 	max = bnxt_get_max_func_irqs(bp);
8969 	if (total_vecs > max)
8970 		total_vecs = max;
8971 
8972 	if (!total_vecs)
8973 		return 0;
8974 
8975 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8976 	if (!msix_ent)
8977 		return -ENOMEM;
8978 
8979 	for (i = 0; i < total_vecs; i++) {
8980 		msix_ent[i].entry = i;
8981 		msix_ent[i].vector = 0;
8982 	}
8983 
8984 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8985 		min = 2;
8986 
8987 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8988 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8989 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8990 		rc = -ENODEV;
8991 		goto msix_setup_exit;
8992 	}
8993 
8994 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8995 	if (bp->irq_tbl) {
8996 		for (i = 0; i < total_vecs; i++)
8997 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8998 
8999 		bp->total_irqs = total_vecs;
9000 		/* Trim rings based upon num of vectors allocated */
9001 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9002 				     total_vecs - ulp_msix, min == 1);
9003 		if (rc)
9004 			goto msix_setup_exit;
9005 
9006 		bp->cp_nr_rings = (min == 1) ?
9007 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9008 				  bp->tx_nr_rings + bp->rx_nr_rings;
9009 
9010 	} else {
9011 		rc = -ENOMEM;
9012 		goto msix_setup_exit;
9013 	}
9014 	bp->flags |= BNXT_FLAG_USING_MSIX;
9015 	kfree(msix_ent);
9016 	return 0;
9017 
9018 msix_setup_exit:
9019 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9020 	kfree(bp->irq_tbl);
9021 	bp->irq_tbl = NULL;
9022 	pci_disable_msix(bp->pdev);
9023 	kfree(msix_ent);
9024 	return rc;
9025 }
9026 
9027 static int bnxt_init_inta(struct bnxt *bp)
9028 {
9029 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9030 	if (!bp->irq_tbl)
9031 		return -ENOMEM;
9032 
9033 	bp->total_irqs = 1;
9034 	bp->rx_nr_rings = 1;
9035 	bp->tx_nr_rings = 1;
9036 	bp->cp_nr_rings = 1;
9037 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9038 	bp->irq_tbl[0].vector = bp->pdev->irq;
9039 	return 0;
9040 }
9041 
9042 static int bnxt_init_int_mode(struct bnxt *bp)
9043 {
9044 	int rc = -ENODEV;
9045 
9046 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9047 		rc = bnxt_init_msix(bp);
9048 
9049 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9050 		/* fallback to INTA */
9051 		rc = bnxt_init_inta(bp);
9052 	}
9053 	return rc;
9054 }
9055 
9056 static void bnxt_clear_int_mode(struct bnxt *bp)
9057 {
9058 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9059 		pci_disable_msix(bp->pdev);
9060 
9061 	kfree(bp->irq_tbl);
9062 	bp->irq_tbl = NULL;
9063 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9064 }
9065 
9066 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9067 {
9068 	int tcs = netdev_get_num_tc(bp->dev);
9069 	bool irq_cleared = false;
9070 	int rc;
9071 
9072 	if (!bnxt_need_reserve_rings(bp))
9073 		return 0;
9074 
9075 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9076 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9077 		bnxt_ulp_irq_stop(bp);
9078 		bnxt_clear_int_mode(bp);
9079 		irq_cleared = true;
9080 	}
9081 	rc = __bnxt_reserve_rings(bp);
9082 	if (irq_cleared) {
9083 		if (!rc)
9084 			rc = bnxt_init_int_mode(bp);
9085 		bnxt_ulp_irq_restart(bp, rc);
9086 	}
9087 	if (rc) {
9088 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9089 		return rc;
9090 	}
9091 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9092 		netdev_err(bp->dev, "tx ring reservation failure\n");
9093 		netdev_reset_tc(bp->dev);
9094 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9095 		return -ENOMEM;
9096 	}
9097 	return 0;
9098 }
9099 
9100 static void bnxt_free_irq(struct bnxt *bp)
9101 {
9102 	struct bnxt_irq *irq;
9103 	int i;
9104 
9105 #ifdef CONFIG_RFS_ACCEL
9106 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9107 	bp->dev->rx_cpu_rmap = NULL;
9108 #endif
9109 	if (!bp->irq_tbl || !bp->bnapi)
9110 		return;
9111 
9112 	for (i = 0; i < bp->cp_nr_rings; i++) {
9113 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9114 
9115 		irq = &bp->irq_tbl[map_idx];
9116 		if (irq->requested) {
9117 			if (irq->have_cpumask) {
9118 				irq_set_affinity_hint(irq->vector, NULL);
9119 				free_cpumask_var(irq->cpu_mask);
9120 				irq->have_cpumask = 0;
9121 			}
9122 			free_irq(irq->vector, bp->bnapi[i]);
9123 		}
9124 
9125 		irq->requested = 0;
9126 	}
9127 }
9128 
9129 static int bnxt_request_irq(struct bnxt *bp)
9130 {
9131 	int i, j, rc = 0;
9132 	unsigned long flags = 0;
9133 #ifdef CONFIG_RFS_ACCEL
9134 	struct cpu_rmap *rmap;
9135 #endif
9136 
9137 	rc = bnxt_setup_int_mode(bp);
9138 	if (rc) {
9139 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9140 			   rc);
9141 		return rc;
9142 	}
9143 #ifdef CONFIG_RFS_ACCEL
9144 	rmap = bp->dev->rx_cpu_rmap;
9145 #endif
9146 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9147 		flags = IRQF_SHARED;
9148 
9149 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9150 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9151 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9152 
9153 #ifdef CONFIG_RFS_ACCEL
9154 		if (rmap && bp->bnapi[i]->rx_ring) {
9155 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9156 			if (rc)
9157 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9158 					    j);
9159 			j++;
9160 		}
9161 #endif
9162 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9163 				 bp->bnapi[i]);
9164 		if (rc)
9165 			break;
9166 
9167 		irq->requested = 1;
9168 
9169 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9170 			int numa_node = dev_to_node(&bp->pdev->dev);
9171 
9172 			irq->have_cpumask = 1;
9173 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9174 					irq->cpu_mask);
9175 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9176 			if (rc) {
9177 				netdev_warn(bp->dev,
9178 					    "Set affinity failed, IRQ = %d\n",
9179 					    irq->vector);
9180 				break;
9181 			}
9182 		}
9183 	}
9184 	return rc;
9185 }
9186 
9187 static void bnxt_del_napi(struct bnxt *bp)
9188 {
9189 	int i;
9190 
9191 	if (!bp->bnapi)
9192 		return;
9193 
9194 	for (i = 0; i < bp->cp_nr_rings; i++) {
9195 		struct bnxt_napi *bnapi = bp->bnapi[i];
9196 
9197 		__netif_napi_del(&bnapi->napi);
9198 	}
9199 	/* We called __netif_napi_del(), we need
9200 	 * to respect an RCU grace period before freeing napi structures.
9201 	 */
9202 	synchronize_net();
9203 }
9204 
9205 static void bnxt_init_napi(struct bnxt *bp)
9206 {
9207 	int i;
9208 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9209 	struct bnxt_napi *bnapi;
9210 
9211 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9212 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9213 
9214 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9215 			poll_fn = bnxt_poll_p5;
9216 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9217 			cp_nr_rings--;
9218 		for (i = 0; i < cp_nr_rings; i++) {
9219 			bnapi = bp->bnapi[i];
9220 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9221 		}
9222 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9223 			bnapi = bp->bnapi[cp_nr_rings];
9224 			netif_napi_add(bp->dev, &bnapi->napi,
9225 				       bnxt_poll_nitroa0, 64);
9226 		}
9227 	} else {
9228 		bnapi = bp->bnapi[0];
9229 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9230 	}
9231 }
9232 
9233 static void bnxt_disable_napi(struct bnxt *bp)
9234 {
9235 	int i;
9236 
9237 	if (!bp->bnapi ||
9238 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9239 		return;
9240 
9241 	for (i = 0; i < bp->cp_nr_rings; i++) {
9242 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9243 
9244 		napi_disable(&bp->bnapi[i]->napi);
9245 		if (bp->bnapi[i]->rx_ring)
9246 			cancel_work_sync(&cpr->dim.work);
9247 	}
9248 }
9249 
9250 static void bnxt_enable_napi(struct bnxt *bp)
9251 {
9252 	int i;
9253 
9254 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9255 	for (i = 0; i < bp->cp_nr_rings; i++) {
9256 		struct bnxt_napi *bnapi = bp->bnapi[i];
9257 		struct bnxt_cp_ring_info *cpr;
9258 
9259 		cpr = &bnapi->cp_ring;
9260 		if (bnapi->in_reset)
9261 			cpr->sw_stats.rx.rx_resets++;
9262 		bnapi->in_reset = false;
9263 
9264 		if (bnapi->rx_ring) {
9265 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9266 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9267 		}
9268 		napi_enable(&bnapi->napi);
9269 	}
9270 }
9271 
9272 void bnxt_tx_disable(struct bnxt *bp)
9273 {
9274 	int i;
9275 	struct bnxt_tx_ring_info *txr;
9276 
9277 	if (bp->tx_ring) {
9278 		for (i = 0; i < bp->tx_nr_rings; i++) {
9279 			txr = &bp->tx_ring[i];
9280 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9281 		}
9282 	}
9283 	/* Make sure napi polls see @dev_state change */
9284 	synchronize_net();
9285 	/* Drop carrier first to prevent TX timeout */
9286 	netif_carrier_off(bp->dev);
9287 	/* Stop all TX queues */
9288 	netif_tx_disable(bp->dev);
9289 }
9290 
9291 void bnxt_tx_enable(struct bnxt *bp)
9292 {
9293 	int i;
9294 	struct bnxt_tx_ring_info *txr;
9295 
9296 	for (i = 0; i < bp->tx_nr_rings; i++) {
9297 		txr = &bp->tx_ring[i];
9298 		WRITE_ONCE(txr->dev_state, 0);
9299 	}
9300 	/* Make sure napi polls see @dev_state change */
9301 	synchronize_net();
9302 	netif_tx_wake_all_queues(bp->dev);
9303 	if (bp->link_info.link_up)
9304 		netif_carrier_on(bp->dev);
9305 }
9306 
9307 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9308 {
9309 	u8 active_fec = link_info->active_fec_sig_mode &
9310 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9311 
9312 	switch (active_fec) {
9313 	default:
9314 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9315 		return "None";
9316 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9317 		return "Clause 74 BaseR";
9318 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9319 		return "Clause 91 RS(528,514)";
9320 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9321 		return "Clause 91 RS544_1XN";
9322 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9323 		return "Clause 91 RS(544,514)";
9324 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9325 		return "Clause 91 RS272_1XN";
9326 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9327 		return "Clause 91 RS(272,257)";
9328 	}
9329 }
9330 
9331 void bnxt_report_link(struct bnxt *bp)
9332 {
9333 	if (bp->link_info.link_up) {
9334 		const char *signal = "";
9335 		const char *flow_ctrl;
9336 		const char *duplex;
9337 		u32 speed;
9338 		u16 fec;
9339 
9340 		netif_carrier_on(bp->dev);
9341 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9342 		if (speed == SPEED_UNKNOWN) {
9343 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9344 			return;
9345 		}
9346 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9347 			duplex = "full";
9348 		else
9349 			duplex = "half";
9350 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9351 			flow_ctrl = "ON - receive & transmit";
9352 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9353 			flow_ctrl = "ON - transmit";
9354 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9355 			flow_ctrl = "ON - receive";
9356 		else
9357 			flow_ctrl = "none";
9358 		if (bp->link_info.phy_qcfg_resp.option_flags &
9359 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9360 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9361 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9362 			switch (sig_mode) {
9363 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9364 				signal = "(NRZ) ";
9365 				break;
9366 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9367 				signal = "(PAM4) ";
9368 				break;
9369 			default:
9370 				break;
9371 			}
9372 		}
9373 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9374 			    speed, signal, duplex, flow_ctrl);
9375 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9376 			netdev_info(bp->dev, "EEE is %s\n",
9377 				    bp->eee.eee_active ? "active" :
9378 							 "not active");
9379 		fec = bp->link_info.fec_cfg;
9380 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9381 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9382 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9383 				    bnxt_report_fec(&bp->link_info));
9384 	} else {
9385 		netif_carrier_off(bp->dev);
9386 		netdev_err(bp->dev, "NIC Link is Down\n");
9387 	}
9388 }
9389 
9390 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9391 {
9392 	if (!resp->supported_speeds_auto_mode &&
9393 	    !resp->supported_speeds_force_mode &&
9394 	    !resp->supported_pam4_speeds_auto_mode &&
9395 	    !resp->supported_pam4_speeds_force_mode)
9396 		return true;
9397 	return false;
9398 }
9399 
9400 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9401 {
9402 	struct bnxt_link_info *link_info = &bp->link_info;
9403 	struct hwrm_port_phy_qcaps_output *resp;
9404 	struct hwrm_port_phy_qcaps_input *req;
9405 	int rc = 0;
9406 
9407 	if (bp->hwrm_spec_code < 0x10201)
9408 		return 0;
9409 
9410 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9411 	if (rc)
9412 		return rc;
9413 
9414 	resp = hwrm_req_hold(bp, req);
9415 	rc = hwrm_req_send(bp, req);
9416 	if (rc)
9417 		goto hwrm_phy_qcaps_exit;
9418 
9419 	bp->phy_flags = resp->flags;
9420 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9421 		struct ethtool_eee *eee = &bp->eee;
9422 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9423 
9424 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9425 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9426 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9427 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9428 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9429 	}
9430 
9431 	if (bp->hwrm_spec_code >= 0x10a01) {
9432 		if (bnxt_phy_qcaps_no_speed(resp)) {
9433 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9434 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9435 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9436 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9437 			netdev_info(bp->dev, "Ethernet link enabled\n");
9438 			/* Phy re-enabled, reprobe the speeds */
9439 			link_info->support_auto_speeds = 0;
9440 			link_info->support_pam4_auto_speeds = 0;
9441 		}
9442 	}
9443 	if (resp->supported_speeds_auto_mode)
9444 		link_info->support_auto_speeds =
9445 			le16_to_cpu(resp->supported_speeds_auto_mode);
9446 	if (resp->supported_pam4_speeds_auto_mode)
9447 		link_info->support_pam4_auto_speeds =
9448 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9449 
9450 	bp->port_count = resp->port_cnt;
9451 
9452 hwrm_phy_qcaps_exit:
9453 	hwrm_req_drop(bp, req);
9454 	return rc;
9455 }
9456 
9457 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9458 {
9459 	u16 diff = advertising ^ supported;
9460 
9461 	return ((supported | diff) != supported);
9462 }
9463 
9464 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9465 {
9466 	struct bnxt_link_info *link_info = &bp->link_info;
9467 	struct hwrm_port_phy_qcfg_output *resp;
9468 	struct hwrm_port_phy_qcfg_input *req;
9469 	u8 link_up = link_info->link_up;
9470 	bool support_changed = false;
9471 	int rc;
9472 
9473 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9474 	if (rc)
9475 		return rc;
9476 
9477 	resp = hwrm_req_hold(bp, req);
9478 	rc = hwrm_req_send(bp, req);
9479 	if (rc) {
9480 		hwrm_req_drop(bp, req);
9481 		if (BNXT_VF(bp) && rc == -ENODEV) {
9482 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9483 			rc = 0;
9484 		}
9485 		return rc;
9486 	}
9487 
9488 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9489 	link_info->phy_link_status = resp->link;
9490 	link_info->duplex = resp->duplex_cfg;
9491 	if (bp->hwrm_spec_code >= 0x10800)
9492 		link_info->duplex = resp->duplex_state;
9493 	link_info->pause = resp->pause;
9494 	link_info->auto_mode = resp->auto_mode;
9495 	link_info->auto_pause_setting = resp->auto_pause;
9496 	link_info->lp_pause = resp->link_partner_adv_pause;
9497 	link_info->force_pause_setting = resp->force_pause;
9498 	link_info->duplex_setting = resp->duplex_cfg;
9499 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9500 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9501 	else
9502 		link_info->link_speed = 0;
9503 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9504 	link_info->force_pam4_link_speed =
9505 		le16_to_cpu(resp->force_pam4_link_speed);
9506 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9507 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9508 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9509 	link_info->auto_pam4_link_speeds =
9510 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9511 	link_info->lp_auto_link_speeds =
9512 		le16_to_cpu(resp->link_partner_adv_speeds);
9513 	link_info->lp_auto_pam4_link_speeds =
9514 		resp->link_partner_pam4_adv_speeds;
9515 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9516 	link_info->phy_ver[0] = resp->phy_maj;
9517 	link_info->phy_ver[1] = resp->phy_min;
9518 	link_info->phy_ver[2] = resp->phy_bld;
9519 	link_info->media_type = resp->media_type;
9520 	link_info->phy_type = resp->phy_type;
9521 	link_info->transceiver = resp->xcvr_pkg_type;
9522 	link_info->phy_addr = resp->eee_config_phy_addr &
9523 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9524 	link_info->module_status = resp->module_status;
9525 
9526 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9527 		struct ethtool_eee *eee = &bp->eee;
9528 		u16 fw_speeds;
9529 
9530 		eee->eee_active = 0;
9531 		if (resp->eee_config_phy_addr &
9532 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9533 			eee->eee_active = 1;
9534 			fw_speeds = le16_to_cpu(
9535 				resp->link_partner_adv_eee_link_speed_mask);
9536 			eee->lp_advertised =
9537 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9538 		}
9539 
9540 		/* Pull initial EEE config */
9541 		if (!chng_link_state) {
9542 			if (resp->eee_config_phy_addr &
9543 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9544 				eee->eee_enabled = 1;
9545 
9546 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9547 			eee->advertised =
9548 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9549 
9550 			if (resp->eee_config_phy_addr &
9551 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9552 				__le32 tmr;
9553 
9554 				eee->tx_lpi_enabled = 1;
9555 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9556 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9557 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9558 			}
9559 		}
9560 	}
9561 
9562 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9563 	if (bp->hwrm_spec_code >= 0x10504) {
9564 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9565 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9566 	}
9567 	/* TODO: need to add more logic to report VF link */
9568 	if (chng_link_state) {
9569 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9570 			link_info->link_up = 1;
9571 		else
9572 			link_info->link_up = 0;
9573 		if (link_up != link_info->link_up)
9574 			bnxt_report_link(bp);
9575 	} else {
9576 		/* alwasy link down if not require to update link state */
9577 		link_info->link_up = 0;
9578 	}
9579 	hwrm_req_drop(bp, req);
9580 
9581 	if (!BNXT_PHY_CFG_ABLE(bp))
9582 		return 0;
9583 
9584 	/* Check if any advertised speeds are no longer supported. The caller
9585 	 * holds the link_lock mutex, so we can modify link_info settings.
9586 	 */
9587 	if (bnxt_support_dropped(link_info->advertising,
9588 				 link_info->support_auto_speeds)) {
9589 		link_info->advertising = link_info->support_auto_speeds;
9590 		support_changed = true;
9591 	}
9592 	if (bnxt_support_dropped(link_info->advertising_pam4,
9593 				 link_info->support_pam4_auto_speeds)) {
9594 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9595 		support_changed = true;
9596 	}
9597 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9598 		bnxt_hwrm_set_link_setting(bp, true, false);
9599 	return 0;
9600 }
9601 
9602 static void bnxt_get_port_module_status(struct bnxt *bp)
9603 {
9604 	struct bnxt_link_info *link_info = &bp->link_info;
9605 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9606 	u8 module_status;
9607 
9608 	if (bnxt_update_link(bp, true))
9609 		return;
9610 
9611 	module_status = link_info->module_status;
9612 	switch (module_status) {
9613 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9614 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9615 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9616 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9617 			    bp->pf.port_id);
9618 		if (bp->hwrm_spec_code >= 0x10201) {
9619 			netdev_warn(bp->dev, "Module part number %s\n",
9620 				    resp->phy_vendor_partnumber);
9621 		}
9622 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9623 			netdev_warn(bp->dev, "TX is disabled\n");
9624 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9625 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9626 	}
9627 }
9628 
9629 static void
9630 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9631 {
9632 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9633 		if (bp->hwrm_spec_code >= 0x10201)
9634 			req->auto_pause =
9635 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9636 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9637 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9638 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9639 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9640 		req->enables |=
9641 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9642 	} else {
9643 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9644 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9645 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9646 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9647 		req->enables |=
9648 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9649 		if (bp->hwrm_spec_code >= 0x10201) {
9650 			req->auto_pause = req->force_pause;
9651 			req->enables |= cpu_to_le32(
9652 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9653 		}
9654 	}
9655 }
9656 
9657 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9658 {
9659 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9660 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9661 		if (bp->link_info.advertising) {
9662 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9663 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9664 		}
9665 		if (bp->link_info.advertising_pam4) {
9666 			req->enables |=
9667 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9668 			req->auto_link_pam4_speed_mask =
9669 				cpu_to_le16(bp->link_info.advertising_pam4);
9670 		}
9671 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9672 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9673 	} else {
9674 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9675 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9676 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9677 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9678 		} else {
9679 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9680 		}
9681 	}
9682 
9683 	/* tell chimp that the setting takes effect immediately */
9684 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9685 }
9686 
9687 int bnxt_hwrm_set_pause(struct bnxt *bp)
9688 {
9689 	struct hwrm_port_phy_cfg_input *req;
9690 	int rc;
9691 
9692 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9693 	if (rc)
9694 		return rc;
9695 
9696 	bnxt_hwrm_set_pause_common(bp, req);
9697 
9698 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9699 	    bp->link_info.force_link_chng)
9700 		bnxt_hwrm_set_link_common(bp, req);
9701 
9702 	rc = hwrm_req_send(bp, req);
9703 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9704 		/* since changing of pause setting doesn't trigger any link
9705 		 * change event, the driver needs to update the current pause
9706 		 * result upon successfully return of the phy_cfg command
9707 		 */
9708 		bp->link_info.pause =
9709 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9710 		bp->link_info.auto_pause_setting = 0;
9711 		if (!bp->link_info.force_link_chng)
9712 			bnxt_report_link(bp);
9713 	}
9714 	bp->link_info.force_link_chng = false;
9715 	return rc;
9716 }
9717 
9718 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9719 			      struct hwrm_port_phy_cfg_input *req)
9720 {
9721 	struct ethtool_eee *eee = &bp->eee;
9722 
9723 	if (eee->eee_enabled) {
9724 		u16 eee_speeds;
9725 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9726 
9727 		if (eee->tx_lpi_enabled)
9728 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9729 		else
9730 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9731 
9732 		req->flags |= cpu_to_le32(flags);
9733 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9734 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9735 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9736 	} else {
9737 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9738 	}
9739 }
9740 
9741 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9742 {
9743 	struct hwrm_port_phy_cfg_input *req;
9744 	int rc;
9745 
9746 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9747 	if (rc)
9748 		return rc;
9749 
9750 	if (set_pause)
9751 		bnxt_hwrm_set_pause_common(bp, req);
9752 
9753 	bnxt_hwrm_set_link_common(bp, req);
9754 
9755 	if (set_eee)
9756 		bnxt_hwrm_set_eee(bp, req);
9757 	return hwrm_req_send(bp, req);
9758 }
9759 
9760 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9761 {
9762 	struct hwrm_port_phy_cfg_input *req;
9763 	int rc;
9764 
9765 	if (!BNXT_SINGLE_PF(bp))
9766 		return 0;
9767 
9768 	if (pci_num_vf(bp->pdev) &&
9769 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9770 		return 0;
9771 
9772 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9773 	if (rc)
9774 		return rc;
9775 
9776 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9777 	return hwrm_req_send(bp, req);
9778 }
9779 
9780 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9781 {
9782 #ifdef CONFIG_TEE_BNXT_FW
9783 	int rc = tee_bnxt_fw_load();
9784 
9785 	if (rc)
9786 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9787 
9788 	return rc;
9789 #else
9790 	netdev_err(bp->dev, "OP-TEE not supported\n");
9791 	return -ENODEV;
9792 #endif
9793 }
9794 
9795 static int bnxt_try_recover_fw(struct bnxt *bp)
9796 {
9797 	if (bp->fw_health && bp->fw_health->status_reliable) {
9798 		int retry = 0, rc;
9799 		u32 sts;
9800 
9801 		do {
9802 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9803 			rc = bnxt_hwrm_poll(bp);
9804 			if (!BNXT_FW_IS_BOOTING(sts) &&
9805 			    !BNXT_FW_IS_RECOVERING(sts))
9806 				break;
9807 			retry++;
9808 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9809 
9810 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9811 			netdev_err(bp->dev,
9812 				   "Firmware not responding, status: 0x%x\n",
9813 				   sts);
9814 			rc = -ENODEV;
9815 		}
9816 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9817 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9818 			return bnxt_fw_reset_via_optee(bp);
9819 		}
9820 		return rc;
9821 	}
9822 
9823 	return -ENODEV;
9824 }
9825 
9826 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9827 {
9828 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9829 	int rc;
9830 
9831 	if (!BNXT_NEW_RM(bp))
9832 		return 0; /* no resource reservations required */
9833 
9834 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9835 	if (rc)
9836 		netdev_err(bp->dev, "resc_qcaps failed\n");
9837 
9838 	hw_resc->resv_cp_rings = 0;
9839 	hw_resc->resv_stat_ctxs = 0;
9840 	hw_resc->resv_irqs = 0;
9841 	hw_resc->resv_tx_rings = 0;
9842 	hw_resc->resv_rx_rings = 0;
9843 	hw_resc->resv_hw_ring_grps = 0;
9844 	hw_resc->resv_vnics = 0;
9845 	if (!fw_reset) {
9846 		bp->tx_nr_rings = 0;
9847 		bp->rx_nr_rings = 0;
9848 	}
9849 
9850 	return rc;
9851 }
9852 
9853 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9854 {
9855 	struct hwrm_func_drv_if_change_output *resp;
9856 	struct hwrm_func_drv_if_change_input *req;
9857 	bool fw_reset = !bp->irq_tbl;
9858 	bool resc_reinit = false;
9859 	int rc, retry = 0;
9860 	u32 flags = 0;
9861 
9862 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9863 		return 0;
9864 
9865 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
9866 	if (rc)
9867 		return rc;
9868 
9869 	if (up)
9870 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9871 	resp = hwrm_req_hold(bp, req);
9872 
9873 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9874 	while (retry < BNXT_FW_IF_RETRY) {
9875 		rc = hwrm_req_send(bp, req);
9876 		if (rc != -EAGAIN)
9877 			break;
9878 
9879 		msleep(50);
9880 		retry++;
9881 	}
9882 
9883 	if (rc == -EAGAIN) {
9884 		hwrm_req_drop(bp, req);
9885 		return rc;
9886 	} else if (!rc) {
9887 		flags = le32_to_cpu(resp->flags);
9888 	} else if (up) {
9889 		rc = bnxt_try_recover_fw(bp);
9890 		fw_reset = true;
9891 	}
9892 	hwrm_req_drop(bp, req);
9893 	if (rc)
9894 		return rc;
9895 
9896 	if (!up) {
9897 		bnxt_inv_fw_health_reg(bp);
9898 		return 0;
9899 	}
9900 
9901 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9902 		resc_reinit = true;
9903 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9904 		fw_reset = true;
9905 	else
9906 		bnxt_remap_fw_health_regs(bp);
9907 
9908 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9909 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9910 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9911 		return -ENODEV;
9912 	}
9913 	if (resc_reinit || fw_reset) {
9914 		if (fw_reset) {
9915 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9916 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9917 				bnxt_ulp_stop(bp);
9918 			bnxt_free_ctx_mem(bp);
9919 			kfree(bp->ctx);
9920 			bp->ctx = NULL;
9921 			bnxt_dcb_free(bp);
9922 			rc = bnxt_fw_init_one(bp);
9923 			if (rc) {
9924 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9925 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9926 				return rc;
9927 			}
9928 			bnxt_clear_int_mode(bp);
9929 			rc = bnxt_init_int_mode(bp);
9930 			if (rc) {
9931 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9932 				netdev_err(bp->dev, "init int mode failed\n");
9933 				return rc;
9934 			}
9935 		}
9936 		rc = bnxt_cancel_reservations(bp, fw_reset);
9937 	}
9938 	return rc;
9939 }
9940 
9941 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9942 {
9943 	struct hwrm_port_led_qcaps_output *resp;
9944 	struct hwrm_port_led_qcaps_input *req;
9945 	struct bnxt_pf_info *pf = &bp->pf;
9946 	int rc;
9947 
9948 	bp->num_leds = 0;
9949 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9950 		return 0;
9951 
9952 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
9953 	if (rc)
9954 		return rc;
9955 
9956 	req->port_id = cpu_to_le16(pf->port_id);
9957 	resp = hwrm_req_hold(bp, req);
9958 	rc = hwrm_req_send(bp, req);
9959 	if (rc) {
9960 		hwrm_req_drop(bp, req);
9961 		return rc;
9962 	}
9963 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9964 		int i;
9965 
9966 		bp->num_leds = resp->num_leds;
9967 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9968 						 bp->num_leds);
9969 		for (i = 0; i < bp->num_leds; i++) {
9970 			struct bnxt_led_info *led = &bp->leds[i];
9971 			__le16 caps = led->led_state_caps;
9972 
9973 			if (!led->led_group_id ||
9974 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9975 				bp->num_leds = 0;
9976 				break;
9977 			}
9978 		}
9979 	}
9980 	hwrm_req_drop(bp, req);
9981 	return 0;
9982 }
9983 
9984 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9985 {
9986 	struct hwrm_wol_filter_alloc_output *resp;
9987 	struct hwrm_wol_filter_alloc_input *req;
9988 	int rc;
9989 
9990 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
9991 	if (rc)
9992 		return rc;
9993 
9994 	req->port_id = cpu_to_le16(bp->pf.port_id);
9995 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9996 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9997 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
9998 
9999 	resp = hwrm_req_hold(bp, req);
10000 	rc = hwrm_req_send(bp, req);
10001 	if (!rc)
10002 		bp->wol_filter_id = resp->wol_filter_id;
10003 	hwrm_req_drop(bp, req);
10004 	return rc;
10005 }
10006 
10007 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10008 {
10009 	struct hwrm_wol_filter_free_input *req;
10010 	int rc;
10011 
10012 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10013 	if (rc)
10014 		return rc;
10015 
10016 	req->port_id = cpu_to_le16(bp->pf.port_id);
10017 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10018 	req->wol_filter_id = bp->wol_filter_id;
10019 
10020 	return hwrm_req_send(bp, req);
10021 }
10022 
10023 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10024 {
10025 	struct hwrm_wol_filter_qcfg_output *resp;
10026 	struct hwrm_wol_filter_qcfg_input *req;
10027 	u16 next_handle = 0;
10028 	int rc;
10029 
10030 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10031 	if (rc)
10032 		return rc;
10033 
10034 	req->port_id = cpu_to_le16(bp->pf.port_id);
10035 	req->handle = cpu_to_le16(handle);
10036 	resp = hwrm_req_hold(bp, req);
10037 	rc = hwrm_req_send(bp, req);
10038 	if (!rc) {
10039 		next_handle = le16_to_cpu(resp->next_handle);
10040 		if (next_handle != 0) {
10041 			if (resp->wol_type ==
10042 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10043 				bp->wol = 1;
10044 				bp->wol_filter_id = resp->wol_filter_id;
10045 			}
10046 		}
10047 	}
10048 	hwrm_req_drop(bp, req);
10049 	return next_handle;
10050 }
10051 
10052 static void bnxt_get_wol_settings(struct bnxt *bp)
10053 {
10054 	u16 handle = 0;
10055 
10056 	bp->wol = 0;
10057 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10058 		return;
10059 
10060 	do {
10061 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10062 	} while (handle && handle != 0xffff);
10063 }
10064 
10065 #ifdef CONFIG_BNXT_HWMON
10066 static ssize_t bnxt_show_temp(struct device *dev,
10067 			      struct device_attribute *devattr, char *buf)
10068 {
10069 	struct hwrm_temp_monitor_query_output *resp;
10070 	struct hwrm_temp_monitor_query_input *req;
10071 	struct bnxt *bp = dev_get_drvdata(dev);
10072 	u32 len = 0;
10073 	int rc;
10074 
10075 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10076 	if (rc)
10077 		return rc;
10078 	resp = hwrm_req_hold(bp, req);
10079 	rc = hwrm_req_send(bp, req);
10080 	if (!rc)
10081 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10082 	hwrm_req_drop(bp, req);
10083 	if (rc)
10084 		return rc;
10085 	return len;
10086 }
10087 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10088 
10089 static struct attribute *bnxt_attrs[] = {
10090 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10091 	NULL
10092 };
10093 ATTRIBUTE_GROUPS(bnxt);
10094 
10095 static void bnxt_hwmon_close(struct bnxt *bp)
10096 {
10097 	if (bp->hwmon_dev) {
10098 		hwmon_device_unregister(bp->hwmon_dev);
10099 		bp->hwmon_dev = NULL;
10100 	}
10101 }
10102 
10103 static void bnxt_hwmon_open(struct bnxt *bp)
10104 {
10105 	struct hwrm_temp_monitor_query_input *req;
10106 	struct pci_dev *pdev = bp->pdev;
10107 	int rc;
10108 
10109 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10110 	if (!rc)
10111 		rc = hwrm_req_send_silent(bp, req);
10112 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10113 		bnxt_hwmon_close(bp);
10114 		return;
10115 	}
10116 
10117 	if (bp->hwmon_dev)
10118 		return;
10119 
10120 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10121 							  DRV_MODULE_NAME, bp,
10122 							  bnxt_groups);
10123 	if (IS_ERR(bp->hwmon_dev)) {
10124 		bp->hwmon_dev = NULL;
10125 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10126 	}
10127 }
10128 #else
10129 static void bnxt_hwmon_close(struct bnxt *bp)
10130 {
10131 }
10132 
10133 static void bnxt_hwmon_open(struct bnxt *bp)
10134 {
10135 }
10136 #endif
10137 
10138 static bool bnxt_eee_config_ok(struct bnxt *bp)
10139 {
10140 	struct ethtool_eee *eee = &bp->eee;
10141 	struct bnxt_link_info *link_info = &bp->link_info;
10142 
10143 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10144 		return true;
10145 
10146 	if (eee->eee_enabled) {
10147 		u32 advertising =
10148 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10149 
10150 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10151 			eee->eee_enabled = 0;
10152 			return false;
10153 		}
10154 		if (eee->advertised & ~advertising) {
10155 			eee->advertised = advertising & eee->supported;
10156 			return false;
10157 		}
10158 	}
10159 	return true;
10160 }
10161 
10162 static int bnxt_update_phy_setting(struct bnxt *bp)
10163 {
10164 	int rc;
10165 	bool update_link = false;
10166 	bool update_pause = false;
10167 	bool update_eee = false;
10168 	struct bnxt_link_info *link_info = &bp->link_info;
10169 
10170 	rc = bnxt_update_link(bp, true);
10171 	if (rc) {
10172 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10173 			   rc);
10174 		return rc;
10175 	}
10176 	if (!BNXT_SINGLE_PF(bp))
10177 		return 0;
10178 
10179 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10180 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10181 	    link_info->req_flow_ctrl)
10182 		update_pause = true;
10183 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10184 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10185 		update_pause = true;
10186 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10187 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10188 			update_link = true;
10189 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10190 		    link_info->req_link_speed != link_info->force_link_speed)
10191 			update_link = true;
10192 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10193 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10194 			update_link = true;
10195 		if (link_info->req_duplex != link_info->duplex_setting)
10196 			update_link = true;
10197 	} else {
10198 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10199 			update_link = true;
10200 		if (link_info->advertising != link_info->auto_link_speeds ||
10201 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10202 			update_link = true;
10203 	}
10204 
10205 	/* The last close may have shutdown the link, so need to call
10206 	 * PHY_CFG to bring it back up.
10207 	 */
10208 	if (!bp->link_info.link_up)
10209 		update_link = true;
10210 
10211 	if (!bnxt_eee_config_ok(bp))
10212 		update_eee = true;
10213 
10214 	if (update_link)
10215 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10216 	else if (update_pause)
10217 		rc = bnxt_hwrm_set_pause(bp);
10218 	if (rc) {
10219 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10220 			   rc);
10221 		return rc;
10222 	}
10223 
10224 	return rc;
10225 }
10226 
10227 /* Common routine to pre-map certain register block to different GRC window.
10228  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10229  * in PF and 3 windows in VF that can be customized to map in different
10230  * register blocks.
10231  */
10232 static void bnxt_preset_reg_win(struct bnxt *bp)
10233 {
10234 	if (BNXT_PF(bp)) {
10235 		/* CAG registers map to GRC window #4 */
10236 		writel(BNXT_CAG_REG_BASE,
10237 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10238 	}
10239 }
10240 
10241 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10242 
10243 static int bnxt_reinit_after_abort(struct bnxt *bp)
10244 {
10245 	int rc;
10246 
10247 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10248 		return -EBUSY;
10249 
10250 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10251 		return -ENODEV;
10252 
10253 	rc = bnxt_fw_init_one(bp);
10254 	if (!rc) {
10255 		bnxt_clear_int_mode(bp);
10256 		rc = bnxt_init_int_mode(bp);
10257 		if (!rc) {
10258 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10259 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10260 		}
10261 	}
10262 	return rc;
10263 }
10264 
10265 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10266 {
10267 	int rc = 0;
10268 
10269 	bnxt_preset_reg_win(bp);
10270 	netif_carrier_off(bp->dev);
10271 	if (irq_re_init) {
10272 		/* Reserve rings now if none were reserved at driver probe. */
10273 		rc = bnxt_init_dflt_ring_mode(bp);
10274 		if (rc) {
10275 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10276 			return rc;
10277 		}
10278 	}
10279 	rc = bnxt_reserve_rings(bp, irq_re_init);
10280 	if (rc)
10281 		return rc;
10282 	if ((bp->flags & BNXT_FLAG_RFS) &&
10283 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10284 		/* disable RFS if falling back to INTA */
10285 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10286 		bp->flags &= ~BNXT_FLAG_RFS;
10287 	}
10288 
10289 	rc = bnxt_alloc_mem(bp, irq_re_init);
10290 	if (rc) {
10291 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10292 		goto open_err_free_mem;
10293 	}
10294 
10295 	if (irq_re_init) {
10296 		bnxt_init_napi(bp);
10297 		rc = bnxt_request_irq(bp);
10298 		if (rc) {
10299 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10300 			goto open_err_irq;
10301 		}
10302 	}
10303 
10304 	rc = bnxt_init_nic(bp, irq_re_init);
10305 	if (rc) {
10306 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10307 		goto open_err_irq;
10308 	}
10309 
10310 	bnxt_enable_napi(bp);
10311 	bnxt_debug_dev_init(bp);
10312 
10313 	if (link_re_init) {
10314 		mutex_lock(&bp->link_lock);
10315 		rc = bnxt_update_phy_setting(bp);
10316 		mutex_unlock(&bp->link_lock);
10317 		if (rc) {
10318 			netdev_warn(bp->dev, "failed to update phy settings\n");
10319 			if (BNXT_SINGLE_PF(bp)) {
10320 				bp->link_info.phy_retry = true;
10321 				bp->link_info.phy_retry_expires =
10322 					jiffies + 5 * HZ;
10323 			}
10324 		}
10325 	}
10326 
10327 	if (irq_re_init)
10328 		udp_tunnel_nic_reset_ntf(bp->dev);
10329 
10330 	set_bit(BNXT_STATE_OPEN, &bp->state);
10331 	bnxt_enable_int(bp);
10332 	/* Enable TX queues */
10333 	bnxt_tx_enable(bp);
10334 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10335 	/* Poll link status and check for SFP+ module status */
10336 	mutex_lock(&bp->link_lock);
10337 	bnxt_get_port_module_status(bp);
10338 	mutex_unlock(&bp->link_lock);
10339 
10340 	/* VF-reps may need to be re-opened after the PF is re-opened */
10341 	if (BNXT_PF(bp))
10342 		bnxt_vf_reps_open(bp);
10343 	bnxt_ptp_init_rtc(bp, true);
10344 	return 0;
10345 
10346 open_err_irq:
10347 	bnxt_del_napi(bp);
10348 
10349 open_err_free_mem:
10350 	bnxt_free_skbs(bp);
10351 	bnxt_free_irq(bp);
10352 	bnxt_free_mem(bp, true);
10353 	return rc;
10354 }
10355 
10356 /* rtnl_lock held */
10357 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10358 {
10359 	int rc = 0;
10360 
10361 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10362 		rc = -EIO;
10363 	if (!rc)
10364 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10365 	if (rc) {
10366 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10367 		dev_close(bp->dev);
10368 	}
10369 	return rc;
10370 }
10371 
10372 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10373  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10374  * self tests.
10375  */
10376 int bnxt_half_open_nic(struct bnxt *bp)
10377 {
10378 	int rc = 0;
10379 
10380 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10381 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10382 		rc = -ENODEV;
10383 		goto half_open_err;
10384 	}
10385 
10386 	rc = bnxt_alloc_mem(bp, true);
10387 	if (rc) {
10388 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10389 		goto half_open_err;
10390 	}
10391 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10392 	rc = bnxt_init_nic(bp, true);
10393 	if (rc) {
10394 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10395 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10396 		goto half_open_err;
10397 	}
10398 	return 0;
10399 
10400 half_open_err:
10401 	bnxt_free_skbs(bp);
10402 	bnxt_free_mem(bp, true);
10403 	dev_close(bp->dev);
10404 	return rc;
10405 }
10406 
10407 /* rtnl_lock held, this call can only be made after a previous successful
10408  * call to bnxt_half_open_nic().
10409  */
10410 void bnxt_half_close_nic(struct bnxt *bp)
10411 {
10412 	bnxt_hwrm_resource_free(bp, false, true);
10413 	bnxt_free_skbs(bp);
10414 	bnxt_free_mem(bp, true);
10415 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10416 }
10417 
10418 void bnxt_reenable_sriov(struct bnxt *bp)
10419 {
10420 	if (BNXT_PF(bp)) {
10421 		struct bnxt_pf_info *pf = &bp->pf;
10422 		int n = pf->active_vfs;
10423 
10424 		if (n)
10425 			bnxt_cfg_hw_sriov(bp, &n, true);
10426 	}
10427 }
10428 
10429 static int bnxt_open(struct net_device *dev)
10430 {
10431 	struct bnxt *bp = netdev_priv(dev);
10432 	int rc;
10433 
10434 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10435 		rc = bnxt_reinit_after_abort(bp);
10436 		if (rc) {
10437 			if (rc == -EBUSY)
10438 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10439 			else
10440 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10441 			return -ENODEV;
10442 		}
10443 	}
10444 
10445 	rc = bnxt_hwrm_if_change(bp, true);
10446 	if (rc)
10447 		return rc;
10448 
10449 	rc = __bnxt_open_nic(bp, true, true);
10450 	if (rc) {
10451 		bnxt_hwrm_if_change(bp, false);
10452 	} else {
10453 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10454 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10455 				bnxt_ulp_start(bp, 0);
10456 				bnxt_reenable_sriov(bp);
10457 			}
10458 		}
10459 		bnxt_hwmon_open(bp);
10460 	}
10461 
10462 	return rc;
10463 }
10464 
10465 static bool bnxt_drv_busy(struct bnxt *bp)
10466 {
10467 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10468 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10469 }
10470 
10471 static void bnxt_get_ring_stats(struct bnxt *bp,
10472 				struct rtnl_link_stats64 *stats);
10473 
10474 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10475 			     bool link_re_init)
10476 {
10477 	/* Close the VF-reps before closing PF */
10478 	if (BNXT_PF(bp))
10479 		bnxt_vf_reps_close(bp);
10480 
10481 	/* Change device state to avoid TX queue wake up's */
10482 	bnxt_tx_disable(bp);
10483 
10484 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10485 	smp_mb__after_atomic();
10486 	while (bnxt_drv_busy(bp))
10487 		msleep(20);
10488 
10489 	/* Flush rings and and disable interrupts */
10490 	bnxt_shutdown_nic(bp, irq_re_init);
10491 
10492 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10493 
10494 	bnxt_debug_dev_exit(bp);
10495 	bnxt_disable_napi(bp);
10496 	del_timer_sync(&bp->timer);
10497 	bnxt_free_skbs(bp);
10498 
10499 	/* Save ring stats before shutdown */
10500 	if (bp->bnapi && irq_re_init)
10501 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10502 	if (irq_re_init) {
10503 		bnxt_free_irq(bp);
10504 		bnxt_del_napi(bp);
10505 	}
10506 	bnxt_free_mem(bp, irq_re_init);
10507 }
10508 
10509 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10510 {
10511 	int rc = 0;
10512 
10513 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10514 		/* If we get here, it means firmware reset is in progress
10515 		 * while we are trying to close.  We can safely proceed with
10516 		 * the close because we are holding rtnl_lock().  Some firmware
10517 		 * messages may fail as we proceed to close.  We set the
10518 		 * ABORT_ERR flag here so that the FW reset thread will later
10519 		 * abort when it gets the rtnl_lock() and sees the flag.
10520 		 */
10521 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10522 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10523 	}
10524 
10525 #ifdef CONFIG_BNXT_SRIOV
10526 	if (bp->sriov_cfg) {
10527 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10528 						      !bp->sriov_cfg,
10529 						      BNXT_SRIOV_CFG_WAIT_TMO);
10530 		if (rc)
10531 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10532 	}
10533 #endif
10534 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10535 	return rc;
10536 }
10537 
10538 static int bnxt_close(struct net_device *dev)
10539 {
10540 	struct bnxt *bp = netdev_priv(dev);
10541 
10542 	bnxt_hwmon_close(bp);
10543 	bnxt_close_nic(bp, true, true);
10544 	bnxt_hwrm_shutdown_link(bp);
10545 	bnxt_hwrm_if_change(bp, false);
10546 	return 0;
10547 }
10548 
10549 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10550 				   u16 *val)
10551 {
10552 	struct hwrm_port_phy_mdio_read_output *resp;
10553 	struct hwrm_port_phy_mdio_read_input *req;
10554 	int rc;
10555 
10556 	if (bp->hwrm_spec_code < 0x10a00)
10557 		return -EOPNOTSUPP;
10558 
10559 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10560 	if (rc)
10561 		return rc;
10562 
10563 	req->port_id = cpu_to_le16(bp->pf.port_id);
10564 	req->phy_addr = phy_addr;
10565 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10566 	if (mdio_phy_id_is_c45(phy_addr)) {
10567 		req->cl45_mdio = 1;
10568 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10569 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10570 		req->reg_addr = cpu_to_le16(reg);
10571 	}
10572 
10573 	resp = hwrm_req_hold(bp, req);
10574 	rc = hwrm_req_send(bp, req);
10575 	if (!rc)
10576 		*val = le16_to_cpu(resp->reg_data);
10577 	hwrm_req_drop(bp, req);
10578 	return rc;
10579 }
10580 
10581 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10582 				    u16 val)
10583 {
10584 	struct hwrm_port_phy_mdio_write_input *req;
10585 	int rc;
10586 
10587 	if (bp->hwrm_spec_code < 0x10a00)
10588 		return -EOPNOTSUPP;
10589 
10590 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10591 	if (rc)
10592 		return rc;
10593 
10594 	req->port_id = cpu_to_le16(bp->pf.port_id);
10595 	req->phy_addr = phy_addr;
10596 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10597 	if (mdio_phy_id_is_c45(phy_addr)) {
10598 		req->cl45_mdio = 1;
10599 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10600 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10601 		req->reg_addr = cpu_to_le16(reg);
10602 	}
10603 	req->reg_data = cpu_to_le16(val);
10604 
10605 	return hwrm_req_send(bp, req);
10606 }
10607 
10608 /* rtnl_lock held */
10609 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10610 {
10611 	struct mii_ioctl_data *mdio = if_mii(ifr);
10612 	struct bnxt *bp = netdev_priv(dev);
10613 	int rc;
10614 
10615 	switch (cmd) {
10616 	case SIOCGMIIPHY:
10617 		mdio->phy_id = bp->link_info.phy_addr;
10618 
10619 		fallthrough;
10620 	case SIOCGMIIREG: {
10621 		u16 mii_regval = 0;
10622 
10623 		if (!netif_running(dev))
10624 			return -EAGAIN;
10625 
10626 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10627 					     &mii_regval);
10628 		mdio->val_out = mii_regval;
10629 		return rc;
10630 	}
10631 
10632 	case SIOCSMIIREG:
10633 		if (!netif_running(dev))
10634 			return -EAGAIN;
10635 
10636 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10637 						mdio->val_in);
10638 
10639 	case SIOCSHWTSTAMP:
10640 		return bnxt_hwtstamp_set(dev, ifr);
10641 
10642 	case SIOCGHWTSTAMP:
10643 		return bnxt_hwtstamp_get(dev, ifr);
10644 
10645 	default:
10646 		/* do nothing */
10647 		break;
10648 	}
10649 	return -EOPNOTSUPP;
10650 }
10651 
10652 static void bnxt_get_ring_stats(struct bnxt *bp,
10653 				struct rtnl_link_stats64 *stats)
10654 {
10655 	int i;
10656 
10657 	for (i = 0; i < bp->cp_nr_rings; i++) {
10658 		struct bnxt_napi *bnapi = bp->bnapi[i];
10659 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10660 		u64 *sw = cpr->stats.sw_stats;
10661 
10662 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10663 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10664 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10665 
10666 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10667 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10668 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10669 
10670 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10671 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10672 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10673 
10674 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10675 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10676 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10677 
10678 		stats->rx_missed_errors +=
10679 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10680 
10681 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10682 
10683 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10684 
10685 		stats->rx_dropped +=
10686 			cpr->sw_stats.rx.rx_netpoll_discards +
10687 			cpr->sw_stats.rx.rx_oom_discards;
10688 	}
10689 }
10690 
10691 static void bnxt_add_prev_stats(struct bnxt *bp,
10692 				struct rtnl_link_stats64 *stats)
10693 {
10694 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10695 
10696 	stats->rx_packets += prev_stats->rx_packets;
10697 	stats->tx_packets += prev_stats->tx_packets;
10698 	stats->rx_bytes += prev_stats->rx_bytes;
10699 	stats->tx_bytes += prev_stats->tx_bytes;
10700 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10701 	stats->multicast += prev_stats->multicast;
10702 	stats->rx_dropped += prev_stats->rx_dropped;
10703 	stats->tx_dropped += prev_stats->tx_dropped;
10704 }
10705 
10706 static void
10707 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10708 {
10709 	struct bnxt *bp = netdev_priv(dev);
10710 
10711 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10712 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10713 	 * we check the BNXT_STATE_OPEN flag.
10714 	 */
10715 	smp_mb__after_atomic();
10716 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10717 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10718 		*stats = bp->net_stats_prev;
10719 		return;
10720 	}
10721 
10722 	bnxt_get_ring_stats(bp, stats);
10723 	bnxt_add_prev_stats(bp, stats);
10724 
10725 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10726 		u64 *rx = bp->port_stats.sw_stats;
10727 		u64 *tx = bp->port_stats.sw_stats +
10728 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10729 
10730 		stats->rx_crc_errors =
10731 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10732 		stats->rx_frame_errors =
10733 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10734 		stats->rx_length_errors =
10735 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10736 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10737 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10738 		stats->rx_errors =
10739 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10740 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10741 		stats->collisions =
10742 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10743 		stats->tx_fifo_errors =
10744 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10745 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10746 	}
10747 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10748 }
10749 
10750 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10751 {
10752 	struct net_device *dev = bp->dev;
10753 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10754 	struct netdev_hw_addr *ha;
10755 	u8 *haddr;
10756 	int mc_count = 0;
10757 	bool update = false;
10758 	int off = 0;
10759 
10760 	netdev_for_each_mc_addr(ha, dev) {
10761 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10762 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10763 			vnic->mc_list_count = 0;
10764 			return false;
10765 		}
10766 		haddr = ha->addr;
10767 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10768 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10769 			update = true;
10770 		}
10771 		off += ETH_ALEN;
10772 		mc_count++;
10773 	}
10774 	if (mc_count)
10775 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10776 
10777 	if (mc_count != vnic->mc_list_count) {
10778 		vnic->mc_list_count = mc_count;
10779 		update = true;
10780 	}
10781 	return update;
10782 }
10783 
10784 static bool bnxt_uc_list_updated(struct bnxt *bp)
10785 {
10786 	struct net_device *dev = bp->dev;
10787 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10788 	struct netdev_hw_addr *ha;
10789 	int off = 0;
10790 
10791 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10792 		return true;
10793 
10794 	netdev_for_each_uc_addr(ha, dev) {
10795 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10796 			return true;
10797 
10798 		off += ETH_ALEN;
10799 	}
10800 	return false;
10801 }
10802 
10803 static void bnxt_set_rx_mode(struct net_device *dev)
10804 {
10805 	struct bnxt *bp = netdev_priv(dev);
10806 	struct bnxt_vnic_info *vnic;
10807 	bool mc_update = false;
10808 	bool uc_update;
10809 	u32 mask;
10810 
10811 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10812 		return;
10813 
10814 	vnic = &bp->vnic_info[0];
10815 	mask = vnic->rx_mask;
10816 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10817 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10818 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10819 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10820 
10821 	if (dev->flags & IFF_PROMISC)
10822 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10823 
10824 	uc_update = bnxt_uc_list_updated(bp);
10825 
10826 	if (dev->flags & IFF_BROADCAST)
10827 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10828 	if (dev->flags & IFF_ALLMULTI) {
10829 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10830 		vnic->mc_list_count = 0;
10831 	} else if (dev->flags & IFF_MULTICAST) {
10832 		mc_update = bnxt_mc_list_updated(bp, &mask);
10833 	}
10834 
10835 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10836 		vnic->rx_mask = mask;
10837 
10838 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10839 		bnxt_queue_sp_work(bp);
10840 	}
10841 }
10842 
10843 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10844 {
10845 	struct net_device *dev = bp->dev;
10846 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10847 	struct hwrm_cfa_l2_filter_free_input *req;
10848 	struct netdev_hw_addr *ha;
10849 	int i, off = 0, rc;
10850 	bool uc_update;
10851 
10852 	netif_addr_lock_bh(dev);
10853 	uc_update = bnxt_uc_list_updated(bp);
10854 	netif_addr_unlock_bh(dev);
10855 
10856 	if (!uc_update)
10857 		goto skip_uc;
10858 
10859 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
10860 	if (rc)
10861 		return rc;
10862 	hwrm_req_hold(bp, req);
10863 	for (i = 1; i < vnic->uc_filter_count; i++) {
10864 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
10865 
10866 		rc = hwrm_req_send(bp, req);
10867 	}
10868 	hwrm_req_drop(bp, req);
10869 
10870 	vnic->uc_filter_count = 1;
10871 
10872 	netif_addr_lock_bh(dev);
10873 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10874 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10875 	} else {
10876 		netdev_for_each_uc_addr(ha, dev) {
10877 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10878 			off += ETH_ALEN;
10879 			vnic->uc_filter_count++;
10880 		}
10881 	}
10882 	netif_addr_unlock_bh(dev);
10883 
10884 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10885 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10886 		if (rc) {
10887 			if (BNXT_VF(bp) && rc == -ENODEV) {
10888 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
10889 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
10890 				else
10891 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
10892 				rc = 0;
10893 			} else {
10894 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10895 			}
10896 			vnic->uc_filter_count = i;
10897 			return rc;
10898 		}
10899 	}
10900 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
10901 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
10902 
10903 skip_uc:
10904 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10905 	    !bnxt_promisc_ok(bp))
10906 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10907 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10908 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
10909 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10910 			    rc);
10911 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10912 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10913 		vnic->mc_list_count = 0;
10914 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10915 	}
10916 	if (rc)
10917 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10918 			   rc);
10919 
10920 	return rc;
10921 }
10922 
10923 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10924 {
10925 #ifdef CONFIG_BNXT_SRIOV
10926 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10927 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10928 
10929 		/* No minimum rings were provisioned by the PF.  Don't
10930 		 * reserve rings by default when device is down.
10931 		 */
10932 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10933 			return true;
10934 
10935 		if (!netif_running(bp->dev))
10936 			return false;
10937 	}
10938 #endif
10939 	return true;
10940 }
10941 
10942 /* If the chip and firmware supports RFS */
10943 static bool bnxt_rfs_supported(struct bnxt *bp)
10944 {
10945 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10946 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10947 			return true;
10948 		return false;
10949 	}
10950 	/* 212 firmware is broken for aRFS */
10951 	if (BNXT_FW_MAJ(bp) == 212)
10952 		return false;
10953 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10954 		return true;
10955 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10956 		return true;
10957 	return false;
10958 }
10959 
10960 /* If runtime conditions support RFS */
10961 static bool bnxt_rfs_capable(struct bnxt *bp)
10962 {
10963 #ifdef CONFIG_RFS_ACCEL
10964 	int vnics, max_vnics, max_rss_ctxs;
10965 
10966 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10967 		return bnxt_rfs_supported(bp);
10968 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10969 		return false;
10970 
10971 	vnics = 1 + bp->rx_nr_rings;
10972 	max_vnics = bnxt_get_max_func_vnics(bp);
10973 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10974 
10975 	/* RSS contexts not a limiting factor */
10976 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10977 		max_rss_ctxs = max_vnics;
10978 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10979 		if (bp->rx_nr_rings > 1)
10980 			netdev_warn(bp->dev,
10981 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10982 				    min(max_rss_ctxs - 1, max_vnics - 1));
10983 		return false;
10984 	}
10985 
10986 	if (!BNXT_NEW_RM(bp))
10987 		return true;
10988 
10989 	if (vnics == bp->hw_resc.resv_vnics)
10990 		return true;
10991 
10992 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10993 	if (vnics <= bp->hw_resc.resv_vnics)
10994 		return true;
10995 
10996 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10997 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10998 	return false;
10999 #else
11000 	return false;
11001 #endif
11002 }
11003 
11004 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11005 					   netdev_features_t features)
11006 {
11007 	struct bnxt *bp = netdev_priv(dev);
11008 	netdev_features_t vlan_features;
11009 
11010 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11011 		features &= ~NETIF_F_NTUPLE;
11012 
11013 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11014 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11015 
11016 	if (!(features & NETIF_F_GRO))
11017 		features &= ~NETIF_F_GRO_HW;
11018 
11019 	if (features & NETIF_F_GRO_HW)
11020 		features &= ~NETIF_F_LRO;
11021 
11022 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11023 	 * turned on or off together.
11024 	 */
11025 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11026 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11027 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11028 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11029 		else if (vlan_features)
11030 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11031 	}
11032 #ifdef CONFIG_BNXT_SRIOV
11033 	if (BNXT_VF(bp) && bp->vf.vlan)
11034 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11035 #endif
11036 	return features;
11037 }
11038 
11039 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11040 {
11041 	struct bnxt *bp = netdev_priv(dev);
11042 	u32 flags = bp->flags;
11043 	u32 changes;
11044 	int rc = 0;
11045 	bool re_init = false;
11046 	bool update_tpa = false;
11047 
11048 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11049 	if (features & NETIF_F_GRO_HW)
11050 		flags |= BNXT_FLAG_GRO;
11051 	else if (features & NETIF_F_LRO)
11052 		flags |= BNXT_FLAG_LRO;
11053 
11054 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11055 		flags &= ~BNXT_FLAG_TPA;
11056 
11057 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11058 		flags |= BNXT_FLAG_STRIP_VLAN;
11059 
11060 	if (features & NETIF_F_NTUPLE)
11061 		flags |= BNXT_FLAG_RFS;
11062 
11063 	changes = flags ^ bp->flags;
11064 	if (changes & BNXT_FLAG_TPA) {
11065 		update_tpa = true;
11066 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11067 		    (flags & BNXT_FLAG_TPA) == 0 ||
11068 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11069 			re_init = true;
11070 	}
11071 
11072 	if (changes & ~BNXT_FLAG_TPA)
11073 		re_init = true;
11074 
11075 	if (flags != bp->flags) {
11076 		u32 old_flags = bp->flags;
11077 
11078 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11079 			bp->flags = flags;
11080 			if (update_tpa)
11081 				bnxt_set_ring_params(bp);
11082 			return rc;
11083 		}
11084 
11085 		if (re_init) {
11086 			bnxt_close_nic(bp, false, false);
11087 			bp->flags = flags;
11088 			if (update_tpa)
11089 				bnxt_set_ring_params(bp);
11090 
11091 			return bnxt_open_nic(bp, false, false);
11092 		}
11093 		if (update_tpa) {
11094 			bp->flags = flags;
11095 			rc = bnxt_set_tpa(bp,
11096 					  (flags & BNXT_FLAG_TPA) ?
11097 					  true : false);
11098 			if (rc)
11099 				bp->flags = old_flags;
11100 		}
11101 	}
11102 	return rc;
11103 }
11104 
11105 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11106 			      u8 **nextp)
11107 {
11108 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11109 	int hdr_count = 0;
11110 	u8 *nexthdr;
11111 	int start;
11112 
11113 	/* Check that there are at most 2 IPv6 extension headers, no
11114 	 * fragment header, and each is <= 64 bytes.
11115 	 */
11116 	start = nw_off + sizeof(*ip6h);
11117 	nexthdr = &ip6h->nexthdr;
11118 	while (ipv6_ext_hdr(*nexthdr)) {
11119 		struct ipv6_opt_hdr *hp;
11120 		int hdrlen;
11121 
11122 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11123 		    *nexthdr == NEXTHDR_FRAGMENT)
11124 			return false;
11125 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11126 					  skb_headlen(skb), NULL);
11127 		if (!hp)
11128 			return false;
11129 		if (*nexthdr == NEXTHDR_AUTH)
11130 			hdrlen = ipv6_authlen(hp);
11131 		else
11132 			hdrlen = ipv6_optlen(hp);
11133 
11134 		if (hdrlen > 64)
11135 			return false;
11136 		nexthdr = &hp->nexthdr;
11137 		start += hdrlen;
11138 		hdr_count++;
11139 	}
11140 	if (nextp) {
11141 		/* Caller will check inner protocol */
11142 		if (skb->encapsulation) {
11143 			*nextp = nexthdr;
11144 			return true;
11145 		}
11146 		*nextp = NULL;
11147 	}
11148 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11149 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11150 }
11151 
11152 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11153 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11154 {
11155 	struct udphdr *uh = udp_hdr(skb);
11156 	__be16 udp_port = uh->dest;
11157 
11158 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11159 		return false;
11160 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11161 		struct ethhdr *eh = inner_eth_hdr(skb);
11162 
11163 		switch (eh->h_proto) {
11164 		case htons(ETH_P_IP):
11165 			return true;
11166 		case htons(ETH_P_IPV6):
11167 			return bnxt_exthdr_check(bp, skb,
11168 						 skb_inner_network_offset(skb),
11169 						 NULL);
11170 		}
11171 	}
11172 	return false;
11173 }
11174 
11175 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11176 {
11177 	switch (l4_proto) {
11178 	case IPPROTO_UDP:
11179 		return bnxt_udp_tunl_check(bp, skb);
11180 	case IPPROTO_IPIP:
11181 		return true;
11182 	case IPPROTO_GRE: {
11183 		switch (skb->inner_protocol) {
11184 		default:
11185 			return false;
11186 		case htons(ETH_P_IP):
11187 			return true;
11188 		case htons(ETH_P_IPV6):
11189 			fallthrough;
11190 		}
11191 	}
11192 	case IPPROTO_IPV6:
11193 		/* Check ext headers of inner ipv6 */
11194 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11195 					 NULL);
11196 	}
11197 	return false;
11198 }
11199 
11200 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11201 					     struct net_device *dev,
11202 					     netdev_features_t features)
11203 {
11204 	struct bnxt *bp = netdev_priv(dev);
11205 	u8 *l4_proto;
11206 
11207 	features = vlan_features_check(skb, features);
11208 	switch (vlan_get_protocol(skb)) {
11209 	case htons(ETH_P_IP):
11210 		if (!skb->encapsulation)
11211 			return features;
11212 		l4_proto = &ip_hdr(skb)->protocol;
11213 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11214 			return features;
11215 		break;
11216 	case htons(ETH_P_IPV6):
11217 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11218 				       &l4_proto))
11219 			break;
11220 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11221 			return features;
11222 		break;
11223 	}
11224 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11225 }
11226 
11227 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11228 			 u32 *reg_buf)
11229 {
11230 	struct hwrm_dbg_read_direct_output *resp;
11231 	struct hwrm_dbg_read_direct_input *req;
11232 	__le32 *dbg_reg_buf;
11233 	dma_addr_t mapping;
11234 	int rc, i;
11235 
11236 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11237 	if (rc)
11238 		return rc;
11239 
11240 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11241 					 &mapping);
11242 	if (!dbg_reg_buf) {
11243 		rc = -ENOMEM;
11244 		goto dbg_rd_reg_exit;
11245 	}
11246 
11247 	req->host_dest_addr = cpu_to_le64(mapping);
11248 
11249 	resp = hwrm_req_hold(bp, req);
11250 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11251 	req->read_len32 = cpu_to_le32(num_words);
11252 
11253 	rc = hwrm_req_send(bp, req);
11254 	if (rc || resp->error_code) {
11255 		rc = -EIO;
11256 		goto dbg_rd_reg_exit;
11257 	}
11258 	for (i = 0; i < num_words; i++)
11259 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11260 
11261 dbg_rd_reg_exit:
11262 	hwrm_req_drop(bp, req);
11263 	return rc;
11264 }
11265 
11266 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11267 				       u32 ring_id, u32 *prod, u32 *cons)
11268 {
11269 	struct hwrm_dbg_ring_info_get_output *resp;
11270 	struct hwrm_dbg_ring_info_get_input *req;
11271 	int rc;
11272 
11273 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11274 	if (rc)
11275 		return rc;
11276 
11277 	req->ring_type = ring_type;
11278 	req->fw_ring_id = cpu_to_le32(ring_id);
11279 	resp = hwrm_req_hold(bp, req);
11280 	rc = hwrm_req_send(bp, req);
11281 	if (!rc) {
11282 		*prod = le32_to_cpu(resp->producer_index);
11283 		*cons = le32_to_cpu(resp->consumer_index);
11284 	}
11285 	hwrm_req_drop(bp, req);
11286 	return rc;
11287 }
11288 
11289 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11290 {
11291 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11292 	int i = bnapi->index;
11293 
11294 	if (!txr)
11295 		return;
11296 
11297 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11298 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11299 		    txr->tx_cons);
11300 }
11301 
11302 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11303 {
11304 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11305 	int i = bnapi->index;
11306 
11307 	if (!rxr)
11308 		return;
11309 
11310 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11311 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11312 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11313 		    rxr->rx_sw_agg_prod);
11314 }
11315 
11316 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11317 {
11318 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11319 	int i = bnapi->index;
11320 
11321 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11322 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11323 }
11324 
11325 static void bnxt_dbg_dump_states(struct bnxt *bp)
11326 {
11327 	int i;
11328 	struct bnxt_napi *bnapi;
11329 
11330 	for (i = 0; i < bp->cp_nr_rings; i++) {
11331 		bnapi = bp->bnapi[i];
11332 		if (netif_msg_drv(bp)) {
11333 			bnxt_dump_tx_sw_state(bnapi);
11334 			bnxt_dump_rx_sw_state(bnapi);
11335 			bnxt_dump_cp_sw_state(bnapi);
11336 		}
11337 	}
11338 }
11339 
11340 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11341 {
11342 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11343 	struct hwrm_ring_reset_input *req;
11344 	struct bnxt_napi *bnapi = rxr->bnapi;
11345 	struct bnxt_cp_ring_info *cpr;
11346 	u16 cp_ring_id;
11347 	int rc;
11348 
11349 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11350 	if (rc)
11351 		return rc;
11352 
11353 	cpr = &bnapi->cp_ring;
11354 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11355 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11356 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11357 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11358 	return hwrm_req_send_silent(bp, req);
11359 }
11360 
11361 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11362 {
11363 	if (!silent)
11364 		bnxt_dbg_dump_states(bp);
11365 	if (netif_running(bp->dev)) {
11366 		int rc;
11367 
11368 		if (silent) {
11369 			bnxt_close_nic(bp, false, false);
11370 			bnxt_open_nic(bp, false, false);
11371 		} else {
11372 			bnxt_ulp_stop(bp);
11373 			bnxt_close_nic(bp, true, false);
11374 			rc = bnxt_open_nic(bp, true, false);
11375 			bnxt_ulp_start(bp, rc);
11376 		}
11377 	}
11378 }
11379 
11380 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11381 {
11382 	struct bnxt *bp = netdev_priv(dev);
11383 
11384 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11385 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11386 	bnxt_queue_sp_work(bp);
11387 }
11388 
11389 static void bnxt_fw_health_check(struct bnxt *bp)
11390 {
11391 	struct bnxt_fw_health *fw_health = bp->fw_health;
11392 	u32 val;
11393 
11394 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11395 		return;
11396 
11397 	/* Make sure it is enabled before checking the tmr_counter. */
11398 	smp_rmb();
11399 	if (fw_health->tmr_counter) {
11400 		fw_health->tmr_counter--;
11401 		return;
11402 	}
11403 
11404 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11405 	if (val == fw_health->last_fw_heartbeat) {
11406 		fw_health->arrests++;
11407 		goto fw_reset;
11408 	}
11409 
11410 	fw_health->last_fw_heartbeat = val;
11411 
11412 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11413 	if (val != fw_health->last_fw_reset_cnt) {
11414 		fw_health->discoveries++;
11415 		goto fw_reset;
11416 	}
11417 
11418 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11419 	return;
11420 
11421 fw_reset:
11422 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11423 	bnxt_queue_sp_work(bp);
11424 }
11425 
11426 static void bnxt_timer(struct timer_list *t)
11427 {
11428 	struct bnxt *bp = from_timer(bp, t, timer);
11429 	struct net_device *dev = bp->dev;
11430 
11431 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11432 		return;
11433 
11434 	if (atomic_read(&bp->intr_sem) != 0)
11435 		goto bnxt_restart_timer;
11436 
11437 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11438 		bnxt_fw_health_check(bp);
11439 
11440 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
11441 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11442 		bnxt_queue_sp_work(bp);
11443 	}
11444 
11445 	if (bnxt_tc_flower_enabled(bp)) {
11446 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11447 		bnxt_queue_sp_work(bp);
11448 	}
11449 
11450 #ifdef CONFIG_RFS_ACCEL
11451 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11452 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11453 		bnxt_queue_sp_work(bp);
11454 	}
11455 #endif /*CONFIG_RFS_ACCEL*/
11456 
11457 	if (bp->link_info.phy_retry) {
11458 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11459 			bp->link_info.phy_retry = false;
11460 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11461 		} else {
11462 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11463 			bnxt_queue_sp_work(bp);
11464 		}
11465 	}
11466 
11467 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11468 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11469 		bnxt_queue_sp_work(bp);
11470 	}
11471 
11472 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11473 	    netif_carrier_ok(dev)) {
11474 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11475 		bnxt_queue_sp_work(bp);
11476 	}
11477 bnxt_restart_timer:
11478 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11479 }
11480 
11481 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11482 {
11483 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11484 	 * set.  If the device is being closed, bnxt_close() may be holding
11485 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11486 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11487 	 */
11488 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11489 	rtnl_lock();
11490 }
11491 
11492 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11493 {
11494 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11495 	rtnl_unlock();
11496 }
11497 
11498 /* Only called from bnxt_sp_task() */
11499 static void bnxt_reset(struct bnxt *bp, bool silent)
11500 {
11501 	bnxt_rtnl_lock_sp(bp);
11502 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11503 		bnxt_reset_task(bp, silent);
11504 	bnxt_rtnl_unlock_sp(bp);
11505 }
11506 
11507 /* Only called from bnxt_sp_task() */
11508 static void bnxt_rx_ring_reset(struct bnxt *bp)
11509 {
11510 	int i;
11511 
11512 	bnxt_rtnl_lock_sp(bp);
11513 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11514 		bnxt_rtnl_unlock_sp(bp);
11515 		return;
11516 	}
11517 	/* Disable and flush TPA before resetting the RX ring */
11518 	if (bp->flags & BNXT_FLAG_TPA)
11519 		bnxt_set_tpa(bp, false);
11520 	for (i = 0; i < bp->rx_nr_rings; i++) {
11521 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11522 		struct bnxt_cp_ring_info *cpr;
11523 		int rc;
11524 
11525 		if (!rxr->bnapi->in_reset)
11526 			continue;
11527 
11528 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11529 		if (rc) {
11530 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11531 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11532 			else
11533 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11534 					    rc);
11535 			bnxt_reset_task(bp, true);
11536 			break;
11537 		}
11538 		bnxt_free_one_rx_ring_skbs(bp, i);
11539 		rxr->rx_prod = 0;
11540 		rxr->rx_agg_prod = 0;
11541 		rxr->rx_sw_agg_prod = 0;
11542 		rxr->rx_next_cons = 0;
11543 		rxr->bnapi->in_reset = false;
11544 		bnxt_alloc_one_rx_ring(bp, i);
11545 		cpr = &rxr->bnapi->cp_ring;
11546 		cpr->sw_stats.rx.rx_resets++;
11547 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11548 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11549 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11550 	}
11551 	if (bp->flags & BNXT_FLAG_TPA)
11552 		bnxt_set_tpa(bp, true);
11553 	bnxt_rtnl_unlock_sp(bp);
11554 }
11555 
11556 static void bnxt_fw_reset_close(struct bnxt *bp)
11557 {
11558 	bnxt_ulp_stop(bp);
11559 	/* When firmware is in fatal state, quiesce device and disable
11560 	 * bus master to prevent any potential bad DMAs before freeing
11561 	 * kernel memory.
11562 	 */
11563 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11564 		u16 val = 0;
11565 
11566 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11567 		if (val == 0xffff)
11568 			bp->fw_reset_min_dsecs = 0;
11569 		bnxt_tx_disable(bp);
11570 		bnxt_disable_napi(bp);
11571 		bnxt_disable_int_sync(bp);
11572 		bnxt_free_irq(bp);
11573 		bnxt_clear_int_mode(bp);
11574 		pci_disable_device(bp->pdev);
11575 	}
11576 	__bnxt_close_nic(bp, true, false);
11577 	bnxt_vf_reps_free(bp);
11578 	bnxt_clear_int_mode(bp);
11579 	bnxt_hwrm_func_drv_unrgtr(bp);
11580 	if (pci_is_enabled(bp->pdev))
11581 		pci_disable_device(bp->pdev);
11582 	bnxt_free_ctx_mem(bp);
11583 	kfree(bp->ctx);
11584 	bp->ctx = NULL;
11585 }
11586 
11587 static bool is_bnxt_fw_ok(struct bnxt *bp)
11588 {
11589 	struct bnxt_fw_health *fw_health = bp->fw_health;
11590 	bool no_heartbeat = false, has_reset = false;
11591 	u32 val;
11592 
11593 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11594 	if (val == fw_health->last_fw_heartbeat)
11595 		no_heartbeat = true;
11596 
11597 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11598 	if (val != fw_health->last_fw_reset_cnt)
11599 		has_reset = true;
11600 
11601 	if (!no_heartbeat && has_reset)
11602 		return true;
11603 
11604 	return false;
11605 }
11606 
11607 /* rtnl_lock is acquired before calling this function */
11608 static void bnxt_force_fw_reset(struct bnxt *bp)
11609 {
11610 	struct bnxt_fw_health *fw_health = bp->fw_health;
11611 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11612 	u32 wait_dsecs;
11613 
11614 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11615 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11616 		return;
11617 
11618 	if (ptp) {
11619 		spin_lock_bh(&ptp->ptp_lock);
11620 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11621 		spin_unlock_bh(&ptp->ptp_lock);
11622 	} else {
11623 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11624 	}
11625 	bnxt_fw_reset_close(bp);
11626 	wait_dsecs = fw_health->master_func_wait_dsecs;
11627 	if (fw_health->primary) {
11628 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11629 			wait_dsecs = 0;
11630 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11631 	} else {
11632 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11633 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11634 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11635 	}
11636 
11637 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11638 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11639 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11640 }
11641 
11642 void bnxt_fw_exception(struct bnxt *bp)
11643 {
11644 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11645 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11646 	bnxt_rtnl_lock_sp(bp);
11647 	bnxt_force_fw_reset(bp);
11648 	bnxt_rtnl_unlock_sp(bp);
11649 }
11650 
11651 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11652  * < 0 on error.
11653  */
11654 static int bnxt_get_registered_vfs(struct bnxt *bp)
11655 {
11656 #ifdef CONFIG_BNXT_SRIOV
11657 	int rc;
11658 
11659 	if (!BNXT_PF(bp))
11660 		return 0;
11661 
11662 	rc = bnxt_hwrm_func_qcfg(bp);
11663 	if (rc) {
11664 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11665 		return rc;
11666 	}
11667 	if (bp->pf.registered_vfs)
11668 		return bp->pf.registered_vfs;
11669 	if (bp->sriov_cfg)
11670 		return 1;
11671 #endif
11672 	return 0;
11673 }
11674 
11675 void bnxt_fw_reset(struct bnxt *bp)
11676 {
11677 	bnxt_rtnl_lock_sp(bp);
11678 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11679 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11680 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11681 		int n = 0, tmo;
11682 
11683 		if (ptp) {
11684 			spin_lock_bh(&ptp->ptp_lock);
11685 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11686 			spin_unlock_bh(&ptp->ptp_lock);
11687 		} else {
11688 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11689 		}
11690 		if (bp->pf.active_vfs &&
11691 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11692 			n = bnxt_get_registered_vfs(bp);
11693 		if (n < 0) {
11694 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11695 				   n);
11696 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11697 			dev_close(bp->dev);
11698 			goto fw_reset_exit;
11699 		} else if (n > 0) {
11700 			u16 vf_tmo_dsecs = n * 10;
11701 
11702 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11703 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11704 			bp->fw_reset_state =
11705 				BNXT_FW_RESET_STATE_POLL_VF;
11706 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11707 			goto fw_reset_exit;
11708 		}
11709 		bnxt_fw_reset_close(bp);
11710 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11711 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11712 			tmo = HZ / 10;
11713 		} else {
11714 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11715 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11716 		}
11717 		bnxt_queue_fw_reset_work(bp, tmo);
11718 	}
11719 fw_reset_exit:
11720 	bnxt_rtnl_unlock_sp(bp);
11721 }
11722 
11723 static void bnxt_chk_missed_irq(struct bnxt *bp)
11724 {
11725 	int i;
11726 
11727 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11728 		return;
11729 
11730 	for (i = 0; i < bp->cp_nr_rings; i++) {
11731 		struct bnxt_napi *bnapi = bp->bnapi[i];
11732 		struct bnxt_cp_ring_info *cpr;
11733 		u32 fw_ring_id;
11734 		int j;
11735 
11736 		if (!bnapi)
11737 			continue;
11738 
11739 		cpr = &bnapi->cp_ring;
11740 		for (j = 0; j < 2; j++) {
11741 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11742 			u32 val[2];
11743 
11744 			if (!cpr2 || cpr2->has_more_work ||
11745 			    !bnxt_has_work(bp, cpr2))
11746 				continue;
11747 
11748 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11749 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11750 				continue;
11751 			}
11752 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11753 			bnxt_dbg_hwrm_ring_info_get(bp,
11754 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11755 				fw_ring_id, &val[0], &val[1]);
11756 			cpr->sw_stats.cmn.missed_irqs++;
11757 		}
11758 	}
11759 }
11760 
11761 static void bnxt_cfg_ntp_filters(struct bnxt *);
11762 
11763 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11764 {
11765 	struct bnxt_link_info *link_info = &bp->link_info;
11766 
11767 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11768 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11769 		if (bp->hwrm_spec_code >= 0x10201) {
11770 			if (link_info->auto_pause_setting &
11771 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11772 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11773 		} else {
11774 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11775 		}
11776 		link_info->advertising = link_info->auto_link_speeds;
11777 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11778 	} else {
11779 		link_info->req_link_speed = link_info->force_link_speed;
11780 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11781 		if (link_info->force_pam4_link_speed) {
11782 			link_info->req_link_speed =
11783 				link_info->force_pam4_link_speed;
11784 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11785 		}
11786 		link_info->req_duplex = link_info->duplex_setting;
11787 	}
11788 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11789 		link_info->req_flow_ctrl =
11790 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11791 	else
11792 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11793 }
11794 
11795 static void bnxt_fw_echo_reply(struct bnxt *bp)
11796 {
11797 	struct bnxt_fw_health *fw_health = bp->fw_health;
11798 	struct hwrm_func_echo_response_input *req;
11799 	int rc;
11800 
11801 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11802 	if (rc)
11803 		return;
11804 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11805 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11806 	hwrm_req_send(bp, req);
11807 }
11808 
11809 static void bnxt_sp_task(struct work_struct *work)
11810 {
11811 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11812 
11813 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11814 	smp_mb__after_atomic();
11815 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11816 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11817 		return;
11818 	}
11819 
11820 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11821 		bnxt_cfg_rx_mode(bp);
11822 
11823 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11824 		bnxt_cfg_ntp_filters(bp);
11825 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11826 		bnxt_hwrm_exec_fwd_req(bp);
11827 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11828 		bnxt_hwrm_port_qstats(bp, 0);
11829 		bnxt_hwrm_port_qstats_ext(bp, 0);
11830 		bnxt_accumulate_all_stats(bp);
11831 	}
11832 
11833 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11834 		int rc;
11835 
11836 		mutex_lock(&bp->link_lock);
11837 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11838 				       &bp->sp_event))
11839 			bnxt_hwrm_phy_qcaps(bp);
11840 
11841 		rc = bnxt_update_link(bp, true);
11842 		if (rc)
11843 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11844 				   rc);
11845 
11846 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11847 				       &bp->sp_event))
11848 			bnxt_init_ethtool_link_settings(bp);
11849 		mutex_unlock(&bp->link_lock);
11850 	}
11851 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11852 		int rc;
11853 
11854 		mutex_lock(&bp->link_lock);
11855 		rc = bnxt_update_phy_setting(bp);
11856 		mutex_unlock(&bp->link_lock);
11857 		if (rc) {
11858 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11859 		} else {
11860 			bp->link_info.phy_retry = false;
11861 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11862 		}
11863 	}
11864 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11865 		mutex_lock(&bp->link_lock);
11866 		bnxt_get_port_module_status(bp);
11867 		mutex_unlock(&bp->link_lock);
11868 	}
11869 
11870 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11871 		bnxt_tc_flow_stats_work(bp);
11872 
11873 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11874 		bnxt_chk_missed_irq(bp);
11875 
11876 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11877 		bnxt_fw_echo_reply(bp);
11878 
11879 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11880 	 * must be the last functions to be called before exiting.
11881 	 */
11882 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11883 		bnxt_reset(bp, false);
11884 
11885 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11886 		bnxt_reset(bp, true);
11887 
11888 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11889 		bnxt_rx_ring_reset(bp);
11890 
11891 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
11892 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
11893 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
11894 			bnxt_devlink_health_fw_report(bp);
11895 		else
11896 			bnxt_fw_reset(bp);
11897 	}
11898 
11899 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11900 		if (!is_bnxt_fw_ok(bp))
11901 			bnxt_devlink_health_fw_report(bp);
11902 	}
11903 
11904 	smp_mb__before_atomic();
11905 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11906 }
11907 
11908 /* Under rtnl_lock */
11909 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11910 		     int tx_xdp)
11911 {
11912 	int max_rx, max_tx, tx_sets = 1;
11913 	int tx_rings_needed, stats;
11914 	int rx_rings = rx;
11915 	int cp, vnics, rc;
11916 
11917 	if (tcs)
11918 		tx_sets = tcs;
11919 
11920 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11921 	if (rc)
11922 		return rc;
11923 
11924 	if (max_rx < rx)
11925 		return -ENOMEM;
11926 
11927 	tx_rings_needed = tx * tx_sets + tx_xdp;
11928 	if (max_tx < tx_rings_needed)
11929 		return -ENOMEM;
11930 
11931 	vnics = 1;
11932 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11933 		vnics += rx_rings;
11934 
11935 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11936 		rx_rings <<= 1;
11937 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11938 	stats = cp;
11939 	if (BNXT_NEW_RM(bp)) {
11940 		cp += bnxt_get_ulp_msix_num(bp);
11941 		stats += bnxt_get_ulp_stat_ctxs(bp);
11942 	}
11943 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11944 				     stats, vnics);
11945 }
11946 
11947 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11948 {
11949 	if (bp->bar2) {
11950 		pci_iounmap(pdev, bp->bar2);
11951 		bp->bar2 = NULL;
11952 	}
11953 
11954 	if (bp->bar1) {
11955 		pci_iounmap(pdev, bp->bar1);
11956 		bp->bar1 = NULL;
11957 	}
11958 
11959 	if (bp->bar0) {
11960 		pci_iounmap(pdev, bp->bar0);
11961 		bp->bar0 = NULL;
11962 	}
11963 }
11964 
11965 static void bnxt_cleanup_pci(struct bnxt *bp)
11966 {
11967 	bnxt_unmap_bars(bp, bp->pdev);
11968 	pci_release_regions(bp->pdev);
11969 	if (pci_is_enabled(bp->pdev))
11970 		pci_disable_device(bp->pdev);
11971 }
11972 
11973 static void bnxt_init_dflt_coal(struct bnxt *bp)
11974 {
11975 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
11976 	struct bnxt_coal *coal;
11977 	u16 flags = 0;
11978 
11979 	if (coal_cap->cmpl_params &
11980 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
11981 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
11982 
11983 	/* Tick values in micro seconds.
11984 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11985 	 */
11986 	coal = &bp->rx_coal;
11987 	coal->coal_ticks = 10;
11988 	coal->coal_bufs = 30;
11989 	coal->coal_ticks_irq = 1;
11990 	coal->coal_bufs_irq = 2;
11991 	coal->idle_thresh = 50;
11992 	coal->bufs_per_record = 2;
11993 	coal->budget = 64;		/* NAPI budget */
11994 	coal->flags = flags;
11995 
11996 	coal = &bp->tx_coal;
11997 	coal->coal_ticks = 28;
11998 	coal->coal_bufs = 30;
11999 	coal->coal_ticks_irq = 2;
12000 	coal->coal_bufs_irq = 2;
12001 	coal->bufs_per_record = 1;
12002 	coal->flags = flags;
12003 
12004 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12005 }
12006 
12007 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12008 {
12009 	int rc;
12010 
12011 	bp->fw_cap = 0;
12012 	rc = bnxt_hwrm_ver_get(bp);
12013 	bnxt_try_map_fw_health_reg(bp);
12014 	if (rc) {
12015 		rc = bnxt_try_recover_fw(bp);
12016 		if (rc)
12017 			return rc;
12018 		rc = bnxt_hwrm_ver_get(bp);
12019 		if (rc)
12020 			return rc;
12021 	}
12022 
12023 	bnxt_nvm_cfg_ver_get(bp);
12024 
12025 	rc = bnxt_hwrm_func_reset(bp);
12026 	if (rc)
12027 		return -ENODEV;
12028 
12029 	bnxt_hwrm_fw_set_time(bp);
12030 	return 0;
12031 }
12032 
12033 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12034 {
12035 	int rc;
12036 
12037 	/* Get the MAX capabilities for this function */
12038 	rc = bnxt_hwrm_func_qcaps(bp);
12039 	if (rc) {
12040 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12041 			   rc);
12042 		return -ENODEV;
12043 	}
12044 
12045 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12046 	if (rc)
12047 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12048 			    rc);
12049 
12050 	if (bnxt_alloc_fw_health(bp)) {
12051 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12052 	} else {
12053 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12054 		if (rc)
12055 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12056 				    rc);
12057 	}
12058 
12059 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12060 	if (rc)
12061 		return -ENODEV;
12062 
12063 	bnxt_hwrm_func_qcfg(bp);
12064 	bnxt_hwrm_vnic_qcaps(bp);
12065 	bnxt_hwrm_port_led_qcaps(bp);
12066 	bnxt_ethtool_init(bp);
12067 	bnxt_dcb_init(bp);
12068 	return 0;
12069 }
12070 
12071 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12072 {
12073 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12074 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12075 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12076 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12077 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12078 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12079 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12080 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12081 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12082 	}
12083 }
12084 
12085 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12086 {
12087 	struct net_device *dev = bp->dev;
12088 
12089 	dev->hw_features &= ~NETIF_F_NTUPLE;
12090 	dev->features &= ~NETIF_F_NTUPLE;
12091 	bp->flags &= ~BNXT_FLAG_RFS;
12092 	if (bnxt_rfs_supported(bp)) {
12093 		dev->hw_features |= NETIF_F_NTUPLE;
12094 		if (bnxt_rfs_capable(bp)) {
12095 			bp->flags |= BNXT_FLAG_RFS;
12096 			dev->features |= NETIF_F_NTUPLE;
12097 		}
12098 	}
12099 }
12100 
12101 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12102 {
12103 	struct pci_dev *pdev = bp->pdev;
12104 
12105 	bnxt_set_dflt_rss_hash_type(bp);
12106 	bnxt_set_dflt_rfs(bp);
12107 
12108 	bnxt_get_wol_settings(bp);
12109 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12110 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12111 	else
12112 		device_set_wakeup_capable(&pdev->dev, false);
12113 
12114 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12115 	bnxt_hwrm_coal_params_qcaps(bp);
12116 }
12117 
12118 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12119 
12120 int bnxt_fw_init_one(struct bnxt *bp)
12121 {
12122 	int rc;
12123 
12124 	rc = bnxt_fw_init_one_p1(bp);
12125 	if (rc) {
12126 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12127 		return rc;
12128 	}
12129 	rc = bnxt_fw_init_one_p2(bp);
12130 	if (rc) {
12131 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12132 		return rc;
12133 	}
12134 	rc = bnxt_probe_phy(bp, false);
12135 	if (rc)
12136 		return rc;
12137 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12138 	if (rc)
12139 		return rc;
12140 
12141 	/* In case fw capabilities have changed, destroy the unneeded
12142 	 * reporters and create newly capable ones.
12143 	 */
12144 	bnxt_dl_fw_reporters_destroy(bp, false);
12145 	bnxt_dl_fw_reporters_create(bp);
12146 	bnxt_fw_init_one_p3(bp);
12147 	return 0;
12148 }
12149 
12150 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12151 {
12152 	struct bnxt_fw_health *fw_health = bp->fw_health;
12153 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12154 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12155 	u32 reg_type, reg_off, delay_msecs;
12156 
12157 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12158 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12159 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12160 	switch (reg_type) {
12161 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12162 		pci_write_config_dword(bp->pdev, reg_off, val);
12163 		break;
12164 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12165 		writel(reg_off & BNXT_GRC_BASE_MASK,
12166 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12167 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12168 		fallthrough;
12169 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12170 		writel(val, bp->bar0 + reg_off);
12171 		break;
12172 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12173 		writel(val, bp->bar1 + reg_off);
12174 		break;
12175 	}
12176 	if (delay_msecs) {
12177 		pci_read_config_dword(bp->pdev, 0, &val);
12178 		msleep(delay_msecs);
12179 	}
12180 }
12181 
12182 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12183 {
12184 	struct hwrm_func_qcfg_output *resp;
12185 	struct hwrm_func_qcfg_input *req;
12186 	bool result = true; /* firmware will enforce if unknown */
12187 
12188 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12189 		return result;
12190 
12191 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12192 		return result;
12193 
12194 	req->fid = cpu_to_le16(0xffff);
12195 	resp = hwrm_req_hold(bp, req);
12196 	if (!hwrm_req_send(bp, req))
12197 		result = !!(le16_to_cpu(resp->flags) &
12198 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12199 	hwrm_req_drop(bp, req);
12200 	return result;
12201 }
12202 
12203 static void bnxt_reset_all(struct bnxt *bp)
12204 {
12205 	struct bnxt_fw_health *fw_health = bp->fw_health;
12206 	int i, rc;
12207 
12208 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12209 		bnxt_fw_reset_via_optee(bp);
12210 		bp->fw_reset_timestamp = jiffies;
12211 		return;
12212 	}
12213 
12214 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12215 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12216 			bnxt_fw_reset_writel(bp, i);
12217 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12218 		struct hwrm_fw_reset_input *req;
12219 
12220 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12221 		if (!rc) {
12222 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12223 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12224 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12225 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12226 			rc = hwrm_req_send(bp, req);
12227 		}
12228 		if (rc != -ENODEV)
12229 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12230 	}
12231 	bp->fw_reset_timestamp = jiffies;
12232 }
12233 
12234 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12235 {
12236 	return time_after(jiffies, bp->fw_reset_timestamp +
12237 			  (bp->fw_reset_max_dsecs * HZ / 10));
12238 }
12239 
12240 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12241 {
12242 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12243 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12244 		bnxt_ulp_start(bp, rc);
12245 		bnxt_dl_health_fw_status_update(bp, false);
12246 	}
12247 	bp->fw_reset_state = 0;
12248 	dev_close(bp->dev);
12249 }
12250 
12251 static void bnxt_fw_reset_task(struct work_struct *work)
12252 {
12253 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12254 	int rc = 0;
12255 
12256 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12257 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12258 		return;
12259 	}
12260 
12261 	switch (bp->fw_reset_state) {
12262 	case BNXT_FW_RESET_STATE_POLL_VF: {
12263 		int n = bnxt_get_registered_vfs(bp);
12264 		int tmo;
12265 
12266 		if (n < 0) {
12267 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12268 				   n, jiffies_to_msecs(jiffies -
12269 				   bp->fw_reset_timestamp));
12270 			goto fw_reset_abort;
12271 		} else if (n > 0) {
12272 			if (bnxt_fw_reset_timeout(bp)) {
12273 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12274 				bp->fw_reset_state = 0;
12275 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12276 					   n);
12277 				return;
12278 			}
12279 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12280 			return;
12281 		}
12282 		bp->fw_reset_timestamp = jiffies;
12283 		rtnl_lock();
12284 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12285 			bnxt_fw_reset_abort(bp, rc);
12286 			rtnl_unlock();
12287 			return;
12288 		}
12289 		bnxt_fw_reset_close(bp);
12290 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12291 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12292 			tmo = HZ / 10;
12293 		} else {
12294 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12295 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12296 		}
12297 		rtnl_unlock();
12298 		bnxt_queue_fw_reset_work(bp, tmo);
12299 		return;
12300 	}
12301 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12302 		u32 val;
12303 
12304 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12305 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12306 		    !bnxt_fw_reset_timeout(bp)) {
12307 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12308 			return;
12309 		}
12310 
12311 		if (!bp->fw_health->primary) {
12312 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12313 
12314 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12315 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12316 			return;
12317 		}
12318 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12319 	}
12320 		fallthrough;
12321 	case BNXT_FW_RESET_STATE_RESET_FW:
12322 		bnxt_reset_all(bp);
12323 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12324 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12325 		return;
12326 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12327 		bnxt_inv_fw_health_reg(bp);
12328 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12329 		    !bp->fw_reset_min_dsecs) {
12330 			u16 val;
12331 
12332 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12333 			if (val == 0xffff) {
12334 				if (bnxt_fw_reset_timeout(bp)) {
12335 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12336 					rc = -ETIMEDOUT;
12337 					goto fw_reset_abort;
12338 				}
12339 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12340 				return;
12341 			}
12342 		}
12343 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12344 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12345 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12346 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12347 			bnxt_dl_remote_reload(bp);
12348 		if (pci_enable_device(bp->pdev)) {
12349 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12350 			rc = -ENODEV;
12351 			goto fw_reset_abort;
12352 		}
12353 		pci_set_master(bp->pdev);
12354 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12355 		fallthrough;
12356 	case BNXT_FW_RESET_STATE_POLL_FW:
12357 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12358 		rc = bnxt_hwrm_poll(bp);
12359 		if (rc) {
12360 			if (bnxt_fw_reset_timeout(bp)) {
12361 				netdev_err(bp->dev, "Firmware reset aborted\n");
12362 				goto fw_reset_abort_status;
12363 			}
12364 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12365 			return;
12366 		}
12367 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12368 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12369 		fallthrough;
12370 	case BNXT_FW_RESET_STATE_OPENING:
12371 		while (!rtnl_trylock()) {
12372 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12373 			return;
12374 		}
12375 		rc = bnxt_open(bp->dev);
12376 		if (rc) {
12377 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12378 			bnxt_fw_reset_abort(bp, rc);
12379 			rtnl_unlock();
12380 			return;
12381 		}
12382 
12383 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12384 		    bp->fw_health->enabled) {
12385 			bp->fw_health->last_fw_reset_cnt =
12386 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12387 		}
12388 		bp->fw_reset_state = 0;
12389 		/* Make sure fw_reset_state is 0 before clearing the flag */
12390 		smp_mb__before_atomic();
12391 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12392 		bnxt_ulp_start(bp, 0);
12393 		bnxt_reenable_sriov(bp);
12394 		bnxt_vf_reps_alloc(bp);
12395 		bnxt_vf_reps_open(bp);
12396 		bnxt_ptp_reapply_pps(bp);
12397 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12398 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12399 			bnxt_dl_health_fw_recovery_done(bp);
12400 			bnxt_dl_health_fw_status_update(bp, true);
12401 		}
12402 		rtnl_unlock();
12403 		break;
12404 	}
12405 	return;
12406 
12407 fw_reset_abort_status:
12408 	if (bp->fw_health->status_reliable ||
12409 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12410 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12411 
12412 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12413 	}
12414 fw_reset_abort:
12415 	rtnl_lock();
12416 	bnxt_fw_reset_abort(bp, rc);
12417 	rtnl_unlock();
12418 }
12419 
12420 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12421 {
12422 	int rc;
12423 	struct bnxt *bp = netdev_priv(dev);
12424 
12425 	SET_NETDEV_DEV(dev, &pdev->dev);
12426 
12427 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12428 	rc = pci_enable_device(pdev);
12429 	if (rc) {
12430 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12431 		goto init_err;
12432 	}
12433 
12434 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12435 		dev_err(&pdev->dev,
12436 			"Cannot find PCI device base address, aborting\n");
12437 		rc = -ENODEV;
12438 		goto init_err_disable;
12439 	}
12440 
12441 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12442 	if (rc) {
12443 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12444 		goto init_err_disable;
12445 	}
12446 
12447 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12448 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12449 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12450 		rc = -EIO;
12451 		goto init_err_release;
12452 	}
12453 
12454 	pci_set_master(pdev);
12455 
12456 	bp->dev = dev;
12457 	bp->pdev = pdev;
12458 
12459 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12460 	 * determines the BAR size.
12461 	 */
12462 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12463 	if (!bp->bar0) {
12464 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12465 		rc = -ENOMEM;
12466 		goto init_err_release;
12467 	}
12468 
12469 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12470 	if (!bp->bar2) {
12471 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12472 		rc = -ENOMEM;
12473 		goto init_err_release;
12474 	}
12475 
12476 	pci_enable_pcie_error_reporting(pdev);
12477 
12478 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12479 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12480 
12481 	spin_lock_init(&bp->ntp_fltr_lock);
12482 #if BITS_PER_LONG == 32
12483 	spin_lock_init(&bp->db_lock);
12484 #endif
12485 
12486 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12487 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12488 
12489 	timer_setup(&bp->timer, bnxt_timer, 0);
12490 	bp->current_interval = BNXT_TIMER_INTERVAL;
12491 
12492 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12493 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12494 
12495 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12496 	return 0;
12497 
12498 init_err_release:
12499 	bnxt_unmap_bars(bp, pdev);
12500 	pci_release_regions(pdev);
12501 
12502 init_err_disable:
12503 	pci_disable_device(pdev);
12504 
12505 init_err:
12506 	return rc;
12507 }
12508 
12509 /* rtnl_lock held */
12510 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12511 {
12512 	struct sockaddr *addr = p;
12513 	struct bnxt *bp = netdev_priv(dev);
12514 	int rc = 0;
12515 
12516 	if (!is_valid_ether_addr(addr->sa_data))
12517 		return -EADDRNOTAVAIL;
12518 
12519 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12520 		return 0;
12521 
12522 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12523 	if (rc)
12524 		return rc;
12525 
12526 	eth_hw_addr_set(dev, addr->sa_data);
12527 	if (netif_running(dev)) {
12528 		bnxt_close_nic(bp, false, false);
12529 		rc = bnxt_open_nic(bp, false, false);
12530 	}
12531 
12532 	return rc;
12533 }
12534 
12535 /* rtnl_lock held */
12536 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12537 {
12538 	struct bnxt *bp = netdev_priv(dev);
12539 
12540 	if (netif_running(dev))
12541 		bnxt_close_nic(bp, true, false);
12542 
12543 	dev->mtu = new_mtu;
12544 	bnxt_set_ring_params(bp);
12545 
12546 	if (netif_running(dev))
12547 		return bnxt_open_nic(bp, true, false);
12548 
12549 	return 0;
12550 }
12551 
12552 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12553 {
12554 	struct bnxt *bp = netdev_priv(dev);
12555 	bool sh = false;
12556 	int rc;
12557 
12558 	if (tc > bp->max_tc) {
12559 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12560 			   tc, bp->max_tc);
12561 		return -EINVAL;
12562 	}
12563 
12564 	if (netdev_get_num_tc(dev) == tc)
12565 		return 0;
12566 
12567 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12568 		sh = true;
12569 
12570 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12571 			      sh, tc, bp->tx_nr_rings_xdp);
12572 	if (rc)
12573 		return rc;
12574 
12575 	/* Needs to close the device and do hw resource re-allocations */
12576 	if (netif_running(bp->dev))
12577 		bnxt_close_nic(bp, true, false);
12578 
12579 	if (tc) {
12580 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12581 		netdev_set_num_tc(dev, tc);
12582 	} else {
12583 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12584 		netdev_reset_tc(dev);
12585 	}
12586 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12587 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12588 			       bp->tx_nr_rings + bp->rx_nr_rings;
12589 
12590 	if (netif_running(bp->dev))
12591 		return bnxt_open_nic(bp, true, false);
12592 
12593 	return 0;
12594 }
12595 
12596 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12597 				  void *cb_priv)
12598 {
12599 	struct bnxt *bp = cb_priv;
12600 
12601 	if (!bnxt_tc_flower_enabled(bp) ||
12602 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12603 		return -EOPNOTSUPP;
12604 
12605 	switch (type) {
12606 	case TC_SETUP_CLSFLOWER:
12607 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12608 	default:
12609 		return -EOPNOTSUPP;
12610 	}
12611 }
12612 
12613 LIST_HEAD(bnxt_block_cb_list);
12614 
12615 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12616 			 void *type_data)
12617 {
12618 	struct bnxt *bp = netdev_priv(dev);
12619 
12620 	switch (type) {
12621 	case TC_SETUP_BLOCK:
12622 		return flow_block_cb_setup_simple(type_data,
12623 						  &bnxt_block_cb_list,
12624 						  bnxt_setup_tc_block_cb,
12625 						  bp, bp, true);
12626 	case TC_SETUP_QDISC_MQPRIO: {
12627 		struct tc_mqprio_qopt *mqprio = type_data;
12628 
12629 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12630 
12631 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12632 	}
12633 	default:
12634 		return -EOPNOTSUPP;
12635 	}
12636 }
12637 
12638 #ifdef CONFIG_RFS_ACCEL
12639 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12640 			    struct bnxt_ntuple_filter *f2)
12641 {
12642 	struct flow_keys *keys1 = &f1->fkeys;
12643 	struct flow_keys *keys2 = &f2->fkeys;
12644 
12645 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12646 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12647 		return false;
12648 
12649 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12650 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12651 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12652 			return false;
12653 	} else {
12654 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12655 			   sizeof(keys1->addrs.v6addrs.src)) ||
12656 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12657 			   sizeof(keys1->addrs.v6addrs.dst)))
12658 			return false;
12659 	}
12660 
12661 	if (keys1->ports.ports == keys2->ports.ports &&
12662 	    keys1->control.flags == keys2->control.flags &&
12663 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12664 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12665 		return true;
12666 
12667 	return false;
12668 }
12669 
12670 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12671 			      u16 rxq_index, u32 flow_id)
12672 {
12673 	struct bnxt *bp = netdev_priv(dev);
12674 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12675 	struct flow_keys *fkeys;
12676 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12677 	int rc = 0, idx, bit_id, l2_idx = 0;
12678 	struct hlist_head *head;
12679 	u32 flags;
12680 
12681 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12682 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12683 		int off = 0, j;
12684 
12685 		netif_addr_lock_bh(dev);
12686 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12687 			if (ether_addr_equal(eth->h_dest,
12688 					     vnic->uc_list + off)) {
12689 				l2_idx = j + 1;
12690 				break;
12691 			}
12692 		}
12693 		netif_addr_unlock_bh(dev);
12694 		if (!l2_idx)
12695 			return -EINVAL;
12696 	}
12697 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12698 	if (!new_fltr)
12699 		return -ENOMEM;
12700 
12701 	fkeys = &new_fltr->fkeys;
12702 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12703 		rc = -EPROTONOSUPPORT;
12704 		goto err_free;
12705 	}
12706 
12707 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12708 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12709 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12710 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12711 		rc = -EPROTONOSUPPORT;
12712 		goto err_free;
12713 	}
12714 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12715 	    bp->hwrm_spec_code < 0x10601) {
12716 		rc = -EPROTONOSUPPORT;
12717 		goto err_free;
12718 	}
12719 	flags = fkeys->control.flags;
12720 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12721 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12722 		rc = -EPROTONOSUPPORT;
12723 		goto err_free;
12724 	}
12725 
12726 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12727 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12728 
12729 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12730 	head = &bp->ntp_fltr_hash_tbl[idx];
12731 	rcu_read_lock();
12732 	hlist_for_each_entry_rcu(fltr, head, hash) {
12733 		if (bnxt_fltr_match(fltr, new_fltr)) {
12734 			rcu_read_unlock();
12735 			rc = 0;
12736 			goto err_free;
12737 		}
12738 	}
12739 	rcu_read_unlock();
12740 
12741 	spin_lock_bh(&bp->ntp_fltr_lock);
12742 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12743 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12744 	if (bit_id < 0) {
12745 		spin_unlock_bh(&bp->ntp_fltr_lock);
12746 		rc = -ENOMEM;
12747 		goto err_free;
12748 	}
12749 
12750 	new_fltr->sw_id = (u16)bit_id;
12751 	new_fltr->flow_id = flow_id;
12752 	new_fltr->l2_fltr_idx = l2_idx;
12753 	new_fltr->rxq = rxq_index;
12754 	hlist_add_head_rcu(&new_fltr->hash, head);
12755 	bp->ntp_fltr_count++;
12756 	spin_unlock_bh(&bp->ntp_fltr_lock);
12757 
12758 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12759 	bnxt_queue_sp_work(bp);
12760 
12761 	return new_fltr->sw_id;
12762 
12763 err_free:
12764 	kfree(new_fltr);
12765 	return rc;
12766 }
12767 
12768 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12769 {
12770 	int i;
12771 
12772 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12773 		struct hlist_head *head;
12774 		struct hlist_node *tmp;
12775 		struct bnxt_ntuple_filter *fltr;
12776 		int rc;
12777 
12778 		head = &bp->ntp_fltr_hash_tbl[i];
12779 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12780 			bool del = false;
12781 
12782 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12783 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12784 							fltr->flow_id,
12785 							fltr->sw_id)) {
12786 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12787 									 fltr);
12788 					del = true;
12789 				}
12790 			} else {
12791 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12792 								       fltr);
12793 				if (rc)
12794 					del = true;
12795 				else
12796 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12797 			}
12798 
12799 			if (del) {
12800 				spin_lock_bh(&bp->ntp_fltr_lock);
12801 				hlist_del_rcu(&fltr->hash);
12802 				bp->ntp_fltr_count--;
12803 				spin_unlock_bh(&bp->ntp_fltr_lock);
12804 				synchronize_rcu();
12805 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12806 				kfree(fltr);
12807 			}
12808 		}
12809 	}
12810 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12811 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12812 }
12813 
12814 #else
12815 
12816 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12817 {
12818 }
12819 
12820 #endif /* CONFIG_RFS_ACCEL */
12821 
12822 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12823 {
12824 	struct bnxt *bp = netdev_priv(netdev);
12825 	struct udp_tunnel_info ti;
12826 	unsigned int cmd;
12827 
12828 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12829 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12830 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12831 	else
12832 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12833 
12834 	if (ti.port)
12835 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12836 
12837 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12838 }
12839 
12840 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12841 	.sync_table	= bnxt_udp_tunnel_sync,
12842 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12843 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12844 	.tables		= {
12845 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12846 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12847 	},
12848 };
12849 
12850 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12851 			       struct net_device *dev, u32 filter_mask,
12852 			       int nlflags)
12853 {
12854 	struct bnxt *bp = netdev_priv(dev);
12855 
12856 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12857 				       nlflags, filter_mask, NULL);
12858 }
12859 
12860 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12861 			       u16 flags, struct netlink_ext_ack *extack)
12862 {
12863 	struct bnxt *bp = netdev_priv(dev);
12864 	struct nlattr *attr, *br_spec;
12865 	int rem, rc = 0;
12866 
12867 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12868 		return -EOPNOTSUPP;
12869 
12870 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12871 	if (!br_spec)
12872 		return -EINVAL;
12873 
12874 	nla_for_each_nested(attr, br_spec, rem) {
12875 		u16 mode;
12876 
12877 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12878 			continue;
12879 
12880 		if (nla_len(attr) < sizeof(mode))
12881 			return -EINVAL;
12882 
12883 		mode = nla_get_u16(attr);
12884 		if (mode == bp->br_mode)
12885 			break;
12886 
12887 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12888 		if (!rc)
12889 			bp->br_mode = mode;
12890 		break;
12891 	}
12892 	return rc;
12893 }
12894 
12895 int bnxt_get_port_parent_id(struct net_device *dev,
12896 			    struct netdev_phys_item_id *ppid)
12897 {
12898 	struct bnxt *bp = netdev_priv(dev);
12899 
12900 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12901 		return -EOPNOTSUPP;
12902 
12903 	/* The PF and it's VF-reps only support the switchdev framework */
12904 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12905 		return -EOPNOTSUPP;
12906 
12907 	ppid->id_len = sizeof(bp->dsn);
12908 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12909 
12910 	return 0;
12911 }
12912 
12913 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12914 {
12915 	struct bnxt *bp = netdev_priv(dev);
12916 
12917 	return &bp->dl_port;
12918 }
12919 
12920 static const struct net_device_ops bnxt_netdev_ops = {
12921 	.ndo_open		= bnxt_open,
12922 	.ndo_start_xmit		= bnxt_start_xmit,
12923 	.ndo_stop		= bnxt_close,
12924 	.ndo_get_stats64	= bnxt_get_stats64,
12925 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12926 	.ndo_eth_ioctl		= bnxt_ioctl,
12927 	.ndo_validate_addr	= eth_validate_addr,
12928 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12929 	.ndo_change_mtu		= bnxt_change_mtu,
12930 	.ndo_fix_features	= bnxt_fix_features,
12931 	.ndo_set_features	= bnxt_set_features,
12932 	.ndo_features_check	= bnxt_features_check,
12933 	.ndo_tx_timeout		= bnxt_tx_timeout,
12934 #ifdef CONFIG_BNXT_SRIOV
12935 	.ndo_get_vf_config	= bnxt_get_vf_config,
12936 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12937 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12938 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12939 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12940 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12941 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12942 #endif
12943 	.ndo_setup_tc           = bnxt_setup_tc,
12944 #ifdef CONFIG_RFS_ACCEL
12945 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12946 #endif
12947 	.ndo_bpf		= bnxt_xdp,
12948 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12949 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12950 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12951 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12952 };
12953 
12954 static void bnxt_remove_one(struct pci_dev *pdev)
12955 {
12956 	struct net_device *dev = pci_get_drvdata(pdev);
12957 	struct bnxt *bp = netdev_priv(dev);
12958 
12959 	if (BNXT_PF(bp))
12960 		bnxt_sriov_disable(bp);
12961 
12962 	if (BNXT_PF(bp))
12963 		devlink_port_type_clear(&bp->dl_port);
12964 
12965 	bnxt_ptp_clear(bp);
12966 	pci_disable_pcie_error_reporting(pdev);
12967 	unregister_netdev(dev);
12968 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12969 	/* Flush any pending tasks */
12970 	cancel_work_sync(&bp->sp_task);
12971 	cancel_delayed_work_sync(&bp->fw_reset_task);
12972 	bp->sp_event = 0;
12973 
12974 	bnxt_dl_fw_reporters_destroy(bp, true);
12975 	bnxt_dl_unregister(bp);
12976 	bnxt_shutdown_tc(bp);
12977 
12978 	bnxt_clear_int_mode(bp);
12979 	bnxt_hwrm_func_drv_unrgtr(bp);
12980 	bnxt_free_hwrm_resources(bp);
12981 	bnxt_ethtool_free(bp);
12982 	bnxt_dcb_free(bp);
12983 	kfree(bp->edev);
12984 	bp->edev = NULL;
12985 	kfree(bp->ptp_cfg);
12986 	bp->ptp_cfg = NULL;
12987 	kfree(bp->fw_health);
12988 	bp->fw_health = NULL;
12989 	bnxt_cleanup_pci(bp);
12990 	bnxt_free_ctx_mem(bp);
12991 	kfree(bp->ctx);
12992 	bp->ctx = NULL;
12993 	kfree(bp->rss_indir_tbl);
12994 	bp->rss_indir_tbl = NULL;
12995 	bnxt_free_port_stats(bp);
12996 	free_netdev(dev);
12997 }
12998 
12999 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13000 {
13001 	int rc = 0;
13002 	struct bnxt_link_info *link_info = &bp->link_info;
13003 
13004 	bp->phy_flags = 0;
13005 	rc = bnxt_hwrm_phy_qcaps(bp);
13006 	if (rc) {
13007 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13008 			   rc);
13009 		return rc;
13010 	}
13011 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13012 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13013 	else
13014 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13015 	if (!fw_dflt)
13016 		return 0;
13017 
13018 	mutex_lock(&bp->link_lock);
13019 	rc = bnxt_update_link(bp, false);
13020 	if (rc) {
13021 		mutex_unlock(&bp->link_lock);
13022 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13023 			   rc);
13024 		return rc;
13025 	}
13026 
13027 	/* Older firmware does not have supported_auto_speeds, so assume
13028 	 * that all supported speeds can be autonegotiated.
13029 	 */
13030 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13031 		link_info->support_auto_speeds = link_info->support_speeds;
13032 
13033 	bnxt_init_ethtool_link_settings(bp);
13034 	mutex_unlock(&bp->link_lock);
13035 	return 0;
13036 }
13037 
13038 static int bnxt_get_max_irq(struct pci_dev *pdev)
13039 {
13040 	u16 ctrl;
13041 
13042 	if (!pdev->msix_cap)
13043 		return 1;
13044 
13045 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13046 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13047 }
13048 
13049 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13050 				int *max_cp)
13051 {
13052 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13053 	int max_ring_grps = 0, max_irq;
13054 
13055 	*max_tx = hw_resc->max_tx_rings;
13056 	*max_rx = hw_resc->max_rx_rings;
13057 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13058 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13059 			bnxt_get_ulp_msix_num(bp),
13060 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13061 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13062 		*max_cp = min_t(int, *max_cp, max_irq);
13063 	max_ring_grps = hw_resc->max_hw_ring_grps;
13064 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13065 		*max_cp -= 1;
13066 		*max_rx -= 2;
13067 	}
13068 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13069 		*max_rx >>= 1;
13070 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13071 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13072 		/* On P5 chips, max_cp output param should be available NQs */
13073 		*max_cp = max_irq;
13074 	}
13075 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13076 }
13077 
13078 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13079 {
13080 	int rx, tx, cp;
13081 
13082 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13083 	*max_rx = rx;
13084 	*max_tx = tx;
13085 	if (!rx || !tx || !cp)
13086 		return -ENOMEM;
13087 
13088 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13089 }
13090 
13091 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13092 			       bool shared)
13093 {
13094 	int rc;
13095 
13096 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13097 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13098 		/* Not enough rings, try disabling agg rings. */
13099 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13100 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13101 		if (rc) {
13102 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13103 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13104 			return rc;
13105 		}
13106 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13107 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13108 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13109 		bnxt_set_ring_params(bp);
13110 	}
13111 
13112 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13113 		int max_cp, max_stat, max_irq;
13114 
13115 		/* Reserve minimum resources for RoCE */
13116 		max_cp = bnxt_get_max_func_cp_rings(bp);
13117 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13118 		max_irq = bnxt_get_max_func_irqs(bp);
13119 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13120 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13121 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13122 			return 0;
13123 
13124 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13125 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13126 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13127 		max_cp = min_t(int, max_cp, max_irq);
13128 		max_cp = min_t(int, max_cp, max_stat);
13129 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13130 		if (rc)
13131 			rc = 0;
13132 	}
13133 	return rc;
13134 }
13135 
13136 /* In initial default shared ring setting, each shared ring must have a
13137  * RX/TX ring pair.
13138  */
13139 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13140 {
13141 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13142 	bp->rx_nr_rings = bp->cp_nr_rings;
13143 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13144 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13145 }
13146 
13147 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13148 {
13149 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13150 
13151 	if (!bnxt_can_reserve_rings(bp))
13152 		return 0;
13153 
13154 	if (sh)
13155 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13156 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13157 	/* Reduce default rings on multi-port cards so that total default
13158 	 * rings do not exceed CPU count.
13159 	 */
13160 	if (bp->port_count > 1) {
13161 		int max_rings =
13162 			max_t(int, num_online_cpus() / bp->port_count, 1);
13163 
13164 		dflt_rings = min_t(int, dflt_rings, max_rings);
13165 	}
13166 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13167 	if (rc)
13168 		return rc;
13169 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13170 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13171 	if (sh)
13172 		bnxt_trim_dflt_sh_rings(bp);
13173 	else
13174 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13175 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13176 
13177 	rc = __bnxt_reserve_rings(bp);
13178 	if (rc && rc != -ENODEV)
13179 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13180 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13181 	if (sh)
13182 		bnxt_trim_dflt_sh_rings(bp);
13183 
13184 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13185 	if (bnxt_need_reserve_rings(bp)) {
13186 		rc = __bnxt_reserve_rings(bp);
13187 		if (rc && rc != -ENODEV)
13188 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13189 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13190 	}
13191 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13192 		bp->rx_nr_rings++;
13193 		bp->cp_nr_rings++;
13194 	}
13195 	if (rc) {
13196 		bp->tx_nr_rings = 0;
13197 		bp->rx_nr_rings = 0;
13198 	}
13199 	return rc;
13200 }
13201 
13202 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13203 {
13204 	int rc;
13205 
13206 	if (bp->tx_nr_rings)
13207 		return 0;
13208 
13209 	bnxt_ulp_irq_stop(bp);
13210 	bnxt_clear_int_mode(bp);
13211 	rc = bnxt_set_dflt_rings(bp, true);
13212 	if (rc) {
13213 		if (BNXT_VF(bp) && rc == -ENODEV)
13214 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13215 		else
13216 			netdev_err(bp->dev, "Not enough rings available.\n");
13217 		goto init_dflt_ring_err;
13218 	}
13219 	rc = bnxt_init_int_mode(bp);
13220 	if (rc)
13221 		goto init_dflt_ring_err;
13222 
13223 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13224 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
13225 		bp->flags |= BNXT_FLAG_RFS;
13226 		bp->dev->features |= NETIF_F_NTUPLE;
13227 	}
13228 init_dflt_ring_err:
13229 	bnxt_ulp_irq_restart(bp, rc);
13230 	return rc;
13231 }
13232 
13233 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13234 {
13235 	int rc;
13236 
13237 	ASSERT_RTNL();
13238 	bnxt_hwrm_func_qcaps(bp);
13239 
13240 	if (netif_running(bp->dev))
13241 		__bnxt_close_nic(bp, true, false);
13242 
13243 	bnxt_ulp_irq_stop(bp);
13244 	bnxt_clear_int_mode(bp);
13245 	rc = bnxt_init_int_mode(bp);
13246 	bnxt_ulp_irq_restart(bp, rc);
13247 
13248 	if (netif_running(bp->dev)) {
13249 		if (rc)
13250 			dev_close(bp->dev);
13251 		else
13252 			rc = bnxt_open_nic(bp, true, false);
13253 	}
13254 
13255 	return rc;
13256 }
13257 
13258 static int bnxt_init_mac_addr(struct bnxt *bp)
13259 {
13260 	int rc = 0;
13261 
13262 	if (BNXT_PF(bp)) {
13263 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13264 	} else {
13265 #ifdef CONFIG_BNXT_SRIOV
13266 		struct bnxt_vf_info *vf = &bp->vf;
13267 		bool strict_approval = true;
13268 
13269 		if (is_valid_ether_addr(vf->mac_addr)) {
13270 			/* overwrite netdev dev_addr with admin VF MAC */
13271 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13272 			/* Older PF driver or firmware may not approve this
13273 			 * correctly.
13274 			 */
13275 			strict_approval = false;
13276 		} else {
13277 			eth_hw_addr_random(bp->dev);
13278 		}
13279 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13280 #endif
13281 	}
13282 	return rc;
13283 }
13284 
13285 static void bnxt_vpd_read_info(struct bnxt *bp)
13286 {
13287 	struct pci_dev *pdev = bp->pdev;
13288 	unsigned int vpd_size, kw_len;
13289 	int pos, size;
13290 	u8 *vpd_data;
13291 
13292 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13293 	if (IS_ERR(vpd_data)) {
13294 		pci_warn(pdev, "Unable to read VPD\n");
13295 		return;
13296 	}
13297 
13298 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13299 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13300 	if (pos < 0)
13301 		goto read_sn;
13302 
13303 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13304 	memcpy(bp->board_partno, &vpd_data[pos], size);
13305 
13306 read_sn:
13307 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13308 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13309 					   &kw_len);
13310 	if (pos < 0)
13311 		goto exit;
13312 
13313 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13314 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13315 exit:
13316 	kfree(vpd_data);
13317 }
13318 
13319 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13320 {
13321 	struct pci_dev *pdev = bp->pdev;
13322 	u64 qword;
13323 
13324 	qword = pci_get_dsn(pdev);
13325 	if (!qword) {
13326 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13327 		return -EOPNOTSUPP;
13328 	}
13329 
13330 	put_unaligned_le64(qword, dsn);
13331 
13332 	bp->flags |= BNXT_FLAG_DSN_VALID;
13333 	return 0;
13334 }
13335 
13336 static int bnxt_map_db_bar(struct bnxt *bp)
13337 {
13338 	if (!bp->db_size)
13339 		return -ENODEV;
13340 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13341 	if (!bp->bar1)
13342 		return -ENOMEM;
13343 	return 0;
13344 }
13345 
13346 void bnxt_print_device_info(struct bnxt *bp)
13347 {
13348 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13349 		    board_info[bp->board_idx].name,
13350 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13351 
13352 	pcie_print_link_status(bp->pdev);
13353 }
13354 
13355 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13356 {
13357 	struct net_device *dev;
13358 	struct bnxt *bp;
13359 	int rc, max_irqs;
13360 
13361 	if (pci_is_bridge(pdev))
13362 		return -ENODEV;
13363 
13364 	/* Clear any pending DMA transactions from crash kernel
13365 	 * while loading driver in capture kernel.
13366 	 */
13367 	if (is_kdump_kernel()) {
13368 		pci_clear_master(pdev);
13369 		pcie_flr(pdev);
13370 	}
13371 
13372 	max_irqs = bnxt_get_max_irq(pdev);
13373 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13374 	if (!dev)
13375 		return -ENOMEM;
13376 
13377 	bp = netdev_priv(dev);
13378 	bp->board_idx = ent->driver_data;
13379 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13380 	bnxt_set_max_func_irqs(bp, max_irqs);
13381 
13382 	if (bnxt_vf_pciid(bp->board_idx))
13383 		bp->flags |= BNXT_FLAG_VF;
13384 
13385 	if (pdev->msix_cap)
13386 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13387 
13388 	rc = bnxt_init_board(pdev, dev);
13389 	if (rc < 0)
13390 		goto init_err_free;
13391 
13392 	dev->netdev_ops = &bnxt_netdev_ops;
13393 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13394 	dev->ethtool_ops = &bnxt_ethtool_ops;
13395 	pci_set_drvdata(pdev, dev);
13396 
13397 	rc = bnxt_alloc_hwrm_resources(bp);
13398 	if (rc)
13399 		goto init_err_pci_clean;
13400 
13401 	mutex_init(&bp->hwrm_cmd_lock);
13402 	mutex_init(&bp->link_lock);
13403 
13404 	rc = bnxt_fw_init_one_p1(bp);
13405 	if (rc)
13406 		goto init_err_pci_clean;
13407 
13408 	if (BNXT_PF(bp))
13409 		bnxt_vpd_read_info(bp);
13410 
13411 	if (BNXT_CHIP_P5(bp)) {
13412 		bp->flags |= BNXT_FLAG_CHIP_P5;
13413 		if (BNXT_CHIP_SR2(bp))
13414 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13415 	}
13416 
13417 	rc = bnxt_alloc_rss_indir_tbl(bp);
13418 	if (rc)
13419 		goto init_err_pci_clean;
13420 
13421 	rc = bnxt_fw_init_one_p2(bp);
13422 	if (rc)
13423 		goto init_err_pci_clean;
13424 
13425 	rc = bnxt_map_db_bar(bp);
13426 	if (rc) {
13427 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13428 			rc);
13429 		goto init_err_pci_clean;
13430 	}
13431 
13432 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13433 			   NETIF_F_TSO | NETIF_F_TSO6 |
13434 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13435 			   NETIF_F_GSO_IPXIP4 |
13436 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13437 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13438 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13439 
13440 	if (BNXT_SUPPORTS_TPA(bp))
13441 		dev->hw_features |= NETIF_F_LRO;
13442 
13443 	dev->hw_enc_features =
13444 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13445 			NETIF_F_TSO | NETIF_F_TSO6 |
13446 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13447 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13448 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13449 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13450 
13451 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13452 				    NETIF_F_GSO_GRE_CSUM;
13453 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13454 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13455 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13456 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13457 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13458 	if (BNXT_SUPPORTS_TPA(bp))
13459 		dev->hw_features |= NETIF_F_GRO_HW;
13460 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13461 	if (dev->features & NETIF_F_GRO_HW)
13462 		dev->features &= ~NETIF_F_LRO;
13463 	dev->priv_flags |= IFF_UNICAST_FLT;
13464 
13465 #ifdef CONFIG_BNXT_SRIOV
13466 	init_waitqueue_head(&bp->sriov_cfg_wait);
13467 	mutex_init(&bp->sriov_lock);
13468 #endif
13469 	if (BNXT_SUPPORTS_TPA(bp)) {
13470 		bp->gro_func = bnxt_gro_func_5730x;
13471 		if (BNXT_CHIP_P4(bp))
13472 			bp->gro_func = bnxt_gro_func_5731x;
13473 		else if (BNXT_CHIP_P5(bp))
13474 			bp->gro_func = bnxt_gro_func_5750x;
13475 	}
13476 	if (!BNXT_CHIP_P4_PLUS(bp))
13477 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13478 
13479 	rc = bnxt_init_mac_addr(bp);
13480 	if (rc) {
13481 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13482 		rc = -EADDRNOTAVAIL;
13483 		goto init_err_pci_clean;
13484 	}
13485 
13486 	if (BNXT_PF(bp)) {
13487 		/* Read the adapter's DSN to use as the eswitch switch_id */
13488 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13489 	}
13490 
13491 	/* MTU range: 60 - FW defined max */
13492 	dev->min_mtu = ETH_ZLEN;
13493 	dev->max_mtu = bp->max_mtu;
13494 
13495 	rc = bnxt_probe_phy(bp, true);
13496 	if (rc)
13497 		goto init_err_pci_clean;
13498 
13499 	bnxt_set_rx_skb_mode(bp, false);
13500 	bnxt_set_tpa_flags(bp);
13501 	bnxt_set_ring_params(bp);
13502 	rc = bnxt_set_dflt_rings(bp, true);
13503 	if (rc) {
13504 		if (BNXT_VF(bp) && rc == -ENODEV) {
13505 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13506 		} else {
13507 			netdev_err(bp->dev, "Not enough rings available.\n");
13508 			rc = -ENOMEM;
13509 		}
13510 		goto init_err_pci_clean;
13511 	}
13512 
13513 	bnxt_fw_init_one_p3(bp);
13514 
13515 	bnxt_init_dflt_coal(bp);
13516 
13517 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13518 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13519 
13520 	rc = bnxt_init_int_mode(bp);
13521 	if (rc)
13522 		goto init_err_pci_clean;
13523 
13524 	/* No TC has been set yet and rings may have been trimmed due to
13525 	 * limited MSIX, so we re-initialize the TX rings per TC.
13526 	 */
13527 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13528 
13529 	if (BNXT_PF(bp)) {
13530 		if (!bnxt_pf_wq) {
13531 			bnxt_pf_wq =
13532 				create_singlethread_workqueue("bnxt_pf_wq");
13533 			if (!bnxt_pf_wq) {
13534 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13535 				rc = -ENOMEM;
13536 				goto init_err_pci_clean;
13537 			}
13538 		}
13539 		rc = bnxt_init_tc(bp);
13540 		if (rc)
13541 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13542 				   rc);
13543 	}
13544 
13545 	bnxt_inv_fw_health_reg(bp);
13546 	rc = bnxt_dl_register(bp);
13547 	if (rc)
13548 		goto init_err_dl;
13549 
13550 	rc = register_netdev(dev);
13551 	if (rc)
13552 		goto init_err_cleanup;
13553 
13554 	if (BNXT_PF(bp))
13555 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13556 	bnxt_dl_fw_reporters_create(bp);
13557 
13558 	bnxt_print_device_info(bp);
13559 
13560 	pci_save_state(pdev);
13561 	return 0;
13562 
13563 init_err_cleanup:
13564 	bnxt_dl_unregister(bp);
13565 init_err_dl:
13566 	bnxt_shutdown_tc(bp);
13567 	bnxt_clear_int_mode(bp);
13568 
13569 init_err_pci_clean:
13570 	bnxt_hwrm_func_drv_unrgtr(bp);
13571 	bnxt_free_hwrm_resources(bp);
13572 	bnxt_ethtool_free(bp);
13573 	bnxt_ptp_clear(bp);
13574 	kfree(bp->ptp_cfg);
13575 	bp->ptp_cfg = NULL;
13576 	kfree(bp->fw_health);
13577 	bp->fw_health = NULL;
13578 	bnxt_cleanup_pci(bp);
13579 	bnxt_free_ctx_mem(bp);
13580 	kfree(bp->ctx);
13581 	bp->ctx = NULL;
13582 	kfree(bp->rss_indir_tbl);
13583 	bp->rss_indir_tbl = NULL;
13584 
13585 init_err_free:
13586 	free_netdev(dev);
13587 	return rc;
13588 }
13589 
13590 static void bnxt_shutdown(struct pci_dev *pdev)
13591 {
13592 	struct net_device *dev = pci_get_drvdata(pdev);
13593 	struct bnxt *bp;
13594 
13595 	if (!dev)
13596 		return;
13597 
13598 	rtnl_lock();
13599 	bp = netdev_priv(dev);
13600 	if (!bp)
13601 		goto shutdown_exit;
13602 
13603 	if (netif_running(dev))
13604 		dev_close(dev);
13605 
13606 	bnxt_ulp_shutdown(bp);
13607 	bnxt_clear_int_mode(bp);
13608 	pci_disable_device(pdev);
13609 
13610 	if (system_state == SYSTEM_POWER_OFF) {
13611 		pci_wake_from_d3(pdev, bp->wol);
13612 		pci_set_power_state(pdev, PCI_D3hot);
13613 	}
13614 
13615 shutdown_exit:
13616 	rtnl_unlock();
13617 }
13618 
13619 #ifdef CONFIG_PM_SLEEP
13620 static int bnxt_suspend(struct device *device)
13621 {
13622 	struct net_device *dev = dev_get_drvdata(device);
13623 	struct bnxt *bp = netdev_priv(dev);
13624 	int rc = 0;
13625 
13626 	rtnl_lock();
13627 	bnxt_ulp_stop(bp);
13628 	if (netif_running(dev)) {
13629 		netif_device_detach(dev);
13630 		rc = bnxt_close(dev);
13631 	}
13632 	bnxt_hwrm_func_drv_unrgtr(bp);
13633 	pci_disable_device(bp->pdev);
13634 	bnxt_free_ctx_mem(bp);
13635 	kfree(bp->ctx);
13636 	bp->ctx = NULL;
13637 	rtnl_unlock();
13638 	return rc;
13639 }
13640 
13641 static int bnxt_resume(struct device *device)
13642 {
13643 	struct net_device *dev = dev_get_drvdata(device);
13644 	struct bnxt *bp = netdev_priv(dev);
13645 	int rc = 0;
13646 
13647 	rtnl_lock();
13648 	rc = pci_enable_device(bp->pdev);
13649 	if (rc) {
13650 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13651 			   rc);
13652 		goto resume_exit;
13653 	}
13654 	pci_set_master(bp->pdev);
13655 	if (bnxt_hwrm_ver_get(bp)) {
13656 		rc = -ENODEV;
13657 		goto resume_exit;
13658 	}
13659 	rc = bnxt_hwrm_func_reset(bp);
13660 	if (rc) {
13661 		rc = -EBUSY;
13662 		goto resume_exit;
13663 	}
13664 
13665 	rc = bnxt_hwrm_func_qcaps(bp);
13666 	if (rc)
13667 		goto resume_exit;
13668 
13669 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13670 		rc = -ENODEV;
13671 		goto resume_exit;
13672 	}
13673 
13674 	bnxt_get_wol_settings(bp);
13675 	if (netif_running(dev)) {
13676 		rc = bnxt_open(dev);
13677 		if (!rc)
13678 			netif_device_attach(dev);
13679 	}
13680 
13681 resume_exit:
13682 	bnxt_ulp_start(bp, rc);
13683 	if (!rc)
13684 		bnxt_reenable_sriov(bp);
13685 	rtnl_unlock();
13686 	return rc;
13687 }
13688 
13689 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13690 #define BNXT_PM_OPS (&bnxt_pm_ops)
13691 
13692 #else
13693 
13694 #define BNXT_PM_OPS NULL
13695 
13696 #endif /* CONFIG_PM_SLEEP */
13697 
13698 /**
13699  * bnxt_io_error_detected - called when PCI error is detected
13700  * @pdev: Pointer to PCI device
13701  * @state: The current pci connection state
13702  *
13703  * This function is called after a PCI bus error affecting
13704  * this device has been detected.
13705  */
13706 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13707 					       pci_channel_state_t state)
13708 {
13709 	struct net_device *netdev = pci_get_drvdata(pdev);
13710 	struct bnxt *bp = netdev_priv(netdev);
13711 
13712 	netdev_info(netdev, "PCI I/O error detected\n");
13713 
13714 	rtnl_lock();
13715 	netif_device_detach(netdev);
13716 
13717 	bnxt_ulp_stop(bp);
13718 
13719 	if (state == pci_channel_io_perm_failure) {
13720 		rtnl_unlock();
13721 		return PCI_ERS_RESULT_DISCONNECT;
13722 	}
13723 
13724 	if (state == pci_channel_io_frozen)
13725 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13726 
13727 	if (netif_running(netdev))
13728 		bnxt_close(netdev);
13729 
13730 	if (pci_is_enabled(pdev))
13731 		pci_disable_device(pdev);
13732 	bnxt_free_ctx_mem(bp);
13733 	kfree(bp->ctx);
13734 	bp->ctx = NULL;
13735 	rtnl_unlock();
13736 
13737 	/* Request a slot slot reset. */
13738 	return PCI_ERS_RESULT_NEED_RESET;
13739 }
13740 
13741 /**
13742  * bnxt_io_slot_reset - called after the pci bus has been reset.
13743  * @pdev: Pointer to PCI device
13744  *
13745  * Restart the card from scratch, as if from a cold-boot.
13746  * At this point, the card has exprienced a hard reset,
13747  * followed by fixups by BIOS, and has its config space
13748  * set up identically to what it was at cold boot.
13749  */
13750 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13751 {
13752 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13753 	struct net_device *netdev = pci_get_drvdata(pdev);
13754 	struct bnxt *bp = netdev_priv(netdev);
13755 	int err = 0, off;
13756 
13757 	netdev_info(bp->dev, "PCI Slot Reset\n");
13758 
13759 	rtnl_lock();
13760 
13761 	if (pci_enable_device(pdev)) {
13762 		dev_err(&pdev->dev,
13763 			"Cannot re-enable PCI device after reset.\n");
13764 	} else {
13765 		pci_set_master(pdev);
13766 		/* Upon fatal error, our device internal logic that latches to
13767 		 * BAR value is getting reset and will restore only upon
13768 		 * rewritting the BARs.
13769 		 *
13770 		 * As pci_restore_state() does not re-write the BARs if the
13771 		 * value is same as saved value earlier, driver needs to
13772 		 * write the BARs to 0 to force restore, in case of fatal error.
13773 		 */
13774 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13775 				       &bp->state)) {
13776 			for (off = PCI_BASE_ADDRESS_0;
13777 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13778 				pci_write_config_dword(bp->pdev, off, 0);
13779 		}
13780 		pci_restore_state(pdev);
13781 		pci_save_state(pdev);
13782 
13783 		err = bnxt_hwrm_func_reset(bp);
13784 		if (!err)
13785 			result = PCI_ERS_RESULT_RECOVERED;
13786 	}
13787 
13788 	rtnl_unlock();
13789 
13790 	return result;
13791 }
13792 
13793 /**
13794  * bnxt_io_resume - called when traffic can start flowing again.
13795  * @pdev: Pointer to PCI device
13796  *
13797  * This callback is called when the error recovery driver tells
13798  * us that its OK to resume normal operation.
13799  */
13800 static void bnxt_io_resume(struct pci_dev *pdev)
13801 {
13802 	struct net_device *netdev = pci_get_drvdata(pdev);
13803 	struct bnxt *bp = netdev_priv(netdev);
13804 	int err;
13805 
13806 	netdev_info(bp->dev, "PCI Slot Resume\n");
13807 	rtnl_lock();
13808 
13809 	err = bnxt_hwrm_func_qcaps(bp);
13810 	if (!err && netif_running(netdev))
13811 		err = bnxt_open(netdev);
13812 
13813 	bnxt_ulp_start(bp, err);
13814 	if (!err) {
13815 		bnxt_reenable_sriov(bp);
13816 		netif_device_attach(netdev);
13817 	}
13818 
13819 	rtnl_unlock();
13820 }
13821 
13822 static const struct pci_error_handlers bnxt_err_handler = {
13823 	.error_detected	= bnxt_io_error_detected,
13824 	.slot_reset	= bnxt_io_slot_reset,
13825 	.resume		= bnxt_io_resume
13826 };
13827 
13828 static struct pci_driver bnxt_pci_driver = {
13829 	.name		= DRV_MODULE_NAME,
13830 	.id_table	= bnxt_pci_tbl,
13831 	.probe		= bnxt_init_one,
13832 	.remove		= bnxt_remove_one,
13833 	.shutdown	= bnxt_shutdown,
13834 	.driver.pm	= BNXT_PM_OPS,
13835 	.err_handler	= &bnxt_err_handler,
13836 #if defined(CONFIG_BNXT_SRIOV)
13837 	.sriov_configure = bnxt_sriov_configure,
13838 #endif
13839 };
13840 
13841 static int __init bnxt_init(void)
13842 {
13843 	bnxt_debug_init();
13844 	return pci_register_driver(&bnxt_pci_driver);
13845 }
13846 
13847 static void __exit bnxt_exit(void)
13848 {
13849 	pci_unregister_driver(&bnxt_pci_driver);
13850 	if (bnxt_pf_wq)
13851 		destroy_workqueue(bnxt_pf_wq);
13852 	bnxt_debug_exit();
13853 }
13854 
13855 module_init(bnxt_init);
13856 module_exit(bnxt_exit);
13857