xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_sriov.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	mmiowb();
104 	barrier();
105 
106 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 	   ctl, igu_addr_ctl);
108 	REG_WR(bp, igu_addr_ctl, ctl);
109 	mmiowb();
110 	barrier();
111 }
112 
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 				       struct bnx2x_virtf *vf,
115 				       bool print_err)
116 {
117 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 		if (print_err)
119 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 		else
121 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 		return false;
123 	}
124 	return true;
125 }
126 
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 			      struct bnx2x_queue_init_params *init_params,
130 			      struct bnx2x_queue_setup_params *setup_params,
131 			      u16 q_idx, u16 sb_idx)
132 {
133 	DP(BNX2X_MSG_IOV,
134 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 	   vf->abs_vfid,
136 	   q_idx,
137 	   sb_idx,
138 	   init_params->tx.sb_cq_index,
139 	   init_params->tx.hc_rate,
140 	   setup_params->flags,
141 	   setup_params->txq_params.traffic_type);
142 }
143 
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 			    struct bnx2x_queue_init_params *init_params,
146 			    struct bnx2x_queue_setup_params *setup_params,
147 			    u16 q_idx, u16 sb_idx)
148 {
149 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150 
151 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 	   vf->abs_vfid,
154 	   q_idx,
155 	   sb_idx,
156 	   init_params->rx.sb_cq_index,
157 	   init_params->rx.hc_rate,
158 	   setup_params->gen_params.mtu,
159 	   rxq_params->buf_sz,
160 	   rxq_params->sge_buf_sz,
161 	   rxq_params->max_sges_pkt,
162 	   rxq_params->tpa_agg_sz,
163 	   setup_params->flags,
164 	   rxq_params->drop_flags,
165 	   rxq_params->cache_line_log);
166 }
167 
168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 			   struct bnx2x_virtf *vf,
170 			   struct bnx2x_vf_queue *q,
171 			   struct bnx2x_vf_queue_construct_params *p,
172 			   unsigned long q_type)
173 {
174 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176 
177 	/* INIT */
178 
179 	/* Enable host coalescing in the transition to INIT state */
180 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182 
183 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185 
186 	/* FW SB ID */
187 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189 
190 	/* context */
191 	init_p->cxts[0] = q->cxt;
192 
193 	/* SETUP */
194 
195 	/* Setup-op general parameters */
196 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
199 
200 	/* Setup-op flags:
201 	 * collect statistics, zero statistics, local-switching, security,
202 	 * OV for Flex10, RSS and MCAST for leading
203 	 */
204 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206 
207 	/* for VFs, enable tx switching, bd coherency, and mac address
208 	 * anti-spoofing
209 	 */
210 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 	__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213 
214 	/* Setup-op rx parameters */
215 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217 
218 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221 
222 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 	}
225 
226 	/* Setup-op tx parameters */
227 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 	}
231 }
232 
233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 				 struct bnx2x_virtf *vf, int qid,
235 				 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 	struct bnx2x_queue_state_params *q_params;
238 	int rc = 0;
239 
240 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241 
242 	/* Prepare ramrod information */
243 	q_params = &qctor->qstate;
244 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246 
247 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 		goto out;
251 	}
252 
253 	/* Run Queue 'construction' ramrods */
254 	q_params->cmd = BNX2X_Q_CMD_INIT;
255 	rc = bnx2x_queue_state_change(bp, q_params);
256 	if (rc)
257 		goto out;
258 
259 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 	       sizeof(struct bnx2x_queue_setup_params));
261 	q_params->cmd = BNX2X_Q_CMD_SETUP;
262 	rc = bnx2x_queue_state_change(bp, q_params);
263 	if (rc)
264 		goto out;
265 
266 	/* enable interrupts */
267 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 	return rc;
271 }
272 
273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 				  int qid)
275 {
276 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 				       BNX2X_Q_CMD_TERMINATE,
278 				       BNX2X_Q_CMD_CFC_DEL};
279 	struct bnx2x_queue_state_params q_params;
280 	int rc, i;
281 
282 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283 
284 	/* Prepare ramrod information */
285 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288 
289 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 		goto out;
293 	}
294 
295 	/* Run Queue 'destruction' ramrods */
296 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 		q_params.cmd = cmds[i];
298 		rc = bnx2x_queue_state_change(bp, &q_params);
299 		if (rc) {
300 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 			return rc;
302 		}
303 	}
304 out:
305 	/* Clean Context */
306 	if (bnx2x_vfq(vf, qid, cxt)) {
307 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 	}
310 
311 	return 0;
312 }
313 
314 static void
315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 	if (vf) {
319 		/* the first igu entry belonging to VFs of this PF */
320 		if (!BP_VFDB(bp)->first_vf_igu_entry)
321 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322 
323 		/* the first igu entry belonging to this VF */
324 		if (!vf_sb_count(vf))
325 			vf->igu_base_id = igu_sb_id;
326 
327 		++vf_sb_count(vf);
328 		++vf->sb_count;
329 	}
330 	BP_VFDB(bp)->vf_sbs_pool++;
331 }
332 
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 					struct bnx2x_vlan_mac_obj *obj,
335 					atomic_t *counter)
336 {
337 	struct list_head *pos;
338 	int read_lock;
339 	int cnt = 0;
340 
341 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 	if (read_lock)
343 		DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344 
345 	list_for_each(pos, &obj->head)
346 		cnt++;
347 
348 	if (!read_lock)
349 		bnx2x_vlan_mac_h_read_unlock(bp, obj);
350 
351 	atomic_set(counter, cnt);
352 }
353 
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 				   int qid, bool drv_only, int type)
356 {
357 	struct bnx2x_vlan_mac_ramrod_params ramrod;
358 	int rc;
359 
360 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
362 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
363 
364 	/* Prepare ramrod params */
365 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
366 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
367 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
368 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
369 	} else if (type == BNX2X_VF_FILTER_MAC) {
370 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
371 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
372 	} else {
373 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
374 	}
375 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
376 
377 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
378 	if (drv_only)
379 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
380 	else
381 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
382 
383 	/* Start deleting */
384 	rc = ramrod.vlan_mac_obj->delete_all(bp,
385 					     ramrod.vlan_mac_obj,
386 					     &ramrod.user_req.vlan_mac_flags,
387 					     &ramrod.ramrod_flags);
388 	if (rc) {
389 		BNX2X_ERR("Failed to delete all %s\n",
390 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
391 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
392 		return rc;
393 	}
394 
395 	return 0;
396 }
397 
398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
399 				    struct bnx2x_virtf *vf, int qid,
400 				    struct bnx2x_vf_mac_vlan_filter *filter,
401 				    bool drv_only)
402 {
403 	struct bnx2x_vlan_mac_ramrod_params ramrod;
404 	int rc;
405 
406 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
407 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
408 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
409 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
410 
411 	/* Prepare ramrod params */
412 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
414 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
415 		ramrod.user_req.u.vlan.vlan = filter->vid;
416 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
417 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
418 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
420 		ramrod.user_req.u.vlan.vlan = filter->vid;
421 	} else {
422 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
423 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
424 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
425 	}
426 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
427 					    BNX2X_VLAN_MAC_DEL;
428 
429 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
430 	if (drv_only)
431 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
432 	else
433 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
434 
435 	/* Add/Remove the filter */
436 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
437 	if (rc && rc != -EEXIST) {
438 		BNX2X_ERR("Failed to %s %s\n",
439 			  filter->add ? "add" : "delete",
440 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
441 				"VLAN-MAC" :
442 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
443 				"MAC" : "VLAN");
444 		return rc;
445 	}
446 
447 	return 0;
448 }
449 
450 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
451 				  struct bnx2x_vf_mac_vlan_filters *filters,
452 				  int qid, bool drv_only)
453 {
454 	int rc = 0, i;
455 
456 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
457 
458 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
459 		return -EINVAL;
460 
461 	/* Prepare ramrod params */
462 	for (i = 0; i < filters->count; i++) {
463 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
464 					      &filters->filters[i], drv_only);
465 		if (rc)
466 			break;
467 	}
468 
469 	/* Rollback if needed */
470 	if (i != filters->count) {
471 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
472 			  i, filters->count + 1);
473 		while (--i >= 0) {
474 			filters->filters[i].add = !filters->filters[i].add;
475 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
476 						 &filters->filters[i],
477 						 drv_only);
478 		}
479 	}
480 
481 	/* It's our responsibility to free the filters */
482 	kfree(filters);
483 
484 	return rc;
485 }
486 
487 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
488 			 struct bnx2x_vf_queue_construct_params *qctor)
489 {
490 	int rc;
491 
492 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
493 
494 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
495 	if (rc)
496 		goto op_err;
497 
498 	/* Schedule the configuration of any pending vlan filters */
499 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
500 			       BNX2X_MSG_IOV);
501 	return 0;
502 op_err:
503 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
504 	return rc;
505 }
506 
507 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
508 			       int qid)
509 {
510 	int rc;
511 
512 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
513 
514 	/* If needed, clean the filtering data base */
515 	if ((qid == LEADING_IDX) &&
516 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
517 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
518 					     BNX2X_VF_FILTER_VLAN_MAC);
519 		if (rc)
520 			goto op_err;
521 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
522 					     BNX2X_VF_FILTER_VLAN);
523 		if (rc)
524 			goto op_err;
525 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
526 					     BNX2X_VF_FILTER_MAC);
527 		if (rc)
528 			goto op_err;
529 	}
530 
531 	/* Terminate queue */
532 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
533 		struct bnx2x_queue_state_params qstate;
534 
535 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
536 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
537 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
538 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
539 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
540 		rc = bnx2x_queue_state_change(bp, &qstate);
541 		if (rc)
542 			goto op_err;
543 	}
544 
545 	return 0;
546 op_err:
547 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
548 	return rc;
549 }
550 
551 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
552 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
553 {
554 	struct bnx2x_mcast_list_elem *mc = NULL;
555 	struct bnx2x_mcast_ramrod_params mcast;
556 	int rc, i;
557 
558 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
559 
560 	/* Prepare Multicast command */
561 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
562 	mcast.mcast_obj = &vf->mcast_obj;
563 	if (drv_only)
564 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
565 	else
566 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
567 	if (mc_num) {
568 		mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
569 			     GFP_KERNEL);
570 		if (!mc) {
571 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
572 			return -ENOMEM;
573 		}
574 	}
575 
576 	/* clear existing mcasts */
577 	mcast.mcast_list_len = vf->mcast_list_len;
578 	vf->mcast_list_len = mc_num;
579 	rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
580 	if (rc) {
581 		BNX2X_ERR("Failed to remove multicasts\n");
582 		kfree(mc);
583 		return rc;
584 	}
585 
586 	/* update mcast list on the ramrod params */
587 	if (mc_num) {
588 		INIT_LIST_HEAD(&mcast.mcast_list);
589 		for (i = 0; i < mc_num; i++) {
590 			mc[i].mac = mcasts[i];
591 			list_add_tail(&mc[i].link,
592 				      &mcast.mcast_list);
593 		}
594 
595 		/* add new mcasts */
596 		mcast.mcast_list_len = mc_num;
597 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD);
598 		if (rc)
599 			BNX2X_ERR("Faled to add multicasts\n");
600 		kfree(mc);
601 	}
602 
603 	return rc;
604 }
605 
606 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
607 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
608 				  struct bnx2x_virtf *vf,
609 				  unsigned long accept_flags)
610 {
611 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
612 
613 	memset(ramrod, 0, sizeof(*ramrod));
614 	ramrod->cid = vfq->cid;
615 	ramrod->cl_id = vfq_cl_id(vf, vfq);
616 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
617 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
618 	ramrod->rx_accept_flags = accept_flags;
619 	ramrod->tx_accept_flags = accept_flags;
620 	ramrod->pstate = &vf->filter_state;
621 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
622 
623 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
624 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
625 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
626 
627 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
628 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
629 }
630 
631 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
632 		    int qid, unsigned long accept_flags)
633 {
634 	struct bnx2x_rx_mode_ramrod_params ramrod;
635 
636 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
637 
638 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
639 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
640 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
641 	return bnx2x_config_rx_mode(bp, &ramrod);
642 }
643 
644 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
645 {
646 	int rc;
647 
648 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
649 
650 	/* Remove all classification configuration for leading queue */
651 	if (qid == LEADING_IDX) {
652 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
653 		if (rc)
654 			goto op_err;
655 
656 		/* Remove filtering if feasible */
657 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
658 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
659 						     false,
660 						     BNX2X_VF_FILTER_VLAN_MAC);
661 			if (rc)
662 				goto op_err;
663 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
664 						     false,
665 						     BNX2X_VF_FILTER_VLAN);
666 			if (rc)
667 				goto op_err;
668 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
669 						     false,
670 						     BNX2X_VF_FILTER_MAC);
671 			if (rc)
672 				goto op_err;
673 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
674 			if (rc)
675 				goto op_err;
676 		}
677 	}
678 
679 	/* Destroy queue */
680 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
681 	if (rc)
682 		goto op_err;
683 	return rc;
684 op_err:
685 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
686 		  vf->abs_vfid, qid, rc);
687 	return rc;
688 }
689 
690 /* VF enable primitives
691  * when pretend is required the caller is responsible
692  * for calling pretend prior to calling these routines
693  */
694 
695 /* internal vf enable - until vf is enabled internally all transactions
696  * are blocked. This routine should always be called last with pretend.
697  */
698 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
699 {
700 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
701 }
702 
703 /* clears vf error in all semi blocks */
704 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
705 {
706 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
707 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
708 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
709 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
710 }
711 
712 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
713 {
714 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
715 	u32 was_err_reg = 0;
716 
717 	switch (was_err_group) {
718 	case 0:
719 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
720 	    break;
721 	case 1:
722 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
723 	    break;
724 	case 2:
725 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
726 	    break;
727 	case 3:
728 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
729 	    break;
730 	}
731 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
732 }
733 
734 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
735 {
736 	int i;
737 	u32 val;
738 
739 	/* Set VF masks and configuration - pretend */
740 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
741 
742 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
743 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
744 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
745 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
746 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
747 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
748 
749 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
750 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
751 	val &= ~IGU_VF_CONF_PARENT_MASK;
752 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
753 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
754 
755 	DP(BNX2X_MSG_IOV,
756 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
757 	   vf->abs_vfid, val);
758 
759 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
760 
761 	/* iterate over all queues, clear sb consumer */
762 	for (i = 0; i < vf_sb_count(vf); i++) {
763 		u8 igu_sb_id = vf_igu_sb(vf, i);
764 
765 		/* zero prod memory */
766 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
767 
768 		/* clear sb state machine */
769 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
770 				       false /* VF */);
771 
772 		/* disable + update */
773 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
774 				    IGU_INT_DISABLE, 1);
775 	}
776 }
777 
778 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
779 {
780 	/* set the VF-PF association in the FW */
781 	storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
782 	storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
783 
784 	/* clear vf errors*/
785 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
786 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
787 
788 	/* internal vf-enable - pretend */
789 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
790 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
791 	bnx2x_vf_enable_internal(bp, true);
792 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
793 }
794 
795 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
796 {
797 	/* Reset vf in IGU  interrupts are still disabled */
798 	bnx2x_vf_igu_reset(bp, vf);
799 
800 	/* pretend to enable the vf with the PBF */
801 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
802 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
803 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
804 }
805 
806 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
807 {
808 	struct pci_dev *dev;
809 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
810 
811 	if (!vf)
812 		return false;
813 
814 	dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
815 	if (dev)
816 		return bnx2x_is_pcie_pending(dev);
817 	return false;
818 }
819 
820 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
821 {
822 	/* Verify no pending pci transactions */
823 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
824 		BNX2X_ERR("PCIE Transactions still pending\n");
825 
826 	return 0;
827 }
828 
829 /* must be called after the number of PF queues and the number of VFs are
830  * both known
831  */
832 static void
833 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
834 {
835 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
836 
837 	/* will be set only during VF-ACQUIRE */
838 	resc->num_rxqs = 0;
839 	resc->num_txqs = 0;
840 
841 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
842 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
843 
844 	/* no real limitation */
845 	resc->num_mc_filters = 0;
846 
847 	/* num_sbs already set */
848 	resc->num_sbs = vf->sb_count;
849 }
850 
851 /* FLR routines: */
852 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
853 {
854 	/* reset the state variables */
855 	bnx2x_iov_static_resc(bp, vf);
856 	vf->state = VF_FREE;
857 }
858 
859 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
860 {
861 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
862 
863 	/* DQ usage counter */
864 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
865 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
866 					"DQ VF usage counter timed out",
867 					poll_cnt);
868 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
869 
870 	/* FW cleanup command - poll for the results */
871 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
872 				   poll_cnt))
873 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
874 
875 	/* verify TX hw is flushed */
876 	bnx2x_tx_hw_flushed(bp, poll_cnt);
877 }
878 
879 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
880 {
881 	int rc, i;
882 
883 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
884 
885 	/* the cleanup operations are valid if and only if the VF
886 	 * was first acquired.
887 	 */
888 	for (i = 0; i < vf_rxq_count(vf); i++) {
889 		rc = bnx2x_vf_queue_flr(bp, vf, i);
890 		if (rc)
891 			goto out;
892 	}
893 
894 	/* remove multicasts */
895 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
896 
897 	/* dispatch final cleanup and wait for HW queues to flush */
898 	bnx2x_vf_flr_clnup_hw(bp, vf);
899 
900 	/* release VF resources */
901 	bnx2x_vf_free_resc(bp, vf);
902 
903 	/* re-open the mailbox */
904 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
905 	return;
906 out:
907 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
908 		  vf->abs_vfid, i, rc);
909 }
910 
911 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
912 {
913 	struct bnx2x_virtf *vf;
914 	int i;
915 
916 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
917 		/* VF should be RESET & in FLR cleanup states */
918 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
919 		    !bnx2x_vf(bp, i, flr_clnup_stage))
920 			continue;
921 
922 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
923 		   i, BNX2X_NR_VIRTFN(bp));
924 
925 		vf = BP_VF(bp, i);
926 
927 		/* lock the vf pf channel */
928 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
929 
930 		/* invoke the VF FLR SM */
931 		bnx2x_vf_flr(bp, vf);
932 
933 		/* mark the VF to be ACKED and continue */
934 		vf->flr_clnup_stage = false;
935 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
936 	}
937 
938 	/* Acknowledge the handled VFs.
939 	 * we are acknowledge all the vfs which an flr was requested for, even
940 	 * if amongst them there are such that we never opened, since the mcp
941 	 * will interrupt us immediately again if we only ack some of the bits,
942 	 * resulting in an endless loop. This can happen for example in KVM
943 	 * where an 'all ones' flr request is sometimes given by hyper visor
944 	 */
945 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
946 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
947 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
948 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
949 			  bp->vfdb->flrd_vfs[i]);
950 
951 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
952 
953 	/* clear the acked bits - better yet if the MCP implemented
954 	 * write to clear semantics
955 	 */
956 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
957 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
958 }
959 
960 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
961 {
962 	int i;
963 
964 	/* Read FLR'd VFs */
965 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
966 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
967 
968 	DP(BNX2X_MSG_MCP,
969 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
970 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
971 
972 	for_each_vf(bp, i) {
973 		struct bnx2x_virtf *vf = BP_VF(bp, i);
974 		u32 reset = 0;
975 
976 		if (vf->abs_vfid < 32)
977 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
978 		else
979 			reset = bp->vfdb->flrd_vfs[1] &
980 				(1 << (vf->abs_vfid - 32));
981 
982 		if (reset) {
983 			/* set as reset and ready for cleanup */
984 			vf->state = VF_RESET;
985 			vf->flr_clnup_stage = true;
986 
987 			DP(BNX2X_MSG_IOV,
988 			   "Initiating Final cleanup for VF %d\n",
989 			   vf->abs_vfid);
990 		}
991 	}
992 
993 	/* do the FLR cleanup for all marked VFs*/
994 	bnx2x_vf_flr_clnup(bp);
995 }
996 
997 /* IOV global initialization routines  */
998 void bnx2x_iov_init_dq(struct bnx2x *bp)
999 {
1000 	if (!IS_SRIOV(bp))
1001 		return;
1002 
1003 	/* Set the DQ such that the CID reflect the abs_vfid */
1004 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1005 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1006 
1007 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1008 	 * the PF L2 queues
1009 	 */
1010 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1011 
1012 	/* The VF window size is the log2 of the max number of CIDs per VF */
1013 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1014 
1015 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1016 	 * the Pf doorbell size although the 2 are independent.
1017 	 */
1018 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1019 
1020 	/* No security checks for now -
1021 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1022 	 * CID range 0 - 0x1ffff
1023 	 */
1024 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1025 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1026 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1027 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1028 
1029 	/* set the VF doorbell threshold. This threshold represents the amount
1030 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1031 	 */
1032 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1033 }
1034 
1035 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1036 {
1037 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1038 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1039 }
1040 
1041 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1042 {
1043 	struct pci_dev *dev = bp->pdev;
1044 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1045 
1046 	return dev->bus->number + ((dev->devfn + iov->offset +
1047 				    iov->stride * vfid) >> 8);
1048 }
1049 
1050 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1051 {
1052 	struct pci_dev *dev = bp->pdev;
1053 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1054 
1055 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1056 }
1057 
1058 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1059 {
1060 	int i, n;
1061 	struct pci_dev *dev = bp->pdev;
1062 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1063 
1064 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1065 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1066 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1067 
1068 		size /= iov->total;
1069 		vf->bars[n].bar = start + size * vf->abs_vfid;
1070 		vf->bars[n].size = size;
1071 	}
1072 }
1073 
1074 static int bnx2x_ari_enabled(struct pci_dev *dev)
1075 {
1076 	return dev->bus->self && dev->bus->self->ari_enabled;
1077 }
1078 
1079 static int
1080 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1081 {
1082 	int sb_id;
1083 	u32 val;
1084 	u8 fid, current_pf = 0;
1085 
1086 	/* IGU in normal mode - read CAM */
1087 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1088 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1089 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1090 			continue;
1091 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1092 		if (fid & IGU_FID_ENCODE_IS_PF)
1093 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1094 		else if (current_pf == BP_FUNC(bp))
1095 			bnx2x_vf_set_igu_info(bp, sb_id,
1096 					      (fid & IGU_FID_VF_NUM_MASK));
1097 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1098 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1099 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1100 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1101 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1102 	}
1103 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1104 	return BP_VFDB(bp)->vf_sbs_pool;
1105 }
1106 
1107 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1108 {
1109 	if (bp->vfdb) {
1110 		kfree(bp->vfdb->vfqs);
1111 		kfree(bp->vfdb->vfs);
1112 		kfree(bp->vfdb);
1113 	}
1114 	bp->vfdb = NULL;
1115 }
1116 
1117 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1118 {
1119 	int pos;
1120 	struct pci_dev *dev = bp->pdev;
1121 
1122 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1123 	if (!pos) {
1124 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1125 		return -ENODEV;
1126 	}
1127 
1128 	iov->pos = pos;
1129 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1130 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1131 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1132 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1133 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1134 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1135 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1136 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1137 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1138 
1139 	return 0;
1140 }
1141 
1142 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1143 {
1144 	u32 val;
1145 
1146 	/* read the SRIOV capability structure
1147 	 * The fields can be read via configuration read or
1148 	 * directly from the device (starting at offset PCICFG_OFFSET)
1149 	 */
1150 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1151 		return -ENODEV;
1152 
1153 	/* get the number of SRIOV bars */
1154 	iov->nres = 0;
1155 
1156 	/* read the first_vfid */
1157 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1158 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1159 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1160 
1161 	DP(BNX2X_MSG_IOV,
1162 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1163 	   BP_FUNC(bp),
1164 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1165 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1166 
1167 	return 0;
1168 }
1169 
1170 /* must be called after PF bars are mapped */
1171 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1172 		       int num_vfs_param)
1173 {
1174 	int err, i;
1175 	struct bnx2x_sriov *iov;
1176 	struct pci_dev *dev = bp->pdev;
1177 
1178 	bp->vfdb = NULL;
1179 
1180 	/* verify is pf */
1181 	if (IS_VF(bp))
1182 		return 0;
1183 
1184 	/* verify sriov capability is present in configuration space */
1185 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1186 		return 0;
1187 
1188 	/* verify chip revision */
1189 	if (CHIP_IS_E1x(bp))
1190 		return 0;
1191 
1192 	/* check if SRIOV support is turned off */
1193 	if (!num_vfs_param)
1194 		return 0;
1195 
1196 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1197 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1198 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1199 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1200 		return 0;
1201 	}
1202 
1203 	/* SRIOV can be enabled only with MSIX */
1204 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1205 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1206 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1207 		return 0;
1208 	}
1209 
1210 	err = -EIO;
1211 	/* verify ari is enabled */
1212 	if (!bnx2x_ari_enabled(bp->pdev)) {
1213 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1214 		return 0;
1215 	}
1216 
1217 	/* verify igu is in normal mode */
1218 	if (CHIP_INT_MODE_IS_BC(bp)) {
1219 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1220 		return 0;
1221 	}
1222 
1223 	/* allocate the vfs database */
1224 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1225 	if (!bp->vfdb) {
1226 		BNX2X_ERR("failed to allocate vf database\n");
1227 		err = -ENOMEM;
1228 		goto failed;
1229 	}
1230 
1231 	/* get the sriov info - Linux already collected all the pertinent
1232 	 * information, however the sriov structure is for the private use
1233 	 * of the pci module. Also we want this information regardless
1234 	 * of the hyper-visor.
1235 	 */
1236 	iov = &(bp->vfdb->sriov);
1237 	err = bnx2x_sriov_info(bp, iov);
1238 	if (err)
1239 		goto failed;
1240 
1241 	/* SR-IOV capability was enabled but there are no VFs*/
1242 	if (iov->total == 0)
1243 		goto failed;
1244 
1245 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1246 
1247 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1248 	   num_vfs_param, iov->nr_virtfn);
1249 
1250 	/* allocate the vf array */
1251 	bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1252 				BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1253 	if (!bp->vfdb->vfs) {
1254 		BNX2X_ERR("failed to allocate vf array\n");
1255 		err = -ENOMEM;
1256 		goto failed;
1257 	}
1258 
1259 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1260 	for_each_vf(bp, i) {
1261 		bnx2x_vf(bp, i, index) = i;
1262 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1263 		bnx2x_vf(bp, i, state) = VF_FREE;
1264 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1265 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1266 	}
1267 
1268 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1269 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1270 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1271 		err = -EINVAL;
1272 		goto failed;
1273 	}
1274 
1275 	/* allocate the queue arrays for all VFs */
1276 	bp->vfdb->vfqs = kzalloc(
1277 		BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1278 		GFP_KERNEL);
1279 
1280 	if (!bp->vfdb->vfqs) {
1281 		BNX2X_ERR("failed to allocate vf queue array\n");
1282 		err = -ENOMEM;
1283 		goto failed;
1284 	}
1285 
1286 	/* Prepare the VFs event synchronization mechanism */
1287 	mutex_init(&bp->vfdb->event_mutex);
1288 
1289 	mutex_init(&bp->vfdb->bulletin_mutex);
1290 
1291 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1292 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1293 
1294 	return 0;
1295 failed:
1296 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1297 	__bnx2x_iov_free_vfdb(bp);
1298 	return err;
1299 }
1300 
1301 void bnx2x_iov_remove_one(struct bnx2x *bp)
1302 {
1303 	int vf_idx;
1304 
1305 	/* if SRIOV is not enabled there's nothing to do */
1306 	if (!IS_SRIOV(bp))
1307 		return;
1308 
1309 	bnx2x_disable_sriov(bp);
1310 
1311 	/* disable access to all VFs */
1312 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1313 		bnx2x_pretend_func(bp,
1314 				   HW_VF_HANDLE(bp,
1315 						bp->vfdb->sriov.first_vf_in_pf +
1316 						vf_idx));
1317 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1318 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1319 		bnx2x_vf_enable_internal(bp, 0);
1320 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1321 	}
1322 
1323 	/* free vf database */
1324 	__bnx2x_iov_free_vfdb(bp);
1325 }
1326 
1327 void bnx2x_iov_free_mem(struct bnx2x *bp)
1328 {
1329 	int i;
1330 
1331 	if (!IS_SRIOV(bp))
1332 		return;
1333 
1334 	/* free vfs hw contexts */
1335 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1336 		struct hw_dma *cxt = &bp->vfdb->context[i];
1337 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1338 	}
1339 
1340 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1341 		       BP_VFDB(bp)->sp_dma.mapping,
1342 		       BP_VFDB(bp)->sp_dma.size);
1343 
1344 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1345 		       BP_VF_MBX_DMA(bp)->mapping,
1346 		       BP_VF_MBX_DMA(bp)->size);
1347 
1348 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1349 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1350 		       BP_VF_BULLETIN_DMA(bp)->size);
1351 }
1352 
1353 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1354 {
1355 	size_t tot_size;
1356 	int i, rc = 0;
1357 
1358 	if (!IS_SRIOV(bp))
1359 		return rc;
1360 
1361 	/* allocate vfs hw contexts */
1362 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1363 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1364 
1365 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1366 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1367 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1368 
1369 		if (cxt->size) {
1370 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1371 			if (!cxt->addr)
1372 				goto alloc_mem_err;
1373 		} else {
1374 			cxt->addr = NULL;
1375 			cxt->mapping = 0;
1376 		}
1377 		tot_size -= cxt->size;
1378 	}
1379 
1380 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1381 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1382 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1383 						   tot_size);
1384 	if (!BP_VFDB(bp)->sp_dma.addr)
1385 		goto alloc_mem_err;
1386 	BP_VFDB(bp)->sp_dma.size = tot_size;
1387 
1388 	/* allocate mailboxes */
1389 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1390 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1391 						  tot_size);
1392 	if (!BP_VF_MBX_DMA(bp)->addr)
1393 		goto alloc_mem_err;
1394 
1395 	BP_VF_MBX_DMA(bp)->size = tot_size;
1396 
1397 	/* allocate local bulletin boards */
1398 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1399 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1400 						       tot_size);
1401 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1402 		goto alloc_mem_err;
1403 
1404 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1405 
1406 	return 0;
1407 
1408 alloc_mem_err:
1409 	return -ENOMEM;
1410 }
1411 
1412 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1413 			   struct bnx2x_vf_queue *q)
1414 {
1415 	u8 cl_id = vfq_cl_id(vf, q);
1416 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1417 	unsigned long q_type = 0;
1418 
1419 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1420 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1421 
1422 	/* Queue State object */
1423 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1424 			     cl_id, &q->cid, 1, func_id,
1425 			     bnx2x_vf_sp(bp, vf, q_data),
1426 			     bnx2x_vf_sp_map(bp, vf, q_data),
1427 			     q_type);
1428 
1429 	/* sp indication is set only when vlan/mac/etc. are initialized */
1430 	q->sp_initialized = false;
1431 
1432 	DP(BNX2X_MSG_IOV,
1433 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1434 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1435 }
1436 
1437 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1438 {
1439 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1440 
1441 	if (supported &
1442 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1443 		return 20000;
1444 
1445 	return 10000; /* assume lowest supported speed is 10G */
1446 }
1447 
1448 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1449 {
1450 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1451 	struct pf_vf_bulletin_content *bulletin;
1452 	struct bnx2x_virtf *vf;
1453 	bool update = true;
1454 	int rc = 0;
1455 
1456 	/* sanity and init */
1457 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1458 	if (rc)
1459 		return rc;
1460 
1461 	mutex_lock(&bp->vfdb->bulletin_mutex);
1462 
1463 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1464 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1465 
1466 		bulletin->link_speed = state->line_speed;
1467 		bulletin->link_flags = 0;
1468 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1469 			     &state->link_report_flags))
1470 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1471 		if (test_bit(BNX2X_LINK_REPORT_FD,
1472 			     &state->link_report_flags))
1473 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1474 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1475 			     &state->link_report_flags))
1476 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1477 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1478 			     &state->link_report_flags))
1479 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1480 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1481 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1482 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1483 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1484 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1485 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1486 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1487 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1488 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1489 	} else {
1490 		update = false;
1491 	}
1492 
1493 	if (update) {
1494 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1495 		   "vf %d mode %u speed %d flags %x\n", idx,
1496 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1497 
1498 		/* Post update on VF's bulletin board */
1499 		rc = bnx2x_post_vf_bulletin(bp, idx);
1500 		if (rc) {
1501 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1502 			goto out;
1503 		}
1504 	}
1505 
1506 out:
1507 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1508 	return rc;
1509 }
1510 
1511 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1512 {
1513 	struct bnx2x *bp = netdev_priv(dev);
1514 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1515 
1516 	if (!vf)
1517 		return -EINVAL;
1518 
1519 	if (vf->link_cfg == link_state)
1520 		return 0; /* nothing todo */
1521 
1522 	vf->link_cfg = link_state;
1523 
1524 	return bnx2x_iov_link_update_vf(bp, idx);
1525 }
1526 
1527 void bnx2x_iov_link_update(struct bnx2x *bp)
1528 {
1529 	int vfid;
1530 
1531 	if (!IS_SRIOV(bp))
1532 		return;
1533 
1534 	for_each_vf(bp, vfid)
1535 		bnx2x_iov_link_update_vf(bp, vfid);
1536 }
1537 
1538 /* called by bnx2x_nic_load */
1539 int bnx2x_iov_nic_init(struct bnx2x *bp)
1540 {
1541 	int vfid;
1542 
1543 	if (!IS_SRIOV(bp)) {
1544 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1545 		return 0;
1546 	}
1547 
1548 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1549 
1550 	/* let FLR complete ... */
1551 	msleep(100);
1552 
1553 	/* initialize vf database */
1554 	for_each_vf(bp, vfid) {
1555 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1556 
1557 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1558 			BNX2X_CIDS_PER_VF;
1559 
1560 		union cdu_context *base_cxt = (union cdu_context *)
1561 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1562 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1563 
1564 		DP(BNX2X_MSG_IOV,
1565 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1566 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1567 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1568 
1569 		/* init statically provisioned resources */
1570 		bnx2x_iov_static_resc(bp, vf);
1571 
1572 		/* queues are initialized during VF-ACQUIRE */
1573 		vf->filter_state = 0;
1574 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1575 
1576 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1577 				       vf_vlan_rules_cnt(vf));
1578 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1579 				       vf_mac_rules_cnt(vf));
1580 
1581 		/*  init mcast object - This object will be re-initialized
1582 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1583 		 *  It needs to be initialized here so that it can be safely
1584 		 *  handled by a subsequent FLR flow.
1585 		 */
1586 		vf->mcast_list_len = 0;
1587 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1588 				     0xFF, 0xFF, 0xFF,
1589 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1590 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1591 				     BNX2X_FILTER_MCAST_PENDING,
1592 				     &vf->filter_state,
1593 				     BNX2X_OBJ_TYPE_RX_TX);
1594 
1595 		/* set the mailbox message addresses */
1596 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1597 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1598 			MBX_MSG_ALIGNED_SIZE);
1599 
1600 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1601 			vfid * MBX_MSG_ALIGNED_SIZE;
1602 
1603 		/* Enable vf mailbox */
1604 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1605 	}
1606 
1607 	/* Final VF init */
1608 	for_each_vf(bp, vfid) {
1609 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1610 
1611 		/* fill in the BDF and bars */
1612 		vf->bus = bnx2x_vf_bus(bp, vfid);
1613 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1614 		bnx2x_vf_set_bars(bp, vf);
1615 
1616 		DP(BNX2X_MSG_IOV,
1617 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1618 		   vf->abs_vfid, vf->bus, vf->devfn,
1619 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1620 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1621 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 /* called by bnx2x_chip_cleanup */
1628 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1629 {
1630 	int i;
1631 
1632 	if (!IS_SRIOV(bp))
1633 		return 0;
1634 
1635 	/* release all the VFs */
1636 	for_each_vf(bp, i)
1637 		bnx2x_vf_release(bp, BP_VF(bp, i));
1638 
1639 	return 0;
1640 }
1641 
1642 /* called by bnx2x_init_hw_func, returns the next ilt line */
1643 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1644 {
1645 	int i;
1646 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1647 
1648 	if (!IS_SRIOV(bp))
1649 		return line;
1650 
1651 	/* set vfs ilt lines */
1652 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1653 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1654 
1655 		ilt->lines[line+i].page = hw_cxt->addr;
1656 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1657 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1658 	}
1659 	return line + i;
1660 }
1661 
1662 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1663 {
1664 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1665 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1666 }
1667 
1668 static
1669 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1670 					struct bnx2x_vf_queue *vfq,
1671 					union event_ring_elem *elem)
1672 {
1673 	unsigned long ramrod_flags = 0;
1674 	int rc = 0;
1675 
1676 	/* Always push next commands out, don't wait here */
1677 	set_bit(RAMROD_CONT, &ramrod_flags);
1678 
1679 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
1680 	case BNX2X_FILTER_MAC_PENDING:
1681 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1682 					   &ramrod_flags);
1683 		break;
1684 	case BNX2X_FILTER_VLAN_PENDING:
1685 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1686 					    &ramrod_flags);
1687 		break;
1688 	default:
1689 		BNX2X_ERR("Unsupported classification command: %d\n",
1690 			  elem->message.data.eth_event.echo);
1691 		return;
1692 	}
1693 	if (rc < 0)
1694 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1695 	else if (rc > 0)
1696 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1697 }
1698 
1699 static
1700 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1701 			       struct bnx2x_virtf *vf)
1702 {
1703 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1704 	int rc;
1705 
1706 	rparam.mcast_obj = &vf->mcast_obj;
1707 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1708 
1709 	/* If there are pending mcast commands - send them */
1710 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1711 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1712 		if (rc < 0)
1713 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1714 				  rc);
1715 	}
1716 }
1717 
1718 static
1719 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1720 				 struct bnx2x_virtf *vf)
1721 {
1722 	smp_mb__before_atomic();
1723 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1724 	smp_mb__after_atomic();
1725 }
1726 
1727 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1728 					   struct bnx2x_virtf *vf)
1729 {
1730 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1731 }
1732 
1733 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1734 {
1735 	struct bnx2x_virtf *vf;
1736 	int qidx = 0, abs_vfid;
1737 	u8 opcode;
1738 	u16 cid = 0xffff;
1739 
1740 	if (!IS_SRIOV(bp))
1741 		return 1;
1742 
1743 	/* first get the cid - the only events we handle here are cfc-delete
1744 	 * and set-mac completion
1745 	 */
1746 	opcode = elem->message.opcode;
1747 
1748 	switch (opcode) {
1749 	case EVENT_RING_OPCODE_CFC_DEL:
1750 		cid = SW_CID((__force __le32)
1751 			     elem->message.data.cfc_del_event.cid);
1752 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1753 		break;
1754 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1755 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1756 	case EVENT_RING_OPCODE_FILTERS_RULES:
1757 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1758 		cid = (elem->message.data.eth_event.echo &
1759 		       BNX2X_SWCID_MASK);
1760 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1761 		break;
1762 	case EVENT_RING_OPCODE_VF_FLR:
1763 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1764 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1765 		   abs_vfid);
1766 		goto get_vf;
1767 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1768 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1769 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1770 			  abs_vfid,
1771 			  elem->message.data.malicious_vf_event.err_id);
1772 		goto get_vf;
1773 	default:
1774 		return 1;
1775 	}
1776 
1777 	/* check if the cid is the VF range */
1778 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1779 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1780 		return 1;
1781 	}
1782 
1783 	/* extract vf and rxq index from vf_cid - relies on the following:
1784 	 * 1. vfid on cid reflects the true abs_vfid
1785 	 * 2. The max number of VFs (per path) is 64
1786 	 */
1787 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1788 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1789 get_vf:
1790 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1791 
1792 	if (!vf) {
1793 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1794 			  cid, abs_vfid);
1795 		return 0;
1796 	}
1797 
1798 	switch (opcode) {
1799 	case EVENT_RING_OPCODE_CFC_DEL:
1800 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1801 		   vf->abs_vfid, qidx);
1802 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1803 						       &vfq_get(vf,
1804 								qidx)->sp_obj,
1805 						       BNX2X_Q_CMD_CFC_DEL);
1806 		break;
1807 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1808 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1809 		   vf->abs_vfid, qidx);
1810 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1811 		break;
1812 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1813 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1814 		   vf->abs_vfid, qidx);
1815 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1816 		break;
1817 	case EVENT_RING_OPCODE_FILTERS_RULES:
1818 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1819 		   vf->abs_vfid, qidx);
1820 		bnx2x_vf_handle_filters_eqe(bp, vf);
1821 		break;
1822 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1823 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1824 		   vf->abs_vfid, qidx);
1825 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1826 	case EVENT_RING_OPCODE_VF_FLR:
1827 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1828 		/* Do nothing for now */
1829 		return 0;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1836 {
1837 	/* extract the vf from vf_cid - relies on the following:
1838 	 * 1. vfid on cid reflects the true abs_vfid
1839 	 * 2. The max number of VFs (per path) is 64
1840 	 */
1841 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1842 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1843 }
1844 
1845 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1846 				struct bnx2x_queue_sp_obj **q_obj)
1847 {
1848 	struct bnx2x_virtf *vf;
1849 
1850 	if (!IS_SRIOV(bp))
1851 		return;
1852 
1853 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1854 
1855 	if (vf) {
1856 		/* extract queue index from vf_cid - relies on the following:
1857 		 * 1. vfid on cid reflects the true abs_vfid
1858 		 * 2. The max number of VFs (per path) is 64
1859 		 */
1860 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1861 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1862 	} else {
1863 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1864 	}
1865 }
1866 
1867 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1868 {
1869 	int i;
1870 	int first_queue_query_index, num_queues_req;
1871 	dma_addr_t cur_data_offset;
1872 	struct stats_query_entry *cur_query_entry;
1873 	u8 stats_count = 0;
1874 	bool is_fcoe = false;
1875 
1876 	if (!IS_SRIOV(bp))
1877 		return;
1878 
1879 	if (!NO_FCOE(bp))
1880 		is_fcoe = true;
1881 
1882 	/* fcoe adds one global request and one queue request */
1883 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1884 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1885 		(is_fcoe ? 0 : 1);
1886 
1887 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1888 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1889 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1890 	       first_queue_query_index + num_queues_req);
1891 
1892 	cur_data_offset = bp->fw_stats_data_mapping +
1893 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1894 		num_queues_req * sizeof(struct per_queue_stats);
1895 
1896 	cur_query_entry = &bp->fw_stats_req->
1897 		query[first_queue_query_index + num_queues_req];
1898 
1899 	for_each_vf(bp, i) {
1900 		int j;
1901 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1902 
1903 		if (vf->state != VF_ENABLED) {
1904 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1905 			       "vf %d not enabled so no stats for it\n",
1906 			       vf->abs_vfid);
1907 			continue;
1908 		}
1909 
1910 		DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1911 		for_each_vfq(vf, j) {
1912 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1913 
1914 			dma_addr_t q_stats_addr =
1915 				vf->fw_stat_map + j * vf->stats_stride;
1916 
1917 			/* collect stats fro active queues only */
1918 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1919 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1920 				continue;
1921 
1922 			/* create stats query entry for this queue */
1923 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1924 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1925 			cur_query_entry->funcID =
1926 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1927 			cur_query_entry->address.hi =
1928 				cpu_to_le32(U64_HI(q_stats_addr));
1929 			cur_query_entry->address.lo =
1930 				cpu_to_le32(U64_LO(q_stats_addr));
1931 			DP(BNX2X_MSG_IOV,
1932 			   "added address %x %x for vf %d queue %d client %d\n",
1933 			   cur_query_entry->address.hi,
1934 			   cur_query_entry->address.lo, cur_query_entry->funcID,
1935 			   j, cur_query_entry->index);
1936 			cur_query_entry++;
1937 			cur_data_offset += sizeof(struct per_queue_stats);
1938 			stats_count++;
1939 
1940 			/* all stats are coalesced to the leading queue */
1941 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1942 				break;
1943 		}
1944 	}
1945 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1946 }
1947 
1948 /* VF API helpers */
1949 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1950 				u8 enable)
1951 {
1952 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1953 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1954 
1955 	REG_WR(bp, reg, val);
1956 }
1957 
1958 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1959 {
1960 	int i;
1961 
1962 	for_each_vfq(vf, i)
1963 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1964 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1965 }
1966 
1967 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1968 {
1969 	u32 val;
1970 
1971 	/* clear the VF configuration - pretend */
1972 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1973 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1974 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1975 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1976 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1977 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1978 }
1979 
1980 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1981 {
1982 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1983 		     BNX2X_VF_MAX_QUEUES);
1984 }
1985 
1986 static
1987 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1988 			    struct vf_pf_resc_request *req_resc)
1989 {
1990 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1991 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1992 
1993 	return ((req_resc->num_rxqs <= rxq_cnt) &&
1994 		(req_resc->num_txqs <= txq_cnt) &&
1995 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
1996 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1997 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1998 }
1999 
2000 /* CORE VF API */
2001 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2002 		     struct vf_pf_resc_request *resc)
2003 {
2004 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2005 		BNX2X_CIDS_PER_VF;
2006 
2007 	union cdu_context *base_cxt = (union cdu_context *)
2008 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2009 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2010 	int i;
2011 
2012 	/* if state is 'acquired' the VF was not released or FLR'd, in
2013 	 * this case the returned resources match the acquired already
2014 	 * acquired resources. Verify that the requested numbers do
2015 	 * not exceed the already acquired numbers.
2016 	 */
2017 	if (vf->state == VF_ACQUIRED) {
2018 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2019 		   vf->abs_vfid);
2020 
2021 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2022 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2023 				  vf->abs_vfid);
2024 			return -EINVAL;
2025 		}
2026 		return 0;
2027 	}
2028 
2029 	/* Otherwise vf state must be 'free' or 'reset' */
2030 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2031 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2032 			  vf->abs_vfid, vf->state);
2033 		return -EINVAL;
2034 	}
2035 
2036 	/* static allocation:
2037 	 * the global maximum number are fixed per VF. Fail the request if
2038 	 * requested number exceed these globals
2039 	 */
2040 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2041 		DP(BNX2X_MSG_IOV,
2042 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2043 		/* set the max resource in the vf */
2044 		return -ENOMEM;
2045 	}
2046 
2047 	/* Set resources counters - 0 request means max available */
2048 	vf_sb_count(vf) = resc->num_sbs;
2049 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2050 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2051 
2052 	DP(BNX2X_MSG_IOV,
2053 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2054 	   vf_sb_count(vf), vf_rxq_count(vf),
2055 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2056 	   vf_vlan_rules_cnt(vf));
2057 
2058 	/* Initialize the queues */
2059 	if (!vf->vfqs) {
2060 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2061 		return -EINVAL;
2062 	}
2063 
2064 	for_each_vfq(vf, i) {
2065 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2066 
2067 		if (!q) {
2068 			BNX2X_ERR("q number %d was not allocated\n", i);
2069 			return -EINVAL;
2070 		}
2071 
2072 		q->index = i;
2073 		q->cxt = &((base_cxt + i)->eth);
2074 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2075 
2076 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2077 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2078 
2079 		/* init SP objects */
2080 		bnx2x_vfq_init(bp, vf, q);
2081 	}
2082 	vf->state = VF_ACQUIRED;
2083 	return 0;
2084 }
2085 
2086 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2087 {
2088 	struct bnx2x_func_init_params func_init = {0};
2089 	int i;
2090 
2091 	/* the sb resources are initialized at this point, do the
2092 	 * FW/HW initializations
2093 	 */
2094 	for_each_vf_sb(vf, i)
2095 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2096 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2097 
2098 	/* Sanity checks */
2099 	if (vf->state != VF_ACQUIRED) {
2100 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2101 		   vf->abs_vfid, vf->state);
2102 		return -EINVAL;
2103 	}
2104 
2105 	/* let FLR complete ... */
2106 	msleep(100);
2107 
2108 	/* FLR cleanup epilogue */
2109 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2110 		return -EBUSY;
2111 
2112 	/* reset IGU VF statistics: MSIX */
2113 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2114 
2115 	/* function setup */
2116 	func_init.pf_id = BP_FUNC(bp);
2117 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2118 	bnx2x_func_init(bp, &func_init);
2119 
2120 	/* Enable the vf */
2121 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2122 	bnx2x_vf_enable_traffic(bp, vf);
2123 
2124 	/* queue protection table */
2125 	for_each_vfq(vf, i)
2126 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2127 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2128 
2129 	vf->state = VF_ENABLED;
2130 
2131 	/* update vf bulletin board */
2132 	bnx2x_post_vf_bulletin(bp, vf->index);
2133 
2134 	return 0;
2135 }
2136 
2137 struct set_vf_state_cookie {
2138 	struct bnx2x_virtf *vf;
2139 	u8 state;
2140 };
2141 
2142 static void bnx2x_set_vf_state(void *cookie)
2143 {
2144 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2145 
2146 	p->vf->state = p->state;
2147 }
2148 
2149 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2150 {
2151 	int rc = 0, i;
2152 
2153 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2154 
2155 	/* Close all queues */
2156 	for (i = 0; i < vf_rxq_count(vf); i++) {
2157 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2158 		if (rc)
2159 			goto op_err;
2160 	}
2161 
2162 	/* disable the interrupts */
2163 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2164 	bnx2x_vf_igu_disable(bp, vf);
2165 
2166 	/* disable the VF */
2167 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2168 	bnx2x_vf_clr_qtbl(bp, vf);
2169 
2170 	/* need to make sure there are no outstanding stats ramrods which may
2171 	 * cause the device to access the VF's stats buffer which it will free
2172 	 * as soon as we return from the close flow.
2173 	 */
2174 	{
2175 		struct set_vf_state_cookie cookie;
2176 
2177 		cookie.vf = vf;
2178 		cookie.state = VF_ACQUIRED;
2179 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2180 		if (rc)
2181 			goto op_err;
2182 	}
2183 
2184 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2185 
2186 	return 0;
2187 op_err:
2188 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2189 	return rc;
2190 }
2191 
2192 /* VF release can be called either: 1. The VF was acquired but
2193  * not enabled 2. the vf was enabled or in the process of being
2194  * enabled
2195  */
2196 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2197 {
2198 	int rc;
2199 
2200 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2201 	   vf->state == VF_FREE ? "Free" :
2202 	   vf->state == VF_ACQUIRED ? "Acquired" :
2203 	   vf->state == VF_ENABLED ? "Enabled" :
2204 	   vf->state == VF_RESET ? "Reset" :
2205 	   "Unknown");
2206 
2207 	switch (vf->state) {
2208 	case VF_ENABLED:
2209 		rc = bnx2x_vf_close(bp, vf);
2210 		if (rc)
2211 			goto op_err;
2212 		/* Fallthrough to release resources */
2213 	case VF_ACQUIRED:
2214 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2215 		bnx2x_vf_free_resc(bp, vf);
2216 		break;
2217 
2218 	case VF_FREE:
2219 	case VF_RESET:
2220 	default:
2221 		break;
2222 	}
2223 	return 0;
2224 op_err:
2225 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2226 	return rc;
2227 }
2228 
2229 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2230 			struct bnx2x_config_rss_params *rss)
2231 {
2232 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2233 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2234 	return bnx2x_config_rss(bp, rss);
2235 }
2236 
2237 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2238 			struct vfpf_tpa_tlv *tlv,
2239 			struct bnx2x_queue_update_tpa_params *params)
2240 {
2241 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2242 	struct bnx2x_queue_state_params qstate;
2243 	int qid, rc = 0;
2244 
2245 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2246 
2247 	/* Set ramrod params */
2248 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2249 	memcpy(&qstate.params.update_tpa, params,
2250 	       sizeof(struct bnx2x_queue_update_tpa_params));
2251 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2252 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2253 
2254 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2255 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2256 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2257 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2258 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2259 		   U64_LO(sge_addr[qid]));
2260 		rc = bnx2x_queue_state_change(bp, &qstate);
2261 		if (rc) {
2262 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2263 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2264 				  vf->abs_vfid, qid);
2265 			return rc;
2266 		}
2267 	}
2268 
2269 	return rc;
2270 }
2271 
2272 /* VF release ~ VF close + VF release-resources
2273  * Release is the ultimate SW shutdown and is called whenever an
2274  * irrecoverable error is encountered.
2275  */
2276 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2277 {
2278 	int rc;
2279 
2280 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2281 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2282 
2283 	rc = bnx2x_vf_free(bp, vf);
2284 	if (rc)
2285 		WARN(rc,
2286 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2287 		     vf->abs_vfid, rc);
2288 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2289 	return rc;
2290 }
2291 
2292 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2293 			      enum channel_tlvs tlv)
2294 {
2295 	/* we don't lock the channel for unsupported tlvs */
2296 	if (!bnx2x_tlv_supported(tlv)) {
2297 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2298 		return;
2299 	}
2300 
2301 	/* lock the channel */
2302 	mutex_lock(&vf->op_mutex);
2303 
2304 	/* record the locking op */
2305 	vf->op_current = tlv;
2306 
2307 	/* log the lock */
2308 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2309 	   vf->abs_vfid, tlv);
2310 }
2311 
2312 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2313 				enum channel_tlvs expected_tlv)
2314 {
2315 	enum channel_tlvs current_tlv;
2316 
2317 	if (!vf) {
2318 		BNX2X_ERR("VF was %p\n", vf);
2319 		return;
2320 	}
2321 
2322 	current_tlv = vf->op_current;
2323 
2324 	/* we don't unlock the channel for unsupported tlvs */
2325 	if (!bnx2x_tlv_supported(expected_tlv))
2326 		return;
2327 
2328 	WARN(expected_tlv != vf->op_current,
2329 	     "lock mismatch: expected %d found %d", expected_tlv,
2330 	     vf->op_current);
2331 
2332 	/* record the locking op */
2333 	vf->op_current = CHANNEL_TLV_NONE;
2334 
2335 	/* lock the channel */
2336 	mutex_unlock(&vf->op_mutex);
2337 
2338 	/* log the unlock */
2339 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2340 	   vf->abs_vfid, current_tlv);
2341 }
2342 
2343 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2344 {
2345 	struct bnx2x_queue_state_params q_params;
2346 	u32 prev_flags;
2347 	int i, rc;
2348 
2349 	/* Verify changes are needed and record current Tx switching state */
2350 	prev_flags = bp->flags;
2351 	if (enable)
2352 		bp->flags |= TX_SWITCHING;
2353 	else
2354 		bp->flags &= ~TX_SWITCHING;
2355 	if (prev_flags == bp->flags)
2356 		return 0;
2357 
2358 	/* Verify state enables the sending of queue ramrods */
2359 	if ((bp->state != BNX2X_STATE_OPEN) ||
2360 	    (bnx2x_get_q_logical_state(bp,
2361 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2362 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2363 		return 0;
2364 
2365 	/* send q. update ramrod to configure Tx switching */
2366 	memset(&q_params, 0, sizeof(q_params));
2367 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2368 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2369 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2370 		  &q_params.params.update.update_flags);
2371 	if (enable)
2372 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2373 			  &q_params.params.update.update_flags);
2374 	else
2375 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2376 			    &q_params.params.update.update_flags);
2377 
2378 	/* send the ramrod on all the queues of the PF */
2379 	for_each_eth_queue(bp, i) {
2380 		struct bnx2x_fastpath *fp = &bp->fp[i];
2381 
2382 		/* Set the appropriate Queue object */
2383 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2384 
2385 		/* Update the Queue state */
2386 		rc = bnx2x_queue_state_change(bp, &q_params);
2387 		if (rc) {
2388 			BNX2X_ERR("Failed to configure Tx switching\n");
2389 			return rc;
2390 		}
2391 	}
2392 
2393 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2394 	return 0;
2395 }
2396 
2397 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2398 {
2399 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2400 
2401 	if (!IS_SRIOV(bp)) {
2402 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2403 		return -EINVAL;
2404 	}
2405 
2406 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2407 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2408 
2409 	/* HW channel is only operational when PF is up */
2410 	if (bp->state != BNX2X_STATE_OPEN) {
2411 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2412 		return -EINVAL;
2413 	}
2414 
2415 	/* we are always bound by the total_vfs in the configuration space */
2416 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2417 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2418 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2419 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2420 	}
2421 
2422 	bp->requested_nr_virtfn = num_vfs_param;
2423 	if (num_vfs_param == 0) {
2424 		bnx2x_set_pf_tx_switching(bp, false);
2425 		bnx2x_disable_sriov(bp);
2426 		return 0;
2427 	} else {
2428 		return bnx2x_enable_sriov(bp);
2429 	}
2430 }
2431 
2432 #define IGU_ENTRY_SIZE 4
2433 
2434 int bnx2x_enable_sriov(struct bnx2x *bp)
2435 {
2436 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2437 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2438 	u32 igu_entry, address;
2439 	u16 num_vf_queues;
2440 
2441 	if (req_vfs == 0)
2442 		return 0;
2443 
2444 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2445 
2446 	/* statically distribute vf sb pool between VFs */
2447 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2448 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2449 
2450 	/* zero previous values learned from igu cam */
2451 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2452 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2453 
2454 		vf->sb_count = 0;
2455 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2456 	}
2457 	bp->vfdb->vf_sbs_pool = 0;
2458 
2459 	/* prepare IGU cam */
2460 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2461 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2462 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2463 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2464 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2465 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2466 				IGU_REG_MAPPING_MEMORY_VALID;
2467 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2468 			   sb_idx, vf_idx);
2469 			REG_WR(bp, address, igu_entry);
2470 			sb_idx++;
2471 			address += IGU_ENTRY_SIZE;
2472 		}
2473 	}
2474 
2475 	/* Reinitialize vf database according to igu cam */
2476 	bnx2x_get_vf_igu_cam_info(bp);
2477 
2478 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2479 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2480 
2481 	qcount = 0;
2482 	for_each_vf(bp, vf_idx) {
2483 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2484 
2485 		/* set local queue arrays */
2486 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2487 		qcount += vf_sb_count(vf);
2488 		bnx2x_iov_static_resc(bp, vf);
2489 	}
2490 
2491 	/* prepare msix vectors in VF configuration space - the value in the
2492 	 * PCI configuration space should be the index of the last entry,
2493 	 * namely one less than the actual size of the table
2494 	 */
2495 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2496 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2497 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2498 		       num_vf_queues - 1);
2499 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2500 		   vf_idx, num_vf_queues - 1);
2501 	}
2502 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2503 
2504 	/* enable sriov. This will probe all the VFs, and consequentially cause
2505 	 * the "acquire" messages to appear on the VF PF channel.
2506 	 */
2507 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2508 	bnx2x_disable_sriov(bp);
2509 
2510 	rc = bnx2x_set_pf_tx_switching(bp, true);
2511 	if (rc)
2512 		return rc;
2513 
2514 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2515 	if (rc) {
2516 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2517 		return rc;
2518 	}
2519 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2520 	return req_vfs;
2521 }
2522 
2523 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2524 {
2525 	int vfidx;
2526 	struct pf_vf_bulletin_content *bulletin;
2527 
2528 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2529 	for_each_vf(bp, vfidx) {
2530 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2531 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2532 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
2533 	}
2534 }
2535 
2536 void bnx2x_disable_sriov(struct bnx2x *bp)
2537 {
2538 	if (pci_vfs_assigned(bp->pdev)) {
2539 		DP(BNX2X_MSG_IOV,
2540 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2541 		return;
2542 	}
2543 
2544 	pci_disable_sriov(bp->pdev);
2545 }
2546 
2547 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2548 			    struct bnx2x_virtf **vf,
2549 			    struct pf_vf_bulletin_content **bulletin,
2550 			    bool test_queue)
2551 {
2552 	if (bp->state != BNX2X_STATE_OPEN) {
2553 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2554 		return -EINVAL;
2555 	}
2556 
2557 	if (!IS_SRIOV(bp)) {
2558 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2559 		return -EINVAL;
2560 	}
2561 
2562 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2563 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2564 			  vfidx, BNX2X_NR_VIRTFN(bp));
2565 		return -EINVAL;
2566 	}
2567 
2568 	/* init members */
2569 	*vf = BP_VF(bp, vfidx);
2570 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2571 
2572 	if (!*vf) {
2573 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (test_queue && !(*vf)->vfqs) {
2578 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2579 			  vfidx);
2580 		return -EINVAL;
2581 	}
2582 
2583 	if (!*bulletin) {
2584 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2585 			  vfidx);
2586 		return -EINVAL;
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2593 			struct ifla_vf_info *ivi)
2594 {
2595 	struct bnx2x *bp = netdev_priv(dev);
2596 	struct bnx2x_virtf *vf = NULL;
2597 	struct pf_vf_bulletin_content *bulletin = NULL;
2598 	struct bnx2x_vlan_mac_obj *mac_obj;
2599 	struct bnx2x_vlan_mac_obj *vlan_obj;
2600 	int rc;
2601 
2602 	/* sanity and init */
2603 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2604 	if (rc)
2605 		return rc;
2606 
2607 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2608 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2609 	if (!mac_obj || !vlan_obj) {
2610 		BNX2X_ERR("VF partially initialized\n");
2611 		return -EINVAL;
2612 	}
2613 
2614 	ivi->vf = vfidx;
2615 	ivi->qos = 0;
2616 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2617 	ivi->min_tx_rate = 0;
2618 	ivi->spoofchk = 1; /*always enabled */
2619 	if (vf->state == VF_ENABLED) {
2620 		/* mac and vlan are in vlan_mac objects */
2621 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2622 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2623 						0, ETH_ALEN);
2624 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2625 						 (u8 *)&ivi->vlan, 0,
2626 						 VLAN_HLEN);
2627 		}
2628 	} else {
2629 		mutex_lock(&bp->vfdb->bulletin_mutex);
2630 		/* mac */
2631 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2632 			/* mac configured by ndo so its in bulletin board */
2633 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2634 		else
2635 			/* function has not been loaded yet. Show mac as 0s */
2636 			eth_zero_addr(ivi->mac);
2637 
2638 		/* vlan */
2639 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2640 			/* vlan configured by ndo so its in bulletin board */
2641 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2642 		else
2643 			/* function has not been loaded yet. Show vlans as 0s */
2644 			memset(&ivi->vlan, 0, VLAN_HLEN);
2645 
2646 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2647 	}
2648 
2649 	return 0;
2650 }
2651 
2652 /* New mac for VF. Consider these cases:
2653  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2654  *    supply at acquire.
2655  * 2. VF has already been acquired but has not yet initialized - store in local
2656  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2657  *    will configure this mac when it is ready.
2658  * 3. VF has already initialized but has not yet setup a queue - post the new
2659  *    mac on VF's bulletin board right now. VF will configure this mac when it
2660  *    is ready.
2661  * 4. VF has already set a queue - delete any macs already configured for this
2662  *    queue and manually config the new mac.
2663  * In any event, once this function has been called refuse any attempts by the
2664  * VF to configure any mac for itself except for this mac. In case of a race
2665  * where the VF fails to see the new post on its bulletin board before sending a
2666  * mac configuration request, the PF will simply fail the request and VF can try
2667  * again after consulting its bulletin board.
2668  */
2669 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2670 {
2671 	struct bnx2x *bp = netdev_priv(dev);
2672 	int rc, q_logical_state;
2673 	struct bnx2x_virtf *vf = NULL;
2674 	struct pf_vf_bulletin_content *bulletin = NULL;
2675 
2676 	if (!is_valid_ether_addr(mac)) {
2677 		BNX2X_ERR("mac address invalid\n");
2678 		return -EINVAL;
2679 	}
2680 
2681 	/* sanity and init */
2682 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2683 	if (rc)
2684 		return rc;
2685 
2686 	mutex_lock(&bp->vfdb->bulletin_mutex);
2687 
2688 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2689 	 * configuration requests from vf unless match this mac
2690 	 */
2691 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2692 	memcpy(bulletin->mac, mac, ETH_ALEN);
2693 
2694 	/* Post update on VF's bulletin board */
2695 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2696 
2697 	/* release lock before checking return code */
2698 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2699 
2700 	if (rc) {
2701 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2702 		return rc;
2703 	}
2704 
2705 	q_logical_state =
2706 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2707 	if (vf->state == VF_ENABLED &&
2708 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2709 		/* configure the mac in device on this vf's queue */
2710 		unsigned long ramrod_flags = 0;
2711 		struct bnx2x_vlan_mac_obj *mac_obj;
2712 
2713 		/* User should be able to see failure reason in system logs */
2714 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2715 			return -EINVAL;
2716 
2717 		/* must lock vfpf channel to protect against vf flows */
2718 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2719 
2720 		/* remove existing eth macs */
2721 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2722 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2723 		if (rc) {
2724 			BNX2X_ERR("failed to delete eth macs\n");
2725 			rc = -EINVAL;
2726 			goto out;
2727 		}
2728 
2729 		/* remove existing uc list macs */
2730 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2731 		if (rc) {
2732 			BNX2X_ERR("failed to delete uc_list macs\n");
2733 			rc = -EINVAL;
2734 			goto out;
2735 		}
2736 
2737 		/* configure the new mac to device */
2738 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2739 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2740 				  BNX2X_ETH_MAC, &ramrod_flags);
2741 
2742 out:
2743 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2744 	}
2745 
2746 	return rc;
2747 }
2748 
2749 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2750 					 struct bnx2x_virtf *vf, bool accept)
2751 {
2752 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2753 	unsigned long accept_flags;
2754 
2755 	/* need to remove/add the VF's accept_any_vlan bit */
2756 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2757 	if (accept)
2758 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2759 	else
2760 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2761 
2762 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2763 			      accept_flags);
2764 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2765 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2766 }
2767 
2768 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2769 				    u16 vlan, bool add)
2770 {
2771 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2772 	unsigned long ramrod_flags = 0;
2773 	int rc = 0;
2774 
2775 	/* configure the new vlan to device */
2776 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2777 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2778 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2779 	ramrod_param.ramrod_flags = ramrod_flags;
2780 	ramrod_param.user_req.u.vlan.vlan = vlan;
2781 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2782 					: BNX2X_VLAN_MAC_DEL;
2783 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2784 	if (rc) {
2785 		BNX2X_ERR("failed to configure vlan\n");
2786 		return -EINVAL;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
2793 {
2794 	struct pf_vf_bulletin_content *bulletin = NULL;
2795 	struct bnx2x *bp = netdev_priv(dev);
2796 	struct bnx2x_vlan_mac_obj *vlan_obj;
2797 	unsigned long vlan_mac_flags = 0;
2798 	unsigned long ramrod_flags = 0;
2799 	struct bnx2x_virtf *vf = NULL;
2800 	int i, rc;
2801 
2802 	if (vlan > 4095) {
2803 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2804 		return -EINVAL;
2805 	}
2806 
2807 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2808 	   vfidx, vlan, 0);
2809 
2810 	/* sanity and init */
2811 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2812 	if (rc)
2813 		return rc;
2814 
2815 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2816 	 * to the VF since it doesn't have anything to do with it. But it useful
2817 	 * to store it here in case the VF is not up yet and we can only
2818 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2819 	 * Host tag.
2820 	 */
2821 	mutex_lock(&bp->vfdb->bulletin_mutex);
2822 
2823 	if (vlan > 0)
2824 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2825 	else
2826 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2827 	bulletin->vlan = vlan;
2828 
2829 	/* Post update on VF's bulletin board */
2830 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2831 	if (rc)
2832 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2833 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2834 
2835 	/* is vf initialized and queue set up? */
2836 	if (vf->state != VF_ENABLED ||
2837 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2838 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2839 		return rc;
2840 
2841 	/* User should be able to see error in system logs */
2842 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2843 		return -EINVAL;
2844 
2845 	/* must lock vfpf channel to protect against vf flows */
2846 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2847 
2848 	/* remove existing vlans */
2849 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2850 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2851 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2852 				  &ramrod_flags);
2853 	if (rc) {
2854 		BNX2X_ERR("failed to delete vlans\n");
2855 		rc = -EINVAL;
2856 		goto out;
2857 	}
2858 
2859 	/* clear accept_any_vlan when HV forces vlan, otherwise
2860 	 * according to VF capabilities
2861 	 */
2862 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2863 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2864 
2865 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2866 	if (rc)
2867 		goto out;
2868 
2869 	/* send queue update ramrods to configure default vlan and
2870 	 * silent vlan removal
2871 	 */
2872 	for_each_vfq(vf, i) {
2873 		struct bnx2x_queue_state_params q_params = {NULL};
2874 		struct bnx2x_queue_update_params *update_params;
2875 
2876 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2877 
2878 		/* validate the Q is UP */
2879 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2880 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2881 			continue;
2882 
2883 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2884 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2885 		update_params = &q_params.params.update;
2886 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2887 			  &update_params->update_flags);
2888 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2889 			  &update_params->update_flags);
2890 		if (vlan == 0) {
2891 			/* if vlan is 0 then we want to leave the VF traffic
2892 			 * untagged, and leave the incoming traffic untouched
2893 			 * (i.e. do not remove any vlan tags).
2894 			 */
2895 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2896 				    &update_params->update_flags);
2897 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2898 				    &update_params->update_flags);
2899 		} else {
2900 			/* configure default vlan to vf queue and set silent
2901 			 * vlan removal (the vf remains unaware of this vlan).
2902 			 */
2903 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2904 				  &update_params->update_flags);
2905 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2906 				  &update_params->update_flags);
2907 			update_params->def_vlan = vlan;
2908 			update_params->silent_removal_value =
2909 				vlan & VLAN_VID_MASK;
2910 			update_params->silent_removal_mask = VLAN_VID_MASK;
2911 		}
2912 
2913 		/* Update the Queue state */
2914 		rc = bnx2x_queue_state_change(bp, &q_params);
2915 		if (rc) {
2916 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2917 				  i);
2918 			goto out;
2919 		}
2920 	}
2921 out:
2922 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2923 
2924 	if (rc)
2925 		DP(BNX2X_MSG_IOV,
2926 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2927 		   vfidx, vlan);
2928 
2929 	return rc;
2930 }
2931 
2932 /* crc is the first field in the bulletin board. Compute the crc over the
2933  * entire bulletin board excluding the crc field itself. Use the length field
2934  * as the Bulletin Board was posted by a PF with possibly a different version
2935  * from the vf which will sample it. Therefore, the length is computed by the
2936  * PF and then used blindly by the VF.
2937  */
2938 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2939 {
2940 	return crc32(BULLETIN_CRC_SEED,
2941 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
2942 		 bulletin->length - sizeof(bulletin->crc));
2943 }
2944 
2945 /* Check for new posts on the bulletin board */
2946 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2947 {
2948 	struct pf_vf_bulletin_content *bulletin;
2949 	int attempts;
2950 
2951 	/* sampling structure in mid post may result with corrupted data
2952 	 * validate crc to ensure coherency.
2953 	 */
2954 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2955 		u32 crc;
2956 
2957 		/* sample the bulletin board */
2958 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2959 		       sizeof(union pf_vf_bulletin));
2960 
2961 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2962 
2963 		if (bp->shadow_bulletin.content.crc == crc)
2964 			break;
2965 
2966 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2967 			  bp->shadow_bulletin.content.crc, crc);
2968 	}
2969 
2970 	if (attempts >= BULLETIN_ATTEMPTS) {
2971 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2972 			  attempts);
2973 		return PFVF_BULLETIN_CRC_ERR;
2974 	}
2975 	bulletin = &bp->shadow_bulletin.content;
2976 
2977 	/* bulletin board hasn't changed since last sample */
2978 	if (bp->old_bulletin.version == bulletin->version)
2979 		return PFVF_BULLETIN_UNCHANGED;
2980 
2981 	/* the mac address in bulletin board is valid and is new */
2982 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
2983 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
2984 		/* update new mac to net device */
2985 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
2986 	}
2987 
2988 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
2989 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
2990 		   bulletin->link_speed, bulletin->link_flags);
2991 
2992 		bp->vf_link_vars.line_speed = bulletin->link_speed;
2993 		bp->vf_link_vars.link_report_flags = 0;
2994 		/* Link is down */
2995 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
2996 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2997 				  &bp->vf_link_vars.link_report_flags);
2998 		/* Full DUPLEX */
2999 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3000 			__set_bit(BNX2X_LINK_REPORT_FD,
3001 				  &bp->vf_link_vars.link_report_flags);
3002 		/* Rx Flow Control is ON */
3003 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3004 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3005 				  &bp->vf_link_vars.link_report_flags);
3006 		/* Tx Flow Control is ON */
3007 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3008 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3009 				  &bp->vf_link_vars.link_report_flags);
3010 		__bnx2x_link_report(bp);
3011 	}
3012 
3013 	/* copy new bulletin board to bp */
3014 	memcpy(&bp->old_bulletin, bulletin,
3015 	       sizeof(struct pf_vf_bulletin_content));
3016 
3017 	return PFVF_BULLETIN_UPDATED;
3018 }
3019 
3020 void bnx2x_timer_sriov(struct bnx2x *bp)
3021 {
3022 	bnx2x_sample_bulletin(bp);
3023 
3024 	/* if channel is down we need to self destruct */
3025 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3026 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3027 				       BNX2X_MSG_IOV);
3028 }
3029 
3030 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3031 {
3032 	/* vf doorbells are embedded within the regview */
3033 	return bp->regview + PXP_VF_ADDR_DB_START;
3034 }
3035 
3036 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3037 {
3038 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3039 		       sizeof(struct bnx2x_vf_mbx_msg));
3040 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3041 		       sizeof(union pf_vf_bulletin));
3042 }
3043 
3044 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3045 {
3046 	mutex_init(&bp->vf2pf_mutex);
3047 
3048 	/* allocate vf2pf mailbox for vf to pf channel */
3049 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3050 					 sizeof(struct bnx2x_vf_mbx_msg));
3051 	if (!bp->vf2pf_mbox)
3052 		goto alloc_mem_err;
3053 
3054 	/* allocate pf 2 vf bulletin board */
3055 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3056 					     sizeof(union pf_vf_bulletin));
3057 	if (!bp->pf2vf_bulletin)
3058 		goto alloc_mem_err;
3059 
3060 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3061 
3062 	return 0;
3063 
3064 alloc_mem_err:
3065 	bnx2x_vf_pci_dealloc(bp);
3066 	return -ENOMEM;
3067 }
3068 
3069 void bnx2x_iov_channel_down(struct bnx2x *bp)
3070 {
3071 	int vf_idx;
3072 	struct pf_vf_bulletin_content *bulletin;
3073 
3074 	if (!IS_SRIOV(bp))
3075 		return;
3076 
3077 	for_each_vf(bp, vf_idx) {
3078 		/* locate this VFs bulletin board and update the channel down
3079 		 * bit
3080 		 */
3081 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3082 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3083 
3084 		/* update vf bulletin board */
3085 		bnx2x_post_vf_bulletin(bp, vf_idx);
3086 	}
3087 }
3088 
3089 void bnx2x_iov_task(struct work_struct *work)
3090 {
3091 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3092 
3093 	if (!netif_running(bp->dev))
3094 		return;
3095 
3096 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3097 			       &bp->iov_task_state))
3098 		bnx2x_vf_handle_flr_event(bp);
3099 
3100 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3101 			       &bp->iov_task_state))
3102 		bnx2x_vf_mbx(bp);
3103 }
3104 
3105 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3106 {
3107 	smp_mb__before_atomic();
3108 	set_bit(flag, &bp->iov_task_state);
3109 	smp_mb__after_atomic();
3110 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3111 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3112 }
3113