1 /* bnx2x_sriov.c: QLogic Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * Copyright 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and QLogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other QLogic software provided under a 14 * license other than the GPL, without QLogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Shmulik Ravid 19 * Ariel Elior <ariel.elior@qlogic.com> 20 * 21 */ 22 #include "bnx2x.h" 23 #include "bnx2x_init.h" 24 #include "bnx2x_cmn.h" 25 #include "bnx2x_sp.h" 26 #include <linux/crc32.h> 27 #include <linux/if_vlan.h> 28 29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 30 struct bnx2x_virtf **vf, 31 struct pf_vf_bulletin_content **bulletin, 32 bool test_queue); 33 34 /* General service functions */ 35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 36 u16 pf_id) 37 { 38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 45 pf_id); 46 } 47 48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 49 u8 enable) 50 { 51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 58 enable); 59 } 60 61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 62 { 63 int idx; 64 65 for_each_vf(bp, idx) 66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 67 break; 68 return idx; 69 } 70 71 static 72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 73 { 74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 76 } 77 78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 79 u8 igu_sb_id, u8 segment, u16 index, u8 op, 80 u8 update) 81 { 82 /* acking a VF sb through the PF - use the GRC */ 83 u32 ctl; 84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 86 u32 func_encode = vf->abs_vfid; 87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 88 struct igu_regular cmd_data = {0}; 89 90 cmd_data.sb_id_and_flags = 91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 93 (update << IGU_REGULAR_BUPDATE_SHIFT) | 94 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 95 96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 97 func_encode << IGU_CTRL_REG_FID_SHIFT | 98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 99 100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 101 cmd_data.sb_id_and_flags, igu_addr_data); 102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 103 mmiowb(); 104 barrier(); 105 106 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 107 ctl, igu_addr_ctl); 108 REG_WR(bp, igu_addr_ctl, ctl); 109 mmiowb(); 110 barrier(); 111 } 112 113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 114 struct bnx2x_virtf *vf, 115 bool print_err) 116 { 117 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 118 if (print_err) 119 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 120 else 121 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 122 return false; 123 } 124 return true; 125 } 126 127 /* VFOP operations states */ 128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 129 struct bnx2x_queue_init_params *init_params, 130 struct bnx2x_queue_setup_params *setup_params, 131 u16 q_idx, u16 sb_idx) 132 { 133 DP(BNX2X_MSG_IOV, 134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 135 vf->abs_vfid, 136 q_idx, 137 sb_idx, 138 init_params->tx.sb_cq_index, 139 init_params->tx.hc_rate, 140 setup_params->flags, 141 setup_params->txq_params.traffic_type); 142 } 143 144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 145 struct bnx2x_queue_init_params *init_params, 146 struct bnx2x_queue_setup_params *setup_params, 147 u16 q_idx, u16 sb_idx) 148 { 149 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 150 151 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 153 vf->abs_vfid, 154 q_idx, 155 sb_idx, 156 init_params->rx.sb_cq_index, 157 init_params->rx.hc_rate, 158 setup_params->gen_params.mtu, 159 rxq_params->buf_sz, 160 rxq_params->sge_buf_sz, 161 rxq_params->max_sges_pkt, 162 rxq_params->tpa_agg_sz, 163 setup_params->flags, 164 rxq_params->drop_flags, 165 rxq_params->cache_line_log); 166 } 167 168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 169 struct bnx2x_virtf *vf, 170 struct bnx2x_vf_queue *q, 171 struct bnx2x_vf_queue_construct_params *p, 172 unsigned long q_type) 173 { 174 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 175 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 176 177 /* INIT */ 178 179 /* Enable host coalescing in the transition to INIT state */ 180 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 181 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 182 183 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 184 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 185 186 /* FW SB ID */ 187 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 188 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 189 190 /* context */ 191 init_p->cxts[0] = q->cxt; 192 193 /* SETUP */ 194 195 /* Setup-op general parameters */ 196 setup_p->gen_params.spcl_id = vf->sp_cl_id; 197 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 198 setup_p->gen_params.fp_hsi = vf->fp_hsi; 199 200 /* Setup-op flags: 201 * collect statistics, zero statistics, local-switching, security, 202 * OV for Flex10, RSS and MCAST for leading 203 */ 204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 206 207 /* for VFs, enable tx switching, bd coherency, and mac address 208 * anti-spoofing 209 */ 210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 212 if (vf->spoofchk) 213 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 214 else 215 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 216 217 /* Setup-op rx parameters */ 218 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 219 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 220 221 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 222 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 223 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 224 225 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 226 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 227 } 228 229 /* Setup-op tx parameters */ 230 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 231 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 232 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 233 } 234 } 235 236 static int bnx2x_vf_queue_create(struct bnx2x *bp, 237 struct bnx2x_virtf *vf, int qid, 238 struct bnx2x_vf_queue_construct_params *qctor) 239 { 240 struct bnx2x_queue_state_params *q_params; 241 int rc = 0; 242 243 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 244 245 /* Prepare ramrod information */ 246 q_params = &qctor->qstate; 247 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 248 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 249 250 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 251 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 252 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 253 goto out; 254 } 255 256 /* Run Queue 'construction' ramrods */ 257 q_params->cmd = BNX2X_Q_CMD_INIT; 258 rc = bnx2x_queue_state_change(bp, q_params); 259 if (rc) 260 goto out; 261 262 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 263 sizeof(struct bnx2x_queue_setup_params)); 264 q_params->cmd = BNX2X_Q_CMD_SETUP; 265 rc = bnx2x_queue_state_change(bp, q_params); 266 if (rc) 267 goto out; 268 269 /* enable interrupts */ 270 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 271 USTORM_ID, 0, IGU_INT_ENABLE, 0); 272 out: 273 return rc; 274 } 275 276 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 277 int qid) 278 { 279 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 280 BNX2X_Q_CMD_TERMINATE, 281 BNX2X_Q_CMD_CFC_DEL}; 282 struct bnx2x_queue_state_params q_params; 283 int rc, i; 284 285 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 286 287 /* Prepare ramrod information */ 288 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 289 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 290 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 291 292 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 293 BNX2X_Q_LOGICAL_STATE_STOPPED) { 294 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 295 goto out; 296 } 297 298 /* Run Queue 'destruction' ramrods */ 299 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 300 q_params.cmd = cmds[i]; 301 rc = bnx2x_queue_state_change(bp, &q_params); 302 if (rc) { 303 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 304 return rc; 305 } 306 } 307 out: 308 /* Clean Context */ 309 if (bnx2x_vfq(vf, qid, cxt)) { 310 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 311 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 312 } 313 314 return 0; 315 } 316 317 static void 318 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 319 { 320 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 321 if (vf) { 322 /* the first igu entry belonging to VFs of this PF */ 323 if (!BP_VFDB(bp)->first_vf_igu_entry) 324 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 325 326 /* the first igu entry belonging to this VF */ 327 if (!vf_sb_count(vf)) 328 vf->igu_base_id = igu_sb_id; 329 330 ++vf_sb_count(vf); 331 ++vf->sb_count; 332 } 333 BP_VFDB(bp)->vf_sbs_pool++; 334 } 335 336 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp, 337 struct bnx2x_vlan_mac_obj *obj, 338 atomic_t *counter) 339 { 340 struct list_head *pos; 341 int read_lock; 342 int cnt = 0; 343 344 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); 345 if (read_lock) 346 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); 347 348 list_for_each(pos, &obj->head) 349 cnt++; 350 351 if (!read_lock) 352 bnx2x_vlan_mac_h_read_unlock(bp, obj); 353 354 atomic_set(counter, cnt); 355 } 356 357 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 358 int qid, bool drv_only, int type) 359 { 360 struct bnx2x_vlan_mac_ramrod_params ramrod; 361 int rc; 362 363 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 364 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 365 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 366 367 /* Prepare ramrod params */ 368 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 369 if (type == BNX2X_VF_FILTER_VLAN_MAC) { 370 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 372 } else if (type == BNX2X_VF_FILTER_MAC) { 373 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 374 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 375 } else { 376 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 377 } 378 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 379 380 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 381 if (drv_only) 382 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 383 else 384 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 385 386 /* Start deleting */ 387 rc = ramrod.vlan_mac_obj->delete_all(bp, 388 ramrod.vlan_mac_obj, 389 &ramrod.user_req.vlan_mac_flags, 390 &ramrod.ramrod_flags); 391 if (rc) { 392 BNX2X_ERR("Failed to delete all %s\n", 393 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" : 394 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs"); 395 return rc; 396 } 397 398 return 0; 399 } 400 401 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 402 struct bnx2x_virtf *vf, int qid, 403 struct bnx2x_vf_mac_vlan_filter *filter, 404 bool drv_only) 405 { 406 struct bnx2x_vlan_mac_ramrod_params ramrod; 407 int rc; 408 409 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 410 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 411 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" : 412 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN"); 413 414 /* Prepare ramrod params */ 415 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 416 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) { 417 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj); 418 ramrod.user_req.u.vlan.vlan = filter->vid; 419 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 420 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 421 } else if (filter->type == BNX2X_VF_FILTER_VLAN) { 422 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 423 ramrod.user_req.u.vlan.vlan = filter->vid; 424 } else { 425 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 426 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 427 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 428 } 429 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 430 BNX2X_VLAN_MAC_DEL; 431 432 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 433 if (drv_only) 434 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 435 else 436 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 437 438 /* Add/Remove the filter */ 439 rc = bnx2x_config_vlan_mac(bp, &ramrod); 440 if (rc == -EEXIST) 441 return 0; 442 if (rc) { 443 BNX2X_ERR("Failed to %s %s\n", 444 filter->add ? "add" : "delete", 445 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? 446 "VLAN-MAC" : 447 (filter->type == BNX2X_VF_FILTER_MAC) ? 448 "MAC" : "VLAN"); 449 return rc; 450 } 451 452 filter->applied = true; 453 454 return 0; 455 } 456 457 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 458 struct bnx2x_vf_mac_vlan_filters *filters, 459 int qid, bool drv_only) 460 { 461 int rc = 0, i; 462 463 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 464 465 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 466 return -EINVAL; 467 468 /* Prepare ramrod params */ 469 for (i = 0; i < filters->count; i++) { 470 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 471 &filters->filters[i], drv_only); 472 if (rc) 473 break; 474 } 475 476 /* Rollback if needed */ 477 if (i != filters->count) { 478 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 479 i, filters->count); 480 while (--i >= 0) { 481 if (!filters->filters[i].applied) 482 continue; 483 filters->filters[i].add = !filters->filters[i].add; 484 bnx2x_vf_mac_vlan_config(bp, vf, qid, 485 &filters->filters[i], 486 drv_only); 487 } 488 } 489 490 /* It's our responsibility to free the filters */ 491 kfree(filters); 492 493 return rc; 494 } 495 496 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 497 struct bnx2x_vf_queue_construct_params *qctor) 498 { 499 int rc; 500 501 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 502 503 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 504 if (rc) 505 goto op_err; 506 507 /* Schedule the configuration of any pending vlan filters */ 508 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 509 BNX2X_MSG_IOV); 510 return 0; 511 op_err: 512 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 513 return rc; 514 } 515 516 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 517 int qid) 518 { 519 int rc; 520 521 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 522 523 /* If needed, clean the filtering data base */ 524 if ((qid == LEADING_IDX) && 525 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 526 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 527 BNX2X_VF_FILTER_VLAN_MAC); 528 if (rc) 529 goto op_err; 530 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 531 BNX2X_VF_FILTER_VLAN); 532 if (rc) 533 goto op_err; 534 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, 535 BNX2X_VF_FILTER_MAC); 536 if (rc) 537 goto op_err; 538 } 539 540 /* Terminate queue */ 541 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 542 struct bnx2x_queue_state_params qstate; 543 544 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 545 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 546 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 547 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 548 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 549 rc = bnx2x_queue_state_change(bp, &qstate); 550 if (rc) 551 goto op_err; 552 } 553 554 return 0; 555 op_err: 556 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 557 return rc; 558 } 559 560 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 561 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 562 { 563 struct bnx2x_mcast_list_elem *mc = NULL; 564 struct bnx2x_mcast_ramrod_params mcast; 565 int rc, i; 566 567 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 568 569 /* Prepare Multicast command */ 570 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 571 mcast.mcast_obj = &vf->mcast_obj; 572 if (drv_only) 573 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 574 else 575 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 576 if (mc_num) { 577 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem), 578 GFP_KERNEL); 579 if (!mc) { 580 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 581 return -ENOMEM; 582 } 583 } 584 585 if (mc_num) { 586 INIT_LIST_HEAD(&mcast.mcast_list); 587 for (i = 0; i < mc_num; i++) { 588 mc[i].mac = mcasts[i]; 589 list_add_tail(&mc[i].link, 590 &mcast.mcast_list); 591 } 592 593 /* add new mcasts */ 594 mcast.mcast_list_len = mc_num; 595 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET); 596 if (rc) 597 BNX2X_ERR("Failed to set multicasts\n"); 598 } else { 599 /* clear existing mcasts */ 600 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 601 if (rc) 602 BNX2X_ERR("Failed to remove multicasts\n"); 603 } 604 605 kfree(mc); 606 607 return rc; 608 } 609 610 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 611 struct bnx2x_rx_mode_ramrod_params *ramrod, 612 struct bnx2x_virtf *vf, 613 unsigned long accept_flags) 614 { 615 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 616 617 memset(ramrod, 0, sizeof(*ramrod)); 618 ramrod->cid = vfq->cid; 619 ramrod->cl_id = vfq_cl_id(vf, vfq); 620 ramrod->rx_mode_obj = &bp->rx_mode_obj; 621 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 622 ramrod->rx_accept_flags = accept_flags; 623 ramrod->tx_accept_flags = accept_flags; 624 ramrod->pstate = &vf->filter_state; 625 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 626 627 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 628 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 629 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 630 631 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 632 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 633 } 634 635 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 636 int qid, unsigned long accept_flags) 637 { 638 struct bnx2x_rx_mode_ramrod_params ramrod; 639 640 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 641 642 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 643 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 644 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 645 return bnx2x_config_rx_mode(bp, &ramrod); 646 } 647 648 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 649 { 650 int rc; 651 652 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 653 654 /* Remove all classification configuration for leading queue */ 655 if (qid == LEADING_IDX) { 656 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 657 if (rc) 658 goto op_err; 659 660 /* Remove filtering if feasible */ 661 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 662 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 663 false, 664 BNX2X_VF_FILTER_VLAN_MAC); 665 if (rc) 666 goto op_err; 667 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 668 false, 669 BNX2X_VF_FILTER_VLAN); 670 if (rc) 671 goto op_err; 672 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 673 false, 674 BNX2X_VF_FILTER_MAC); 675 if (rc) 676 goto op_err; 677 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 678 if (rc) 679 goto op_err; 680 } 681 } 682 683 /* Destroy queue */ 684 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 685 if (rc) 686 goto op_err; 687 return rc; 688 op_err: 689 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 690 vf->abs_vfid, qid, rc); 691 return rc; 692 } 693 694 /* VF enable primitives 695 * when pretend is required the caller is responsible 696 * for calling pretend prior to calling these routines 697 */ 698 699 /* internal vf enable - until vf is enabled internally all transactions 700 * are blocked. This routine should always be called last with pretend. 701 */ 702 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 703 { 704 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 705 } 706 707 /* clears vf error in all semi blocks */ 708 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 709 { 710 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 711 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 712 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 713 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 714 } 715 716 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 717 { 718 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 719 u32 was_err_reg = 0; 720 721 switch (was_err_group) { 722 case 0: 723 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 724 break; 725 case 1: 726 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 727 break; 728 case 2: 729 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 730 break; 731 case 3: 732 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 733 break; 734 } 735 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 736 } 737 738 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 739 { 740 int i; 741 u32 val; 742 743 /* Set VF masks and configuration - pretend */ 744 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 745 746 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 747 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 748 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 749 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 750 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 751 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 752 753 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 754 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 755 val &= ~IGU_VF_CONF_PARENT_MASK; 756 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 757 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 758 759 DP(BNX2X_MSG_IOV, 760 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 761 vf->abs_vfid, val); 762 763 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 764 765 /* iterate over all queues, clear sb consumer */ 766 for (i = 0; i < vf_sb_count(vf); i++) { 767 u8 igu_sb_id = vf_igu_sb(vf, i); 768 769 /* zero prod memory */ 770 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 771 772 /* clear sb state machine */ 773 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 774 false /* VF */); 775 776 /* disable + update */ 777 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 778 IGU_INT_DISABLE, 1); 779 } 780 } 781 782 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 783 { 784 /* set the VF-PF association in the FW */ 785 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); 786 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); 787 788 /* clear vf errors*/ 789 bnx2x_vf_semi_clear_err(bp, abs_vfid); 790 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 791 792 /* internal vf-enable - pretend */ 793 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 794 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 795 bnx2x_vf_enable_internal(bp, true); 796 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 797 } 798 799 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 800 { 801 /* Reset vf in IGU interrupts are still disabled */ 802 bnx2x_vf_igu_reset(bp, vf); 803 804 /* pretend to enable the vf with the PBF */ 805 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 806 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 807 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 808 } 809 810 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 811 { 812 struct pci_dev *dev; 813 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 814 815 if (!vf) 816 return false; 817 818 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn); 819 if (dev) 820 return bnx2x_is_pcie_pending(dev); 821 return false; 822 } 823 824 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 825 { 826 /* Verify no pending pci transactions */ 827 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 828 BNX2X_ERR("PCIE Transactions still pending\n"); 829 830 return 0; 831 } 832 833 /* must be called after the number of PF queues and the number of VFs are 834 * both known 835 */ 836 static void 837 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 838 { 839 struct vf_pf_resc_request *resc = &vf->alloc_resc; 840 841 /* will be set only during VF-ACQUIRE */ 842 resc->num_rxqs = 0; 843 resc->num_txqs = 0; 844 845 resc->num_mac_filters = VF_MAC_CREDIT_CNT; 846 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT; 847 848 /* no real limitation */ 849 resc->num_mc_filters = 0; 850 851 /* num_sbs already set */ 852 resc->num_sbs = vf->sb_count; 853 } 854 855 /* FLR routines: */ 856 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 857 { 858 /* reset the state variables */ 859 bnx2x_iov_static_resc(bp, vf); 860 vf->state = VF_FREE; 861 } 862 863 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 864 { 865 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 866 867 /* DQ usage counter */ 868 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 869 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 870 "DQ VF usage counter timed out", 871 poll_cnt); 872 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 873 874 /* FW cleanup command - poll for the results */ 875 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 876 poll_cnt)) 877 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 878 879 /* verify TX hw is flushed */ 880 bnx2x_tx_hw_flushed(bp, poll_cnt); 881 } 882 883 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 884 { 885 int rc, i; 886 887 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 888 889 /* the cleanup operations are valid if and only if the VF 890 * was first acquired. 891 */ 892 for (i = 0; i < vf_rxq_count(vf); i++) { 893 rc = bnx2x_vf_queue_flr(bp, vf, i); 894 if (rc) 895 goto out; 896 } 897 898 /* remove multicasts */ 899 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 900 901 /* dispatch final cleanup and wait for HW queues to flush */ 902 bnx2x_vf_flr_clnup_hw(bp, vf); 903 904 /* release VF resources */ 905 bnx2x_vf_free_resc(bp, vf); 906 907 vf->malicious = false; 908 909 /* re-open the mailbox */ 910 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 911 return; 912 out: 913 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 914 vf->abs_vfid, i, rc); 915 } 916 917 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 918 { 919 struct bnx2x_virtf *vf; 920 int i; 921 922 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 923 /* VF should be RESET & in FLR cleanup states */ 924 if (bnx2x_vf(bp, i, state) != VF_RESET || 925 !bnx2x_vf(bp, i, flr_clnup_stage)) 926 continue; 927 928 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 929 i, BNX2X_NR_VIRTFN(bp)); 930 931 vf = BP_VF(bp, i); 932 933 /* lock the vf pf channel */ 934 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 935 936 /* invoke the VF FLR SM */ 937 bnx2x_vf_flr(bp, vf); 938 939 /* mark the VF to be ACKED and continue */ 940 vf->flr_clnup_stage = false; 941 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 942 } 943 944 /* Acknowledge the handled VFs. 945 * we are acknowledge all the vfs which an flr was requested for, even 946 * if amongst them there are such that we never opened, since the mcp 947 * will interrupt us immediately again if we only ack some of the bits, 948 * resulting in an endless loop. This can happen for example in KVM 949 * where an 'all ones' flr request is sometimes given by hyper visor 950 */ 951 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 952 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 953 for (i = 0; i < FLRD_VFS_DWORDS; i++) 954 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 955 bp->vfdb->flrd_vfs[i]); 956 957 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 958 959 /* clear the acked bits - better yet if the MCP implemented 960 * write to clear semantics 961 */ 962 for (i = 0; i < FLRD_VFS_DWORDS; i++) 963 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 964 } 965 966 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 967 { 968 int i; 969 970 /* Read FLR'd VFs */ 971 for (i = 0; i < FLRD_VFS_DWORDS; i++) 972 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 973 974 DP(BNX2X_MSG_MCP, 975 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 976 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 977 978 for_each_vf(bp, i) { 979 struct bnx2x_virtf *vf = BP_VF(bp, i); 980 u32 reset = 0; 981 982 if (vf->abs_vfid < 32) 983 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 984 else 985 reset = bp->vfdb->flrd_vfs[1] & 986 (1 << (vf->abs_vfid - 32)); 987 988 if (reset) { 989 /* set as reset and ready for cleanup */ 990 vf->state = VF_RESET; 991 vf->flr_clnup_stage = true; 992 993 DP(BNX2X_MSG_IOV, 994 "Initiating Final cleanup for VF %d\n", 995 vf->abs_vfid); 996 } 997 } 998 999 /* do the FLR cleanup for all marked VFs*/ 1000 bnx2x_vf_flr_clnup(bp); 1001 } 1002 1003 /* IOV global initialization routines */ 1004 void bnx2x_iov_init_dq(struct bnx2x *bp) 1005 { 1006 if (!IS_SRIOV(bp)) 1007 return; 1008 1009 /* Set the DQ such that the CID reflect the abs_vfid */ 1010 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 1011 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 1012 1013 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1014 * the PF L2 queues 1015 */ 1016 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1017 1018 /* The VF window size is the log2 of the max number of CIDs per VF */ 1019 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1020 1021 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1022 * the Pf doorbell size although the 2 are independent. 1023 */ 1024 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1025 1026 /* No security checks for now - 1027 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1028 * CID range 0 - 0x1ffff 1029 */ 1030 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1031 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1032 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1033 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1034 1035 /* set the VF doorbell threshold. This threshold represents the amount 1036 * of doorbells allowed in the main DORQ fifo for a specific VF. 1037 */ 1038 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1039 } 1040 1041 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1042 { 1043 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1044 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1045 } 1046 1047 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid) 1048 { 1049 struct pci_dev *dev = bp->pdev; 1050 1051 return pci_domain_nr(dev->bus); 1052 } 1053 1054 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1055 { 1056 struct pci_dev *dev = bp->pdev; 1057 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1058 1059 return dev->bus->number + ((dev->devfn + iov->offset + 1060 iov->stride * vfid) >> 8); 1061 } 1062 1063 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1064 { 1065 struct pci_dev *dev = bp->pdev; 1066 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1067 1068 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1069 } 1070 1071 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1072 { 1073 int i, n; 1074 struct pci_dev *dev = bp->pdev; 1075 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1076 1077 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1078 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1079 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1080 1081 size /= iov->total; 1082 vf->bars[n].bar = start + size * vf->abs_vfid; 1083 vf->bars[n].size = size; 1084 } 1085 } 1086 1087 static int 1088 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1089 { 1090 int sb_id; 1091 u32 val; 1092 u8 fid, current_pf = 0; 1093 1094 /* IGU in normal mode - read CAM */ 1095 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1096 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1097 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1098 continue; 1099 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1100 if (fid & IGU_FID_ENCODE_IS_PF) 1101 current_pf = fid & IGU_FID_PF_NUM_MASK; 1102 else if (current_pf == BP_FUNC(bp)) 1103 bnx2x_vf_set_igu_info(bp, sb_id, 1104 (fid & IGU_FID_VF_NUM_MASK)); 1105 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1106 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1107 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1108 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1109 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1110 } 1111 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1112 return BP_VFDB(bp)->vf_sbs_pool; 1113 } 1114 1115 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1116 { 1117 if (bp->vfdb) { 1118 kfree(bp->vfdb->vfqs); 1119 kfree(bp->vfdb->vfs); 1120 kfree(bp->vfdb); 1121 } 1122 bp->vfdb = NULL; 1123 } 1124 1125 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1126 { 1127 int pos; 1128 struct pci_dev *dev = bp->pdev; 1129 1130 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1131 if (!pos) { 1132 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1133 return -ENODEV; 1134 } 1135 1136 iov->pos = pos; 1137 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1138 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1139 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1140 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1141 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1142 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1143 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1144 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1145 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1146 1147 return 0; 1148 } 1149 1150 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1151 { 1152 u32 val; 1153 1154 /* read the SRIOV capability structure 1155 * The fields can be read via configuration read or 1156 * directly from the device (starting at offset PCICFG_OFFSET) 1157 */ 1158 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1159 return -ENODEV; 1160 1161 /* get the number of SRIOV bars */ 1162 iov->nres = 0; 1163 1164 /* read the first_vfid */ 1165 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1166 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1167 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1168 1169 DP(BNX2X_MSG_IOV, 1170 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1171 BP_FUNC(bp), 1172 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1173 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1174 1175 return 0; 1176 } 1177 1178 /* must be called after PF bars are mapped */ 1179 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1180 int num_vfs_param) 1181 { 1182 int err, i; 1183 struct bnx2x_sriov *iov; 1184 struct pci_dev *dev = bp->pdev; 1185 1186 bp->vfdb = NULL; 1187 1188 /* verify is pf */ 1189 if (IS_VF(bp)) 1190 return 0; 1191 1192 /* verify sriov capability is present in configuration space */ 1193 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1194 return 0; 1195 1196 /* verify chip revision */ 1197 if (CHIP_IS_E1x(bp)) 1198 return 0; 1199 1200 /* check if SRIOV support is turned off */ 1201 if (!num_vfs_param) 1202 return 0; 1203 1204 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1205 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1206 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1207 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1208 return 0; 1209 } 1210 1211 /* SRIOV can be enabled only with MSIX */ 1212 if (int_mode_param == BNX2X_INT_MODE_MSI || 1213 int_mode_param == BNX2X_INT_MODE_INTX) { 1214 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1215 return 0; 1216 } 1217 1218 err = -EIO; 1219 /* verify ari is enabled */ 1220 if (!pci_ari_enabled(bp->pdev->bus)) { 1221 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1222 return 0; 1223 } 1224 1225 /* verify igu is in normal mode */ 1226 if (CHIP_INT_MODE_IS_BC(bp)) { 1227 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1228 return 0; 1229 } 1230 1231 /* allocate the vfs database */ 1232 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1233 if (!bp->vfdb) { 1234 BNX2X_ERR("failed to allocate vf database\n"); 1235 err = -ENOMEM; 1236 goto failed; 1237 } 1238 1239 /* get the sriov info - Linux already collected all the pertinent 1240 * information, however the sriov structure is for the private use 1241 * of the pci module. Also we want this information regardless 1242 * of the hyper-visor. 1243 */ 1244 iov = &(bp->vfdb->sriov); 1245 err = bnx2x_sriov_info(bp, iov); 1246 if (err) 1247 goto failed; 1248 1249 /* SR-IOV capability was enabled but there are no VFs*/ 1250 if (iov->total == 0) 1251 goto failed; 1252 1253 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1254 1255 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1256 num_vfs_param, iov->nr_virtfn); 1257 1258 /* allocate the vf array */ 1259 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp), 1260 sizeof(struct bnx2x_virtf), 1261 GFP_KERNEL); 1262 if (!bp->vfdb->vfs) { 1263 BNX2X_ERR("failed to allocate vf array\n"); 1264 err = -ENOMEM; 1265 goto failed; 1266 } 1267 1268 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1269 for_each_vf(bp, i) { 1270 bnx2x_vf(bp, i, index) = i; 1271 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1272 bnx2x_vf(bp, i, state) = VF_FREE; 1273 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1274 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1275 /* enable spoofchk by default */ 1276 bnx2x_vf(bp, i, spoofchk) = 1; 1277 } 1278 1279 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1280 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1281 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1282 err = -EINVAL; 1283 goto failed; 1284 } 1285 1286 /* allocate the queue arrays for all VFs */ 1287 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES, 1288 sizeof(struct bnx2x_vf_queue), 1289 GFP_KERNEL); 1290 1291 if (!bp->vfdb->vfqs) { 1292 BNX2X_ERR("failed to allocate vf queue array\n"); 1293 err = -ENOMEM; 1294 goto failed; 1295 } 1296 1297 /* Prepare the VFs event synchronization mechanism */ 1298 mutex_init(&bp->vfdb->event_mutex); 1299 1300 mutex_init(&bp->vfdb->bulletin_mutex); 1301 1302 if (SHMEM2_HAS(bp, sriov_switch_mode)) 1303 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB); 1304 1305 return 0; 1306 failed: 1307 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1308 __bnx2x_iov_free_vfdb(bp); 1309 return err; 1310 } 1311 1312 void bnx2x_iov_remove_one(struct bnx2x *bp) 1313 { 1314 int vf_idx; 1315 1316 /* if SRIOV is not enabled there's nothing to do */ 1317 if (!IS_SRIOV(bp)) 1318 return; 1319 1320 bnx2x_disable_sriov(bp); 1321 1322 /* disable access to all VFs */ 1323 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1324 bnx2x_pretend_func(bp, 1325 HW_VF_HANDLE(bp, 1326 bp->vfdb->sriov.first_vf_in_pf + 1327 vf_idx)); 1328 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1329 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1330 bnx2x_vf_enable_internal(bp, 0); 1331 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1332 } 1333 1334 /* free vf database */ 1335 __bnx2x_iov_free_vfdb(bp); 1336 } 1337 1338 void bnx2x_iov_free_mem(struct bnx2x *bp) 1339 { 1340 int i; 1341 1342 if (!IS_SRIOV(bp)) 1343 return; 1344 1345 /* free vfs hw contexts */ 1346 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1347 struct hw_dma *cxt = &bp->vfdb->context[i]; 1348 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1349 } 1350 1351 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1352 BP_VFDB(bp)->sp_dma.mapping, 1353 BP_VFDB(bp)->sp_dma.size); 1354 1355 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1356 BP_VF_MBX_DMA(bp)->mapping, 1357 BP_VF_MBX_DMA(bp)->size); 1358 1359 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1360 BP_VF_BULLETIN_DMA(bp)->mapping, 1361 BP_VF_BULLETIN_DMA(bp)->size); 1362 } 1363 1364 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1365 { 1366 size_t tot_size; 1367 int i, rc = 0; 1368 1369 if (!IS_SRIOV(bp)) 1370 return rc; 1371 1372 /* allocate vfs hw contexts */ 1373 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1374 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1375 1376 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1377 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1378 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1379 1380 if (cxt->size) { 1381 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1382 if (!cxt->addr) 1383 goto alloc_mem_err; 1384 } else { 1385 cxt->addr = NULL; 1386 cxt->mapping = 0; 1387 } 1388 tot_size -= cxt->size; 1389 } 1390 1391 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1392 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1393 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1394 tot_size); 1395 if (!BP_VFDB(bp)->sp_dma.addr) 1396 goto alloc_mem_err; 1397 BP_VFDB(bp)->sp_dma.size = tot_size; 1398 1399 /* allocate mailboxes */ 1400 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1401 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1402 tot_size); 1403 if (!BP_VF_MBX_DMA(bp)->addr) 1404 goto alloc_mem_err; 1405 1406 BP_VF_MBX_DMA(bp)->size = tot_size; 1407 1408 /* allocate local bulletin boards */ 1409 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1410 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1411 tot_size); 1412 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1413 goto alloc_mem_err; 1414 1415 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1416 1417 return 0; 1418 1419 alloc_mem_err: 1420 return -ENOMEM; 1421 } 1422 1423 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1424 struct bnx2x_vf_queue *q) 1425 { 1426 u8 cl_id = vfq_cl_id(vf, q); 1427 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1428 unsigned long q_type = 0; 1429 1430 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1431 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1432 1433 /* Queue State object */ 1434 bnx2x_init_queue_obj(bp, &q->sp_obj, 1435 cl_id, &q->cid, 1, func_id, 1436 bnx2x_vf_sp(bp, vf, q_data), 1437 bnx2x_vf_sp_map(bp, vf, q_data), 1438 q_type); 1439 1440 /* sp indication is set only when vlan/mac/etc. are initialized */ 1441 q->sp_initialized = false; 1442 1443 DP(BNX2X_MSG_IOV, 1444 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1445 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1446 } 1447 1448 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1449 { 1450 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1451 1452 if (supported & 1453 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1454 return 20000; 1455 1456 return 10000; /* assume lowest supported speed is 10G */ 1457 } 1458 1459 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1460 { 1461 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1462 struct pf_vf_bulletin_content *bulletin; 1463 struct bnx2x_virtf *vf; 1464 bool update = true; 1465 int rc = 0; 1466 1467 /* sanity and init */ 1468 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1469 if (rc) 1470 return rc; 1471 1472 mutex_lock(&bp->vfdb->bulletin_mutex); 1473 1474 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1475 bulletin->valid_bitmap |= 1 << LINK_VALID; 1476 1477 bulletin->link_speed = state->line_speed; 1478 bulletin->link_flags = 0; 1479 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1480 &state->link_report_flags)) 1481 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1482 if (test_bit(BNX2X_LINK_REPORT_FD, 1483 &state->link_report_flags)) 1484 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1485 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1486 &state->link_report_flags)) 1487 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1488 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1489 &state->link_report_flags)) 1490 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1491 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1492 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1493 bulletin->valid_bitmap |= 1 << LINK_VALID; 1494 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1495 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1496 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1497 bulletin->valid_bitmap |= 1 << LINK_VALID; 1498 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1499 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1500 } else { 1501 update = false; 1502 } 1503 1504 if (update) { 1505 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1506 "vf %d mode %u speed %d flags %x\n", idx, 1507 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1508 1509 /* Post update on VF's bulletin board */ 1510 rc = bnx2x_post_vf_bulletin(bp, idx); 1511 if (rc) { 1512 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1513 goto out; 1514 } 1515 } 1516 1517 out: 1518 mutex_unlock(&bp->vfdb->bulletin_mutex); 1519 return rc; 1520 } 1521 1522 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1523 { 1524 struct bnx2x *bp = netdev_priv(dev); 1525 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1526 1527 if (!vf) 1528 return -EINVAL; 1529 1530 if (vf->link_cfg == link_state) 1531 return 0; /* nothing todo */ 1532 1533 vf->link_cfg = link_state; 1534 1535 return bnx2x_iov_link_update_vf(bp, idx); 1536 } 1537 1538 void bnx2x_iov_link_update(struct bnx2x *bp) 1539 { 1540 int vfid; 1541 1542 if (!IS_SRIOV(bp)) 1543 return; 1544 1545 for_each_vf(bp, vfid) 1546 bnx2x_iov_link_update_vf(bp, vfid); 1547 } 1548 1549 /* called by bnx2x_nic_load */ 1550 int bnx2x_iov_nic_init(struct bnx2x *bp) 1551 { 1552 int vfid; 1553 1554 if (!IS_SRIOV(bp)) { 1555 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1556 return 0; 1557 } 1558 1559 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1560 1561 /* let FLR complete ... */ 1562 msleep(100); 1563 1564 /* initialize vf database */ 1565 for_each_vf(bp, vfid) { 1566 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1567 1568 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1569 BNX2X_CIDS_PER_VF; 1570 1571 union cdu_context *base_cxt = (union cdu_context *) 1572 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1573 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1574 1575 DP(BNX2X_MSG_IOV, 1576 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1577 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1578 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1579 1580 /* init statically provisioned resources */ 1581 bnx2x_iov_static_resc(bp, vf); 1582 1583 /* queues are initialized during VF-ACQUIRE */ 1584 vf->filter_state = 0; 1585 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1586 1587 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0, 1588 vf_vlan_rules_cnt(vf)); 1589 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0, 1590 vf_mac_rules_cnt(vf)); 1591 1592 /* init mcast object - This object will be re-initialized 1593 * during VF-ACQUIRE with the proper cl_id and cid. 1594 * It needs to be initialized here so that it can be safely 1595 * handled by a subsequent FLR flow. 1596 */ 1597 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1598 0xFF, 0xFF, 0xFF, 1599 bnx2x_vf_sp(bp, vf, mcast_rdata), 1600 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1601 BNX2X_FILTER_MCAST_PENDING, 1602 &vf->filter_state, 1603 BNX2X_OBJ_TYPE_RX_TX); 1604 1605 /* set the mailbox message addresses */ 1606 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1607 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1608 MBX_MSG_ALIGNED_SIZE); 1609 1610 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1611 vfid * MBX_MSG_ALIGNED_SIZE; 1612 1613 /* Enable vf mailbox */ 1614 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1615 } 1616 1617 /* Final VF init */ 1618 for_each_vf(bp, vfid) { 1619 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1620 1621 /* fill in the BDF and bars */ 1622 vf->domain = bnx2x_vf_domain(bp, vfid); 1623 vf->bus = bnx2x_vf_bus(bp, vfid); 1624 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1625 bnx2x_vf_set_bars(bp, vf); 1626 1627 DP(BNX2X_MSG_IOV, 1628 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1629 vf->abs_vfid, vf->bus, vf->devfn, 1630 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1631 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1632 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1633 } 1634 1635 return 0; 1636 } 1637 1638 /* called by bnx2x_chip_cleanup */ 1639 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1640 { 1641 int i; 1642 1643 if (!IS_SRIOV(bp)) 1644 return 0; 1645 1646 /* release all the VFs */ 1647 for_each_vf(bp, i) 1648 bnx2x_vf_release(bp, BP_VF(bp, i)); 1649 1650 return 0; 1651 } 1652 1653 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1654 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1655 { 1656 int i; 1657 struct bnx2x_ilt *ilt = BP_ILT(bp); 1658 1659 if (!IS_SRIOV(bp)) 1660 return line; 1661 1662 /* set vfs ilt lines */ 1663 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1664 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1665 1666 ilt->lines[line+i].page = hw_cxt->addr; 1667 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1668 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1669 } 1670 return line + i; 1671 } 1672 1673 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1674 { 1675 return ((cid >= BNX2X_FIRST_VF_CID) && 1676 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1677 } 1678 1679 static 1680 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1681 struct bnx2x_vf_queue *vfq, 1682 union event_ring_elem *elem) 1683 { 1684 unsigned long ramrod_flags = 0; 1685 int rc = 0; 1686 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 1687 1688 /* Always push next commands out, don't wait here */ 1689 set_bit(RAMROD_CONT, &ramrod_flags); 1690 1691 switch (echo >> BNX2X_SWCID_SHIFT) { 1692 case BNX2X_FILTER_MAC_PENDING: 1693 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1694 &ramrod_flags); 1695 break; 1696 case BNX2X_FILTER_VLAN_PENDING: 1697 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1698 &ramrod_flags); 1699 break; 1700 default: 1701 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 1702 return; 1703 } 1704 if (rc < 0) 1705 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1706 else if (rc > 0) 1707 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1708 } 1709 1710 static 1711 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1712 struct bnx2x_virtf *vf) 1713 { 1714 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1715 int rc; 1716 1717 rparam.mcast_obj = &vf->mcast_obj; 1718 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1719 1720 /* If there are pending mcast commands - send them */ 1721 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1722 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1723 if (rc < 0) 1724 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1725 rc); 1726 } 1727 } 1728 1729 static 1730 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1731 struct bnx2x_virtf *vf) 1732 { 1733 smp_mb__before_atomic(); 1734 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1735 smp_mb__after_atomic(); 1736 } 1737 1738 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1739 struct bnx2x_virtf *vf) 1740 { 1741 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1742 } 1743 1744 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1745 { 1746 struct bnx2x_virtf *vf; 1747 int qidx = 0, abs_vfid; 1748 u8 opcode; 1749 u16 cid = 0xffff; 1750 1751 if (!IS_SRIOV(bp)) 1752 return 1; 1753 1754 /* first get the cid - the only events we handle here are cfc-delete 1755 * and set-mac completion 1756 */ 1757 opcode = elem->message.opcode; 1758 1759 switch (opcode) { 1760 case EVENT_RING_OPCODE_CFC_DEL: 1761 cid = SW_CID(elem->message.data.cfc_del_event.cid); 1762 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1763 break; 1764 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1765 case EVENT_RING_OPCODE_MULTICAST_RULES: 1766 case EVENT_RING_OPCODE_FILTERS_RULES: 1767 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1768 cid = SW_CID(elem->message.data.eth_event.echo); 1769 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1770 break; 1771 case EVENT_RING_OPCODE_VF_FLR: 1772 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1773 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1774 abs_vfid); 1775 goto get_vf; 1776 case EVENT_RING_OPCODE_MALICIOUS_VF: 1777 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1778 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1779 abs_vfid, 1780 elem->message.data.malicious_vf_event.err_id); 1781 goto get_vf; 1782 default: 1783 return 1; 1784 } 1785 1786 /* check if the cid is the VF range */ 1787 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1788 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1789 return 1; 1790 } 1791 1792 /* extract vf and rxq index from vf_cid - relies on the following: 1793 * 1. vfid on cid reflects the true abs_vfid 1794 * 2. The max number of VFs (per path) is 64 1795 */ 1796 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1797 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1798 get_vf: 1799 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1800 1801 if (!vf) { 1802 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1803 cid, abs_vfid); 1804 return 0; 1805 } 1806 1807 switch (opcode) { 1808 case EVENT_RING_OPCODE_CFC_DEL: 1809 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1810 vf->abs_vfid, qidx); 1811 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1812 &vfq_get(vf, 1813 qidx)->sp_obj, 1814 BNX2X_Q_CMD_CFC_DEL); 1815 break; 1816 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1817 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1818 vf->abs_vfid, qidx); 1819 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1820 break; 1821 case EVENT_RING_OPCODE_MULTICAST_RULES: 1822 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1823 vf->abs_vfid, qidx); 1824 bnx2x_vf_handle_mcast_eqe(bp, vf); 1825 break; 1826 case EVENT_RING_OPCODE_FILTERS_RULES: 1827 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1828 vf->abs_vfid, qidx); 1829 bnx2x_vf_handle_filters_eqe(bp, vf); 1830 break; 1831 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1832 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1833 vf->abs_vfid, qidx); 1834 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1835 /* fall through */ 1836 case EVENT_RING_OPCODE_VF_FLR: 1837 /* Do nothing for now */ 1838 return 0; 1839 case EVENT_RING_OPCODE_MALICIOUS_VF: 1840 vf->malicious = true; 1841 return 0; 1842 } 1843 1844 return 0; 1845 } 1846 1847 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1848 { 1849 /* extract the vf from vf_cid - relies on the following: 1850 * 1. vfid on cid reflects the true abs_vfid 1851 * 2. The max number of VFs (per path) is 64 1852 */ 1853 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1854 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1855 } 1856 1857 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1858 struct bnx2x_queue_sp_obj **q_obj) 1859 { 1860 struct bnx2x_virtf *vf; 1861 1862 if (!IS_SRIOV(bp)) 1863 return; 1864 1865 vf = bnx2x_vf_by_cid(bp, vf_cid); 1866 1867 if (vf) { 1868 /* extract queue index from vf_cid - relies on the following: 1869 * 1. vfid on cid reflects the true abs_vfid 1870 * 2. The max number of VFs (per path) is 64 1871 */ 1872 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1873 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1874 } else { 1875 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1876 } 1877 } 1878 1879 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1880 { 1881 int i; 1882 int first_queue_query_index, num_queues_req; 1883 dma_addr_t cur_data_offset; 1884 struct stats_query_entry *cur_query_entry; 1885 u8 stats_count = 0; 1886 bool is_fcoe = false; 1887 1888 if (!IS_SRIOV(bp)) 1889 return; 1890 1891 if (!NO_FCOE(bp)) 1892 is_fcoe = true; 1893 1894 /* fcoe adds one global request and one queue request */ 1895 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1896 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1897 (is_fcoe ? 0 : 1); 1898 1899 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1900 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1901 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1902 first_queue_query_index + num_queues_req); 1903 1904 cur_data_offset = bp->fw_stats_data_mapping + 1905 offsetof(struct bnx2x_fw_stats_data, queue_stats) + 1906 num_queues_req * sizeof(struct per_queue_stats); 1907 1908 cur_query_entry = &bp->fw_stats_req-> 1909 query[first_queue_query_index + num_queues_req]; 1910 1911 for_each_vf(bp, i) { 1912 int j; 1913 struct bnx2x_virtf *vf = BP_VF(bp, i); 1914 1915 if (vf->state != VF_ENABLED) { 1916 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1917 "vf %d not enabled so no stats for it\n", 1918 vf->abs_vfid); 1919 continue; 1920 } 1921 1922 if (vf->malicious) { 1923 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1924 "vf %d malicious so no stats for it\n", 1925 vf->abs_vfid); 1926 continue; 1927 } 1928 1929 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1930 "add addresses for vf %d\n", vf->abs_vfid); 1931 for_each_vfq(vf, j) { 1932 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1933 1934 dma_addr_t q_stats_addr = 1935 vf->fw_stat_map + j * vf->stats_stride; 1936 1937 /* collect stats fro active queues only */ 1938 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1939 BNX2X_Q_LOGICAL_STATE_STOPPED) 1940 continue; 1941 1942 /* create stats query entry for this queue */ 1943 cur_query_entry->kind = STATS_TYPE_QUEUE; 1944 cur_query_entry->index = vfq_stat_id(vf, rxq); 1945 cur_query_entry->funcID = 1946 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1947 cur_query_entry->address.hi = 1948 cpu_to_le32(U64_HI(q_stats_addr)); 1949 cur_query_entry->address.lo = 1950 cpu_to_le32(U64_LO(q_stats_addr)); 1951 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1952 "added address %x %x for vf %d queue %d client %d\n", 1953 cur_query_entry->address.hi, 1954 cur_query_entry->address.lo, 1955 cur_query_entry->funcID, 1956 j, cur_query_entry->index); 1957 cur_query_entry++; 1958 cur_data_offset += sizeof(struct per_queue_stats); 1959 stats_count++; 1960 1961 /* all stats are coalesced to the leading queue */ 1962 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1963 break; 1964 } 1965 } 1966 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1967 } 1968 1969 /* VF API helpers */ 1970 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1971 u8 enable) 1972 { 1973 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1974 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1975 1976 REG_WR(bp, reg, val); 1977 } 1978 1979 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 1980 { 1981 int i; 1982 1983 for_each_vfq(vf, i) 1984 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 1985 vfq_qzone_id(vf, vfq_get(vf, i)), false); 1986 } 1987 1988 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 1989 { 1990 u32 val; 1991 1992 /* clear the VF configuration - pretend */ 1993 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 1994 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 1995 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 1996 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 1997 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 1998 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1999 } 2000 2001 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 2002 { 2003 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 2004 BNX2X_VF_MAX_QUEUES); 2005 } 2006 2007 static 2008 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 2009 struct vf_pf_resc_request *req_resc) 2010 { 2011 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 2012 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 2013 2014 return ((req_resc->num_rxqs <= rxq_cnt) && 2015 (req_resc->num_txqs <= txq_cnt) && 2016 (req_resc->num_sbs <= vf_sb_count(vf)) && 2017 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 2018 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); 2019 } 2020 2021 /* CORE VF API */ 2022 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 2023 struct vf_pf_resc_request *resc) 2024 { 2025 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 2026 BNX2X_CIDS_PER_VF; 2027 2028 union cdu_context *base_cxt = (union cdu_context *) 2029 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2030 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2031 int i; 2032 2033 /* if state is 'acquired' the VF was not released or FLR'd, in 2034 * this case the returned resources match the acquired already 2035 * acquired resources. Verify that the requested numbers do 2036 * not exceed the already acquired numbers. 2037 */ 2038 if (vf->state == VF_ACQUIRED) { 2039 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2040 vf->abs_vfid); 2041 2042 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2043 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2044 vf->abs_vfid); 2045 return -EINVAL; 2046 } 2047 return 0; 2048 } 2049 2050 /* Otherwise vf state must be 'free' or 'reset' */ 2051 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2052 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2053 vf->abs_vfid, vf->state); 2054 return -EINVAL; 2055 } 2056 2057 /* static allocation: 2058 * the global maximum number are fixed per VF. Fail the request if 2059 * requested number exceed these globals 2060 */ 2061 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2062 DP(BNX2X_MSG_IOV, 2063 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2064 /* set the max resource in the vf */ 2065 return -ENOMEM; 2066 } 2067 2068 /* Set resources counters - 0 request means max available */ 2069 vf_sb_count(vf) = resc->num_sbs; 2070 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2071 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2072 2073 DP(BNX2X_MSG_IOV, 2074 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2075 vf_sb_count(vf), vf_rxq_count(vf), 2076 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2077 vf_vlan_rules_cnt(vf)); 2078 2079 /* Initialize the queues */ 2080 if (!vf->vfqs) { 2081 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2082 return -EINVAL; 2083 } 2084 2085 for_each_vfq(vf, i) { 2086 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2087 2088 if (!q) { 2089 BNX2X_ERR("q number %d was not allocated\n", i); 2090 return -EINVAL; 2091 } 2092 2093 q->index = i; 2094 q->cxt = &((base_cxt + i)->eth); 2095 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2096 2097 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2098 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2099 2100 /* init SP objects */ 2101 bnx2x_vfq_init(bp, vf, q); 2102 } 2103 vf->state = VF_ACQUIRED; 2104 return 0; 2105 } 2106 2107 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2108 { 2109 struct bnx2x_func_init_params func_init = {0}; 2110 int i; 2111 2112 /* the sb resources are initialized at this point, do the 2113 * FW/HW initializations 2114 */ 2115 for_each_vf_sb(vf, i) 2116 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2117 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2118 2119 /* Sanity checks */ 2120 if (vf->state != VF_ACQUIRED) { 2121 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2122 vf->abs_vfid, vf->state); 2123 return -EINVAL; 2124 } 2125 2126 /* let FLR complete ... */ 2127 msleep(100); 2128 2129 /* FLR cleanup epilogue */ 2130 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2131 return -EBUSY; 2132 2133 /* reset IGU VF statistics: MSIX */ 2134 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2135 2136 /* function setup */ 2137 func_init.pf_id = BP_FUNC(bp); 2138 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2139 bnx2x_func_init(bp, &func_init); 2140 2141 /* Enable the vf */ 2142 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2143 bnx2x_vf_enable_traffic(bp, vf); 2144 2145 /* queue protection table */ 2146 for_each_vfq(vf, i) 2147 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2148 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2149 2150 vf->state = VF_ENABLED; 2151 2152 /* update vf bulletin board */ 2153 bnx2x_post_vf_bulletin(bp, vf->index); 2154 2155 return 0; 2156 } 2157 2158 struct set_vf_state_cookie { 2159 struct bnx2x_virtf *vf; 2160 u8 state; 2161 }; 2162 2163 static void bnx2x_set_vf_state(void *cookie) 2164 { 2165 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2166 2167 p->vf->state = p->state; 2168 } 2169 2170 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2171 { 2172 int rc = 0, i; 2173 2174 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2175 2176 /* Close all queues */ 2177 for (i = 0; i < vf_rxq_count(vf); i++) { 2178 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2179 if (rc) 2180 goto op_err; 2181 } 2182 2183 /* disable the interrupts */ 2184 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2185 bnx2x_vf_igu_disable(bp, vf); 2186 2187 /* disable the VF */ 2188 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2189 bnx2x_vf_clr_qtbl(bp, vf); 2190 2191 /* need to make sure there are no outstanding stats ramrods which may 2192 * cause the device to access the VF's stats buffer which it will free 2193 * as soon as we return from the close flow. 2194 */ 2195 { 2196 struct set_vf_state_cookie cookie; 2197 2198 cookie.vf = vf; 2199 cookie.state = VF_ACQUIRED; 2200 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2201 if (rc) 2202 goto op_err; 2203 } 2204 2205 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2206 2207 return 0; 2208 op_err: 2209 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2210 return rc; 2211 } 2212 2213 /* VF release can be called either: 1. The VF was acquired but 2214 * not enabled 2. the vf was enabled or in the process of being 2215 * enabled 2216 */ 2217 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2218 { 2219 int rc; 2220 2221 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2222 vf->state == VF_FREE ? "Free" : 2223 vf->state == VF_ACQUIRED ? "Acquired" : 2224 vf->state == VF_ENABLED ? "Enabled" : 2225 vf->state == VF_RESET ? "Reset" : 2226 "Unknown"); 2227 2228 switch (vf->state) { 2229 case VF_ENABLED: 2230 rc = bnx2x_vf_close(bp, vf); 2231 if (rc) 2232 goto op_err; 2233 /* Fall through - to release resources */ 2234 case VF_ACQUIRED: 2235 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2236 bnx2x_vf_free_resc(bp, vf); 2237 break; 2238 2239 case VF_FREE: 2240 case VF_RESET: 2241 default: 2242 break; 2243 } 2244 return 0; 2245 op_err: 2246 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2247 return rc; 2248 } 2249 2250 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2251 struct bnx2x_config_rss_params *rss) 2252 { 2253 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2254 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2255 return bnx2x_config_rss(bp, rss); 2256 } 2257 2258 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2259 struct vfpf_tpa_tlv *tlv, 2260 struct bnx2x_queue_update_tpa_params *params) 2261 { 2262 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2263 struct bnx2x_queue_state_params qstate; 2264 int qid, rc = 0; 2265 2266 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2267 2268 /* Set ramrod params */ 2269 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2270 memcpy(&qstate.params.update_tpa, params, 2271 sizeof(struct bnx2x_queue_update_tpa_params)); 2272 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2273 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2274 2275 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2276 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2277 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2278 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2279 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2280 U64_LO(sge_addr[qid])); 2281 rc = bnx2x_queue_state_change(bp, &qstate); 2282 if (rc) { 2283 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2284 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2285 vf->abs_vfid, qid); 2286 return rc; 2287 } 2288 } 2289 2290 return rc; 2291 } 2292 2293 /* VF release ~ VF close + VF release-resources 2294 * Release is the ultimate SW shutdown and is called whenever an 2295 * irrecoverable error is encountered. 2296 */ 2297 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2298 { 2299 int rc; 2300 2301 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2302 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2303 2304 rc = bnx2x_vf_free(bp, vf); 2305 if (rc) 2306 WARN(rc, 2307 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2308 vf->abs_vfid, rc); 2309 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2310 return rc; 2311 } 2312 2313 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2314 enum channel_tlvs tlv) 2315 { 2316 /* we don't lock the channel for unsupported tlvs */ 2317 if (!bnx2x_tlv_supported(tlv)) { 2318 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2319 return; 2320 } 2321 2322 /* lock the channel */ 2323 mutex_lock(&vf->op_mutex); 2324 2325 /* record the locking op */ 2326 vf->op_current = tlv; 2327 2328 /* log the lock */ 2329 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2330 vf->abs_vfid, tlv); 2331 } 2332 2333 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2334 enum channel_tlvs expected_tlv) 2335 { 2336 enum channel_tlvs current_tlv; 2337 2338 if (!vf) { 2339 BNX2X_ERR("VF was %p\n", vf); 2340 return; 2341 } 2342 2343 current_tlv = vf->op_current; 2344 2345 /* we don't unlock the channel for unsupported tlvs */ 2346 if (!bnx2x_tlv_supported(expected_tlv)) 2347 return; 2348 2349 WARN(expected_tlv != vf->op_current, 2350 "lock mismatch: expected %d found %d", expected_tlv, 2351 vf->op_current); 2352 2353 /* record the locking op */ 2354 vf->op_current = CHANNEL_TLV_NONE; 2355 2356 /* lock the channel */ 2357 mutex_unlock(&vf->op_mutex); 2358 2359 /* log the unlock */ 2360 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2361 vf->abs_vfid, current_tlv); 2362 } 2363 2364 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2365 { 2366 struct bnx2x_queue_state_params q_params; 2367 u32 prev_flags; 2368 int i, rc; 2369 2370 /* Verify changes are needed and record current Tx switching state */ 2371 prev_flags = bp->flags; 2372 if (enable) 2373 bp->flags |= TX_SWITCHING; 2374 else 2375 bp->flags &= ~TX_SWITCHING; 2376 if (prev_flags == bp->flags) 2377 return 0; 2378 2379 /* Verify state enables the sending of queue ramrods */ 2380 if ((bp->state != BNX2X_STATE_OPEN) || 2381 (bnx2x_get_q_logical_state(bp, 2382 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2383 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2384 return 0; 2385 2386 /* send q. update ramrod to configure Tx switching */ 2387 memset(&q_params, 0, sizeof(q_params)); 2388 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2389 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2390 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2391 &q_params.params.update.update_flags); 2392 if (enable) 2393 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2394 &q_params.params.update.update_flags); 2395 else 2396 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2397 &q_params.params.update.update_flags); 2398 2399 /* send the ramrod on all the queues of the PF */ 2400 for_each_eth_queue(bp, i) { 2401 struct bnx2x_fastpath *fp = &bp->fp[i]; 2402 2403 /* Set the appropriate Queue object */ 2404 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2405 2406 /* Update the Queue state */ 2407 rc = bnx2x_queue_state_change(bp, &q_params); 2408 if (rc) { 2409 BNX2X_ERR("Failed to configure Tx switching\n"); 2410 return rc; 2411 } 2412 } 2413 2414 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2415 return 0; 2416 } 2417 2418 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2419 { 2420 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2421 2422 if (!IS_SRIOV(bp)) { 2423 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2424 return -EINVAL; 2425 } 2426 2427 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2428 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2429 2430 /* HW channel is only operational when PF is up */ 2431 if (bp->state != BNX2X_STATE_OPEN) { 2432 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2433 return -EINVAL; 2434 } 2435 2436 /* we are always bound by the total_vfs in the configuration space */ 2437 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2438 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2439 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2440 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2441 } 2442 2443 bp->requested_nr_virtfn = num_vfs_param; 2444 if (num_vfs_param == 0) { 2445 bnx2x_set_pf_tx_switching(bp, false); 2446 bnx2x_disable_sriov(bp); 2447 return 0; 2448 } else { 2449 return bnx2x_enable_sriov(bp); 2450 } 2451 } 2452 2453 #define IGU_ENTRY_SIZE 4 2454 2455 int bnx2x_enable_sriov(struct bnx2x *bp) 2456 { 2457 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2458 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2459 u32 igu_entry, address; 2460 u16 num_vf_queues; 2461 2462 if (req_vfs == 0) 2463 return 0; 2464 2465 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2466 2467 /* statically distribute vf sb pool between VFs */ 2468 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2469 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2470 2471 /* zero previous values learned from igu cam */ 2472 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2473 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2474 2475 vf->sb_count = 0; 2476 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2477 } 2478 bp->vfdb->vf_sbs_pool = 0; 2479 2480 /* prepare IGU cam */ 2481 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2482 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2483 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2484 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2485 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2486 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2487 IGU_REG_MAPPING_MEMORY_VALID; 2488 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2489 sb_idx, vf_idx); 2490 REG_WR(bp, address, igu_entry); 2491 sb_idx++; 2492 address += IGU_ENTRY_SIZE; 2493 } 2494 } 2495 2496 /* Reinitialize vf database according to igu cam */ 2497 bnx2x_get_vf_igu_cam_info(bp); 2498 2499 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2500 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2501 2502 qcount = 0; 2503 for_each_vf(bp, vf_idx) { 2504 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2505 2506 /* set local queue arrays */ 2507 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2508 qcount += vf_sb_count(vf); 2509 bnx2x_iov_static_resc(bp, vf); 2510 } 2511 2512 /* prepare msix vectors in VF configuration space - the value in the 2513 * PCI configuration space should be the index of the last entry, 2514 * namely one less than the actual size of the table 2515 */ 2516 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2517 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2518 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2519 num_vf_queues - 1); 2520 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2521 vf_idx, num_vf_queues - 1); 2522 } 2523 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2524 2525 /* enable sriov. This will probe all the VFs, and consequentially cause 2526 * the "acquire" messages to appear on the VF PF channel. 2527 */ 2528 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2529 bnx2x_disable_sriov(bp); 2530 2531 rc = bnx2x_set_pf_tx_switching(bp, true); 2532 if (rc) 2533 return rc; 2534 2535 rc = pci_enable_sriov(bp->pdev, req_vfs); 2536 if (rc) { 2537 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2538 return rc; 2539 } 2540 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2541 return req_vfs; 2542 } 2543 2544 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2545 { 2546 int vfidx; 2547 struct pf_vf_bulletin_content *bulletin; 2548 2549 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2550 for_each_vf(bp, vfidx) { 2551 bulletin = BP_VF_BULLETIN(bp, vfidx); 2552 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2553 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0, 2554 htons(ETH_P_8021Q)); 2555 } 2556 } 2557 2558 void bnx2x_disable_sriov(struct bnx2x *bp) 2559 { 2560 if (pci_vfs_assigned(bp->pdev)) { 2561 DP(BNX2X_MSG_IOV, 2562 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2563 return; 2564 } 2565 2566 pci_disable_sriov(bp->pdev); 2567 } 2568 2569 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2570 struct bnx2x_virtf **vf, 2571 struct pf_vf_bulletin_content **bulletin, 2572 bool test_queue) 2573 { 2574 if (bp->state != BNX2X_STATE_OPEN) { 2575 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2576 return -EINVAL; 2577 } 2578 2579 if (!IS_SRIOV(bp)) { 2580 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2581 return -EINVAL; 2582 } 2583 2584 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2585 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2586 vfidx, BNX2X_NR_VIRTFN(bp)); 2587 return -EINVAL; 2588 } 2589 2590 /* init members */ 2591 *vf = BP_VF(bp, vfidx); 2592 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2593 2594 if (!*vf) { 2595 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2596 return -EINVAL; 2597 } 2598 2599 if (test_queue && !(*vf)->vfqs) { 2600 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2601 vfidx); 2602 return -EINVAL; 2603 } 2604 2605 if (!*bulletin) { 2606 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2607 vfidx); 2608 return -EINVAL; 2609 } 2610 2611 return 0; 2612 } 2613 2614 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2615 struct ifla_vf_info *ivi) 2616 { 2617 struct bnx2x *bp = netdev_priv(dev); 2618 struct bnx2x_virtf *vf = NULL; 2619 struct pf_vf_bulletin_content *bulletin = NULL; 2620 struct bnx2x_vlan_mac_obj *mac_obj; 2621 struct bnx2x_vlan_mac_obj *vlan_obj; 2622 int rc; 2623 2624 /* sanity and init */ 2625 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2626 if (rc) 2627 return rc; 2628 2629 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2630 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2631 if (!mac_obj || !vlan_obj) { 2632 BNX2X_ERR("VF partially initialized\n"); 2633 return -EINVAL; 2634 } 2635 2636 ivi->vf = vfidx; 2637 ivi->qos = 0; 2638 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2639 ivi->min_tx_rate = 0; 2640 ivi->spoofchk = vf->spoofchk ? 1 : 0; 2641 ivi->linkstate = vf->link_cfg; 2642 if (vf->state == VF_ENABLED) { 2643 /* mac and vlan are in vlan_mac objects */ 2644 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2645 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2646 0, ETH_ALEN); 2647 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2648 (u8 *)&ivi->vlan, 0, 2649 VLAN_HLEN); 2650 } 2651 } else { 2652 mutex_lock(&bp->vfdb->bulletin_mutex); 2653 /* mac */ 2654 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2655 /* mac configured by ndo so its in bulletin board */ 2656 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2657 else 2658 /* function has not been loaded yet. Show mac as 0s */ 2659 eth_zero_addr(ivi->mac); 2660 2661 /* vlan */ 2662 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2663 /* vlan configured by ndo so its in bulletin board */ 2664 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2665 else 2666 /* function has not been loaded yet. Show vlans as 0s */ 2667 memset(&ivi->vlan, 0, VLAN_HLEN); 2668 2669 mutex_unlock(&bp->vfdb->bulletin_mutex); 2670 } 2671 2672 return 0; 2673 } 2674 2675 /* New mac for VF. Consider these cases: 2676 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2677 * supply at acquire. 2678 * 2. VF has already been acquired but has not yet initialized - store in local 2679 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2680 * will configure this mac when it is ready. 2681 * 3. VF has already initialized but has not yet setup a queue - post the new 2682 * mac on VF's bulletin board right now. VF will configure this mac when it 2683 * is ready. 2684 * 4. VF has already set a queue - delete any macs already configured for this 2685 * queue and manually config the new mac. 2686 * In any event, once this function has been called refuse any attempts by the 2687 * VF to configure any mac for itself except for this mac. In case of a race 2688 * where the VF fails to see the new post on its bulletin board before sending a 2689 * mac configuration request, the PF will simply fail the request and VF can try 2690 * again after consulting its bulletin board. 2691 */ 2692 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2693 { 2694 struct bnx2x *bp = netdev_priv(dev); 2695 int rc, q_logical_state; 2696 struct bnx2x_virtf *vf = NULL; 2697 struct pf_vf_bulletin_content *bulletin = NULL; 2698 2699 if (!is_valid_ether_addr(mac)) { 2700 BNX2X_ERR("mac address invalid\n"); 2701 return -EINVAL; 2702 } 2703 2704 /* sanity and init */ 2705 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2706 if (rc) 2707 return rc; 2708 2709 mutex_lock(&bp->vfdb->bulletin_mutex); 2710 2711 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2712 * configuration requests from vf unless match this mac 2713 */ 2714 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2715 memcpy(bulletin->mac, mac, ETH_ALEN); 2716 2717 /* Post update on VF's bulletin board */ 2718 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2719 2720 /* release lock before checking return code */ 2721 mutex_unlock(&bp->vfdb->bulletin_mutex); 2722 2723 if (rc) { 2724 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2725 return rc; 2726 } 2727 2728 q_logical_state = 2729 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2730 if (vf->state == VF_ENABLED && 2731 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2732 /* configure the mac in device on this vf's queue */ 2733 unsigned long ramrod_flags = 0; 2734 struct bnx2x_vlan_mac_obj *mac_obj; 2735 2736 /* User should be able to see failure reason in system logs */ 2737 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2738 return -EINVAL; 2739 2740 /* must lock vfpf channel to protect against vf flows */ 2741 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2742 2743 /* remove existing eth macs */ 2744 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2745 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2746 if (rc) { 2747 BNX2X_ERR("failed to delete eth macs\n"); 2748 rc = -EINVAL; 2749 goto out; 2750 } 2751 2752 /* remove existing uc list macs */ 2753 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2754 if (rc) { 2755 BNX2X_ERR("failed to delete uc_list macs\n"); 2756 rc = -EINVAL; 2757 goto out; 2758 } 2759 2760 /* configure the new mac to device */ 2761 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2762 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2763 BNX2X_ETH_MAC, &ramrod_flags); 2764 2765 out: 2766 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2767 } 2768 2769 return rc; 2770 } 2771 2772 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp, 2773 struct bnx2x_virtf *vf, bool accept) 2774 { 2775 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2776 unsigned long accept_flags; 2777 2778 /* need to remove/add the VF's accept_any_vlan bit */ 2779 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2780 if (accept) 2781 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2782 else 2783 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2784 2785 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2786 accept_flags); 2787 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2788 bnx2x_config_rx_mode(bp, &rx_ramrod); 2789 } 2790 2791 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf, 2792 u16 vlan, bool add) 2793 { 2794 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2795 unsigned long ramrod_flags = 0; 2796 int rc = 0; 2797 2798 /* configure the new vlan to device */ 2799 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2800 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2801 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2802 ramrod_param.ramrod_flags = ramrod_flags; 2803 ramrod_param.user_req.u.vlan.vlan = vlan; 2804 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD 2805 : BNX2X_VLAN_MAC_DEL; 2806 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2807 if (rc) { 2808 BNX2X_ERR("failed to configure vlan\n"); 2809 return -EINVAL; 2810 } 2811 2812 return 0; 2813 } 2814 2815 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos, 2816 __be16 vlan_proto) 2817 { 2818 struct pf_vf_bulletin_content *bulletin = NULL; 2819 struct bnx2x *bp = netdev_priv(dev); 2820 struct bnx2x_vlan_mac_obj *vlan_obj; 2821 unsigned long vlan_mac_flags = 0; 2822 unsigned long ramrod_flags = 0; 2823 struct bnx2x_virtf *vf = NULL; 2824 int i, rc; 2825 2826 if (vlan > 4095) { 2827 BNX2X_ERR("illegal vlan value %d\n", vlan); 2828 return -EINVAL; 2829 } 2830 2831 if (vlan_proto != htons(ETH_P_8021Q)) 2832 return -EPROTONOSUPPORT; 2833 2834 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2835 vfidx, vlan, 0); 2836 2837 /* sanity and init */ 2838 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2839 if (rc) 2840 return rc; 2841 2842 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2843 * to the VF since it doesn't have anything to do with it. But it useful 2844 * to store it here in case the VF is not up yet and we can only 2845 * configure the vlan later when it does. Treat vlan id 0 as remove the 2846 * Host tag. 2847 */ 2848 mutex_lock(&bp->vfdb->bulletin_mutex); 2849 2850 if (vlan > 0) 2851 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2852 else 2853 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2854 bulletin->vlan = vlan; 2855 2856 /* Post update on VF's bulletin board */ 2857 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2858 if (rc) 2859 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2860 mutex_unlock(&bp->vfdb->bulletin_mutex); 2861 2862 /* is vf initialized and queue set up? */ 2863 if (vf->state != VF_ENABLED || 2864 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2865 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2866 return rc; 2867 2868 /* User should be able to see error in system logs */ 2869 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2870 return -EINVAL; 2871 2872 /* must lock vfpf channel to protect against vf flows */ 2873 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2874 2875 /* remove existing vlans */ 2876 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2877 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2878 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2879 &ramrod_flags); 2880 if (rc) { 2881 BNX2X_ERR("failed to delete vlans\n"); 2882 rc = -EINVAL; 2883 goto out; 2884 } 2885 2886 /* clear accept_any_vlan when HV forces vlan, otherwise 2887 * according to VF capabilities 2888 */ 2889 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER)) 2890 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan); 2891 2892 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true); 2893 if (rc) 2894 goto out; 2895 2896 /* send queue update ramrods to configure default vlan and 2897 * silent vlan removal 2898 */ 2899 for_each_vfq(vf, i) { 2900 struct bnx2x_queue_state_params q_params = {NULL}; 2901 struct bnx2x_queue_update_params *update_params; 2902 2903 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2904 2905 /* validate the Q is UP */ 2906 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2907 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2908 continue; 2909 2910 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2911 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2912 update_params = &q_params.params.update; 2913 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2914 &update_params->update_flags); 2915 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2916 &update_params->update_flags); 2917 if (vlan == 0) { 2918 /* if vlan is 0 then we want to leave the VF traffic 2919 * untagged, and leave the incoming traffic untouched 2920 * (i.e. do not remove any vlan tags). 2921 */ 2922 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2923 &update_params->update_flags); 2924 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2925 &update_params->update_flags); 2926 } else { 2927 /* configure default vlan to vf queue and set silent 2928 * vlan removal (the vf remains unaware of this vlan). 2929 */ 2930 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2931 &update_params->update_flags); 2932 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2933 &update_params->update_flags); 2934 update_params->def_vlan = vlan; 2935 update_params->silent_removal_value = 2936 vlan & VLAN_VID_MASK; 2937 update_params->silent_removal_mask = VLAN_VID_MASK; 2938 } 2939 2940 /* Update the Queue state */ 2941 rc = bnx2x_queue_state_change(bp, &q_params); 2942 if (rc) { 2943 BNX2X_ERR("Failed to configure default VLAN queue %d\n", 2944 i); 2945 goto out; 2946 } 2947 } 2948 out: 2949 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2950 2951 if (rc) 2952 DP(BNX2X_MSG_IOV, 2953 "updated VF[%d] vlan configuration (vlan = %d)\n", 2954 vfidx, vlan); 2955 2956 return rc; 2957 } 2958 2959 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val) 2960 { 2961 struct bnx2x *bp = netdev_priv(dev); 2962 struct bnx2x_virtf *vf; 2963 int i, rc = 0; 2964 2965 vf = BP_VF(bp, idx); 2966 if (!vf) 2967 return -EINVAL; 2968 2969 /* nothing to do */ 2970 if (vf->spoofchk == val) 2971 return 0; 2972 2973 vf->spoofchk = val ? 1 : 0; 2974 2975 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n", 2976 val ? "enabling" : "disabling", idx); 2977 2978 /* is vf initialized and queue set up? */ 2979 if (vf->state != VF_ENABLED || 2980 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2981 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2982 return rc; 2983 2984 /* User should be able to see error in system logs */ 2985 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2986 return -EINVAL; 2987 2988 /* send queue update ramrods to configure spoofchk */ 2989 for_each_vfq(vf, i) { 2990 struct bnx2x_queue_state_params q_params = {NULL}; 2991 struct bnx2x_queue_update_params *update_params; 2992 2993 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj); 2994 2995 /* validate the Q is UP */ 2996 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) != 2997 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2998 continue; 2999 3000 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3001 q_params.cmd = BNX2X_Q_CMD_UPDATE; 3002 update_params = &q_params.params.update; 3003 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, 3004 &update_params->update_flags); 3005 if (val) { 3006 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 3007 &update_params->update_flags); 3008 } else { 3009 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, 3010 &update_params->update_flags); 3011 } 3012 3013 /* Update the Queue state */ 3014 rc = bnx2x_queue_state_change(bp, &q_params); 3015 if (rc) { 3016 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n", 3017 val ? "enable" : "disable", idx, i); 3018 goto out; 3019 } 3020 } 3021 out: 3022 if (!rc) 3023 DP(BNX2X_MSG_IOV, 3024 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled", 3025 idx); 3026 3027 return rc; 3028 } 3029 3030 /* crc is the first field in the bulletin board. Compute the crc over the 3031 * entire bulletin board excluding the crc field itself. Use the length field 3032 * as the Bulletin Board was posted by a PF with possibly a different version 3033 * from the vf which will sample it. Therefore, the length is computed by the 3034 * PF and then used blindly by the VF. 3035 */ 3036 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 3037 { 3038 return crc32(BULLETIN_CRC_SEED, 3039 ((u8 *)bulletin) + sizeof(bulletin->crc), 3040 bulletin->length - sizeof(bulletin->crc)); 3041 } 3042 3043 /* Check for new posts on the bulletin board */ 3044 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 3045 { 3046 struct pf_vf_bulletin_content *bulletin; 3047 int attempts; 3048 3049 /* sampling structure in mid post may result with corrupted data 3050 * validate crc to ensure coherency. 3051 */ 3052 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 3053 u32 crc; 3054 3055 /* sample the bulletin board */ 3056 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 3057 sizeof(union pf_vf_bulletin)); 3058 3059 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 3060 3061 if (bp->shadow_bulletin.content.crc == crc) 3062 break; 3063 3064 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 3065 bp->shadow_bulletin.content.crc, crc); 3066 } 3067 3068 if (attempts >= BULLETIN_ATTEMPTS) { 3069 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 3070 attempts); 3071 return PFVF_BULLETIN_CRC_ERR; 3072 } 3073 bulletin = &bp->shadow_bulletin.content; 3074 3075 /* bulletin board hasn't changed since last sample */ 3076 if (bp->old_bulletin.version == bulletin->version) 3077 return PFVF_BULLETIN_UNCHANGED; 3078 3079 /* the mac address in bulletin board is valid and is new */ 3080 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 3081 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 3082 /* update new mac to net device */ 3083 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); 3084 } 3085 3086 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 3087 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 3088 bulletin->link_speed, bulletin->link_flags); 3089 3090 bp->vf_link_vars.line_speed = bulletin->link_speed; 3091 bp->vf_link_vars.link_report_flags = 0; 3092 /* Link is down */ 3093 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3094 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3095 &bp->vf_link_vars.link_report_flags); 3096 /* Full DUPLEX */ 3097 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3098 __set_bit(BNX2X_LINK_REPORT_FD, 3099 &bp->vf_link_vars.link_report_flags); 3100 /* Rx Flow Control is ON */ 3101 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3102 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3103 &bp->vf_link_vars.link_report_flags); 3104 /* Tx Flow Control is ON */ 3105 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3106 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3107 &bp->vf_link_vars.link_report_flags); 3108 __bnx2x_link_report(bp); 3109 } 3110 3111 /* copy new bulletin board to bp */ 3112 memcpy(&bp->old_bulletin, bulletin, 3113 sizeof(struct pf_vf_bulletin_content)); 3114 3115 return PFVF_BULLETIN_UPDATED; 3116 } 3117 3118 void bnx2x_timer_sriov(struct bnx2x *bp) 3119 { 3120 bnx2x_sample_bulletin(bp); 3121 3122 /* if channel is down we need to self destruct */ 3123 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3124 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3125 BNX2X_MSG_IOV); 3126 } 3127 3128 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3129 { 3130 /* vf doorbells are embedded within the regview */ 3131 return bp->regview + PXP_VF_ADDR_DB_START; 3132 } 3133 3134 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3135 { 3136 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3137 sizeof(struct bnx2x_vf_mbx_msg)); 3138 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping, 3139 sizeof(union pf_vf_bulletin)); 3140 } 3141 3142 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3143 { 3144 mutex_init(&bp->vf2pf_mutex); 3145 3146 /* allocate vf2pf mailbox for vf to pf channel */ 3147 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3148 sizeof(struct bnx2x_vf_mbx_msg)); 3149 if (!bp->vf2pf_mbox) 3150 goto alloc_mem_err; 3151 3152 /* allocate pf 2 vf bulletin board */ 3153 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3154 sizeof(union pf_vf_bulletin)); 3155 if (!bp->pf2vf_bulletin) 3156 goto alloc_mem_err; 3157 3158 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3159 3160 return 0; 3161 3162 alloc_mem_err: 3163 bnx2x_vf_pci_dealloc(bp); 3164 return -ENOMEM; 3165 } 3166 3167 void bnx2x_iov_channel_down(struct bnx2x *bp) 3168 { 3169 int vf_idx; 3170 struct pf_vf_bulletin_content *bulletin; 3171 3172 if (!IS_SRIOV(bp)) 3173 return; 3174 3175 for_each_vf(bp, vf_idx) { 3176 /* locate this VFs bulletin board and update the channel down 3177 * bit 3178 */ 3179 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3180 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3181 3182 /* update vf bulletin board */ 3183 bnx2x_post_vf_bulletin(bp, vf_idx); 3184 } 3185 } 3186 3187 void bnx2x_iov_task(struct work_struct *work) 3188 { 3189 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3190 3191 if (!netif_running(bp->dev)) 3192 return; 3193 3194 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3195 &bp->iov_task_state)) 3196 bnx2x_vf_handle_flr_event(bp); 3197 3198 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3199 &bp->iov_task_state)) 3200 bnx2x_vf_mbx(bp); 3201 } 3202 3203 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3204 { 3205 smp_mb__before_atomic(); 3206 set_bit(flag, &bp->iov_task_state); 3207 smp_mb__after_atomic(); 3208 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3209 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3210 } 3211