xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_sriov.c (revision 3ade6ce1255e6e97f91b8ba77408dce9d2292df2)
1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	barrier();
104 
105 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 	   ctl, igu_addr_ctl);
107 	REG_WR(bp, igu_addr_ctl, ctl);
108 	barrier();
109 }
110 
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
197 
198 	/* Setup-op flags:
199 	 * collect statistics, zero statistics, local-switching, security,
200 	 * OV for Flex10, RSS and MCAST for leading
201 	 */
202 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204 
205 	/* for VFs, enable tx switching, bd coherency, and mac address
206 	 * anti-spoofing
207 	 */
208 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 	if (vf->spoofchk)
211 		__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 	else
213 		__clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214 
215 	/* Setup-op rx parameters */
216 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218 
219 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222 
223 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 	}
226 
227 	/* Setup-op tx parameters */
228 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 	}
232 }
233 
234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 				 struct bnx2x_virtf *vf, int qid,
236 				 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 	struct bnx2x_queue_state_params *q_params;
239 	int rc = 0;
240 
241 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242 
243 	/* Prepare ramrod information */
244 	q_params = &qctor->qstate;
245 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247 
248 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 		goto out;
252 	}
253 
254 	/* Run Queue 'construction' ramrods */
255 	q_params->cmd = BNX2X_Q_CMD_INIT;
256 	rc = bnx2x_queue_state_change(bp, q_params);
257 	if (rc)
258 		goto out;
259 
260 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 	       sizeof(struct bnx2x_queue_setup_params));
262 	q_params->cmd = BNX2X_Q_CMD_SETUP;
263 	rc = bnx2x_queue_state_change(bp, q_params);
264 	if (rc)
265 		goto out;
266 
267 	/* enable interrupts */
268 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 	return rc;
272 }
273 
274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 				  int qid)
276 {
277 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 				       BNX2X_Q_CMD_TERMINATE,
279 				       BNX2X_Q_CMD_CFC_DEL};
280 	struct bnx2x_queue_state_params q_params;
281 	int rc, i;
282 
283 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284 
285 	/* Prepare ramrod information */
286 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289 
290 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 		goto out;
294 	}
295 
296 	/* Run Queue 'destruction' ramrods */
297 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 		q_params.cmd = cmds[i];
299 		rc = bnx2x_queue_state_change(bp, &q_params);
300 		if (rc) {
301 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 			return rc;
303 		}
304 	}
305 out:
306 	/* Clean Context */
307 	if (bnx2x_vfq(vf, qid, cxt)) {
308 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 	}
311 
312 	return 0;
313 }
314 
315 static void
316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 	if (vf) {
320 		/* the first igu entry belonging to VFs of this PF */
321 		if (!BP_VFDB(bp)->first_vf_igu_entry)
322 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323 
324 		/* the first igu entry belonging to this VF */
325 		if (!vf_sb_count(vf))
326 			vf->igu_base_id = igu_sb_id;
327 
328 		++vf_sb_count(vf);
329 		++vf->sb_count;
330 	}
331 	BP_VFDB(bp)->vf_sbs_pool++;
332 }
333 
334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 				   int qid, bool drv_only, int type)
336 {
337 	struct bnx2x_vlan_mac_ramrod_params ramrod;
338 	int rc;
339 
340 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343 
344 	/* Prepare ramrod params */
345 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 	} else if (type == BNX2X_VF_FILTER_MAC) {
350 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 	} else {
353 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 	}
355 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356 
357 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 	if (drv_only)
359 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 	else
361 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362 
363 	/* Start deleting */
364 	rc = ramrod.vlan_mac_obj->delete_all(bp,
365 					     ramrod.vlan_mac_obj,
366 					     &ramrod.user_req.vlan_mac_flags,
367 					     &ramrod.ramrod_flags);
368 	if (rc) {
369 		BNX2X_ERR("Failed to delete all %s\n",
370 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 		return rc;
373 	}
374 
375 	return 0;
376 }
377 
378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 				    struct bnx2x_virtf *vf, int qid,
380 				    struct bnx2x_vf_mac_vlan_filter *filter,
381 				    bool drv_only)
382 {
383 	struct bnx2x_vlan_mac_ramrod_params ramrod;
384 	int rc;
385 
386 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390 
391 	/* Prepare ramrod params */
392 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 		ramrod.user_req.u.vlan.vlan = filter->vid;
396 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 		ramrod.user_req.u.vlan.vlan = filter->vid;
401 	} else {
402 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 	}
406 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 					    BNX2X_VLAN_MAC_DEL;
408 
409 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 	if (drv_only)
411 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 	else
413 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414 
415 	/* Add/Remove the filter */
416 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 	if (rc == -EEXIST)
418 		return 0;
419 	if (rc) {
420 		BNX2X_ERR("Failed to %s %s\n",
421 			  filter->add ? "add" : "delete",
422 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 				"VLAN-MAC" :
424 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
425 				"MAC" : "VLAN");
426 		return rc;
427 	}
428 
429 	filter->applied = true;
430 
431 	return 0;
432 }
433 
434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 				  struct bnx2x_vf_mac_vlan_filters *filters,
436 				  int qid, bool drv_only)
437 {
438 	int rc = 0, i;
439 
440 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441 
442 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 		return -EINVAL;
444 
445 	/* Prepare ramrod params */
446 	for (i = 0; i < filters->count; i++) {
447 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 					      &filters->filters[i], drv_only);
449 		if (rc)
450 			break;
451 	}
452 
453 	/* Rollback if needed */
454 	if (i != filters->count) {
455 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 			  i, filters->count);
457 		while (--i >= 0) {
458 			if (!filters->filters[i].applied)
459 				continue;
460 			filters->filters[i].add = !filters->filters[i].add;
461 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 						 &filters->filters[i],
463 						 drv_only);
464 		}
465 	}
466 
467 	/* It's our responsibility to free the filters */
468 	kfree(filters);
469 
470 	return rc;
471 }
472 
473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 			 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 	int rc;
477 
478 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479 
480 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 	if (rc)
482 		goto op_err;
483 
484 	/* Schedule the configuration of any pending vlan filters */
485 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 			       BNX2X_MSG_IOV);
487 	return 0;
488 op_err:
489 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 	return rc;
491 }
492 
493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 			       int qid)
495 {
496 	int rc;
497 
498 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499 
500 	/* If needed, clean the filtering data base */
501 	if ((qid == LEADING_IDX) &&
502 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 					     BNX2X_VF_FILTER_VLAN_MAC);
505 		if (rc)
506 			goto op_err;
507 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 					     BNX2X_VF_FILTER_VLAN);
509 		if (rc)
510 			goto op_err;
511 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 					     BNX2X_VF_FILTER_MAC);
513 		if (rc)
514 			goto op_err;
515 	}
516 
517 	/* Terminate queue */
518 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 		struct bnx2x_queue_state_params qstate;
520 
521 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 		rc = bnx2x_queue_state_change(bp, &qstate);
527 		if (rc)
528 			goto op_err;
529 	}
530 
531 	return 0;
532 op_err:
533 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 	return rc;
535 }
536 
537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 	struct bnx2x_mcast_list_elem *mc = NULL;
541 	struct bnx2x_mcast_ramrod_params mcast;
542 	int rc, i;
543 
544 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545 
546 	/* Prepare Multicast command */
547 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 	mcast.mcast_obj = &vf->mcast_obj;
549 	if (drv_only)
550 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 	else
552 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 	if (mc_num) {
554 		mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 			     GFP_KERNEL);
556 		if (!mc) {
557 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 			return -ENOMEM;
559 		}
560 	}
561 
562 	if (mc_num) {
563 		INIT_LIST_HEAD(&mcast.mcast_list);
564 		for (i = 0; i < mc_num; i++) {
565 			mc[i].mac = mcasts[i];
566 			list_add_tail(&mc[i].link,
567 				      &mcast.mcast_list);
568 		}
569 
570 		/* add new mcasts */
571 		mcast.mcast_list_len = mc_num;
572 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 		if (rc)
574 			BNX2X_ERR("Failed to set multicasts\n");
575 	} else {
576 		/* clear existing mcasts */
577 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 		if (rc)
579 			BNX2X_ERR("Failed to remove multicasts\n");
580 	}
581 
582 	kfree(mc);
583 
584 	return rc;
585 }
586 
587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
589 				  struct bnx2x_virtf *vf,
590 				  unsigned long accept_flags)
591 {
592 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593 
594 	memset(ramrod, 0, sizeof(*ramrod));
595 	ramrod->cid = vfq->cid;
596 	ramrod->cl_id = vfq_cl_id(vf, vfq);
597 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 	ramrod->rx_accept_flags = accept_flags;
600 	ramrod->tx_accept_flags = accept_flags;
601 	ramrod->pstate = &vf->filter_state;
602 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603 
604 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607 
608 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611 
612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 		    int qid, unsigned long accept_flags)
614 {
615 	struct bnx2x_rx_mode_ramrod_params ramrod;
616 
617 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618 
619 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 	return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624 
625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 	int rc;
628 
629 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630 
631 	/* Remove all classification configuration for leading queue */
632 	if (qid == LEADING_IDX) {
633 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 		if (rc)
635 			goto op_err;
636 
637 		/* Remove filtering if feasible */
638 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 						     false,
641 						     BNX2X_VF_FILTER_VLAN_MAC);
642 			if (rc)
643 				goto op_err;
644 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 						     false,
646 						     BNX2X_VF_FILTER_VLAN);
647 			if (rc)
648 				goto op_err;
649 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 						     false,
651 						     BNX2X_VF_FILTER_MAC);
652 			if (rc)
653 				goto op_err;
654 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 			if (rc)
656 				goto op_err;
657 		}
658 	}
659 
660 	/* Destroy queue */
661 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 	if (rc)
663 		goto op_err;
664 	return rc;
665 op_err:
666 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 		  vf->abs_vfid, qid, rc);
668 	return rc;
669 }
670 
671 /* VF enable primitives
672  * when pretend is required the caller is responsible
673  * for calling pretend prior to calling these routines
674  */
675 
676 /* internal vf enable - until vf is enabled internally all transactions
677  * are blocked. This routine should always be called last with pretend.
678  */
679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683 
684 /* clears vf error in all semi blocks */
685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692 
693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 	u32 was_err_reg = 0;
697 
698 	switch (was_err_group) {
699 	case 0:
700 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 	    break;
702 	case 1:
703 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 	    break;
705 	case 2:
706 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 	    break;
708 	case 3:
709 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 	    break;
711 	}
712 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714 
715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 	int i;
718 	u32 val;
719 
720 	/* Set VF masks and configuration - pretend */
721 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722 
723 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729 
730 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 	val &= ~IGU_VF_CONF_PARENT_MASK;
733 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735 
736 	DP(BNX2X_MSG_IOV,
737 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 	   vf->abs_vfid, val);
739 
740 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741 
742 	/* iterate over all queues, clear sb consumer */
743 	for (i = 0; i < vf_sb_count(vf); i++) {
744 		u8 igu_sb_id = vf_igu_sb(vf, i);
745 
746 		/* zero prod memory */
747 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748 
749 		/* clear sb state machine */
750 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 				       false /* VF */);
752 
753 		/* disable + update */
754 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 				    IGU_INT_DISABLE, 1);
756 	}
757 }
758 
759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 	u16 abs_fid;
762 
763 	abs_fid = FW_VF_HANDLE(abs_vfid);
764 
765 	/* set the VF-PF association in the FW */
766 	storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp));
767 	storm_memset_func_en(bp, abs_fid, 1);
768 
769 	/* Invalidate fp_hsi version for vfs */
770 	if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI)
771 		REG_WR8(bp, BAR_XSTRORM_INTMEM +
772 			    XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0);
773 
774 	/* clear vf errors*/
775 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
776 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
777 
778 	/* internal vf-enable - pretend */
779 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
780 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
781 	bnx2x_vf_enable_internal(bp, true);
782 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
783 }
784 
785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
786 {
787 	/* Reset vf in IGU  interrupts are still disabled */
788 	bnx2x_vf_igu_reset(bp, vf);
789 
790 	/* pretend to enable the vf with the PBF */
791 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
792 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
793 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795 
796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
797 {
798 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
799 	struct pci_dev *dev;
800 	bool pending;
801 
802 	if (!vf)
803 		return false;
804 
805 	dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
806 	if (!dev)
807 		return false;
808 	pending = bnx2x_is_pcie_pending(dev);
809 	pci_dev_put(dev);
810 
811 	return pending;
812 }
813 
814 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
815 {
816 	/* Verify no pending pci transactions */
817 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
818 		BNX2X_ERR("PCIE Transactions still pending\n");
819 
820 	return 0;
821 }
822 
823 /* must be called after the number of PF queues and the number of VFs are
824  * both known
825  */
826 static void
827 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
828 {
829 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
830 
831 	/* will be set only during VF-ACQUIRE */
832 	resc->num_rxqs = 0;
833 	resc->num_txqs = 0;
834 
835 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
836 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
837 
838 	/* no real limitation */
839 	resc->num_mc_filters = 0;
840 
841 	/* num_sbs already set */
842 	resc->num_sbs = vf->sb_count;
843 }
844 
845 /* FLR routines: */
846 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
847 {
848 	/* reset the state variables */
849 	bnx2x_iov_static_resc(bp, vf);
850 	vf->state = VF_FREE;
851 }
852 
853 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
856 
857 	/* DQ usage counter */
858 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
859 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
860 					"DQ VF usage counter timed out",
861 					poll_cnt);
862 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
863 
864 	/* FW cleanup command - poll for the results */
865 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
866 				   poll_cnt))
867 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
868 
869 	/* verify TX hw is flushed */
870 	bnx2x_tx_hw_flushed(bp, poll_cnt);
871 }
872 
873 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
874 {
875 	int rc, i;
876 
877 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
878 
879 	/* the cleanup operations are valid if and only if the VF
880 	 * was first acquired.
881 	 */
882 	for (i = 0; i < vf_rxq_count(vf); i++) {
883 		rc = bnx2x_vf_queue_flr(bp, vf, i);
884 		if (rc)
885 			goto out;
886 	}
887 
888 	/* remove multicasts */
889 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
890 
891 	/* dispatch final cleanup and wait for HW queues to flush */
892 	bnx2x_vf_flr_clnup_hw(bp, vf);
893 
894 	/* release VF resources */
895 	bnx2x_vf_free_resc(bp, vf);
896 
897 	vf->malicious = false;
898 
899 	/* re-open the mailbox */
900 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
901 	return;
902 out:
903 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
904 		  vf->abs_vfid, i, rc);
905 }
906 
907 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
908 {
909 	struct bnx2x_virtf *vf;
910 	int i;
911 
912 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
913 		/* VF should be RESET & in FLR cleanup states */
914 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
915 		    !bnx2x_vf(bp, i, flr_clnup_stage))
916 			continue;
917 
918 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
919 		   i, BNX2X_NR_VIRTFN(bp));
920 
921 		vf = BP_VF(bp, i);
922 
923 		/* lock the vf pf channel */
924 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
925 
926 		/* invoke the VF FLR SM */
927 		bnx2x_vf_flr(bp, vf);
928 
929 		/* mark the VF to be ACKED and continue */
930 		vf->flr_clnup_stage = false;
931 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932 	}
933 
934 	/* Acknowledge the handled VFs.
935 	 * we are acknowledge all the vfs which an flr was requested for, even
936 	 * if amongst them there are such that we never opened, since the mcp
937 	 * will interrupt us immediately again if we only ack some of the bits,
938 	 * resulting in an endless loop. This can happen for example in KVM
939 	 * where an 'all ones' flr request is sometimes given by hyper visor
940 	 */
941 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
942 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
943 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
944 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
945 			  bp->vfdb->flrd_vfs[i]);
946 
947 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
948 
949 	/* clear the acked bits - better yet if the MCP implemented
950 	 * write to clear semantics
951 	 */
952 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
953 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
954 }
955 
956 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
957 {
958 	int i;
959 
960 	/* Read FLR'd VFs */
961 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
962 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
963 
964 	DP(BNX2X_MSG_MCP,
965 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
966 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
967 
968 	for_each_vf(bp, i) {
969 		struct bnx2x_virtf *vf = BP_VF(bp, i);
970 		u32 reset = 0;
971 
972 		if (vf->abs_vfid < 32)
973 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
974 		else
975 			reset = bp->vfdb->flrd_vfs[1] &
976 				(1 << (vf->abs_vfid - 32));
977 
978 		if (reset) {
979 			/* set as reset and ready for cleanup */
980 			vf->state = VF_RESET;
981 			vf->flr_clnup_stage = true;
982 
983 			DP(BNX2X_MSG_IOV,
984 			   "Initiating Final cleanup for VF %d\n",
985 			   vf->abs_vfid);
986 		}
987 	}
988 
989 	/* do the FLR cleanup for all marked VFs*/
990 	bnx2x_vf_flr_clnup(bp);
991 }
992 
993 /* IOV global initialization routines  */
994 void bnx2x_iov_init_dq(struct bnx2x *bp)
995 {
996 	if (!IS_SRIOV(bp))
997 		return;
998 
999 	/* Set the DQ such that the CID reflect the abs_vfid */
1000 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1001 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1002 
1003 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1004 	 * the PF L2 queues
1005 	 */
1006 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1007 
1008 	/* The VF window size is the log2 of the max number of CIDs per VF */
1009 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1010 
1011 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1012 	 * the Pf doorbell size although the 2 are independent.
1013 	 */
1014 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1015 
1016 	/* No security checks for now -
1017 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1018 	 * CID range 0 - 0x1ffff
1019 	 */
1020 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1021 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1022 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1023 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1024 
1025 	/* set the VF doorbell threshold. This threshold represents the amount
1026 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1027 	 */
1028 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1029 }
1030 
1031 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1032 {
1033 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1034 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1035 }
1036 
1037 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1038 {
1039 	struct pci_dev *dev = bp->pdev;
1040 
1041 	return pci_domain_nr(dev->bus);
1042 }
1043 
1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1045 {
1046 	struct pci_dev *dev = bp->pdev;
1047 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1048 
1049 	return dev->bus->number + ((dev->devfn + iov->offset +
1050 				    iov->stride * vfid) >> 8);
1051 }
1052 
1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1054 {
1055 	struct pci_dev *dev = bp->pdev;
1056 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1057 
1058 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1059 }
1060 
1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1062 {
1063 	int i, n;
1064 	struct pci_dev *dev = bp->pdev;
1065 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1066 
1067 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1068 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1069 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1070 
1071 		size /= iov->total;
1072 		vf->bars[n].bar = start + size * vf->abs_vfid;
1073 		vf->bars[n].size = size;
1074 	}
1075 }
1076 
1077 static int
1078 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1079 {
1080 	int sb_id;
1081 	u32 val;
1082 	u8 fid, current_pf = 0;
1083 
1084 	/* IGU in normal mode - read CAM */
1085 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1086 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1087 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1088 			continue;
1089 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1090 		if (fid & IGU_FID_ENCODE_IS_PF)
1091 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1092 		else if (current_pf == BP_FUNC(bp))
1093 			bnx2x_vf_set_igu_info(bp, sb_id,
1094 					      (fid & IGU_FID_VF_NUM_MASK));
1095 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1096 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1097 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1098 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1099 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1100 	}
1101 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1102 	return BP_VFDB(bp)->vf_sbs_pool;
1103 }
1104 
1105 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1106 {
1107 	if (bp->vfdb) {
1108 		kfree(bp->vfdb->vfqs);
1109 		kfree(bp->vfdb->vfs);
1110 		kfree(bp->vfdb);
1111 	}
1112 	bp->vfdb = NULL;
1113 }
1114 
1115 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1116 {
1117 	int pos;
1118 	struct pci_dev *dev = bp->pdev;
1119 
1120 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1121 	if (!pos) {
1122 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1123 		return -ENODEV;
1124 	}
1125 
1126 	iov->pos = pos;
1127 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1128 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1129 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1130 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1131 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1132 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1133 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1134 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1135 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1136 
1137 	return 0;
1138 }
1139 
1140 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1141 {
1142 	u32 val;
1143 
1144 	/* read the SRIOV capability structure
1145 	 * The fields can be read via configuration read or
1146 	 * directly from the device (starting at offset PCICFG_OFFSET)
1147 	 */
1148 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1149 		return -ENODEV;
1150 
1151 	/* get the number of SRIOV bars */
1152 	iov->nres = 0;
1153 
1154 	/* read the first_vfid */
1155 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1156 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1157 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1158 
1159 	DP(BNX2X_MSG_IOV,
1160 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1161 	   BP_FUNC(bp),
1162 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1163 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1164 
1165 	return 0;
1166 }
1167 
1168 /* must be called after PF bars are mapped */
1169 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1170 		       int num_vfs_param)
1171 {
1172 	int err, i;
1173 	struct bnx2x_sriov *iov;
1174 	struct pci_dev *dev = bp->pdev;
1175 
1176 	bp->vfdb = NULL;
1177 
1178 	/* verify is pf */
1179 	if (IS_VF(bp))
1180 		return 0;
1181 
1182 	/* verify sriov capability is present in configuration space */
1183 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1184 		return 0;
1185 
1186 	/* verify chip revision */
1187 	if (CHIP_IS_E1x(bp))
1188 		return 0;
1189 
1190 	/* check if SRIOV support is turned off */
1191 	if (!num_vfs_param)
1192 		return 0;
1193 
1194 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1195 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1196 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1197 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1198 		return 0;
1199 	}
1200 
1201 	/* SRIOV can be enabled only with MSIX */
1202 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1203 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1204 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1205 		return 0;
1206 	}
1207 
1208 	/* verify ari is enabled */
1209 	if (!pci_ari_enabled(bp->pdev->bus)) {
1210 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1211 		return 0;
1212 	}
1213 
1214 	/* verify igu is in normal mode */
1215 	if (CHIP_INT_MODE_IS_BC(bp)) {
1216 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1217 		return 0;
1218 	}
1219 
1220 	/* allocate the vfs database */
1221 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1222 	if (!bp->vfdb) {
1223 		BNX2X_ERR("failed to allocate vf database\n");
1224 		err = -ENOMEM;
1225 		goto failed;
1226 	}
1227 
1228 	/* get the sriov info - Linux already collected all the pertinent
1229 	 * information, however the sriov structure is for the private use
1230 	 * of the pci module. Also we want this information regardless
1231 	 * of the hyper-visor.
1232 	 */
1233 	iov = &(bp->vfdb->sriov);
1234 	err = bnx2x_sriov_info(bp, iov);
1235 	if (err)
1236 		goto failed;
1237 
1238 	/* SR-IOV capability was enabled but there are no VFs*/
1239 	if (iov->total == 0) {
1240 		err = 0;
1241 		goto failed;
1242 	}
1243 
1244 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1245 
1246 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1247 	   num_vfs_param, iov->nr_virtfn);
1248 
1249 	/* allocate the vf array */
1250 	bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1251 				sizeof(struct bnx2x_virtf),
1252 				GFP_KERNEL);
1253 	if (!bp->vfdb->vfs) {
1254 		BNX2X_ERR("failed to allocate vf array\n");
1255 		err = -ENOMEM;
1256 		goto failed;
1257 	}
1258 
1259 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1260 	for_each_vf(bp, i) {
1261 		bnx2x_vf(bp, i, index) = i;
1262 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1263 		bnx2x_vf(bp, i, state) = VF_FREE;
1264 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1265 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1266 		/* enable spoofchk by default */
1267 		bnx2x_vf(bp, i, spoofchk) = 1;
1268 	}
1269 
1270 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1271 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1272 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1273 		err = -EINVAL;
1274 		goto failed;
1275 	}
1276 
1277 	/* allocate the queue arrays for all VFs */
1278 	bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1279 				 sizeof(struct bnx2x_vf_queue),
1280 				 GFP_KERNEL);
1281 
1282 	if (!bp->vfdb->vfqs) {
1283 		BNX2X_ERR("failed to allocate vf queue array\n");
1284 		err = -ENOMEM;
1285 		goto failed;
1286 	}
1287 
1288 	/* Prepare the VFs event synchronization mechanism */
1289 	mutex_init(&bp->vfdb->event_mutex);
1290 
1291 	mutex_init(&bp->vfdb->bulletin_mutex);
1292 
1293 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1294 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1295 
1296 	return 0;
1297 failed:
1298 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1299 	__bnx2x_iov_free_vfdb(bp);
1300 	return err;
1301 }
1302 
1303 void bnx2x_iov_remove_one(struct bnx2x *bp)
1304 {
1305 	int vf_idx;
1306 
1307 	/* if SRIOV is not enabled there's nothing to do */
1308 	if (!IS_SRIOV(bp))
1309 		return;
1310 
1311 	bnx2x_disable_sriov(bp);
1312 
1313 	/* disable access to all VFs */
1314 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1315 		bnx2x_pretend_func(bp,
1316 				   HW_VF_HANDLE(bp,
1317 						bp->vfdb->sriov.first_vf_in_pf +
1318 						vf_idx));
1319 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1320 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1321 		bnx2x_vf_enable_internal(bp, 0);
1322 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1323 	}
1324 
1325 	/* free vf database */
1326 	__bnx2x_iov_free_vfdb(bp);
1327 }
1328 
1329 void bnx2x_iov_free_mem(struct bnx2x *bp)
1330 {
1331 	int i;
1332 
1333 	if (!IS_SRIOV(bp))
1334 		return;
1335 
1336 	/* free vfs hw contexts */
1337 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1338 		struct hw_dma *cxt = &bp->vfdb->context[i];
1339 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1340 	}
1341 
1342 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1343 		       BP_VFDB(bp)->sp_dma.mapping,
1344 		       BP_VFDB(bp)->sp_dma.size);
1345 
1346 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1347 		       BP_VF_MBX_DMA(bp)->mapping,
1348 		       BP_VF_MBX_DMA(bp)->size);
1349 
1350 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1351 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1352 		       BP_VF_BULLETIN_DMA(bp)->size);
1353 }
1354 
1355 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1356 {
1357 	size_t tot_size;
1358 	int i, rc = 0;
1359 
1360 	if (!IS_SRIOV(bp))
1361 		return rc;
1362 
1363 	/* allocate vfs hw contexts */
1364 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1365 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1366 
1367 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1368 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1369 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1370 
1371 		if (cxt->size) {
1372 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1373 			if (!cxt->addr)
1374 				goto alloc_mem_err;
1375 		} else {
1376 			cxt->addr = NULL;
1377 			cxt->mapping = 0;
1378 		}
1379 		tot_size -= cxt->size;
1380 	}
1381 
1382 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1383 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1384 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1385 						   tot_size);
1386 	if (!BP_VFDB(bp)->sp_dma.addr)
1387 		goto alloc_mem_err;
1388 	BP_VFDB(bp)->sp_dma.size = tot_size;
1389 
1390 	/* allocate mailboxes */
1391 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1392 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1393 						  tot_size);
1394 	if (!BP_VF_MBX_DMA(bp)->addr)
1395 		goto alloc_mem_err;
1396 
1397 	BP_VF_MBX_DMA(bp)->size = tot_size;
1398 
1399 	/* allocate local bulletin boards */
1400 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1401 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1402 						       tot_size);
1403 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1404 		goto alloc_mem_err;
1405 
1406 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1407 
1408 	return 0;
1409 
1410 alloc_mem_err:
1411 	return -ENOMEM;
1412 }
1413 
1414 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1415 			   struct bnx2x_vf_queue *q)
1416 {
1417 	u8 cl_id = vfq_cl_id(vf, q);
1418 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1419 	unsigned long q_type = 0;
1420 
1421 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1422 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1423 
1424 	/* Queue State object */
1425 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1426 			     cl_id, &q->cid, 1, func_id,
1427 			     bnx2x_vf_sp(bp, vf, q_data),
1428 			     bnx2x_vf_sp_map(bp, vf, q_data),
1429 			     q_type);
1430 
1431 	/* sp indication is set only when vlan/mac/etc. are initialized */
1432 	q->sp_initialized = false;
1433 
1434 	DP(BNX2X_MSG_IOV,
1435 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1436 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1437 }
1438 
1439 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1440 {
1441 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1442 
1443 	if (supported &
1444 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1445 		return 20000;
1446 
1447 	return 10000; /* assume lowest supported speed is 10G */
1448 }
1449 
1450 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1451 {
1452 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1453 	struct pf_vf_bulletin_content *bulletin;
1454 	struct bnx2x_virtf *vf;
1455 	bool update = true;
1456 	int rc = 0;
1457 
1458 	/* sanity and init */
1459 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1460 	if (rc)
1461 		return rc;
1462 
1463 	mutex_lock(&bp->vfdb->bulletin_mutex);
1464 
1465 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1466 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1467 
1468 		bulletin->link_speed = state->line_speed;
1469 		bulletin->link_flags = 0;
1470 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1471 			     &state->link_report_flags))
1472 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1473 		if (test_bit(BNX2X_LINK_REPORT_FD,
1474 			     &state->link_report_flags))
1475 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1476 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1477 			     &state->link_report_flags))
1478 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1479 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1480 			     &state->link_report_flags))
1481 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1482 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1483 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1484 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1485 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1486 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1487 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1488 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1489 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1490 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1491 	} else {
1492 		update = false;
1493 	}
1494 
1495 	if (update) {
1496 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1497 		   "vf %d mode %u speed %d flags %x\n", idx,
1498 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1499 
1500 		/* Post update on VF's bulletin board */
1501 		rc = bnx2x_post_vf_bulletin(bp, idx);
1502 		if (rc) {
1503 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1504 			goto out;
1505 		}
1506 	}
1507 
1508 out:
1509 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1510 	return rc;
1511 }
1512 
1513 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1514 {
1515 	struct bnx2x *bp = netdev_priv(dev);
1516 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1517 
1518 	if (!vf)
1519 		return -EINVAL;
1520 
1521 	if (vf->link_cfg == link_state)
1522 		return 0; /* nothing todo */
1523 
1524 	vf->link_cfg = link_state;
1525 
1526 	return bnx2x_iov_link_update_vf(bp, idx);
1527 }
1528 
1529 void bnx2x_iov_link_update(struct bnx2x *bp)
1530 {
1531 	int vfid;
1532 
1533 	if (!IS_SRIOV(bp))
1534 		return;
1535 
1536 	for_each_vf(bp, vfid)
1537 		bnx2x_iov_link_update_vf(bp, vfid);
1538 }
1539 
1540 /* called by bnx2x_nic_load */
1541 int bnx2x_iov_nic_init(struct bnx2x *bp)
1542 {
1543 	int vfid;
1544 
1545 	if (!IS_SRIOV(bp)) {
1546 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1547 		return 0;
1548 	}
1549 
1550 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1551 
1552 	/* let FLR complete ... */
1553 	msleep(100);
1554 
1555 	/* initialize vf database */
1556 	for_each_vf(bp, vfid) {
1557 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1558 
1559 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1560 			BNX2X_CIDS_PER_VF;
1561 
1562 		union cdu_context *base_cxt = (union cdu_context *)
1563 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1564 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1565 
1566 		DP(BNX2X_MSG_IOV,
1567 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1568 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1569 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1570 
1571 		/* init statically provisioned resources */
1572 		bnx2x_iov_static_resc(bp, vf);
1573 
1574 		/* queues are initialized during VF-ACQUIRE */
1575 		vf->filter_state = 0;
1576 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1577 
1578 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1579 				       vf_vlan_rules_cnt(vf));
1580 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1581 				       vf_mac_rules_cnt(vf));
1582 
1583 		/*  init mcast object - This object will be re-initialized
1584 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1585 		 *  It needs to be initialized here so that it can be safely
1586 		 *  handled by a subsequent FLR flow.
1587 		 */
1588 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1589 				     0xFF, 0xFF, 0xFF,
1590 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1591 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1592 				     BNX2X_FILTER_MCAST_PENDING,
1593 				     &vf->filter_state,
1594 				     BNX2X_OBJ_TYPE_RX_TX);
1595 
1596 		/* set the mailbox message addresses */
1597 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1598 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1599 			MBX_MSG_ALIGNED_SIZE);
1600 
1601 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1602 			vfid * MBX_MSG_ALIGNED_SIZE;
1603 
1604 		/* Enable vf mailbox */
1605 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1606 	}
1607 
1608 	/* Final VF init */
1609 	for_each_vf(bp, vfid) {
1610 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1611 
1612 		/* fill in the BDF and bars */
1613 		vf->domain = bnx2x_vf_domain(bp, vfid);
1614 		vf->bus = bnx2x_vf_bus(bp, vfid);
1615 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1616 		bnx2x_vf_set_bars(bp, vf);
1617 
1618 		DP(BNX2X_MSG_IOV,
1619 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1620 		   vf->abs_vfid, vf->bus, vf->devfn,
1621 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1622 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1623 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 /* called by bnx2x_chip_cleanup */
1630 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1631 {
1632 	int i;
1633 
1634 	if (!IS_SRIOV(bp))
1635 		return 0;
1636 
1637 	/* release all the VFs */
1638 	for_each_vf(bp, i)
1639 		bnx2x_vf_release(bp, BP_VF(bp, i));
1640 
1641 	return 0;
1642 }
1643 
1644 /* called by bnx2x_init_hw_func, returns the next ilt line */
1645 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1646 {
1647 	int i;
1648 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1649 
1650 	if (!IS_SRIOV(bp))
1651 		return line;
1652 
1653 	/* set vfs ilt lines */
1654 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1655 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1656 
1657 		ilt->lines[line+i].page = hw_cxt->addr;
1658 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1659 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1660 	}
1661 	return line + i;
1662 }
1663 
1664 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1665 {
1666 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1667 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1668 }
1669 
1670 static
1671 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1672 					struct bnx2x_vf_queue *vfq,
1673 					union event_ring_elem *elem)
1674 {
1675 	unsigned long ramrod_flags = 0;
1676 	int rc = 0;
1677 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1678 
1679 	/* Always push next commands out, don't wait here */
1680 	set_bit(RAMROD_CONT, &ramrod_flags);
1681 
1682 	switch (echo >> BNX2X_SWCID_SHIFT) {
1683 	case BNX2X_FILTER_MAC_PENDING:
1684 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1685 					   &ramrod_flags);
1686 		break;
1687 	case BNX2X_FILTER_VLAN_PENDING:
1688 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1689 					    &ramrod_flags);
1690 		break;
1691 	default:
1692 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1693 		return;
1694 	}
1695 	if (rc < 0)
1696 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1697 	else if (rc > 0)
1698 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1699 }
1700 
1701 static
1702 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1703 			       struct bnx2x_virtf *vf)
1704 {
1705 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1706 	int rc;
1707 
1708 	rparam.mcast_obj = &vf->mcast_obj;
1709 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1710 
1711 	/* If there are pending mcast commands - send them */
1712 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1713 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1714 		if (rc < 0)
1715 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1716 				  rc);
1717 	}
1718 }
1719 
1720 static
1721 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1722 				 struct bnx2x_virtf *vf)
1723 {
1724 	smp_mb__before_atomic();
1725 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1726 	smp_mb__after_atomic();
1727 }
1728 
1729 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1730 					   struct bnx2x_virtf *vf)
1731 {
1732 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1733 }
1734 
1735 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1736 {
1737 	struct bnx2x_virtf *vf;
1738 	int qidx = 0, abs_vfid;
1739 	u8 opcode;
1740 	u16 cid = 0xffff;
1741 
1742 	if (!IS_SRIOV(bp))
1743 		return 1;
1744 
1745 	/* first get the cid - the only events we handle here are cfc-delete
1746 	 * and set-mac completion
1747 	 */
1748 	opcode = elem->message.opcode;
1749 
1750 	switch (opcode) {
1751 	case EVENT_RING_OPCODE_CFC_DEL:
1752 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1753 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1754 		break;
1755 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1756 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1757 	case EVENT_RING_OPCODE_FILTERS_RULES:
1758 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1759 		cid = SW_CID(elem->message.data.eth_event.echo);
1760 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1761 		break;
1762 	case EVENT_RING_OPCODE_VF_FLR:
1763 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1764 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1765 		   abs_vfid);
1766 		goto get_vf;
1767 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1768 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1769 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1770 			  abs_vfid,
1771 			  elem->message.data.malicious_vf_event.err_id);
1772 		goto get_vf;
1773 	default:
1774 		return 1;
1775 	}
1776 
1777 	/* check if the cid is the VF range */
1778 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1779 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1780 		return 1;
1781 	}
1782 
1783 	/* extract vf and rxq index from vf_cid - relies on the following:
1784 	 * 1. vfid on cid reflects the true abs_vfid
1785 	 * 2. The max number of VFs (per path) is 64
1786 	 */
1787 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1788 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1789 get_vf:
1790 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1791 
1792 	if (!vf) {
1793 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1794 			  cid, abs_vfid);
1795 		return 0;
1796 	}
1797 
1798 	switch (opcode) {
1799 	case EVENT_RING_OPCODE_CFC_DEL:
1800 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1801 		   vf->abs_vfid, qidx);
1802 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1803 						       &vfq_get(vf,
1804 								qidx)->sp_obj,
1805 						       BNX2X_Q_CMD_CFC_DEL);
1806 		break;
1807 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1808 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1809 		   vf->abs_vfid, qidx);
1810 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1811 		break;
1812 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1813 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1814 		   vf->abs_vfid, qidx);
1815 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1816 		break;
1817 	case EVENT_RING_OPCODE_FILTERS_RULES:
1818 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1819 		   vf->abs_vfid, qidx);
1820 		bnx2x_vf_handle_filters_eqe(bp, vf);
1821 		break;
1822 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1823 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1824 		   vf->abs_vfid, qidx);
1825 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1826 		fallthrough;
1827 	case EVENT_RING_OPCODE_VF_FLR:
1828 		/* Do nothing for now */
1829 		return 0;
1830 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1831 		vf->malicious = true;
1832 		return 0;
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1839 {
1840 	/* extract the vf from vf_cid - relies on the following:
1841 	 * 1. vfid on cid reflects the true abs_vfid
1842 	 * 2. The max number of VFs (per path) is 64
1843 	 */
1844 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1845 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1846 }
1847 
1848 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1849 				struct bnx2x_queue_sp_obj **q_obj)
1850 {
1851 	struct bnx2x_virtf *vf;
1852 
1853 	if (!IS_SRIOV(bp))
1854 		return;
1855 
1856 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1857 
1858 	if (vf) {
1859 		/* extract queue index from vf_cid - relies on the following:
1860 		 * 1. vfid on cid reflects the true abs_vfid
1861 		 * 2. The max number of VFs (per path) is 64
1862 		 */
1863 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1864 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1865 	} else {
1866 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1867 	}
1868 }
1869 
1870 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1871 {
1872 	int i;
1873 	int first_queue_query_index, num_queues_req;
1874 	struct stats_query_entry *cur_query_entry;
1875 	u8 stats_count = 0;
1876 	bool is_fcoe = false;
1877 
1878 	if (!IS_SRIOV(bp))
1879 		return;
1880 
1881 	if (!NO_FCOE(bp))
1882 		is_fcoe = true;
1883 
1884 	/* fcoe adds one global request and one queue request */
1885 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1886 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1887 		(is_fcoe ? 0 : 1);
1888 
1889 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1890 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1891 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1892 	       first_queue_query_index + num_queues_req);
1893 
1894 	cur_query_entry = &bp->fw_stats_req->
1895 		query[first_queue_query_index + num_queues_req];
1896 
1897 	for_each_vf(bp, i) {
1898 		int j;
1899 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1900 
1901 		if (vf->state != VF_ENABLED) {
1902 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1903 			       "vf %d not enabled so no stats for it\n",
1904 			       vf->abs_vfid);
1905 			continue;
1906 		}
1907 
1908 		if (vf->malicious) {
1909 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1910 			       "vf %d malicious so no stats for it\n",
1911 			       vf->abs_vfid);
1912 			continue;
1913 		}
1914 
1915 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1916 		       "add addresses for vf %d\n", vf->abs_vfid);
1917 		for_each_vfq(vf, j) {
1918 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1919 
1920 			dma_addr_t q_stats_addr =
1921 				vf->fw_stat_map + j * vf->stats_stride;
1922 
1923 			/* collect stats fro active queues only */
1924 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1925 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1926 				continue;
1927 
1928 			/* create stats query entry for this queue */
1929 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1930 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1931 			cur_query_entry->funcID =
1932 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1933 			cur_query_entry->address.hi =
1934 				cpu_to_le32(U64_HI(q_stats_addr));
1935 			cur_query_entry->address.lo =
1936 				cpu_to_le32(U64_LO(q_stats_addr));
1937 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1938 			       "added address %x %x for vf %d queue %d client %d\n",
1939 			       cur_query_entry->address.hi,
1940 			       cur_query_entry->address.lo,
1941 			       cur_query_entry->funcID,
1942 			       j, cur_query_entry->index);
1943 			cur_query_entry++;
1944 			stats_count++;
1945 
1946 			/* all stats are coalesced to the leading queue */
1947 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1948 				break;
1949 		}
1950 	}
1951 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1952 }
1953 
1954 /* VF API helpers */
1955 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1956 				u8 enable)
1957 {
1958 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1959 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1960 
1961 	REG_WR(bp, reg, val);
1962 }
1963 
1964 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1965 {
1966 	int i;
1967 
1968 	for_each_vfq(vf, i)
1969 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1970 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1971 }
1972 
1973 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1974 {
1975 	u32 val;
1976 
1977 	/* clear the VF configuration - pretend */
1978 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1979 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1980 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1981 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1982 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1983 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1984 }
1985 
1986 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1987 {
1988 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1989 		     BNX2X_VF_MAX_QUEUES);
1990 }
1991 
1992 static
1993 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1994 			    struct vf_pf_resc_request *req_resc)
1995 {
1996 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1997 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1998 
1999 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2000 		(req_resc->num_txqs <= txq_cnt) &&
2001 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2002 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2003 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2004 }
2005 
2006 /* CORE VF API */
2007 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2008 		     struct vf_pf_resc_request *resc)
2009 {
2010 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2011 		BNX2X_CIDS_PER_VF;
2012 
2013 	union cdu_context *base_cxt = (union cdu_context *)
2014 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2015 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2016 	int i;
2017 
2018 	/* if state is 'acquired' the VF was not released or FLR'd, in
2019 	 * this case the returned resources match the acquired already
2020 	 * acquired resources. Verify that the requested numbers do
2021 	 * not exceed the already acquired numbers.
2022 	 */
2023 	if (vf->state == VF_ACQUIRED) {
2024 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2025 		   vf->abs_vfid);
2026 
2027 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2028 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2029 				  vf->abs_vfid);
2030 			return -EINVAL;
2031 		}
2032 		return 0;
2033 	}
2034 
2035 	/* Otherwise vf state must be 'free' or 'reset' */
2036 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2037 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2038 			  vf->abs_vfid, vf->state);
2039 		return -EINVAL;
2040 	}
2041 
2042 	/* static allocation:
2043 	 * the global maximum number are fixed per VF. Fail the request if
2044 	 * requested number exceed these globals
2045 	 */
2046 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2047 		DP(BNX2X_MSG_IOV,
2048 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2049 		/* set the max resource in the vf */
2050 		return -ENOMEM;
2051 	}
2052 
2053 	/* Set resources counters - 0 request means max available */
2054 	vf_sb_count(vf) = resc->num_sbs;
2055 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2056 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2057 
2058 	DP(BNX2X_MSG_IOV,
2059 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2060 	   vf_sb_count(vf), vf_rxq_count(vf),
2061 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2062 	   vf_vlan_rules_cnt(vf));
2063 
2064 	/* Initialize the queues */
2065 	if (!vf->vfqs) {
2066 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2067 		return -EINVAL;
2068 	}
2069 
2070 	for_each_vfq(vf, i) {
2071 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2072 
2073 		if (!q) {
2074 			BNX2X_ERR("q number %d was not allocated\n", i);
2075 			return -EINVAL;
2076 		}
2077 
2078 		q->index = i;
2079 		q->cxt = &((base_cxt + i)->eth);
2080 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2081 
2082 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2083 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2084 
2085 		/* init SP objects */
2086 		bnx2x_vfq_init(bp, vf, q);
2087 	}
2088 	vf->state = VF_ACQUIRED;
2089 	return 0;
2090 }
2091 
2092 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2093 {
2094 	struct bnx2x_func_init_params func_init = {0};
2095 	int i;
2096 
2097 	/* the sb resources are initialized at this point, do the
2098 	 * FW/HW initializations
2099 	 */
2100 	for_each_vf_sb(vf, i)
2101 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2102 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2103 
2104 	/* Sanity checks */
2105 	if (vf->state != VF_ACQUIRED) {
2106 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2107 		   vf->abs_vfid, vf->state);
2108 		return -EINVAL;
2109 	}
2110 
2111 	/* let FLR complete ... */
2112 	msleep(100);
2113 
2114 	/* FLR cleanup epilogue */
2115 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2116 		return -EBUSY;
2117 
2118 	/* reset IGU VF statistics: MSIX */
2119 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2120 
2121 	/* function setup */
2122 	func_init.pf_id = BP_FUNC(bp);
2123 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2124 	bnx2x_func_init(bp, &func_init);
2125 
2126 	/* Enable the vf */
2127 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2128 	bnx2x_vf_enable_traffic(bp, vf);
2129 
2130 	/* queue protection table */
2131 	for_each_vfq(vf, i)
2132 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2133 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2134 
2135 	vf->state = VF_ENABLED;
2136 
2137 	/* update vf bulletin board */
2138 	bnx2x_post_vf_bulletin(bp, vf->index);
2139 
2140 	return 0;
2141 }
2142 
2143 struct set_vf_state_cookie {
2144 	struct bnx2x_virtf *vf;
2145 	u8 state;
2146 };
2147 
2148 static void bnx2x_set_vf_state(void *cookie)
2149 {
2150 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2151 
2152 	p->vf->state = p->state;
2153 }
2154 
2155 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2156 {
2157 	int rc = 0, i;
2158 
2159 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2160 
2161 	/* Close all queues */
2162 	for (i = 0; i < vf_rxq_count(vf); i++) {
2163 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2164 		if (rc)
2165 			goto op_err;
2166 	}
2167 
2168 	/* disable the interrupts */
2169 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2170 	bnx2x_vf_igu_disable(bp, vf);
2171 
2172 	/* disable the VF */
2173 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2174 	bnx2x_vf_clr_qtbl(bp, vf);
2175 
2176 	/* need to make sure there are no outstanding stats ramrods which may
2177 	 * cause the device to access the VF's stats buffer which it will free
2178 	 * as soon as we return from the close flow.
2179 	 */
2180 	{
2181 		struct set_vf_state_cookie cookie;
2182 
2183 		cookie.vf = vf;
2184 		cookie.state = VF_ACQUIRED;
2185 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2186 		if (rc)
2187 			goto op_err;
2188 	}
2189 
2190 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2191 
2192 	return 0;
2193 op_err:
2194 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2195 	return rc;
2196 }
2197 
2198 /* VF release can be called either: 1. The VF was acquired but
2199  * not enabled 2. the vf was enabled or in the process of being
2200  * enabled
2201  */
2202 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2203 {
2204 	int rc;
2205 
2206 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2207 	   vf->state == VF_FREE ? "Free" :
2208 	   vf->state == VF_ACQUIRED ? "Acquired" :
2209 	   vf->state == VF_ENABLED ? "Enabled" :
2210 	   vf->state == VF_RESET ? "Reset" :
2211 	   "Unknown");
2212 
2213 	switch (vf->state) {
2214 	case VF_ENABLED:
2215 		rc = bnx2x_vf_close(bp, vf);
2216 		if (rc)
2217 			goto op_err;
2218 		fallthrough;	/* to release resources */
2219 	case VF_ACQUIRED:
2220 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2221 		bnx2x_vf_free_resc(bp, vf);
2222 		break;
2223 
2224 	case VF_FREE:
2225 	case VF_RESET:
2226 	default:
2227 		break;
2228 	}
2229 	return 0;
2230 op_err:
2231 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2232 	return rc;
2233 }
2234 
2235 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2236 			struct bnx2x_config_rss_params *rss)
2237 {
2238 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2239 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2240 	return bnx2x_config_rss(bp, rss);
2241 }
2242 
2243 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2244 			struct vfpf_tpa_tlv *tlv,
2245 			struct bnx2x_queue_update_tpa_params *params)
2246 {
2247 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2248 	struct bnx2x_queue_state_params qstate;
2249 	int qid, rc = 0;
2250 
2251 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2252 
2253 	/* Set ramrod params */
2254 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2255 	memcpy(&qstate.params.update_tpa, params,
2256 	       sizeof(struct bnx2x_queue_update_tpa_params));
2257 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2258 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2259 
2260 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2261 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2262 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2263 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2264 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2265 		   U64_LO(sge_addr[qid]));
2266 		rc = bnx2x_queue_state_change(bp, &qstate);
2267 		if (rc) {
2268 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2269 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2270 				  vf->abs_vfid, qid);
2271 			return rc;
2272 		}
2273 	}
2274 
2275 	return rc;
2276 }
2277 
2278 /* VF release ~ VF close + VF release-resources
2279  * Release is the ultimate SW shutdown and is called whenever an
2280  * irrecoverable error is encountered.
2281  */
2282 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2283 {
2284 	int rc;
2285 
2286 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2287 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2288 
2289 	rc = bnx2x_vf_free(bp, vf);
2290 	if (rc)
2291 		WARN(rc,
2292 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2293 		     vf->abs_vfid, rc);
2294 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2295 	return rc;
2296 }
2297 
2298 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2299 			      enum channel_tlvs tlv)
2300 {
2301 	/* we don't lock the channel for unsupported tlvs */
2302 	if (!bnx2x_tlv_supported(tlv)) {
2303 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2304 		return;
2305 	}
2306 
2307 	/* lock the channel */
2308 	mutex_lock(&vf->op_mutex);
2309 
2310 	/* record the locking op */
2311 	vf->op_current = tlv;
2312 
2313 	/* log the lock */
2314 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2315 	   vf->abs_vfid, tlv);
2316 }
2317 
2318 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2319 				enum channel_tlvs expected_tlv)
2320 {
2321 	enum channel_tlvs current_tlv;
2322 
2323 	if (!vf) {
2324 		BNX2X_ERR("VF was %p\n", vf);
2325 		return;
2326 	}
2327 
2328 	current_tlv = vf->op_current;
2329 
2330 	/* we don't unlock the channel for unsupported tlvs */
2331 	if (!bnx2x_tlv_supported(expected_tlv))
2332 		return;
2333 
2334 	WARN(expected_tlv != vf->op_current,
2335 	     "lock mismatch: expected %d found %d", expected_tlv,
2336 	     vf->op_current);
2337 
2338 	/* record the locking op */
2339 	vf->op_current = CHANNEL_TLV_NONE;
2340 
2341 	/* lock the channel */
2342 	mutex_unlock(&vf->op_mutex);
2343 
2344 	/* log the unlock */
2345 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2346 	   vf->abs_vfid, current_tlv);
2347 }
2348 
2349 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2350 {
2351 	struct bnx2x_queue_state_params q_params;
2352 	u32 prev_flags;
2353 	int i, rc;
2354 
2355 	/* Verify changes are needed and record current Tx switching state */
2356 	prev_flags = bp->flags;
2357 	if (enable)
2358 		bp->flags |= TX_SWITCHING;
2359 	else
2360 		bp->flags &= ~TX_SWITCHING;
2361 	if (prev_flags == bp->flags)
2362 		return 0;
2363 
2364 	/* Verify state enables the sending of queue ramrods */
2365 	if ((bp->state != BNX2X_STATE_OPEN) ||
2366 	    (bnx2x_get_q_logical_state(bp,
2367 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2368 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2369 		return 0;
2370 
2371 	/* send q. update ramrod to configure Tx switching */
2372 	memset(&q_params, 0, sizeof(q_params));
2373 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2374 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2375 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2376 		  &q_params.params.update.update_flags);
2377 	if (enable)
2378 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2379 			  &q_params.params.update.update_flags);
2380 	else
2381 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2382 			    &q_params.params.update.update_flags);
2383 
2384 	/* send the ramrod on all the queues of the PF */
2385 	for_each_eth_queue(bp, i) {
2386 		struct bnx2x_fastpath *fp = &bp->fp[i];
2387 		int tx_idx;
2388 
2389 		/* Set the appropriate Queue object */
2390 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2391 
2392 		for (tx_idx = FIRST_TX_COS_INDEX;
2393 		     tx_idx < fp->max_cos; tx_idx++) {
2394 			q_params.params.update.cid_index = tx_idx;
2395 
2396 			/* Update the Queue state */
2397 			rc = bnx2x_queue_state_change(bp, &q_params);
2398 			if (rc) {
2399 				BNX2X_ERR("Failed to configure Tx switching\n");
2400 				return rc;
2401 			}
2402 		}
2403 	}
2404 
2405 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2406 	return 0;
2407 }
2408 
2409 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2410 {
2411 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2412 
2413 	if (!IS_SRIOV(bp)) {
2414 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2415 		return -EINVAL;
2416 	}
2417 
2418 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2419 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2420 
2421 	/* HW channel is only operational when PF is up */
2422 	if (bp->state != BNX2X_STATE_OPEN) {
2423 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2424 		return -EINVAL;
2425 	}
2426 
2427 	/* we are always bound by the total_vfs in the configuration space */
2428 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2429 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2430 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2431 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2432 	}
2433 
2434 	bp->requested_nr_virtfn = num_vfs_param;
2435 	if (num_vfs_param == 0) {
2436 		bnx2x_set_pf_tx_switching(bp, false);
2437 		bnx2x_disable_sriov(bp);
2438 		return 0;
2439 	} else {
2440 		return bnx2x_enable_sriov(bp);
2441 	}
2442 }
2443 
2444 #define IGU_ENTRY_SIZE 4
2445 
2446 int bnx2x_enable_sriov(struct bnx2x *bp)
2447 {
2448 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2449 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2450 	u32 igu_entry, address;
2451 	u16 num_vf_queues;
2452 
2453 	if (req_vfs == 0)
2454 		return 0;
2455 
2456 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2457 
2458 	/* statically distribute vf sb pool between VFs */
2459 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2460 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2461 
2462 	/* zero previous values learned from igu cam */
2463 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2464 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2465 
2466 		vf->sb_count = 0;
2467 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2468 	}
2469 	bp->vfdb->vf_sbs_pool = 0;
2470 
2471 	/* prepare IGU cam */
2472 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2473 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2474 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2475 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2476 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2477 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2478 				IGU_REG_MAPPING_MEMORY_VALID;
2479 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2480 			   sb_idx, vf_idx);
2481 			REG_WR(bp, address, igu_entry);
2482 			sb_idx++;
2483 			address += IGU_ENTRY_SIZE;
2484 		}
2485 	}
2486 
2487 	/* Reinitialize vf database according to igu cam */
2488 	bnx2x_get_vf_igu_cam_info(bp);
2489 
2490 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2491 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2492 
2493 	qcount = 0;
2494 	for_each_vf(bp, vf_idx) {
2495 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2496 
2497 		/* set local queue arrays */
2498 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2499 		qcount += vf_sb_count(vf);
2500 		bnx2x_iov_static_resc(bp, vf);
2501 	}
2502 
2503 	/* prepare msix vectors in VF configuration space - the value in the
2504 	 * PCI configuration space should be the index of the last entry,
2505 	 * namely one less than the actual size of the table
2506 	 */
2507 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2508 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2509 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2510 		       num_vf_queues - 1);
2511 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2512 		   vf_idx, num_vf_queues - 1);
2513 	}
2514 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2515 
2516 	/* enable sriov. This will probe all the VFs, and consequentially cause
2517 	 * the "acquire" messages to appear on the VF PF channel.
2518 	 */
2519 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2520 	bnx2x_disable_sriov(bp);
2521 
2522 	rc = bnx2x_set_pf_tx_switching(bp, true);
2523 	if (rc)
2524 		return rc;
2525 
2526 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2527 	if (rc) {
2528 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2529 		return rc;
2530 	}
2531 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2532 	return req_vfs;
2533 }
2534 
2535 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2536 {
2537 	int vfidx;
2538 	struct pf_vf_bulletin_content *bulletin;
2539 
2540 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2541 	for_each_vf(bp, vfidx) {
2542 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2543 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2544 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2545 					  htons(ETH_P_8021Q));
2546 	}
2547 }
2548 
2549 void bnx2x_disable_sriov(struct bnx2x *bp)
2550 {
2551 	if (pci_vfs_assigned(bp->pdev)) {
2552 		DP(BNX2X_MSG_IOV,
2553 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2554 		return;
2555 	}
2556 
2557 	pci_disable_sriov(bp->pdev);
2558 }
2559 
2560 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2561 			    struct bnx2x_virtf **vf,
2562 			    struct pf_vf_bulletin_content **bulletin,
2563 			    bool test_queue)
2564 {
2565 	if (bp->state != BNX2X_STATE_OPEN) {
2566 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (!IS_SRIOV(bp)) {
2571 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2572 		return -EINVAL;
2573 	}
2574 
2575 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2576 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2577 			  vfidx, BNX2X_NR_VIRTFN(bp));
2578 		return -EINVAL;
2579 	}
2580 
2581 	/* init members */
2582 	*vf = BP_VF(bp, vfidx);
2583 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2584 
2585 	if (!*vf) {
2586 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (test_queue && !(*vf)->vfqs) {
2591 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2592 			  vfidx);
2593 		return -EINVAL;
2594 	}
2595 
2596 	if (!*bulletin) {
2597 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2598 			  vfidx);
2599 		return -EINVAL;
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2606 			struct ifla_vf_info *ivi)
2607 {
2608 	struct bnx2x *bp = netdev_priv(dev);
2609 	struct bnx2x_virtf *vf = NULL;
2610 	struct pf_vf_bulletin_content *bulletin = NULL;
2611 	struct bnx2x_vlan_mac_obj *mac_obj;
2612 	struct bnx2x_vlan_mac_obj *vlan_obj;
2613 	int rc;
2614 
2615 	/* sanity and init */
2616 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2617 	if (rc)
2618 		return rc;
2619 
2620 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2621 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2622 	if (!mac_obj || !vlan_obj) {
2623 		BNX2X_ERR("VF partially initialized\n");
2624 		return -EINVAL;
2625 	}
2626 
2627 	ivi->vf = vfidx;
2628 	ivi->qos = 0;
2629 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2630 	ivi->min_tx_rate = 0;
2631 	ivi->spoofchk = vf->spoofchk ? 1 : 0;
2632 	ivi->linkstate = vf->link_cfg;
2633 	if (vf->state == VF_ENABLED) {
2634 		/* mac and vlan are in vlan_mac objects */
2635 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2636 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2637 						0, ETH_ALEN);
2638 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2639 						 (u8 *)&ivi->vlan, 0,
2640 						 VLAN_HLEN);
2641 		}
2642 	} else {
2643 		mutex_lock(&bp->vfdb->bulletin_mutex);
2644 		/* mac */
2645 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2646 			/* mac configured by ndo so its in bulletin board */
2647 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2648 		else
2649 			/* function has not been loaded yet. Show mac as 0s */
2650 			eth_zero_addr(ivi->mac);
2651 
2652 		/* vlan */
2653 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2654 			/* vlan configured by ndo so its in bulletin board */
2655 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2656 		else
2657 			/* function has not been loaded yet. Show vlans as 0s */
2658 			memset(&ivi->vlan, 0, VLAN_HLEN);
2659 
2660 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 /* New mac for VF. Consider these cases:
2667  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2668  *    supply at acquire.
2669  * 2. VF has already been acquired but has not yet initialized - store in local
2670  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2671  *    will configure this mac when it is ready.
2672  * 3. VF has already initialized but has not yet setup a queue - post the new
2673  *    mac on VF's bulletin board right now. VF will configure this mac when it
2674  *    is ready.
2675  * 4. VF has already set a queue - delete any macs already configured for this
2676  *    queue and manually config the new mac.
2677  * In any event, once this function has been called refuse any attempts by the
2678  * VF to configure any mac for itself except for this mac. In case of a race
2679  * where the VF fails to see the new post on its bulletin board before sending a
2680  * mac configuration request, the PF will simply fail the request and VF can try
2681  * again after consulting its bulletin board.
2682  */
2683 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2684 {
2685 	struct bnx2x *bp = netdev_priv(dev);
2686 	int rc, q_logical_state;
2687 	struct bnx2x_virtf *vf = NULL;
2688 	struct pf_vf_bulletin_content *bulletin = NULL;
2689 
2690 	if (!is_valid_ether_addr(mac)) {
2691 		BNX2X_ERR("mac address invalid\n");
2692 		return -EINVAL;
2693 	}
2694 
2695 	/* sanity and init */
2696 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2697 	if (rc)
2698 		return rc;
2699 
2700 	mutex_lock(&bp->vfdb->bulletin_mutex);
2701 
2702 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2703 	 * configuration requests from vf unless match this mac
2704 	 */
2705 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2706 	memcpy(bulletin->mac, mac, ETH_ALEN);
2707 
2708 	/* Post update on VF's bulletin board */
2709 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2710 
2711 	/* release lock before checking return code */
2712 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2713 
2714 	if (rc) {
2715 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2716 		return rc;
2717 	}
2718 
2719 	q_logical_state =
2720 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2721 	if (vf->state == VF_ENABLED &&
2722 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2723 		/* configure the mac in device on this vf's queue */
2724 		unsigned long ramrod_flags = 0;
2725 		struct bnx2x_vlan_mac_obj *mac_obj;
2726 
2727 		/* User should be able to see failure reason in system logs */
2728 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2729 			return -EINVAL;
2730 
2731 		/* must lock vfpf channel to protect against vf flows */
2732 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2733 
2734 		/* remove existing eth macs */
2735 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2736 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2737 		if (rc) {
2738 			BNX2X_ERR("failed to delete eth macs\n");
2739 			rc = -EINVAL;
2740 			goto out;
2741 		}
2742 
2743 		/* remove existing uc list macs */
2744 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2745 		if (rc) {
2746 			BNX2X_ERR("failed to delete uc_list macs\n");
2747 			rc = -EINVAL;
2748 			goto out;
2749 		}
2750 
2751 		/* configure the new mac to device */
2752 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2753 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2754 				  BNX2X_ETH_MAC, &ramrod_flags);
2755 
2756 out:
2757 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2758 	}
2759 
2760 	return rc;
2761 }
2762 
2763 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2764 					 struct bnx2x_virtf *vf, bool accept)
2765 {
2766 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2767 	unsigned long accept_flags;
2768 
2769 	/* need to remove/add the VF's accept_any_vlan bit */
2770 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2771 	if (accept)
2772 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2773 	else
2774 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2775 
2776 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2777 			      accept_flags);
2778 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2779 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2780 }
2781 
2782 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2783 				    u16 vlan, bool add)
2784 {
2785 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2786 	unsigned long ramrod_flags = 0;
2787 	int rc = 0;
2788 
2789 	/* configure the new vlan to device */
2790 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2791 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2792 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2793 	ramrod_param.ramrod_flags = ramrod_flags;
2794 	ramrod_param.user_req.u.vlan.vlan = vlan;
2795 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2796 					: BNX2X_VLAN_MAC_DEL;
2797 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2798 	if (rc) {
2799 		BNX2X_ERR("failed to configure vlan\n");
2800 		return -EINVAL;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2807 		      __be16 vlan_proto)
2808 {
2809 	struct pf_vf_bulletin_content *bulletin = NULL;
2810 	struct bnx2x *bp = netdev_priv(dev);
2811 	struct bnx2x_vlan_mac_obj *vlan_obj;
2812 	unsigned long vlan_mac_flags = 0;
2813 	unsigned long ramrod_flags = 0;
2814 	struct bnx2x_virtf *vf = NULL;
2815 	int i, rc;
2816 
2817 	if (vlan > 4095) {
2818 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2819 		return -EINVAL;
2820 	}
2821 
2822 	if (vlan_proto != htons(ETH_P_8021Q))
2823 		return -EPROTONOSUPPORT;
2824 
2825 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2826 	   vfidx, vlan, 0);
2827 
2828 	/* sanity and init */
2829 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2830 	if (rc)
2831 		return rc;
2832 
2833 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2834 	 * to the VF since it doesn't have anything to do with it. But it useful
2835 	 * to store it here in case the VF is not up yet and we can only
2836 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2837 	 * Host tag.
2838 	 */
2839 	mutex_lock(&bp->vfdb->bulletin_mutex);
2840 
2841 	if (vlan > 0)
2842 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2843 	else
2844 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2845 	bulletin->vlan = vlan;
2846 
2847 	/* Post update on VF's bulletin board */
2848 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2849 	if (rc)
2850 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2851 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2852 
2853 	/* is vf initialized and queue set up? */
2854 	if (vf->state != VF_ENABLED ||
2855 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2856 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2857 		return rc;
2858 
2859 	/* User should be able to see error in system logs */
2860 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2861 		return -EINVAL;
2862 
2863 	/* must lock vfpf channel to protect against vf flows */
2864 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2865 
2866 	/* remove existing vlans */
2867 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2868 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2869 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2870 				  &ramrod_flags);
2871 	if (rc) {
2872 		BNX2X_ERR("failed to delete vlans\n");
2873 		rc = -EINVAL;
2874 		goto out;
2875 	}
2876 
2877 	/* clear accept_any_vlan when HV forces vlan, otherwise
2878 	 * according to VF capabilities
2879 	 */
2880 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2881 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2882 
2883 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2884 	if (rc)
2885 		goto out;
2886 
2887 	/* send queue update ramrods to configure default vlan and
2888 	 * silent vlan removal
2889 	 */
2890 	for_each_vfq(vf, i) {
2891 		struct bnx2x_queue_state_params q_params = {NULL};
2892 		struct bnx2x_queue_update_params *update_params;
2893 
2894 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2895 
2896 		/* validate the Q is UP */
2897 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2898 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2899 			continue;
2900 
2901 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2902 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2903 		update_params = &q_params.params.update;
2904 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2905 			  &update_params->update_flags);
2906 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2907 			  &update_params->update_flags);
2908 		if (vlan == 0) {
2909 			/* if vlan is 0 then we want to leave the VF traffic
2910 			 * untagged, and leave the incoming traffic untouched
2911 			 * (i.e. do not remove any vlan tags).
2912 			 */
2913 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2914 				    &update_params->update_flags);
2915 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2916 				    &update_params->update_flags);
2917 		} else {
2918 			/* configure default vlan to vf queue and set silent
2919 			 * vlan removal (the vf remains unaware of this vlan).
2920 			 */
2921 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2922 				  &update_params->update_flags);
2923 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2924 				  &update_params->update_flags);
2925 			update_params->def_vlan = vlan;
2926 			update_params->silent_removal_value =
2927 				vlan & VLAN_VID_MASK;
2928 			update_params->silent_removal_mask = VLAN_VID_MASK;
2929 		}
2930 
2931 		/* Update the Queue state */
2932 		rc = bnx2x_queue_state_change(bp, &q_params);
2933 		if (rc) {
2934 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2935 				  i);
2936 			goto out;
2937 		}
2938 	}
2939 out:
2940 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2941 
2942 	if (rc)
2943 		DP(BNX2X_MSG_IOV,
2944 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2945 		   vfidx, vlan);
2946 
2947 	return rc;
2948 }
2949 
2950 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2951 {
2952 	struct bnx2x *bp = netdev_priv(dev);
2953 	struct bnx2x_virtf *vf;
2954 	int i, rc = 0;
2955 
2956 	vf = BP_VF(bp, idx);
2957 	if (!vf)
2958 		return -EINVAL;
2959 
2960 	/* nothing to do */
2961 	if (vf->spoofchk == val)
2962 		return 0;
2963 
2964 	vf->spoofchk = val ? 1 : 0;
2965 
2966 	DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2967 	   val ? "enabling" : "disabling", idx);
2968 
2969 	/* is vf initialized and queue set up? */
2970 	if (vf->state != VF_ENABLED ||
2971 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2972 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2973 		return rc;
2974 
2975 	/* User should be able to see error in system logs */
2976 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2977 		return -EINVAL;
2978 
2979 	/* send queue update ramrods to configure spoofchk */
2980 	for_each_vfq(vf, i) {
2981 		struct bnx2x_queue_state_params q_params = {NULL};
2982 		struct bnx2x_queue_update_params *update_params;
2983 
2984 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2985 
2986 		/* validate the Q is UP */
2987 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2988 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2989 			continue;
2990 
2991 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2992 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2993 		update_params = &q_params.params.update;
2994 		__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
2995 			  &update_params->update_flags);
2996 		if (val) {
2997 			__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2998 				  &update_params->update_flags);
2999 		} else {
3000 			__clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3001 				    &update_params->update_flags);
3002 		}
3003 
3004 		/* Update the Queue state */
3005 		rc = bnx2x_queue_state_change(bp, &q_params);
3006 		if (rc) {
3007 			BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3008 				  val ? "enable" : "disable", idx, i);
3009 			goto out;
3010 		}
3011 	}
3012 out:
3013 	if (!rc)
3014 		DP(BNX2X_MSG_IOV,
3015 		   "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3016 		   idx);
3017 
3018 	return rc;
3019 }
3020 
3021 /* crc is the first field in the bulletin board. Compute the crc over the
3022  * entire bulletin board excluding the crc field itself. Use the length field
3023  * as the Bulletin Board was posted by a PF with possibly a different version
3024  * from the vf which will sample it. Therefore, the length is computed by the
3025  * PF and then used blindly by the VF.
3026  */
3027 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3028 {
3029 	return crc32(BULLETIN_CRC_SEED,
3030 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
3031 		 bulletin->length - sizeof(bulletin->crc));
3032 }
3033 
3034 /* Check for new posts on the bulletin board */
3035 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3036 {
3037 	struct pf_vf_bulletin_content *bulletin;
3038 	int attempts;
3039 
3040 	/* sampling structure in mid post may result with corrupted data
3041 	 * validate crc to ensure coherency.
3042 	 */
3043 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3044 		u32 crc;
3045 
3046 		/* sample the bulletin board */
3047 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3048 		       sizeof(union pf_vf_bulletin));
3049 
3050 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3051 
3052 		if (bp->shadow_bulletin.content.crc == crc)
3053 			break;
3054 
3055 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3056 			  bp->shadow_bulletin.content.crc, crc);
3057 	}
3058 
3059 	if (attempts >= BULLETIN_ATTEMPTS) {
3060 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3061 			  attempts);
3062 		return PFVF_BULLETIN_CRC_ERR;
3063 	}
3064 	bulletin = &bp->shadow_bulletin.content;
3065 
3066 	/* bulletin board hasn't changed since last sample */
3067 	if (bp->old_bulletin.version == bulletin->version)
3068 		return PFVF_BULLETIN_UNCHANGED;
3069 
3070 	/* the mac address in bulletin board is valid and is new */
3071 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3072 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3073 		/* update new mac to net device */
3074 		eth_hw_addr_set(bp->dev, bulletin->mac);
3075 	}
3076 
3077 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3078 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3079 		   bulletin->link_speed, bulletin->link_flags);
3080 
3081 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3082 		bp->vf_link_vars.link_report_flags = 0;
3083 		/* Link is down */
3084 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3085 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3086 				  &bp->vf_link_vars.link_report_flags);
3087 		/* Full DUPLEX */
3088 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3089 			__set_bit(BNX2X_LINK_REPORT_FD,
3090 				  &bp->vf_link_vars.link_report_flags);
3091 		/* Rx Flow Control is ON */
3092 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3093 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3094 				  &bp->vf_link_vars.link_report_flags);
3095 		/* Tx Flow Control is ON */
3096 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3097 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3098 				  &bp->vf_link_vars.link_report_flags);
3099 		__bnx2x_link_report(bp);
3100 	}
3101 
3102 	/* copy new bulletin board to bp */
3103 	memcpy(&bp->old_bulletin, bulletin,
3104 	       sizeof(struct pf_vf_bulletin_content));
3105 
3106 	return PFVF_BULLETIN_UPDATED;
3107 }
3108 
3109 void bnx2x_timer_sriov(struct bnx2x *bp)
3110 {
3111 	bnx2x_sample_bulletin(bp);
3112 
3113 	/* if channel is down we need to self destruct */
3114 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3115 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3116 				       BNX2X_MSG_IOV);
3117 }
3118 
3119 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3120 {
3121 	/* vf doorbells are embedded within the regview */
3122 	return bp->regview + PXP_VF_ADDR_DB_START;
3123 }
3124 
3125 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3126 {
3127 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3128 		       sizeof(struct bnx2x_vf_mbx_msg));
3129 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3130 		       sizeof(union pf_vf_bulletin));
3131 }
3132 
3133 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3134 {
3135 	mutex_init(&bp->vf2pf_mutex);
3136 
3137 	/* allocate vf2pf mailbox for vf to pf channel */
3138 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3139 					 sizeof(struct bnx2x_vf_mbx_msg));
3140 	if (!bp->vf2pf_mbox)
3141 		goto alloc_mem_err;
3142 
3143 	/* allocate pf 2 vf bulletin board */
3144 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3145 					     sizeof(union pf_vf_bulletin));
3146 	if (!bp->pf2vf_bulletin)
3147 		goto alloc_mem_err;
3148 
3149 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3150 
3151 	return 0;
3152 
3153 alloc_mem_err:
3154 	bnx2x_vf_pci_dealloc(bp);
3155 	return -ENOMEM;
3156 }
3157 
3158 void bnx2x_iov_channel_down(struct bnx2x *bp)
3159 {
3160 	int vf_idx;
3161 	struct pf_vf_bulletin_content *bulletin;
3162 
3163 	if (!IS_SRIOV(bp))
3164 		return;
3165 
3166 	for_each_vf(bp, vf_idx) {
3167 		/* locate this VFs bulletin board and update the channel down
3168 		 * bit
3169 		 */
3170 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3171 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3172 
3173 		/* update vf bulletin board */
3174 		bnx2x_post_vf_bulletin(bp, vf_idx);
3175 	}
3176 }
3177 
3178 void bnx2x_iov_task(struct work_struct *work)
3179 {
3180 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3181 
3182 	if (!netif_running(bp->dev))
3183 		return;
3184 
3185 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3186 			       &bp->iov_task_state))
3187 		bnx2x_vf_handle_flr_event(bp);
3188 
3189 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3190 			       &bp->iov_task_state))
3191 		bnx2x_vf_mbx(bp);
3192 }
3193 
3194 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3195 {
3196 	smp_mb__before_atomic();
3197 	set_bit(flag, &bp->iov_task_state);
3198 	smp_mb__after_atomic();
3199 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3200 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3201 }
3202