1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/aer.h> 52 #include <linux/bitmap.h> 53 #include <linux/cpu_rmap.h> 54 #include <linux/cpumask.h> 55 #include <net/pkt_cls.h> 56 #include <linux/hwmon.h> 57 #include <linux/hwmon-sysfs.h> 58 #include <net/page_pool.h> 59 #include <linux/align.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_hwrm.h" 64 #include "bnxt_ulp.h" 65 #include "bnxt_sriov.h" 66 #include "bnxt_ethtool.h" 67 #include "bnxt_dcb.h" 68 #include "bnxt_xdp.h" 69 #include "bnxt_ptp.h" 70 #include "bnxt_vfr.h" 71 #include "bnxt_tc.h" 72 #include "bnxt_devlink.h" 73 #include "bnxt_debugfs.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 /* indexed by enum board_idx */ 89 static const struct { 90 char *name; 91 } board_info[] = { 92 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 93 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 94 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 95 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 96 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 97 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 98 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 99 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 100 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 101 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 102 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 103 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 104 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 105 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 106 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 108 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 109 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 110 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 111 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 112 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 113 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 114 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 115 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 116 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 117 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 118 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 119 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 120 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 121 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 123 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 124 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 125 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 126 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 127 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 128 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 129 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 130 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 131 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 132 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 133 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 134 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 135 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 136 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 137 }; 138 139 static const struct pci_device_id bnxt_pci_tbl[] = { 140 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 141 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 142 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 143 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 144 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 145 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 146 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 147 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 149 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 150 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 155 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 160 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 161 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 162 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 163 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 164 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 166 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 174 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 175 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 176 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 177 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 178 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 183 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 184 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 185 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 186 #ifdef CONFIG_BNXT_SRIOV 187 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 188 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 189 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 190 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 191 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 192 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 193 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 202 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 208 #endif 209 { 0 } 210 }; 211 212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 213 214 static const u16 bnxt_vf_req_snif[] = { 215 HWRM_FUNC_CFG, 216 HWRM_FUNC_VF_CFG, 217 HWRM_PORT_PHY_QCFG, 218 HWRM_CFA_L2_FILTER_ALLOC, 219 }; 220 221 static const u16 bnxt_async_events_arr[] = { 222 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 223 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 224 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 225 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 226 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 228 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 229 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 230 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 231 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 232 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 233 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 234 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 235 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 236 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 237 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 238 }; 239 240 static struct workqueue_struct *bnxt_pf_wq; 241 242 static bool bnxt_vf_pciid(enum board_idx idx) 243 { 244 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 245 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 246 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 247 idx == NETXTREME_E_P5_VF_HV); 248 } 249 250 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 251 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 252 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 253 254 #define BNXT_CP_DB_IRQ_DIS(db) \ 255 writel(DB_CP_IRQ_DIS_FLAGS, db) 256 257 #define BNXT_DB_CQ(db, idx) \ 258 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 259 260 #define BNXT_DB_NQ_P5(db, idx) \ 261 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 262 (db)->doorbell) 263 264 #define BNXT_DB_CQ_ARM(db, idx) \ 265 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 266 267 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 268 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 269 (db)->doorbell) 270 271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 272 { 273 if (bp->flags & BNXT_FLAG_CHIP_P5) 274 BNXT_DB_NQ_P5(db, idx); 275 else 276 BNXT_DB_CQ(db, idx); 277 } 278 279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 280 { 281 if (bp->flags & BNXT_FLAG_CHIP_P5) 282 BNXT_DB_NQ_ARM_P5(db, idx); 283 else 284 BNXT_DB_CQ_ARM(db, idx); 285 } 286 287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 288 { 289 if (bp->flags & BNXT_FLAG_CHIP_P5) 290 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 291 RING_CMP(idx), db->doorbell); 292 else 293 BNXT_DB_CQ(db, idx); 294 } 295 296 const u16 bnxt_lhint_arr[] = { 297 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 298 TX_BD_FLAGS_LHINT_512_TO_1023, 299 TX_BD_FLAGS_LHINT_1024_TO_2047, 300 TX_BD_FLAGS_LHINT_1024_TO_2047, 301 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 302 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 303 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 304 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 305 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 306 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 307 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 308 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 309 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 310 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 311 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 312 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 313 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 314 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 315 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 316 }; 317 318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 319 { 320 struct metadata_dst *md_dst = skb_metadata_dst(skb); 321 322 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 323 return 0; 324 325 return md_dst->u.port_info.port_id; 326 } 327 328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 329 u16 prod) 330 { 331 bnxt_db_write(bp, &txr->tx_db, prod); 332 txr->kick_pending = 0; 333 } 334 335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 336 struct bnxt_tx_ring_info *txr, 337 struct netdev_queue *txq) 338 { 339 netif_tx_stop_queue(txq); 340 341 /* netif_tx_stop_queue() must be done before checking 342 * tx index in bnxt_tx_avail() below, because in 343 * bnxt_tx_int(), we update tx index before checking for 344 * netif_tx_queue_stopped(). 345 */ 346 smp_mb(); 347 if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) { 348 netif_tx_wake_queue(txq); 349 return false; 350 } 351 352 return true; 353 } 354 355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 356 { 357 struct bnxt *bp = netdev_priv(dev); 358 struct tx_bd *txbd; 359 struct tx_bd_ext *txbd1; 360 struct netdev_queue *txq; 361 int i; 362 dma_addr_t mapping; 363 unsigned int length, pad = 0; 364 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 365 u16 prod, last_frag; 366 struct pci_dev *pdev = bp->pdev; 367 struct bnxt_tx_ring_info *txr; 368 struct bnxt_sw_tx_bd *tx_buf; 369 __le32 lflags = 0; 370 371 i = skb_get_queue_mapping(skb); 372 if (unlikely(i >= bp->tx_nr_rings)) { 373 dev_kfree_skb_any(skb); 374 dev_core_stats_tx_dropped_inc(dev); 375 return NETDEV_TX_OK; 376 } 377 378 txq = netdev_get_tx_queue(dev, i); 379 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 380 prod = txr->tx_prod; 381 382 free_size = bnxt_tx_avail(bp, txr); 383 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 384 /* We must have raced with NAPI cleanup */ 385 if (net_ratelimit() && txr->kick_pending) 386 netif_warn(bp, tx_err, dev, 387 "bnxt: ring busy w/ flush pending!\n"); 388 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 389 return NETDEV_TX_BUSY; 390 } 391 392 length = skb->len; 393 len = skb_headlen(skb); 394 last_frag = skb_shinfo(skb)->nr_frags; 395 396 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 397 398 txbd->tx_bd_opaque = prod; 399 400 tx_buf = &txr->tx_buf_ring[prod]; 401 tx_buf->skb = skb; 402 tx_buf->nr_frags = last_frag; 403 404 vlan_tag_flags = 0; 405 cfa_action = bnxt_xmit_get_cfa_action(skb); 406 if (skb_vlan_tag_present(skb)) { 407 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 408 skb_vlan_tag_get(skb); 409 /* Currently supports 8021Q, 8021AD vlan offloads 410 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 411 */ 412 if (skb->vlan_proto == htons(ETH_P_8021Q)) 413 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 414 } 415 416 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 417 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 418 419 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 420 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 421 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 422 &ptp->tx_hdr_off)) { 423 if (vlan_tag_flags) 424 ptp->tx_hdr_off += VLAN_HLEN; 425 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 426 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 427 } else { 428 atomic_inc(&bp->ptp_cfg->tx_avail); 429 } 430 } 431 } 432 433 if (unlikely(skb->no_fcs)) 434 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 435 436 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 437 !lflags) { 438 struct tx_push_buffer *tx_push_buf = txr->tx_push; 439 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 440 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 441 void __iomem *db = txr->tx_db.doorbell; 442 void *pdata = tx_push_buf->data; 443 u64 *end; 444 int j, push_len; 445 446 /* Set COAL_NOW to be ready quickly for the next push */ 447 tx_push->tx_bd_len_flags_type = 448 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 449 TX_BD_TYPE_LONG_TX_BD | 450 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 451 TX_BD_FLAGS_COAL_NOW | 452 TX_BD_FLAGS_PACKET_END | 453 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 454 455 if (skb->ip_summed == CHECKSUM_PARTIAL) 456 tx_push1->tx_bd_hsize_lflags = 457 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 458 else 459 tx_push1->tx_bd_hsize_lflags = 0; 460 461 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 462 tx_push1->tx_bd_cfa_action = 463 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 464 465 end = pdata + length; 466 end = PTR_ALIGN(end, 8) - 1; 467 *end = 0; 468 469 skb_copy_from_linear_data(skb, pdata, len); 470 pdata += len; 471 for (j = 0; j < last_frag; j++) { 472 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 473 void *fptr; 474 475 fptr = skb_frag_address_safe(frag); 476 if (!fptr) 477 goto normal_tx; 478 479 memcpy(pdata, fptr, skb_frag_size(frag)); 480 pdata += skb_frag_size(frag); 481 } 482 483 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 484 txbd->tx_bd_haddr = txr->data_mapping; 485 prod = NEXT_TX(prod); 486 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 487 memcpy(txbd, tx_push1, sizeof(*txbd)); 488 prod = NEXT_TX(prod); 489 tx_push->doorbell = 490 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 491 txr->tx_prod = prod; 492 493 tx_buf->is_push = 1; 494 netdev_tx_sent_queue(txq, skb->len); 495 wmb(); /* Sync is_push and byte queue before pushing data */ 496 497 push_len = (length + sizeof(*tx_push) + 7) / 8; 498 if (push_len > 16) { 499 __iowrite64_copy(db, tx_push_buf, 16); 500 __iowrite32_copy(db + 4, tx_push_buf + 1, 501 (push_len - 16) << 1); 502 } else { 503 __iowrite64_copy(db, tx_push_buf, push_len); 504 } 505 506 goto tx_done; 507 } 508 509 normal_tx: 510 if (length < BNXT_MIN_PKT_SIZE) { 511 pad = BNXT_MIN_PKT_SIZE - length; 512 if (skb_pad(skb, pad)) 513 /* SKB already freed. */ 514 goto tx_kick_pending; 515 length = BNXT_MIN_PKT_SIZE; 516 } 517 518 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 519 520 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 521 goto tx_free; 522 523 dma_unmap_addr_set(tx_buf, mapping, mapping); 524 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 525 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 526 527 txbd->tx_bd_haddr = cpu_to_le64(mapping); 528 529 prod = NEXT_TX(prod); 530 txbd1 = (struct tx_bd_ext *) 531 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 532 533 txbd1->tx_bd_hsize_lflags = lflags; 534 if (skb_is_gso(skb)) { 535 u32 hdr_len; 536 537 if (skb->encapsulation) 538 hdr_len = skb_inner_tcp_all_headers(skb); 539 else 540 hdr_len = skb_tcp_all_headers(skb); 541 542 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 543 TX_BD_FLAGS_T_IPID | 544 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 545 length = skb_shinfo(skb)->gso_size; 546 txbd1->tx_bd_mss = cpu_to_le32(length); 547 length += hdr_len; 548 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 549 txbd1->tx_bd_hsize_lflags |= 550 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 551 txbd1->tx_bd_mss = 0; 552 } 553 554 length >>= 9; 555 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 556 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 557 skb->len); 558 i = 0; 559 goto tx_dma_error; 560 } 561 flags |= bnxt_lhint_arr[length]; 562 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 563 564 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 565 txbd1->tx_bd_cfa_action = 566 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 567 for (i = 0; i < last_frag; i++) { 568 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 569 570 prod = NEXT_TX(prod); 571 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 572 573 len = skb_frag_size(frag); 574 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 575 DMA_TO_DEVICE); 576 577 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 578 goto tx_dma_error; 579 580 tx_buf = &txr->tx_buf_ring[prod]; 581 dma_unmap_addr_set(tx_buf, mapping, mapping); 582 583 txbd->tx_bd_haddr = cpu_to_le64(mapping); 584 585 flags = len << TX_BD_LEN_SHIFT; 586 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 587 } 588 589 flags &= ~TX_BD_LEN; 590 txbd->tx_bd_len_flags_type = 591 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 592 TX_BD_FLAGS_PACKET_END); 593 594 netdev_tx_sent_queue(txq, skb->len); 595 596 skb_tx_timestamp(skb); 597 598 /* Sync BD data before updating doorbell */ 599 wmb(); 600 601 prod = NEXT_TX(prod); 602 txr->tx_prod = prod; 603 604 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 605 bnxt_txr_db_kick(bp, txr, prod); 606 else 607 txr->kick_pending = 1; 608 609 tx_done: 610 611 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 612 if (netdev_xmit_more() && !tx_buf->is_push) 613 bnxt_txr_db_kick(bp, txr, prod); 614 615 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 616 } 617 return NETDEV_TX_OK; 618 619 tx_dma_error: 620 if (BNXT_TX_PTP_IS_SET(lflags)) 621 atomic_inc(&bp->ptp_cfg->tx_avail); 622 623 last_frag = i; 624 625 /* start back at beginning and unmap skb */ 626 prod = txr->tx_prod; 627 tx_buf = &txr->tx_buf_ring[prod]; 628 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 629 skb_headlen(skb), DMA_TO_DEVICE); 630 prod = NEXT_TX(prod); 631 632 /* unmap remaining mapped pages */ 633 for (i = 0; i < last_frag; i++) { 634 prod = NEXT_TX(prod); 635 tx_buf = &txr->tx_buf_ring[prod]; 636 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 637 skb_frag_size(&skb_shinfo(skb)->frags[i]), 638 DMA_TO_DEVICE); 639 } 640 641 tx_free: 642 dev_kfree_skb_any(skb); 643 tx_kick_pending: 644 if (txr->kick_pending) 645 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 646 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 647 dev_core_stats_tx_dropped_inc(dev); 648 return NETDEV_TX_OK; 649 } 650 651 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 652 { 653 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 654 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 655 u16 cons = txr->tx_cons; 656 struct pci_dev *pdev = bp->pdev; 657 int i; 658 unsigned int tx_bytes = 0; 659 660 for (i = 0; i < nr_pkts; i++) { 661 struct bnxt_sw_tx_bd *tx_buf; 662 struct sk_buff *skb; 663 int j, last; 664 665 tx_buf = &txr->tx_buf_ring[cons]; 666 cons = NEXT_TX(cons); 667 skb = tx_buf->skb; 668 tx_buf->skb = NULL; 669 670 tx_bytes += skb->len; 671 672 if (tx_buf->is_push) { 673 tx_buf->is_push = 0; 674 goto next_tx_int; 675 } 676 677 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 678 skb_headlen(skb), DMA_TO_DEVICE); 679 last = tx_buf->nr_frags; 680 681 for (j = 0; j < last; j++) { 682 cons = NEXT_TX(cons); 683 tx_buf = &txr->tx_buf_ring[cons]; 684 dma_unmap_page( 685 &pdev->dev, 686 dma_unmap_addr(tx_buf, mapping), 687 skb_frag_size(&skb_shinfo(skb)->frags[j]), 688 DMA_TO_DEVICE); 689 } 690 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 691 if (bp->flags & BNXT_FLAG_CHIP_P5) { 692 /* PTP worker takes ownership of the skb */ 693 if (!bnxt_get_tx_ts_p5(bp, skb)) 694 skb = NULL; 695 else 696 atomic_inc(&bp->ptp_cfg->tx_avail); 697 } 698 } 699 700 next_tx_int: 701 cons = NEXT_TX(cons); 702 703 dev_kfree_skb_any(skb); 704 } 705 706 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 707 txr->tx_cons = cons; 708 709 /* Need to make the tx_cons update visible to bnxt_start_xmit() 710 * before checking for netif_tx_queue_stopped(). Without the 711 * memory barrier, there is a small possibility that bnxt_start_xmit() 712 * will miss it and cause the queue to be stopped forever. 713 */ 714 smp_mb(); 715 716 if (unlikely(netif_tx_queue_stopped(txq)) && 717 bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh && 718 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 719 netif_tx_wake_queue(txq); 720 } 721 722 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 723 struct bnxt_rx_ring_info *rxr, 724 gfp_t gfp) 725 { 726 struct device *dev = &bp->pdev->dev; 727 struct page *page; 728 729 page = page_pool_dev_alloc_pages(rxr->page_pool); 730 if (!page) 731 return NULL; 732 733 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 734 DMA_ATTR_WEAK_ORDERING); 735 if (dma_mapping_error(dev, *mapping)) { 736 page_pool_recycle_direct(rxr->page_pool, page); 737 return NULL; 738 } 739 return page; 740 } 741 742 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 743 gfp_t gfp) 744 { 745 u8 *data; 746 struct pci_dev *pdev = bp->pdev; 747 748 if (gfp == GFP_ATOMIC) 749 data = napi_alloc_frag(bp->rx_buf_size); 750 else 751 data = netdev_alloc_frag(bp->rx_buf_size); 752 if (!data) 753 return NULL; 754 755 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 756 bp->rx_buf_use_size, bp->rx_dir, 757 DMA_ATTR_WEAK_ORDERING); 758 759 if (dma_mapping_error(&pdev->dev, *mapping)) { 760 skb_free_frag(data); 761 data = NULL; 762 } 763 return data; 764 } 765 766 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 767 u16 prod, gfp_t gfp) 768 { 769 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 770 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 771 dma_addr_t mapping; 772 773 if (BNXT_RX_PAGE_MODE(bp)) { 774 struct page *page = 775 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 776 777 if (!page) 778 return -ENOMEM; 779 780 mapping += bp->rx_dma_offset; 781 rx_buf->data = page; 782 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 783 } else { 784 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 785 786 if (!data) 787 return -ENOMEM; 788 789 rx_buf->data = data; 790 rx_buf->data_ptr = data + bp->rx_offset; 791 } 792 rx_buf->mapping = mapping; 793 794 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 795 return 0; 796 } 797 798 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 799 { 800 u16 prod = rxr->rx_prod; 801 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 802 struct rx_bd *cons_bd, *prod_bd; 803 804 prod_rx_buf = &rxr->rx_buf_ring[prod]; 805 cons_rx_buf = &rxr->rx_buf_ring[cons]; 806 807 prod_rx_buf->data = data; 808 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 809 810 prod_rx_buf->mapping = cons_rx_buf->mapping; 811 812 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 813 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 814 815 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 816 } 817 818 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 819 { 820 u16 next, max = rxr->rx_agg_bmap_size; 821 822 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 823 if (next >= max) 824 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 825 return next; 826 } 827 828 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 829 struct bnxt_rx_ring_info *rxr, 830 u16 prod, gfp_t gfp) 831 { 832 struct rx_bd *rxbd = 833 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 834 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 835 struct pci_dev *pdev = bp->pdev; 836 struct page *page; 837 dma_addr_t mapping; 838 u16 sw_prod = rxr->rx_sw_agg_prod; 839 unsigned int offset = 0; 840 841 if (BNXT_RX_PAGE_MODE(bp)) { 842 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 843 844 if (!page) 845 return -ENOMEM; 846 847 } else { 848 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 849 page = rxr->rx_page; 850 if (!page) { 851 page = alloc_page(gfp); 852 if (!page) 853 return -ENOMEM; 854 rxr->rx_page = page; 855 rxr->rx_page_offset = 0; 856 } 857 offset = rxr->rx_page_offset; 858 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 859 if (rxr->rx_page_offset == PAGE_SIZE) 860 rxr->rx_page = NULL; 861 else 862 get_page(page); 863 } else { 864 page = alloc_page(gfp); 865 if (!page) 866 return -ENOMEM; 867 } 868 869 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 870 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 871 DMA_ATTR_WEAK_ORDERING); 872 if (dma_mapping_error(&pdev->dev, mapping)) { 873 __free_page(page); 874 return -EIO; 875 } 876 } 877 878 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 879 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 880 881 __set_bit(sw_prod, rxr->rx_agg_bmap); 882 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 883 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 884 885 rx_agg_buf->page = page; 886 rx_agg_buf->offset = offset; 887 rx_agg_buf->mapping = mapping; 888 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 889 rxbd->rx_bd_opaque = sw_prod; 890 return 0; 891 } 892 893 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 894 struct bnxt_cp_ring_info *cpr, 895 u16 cp_cons, u16 curr) 896 { 897 struct rx_agg_cmp *agg; 898 899 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 900 agg = (struct rx_agg_cmp *) 901 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 902 return agg; 903 } 904 905 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 906 struct bnxt_rx_ring_info *rxr, 907 u16 agg_id, u16 curr) 908 { 909 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 910 911 return &tpa_info->agg_arr[curr]; 912 } 913 914 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 915 u16 start, u32 agg_bufs, bool tpa) 916 { 917 struct bnxt_napi *bnapi = cpr->bnapi; 918 struct bnxt *bp = bnapi->bp; 919 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 920 u16 prod = rxr->rx_agg_prod; 921 u16 sw_prod = rxr->rx_sw_agg_prod; 922 bool p5_tpa = false; 923 u32 i; 924 925 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 926 p5_tpa = true; 927 928 for (i = 0; i < agg_bufs; i++) { 929 u16 cons; 930 struct rx_agg_cmp *agg; 931 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 932 struct rx_bd *prod_bd; 933 struct page *page; 934 935 if (p5_tpa) 936 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 937 else 938 agg = bnxt_get_agg(bp, cpr, idx, start + i); 939 cons = agg->rx_agg_cmp_opaque; 940 __clear_bit(cons, rxr->rx_agg_bmap); 941 942 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 943 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 944 945 __set_bit(sw_prod, rxr->rx_agg_bmap); 946 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 947 cons_rx_buf = &rxr->rx_agg_ring[cons]; 948 949 /* It is possible for sw_prod to be equal to cons, so 950 * set cons_rx_buf->page to NULL first. 951 */ 952 page = cons_rx_buf->page; 953 cons_rx_buf->page = NULL; 954 prod_rx_buf->page = page; 955 prod_rx_buf->offset = cons_rx_buf->offset; 956 957 prod_rx_buf->mapping = cons_rx_buf->mapping; 958 959 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 960 961 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 962 prod_bd->rx_bd_opaque = sw_prod; 963 964 prod = NEXT_RX_AGG(prod); 965 sw_prod = NEXT_RX_AGG(sw_prod); 966 } 967 rxr->rx_agg_prod = prod; 968 rxr->rx_sw_agg_prod = sw_prod; 969 } 970 971 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 972 struct bnxt_rx_ring_info *rxr, 973 u16 cons, void *data, u8 *data_ptr, 974 dma_addr_t dma_addr, 975 unsigned int offset_and_len) 976 { 977 unsigned int len = offset_and_len & 0xffff; 978 struct page *page = data; 979 u16 prod = rxr->rx_prod; 980 struct sk_buff *skb; 981 int err; 982 983 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 984 if (unlikely(err)) { 985 bnxt_reuse_rx_data(rxr, cons, data); 986 return NULL; 987 } 988 dma_addr -= bp->rx_dma_offset; 989 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 990 DMA_ATTR_WEAK_ORDERING); 991 skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE + 992 bp->rx_dma_offset); 993 if (!skb) { 994 __free_page(page); 995 return NULL; 996 } 997 skb_mark_for_recycle(skb); 998 skb_reserve(skb, bp->rx_dma_offset); 999 __skb_put(skb, len); 1000 1001 return skb; 1002 } 1003 1004 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1005 struct bnxt_rx_ring_info *rxr, 1006 u16 cons, void *data, u8 *data_ptr, 1007 dma_addr_t dma_addr, 1008 unsigned int offset_and_len) 1009 { 1010 unsigned int payload = offset_and_len >> 16; 1011 unsigned int len = offset_and_len & 0xffff; 1012 skb_frag_t *frag; 1013 struct page *page = data; 1014 u16 prod = rxr->rx_prod; 1015 struct sk_buff *skb; 1016 int off, err; 1017 1018 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1019 if (unlikely(err)) { 1020 bnxt_reuse_rx_data(rxr, cons, data); 1021 return NULL; 1022 } 1023 dma_addr -= bp->rx_dma_offset; 1024 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1025 DMA_ATTR_WEAK_ORDERING); 1026 1027 if (unlikely(!payload)) 1028 payload = eth_get_headlen(bp->dev, data_ptr, len); 1029 1030 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1031 if (!skb) { 1032 __free_page(page); 1033 return NULL; 1034 } 1035 1036 skb_mark_for_recycle(skb); 1037 off = (void *)data_ptr - page_address(page); 1038 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1039 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1040 payload + NET_IP_ALIGN); 1041 1042 frag = &skb_shinfo(skb)->frags[0]; 1043 skb_frag_size_sub(frag, payload); 1044 skb_frag_off_add(frag, payload); 1045 skb->data_len -= payload; 1046 skb->tail += payload; 1047 1048 return skb; 1049 } 1050 1051 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1052 struct bnxt_rx_ring_info *rxr, u16 cons, 1053 void *data, u8 *data_ptr, 1054 dma_addr_t dma_addr, 1055 unsigned int offset_and_len) 1056 { 1057 u16 prod = rxr->rx_prod; 1058 struct sk_buff *skb; 1059 int err; 1060 1061 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1062 if (unlikely(err)) { 1063 bnxt_reuse_rx_data(rxr, cons, data); 1064 return NULL; 1065 } 1066 1067 skb = build_skb(data, bp->rx_buf_size); 1068 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1069 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1070 if (!skb) { 1071 skb_free_frag(data); 1072 return NULL; 1073 } 1074 1075 skb_reserve(skb, bp->rx_offset); 1076 skb_put(skb, offset_and_len & 0xffff); 1077 return skb; 1078 } 1079 1080 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1081 struct bnxt_cp_ring_info *cpr, 1082 struct skb_shared_info *shinfo, 1083 u16 idx, u32 agg_bufs, bool tpa, 1084 struct xdp_buff *xdp) 1085 { 1086 struct bnxt_napi *bnapi = cpr->bnapi; 1087 struct pci_dev *pdev = bp->pdev; 1088 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1089 u16 prod = rxr->rx_agg_prod; 1090 u32 i, total_frag_len = 0; 1091 bool p5_tpa = false; 1092 1093 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1094 p5_tpa = true; 1095 1096 for (i = 0; i < agg_bufs; i++) { 1097 skb_frag_t *frag = &shinfo->frags[i]; 1098 u16 cons, frag_len; 1099 struct rx_agg_cmp *agg; 1100 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1101 struct page *page; 1102 dma_addr_t mapping; 1103 1104 if (p5_tpa) 1105 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1106 else 1107 agg = bnxt_get_agg(bp, cpr, idx, i); 1108 cons = agg->rx_agg_cmp_opaque; 1109 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1110 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1111 1112 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1113 skb_frag_off_set(frag, cons_rx_buf->offset); 1114 skb_frag_size_set(frag, frag_len); 1115 __skb_frag_set_page(frag, cons_rx_buf->page); 1116 shinfo->nr_frags = i + 1; 1117 __clear_bit(cons, rxr->rx_agg_bmap); 1118 1119 /* It is possible for bnxt_alloc_rx_page() to allocate 1120 * a sw_prod index that equals the cons index, so we 1121 * need to clear the cons entry now. 1122 */ 1123 mapping = cons_rx_buf->mapping; 1124 page = cons_rx_buf->page; 1125 cons_rx_buf->page = NULL; 1126 1127 if (xdp && page_is_pfmemalloc(page)) 1128 xdp_buff_set_frag_pfmemalloc(xdp); 1129 1130 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1131 unsigned int nr_frags; 1132 1133 nr_frags = --shinfo->nr_frags; 1134 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1135 cons_rx_buf->page = page; 1136 1137 /* Update prod since possibly some pages have been 1138 * allocated already. 1139 */ 1140 rxr->rx_agg_prod = prod; 1141 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1142 return 0; 1143 } 1144 1145 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1146 bp->rx_dir, 1147 DMA_ATTR_WEAK_ORDERING); 1148 1149 total_frag_len += frag_len; 1150 prod = NEXT_RX_AGG(prod); 1151 } 1152 rxr->rx_agg_prod = prod; 1153 return total_frag_len; 1154 } 1155 1156 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1157 struct bnxt_cp_ring_info *cpr, 1158 struct sk_buff *skb, u16 idx, 1159 u32 agg_bufs, bool tpa) 1160 { 1161 struct skb_shared_info *shinfo = skb_shinfo(skb); 1162 u32 total_frag_len = 0; 1163 1164 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1165 agg_bufs, tpa, NULL); 1166 if (!total_frag_len) { 1167 dev_kfree_skb(skb); 1168 return NULL; 1169 } 1170 1171 skb->data_len += total_frag_len; 1172 skb->len += total_frag_len; 1173 skb->truesize += PAGE_SIZE * agg_bufs; 1174 return skb; 1175 } 1176 1177 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1178 struct bnxt_cp_ring_info *cpr, 1179 struct xdp_buff *xdp, u16 idx, 1180 u32 agg_bufs, bool tpa) 1181 { 1182 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1183 u32 total_frag_len = 0; 1184 1185 if (!xdp_buff_has_frags(xdp)) 1186 shinfo->nr_frags = 0; 1187 1188 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1189 idx, agg_bufs, tpa, xdp); 1190 if (total_frag_len) { 1191 xdp_buff_set_frags_flag(xdp); 1192 shinfo->nr_frags = agg_bufs; 1193 shinfo->xdp_frags_size = total_frag_len; 1194 } 1195 return total_frag_len; 1196 } 1197 1198 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1199 u8 agg_bufs, u32 *raw_cons) 1200 { 1201 u16 last; 1202 struct rx_agg_cmp *agg; 1203 1204 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1205 last = RING_CMP(*raw_cons); 1206 agg = (struct rx_agg_cmp *) 1207 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1208 return RX_AGG_CMP_VALID(agg, *raw_cons); 1209 } 1210 1211 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1212 unsigned int len, 1213 dma_addr_t mapping) 1214 { 1215 struct bnxt *bp = bnapi->bp; 1216 struct pci_dev *pdev = bp->pdev; 1217 struct sk_buff *skb; 1218 1219 skb = napi_alloc_skb(&bnapi->napi, len); 1220 if (!skb) 1221 return NULL; 1222 1223 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1224 bp->rx_dir); 1225 1226 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1227 len + NET_IP_ALIGN); 1228 1229 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1230 bp->rx_dir); 1231 1232 skb_put(skb, len); 1233 return skb; 1234 } 1235 1236 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1237 u32 *raw_cons, void *cmp) 1238 { 1239 struct rx_cmp *rxcmp = cmp; 1240 u32 tmp_raw_cons = *raw_cons; 1241 u8 cmp_type, agg_bufs = 0; 1242 1243 cmp_type = RX_CMP_TYPE(rxcmp); 1244 1245 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1246 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1247 RX_CMP_AGG_BUFS) >> 1248 RX_CMP_AGG_BUFS_SHIFT; 1249 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1250 struct rx_tpa_end_cmp *tpa_end = cmp; 1251 1252 if (bp->flags & BNXT_FLAG_CHIP_P5) 1253 return 0; 1254 1255 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1256 } 1257 1258 if (agg_bufs) { 1259 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1260 return -EBUSY; 1261 } 1262 *raw_cons = tmp_raw_cons; 1263 return 0; 1264 } 1265 1266 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1267 { 1268 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1269 return; 1270 1271 if (BNXT_PF(bp)) 1272 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1273 else 1274 schedule_delayed_work(&bp->fw_reset_task, delay); 1275 } 1276 1277 static void bnxt_queue_sp_work(struct bnxt *bp) 1278 { 1279 if (BNXT_PF(bp)) 1280 queue_work(bnxt_pf_wq, &bp->sp_task); 1281 else 1282 schedule_work(&bp->sp_task); 1283 } 1284 1285 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1286 { 1287 if (!rxr->bnapi->in_reset) { 1288 rxr->bnapi->in_reset = true; 1289 if (bp->flags & BNXT_FLAG_CHIP_P5) 1290 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1291 else 1292 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1293 bnxt_queue_sp_work(bp); 1294 } 1295 rxr->rx_next_cons = 0xffff; 1296 } 1297 1298 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1299 { 1300 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1301 u16 idx = agg_id & MAX_TPA_P5_MASK; 1302 1303 if (test_bit(idx, map->agg_idx_bmap)) 1304 idx = find_first_zero_bit(map->agg_idx_bmap, 1305 BNXT_AGG_IDX_BMAP_SIZE); 1306 __set_bit(idx, map->agg_idx_bmap); 1307 map->agg_id_tbl[agg_id] = idx; 1308 return idx; 1309 } 1310 1311 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1312 { 1313 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1314 1315 __clear_bit(idx, map->agg_idx_bmap); 1316 } 1317 1318 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1319 { 1320 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1321 1322 return map->agg_id_tbl[agg_id]; 1323 } 1324 1325 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1326 struct rx_tpa_start_cmp *tpa_start, 1327 struct rx_tpa_start_cmp_ext *tpa_start1) 1328 { 1329 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1330 struct bnxt_tpa_info *tpa_info; 1331 u16 cons, prod, agg_id; 1332 struct rx_bd *prod_bd; 1333 dma_addr_t mapping; 1334 1335 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1336 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1337 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1338 } else { 1339 agg_id = TPA_START_AGG_ID(tpa_start); 1340 } 1341 cons = tpa_start->rx_tpa_start_cmp_opaque; 1342 prod = rxr->rx_prod; 1343 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1344 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1345 tpa_info = &rxr->rx_tpa[agg_id]; 1346 1347 if (unlikely(cons != rxr->rx_next_cons || 1348 TPA_START_ERROR(tpa_start))) { 1349 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1350 cons, rxr->rx_next_cons, 1351 TPA_START_ERROR_CODE(tpa_start1)); 1352 bnxt_sched_reset(bp, rxr); 1353 return; 1354 } 1355 /* Store cfa_code in tpa_info to use in tpa_end 1356 * completion processing. 1357 */ 1358 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1359 prod_rx_buf->data = tpa_info->data; 1360 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1361 1362 mapping = tpa_info->mapping; 1363 prod_rx_buf->mapping = mapping; 1364 1365 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1366 1367 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1368 1369 tpa_info->data = cons_rx_buf->data; 1370 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1371 cons_rx_buf->data = NULL; 1372 tpa_info->mapping = cons_rx_buf->mapping; 1373 1374 tpa_info->len = 1375 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1376 RX_TPA_START_CMP_LEN_SHIFT; 1377 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1378 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1379 1380 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1381 tpa_info->gso_type = SKB_GSO_TCPV4; 1382 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1383 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1384 tpa_info->gso_type = SKB_GSO_TCPV6; 1385 tpa_info->rss_hash = 1386 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1387 } else { 1388 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1389 tpa_info->gso_type = 0; 1390 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1391 } 1392 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1393 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1394 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1395 tpa_info->agg_count = 0; 1396 1397 rxr->rx_prod = NEXT_RX(prod); 1398 cons = NEXT_RX(cons); 1399 rxr->rx_next_cons = NEXT_RX(cons); 1400 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1401 1402 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1403 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1404 cons_rx_buf->data = NULL; 1405 } 1406 1407 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1408 { 1409 if (agg_bufs) 1410 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1411 } 1412 1413 #ifdef CONFIG_INET 1414 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1415 { 1416 struct udphdr *uh = NULL; 1417 1418 if (ip_proto == htons(ETH_P_IP)) { 1419 struct iphdr *iph = (struct iphdr *)skb->data; 1420 1421 if (iph->protocol == IPPROTO_UDP) 1422 uh = (struct udphdr *)(iph + 1); 1423 } else { 1424 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1425 1426 if (iph->nexthdr == IPPROTO_UDP) 1427 uh = (struct udphdr *)(iph + 1); 1428 } 1429 if (uh) { 1430 if (uh->check) 1431 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1432 else 1433 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1434 } 1435 } 1436 #endif 1437 1438 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1439 int payload_off, int tcp_ts, 1440 struct sk_buff *skb) 1441 { 1442 #ifdef CONFIG_INET 1443 struct tcphdr *th; 1444 int len, nw_off; 1445 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1446 u32 hdr_info = tpa_info->hdr_info; 1447 bool loopback = false; 1448 1449 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1450 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1451 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1452 1453 /* If the packet is an internal loopback packet, the offsets will 1454 * have an extra 4 bytes. 1455 */ 1456 if (inner_mac_off == 4) { 1457 loopback = true; 1458 } else if (inner_mac_off > 4) { 1459 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1460 ETH_HLEN - 2)); 1461 1462 /* We only support inner iPv4/ipv6. If we don't see the 1463 * correct protocol ID, it must be a loopback packet where 1464 * the offsets are off by 4. 1465 */ 1466 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1467 loopback = true; 1468 } 1469 if (loopback) { 1470 /* internal loopback packet, subtract all offsets by 4 */ 1471 inner_ip_off -= 4; 1472 inner_mac_off -= 4; 1473 outer_ip_off -= 4; 1474 } 1475 1476 nw_off = inner_ip_off - ETH_HLEN; 1477 skb_set_network_header(skb, nw_off); 1478 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1479 struct ipv6hdr *iph = ipv6_hdr(skb); 1480 1481 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1482 len = skb->len - skb_transport_offset(skb); 1483 th = tcp_hdr(skb); 1484 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1485 } else { 1486 struct iphdr *iph = ip_hdr(skb); 1487 1488 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1489 len = skb->len - skb_transport_offset(skb); 1490 th = tcp_hdr(skb); 1491 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1492 } 1493 1494 if (inner_mac_off) { /* tunnel */ 1495 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1496 ETH_HLEN - 2)); 1497 1498 bnxt_gro_tunnel(skb, proto); 1499 } 1500 #endif 1501 return skb; 1502 } 1503 1504 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1505 int payload_off, int tcp_ts, 1506 struct sk_buff *skb) 1507 { 1508 #ifdef CONFIG_INET 1509 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1510 u32 hdr_info = tpa_info->hdr_info; 1511 int iphdr_len, nw_off; 1512 1513 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1514 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1515 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1516 1517 nw_off = inner_ip_off - ETH_HLEN; 1518 skb_set_network_header(skb, nw_off); 1519 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1520 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1521 skb_set_transport_header(skb, nw_off + iphdr_len); 1522 1523 if (inner_mac_off) { /* tunnel */ 1524 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1525 ETH_HLEN - 2)); 1526 1527 bnxt_gro_tunnel(skb, proto); 1528 } 1529 #endif 1530 return skb; 1531 } 1532 1533 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1534 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1535 1536 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1537 int payload_off, int tcp_ts, 1538 struct sk_buff *skb) 1539 { 1540 #ifdef CONFIG_INET 1541 struct tcphdr *th; 1542 int len, nw_off, tcp_opt_len = 0; 1543 1544 if (tcp_ts) 1545 tcp_opt_len = 12; 1546 1547 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1548 struct iphdr *iph; 1549 1550 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1551 ETH_HLEN; 1552 skb_set_network_header(skb, nw_off); 1553 iph = ip_hdr(skb); 1554 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1555 len = skb->len - skb_transport_offset(skb); 1556 th = tcp_hdr(skb); 1557 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1558 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1559 struct ipv6hdr *iph; 1560 1561 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1562 ETH_HLEN; 1563 skb_set_network_header(skb, nw_off); 1564 iph = ipv6_hdr(skb); 1565 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1566 len = skb->len - skb_transport_offset(skb); 1567 th = tcp_hdr(skb); 1568 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1569 } else { 1570 dev_kfree_skb_any(skb); 1571 return NULL; 1572 } 1573 1574 if (nw_off) /* tunnel */ 1575 bnxt_gro_tunnel(skb, skb->protocol); 1576 #endif 1577 return skb; 1578 } 1579 1580 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1581 struct bnxt_tpa_info *tpa_info, 1582 struct rx_tpa_end_cmp *tpa_end, 1583 struct rx_tpa_end_cmp_ext *tpa_end1, 1584 struct sk_buff *skb) 1585 { 1586 #ifdef CONFIG_INET 1587 int payload_off; 1588 u16 segs; 1589 1590 segs = TPA_END_TPA_SEGS(tpa_end); 1591 if (segs == 1) 1592 return skb; 1593 1594 NAPI_GRO_CB(skb)->count = segs; 1595 skb_shinfo(skb)->gso_size = 1596 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1597 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1598 if (bp->flags & BNXT_FLAG_CHIP_P5) 1599 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1600 else 1601 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1602 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1603 if (likely(skb)) 1604 tcp_gro_complete(skb); 1605 #endif 1606 return skb; 1607 } 1608 1609 /* Given the cfa_code of a received packet determine which 1610 * netdev (vf-rep or PF) the packet is destined to. 1611 */ 1612 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1613 { 1614 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1615 1616 /* if vf-rep dev is NULL, the must belongs to the PF */ 1617 return dev ? dev : bp->dev; 1618 } 1619 1620 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1621 struct bnxt_cp_ring_info *cpr, 1622 u32 *raw_cons, 1623 struct rx_tpa_end_cmp *tpa_end, 1624 struct rx_tpa_end_cmp_ext *tpa_end1, 1625 u8 *event) 1626 { 1627 struct bnxt_napi *bnapi = cpr->bnapi; 1628 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1629 u8 *data_ptr, agg_bufs; 1630 unsigned int len; 1631 struct bnxt_tpa_info *tpa_info; 1632 dma_addr_t mapping; 1633 struct sk_buff *skb; 1634 u16 idx = 0, agg_id; 1635 void *data; 1636 bool gro; 1637 1638 if (unlikely(bnapi->in_reset)) { 1639 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1640 1641 if (rc < 0) 1642 return ERR_PTR(-EBUSY); 1643 return NULL; 1644 } 1645 1646 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1647 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1648 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1649 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1650 tpa_info = &rxr->rx_tpa[agg_id]; 1651 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1652 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1653 agg_bufs, tpa_info->agg_count); 1654 agg_bufs = tpa_info->agg_count; 1655 } 1656 tpa_info->agg_count = 0; 1657 *event |= BNXT_AGG_EVENT; 1658 bnxt_free_agg_idx(rxr, agg_id); 1659 idx = agg_id; 1660 gro = !!(bp->flags & BNXT_FLAG_GRO); 1661 } else { 1662 agg_id = TPA_END_AGG_ID(tpa_end); 1663 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1664 tpa_info = &rxr->rx_tpa[agg_id]; 1665 idx = RING_CMP(*raw_cons); 1666 if (agg_bufs) { 1667 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1668 return ERR_PTR(-EBUSY); 1669 1670 *event |= BNXT_AGG_EVENT; 1671 idx = NEXT_CMP(idx); 1672 } 1673 gro = !!TPA_END_GRO(tpa_end); 1674 } 1675 data = tpa_info->data; 1676 data_ptr = tpa_info->data_ptr; 1677 prefetch(data_ptr); 1678 len = tpa_info->len; 1679 mapping = tpa_info->mapping; 1680 1681 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1682 bnxt_abort_tpa(cpr, idx, agg_bufs); 1683 if (agg_bufs > MAX_SKB_FRAGS) 1684 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1685 agg_bufs, (int)MAX_SKB_FRAGS); 1686 return NULL; 1687 } 1688 1689 if (len <= bp->rx_copy_thresh) { 1690 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1691 if (!skb) { 1692 bnxt_abort_tpa(cpr, idx, agg_bufs); 1693 cpr->sw_stats.rx.rx_oom_discards += 1; 1694 return NULL; 1695 } 1696 } else { 1697 u8 *new_data; 1698 dma_addr_t new_mapping; 1699 1700 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1701 if (!new_data) { 1702 bnxt_abort_tpa(cpr, idx, agg_bufs); 1703 cpr->sw_stats.rx.rx_oom_discards += 1; 1704 return NULL; 1705 } 1706 1707 tpa_info->data = new_data; 1708 tpa_info->data_ptr = new_data + bp->rx_offset; 1709 tpa_info->mapping = new_mapping; 1710 1711 skb = build_skb(data, bp->rx_buf_size); 1712 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1713 bp->rx_buf_use_size, bp->rx_dir, 1714 DMA_ATTR_WEAK_ORDERING); 1715 1716 if (!skb) { 1717 skb_free_frag(data); 1718 bnxt_abort_tpa(cpr, idx, agg_bufs); 1719 cpr->sw_stats.rx.rx_oom_discards += 1; 1720 return NULL; 1721 } 1722 skb_reserve(skb, bp->rx_offset); 1723 skb_put(skb, len); 1724 } 1725 1726 if (agg_bufs) { 1727 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1728 if (!skb) { 1729 /* Page reuse already handled by bnxt_rx_pages(). */ 1730 cpr->sw_stats.rx.rx_oom_discards += 1; 1731 return NULL; 1732 } 1733 } 1734 1735 skb->protocol = 1736 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1737 1738 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1739 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1740 1741 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1742 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1743 __be16 vlan_proto = htons(tpa_info->metadata >> 1744 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1745 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1746 1747 if (eth_type_vlan(vlan_proto)) { 1748 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1749 } else { 1750 dev_kfree_skb(skb); 1751 return NULL; 1752 } 1753 } 1754 1755 skb_checksum_none_assert(skb); 1756 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1757 skb->ip_summed = CHECKSUM_UNNECESSARY; 1758 skb->csum_level = 1759 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1760 } 1761 1762 if (gro) 1763 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1764 1765 return skb; 1766 } 1767 1768 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1769 struct rx_agg_cmp *rx_agg) 1770 { 1771 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1772 struct bnxt_tpa_info *tpa_info; 1773 1774 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1775 tpa_info = &rxr->rx_tpa[agg_id]; 1776 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1777 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1778 } 1779 1780 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1781 struct sk_buff *skb) 1782 { 1783 if (skb->dev != bp->dev) { 1784 /* this packet belongs to a vf-rep */ 1785 bnxt_vf_rep_rx(bp, skb); 1786 return; 1787 } 1788 skb_record_rx_queue(skb, bnapi->index); 1789 napi_gro_receive(&bnapi->napi, skb); 1790 } 1791 1792 /* returns the following: 1793 * 1 - 1 packet successfully received 1794 * 0 - successful TPA_START, packet not completed yet 1795 * -EBUSY - completion ring does not have all the agg buffers yet 1796 * -ENOMEM - packet aborted due to out of memory 1797 * -EIO - packet aborted due to hw error indicated in BD 1798 */ 1799 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1800 u32 *raw_cons, u8 *event) 1801 { 1802 struct bnxt_napi *bnapi = cpr->bnapi; 1803 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1804 struct net_device *dev = bp->dev; 1805 struct rx_cmp *rxcmp; 1806 struct rx_cmp_ext *rxcmp1; 1807 u32 tmp_raw_cons = *raw_cons; 1808 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1809 struct bnxt_sw_rx_bd *rx_buf; 1810 unsigned int len; 1811 u8 *data_ptr, agg_bufs, cmp_type; 1812 bool xdp_active = false; 1813 dma_addr_t dma_addr; 1814 struct sk_buff *skb; 1815 struct xdp_buff xdp; 1816 u32 flags, misc; 1817 void *data; 1818 int rc = 0; 1819 1820 rxcmp = (struct rx_cmp *) 1821 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1822 1823 cmp_type = RX_CMP_TYPE(rxcmp); 1824 1825 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1826 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1827 goto next_rx_no_prod_no_len; 1828 } 1829 1830 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1831 cp_cons = RING_CMP(tmp_raw_cons); 1832 rxcmp1 = (struct rx_cmp_ext *) 1833 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1834 1835 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1836 return -EBUSY; 1837 1838 /* The valid test of the entry must be done first before 1839 * reading any further. 1840 */ 1841 dma_rmb(); 1842 prod = rxr->rx_prod; 1843 1844 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1845 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1846 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1847 1848 *event |= BNXT_RX_EVENT; 1849 goto next_rx_no_prod_no_len; 1850 1851 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1852 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1853 (struct rx_tpa_end_cmp *)rxcmp, 1854 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1855 1856 if (IS_ERR(skb)) 1857 return -EBUSY; 1858 1859 rc = -ENOMEM; 1860 if (likely(skb)) { 1861 bnxt_deliver_skb(bp, bnapi, skb); 1862 rc = 1; 1863 } 1864 *event |= BNXT_RX_EVENT; 1865 goto next_rx_no_prod_no_len; 1866 } 1867 1868 cons = rxcmp->rx_cmp_opaque; 1869 if (unlikely(cons != rxr->rx_next_cons)) { 1870 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1871 1872 /* 0xffff is forced error, don't print it */ 1873 if (rxr->rx_next_cons != 0xffff) 1874 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1875 cons, rxr->rx_next_cons); 1876 bnxt_sched_reset(bp, rxr); 1877 if (rc1) 1878 return rc1; 1879 goto next_rx_no_prod_no_len; 1880 } 1881 rx_buf = &rxr->rx_buf_ring[cons]; 1882 data = rx_buf->data; 1883 data_ptr = rx_buf->data_ptr; 1884 prefetch(data_ptr); 1885 1886 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1887 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1888 1889 if (agg_bufs) { 1890 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1891 return -EBUSY; 1892 1893 cp_cons = NEXT_CMP(cp_cons); 1894 *event |= BNXT_AGG_EVENT; 1895 } 1896 *event |= BNXT_RX_EVENT; 1897 1898 rx_buf->data = NULL; 1899 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1900 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1901 1902 bnxt_reuse_rx_data(rxr, cons, data); 1903 if (agg_bufs) 1904 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1905 false); 1906 1907 rc = -EIO; 1908 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1909 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1910 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1911 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1912 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1913 rx_err); 1914 bnxt_sched_reset(bp, rxr); 1915 } 1916 } 1917 goto next_rx_no_len; 1918 } 1919 1920 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1921 len = flags >> RX_CMP_LEN_SHIFT; 1922 dma_addr = rx_buf->mapping; 1923 1924 if (bnxt_xdp_attached(bp, rxr)) { 1925 bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp); 1926 if (agg_bufs) { 1927 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 1928 cp_cons, agg_bufs, 1929 false); 1930 if (!frag_len) { 1931 cpr->sw_stats.rx.rx_oom_discards += 1; 1932 rc = -ENOMEM; 1933 goto next_rx; 1934 } 1935 } 1936 xdp_active = true; 1937 } 1938 1939 if (xdp_active) { 1940 if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) { 1941 rc = 1; 1942 goto next_rx; 1943 } 1944 } 1945 1946 if (len <= bp->rx_copy_thresh) { 1947 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1948 bnxt_reuse_rx_data(rxr, cons, data); 1949 if (!skb) { 1950 if (agg_bufs) { 1951 if (!xdp_active) 1952 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1953 agg_bufs, false); 1954 else 1955 bnxt_xdp_buff_frags_free(rxr, &xdp); 1956 } 1957 cpr->sw_stats.rx.rx_oom_discards += 1; 1958 rc = -ENOMEM; 1959 goto next_rx; 1960 } 1961 } else { 1962 u32 payload; 1963 1964 if (rx_buf->data_ptr == data_ptr) 1965 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1966 else 1967 payload = 0; 1968 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1969 payload | len); 1970 if (!skb) { 1971 cpr->sw_stats.rx.rx_oom_discards += 1; 1972 rc = -ENOMEM; 1973 goto next_rx; 1974 } 1975 } 1976 1977 if (agg_bufs) { 1978 if (!xdp_active) { 1979 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 1980 if (!skb) { 1981 cpr->sw_stats.rx.rx_oom_discards += 1; 1982 rc = -ENOMEM; 1983 goto next_rx; 1984 } 1985 } else { 1986 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 1987 if (!skb) { 1988 /* we should be able to free the old skb here */ 1989 bnxt_xdp_buff_frags_free(rxr, &xdp); 1990 cpr->sw_stats.rx.rx_oom_discards += 1; 1991 rc = -ENOMEM; 1992 goto next_rx; 1993 } 1994 } 1995 } 1996 1997 if (RX_CMP_HASH_VALID(rxcmp)) { 1998 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1999 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 2000 2001 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 2002 if (hash_type != 1 && hash_type != 3) 2003 type = PKT_HASH_TYPE_L3; 2004 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2005 } 2006 2007 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 2008 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 2009 2010 if ((rxcmp1->rx_cmp_flags2 & 2011 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 2012 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 2013 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2014 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2015 __be16 vlan_proto = htons(meta_data >> 2016 RX_CMP_FLAGS2_METADATA_TPID_SFT); 2017 2018 if (eth_type_vlan(vlan_proto)) { 2019 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2020 } else { 2021 dev_kfree_skb(skb); 2022 goto next_rx; 2023 } 2024 } 2025 2026 skb_checksum_none_assert(skb); 2027 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2028 if (dev->features & NETIF_F_RXCSUM) { 2029 skb->ip_summed = CHECKSUM_UNNECESSARY; 2030 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2031 } 2032 } else { 2033 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2034 if (dev->features & NETIF_F_RXCSUM) 2035 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2036 } 2037 } 2038 2039 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 2040 RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) { 2041 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2042 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2043 u64 ns, ts; 2044 2045 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2046 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2047 2048 spin_lock_bh(&ptp->ptp_lock); 2049 ns = timecounter_cyc2time(&ptp->tc, ts); 2050 spin_unlock_bh(&ptp->ptp_lock); 2051 memset(skb_hwtstamps(skb), 0, 2052 sizeof(*skb_hwtstamps(skb))); 2053 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2054 } 2055 } 2056 } 2057 bnxt_deliver_skb(bp, bnapi, skb); 2058 rc = 1; 2059 2060 next_rx: 2061 cpr->rx_packets += 1; 2062 cpr->rx_bytes += len; 2063 2064 next_rx_no_len: 2065 rxr->rx_prod = NEXT_RX(prod); 2066 rxr->rx_next_cons = NEXT_RX(cons); 2067 2068 next_rx_no_prod_no_len: 2069 *raw_cons = tmp_raw_cons; 2070 2071 return rc; 2072 } 2073 2074 /* In netpoll mode, if we are using a combined completion ring, we need to 2075 * discard the rx packets and recycle the buffers. 2076 */ 2077 static int bnxt_force_rx_discard(struct bnxt *bp, 2078 struct bnxt_cp_ring_info *cpr, 2079 u32 *raw_cons, u8 *event) 2080 { 2081 u32 tmp_raw_cons = *raw_cons; 2082 struct rx_cmp_ext *rxcmp1; 2083 struct rx_cmp *rxcmp; 2084 u16 cp_cons; 2085 u8 cmp_type; 2086 int rc; 2087 2088 cp_cons = RING_CMP(tmp_raw_cons); 2089 rxcmp = (struct rx_cmp *) 2090 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2091 2092 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2093 cp_cons = RING_CMP(tmp_raw_cons); 2094 rxcmp1 = (struct rx_cmp_ext *) 2095 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2096 2097 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2098 return -EBUSY; 2099 2100 /* The valid test of the entry must be done first before 2101 * reading any further. 2102 */ 2103 dma_rmb(); 2104 cmp_type = RX_CMP_TYPE(rxcmp); 2105 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2106 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2107 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2108 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2109 struct rx_tpa_end_cmp_ext *tpa_end1; 2110 2111 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2112 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2113 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2114 } 2115 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2116 if (rc && rc != -EBUSY) 2117 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2118 return rc; 2119 } 2120 2121 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2122 { 2123 struct bnxt_fw_health *fw_health = bp->fw_health; 2124 u32 reg = fw_health->regs[reg_idx]; 2125 u32 reg_type, reg_off, val = 0; 2126 2127 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2128 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2129 switch (reg_type) { 2130 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2131 pci_read_config_dword(bp->pdev, reg_off, &val); 2132 break; 2133 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2134 reg_off = fw_health->mapped_regs[reg_idx]; 2135 fallthrough; 2136 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2137 val = readl(bp->bar0 + reg_off); 2138 break; 2139 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2140 val = readl(bp->bar1 + reg_off); 2141 break; 2142 } 2143 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2144 val &= fw_health->fw_reset_inprog_reg_mask; 2145 return val; 2146 } 2147 2148 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2149 { 2150 int i; 2151 2152 for (i = 0; i < bp->rx_nr_rings; i++) { 2153 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2154 struct bnxt_ring_grp_info *grp_info; 2155 2156 grp_info = &bp->grp_info[grp_idx]; 2157 if (grp_info->agg_fw_ring_id == ring_id) 2158 return grp_idx; 2159 } 2160 return INVALID_HW_RING_ID; 2161 } 2162 2163 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2164 { 2165 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2166 2167 switch (err_type) { 2168 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2169 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2170 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2171 break; 2172 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2173 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2174 break; 2175 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2176 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2177 break; 2178 default: 2179 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2180 err_type); 2181 break; 2182 } 2183 } 2184 2185 #define BNXT_GET_EVENT_PORT(data) \ 2186 ((data) & \ 2187 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2188 2189 #define BNXT_EVENT_RING_TYPE(data2) \ 2190 ((data2) & \ 2191 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2192 2193 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2194 (BNXT_EVENT_RING_TYPE(data2) == \ 2195 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2196 2197 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2198 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2199 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2200 2201 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2202 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2203 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2204 2205 #define BNXT_PHC_BITS 48 2206 2207 static int bnxt_async_event_process(struct bnxt *bp, 2208 struct hwrm_async_event_cmpl *cmpl) 2209 { 2210 u16 event_id = le16_to_cpu(cmpl->event_id); 2211 u32 data1 = le32_to_cpu(cmpl->event_data1); 2212 u32 data2 = le32_to_cpu(cmpl->event_data2); 2213 2214 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2215 event_id, data1, data2); 2216 2217 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2218 switch (event_id) { 2219 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2220 struct bnxt_link_info *link_info = &bp->link_info; 2221 2222 if (BNXT_VF(bp)) 2223 goto async_event_process_exit; 2224 2225 /* print unsupported speed warning in forced speed mode only */ 2226 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2227 (data1 & 0x20000)) { 2228 u16 fw_speed = link_info->force_link_speed; 2229 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2230 2231 if (speed != SPEED_UNKNOWN) 2232 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2233 speed); 2234 } 2235 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2236 } 2237 fallthrough; 2238 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2239 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2240 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2241 fallthrough; 2242 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2243 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2244 break; 2245 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2246 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2247 break; 2248 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2249 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2250 2251 if (BNXT_VF(bp)) 2252 break; 2253 2254 if (bp->pf.port_id != port_id) 2255 break; 2256 2257 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2258 break; 2259 } 2260 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2261 if (BNXT_PF(bp)) 2262 goto async_event_process_exit; 2263 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2264 break; 2265 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2266 char *type_str = "Solicited"; 2267 2268 if (!bp->fw_health) 2269 goto async_event_process_exit; 2270 2271 bp->fw_reset_timestamp = jiffies; 2272 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2273 if (!bp->fw_reset_min_dsecs) 2274 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2275 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2276 if (!bp->fw_reset_max_dsecs) 2277 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2278 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2279 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2280 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2281 type_str = "Fatal"; 2282 bp->fw_health->fatalities++; 2283 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2284 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2285 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2286 type_str = "Non-fatal"; 2287 bp->fw_health->survivals++; 2288 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2289 } 2290 netif_warn(bp, hw, bp->dev, 2291 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2292 type_str, data1, data2, 2293 bp->fw_reset_min_dsecs * 100, 2294 bp->fw_reset_max_dsecs * 100); 2295 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2296 break; 2297 } 2298 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2299 struct bnxt_fw_health *fw_health = bp->fw_health; 2300 char *status_desc = "healthy"; 2301 u32 status; 2302 2303 if (!fw_health) 2304 goto async_event_process_exit; 2305 2306 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2307 fw_health->enabled = false; 2308 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2309 break; 2310 } 2311 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2312 fw_health->tmr_multiplier = 2313 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2314 bp->current_interval * 10); 2315 fw_health->tmr_counter = fw_health->tmr_multiplier; 2316 if (!fw_health->enabled) 2317 fw_health->last_fw_heartbeat = 2318 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2319 fw_health->last_fw_reset_cnt = 2320 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2321 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2322 if (status != BNXT_FW_STATUS_HEALTHY) 2323 status_desc = "unhealthy"; 2324 netif_info(bp, drv, bp->dev, 2325 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2326 fw_health->primary ? "primary" : "backup", status, 2327 status_desc, fw_health->last_fw_reset_cnt); 2328 if (!fw_health->enabled) { 2329 /* Make sure tmr_counter is set and visible to 2330 * bnxt_health_check() before setting enabled to true. 2331 */ 2332 smp_wmb(); 2333 fw_health->enabled = true; 2334 } 2335 goto async_event_process_exit; 2336 } 2337 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2338 netif_notice(bp, hw, bp->dev, 2339 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2340 data1, data2); 2341 goto async_event_process_exit; 2342 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2343 struct bnxt_rx_ring_info *rxr; 2344 u16 grp_idx; 2345 2346 if (bp->flags & BNXT_FLAG_CHIP_P5) 2347 goto async_event_process_exit; 2348 2349 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2350 BNXT_EVENT_RING_TYPE(data2), data1); 2351 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2352 goto async_event_process_exit; 2353 2354 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2355 if (grp_idx == INVALID_HW_RING_ID) { 2356 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2357 data1); 2358 goto async_event_process_exit; 2359 } 2360 rxr = bp->bnapi[grp_idx]->rx_ring; 2361 bnxt_sched_reset(bp, rxr); 2362 goto async_event_process_exit; 2363 } 2364 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2365 struct bnxt_fw_health *fw_health = bp->fw_health; 2366 2367 netif_notice(bp, hw, bp->dev, 2368 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2369 data1, data2); 2370 if (fw_health) { 2371 fw_health->echo_req_data1 = data1; 2372 fw_health->echo_req_data2 = data2; 2373 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2374 break; 2375 } 2376 goto async_event_process_exit; 2377 } 2378 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2379 bnxt_ptp_pps_event(bp, data1, data2); 2380 goto async_event_process_exit; 2381 } 2382 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2383 bnxt_event_error_report(bp, data1, data2); 2384 goto async_event_process_exit; 2385 } 2386 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2387 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2388 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2389 if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) { 2390 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2391 u64 ns; 2392 2393 spin_lock_bh(&ptp->ptp_lock); 2394 bnxt_ptp_update_current_time(bp); 2395 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2396 BNXT_PHC_BITS) | ptp->current_time); 2397 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2398 spin_unlock_bh(&ptp->ptp_lock); 2399 } 2400 break; 2401 } 2402 goto async_event_process_exit; 2403 } 2404 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2405 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2406 2407 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2408 goto async_event_process_exit; 2409 } 2410 default: 2411 goto async_event_process_exit; 2412 } 2413 bnxt_queue_sp_work(bp); 2414 async_event_process_exit: 2415 bnxt_ulp_async_events(bp, cmpl); 2416 return 0; 2417 } 2418 2419 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2420 { 2421 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2422 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2423 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2424 (struct hwrm_fwd_req_cmpl *)txcmp; 2425 2426 switch (cmpl_type) { 2427 case CMPL_BASE_TYPE_HWRM_DONE: 2428 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2429 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2430 break; 2431 2432 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2433 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2434 2435 if ((vf_id < bp->pf.first_vf_id) || 2436 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2437 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2438 vf_id); 2439 return -EINVAL; 2440 } 2441 2442 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2443 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2444 bnxt_queue_sp_work(bp); 2445 break; 2446 2447 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2448 bnxt_async_event_process(bp, 2449 (struct hwrm_async_event_cmpl *)txcmp); 2450 break; 2451 2452 default: 2453 break; 2454 } 2455 2456 return 0; 2457 } 2458 2459 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2460 { 2461 struct bnxt_napi *bnapi = dev_instance; 2462 struct bnxt *bp = bnapi->bp; 2463 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2464 u32 cons = RING_CMP(cpr->cp_raw_cons); 2465 2466 cpr->event_ctr++; 2467 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2468 napi_schedule(&bnapi->napi); 2469 return IRQ_HANDLED; 2470 } 2471 2472 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2473 { 2474 u32 raw_cons = cpr->cp_raw_cons; 2475 u16 cons = RING_CMP(raw_cons); 2476 struct tx_cmp *txcmp; 2477 2478 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2479 2480 return TX_CMP_VALID(txcmp, raw_cons); 2481 } 2482 2483 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2484 { 2485 struct bnxt_napi *bnapi = dev_instance; 2486 struct bnxt *bp = bnapi->bp; 2487 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2488 u32 cons = RING_CMP(cpr->cp_raw_cons); 2489 u32 int_status; 2490 2491 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2492 2493 if (!bnxt_has_work(bp, cpr)) { 2494 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2495 /* return if erroneous interrupt */ 2496 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2497 return IRQ_NONE; 2498 } 2499 2500 /* disable ring IRQ */ 2501 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2502 2503 /* Return here if interrupt is shared and is disabled. */ 2504 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2505 return IRQ_HANDLED; 2506 2507 napi_schedule(&bnapi->napi); 2508 return IRQ_HANDLED; 2509 } 2510 2511 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2512 int budget) 2513 { 2514 struct bnxt_napi *bnapi = cpr->bnapi; 2515 u32 raw_cons = cpr->cp_raw_cons; 2516 u32 cons; 2517 int tx_pkts = 0; 2518 int rx_pkts = 0; 2519 u8 event = 0; 2520 struct tx_cmp *txcmp; 2521 2522 cpr->has_more_work = 0; 2523 cpr->had_work_done = 1; 2524 while (1) { 2525 int rc; 2526 2527 cons = RING_CMP(raw_cons); 2528 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2529 2530 if (!TX_CMP_VALID(txcmp, raw_cons)) 2531 break; 2532 2533 /* The valid test of the entry must be done first before 2534 * reading any further. 2535 */ 2536 dma_rmb(); 2537 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2538 tx_pkts++; 2539 /* return full budget so NAPI will complete. */ 2540 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2541 rx_pkts = budget; 2542 raw_cons = NEXT_RAW_CMP(raw_cons); 2543 if (budget) 2544 cpr->has_more_work = 1; 2545 break; 2546 } 2547 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2548 if (likely(budget)) 2549 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2550 else 2551 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2552 &event); 2553 if (likely(rc >= 0)) 2554 rx_pkts += rc; 2555 /* Increment rx_pkts when rc is -ENOMEM to count towards 2556 * the NAPI budget. Otherwise, we may potentially loop 2557 * here forever if we consistently cannot allocate 2558 * buffers. 2559 */ 2560 else if (rc == -ENOMEM && budget) 2561 rx_pkts++; 2562 else if (rc == -EBUSY) /* partial completion */ 2563 break; 2564 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2565 CMPL_BASE_TYPE_HWRM_DONE) || 2566 (TX_CMP_TYPE(txcmp) == 2567 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2568 (TX_CMP_TYPE(txcmp) == 2569 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2570 bnxt_hwrm_handler(bp, txcmp); 2571 } 2572 raw_cons = NEXT_RAW_CMP(raw_cons); 2573 2574 if (rx_pkts && rx_pkts == budget) { 2575 cpr->has_more_work = 1; 2576 break; 2577 } 2578 } 2579 2580 if (event & BNXT_REDIRECT_EVENT) 2581 xdp_do_flush(); 2582 2583 if (event & BNXT_TX_EVENT) { 2584 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2585 u16 prod = txr->tx_prod; 2586 2587 /* Sync BD data before updating doorbell */ 2588 wmb(); 2589 2590 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2591 } 2592 2593 cpr->cp_raw_cons = raw_cons; 2594 bnapi->tx_pkts += tx_pkts; 2595 bnapi->events |= event; 2596 return rx_pkts; 2597 } 2598 2599 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2600 { 2601 if (bnapi->tx_pkts) { 2602 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2603 bnapi->tx_pkts = 0; 2604 } 2605 2606 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2607 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2608 2609 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2610 } 2611 if (bnapi->events & BNXT_AGG_EVENT) { 2612 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2613 2614 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2615 } 2616 bnapi->events = 0; 2617 } 2618 2619 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2620 int budget) 2621 { 2622 struct bnxt_napi *bnapi = cpr->bnapi; 2623 int rx_pkts; 2624 2625 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2626 2627 /* ACK completion ring before freeing tx ring and producing new 2628 * buffers in rx/agg rings to prevent overflowing the completion 2629 * ring. 2630 */ 2631 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2632 2633 __bnxt_poll_work_done(bp, bnapi); 2634 return rx_pkts; 2635 } 2636 2637 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2638 { 2639 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2640 struct bnxt *bp = bnapi->bp; 2641 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2642 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2643 struct tx_cmp *txcmp; 2644 struct rx_cmp_ext *rxcmp1; 2645 u32 cp_cons, tmp_raw_cons; 2646 u32 raw_cons = cpr->cp_raw_cons; 2647 u32 rx_pkts = 0; 2648 u8 event = 0; 2649 2650 while (1) { 2651 int rc; 2652 2653 cp_cons = RING_CMP(raw_cons); 2654 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2655 2656 if (!TX_CMP_VALID(txcmp, raw_cons)) 2657 break; 2658 2659 /* The valid test of the entry must be done first before 2660 * reading any further. 2661 */ 2662 dma_rmb(); 2663 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2664 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2665 cp_cons = RING_CMP(tmp_raw_cons); 2666 rxcmp1 = (struct rx_cmp_ext *) 2667 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2668 2669 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2670 break; 2671 2672 /* force an error to recycle the buffer */ 2673 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2674 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2675 2676 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2677 if (likely(rc == -EIO) && budget) 2678 rx_pkts++; 2679 else if (rc == -EBUSY) /* partial completion */ 2680 break; 2681 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2682 CMPL_BASE_TYPE_HWRM_DONE)) { 2683 bnxt_hwrm_handler(bp, txcmp); 2684 } else { 2685 netdev_err(bp->dev, 2686 "Invalid completion received on special ring\n"); 2687 } 2688 raw_cons = NEXT_RAW_CMP(raw_cons); 2689 2690 if (rx_pkts == budget) 2691 break; 2692 } 2693 2694 cpr->cp_raw_cons = raw_cons; 2695 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2696 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2697 2698 if (event & BNXT_AGG_EVENT) 2699 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2700 2701 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2702 napi_complete_done(napi, rx_pkts); 2703 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2704 } 2705 return rx_pkts; 2706 } 2707 2708 static int bnxt_poll(struct napi_struct *napi, int budget) 2709 { 2710 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2711 struct bnxt *bp = bnapi->bp; 2712 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2713 int work_done = 0; 2714 2715 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2716 napi_complete(napi); 2717 return 0; 2718 } 2719 while (1) { 2720 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2721 2722 if (work_done >= budget) { 2723 if (!budget) 2724 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2725 break; 2726 } 2727 2728 if (!bnxt_has_work(bp, cpr)) { 2729 if (napi_complete_done(napi, work_done)) 2730 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2731 break; 2732 } 2733 } 2734 if (bp->flags & BNXT_FLAG_DIM) { 2735 struct dim_sample dim_sample = {}; 2736 2737 dim_update_sample(cpr->event_ctr, 2738 cpr->rx_packets, 2739 cpr->rx_bytes, 2740 &dim_sample); 2741 net_dim(&cpr->dim, dim_sample); 2742 } 2743 return work_done; 2744 } 2745 2746 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2747 { 2748 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2749 int i, work_done = 0; 2750 2751 for (i = 0; i < 2; i++) { 2752 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2753 2754 if (cpr2) { 2755 work_done += __bnxt_poll_work(bp, cpr2, 2756 budget - work_done); 2757 cpr->has_more_work |= cpr2->has_more_work; 2758 } 2759 } 2760 return work_done; 2761 } 2762 2763 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2764 u64 dbr_type) 2765 { 2766 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2767 int i; 2768 2769 for (i = 0; i < 2; i++) { 2770 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2771 struct bnxt_db_info *db; 2772 2773 if (cpr2 && cpr2->had_work_done) { 2774 db = &cpr2->cp_db; 2775 bnxt_writeq(bp, db->db_key64 | dbr_type | 2776 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2777 cpr2->had_work_done = 0; 2778 } 2779 } 2780 __bnxt_poll_work_done(bp, bnapi); 2781 } 2782 2783 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2784 { 2785 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2786 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2787 struct bnxt_cp_ring_info *cpr_rx; 2788 u32 raw_cons = cpr->cp_raw_cons; 2789 struct bnxt *bp = bnapi->bp; 2790 struct nqe_cn *nqcmp; 2791 int work_done = 0; 2792 u32 cons; 2793 2794 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2795 napi_complete(napi); 2796 return 0; 2797 } 2798 if (cpr->has_more_work) { 2799 cpr->has_more_work = 0; 2800 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2801 } 2802 while (1) { 2803 cons = RING_CMP(raw_cons); 2804 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2805 2806 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2807 if (cpr->has_more_work) 2808 break; 2809 2810 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2811 cpr->cp_raw_cons = raw_cons; 2812 if (napi_complete_done(napi, work_done)) 2813 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2814 cpr->cp_raw_cons); 2815 goto poll_done; 2816 } 2817 2818 /* The valid test of the entry must be done first before 2819 * reading any further. 2820 */ 2821 dma_rmb(); 2822 2823 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2824 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2825 struct bnxt_cp_ring_info *cpr2; 2826 2827 /* No more budget for RX work */ 2828 if (budget && work_done >= budget && idx == BNXT_RX_HDL) 2829 break; 2830 2831 cpr2 = cpr->cp_ring_arr[idx]; 2832 work_done += __bnxt_poll_work(bp, cpr2, 2833 budget - work_done); 2834 cpr->has_more_work |= cpr2->has_more_work; 2835 } else { 2836 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2837 } 2838 raw_cons = NEXT_RAW_CMP(raw_cons); 2839 } 2840 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2841 if (raw_cons != cpr->cp_raw_cons) { 2842 cpr->cp_raw_cons = raw_cons; 2843 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2844 } 2845 poll_done: 2846 cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL]; 2847 if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) { 2848 struct dim_sample dim_sample = {}; 2849 2850 dim_update_sample(cpr->event_ctr, 2851 cpr_rx->rx_packets, 2852 cpr_rx->rx_bytes, 2853 &dim_sample); 2854 net_dim(&cpr->dim, dim_sample); 2855 } 2856 return work_done; 2857 } 2858 2859 static void bnxt_free_tx_skbs(struct bnxt *bp) 2860 { 2861 int i, max_idx; 2862 struct pci_dev *pdev = bp->pdev; 2863 2864 if (!bp->tx_ring) 2865 return; 2866 2867 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2868 for (i = 0; i < bp->tx_nr_rings; i++) { 2869 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2870 int j; 2871 2872 if (!txr->tx_buf_ring) 2873 continue; 2874 2875 for (j = 0; j < max_idx;) { 2876 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2877 struct sk_buff *skb; 2878 int k, last; 2879 2880 if (i < bp->tx_nr_rings_xdp && 2881 tx_buf->action == XDP_REDIRECT) { 2882 dma_unmap_single(&pdev->dev, 2883 dma_unmap_addr(tx_buf, mapping), 2884 dma_unmap_len(tx_buf, len), 2885 DMA_TO_DEVICE); 2886 xdp_return_frame(tx_buf->xdpf); 2887 tx_buf->action = 0; 2888 tx_buf->xdpf = NULL; 2889 j++; 2890 continue; 2891 } 2892 2893 skb = tx_buf->skb; 2894 if (!skb) { 2895 j++; 2896 continue; 2897 } 2898 2899 tx_buf->skb = NULL; 2900 2901 if (tx_buf->is_push) { 2902 dev_kfree_skb(skb); 2903 j += 2; 2904 continue; 2905 } 2906 2907 dma_unmap_single(&pdev->dev, 2908 dma_unmap_addr(tx_buf, mapping), 2909 skb_headlen(skb), 2910 DMA_TO_DEVICE); 2911 2912 last = tx_buf->nr_frags; 2913 j += 2; 2914 for (k = 0; k < last; k++, j++) { 2915 int ring_idx = j & bp->tx_ring_mask; 2916 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2917 2918 tx_buf = &txr->tx_buf_ring[ring_idx]; 2919 dma_unmap_page( 2920 &pdev->dev, 2921 dma_unmap_addr(tx_buf, mapping), 2922 skb_frag_size(frag), DMA_TO_DEVICE); 2923 } 2924 dev_kfree_skb(skb); 2925 } 2926 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2927 } 2928 } 2929 2930 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2931 { 2932 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2933 struct pci_dev *pdev = bp->pdev; 2934 struct bnxt_tpa_idx_map *map; 2935 int i, max_idx, max_agg_idx; 2936 2937 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2938 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2939 if (!rxr->rx_tpa) 2940 goto skip_rx_tpa_free; 2941 2942 for (i = 0; i < bp->max_tpa; i++) { 2943 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2944 u8 *data = tpa_info->data; 2945 2946 if (!data) 2947 continue; 2948 2949 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2950 bp->rx_buf_use_size, bp->rx_dir, 2951 DMA_ATTR_WEAK_ORDERING); 2952 2953 tpa_info->data = NULL; 2954 2955 skb_free_frag(data); 2956 } 2957 2958 skip_rx_tpa_free: 2959 if (!rxr->rx_buf_ring) 2960 goto skip_rx_buf_free; 2961 2962 for (i = 0; i < max_idx; i++) { 2963 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2964 dma_addr_t mapping = rx_buf->mapping; 2965 void *data = rx_buf->data; 2966 2967 if (!data) 2968 continue; 2969 2970 rx_buf->data = NULL; 2971 if (BNXT_RX_PAGE_MODE(bp)) { 2972 mapping -= bp->rx_dma_offset; 2973 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2974 bp->rx_dir, 2975 DMA_ATTR_WEAK_ORDERING); 2976 page_pool_recycle_direct(rxr->page_pool, data); 2977 } else { 2978 dma_unmap_single_attrs(&pdev->dev, mapping, 2979 bp->rx_buf_use_size, bp->rx_dir, 2980 DMA_ATTR_WEAK_ORDERING); 2981 skb_free_frag(data); 2982 } 2983 } 2984 2985 skip_rx_buf_free: 2986 if (!rxr->rx_agg_ring) 2987 goto skip_rx_agg_free; 2988 2989 for (i = 0; i < max_agg_idx; i++) { 2990 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2991 struct page *page = rx_agg_buf->page; 2992 2993 if (!page) 2994 continue; 2995 2996 if (BNXT_RX_PAGE_MODE(bp)) { 2997 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2998 BNXT_RX_PAGE_SIZE, bp->rx_dir, 2999 DMA_ATTR_WEAK_ORDERING); 3000 rx_agg_buf->page = NULL; 3001 __clear_bit(i, rxr->rx_agg_bmap); 3002 3003 page_pool_recycle_direct(rxr->page_pool, page); 3004 } else { 3005 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 3006 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 3007 DMA_ATTR_WEAK_ORDERING); 3008 rx_agg_buf->page = NULL; 3009 __clear_bit(i, rxr->rx_agg_bmap); 3010 3011 __free_page(page); 3012 } 3013 } 3014 3015 skip_rx_agg_free: 3016 if (rxr->rx_page) { 3017 __free_page(rxr->rx_page); 3018 rxr->rx_page = NULL; 3019 } 3020 map = rxr->rx_tpa_idx_map; 3021 if (map) 3022 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3023 } 3024 3025 static void bnxt_free_rx_skbs(struct bnxt *bp) 3026 { 3027 int i; 3028 3029 if (!bp->rx_ring) 3030 return; 3031 3032 for (i = 0; i < bp->rx_nr_rings; i++) 3033 bnxt_free_one_rx_ring_skbs(bp, i); 3034 } 3035 3036 static void bnxt_free_skbs(struct bnxt *bp) 3037 { 3038 bnxt_free_tx_skbs(bp); 3039 bnxt_free_rx_skbs(bp); 3040 } 3041 3042 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 3043 { 3044 u8 init_val = mem_init->init_val; 3045 u16 offset = mem_init->offset; 3046 u8 *p2 = p; 3047 int i; 3048 3049 if (!init_val) 3050 return; 3051 if (offset == BNXT_MEM_INVALID_OFFSET) { 3052 memset(p, init_val, len); 3053 return; 3054 } 3055 for (i = 0; i < len; i += mem_init->size) 3056 *(p2 + i + offset) = init_val; 3057 } 3058 3059 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3060 { 3061 struct pci_dev *pdev = bp->pdev; 3062 int i; 3063 3064 if (!rmem->pg_arr) 3065 goto skip_pages; 3066 3067 for (i = 0; i < rmem->nr_pages; i++) { 3068 if (!rmem->pg_arr[i]) 3069 continue; 3070 3071 dma_free_coherent(&pdev->dev, rmem->page_size, 3072 rmem->pg_arr[i], rmem->dma_arr[i]); 3073 3074 rmem->pg_arr[i] = NULL; 3075 } 3076 skip_pages: 3077 if (rmem->pg_tbl) { 3078 size_t pg_tbl_size = rmem->nr_pages * 8; 3079 3080 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3081 pg_tbl_size = rmem->page_size; 3082 dma_free_coherent(&pdev->dev, pg_tbl_size, 3083 rmem->pg_tbl, rmem->pg_tbl_map); 3084 rmem->pg_tbl = NULL; 3085 } 3086 if (rmem->vmem_size && *rmem->vmem) { 3087 vfree(*rmem->vmem); 3088 *rmem->vmem = NULL; 3089 } 3090 } 3091 3092 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3093 { 3094 struct pci_dev *pdev = bp->pdev; 3095 u64 valid_bit = 0; 3096 int i; 3097 3098 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3099 valid_bit = PTU_PTE_VALID; 3100 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3101 size_t pg_tbl_size = rmem->nr_pages * 8; 3102 3103 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3104 pg_tbl_size = rmem->page_size; 3105 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3106 &rmem->pg_tbl_map, 3107 GFP_KERNEL); 3108 if (!rmem->pg_tbl) 3109 return -ENOMEM; 3110 } 3111 3112 for (i = 0; i < rmem->nr_pages; i++) { 3113 u64 extra_bits = valid_bit; 3114 3115 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3116 rmem->page_size, 3117 &rmem->dma_arr[i], 3118 GFP_KERNEL); 3119 if (!rmem->pg_arr[i]) 3120 return -ENOMEM; 3121 3122 if (rmem->mem_init) 3123 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 3124 rmem->page_size); 3125 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3126 if (i == rmem->nr_pages - 2 && 3127 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3128 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3129 else if (i == rmem->nr_pages - 1 && 3130 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3131 extra_bits |= PTU_PTE_LAST; 3132 rmem->pg_tbl[i] = 3133 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3134 } 3135 } 3136 3137 if (rmem->vmem_size) { 3138 *rmem->vmem = vzalloc(rmem->vmem_size); 3139 if (!(*rmem->vmem)) 3140 return -ENOMEM; 3141 } 3142 return 0; 3143 } 3144 3145 static void bnxt_free_tpa_info(struct bnxt *bp) 3146 { 3147 int i; 3148 3149 for (i = 0; i < bp->rx_nr_rings; i++) { 3150 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3151 3152 kfree(rxr->rx_tpa_idx_map); 3153 rxr->rx_tpa_idx_map = NULL; 3154 if (rxr->rx_tpa) { 3155 kfree(rxr->rx_tpa[0].agg_arr); 3156 rxr->rx_tpa[0].agg_arr = NULL; 3157 } 3158 kfree(rxr->rx_tpa); 3159 rxr->rx_tpa = NULL; 3160 } 3161 } 3162 3163 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3164 { 3165 int i, j, total_aggs = 0; 3166 3167 bp->max_tpa = MAX_TPA; 3168 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3169 if (!bp->max_tpa_v2) 3170 return 0; 3171 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3172 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 3173 } 3174 3175 for (i = 0; i < bp->rx_nr_rings; i++) { 3176 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3177 struct rx_agg_cmp *agg; 3178 3179 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3180 GFP_KERNEL); 3181 if (!rxr->rx_tpa) 3182 return -ENOMEM; 3183 3184 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3185 continue; 3186 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3187 rxr->rx_tpa[0].agg_arr = agg; 3188 if (!agg) 3189 return -ENOMEM; 3190 for (j = 1; j < bp->max_tpa; j++) 3191 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3192 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3193 GFP_KERNEL); 3194 if (!rxr->rx_tpa_idx_map) 3195 return -ENOMEM; 3196 } 3197 return 0; 3198 } 3199 3200 static void bnxt_free_rx_rings(struct bnxt *bp) 3201 { 3202 int i; 3203 3204 if (!bp->rx_ring) 3205 return; 3206 3207 bnxt_free_tpa_info(bp); 3208 for (i = 0; i < bp->rx_nr_rings; i++) { 3209 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3210 struct bnxt_ring_struct *ring; 3211 3212 if (rxr->xdp_prog) 3213 bpf_prog_put(rxr->xdp_prog); 3214 3215 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3216 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3217 3218 page_pool_destroy(rxr->page_pool); 3219 rxr->page_pool = NULL; 3220 3221 kfree(rxr->rx_agg_bmap); 3222 rxr->rx_agg_bmap = NULL; 3223 3224 ring = &rxr->rx_ring_struct; 3225 bnxt_free_ring(bp, &ring->ring_mem); 3226 3227 ring = &rxr->rx_agg_ring_struct; 3228 bnxt_free_ring(bp, &ring->ring_mem); 3229 } 3230 } 3231 3232 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3233 struct bnxt_rx_ring_info *rxr) 3234 { 3235 struct page_pool_params pp = { 0 }; 3236 3237 pp.pool_size = bp->rx_ring_size; 3238 pp.nid = dev_to_node(&bp->pdev->dev); 3239 pp.dev = &bp->pdev->dev; 3240 pp.dma_dir = DMA_BIDIRECTIONAL; 3241 3242 rxr->page_pool = page_pool_create(&pp); 3243 if (IS_ERR(rxr->page_pool)) { 3244 int err = PTR_ERR(rxr->page_pool); 3245 3246 rxr->page_pool = NULL; 3247 return err; 3248 } 3249 return 0; 3250 } 3251 3252 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3253 { 3254 int i, rc = 0, agg_rings = 0; 3255 3256 if (!bp->rx_ring) 3257 return -ENOMEM; 3258 3259 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3260 agg_rings = 1; 3261 3262 for (i = 0; i < bp->rx_nr_rings; i++) { 3263 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3264 struct bnxt_ring_struct *ring; 3265 3266 ring = &rxr->rx_ring_struct; 3267 3268 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3269 if (rc) 3270 return rc; 3271 3272 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3273 if (rc < 0) 3274 return rc; 3275 3276 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3277 MEM_TYPE_PAGE_POOL, 3278 rxr->page_pool); 3279 if (rc) { 3280 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3281 return rc; 3282 } 3283 3284 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3285 if (rc) 3286 return rc; 3287 3288 ring->grp_idx = i; 3289 if (agg_rings) { 3290 u16 mem_size; 3291 3292 ring = &rxr->rx_agg_ring_struct; 3293 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3294 if (rc) 3295 return rc; 3296 3297 ring->grp_idx = i; 3298 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3299 mem_size = rxr->rx_agg_bmap_size / 8; 3300 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3301 if (!rxr->rx_agg_bmap) 3302 return -ENOMEM; 3303 } 3304 } 3305 if (bp->flags & BNXT_FLAG_TPA) 3306 rc = bnxt_alloc_tpa_info(bp); 3307 return rc; 3308 } 3309 3310 static void bnxt_free_tx_rings(struct bnxt *bp) 3311 { 3312 int i; 3313 struct pci_dev *pdev = bp->pdev; 3314 3315 if (!bp->tx_ring) 3316 return; 3317 3318 for (i = 0; i < bp->tx_nr_rings; i++) { 3319 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3320 struct bnxt_ring_struct *ring; 3321 3322 if (txr->tx_push) { 3323 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3324 txr->tx_push, txr->tx_push_mapping); 3325 txr->tx_push = NULL; 3326 } 3327 3328 ring = &txr->tx_ring_struct; 3329 3330 bnxt_free_ring(bp, &ring->ring_mem); 3331 } 3332 } 3333 3334 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3335 { 3336 int i, j, rc; 3337 struct pci_dev *pdev = bp->pdev; 3338 3339 bp->tx_push_size = 0; 3340 if (bp->tx_push_thresh) { 3341 int push_size; 3342 3343 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3344 bp->tx_push_thresh); 3345 3346 if (push_size > 256) { 3347 push_size = 0; 3348 bp->tx_push_thresh = 0; 3349 } 3350 3351 bp->tx_push_size = push_size; 3352 } 3353 3354 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3355 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3356 struct bnxt_ring_struct *ring; 3357 u8 qidx; 3358 3359 ring = &txr->tx_ring_struct; 3360 3361 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3362 if (rc) 3363 return rc; 3364 3365 ring->grp_idx = txr->bnapi->index; 3366 if (bp->tx_push_size) { 3367 dma_addr_t mapping; 3368 3369 /* One pre-allocated DMA buffer to backup 3370 * TX push operation 3371 */ 3372 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3373 bp->tx_push_size, 3374 &txr->tx_push_mapping, 3375 GFP_KERNEL); 3376 3377 if (!txr->tx_push) 3378 return -ENOMEM; 3379 3380 mapping = txr->tx_push_mapping + 3381 sizeof(struct tx_push_bd); 3382 txr->data_mapping = cpu_to_le64(mapping); 3383 } 3384 qidx = bp->tc_to_qidx[j]; 3385 ring->queue_id = bp->q_info[qidx].queue_id; 3386 spin_lock_init(&txr->xdp_tx_lock); 3387 if (i < bp->tx_nr_rings_xdp) 3388 continue; 3389 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3390 j++; 3391 } 3392 return 0; 3393 } 3394 3395 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3396 { 3397 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3398 3399 kfree(cpr->cp_desc_ring); 3400 cpr->cp_desc_ring = NULL; 3401 ring->ring_mem.pg_arr = NULL; 3402 kfree(cpr->cp_desc_mapping); 3403 cpr->cp_desc_mapping = NULL; 3404 ring->ring_mem.dma_arr = NULL; 3405 } 3406 3407 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3408 { 3409 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3410 if (!cpr->cp_desc_ring) 3411 return -ENOMEM; 3412 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3413 GFP_KERNEL); 3414 if (!cpr->cp_desc_mapping) 3415 return -ENOMEM; 3416 return 0; 3417 } 3418 3419 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3420 { 3421 int i; 3422 3423 if (!bp->bnapi) 3424 return; 3425 for (i = 0; i < bp->cp_nr_rings; i++) { 3426 struct bnxt_napi *bnapi = bp->bnapi[i]; 3427 3428 if (!bnapi) 3429 continue; 3430 bnxt_free_cp_arrays(&bnapi->cp_ring); 3431 } 3432 } 3433 3434 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3435 { 3436 int i, n = bp->cp_nr_pages; 3437 3438 for (i = 0; i < bp->cp_nr_rings; i++) { 3439 struct bnxt_napi *bnapi = bp->bnapi[i]; 3440 int rc; 3441 3442 if (!bnapi) 3443 continue; 3444 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3445 if (rc) 3446 return rc; 3447 } 3448 return 0; 3449 } 3450 3451 static void bnxt_free_cp_rings(struct bnxt *bp) 3452 { 3453 int i; 3454 3455 if (!bp->bnapi) 3456 return; 3457 3458 for (i = 0; i < bp->cp_nr_rings; i++) { 3459 struct bnxt_napi *bnapi = bp->bnapi[i]; 3460 struct bnxt_cp_ring_info *cpr; 3461 struct bnxt_ring_struct *ring; 3462 int j; 3463 3464 if (!bnapi) 3465 continue; 3466 3467 cpr = &bnapi->cp_ring; 3468 ring = &cpr->cp_ring_struct; 3469 3470 bnxt_free_ring(bp, &ring->ring_mem); 3471 3472 for (j = 0; j < 2; j++) { 3473 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3474 3475 if (cpr2) { 3476 ring = &cpr2->cp_ring_struct; 3477 bnxt_free_ring(bp, &ring->ring_mem); 3478 bnxt_free_cp_arrays(cpr2); 3479 kfree(cpr2); 3480 cpr->cp_ring_arr[j] = NULL; 3481 } 3482 } 3483 } 3484 } 3485 3486 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3487 { 3488 struct bnxt_ring_mem_info *rmem; 3489 struct bnxt_ring_struct *ring; 3490 struct bnxt_cp_ring_info *cpr; 3491 int rc; 3492 3493 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3494 if (!cpr) 3495 return NULL; 3496 3497 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3498 if (rc) { 3499 bnxt_free_cp_arrays(cpr); 3500 kfree(cpr); 3501 return NULL; 3502 } 3503 ring = &cpr->cp_ring_struct; 3504 rmem = &ring->ring_mem; 3505 rmem->nr_pages = bp->cp_nr_pages; 3506 rmem->page_size = HW_CMPD_RING_SIZE; 3507 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3508 rmem->dma_arr = cpr->cp_desc_mapping; 3509 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3510 rc = bnxt_alloc_ring(bp, rmem); 3511 if (rc) { 3512 bnxt_free_ring(bp, rmem); 3513 bnxt_free_cp_arrays(cpr); 3514 kfree(cpr); 3515 cpr = NULL; 3516 } 3517 return cpr; 3518 } 3519 3520 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3521 { 3522 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3523 int i, rc, ulp_base_vec, ulp_msix; 3524 3525 ulp_msix = bnxt_get_ulp_msix_num(bp); 3526 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3527 for (i = 0; i < bp->cp_nr_rings; i++) { 3528 struct bnxt_napi *bnapi = bp->bnapi[i]; 3529 struct bnxt_cp_ring_info *cpr; 3530 struct bnxt_ring_struct *ring; 3531 3532 if (!bnapi) 3533 continue; 3534 3535 cpr = &bnapi->cp_ring; 3536 cpr->bnapi = bnapi; 3537 ring = &cpr->cp_ring_struct; 3538 3539 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3540 if (rc) 3541 return rc; 3542 3543 if (ulp_msix && i >= ulp_base_vec) 3544 ring->map_idx = i + ulp_msix; 3545 else 3546 ring->map_idx = i; 3547 3548 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3549 continue; 3550 3551 if (i < bp->rx_nr_rings) { 3552 struct bnxt_cp_ring_info *cpr2 = 3553 bnxt_alloc_cp_sub_ring(bp); 3554 3555 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3556 if (!cpr2) 3557 return -ENOMEM; 3558 cpr2->bnapi = bnapi; 3559 } 3560 if ((sh && i < bp->tx_nr_rings) || 3561 (!sh && i >= bp->rx_nr_rings)) { 3562 struct bnxt_cp_ring_info *cpr2 = 3563 bnxt_alloc_cp_sub_ring(bp); 3564 3565 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3566 if (!cpr2) 3567 return -ENOMEM; 3568 cpr2->bnapi = bnapi; 3569 } 3570 } 3571 return 0; 3572 } 3573 3574 static void bnxt_init_ring_struct(struct bnxt *bp) 3575 { 3576 int i; 3577 3578 for (i = 0; i < bp->cp_nr_rings; i++) { 3579 struct bnxt_napi *bnapi = bp->bnapi[i]; 3580 struct bnxt_ring_mem_info *rmem; 3581 struct bnxt_cp_ring_info *cpr; 3582 struct bnxt_rx_ring_info *rxr; 3583 struct bnxt_tx_ring_info *txr; 3584 struct bnxt_ring_struct *ring; 3585 3586 if (!bnapi) 3587 continue; 3588 3589 cpr = &bnapi->cp_ring; 3590 ring = &cpr->cp_ring_struct; 3591 rmem = &ring->ring_mem; 3592 rmem->nr_pages = bp->cp_nr_pages; 3593 rmem->page_size = HW_CMPD_RING_SIZE; 3594 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3595 rmem->dma_arr = cpr->cp_desc_mapping; 3596 rmem->vmem_size = 0; 3597 3598 rxr = bnapi->rx_ring; 3599 if (!rxr) 3600 goto skip_rx; 3601 3602 ring = &rxr->rx_ring_struct; 3603 rmem = &ring->ring_mem; 3604 rmem->nr_pages = bp->rx_nr_pages; 3605 rmem->page_size = HW_RXBD_RING_SIZE; 3606 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3607 rmem->dma_arr = rxr->rx_desc_mapping; 3608 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3609 rmem->vmem = (void **)&rxr->rx_buf_ring; 3610 3611 ring = &rxr->rx_agg_ring_struct; 3612 rmem = &ring->ring_mem; 3613 rmem->nr_pages = bp->rx_agg_nr_pages; 3614 rmem->page_size = HW_RXBD_RING_SIZE; 3615 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3616 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3617 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3618 rmem->vmem = (void **)&rxr->rx_agg_ring; 3619 3620 skip_rx: 3621 txr = bnapi->tx_ring; 3622 if (!txr) 3623 continue; 3624 3625 ring = &txr->tx_ring_struct; 3626 rmem = &ring->ring_mem; 3627 rmem->nr_pages = bp->tx_nr_pages; 3628 rmem->page_size = HW_RXBD_RING_SIZE; 3629 rmem->pg_arr = (void **)txr->tx_desc_ring; 3630 rmem->dma_arr = txr->tx_desc_mapping; 3631 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3632 rmem->vmem = (void **)&txr->tx_buf_ring; 3633 } 3634 } 3635 3636 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3637 { 3638 int i; 3639 u32 prod; 3640 struct rx_bd **rx_buf_ring; 3641 3642 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3643 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3644 int j; 3645 struct rx_bd *rxbd; 3646 3647 rxbd = rx_buf_ring[i]; 3648 if (!rxbd) 3649 continue; 3650 3651 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3652 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3653 rxbd->rx_bd_opaque = prod; 3654 } 3655 } 3656 } 3657 3658 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3659 { 3660 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3661 struct net_device *dev = bp->dev; 3662 u32 prod; 3663 int i; 3664 3665 prod = rxr->rx_prod; 3666 for (i = 0; i < bp->rx_ring_size; i++) { 3667 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3668 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3669 ring_nr, i, bp->rx_ring_size); 3670 break; 3671 } 3672 prod = NEXT_RX(prod); 3673 } 3674 rxr->rx_prod = prod; 3675 3676 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3677 return 0; 3678 3679 prod = rxr->rx_agg_prod; 3680 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3681 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3682 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3683 ring_nr, i, bp->rx_ring_size); 3684 break; 3685 } 3686 prod = NEXT_RX_AGG(prod); 3687 } 3688 rxr->rx_agg_prod = prod; 3689 3690 if (rxr->rx_tpa) { 3691 dma_addr_t mapping; 3692 u8 *data; 3693 3694 for (i = 0; i < bp->max_tpa; i++) { 3695 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 3696 if (!data) 3697 return -ENOMEM; 3698 3699 rxr->rx_tpa[i].data = data; 3700 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3701 rxr->rx_tpa[i].mapping = mapping; 3702 } 3703 } 3704 return 0; 3705 } 3706 3707 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3708 { 3709 struct bnxt_rx_ring_info *rxr; 3710 struct bnxt_ring_struct *ring; 3711 u32 type; 3712 3713 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3714 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3715 3716 if (NET_IP_ALIGN == 2) 3717 type |= RX_BD_FLAGS_SOP; 3718 3719 rxr = &bp->rx_ring[ring_nr]; 3720 ring = &rxr->rx_ring_struct; 3721 bnxt_init_rxbd_pages(ring, type); 3722 3723 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3724 bpf_prog_add(bp->xdp_prog, 1); 3725 rxr->xdp_prog = bp->xdp_prog; 3726 } 3727 ring->fw_ring_id = INVALID_HW_RING_ID; 3728 3729 ring = &rxr->rx_agg_ring_struct; 3730 ring->fw_ring_id = INVALID_HW_RING_ID; 3731 3732 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3733 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3734 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3735 3736 bnxt_init_rxbd_pages(ring, type); 3737 } 3738 3739 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3740 } 3741 3742 static void bnxt_init_cp_rings(struct bnxt *bp) 3743 { 3744 int i, j; 3745 3746 for (i = 0; i < bp->cp_nr_rings; i++) { 3747 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3748 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3749 3750 ring->fw_ring_id = INVALID_HW_RING_ID; 3751 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3752 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3753 for (j = 0; j < 2; j++) { 3754 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3755 3756 if (!cpr2) 3757 continue; 3758 3759 ring = &cpr2->cp_ring_struct; 3760 ring->fw_ring_id = INVALID_HW_RING_ID; 3761 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3762 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3763 } 3764 } 3765 } 3766 3767 static int bnxt_init_rx_rings(struct bnxt *bp) 3768 { 3769 int i, rc = 0; 3770 3771 if (BNXT_RX_PAGE_MODE(bp)) { 3772 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3773 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3774 } else { 3775 bp->rx_offset = BNXT_RX_OFFSET; 3776 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3777 } 3778 3779 for (i = 0; i < bp->rx_nr_rings; i++) { 3780 rc = bnxt_init_one_rx_ring(bp, i); 3781 if (rc) 3782 break; 3783 } 3784 3785 return rc; 3786 } 3787 3788 static int bnxt_init_tx_rings(struct bnxt *bp) 3789 { 3790 u16 i; 3791 3792 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3793 BNXT_MIN_TX_DESC_CNT); 3794 3795 for (i = 0; i < bp->tx_nr_rings; i++) { 3796 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3797 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3798 3799 ring->fw_ring_id = INVALID_HW_RING_ID; 3800 } 3801 3802 return 0; 3803 } 3804 3805 static void bnxt_free_ring_grps(struct bnxt *bp) 3806 { 3807 kfree(bp->grp_info); 3808 bp->grp_info = NULL; 3809 } 3810 3811 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3812 { 3813 int i; 3814 3815 if (irq_re_init) { 3816 bp->grp_info = kcalloc(bp->cp_nr_rings, 3817 sizeof(struct bnxt_ring_grp_info), 3818 GFP_KERNEL); 3819 if (!bp->grp_info) 3820 return -ENOMEM; 3821 } 3822 for (i = 0; i < bp->cp_nr_rings; i++) { 3823 if (irq_re_init) 3824 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3825 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3826 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3827 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3828 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3829 } 3830 return 0; 3831 } 3832 3833 static void bnxt_free_vnics(struct bnxt *bp) 3834 { 3835 kfree(bp->vnic_info); 3836 bp->vnic_info = NULL; 3837 bp->nr_vnics = 0; 3838 } 3839 3840 static int bnxt_alloc_vnics(struct bnxt *bp) 3841 { 3842 int num_vnics = 1; 3843 3844 #ifdef CONFIG_RFS_ACCEL 3845 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3846 num_vnics += bp->rx_nr_rings; 3847 #endif 3848 3849 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3850 num_vnics++; 3851 3852 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3853 GFP_KERNEL); 3854 if (!bp->vnic_info) 3855 return -ENOMEM; 3856 3857 bp->nr_vnics = num_vnics; 3858 return 0; 3859 } 3860 3861 static void bnxt_init_vnics(struct bnxt *bp) 3862 { 3863 int i; 3864 3865 for (i = 0; i < bp->nr_vnics; i++) { 3866 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3867 int j; 3868 3869 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3870 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3871 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3872 3873 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3874 3875 if (bp->vnic_info[i].rss_hash_key) { 3876 if (i == 0) 3877 get_random_bytes(vnic->rss_hash_key, 3878 HW_HASH_KEY_SIZE); 3879 else 3880 memcpy(vnic->rss_hash_key, 3881 bp->vnic_info[0].rss_hash_key, 3882 HW_HASH_KEY_SIZE); 3883 } 3884 } 3885 } 3886 3887 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3888 { 3889 int pages; 3890 3891 pages = ring_size / desc_per_pg; 3892 3893 if (!pages) 3894 return 1; 3895 3896 pages++; 3897 3898 while (pages & (pages - 1)) 3899 pages++; 3900 3901 return pages; 3902 } 3903 3904 void bnxt_set_tpa_flags(struct bnxt *bp) 3905 { 3906 bp->flags &= ~BNXT_FLAG_TPA; 3907 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3908 return; 3909 if (bp->dev->features & NETIF_F_LRO) 3910 bp->flags |= BNXT_FLAG_LRO; 3911 else if (bp->dev->features & NETIF_F_GRO_HW) 3912 bp->flags |= BNXT_FLAG_GRO; 3913 } 3914 3915 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3916 * be set on entry. 3917 */ 3918 void bnxt_set_ring_params(struct bnxt *bp) 3919 { 3920 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3921 u32 agg_factor = 0, agg_ring_size = 0; 3922 3923 /* 8 for CRC and VLAN */ 3924 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3925 3926 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 3927 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3928 3929 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3930 ring_size = bp->rx_ring_size; 3931 bp->rx_agg_ring_size = 0; 3932 bp->rx_agg_nr_pages = 0; 3933 3934 if (bp->flags & BNXT_FLAG_TPA) 3935 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3936 3937 bp->flags &= ~BNXT_FLAG_JUMBO; 3938 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3939 u32 jumbo_factor; 3940 3941 bp->flags |= BNXT_FLAG_JUMBO; 3942 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3943 if (jumbo_factor > agg_factor) 3944 agg_factor = jumbo_factor; 3945 } 3946 if (agg_factor) { 3947 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3948 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3949 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3950 bp->rx_ring_size, ring_size); 3951 bp->rx_ring_size = ring_size; 3952 } 3953 agg_ring_size = ring_size * agg_factor; 3954 3955 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3956 RX_DESC_CNT); 3957 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3958 u32 tmp = agg_ring_size; 3959 3960 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3961 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3962 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3963 tmp, agg_ring_size); 3964 } 3965 bp->rx_agg_ring_size = agg_ring_size; 3966 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3967 3968 if (BNXT_RX_PAGE_MODE(bp)) { 3969 rx_space = BNXT_PAGE_MODE_BUF_SIZE; 3970 rx_size = BNXT_MAX_PAGE_MODE_MTU; 3971 } else { 3972 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3973 rx_space = rx_size + NET_SKB_PAD + 3974 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3975 } 3976 } 3977 3978 bp->rx_buf_use_size = rx_size; 3979 bp->rx_buf_size = rx_space; 3980 3981 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3982 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3983 3984 ring_size = bp->tx_ring_size; 3985 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3986 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3987 3988 max_rx_cmpl = bp->rx_ring_size; 3989 /* MAX TPA needs to be added because TPA_START completions are 3990 * immediately recycled, so the TPA completions are not bound by 3991 * the RX ring size. 3992 */ 3993 if (bp->flags & BNXT_FLAG_TPA) 3994 max_rx_cmpl += bp->max_tpa; 3995 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3996 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3997 bp->cp_ring_size = ring_size; 3998 3999 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4000 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4001 bp->cp_nr_pages = MAX_CP_PAGES; 4002 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4003 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4004 ring_size, bp->cp_ring_size); 4005 } 4006 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4007 bp->cp_ring_mask = bp->cp_bit - 1; 4008 } 4009 4010 /* Changing allocation mode of RX rings. 4011 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4012 */ 4013 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4014 { 4015 if (page_mode) { 4016 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4017 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4018 4019 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4020 bp->flags |= BNXT_FLAG_JUMBO; 4021 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4022 bp->dev->max_mtu = 4023 min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4024 } else { 4025 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4026 bp->rx_skb_func = bnxt_rx_page_skb; 4027 bp->dev->max_mtu = 4028 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4029 } 4030 bp->rx_dir = DMA_BIDIRECTIONAL; 4031 /* Disable LRO or GRO_HW */ 4032 netdev_update_features(bp->dev); 4033 } else { 4034 bp->dev->max_mtu = bp->max_mtu; 4035 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4036 bp->rx_dir = DMA_FROM_DEVICE; 4037 bp->rx_skb_func = bnxt_rx_skb; 4038 } 4039 return 0; 4040 } 4041 4042 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4043 { 4044 int i; 4045 struct bnxt_vnic_info *vnic; 4046 struct pci_dev *pdev = bp->pdev; 4047 4048 if (!bp->vnic_info) 4049 return; 4050 4051 for (i = 0; i < bp->nr_vnics; i++) { 4052 vnic = &bp->vnic_info[i]; 4053 4054 kfree(vnic->fw_grp_ids); 4055 vnic->fw_grp_ids = NULL; 4056 4057 kfree(vnic->uc_list); 4058 vnic->uc_list = NULL; 4059 4060 if (vnic->mc_list) { 4061 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4062 vnic->mc_list, vnic->mc_list_mapping); 4063 vnic->mc_list = NULL; 4064 } 4065 4066 if (vnic->rss_table) { 4067 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4068 vnic->rss_table, 4069 vnic->rss_table_dma_addr); 4070 vnic->rss_table = NULL; 4071 } 4072 4073 vnic->rss_hash_key = NULL; 4074 vnic->flags = 0; 4075 } 4076 } 4077 4078 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4079 { 4080 int i, rc = 0, size; 4081 struct bnxt_vnic_info *vnic; 4082 struct pci_dev *pdev = bp->pdev; 4083 int max_rings; 4084 4085 for (i = 0; i < bp->nr_vnics; i++) { 4086 vnic = &bp->vnic_info[i]; 4087 4088 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4089 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4090 4091 if (mem_size > 0) { 4092 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4093 if (!vnic->uc_list) { 4094 rc = -ENOMEM; 4095 goto out; 4096 } 4097 } 4098 } 4099 4100 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4101 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4102 vnic->mc_list = 4103 dma_alloc_coherent(&pdev->dev, 4104 vnic->mc_list_size, 4105 &vnic->mc_list_mapping, 4106 GFP_KERNEL); 4107 if (!vnic->mc_list) { 4108 rc = -ENOMEM; 4109 goto out; 4110 } 4111 } 4112 4113 if (bp->flags & BNXT_FLAG_CHIP_P5) 4114 goto vnic_skip_grps; 4115 4116 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4117 max_rings = bp->rx_nr_rings; 4118 else 4119 max_rings = 1; 4120 4121 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4122 if (!vnic->fw_grp_ids) { 4123 rc = -ENOMEM; 4124 goto out; 4125 } 4126 vnic_skip_grps: 4127 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 4128 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4129 continue; 4130 4131 /* Allocate rss table and hash key */ 4132 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4133 if (bp->flags & BNXT_FLAG_CHIP_P5) 4134 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4135 4136 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4137 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4138 vnic->rss_table_size, 4139 &vnic->rss_table_dma_addr, 4140 GFP_KERNEL); 4141 if (!vnic->rss_table) { 4142 rc = -ENOMEM; 4143 goto out; 4144 } 4145 4146 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4147 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4148 } 4149 return 0; 4150 4151 out: 4152 return rc; 4153 } 4154 4155 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4156 { 4157 struct bnxt_hwrm_wait_token *token; 4158 4159 dma_pool_destroy(bp->hwrm_dma_pool); 4160 bp->hwrm_dma_pool = NULL; 4161 4162 rcu_read_lock(); 4163 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4164 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4165 rcu_read_unlock(); 4166 } 4167 4168 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4169 { 4170 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4171 BNXT_HWRM_DMA_SIZE, 4172 BNXT_HWRM_DMA_ALIGN, 0); 4173 if (!bp->hwrm_dma_pool) 4174 return -ENOMEM; 4175 4176 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4177 4178 return 0; 4179 } 4180 4181 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4182 { 4183 kfree(stats->hw_masks); 4184 stats->hw_masks = NULL; 4185 kfree(stats->sw_stats); 4186 stats->sw_stats = NULL; 4187 if (stats->hw_stats) { 4188 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4189 stats->hw_stats_map); 4190 stats->hw_stats = NULL; 4191 } 4192 } 4193 4194 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4195 bool alloc_masks) 4196 { 4197 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4198 &stats->hw_stats_map, GFP_KERNEL); 4199 if (!stats->hw_stats) 4200 return -ENOMEM; 4201 4202 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4203 if (!stats->sw_stats) 4204 goto stats_mem_err; 4205 4206 if (alloc_masks) { 4207 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4208 if (!stats->hw_masks) 4209 goto stats_mem_err; 4210 } 4211 return 0; 4212 4213 stats_mem_err: 4214 bnxt_free_stats_mem(bp, stats); 4215 return -ENOMEM; 4216 } 4217 4218 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4219 { 4220 int i; 4221 4222 for (i = 0; i < count; i++) 4223 mask_arr[i] = mask; 4224 } 4225 4226 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4227 { 4228 int i; 4229 4230 for (i = 0; i < count; i++) 4231 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4232 } 4233 4234 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4235 struct bnxt_stats_mem *stats) 4236 { 4237 struct hwrm_func_qstats_ext_output *resp; 4238 struct hwrm_func_qstats_ext_input *req; 4239 __le64 *hw_masks; 4240 int rc; 4241 4242 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4243 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4244 return -EOPNOTSUPP; 4245 4246 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4247 if (rc) 4248 return rc; 4249 4250 req->fid = cpu_to_le16(0xffff); 4251 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4252 4253 resp = hwrm_req_hold(bp, req); 4254 rc = hwrm_req_send(bp, req); 4255 if (!rc) { 4256 hw_masks = &resp->rx_ucast_pkts; 4257 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4258 } 4259 hwrm_req_drop(bp, req); 4260 return rc; 4261 } 4262 4263 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4264 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4265 4266 static void bnxt_init_stats(struct bnxt *bp) 4267 { 4268 struct bnxt_napi *bnapi = bp->bnapi[0]; 4269 struct bnxt_cp_ring_info *cpr; 4270 struct bnxt_stats_mem *stats; 4271 __le64 *rx_stats, *tx_stats; 4272 int rc, rx_count, tx_count; 4273 u64 *rx_masks, *tx_masks; 4274 u64 mask; 4275 u8 flags; 4276 4277 cpr = &bnapi->cp_ring; 4278 stats = &cpr->stats; 4279 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4280 if (rc) { 4281 if (bp->flags & BNXT_FLAG_CHIP_P5) 4282 mask = (1ULL << 48) - 1; 4283 else 4284 mask = -1ULL; 4285 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4286 } 4287 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4288 stats = &bp->port_stats; 4289 rx_stats = stats->hw_stats; 4290 rx_masks = stats->hw_masks; 4291 rx_count = sizeof(struct rx_port_stats) / 8; 4292 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4293 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4294 tx_count = sizeof(struct tx_port_stats) / 8; 4295 4296 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4297 rc = bnxt_hwrm_port_qstats(bp, flags); 4298 if (rc) { 4299 mask = (1ULL << 40) - 1; 4300 4301 bnxt_fill_masks(rx_masks, mask, rx_count); 4302 bnxt_fill_masks(tx_masks, mask, tx_count); 4303 } else { 4304 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4305 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4306 bnxt_hwrm_port_qstats(bp, 0); 4307 } 4308 } 4309 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4310 stats = &bp->rx_port_stats_ext; 4311 rx_stats = stats->hw_stats; 4312 rx_masks = stats->hw_masks; 4313 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4314 stats = &bp->tx_port_stats_ext; 4315 tx_stats = stats->hw_stats; 4316 tx_masks = stats->hw_masks; 4317 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4318 4319 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4320 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4321 if (rc) { 4322 mask = (1ULL << 40) - 1; 4323 4324 bnxt_fill_masks(rx_masks, mask, rx_count); 4325 if (tx_stats) 4326 bnxt_fill_masks(tx_masks, mask, tx_count); 4327 } else { 4328 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4329 if (tx_stats) 4330 bnxt_copy_hw_masks(tx_masks, tx_stats, 4331 tx_count); 4332 bnxt_hwrm_port_qstats_ext(bp, 0); 4333 } 4334 } 4335 } 4336 4337 static void bnxt_free_port_stats(struct bnxt *bp) 4338 { 4339 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4340 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4341 4342 bnxt_free_stats_mem(bp, &bp->port_stats); 4343 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4344 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4345 } 4346 4347 static void bnxt_free_ring_stats(struct bnxt *bp) 4348 { 4349 int i; 4350 4351 if (!bp->bnapi) 4352 return; 4353 4354 for (i = 0; i < bp->cp_nr_rings; i++) { 4355 struct bnxt_napi *bnapi = bp->bnapi[i]; 4356 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4357 4358 bnxt_free_stats_mem(bp, &cpr->stats); 4359 } 4360 } 4361 4362 static int bnxt_alloc_stats(struct bnxt *bp) 4363 { 4364 u32 size, i; 4365 int rc; 4366 4367 size = bp->hw_ring_stats_size; 4368 4369 for (i = 0; i < bp->cp_nr_rings; i++) { 4370 struct bnxt_napi *bnapi = bp->bnapi[i]; 4371 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4372 4373 cpr->stats.len = size; 4374 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4375 if (rc) 4376 return rc; 4377 4378 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4379 } 4380 4381 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4382 return 0; 4383 4384 if (bp->port_stats.hw_stats) 4385 goto alloc_ext_stats; 4386 4387 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4388 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4389 if (rc) 4390 return rc; 4391 4392 bp->flags |= BNXT_FLAG_PORT_STATS; 4393 4394 alloc_ext_stats: 4395 /* Display extended statistics only if FW supports it */ 4396 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4397 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4398 return 0; 4399 4400 if (bp->rx_port_stats_ext.hw_stats) 4401 goto alloc_tx_ext_stats; 4402 4403 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4404 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4405 /* Extended stats are optional */ 4406 if (rc) 4407 return 0; 4408 4409 alloc_tx_ext_stats: 4410 if (bp->tx_port_stats_ext.hw_stats) 4411 return 0; 4412 4413 if (bp->hwrm_spec_code >= 0x10902 || 4414 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4415 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4416 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4417 /* Extended stats are optional */ 4418 if (rc) 4419 return 0; 4420 } 4421 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4422 return 0; 4423 } 4424 4425 static void bnxt_clear_ring_indices(struct bnxt *bp) 4426 { 4427 int i; 4428 4429 if (!bp->bnapi) 4430 return; 4431 4432 for (i = 0; i < bp->cp_nr_rings; i++) { 4433 struct bnxt_napi *bnapi = bp->bnapi[i]; 4434 struct bnxt_cp_ring_info *cpr; 4435 struct bnxt_rx_ring_info *rxr; 4436 struct bnxt_tx_ring_info *txr; 4437 4438 if (!bnapi) 4439 continue; 4440 4441 cpr = &bnapi->cp_ring; 4442 cpr->cp_raw_cons = 0; 4443 4444 txr = bnapi->tx_ring; 4445 if (txr) { 4446 txr->tx_prod = 0; 4447 txr->tx_cons = 0; 4448 } 4449 4450 rxr = bnapi->rx_ring; 4451 if (rxr) { 4452 rxr->rx_prod = 0; 4453 rxr->rx_agg_prod = 0; 4454 rxr->rx_sw_agg_prod = 0; 4455 rxr->rx_next_cons = 0; 4456 } 4457 } 4458 } 4459 4460 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4461 { 4462 #ifdef CONFIG_RFS_ACCEL 4463 int i; 4464 4465 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4466 * safe to delete the hash table. 4467 */ 4468 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4469 struct hlist_head *head; 4470 struct hlist_node *tmp; 4471 struct bnxt_ntuple_filter *fltr; 4472 4473 head = &bp->ntp_fltr_hash_tbl[i]; 4474 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4475 hlist_del(&fltr->hash); 4476 kfree(fltr); 4477 } 4478 } 4479 if (irq_reinit) { 4480 bitmap_free(bp->ntp_fltr_bmap); 4481 bp->ntp_fltr_bmap = NULL; 4482 } 4483 bp->ntp_fltr_count = 0; 4484 #endif 4485 } 4486 4487 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4488 { 4489 #ifdef CONFIG_RFS_ACCEL 4490 int i, rc = 0; 4491 4492 if (!(bp->flags & BNXT_FLAG_RFS)) 4493 return 0; 4494 4495 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4496 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4497 4498 bp->ntp_fltr_count = 0; 4499 bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL); 4500 4501 if (!bp->ntp_fltr_bmap) 4502 rc = -ENOMEM; 4503 4504 return rc; 4505 #else 4506 return 0; 4507 #endif 4508 } 4509 4510 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4511 { 4512 bnxt_free_vnic_attributes(bp); 4513 bnxt_free_tx_rings(bp); 4514 bnxt_free_rx_rings(bp); 4515 bnxt_free_cp_rings(bp); 4516 bnxt_free_all_cp_arrays(bp); 4517 bnxt_free_ntp_fltrs(bp, irq_re_init); 4518 if (irq_re_init) { 4519 bnxt_free_ring_stats(bp); 4520 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4521 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4522 bnxt_free_port_stats(bp); 4523 bnxt_free_ring_grps(bp); 4524 bnxt_free_vnics(bp); 4525 kfree(bp->tx_ring_map); 4526 bp->tx_ring_map = NULL; 4527 kfree(bp->tx_ring); 4528 bp->tx_ring = NULL; 4529 kfree(bp->rx_ring); 4530 bp->rx_ring = NULL; 4531 kfree(bp->bnapi); 4532 bp->bnapi = NULL; 4533 } else { 4534 bnxt_clear_ring_indices(bp); 4535 } 4536 } 4537 4538 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4539 { 4540 int i, j, rc, size, arr_size; 4541 void *bnapi; 4542 4543 if (irq_re_init) { 4544 /* Allocate bnapi mem pointer array and mem block for 4545 * all queues 4546 */ 4547 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4548 bp->cp_nr_rings); 4549 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4550 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4551 if (!bnapi) 4552 return -ENOMEM; 4553 4554 bp->bnapi = bnapi; 4555 bnapi += arr_size; 4556 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4557 bp->bnapi[i] = bnapi; 4558 bp->bnapi[i]->index = i; 4559 bp->bnapi[i]->bp = bp; 4560 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4561 struct bnxt_cp_ring_info *cpr = 4562 &bp->bnapi[i]->cp_ring; 4563 4564 cpr->cp_ring_struct.ring_mem.flags = 4565 BNXT_RMEM_RING_PTE_FLAG; 4566 } 4567 } 4568 4569 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4570 sizeof(struct bnxt_rx_ring_info), 4571 GFP_KERNEL); 4572 if (!bp->rx_ring) 4573 return -ENOMEM; 4574 4575 for (i = 0; i < bp->rx_nr_rings; i++) { 4576 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4577 4578 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4579 rxr->rx_ring_struct.ring_mem.flags = 4580 BNXT_RMEM_RING_PTE_FLAG; 4581 rxr->rx_agg_ring_struct.ring_mem.flags = 4582 BNXT_RMEM_RING_PTE_FLAG; 4583 } 4584 rxr->bnapi = bp->bnapi[i]; 4585 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4586 } 4587 4588 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4589 sizeof(struct bnxt_tx_ring_info), 4590 GFP_KERNEL); 4591 if (!bp->tx_ring) 4592 return -ENOMEM; 4593 4594 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4595 GFP_KERNEL); 4596 4597 if (!bp->tx_ring_map) 4598 return -ENOMEM; 4599 4600 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4601 j = 0; 4602 else 4603 j = bp->rx_nr_rings; 4604 4605 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4606 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4607 4608 if (bp->flags & BNXT_FLAG_CHIP_P5) 4609 txr->tx_ring_struct.ring_mem.flags = 4610 BNXT_RMEM_RING_PTE_FLAG; 4611 txr->bnapi = bp->bnapi[j]; 4612 bp->bnapi[j]->tx_ring = txr; 4613 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4614 if (i >= bp->tx_nr_rings_xdp) { 4615 txr->txq_index = i - bp->tx_nr_rings_xdp; 4616 bp->bnapi[j]->tx_int = bnxt_tx_int; 4617 } else { 4618 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4619 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4620 } 4621 } 4622 4623 rc = bnxt_alloc_stats(bp); 4624 if (rc) 4625 goto alloc_mem_err; 4626 bnxt_init_stats(bp); 4627 4628 rc = bnxt_alloc_ntp_fltrs(bp); 4629 if (rc) 4630 goto alloc_mem_err; 4631 4632 rc = bnxt_alloc_vnics(bp); 4633 if (rc) 4634 goto alloc_mem_err; 4635 } 4636 4637 rc = bnxt_alloc_all_cp_arrays(bp); 4638 if (rc) 4639 goto alloc_mem_err; 4640 4641 bnxt_init_ring_struct(bp); 4642 4643 rc = bnxt_alloc_rx_rings(bp); 4644 if (rc) 4645 goto alloc_mem_err; 4646 4647 rc = bnxt_alloc_tx_rings(bp); 4648 if (rc) 4649 goto alloc_mem_err; 4650 4651 rc = bnxt_alloc_cp_rings(bp); 4652 if (rc) 4653 goto alloc_mem_err; 4654 4655 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4656 BNXT_VNIC_UCAST_FLAG; 4657 rc = bnxt_alloc_vnic_attributes(bp); 4658 if (rc) 4659 goto alloc_mem_err; 4660 return 0; 4661 4662 alloc_mem_err: 4663 bnxt_free_mem(bp, true); 4664 return rc; 4665 } 4666 4667 static void bnxt_disable_int(struct bnxt *bp) 4668 { 4669 int i; 4670 4671 if (!bp->bnapi) 4672 return; 4673 4674 for (i = 0; i < bp->cp_nr_rings; i++) { 4675 struct bnxt_napi *bnapi = bp->bnapi[i]; 4676 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4677 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4678 4679 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4680 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4681 } 4682 } 4683 4684 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4685 { 4686 struct bnxt_napi *bnapi = bp->bnapi[n]; 4687 struct bnxt_cp_ring_info *cpr; 4688 4689 cpr = &bnapi->cp_ring; 4690 return cpr->cp_ring_struct.map_idx; 4691 } 4692 4693 static void bnxt_disable_int_sync(struct bnxt *bp) 4694 { 4695 int i; 4696 4697 if (!bp->irq_tbl) 4698 return; 4699 4700 atomic_inc(&bp->intr_sem); 4701 4702 bnxt_disable_int(bp); 4703 for (i = 0; i < bp->cp_nr_rings; i++) { 4704 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4705 4706 synchronize_irq(bp->irq_tbl[map_idx].vector); 4707 } 4708 } 4709 4710 static void bnxt_enable_int(struct bnxt *bp) 4711 { 4712 int i; 4713 4714 atomic_set(&bp->intr_sem, 0); 4715 for (i = 0; i < bp->cp_nr_rings; i++) { 4716 struct bnxt_napi *bnapi = bp->bnapi[i]; 4717 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4718 4719 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4720 } 4721 } 4722 4723 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4724 bool async_only) 4725 { 4726 DECLARE_BITMAP(async_events_bmap, 256); 4727 u32 *events = (u32 *)async_events_bmap; 4728 struct hwrm_func_drv_rgtr_output *resp; 4729 struct hwrm_func_drv_rgtr_input *req; 4730 u32 flags; 4731 int rc, i; 4732 4733 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4734 if (rc) 4735 return rc; 4736 4737 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4738 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4739 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4740 4741 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4742 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4743 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4744 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4745 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4746 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4747 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4748 req->flags = cpu_to_le32(flags); 4749 req->ver_maj_8b = DRV_VER_MAJ; 4750 req->ver_min_8b = DRV_VER_MIN; 4751 req->ver_upd_8b = DRV_VER_UPD; 4752 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4753 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4754 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4755 4756 if (BNXT_PF(bp)) { 4757 u32 data[8]; 4758 int i; 4759 4760 memset(data, 0, sizeof(data)); 4761 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4762 u16 cmd = bnxt_vf_req_snif[i]; 4763 unsigned int bit, idx; 4764 4765 idx = cmd / 32; 4766 bit = cmd % 32; 4767 data[idx] |= 1 << bit; 4768 } 4769 4770 for (i = 0; i < 8; i++) 4771 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4772 4773 req->enables |= 4774 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4775 } 4776 4777 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4778 req->flags |= cpu_to_le32( 4779 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4780 4781 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4782 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4783 u16 event_id = bnxt_async_events_arr[i]; 4784 4785 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4786 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4787 continue; 4788 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4789 } 4790 if (bmap && bmap_size) { 4791 for (i = 0; i < bmap_size; i++) { 4792 if (test_bit(i, bmap)) 4793 __set_bit(i, async_events_bmap); 4794 } 4795 } 4796 for (i = 0; i < 8; i++) 4797 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4798 4799 if (async_only) 4800 req->enables = 4801 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4802 4803 resp = hwrm_req_hold(bp, req); 4804 rc = hwrm_req_send(bp, req); 4805 if (!rc) { 4806 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4807 if (resp->flags & 4808 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4809 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4810 } 4811 hwrm_req_drop(bp, req); 4812 return rc; 4813 } 4814 4815 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4816 { 4817 struct hwrm_func_drv_unrgtr_input *req; 4818 int rc; 4819 4820 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4821 return 0; 4822 4823 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4824 if (rc) 4825 return rc; 4826 return hwrm_req_send(bp, req); 4827 } 4828 4829 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4830 { 4831 struct hwrm_tunnel_dst_port_free_input *req; 4832 int rc; 4833 4834 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4835 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4836 return 0; 4837 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4838 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4839 return 0; 4840 4841 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4842 if (rc) 4843 return rc; 4844 4845 req->tunnel_type = tunnel_type; 4846 4847 switch (tunnel_type) { 4848 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4849 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4850 bp->vxlan_port = 0; 4851 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4852 break; 4853 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4854 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4855 bp->nge_port = 0; 4856 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4857 break; 4858 default: 4859 break; 4860 } 4861 4862 rc = hwrm_req_send(bp, req); 4863 if (rc) 4864 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4865 rc); 4866 return rc; 4867 } 4868 4869 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4870 u8 tunnel_type) 4871 { 4872 struct hwrm_tunnel_dst_port_alloc_output *resp; 4873 struct hwrm_tunnel_dst_port_alloc_input *req; 4874 int rc; 4875 4876 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4877 if (rc) 4878 return rc; 4879 4880 req->tunnel_type = tunnel_type; 4881 req->tunnel_dst_port_val = port; 4882 4883 resp = hwrm_req_hold(bp, req); 4884 rc = hwrm_req_send(bp, req); 4885 if (rc) { 4886 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4887 rc); 4888 goto err_out; 4889 } 4890 4891 switch (tunnel_type) { 4892 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4893 bp->vxlan_port = port; 4894 bp->vxlan_fw_dst_port_id = 4895 le16_to_cpu(resp->tunnel_dst_port_id); 4896 break; 4897 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4898 bp->nge_port = port; 4899 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4900 break; 4901 default: 4902 break; 4903 } 4904 4905 err_out: 4906 hwrm_req_drop(bp, req); 4907 return rc; 4908 } 4909 4910 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4911 { 4912 struct hwrm_cfa_l2_set_rx_mask_input *req; 4913 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4914 int rc; 4915 4916 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4917 if (rc) 4918 return rc; 4919 4920 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4921 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 4922 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4923 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4924 } 4925 req->mask = cpu_to_le32(vnic->rx_mask); 4926 return hwrm_req_send_silent(bp, req); 4927 } 4928 4929 #ifdef CONFIG_RFS_ACCEL 4930 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4931 struct bnxt_ntuple_filter *fltr) 4932 { 4933 struct hwrm_cfa_ntuple_filter_free_input *req; 4934 int rc; 4935 4936 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4937 if (rc) 4938 return rc; 4939 4940 req->ntuple_filter_id = fltr->filter_id; 4941 return hwrm_req_send(bp, req); 4942 } 4943 4944 #define BNXT_NTP_FLTR_FLAGS \ 4945 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4946 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4947 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4948 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4949 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4950 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4951 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4952 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4953 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4954 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4955 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4956 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4957 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4958 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4959 4960 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4961 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4962 4963 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4964 struct bnxt_ntuple_filter *fltr) 4965 { 4966 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4967 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4968 struct flow_keys *keys = &fltr->fkeys; 4969 struct bnxt_vnic_info *vnic; 4970 u32 flags = 0; 4971 int rc; 4972 4973 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4974 if (rc) 4975 return rc; 4976 4977 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4978 4979 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4980 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4981 req->dst_id = cpu_to_le16(fltr->rxq); 4982 } else { 4983 vnic = &bp->vnic_info[fltr->rxq + 1]; 4984 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4985 } 4986 req->flags = cpu_to_le32(flags); 4987 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4988 4989 req->ethertype = htons(ETH_P_IP); 4990 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4991 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4992 req->ip_protocol = keys->basic.ip_proto; 4993 4994 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4995 int i; 4996 4997 req->ethertype = htons(ETH_P_IPV6); 4998 req->ip_addr_type = 4999 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5000 *(struct in6_addr *)&req->src_ipaddr[0] = 5001 keys->addrs.v6addrs.src; 5002 *(struct in6_addr *)&req->dst_ipaddr[0] = 5003 keys->addrs.v6addrs.dst; 5004 for (i = 0; i < 4; i++) { 5005 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5006 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5007 } 5008 } else { 5009 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5010 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5011 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5012 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5013 } 5014 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5015 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5016 req->tunnel_type = 5017 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5018 } 5019 5020 req->src_port = keys->ports.src; 5021 req->src_port_mask = cpu_to_be16(0xffff); 5022 req->dst_port = keys->ports.dst; 5023 req->dst_port_mask = cpu_to_be16(0xffff); 5024 5025 resp = hwrm_req_hold(bp, req); 5026 rc = hwrm_req_send(bp, req); 5027 if (!rc) 5028 fltr->filter_id = resp->ntuple_filter_id; 5029 hwrm_req_drop(bp, req); 5030 return rc; 5031 } 5032 #endif 5033 5034 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5035 const u8 *mac_addr) 5036 { 5037 struct hwrm_cfa_l2_filter_alloc_output *resp; 5038 struct hwrm_cfa_l2_filter_alloc_input *req; 5039 int rc; 5040 5041 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5042 if (rc) 5043 return rc; 5044 5045 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5046 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5047 req->flags |= 5048 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5049 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5050 req->enables = 5051 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5052 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5053 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5054 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 5055 req->l2_addr_mask[0] = 0xff; 5056 req->l2_addr_mask[1] = 0xff; 5057 req->l2_addr_mask[2] = 0xff; 5058 req->l2_addr_mask[3] = 0xff; 5059 req->l2_addr_mask[4] = 0xff; 5060 req->l2_addr_mask[5] = 0xff; 5061 5062 resp = hwrm_req_hold(bp, req); 5063 rc = hwrm_req_send(bp, req); 5064 if (!rc) 5065 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5066 resp->l2_filter_id; 5067 hwrm_req_drop(bp, req); 5068 return rc; 5069 } 5070 5071 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5072 { 5073 struct hwrm_cfa_l2_filter_free_input *req; 5074 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5075 int rc; 5076 5077 /* Any associated ntuple filters will also be cleared by firmware. */ 5078 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5079 if (rc) 5080 return rc; 5081 hwrm_req_hold(bp, req); 5082 for (i = 0; i < num_of_vnics; i++) { 5083 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5084 5085 for (j = 0; j < vnic->uc_filter_count; j++) { 5086 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 5087 5088 rc = hwrm_req_send(bp, req); 5089 } 5090 vnic->uc_filter_count = 0; 5091 } 5092 hwrm_req_drop(bp, req); 5093 return rc; 5094 } 5095 5096 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5097 { 5098 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5099 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5100 struct hwrm_vnic_tpa_cfg_input *req; 5101 int rc; 5102 5103 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5104 return 0; 5105 5106 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 5107 if (rc) 5108 return rc; 5109 5110 if (tpa_flags) { 5111 u16 mss = bp->dev->mtu - 40; 5112 u32 nsegs, n, segs = 0, flags; 5113 5114 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5115 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5116 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5117 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5118 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5119 if (tpa_flags & BNXT_FLAG_GRO) 5120 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5121 5122 req->flags = cpu_to_le32(flags); 5123 5124 req->enables = 5125 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5126 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5127 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5128 5129 /* Number of segs are log2 units, and first packet is not 5130 * included as part of this units. 5131 */ 5132 if (mss <= BNXT_RX_PAGE_SIZE) { 5133 n = BNXT_RX_PAGE_SIZE / mss; 5134 nsegs = (MAX_SKB_FRAGS - 1) * n; 5135 } else { 5136 n = mss / BNXT_RX_PAGE_SIZE; 5137 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5138 n++; 5139 nsegs = (MAX_SKB_FRAGS - n) / n; 5140 } 5141 5142 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5143 segs = MAX_TPA_SEGS_P5; 5144 max_aggs = bp->max_tpa; 5145 } else { 5146 segs = ilog2(nsegs); 5147 } 5148 req->max_agg_segs = cpu_to_le16(segs); 5149 req->max_aggs = cpu_to_le16(max_aggs); 5150 5151 req->min_agg_len = cpu_to_le32(512); 5152 } 5153 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5154 5155 return hwrm_req_send(bp, req); 5156 } 5157 5158 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5159 { 5160 struct bnxt_ring_grp_info *grp_info; 5161 5162 grp_info = &bp->grp_info[ring->grp_idx]; 5163 return grp_info->cp_fw_ring_id; 5164 } 5165 5166 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5167 { 5168 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5169 struct bnxt_napi *bnapi = rxr->bnapi; 5170 struct bnxt_cp_ring_info *cpr; 5171 5172 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5173 return cpr->cp_ring_struct.fw_ring_id; 5174 } else { 5175 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5176 } 5177 } 5178 5179 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5180 { 5181 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5182 struct bnxt_napi *bnapi = txr->bnapi; 5183 struct bnxt_cp_ring_info *cpr; 5184 5185 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5186 return cpr->cp_ring_struct.fw_ring_id; 5187 } else { 5188 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5189 } 5190 } 5191 5192 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5193 { 5194 int entries; 5195 5196 if (bp->flags & BNXT_FLAG_CHIP_P5) 5197 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5198 else 5199 entries = HW_HASH_INDEX_SIZE; 5200 5201 bp->rss_indir_tbl_entries = entries; 5202 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5203 GFP_KERNEL); 5204 if (!bp->rss_indir_tbl) 5205 return -ENOMEM; 5206 return 0; 5207 } 5208 5209 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5210 { 5211 u16 max_rings, max_entries, pad, i; 5212 5213 if (!bp->rx_nr_rings) 5214 return; 5215 5216 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5217 max_rings = bp->rx_nr_rings - 1; 5218 else 5219 max_rings = bp->rx_nr_rings; 5220 5221 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5222 5223 for (i = 0; i < max_entries; i++) 5224 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5225 5226 pad = bp->rss_indir_tbl_entries - max_entries; 5227 if (pad) 5228 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5229 } 5230 5231 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5232 { 5233 u16 i, tbl_size, max_ring = 0; 5234 5235 if (!bp->rss_indir_tbl) 5236 return 0; 5237 5238 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5239 for (i = 0; i < tbl_size; i++) 5240 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5241 return max_ring; 5242 } 5243 5244 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5245 { 5246 if (bp->flags & BNXT_FLAG_CHIP_P5) 5247 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5248 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5249 return 2; 5250 return 1; 5251 } 5252 5253 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5254 { 5255 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5256 u16 i, j; 5257 5258 /* Fill the RSS indirection table with ring group ids */ 5259 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5260 if (!no_rss) 5261 j = bp->rss_indir_tbl[i]; 5262 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5263 } 5264 } 5265 5266 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5267 struct bnxt_vnic_info *vnic) 5268 { 5269 __le16 *ring_tbl = vnic->rss_table; 5270 struct bnxt_rx_ring_info *rxr; 5271 u16 tbl_size, i; 5272 5273 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5274 5275 for (i = 0; i < tbl_size; i++) { 5276 u16 ring_id, j; 5277 5278 j = bp->rss_indir_tbl[i]; 5279 rxr = &bp->rx_ring[j]; 5280 5281 ring_id = rxr->rx_ring_struct.fw_ring_id; 5282 *ring_tbl++ = cpu_to_le16(ring_id); 5283 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5284 *ring_tbl++ = cpu_to_le16(ring_id); 5285 } 5286 } 5287 5288 static void 5289 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 5290 struct bnxt_vnic_info *vnic) 5291 { 5292 if (bp->flags & BNXT_FLAG_CHIP_P5) 5293 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5294 else 5295 bnxt_fill_hw_rss_tbl(bp, vnic); 5296 5297 if (bp->rss_hash_delta) { 5298 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 5299 if (bp->rss_hash_cfg & bp->rss_hash_delta) 5300 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 5301 else 5302 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 5303 } else { 5304 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5305 } 5306 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5307 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5308 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5309 } 5310 5311 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5312 { 5313 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5314 struct hwrm_vnic_rss_cfg_input *req; 5315 int rc; 5316 5317 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5318 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5319 return 0; 5320 5321 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5322 if (rc) 5323 return rc; 5324 5325 if (set_rss) 5326 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5327 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5328 return hwrm_req_send(bp, req); 5329 } 5330 5331 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5332 { 5333 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5334 struct hwrm_vnic_rss_cfg_input *req; 5335 dma_addr_t ring_tbl_map; 5336 u32 i, nr_ctxs; 5337 int rc; 5338 5339 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5340 if (rc) 5341 return rc; 5342 5343 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5344 if (!set_rss) 5345 return hwrm_req_send(bp, req); 5346 5347 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5348 ring_tbl_map = vnic->rss_table_dma_addr; 5349 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5350 5351 hwrm_req_hold(bp, req); 5352 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5353 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5354 req->ring_table_pair_index = i; 5355 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5356 rc = hwrm_req_send(bp, req); 5357 if (rc) 5358 goto exit; 5359 } 5360 5361 exit: 5362 hwrm_req_drop(bp, req); 5363 return rc; 5364 } 5365 5366 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 5367 { 5368 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5369 struct hwrm_vnic_rss_qcfg_output *resp; 5370 struct hwrm_vnic_rss_qcfg_input *req; 5371 5372 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 5373 return; 5374 5375 /* all contexts configured to same hash_type, zero always exists */ 5376 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5377 resp = hwrm_req_hold(bp, req); 5378 if (!hwrm_req_send(bp, req)) { 5379 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 5380 bp->rss_hash_delta = 0; 5381 } 5382 hwrm_req_drop(bp, req); 5383 } 5384 5385 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5386 { 5387 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5388 struct hwrm_vnic_plcmodes_cfg_input *req; 5389 int rc; 5390 5391 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5392 if (rc) 5393 return rc; 5394 5395 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 5396 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 5397 5398 if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) { 5399 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5400 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5401 req->enables |= 5402 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5403 } 5404 /* thresholds not implemented in firmware yet */ 5405 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5406 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5407 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5408 return hwrm_req_send(bp, req); 5409 } 5410 5411 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5412 u16 ctx_idx) 5413 { 5414 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5415 5416 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5417 return; 5418 5419 req->rss_cos_lb_ctx_id = 5420 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5421 5422 hwrm_req_send(bp, req); 5423 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5424 } 5425 5426 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5427 { 5428 int i, j; 5429 5430 for (i = 0; i < bp->nr_vnics; i++) { 5431 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5432 5433 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5434 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5435 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5436 } 5437 } 5438 bp->rsscos_nr_ctxs = 0; 5439 } 5440 5441 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5442 { 5443 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5444 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5445 int rc; 5446 5447 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5448 if (rc) 5449 return rc; 5450 5451 resp = hwrm_req_hold(bp, req); 5452 rc = hwrm_req_send(bp, req); 5453 if (!rc) 5454 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5455 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5456 hwrm_req_drop(bp, req); 5457 5458 return rc; 5459 } 5460 5461 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5462 { 5463 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5464 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5465 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5466 } 5467 5468 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5469 { 5470 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5471 struct hwrm_vnic_cfg_input *req; 5472 unsigned int ring = 0, grp_idx; 5473 u16 def_vlan = 0; 5474 int rc; 5475 5476 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5477 if (rc) 5478 return rc; 5479 5480 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5481 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5482 5483 req->default_rx_ring_id = 5484 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5485 req->default_cmpl_ring_id = 5486 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5487 req->enables = 5488 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5489 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5490 goto vnic_mru; 5491 } 5492 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5493 /* Only RSS support for now TBD: COS & LB */ 5494 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5495 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5496 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5497 VNIC_CFG_REQ_ENABLES_MRU); 5498 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5499 req->rss_rule = 5500 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5501 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5502 VNIC_CFG_REQ_ENABLES_MRU); 5503 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5504 } else { 5505 req->rss_rule = cpu_to_le16(0xffff); 5506 } 5507 5508 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5509 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5510 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5511 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5512 } else { 5513 req->cos_rule = cpu_to_le16(0xffff); 5514 } 5515 5516 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5517 ring = 0; 5518 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5519 ring = vnic_id - 1; 5520 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5521 ring = bp->rx_nr_rings - 1; 5522 5523 grp_idx = bp->rx_ring[ring].bnapi->index; 5524 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5525 req->lb_rule = cpu_to_le16(0xffff); 5526 vnic_mru: 5527 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5528 5529 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5530 #ifdef CONFIG_BNXT_SRIOV 5531 if (BNXT_VF(bp)) 5532 def_vlan = bp->vf.vlan; 5533 #endif 5534 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5535 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5536 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5537 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5538 5539 return hwrm_req_send(bp, req); 5540 } 5541 5542 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5543 { 5544 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5545 struct hwrm_vnic_free_input *req; 5546 5547 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5548 return; 5549 5550 req->vnic_id = 5551 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5552 5553 hwrm_req_send(bp, req); 5554 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5555 } 5556 } 5557 5558 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5559 { 5560 u16 i; 5561 5562 for (i = 0; i < bp->nr_vnics; i++) 5563 bnxt_hwrm_vnic_free_one(bp, i); 5564 } 5565 5566 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5567 unsigned int start_rx_ring_idx, 5568 unsigned int nr_rings) 5569 { 5570 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5571 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5572 struct hwrm_vnic_alloc_output *resp; 5573 struct hwrm_vnic_alloc_input *req; 5574 int rc; 5575 5576 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5577 if (rc) 5578 return rc; 5579 5580 if (bp->flags & BNXT_FLAG_CHIP_P5) 5581 goto vnic_no_ring_grps; 5582 5583 /* map ring groups to this vnic */ 5584 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5585 grp_idx = bp->rx_ring[i].bnapi->index; 5586 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5587 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5588 j, nr_rings); 5589 break; 5590 } 5591 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5592 } 5593 5594 vnic_no_ring_grps: 5595 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5596 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5597 if (vnic_id == 0) 5598 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5599 5600 resp = hwrm_req_hold(bp, req); 5601 rc = hwrm_req_send(bp, req); 5602 if (!rc) 5603 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5604 hwrm_req_drop(bp, req); 5605 return rc; 5606 } 5607 5608 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5609 { 5610 struct hwrm_vnic_qcaps_output *resp; 5611 struct hwrm_vnic_qcaps_input *req; 5612 int rc; 5613 5614 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5615 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5616 if (bp->hwrm_spec_code < 0x10600) 5617 return 0; 5618 5619 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5620 if (rc) 5621 return rc; 5622 5623 resp = hwrm_req_hold(bp, req); 5624 rc = hwrm_req_send(bp, req); 5625 if (!rc) { 5626 u32 flags = le32_to_cpu(resp->flags); 5627 5628 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5629 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5630 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5631 if (flags & 5632 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5633 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5634 5635 /* Older P5 fw before EXT_HW_STATS support did not set 5636 * VLAN_STRIP_CAP properly. 5637 */ 5638 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5639 (BNXT_CHIP_P5_THOR(bp) && 5640 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5641 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5642 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 5643 bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA; 5644 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5645 if (bp->max_tpa_v2) { 5646 if (BNXT_CHIP_P5_THOR(bp)) 5647 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5648 else 5649 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5650 } 5651 } 5652 hwrm_req_drop(bp, req); 5653 return rc; 5654 } 5655 5656 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5657 { 5658 struct hwrm_ring_grp_alloc_output *resp; 5659 struct hwrm_ring_grp_alloc_input *req; 5660 int rc; 5661 u16 i; 5662 5663 if (bp->flags & BNXT_FLAG_CHIP_P5) 5664 return 0; 5665 5666 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5667 if (rc) 5668 return rc; 5669 5670 resp = hwrm_req_hold(bp, req); 5671 for (i = 0; i < bp->rx_nr_rings; i++) { 5672 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5673 5674 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5675 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5676 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5677 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5678 5679 rc = hwrm_req_send(bp, req); 5680 5681 if (rc) 5682 break; 5683 5684 bp->grp_info[grp_idx].fw_grp_id = 5685 le32_to_cpu(resp->ring_group_id); 5686 } 5687 hwrm_req_drop(bp, req); 5688 return rc; 5689 } 5690 5691 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5692 { 5693 struct hwrm_ring_grp_free_input *req; 5694 u16 i; 5695 5696 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5697 return; 5698 5699 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5700 return; 5701 5702 hwrm_req_hold(bp, req); 5703 for (i = 0; i < bp->cp_nr_rings; i++) { 5704 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5705 continue; 5706 req->ring_group_id = 5707 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5708 5709 hwrm_req_send(bp, req); 5710 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5711 } 5712 hwrm_req_drop(bp, req); 5713 } 5714 5715 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5716 struct bnxt_ring_struct *ring, 5717 u32 ring_type, u32 map_index) 5718 { 5719 struct hwrm_ring_alloc_output *resp; 5720 struct hwrm_ring_alloc_input *req; 5721 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5722 struct bnxt_ring_grp_info *grp_info; 5723 int rc, err = 0; 5724 u16 ring_id; 5725 5726 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5727 if (rc) 5728 goto exit; 5729 5730 req->enables = 0; 5731 if (rmem->nr_pages > 1) { 5732 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5733 /* Page size is in log2 units */ 5734 req->page_size = BNXT_PAGE_SHIFT; 5735 req->page_tbl_depth = 1; 5736 } else { 5737 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5738 } 5739 req->fbo = 0; 5740 /* Association of ring index with doorbell index and MSIX number */ 5741 req->logical_id = cpu_to_le16(map_index); 5742 5743 switch (ring_type) { 5744 case HWRM_RING_ALLOC_TX: { 5745 struct bnxt_tx_ring_info *txr; 5746 5747 txr = container_of(ring, struct bnxt_tx_ring_info, 5748 tx_ring_struct); 5749 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5750 /* Association of transmit ring with completion ring */ 5751 grp_info = &bp->grp_info[ring->grp_idx]; 5752 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5753 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5754 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5755 req->queue_id = cpu_to_le16(ring->queue_id); 5756 break; 5757 } 5758 case HWRM_RING_ALLOC_RX: 5759 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5760 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5761 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5762 u16 flags = 0; 5763 5764 /* Association of rx ring with stats context */ 5765 grp_info = &bp->grp_info[ring->grp_idx]; 5766 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5767 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5768 req->enables |= cpu_to_le32( 5769 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5770 if (NET_IP_ALIGN == 2) 5771 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5772 req->flags = cpu_to_le16(flags); 5773 } 5774 break; 5775 case HWRM_RING_ALLOC_AGG: 5776 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5777 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5778 /* Association of agg ring with rx ring */ 5779 grp_info = &bp->grp_info[ring->grp_idx]; 5780 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5781 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5782 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5783 req->enables |= cpu_to_le32( 5784 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5785 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5786 } else { 5787 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5788 } 5789 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5790 break; 5791 case HWRM_RING_ALLOC_CMPL: 5792 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5793 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5794 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5795 /* Association of cp ring with nq */ 5796 grp_info = &bp->grp_info[map_index]; 5797 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5798 req->cq_handle = cpu_to_le64(ring->handle); 5799 req->enables |= cpu_to_le32( 5800 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5801 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5802 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5803 } 5804 break; 5805 case HWRM_RING_ALLOC_NQ: 5806 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5807 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5808 if (bp->flags & BNXT_FLAG_USING_MSIX) 5809 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5810 break; 5811 default: 5812 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5813 ring_type); 5814 return -1; 5815 } 5816 5817 resp = hwrm_req_hold(bp, req); 5818 rc = hwrm_req_send(bp, req); 5819 err = le16_to_cpu(resp->error_code); 5820 ring_id = le16_to_cpu(resp->ring_id); 5821 hwrm_req_drop(bp, req); 5822 5823 exit: 5824 if (rc || err) { 5825 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5826 ring_type, rc, err); 5827 return -EIO; 5828 } 5829 ring->fw_ring_id = ring_id; 5830 return rc; 5831 } 5832 5833 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5834 { 5835 int rc; 5836 5837 if (BNXT_PF(bp)) { 5838 struct hwrm_func_cfg_input *req; 5839 5840 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5841 if (rc) 5842 return rc; 5843 5844 req->fid = cpu_to_le16(0xffff); 5845 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5846 req->async_event_cr = cpu_to_le16(idx); 5847 return hwrm_req_send(bp, req); 5848 } else { 5849 struct hwrm_func_vf_cfg_input *req; 5850 5851 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5852 if (rc) 5853 return rc; 5854 5855 req->enables = 5856 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5857 req->async_event_cr = cpu_to_le16(idx); 5858 return hwrm_req_send(bp, req); 5859 } 5860 } 5861 5862 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5863 u32 map_idx, u32 xid) 5864 { 5865 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5866 if (BNXT_PF(bp)) 5867 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5868 else 5869 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5870 switch (ring_type) { 5871 case HWRM_RING_ALLOC_TX: 5872 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5873 break; 5874 case HWRM_RING_ALLOC_RX: 5875 case HWRM_RING_ALLOC_AGG: 5876 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5877 break; 5878 case HWRM_RING_ALLOC_CMPL: 5879 db->db_key64 = DBR_PATH_L2; 5880 break; 5881 case HWRM_RING_ALLOC_NQ: 5882 db->db_key64 = DBR_PATH_L2; 5883 break; 5884 } 5885 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5886 } else { 5887 db->doorbell = bp->bar1 + map_idx * 0x80; 5888 switch (ring_type) { 5889 case HWRM_RING_ALLOC_TX: 5890 db->db_key32 = DB_KEY_TX; 5891 break; 5892 case HWRM_RING_ALLOC_RX: 5893 case HWRM_RING_ALLOC_AGG: 5894 db->db_key32 = DB_KEY_RX; 5895 break; 5896 case HWRM_RING_ALLOC_CMPL: 5897 db->db_key32 = DB_KEY_CP; 5898 break; 5899 } 5900 } 5901 } 5902 5903 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5904 { 5905 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5906 int i, rc = 0; 5907 u32 type; 5908 5909 if (bp->flags & BNXT_FLAG_CHIP_P5) 5910 type = HWRM_RING_ALLOC_NQ; 5911 else 5912 type = HWRM_RING_ALLOC_CMPL; 5913 for (i = 0; i < bp->cp_nr_rings; i++) { 5914 struct bnxt_napi *bnapi = bp->bnapi[i]; 5915 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5916 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5917 u32 map_idx = ring->map_idx; 5918 unsigned int vector; 5919 5920 vector = bp->irq_tbl[map_idx].vector; 5921 disable_irq_nosync(vector); 5922 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5923 if (rc) { 5924 enable_irq(vector); 5925 goto err_out; 5926 } 5927 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5928 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5929 enable_irq(vector); 5930 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5931 5932 if (!i) { 5933 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5934 if (rc) 5935 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5936 } 5937 } 5938 5939 type = HWRM_RING_ALLOC_TX; 5940 for (i = 0; i < bp->tx_nr_rings; i++) { 5941 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5942 struct bnxt_ring_struct *ring; 5943 u32 map_idx; 5944 5945 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5946 struct bnxt_napi *bnapi = txr->bnapi; 5947 struct bnxt_cp_ring_info *cpr, *cpr2; 5948 u32 type2 = HWRM_RING_ALLOC_CMPL; 5949 5950 cpr = &bnapi->cp_ring; 5951 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5952 ring = &cpr2->cp_ring_struct; 5953 ring->handle = BNXT_TX_HDL; 5954 map_idx = bnapi->index; 5955 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5956 if (rc) 5957 goto err_out; 5958 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5959 ring->fw_ring_id); 5960 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5961 } 5962 ring = &txr->tx_ring_struct; 5963 map_idx = i; 5964 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5965 if (rc) 5966 goto err_out; 5967 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5968 } 5969 5970 type = HWRM_RING_ALLOC_RX; 5971 for (i = 0; i < bp->rx_nr_rings; i++) { 5972 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5973 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5974 struct bnxt_napi *bnapi = rxr->bnapi; 5975 u32 map_idx = bnapi->index; 5976 5977 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5978 if (rc) 5979 goto err_out; 5980 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5981 /* If we have agg rings, post agg buffers first. */ 5982 if (!agg_rings) 5983 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5984 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5985 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5986 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5987 u32 type2 = HWRM_RING_ALLOC_CMPL; 5988 struct bnxt_cp_ring_info *cpr2; 5989 5990 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5991 ring = &cpr2->cp_ring_struct; 5992 ring->handle = BNXT_RX_HDL; 5993 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5994 if (rc) 5995 goto err_out; 5996 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5997 ring->fw_ring_id); 5998 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5999 } 6000 } 6001 6002 if (agg_rings) { 6003 type = HWRM_RING_ALLOC_AGG; 6004 for (i = 0; i < bp->rx_nr_rings; i++) { 6005 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6006 struct bnxt_ring_struct *ring = 6007 &rxr->rx_agg_ring_struct; 6008 u32 grp_idx = ring->grp_idx; 6009 u32 map_idx = grp_idx + bp->rx_nr_rings; 6010 6011 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6012 if (rc) 6013 goto err_out; 6014 6015 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6016 ring->fw_ring_id); 6017 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6018 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6019 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6020 } 6021 } 6022 err_out: 6023 return rc; 6024 } 6025 6026 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6027 struct bnxt_ring_struct *ring, 6028 u32 ring_type, int cmpl_ring_id) 6029 { 6030 struct hwrm_ring_free_output *resp; 6031 struct hwrm_ring_free_input *req; 6032 u16 error_code = 0; 6033 int rc; 6034 6035 if (BNXT_NO_FW_ACCESS(bp)) 6036 return 0; 6037 6038 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6039 if (rc) 6040 goto exit; 6041 6042 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 6043 req->ring_type = ring_type; 6044 req->ring_id = cpu_to_le16(ring->fw_ring_id); 6045 6046 resp = hwrm_req_hold(bp, req); 6047 rc = hwrm_req_send(bp, req); 6048 error_code = le16_to_cpu(resp->error_code); 6049 hwrm_req_drop(bp, req); 6050 exit: 6051 if (rc || error_code) { 6052 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6053 ring_type, rc, error_code); 6054 return -EIO; 6055 } 6056 return 0; 6057 } 6058 6059 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6060 { 6061 u32 type; 6062 int i; 6063 6064 if (!bp->bnapi) 6065 return; 6066 6067 for (i = 0; i < bp->tx_nr_rings; i++) { 6068 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6069 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6070 6071 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6072 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6073 6074 hwrm_ring_free_send_msg(bp, ring, 6075 RING_FREE_REQ_RING_TYPE_TX, 6076 close_path ? cmpl_ring_id : 6077 INVALID_HW_RING_ID); 6078 ring->fw_ring_id = INVALID_HW_RING_ID; 6079 } 6080 } 6081 6082 for (i = 0; i < bp->rx_nr_rings; i++) { 6083 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6084 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6085 u32 grp_idx = rxr->bnapi->index; 6086 6087 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6088 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6089 6090 hwrm_ring_free_send_msg(bp, ring, 6091 RING_FREE_REQ_RING_TYPE_RX, 6092 close_path ? cmpl_ring_id : 6093 INVALID_HW_RING_ID); 6094 ring->fw_ring_id = INVALID_HW_RING_ID; 6095 bp->grp_info[grp_idx].rx_fw_ring_id = 6096 INVALID_HW_RING_ID; 6097 } 6098 } 6099 6100 if (bp->flags & BNXT_FLAG_CHIP_P5) 6101 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6102 else 6103 type = RING_FREE_REQ_RING_TYPE_RX; 6104 for (i = 0; i < bp->rx_nr_rings; i++) { 6105 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6106 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6107 u32 grp_idx = rxr->bnapi->index; 6108 6109 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6110 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6111 6112 hwrm_ring_free_send_msg(bp, ring, type, 6113 close_path ? cmpl_ring_id : 6114 INVALID_HW_RING_ID); 6115 ring->fw_ring_id = INVALID_HW_RING_ID; 6116 bp->grp_info[grp_idx].agg_fw_ring_id = 6117 INVALID_HW_RING_ID; 6118 } 6119 } 6120 6121 /* The completion rings are about to be freed. After that the 6122 * IRQ doorbell will not work anymore. So we need to disable 6123 * IRQ here. 6124 */ 6125 bnxt_disable_int_sync(bp); 6126 6127 if (bp->flags & BNXT_FLAG_CHIP_P5) 6128 type = RING_FREE_REQ_RING_TYPE_NQ; 6129 else 6130 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6131 for (i = 0; i < bp->cp_nr_rings; i++) { 6132 struct bnxt_napi *bnapi = bp->bnapi[i]; 6133 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6134 struct bnxt_ring_struct *ring; 6135 int j; 6136 6137 for (j = 0; j < 2; j++) { 6138 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6139 6140 if (cpr2) { 6141 ring = &cpr2->cp_ring_struct; 6142 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6143 continue; 6144 hwrm_ring_free_send_msg(bp, ring, 6145 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6146 INVALID_HW_RING_ID); 6147 ring->fw_ring_id = INVALID_HW_RING_ID; 6148 } 6149 } 6150 ring = &cpr->cp_ring_struct; 6151 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6152 hwrm_ring_free_send_msg(bp, ring, type, 6153 INVALID_HW_RING_ID); 6154 ring->fw_ring_id = INVALID_HW_RING_ID; 6155 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6156 } 6157 } 6158 } 6159 6160 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6161 bool shared); 6162 6163 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6164 { 6165 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6166 struct hwrm_func_qcfg_output *resp; 6167 struct hwrm_func_qcfg_input *req; 6168 int rc; 6169 6170 if (bp->hwrm_spec_code < 0x10601) 6171 return 0; 6172 6173 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6174 if (rc) 6175 return rc; 6176 6177 req->fid = cpu_to_le16(0xffff); 6178 resp = hwrm_req_hold(bp, req); 6179 rc = hwrm_req_send(bp, req); 6180 if (rc) { 6181 hwrm_req_drop(bp, req); 6182 return rc; 6183 } 6184 6185 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6186 if (BNXT_NEW_RM(bp)) { 6187 u16 cp, stats; 6188 6189 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6190 hw_resc->resv_hw_ring_grps = 6191 le32_to_cpu(resp->alloc_hw_ring_grps); 6192 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6193 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6194 stats = le16_to_cpu(resp->alloc_stat_ctx); 6195 hw_resc->resv_irqs = cp; 6196 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6197 int rx = hw_resc->resv_rx_rings; 6198 int tx = hw_resc->resv_tx_rings; 6199 6200 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6201 rx >>= 1; 6202 if (cp < (rx + tx)) { 6203 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6204 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6205 rx <<= 1; 6206 hw_resc->resv_rx_rings = rx; 6207 hw_resc->resv_tx_rings = tx; 6208 } 6209 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6210 hw_resc->resv_hw_ring_grps = rx; 6211 } 6212 hw_resc->resv_cp_rings = cp; 6213 hw_resc->resv_stat_ctxs = stats; 6214 } 6215 hwrm_req_drop(bp, req); 6216 return 0; 6217 } 6218 6219 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6220 { 6221 struct hwrm_func_qcfg_output *resp; 6222 struct hwrm_func_qcfg_input *req; 6223 int rc; 6224 6225 if (bp->hwrm_spec_code < 0x10601) 6226 return 0; 6227 6228 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6229 if (rc) 6230 return rc; 6231 6232 req->fid = cpu_to_le16(fid); 6233 resp = hwrm_req_hold(bp, req); 6234 rc = hwrm_req_send(bp, req); 6235 if (!rc) 6236 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6237 6238 hwrm_req_drop(bp, req); 6239 return rc; 6240 } 6241 6242 static bool bnxt_rfs_supported(struct bnxt *bp); 6243 6244 static struct hwrm_func_cfg_input * 6245 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6246 int ring_grps, int cp_rings, int stats, int vnics) 6247 { 6248 struct hwrm_func_cfg_input *req; 6249 u32 enables = 0; 6250 6251 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6252 return NULL; 6253 6254 req->fid = cpu_to_le16(0xffff); 6255 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6256 req->num_tx_rings = cpu_to_le16(tx_rings); 6257 if (BNXT_NEW_RM(bp)) { 6258 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6259 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6260 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6261 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6262 enables |= tx_rings + ring_grps ? 6263 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6264 enables |= rx_rings ? 6265 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6266 } else { 6267 enables |= cp_rings ? 6268 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6269 enables |= ring_grps ? 6270 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6271 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6272 } 6273 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6274 6275 req->num_rx_rings = cpu_to_le16(rx_rings); 6276 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6277 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6278 req->num_msix = cpu_to_le16(cp_rings); 6279 req->num_rsscos_ctxs = 6280 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6281 } else { 6282 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6283 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6284 req->num_rsscos_ctxs = cpu_to_le16(1); 6285 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6286 bnxt_rfs_supported(bp)) 6287 req->num_rsscos_ctxs = 6288 cpu_to_le16(ring_grps + 1); 6289 } 6290 req->num_stat_ctxs = cpu_to_le16(stats); 6291 req->num_vnics = cpu_to_le16(vnics); 6292 } 6293 req->enables = cpu_to_le32(enables); 6294 return req; 6295 } 6296 6297 static struct hwrm_func_vf_cfg_input * 6298 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6299 int ring_grps, int cp_rings, int stats, int vnics) 6300 { 6301 struct hwrm_func_vf_cfg_input *req; 6302 u32 enables = 0; 6303 6304 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6305 return NULL; 6306 6307 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6308 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6309 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6310 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6311 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6312 enables |= tx_rings + ring_grps ? 6313 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6314 } else { 6315 enables |= cp_rings ? 6316 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6317 enables |= ring_grps ? 6318 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6319 } 6320 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6321 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6322 6323 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6324 req->num_tx_rings = cpu_to_le16(tx_rings); 6325 req->num_rx_rings = cpu_to_le16(rx_rings); 6326 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6327 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6328 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6329 } else { 6330 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6331 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6332 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6333 } 6334 req->num_stat_ctxs = cpu_to_le16(stats); 6335 req->num_vnics = cpu_to_le16(vnics); 6336 6337 req->enables = cpu_to_le32(enables); 6338 return req; 6339 } 6340 6341 static int 6342 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6343 int ring_grps, int cp_rings, int stats, int vnics) 6344 { 6345 struct hwrm_func_cfg_input *req; 6346 int rc; 6347 6348 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6349 cp_rings, stats, vnics); 6350 if (!req) 6351 return -ENOMEM; 6352 6353 if (!req->enables) { 6354 hwrm_req_drop(bp, req); 6355 return 0; 6356 } 6357 6358 rc = hwrm_req_send(bp, req); 6359 if (rc) 6360 return rc; 6361 6362 if (bp->hwrm_spec_code < 0x10601) 6363 bp->hw_resc.resv_tx_rings = tx_rings; 6364 6365 return bnxt_hwrm_get_rings(bp); 6366 } 6367 6368 static int 6369 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6370 int ring_grps, int cp_rings, int stats, int vnics) 6371 { 6372 struct hwrm_func_vf_cfg_input *req; 6373 int rc; 6374 6375 if (!BNXT_NEW_RM(bp)) { 6376 bp->hw_resc.resv_tx_rings = tx_rings; 6377 return 0; 6378 } 6379 6380 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6381 cp_rings, stats, vnics); 6382 if (!req) 6383 return -ENOMEM; 6384 6385 rc = hwrm_req_send(bp, req); 6386 if (rc) 6387 return rc; 6388 6389 return bnxt_hwrm_get_rings(bp); 6390 } 6391 6392 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6393 int cp, int stat, int vnic) 6394 { 6395 if (BNXT_PF(bp)) 6396 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6397 vnic); 6398 else 6399 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6400 vnic); 6401 } 6402 6403 int bnxt_nq_rings_in_use(struct bnxt *bp) 6404 { 6405 int cp = bp->cp_nr_rings; 6406 int ulp_msix, ulp_base; 6407 6408 ulp_msix = bnxt_get_ulp_msix_num(bp); 6409 if (ulp_msix) { 6410 ulp_base = bnxt_get_ulp_msix_base(bp); 6411 cp += ulp_msix; 6412 if ((ulp_base + ulp_msix) > cp) 6413 cp = ulp_base + ulp_msix; 6414 } 6415 return cp; 6416 } 6417 6418 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6419 { 6420 int cp; 6421 6422 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6423 return bnxt_nq_rings_in_use(bp); 6424 6425 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6426 return cp; 6427 } 6428 6429 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6430 { 6431 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6432 int cp = bp->cp_nr_rings; 6433 6434 if (!ulp_stat) 6435 return cp; 6436 6437 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6438 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6439 6440 return cp + ulp_stat; 6441 } 6442 6443 /* Check if a default RSS map needs to be setup. This function is only 6444 * used on older firmware that does not require reserving RX rings. 6445 */ 6446 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6447 { 6448 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6449 6450 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6451 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6452 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6453 if (!netif_is_rxfh_configured(bp->dev)) 6454 bnxt_set_dflt_rss_indir_tbl(bp); 6455 } 6456 } 6457 6458 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6459 { 6460 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6461 int cp = bnxt_cp_rings_in_use(bp); 6462 int nq = bnxt_nq_rings_in_use(bp); 6463 int rx = bp->rx_nr_rings, stat; 6464 int vnic = 1, grp = rx; 6465 6466 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6467 bp->hwrm_spec_code >= 0x10601) 6468 return true; 6469 6470 /* Old firmware does not need RX ring reservations but we still 6471 * need to setup a default RSS map when needed. With new firmware 6472 * we go through RX ring reservations first and then set up the 6473 * RSS map for the successfully reserved RX rings when needed. 6474 */ 6475 if (!BNXT_NEW_RM(bp)) { 6476 bnxt_check_rss_tbl_no_rmgr(bp); 6477 return false; 6478 } 6479 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6480 vnic = rx + 1; 6481 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6482 rx <<= 1; 6483 stat = bnxt_get_func_stat_ctxs(bp); 6484 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6485 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6486 (hw_resc->resv_hw_ring_grps != grp && 6487 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6488 return true; 6489 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6490 hw_resc->resv_irqs != nq) 6491 return true; 6492 return false; 6493 } 6494 6495 static int __bnxt_reserve_rings(struct bnxt *bp) 6496 { 6497 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6498 int cp = bnxt_nq_rings_in_use(bp); 6499 int tx = bp->tx_nr_rings; 6500 int rx = bp->rx_nr_rings; 6501 int grp, rx_rings, rc; 6502 int vnic = 1, stat; 6503 bool sh = false; 6504 6505 if (!bnxt_need_reserve_rings(bp)) 6506 return 0; 6507 6508 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6509 sh = true; 6510 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6511 vnic = rx + 1; 6512 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6513 rx <<= 1; 6514 grp = bp->rx_nr_rings; 6515 stat = bnxt_get_func_stat_ctxs(bp); 6516 6517 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6518 if (rc) 6519 return rc; 6520 6521 tx = hw_resc->resv_tx_rings; 6522 if (BNXT_NEW_RM(bp)) { 6523 rx = hw_resc->resv_rx_rings; 6524 cp = hw_resc->resv_irqs; 6525 grp = hw_resc->resv_hw_ring_grps; 6526 vnic = hw_resc->resv_vnics; 6527 stat = hw_resc->resv_stat_ctxs; 6528 } 6529 6530 rx_rings = rx; 6531 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6532 if (rx >= 2) { 6533 rx_rings = rx >> 1; 6534 } else { 6535 if (netif_running(bp->dev)) 6536 return -ENOMEM; 6537 6538 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6539 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6540 bp->dev->hw_features &= ~NETIF_F_LRO; 6541 bp->dev->features &= ~NETIF_F_LRO; 6542 bnxt_set_ring_params(bp); 6543 } 6544 } 6545 rx_rings = min_t(int, rx_rings, grp); 6546 cp = min_t(int, cp, bp->cp_nr_rings); 6547 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6548 stat -= bnxt_get_ulp_stat_ctxs(bp); 6549 cp = min_t(int, cp, stat); 6550 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6551 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6552 rx = rx_rings << 1; 6553 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6554 bp->tx_nr_rings = tx; 6555 6556 /* If we cannot reserve all the RX rings, reset the RSS map only 6557 * if absolutely necessary 6558 */ 6559 if (rx_rings != bp->rx_nr_rings) { 6560 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6561 rx_rings, bp->rx_nr_rings); 6562 if (netif_is_rxfh_configured(bp->dev) && 6563 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6564 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6565 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6566 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6567 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6568 } 6569 } 6570 bp->rx_nr_rings = rx_rings; 6571 bp->cp_nr_rings = cp; 6572 6573 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6574 return -ENOMEM; 6575 6576 if (!netif_is_rxfh_configured(bp->dev)) 6577 bnxt_set_dflt_rss_indir_tbl(bp); 6578 6579 return rc; 6580 } 6581 6582 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6583 int ring_grps, int cp_rings, int stats, 6584 int vnics) 6585 { 6586 struct hwrm_func_vf_cfg_input *req; 6587 u32 flags; 6588 6589 if (!BNXT_NEW_RM(bp)) 6590 return 0; 6591 6592 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6593 cp_rings, stats, vnics); 6594 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6595 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6596 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6597 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6598 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6599 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6600 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6601 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6602 6603 req->flags = cpu_to_le32(flags); 6604 return hwrm_req_send_silent(bp, req); 6605 } 6606 6607 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6608 int ring_grps, int cp_rings, int stats, 6609 int vnics) 6610 { 6611 struct hwrm_func_cfg_input *req; 6612 u32 flags; 6613 6614 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6615 cp_rings, stats, vnics); 6616 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6617 if (BNXT_NEW_RM(bp)) { 6618 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6619 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6620 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6621 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6622 if (bp->flags & BNXT_FLAG_CHIP_P5) 6623 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6624 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6625 else 6626 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6627 } 6628 6629 req->flags = cpu_to_le32(flags); 6630 return hwrm_req_send_silent(bp, req); 6631 } 6632 6633 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6634 int ring_grps, int cp_rings, int stats, 6635 int vnics) 6636 { 6637 if (bp->hwrm_spec_code < 0x10801) 6638 return 0; 6639 6640 if (BNXT_PF(bp)) 6641 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6642 ring_grps, cp_rings, stats, 6643 vnics); 6644 6645 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6646 cp_rings, stats, vnics); 6647 } 6648 6649 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6650 { 6651 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6652 struct hwrm_ring_aggint_qcaps_output *resp; 6653 struct hwrm_ring_aggint_qcaps_input *req; 6654 int rc; 6655 6656 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6657 coal_cap->num_cmpl_dma_aggr_max = 63; 6658 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6659 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6660 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6661 coal_cap->int_lat_tmr_min_max = 65535; 6662 coal_cap->int_lat_tmr_max_max = 65535; 6663 coal_cap->num_cmpl_aggr_int_max = 65535; 6664 coal_cap->timer_units = 80; 6665 6666 if (bp->hwrm_spec_code < 0x10902) 6667 return; 6668 6669 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6670 return; 6671 6672 resp = hwrm_req_hold(bp, req); 6673 rc = hwrm_req_send_silent(bp, req); 6674 if (!rc) { 6675 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6676 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6677 coal_cap->num_cmpl_dma_aggr_max = 6678 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6679 coal_cap->num_cmpl_dma_aggr_during_int_max = 6680 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6681 coal_cap->cmpl_aggr_dma_tmr_max = 6682 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6683 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6684 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6685 coal_cap->int_lat_tmr_min_max = 6686 le16_to_cpu(resp->int_lat_tmr_min_max); 6687 coal_cap->int_lat_tmr_max_max = 6688 le16_to_cpu(resp->int_lat_tmr_max_max); 6689 coal_cap->num_cmpl_aggr_int_max = 6690 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6691 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6692 } 6693 hwrm_req_drop(bp, req); 6694 } 6695 6696 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6697 { 6698 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6699 6700 return usec * 1000 / coal_cap->timer_units; 6701 } 6702 6703 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6704 struct bnxt_coal *hw_coal, 6705 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6706 { 6707 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6708 u16 val, tmr, max, flags = hw_coal->flags; 6709 u32 cmpl_params = coal_cap->cmpl_params; 6710 6711 max = hw_coal->bufs_per_record * 128; 6712 if (hw_coal->budget) 6713 max = hw_coal->bufs_per_record * hw_coal->budget; 6714 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6715 6716 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6717 req->num_cmpl_aggr_int = cpu_to_le16(val); 6718 6719 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6720 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6721 6722 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6723 coal_cap->num_cmpl_dma_aggr_during_int_max); 6724 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6725 6726 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6727 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6728 req->int_lat_tmr_max = cpu_to_le16(tmr); 6729 6730 /* min timer set to 1/2 of interrupt timer */ 6731 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6732 val = tmr / 2; 6733 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6734 req->int_lat_tmr_min = cpu_to_le16(val); 6735 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6736 } 6737 6738 /* buf timer set to 1/4 of interrupt timer */ 6739 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6740 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6741 6742 if (cmpl_params & 6743 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6744 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6745 val = clamp_t(u16, tmr, 1, 6746 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6747 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6748 req->enables |= 6749 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6750 } 6751 6752 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6753 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6754 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6755 req->flags = cpu_to_le16(flags); 6756 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6757 } 6758 6759 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6760 struct bnxt_coal *hw_coal) 6761 { 6762 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6763 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6764 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6765 u32 nq_params = coal_cap->nq_params; 6766 u16 tmr; 6767 int rc; 6768 6769 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6770 return 0; 6771 6772 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6773 if (rc) 6774 return rc; 6775 6776 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6777 req->flags = 6778 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6779 6780 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6781 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6782 req->int_lat_tmr_min = cpu_to_le16(tmr); 6783 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6784 return hwrm_req_send(bp, req); 6785 } 6786 6787 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6788 { 6789 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6790 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6791 struct bnxt_coal coal; 6792 int rc; 6793 6794 /* Tick values in micro seconds. 6795 * 1 coal_buf x bufs_per_record = 1 completion record. 6796 */ 6797 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6798 6799 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6800 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6801 6802 if (!bnapi->rx_ring) 6803 return -ENODEV; 6804 6805 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6806 if (rc) 6807 return rc; 6808 6809 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6810 6811 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6812 6813 return hwrm_req_send(bp, req_rx); 6814 } 6815 6816 int bnxt_hwrm_set_coal(struct bnxt *bp) 6817 { 6818 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6819 *req; 6820 int i, rc; 6821 6822 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6823 if (rc) 6824 return rc; 6825 6826 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6827 if (rc) { 6828 hwrm_req_drop(bp, req_rx); 6829 return rc; 6830 } 6831 6832 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6833 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6834 6835 hwrm_req_hold(bp, req_rx); 6836 hwrm_req_hold(bp, req_tx); 6837 for (i = 0; i < bp->cp_nr_rings; i++) { 6838 struct bnxt_napi *bnapi = bp->bnapi[i]; 6839 struct bnxt_coal *hw_coal; 6840 u16 ring_id; 6841 6842 req = req_rx; 6843 if (!bnapi->rx_ring) { 6844 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6845 req = req_tx; 6846 } else { 6847 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6848 } 6849 req->ring_id = cpu_to_le16(ring_id); 6850 6851 rc = hwrm_req_send(bp, req); 6852 if (rc) 6853 break; 6854 6855 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6856 continue; 6857 6858 if (bnapi->rx_ring && bnapi->tx_ring) { 6859 req = req_tx; 6860 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6861 req->ring_id = cpu_to_le16(ring_id); 6862 rc = hwrm_req_send(bp, req); 6863 if (rc) 6864 break; 6865 } 6866 if (bnapi->rx_ring) 6867 hw_coal = &bp->rx_coal; 6868 else 6869 hw_coal = &bp->tx_coal; 6870 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6871 } 6872 hwrm_req_drop(bp, req_rx); 6873 hwrm_req_drop(bp, req_tx); 6874 return rc; 6875 } 6876 6877 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6878 { 6879 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6880 struct hwrm_stat_ctx_free_input *req; 6881 int i; 6882 6883 if (!bp->bnapi) 6884 return; 6885 6886 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6887 return; 6888 6889 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6890 return; 6891 if (BNXT_FW_MAJ(bp) <= 20) { 6892 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6893 hwrm_req_drop(bp, req); 6894 return; 6895 } 6896 hwrm_req_hold(bp, req0); 6897 } 6898 hwrm_req_hold(bp, req); 6899 for (i = 0; i < bp->cp_nr_rings; i++) { 6900 struct bnxt_napi *bnapi = bp->bnapi[i]; 6901 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6902 6903 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6904 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6905 if (req0) { 6906 req0->stat_ctx_id = req->stat_ctx_id; 6907 hwrm_req_send(bp, req0); 6908 } 6909 hwrm_req_send(bp, req); 6910 6911 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6912 } 6913 } 6914 hwrm_req_drop(bp, req); 6915 if (req0) 6916 hwrm_req_drop(bp, req0); 6917 } 6918 6919 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6920 { 6921 struct hwrm_stat_ctx_alloc_output *resp; 6922 struct hwrm_stat_ctx_alloc_input *req; 6923 int rc, i; 6924 6925 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6926 return 0; 6927 6928 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6929 if (rc) 6930 return rc; 6931 6932 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6933 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6934 6935 resp = hwrm_req_hold(bp, req); 6936 for (i = 0; i < bp->cp_nr_rings; i++) { 6937 struct bnxt_napi *bnapi = bp->bnapi[i]; 6938 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6939 6940 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6941 6942 rc = hwrm_req_send(bp, req); 6943 if (rc) 6944 break; 6945 6946 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6947 6948 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6949 } 6950 hwrm_req_drop(bp, req); 6951 return rc; 6952 } 6953 6954 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6955 { 6956 struct hwrm_func_qcfg_output *resp; 6957 struct hwrm_func_qcfg_input *req; 6958 u32 min_db_offset = 0; 6959 u16 flags; 6960 int rc; 6961 6962 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6963 if (rc) 6964 return rc; 6965 6966 req->fid = cpu_to_le16(0xffff); 6967 resp = hwrm_req_hold(bp, req); 6968 rc = hwrm_req_send(bp, req); 6969 if (rc) 6970 goto func_qcfg_exit; 6971 6972 #ifdef CONFIG_BNXT_SRIOV 6973 if (BNXT_VF(bp)) { 6974 struct bnxt_vf_info *vf = &bp->vf; 6975 6976 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6977 } else { 6978 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6979 } 6980 #endif 6981 flags = le16_to_cpu(resp->flags); 6982 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6983 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6984 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6985 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6986 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6987 } 6988 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) { 6989 bp->flags |= BNXT_FLAG_MULTI_HOST; 6990 if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) 6991 bp->fw_cap &= ~BNXT_FW_CAP_PTP_RTC; 6992 } 6993 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6994 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6995 6996 switch (resp->port_partition_type) { 6997 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6998 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6999 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 7000 bp->port_partition_type = resp->port_partition_type; 7001 break; 7002 } 7003 if (bp->hwrm_spec_code < 0x10707 || 7004 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 7005 bp->br_mode = BRIDGE_MODE_VEB; 7006 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 7007 bp->br_mode = BRIDGE_MODE_VEPA; 7008 else 7009 bp->br_mode = BRIDGE_MODE_UNDEF; 7010 7011 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 7012 if (!bp->max_mtu) 7013 bp->max_mtu = BNXT_MAX_MTU; 7014 7015 if (bp->db_size) 7016 goto func_qcfg_exit; 7017 7018 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7019 if (BNXT_PF(bp)) 7020 min_db_offset = DB_PF_OFFSET_P5; 7021 else 7022 min_db_offset = DB_VF_OFFSET_P5; 7023 } 7024 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7025 1024); 7026 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7027 bp->db_size <= min_db_offset) 7028 bp->db_size = pci_resource_len(bp->pdev, 2); 7029 7030 func_qcfg_exit: 7031 hwrm_req_drop(bp, req); 7032 return rc; 7033 } 7034 7035 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 7036 struct hwrm_func_backing_store_qcaps_output *resp) 7037 { 7038 struct bnxt_mem_init *mem_init; 7039 u16 init_mask; 7040 u8 init_val; 7041 u8 *offset; 7042 int i; 7043 7044 init_val = resp->ctx_kind_initializer; 7045 init_mask = le16_to_cpu(resp->ctx_init_mask); 7046 offset = &resp->qp_init_offset; 7047 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7048 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 7049 mem_init->init_val = init_val; 7050 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 7051 if (!init_mask) 7052 continue; 7053 if (i == BNXT_CTX_MEM_INIT_STAT) 7054 offset = &resp->stat_init_offset; 7055 if (init_mask & (1 << i)) 7056 mem_init->offset = *offset * 4; 7057 else 7058 mem_init->init_val = 0; 7059 } 7060 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 7061 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 7062 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 7063 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 7064 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 7065 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 7066 } 7067 7068 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7069 { 7070 struct hwrm_func_backing_store_qcaps_output *resp; 7071 struct hwrm_func_backing_store_qcaps_input *req; 7072 int rc; 7073 7074 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7075 return 0; 7076 7077 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 7078 if (rc) 7079 return rc; 7080 7081 resp = hwrm_req_hold(bp, req); 7082 rc = hwrm_req_send_silent(bp, req); 7083 if (!rc) { 7084 struct bnxt_ctx_pg_info *ctx_pg; 7085 struct bnxt_ctx_mem_info *ctx; 7086 int i, tqm_rings; 7087 7088 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7089 if (!ctx) { 7090 rc = -ENOMEM; 7091 goto ctx_err; 7092 } 7093 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 7094 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7095 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7096 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 7097 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7098 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 7099 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 7100 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7101 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 7102 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 7103 ctx->vnic_max_vnic_entries = 7104 le16_to_cpu(resp->vnic_max_vnic_entries); 7105 ctx->vnic_max_ring_table_entries = 7106 le16_to_cpu(resp->vnic_max_ring_table_entries); 7107 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 7108 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 7109 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 7110 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 7111 ctx->tqm_min_entries_per_ring = 7112 le32_to_cpu(resp->tqm_min_entries_per_ring); 7113 ctx->tqm_max_entries_per_ring = 7114 le32_to_cpu(resp->tqm_max_entries_per_ring); 7115 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 7116 if (!ctx->tqm_entries_multiple) 7117 ctx->tqm_entries_multiple = 1; 7118 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 7119 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7120 ctx->mrav_num_entries_units = 7121 le16_to_cpu(resp->mrav_num_entries_units); 7122 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7123 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7124 7125 bnxt_init_ctx_initializer(ctx, resp); 7126 7127 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7128 if (!ctx->tqm_fp_rings_count) 7129 ctx->tqm_fp_rings_count = bp->max_q; 7130 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7131 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7132 7133 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7134 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7135 if (!ctx_pg) { 7136 kfree(ctx); 7137 rc = -ENOMEM; 7138 goto ctx_err; 7139 } 7140 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7141 ctx->tqm_mem[i] = ctx_pg; 7142 bp->ctx = ctx; 7143 } else { 7144 rc = 0; 7145 } 7146 ctx_err: 7147 hwrm_req_drop(bp, req); 7148 return rc; 7149 } 7150 7151 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7152 __le64 *pg_dir) 7153 { 7154 if (!rmem->nr_pages) 7155 return; 7156 7157 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7158 if (rmem->depth >= 1) { 7159 if (rmem->depth == 2) 7160 *pg_attr |= 2; 7161 else 7162 *pg_attr |= 1; 7163 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7164 } else { 7165 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7166 } 7167 } 7168 7169 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7170 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7171 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7172 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7173 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7174 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7175 7176 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7177 { 7178 struct hwrm_func_backing_store_cfg_input *req; 7179 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7180 struct bnxt_ctx_pg_info *ctx_pg; 7181 void **__req = (void **)&req; 7182 u32 req_len = sizeof(*req); 7183 __le32 *num_entries; 7184 __le64 *pg_dir; 7185 u32 flags = 0; 7186 u8 *pg_attr; 7187 u32 ena; 7188 int rc; 7189 int i; 7190 7191 if (!ctx) 7192 return 0; 7193 7194 if (req_len > bp->hwrm_max_ext_req_len) 7195 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7196 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7197 if (rc) 7198 return rc; 7199 7200 req->enables = cpu_to_le32(enables); 7201 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7202 ctx_pg = &ctx->qp_mem; 7203 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7204 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7205 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7206 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7207 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7208 &req->qpc_pg_size_qpc_lvl, 7209 &req->qpc_page_dir); 7210 } 7211 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7212 ctx_pg = &ctx->srq_mem; 7213 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7214 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7215 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7216 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7217 &req->srq_pg_size_srq_lvl, 7218 &req->srq_page_dir); 7219 } 7220 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7221 ctx_pg = &ctx->cq_mem; 7222 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7223 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7224 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7225 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7226 &req->cq_pg_size_cq_lvl, 7227 &req->cq_page_dir); 7228 } 7229 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7230 ctx_pg = &ctx->vnic_mem; 7231 req->vnic_num_vnic_entries = 7232 cpu_to_le16(ctx->vnic_max_vnic_entries); 7233 req->vnic_num_ring_table_entries = 7234 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7235 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7236 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7237 &req->vnic_pg_size_vnic_lvl, 7238 &req->vnic_page_dir); 7239 } 7240 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7241 ctx_pg = &ctx->stat_mem; 7242 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7243 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7244 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7245 &req->stat_pg_size_stat_lvl, 7246 &req->stat_page_dir); 7247 } 7248 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7249 ctx_pg = &ctx->mrav_mem; 7250 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7251 if (ctx->mrav_num_entries_units) 7252 flags |= 7253 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7254 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7255 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7256 &req->mrav_pg_size_mrav_lvl, 7257 &req->mrav_page_dir); 7258 } 7259 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7260 ctx_pg = &ctx->tim_mem; 7261 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7262 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7263 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7264 &req->tim_pg_size_tim_lvl, 7265 &req->tim_page_dir); 7266 } 7267 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7268 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7269 pg_dir = &req->tqm_sp_page_dir, 7270 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7271 i < BNXT_MAX_TQM_RINGS; 7272 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7273 if (!(enables & ena)) 7274 continue; 7275 7276 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7277 ctx_pg = ctx->tqm_mem[i]; 7278 *num_entries = cpu_to_le32(ctx_pg->entries); 7279 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7280 } 7281 req->flags = cpu_to_le32(flags); 7282 return hwrm_req_send(bp, req); 7283 } 7284 7285 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7286 struct bnxt_ctx_pg_info *ctx_pg) 7287 { 7288 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7289 7290 rmem->page_size = BNXT_PAGE_SIZE; 7291 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7292 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7293 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7294 if (rmem->depth >= 1) 7295 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7296 return bnxt_alloc_ring(bp, rmem); 7297 } 7298 7299 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7300 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7301 u8 depth, struct bnxt_mem_init *mem_init) 7302 { 7303 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7304 int rc; 7305 7306 if (!mem_size) 7307 return -EINVAL; 7308 7309 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7310 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7311 ctx_pg->nr_pages = 0; 7312 return -EINVAL; 7313 } 7314 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7315 int nr_tbls, i; 7316 7317 rmem->depth = 2; 7318 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7319 GFP_KERNEL); 7320 if (!ctx_pg->ctx_pg_tbl) 7321 return -ENOMEM; 7322 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7323 rmem->nr_pages = nr_tbls; 7324 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7325 if (rc) 7326 return rc; 7327 for (i = 0; i < nr_tbls; i++) { 7328 struct bnxt_ctx_pg_info *pg_tbl; 7329 7330 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7331 if (!pg_tbl) 7332 return -ENOMEM; 7333 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7334 rmem = &pg_tbl->ring_mem; 7335 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7336 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7337 rmem->depth = 1; 7338 rmem->nr_pages = MAX_CTX_PAGES; 7339 rmem->mem_init = mem_init; 7340 if (i == (nr_tbls - 1)) { 7341 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7342 7343 if (rem) 7344 rmem->nr_pages = rem; 7345 } 7346 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7347 if (rc) 7348 break; 7349 } 7350 } else { 7351 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7352 if (rmem->nr_pages > 1 || depth) 7353 rmem->depth = 1; 7354 rmem->mem_init = mem_init; 7355 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7356 } 7357 return rc; 7358 } 7359 7360 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7361 struct bnxt_ctx_pg_info *ctx_pg) 7362 { 7363 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7364 7365 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7366 ctx_pg->ctx_pg_tbl) { 7367 int i, nr_tbls = rmem->nr_pages; 7368 7369 for (i = 0; i < nr_tbls; i++) { 7370 struct bnxt_ctx_pg_info *pg_tbl; 7371 struct bnxt_ring_mem_info *rmem2; 7372 7373 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7374 if (!pg_tbl) 7375 continue; 7376 rmem2 = &pg_tbl->ring_mem; 7377 bnxt_free_ring(bp, rmem2); 7378 ctx_pg->ctx_pg_arr[i] = NULL; 7379 kfree(pg_tbl); 7380 ctx_pg->ctx_pg_tbl[i] = NULL; 7381 } 7382 kfree(ctx_pg->ctx_pg_tbl); 7383 ctx_pg->ctx_pg_tbl = NULL; 7384 } 7385 bnxt_free_ring(bp, rmem); 7386 ctx_pg->nr_pages = 0; 7387 } 7388 7389 void bnxt_free_ctx_mem(struct bnxt *bp) 7390 { 7391 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7392 int i; 7393 7394 if (!ctx) 7395 return; 7396 7397 if (ctx->tqm_mem[0]) { 7398 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7399 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7400 kfree(ctx->tqm_mem[0]); 7401 ctx->tqm_mem[0] = NULL; 7402 } 7403 7404 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7405 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7406 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7407 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7408 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7409 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7410 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7411 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7412 } 7413 7414 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7415 { 7416 struct bnxt_ctx_pg_info *ctx_pg; 7417 struct bnxt_ctx_mem_info *ctx; 7418 struct bnxt_mem_init *init; 7419 u32 mem_size, ena, entries; 7420 u32 entries_sp, min; 7421 u32 num_mr, num_ah; 7422 u32 extra_srqs = 0; 7423 u32 extra_qps = 0; 7424 u8 pg_lvl = 1; 7425 int i, rc; 7426 7427 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7428 if (rc) { 7429 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7430 rc); 7431 return rc; 7432 } 7433 ctx = bp->ctx; 7434 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7435 return 0; 7436 7437 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7438 pg_lvl = 2; 7439 extra_qps = 65536; 7440 extra_srqs = 8192; 7441 } 7442 7443 ctx_pg = &ctx->qp_mem; 7444 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7445 extra_qps; 7446 if (ctx->qp_entry_size) { 7447 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7448 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7449 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7450 if (rc) 7451 return rc; 7452 } 7453 7454 ctx_pg = &ctx->srq_mem; 7455 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7456 if (ctx->srq_entry_size) { 7457 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7458 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7459 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7460 if (rc) 7461 return rc; 7462 } 7463 7464 ctx_pg = &ctx->cq_mem; 7465 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7466 if (ctx->cq_entry_size) { 7467 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7468 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7469 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7470 if (rc) 7471 return rc; 7472 } 7473 7474 ctx_pg = &ctx->vnic_mem; 7475 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7476 ctx->vnic_max_ring_table_entries; 7477 if (ctx->vnic_entry_size) { 7478 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7479 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7480 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7481 if (rc) 7482 return rc; 7483 } 7484 7485 ctx_pg = &ctx->stat_mem; 7486 ctx_pg->entries = ctx->stat_max_entries; 7487 if (ctx->stat_entry_size) { 7488 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7489 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7490 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7491 if (rc) 7492 return rc; 7493 } 7494 7495 ena = 0; 7496 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7497 goto skip_rdma; 7498 7499 ctx_pg = &ctx->mrav_mem; 7500 /* 128K extra is needed to accommodate static AH context 7501 * allocation by f/w. 7502 */ 7503 num_mr = 1024 * 256; 7504 num_ah = 1024 * 128; 7505 ctx_pg->entries = num_mr + num_ah; 7506 if (ctx->mrav_entry_size) { 7507 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7508 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7509 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7510 if (rc) 7511 return rc; 7512 } 7513 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7514 if (ctx->mrav_num_entries_units) 7515 ctx_pg->entries = 7516 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7517 (num_ah / ctx->mrav_num_entries_units); 7518 7519 ctx_pg = &ctx->tim_mem; 7520 ctx_pg->entries = ctx->qp_mem.entries; 7521 if (ctx->tim_entry_size) { 7522 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7523 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7524 if (rc) 7525 return rc; 7526 } 7527 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7528 7529 skip_rdma: 7530 min = ctx->tqm_min_entries_per_ring; 7531 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7532 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7533 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7534 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7535 entries = roundup(entries, ctx->tqm_entries_multiple); 7536 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7537 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7538 ctx_pg = ctx->tqm_mem[i]; 7539 ctx_pg->entries = i ? entries : entries_sp; 7540 if (ctx->tqm_entry_size) { 7541 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7542 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7543 NULL); 7544 if (rc) 7545 return rc; 7546 } 7547 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7548 } 7549 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7550 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7551 if (rc) { 7552 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7553 rc); 7554 return rc; 7555 } 7556 ctx->flags |= BNXT_CTX_FLAG_INITED; 7557 return 0; 7558 } 7559 7560 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7561 { 7562 struct hwrm_func_resource_qcaps_output *resp; 7563 struct hwrm_func_resource_qcaps_input *req; 7564 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7565 int rc; 7566 7567 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7568 if (rc) 7569 return rc; 7570 7571 req->fid = cpu_to_le16(0xffff); 7572 resp = hwrm_req_hold(bp, req); 7573 rc = hwrm_req_send_silent(bp, req); 7574 if (rc) 7575 goto hwrm_func_resc_qcaps_exit; 7576 7577 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7578 if (!all) 7579 goto hwrm_func_resc_qcaps_exit; 7580 7581 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7582 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7583 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7584 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7585 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7586 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7587 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7588 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7589 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7590 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7591 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7592 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7593 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7594 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7595 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7596 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7597 7598 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7599 u16 max_msix = le16_to_cpu(resp->max_msix); 7600 7601 hw_resc->max_nqs = max_msix; 7602 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7603 } 7604 7605 if (BNXT_PF(bp)) { 7606 struct bnxt_pf_info *pf = &bp->pf; 7607 7608 pf->vf_resv_strategy = 7609 le16_to_cpu(resp->vf_reservation_strategy); 7610 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7611 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7612 } 7613 hwrm_func_resc_qcaps_exit: 7614 hwrm_req_drop(bp, req); 7615 return rc; 7616 } 7617 7618 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7619 { 7620 struct hwrm_port_mac_ptp_qcfg_output *resp; 7621 struct hwrm_port_mac_ptp_qcfg_input *req; 7622 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7623 bool phc_cfg; 7624 u8 flags; 7625 int rc; 7626 7627 if (bp->hwrm_spec_code < 0x10801) { 7628 rc = -ENODEV; 7629 goto no_ptp; 7630 } 7631 7632 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7633 if (rc) 7634 goto no_ptp; 7635 7636 req->port_id = cpu_to_le16(bp->pf.port_id); 7637 resp = hwrm_req_hold(bp, req); 7638 rc = hwrm_req_send(bp, req); 7639 if (rc) 7640 goto exit; 7641 7642 flags = resp->flags; 7643 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7644 rc = -ENODEV; 7645 goto exit; 7646 } 7647 if (!ptp) { 7648 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7649 if (!ptp) { 7650 rc = -ENOMEM; 7651 goto exit; 7652 } 7653 ptp->bp = bp; 7654 bp->ptp_cfg = ptp; 7655 } 7656 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7657 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7658 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7659 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7660 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7661 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7662 } else { 7663 rc = -ENODEV; 7664 goto exit; 7665 } 7666 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 7667 rc = bnxt_ptp_init(bp, phc_cfg); 7668 if (rc) 7669 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7670 exit: 7671 hwrm_req_drop(bp, req); 7672 if (!rc) 7673 return 0; 7674 7675 no_ptp: 7676 bnxt_ptp_clear(bp); 7677 kfree(ptp); 7678 bp->ptp_cfg = NULL; 7679 return rc; 7680 } 7681 7682 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7683 { 7684 struct hwrm_func_qcaps_output *resp; 7685 struct hwrm_func_qcaps_input *req; 7686 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7687 u32 flags, flags_ext, flags_ext2; 7688 int rc; 7689 7690 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7691 if (rc) 7692 return rc; 7693 7694 req->fid = cpu_to_le16(0xffff); 7695 resp = hwrm_req_hold(bp, req); 7696 rc = hwrm_req_send(bp, req); 7697 if (rc) 7698 goto hwrm_func_qcaps_exit; 7699 7700 flags = le32_to_cpu(resp->flags); 7701 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7702 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7703 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7704 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7705 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7706 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7707 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7708 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7709 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7710 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7711 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7712 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7713 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7714 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7715 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7716 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7717 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7718 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7719 7720 flags_ext = le32_to_cpu(resp->flags_ext); 7721 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7722 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7723 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7724 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7725 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 7726 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 7727 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7728 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7729 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7730 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7731 7732 flags_ext2 = le32_to_cpu(resp->flags_ext2); 7733 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 7734 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 7735 7736 bp->tx_push_thresh = 0; 7737 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7738 BNXT_FW_MAJ(bp) > 217) 7739 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7740 7741 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7742 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7743 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7744 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7745 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7746 if (!hw_resc->max_hw_ring_grps) 7747 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7748 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7749 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7750 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7751 7752 if (BNXT_PF(bp)) { 7753 struct bnxt_pf_info *pf = &bp->pf; 7754 7755 pf->fw_fid = le16_to_cpu(resp->fid); 7756 pf->port_id = le16_to_cpu(resp->port_id); 7757 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7758 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7759 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7760 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7761 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7762 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7763 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7764 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7765 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7766 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7767 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7768 bp->flags |= BNXT_FLAG_WOL_CAP; 7769 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7770 __bnxt_hwrm_ptp_qcfg(bp); 7771 } else { 7772 bnxt_ptp_clear(bp); 7773 kfree(bp->ptp_cfg); 7774 bp->ptp_cfg = NULL; 7775 } 7776 } else { 7777 #ifdef CONFIG_BNXT_SRIOV 7778 struct bnxt_vf_info *vf = &bp->vf; 7779 7780 vf->fw_fid = le16_to_cpu(resp->fid); 7781 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7782 #endif 7783 } 7784 7785 hwrm_func_qcaps_exit: 7786 hwrm_req_drop(bp, req); 7787 return rc; 7788 } 7789 7790 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7791 { 7792 struct hwrm_dbg_qcaps_output *resp; 7793 struct hwrm_dbg_qcaps_input *req; 7794 int rc; 7795 7796 bp->fw_dbg_cap = 0; 7797 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7798 return; 7799 7800 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7801 if (rc) 7802 return; 7803 7804 req->fid = cpu_to_le16(0xffff); 7805 resp = hwrm_req_hold(bp, req); 7806 rc = hwrm_req_send(bp, req); 7807 if (rc) 7808 goto hwrm_dbg_qcaps_exit; 7809 7810 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7811 7812 hwrm_dbg_qcaps_exit: 7813 hwrm_req_drop(bp, req); 7814 } 7815 7816 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7817 7818 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7819 { 7820 int rc; 7821 7822 rc = __bnxt_hwrm_func_qcaps(bp); 7823 if (rc) 7824 return rc; 7825 7826 bnxt_hwrm_dbg_qcaps(bp); 7827 7828 rc = bnxt_hwrm_queue_qportcfg(bp); 7829 if (rc) { 7830 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7831 return rc; 7832 } 7833 if (bp->hwrm_spec_code >= 0x10803) { 7834 rc = bnxt_alloc_ctx_mem(bp); 7835 if (rc) 7836 return rc; 7837 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7838 if (!rc) 7839 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7840 } 7841 return 0; 7842 } 7843 7844 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7845 { 7846 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7847 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7848 u32 flags; 7849 int rc; 7850 7851 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7852 return 0; 7853 7854 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7855 if (rc) 7856 return rc; 7857 7858 resp = hwrm_req_hold(bp, req); 7859 rc = hwrm_req_send(bp, req); 7860 if (rc) 7861 goto hwrm_cfa_adv_qcaps_exit; 7862 7863 flags = le32_to_cpu(resp->flags); 7864 if (flags & 7865 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7866 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7867 7868 hwrm_cfa_adv_qcaps_exit: 7869 hwrm_req_drop(bp, req); 7870 return rc; 7871 } 7872 7873 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7874 { 7875 if (bp->fw_health) 7876 return 0; 7877 7878 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7879 if (!bp->fw_health) 7880 return -ENOMEM; 7881 7882 mutex_init(&bp->fw_health->lock); 7883 return 0; 7884 } 7885 7886 static int bnxt_alloc_fw_health(struct bnxt *bp) 7887 { 7888 int rc; 7889 7890 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7891 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7892 return 0; 7893 7894 rc = __bnxt_alloc_fw_health(bp); 7895 if (rc) { 7896 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7897 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7898 return rc; 7899 } 7900 7901 return 0; 7902 } 7903 7904 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7905 { 7906 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7907 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7908 BNXT_FW_HEALTH_WIN_MAP_OFF); 7909 } 7910 7911 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7912 { 7913 struct bnxt_fw_health *fw_health = bp->fw_health; 7914 u32 reg_type; 7915 7916 if (!fw_health) 7917 return; 7918 7919 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7920 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7921 fw_health->status_reliable = false; 7922 7923 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 7924 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7925 fw_health->resets_reliable = false; 7926 } 7927 7928 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7929 { 7930 void __iomem *hs; 7931 u32 status_loc; 7932 u32 reg_type; 7933 u32 sig; 7934 7935 if (bp->fw_health) 7936 bp->fw_health->status_reliable = false; 7937 7938 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7939 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7940 7941 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7942 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7943 if (!bp->chip_num) { 7944 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7945 bp->chip_num = readl(bp->bar0 + 7946 BNXT_FW_HEALTH_WIN_BASE + 7947 BNXT_GRC_REG_CHIP_NUM); 7948 } 7949 if (!BNXT_CHIP_P5(bp)) 7950 return; 7951 7952 status_loc = BNXT_GRC_REG_STATUS_P5 | 7953 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7954 } else { 7955 status_loc = readl(hs + offsetof(struct hcomm_status, 7956 fw_status_loc)); 7957 } 7958 7959 if (__bnxt_alloc_fw_health(bp)) { 7960 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7961 return; 7962 } 7963 7964 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7965 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7966 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7967 __bnxt_map_fw_health_reg(bp, status_loc); 7968 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7969 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7970 } 7971 7972 bp->fw_health->status_reliable = true; 7973 } 7974 7975 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7976 { 7977 struct bnxt_fw_health *fw_health = bp->fw_health; 7978 u32 reg_base = 0xffffffff; 7979 int i; 7980 7981 bp->fw_health->status_reliable = false; 7982 bp->fw_health->resets_reliable = false; 7983 /* Only pre-map the monitoring GRC registers using window 3 */ 7984 for (i = 0; i < 4; i++) { 7985 u32 reg = fw_health->regs[i]; 7986 7987 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7988 continue; 7989 if (reg_base == 0xffffffff) 7990 reg_base = reg & BNXT_GRC_BASE_MASK; 7991 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7992 return -ERANGE; 7993 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7994 } 7995 bp->fw_health->status_reliable = true; 7996 bp->fw_health->resets_reliable = true; 7997 if (reg_base == 0xffffffff) 7998 return 0; 7999 8000 __bnxt_map_fw_health_reg(bp, reg_base); 8001 return 0; 8002 } 8003 8004 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 8005 { 8006 if (!bp->fw_health) 8007 return; 8008 8009 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 8010 bp->fw_health->status_reliable = true; 8011 bp->fw_health->resets_reliable = true; 8012 } else { 8013 bnxt_try_map_fw_health_reg(bp); 8014 } 8015 } 8016 8017 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 8018 { 8019 struct bnxt_fw_health *fw_health = bp->fw_health; 8020 struct hwrm_error_recovery_qcfg_output *resp; 8021 struct hwrm_error_recovery_qcfg_input *req; 8022 int rc, i; 8023 8024 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 8025 return 0; 8026 8027 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 8028 if (rc) 8029 return rc; 8030 8031 resp = hwrm_req_hold(bp, req); 8032 rc = hwrm_req_send(bp, req); 8033 if (rc) 8034 goto err_recovery_out; 8035 fw_health->flags = le32_to_cpu(resp->flags); 8036 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 8037 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 8038 rc = -EINVAL; 8039 goto err_recovery_out; 8040 } 8041 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 8042 fw_health->master_func_wait_dsecs = 8043 le32_to_cpu(resp->master_func_wait_period); 8044 fw_health->normal_func_wait_dsecs = 8045 le32_to_cpu(resp->normal_func_wait_period); 8046 fw_health->post_reset_wait_dsecs = 8047 le32_to_cpu(resp->master_func_wait_period_after_reset); 8048 fw_health->post_reset_max_wait_dsecs = 8049 le32_to_cpu(resp->max_bailout_time_after_reset); 8050 fw_health->regs[BNXT_FW_HEALTH_REG] = 8051 le32_to_cpu(resp->fw_health_status_reg); 8052 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 8053 le32_to_cpu(resp->fw_heartbeat_reg); 8054 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 8055 le32_to_cpu(resp->fw_reset_cnt_reg); 8056 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 8057 le32_to_cpu(resp->reset_inprogress_reg); 8058 fw_health->fw_reset_inprog_reg_mask = 8059 le32_to_cpu(resp->reset_inprogress_reg_mask); 8060 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 8061 if (fw_health->fw_reset_seq_cnt >= 16) { 8062 rc = -EINVAL; 8063 goto err_recovery_out; 8064 } 8065 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 8066 fw_health->fw_reset_seq_regs[i] = 8067 le32_to_cpu(resp->reset_reg[i]); 8068 fw_health->fw_reset_seq_vals[i] = 8069 le32_to_cpu(resp->reset_reg_val[i]); 8070 fw_health->fw_reset_seq_delay_msec[i] = 8071 resp->delay_after_reset[i]; 8072 } 8073 err_recovery_out: 8074 hwrm_req_drop(bp, req); 8075 if (!rc) 8076 rc = bnxt_map_fw_health_regs(bp); 8077 if (rc) 8078 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 8079 return rc; 8080 } 8081 8082 static int bnxt_hwrm_func_reset(struct bnxt *bp) 8083 { 8084 struct hwrm_func_reset_input *req; 8085 int rc; 8086 8087 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 8088 if (rc) 8089 return rc; 8090 8091 req->enables = 0; 8092 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 8093 return hwrm_req_send(bp, req); 8094 } 8095 8096 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 8097 { 8098 struct hwrm_nvm_get_dev_info_output nvm_info; 8099 8100 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 8101 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 8102 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 8103 nvm_info.nvm_cfg_ver_upd); 8104 } 8105 8106 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 8107 { 8108 struct hwrm_queue_qportcfg_output *resp; 8109 struct hwrm_queue_qportcfg_input *req; 8110 u8 i, j, *qptr; 8111 bool no_rdma; 8112 int rc = 0; 8113 8114 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 8115 if (rc) 8116 return rc; 8117 8118 resp = hwrm_req_hold(bp, req); 8119 rc = hwrm_req_send(bp, req); 8120 if (rc) 8121 goto qportcfg_exit; 8122 8123 if (!resp->max_configurable_queues) { 8124 rc = -EINVAL; 8125 goto qportcfg_exit; 8126 } 8127 bp->max_tc = resp->max_configurable_queues; 8128 bp->max_lltc = resp->max_configurable_lossless_queues; 8129 if (bp->max_tc > BNXT_MAX_QUEUE) 8130 bp->max_tc = BNXT_MAX_QUEUE; 8131 8132 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 8133 qptr = &resp->queue_id0; 8134 for (i = 0, j = 0; i < bp->max_tc; i++) { 8135 bp->q_info[j].queue_id = *qptr; 8136 bp->q_ids[i] = *qptr++; 8137 bp->q_info[j].queue_profile = *qptr++; 8138 bp->tc_to_qidx[j] = j; 8139 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8140 (no_rdma && BNXT_PF(bp))) 8141 j++; 8142 } 8143 bp->max_q = bp->max_tc; 8144 bp->max_tc = max_t(u8, j, 1); 8145 8146 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8147 bp->max_tc = 1; 8148 8149 if (bp->max_lltc > bp->max_tc) 8150 bp->max_lltc = bp->max_tc; 8151 8152 qportcfg_exit: 8153 hwrm_req_drop(bp, req); 8154 return rc; 8155 } 8156 8157 static int bnxt_hwrm_poll(struct bnxt *bp) 8158 { 8159 struct hwrm_ver_get_input *req; 8160 int rc; 8161 8162 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8163 if (rc) 8164 return rc; 8165 8166 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8167 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8168 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8169 8170 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 8171 rc = hwrm_req_send(bp, req); 8172 return rc; 8173 } 8174 8175 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8176 { 8177 struct hwrm_ver_get_output *resp; 8178 struct hwrm_ver_get_input *req; 8179 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8180 u32 dev_caps_cfg, hwrm_ver; 8181 int rc, len; 8182 8183 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8184 if (rc) 8185 return rc; 8186 8187 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 8188 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8189 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8190 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8191 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8192 8193 resp = hwrm_req_hold(bp, req); 8194 rc = hwrm_req_send(bp, req); 8195 if (rc) 8196 goto hwrm_ver_get_exit; 8197 8198 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8199 8200 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8201 resp->hwrm_intf_min_8b << 8 | 8202 resp->hwrm_intf_upd_8b; 8203 if (resp->hwrm_intf_maj_8b < 1) { 8204 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8205 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8206 resp->hwrm_intf_upd_8b); 8207 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8208 } 8209 8210 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8211 HWRM_VERSION_UPDATE; 8212 8213 if (bp->hwrm_spec_code > hwrm_ver) 8214 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8215 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8216 HWRM_VERSION_UPDATE); 8217 else 8218 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8219 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8220 resp->hwrm_intf_upd_8b); 8221 8222 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8223 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8224 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8225 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8226 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8227 len = FW_VER_STR_LEN; 8228 } else { 8229 fw_maj = resp->hwrm_fw_maj_8b; 8230 fw_min = resp->hwrm_fw_min_8b; 8231 fw_bld = resp->hwrm_fw_bld_8b; 8232 fw_rsv = resp->hwrm_fw_rsvd_8b; 8233 len = BC_HWRM_STR_LEN; 8234 } 8235 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8236 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8237 fw_rsv); 8238 8239 if (strlen(resp->active_pkg_name)) { 8240 int fw_ver_len = strlen(bp->fw_ver_str); 8241 8242 snprintf(bp->fw_ver_str + fw_ver_len, 8243 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8244 resp->active_pkg_name); 8245 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8246 } 8247 8248 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8249 if (!bp->hwrm_cmd_timeout) 8250 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8251 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 8252 if (!bp->hwrm_cmd_max_timeout) 8253 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 8254 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 8255 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 8256 bp->hwrm_cmd_max_timeout / 1000); 8257 8258 if (resp->hwrm_intf_maj_8b >= 1) { 8259 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8260 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8261 } 8262 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8263 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8264 8265 bp->chip_num = le16_to_cpu(resp->chip_num); 8266 bp->chip_rev = resp->chip_rev; 8267 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8268 !resp->chip_metal) 8269 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8270 8271 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8272 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8273 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8274 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8275 8276 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8277 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8278 8279 if (dev_caps_cfg & 8280 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8281 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8282 8283 if (dev_caps_cfg & 8284 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8285 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8286 8287 if (dev_caps_cfg & 8288 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8289 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8290 8291 hwrm_ver_get_exit: 8292 hwrm_req_drop(bp, req); 8293 return rc; 8294 } 8295 8296 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8297 { 8298 struct hwrm_fw_set_time_input *req; 8299 struct tm tm; 8300 time64_t now = ktime_get_real_seconds(); 8301 int rc; 8302 8303 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8304 bp->hwrm_spec_code < 0x10400) 8305 return -EOPNOTSUPP; 8306 8307 time64_to_tm(now, 0, &tm); 8308 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8309 if (rc) 8310 return rc; 8311 8312 req->year = cpu_to_le16(1900 + tm.tm_year); 8313 req->month = 1 + tm.tm_mon; 8314 req->day = tm.tm_mday; 8315 req->hour = tm.tm_hour; 8316 req->minute = tm.tm_min; 8317 req->second = tm.tm_sec; 8318 return hwrm_req_send(bp, req); 8319 } 8320 8321 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8322 { 8323 u64 sw_tmp; 8324 8325 hw &= mask; 8326 sw_tmp = (*sw & ~mask) | hw; 8327 if (hw < (*sw & mask)) 8328 sw_tmp += mask + 1; 8329 WRITE_ONCE(*sw, sw_tmp); 8330 } 8331 8332 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8333 int count, bool ignore_zero) 8334 { 8335 int i; 8336 8337 for (i = 0; i < count; i++) { 8338 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8339 8340 if (ignore_zero && !hw) 8341 continue; 8342 8343 if (masks[i] == -1ULL) 8344 sw_stats[i] = hw; 8345 else 8346 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8347 } 8348 } 8349 8350 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8351 { 8352 if (!stats->hw_stats) 8353 return; 8354 8355 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8356 stats->hw_masks, stats->len / 8, false); 8357 } 8358 8359 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8360 { 8361 struct bnxt_stats_mem *ring0_stats; 8362 bool ignore_zero = false; 8363 int i; 8364 8365 /* Chip bug. Counter intermittently becomes 0. */ 8366 if (bp->flags & BNXT_FLAG_CHIP_P5) 8367 ignore_zero = true; 8368 8369 for (i = 0; i < bp->cp_nr_rings; i++) { 8370 struct bnxt_napi *bnapi = bp->bnapi[i]; 8371 struct bnxt_cp_ring_info *cpr; 8372 struct bnxt_stats_mem *stats; 8373 8374 cpr = &bnapi->cp_ring; 8375 stats = &cpr->stats; 8376 if (!i) 8377 ring0_stats = stats; 8378 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8379 ring0_stats->hw_masks, 8380 ring0_stats->len / 8, ignore_zero); 8381 } 8382 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8383 struct bnxt_stats_mem *stats = &bp->port_stats; 8384 __le64 *hw_stats = stats->hw_stats; 8385 u64 *sw_stats = stats->sw_stats; 8386 u64 *masks = stats->hw_masks; 8387 int cnt; 8388 8389 cnt = sizeof(struct rx_port_stats) / 8; 8390 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8391 8392 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8393 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8394 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8395 cnt = sizeof(struct tx_port_stats) / 8; 8396 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8397 } 8398 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8399 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8400 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8401 } 8402 } 8403 8404 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8405 { 8406 struct hwrm_port_qstats_input *req; 8407 struct bnxt_pf_info *pf = &bp->pf; 8408 int rc; 8409 8410 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8411 return 0; 8412 8413 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8414 return -EOPNOTSUPP; 8415 8416 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8417 if (rc) 8418 return rc; 8419 8420 req->flags = flags; 8421 req->port_id = cpu_to_le16(pf->port_id); 8422 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8423 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8424 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8425 return hwrm_req_send(bp, req); 8426 } 8427 8428 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8429 { 8430 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8431 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8432 struct hwrm_port_qstats_ext_output *resp_qs; 8433 struct hwrm_port_qstats_ext_input *req_qs; 8434 struct bnxt_pf_info *pf = &bp->pf; 8435 u32 tx_stat_size; 8436 int rc; 8437 8438 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8439 return 0; 8440 8441 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8442 return -EOPNOTSUPP; 8443 8444 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8445 if (rc) 8446 return rc; 8447 8448 req_qs->flags = flags; 8449 req_qs->port_id = cpu_to_le16(pf->port_id); 8450 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8451 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8452 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8453 sizeof(struct tx_port_stats_ext) : 0; 8454 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8455 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8456 resp_qs = hwrm_req_hold(bp, req_qs); 8457 rc = hwrm_req_send(bp, req_qs); 8458 if (!rc) { 8459 bp->fw_rx_stats_ext_size = 8460 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8461 if (BNXT_FW_MAJ(bp) < 220 && 8462 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8463 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8464 8465 bp->fw_tx_stats_ext_size = tx_stat_size ? 8466 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8467 } else { 8468 bp->fw_rx_stats_ext_size = 0; 8469 bp->fw_tx_stats_ext_size = 0; 8470 } 8471 hwrm_req_drop(bp, req_qs); 8472 8473 if (flags) 8474 return rc; 8475 8476 if (bp->fw_tx_stats_ext_size <= 8477 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8478 bp->pri2cos_valid = 0; 8479 return rc; 8480 } 8481 8482 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8483 if (rc) 8484 return rc; 8485 8486 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8487 8488 resp_qc = hwrm_req_hold(bp, req_qc); 8489 rc = hwrm_req_send(bp, req_qc); 8490 if (!rc) { 8491 u8 *pri2cos; 8492 int i, j; 8493 8494 pri2cos = &resp_qc->pri0_cos_queue_id; 8495 for (i = 0; i < 8; i++) { 8496 u8 queue_id = pri2cos[i]; 8497 u8 queue_idx; 8498 8499 /* Per port queue IDs start from 0, 10, 20, etc */ 8500 queue_idx = queue_id % 10; 8501 if (queue_idx > BNXT_MAX_QUEUE) { 8502 bp->pri2cos_valid = false; 8503 hwrm_req_drop(bp, req_qc); 8504 return rc; 8505 } 8506 for (j = 0; j < bp->max_q; j++) { 8507 if (bp->q_ids[j] == queue_id) 8508 bp->pri2cos_idx[i] = queue_idx; 8509 } 8510 } 8511 bp->pri2cos_valid = true; 8512 } 8513 hwrm_req_drop(bp, req_qc); 8514 8515 return rc; 8516 } 8517 8518 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8519 { 8520 bnxt_hwrm_tunnel_dst_port_free(bp, 8521 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8522 bnxt_hwrm_tunnel_dst_port_free(bp, 8523 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8524 } 8525 8526 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8527 { 8528 int rc, i; 8529 u32 tpa_flags = 0; 8530 8531 if (set_tpa) 8532 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8533 else if (BNXT_NO_FW_ACCESS(bp)) 8534 return 0; 8535 for (i = 0; i < bp->nr_vnics; i++) { 8536 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8537 if (rc) { 8538 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8539 i, rc); 8540 return rc; 8541 } 8542 } 8543 return 0; 8544 } 8545 8546 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8547 { 8548 int i; 8549 8550 for (i = 0; i < bp->nr_vnics; i++) 8551 bnxt_hwrm_vnic_set_rss(bp, i, false); 8552 } 8553 8554 static void bnxt_clear_vnic(struct bnxt *bp) 8555 { 8556 if (!bp->vnic_info) 8557 return; 8558 8559 bnxt_hwrm_clear_vnic_filter(bp); 8560 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8561 /* clear all RSS setting before free vnic ctx */ 8562 bnxt_hwrm_clear_vnic_rss(bp); 8563 bnxt_hwrm_vnic_ctx_free(bp); 8564 } 8565 /* before free the vnic, undo the vnic tpa settings */ 8566 if (bp->flags & BNXT_FLAG_TPA) 8567 bnxt_set_tpa(bp, false); 8568 bnxt_hwrm_vnic_free(bp); 8569 if (bp->flags & BNXT_FLAG_CHIP_P5) 8570 bnxt_hwrm_vnic_ctx_free(bp); 8571 } 8572 8573 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8574 bool irq_re_init) 8575 { 8576 bnxt_clear_vnic(bp); 8577 bnxt_hwrm_ring_free(bp, close_path); 8578 bnxt_hwrm_ring_grp_free(bp); 8579 if (irq_re_init) { 8580 bnxt_hwrm_stat_ctx_free(bp); 8581 bnxt_hwrm_free_tunnel_ports(bp); 8582 } 8583 } 8584 8585 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8586 { 8587 struct hwrm_func_cfg_input *req; 8588 u8 evb_mode; 8589 int rc; 8590 8591 if (br_mode == BRIDGE_MODE_VEB) 8592 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8593 else if (br_mode == BRIDGE_MODE_VEPA) 8594 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8595 else 8596 return -EINVAL; 8597 8598 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8599 if (rc) 8600 return rc; 8601 8602 req->fid = cpu_to_le16(0xffff); 8603 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8604 req->evb_mode = evb_mode; 8605 return hwrm_req_send(bp, req); 8606 } 8607 8608 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8609 { 8610 struct hwrm_func_cfg_input *req; 8611 int rc; 8612 8613 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8614 return 0; 8615 8616 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8617 if (rc) 8618 return rc; 8619 8620 req->fid = cpu_to_le16(0xffff); 8621 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8622 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8623 if (size == 128) 8624 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8625 8626 return hwrm_req_send(bp, req); 8627 } 8628 8629 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8630 { 8631 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8632 int rc; 8633 8634 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8635 goto skip_rss_ctx; 8636 8637 /* allocate context for vnic */ 8638 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8639 if (rc) { 8640 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8641 vnic_id, rc); 8642 goto vnic_setup_err; 8643 } 8644 bp->rsscos_nr_ctxs++; 8645 8646 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8647 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8648 if (rc) { 8649 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8650 vnic_id, rc); 8651 goto vnic_setup_err; 8652 } 8653 bp->rsscos_nr_ctxs++; 8654 } 8655 8656 skip_rss_ctx: 8657 /* configure default vnic, ring grp */ 8658 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8659 if (rc) { 8660 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8661 vnic_id, rc); 8662 goto vnic_setup_err; 8663 } 8664 8665 /* Enable RSS hashing on vnic */ 8666 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8667 if (rc) { 8668 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8669 vnic_id, rc); 8670 goto vnic_setup_err; 8671 } 8672 8673 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8674 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8675 if (rc) { 8676 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8677 vnic_id, rc); 8678 } 8679 } 8680 8681 vnic_setup_err: 8682 return rc; 8683 } 8684 8685 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8686 { 8687 int rc, i, nr_ctxs; 8688 8689 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8690 for (i = 0; i < nr_ctxs; i++) { 8691 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8692 if (rc) { 8693 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8694 vnic_id, i, rc); 8695 break; 8696 } 8697 bp->rsscos_nr_ctxs++; 8698 } 8699 if (i < nr_ctxs) 8700 return -ENOMEM; 8701 8702 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8703 if (rc) { 8704 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8705 vnic_id, rc); 8706 return rc; 8707 } 8708 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8709 if (rc) { 8710 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8711 vnic_id, rc); 8712 return rc; 8713 } 8714 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8715 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8716 if (rc) { 8717 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8718 vnic_id, rc); 8719 } 8720 } 8721 return rc; 8722 } 8723 8724 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8725 { 8726 if (bp->flags & BNXT_FLAG_CHIP_P5) 8727 return __bnxt_setup_vnic_p5(bp, vnic_id); 8728 else 8729 return __bnxt_setup_vnic(bp, vnic_id); 8730 } 8731 8732 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8733 { 8734 #ifdef CONFIG_RFS_ACCEL 8735 int i, rc = 0; 8736 8737 if (bp->flags & BNXT_FLAG_CHIP_P5) 8738 return 0; 8739 8740 for (i = 0; i < bp->rx_nr_rings; i++) { 8741 struct bnxt_vnic_info *vnic; 8742 u16 vnic_id = i + 1; 8743 u16 ring_id = i; 8744 8745 if (vnic_id >= bp->nr_vnics) 8746 break; 8747 8748 vnic = &bp->vnic_info[vnic_id]; 8749 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8750 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8751 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8752 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8753 if (rc) { 8754 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8755 vnic_id, rc); 8756 break; 8757 } 8758 rc = bnxt_setup_vnic(bp, vnic_id); 8759 if (rc) 8760 break; 8761 } 8762 return rc; 8763 #else 8764 return 0; 8765 #endif 8766 } 8767 8768 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8769 static bool bnxt_promisc_ok(struct bnxt *bp) 8770 { 8771 #ifdef CONFIG_BNXT_SRIOV 8772 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8773 return false; 8774 #endif 8775 return true; 8776 } 8777 8778 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8779 { 8780 unsigned int rc = 0; 8781 8782 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8783 if (rc) { 8784 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8785 rc); 8786 return rc; 8787 } 8788 8789 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8790 if (rc) { 8791 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8792 rc); 8793 return rc; 8794 } 8795 return rc; 8796 } 8797 8798 static int bnxt_cfg_rx_mode(struct bnxt *); 8799 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8800 8801 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8802 { 8803 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8804 int rc = 0; 8805 unsigned int rx_nr_rings = bp->rx_nr_rings; 8806 8807 if (irq_re_init) { 8808 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8809 if (rc) { 8810 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8811 rc); 8812 goto err_out; 8813 } 8814 } 8815 8816 rc = bnxt_hwrm_ring_alloc(bp); 8817 if (rc) { 8818 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8819 goto err_out; 8820 } 8821 8822 rc = bnxt_hwrm_ring_grp_alloc(bp); 8823 if (rc) { 8824 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8825 goto err_out; 8826 } 8827 8828 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8829 rx_nr_rings--; 8830 8831 /* default vnic 0 */ 8832 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8833 if (rc) { 8834 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8835 goto err_out; 8836 } 8837 8838 rc = bnxt_setup_vnic(bp, 0); 8839 if (rc) 8840 goto err_out; 8841 if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA) 8842 bnxt_hwrm_update_rss_hash_cfg(bp); 8843 8844 if (bp->flags & BNXT_FLAG_RFS) { 8845 rc = bnxt_alloc_rfs_vnics(bp); 8846 if (rc) 8847 goto err_out; 8848 } 8849 8850 if (bp->flags & BNXT_FLAG_TPA) { 8851 rc = bnxt_set_tpa(bp, true); 8852 if (rc) 8853 goto err_out; 8854 } 8855 8856 if (BNXT_VF(bp)) 8857 bnxt_update_vf_mac(bp); 8858 8859 /* Filter for default vnic 0 */ 8860 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8861 if (rc) { 8862 if (BNXT_VF(bp) && rc == -ENODEV) 8863 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 8864 else 8865 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8866 goto err_out; 8867 } 8868 vnic->uc_filter_count = 1; 8869 8870 vnic->rx_mask = 0; 8871 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 8872 goto skip_rx_mask; 8873 8874 if (bp->dev->flags & IFF_BROADCAST) 8875 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8876 8877 if (bp->dev->flags & IFF_PROMISC) 8878 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8879 8880 if (bp->dev->flags & IFF_ALLMULTI) { 8881 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8882 vnic->mc_list_count = 0; 8883 } else if (bp->dev->flags & IFF_MULTICAST) { 8884 u32 mask = 0; 8885 8886 bnxt_mc_list_updated(bp, &mask); 8887 vnic->rx_mask |= mask; 8888 } 8889 8890 rc = bnxt_cfg_rx_mode(bp); 8891 if (rc) 8892 goto err_out; 8893 8894 skip_rx_mask: 8895 rc = bnxt_hwrm_set_coal(bp); 8896 if (rc) 8897 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8898 rc); 8899 8900 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8901 rc = bnxt_setup_nitroa0_vnic(bp); 8902 if (rc) 8903 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8904 rc); 8905 } 8906 8907 if (BNXT_VF(bp)) { 8908 bnxt_hwrm_func_qcfg(bp); 8909 netdev_update_features(bp->dev); 8910 } 8911 8912 return 0; 8913 8914 err_out: 8915 bnxt_hwrm_resource_free(bp, 0, true); 8916 8917 return rc; 8918 } 8919 8920 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8921 { 8922 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8923 return 0; 8924 } 8925 8926 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8927 { 8928 bnxt_init_cp_rings(bp); 8929 bnxt_init_rx_rings(bp); 8930 bnxt_init_tx_rings(bp); 8931 bnxt_init_ring_grps(bp, irq_re_init); 8932 bnxt_init_vnics(bp); 8933 8934 return bnxt_init_chip(bp, irq_re_init); 8935 } 8936 8937 static int bnxt_set_real_num_queues(struct bnxt *bp) 8938 { 8939 int rc; 8940 struct net_device *dev = bp->dev; 8941 8942 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8943 bp->tx_nr_rings_xdp); 8944 if (rc) 8945 return rc; 8946 8947 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8948 if (rc) 8949 return rc; 8950 8951 #ifdef CONFIG_RFS_ACCEL 8952 if (bp->flags & BNXT_FLAG_RFS) 8953 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8954 #endif 8955 8956 return rc; 8957 } 8958 8959 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8960 bool shared) 8961 { 8962 int _rx = *rx, _tx = *tx; 8963 8964 if (shared) { 8965 *rx = min_t(int, _rx, max); 8966 *tx = min_t(int, _tx, max); 8967 } else { 8968 if (max < 2) 8969 return -ENOMEM; 8970 8971 while (_rx + _tx > max) { 8972 if (_rx > _tx && _rx > 1) 8973 _rx--; 8974 else if (_tx > 1) 8975 _tx--; 8976 } 8977 *rx = _rx; 8978 *tx = _tx; 8979 } 8980 return 0; 8981 } 8982 8983 static void bnxt_setup_msix(struct bnxt *bp) 8984 { 8985 const int len = sizeof(bp->irq_tbl[0].name); 8986 struct net_device *dev = bp->dev; 8987 int tcs, i; 8988 8989 tcs = netdev_get_num_tc(dev); 8990 if (tcs) { 8991 int i, off, count; 8992 8993 for (i = 0; i < tcs; i++) { 8994 count = bp->tx_nr_rings_per_tc; 8995 off = i * count; 8996 netdev_set_tc_queue(dev, i, count, off); 8997 } 8998 } 8999 9000 for (i = 0; i < bp->cp_nr_rings; i++) { 9001 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9002 char *attr; 9003 9004 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 9005 attr = "TxRx"; 9006 else if (i < bp->rx_nr_rings) 9007 attr = "rx"; 9008 else 9009 attr = "tx"; 9010 9011 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 9012 attr, i); 9013 bp->irq_tbl[map_idx].handler = bnxt_msix; 9014 } 9015 } 9016 9017 static void bnxt_setup_inta(struct bnxt *bp) 9018 { 9019 const int len = sizeof(bp->irq_tbl[0].name); 9020 9021 if (netdev_get_num_tc(bp->dev)) 9022 netdev_reset_tc(bp->dev); 9023 9024 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 9025 0); 9026 bp->irq_tbl[0].handler = bnxt_inta; 9027 } 9028 9029 static int bnxt_init_int_mode(struct bnxt *bp); 9030 9031 static int bnxt_setup_int_mode(struct bnxt *bp) 9032 { 9033 int rc; 9034 9035 if (!bp->irq_tbl) { 9036 rc = bnxt_init_int_mode(bp); 9037 if (rc || !bp->irq_tbl) 9038 return rc ?: -ENODEV; 9039 } 9040 9041 if (bp->flags & BNXT_FLAG_USING_MSIX) 9042 bnxt_setup_msix(bp); 9043 else 9044 bnxt_setup_inta(bp); 9045 9046 rc = bnxt_set_real_num_queues(bp); 9047 return rc; 9048 } 9049 9050 #ifdef CONFIG_RFS_ACCEL 9051 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 9052 { 9053 return bp->hw_resc.max_rsscos_ctxs; 9054 } 9055 9056 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 9057 { 9058 return bp->hw_resc.max_vnics; 9059 } 9060 #endif 9061 9062 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 9063 { 9064 return bp->hw_resc.max_stat_ctxs; 9065 } 9066 9067 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 9068 { 9069 return bp->hw_resc.max_cp_rings; 9070 } 9071 9072 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 9073 { 9074 unsigned int cp = bp->hw_resc.max_cp_rings; 9075 9076 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9077 cp -= bnxt_get_ulp_msix_num(bp); 9078 9079 return cp; 9080 } 9081 9082 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 9083 { 9084 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9085 9086 if (bp->flags & BNXT_FLAG_CHIP_P5) 9087 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 9088 9089 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 9090 } 9091 9092 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 9093 { 9094 bp->hw_resc.max_irqs = max_irqs; 9095 } 9096 9097 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 9098 { 9099 unsigned int cp; 9100 9101 cp = bnxt_get_max_func_cp_rings_for_en(bp); 9102 if (bp->flags & BNXT_FLAG_CHIP_P5) 9103 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 9104 else 9105 return cp - bp->cp_nr_rings; 9106 } 9107 9108 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 9109 { 9110 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 9111 } 9112 9113 int bnxt_get_avail_msix(struct bnxt *bp, int num) 9114 { 9115 int max_cp = bnxt_get_max_func_cp_rings(bp); 9116 int max_irq = bnxt_get_max_func_irqs(bp); 9117 int total_req = bp->cp_nr_rings + num; 9118 int max_idx, avail_msix; 9119 9120 max_idx = bp->total_irqs; 9121 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9122 max_idx = min_t(int, bp->total_irqs, max_cp); 9123 avail_msix = max_idx - bp->cp_nr_rings; 9124 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 9125 return avail_msix; 9126 9127 if (max_irq < total_req) { 9128 num = max_irq - bp->cp_nr_rings; 9129 if (num <= 0) 9130 return 0; 9131 } 9132 return num; 9133 } 9134 9135 static int bnxt_get_num_msix(struct bnxt *bp) 9136 { 9137 if (!BNXT_NEW_RM(bp)) 9138 return bnxt_get_max_func_irqs(bp); 9139 9140 return bnxt_nq_rings_in_use(bp); 9141 } 9142 9143 static int bnxt_init_msix(struct bnxt *bp) 9144 { 9145 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 9146 struct msix_entry *msix_ent; 9147 9148 total_vecs = bnxt_get_num_msix(bp); 9149 max = bnxt_get_max_func_irqs(bp); 9150 if (total_vecs > max) 9151 total_vecs = max; 9152 9153 if (!total_vecs) 9154 return 0; 9155 9156 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 9157 if (!msix_ent) 9158 return -ENOMEM; 9159 9160 for (i = 0; i < total_vecs; i++) { 9161 msix_ent[i].entry = i; 9162 msix_ent[i].vector = 0; 9163 } 9164 9165 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 9166 min = 2; 9167 9168 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 9169 ulp_msix = bnxt_get_ulp_msix_num(bp); 9170 if (total_vecs < 0 || total_vecs < ulp_msix) { 9171 rc = -ENODEV; 9172 goto msix_setup_exit; 9173 } 9174 9175 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9176 if (bp->irq_tbl) { 9177 for (i = 0; i < total_vecs; i++) 9178 bp->irq_tbl[i].vector = msix_ent[i].vector; 9179 9180 bp->total_irqs = total_vecs; 9181 /* Trim rings based upon num of vectors allocated */ 9182 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9183 total_vecs - ulp_msix, min == 1); 9184 if (rc) 9185 goto msix_setup_exit; 9186 9187 bp->cp_nr_rings = (min == 1) ? 9188 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 9189 bp->tx_nr_rings + bp->rx_nr_rings; 9190 9191 } else { 9192 rc = -ENOMEM; 9193 goto msix_setup_exit; 9194 } 9195 bp->flags |= BNXT_FLAG_USING_MSIX; 9196 kfree(msix_ent); 9197 return 0; 9198 9199 msix_setup_exit: 9200 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9201 kfree(bp->irq_tbl); 9202 bp->irq_tbl = NULL; 9203 pci_disable_msix(bp->pdev); 9204 kfree(msix_ent); 9205 return rc; 9206 } 9207 9208 static int bnxt_init_inta(struct bnxt *bp) 9209 { 9210 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9211 if (!bp->irq_tbl) 9212 return -ENOMEM; 9213 9214 bp->total_irqs = 1; 9215 bp->rx_nr_rings = 1; 9216 bp->tx_nr_rings = 1; 9217 bp->cp_nr_rings = 1; 9218 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9219 bp->irq_tbl[0].vector = bp->pdev->irq; 9220 return 0; 9221 } 9222 9223 static int bnxt_init_int_mode(struct bnxt *bp) 9224 { 9225 int rc = -ENODEV; 9226 9227 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9228 rc = bnxt_init_msix(bp); 9229 9230 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9231 /* fallback to INTA */ 9232 rc = bnxt_init_inta(bp); 9233 } 9234 return rc; 9235 } 9236 9237 static void bnxt_clear_int_mode(struct bnxt *bp) 9238 { 9239 if (bp->flags & BNXT_FLAG_USING_MSIX) 9240 pci_disable_msix(bp->pdev); 9241 9242 kfree(bp->irq_tbl); 9243 bp->irq_tbl = NULL; 9244 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9245 } 9246 9247 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9248 { 9249 int tcs = netdev_get_num_tc(bp->dev); 9250 bool irq_cleared = false; 9251 int rc; 9252 9253 if (!bnxt_need_reserve_rings(bp)) 9254 return 0; 9255 9256 if (irq_re_init && BNXT_NEW_RM(bp) && 9257 bnxt_get_num_msix(bp) != bp->total_irqs) { 9258 bnxt_ulp_irq_stop(bp); 9259 bnxt_clear_int_mode(bp); 9260 irq_cleared = true; 9261 } 9262 rc = __bnxt_reserve_rings(bp); 9263 if (irq_cleared) { 9264 if (!rc) 9265 rc = bnxt_init_int_mode(bp); 9266 bnxt_ulp_irq_restart(bp, rc); 9267 } 9268 if (rc) { 9269 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9270 return rc; 9271 } 9272 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9273 netdev_err(bp->dev, "tx ring reservation failure\n"); 9274 netdev_reset_tc(bp->dev); 9275 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9276 return -ENOMEM; 9277 } 9278 return 0; 9279 } 9280 9281 static void bnxt_free_irq(struct bnxt *bp) 9282 { 9283 struct bnxt_irq *irq; 9284 int i; 9285 9286 #ifdef CONFIG_RFS_ACCEL 9287 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9288 bp->dev->rx_cpu_rmap = NULL; 9289 #endif 9290 if (!bp->irq_tbl || !bp->bnapi) 9291 return; 9292 9293 for (i = 0; i < bp->cp_nr_rings; i++) { 9294 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9295 9296 irq = &bp->irq_tbl[map_idx]; 9297 if (irq->requested) { 9298 if (irq->have_cpumask) { 9299 irq_set_affinity_hint(irq->vector, NULL); 9300 free_cpumask_var(irq->cpu_mask); 9301 irq->have_cpumask = 0; 9302 } 9303 free_irq(irq->vector, bp->bnapi[i]); 9304 } 9305 9306 irq->requested = 0; 9307 } 9308 } 9309 9310 static int bnxt_request_irq(struct bnxt *bp) 9311 { 9312 int i, j, rc = 0; 9313 unsigned long flags = 0; 9314 #ifdef CONFIG_RFS_ACCEL 9315 struct cpu_rmap *rmap; 9316 #endif 9317 9318 rc = bnxt_setup_int_mode(bp); 9319 if (rc) { 9320 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9321 rc); 9322 return rc; 9323 } 9324 #ifdef CONFIG_RFS_ACCEL 9325 rmap = bp->dev->rx_cpu_rmap; 9326 #endif 9327 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9328 flags = IRQF_SHARED; 9329 9330 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9331 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9332 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9333 9334 #ifdef CONFIG_RFS_ACCEL 9335 if (rmap && bp->bnapi[i]->rx_ring) { 9336 rc = irq_cpu_rmap_add(rmap, irq->vector); 9337 if (rc) 9338 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9339 j); 9340 j++; 9341 } 9342 #endif 9343 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9344 bp->bnapi[i]); 9345 if (rc) 9346 break; 9347 9348 irq->requested = 1; 9349 9350 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9351 int numa_node = dev_to_node(&bp->pdev->dev); 9352 9353 irq->have_cpumask = 1; 9354 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9355 irq->cpu_mask); 9356 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9357 if (rc) { 9358 netdev_warn(bp->dev, 9359 "Set affinity failed, IRQ = %d\n", 9360 irq->vector); 9361 break; 9362 } 9363 } 9364 } 9365 return rc; 9366 } 9367 9368 static void bnxt_del_napi(struct bnxt *bp) 9369 { 9370 int i; 9371 9372 if (!bp->bnapi) 9373 return; 9374 9375 for (i = 0; i < bp->cp_nr_rings; i++) { 9376 struct bnxt_napi *bnapi = bp->bnapi[i]; 9377 9378 __netif_napi_del(&bnapi->napi); 9379 } 9380 /* We called __netif_napi_del(), we need 9381 * to respect an RCU grace period before freeing napi structures. 9382 */ 9383 synchronize_net(); 9384 } 9385 9386 static void bnxt_init_napi(struct bnxt *bp) 9387 { 9388 int i; 9389 unsigned int cp_nr_rings = bp->cp_nr_rings; 9390 struct bnxt_napi *bnapi; 9391 9392 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9393 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9394 9395 if (bp->flags & BNXT_FLAG_CHIP_P5) 9396 poll_fn = bnxt_poll_p5; 9397 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9398 cp_nr_rings--; 9399 for (i = 0; i < cp_nr_rings; i++) { 9400 bnapi = bp->bnapi[i]; 9401 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 9402 } 9403 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9404 bnapi = bp->bnapi[cp_nr_rings]; 9405 netif_napi_add(bp->dev, &bnapi->napi, 9406 bnxt_poll_nitroa0); 9407 } 9408 } else { 9409 bnapi = bp->bnapi[0]; 9410 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 9411 } 9412 } 9413 9414 static void bnxt_disable_napi(struct bnxt *bp) 9415 { 9416 int i; 9417 9418 if (!bp->bnapi || 9419 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9420 return; 9421 9422 for (i = 0; i < bp->cp_nr_rings; i++) { 9423 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9424 9425 napi_disable(&bp->bnapi[i]->napi); 9426 if (bp->bnapi[i]->rx_ring) 9427 cancel_work_sync(&cpr->dim.work); 9428 } 9429 } 9430 9431 static void bnxt_enable_napi(struct bnxt *bp) 9432 { 9433 int i; 9434 9435 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9436 for (i = 0; i < bp->cp_nr_rings; i++) { 9437 struct bnxt_napi *bnapi = bp->bnapi[i]; 9438 struct bnxt_cp_ring_info *cpr; 9439 9440 cpr = &bnapi->cp_ring; 9441 if (bnapi->in_reset) 9442 cpr->sw_stats.rx.rx_resets++; 9443 bnapi->in_reset = false; 9444 9445 if (bnapi->rx_ring) { 9446 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9447 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9448 } 9449 napi_enable(&bnapi->napi); 9450 } 9451 } 9452 9453 void bnxt_tx_disable(struct bnxt *bp) 9454 { 9455 int i; 9456 struct bnxt_tx_ring_info *txr; 9457 9458 if (bp->tx_ring) { 9459 for (i = 0; i < bp->tx_nr_rings; i++) { 9460 txr = &bp->tx_ring[i]; 9461 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9462 } 9463 } 9464 /* Make sure napi polls see @dev_state change */ 9465 synchronize_net(); 9466 /* Drop carrier first to prevent TX timeout */ 9467 netif_carrier_off(bp->dev); 9468 /* Stop all TX queues */ 9469 netif_tx_disable(bp->dev); 9470 } 9471 9472 void bnxt_tx_enable(struct bnxt *bp) 9473 { 9474 int i; 9475 struct bnxt_tx_ring_info *txr; 9476 9477 for (i = 0; i < bp->tx_nr_rings; i++) { 9478 txr = &bp->tx_ring[i]; 9479 WRITE_ONCE(txr->dev_state, 0); 9480 } 9481 /* Make sure napi polls see @dev_state change */ 9482 synchronize_net(); 9483 netif_tx_wake_all_queues(bp->dev); 9484 if (BNXT_LINK_IS_UP(bp)) 9485 netif_carrier_on(bp->dev); 9486 } 9487 9488 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9489 { 9490 u8 active_fec = link_info->active_fec_sig_mode & 9491 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9492 9493 switch (active_fec) { 9494 default: 9495 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9496 return "None"; 9497 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9498 return "Clause 74 BaseR"; 9499 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9500 return "Clause 91 RS(528,514)"; 9501 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9502 return "Clause 91 RS544_1XN"; 9503 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9504 return "Clause 91 RS(544,514)"; 9505 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9506 return "Clause 91 RS272_1XN"; 9507 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9508 return "Clause 91 RS(272,257)"; 9509 } 9510 } 9511 9512 void bnxt_report_link(struct bnxt *bp) 9513 { 9514 if (BNXT_LINK_IS_UP(bp)) { 9515 const char *signal = ""; 9516 const char *flow_ctrl; 9517 const char *duplex; 9518 u32 speed; 9519 u16 fec; 9520 9521 netif_carrier_on(bp->dev); 9522 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9523 if (speed == SPEED_UNKNOWN) { 9524 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9525 return; 9526 } 9527 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9528 duplex = "full"; 9529 else 9530 duplex = "half"; 9531 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9532 flow_ctrl = "ON - receive & transmit"; 9533 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9534 flow_ctrl = "ON - transmit"; 9535 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9536 flow_ctrl = "ON - receive"; 9537 else 9538 flow_ctrl = "none"; 9539 if (bp->link_info.phy_qcfg_resp.option_flags & 9540 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9541 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9542 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9543 switch (sig_mode) { 9544 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9545 signal = "(NRZ) "; 9546 break; 9547 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9548 signal = "(PAM4) "; 9549 break; 9550 default: 9551 break; 9552 } 9553 } 9554 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9555 speed, signal, duplex, flow_ctrl); 9556 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9557 netdev_info(bp->dev, "EEE is %s\n", 9558 bp->eee.eee_active ? "active" : 9559 "not active"); 9560 fec = bp->link_info.fec_cfg; 9561 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9562 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9563 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9564 bnxt_report_fec(&bp->link_info)); 9565 } else { 9566 netif_carrier_off(bp->dev); 9567 netdev_err(bp->dev, "NIC Link is Down\n"); 9568 } 9569 } 9570 9571 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9572 { 9573 if (!resp->supported_speeds_auto_mode && 9574 !resp->supported_speeds_force_mode && 9575 !resp->supported_pam4_speeds_auto_mode && 9576 !resp->supported_pam4_speeds_force_mode) 9577 return true; 9578 return false; 9579 } 9580 9581 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9582 { 9583 struct bnxt_link_info *link_info = &bp->link_info; 9584 struct hwrm_port_phy_qcaps_output *resp; 9585 struct hwrm_port_phy_qcaps_input *req; 9586 int rc = 0; 9587 9588 if (bp->hwrm_spec_code < 0x10201) 9589 return 0; 9590 9591 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9592 if (rc) 9593 return rc; 9594 9595 resp = hwrm_req_hold(bp, req); 9596 rc = hwrm_req_send(bp, req); 9597 if (rc) 9598 goto hwrm_phy_qcaps_exit; 9599 9600 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 9601 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9602 struct ethtool_eee *eee = &bp->eee; 9603 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9604 9605 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9606 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9607 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9608 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9609 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9610 } 9611 9612 if (bp->hwrm_spec_code >= 0x10a01) { 9613 if (bnxt_phy_qcaps_no_speed(resp)) { 9614 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9615 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9616 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9617 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9618 netdev_info(bp->dev, "Ethernet link enabled\n"); 9619 /* Phy re-enabled, reprobe the speeds */ 9620 link_info->support_auto_speeds = 0; 9621 link_info->support_pam4_auto_speeds = 0; 9622 } 9623 } 9624 if (resp->supported_speeds_auto_mode) 9625 link_info->support_auto_speeds = 9626 le16_to_cpu(resp->supported_speeds_auto_mode); 9627 if (resp->supported_pam4_speeds_auto_mode) 9628 link_info->support_pam4_auto_speeds = 9629 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9630 9631 bp->port_count = resp->port_cnt; 9632 9633 hwrm_phy_qcaps_exit: 9634 hwrm_req_drop(bp, req); 9635 return rc; 9636 } 9637 9638 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9639 { 9640 u16 diff = advertising ^ supported; 9641 9642 return ((supported | diff) != supported); 9643 } 9644 9645 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9646 { 9647 struct bnxt_link_info *link_info = &bp->link_info; 9648 struct hwrm_port_phy_qcfg_output *resp; 9649 struct hwrm_port_phy_qcfg_input *req; 9650 u8 link_state = link_info->link_state; 9651 bool support_changed = false; 9652 int rc; 9653 9654 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9655 if (rc) 9656 return rc; 9657 9658 resp = hwrm_req_hold(bp, req); 9659 rc = hwrm_req_send(bp, req); 9660 if (rc) { 9661 hwrm_req_drop(bp, req); 9662 if (BNXT_VF(bp) && rc == -ENODEV) { 9663 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 9664 rc = 0; 9665 } 9666 return rc; 9667 } 9668 9669 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9670 link_info->phy_link_status = resp->link; 9671 link_info->duplex = resp->duplex_cfg; 9672 if (bp->hwrm_spec_code >= 0x10800) 9673 link_info->duplex = resp->duplex_state; 9674 link_info->pause = resp->pause; 9675 link_info->auto_mode = resp->auto_mode; 9676 link_info->auto_pause_setting = resp->auto_pause; 9677 link_info->lp_pause = resp->link_partner_adv_pause; 9678 link_info->force_pause_setting = resp->force_pause; 9679 link_info->duplex_setting = resp->duplex_cfg; 9680 if (link_info->phy_link_status == BNXT_LINK_LINK) 9681 link_info->link_speed = le16_to_cpu(resp->link_speed); 9682 else 9683 link_info->link_speed = 0; 9684 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9685 link_info->force_pam4_link_speed = 9686 le16_to_cpu(resp->force_pam4_link_speed); 9687 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9688 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9689 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9690 link_info->auto_pam4_link_speeds = 9691 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9692 link_info->lp_auto_link_speeds = 9693 le16_to_cpu(resp->link_partner_adv_speeds); 9694 link_info->lp_auto_pam4_link_speeds = 9695 resp->link_partner_pam4_adv_speeds; 9696 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9697 link_info->phy_ver[0] = resp->phy_maj; 9698 link_info->phy_ver[1] = resp->phy_min; 9699 link_info->phy_ver[2] = resp->phy_bld; 9700 link_info->media_type = resp->media_type; 9701 link_info->phy_type = resp->phy_type; 9702 link_info->transceiver = resp->xcvr_pkg_type; 9703 link_info->phy_addr = resp->eee_config_phy_addr & 9704 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9705 link_info->module_status = resp->module_status; 9706 9707 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9708 struct ethtool_eee *eee = &bp->eee; 9709 u16 fw_speeds; 9710 9711 eee->eee_active = 0; 9712 if (resp->eee_config_phy_addr & 9713 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9714 eee->eee_active = 1; 9715 fw_speeds = le16_to_cpu( 9716 resp->link_partner_adv_eee_link_speed_mask); 9717 eee->lp_advertised = 9718 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9719 } 9720 9721 /* Pull initial EEE config */ 9722 if (!chng_link_state) { 9723 if (resp->eee_config_phy_addr & 9724 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9725 eee->eee_enabled = 1; 9726 9727 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9728 eee->advertised = 9729 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9730 9731 if (resp->eee_config_phy_addr & 9732 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9733 __le32 tmr; 9734 9735 eee->tx_lpi_enabled = 1; 9736 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9737 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9738 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9739 } 9740 } 9741 } 9742 9743 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9744 if (bp->hwrm_spec_code >= 0x10504) { 9745 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9746 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9747 } 9748 /* TODO: need to add more logic to report VF link */ 9749 if (chng_link_state) { 9750 if (link_info->phy_link_status == BNXT_LINK_LINK) 9751 link_info->link_state = BNXT_LINK_STATE_UP; 9752 else 9753 link_info->link_state = BNXT_LINK_STATE_DOWN; 9754 if (link_state != link_info->link_state) 9755 bnxt_report_link(bp); 9756 } else { 9757 /* always link down if not require to update link state */ 9758 link_info->link_state = BNXT_LINK_STATE_DOWN; 9759 } 9760 hwrm_req_drop(bp, req); 9761 9762 if (!BNXT_PHY_CFG_ABLE(bp)) 9763 return 0; 9764 9765 /* Check if any advertised speeds are no longer supported. The caller 9766 * holds the link_lock mutex, so we can modify link_info settings. 9767 */ 9768 if (bnxt_support_dropped(link_info->advertising, 9769 link_info->support_auto_speeds)) { 9770 link_info->advertising = link_info->support_auto_speeds; 9771 support_changed = true; 9772 } 9773 if (bnxt_support_dropped(link_info->advertising_pam4, 9774 link_info->support_pam4_auto_speeds)) { 9775 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9776 support_changed = true; 9777 } 9778 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9779 bnxt_hwrm_set_link_setting(bp, true, false); 9780 return 0; 9781 } 9782 9783 static void bnxt_get_port_module_status(struct bnxt *bp) 9784 { 9785 struct bnxt_link_info *link_info = &bp->link_info; 9786 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9787 u8 module_status; 9788 9789 if (bnxt_update_link(bp, true)) 9790 return; 9791 9792 module_status = link_info->module_status; 9793 switch (module_status) { 9794 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9795 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9796 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9797 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9798 bp->pf.port_id); 9799 if (bp->hwrm_spec_code >= 0x10201) { 9800 netdev_warn(bp->dev, "Module part number %s\n", 9801 resp->phy_vendor_partnumber); 9802 } 9803 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9804 netdev_warn(bp->dev, "TX is disabled\n"); 9805 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9806 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9807 } 9808 } 9809 9810 static void 9811 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9812 { 9813 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9814 if (bp->hwrm_spec_code >= 0x10201) 9815 req->auto_pause = 9816 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9817 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9818 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9819 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9820 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9821 req->enables |= 9822 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9823 } else { 9824 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9825 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9826 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9827 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9828 req->enables |= 9829 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9830 if (bp->hwrm_spec_code >= 0x10201) { 9831 req->auto_pause = req->force_pause; 9832 req->enables |= cpu_to_le32( 9833 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9834 } 9835 } 9836 } 9837 9838 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9839 { 9840 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9841 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9842 if (bp->link_info.advertising) { 9843 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9844 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9845 } 9846 if (bp->link_info.advertising_pam4) { 9847 req->enables |= 9848 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9849 req->auto_link_pam4_speed_mask = 9850 cpu_to_le16(bp->link_info.advertising_pam4); 9851 } 9852 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9853 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9854 } else { 9855 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9856 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9857 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9858 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9859 } else { 9860 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9861 } 9862 } 9863 9864 /* tell chimp that the setting takes effect immediately */ 9865 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9866 } 9867 9868 int bnxt_hwrm_set_pause(struct bnxt *bp) 9869 { 9870 struct hwrm_port_phy_cfg_input *req; 9871 int rc; 9872 9873 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9874 if (rc) 9875 return rc; 9876 9877 bnxt_hwrm_set_pause_common(bp, req); 9878 9879 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9880 bp->link_info.force_link_chng) 9881 bnxt_hwrm_set_link_common(bp, req); 9882 9883 rc = hwrm_req_send(bp, req); 9884 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9885 /* since changing of pause setting doesn't trigger any link 9886 * change event, the driver needs to update the current pause 9887 * result upon successfully return of the phy_cfg command 9888 */ 9889 bp->link_info.pause = 9890 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9891 bp->link_info.auto_pause_setting = 0; 9892 if (!bp->link_info.force_link_chng) 9893 bnxt_report_link(bp); 9894 } 9895 bp->link_info.force_link_chng = false; 9896 return rc; 9897 } 9898 9899 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9900 struct hwrm_port_phy_cfg_input *req) 9901 { 9902 struct ethtool_eee *eee = &bp->eee; 9903 9904 if (eee->eee_enabled) { 9905 u16 eee_speeds; 9906 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9907 9908 if (eee->tx_lpi_enabled) 9909 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9910 else 9911 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9912 9913 req->flags |= cpu_to_le32(flags); 9914 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9915 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9916 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9917 } else { 9918 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9919 } 9920 } 9921 9922 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9923 { 9924 struct hwrm_port_phy_cfg_input *req; 9925 int rc; 9926 9927 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9928 if (rc) 9929 return rc; 9930 9931 if (set_pause) 9932 bnxt_hwrm_set_pause_common(bp, req); 9933 9934 bnxt_hwrm_set_link_common(bp, req); 9935 9936 if (set_eee) 9937 bnxt_hwrm_set_eee(bp, req); 9938 return hwrm_req_send(bp, req); 9939 } 9940 9941 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9942 { 9943 struct hwrm_port_phy_cfg_input *req; 9944 int rc; 9945 9946 if (!BNXT_SINGLE_PF(bp)) 9947 return 0; 9948 9949 if (pci_num_vf(bp->pdev) && 9950 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9951 return 0; 9952 9953 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9954 if (rc) 9955 return rc; 9956 9957 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9958 rc = hwrm_req_send(bp, req); 9959 if (!rc) { 9960 mutex_lock(&bp->link_lock); 9961 /* Device is not obliged link down in certain scenarios, even 9962 * when forced. Setting the state unknown is consistent with 9963 * driver startup and will force link state to be reported 9964 * during subsequent open based on PORT_PHY_QCFG. 9965 */ 9966 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 9967 mutex_unlock(&bp->link_lock); 9968 } 9969 return rc; 9970 } 9971 9972 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9973 { 9974 #ifdef CONFIG_TEE_BNXT_FW 9975 int rc = tee_bnxt_fw_load(); 9976 9977 if (rc) 9978 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9979 9980 return rc; 9981 #else 9982 netdev_err(bp->dev, "OP-TEE not supported\n"); 9983 return -ENODEV; 9984 #endif 9985 } 9986 9987 static int bnxt_try_recover_fw(struct bnxt *bp) 9988 { 9989 if (bp->fw_health && bp->fw_health->status_reliable) { 9990 int retry = 0, rc; 9991 u32 sts; 9992 9993 do { 9994 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9995 rc = bnxt_hwrm_poll(bp); 9996 if (!BNXT_FW_IS_BOOTING(sts) && 9997 !BNXT_FW_IS_RECOVERING(sts)) 9998 break; 9999 retry++; 10000 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 10001 10002 if (!BNXT_FW_IS_HEALTHY(sts)) { 10003 netdev_err(bp->dev, 10004 "Firmware not responding, status: 0x%x\n", 10005 sts); 10006 rc = -ENODEV; 10007 } 10008 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 10009 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 10010 return bnxt_fw_reset_via_optee(bp); 10011 } 10012 return rc; 10013 } 10014 10015 return -ENODEV; 10016 } 10017 10018 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 10019 { 10020 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10021 10022 if (!BNXT_NEW_RM(bp)) 10023 return; /* no resource reservations required */ 10024 10025 hw_resc->resv_cp_rings = 0; 10026 hw_resc->resv_stat_ctxs = 0; 10027 hw_resc->resv_irqs = 0; 10028 hw_resc->resv_tx_rings = 0; 10029 hw_resc->resv_rx_rings = 0; 10030 hw_resc->resv_hw_ring_grps = 0; 10031 hw_resc->resv_vnics = 0; 10032 if (!fw_reset) { 10033 bp->tx_nr_rings = 0; 10034 bp->rx_nr_rings = 0; 10035 } 10036 } 10037 10038 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 10039 { 10040 int rc; 10041 10042 if (!BNXT_NEW_RM(bp)) 10043 return 0; /* no resource reservations required */ 10044 10045 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 10046 if (rc) 10047 netdev_err(bp->dev, "resc_qcaps failed\n"); 10048 10049 bnxt_clear_reservations(bp, fw_reset); 10050 10051 return rc; 10052 } 10053 10054 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 10055 { 10056 struct hwrm_func_drv_if_change_output *resp; 10057 struct hwrm_func_drv_if_change_input *req; 10058 bool fw_reset = !bp->irq_tbl; 10059 bool resc_reinit = false; 10060 int rc, retry = 0; 10061 u32 flags = 0; 10062 10063 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 10064 return 0; 10065 10066 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 10067 if (rc) 10068 return rc; 10069 10070 if (up) 10071 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 10072 resp = hwrm_req_hold(bp, req); 10073 10074 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10075 while (retry < BNXT_FW_IF_RETRY) { 10076 rc = hwrm_req_send(bp, req); 10077 if (rc != -EAGAIN) 10078 break; 10079 10080 msleep(50); 10081 retry++; 10082 } 10083 10084 if (rc == -EAGAIN) { 10085 hwrm_req_drop(bp, req); 10086 return rc; 10087 } else if (!rc) { 10088 flags = le32_to_cpu(resp->flags); 10089 } else if (up) { 10090 rc = bnxt_try_recover_fw(bp); 10091 fw_reset = true; 10092 } 10093 hwrm_req_drop(bp, req); 10094 if (rc) 10095 return rc; 10096 10097 if (!up) { 10098 bnxt_inv_fw_health_reg(bp); 10099 return 0; 10100 } 10101 10102 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 10103 resc_reinit = true; 10104 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 10105 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 10106 fw_reset = true; 10107 else 10108 bnxt_remap_fw_health_regs(bp); 10109 10110 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 10111 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 10112 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10113 return -ENODEV; 10114 } 10115 if (resc_reinit || fw_reset) { 10116 if (fw_reset) { 10117 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10118 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10119 bnxt_ulp_stop(bp); 10120 bnxt_free_ctx_mem(bp); 10121 kfree(bp->ctx); 10122 bp->ctx = NULL; 10123 bnxt_dcb_free(bp); 10124 rc = bnxt_fw_init_one(bp); 10125 if (rc) { 10126 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10127 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10128 return rc; 10129 } 10130 bnxt_clear_int_mode(bp); 10131 rc = bnxt_init_int_mode(bp); 10132 if (rc) { 10133 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10134 netdev_err(bp->dev, "init int mode failed\n"); 10135 return rc; 10136 } 10137 } 10138 rc = bnxt_cancel_reservations(bp, fw_reset); 10139 } 10140 return rc; 10141 } 10142 10143 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 10144 { 10145 struct hwrm_port_led_qcaps_output *resp; 10146 struct hwrm_port_led_qcaps_input *req; 10147 struct bnxt_pf_info *pf = &bp->pf; 10148 int rc; 10149 10150 bp->num_leds = 0; 10151 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 10152 return 0; 10153 10154 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 10155 if (rc) 10156 return rc; 10157 10158 req->port_id = cpu_to_le16(pf->port_id); 10159 resp = hwrm_req_hold(bp, req); 10160 rc = hwrm_req_send(bp, req); 10161 if (rc) { 10162 hwrm_req_drop(bp, req); 10163 return rc; 10164 } 10165 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 10166 int i; 10167 10168 bp->num_leds = resp->num_leds; 10169 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 10170 bp->num_leds); 10171 for (i = 0; i < bp->num_leds; i++) { 10172 struct bnxt_led_info *led = &bp->leds[i]; 10173 __le16 caps = led->led_state_caps; 10174 10175 if (!led->led_group_id || 10176 !BNXT_LED_ALT_BLINK_CAP(caps)) { 10177 bp->num_leds = 0; 10178 break; 10179 } 10180 } 10181 } 10182 hwrm_req_drop(bp, req); 10183 return 0; 10184 } 10185 10186 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 10187 { 10188 struct hwrm_wol_filter_alloc_output *resp; 10189 struct hwrm_wol_filter_alloc_input *req; 10190 int rc; 10191 10192 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 10193 if (rc) 10194 return rc; 10195 10196 req->port_id = cpu_to_le16(bp->pf.port_id); 10197 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 10198 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 10199 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 10200 10201 resp = hwrm_req_hold(bp, req); 10202 rc = hwrm_req_send(bp, req); 10203 if (!rc) 10204 bp->wol_filter_id = resp->wol_filter_id; 10205 hwrm_req_drop(bp, req); 10206 return rc; 10207 } 10208 10209 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 10210 { 10211 struct hwrm_wol_filter_free_input *req; 10212 int rc; 10213 10214 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 10215 if (rc) 10216 return rc; 10217 10218 req->port_id = cpu_to_le16(bp->pf.port_id); 10219 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10220 req->wol_filter_id = bp->wol_filter_id; 10221 10222 return hwrm_req_send(bp, req); 10223 } 10224 10225 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10226 { 10227 struct hwrm_wol_filter_qcfg_output *resp; 10228 struct hwrm_wol_filter_qcfg_input *req; 10229 u16 next_handle = 0; 10230 int rc; 10231 10232 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 10233 if (rc) 10234 return rc; 10235 10236 req->port_id = cpu_to_le16(bp->pf.port_id); 10237 req->handle = cpu_to_le16(handle); 10238 resp = hwrm_req_hold(bp, req); 10239 rc = hwrm_req_send(bp, req); 10240 if (!rc) { 10241 next_handle = le16_to_cpu(resp->next_handle); 10242 if (next_handle != 0) { 10243 if (resp->wol_type == 10244 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10245 bp->wol = 1; 10246 bp->wol_filter_id = resp->wol_filter_id; 10247 } 10248 } 10249 } 10250 hwrm_req_drop(bp, req); 10251 return next_handle; 10252 } 10253 10254 static void bnxt_get_wol_settings(struct bnxt *bp) 10255 { 10256 u16 handle = 0; 10257 10258 bp->wol = 0; 10259 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10260 return; 10261 10262 do { 10263 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10264 } while (handle && handle != 0xffff); 10265 } 10266 10267 #ifdef CONFIG_BNXT_HWMON 10268 static ssize_t bnxt_show_temp(struct device *dev, 10269 struct device_attribute *devattr, char *buf) 10270 { 10271 struct hwrm_temp_monitor_query_output *resp; 10272 struct hwrm_temp_monitor_query_input *req; 10273 struct bnxt *bp = dev_get_drvdata(dev); 10274 u32 len = 0; 10275 int rc; 10276 10277 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10278 if (rc) 10279 return rc; 10280 resp = hwrm_req_hold(bp, req); 10281 rc = hwrm_req_send(bp, req); 10282 if (!rc) 10283 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10284 hwrm_req_drop(bp, req); 10285 if (rc) 10286 return rc; 10287 return len; 10288 } 10289 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10290 10291 static struct attribute *bnxt_attrs[] = { 10292 &sensor_dev_attr_temp1_input.dev_attr.attr, 10293 NULL 10294 }; 10295 ATTRIBUTE_GROUPS(bnxt); 10296 10297 static void bnxt_hwmon_close(struct bnxt *bp) 10298 { 10299 if (bp->hwmon_dev) { 10300 hwmon_device_unregister(bp->hwmon_dev); 10301 bp->hwmon_dev = NULL; 10302 } 10303 } 10304 10305 static void bnxt_hwmon_open(struct bnxt *bp) 10306 { 10307 struct hwrm_temp_monitor_query_input *req; 10308 struct pci_dev *pdev = bp->pdev; 10309 int rc; 10310 10311 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10312 if (!rc) 10313 rc = hwrm_req_send_silent(bp, req); 10314 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10315 bnxt_hwmon_close(bp); 10316 return; 10317 } 10318 10319 if (bp->hwmon_dev) 10320 return; 10321 10322 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10323 DRV_MODULE_NAME, bp, 10324 bnxt_groups); 10325 if (IS_ERR(bp->hwmon_dev)) { 10326 bp->hwmon_dev = NULL; 10327 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10328 } 10329 } 10330 #else 10331 static void bnxt_hwmon_close(struct bnxt *bp) 10332 { 10333 } 10334 10335 static void bnxt_hwmon_open(struct bnxt *bp) 10336 { 10337 } 10338 #endif 10339 10340 static bool bnxt_eee_config_ok(struct bnxt *bp) 10341 { 10342 struct ethtool_eee *eee = &bp->eee; 10343 struct bnxt_link_info *link_info = &bp->link_info; 10344 10345 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10346 return true; 10347 10348 if (eee->eee_enabled) { 10349 u32 advertising = 10350 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10351 10352 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10353 eee->eee_enabled = 0; 10354 return false; 10355 } 10356 if (eee->advertised & ~advertising) { 10357 eee->advertised = advertising & eee->supported; 10358 return false; 10359 } 10360 } 10361 return true; 10362 } 10363 10364 static int bnxt_update_phy_setting(struct bnxt *bp) 10365 { 10366 int rc; 10367 bool update_link = false; 10368 bool update_pause = false; 10369 bool update_eee = false; 10370 struct bnxt_link_info *link_info = &bp->link_info; 10371 10372 rc = bnxt_update_link(bp, true); 10373 if (rc) { 10374 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10375 rc); 10376 return rc; 10377 } 10378 if (!BNXT_SINGLE_PF(bp)) 10379 return 0; 10380 10381 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10382 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10383 link_info->req_flow_ctrl) 10384 update_pause = true; 10385 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10386 link_info->force_pause_setting != link_info->req_flow_ctrl) 10387 update_pause = true; 10388 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10389 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10390 update_link = true; 10391 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10392 link_info->req_link_speed != link_info->force_link_speed) 10393 update_link = true; 10394 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10395 link_info->req_link_speed != link_info->force_pam4_link_speed) 10396 update_link = true; 10397 if (link_info->req_duplex != link_info->duplex_setting) 10398 update_link = true; 10399 } else { 10400 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10401 update_link = true; 10402 if (link_info->advertising != link_info->auto_link_speeds || 10403 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10404 update_link = true; 10405 } 10406 10407 /* The last close may have shutdown the link, so need to call 10408 * PHY_CFG to bring it back up. 10409 */ 10410 if (!BNXT_LINK_IS_UP(bp)) 10411 update_link = true; 10412 10413 if (!bnxt_eee_config_ok(bp)) 10414 update_eee = true; 10415 10416 if (update_link) 10417 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10418 else if (update_pause) 10419 rc = bnxt_hwrm_set_pause(bp); 10420 if (rc) { 10421 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10422 rc); 10423 return rc; 10424 } 10425 10426 return rc; 10427 } 10428 10429 /* Common routine to pre-map certain register block to different GRC window. 10430 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10431 * in PF and 3 windows in VF that can be customized to map in different 10432 * register blocks. 10433 */ 10434 static void bnxt_preset_reg_win(struct bnxt *bp) 10435 { 10436 if (BNXT_PF(bp)) { 10437 /* CAG registers map to GRC window #4 */ 10438 writel(BNXT_CAG_REG_BASE, 10439 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10440 } 10441 } 10442 10443 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10444 10445 static int bnxt_reinit_after_abort(struct bnxt *bp) 10446 { 10447 int rc; 10448 10449 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10450 return -EBUSY; 10451 10452 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10453 return -ENODEV; 10454 10455 rc = bnxt_fw_init_one(bp); 10456 if (!rc) { 10457 bnxt_clear_int_mode(bp); 10458 rc = bnxt_init_int_mode(bp); 10459 if (!rc) { 10460 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10461 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10462 } 10463 } 10464 return rc; 10465 } 10466 10467 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10468 { 10469 int rc = 0; 10470 10471 bnxt_preset_reg_win(bp); 10472 netif_carrier_off(bp->dev); 10473 if (irq_re_init) { 10474 /* Reserve rings now if none were reserved at driver probe. */ 10475 rc = bnxt_init_dflt_ring_mode(bp); 10476 if (rc) { 10477 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10478 return rc; 10479 } 10480 } 10481 rc = bnxt_reserve_rings(bp, irq_re_init); 10482 if (rc) 10483 return rc; 10484 if ((bp->flags & BNXT_FLAG_RFS) && 10485 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10486 /* disable RFS if falling back to INTA */ 10487 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10488 bp->flags &= ~BNXT_FLAG_RFS; 10489 } 10490 10491 rc = bnxt_alloc_mem(bp, irq_re_init); 10492 if (rc) { 10493 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10494 goto open_err_free_mem; 10495 } 10496 10497 if (irq_re_init) { 10498 bnxt_init_napi(bp); 10499 rc = bnxt_request_irq(bp); 10500 if (rc) { 10501 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10502 goto open_err_irq; 10503 } 10504 } 10505 10506 rc = bnxt_init_nic(bp, irq_re_init); 10507 if (rc) { 10508 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10509 goto open_err_irq; 10510 } 10511 10512 bnxt_enable_napi(bp); 10513 bnxt_debug_dev_init(bp); 10514 10515 if (link_re_init) { 10516 mutex_lock(&bp->link_lock); 10517 rc = bnxt_update_phy_setting(bp); 10518 mutex_unlock(&bp->link_lock); 10519 if (rc) { 10520 netdev_warn(bp->dev, "failed to update phy settings\n"); 10521 if (BNXT_SINGLE_PF(bp)) { 10522 bp->link_info.phy_retry = true; 10523 bp->link_info.phy_retry_expires = 10524 jiffies + 5 * HZ; 10525 } 10526 } 10527 } 10528 10529 if (irq_re_init) 10530 udp_tunnel_nic_reset_ntf(bp->dev); 10531 10532 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 10533 if (!static_key_enabled(&bnxt_xdp_locking_key)) 10534 static_branch_enable(&bnxt_xdp_locking_key); 10535 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 10536 static_branch_disable(&bnxt_xdp_locking_key); 10537 } 10538 set_bit(BNXT_STATE_OPEN, &bp->state); 10539 bnxt_enable_int(bp); 10540 /* Enable TX queues */ 10541 bnxt_tx_enable(bp); 10542 mod_timer(&bp->timer, jiffies + bp->current_interval); 10543 /* Poll link status and check for SFP+ module status */ 10544 mutex_lock(&bp->link_lock); 10545 bnxt_get_port_module_status(bp); 10546 mutex_unlock(&bp->link_lock); 10547 10548 /* VF-reps may need to be re-opened after the PF is re-opened */ 10549 if (BNXT_PF(bp)) 10550 bnxt_vf_reps_open(bp); 10551 bnxt_ptp_init_rtc(bp, true); 10552 bnxt_ptp_cfg_tstamp_filters(bp); 10553 return 0; 10554 10555 open_err_irq: 10556 bnxt_del_napi(bp); 10557 10558 open_err_free_mem: 10559 bnxt_free_skbs(bp); 10560 bnxt_free_irq(bp); 10561 bnxt_free_mem(bp, true); 10562 return rc; 10563 } 10564 10565 /* rtnl_lock held */ 10566 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10567 { 10568 int rc = 0; 10569 10570 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10571 rc = -EIO; 10572 if (!rc) 10573 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10574 if (rc) { 10575 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10576 dev_close(bp->dev); 10577 } 10578 return rc; 10579 } 10580 10581 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10582 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10583 * self tests. 10584 */ 10585 int bnxt_half_open_nic(struct bnxt *bp) 10586 { 10587 int rc = 0; 10588 10589 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10590 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10591 rc = -ENODEV; 10592 goto half_open_err; 10593 } 10594 10595 rc = bnxt_alloc_mem(bp, true); 10596 if (rc) { 10597 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10598 goto half_open_err; 10599 } 10600 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10601 rc = bnxt_init_nic(bp, true); 10602 if (rc) { 10603 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10604 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10605 goto half_open_err; 10606 } 10607 return 0; 10608 10609 half_open_err: 10610 bnxt_free_skbs(bp); 10611 bnxt_free_mem(bp, true); 10612 dev_close(bp->dev); 10613 return rc; 10614 } 10615 10616 /* rtnl_lock held, this call can only be made after a previous successful 10617 * call to bnxt_half_open_nic(). 10618 */ 10619 void bnxt_half_close_nic(struct bnxt *bp) 10620 { 10621 bnxt_hwrm_resource_free(bp, false, true); 10622 bnxt_free_skbs(bp); 10623 bnxt_free_mem(bp, true); 10624 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10625 } 10626 10627 void bnxt_reenable_sriov(struct bnxt *bp) 10628 { 10629 if (BNXT_PF(bp)) { 10630 struct bnxt_pf_info *pf = &bp->pf; 10631 int n = pf->active_vfs; 10632 10633 if (n) 10634 bnxt_cfg_hw_sriov(bp, &n, true); 10635 } 10636 } 10637 10638 static int bnxt_open(struct net_device *dev) 10639 { 10640 struct bnxt *bp = netdev_priv(dev); 10641 int rc; 10642 10643 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10644 rc = bnxt_reinit_after_abort(bp); 10645 if (rc) { 10646 if (rc == -EBUSY) 10647 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10648 else 10649 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10650 return -ENODEV; 10651 } 10652 } 10653 10654 rc = bnxt_hwrm_if_change(bp, true); 10655 if (rc) 10656 return rc; 10657 10658 rc = __bnxt_open_nic(bp, true, true); 10659 if (rc) { 10660 bnxt_hwrm_if_change(bp, false); 10661 } else { 10662 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10663 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10664 bnxt_ulp_start(bp, 0); 10665 bnxt_reenable_sriov(bp); 10666 } 10667 } 10668 bnxt_hwmon_open(bp); 10669 } 10670 10671 return rc; 10672 } 10673 10674 static bool bnxt_drv_busy(struct bnxt *bp) 10675 { 10676 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10677 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10678 } 10679 10680 static void bnxt_get_ring_stats(struct bnxt *bp, 10681 struct rtnl_link_stats64 *stats); 10682 10683 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10684 bool link_re_init) 10685 { 10686 /* Close the VF-reps before closing PF */ 10687 if (BNXT_PF(bp)) 10688 bnxt_vf_reps_close(bp); 10689 10690 /* Change device state to avoid TX queue wake up's */ 10691 bnxt_tx_disable(bp); 10692 10693 clear_bit(BNXT_STATE_OPEN, &bp->state); 10694 smp_mb__after_atomic(); 10695 while (bnxt_drv_busy(bp)) 10696 msleep(20); 10697 10698 /* Flush rings and disable interrupts */ 10699 bnxt_shutdown_nic(bp, irq_re_init); 10700 10701 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10702 10703 bnxt_debug_dev_exit(bp); 10704 bnxt_disable_napi(bp); 10705 del_timer_sync(&bp->timer); 10706 bnxt_free_skbs(bp); 10707 10708 /* Save ring stats before shutdown */ 10709 if (bp->bnapi && irq_re_init) 10710 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10711 if (irq_re_init) { 10712 bnxt_free_irq(bp); 10713 bnxt_del_napi(bp); 10714 } 10715 bnxt_free_mem(bp, irq_re_init); 10716 } 10717 10718 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10719 { 10720 int rc = 0; 10721 10722 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10723 /* If we get here, it means firmware reset is in progress 10724 * while we are trying to close. We can safely proceed with 10725 * the close because we are holding rtnl_lock(). Some firmware 10726 * messages may fail as we proceed to close. We set the 10727 * ABORT_ERR flag here so that the FW reset thread will later 10728 * abort when it gets the rtnl_lock() and sees the flag. 10729 */ 10730 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10731 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10732 } 10733 10734 #ifdef CONFIG_BNXT_SRIOV 10735 if (bp->sriov_cfg) { 10736 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10737 !bp->sriov_cfg, 10738 BNXT_SRIOV_CFG_WAIT_TMO); 10739 if (rc) 10740 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10741 } 10742 #endif 10743 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10744 return rc; 10745 } 10746 10747 static int bnxt_close(struct net_device *dev) 10748 { 10749 struct bnxt *bp = netdev_priv(dev); 10750 10751 bnxt_hwmon_close(bp); 10752 bnxt_close_nic(bp, true, true); 10753 bnxt_hwrm_shutdown_link(bp); 10754 bnxt_hwrm_if_change(bp, false); 10755 return 0; 10756 } 10757 10758 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10759 u16 *val) 10760 { 10761 struct hwrm_port_phy_mdio_read_output *resp; 10762 struct hwrm_port_phy_mdio_read_input *req; 10763 int rc; 10764 10765 if (bp->hwrm_spec_code < 0x10a00) 10766 return -EOPNOTSUPP; 10767 10768 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10769 if (rc) 10770 return rc; 10771 10772 req->port_id = cpu_to_le16(bp->pf.port_id); 10773 req->phy_addr = phy_addr; 10774 req->reg_addr = cpu_to_le16(reg & 0x1f); 10775 if (mdio_phy_id_is_c45(phy_addr)) { 10776 req->cl45_mdio = 1; 10777 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10778 req->dev_addr = mdio_phy_id_devad(phy_addr); 10779 req->reg_addr = cpu_to_le16(reg); 10780 } 10781 10782 resp = hwrm_req_hold(bp, req); 10783 rc = hwrm_req_send(bp, req); 10784 if (!rc) 10785 *val = le16_to_cpu(resp->reg_data); 10786 hwrm_req_drop(bp, req); 10787 return rc; 10788 } 10789 10790 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10791 u16 val) 10792 { 10793 struct hwrm_port_phy_mdio_write_input *req; 10794 int rc; 10795 10796 if (bp->hwrm_spec_code < 0x10a00) 10797 return -EOPNOTSUPP; 10798 10799 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10800 if (rc) 10801 return rc; 10802 10803 req->port_id = cpu_to_le16(bp->pf.port_id); 10804 req->phy_addr = phy_addr; 10805 req->reg_addr = cpu_to_le16(reg & 0x1f); 10806 if (mdio_phy_id_is_c45(phy_addr)) { 10807 req->cl45_mdio = 1; 10808 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10809 req->dev_addr = mdio_phy_id_devad(phy_addr); 10810 req->reg_addr = cpu_to_le16(reg); 10811 } 10812 req->reg_data = cpu_to_le16(val); 10813 10814 return hwrm_req_send(bp, req); 10815 } 10816 10817 /* rtnl_lock held */ 10818 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10819 { 10820 struct mii_ioctl_data *mdio = if_mii(ifr); 10821 struct bnxt *bp = netdev_priv(dev); 10822 int rc; 10823 10824 switch (cmd) { 10825 case SIOCGMIIPHY: 10826 mdio->phy_id = bp->link_info.phy_addr; 10827 10828 fallthrough; 10829 case SIOCGMIIREG: { 10830 u16 mii_regval = 0; 10831 10832 if (!netif_running(dev)) 10833 return -EAGAIN; 10834 10835 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10836 &mii_regval); 10837 mdio->val_out = mii_regval; 10838 return rc; 10839 } 10840 10841 case SIOCSMIIREG: 10842 if (!netif_running(dev)) 10843 return -EAGAIN; 10844 10845 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10846 mdio->val_in); 10847 10848 case SIOCSHWTSTAMP: 10849 return bnxt_hwtstamp_set(dev, ifr); 10850 10851 case SIOCGHWTSTAMP: 10852 return bnxt_hwtstamp_get(dev, ifr); 10853 10854 default: 10855 /* do nothing */ 10856 break; 10857 } 10858 return -EOPNOTSUPP; 10859 } 10860 10861 static void bnxt_get_ring_stats(struct bnxt *bp, 10862 struct rtnl_link_stats64 *stats) 10863 { 10864 int i; 10865 10866 for (i = 0; i < bp->cp_nr_rings; i++) { 10867 struct bnxt_napi *bnapi = bp->bnapi[i]; 10868 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10869 u64 *sw = cpr->stats.sw_stats; 10870 10871 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10872 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10873 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10874 10875 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10876 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10877 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10878 10879 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10880 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10881 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10882 10883 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10884 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10885 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10886 10887 stats->rx_missed_errors += 10888 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10889 10890 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10891 10892 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10893 10894 stats->rx_dropped += 10895 cpr->sw_stats.rx.rx_netpoll_discards + 10896 cpr->sw_stats.rx.rx_oom_discards; 10897 } 10898 } 10899 10900 static void bnxt_add_prev_stats(struct bnxt *bp, 10901 struct rtnl_link_stats64 *stats) 10902 { 10903 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10904 10905 stats->rx_packets += prev_stats->rx_packets; 10906 stats->tx_packets += prev_stats->tx_packets; 10907 stats->rx_bytes += prev_stats->rx_bytes; 10908 stats->tx_bytes += prev_stats->tx_bytes; 10909 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10910 stats->multicast += prev_stats->multicast; 10911 stats->rx_dropped += prev_stats->rx_dropped; 10912 stats->tx_dropped += prev_stats->tx_dropped; 10913 } 10914 10915 static void 10916 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10917 { 10918 struct bnxt *bp = netdev_priv(dev); 10919 10920 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10921 /* Make sure bnxt_close_nic() sees that we are reading stats before 10922 * we check the BNXT_STATE_OPEN flag. 10923 */ 10924 smp_mb__after_atomic(); 10925 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10926 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10927 *stats = bp->net_stats_prev; 10928 return; 10929 } 10930 10931 bnxt_get_ring_stats(bp, stats); 10932 bnxt_add_prev_stats(bp, stats); 10933 10934 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10935 u64 *rx = bp->port_stats.sw_stats; 10936 u64 *tx = bp->port_stats.sw_stats + 10937 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10938 10939 stats->rx_crc_errors = 10940 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10941 stats->rx_frame_errors = 10942 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10943 stats->rx_length_errors = 10944 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10945 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10946 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10947 stats->rx_errors = 10948 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10949 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10950 stats->collisions = 10951 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10952 stats->tx_fifo_errors = 10953 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10954 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10955 } 10956 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10957 } 10958 10959 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10960 { 10961 struct net_device *dev = bp->dev; 10962 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10963 struct netdev_hw_addr *ha; 10964 u8 *haddr; 10965 int mc_count = 0; 10966 bool update = false; 10967 int off = 0; 10968 10969 netdev_for_each_mc_addr(ha, dev) { 10970 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10971 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10972 vnic->mc_list_count = 0; 10973 return false; 10974 } 10975 haddr = ha->addr; 10976 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10977 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10978 update = true; 10979 } 10980 off += ETH_ALEN; 10981 mc_count++; 10982 } 10983 if (mc_count) 10984 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10985 10986 if (mc_count != vnic->mc_list_count) { 10987 vnic->mc_list_count = mc_count; 10988 update = true; 10989 } 10990 return update; 10991 } 10992 10993 static bool bnxt_uc_list_updated(struct bnxt *bp) 10994 { 10995 struct net_device *dev = bp->dev; 10996 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10997 struct netdev_hw_addr *ha; 10998 int off = 0; 10999 11000 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 11001 return true; 11002 11003 netdev_for_each_uc_addr(ha, dev) { 11004 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 11005 return true; 11006 11007 off += ETH_ALEN; 11008 } 11009 return false; 11010 } 11011 11012 static void bnxt_set_rx_mode(struct net_device *dev) 11013 { 11014 struct bnxt *bp = netdev_priv(dev); 11015 struct bnxt_vnic_info *vnic; 11016 bool mc_update = false; 11017 bool uc_update; 11018 u32 mask; 11019 11020 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 11021 return; 11022 11023 vnic = &bp->vnic_info[0]; 11024 mask = vnic->rx_mask; 11025 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 11026 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 11027 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 11028 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 11029 11030 if (dev->flags & IFF_PROMISC) 11031 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11032 11033 uc_update = bnxt_uc_list_updated(bp); 11034 11035 if (dev->flags & IFF_BROADCAST) 11036 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11037 if (dev->flags & IFF_ALLMULTI) { 11038 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11039 vnic->mc_list_count = 0; 11040 } else if (dev->flags & IFF_MULTICAST) { 11041 mc_update = bnxt_mc_list_updated(bp, &mask); 11042 } 11043 11044 if (mask != vnic->rx_mask || uc_update || mc_update) { 11045 vnic->rx_mask = mask; 11046 11047 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 11048 bnxt_queue_sp_work(bp); 11049 } 11050 } 11051 11052 static int bnxt_cfg_rx_mode(struct bnxt *bp) 11053 { 11054 struct net_device *dev = bp->dev; 11055 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11056 struct hwrm_cfa_l2_filter_free_input *req; 11057 struct netdev_hw_addr *ha; 11058 int i, off = 0, rc; 11059 bool uc_update; 11060 11061 netif_addr_lock_bh(dev); 11062 uc_update = bnxt_uc_list_updated(bp); 11063 netif_addr_unlock_bh(dev); 11064 11065 if (!uc_update) 11066 goto skip_uc; 11067 11068 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 11069 if (rc) 11070 return rc; 11071 hwrm_req_hold(bp, req); 11072 for (i = 1; i < vnic->uc_filter_count; i++) { 11073 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 11074 11075 rc = hwrm_req_send(bp, req); 11076 } 11077 hwrm_req_drop(bp, req); 11078 11079 vnic->uc_filter_count = 1; 11080 11081 netif_addr_lock_bh(dev); 11082 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 11083 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11084 } else { 11085 netdev_for_each_uc_addr(ha, dev) { 11086 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 11087 off += ETH_ALEN; 11088 vnic->uc_filter_count++; 11089 } 11090 } 11091 netif_addr_unlock_bh(dev); 11092 11093 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 11094 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 11095 if (rc) { 11096 if (BNXT_VF(bp) && rc == -ENODEV) { 11097 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11098 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 11099 else 11100 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 11101 rc = 0; 11102 } else { 11103 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11104 } 11105 vnic->uc_filter_count = i; 11106 return rc; 11107 } 11108 } 11109 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11110 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 11111 11112 skip_uc: 11113 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 11114 !bnxt_promisc_ok(bp)) 11115 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11116 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11117 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 11118 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 11119 rc); 11120 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11121 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11122 vnic->mc_list_count = 0; 11123 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11124 } 11125 if (rc) 11126 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 11127 rc); 11128 11129 return rc; 11130 } 11131 11132 static bool bnxt_can_reserve_rings(struct bnxt *bp) 11133 { 11134 #ifdef CONFIG_BNXT_SRIOV 11135 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 11136 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11137 11138 /* No minimum rings were provisioned by the PF. Don't 11139 * reserve rings by default when device is down. 11140 */ 11141 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 11142 return true; 11143 11144 if (!netif_running(bp->dev)) 11145 return false; 11146 } 11147 #endif 11148 return true; 11149 } 11150 11151 /* If the chip and firmware supports RFS */ 11152 static bool bnxt_rfs_supported(struct bnxt *bp) 11153 { 11154 if (bp->flags & BNXT_FLAG_CHIP_P5) { 11155 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 11156 return true; 11157 return false; 11158 } 11159 /* 212 firmware is broken for aRFS */ 11160 if (BNXT_FW_MAJ(bp) == 212) 11161 return false; 11162 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 11163 return true; 11164 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11165 return true; 11166 return false; 11167 } 11168 11169 /* If runtime conditions support RFS */ 11170 static bool bnxt_rfs_capable(struct bnxt *bp) 11171 { 11172 #ifdef CONFIG_RFS_ACCEL 11173 int vnics, max_vnics, max_rss_ctxs; 11174 11175 if (bp->flags & BNXT_FLAG_CHIP_P5) 11176 return bnxt_rfs_supported(bp); 11177 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 11178 return false; 11179 11180 vnics = 1 + bp->rx_nr_rings; 11181 max_vnics = bnxt_get_max_func_vnics(bp); 11182 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 11183 11184 /* RSS contexts not a limiting factor */ 11185 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11186 max_rss_ctxs = max_vnics; 11187 if (vnics > max_vnics || vnics > max_rss_ctxs) { 11188 if (bp->rx_nr_rings > 1) 11189 netdev_warn(bp->dev, 11190 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 11191 min(max_rss_ctxs - 1, max_vnics - 1)); 11192 return false; 11193 } 11194 11195 if (!BNXT_NEW_RM(bp)) 11196 return true; 11197 11198 if (vnics == bp->hw_resc.resv_vnics) 11199 return true; 11200 11201 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 11202 if (vnics <= bp->hw_resc.resv_vnics) 11203 return true; 11204 11205 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 11206 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 11207 return false; 11208 #else 11209 return false; 11210 #endif 11211 } 11212 11213 static netdev_features_t bnxt_fix_features(struct net_device *dev, 11214 netdev_features_t features) 11215 { 11216 struct bnxt *bp = netdev_priv(dev); 11217 netdev_features_t vlan_features; 11218 11219 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 11220 features &= ~NETIF_F_NTUPLE; 11221 11222 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 11223 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11224 11225 if (!(features & NETIF_F_GRO)) 11226 features &= ~NETIF_F_GRO_HW; 11227 11228 if (features & NETIF_F_GRO_HW) 11229 features &= ~NETIF_F_LRO; 11230 11231 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 11232 * turned on or off together. 11233 */ 11234 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 11235 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 11236 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11237 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11238 else if (vlan_features) 11239 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 11240 } 11241 #ifdef CONFIG_BNXT_SRIOV 11242 if (BNXT_VF(bp) && bp->vf.vlan) 11243 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11244 #endif 11245 return features; 11246 } 11247 11248 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 11249 { 11250 struct bnxt *bp = netdev_priv(dev); 11251 u32 flags = bp->flags; 11252 u32 changes; 11253 int rc = 0; 11254 bool re_init = false; 11255 bool update_tpa = false; 11256 11257 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11258 if (features & NETIF_F_GRO_HW) 11259 flags |= BNXT_FLAG_GRO; 11260 else if (features & NETIF_F_LRO) 11261 flags |= BNXT_FLAG_LRO; 11262 11263 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11264 flags &= ~BNXT_FLAG_TPA; 11265 11266 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11267 flags |= BNXT_FLAG_STRIP_VLAN; 11268 11269 if (features & NETIF_F_NTUPLE) 11270 flags |= BNXT_FLAG_RFS; 11271 11272 changes = flags ^ bp->flags; 11273 if (changes & BNXT_FLAG_TPA) { 11274 update_tpa = true; 11275 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11276 (flags & BNXT_FLAG_TPA) == 0 || 11277 (bp->flags & BNXT_FLAG_CHIP_P5)) 11278 re_init = true; 11279 } 11280 11281 if (changes & ~BNXT_FLAG_TPA) 11282 re_init = true; 11283 11284 if (flags != bp->flags) { 11285 u32 old_flags = bp->flags; 11286 11287 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11288 bp->flags = flags; 11289 if (update_tpa) 11290 bnxt_set_ring_params(bp); 11291 return rc; 11292 } 11293 11294 if (re_init) { 11295 bnxt_close_nic(bp, false, false); 11296 bp->flags = flags; 11297 if (update_tpa) 11298 bnxt_set_ring_params(bp); 11299 11300 return bnxt_open_nic(bp, false, false); 11301 } 11302 if (update_tpa) { 11303 bp->flags = flags; 11304 rc = bnxt_set_tpa(bp, 11305 (flags & BNXT_FLAG_TPA) ? 11306 true : false); 11307 if (rc) 11308 bp->flags = old_flags; 11309 } 11310 } 11311 return rc; 11312 } 11313 11314 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11315 u8 **nextp) 11316 { 11317 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11318 int hdr_count = 0; 11319 u8 *nexthdr; 11320 int start; 11321 11322 /* Check that there are at most 2 IPv6 extension headers, no 11323 * fragment header, and each is <= 64 bytes. 11324 */ 11325 start = nw_off + sizeof(*ip6h); 11326 nexthdr = &ip6h->nexthdr; 11327 while (ipv6_ext_hdr(*nexthdr)) { 11328 struct ipv6_opt_hdr *hp; 11329 int hdrlen; 11330 11331 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11332 *nexthdr == NEXTHDR_FRAGMENT) 11333 return false; 11334 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11335 skb_headlen(skb), NULL); 11336 if (!hp) 11337 return false; 11338 if (*nexthdr == NEXTHDR_AUTH) 11339 hdrlen = ipv6_authlen(hp); 11340 else 11341 hdrlen = ipv6_optlen(hp); 11342 11343 if (hdrlen > 64) 11344 return false; 11345 nexthdr = &hp->nexthdr; 11346 start += hdrlen; 11347 hdr_count++; 11348 } 11349 if (nextp) { 11350 /* Caller will check inner protocol */ 11351 if (skb->encapsulation) { 11352 *nextp = nexthdr; 11353 return true; 11354 } 11355 *nextp = NULL; 11356 } 11357 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11358 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11359 } 11360 11361 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11362 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11363 { 11364 struct udphdr *uh = udp_hdr(skb); 11365 __be16 udp_port = uh->dest; 11366 11367 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11368 return false; 11369 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11370 struct ethhdr *eh = inner_eth_hdr(skb); 11371 11372 switch (eh->h_proto) { 11373 case htons(ETH_P_IP): 11374 return true; 11375 case htons(ETH_P_IPV6): 11376 return bnxt_exthdr_check(bp, skb, 11377 skb_inner_network_offset(skb), 11378 NULL); 11379 } 11380 } 11381 return false; 11382 } 11383 11384 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11385 { 11386 switch (l4_proto) { 11387 case IPPROTO_UDP: 11388 return bnxt_udp_tunl_check(bp, skb); 11389 case IPPROTO_IPIP: 11390 return true; 11391 case IPPROTO_GRE: { 11392 switch (skb->inner_protocol) { 11393 default: 11394 return false; 11395 case htons(ETH_P_IP): 11396 return true; 11397 case htons(ETH_P_IPV6): 11398 fallthrough; 11399 } 11400 } 11401 case IPPROTO_IPV6: 11402 /* Check ext headers of inner ipv6 */ 11403 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11404 NULL); 11405 } 11406 return false; 11407 } 11408 11409 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11410 struct net_device *dev, 11411 netdev_features_t features) 11412 { 11413 struct bnxt *bp = netdev_priv(dev); 11414 u8 *l4_proto; 11415 11416 features = vlan_features_check(skb, features); 11417 switch (vlan_get_protocol(skb)) { 11418 case htons(ETH_P_IP): 11419 if (!skb->encapsulation) 11420 return features; 11421 l4_proto = &ip_hdr(skb)->protocol; 11422 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11423 return features; 11424 break; 11425 case htons(ETH_P_IPV6): 11426 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11427 &l4_proto)) 11428 break; 11429 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11430 return features; 11431 break; 11432 } 11433 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11434 } 11435 11436 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11437 u32 *reg_buf) 11438 { 11439 struct hwrm_dbg_read_direct_output *resp; 11440 struct hwrm_dbg_read_direct_input *req; 11441 __le32 *dbg_reg_buf; 11442 dma_addr_t mapping; 11443 int rc, i; 11444 11445 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11446 if (rc) 11447 return rc; 11448 11449 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11450 &mapping); 11451 if (!dbg_reg_buf) { 11452 rc = -ENOMEM; 11453 goto dbg_rd_reg_exit; 11454 } 11455 11456 req->host_dest_addr = cpu_to_le64(mapping); 11457 11458 resp = hwrm_req_hold(bp, req); 11459 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11460 req->read_len32 = cpu_to_le32(num_words); 11461 11462 rc = hwrm_req_send(bp, req); 11463 if (rc || resp->error_code) { 11464 rc = -EIO; 11465 goto dbg_rd_reg_exit; 11466 } 11467 for (i = 0; i < num_words; i++) 11468 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11469 11470 dbg_rd_reg_exit: 11471 hwrm_req_drop(bp, req); 11472 return rc; 11473 } 11474 11475 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11476 u32 ring_id, u32 *prod, u32 *cons) 11477 { 11478 struct hwrm_dbg_ring_info_get_output *resp; 11479 struct hwrm_dbg_ring_info_get_input *req; 11480 int rc; 11481 11482 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11483 if (rc) 11484 return rc; 11485 11486 req->ring_type = ring_type; 11487 req->fw_ring_id = cpu_to_le32(ring_id); 11488 resp = hwrm_req_hold(bp, req); 11489 rc = hwrm_req_send(bp, req); 11490 if (!rc) { 11491 *prod = le32_to_cpu(resp->producer_index); 11492 *cons = le32_to_cpu(resp->consumer_index); 11493 } 11494 hwrm_req_drop(bp, req); 11495 return rc; 11496 } 11497 11498 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11499 { 11500 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11501 int i = bnapi->index; 11502 11503 if (!txr) 11504 return; 11505 11506 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11507 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11508 txr->tx_cons); 11509 } 11510 11511 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11512 { 11513 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11514 int i = bnapi->index; 11515 11516 if (!rxr) 11517 return; 11518 11519 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11520 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11521 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11522 rxr->rx_sw_agg_prod); 11523 } 11524 11525 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11526 { 11527 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11528 int i = bnapi->index; 11529 11530 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11531 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11532 } 11533 11534 static void bnxt_dbg_dump_states(struct bnxt *bp) 11535 { 11536 int i; 11537 struct bnxt_napi *bnapi; 11538 11539 for (i = 0; i < bp->cp_nr_rings; i++) { 11540 bnapi = bp->bnapi[i]; 11541 if (netif_msg_drv(bp)) { 11542 bnxt_dump_tx_sw_state(bnapi); 11543 bnxt_dump_rx_sw_state(bnapi); 11544 bnxt_dump_cp_sw_state(bnapi); 11545 } 11546 } 11547 } 11548 11549 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11550 { 11551 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11552 struct hwrm_ring_reset_input *req; 11553 struct bnxt_napi *bnapi = rxr->bnapi; 11554 struct bnxt_cp_ring_info *cpr; 11555 u16 cp_ring_id; 11556 int rc; 11557 11558 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11559 if (rc) 11560 return rc; 11561 11562 cpr = &bnapi->cp_ring; 11563 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11564 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11565 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11566 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11567 return hwrm_req_send_silent(bp, req); 11568 } 11569 11570 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11571 { 11572 if (!silent) 11573 bnxt_dbg_dump_states(bp); 11574 if (netif_running(bp->dev)) { 11575 int rc; 11576 11577 if (silent) { 11578 bnxt_close_nic(bp, false, false); 11579 bnxt_open_nic(bp, false, false); 11580 } else { 11581 bnxt_ulp_stop(bp); 11582 bnxt_close_nic(bp, true, false); 11583 rc = bnxt_open_nic(bp, true, false); 11584 bnxt_ulp_start(bp, rc); 11585 } 11586 } 11587 } 11588 11589 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11590 { 11591 struct bnxt *bp = netdev_priv(dev); 11592 11593 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11594 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11595 bnxt_queue_sp_work(bp); 11596 } 11597 11598 static void bnxt_fw_health_check(struct bnxt *bp) 11599 { 11600 struct bnxt_fw_health *fw_health = bp->fw_health; 11601 u32 val; 11602 11603 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11604 return; 11605 11606 /* Make sure it is enabled before checking the tmr_counter. */ 11607 smp_rmb(); 11608 if (fw_health->tmr_counter) { 11609 fw_health->tmr_counter--; 11610 return; 11611 } 11612 11613 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11614 if (val == fw_health->last_fw_heartbeat) { 11615 fw_health->arrests++; 11616 goto fw_reset; 11617 } 11618 11619 fw_health->last_fw_heartbeat = val; 11620 11621 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11622 if (val != fw_health->last_fw_reset_cnt) { 11623 fw_health->discoveries++; 11624 goto fw_reset; 11625 } 11626 11627 fw_health->tmr_counter = fw_health->tmr_multiplier; 11628 return; 11629 11630 fw_reset: 11631 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11632 bnxt_queue_sp_work(bp); 11633 } 11634 11635 static void bnxt_timer(struct timer_list *t) 11636 { 11637 struct bnxt *bp = from_timer(bp, t, timer); 11638 struct net_device *dev = bp->dev; 11639 11640 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11641 return; 11642 11643 if (atomic_read(&bp->intr_sem) != 0) 11644 goto bnxt_restart_timer; 11645 11646 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11647 bnxt_fw_health_check(bp); 11648 11649 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) { 11650 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11651 bnxt_queue_sp_work(bp); 11652 } 11653 11654 if (bnxt_tc_flower_enabled(bp)) { 11655 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11656 bnxt_queue_sp_work(bp); 11657 } 11658 11659 #ifdef CONFIG_RFS_ACCEL 11660 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11661 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11662 bnxt_queue_sp_work(bp); 11663 } 11664 #endif /*CONFIG_RFS_ACCEL*/ 11665 11666 if (bp->link_info.phy_retry) { 11667 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11668 bp->link_info.phy_retry = false; 11669 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11670 } else { 11671 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11672 bnxt_queue_sp_work(bp); 11673 } 11674 } 11675 11676 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) { 11677 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 11678 bnxt_queue_sp_work(bp); 11679 } 11680 11681 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11682 netif_carrier_ok(dev)) { 11683 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11684 bnxt_queue_sp_work(bp); 11685 } 11686 bnxt_restart_timer: 11687 mod_timer(&bp->timer, jiffies + bp->current_interval); 11688 } 11689 11690 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11691 { 11692 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11693 * set. If the device is being closed, bnxt_close() may be holding 11694 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11695 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11696 */ 11697 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11698 rtnl_lock(); 11699 } 11700 11701 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11702 { 11703 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11704 rtnl_unlock(); 11705 } 11706 11707 /* Only called from bnxt_sp_task() */ 11708 static void bnxt_reset(struct bnxt *bp, bool silent) 11709 { 11710 bnxt_rtnl_lock_sp(bp); 11711 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11712 bnxt_reset_task(bp, silent); 11713 bnxt_rtnl_unlock_sp(bp); 11714 } 11715 11716 /* Only called from bnxt_sp_task() */ 11717 static void bnxt_rx_ring_reset(struct bnxt *bp) 11718 { 11719 int i; 11720 11721 bnxt_rtnl_lock_sp(bp); 11722 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11723 bnxt_rtnl_unlock_sp(bp); 11724 return; 11725 } 11726 /* Disable and flush TPA before resetting the RX ring */ 11727 if (bp->flags & BNXT_FLAG_TPA) 11728 bnxt_set_tpa(bp, false); 11729 for (i = 0; i < bp->rx_nr_rings; i++) { 11730 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11731 struct bnxt_cp_ring_info *cpr; 11732 int rc; 11733 11734 if (!rxr->bnapi->in_reset) 11735 continue; 11736 11737 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11738 if (rc) { 11739 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11740 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11741 else 11742 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11743 rc); 11744 bnxt_reset_task(bp, true); 11745 break; 11746 } 11747 bnxt_free_one_rx_ring_skbs(bp, i); 11748 rxr->rx_prod = 0; 11749 rxr->rx_agg_prod = 0; 11750 rxr->rx_sw_agg_prod = 0; 11751 rxr->rx_next_cons = 0; 11752 rxr->bnapi->in_reset = false; 11753 bnxt_alloc_one_rx_ring(bp, i); 11754 cpr = &rxr->bnapi->cp_ring; 11755 cpr->sw_stats.rx.rx_resets++; 11756 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11757 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11758 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11759 } 11760 if (bp->flags & BNXT_FLAG_TPA) 11761 bnxt_set_tpa(bp, true); 11762 bnxt_rtnl_unlock_sp(bp); 11763 } 11764 11765 static void bnxt_fw_reset_close(struct bnxt *bp) 11766 { 11767 bnxt_ulp_stop(bp); 11768 /* When firmware is in fatal state, quiesce device and disable 11769 * bus master to prevent any potential bad DMAs before freeing 11770 * kernel memory. 11771 */ 11772 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11773 u16 val = 0; 11774 11775 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11776 if (val == 0xffff) 11777 bp->fw_reset_min_dsecs = 0; 11778 bnxt_tx_disable(bp); 11779 bnxt_disable_napi(bp); 11780 bnxt_disable_int_sync(bp); 11781 bnxt_free_irq(bp); 11782 bnxt_clear_int_mode(bp); 11783 pci_disable_device(bp->pdev); 11784 } 11785 __bnxt_close_nic(bp, true, false); 11786 bnxt_vf_reps_free(bp); 11787 bnxt_clear_int_mode(bp); 11788 bnxt_hwrm_func_drv_unrgtr(bp); 11789 if (pci_is_enabled(bp->pdev)) 11790 pci_disable_device(bp->pdev); 11791 bnxt_free_ctx_mem(bp); 11792 kfree(bp->ctx); 11793 bp->ctx = NULL; 11794 } 11795 11796 static bool is_bnxt_fw_ok(struct bnxt *bp) 11797 { 11798 struct bnxt_fw_health *fw_health = bp->fw_health; 11799 bool no_heartbeat = false, has_reset = false; 11800 u32 val; 11801 11802 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11803 if (val == fw_health->last_fw_heartbeat) 11804 no_heartbeat = true; 11805 11806 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11807 if (val != fw_health->last_fw_reset_cnt) 11808 has_reset = true; 11809 11810 if (!no_heartbeat && has_reset) 11811 return true; 11812 11813 return false; 11814 } 11815 11816 /* rtnl_lock is acquired before calling this function */ 11817 static void bnxt_force_fw_reset(struct bnxt *bp) 11818 { 11819 struct bnxt_fw_health *fw_health = bp->fw_health; 11820 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11821 u32 wait_dsecs; 11822 11823 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11824 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11825 return; 11826 11827 if (ptp) { 11828 spin_lock_bh(&ptp->ptp_lock); 11829 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11830 spin_unlock_bh(&ptp->ptp_lock); 11831 } else { 11832 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11833 } 11834 bnxt_fw_reset_close(bp); 11835 wait_dsecs = fw_health->master_func_wait_dsecs; 11836 if (fw_health->primary) { 11837 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11838 wait_dsecs = 0; 11839 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11840 } else { 11841 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11842 wait_dsecs = fw_health->normal_func_wait_dsecs; 11843 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11844 } 11845 11846 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11847 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11848 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11849 } 11850 11851 void bnxt_fw_exception(struct bnxt *bp) 11852 { 11853 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11854 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11855 bnxt_rtnl_lock_sp(bp); 11856 bnxt_force_fw_reset(bp); 11857 bnxt_rtnl_unlock_sp(bp); 11858 } 11859 11860 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11861 * < 0 on error. 11862 */ 11863 static int bnxt_get_registered_vfs(struct bnxt *bp) 11864 { 11865 #ifdef CONFIG_BNXT_SRIOV 11866 int rc; 11867 11868 if (!BNXT_PF(bp)) 11869 return 0; 11870 11871 rc = bnxt_hwrm_func_qcfg(bp); 11872 if (rc) { 11873 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11874 return rc; 11875 } 11876 if (bp->pf.registered_vfs) 11877 return bp->pf.registered_vfs; 11878 if (bp->sriov_cfg) 11879 return 1; 11880 #endif 11881 return 0; 11882 } 11883 11884 void bnxt_fw_reset(struct bnxt *bp) 11885 { 11886 bnxt_rtnl_lock_sp(bp); 11887 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11888 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11889 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11890 int n = 0, tmo; 11891 11892 if (ptp) { 11893 spin_lock_bh(&ptp->ptp_lock); 11894 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11895 spin_unlock_bh(&ptp->ptp_lock); 11896 } else { 11897 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11898 } 11899 if (bp->pf.active_vfs && 11900 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11901 n = bnxt_get_registered_vfs(bp); 11902 if (n < 0) { 11903 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11904 n); 11905 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11906 dev_close(bp->dev); 11907 goto fw_reset_exit; 11908 } else if (n > 0) { 11909 u16 vf_tmo_dsecs = n * 10; 11910 11911 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11912 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11913 bp->fw_reset_state = 11914 BNXT_FW_RESET_STATE_POLL_VF; 11915 bnxt_queue_fw_reset_work(bp, HZ / 10); 11916 goto fw_reset_exit; 11917 } 11918 bnxt_fw_reset_close(bp); 11919 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11920 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11921 tmo = HZ / 10; 11922 } else { 11923 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11924 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11925 } 11926 bnxt_queue_fw_reset_work(bp, tmo); 11927 } 11928 fw_reset_exit: 11929 bnxt_rtnl_unlock_sp(bp); 11930 } 11931 11932 static void bnxt_chk_missed_irq(struct bnxt *bp) 11933 { 11934 int i; 11935 11936 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11937 return; 11938 11939 for (i = 0; i < bp->cp_nr_rings; i++) { 11940 struct bnxt_napi *bnapi = bp->bnapi[i]; 11941 struct bnxt_cp_ring_info *cpr; 11942 u32 fw_ring_id; 11943 int j; 11944 11945 if (!bnapi) 11946 continue; 11947 11948 cpr = &bnapi->cp_ring; 11949 for (j = 0; j < 2; j++) { 11950 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11951 u32 val[2]; 11952 11953 if (!cpr2 || cpr2->has_more_work || 11954 !bnxt_has_work(bp, cpr2)) 11955 continue; 11956 11957 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11958 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11959 continue; 11960 } 11961 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11962 bnxt_dbg_hwrm_ring_info_get(bp, 11963 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11964 fw_ring_id, &val[0], &val[1]); 11965 cpr->sw_stats.cmn.missed_irqs++; 11966 } 11967 } 11968 } 11969 11970 static void bnxt_cfg_ntp_filters(struct bnxt *); 11971 11972 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11973 { 11974 struct bnxt_link_info *link_info = &bp->link_info; 11975 11976 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11977 link_info->autoneg = BNXT_AUTONEG_SPEED; 11978 if (bp->hwrm_spec_code >= 0x10201) { 11979 if (link_info->auto_pause_setting & 11980 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11981 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11982 } else { 11983 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11984 } 11985 link_info->advertising = link_info->auto_link_speeds; 11986 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11987 } else { 11988 link_info->req_link_speed = link_info->force_link_speed; 11989 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11990 if (link_info->force_pam4_link_speed) { 11991 link_info->req_link_speed = 11992 link_info->force_pam4_link_speed; 11993 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11994 } 11995 link_info->req_duplex = link_info->duplex_setting; 11996 } 11997 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11998 link_info->req_flow_ctrl = 11999 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 12000 else 12001 link_info->req_flow_ctrl = link_info->force_pause_setting; 12002 } 12003 12004 static void bnxt_fw_echo_reply(struct bnxt *bp) 12005 { 12006 struct bnxt_fw_health *fw_health = bp->fw_health; 12007 struct hwrm_func_echo_response_input *req; 12008 int rc; 12009 12010 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 12011 if (rc) 12012 return; 12013 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 12014 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 12015 hwrm_req_send(bp, req); 12016 } 12017 12018 static void bnxt_sp_task(struct work_struct *work) 12019 { 12020 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 12021 12022 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12023 smp_mb__after_atomic(); 12024 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12025 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12026 return; 12027 } 12028 12029 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 12030 bnxt_cfg_rx_mode(bp); 12031 12032 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 12033 bnxt_cfg_ntp_filters(bp); 12034 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 12035 bnxt_hwrm_exec_fwd_req(bp); 12036 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 12037 bnxt_hwrm_port_qstats(bp, 0); 12038 bnxt_hwrm_port_qstats_ext(bp, 0); 12039 bnxt_accumulate_all_stats(bp); 12040 } 12041 12042 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 12043 int rc; 12044 12045 mutex_lock(&bp->link_lock); 12046 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 12047 &bp->sp_event)) 12048 bnxt_hwrm_phy_qcaps(bp); 12049 12050 rc = bnxt_update_link(bp, true); 12051 if (rc) 12052 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 12053 rc); 12054 12055 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 12056 &bp->sp_event)) 12057 bnxt_init_ethtool_link_settings(bp); 12058 mutex_unlock(&bp->link_lock); 12059 } 12060 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 12061 int rc; 12062 12063 mutex_lock(&bp->link_lock); 12064 rc = bnxt_update_phy_setting(bp); 12065 mutex_unlock(&bp->link_lock); 12066 if (rc) { 12067 netdev_warn(bp->dev, "update phy settings retry failed\n"); 12068 } else { 12069 bp->link_info.phy_retry = false; 12070 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 12071 } 12072 } 12073 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 12074 mutex_lock(&bp->link_lock); 12075 bnxt_get_port_module_status(bp); 12076 mutex_unlock(&bp->link_lock); 12077 } 12078 12079 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 12080 bnxt_tc_flow_stats_work(bp); 12081 12082 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 12083 bnxt_chk_missed_irq(bp); 12084 12085 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 12086 bnxt_fw_echo_reply(bp); 12087 12088 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 12089 * must be the last functions to be called before exiting. 12090 */ 12091 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 12092 bnxt_reset(bp, false); 12093 12094 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 12095 bnxt_reset(bp, true); 12096 12097 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 12098 bnxt_rx_ring_reset(bp); 12099 12100 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 12101 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 12102 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 12103 bnxt_devlink_health_fw_report(bp); 12104 else 12105 bnxt_fw_reset(bp); 12106 } 12107 12108 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 12109 if (!is_bnxt_fw_ok(bp)) 12110 bnxt_devlink_health_fw_report(bp); 12111 } 12112 12113 smp_mb__before_atomic(); 12114 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12115 } 12116 12117 /* Under rtnl_lock */ 12118 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 12119 int tx_xdp) 12120 { 12121 int max_rx, max_tx, tx_sets = 1; 12122 int tx_rings_needed, stats; 12123 int rx_rings = rx; 12124 int cp, vnics, rc; 12125 12126 if (tcs) 12127 tx_sets = tcs; 12128 12129 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 12130 if (rc) 12131 return rc; 12132 12133 if (max_rx < rx) 12134 return -ENOMEM; 12135 12136 tx_rings_needed = tx * tx_sets + tx_xdp; 12137 if (max_tx < tx_rings_needed) 12138 return -ENOMEM; 12139 12140 vnics = 1; 12141 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 12142 vnics += rx_rings; 12143 12144 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12145 rx_rings <<= 1; 12146 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 12147 stats = cp; 12148 if (BNXT_NEW_RM(bp)) { 12149 cp += bnxt_get_ulp_msix_num(bp); 12150 stats += bnxt_get_ulp_stat_ctxs(bp); 12151 } 12152 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 12153 stats, vnics); 12154 } 12155 12156 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 12157 { 12158 if (bp->bar2) { 12159 pci_iounmap(pdev, bp->bar2); 12160 bp->bar2 = NULL; 12161 } 12162 12163 if (bp->bar1) { 12164 pci_iounmap(pdev, bp->bar1); 12165 bp->bar1 = NULL; 12166 } 12167 12168 if (bp->bar0) { 12169 pci_iounmap(pdev, bp->bar0); 12170 bp->bar0 = NULL; 12171 } 12172 } 12173 12174 static void bnxt_cleanup_pci(struct bnxt *bp) 12175 { 12176 bnxt_unmap_bars(bp, bp->pdev); 12177 pci_release_regions(bp->pdev); 12178 if (pci_is_enabled(bp->pdev)) 12179 pci_disable_device(bp->pdev); 12180 } 12181 12182 static void bnxt_init_dflt_coal(struct bnxt *bp) 12183 { 12184 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 12185 struct bnxt_coal *coal; 12186 u16 flags = 0; 12187 12188 if (coal_cap->cmpl_params & 12189 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 12190 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 12191 12192 /* Tick values in micro seconds. 12193 * 1 coal_buf x bufs_per_record = 1 completion record. 12194 */ 12195 coal = &bp->rx_coal; 12196 coal->coal_ticks = 10; 12197 coal->coal_bufs = 30; 12198 coal->coal_ticks_irq = 1; 12199 coal->coal_bufs_irq = 2; 12200 coal->idle_thresh = 50; 12201 coal->bufs_per_record = 2; 12202 coal->budget = 64; /* NAPI budget */ 12203 coal->flags = flags; 12204 12205 coal = &bp->tx_coal; 12206 coal->coal_ticks = 28; 12207 coal->coal_bufs = 30; 12208 coal->coal_ticks_irq = 2; 12209 coal->coal_bufs_irq = 2; 12210 coal->bufs_per_record = 1; 12211 coal->flags = flags; 12212 12213 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 12214 } 12215 12216 static int bnxt_fw_init_one_p1(struct bnxt *bp) 12217 { 12218 int rc; 12219 12220 bp->fw_cap = 0; 12221 rc = bnxt_hwrm_ver_get(bp); 12222 bnxt_try_map_fw_health_reg(bp); 12223 if (rc) { 12224 rc = bnxt_try_recover_fw(bp); 12225 if (rc) 12226 return rc; 12227 rc = bnxt_hwrm_ver_get(bp); 12228 if (rc) 12229 return rc; 12230 } 12231 12232 bnxt_nvm_cfg_ver_get(bp); 12233 12234 rc = bnxt_hwrm_func_reset(bp); 12235 if (rc) 12236 return -ENODEV; 12237 12238 bnxt_hwrm_fw_set_time(bp); 12239 return 0; 12240 } 12241 12242 static int bnxt_fw_init_one_p2(struct bnxt *bp) 12243 { 12244 int rc; 12245 12246 /* Get the MAX capabilities for this function */ 12247 rc = bnxt_hwrm_func_qcaps(bp); 12248 if (rc) { 12249 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 12250 rc); 12251 return -ENODEV; 12252 } 12253 12254 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 12255 if (rc) 12256 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 12257 rc); 12258 12259 if (bnxt_alloc_fw_health(bp)) { 12260 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 12261 } else { 12262 rc = bnxt_hwrm_error_recovery_qcfg(bp); 12263 if (rc) 12264 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 12265 rc); 12266 } 12267 12268 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 12269 if (rc) 12270 return -ENODEV; 12271 12272 bnxt_hwrm_func_qcfg(bp); 12273 bnxt_hwrm_vnic_qcaps(bp); 12274 bnxt_hwrm_port_led_qcaps(bp); 12275 bnxt_ethtool_init(bp); 12276 bnxt_dcb_init(bp); 12277 return 0; 12278 } 12279 12280 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 12281 { 12282 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 12283 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 12284 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 12285 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 12286 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 12287 if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA) 12288 bp->rss_hash_delta = bp->rss_hash_cfg; 12289 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 12290 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 12291 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 12292 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 12293 } 12294 } 12295 12296 static void bnxt_set_dflt_rfs(struct bnxt *bp) 12297 { 12298 struct net_device *dev = bp->dev; 12299 12300 dev->hw_features &= ~NETIF_F_NTUPLE; 12301 dev->features &= ~NETIF_F_NTUPLE; 12302 bp->flags &= ~BNXT_FLAG_RFS; 12303 if (bnxt_rfs_supported(bp)) { 12304 dev->hw_features |= NETIF_F_NTUPLE; 12305 if (bnxt_rfs_capable(bp)) { 12306 bp->flags |= BNXT_FLAG_RFS; 12307 dev->features |= NETIF_F_NTUPLE; 12308 } 12309 } 12310 } 12311 12312 static void bnxt_fw_init_one_p3(struct bnxt *bp) 12313 { 12314 struct pci_dev *pdev = bp->pdev; 12315 12316 bnxt_set_dflt_rss_hash_type(bp); 12317 bnxt_set_dflt_rfs(bp); 12318 12319 bnxt_get_wol_settings(bp); 12320 if (bp->flags & BNXT_FLAG_WOL_CAP) 12321 device_set_wakeup_enable(&pdev->dev, bp->wol); 12322 else 12323 device_set_wakeup_capable(&pdev->dev, false); 12324 12325 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12326 bnxt_hwrm_coal_params_qcaps(bp); 12327 } 12328 12329 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12330 12331 int bnxt_fw_init_one(struct bnxt *bp) 12332 { 12333 int rc; 12334 12335 rc = bnxt_fw_init_one_p1(bp); 12336 if (rc) { 12337 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12338 return rc; 12339 } 12340 rc = bnxt_fw_init_one_p2(bp); 12341 if (rc) { 12342 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12343 return rc; 12344 } 12345 rc = bnxt_probe_phy(bp, false); 12346 if (rc) 12347 return rc; 12348 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12349 if (rc) 12350 return rc; 12351 12352 bnxt_fw_init_one_p3(bp); 12353 return 0; 12354 } 12355 12356 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12357 { 12358 struct bnxt_fw_health *fw_health = bp->fw_health; 12359 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12360 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12361 u32 reg_type, reg_off, delay_msecs; 12362 12363 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12364 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12365 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12366 switch (reg_type) { 12367 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12368 pci_write_config_dword(bp->pdev, reg_off, val); 12369 break; 12370 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12371 writel(reg_off & BNXT_GRC_BASE_MASK, 12372 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12373 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12374 fallthrough; 12375 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12376 writel(val, bp->bar0 + reg_off); 12377 break; 12378 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12379 writel(val, bp->bar1 + reg_off); 12380 break; 12381 } 12382 if (delay_msecs) { 12383 pci_read_config_dword(bp->pdev, 0, &val); 12384 msleep(delay_msecs); 12385 } 12386 } 12387 12388 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12389 { 12390 struct hwrm_func_qcfg_output *resp; 12391 struct hwrm_func_qcfg_input *req; 12392 bool result = true; /* firmware will enforce if unknown */ 12393 12394 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12395 return result; 12396 12397 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12398 return result; 12399 12400 req->fid = cpu_to_le16(0xffff); 12401 resp = hwrm_req_hold(bp, req); 12402 if (!hwrm_req_send(bp, req)) 12403 result = !!(le16_to_cpu(resp->flags) & 12404 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12405 hwrm_req_drop(bp, req); 12406 return result; 12407 } 12408 12409 static void bnxt_reset_all(struct bnxt *bp) 12410 { 12411 struct bnxt_fw_health *fw_health = bp->fw_health; 12412 int i, rc; 12413 12414 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12415 bnxt_fw_reset_via_optee(bp); 12416 bp->fw_reset_timestamp = jiffies; 12417 return; 12418 } 12419 12420 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12421 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12422 bnxt_fw_reset_writel(bp, i); 12423 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12424 struct hwrm_fw_reset_input *req; 12425 12426 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12427 if (!rc) { 12428 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12429 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12430 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12431 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12432 rc = hwrm_req_send(bp, req); 12433 } 12434 if (rc != -ENODEV) 12435 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12436 } 12437 bp->fw_reset_timestamp = jiffies; 12438 } 12439 12440 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12441 { 12442 return time_after(jiffies, bp->fw_reset_timestamp + 12443 (bp->fw_reset_max_dsecs * HZ / 10)); 12444 } 12445 12446 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12447 { 12448 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12449 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12450 bnxt_ulp_start(bp, rc); 12451 bnxt_dl_health_fw_status_update(bp, false); 12452 } 12453 bp->fw_reset_state = 0; 12454 dev_close(bp->dev); 12455 } 12456 12457 static void bnxt_fw_reset_task(struct work_struct *work) 12458 { 12459 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12460 int rc = 0; 12461 12462 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12463 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12464 return; 12465 } 12466 12467 switch (bp->fw_reset_state) { 12468 case BNXT_FW_RESET_STATE_POLL_VF: { 12469 int n = bnxt_get_registered_vfs(bp); 12470 int tmo; 12471 12472 if (n < 0) { 12473 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12474 n, jiffies_to_msecs(jiffies - 12475 bp->fw_reset_timestamp)); 12476 goto fw_reset_abort; 12477 } else if (n > 0) { 12478 if (bnxt_fw_reset_timeout(bp)) { 12479 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12480 bp->fw_reset_state = 0; 12481 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12482 n); 12483 return; 12484 } 12485 bnxt_queue_fw_reset_work(bp, HZ / 10); 12486 return; 12487 } 12488 bp->fw_reset_timestamp = jiffies; 12489 rtnl_lock(); 12490 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12491 bnxt_fw_reset_abort(bp, rc); 12492 rtnl_unlock(); 12493 return; 12494 } 12495 bnxt_fw_reset_close(bp); 12496 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12497 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12498 tmo = HZ / 10; 12499 } else { 12500 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12501 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12502 } 12503 rtnl_unlock(); 12504 bnxt_queue_fw_reset_work(bp, tmo); 12505 return; 12506 } 12507 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12508 u32 val; 12509 12510 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12511 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12512 !bnxt_fw_reset_timeout(bp)) { 12513 bnxt_queue_fw_reset_work(bp, HZ / 5); 12514 return; 12515 } 12516 12517 if (!bp->fw_health->primary) { 12518 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12519 12520 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12521 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12522 return; 12523 } 12524 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12525 } 12526 fallthrough; 12527 case BNXT_FW_RESET_STATE_RESET_FW: 12528 bnxt_reset_all(bp); 12529 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12530 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12531 return; 12532 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12533 bnxt_inv_fw_health_reg(bp); 12534 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12535 !bp->fw_reset_min_dsecs) { 12536 u16 val; 12537 12538 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12539 if (val == 0xffff) { 12540 if (bnxt_fw_reset_timeout(bp)) { 12541 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12542 rc = -ETIMEDOUT; 12543 goto fw_reset_abort; 12544 } 12545 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12546 return; 12547 } 12548 } 12549 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12550 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12551 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12552 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12553 bnxt_dl_remote_reload(bp); 12554 if (pci_enable_device(bp->pdev)) { 12555 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12556 rc = -ENODEV; 12557 goto fw_reset_abort; 12558 } 12559 pci_set_master(bp->pdev); 12560 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12561 fallthrough; 12562 case BNXT_FW_RESET_STATE_POLL_FW: 12563 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12564 rc = bnxt_hwrm_poll(bp); 12565 if (rc) { 12566 if (bnxt_fw_reset_timeout(bp)) { 12567 netdev_err(bp->dev, "Firmware reset aborted\n"); 12568 goto fw_reset_abort_status; 12569 } 12570 bnxt_queue_fw_reset_work(bp, HZ / 5); 12571 return; 12572 } 12573 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12574 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12575 fallthrough; 12576 case BNXT_FW_RESET_STATE_OPENING: 12577 while (!rtnl_trylock()) { 12578 bnxt_queue_fw_reset_work(bp, HZ / 10); 12579 return; 12580 } 12581 rc = bnxt_open(bp->dev); 12582 if (rc) { 12583 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12584 bnxt_fw_reset_abort(bp, rc); 12585 rtnl_unlock(); 12586 return; 12587 } 12588 12589 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12590 bp->fw_health->enabled) { 12591 bp->fw_health->last_fw_reset_cnt = 12592 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12593 } 12594 bp->fw_reset_state = 0; 12595 /* Make sure fw_reset_state is 0 before clearing the flag */ 12596 smp_mb__before_atomic(); 12597 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12598 bnxt_ulp_start(bp, 0); 12599 bnxt_reenable_sriov(bp); 12600 bnxt_vf_reps_alloc(bp); 12601 bnxt_vf_reps_open(bp); 12602 bnxt_ptp_reapply_pps(bp); 12603 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12604 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12605 bnxt_dl_health_fw_recovery_done(bp); 12606 bnxt_dl_health_fw_status_update(bp, true); 12607 } 12608 rtnl_unlock(); 12609 break; 12610 } 12611 return; 12612 12613 fw_reset_abort_status: 12614 if (bp->fw_health->status_reliable || 12615 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12616 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12617 12618 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12619 } 12620 fw_reset_abort: 12621 rtnl_lock(); 12622 bnxt_fw_reset_abort(bp, rc); 12623 rtnl_unlock(); 12624 } 12625 12626 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12627 { 12628 int rc; 12629 struct bnxt *bp = netdev_priv(dev); 12630 12631 SET_NETDEV_DEV(dev, &pdev->dev); 12632 12633 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12634 rc = pci_enable_device(pdev); 12635 if (rc) { 12636 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12637 goto init_err; 12638 } 12639 12640 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12641 dev_err(&pdev->dev, 12642 "Cannot find PCI device base address, aborting\n"); 12643 rc = -ENODEV; 12644 goto init_err_disable; 12645 } 12646 12647 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12648 if (rc) { 12649 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12650 goto init_err_disable; 12651 } 12652 12653 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12654 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12655 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12656 rc = -EIO; 12657 goto init_err_release; 12658 } 12659 12660 pci_set_master(pdev); 12661 12662 bp->dev = dev; 12663 bp->pdev = pdev; 12664 12665 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12666 * determines the BAR size. 12667 */ 12668 bp->bar0 = pci_ioremap_bar(pdev, 0); 12669 if (!bp->bar0) { 12670 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12671 rc = -ENOMEM; 12672 goto init_err_release; 12673 } 12674 12675 bp->bar2 = pci_ioremap_bar(pdev, 4); 12676 if (!bp->bar2) { 12677 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12678 rc = -ENOMEM; 12679 goto init_err_release; 12680 } 12681 12682 pci_enable_pcie_error_reporting(pdev); 12683 12684 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12685 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12686 12687 spin_lock_init(&bp->ntp_fltr_lock); 12688 #if BITS_PER_LONG == 32 12689 spin_lock_init(&bp->db_lock); 12690 #endif 12691 12692 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12693 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12694 12695 timer_setup(&bp->timer, bnxt_timer, 0); 12696 bp->current_interval = BNXT_TIMER_INTERVAL; 12697 12698 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12699 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12700 12701 clear_bit(BNXT_STATE_OPEN, &bp->state); 12702 return 0; 12703 12704 init_err_release: 12705 bnxt_unmap_bars(bp, pdev); 12706 pci_release_regions(pdev); 12707 12708 init_err_disable: 12709 pci_disable_device(pdev); 12710 12711 init_err: 12712 return rc; 12713 } 12714 12715 /* rtnl_lock held */ 12716 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12717 { 12718 struct sockaddr *addr = p; 12719 struct bnxt *bp = netdev_priv(dev); 12720 int rc = 0; 12721 12722 if (!is_valid_ether_addr(addr->sa_data)) 12723 return -EADDRNOTAVAIL; 12724 12725 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12726 return 0; 12727 12728 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12729 if (rc) 12730 return rc; 12731 12732 eth_hw_addr_set(dev, addr->sa_data); 12733 if (netif_running(dev)) { 12734 bnxt_close_nic(bp, false, false); 12735 rc = bnxt_open_nic(bp, false, false); 12736 } 12737 12738 return rc; 12739 } 12740 12741 /* rtnl_lock held */ 12742 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12743 { 12744 struct bnxt *bp = netdev_priv(dev); 12745 12746 if (netif_running(dev)) 12747 bnxt_close_nic(bp, true, false); 12748 12749 dev->mtu = new_mtu; 12750 bnxt_set_ring_params(bp); 12751 12752 if (netif_running(dev)) 12753 return bnxt_open_nic(bp, true, false); 12754 12755 return 0; 12756 } 12757 12758 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12759 { 12760 struct bnxt *bp = netdev_priv(dev); 12761 bool sh = false; 12762 int rc; 12763 12764 if (tc > bp->max_tc) { 12765 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12766 tc, bp->max_tc); 12767 return -EINVAL; 12768 } 12769 12770 if (netdev_get_num_tc(dev) == tc) 12771 return 0; 12772 12773 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12774 sh = true; 12775 12776 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12777 sh, tc, bp->tx_nr_rings_xdp); 12778 if (rc) 12779 return rc; 12780 12781 /* Needs to close the device and do hw resource re-allocations */ 12782 if (netif_running(bp->dev)) 12783 bnxt_close_nic(bp, true, false); 12784 12785 if (tc) { 12786 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12787 netdev_set_num_tc(dev, tc); 12788 } else { 12789 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12790 netdev_reset_tc(dev); 12791 } 12792 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12793 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12794 bp->tx_nr_rings + bp->rx_nr_rings; 12795 12796 if (netif_running(bp->dev)) 12797 return bnxt_open_nic(bp, true, false); 12798 12799 return 0; 12800 } 12801 12802 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12803 void *cb_priv) 12804 { 12805 struct bnxt *bp = cb_priv; 12806 12807 if (!bnxt_tc_flower_enabled(bp) || 12808 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12809 return -EOPNOTSUPP; 12810 12811 switch (type) { 12812 case TC_SETUP_CLSFLOWER: 12813 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12814 default: 12815 return -EOPNOTSUPP; 12816 } 12817 } 12818 12819 LIST_HEAD(bnxt_block_cb_list); 12820 12821 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12822 void *type_data) 12823 { 12824 struct bnxt *bp = netdev_priv(dev); 12825 12826 switch (type) { 12827 case TC_SETUP_BLOCK: 12828 return flow_block_cb_setup_simple(type_data, 12829 &bnxt_block_cb_list, 12830 bnxt_setup_tc_block_cb, 12831 bp, bp, true); 12832 case TC_SETUP_QDISC_MQPRIO: { 12833 struct tc_mqprio_qopt *mqprio = type_data; 12834 12835 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12836 12837 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12838 } 12839 default: 12840 return -EOPNOTSUPP; 12841 } 12842 } 12843 12844 #ifdef CONFIG_RFS_ACCEL 12845 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12846 struct bnxt_ntuple_filter *f2) 12847 { 12848 struct flow_keys *keys1 = &f1->fkeys; 12849 struct flow_keys *keys2 = &f2->fkeys; 12850 12851 if (keys1->basic.n_proto != keys2->basic.n_proto || 12852 keys1->basic.ip_proto != keys2->basic.ip_proto) 12853 return false; 12854 12855 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12856 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12857 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12858 return false; 12859 } else { 12860 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12861 sizeof(keys1->addrs.v6addrs.src)) || 12862 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12863 sizeof(keys1->addrs.v6addrs.dst))) 12864 return false; 12865 } 12866 12867 if (keys1->ports.ports == keys2->ports.ports && 12868 keys1->control.flags == keys2->control.flags && 12869 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12870 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12871 return true; 12872 12873 return false; 12874 } 12875 12876 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12877 u16 rxq_index, u32 flow_id) 12878 { 12879 struct bnxt *bp = netdev_priv(dev); 12880 struct bnxt_ntuple_filter *fltr, *new_fltr; 12881 struct flow_keys *fkeys; 12882 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12883 int rc = 0, idx, bit_id, l2_idx = 0; 12884 struct hlist_head *head; 12885 u32 flags; 12886 12887 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12888 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12889 int off = 0, j; 12890 12891 netif_addr_lock_bh(dev); 12892 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12893 if (ether_addr_equal(eth->h_dest, 12894 vnic->uc_list + off)) { 12895 l2_idx = j + 1; 12896 break; 12897 } 12898 } 12899 netif_addr_unlock_bh(dev); 12900 if (!l2_idx) 12901 return -EINVAL; 12902 } 12903 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12904 if (!new_fltr) 12905 return -ENOMEM; 12906 12907 fkeys = &new_fltr->fkeys; 12908 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12909 rc = -EPROTONOSUPPORT; 12910 goto err_free; 12911 } 12912 12913 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12914 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12915 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12916 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12917 rc = -EPROTONOSUPPORT; 12918 goto err_free; 12919 } 12920 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12921 bp->hwrm_spec_code < 0x10601) { 12922 rc = -EPROTONOSUPPORT; 12923 goto err_free; 12924 } 12925 flags = fkeys->control.flags; 12926 if (((flags & FLOW_DIS_ENCAPSULATION) && 12927 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12928 rc = -EPROTONOSUPPORT; 12929 goto err_free; 12930 } 12931 12932 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12933 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12934 12935 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12936 head = &bp->ntp_fltr_hash_tbl[idx]; 12937 rcu_read_lock(); 12938 hlist_for_each_entry_rcu(fltr, head, hash) { 12939 if (bnxt_fltr_match(fltr, new_fltr)) { 12940 rc = fltr->sw_id; 12941 rcu_read_unlock(); 12942 goto err_free; 12943 } 12944 } 12945 rcu_read_unlock(); 12946 12947 spin_lock_bh(&bp->ntp_fltr_lock); 12948 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12949 BNXT_NTP_FLTR_MAX_FLTR, 0); 12950 if (bit_id < 0) { 12951 spin_unlock_bh(&bp->ntp_fltr_lock); 12952 rc = -ENOMEM; 12953 goto err_free; 12954 } 12955 12956 new_fltr->sw_id = (u16)bit_id; 12957 new_fltr->flow_id = flow_id; 12958 new_fltr->l2_fltr_idx = l2_idx; 12959 new_fltr->rxq = rxq_index; 12960 hlist_add_head_rcu(&new_fltr->hash, head); 12961 bp->ntp_fltr_count++; 12962 spin_unlock_bh(&bp->ntp_fltr_lock); 12963 12964 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12965 bnxt_queue_sp_work(bp); 12966 12967 return new_fltr->sw_id; 12968 12969 err_free: 12970 kfree(new_fltr); 12971 return rc; 12972 } 12973 12974 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12975 { 12976 int i; 12977 12978 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12979 struct hlist_head *head; 12980 struct hlist_node *tmp; 12981 struct bnxt_ntuple_filter *fltr; 12982 int rc; 12983 12984 head = &bp->ntp_fltr_hash_tbl[i]; 12985 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12986 bool del = false; 12987 12988 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12989 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12990 fltr->flow_id, 12991 fltr->sw_id)) { 12992 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12993 fltr); 12994 del = true; 12995 } 12996 } else { 12997 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12998 fltr); 12999 if (rc) 13000 del = true; 13001 else 13002 set_bit(BNXT_FLTR_VALID, &fltr->state); 13003 } 13004 13005 if (del) { 13006 spin_lock_bh(&bp->ntp_fltr_lock); 13007 hlist_del_rcu(&fltr->hash); 13008 bp->ntp_fltr_count--; 13009 spin_unlock_bh(&bp->ntp_fltr_lock); 13010 synchronize_rcu(); 13011 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 13012 kfree(fltr); 13013 } 13014 } 13015 } 13016 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13017 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13018 } 13019 13020 #else 13021 13022 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13023 { 13024 } 13025 13026 #endif /* CONFIG_RFS_ACCEL */ 13027 13028 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 13029 { 13030 struct bnxt *bp = netdev_priv(netdev); 13031 struct udp_tunnel_info ti; 13032 unsigned int cmd; 13033 13034 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 13035 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 13036 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13037 else 13038 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13039 13040 if (ti.port) 13041 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 13042 13043 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 13044 } 13045 13046 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 13047 .sync_table = bnxt_udp_tunnel_sync, 13048 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 13049 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 13050 .tables = { 13051 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 13052 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 13053 }, 13054 }; 13055 13056 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13057 struct net_device *dev, u32 filter_mask, 13058 int nlflags) 13059 { 13060 struct bnxt *bp = netdev_priv(dev); 13061 13062 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 13063 nlflags, filter_mask, NULL); 13064 } 13065 13066 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 13067 u16 flags, struct netlink_ext_ack *extack) 13068 { 13069 struct bnxt *bp = netdev_priv(dev); 13070 struct nlattr *attr, *br_spec; 13071 int rem, rc = 0; 13072 13073 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 13074 return -EOPNOTSUPP; 13075 13076 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13077 if (!br_spec) 13078 return -EINVAL; 13079 13080 nla_for_each_nested(attr, br_spec, rem) { 13081 u16 mode; 13082 13083 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13084 continue; 13085 13086 if (nla_len(attr) < sizeof(mode)) 13087 return -EINVAL; 13088 13089 mode = nla_get_u16(attr); 13090 if (mode == bp->br_mode) 13091 break; 13092 13093 rc = bnxt_hwrm_set_br_mode(bp, mode); 13094 if (!rc) 13095 bp->br_mode = mode; 13096 break; 13097 } 13098 return rc; 13099 } 13100 13101 int bnxt_get_port_parent_id(struct net_device *dev, 13102 struct netdev_phys_item_id *ppid) 13103 { 13104 struct bnxt *bp = netdev_priv(dev); 13105 13106 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 13107 return -EOPNOTSUPP; 13108 13109 /* The PF and it's VF-reps only support the switchdev framework */ 13110 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 13111 return -EOPNOTSUPP; 13112 13113 ppid->id_len = sizeof(bp->dsn); 13114 memcpy(ppid->id, bp->dsn, ppid->id_len); 13115 13116 return 0; 13117 } 13118 13119 static const struct net_device_ops bnxt_netdev_ops = { 13120 .ndo_open = bnxt_open, 13121 .ndo_start_xmit = bnxt_start_xmit, 13122 .ndo_stop = bnxt_close, 13123 .ndo_get_stats64 = bnxt_get_stats64, 13124 .ndo_set_rx_mode = bnxt_set_rx_mode, 13125 .ndo_eth_ioctl = bnxt_ioctl, 13126 .ndo_validate_addr = eth_validate_addr, 13127 .ndo_set_mac_address = bnxt_change_mac_addr, 13128 .ndo_change_mtu = bnxt_change_mtu, 13129 .ndo_fix_features = bnxt_fix_features, 13130 .ndo_set_features = bnxt_set_features, 13131 .ndo_features_check = bnxt_features_check, 13132 .ndo_tx_timeout = bnxt_tx_timeout, 13133 #ifdef CONFIG_BNXT_SRIOV 13134 .ndo_get_vf_config = bnxt_get_vf_config, 13135 .ndo_set_vf_mac = bnxt_set_vf_mac, 13136 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 13137 .ndo_set_vf_rate = bnxt_set_vf_bw, 13138 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 13139 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 13140 .ndo_set_vf_trust = bnxt_set_vf_trust, 13141 #endif 13142 .ndo_setup_tc = bnxt_setup_tc, 13143 #ifdef CONFIG_RFS_ACCEL 13144 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 13145 #endif 13146 .ndo_bpf = bnxt_xdp, 13147 .ndo_xdp_xmit = bnxt_xdp_xmit, 13148 .ndo_bridge_getlink = bnxt_bridge_getlink, 13149 .ndo_bridge_setlink = bnxt_bridge_setlink, 13150 }; 13151 13152 static void bnxt_remove_one(struct pci_dev *pdev) 13153 { 13154 struct net_device *dev = pci_get_drvdata(pdev); 13155 struct bnxt *bp = netdev_priv(dev); 13156 13157 if (BNXT_PF(bp)) 13158 bnxt_sriov_disable(bp); 13159 13160 bnxt_ptp_clear(bp); 13161 pci_disable_pcie_error_reporting(pdev); 13162 unregister_netdev(dev); 13163 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13164 /* Flush any pending tasks */ 13165 cancel_work_sync(&bp->sp_task); 13166 cancel_delayed_work_sync(&bp->fw_reset_task); 13167 bp->sp_event = 0; 13168 13169 bnxt_dl_fw_reporters_destroy(bp); 13170 bnxt_dl_unregister(bp); 13171 bnxt_shutdown_tc(bp); 13172 13173 bnxt_clear_int_mode(bp); 13174 bnxt_hwrm_func_drv_unrgtr(bp); 13175 bnxt_free_hwrm_resources(bp); 13176 bnxt_ethtool_free(bp); 13177 bnxt_dcb_free(bp); 13178 kfree(bp->edev); 13179 bp->edev = NULL; 13180 kfree(bp->ptp_cfg); 13181 bp->ptp_cfg = NULL; 13182 kfree(bp->fw_health); 13183 bp->fw_health = NULL; 13184 bnxt_cleanup_pci(bp); 13185 bnxt_free_ctx_mem(bp); 13186 kfree(bp->ctx); 13187 bp->ctx = NULL; 13188 kfree(bp->rss_indir_tbl); 13189 bp->rss_indir_tbl = NULL; 13190 bnxt_free_port_stats(bp); 13191 free_netdev(dev); 13192 } 13193 13194 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 13195 { 13196 int rc = 0; 13197 struct bnxt_link_info *link_info = &bp->link_info; 13198 13199 bp->phy_flags = 0; 13200 rc = bnxt_hwrm_phy_qcaps(bp); 13201 if (rc) { 13202 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 13203 rc); 13204 return rc; 13205 } 13206 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 13207 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 13208 else 13209 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 13210 if (!fw_dflt) 13211 return 0; 13212 13213 mutex_lock(&bp->link_lock); 13214 rc = bnxt_update_link(bp, false); 13215 if (rc) { 13216 mutex_unlock(&bp->link_lock); 13217 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 13218 rc); 13219 return rc; 13220 } 13221 13222 /* Older firmware does not have supported_auto_speeds, so assume 13223 * that all supported speeds can be autonegotiated. 13224 */ 13225 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 13226 link_info->support_auto_speeds = link_info->support_speeds; 13227 13228 bnxt_init_ethtool_link_settings(bp); 13229 mutex_unlock(&bp->link_lock); 13230 return 0; 13231 } 13232 13233 static int bnxt_get_max_irq(struct pci_dev *pdev) 13234 { 13235 u16 ctrl; 13236 13237 if (!pdev->msix_cap) 13238 return 1; 13239 13240 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 13241 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 13242 } 13243 13244 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13245 int *max_cp) 13246 { 13247 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13248 int max_ring_grps = 0, max_irq; 13249 13250 *max_tx = hw_resc->max_tx_rings; 13251 *max_rx = hw_resc->max_rx_rings; 13252 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 13253 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 13254 bnxt_get_ulp_msix_num(bp), 13255 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 13256 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 13257 *max_cp = min_t(int, *max_cp, max_irq); 13258 max_ring_grps = hw_resc->max_hw_ring_grps; 13259 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 13260 *max_cp -= 1; 13261 *max_rx -= 2; 13262 } 13263 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13264 *max_rx >>= 1; 13265 if (bp->flags & BNXT_FLAG_CHIP_P5) { 13266 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 13267 /* On P5 chips, max_cp output param should be available NQs */ 13268 *max_cp = max_irq; 13269 } 13270 *max_rx = min_t(int, *max_rx, max_ring_grps); 13271 } 13272 13273 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 13274 { 13275 int rx, tx, cp; 13276 13277 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 13278 *max_rx = rx; 13279 *max_tx = tx; 13280 if (!rx || !tx || !cp) 13281 return -ENOMEM; 13282 13283 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 13284 } 13285 13286 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13287 bool shared) 13288 { 13289 int rc; 13290 13291 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13292 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 13293 /* Not enough rings, try disabling agg rings. */ 13294 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 13295 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13296 if (rc) { 13297 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13298 bp->flags |= BNXT_FLAG_AGG_RINGS; 13299 return rc; 13300 } 13301 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13302 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13303 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13304 bnxt_set_ring_params(bp); 13305 } 13306 13307 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13308 int max_cp, max_stat, max_irq; 13309 13310 /* Reserve minimum resources for RoCE */ 13311 max_cp = bnxt_get_max_func_cp_rings(bp); 13312 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13313 max_irq = bnxt_get_max_func_irqs(bp); 13314 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13315 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13316 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13317 return 0; 13318 13319 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13320 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13321 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13322 max_cp = min_t(int, max_cp, max_irq); 13323 max_cp = min_t(int, max_cp, max_stat); 13324 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13325 if (rc) 13326 rc = 0; 13327 } 13328 return rc; 13329 } 13330 13331 /* In initial default shared ring setting, each shared ring must have a 13332 * RX/TX ring pair. 13333 */ 13334 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13335 { 13336 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13337 bp->rx_nr_rings = bp->cp_nr_rings; 13338 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13339 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13340 } 13341 13342 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13343 { 13344 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13345 13346 if (!bnxt_can_reserve_rings(bp)) 13347 return 0; 13348 13349 if (sh) 13350 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13351 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13352 /* Reduce default rings on multi-port cards so that total default 13353 * rings do not exceed CPU count. 13354 */ 13355 if (bp->port_count > 1) { 13356 int max_rings = 13357 max_t(int, num_online_cpus() / bp->port_count, 1); 13358 13359 dflt_rings = min_t(int, dflt_rings, max_rings); 13360 } 13361 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13362 if (rc) 13363 return rc; 13364 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13365 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13366 if (sh) 13367 bnxt_trim_dflt_sh_rings(bp); 13368 else 13369 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13370 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13371 13372 rc = __bnxt_reserve_rings(bp); 13373 if (rc && rc != -ENODEV) 13374 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13375 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13376 if (sh) 13377 bnxt_trim_dflt_sh_rings(bp); 13378 13379 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13380 if (bnxt_need_reserve_rings(bp)) { 13381 rc = __bnxt_reserve_rings(bp); 13382 if (rc && rc != -ENODEV) 13383 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13384 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13385 } 13386 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13387 bp->rx_nr_rings++; 13388 bp->cp_nr_rings++; 13389 } 13390 if (rc) { 13391 bp->tx_nr_rings = 0; 13392 bp->rx_nr_rings = 0; 13393 } 13394 return rc; 13395 } 13396 13397 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13398 { 13399 int rc; 13400 13401 if (bp->tx_nr_rings) 13402 return 0; 13403 13404 bnxt_ulp_irq_stop(bp); 13405 bnxt_clear_int_mode(bp); 13406 rc = bnxt_set_dflt_rings(bp, true); 13407 if (rc) { 13408 if (BNXT_VF(bp) && rc == -ENODEV) 13409 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13410 else 13411 netdev_err(bp->dev, "Not enough rings available.\n"); 13412 goto init_dflt_ring_err; 13413 } 13414 rc = bnxt_init_int_mode(bp); 13415 if (rc) 13416 goto init_dflt_ring_err; 13417 13418 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13419 13420 bnxt_set_dflt_rfs(bp); 13421 13422 init_dflt_ring_err: 13423 bnxt_ulp_irq_restart(bp, rc); 13424 return rc; 13425 } 13426 13427 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13428 { 13429 int rc; 13430 13431 ASSERT_RTNL(); 13432 bnxt_hwrm_func_qcaps(bp); 13433 13434 if (netif_running(bp->dev)) 13435 __bnxt_close_nic(bp, true, false); 13436 13437 bnxt_ulp_irq_stop(bp); 13438 bnxt_clear_int_mode(bp); 13439 rc = bnxt_init_int_mode(bp); 13440 bnxt_ulp_irq_restart(bp, rc); 13441 13442 if (netif_running(bp->dev)) { 13443 if (rc) 13444 dev_close(bp->dev); 13445 else 13446 rc = bnxt_open_nic(bp, true, false); 13447 } 13448 13449 return rc; 13450 } 13451 13452 static int bnxt_init_mac_addr(struct bnxt *bp) 13453 { 13454 int rc = 0; 13455 13456 if (BNXT_PF(bp)) { 13457 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13458 } else { 13459 #ifdef CONFIG_BNXT_SRIOV 13460 struct bnxt_vf_info *vf = &bp->vf; 13461 bool strict_approval = true; 13462 13463 if (is_valid_ether_addr(vf->mac_addr)) { 13464 /* overwrite netdev dev_addr with admin VF MAC */ 13465 eth_hw_addr_set(bp->dev, vf->mac_addr); 13466 /* Older PF driver or firmware may not approve this 13467 * correctly. 13468 */ 13469 strict_approval = false; 13470 } else { 13471 eth_hw_addr_random(bp->dev); 13472 } 13473 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13474 #endif 13475 } 13476 return rc; 13477 } 13478 13479 static void bnxt_vpd_read_info(struct bnxt *bp) 13480 { 13481 struct pci_dev *pdev = bp->pdev; 13482 unsigned int vpd_size, kw_len; 13483 int pos, size; 13484 u8 *vpd_data; 13485 13486 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13487 if (IS_ERR(vpd_data)) { 13488 pci_warn(pdev, "Unable to read VPD\n"); 13489 return; 13490 } 13491 13492 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13493 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13494 if (pos < 0) 13495 goto read_sn; 13496 13497 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13498 memcpy(bp->board_partno, &vpd_data[pos], size); 13499 13500 read_sn: 13501 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13502 PCI_VPD_RO_KEYWORD_SERIALNO, 13503 &kw_len); 13504 if (pos < 0) 13505 goto exit; 13506 13507 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13508 memcpy(bp->board_serialno, &vpd_data[pos], size); 13509 exit: 13510 kfree(vpd_data); 13511 } 13512 13513 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13514 { 13515 struct pci_dev *pdev = bp->pdev; 13516 u64 qword; 13517 13518 qword = pci_get_dsn(pdev); 13519 if (!qword) { 13520 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13521 return -EOPNOTSUPP; 13522 } 13523 13524 put_unaligned_le64(qword, dsn); 13525 13526 bp->flags |= BNXT_FLAG_DSN_VALID; 13527 return 0; 13528 } 13529 13530 static int bnxt_map_db_bar(struct bnxt *bp) 13531 { 13532 if (!bp->db_size) 13533 return -ENODEV; 13534 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13535 if (!bp->bar1) 13536 return -ENOMEM; 13537 return 0; 13538 } 13539 13540 void bnxt_print_device_info(struct bnxt *bp) 13541 { 13542 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13543 board_info[bp->board_idx].name, 13544 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13545 13546 pcie_print_link_status(bp->pdev); 13547 } 13548 13549 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13550 { 13551 struct net_device *dev; 13552 struct bnxt *bp; 13553 int rc, max_irqs; 13554 13555 if (pci_is_bridge(pdev)) 13556 return -ENODEV; 13557 13558 /* Clear any pending DMA transactions from crash kernel 13559 * while loading driver in capture kernel. 13560 */ 13561 if (is_kdump_kernel()) { 13562 pci_clear_master(pdev); 13563 pcie_flr(pdev); 13564 } 13565 13566 max_irqs = bnxt_get_max_irq(pdev); 13567 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13568 if (!dev) 13569 return -ENOMEM; 13570 13571 bp = netdev_priv(dev); 13572 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 13573 bp->board_idx = ent->driver_data; 13574 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13575 bnxt_set_max_func_irqs(bp, max_irqs); 13576 13577 if (bnxt_vf_pciid(bp->board_idx)) 13578 bp->flags |= BNXT_FLAG_VF; 13579 13580 if (pdev->msix_cap) 13581 bp->flags |= BNXT_FLAG_MSIX_CAP; 13582 13583 rc = bnxt_init_board(pdev, dev); 13584 if (rc < 0) 13585 goto init_err_free; 13586 13587 dev->netdev_ops = &bnxt_netdev_ops; 13588 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13589 dev->ethtool_ops = &bnxt_ethtool_ops; 13590 pci_set_drvdata(pdev, dev); 13591 13592 rc = bnxt_alloc_hwrm_resources(bp); 13593 if (rc) 13594 goto init_err_pci_clean; 13595 13596 mutex_init(&bp->hwrm_cmd_lock); 13597 mutex_init(&bp->link_lock); 13598 13599 rc = bnxt_fw_init_one_p1(bp); 13600 if (rc) 13601 goto init_err_pci_clean; 13602 13603 if (BNXT_PF(bp)) 13604 bnxt_vpd_read_info(bp); 13605 13606 if (BNXT_CHIP_P5(bp)) { 13607 bp->flags |= BNXT_FLAG_CHIP_P5; 13608 if (BNXT_CHIP_SR2(bp)) 13609 bp->flags |= BNXT_FLAG_CHIP_SR2; 13610 } 13611 13612 rc = bnxt_alloc_rss_indir_tbl(bp); 13613 if (rc) 13614 goto init_err_pci_clean; 13615 13616 rc = bnxt_fw_init_one_p2(bp); 13617 if (rc) 13618 goto init_err_pci_clean; 13619 13620 rc = bnxt_map_db_bar(bp); 13621 if (rc) { 13622 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13623 rc); 13624 goto init_err_pci_clean; 13625 } 13626 13627 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13628 NETIF_F_TSO | NETIF_F_TSO6 | 13629 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13630 NETIF_F_GSO_IPXIP4 | 13631 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13632 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13633 NETIF_F_RXCSUM | NETIF_F_GRO; 13634 13635 if (BNXT_SUPPORTS_TPA(bp)) 13636 dev->hw_features |= NETIF_F_LRO; 13637 13638 dev->hw_enc_features = 13639 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13640 NETIF_F_TSO | NETIF_F_TSO6 | 13641 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13642 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13643 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13644 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13645 13646 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13647 NETIF_F_GSO_GRE_CSUM; 13648 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13649 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13650 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13651 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13652 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13653 if (BNXT_SUPPORTS_TPA(bp)) 13654 dev->hw_features |= NETIF_F_GRO_HW; 13655 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13656 if (dev->features & NETIF_F_GRO_HW) 13657 dev->features &= ~NETIF_F_LRO; 13658 dev->priv_flags |= IFF_UNICAST_FLT; 13659 13660 #ifdef CONFIG_BNXT_SRIOV 13661 init_waitqueue_head(&bp->sriov_cfg_wait); 13662 #endif 13663 if (BNXT_SUPPORTS_TPA(bp)) { 13664 bp->gro_func = bnxt_gro_func_5730x; 13665 if (BNXT_CHIP_P4(bp)) 13666 bp->gro_func = bnxt_gro_func_5731x; 13667 else if (BNXT_CHIP_P5(bp)) 13668 bp->gro_func = bnxt_gro_func_5750x; 13669 } 13670 if (!BNXT_CHIP_P4_PLUS(bp)) 13671 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13672 13673 rc = bnxt_init_mac_addr(bp); 13674 if (rc) { 13675 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13676 rc = -EADDRNOTAVAIL; 13677 goto init_err_pci_clean; 13678 } 13679 13680 if (BNXT_PF(bp)) { 13681 /* Read the adapter's DSN to use as the eswitch switch_id */ 13682 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13683 } 13684 13685 /* MTU range: 60 - FW defined max */ 13686 dev->min_mtu = ETH_ZLEN; 13687 dev->max_mtu = bp->max_mtu; 13688 13689 rc = bnxt_probe_phy(bp, true); 13690 if (rc) 13691 goto init_err_pci_clean; 13692 13693 bnxt_set_rx_skb_mode(bp, false); 13694 bnxt_set_tpa_flags(bp); 13695 bnxt_set_ring_params(bp); 13696 rc = bnxt_set_dflt_rings(bp, true); 13697 if (rc) { 13698 if (BNXT_VF(bp) && rc == -ENODEV) { 13699 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13700 } else { 13701 netdev_err(bp->dev, "Not enough rings available.\n"); 13702 rc = -ENOMEM; 13703 } 13704 goto init_err_pci_clean; 13705 } 13706 13707 bnxt_fw_init_one_p3(bp); 13708 13709 bnxt_init_dflt_coal(bp); 13710 13711 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13712 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13713 13714 rc = bnxt_init_int_mode(bp); 13715 if (rc) 13716 goto init_err_pci_clean; 13717 13718 /* No TC has been set yet and rings may have been trimmed due to 13719 * limited MSIX, so we re-initialize the TX rings per TC. 13720 */ 13721 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13722 13723 if (BNXT_PF(bp)) { 13724 if (!bnxt_pf_wq) { 13725 bnxt_pf_wq = 13726 create_singlethread_workqueue("bnxt_pf_wq"); 13727 if (!bnxt_pf_wq) { 13728 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13729 rc = -ENOMEM; 13730 goto init_err_pci_clean; 13731 } 13732 } 13733 rc = bnxt_init_tc(bp); 13734 if (rc) 13735 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13736 rc); 13737 } 13738 13739 bnxt_inv_fw_health_reg(bp); 13740 rc = bnxt_dl_register(bp); 13741 if (rc) 13742 goto init_err_dl; 13743 13744 rc = register_netdev(dev); 13745 if (rc) 13746 goto init_err_cleanup; 13747 13748 bnxt_dl_fw_reporters_create(bp); 13749 13750 bnxt_print_device_info(bp); 13751 13752 pci_save_state(pdev); 13753 return 0; 13754 13755 init_err_cleanup: 13756 bnxt_dl_unregister(bp); 13757 init_err_dl: 13758 bnxt_shutdown_tc(bp); 13759 bnxt_clear_int_mode(bp); 13760 13761 init_err_pci_clean: 13762 bnxt_hwrm_func_drv_unrgtr(bp); 13763 bnxt_free_hwrm_resources(bp); 13764 bnxt_ethtool_free(bp); 13765 bnxt_ptp_clear(bp); 13766 kfree(bp->ptp_cfg); 13767 bp->ptp_cfg = NULL; 13768 kfree(bp->fw_health); 13769 bp->fw_health = NULL; 13770 bnxt_cleanup_pci(bp); 13771 bnxt_free_ctx_mem(bp); 13772 kfree(bp->ctx); 13773 bp->ctx = NULL; 13774 kfree(bp->rss_indir_tbl); 13775 bp->rss_indir_tbl = NULL; 13776 13777 init_err_free: 13778 free_netdev(dev); 13779 return rc; 13780 } 13781 13782 static void bnxt_shutdown(struct pci_dev *pdev) 13783 { 13784 struct net_device *dev = pci_get_drvdata(pdev); 13785 struct bnxt *bp; 13786 13787 if (!dev) 13788 return; 13789 13790 rtnl_lock(); 13791 bp = netdev_priv(dev); 13792 if (!bp) 13793 goto shutdown_exit; 13794 13795 if (netif_running(dev)) 13796 dev_close(dev); 13797 13798 bnxt_ulp_shutdown(bp); 13799 bnxt_clear_int_mode(bp); 13800 pci_disable_device(pdev); 13801 13802 if (system_state == SYSTEM_POWER_OFF) { 13803 pci_wake_from_d3(pdev, bp->wol); 13804 pci_set_power_state(pdev, PCI_D3hot); 13805 } 13806 13807 shutdown_exit: 13808 rtnl_unlock(); 13809 } 13810 13811 #ifdef CONFIG_PM_SLEEP 13812 static int bnxt_suspend(struct device *device) 13813 { 13814 struct net_device *dev = dev_get_drvdata(device); 13815 struct bnxt *bp = netdev_priv(dev); 13816 int rc = 0; 13817 13818 rtnl_lock(); 13819 bnxt_ulp_stop(bp); 13820 if (netif_running(dev)) { 13821 netif_device_detach(dev); 13822 rc = bnxt_close(dev); 13823 } 13824 bnxt_hwrm_func_drv_unrgtr(bp); 13825 pci_disable_device(bp->pdev); 13826 bnxt_free_ctx_mem(bp); 13827 kfree(bp->ctx); 13828 bp->ctx = NULL; 13829 rtnl_unlock(); 13830 return rc; 13831 } 13832 13833 static int bnxt_resume(struct device *device) 13834 { 13835 struct net_device *dev = dev_get_drvdata(device); 13836 struct bnxt *bp = netdev_priv(dev); 13837 int rc = 0; 13838 13839 rtnl_lock(); 13840 rc = pci_enable_device(bp->pdev); 13841 if (rc) { 13842 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13843 rc); 13844 goto resume_exit; 13845 } 13846 pci_set_master(bp->pdev); 13847 if (bnxt_hwrm_ver_get(bp)) { 13848 rc = -ENODEV; 13849 goto resume_exit; 13850 } 13851 rc = bnxt_hwrm_func_reset(bp); 13852 if (rc) { 13853 rc = -EBUSY; 13854 goto resume_exit; 13855 } 13856 13857 rc = bnxt_hwrm_func_qcaps(bp); 13858 if (rc) 13859 goto resume_exit; 13860 13861 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13862 rc = -ENODEV; 13863 goto resume_exit; 13864 } 13865 13866 bnxt_get_wol_settings(bp); 13867 if (netif_running(dev)) { 13868 rc = bnxt_open(dev); 13869 if (!rc) 13870 netif_device_attach(dev); 13871 } 13872 13873 resume_exit: 13874 bnxt_ulp_start(bp, rc); 13875 if (!rc) 13876 bnxt_reenable_sriov(bp); 13877 rtnl_unlock(); 13878 return rc; 13879 } 13880 13881 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13882 #define BNXT_PM_OPS (&bnxt_pm_ops) 13883 13884 #else 13885 13886 #define BNXT_PM_OPS NULL 13887 13888 #endif /* CONFIG_PM_SLEEP */ 13889 13890 /** 13891 * bnxt_io_error_detected - called when PCI error is detected 13892 * @pdev: Pointer to PCI device 13893 * @state: The current pci connection state 13894 * 13895 * This function is called after a PCI bus error affecting 13896 * this device has been detected. 13897 */ 13898 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13899 pci_channel_state_t state) 13900 { 13901 struct net_device *netdev = pci_get_drvdata(pdev); 13902 struct bnxt *bp = netdev_priv(netdev); 13903 13904 netdev_info(netdev, "PCI I/O error detected\n"); 13905 13906 rtnl_lock(); 13907 netif_device_detach(netdev); 13908 13909 bnxt_ulp_stop(bp); 13910 13911 if (state == pci_channel_io_perm_failure) { 13912 rtnl_unlock(); 13913 return PCI_ERS_RESULT_DISCONNECT; 13914 } 13915 13916 if (state == pci_channel_io_frozen) 13917 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13918 13919 if (netif_running(netdev)) 13920 bnxt_close(netdev); 13921 13922 if (pci_is_enabled(pdev)) 13923 pci_disable_device(pdev); 13924 bnxt_free_ctx_mem(bp); 13925 kfree(bp->ctx); 13926 bp->ctx = NULL; 13927 rtnl_unlock(); 13928 13929 /* Request a slot slot reset. */ 13930 return PCI_ERS_RESULT_NEED_RESET; 13931 } 13932 13933 /** 13934 * bnxt_io_slot_reset - called after the pci bus has been reset. 13935 * @pdev: Pointer to PCI device 13936 * 13937 * Restart the card from scratch, as if from a cold-boot. 13938 * At this point, the card has exprienced a hard reset, 13939 * followed by fixups by BIOS, and has its config space 13940 * set up identically to what it was at cold boot. 13941 */ 13942 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13943 { 13944 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13945 struct net_device *netdev = pci_get_drvdata(pdev); 13946 struct bnxt *bp = netdev_priv(netdev); 13947 int retry = 0; 13948 int err = 0; 13949 int off; 13950 13951 netdev_info(bp->dev, "PCI Slot Reset\n"); 13952 13953 rtnl_lock(); 13954 13955 if (pci_enable_device(pdev)) { 13956 dev_err(&pdev->dev, 13957 "Cannot re-enable PCI device after reset.\n"); 13958 } else { 13959 pci_set_master(pdev); 13960 /* Upon fatal error, our device internal logic that latches to 13961 * BAR value is getting reset and will restore only upon 13962 * rewritting the BARs. 13963 * 13964 * As pci_restore_state() does not re-write the BARs if the 13965 * value is same as saved value earlier, driver needs to 13966 * write the BARs to 0 to force restore, in case of fatal error. 13967 */ 13968 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13969 &bp->state)) { 13970 for (off = PCI_BASE_ADDRESS_0; 13971 off <= PCI_BASE_ADDRESS_5; off += 4) 13972 pci_write_config_dword(bp->pdev, off, 0); 13973 } 13974 pci_restore_state(pdev); 13975 pci_save_state(pdev); 13976 13977 bnxt_inv_fw_health_reg(bp); 13978 bnxt_try_map_fw_health_reg(bp); 13979 13980 /* In some PCIe AER scenarios, firmware may take up to 13981 * 10 seconds to become ready in the worst case. 13982 */ 13983 do { 13984 err = bnxt_try_recover_fw(bp); 13985 if (!err) 13986 break; 13987 retry++; 13988 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 13989 13990 if (err) { 13991 dev_err(&pdev->dev, "Firmware not ready\n"); 13992 goto reset_exit; 13993 } 13994 13995 err = bnxt_hwrm_func_reset(bp); 13996 if (!err) 13997 result = PCI_ERS_RESULT_RECOVERED; 13998 13999 bnxt_ulp_irq_stop(bp); 14000 bnxt_clear_int_mode(bp); 14001 err = bnxt_init_int_mode(bp); 14002 bnxt_ulp_irq_restart(bp, err); 14003 } 14004 14005 reset_exit: 14006 bnxt_clear_reservations(bp, true); 14007 rtnl_unlock(); 14008 14009 return result; 14010 } 14011 14012 /** 14013 * bnxt_io_resume - called when traffic can start flowing again. 14014 * @pdev: Pointer to PCI device 14015 * 14016 * This callback is called when the error recovery driver tells 14017 * us that its OK to resume normal operation. 14018 */ 14019 static void bnxt_io_resume(struct pci_dev *pdev) 14020 { 14021 struct net_device *netdev = pci_get_drvdata(pdev); 14022 struct bnxt *bp = netdev_priv(netdev); 14023 int err; 14024 14025 netdev_info(bp->dev, "PCI Slot Resume\n"); 14026 rtnl_lock(); 14027 14028 err = bnxt_hwrm_func_qcaps(bp); 14029 if (!err && netif_running(netdev)) 14030 err = bnxt_open(netdev); 14031 14032 bnxt_ulp_start(bp, err); 14033 if (!err) { 14034 bnxt_reenable_sriov(bp); 14035 netif_device_attach(netdev); 14036 } 14037 14038 rtnl_unlock(); 14039 } 14040 14041 static const struct pci_error_handlers bnxt_err_handler = { 14042 .error_detected = bnxt_io_error_detected, 14043 .slot_reset = bnxt_io_slot_reset, 14044 .resume = bnxt_io_resume 14045 }; 14046 14047 static struct pci_driver bnxt_pci_driver = { 14048 .name = DRV_MODULE_NAME, 14049 .id_table = bnxt_pci_tbl, 14050 .probe = bnxt_init_one, 14051 .remove = bnxt_remove_one, 14052 .shutdown = bnxt_shutdown, 14053 .driver.pm = BNXT_PM_OPS, 14054 .err_handler = &bnxt_err_handler, 14055 #if defined(CONFIG_BNXT_SRIOV) 14056 .sriov_configure = bnxt_sriov_configure, 14057 #endif 14058 }; 14059 14060 static int __init bnxt_init(void) 14061 { 14062 int err; 14063 14064 bnxt_debug_init(); 14065 err = pci_register_driver(&bnxt_pci_driver); 14066 if (err) { 14067 bnxt_debug_exit(); 14068 return err; 14069 } 14070 14071 return 0; 14072 } 14073 14074 static void __exit bnxt_exit(void) 14075 { 14076 pci_unregister_driver(&bnxt_pci_driver); 14077 if (bnxt_pf_wq) 14078 destroy_workqueue(bnxt_pf_wq); 14079 bnxt_debug_exit(); 14080 } 14081 14082 module_init(bnxt_init); 14083 module_exit(bnxt_exit); 14084