1 /* bnx2x_sriov.c: Broadcom Everest network driver. 2 * 3 * Copyright 2009-2013 Broadcom Corporation 4 * 5 * Unless you and Broadcom execute a separate written software license 6 * agreement governing use of this software, this software is licensed to you 7 * under the terms of the GNU General Public License version 2, available 8 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). 9 * 10 * Notwithstanding the above, under no circumstances may you combine this 11 * software in any way with any other Broadcom software provided under a 12 * license other than the GPL, without Broadcom's express prior written 13 * consent. 14 * 15 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 16 * Written by: Shmulik Ravid 17 * Ariel Elior <ariel.elior@qlogic.com> 18 * 19 */ 20 #include "bnx2x.h" 21 #include "bnx2x_init.h" 22 #include "bnx2x_cmn.h" 23 #include "bnx2x_sp.h" 24 #include <linux/crc32.h> 25 #include <linux/if_vlan.h> 26 27 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 28 struct bnx2x_virtf **vf, 29 struct pf_vf_bulletin_content **bulletin, 30 bool test_queue); 31 32 /* General service functions */ 33 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 34 u16 pf_id) 35 { 36 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 37 pf_id); 38 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 39 pf_id); 40 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 41 pf_id); 42 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 43 pf_id); 44 } 45 46 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 47 u8 enable) 48 { 49 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 50 enable); 51 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 52 enable); 53 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 54 enable); 55 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 56 enable); 57 } 58 59 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 60 { 61 int idx; 62 63 for_each_vf(bp, idx) 64 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) 65 break; 66 return idx; 67 } 68 69 static 70 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) 71 { 72 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); 73 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; 74 } 75 76 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, 77 u8 igu_sb_id, u8 segment, u16 index, u8 op, 78 u8 update) 79 { 80 /* acking a VF sb through the PF - use the GRC */ 81 u32 ctl; 82 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 83 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 84 u32 func_encode = vf->abs_vfid; 85 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; 86 struct igu_regular cmd_data = {0}; 87 88 cmd_data.sb_id_and_flags = 89 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 90 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 91 (update << IGU_REGULAR_BUPDATE_SHIFT) | 92 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 93 94 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 95 func_encode << IGU_CTRL_REG_FID_SHIFT | 96 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 97 98 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 99 cmd_data.sb_id_and_flags, igu_addr_data); 100 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); 101 mmiowb(); 102 barrier(); 103 104 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 105 ctl, igu_addr_ctl); 106 REG_WR(bp, igu_addr_ctl, ctl); 107 mmiowb(); 108 barrier(); 109 } 110 111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp, 112 struct bnx2x_virtf *vf, 113 bool print_err) 114 { 115 if (!bnx2x_leading_vfq(vf, sp_initialized)) { 116 if (print_err) 117 BNX2X_ERR("Slowpath objects not yet initialized!\n"); 118 else 119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n"); 120 return false; 121 } 122 return true; 123 } 124 125 /* VFOP operations states */ 126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, 127 struct bnx2x_queue_init_params *init_params, 128 struct bnx2x_queue_setup_params *setup_params, 129 u16 q_idx, u16 sb_idx) 130 { 131 DP(BNX2X_MSG_IOV, 132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", 133 vf->abs_vfid, 134 q_idx, 135 sb_idx, 136 init_params->tx.sb_cq_index, 137 init_params->tx.hc_rate, 138 setup_params->flags, 139 setup_params->txq_params.traffic_type); 140 } 141 142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, 143 struct bnx2x_queue_init_params *init_params, 144 struct bnx2x_queue_setup_params *setup_params, 145 u16 q_idx, u16 sb_idx) 146 { 147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; 148 149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" 150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", 151 vf->abs_vfid, 152 q_idx, 153 sb_idx, 154 init_params->rx.sb_cq_index, 155 init_params->rx.hc_rate, 156 setup_params->gen_params.mtu, 157 rxq_params->buf_sz, 158 rxq_params->sge_buf_sz, 159 rxq_params->max_sges_pkt, 160 rxq_params->tpa_agg_sz, 161 setup_params->flags, 162 rxq_params->drop_flags, 163 rxq_params->cache_line_log); 164 } 165 166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp, 167 struct bnx2x_virtf *vf, 168 struct bnx2x_vf_queue *q, 169 struct bnx2x_vf_queue_construct_params *p, 170 unsigned long q_type) 171 { 172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; 173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; 174 175 /* INIT */ 176 177 /* Enable host coalescing in the transition to INIT state */ 178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) 179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); 180 181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) 182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); 183 184 /* FW SB ID */ 185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 187 188 /* context */ 189 init_p->cxts[0] = q->cxt; 190 191 /* SETUP */ 192 193 /* Setup-op general parameters */ 194 setup_p->gen_params.spcl_id = vf->sp_cl_id; 195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q); 196 setup_p->gen_params.fp_hsi = vf->fp_hsi; 197 198 /* Setup-op pause params: 199 * Nothing to do, the pause thresholds are set by default to 0 which 200 * effectively turns off the feature for this queue. We don't want 201 * one queue (VF) to interfering with another queue (another VF) 202 */ 203 if (vf->cfg_flags & VF_CFG_FW_FC) 204 BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n", 205 vf->abs_vfid); 206 /* Setup-op flags: 207 * collect statistics, zero statistics, local-switching, security, 208 * OV for Flex10, RSS and MCAST for leading 209 */ 210 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) 211 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); 212 213 /* for VFs, enable tx switching, bd coherency, and mac address 214 * anti-spoofing 215 */ 216 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); 217 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); 218 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); 219 220 /* Setup-op rx parameters */ 221 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { 222 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; 223 224 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); 225 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); 226 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); 227 228 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) 229 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; 230 } 231 232 /* Setup-op tx parameters */ 233 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { 234 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; 235 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); 236 } 237 } 238 239 static int bnx2x_vf_queue_create(struct bnx2x *bp, 240 struct bnx2x_virtf *vf, int qid, 241 struct bnx2x_vf_queue_construct_params *qctor) 242 { 243 struct bnx2x_queue_state_params *q_params; 244 int rc = 0; 245 246 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 247 248 /* Prepare ramrod information */ 249 q_params = &qctor->qstate; 250 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj); 251 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags); 252 253 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == 254 BNX2X_Q_LOGICAL_STATE_ACTIVE) { 255 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n"); 256 goto out; 257 } 258 259 /* Run Queue 'construction' ramrods */ 260 q_params->cmd = BNX2X_Q_CMD_INIT; 261 rc = bnx2x_queue_state_change(bp, q_params); 262 if (rc) 263 goto out; 264 265 memcpy(&q_params->params.setup, &qctor->prep_qsetup, 266 sizeof(struct bnx2x_queue_setup_params)); 267 q_params->cmd = BNX2X_Q_CMD_SETUP; 268 rc = bnx2x_queue_state_change(bp, q_params); 269 if (rc) 270 goto out; 271 272 /* enable interrupts */ 273 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)), 274 USTORM_ID, 0, IGU_INT_ENABLE, 0); 275 out: 276 return rc; 277 } 278 279 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf, 280 int qid) 281 { 282 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT, 283 BNX2X_Q_CMD_TERMINATE, 284 BNX2X_Q_CMD_CFC_DEL}; 285 struct bnx2x_queue_state_params q_params; 286 int rc, i; 287 288 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 289 290 /* Prepare ramrod information */ 291 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params)); 292 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 293 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 294 295 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) == 296 BNX2X_Q_LOGICAL_STATE_STOPPED) { 297 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n"); 298 goto out; 299 } 300 301 /* Run Queue 'destruction' ramrods */ 302 for (i = 0; i < ARRAY_SIZE(cmds); i++) { 303 q_params.cmd = cmds[i]; 304 rc = bnx2x_queue_state_change(bp, &q_params); 305 if (rc) { 306 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]); 307 return rc; 308 } 309 } 310 out: 311 /* Clean Context */ 312 if (bnx2x_vfq(vf, qid, cxt)) { 313 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0; 314 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0; 315 } 316 317 return 0; 318 } 319 320 static void 321 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) 322 { 323 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 324 if (vf) { 325 /* the first igu entry belonging to VFs of this PF */ 326 if (!BP_VFDB(bp)->first_vf_igu_entry) 327 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id; 328 329 /* the first igu entry belonging to this VF */ 330 if (!vf_sb_count(vf)) 331 vf->igu_base_id = igu_sb_id; 332 333 ++vf_sb_count(vf); 334 ++vf->sb_count; 335 } 336 BP_VFDB(bp)->vf_sbs_pool++; 337 } 338 339 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp, 340 struct bnx2x_vlan_mac_obj *obj, 341 atomic_t *counter) 342 { 343 struct list_head *pos; 344 int read_lock; 345 int cnt = 0; 346 347 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); 348 if (read_lock) 349 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); 350 351 list_for_each(pos, &obj->head) 352 cnt++; 353 354 if (!read_lock) 355 bnx2x_vlan_mac_h_read_unlock(bp, obj); 356 357 atomic_set(counter, cnt); 358 } 359 360 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf, 361 int qid, bool drv_only, bool mac) 362 { 363 struct bnx2x_vlan_mac_ramrod_params ramrod; 364 int rc; 365 366 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid, 367 mac ? "MACs" : "VLANs"); 368 369 /* Prepare ramrod params */ 370 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 371 if (mac) { 372 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 374 } else { 375 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 376 &ramrod.user_req.vlan_mac_flags); 377 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 378 } 379 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL; 380 381 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 382 if (drv_only) 383 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 384 else 385 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 386 387 /* Start deleting */ 388 rc = ramrod.vlan_mac_obj->delete_all(bp, 389 ramrod.vlan_mac_obj, 390 &ramrod.user_req.vlan_mac_flags, 391 &ramrod.ramrod_flags); 392 if (rc) { 393 BNX2X_ERR("Failed to delete all %s\n", 394 mac ? "MACs" : "VLANs"); 395 return rc; 396 } 397 398 /* Clear the vlan counters */ 399 if (!mac) 400 atomic_set(&bnx2x_vfq(vf, qid, vlan_count), 0); 401 402 return 0; 403 } 404 405 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp, 406 struct bnx2x_virtf *vf, int qid, 407 struct bnx2x_vf_mac_vlan_filter *filter, 408 bool drv_only) 409 { 410 struct bnx2x_vlan_mac_ramrod_params ramrod; 411 int rc; 412 413 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n", 414 vf->abs_vfid, filter->add ? "Adding" : "Deleting", 415 filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : "VLAN"); 416 417 /* Prepare ramrod params */ 418 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params)); 419 if (filter->type == BNX2X_VF_FILTER_VLAN) { 420 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 421 &ramrod.user_req.vlan_mac_flags); 422 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); 423 ramrod.user_req.u.vlan.vlan = filter->vid; 424 } else { 425 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags); 426 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); 427 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN); 428 } 429 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD : 430 BNX2X_VLAN_MAC_DEL; 431 432 /* Verify there are available vlan credits */ 433 if (filter->add && filter->type == BNX2X_VF_FILTER_VLAN && 434 (atomic_read(&bnx2x_vfq(vf, qid, vlan_count)) >= 435 vf_vlan_rules_cnt(vf))) { 436 BNX2X_ERR("No credits for vlan [%d >= %d]\n", 437 atomic_read(&bnx2x_vfq(vf, qid, vlan_count)), 438 vf_vlan_rules_cnt(vf)); 439 return -ENOMEM; 440 } 441 442 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags); 443 if (drv_only) 444 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags); 445 else 446 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 447 448 /* Add/Remove the filter */ 449 rc = bnx2x_config_vlan_mac(bp, &ramrod); 450 if (rc && rc != -EEXIST) { 451 BNX2X_ERR("Failed to %s %s\n", 452 filter->add ? "add" : "delete", 453 filter->type == BNX2X_VF_FILTER_MAC ? "MAC" : 454 "VLAN"); 455 return rc; 456 } 457 458 /* Update the vlan counters */ 459 if (filter->type == BNX2X_VF_FILTER_VLAN) 460 bnx2x_vf_vlan_credit(bp, ramrod.vlan_mac_obj, 461 &bnx2x_vfq(vf, qid, vlan_count)); 462 463 return 0; 464 } 465 466 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf, 467 struct bnx2x_vf_mac_vlan_filters *filters, 468 int qid, bool drv_only) 469 { 470 int rc = 0, i; 471 472 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 473 474 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 475 return -EINVAL; 476 477 /* Prepare ramrod params */ 478 for (i = 0; i < filters->count; i++) { 479 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, 480 &filters->filters[i], drv_only); 481 if (rc) 482 break; 483 } 484 485 /* Rollback if needed */ 486 if (i != filters->count) { 487 BNX2X_ERR("Managed only %d/%d filters - rolling back\n", 488 i, filters->count + 1); 489 while (--i >= 0) { 490 filters->filters[i].add = !filters->filters[i].add; 491 bnx2x_vf_mac_vlan_config(bp, vf, qid, 492 &filters->filters[i], 493 drv_only); 494 } 495 } 496 497 /* It's our responsibility to free the filters */ 498 kfree(filters); 499 500 return rc; 501 } 502 503 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid, 504 struct bnx2x_vf_queue_construct_params *qctor) 505 { 506 int rc; 507 508 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 509 510 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor); 511 if (rc) 512 goto op_err; 513 514 /* Configure vlan0 for leading queue */ 515 if (!qid) { 516 struct bnx2x_vf_mac_vlan_filter filter; 517 518 memset(&filter, 0, sizeof(struct bnx2x_vf_mac_vlan_filter)); 519 filter.type = BNX2X_VF_FILTER_VLAN; 520 filter.add = true; 521 filter.vid = 0; 522 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid, &filter, false); 523 if (rc) 524 goto op_err; 525 } 526 527 /* Schedule the configuration of any pending vlan filters */ 528 vf->cfg_flags |= VF_CFG_VLAN; 529 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN, 530 BNX2X_MSG_IOV); 531 return 0; 532 op_err: 533 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 534 return rc; 535 } 536 537 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf, 538 int qid) 539 { 540 int rc; 541 542 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 543 544 /* If needed, clean the filtering data base */ 545 if ((qid == LEADING_IDX) && 546 bnx2x_validate_vf_sp_objs(bp, vf, false)) { 547 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, false); 548 if (rc) 549 goto op_err; 550 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true, true); 551 if (rc) 552 goto op_err; 553 } 554 555 /* Terminate queue */ 556 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) { 557 struct bnx2x_queue_state_params qstate; 558 559 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 560 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 561 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED; 562 qstate.cmd = BNX2X_Q_CMD_TERMINATE; 563 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 564 rc = bnx2x_queue_state_change(bp, &qstate); 565 if (rc) 566 goto op_err; 567 } 568 569 return 0; 570 op_err: 571 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc); 572 return rc; 573 } 574 575 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf, 576 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only) 577 { 578 struct bnx2x_mcast_list_elem *mc = NULL; 579 struct bnx2x_mcast_ramrod_params mcast; 580 int rc, i; 581 582 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 583 584 /* Prepare Multicast command */ 585 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params)); 586 mcast.mcast_obj = &vf->mcast_obj; 587 if (drv_only) 588 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags); 589 else 590 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags); 591 if (mc_num) { 592 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem), 593 GFP_KERNEL); 594 if (!mc) { 595 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n"); 596 return -ENOMEM; 597 } 598 } 599 600 /* clear existing mcasts */ 601 mcast.mcast_list_len = vf->mcast_list_len; 602 vf->mcast_list_len = mc_num; 603 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL); 604 if (rc) { 605 BNX2X_ERR("Failed to remove multicasts\n"); 606 kfree(mc); 607 return rc; 608 } 609 610 /* update mcast list on the ramrod params */ 611 if (mc_num) { 612 INIT_LIST_HEAD(&mcast.mcast_list); 613 for (i = 0; i < mc_num; i++) { 614 mc[i].mac = mcasts[i]; 615 list_add_tail(&mc[i].link, 616 &mcast.mcast_list); 617 } 618 619 /* add new mcasts */ 620 mcast.mcast_list_len = mc_num; 621 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_ADD); 622 if (rc) 623 BNX2X_ERR("Faled to add multicasts\n"); 624 kfree(mc); 625 } 626 627 return rc; 628 } 629 630 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid, 631 struct bnx2x_rx_mode_ramrod_params *ramrod, 632 struct bnx2x_virtf *vf, 633 unsigned long accept_flags) 634 { 635 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); 636 637 memset(ramrod, 0, sizeof(*ramrod)); 638 ramrod->cid = vfq->cid; 639 ramrod->cl_id = vfq_cl_id(vf, vfq); 640 ramrod->rx_mode_obj = &bp->rx_mode_obj; 641 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); 642 ramrod->rx_accept_flags = accept_flags; 643 ramrod->tx_accept_flags = accept_flags; 644 ramrod->pstate = &vf->filter_state; 645 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; 646 647 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 648 set_bit(RAMROD_RX, &ramrod->ramrod_flags); 649 set_bit(RAMROD_TX, &ramrod->ramrod_flags); 650 651 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); 652 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); 653 } 654 655 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf, 656 int qid, unsigned long accept_flags) 657 { 658 struct bnx2x_rx_mode_ramrod_params ramrod; 659 660 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 661 662 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags); 663 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags); 664 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags; 665 return bnx2x_config_rx_mode(bp, &ramrod); 666 } 667 668 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid) 669 { 670 int rc; 671 672 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid); 673 674 /* Remove all classification configuration for leading queue */ 675 if (qid == LEADING_IDX) { 676 rc = bnx2x_vf_rxmode(bp, vf, qid, 0); 677 if (rc) 678 goto op_err; 679 680 /* Remove filtering if feasible */ 681 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) { 682 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 683 false, false); 684 if (rc) 685 goto op_err; 686 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, 687 false, true); 688 if (rc) 689 goto op_err; 690 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false); 691 if (rc) 692 goto op_err; 693 } 694 } 695 696 /* Destroy queue */ 697 rc = bnx2x_vf_queue_destroy(bp, vf, qid); 698 if (rc) 699 goto op_err; 700 return rc; 701 op_err: 702 BNX2X_ERR("vf[%d:%d] error: rc %d\n", 703 vf->abs_vfid, qid, rc); 704 return rc; 705 } 706 707 /* VF enable primitives 708 * when pretend is required the caller is responsible 709 * for calling pretend prior to calling these routines 710 */ 711 712 /* internal vf enable - until vf is enabled internally all transactions 713 * are blocked. This routine should always be called last with pretend. 714 */ 715 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) 716 { 717 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); 718 } 719 720 /* clears vf error in all semi blocks */ 721 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) 722 { 723 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); 724 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); 725 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); 726 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); 727 } 728 729 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) 730 { 731 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; 732 u32 was_err_reg = 0; 733 734 switch (was_err_group) { 735 case 0: 736 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; 737 break; 738 case 1: 739 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; 740 break; 741 case 2: 742 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; 743 break; 744 case 3: 745 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; 746 break; 747 } 748 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); 749 } 750 751 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) 752 { 753 int i; 754 u32 val; 755 756 /* Set VF masks and configuration - pretend */ 757 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 758 759 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 760 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 761 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 762 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 763 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 764 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 765 766 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 767 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); 768 if (vf->cfg_flags & VF_CFG_INT_SIMD) 769 val |= IGU_VF_CONF_SINGLE_ISR_EN; 770 val &= ~IGU_VF_CONF_PARENT_MASK; 771 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT; 772 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 773 774 DP(BNX2X_MSG_IOV, 775 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n", 776 vf->abs_vfid, val); 777 778 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 779 780 /* iterate over all queues, clear sb consumer */ 781 for (i = 0; i < vf_sb_count(vf); i++) { 782 u8 igu_sb_id = vf_igu_sb(vf, i); 783 784 /* zero prod memory */ 785 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); 786 787 /* clear sb state machine */ 788 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, 789 false /* VF */); 790 791 /* disable + update */ 792 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, 793 IGU_INT_DISABLE, 1); 794 } 795 } 796 797 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) 798 { 799 /* set the VF-PF association in the FW */ 800 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); 801 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); 802 803 /* clear vf errors*/ 804 bnx2x_vf_semi_clear_err(bp, abs_vfid); 805 bnx2x_vf_pglue_clear_err(bp, abs_vfid); 806 807 /* internal vf-enable - pretend */ 808 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); 809 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); 810 bnx2x_vf_enable_internal(bp, true); 811 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 812 } 813 814 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) 815 { 816 /* Reset vf in IGU interrupts are still disabled */ 817 bnx2x_vf_igu_reset(bp, vf); 818 819 /* pretend to enable the vf with the PBF */ 820 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 821 REG_WR(bp, PBF_REG_DISABLE_VF, 0); 822 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 823 } 824 825 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) 826 { 827 struct pci_dev *dev; 828 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 829 830 if (!vf) 831 return false; 832 833 dev = pci_get_bus_and_slot(vf->bus, vf->devfn); 834 if (dev) 835 return bnx2x_is_pcie_pending(dev); 836 return false; 837 } 838 839 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) 840 { 841 /* Verify no pending pci transactions */ 842 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) 843 BNX2X_ERR("PCIE Transactions still pending\n"); 844 845 return 0; 846 } 847 848 static void bnx2x_iov_re_set_vlan_filters(struct bnx2x *bp, 849 struct bnx2x_virtf *vf, 850 int new) 851 { 852 int num = vf_vlan_rules_cnt(vf); 853 int diff = new - num; 854 bool rc = true; 855 856 DP(BNX2X_MSG_IOV, "vf[%d] - %d vlan filter credits [previously %d]\n", 857 vf->abs_vfid, new, num); 858 859 if (diff > 0) 860 rc = bp->vlans_pool.get(&bp->vlans_pool, diff); 861 else if (diff < 0) 862 rc = bp->vlans_pool.put(&bp->vlans_pool, -diff); 863 864 if (rc) 865 vf_vlan_rules_cnt(vf) = new; 866 else 867 DP(BNX2X_MSG_IOV, "vf[%d] - Failed to configure vlan filter credits change\n", 868 vf->abs_vfid); 869 } 870 871 /* must be called after the number of PF queues and the number of VFs are 872 * both known 873 */ 874 static void 875 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 876 { 877 struct vf_pf_resc_request *resc = &vf->alloc_resc; 878 u16 vlan_count = 0; 879 880 /* will be set only during VF-ACQUIRE */ 881 resc->num_rxqs = 0; 882 resc->num_txqs = 0; 883 884 /* no credit calculations for macs (just yet) */ 885 resc->num_mac_filters = 1; 886 887 /* divvy up vlan rules */ 888 bnx2x_iov_re_set_vlan_filters(bp, vf, 0); 889 vlan_count = bp->vlans_pool.check(&bp->vlans_pool); 890 vlan_count = 1 << ilog2(vlan_count); 891 bnx2x_iov_re_set_vlan_filters(bp, vf, 892 vlan_count / BNX2X_NR_VIRTFN(bp)); 893 894 /* no real limitation */ 895 resc->num_mc_filters = 0; 896 897 /* num_sbs already set */ 898 resc->num_sbs = vf->sb_count; 899 } 900 901 /* FLR routines: */ 902 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) 903 { 904 /* reset the state variables */ 905 bnx2x_iov_static_resc(bp, vf); 906 vf->state = VF_FREE; 907 } 908 909 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) 910 { 911 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 912 913 /* DQ usage counter */ 914 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 915 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, 916 "DQ VF usage counter timed out", 917 poll_cnt); 918 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 919 920 /* FW cleanup command - poll for the results */ 921 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), 922 poll_cnt)) 923 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); 924 925 /* verify TX hw is flushed */ 926 bnx2x_tx_hw_flushed(bp, poll_cnt); 927 } 928 929 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) 930 { 931 int rc, i; 932 933 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 934 935 /* the cleanup operations are valid if and only if the VF 936 * was first acquired. 937 */ 938 for (i = 0; i < vf_rxq_count(vf); i++) { 939 rc = bnx2x_vf_queue_flr(bp, vf, i); 940 if (rc) 941 goto out; 942 } 943 944 /* remove multicasts */ 945 bnx2x_vf_mcast(bp, vf, NULL, 0, true); 946 947 /* dispatch final cleanup and wait for HW queues to flush */ 948 bnx2x_vf_flr_clnup_hw(bp, vf); 949 950 /* release VF resources */ 951 bnx2x_vf_free_resc(bp, vf); 952 953 /* re-open the mailbox */ 954 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 955 return; 956 out: 957 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n", 958 vf->abs_vfid, i, rc); 959 } 960 961 static void bnx2x_vf_flr_clnup(struct bnx2x *bp) 962 { 963 struct bnx2x_virtf *vf; 964 int i; 965 966 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) { 967 /* VF should be RESET & in FLR cleanup states */ 968 if (bnx2x_vf(bp, i, state) != VF_RESET || 969 !bnx2x_vf(bp, i, flr_clnup_stage)) 970 continue; 971 972 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", 973 i, BNX2X_NR_VIRTFN(bp)); 974 975 vf = BP_VF(bp, i); 976 977 /* lock the vf pf channel */ 978 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 979 980 /* invoke the VF FLR SM */ 981 bnx2x_vf_flr(bp, vf); 982 983 /* mark the VF to be ACKED and continue */ 984 vf->flr_clnup_stage = false; 985 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); 986 } 987 988 /* Acknowledge the handled VFs. 989 * we are acknowledge all the vfs which an flr was requested for, even 990 * if amongst them there are such that we never opened, since the mcp 991 * will interrupt us immediately again if we only ack some of the bits, 992 * resulting in an endless loop. This can happen for example in KVM 993 * where an 'all ones' flr request is sometimes given by hyper visor 994 */ 995 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", 996 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 997 for (i = 0; i < FLRD_VFS_DWORDS; i++) 998 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 999 bp->vfdb->flrd_vfs[i]); 1000 1001 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); 1002 1003 /* clear the acked bits - better yet if the MCP implemented 1004 * write to clear semantics 1005 */ 1006 for (i = 0; i < FLRD_VFS_DWORDS; i++) 1007 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); 1008 } 1009 1010 void bnx2x_vf_handle_flr_event(struct bnx2x *bp) 1011 { 1012 int i; 1013 1014 /* Read FLR'd VFs */ 1015 for (i = 0; i < FLRD_VFS_DWORDS; i++) 1016 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); 1017 1018 DP(BNX2X_MSG_MCP, 1019 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", 1020 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); 1021 1022 for_each_vf(bp, i) { 1023 struct bnx2x_virtf *vf = BP_VF(bp, i); 1024 u32 reset = 0; 1025 1026 if (vf->abs_vfid < 32) 1027 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); 1028 else 1029 reset = bp->vfdb->flrd_vfs[1] & 1030 (1 << (vf->abs_vfid - 32)); 1031 1032 if (reset) { 1033 /* set as reset and ready for cleanup */ 1034 vf->state = VF_RESET; 1035 vf->flr_clnup_stage = true; 1036 1037 DP(BNX2X_MSG_IOV, 1038 "Initiating Final cleanup for VF %d\n", 1039 vf->abs_vfid); 1040 } 1041 } 1042 1043 /* do the FLR cleanup for all marked VFs*/ 1044 bnx2x_vf_flr_clnup(bp); 1045 } 1046 1047 /* IOV global initialization routines */ 1048 void bnx2x_iov_init_dq(struct bnx2x *bp) 1049 { 1050 if (!IS_SRIOV(bp)) 1051 return; 1052 1053 /* Set the DQ such that the CID reflect the abs_vfid */ 1054 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); 1055 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 1056 1057 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to 1058 * the PF L2 queues 1059 */ 1060 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 1061 1062 /* The VF window size is the log2 of the max number of CIDs per VF */ 1063 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 1064 1065 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 1066 * the Pf doorbell size although the 2 are independent. 1067 */ 1068 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3); 1069 1070 /* No security checks for now - 1071 * configure single rule (out of 16) mask = 0x1, value = 0x0, 1072 * CID range 0 - 0x1ffff 1073 */ 1074 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); 1075 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); 1076 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 1077 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 1078 1079 /* set the VF doorbell threshold. This threshold represents the amount 1080 * of doorbells allowed in the main DORQ fifo for a specific VF. 1081 */ 1082 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64); 1083 } 1084 1085 void bnx2x_iov_init_dmae(struct bnx2x *bp) 1086 { 1087 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV)) 1088 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); 1089 } 1090 1091 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) 1092 { 1093 struct pci_dev *dev = bp->pdev; 1094 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1095 1096 return dev->bus->number + ((dev->devfn + iov->offset + 1097 iov->stride * vfid) >> 8); 1098 } 1099 1100 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) 1101 { 1102 struct pci_dev *dev = bp->pdev; 1103 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1104 1105 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; 1106 } 1107 1108 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) 1109 { 1110 int i, n; 1111 struct pci_dev *dev = bp->pdev; 1112 struct bnx2x_sriov *iov = &bp->vfdb->sriov; 1113 1114 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { 1115 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); 1116 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); 1117 1118 size /= iov->total; 1119 vf->bars[n].bar = start + size * vf->abs_vfid; 1120 vf->bars[n].size = size; 1121 } 1122 } 1123 1124 static int bnx2x_ari_enabled(struct pci_dev *dev) 1125 { 1126 return dev->bus->self && dev->bus->self->ari_enabled; 1127 } 1128 1129 static int 1130 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) 1131 { 1132 int sb_id; 1133 u32 val; 1134 u8 fid, current_pf = 0; 1135 1136 /* IGU in normal mode - read CAM */ 1137 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { 1138 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); 1139 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 1140 continue; 1141 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); 1142 if (fid & IGU_FID_ENCODE_IS_PF) 1143 current_pf = fid & IGU_FID_PF_NUM_MASK; 1144 else if (current_pf == BP_FUNC(bp)) 1145 bnx2x_vf_set_igu_info(bp, sb_id, 1146 (fid & IGU_FID_VF_NUM_MASK)); 1147 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", 1148 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), 1149 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : 1150 (fid & IGU_FID_VF_NUM_MASK)), sb_id, 1151 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); 1152 } 1153 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool); 1154 return BP_VFDB(bp)->vf_sbs_pool; 1155 } 1156 1157 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) 1158 { 1159 if (bp->vfdb) { 1160 kfree(bp->vfdb->vfqs); 1161 kfree(bp->vfdb->vfs); 1162 kfree(bp->vfdb); 1163 } 1164 bp->vfdb = NULL; 1165 } 1166 1167 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1168 { 1169 int pos; 1170 struct pci_dev *dev = bp->pdev; 1171 1172 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); 1173 if (!pos) { 1174 BNX2X_ERR("failed to find SRIOV capability in device\n"); 1175 return -ENODEV; 1176 } 1177 1178 iov->pos = pos; 1179 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); 1180 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 1181 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); 1182 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); 1183 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 1184 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 1185 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 1186 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); 1187 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 1188 1189 return 0; 1190 } 1191 1192 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) 1193 { 1194 u32 val; 1195 1196 /* read the SRIOV capability structure 1197 * The fields can be read via configuration read or 1198 * directly from the device (starting at offset PCICFG_OFFSET) 1199 */ 1200 if (bnx2x_sriov_pci_cfg_info(bp, iov)) 1201 return -ENODEV; 1202 1203 /* get the number of SRIOV bars */ 1204 iov->nres = 0; 1205 1206 /* read the first_vfid */ 1207 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); 1208 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) 1209 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); 1210 1211 DP(BNX2X_MSG_IOV, 1212 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 1213 BP_FUNC(bp), 1214 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, 1215 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 1216 1217 return 0; 1218 } 1219 1220 /* must be called after PF bars are mapped */ 1221 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, 1222 int num_vfs_param) 1223 { 1224 int err, i; 1225 struct bnx2x_sriov *iov; 1226 struct pci_dev *dev = bp->pdev; 1227 1228 bp->vfdb = NULL; 1229 1230 /* verify is pf */ 1231 if (IS_VF(bp)) 1232 return 0; 1233 1234 /* verify sriov capability is present in configuration space */ 1235 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) 1236 return 0; 1237 1238 /* verify chip revision */ 1239 if (CHIP_IS_E1x(bp)) 1240 return 0; 1241 1242 /* check if SRIOV support is turned off */ 1243 if (!num_vfs_param) 1244 return 0; 1245 1246 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ 1247 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { 1248 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", 1249 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); 1250 return 0; 1251 } 1252 1253 /* SRIOV can be enabled only with MSIX */ 1254 if (int_mode_param == BNX2X_INT_MODE_MSI || 1255 int_mode_param == BNX2X_INT_MODE_INTX) { 1256 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); 1257 return 0; 1258 } 1259 1260 err = -EIO; 1261 /* verify ari is enabled */ 1262 if (!bnx2x_ari_enabled(bp->pdev)) { 1263 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); 1264 return 0; 1265 } 1266 1267 /* verify igu is in normal mode */ 1268 if (CHIP_INT_MODE_IS_BC(bp)) { 1269 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); 1270 return 0; 1271 } 1272 1273 /* allocate the vfs database */ 1274 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); 1275 if (!bp->vfdb) { 1276 BNX2X_ERR("failed to allocate vf database\n"); 1277 err = -ENOMEM; 1278 goto failed; 1279 } 1280 1281 /* get the sriov info - Linux already collected all the pertinent 1282 * information, however the sriov structure is for the private use 1283 * of the pci module. Also we want this information regardless 1284 * of the hyper-visor. 1285 */ 1286 iov = &(bp->vfdb->sriov); 1287 err = bnx2x_sriov_info(bp, iov); 1288 if (err) 1289 goto failed; 1290 1291 /* SR-IOV capability was enabled but there are no VFs*/ 1292 if (iov->total == 0) 1293 goto failed; 1294 1295 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); 1296 1297 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", 1298 num_vfs_param, iov->nr_virtfn); 1299 1300 /* allocate the vf array */ 1301 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) * 1302 BNX2X_NR_VIRTFN(bp), GFP_KERNEL); 1303 if (!bp->vfdb->vfs) { 1304 BNX2X_ERR("failed to allocate vf array\n"); 1305 err = -ENOMEM; 1306 goto failed; 1307 } 1308 1309 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ 1310 for_each_vf(bp, i) { 1311 bnx2x_vf(bp, i, index) = i; 1312 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; 1313 bnx2x_vf(bp, i, state) = VF_FREE; 1314 mutex_init(&bnx2x_vf(bp, i, op_mutex)); 1315 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; 1316 } 1317 1318 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ 1319 if (!bnx2x_get_vf_igu_cam_info(bp)) { 1320 BNX2X_ERR("No entries in IGU CAM for vfs\n"); 1321 err = -EINVAL; 1322 goto failed; 1323 } 1324 1325 /* allocate the queue arrays for all VFs */ 1326 bp->vfdb->vfqs = kzalloc( 1327 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue), 1328 GFP_KERNEL); 1329 1330 if (!bp->vfdb->vfqs) { 1331 BNX2X_ERR("failed to allocate vf queue array\n"); 1332 err = -ENOMEM; 1333 goto failed; 1334 } 1335 1336 /* Prepare the VFs event synchronization mechanism */ 1337 mutex_init(&bp->vfdb->event_mutex); 1338 1339 mutex_init(&bp->vfdb->bulletin_mutex); 1340 1341 return 0; 1342 failed: 1343 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); 1344 __bnx2x_iov_free_vfdb(bp); 1345 return err; 1346 } 1347 1348 void bnx2x_iov_remove_one(struct bnx2x *bp) 1349 { 1350 int vf_idx; 1351 1352 /* if SRIOV is not enabled there's nothing to do */ 1353 if (!IS_SRIOV(bp)) 1354 return; 1355 1356 bnx2x_disable_sriov(bp); 1357 1358 /* disable access to all VFs */ 1359 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) { 1360 bnx2x_pretend_func(bp, 1361 HW_VF_HANDLE(bp, 1362 bp->vfdb->sriov.first_vf_in_pf + 1363 vf_idx)); 1364 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n", 1365 bp->vfdb->sriov.first_vf_in_pf + vf_idx); 1366 bnx2x_vf_enable_internal(bp, 0); 1367 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 1368 } 1369 1370 /* free vf database */ 1371 __bnx2x_iov_free_vfdb(bp); 1372 } 1373 1374 void bnx2x_iov_free_mem(struct bnx2x *bp) 1375 { 1376 int i; 1377 1378 if (!IS_SRIOV(bp)) 1379 return; 1380 1381 /* free vfs hw contexts */ 1382 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1383 struct hw_dma *cxt = &bp->vfdb->context[i]; 1384 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); 1385 } 1386 1387 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, 1388 BP_VFDB(bp)->sp_dma.mapping, 1389 BP_VFDB(bp)->sp_dma.size); 1390 1391 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, 1392 BP_VF_MBX_DMA(bp)->mapping, 1393 BP_VF_MBX_DMA(bp)->size); 1394 1395 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, 1396 BP_VF_BULLETIN_DMA(bp)->mapping, 1397 BP_VF_BULLETIN_DMA(bp)->size); 1398 } 1399 1400 int bnx2x_iov_alloc_mem(struct bnx2x *bp) 1401 { 1402 size_t tot_size; 1403 int i, rc = 0; 1404 1405 if (!IS_SRIOV(bp)) 1406 return rc; 1407 1408 /* allocate vfs hw contexts */ 1409 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * 1410 BNX2X_CIDS_PER_VF * sizeof(union cdu_context); 1411 1412 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1413 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); 1414 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); 1415 1416 if (cxt->size) { 1417 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size); 1418 if (!cxt->addr) 1419 goto alloc_mem_err; 1420 } else { 1421 cxt->addr = NULL; 1422 cxt->mapping = 0; 1423 } 1424 tot_size -= cxt->size; 1425 } 1426 1427 /* allocate vfs ramrods dma memory - client_init and set_mac */ 1428 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); 1429 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping, 1430 tot_size); 1431 if (!BP_VFDB(bp)->sp_dma.addr) 1432 goto alloc_mem_err; 1433 BP_VFDB(bp)->sp_dma.size = tot_size; 1434 1435 /* allocate mailboxes */ 1436 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; 1437 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping, 1438 tot_size); 1439 if (!BP_VF_MBX_DMA(bp)->addr) 1440 goto alloc_mem_err; 1441 1442 BP_VF_MBX_DMA(bp)->size = tot_size; 1443 1444 /* allocate local bulletin boards */ 1445 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; 1446 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping, 1447 tot_size); 1448 if (!BP_VF_BULLETIN_DMA(bp)->addr) 1449 goto alloc_mem_err; 1450 1451 BP_VF_BULLETIN_DMA(bp)->size = tot_size; 1452 1453 return 0; 1454 1455 alloc_mem_err: 1456 return -ENOMEM; 1457 } 1458 1459 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, 1460 struct bnx2x_vf_queue *q) 1461 { 1462 u8 cl_id = vfq_cl_id(vf, q); 1463 u8 func_id = FW_VF_HANDLE(vf->abs_vfid); 1464 unsigned long q_type = 0; 1465 1466 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 1467 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 1468 1469 /* Queue State object */ 1470 bnx2x_init_queue_obj(bp, &q->sp_obj, 1471 cl_id, &q->cid, 1, func_id, 1472 bnx2x_vf_sp(bp, vf, q_data), 1473 bnx2x_vf_sp_map(bp, vf, q_data), 1474 q_type); 1475 1476 /* sp indication is set only when vlan/mac/etc. are initialized */ 1477 q->sp_initialized = false; 1478 1479 DP(BNX2X_MSG_IOV, 1480 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n", 1481 vf->abs_vfid, q->sp_obj.func_id, q->cid); 1482 } 1483 1484 static int bnx2x_max_speed_cap(struct bnx2x *bp) 1485 { 1486 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)]; 1487 1488 if (supported & 1489 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) 1490 return 20000; 1491 1492 return 10000; /* assume lowest supported speed is 10G */ 1493 } 1494 1495 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx) 1496 { 1497 struct bnx2x_link_report_data *state = &bp->last_reported_link; 1498 struct pf_vf_bulletin_content *bulletin; 1499 struct bnx2x_virtf *vf; 1500 bool update = true; 1501 int rc = 0; 1502 1503 /* sanity and init */ 1504 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false); 1505 if (rc) 1506 return rc; 1507 1508 mutex_lock(&bp->vfdb->bulletin_mutex); 1509 1510 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) { 1511 bulletin->valid_bitmap |= 1 << LINK_VALID; 1512 1513 bulletin->link_speed = state->line_speed; 1514 bulletin->link_flags = 0; 1515 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1516 &state->link_report_flags)) 1517 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1518 if (test_bit(BNX2X_LINK_REPORT_FD, 1519 &state->link_report_flags)) 1520 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX; 1521 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1522 &state->link_report_flags)) 1523 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON; 1524 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1525 &state->link_report_flags)) 1526 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON; 1527 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE && 1528 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1529 bulletin->valid_bitmap |= 1 << LINK_VALID; 1530 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN; 1531 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE && 1532 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) { 1533 bulletin->valid_bitmap |= 1 << LINK_VALID; 1534 bulletin->link_speed = bnx2x_max_speed_cap(bp); 1535 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN; 1536 } else { 1537 update = false; 1538 } 1539 1540 if (update) { 1541 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV, 1542 "vf %d mode %u speed %d flags %x\n", idx, 1543 vf->link_cfg, bulletin->link_speed, bulletin->link_flags); 1544 1545 /* Post update on VF's bulletin board */ 1546 rc = bnx2x_post_vf_bulletin(bp, idx); 1547 if (rc) { 1548 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx); 1549 goto out; 1550 } 1551 } 1552 1553 out: 1554 mutex_unlock(&bp->vfdb->bulletin_mutex); 1555 return rc; 1556 } 1557 1558 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state) 1559 { 1560 struct bnx2x *bp = netdev_priv(dev); 1561 struct bnx2x_virtf *vf = BP_VF(bp, idx); 1562 1563 if (!vf) 1564 return -EINVAL; 1565 1566 if (vf->link_cfg == link_state) 1567 return 0; /* nothing todo */ 1568 1569 vf->link_cfg = link_state; 1570 1571 return bnx2x_iov_link_update_vf(bp, idx); 1572 } 1573 1574 void bnx2x_iov_link_update(struct bnx2x *bp) 1575 { 1576 int vfid; 1577 1578 if (!IS_SRIOV(bp)) 1579 return; 1580 1581 for_each_vf(bp, vfid) 1582 bnx2x_iov_link_update_vf(bp, vfid); 1583 } 1584 1585 /* called by bnx2x_nic_load */ 1586 int bnx2x_iov_nic_init(struct bnx2x *bp) 1587 { 1588 int vfid; 1589 1590 if (!IS_SRIOV(bp)) { 1591 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); 1592 return 0; 1593 } 1594 1595 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); 1596 1597 /* let FLR complete ... */ 1598 msleep(100); 1599 1600 /* initialize vf database */ 1601 for_each_vf(bp, vfid) { 1602 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1603 1604 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * 1605 BNX2X_CIDS_PER_VF; 1606 1607 union cdu_context *base_cxt = (union cdu_context *) 1608 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 1609 (base_vf_cid & (ILT_PAGE_CIDS-1)); 1610 1611 DP(BNX2X_MSG_IOV, 1612 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", 1613 vf->abs_vfid, vf_sb_count(vf), base_vf_cid, 1614 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); 1615 1616 /* init statically provisioned resources */ 1617 bnx2x_iov_static_resc(bp, vf); 1618 1619 /* queues are initialized during VF-ACQUIRE */ 1620 vf->filter_state = 0; 1621 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); 1622 1623 /* init mcast object - This object will be re-initialized 1624 * during VF-ACQUIRE with the proper cl_id and cid. 1625 * It needs to be initialized here so that it can be safely 1626 * handled by a subsequent FLR flow. 1627 */ 1628 vf->mcast_list_len = 0; 1629 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 1630 0xFF, 0xFF, 0xFF, 1631 bnx2x_vf_sp(bp, vf, mcast_rdata), 1632 bnx2x_vf_sp_map(bp, vf, mcast_rdata), 1633 BNX2X_FILTER_MCAST_PENDING, 1634 &vf->filter_state, 1635 BNX2X_OBJ_TYPE_RX_TX); 1636 1637 /* set the mailbox message addresses */ 1638 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) 1639 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * 1640 MBX_MSG_ALIGNED_SIZE); 1641 1642 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + 1643 vfid * MBX_MSG_ALIGNED_SIZE; 1644 1645 /* Enable vf mailbox */ 1646 bnx2x_vf_enable_mbx(bp, vf->abs_vfid); 1647 } 1648 1649 /* Final VF init */ 1650 for_each_vf(bp, vfid) { 1651 struct bnx2x_virtf *vf = BP_VF(bp, vfid); 1652 1653 /* fill in the BDF and bars */ 1654 vf->bus = bnx2x_vf_bus(bp, vfid); 1655 vf->devfn = bnx2x_vf_devfn(bp, vfid); 1656 bnx2x_vf_set_bars(bp, vf); 1657 1658 DP(BNX2X_MSG_IOV, 1659 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", 1660 vf->abs_vfid, vf->bus, vf->devfn, 1661 (unsigned)vf->bars[0].bar, vf->bars[0].size, 1662 (unsigned)vf->bars[1].bar, vf->bars[1].size, 1663 (unsigned)vf->bars[2].bar, vf->bars[2].size); 1664 } 1665 1666 return 0; 1667 } 1668 1669 /* called by bnx2x_chip_cleanup */ 1670 int bnx2x_iov_chip_cleanup(struct bnx2x *bp) 1671 { 1672 int i; 1673 1674 if (!IS_SRIOV(bp)) 1675 return 0; 1676 1677 /* release all the VFs */ 1678 for_each_vf(bp, i) 1679 bnx2x_vf_release(bp, BP_VF(bp, i)); 1680 1681 return 0; 1682 } 1683 1684 /* called by bnx2x_init_hw_func, returns the next ilt line */ 1685 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) 1686 { 1687 int i; 1688 struct bnx2x_ilt *ilt = BP_ILT(bp); 1689 1690 if (!IS_SRIOV(bp)) 1691 return line; 1692 1693 /* set vfs ilt lines */ 1694 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { 1695 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); 1696 1697 ilt->lines[line+i].page = hw_cxt->addr; 1698 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 1699 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 1700 } 1701 return line + i; 1702 } 1703 1704 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) 1705 { 1706 return ((cid >= BNX2X_FIRST_VF_CID) && 1707 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); 1708 } 1709 1710 static 1711 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, 1712 struct bnx2x_vf_queue *vfq, 1713 union event_ring_elem *elem) 1714 { 1715 unsigned long ramrod_flags = 0; 1716 int rc = 0; 1717 1718 /* Always push next commands out, don't wait here */ 1719 set_bit(RAMROD_CONT, &ramrod_flags); 1720 1721 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) { 1722 case BNX2X_FILTER_MAC_PENDING: 1723 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, 1724 &ramrod_flags); 1725 break; 1726 case BNX2X_FILTER_VLAN_PENDING: 1727 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, 1728 &ramrod_flags); 1729 break; 1730 default: 1731 BNX2X_ERR("Unsupported classification command: %d\n", 1732 elem->message.data.eth_event.echo); 1733 return; 1734 } 1735 if (rc < 0) 1736 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 1737 else if (rc > 0) 1738 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); 1739 } 1740 1741 static 1742 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, 1743 struct bnx2x_virtf *vf) 1744 { 1745 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 1746 int rc; 1747 1748 rparam.mcast_obj = &vf->mcast_obj; 1749 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); 1750 1751 /* If there are pending mcast commands - send them */ 1752 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { 1753 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 1754 if (rc < 0) 1755 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 1756 rc); 1757 } 1758 } 1759 1760 static 1761 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, 1762 struct bnx2x_virtf *vf) 1763 { 1764 smp_mb__before_atomic(); 1765 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); 1766 smp_mb__after_atomic(); 1767 } 1768 1769 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp, 1770 struct bnx2x_virtf *vf) 1771 { 1772 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw); 1773 } 1774 1775 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) 1776 { 1777 struct bnx2x_virtf *vf; 1778 int qidx = 0, abs_vfid; 1779 u8 opcode; 1780 u16 cid = 0xffff; 1781 1782 if (!IS_SRIOV(bp)) 1783 return 1; 1784 1785 /* first get the cid - the only events we handle here are cfc-delete 1786 * and set-mac completion 1787 */ 1788 opcode = elem->message.opcode; 1789 1790 switch (opcode) { 1791 case EVENT_RING_OPCODE_CFC_DEL: 1792 cid = SW_CID((__force __le32) 1793 elem->message.data.cfc_del_event.cid); 1794 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); 1795 break; 1796 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1797 case EVENT_RING_OPCODE_MULTICAST_RULES: 1798 case EVENT_RING_OPCODE_FILTERS_RULES: 1799 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1800 cid = (elem->message.data.eth_event.echo & 1801 BNX2X_SWCID_MASK); 1802 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); 1803 break; 1804 case EVENT_RING_OPCODE_VF_FLR: 1805 abs_vfid = elem->message.data.vf_flr_event.vf_id; 1806 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", 1807 abs_vfid); 1808 goto get_vf; 1809 case EVENT_RING_OPCODE_MALICIOUS_VF: 1810 abs_vfid = elem->message.data.malicious_vf_event.vf_id; 1811 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", 1812 abs_vfid, 1813 elem->message.data.malicious_vf_event.err_id); 1814 goto get_vf; 1815 default: 1816 return 1; 1817 } 1818 1819 /* check if the cid is the VF range */ 1820 if (!bnx2x_iov_is_vf_cid(bp, cid)) { 1821 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); 1822 return 1; 1823 } 1824 1825 /* extract vf and rxq index from vf_cid - relies on the following: 1826 * 1. vfid on cid reflects the true abs_vfid 1827 * 2. The max number of VFs (per path) is 64 1828 */ 1829 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); 1830 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1831 get_vf: 1832 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); 1833 1834 if (!vf) { 1835 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", 1836 cid, abs_vfid); 1837 return 0; 1838 } 1839 1840 switch (opcode) { 1841 case EVENT_RING_OPCODE_CFC_DEL: 1842 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", 1843 vf->abs_vfid, qidx); 1844 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, 1845 &vfq_get(vf, 1846 qidx)->sp_obj, 1847 BNX2X_Q_CMD_CFC_DEL); 1848 break; 1849 case EVENT_RING_OPCODE_CLASSIFICATION_RULES: 1850 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", 1851 vf->abs_vfid, qidx); 1852 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); 1853 break; 1854 case EVENT_RING_OPCODE_MULTICAST_RULES: 1855 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", 1856 vf->abs_vfid, qidx); 1857 bnx2x_vf_handle_mcast_eqe(bp, vf); 1858 break; 1859 case EVENT_RING_OPCODE_FILTERS_RULES: 1860 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", 1861 vf->abs_vfid, qidx); 1862 bnx2x_vf_handle_filters_eqe(bp, vf); 1863 break; 1864 case EVENT_RING_OPCODE_RSS_UPDATE_RULES: 1865 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n", 1866 vf->abs_vfid, qidx); 1867 bnx2x_vf_handle_rss_update_eqe(bp, vf); 1868 case EVENT_RING_OPCODE_VF_FLR: 1869 case EVENT_RING_OPCODE_MALICIOUS_VF: 1870 /* Do nothing for now */ 1871 return 0; 1872 } 1873 1874 return 0; 1875 } 1876 1877 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) 1878 { 1879 /* extract the vf from vf_cid - relies on the following: 1880 * 1. vfid on cid reflects the true abs_vfid 1881 * 2. The max number of VFs (per path) is 64 1882 */ 1883 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); 1884 return bnx2x_vf_by_abs_fid(bp, abs_vfid); 1885 } 1886 1887 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, 1888 struct bnx2x_queue_sp_obj **q_obj) 1889 { 1890 struct bnx2x_virtf *vf; 1891 1892 if (!IS_SRIOV(bp)) 1893 return; 1894 1895 vf = bnx2x_vf_by_cid(bp, vf_cid); 1896 1897 if (vf) { 1898 /* extract queue index from vf_cid - relies on the following: 1899 * 1. vfid on cid reflects the true abs_vfid 1900 * 2. The max number of VFs (per path) is 64 1901 */ 1902 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); 1903 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); 1904 } else { 1905 BNX2X_ERR("No vf matching cid %d\n", vf_cid); 1906 } 1907 } 1908 1909 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) 1910 { 1911 int i; 1912 int first_queue_query_index, num_queues_req; 1913 dma_addr_t cur_data_offset; 1914 struct stats_query_entry *cur_query_entry; 1915 u8 stats_count = 0; 1916 bool is_fcoe = false; 1917 1918 if (!IS_SRIOV(bp)) 1919 return; 1920 1921 if (!NO_FCOE(bp)) 1922 is_fcoe = true; 1923 1924 /* fcoe adds one global request and one queue request */ 1925 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; 1926 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - 1927 (is_fcoe ? 0 : 1); 1928 1929 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1930 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", 1931 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, 1932 first_queue_query_index + num_queues_req); 1933 1934 cur_data_offset = bp->fw_stats_data_mapping + 1935 offsetof(struct bnx2x_fw_stats_data, queue_stats) + 1936 num_queues_req * sizeof(struct per_queue_stats); 1937 1938 cur_query_entry = &bp->fw_stats_req-> 1939 query[first_queue_query_index + num_queues_req]; 1940 1941 for_each_vf(bp, i) { 1942 int j; 1943 struct bnx2x_virtf *vf = BP_VF(bp, i); 1944 1945 if (vf->state != VF_ENABLED) { 1946 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS), 1947 "vf %d not enabled so no stats for it\n", 1948 vf->abs_vfid); 1949 continue; 1950 } 1951 1952 DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid); 1953 for_each_vfq(vf, j) { 1954 struct bnx2x_vf_queue *rxq = vfq_get(vf, j); 1955 1956 dma_addr_t q_stats_addr = 1957 vf->fw_stat_map + j * vf->stats_stride; 1958 1959 /* collect stats fro active queues only */ 1960 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == 1961 BNX2X_Q_LOGICAL_STATE_STOPPED) 1962 continue; 1963 1964 /* create stats query entry for this queue */ 1965 cur_query_entry->kind = STATS_TYPE_QUEUE; 1966 cur_query_entry->index = vfq_stat_id(vf, rxq); 1967 cur_query_entry->funcID = 1968 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); 1969 cur_query_entry->address.hi = 1970 cpu_to_le32(U64_HI(q_stats_addr)); 1971 cur_query_entry->address.lo = 1972 cpu_to_le32(U64_LO(q_stats_addr)); 1973 DP(BNX2X_MSG_IOV, 1974 "added address %x %x for vf %d queue %d client %d\n", 1975 cur_query_entry->address.hi, 1976 cur_query_entry->address.lo, cur_query_entry->funcID, 1977 j, cur_query_entry->index); 1978 cur_query_entry++; 1979 cur_data_offset += sizeof(struct per_queue_stats); 1980 stats_count++; 1981 1982 /* all stats are coalesced to the leading queue */ 1983 if (vf->cfg_flags & VF_CFG_STATS_COALESCE) 1984 break; 1985 } 1986 } 1987 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; 1988 } 1989 1990 /* VF API helpers */ 1991 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, 1992 u8 enable) 1993 { 1994 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; 1995 u32 val = enable ? (abs_vfid | (1 << 6)) : 0; 1996 1997 REG_WR(bp, reg, val); 1998 } 1999 2000 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) 2001 { 2002 int i; 2003 2004 for_each_vfq(vf, i) 2005 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2006 vfq_qzone_id(vf, vfq_get(vf, i)), false); 2007 } 2008 2009 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) 2010 { 2011 u32 val; 2012 2013 /* clear the VF configuration - pretend */ 2014 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); 2015 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); 2016 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | 2017 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); 2018 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); 2019 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2020 } 2021 2022 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) 2023 { 2024 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), 2025 BNX2X_VF_MAX_QUEUES); 2026 } 2027 2028 static 2029 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, 2030 struct vf_pf_resc_request *req_resc) 2031 { 2032 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 2033 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); 2034 2035 /* Save a vlan filter for the Hypervisor */ 2036 return ((req_resc->num_rxqs <= rxq_cnt) && 2037 (req_resc->num_txqs <= txq_cnt) && 2038 (req_resc->num_sbs <= vf_sb_count(vf)) && 2039 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && 2040 (req_resc->num_vlan_filters <= vf_vlan_rules_visible_cnt(vf))); 2041 } 2042 2043 /* CORE VF API */ 2044 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, 2045 struct vf_pf_resc_request *resc) 2046 { 2047 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * 2048 BNX2X_CIDS_PER_VF; 2049 2050 union cdu_context *base_cxt = (union cdu_context *) 2051 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + 2052 (base_vf_cid & (ILT_PAGE_CIDS-1)); 2053 int i; 2054 2055 /* if state is 'acquired' the VF was not released or FLR'd, in 2056 * this case the returned resources match the acquired already 2057 * acquired resources. Verify that the requested numbers do 2058 * not exceed the already acquired numbers. 2059 */ 2060 if (vf->state == VF_ACQUIRED) { 2061 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", 2062 vf->abs_vfid); 2063 2064 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2065 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", 2066 vf->abs_vfid); 2067 return -EINVAL; 2068 } 2069 return 0; 2070 } 2071 2072 /* Otherwise vf state must be 'free' or 'reset' */ 2073 if (vf->state != VF_FREE && vf->state != VF_RESET) { 2074 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", 2075 vf->abs_vfid, vf->state); 2076 return -EINVAL; 2077 } 2078 2079 /* static allocation: 2080 * the global maximum number are fixed per VF. Fail the request if 2081 * requested number exceed these globals 2082 */ 2083 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { 2084 DP(BNX2X_MSG_IOV, 2085 "cannot fulfill vf resource request. Placing maximal available values in response\n"); 2086 /* set the max resource in the vf */ 2087 return -ENOMEM; 2088 } 2089 2090 /* Set resources counters - 0 request means max available */ 2091 vf_sb_count(vf) = resc->num_sbs; 2092 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2093 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); 2094 if (resc->num_mac_filters) 2095 vf_mac_rules_cnt(vf) = resc->num_mac_filters; 2096 /* Add an additional vlan filter credit for the hypervisor */ 2097 bnx2x_iov_re_set_vlan_filters(bp, vf, resc->num_vlan_filters + 1); 2098 2099 DP(BNX2X_MSG_IOV, 2100 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", 2101 vf_sb_count(vf), vf_rxq_count(vf), 2102 vf_txq_count(vf), vf_mac_rules_cnt(vf), 2103 vf_vlan_rules_visible_cnt(vf)); 2104 2105 /* Initialize the queues */ 2106 if (!vf->vfqs) { 2107 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); 2108 return -EINVAL; 2109 } 2110 2111 for_each_vfq(vf, i) { 2112 struct bnx2x_vf_queue *q = vfq_get(vf, i); 2113 2114 if (!q) { 2115 BNX2X_ERR("q number %d was not allocated\n", i); 2116 return -EINVAL; 2117 } 2118 2119 q->index = i; 2120 q->cxt = &((base_cxt + i)->eth); 2121 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; 2122 2123 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", 2124 vf->abs_vfid, i, q->index, q->cid, q->cxt); 2125 2126 /* init SP objects */ 2127 bnx2x_vfq_init(bp, vf, q); 2128 } 2129 vf->state = VF_ACQUIRED; 2130 return 0; 2131 } 2132 2133 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) 2134 { 2135 struct bnx2x_func_init_params func_init = {0}; 2136 u16 flags = 0; 2137 int i; 2138 2139 /* the sb resources are initialized at this point, do the 2140 * FW/HW initializations 2141 */ 2142 for_each_vf_sb(vf, i) 2143 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, 2144 vf_igu_sb(vf, i), vf_igu_sb(vf, i)); 2145 2146 /* Sanity checks */ 2147 if (vf->state != VF_ACQUIRED) { 2148 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", 2149 vf->abs_vfid, vf->state); 2150 return -EINVAL; 2151 } 2152 2153 /* let FLR complete ... */ 2154 msleep(100); 2155 2156 /* FLR cleanup epilogue */ 2157 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) 2158 return -EBUSY; 2159 2160 /* reset IGU VF statistics: MSIX */ 2161 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); 2162 2163 /* vf init */ 2164 if (vf->cfg_flags & VF_CFG_STATS) 2165 flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ); 2166 2167 if (vf->cfg_flags & VF_CFG_TPA) 2168 flags |= FUNC_FLG_TPA; 2169 2170 if (is_vf_multi(vf)) 2171 flags |= FUNC_FLG_RSS; 2172 2173 /* function setup */ 2174 func_init.func_flgs = flags; 2175 func_init.pf_id = BP_FUNC(bp); 2176 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); 2177 func_init.fw_stat_map = vf->fw_stat_map; 2178 func_init.spq_map = vf->spq_map; 2179 func_init.spq_prod = 0; 2180 bnx2x_func_init(bp, &func_init); 2181 2182 /* Enable the vf */ 2183 bnx2x_vf_enable_access(bp, vf->abs_vfid); 2184 bnx2x_vf_enable_traffic(bp, vf); 2185 2186 /* queue protection table */ 2187 for_each_vfq(vf, i) 2188 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, 2189 vfq_qzone_id(vf, vfq_get(vf, i)), true); 2190 2191 vf->state = VF_ENABLED; 2192 2193 /* update vf bulletin board */ 2194 bnx2x_post_vf_bulletin(bp, vf->index); 2195 2196 return 0; 2197 } 2198 2199 struct set_vf_state_cookie { 2200 struct bnx2x_virtf *vf; 2201 u8 state; 2202 }; 2203 2204 static void bnx2x_set_vf_state(void *cookie) 2205 { 2206 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie; 2207 2208 p->vf->state = p->state; 2209 } 2210 2211 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf) 2212 { 2213 int rc = 0, i; 2214 2215 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2216 2217 /* Close all queues */ 2218 for (i = 0; i < vf_rxq_count(vf); i++) { 2219 rc = bnx2x_vf_queue_teardown(bp, vf, i); 2220 if (rc) 2221 goto op_err; 2222 } 2223 2224 /* disable the interrupts */ 2225 DP(BNX2X_MSG_IOV, "disabling igu\n"); 2226 bnx2x_vf_igu_disable(bp, vf); 2227 2228 /* disable the VF */ 2229 DP(BNX2X_MSG_IOV, "clearing qtbl\n"); 2230 bnx2x_vf_clr_qtbl(bp, vf); 2231 2232 /* need to make sure there are no outstanding stats ramrods which may 2233 * cause the device to access the VF's stats buffer which it will free 2234 * as soon as we return from the close flow. 2235 */ 2236 { 2237 struct set_vf_state_cookie cookie; 2238 2239 cookie.vf = vf; 2240 cookie.state = VF_ACQUIRED; 2241 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie); 2242 if (rc) 2243 goto op_err; 2244 } 2245 2246 DP(BNX2X_MSG_IOV, "set state to acquired\n"); 2247 2248 return 0; 2249 op_err: 2250 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc); 2251 return rc; 2252 } 2253 2254 /* VF release can be called either: 1. The VF was acquired but 2255 * not enabled 2. the vf was enabled or in the process of being 2256 * enabled 2257 */ 2258 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf) 2259 { 2260 int rc; 2261 2262 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, 2263 vf->state == VF_FREE ? "Free" : 2264 vf->state == VF_ACQUIRED ? "Acquired" : 2265 vf->state == VF_ENABLED ? "Enabled" : 2266 vf->state == VF_RESET ? "Reset" : 2267 "Unknown"); 2268 2269 switch (vf->state) { 2270 case VF_ENABLED: 2271 rc = bnx2x_vf_close(bp, vf); 2272 if (rc) 2273 goto op_err; 2274 /* Fallthrough to release resources */ 2275 case VF_ACQUIRED: 2276 DP(BNX2X_MSG_IOV, "about to free resources\n"); 2277 bnx2x_vf_free_resc(bp, vf); 2278 break; 2279 2280 case VF_FREE: 2281 case VF_RESET: 2282 default: 2283 break; 2284 } 2285 return 0; 2286 op_err: 2287 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc); 2288 return rc; 2289 } 2290 2291 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2292 struct bnx2x_config_rss_params *rss) 2293 { 2294 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2295 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags); 2296 return bnx2x_config_rss(bp, rss); 2297 } 2298 2299 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf, 2300 struct vfpf_tpa_tlv *tlv, 2301 struct bnx2x_queue_update_tpa_params *params) 2302 { 2303 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr; 2304 struct bnx2x_queue_state_params qstate; 2305 int qid, rc = 0; 2306 2307 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid); 2308 2309 /* Set ramrod params */ 2310 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params)); 2311 memcpy(&qstate.params.update_tpa, params, 2312 sizeof(struct bnx2x_queue_update_tpa_params)); 2313 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA; 2314 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags); 2315 2316 for (qid = 0; qid < vf_rxq_count(vf); qid++) { 2317 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); 2318 qstate.params.update_tpa.sge_map = sge_addr[qid]; 2319 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n", 2320 vf->abs_vfid, qid, U64_HI(sge_addr[qid]), 2321 U64_LO(sge_addr[qid])); 2322 rc = bnx2x_queue_state_change(bp, &qstate); 2323 if (rc) { 2324 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n", 2325 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]), 2326 vf->abs_vfid, qid); 2327 return rc; 2328 } 2329 } 2330 2331 return rc; 2332 } 2333 2334 /* VF release ~ VF close + VF release-resources 2335 * Release is the ultimate SW shutdown and is called whenever an 2336 * irrecoverable error is encountered. 2337 */ 2338 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf) 2339 { 2340 int rc; 2341 2342 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid); 2343 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2344 2345 rc = bnx2x_vf_free(bp, vf); 2346 if (rc) 2347 WARN(rc, 2348 "VF[%d] Failed to allocate resources for release op- rc=%d\n", 2349 vf->abs_vfid, rc); 2350 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); 2351 return rc; 2352 } 2353 2354 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2355 enum channel_tlvs tlv) 2356 { 2357 /* we don't lock the channel for unsupported tlvs */ 2358 if (!bnx2x_tlv_supported(tlv)) { 2359 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n"); 2360 return; 2361 } 2362 2363 /* lock the channel */ 2364 mutex_lock(&vf->op_mutex); 2365 2366 /* record the locking op */ 2367 vf->op_current = tlv; 2368 2369 /* log the lock */ 2370 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", 2371 vf->abs_vfid, tlv); 2372 } 2373 2374 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, 2375 enum channel_tlvs expected_tlv) 2376 { 2377 enum channel_tlvs current_tlv; 2378 2379 if (!vf) { 2380 BNX2X_ERR("VF was %p\n", vf); 2381 return; 2382 } 2383 2384 current_tlv = vf->op_current; 2385 2386 /* we don't unlock the channel for unsupported tlvs */ 2387 if (!bnx2x_tlv_supported(expected_tlv)) 2388 return; 2389 2390 WARN(expected_tlv != vf->op_current, 2391 "lock mismatch: expected %d found %d", expected_tlv, 2392 vf->op_current); 2393 2394 /* record the locking op */ 2395 vf->op_current = CHANNEL_TLV_NONE; 2396 2397 /* lock the channel */ 2398 mutex_unlock(&vf->op_mutex); 2399 2400 /* log the unlock */ 2401 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", 2402 vf->abs_vfid, current_tlv); 2403 } 2404 2405 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable) 2406 { 2407 struct bnx2x_queue_state_params q_params; 2408 u32 prev_flags; 2409 int i, rc; 2410 2411 /* Verify changes are needed and record current Tx switching state */ 2412 prev_flags = bp->flags; 2413 if (enable) 2414 bp->flags |= TX_SWITCHING; 2415 else 2416 bp->flags &= ~TX_SWITCHING; 2417 if (prev_flags == bp->flags) 2418 return 0; 2419 2420 /* Verify state enables the sending of queue ramrods */ 2421 if ((bp->state != BNX2X_STATE_OPEN) || 2422 (bnx2x_get_q_logical_state(bp, 2423 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) != 2424 BNX2X_Q_LOGICAL_STATE_ACTIVE)) 2425 return 0; 2426 2427 /* send q. update ramrod to configure Tx switching */ 2428 memset(&q_params, 0, sizeof(q_params)); 2429 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2430 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2431 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 2432 &q_params.params.update.update_flags); 2433 if (enable) 2434 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2435 &q_params.params.update.update_flags); 2436 else 2437 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING, 2438 &q_params.params.update.update_flags); 2439 2440 /* send the ramrod on all the queues of the PF */ 2441 for_each_eth_queue(bp, i) { 2442 struct bnx2x_fastpath *fp = &bp->fp[i]; 2443 2444 /* Set the appropriate Queue object */ 2445 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 2446 2447 /* Update the Queue state */ 2448 rc = bnx2x_queue_state_change(bp, &q_params); 2449 if (rc) { 2450 BNX2X_ERR("Failed to configure Tx switching\n"); 2451 return rc; 2452 } 2453 } 2454 2455 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled"); 2456 return 0; 2457 } 2458 2459 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) 2460 { 2461 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); 2462 2463 if (!IS_SRIOV(bp)) { 2464 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n"); 2465 return -EINVAL; 2466 } 2467 2468 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", 2469 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2470 2471 /* HW channel is only operational when PF is up */ 2472 if (bp->state != BNX2X_STATE_OPEN) { 2473 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); 2474 return -EINVAL; 2475 } 2476 2477 /* we are always bound by the total_vfs in the configuration space */ 2478 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { 2479 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", 2480 num_vfs_param, BNX2X_NR_VIRTFN(bp)); 2481 num_vfs_param = BNX2X_NR_VIRTFN(bp); 2482 } 2483 2484 bp->requested_nr_virtfn = num_vfs_param; 2485 if (num_vfs_param == 0) { 2486 bnx2x_set_pf_tx_switching(bp, false); 2487 bnx2x_disable_sriov(bp); 2488 return 0; 2489 } else { 2490 return bnx2x_enable_sriov(bp); 2491 } 2492 } 2493 2494 #define IGU_ENTRY_SIZE 4 2495 2496 int bnx2x_enable_sriov(struct bnx2x *bp) 2497 { 2498 int rc = 0, req_vfs = bp->requested_nr_virtfn; 2499 int vf_idx, sb_idx, vfq_idx, qcount, first_vf; 2500 u32 igu_entry, address; 2501 u16 num_vf_queues; 2502 2503 if (req_vfs == 0) 2504 return 0; 2505 2506 first_vf = bp->vfdb->sriov.first_vf_in_pf; 2507 2508 /* statically distribute vf sb pool between VFs */ 2509 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES, 2510 BP_VFDB(bp)->vf_sbs_pool / req_vfs); 2511 2512 /* zero previous values learned from igu cam */ 2513 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) { 2514 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2515 2516 vf->sb_count = 0; 2517 vf_sb_count(BP_VF(bp, vf_idx)) = 0; 2518 } 2519 bp->vfdb->vf_sbs_pool = 0; 2520 2521 /* prepare IGU cam */ 2522 sb_idx = BP_VFDB(bp)->first_vf_igu_entry; 2523 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE; 2524 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2525 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) { 2526 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT | 2527 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT | 2528 IGU_REG_MAPPING_MEMORY_VALID; 2529 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n", 2530 sb_idx, vf_idx); 2531 REG_WR(bp, address, igu_entry); 2532 sb_idx++; 2533 address += IGU_ENTRY_SIZE; 2534 } 2535 } 2536 2537 /* Reinitialize vf database according to igu cam */ 2538 bnx2x_get_vf_igu_cam_info(bp); 2539 2540 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n", 2541 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues); 2542 2543 qcount = 0; 2544 for_each_vf(bp, vf_idx) { 2545 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 2546 2547 /* set local queue arrays */ 2548 vf->vfqs = &bp->vfdb->vfqs[qcount]; 2549 qcount += vf_sb_count(vf); 2550 bnx2x_iov_static_resc(bp, vf); 2551 } 2552 2553 /* prepare msix vectors in VF configuration space - the value in the 2554 * PCI configuration space should be the index of the last entry, 2555 * namely one less than the actual size of the table 2556 */ 2557 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) { 2558 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx)); 2559 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL, 2560 num_vf_queues - 1); 2561 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n", 2562 vf_idx, num_vf_queues - 1); 2563 } 2564 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 2565 2566 /* enable sriov. This will probe all the VFs, and consequentially cause 2567 * the "acquire" messages to appear on the VF PF channel. 2568 */ 2569 DP(BNX2X_MSG_IOV, "about to call enable sriov\n"); 2570 bnx2x_disable_sriov(bp); 2571 2572 rc = bnx2x_set_pf_tx_switching(bp, true); 2573 if (rc) 2574 return rc; 2575 2576 rc = pci_enable_sriov(bp->pdev, req_vfs); 2577 if (rc) { 2578 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); 2579 return rc; 2580 } 2581 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); 2582 return req_vfs; 2583 } 2584 2585 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) 2586 { 2587 int vfidx; 2588 struct pf_vf_bulletin_content *bulletin; 2589 2590 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); 2591 for_each_vf(bp, vfidx) { 2592 bulletin = BP_VF_BULLETIN(bp, vfidx); 2593 if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN) 2594 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0); 2595 } 2596 } 2597 2598 void bnx2x_disable_sriov(struct bnx2x *bp) 2599 { 2600 if (pci_vfs_assigned(bp->pdev)) { 2601 DP(BNX2X_MSG_IOV, 2602 "Unloading driver while VFs are assigned - VFs will not be deallocated\n"); 2603 return; 2604 } 2605 2606 pci_disable_sriov(bp->pdev); 2607 } 2608 2609 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx, 2610 struct bnx2x_virtf **vf, 2611 struct pf_vf_bulletin_content **bulletin, 2612 bool test_queue) 2613 { 2614 if (bp->state != BNX2X_STATE_OPEN) { 2615 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n"); 2616 return -EINVAL; 2617 } 2618 2619 if (!IS_SRIOV(bp)) { 2620 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n"); 2621 return -EINVAL; 2622 } 2623 2624 if (vfidx >= BNX2X_NR_VIRTFN(bp)) { 2625 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n", 2626 vfidx, BNX2X_NR_VIRTFN(bp)); 2627 return -EINVAL; 2628 } 2629 2630 /* init members */ 2631 *vf = BP_VF(bp, vfidx); 2632 *bulletin = BP_VF_BULLETIN(bp, vfidx); 2633 2634 if (!*vf) { 2635 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx); 2636 return -EINVAL; 2637 } 2638 2639 if (test_queue && !(*vf)->vfqs) { 2640 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n", 2641 vfidx); 2642 return -EINVAL; 2643 } 2644 2645 if (!*bulletin) { 2646 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n", 2647 vfidx); 2648 return -EINVAL; 2649 } 2650 2651 return 0; 2652 } 2653 2654 int bnx2x_get_vf_config(struct net_device *dev, int vfidx, 2655 struct ifla_vf_info *ivi) 2656 { 2657 struct bnx2x *bp = netdev_priv(dev); 2658 struct bnx2x_virtf *vf = NULL; 2659 struct pf_vf_bulletin_content *bulletin = NULL; 2660 struct bnx2x_vlan_mac_obj *mac_obj; 2661 struct bnx2x_vlan_mac_obj *vlan_obj; 2662 int rc; 2663 2664 /* sanity and init */ 2665 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2666 if (rc) 2667 return rc; 2668 2669 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2670 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2671 if (!mac_obj || !vlan_obj) { 2672 BNX2X_ERR("VF partially initialized\n"); 2673 return -EINVAL; 2674 } 2675 2676 ivi->vf = vfidx; 2677 ivi->qos = 0; 2678 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */ 2679 ivi->min_tx_rate = 0; 2680 ivi->spoofchk = 1; /*always enabled */ 2681 if (vf->state == VF_ENABLED) { 2682 /* mac and vlan are in vlan_mac objects */ 2683 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) { 2684 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 2685 0, ETH_ALEN); 2686 vlan_obj->get_n_elements(bp, vlan_obj, 1, 2687 (u8 *)&ivi->vlan, 0, 2688 VLAN_HLEN); 2689 } 2690 } else { 2691 mutex_lock(&bp->vfdb->bulletin_mutex); 2692 /* mac */ 2693 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) 2694 /* mac configured by ndo so its in bulletin board */ 2695 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); 2696 else 2697 /* function has not been loaded yet. Show mac as 0s */ 2698 eth_zero_addr(ivi->mac); 2699 2700 /* vlan */ 2701 if (bulletin->valid_bitmap & (1 << VLAN_VALID)) 2702 /* vlan configured by ndo so its in bulletin board */ 2703 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); 2704 else 2705 /* function has not been loaded yet. Show vlans as 0s */ 2706 memset(&ivi->vlan, 0, VLAN_HLEN); 2707 2708 mutex_unlock(&bp->vfdb->bulletin_mutex); 2709 } 2710 2711 return 0; 2712 } 2713 2714 /* New mac for VF. Consider these cases: 2715 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and 2716 * supply at acquire. 2717 * 2. VF has already been acquired but has not yet initialized - store in local 2718 * bulletin board. mac will be posted on VF bulletin board after VF init. VF 2719 * will configure this mac when it is ready. 2720 * 3. VF has already initialized but has not yet setup a queue - post the new 2721 * mac on VF's bulletin board right now. VF will configure this mac when it 2722 * is ready. 2723 * 4. VF has already set a queue - delete any macs already configured for this 2724 * queue and manually config the new mac. 2725 * In any event, once this function has been called refuse any attempts by the 2726 * VF to configure any mac for itself except for this mac. In case of a race 2727 * where the VF fails to see the new post on its bulletin board before sending a 2728 * mac configuration request, the PF will simply fail the request and VF can try 2729 * again after consulting its bulletin board. 2730 */ 2731 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) 2732 { 2733 struct bnx2x *bp = netdev_priv(dev); 2734 int rc, q_logical_state; 2735 struct bnx2x_virtf *vf = NULL; 2736 struct pf_vf_bulletin_content *bulletin = NULL; 2737 2738 if (!is_valid_ether_addr(mac)) { 2739 BNX2X_ERR("mac address invalid\n"); 2740 return -EINVAL; 2741 } 2742 2743 /* sanity and init */ 2744 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2745 if (rc) 2746 return rc; 2747 2748 mutex_lock(&bp->vfdb->bulletin_mutex); 2749 2750 /* update PF's copy of the VF's bulletin. Will no longer accept mac 2751 * configuration requests from vf unless match this mac 2752 */ 2753 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; 2754 memcpy(bulletin->mac, mac, ETH_ALEN); 2755 2756 /* Post update on VF's bulletin board */ 2757 rc = bnx2x_post_vf_bulletin(bp, vfidx); 2758 2759 /* release lock before checking return code */ 2760 mutex_unlock(&bp->vfdb->bulletin_mutex); 2761 2762 if (rc) { 2763 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); 2764 return rc; 2765 } 2766 2767 q_logical_state = 2768 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)); 2769 if (vf->state == VF_ENABLED && 2770 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { 2771 /* configure the mac in device on this vf's queue */ 2772 unsigned long ramrod_flags = 0; 2773 struct bnx2x_vlan_mac_obj *mac_obj; 2774 2775 /* User should be able to see failure reason in system logs */ 2776 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2777 return -EINVAL; 2778 2779 /* must lock vfpf channel to protect against vf flows */ 2780 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2781 2782 /* remove existing eth macs */ 2783 mac_obj = &bnx2x_leading_vfq(vf, mac_obj); 2784 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); 2785 if (rc) { 2786 BNX2X_ERR("failed to delete eth macs\n"); 2787 rc = -EINVAL; 2788 goto out; 2789 } 2790 2791 /* remove existing uc list macs */ 2792 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); 2793 if (rc) { 2794 BNX2X_ERR("failed to delete uc_list macs\n"); 2795 rc = -EINVAL; 2796 goto out; 2797 } 2798 2799 /* configure the new mac to device */ 2800 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2801 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, 2802 BNX2X_ETH_MAC, &ramrod_flags); 2803 2804 out: 2805 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); 2806 } 2807 2808 return rc; 2809 } 2810 2811 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos) 2812 { 2813 struct bnx2x_queue_state_params q_params = {NULL}; 2814 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 2815 struct bnx2x_queue_update_params *update_params; 2816 struct pf_vf_bulletin_content *bulletin = NULL; 2817 struct bnx2x_rx_mode_ramrod_params rx_ramrod; 2818 struct bnx2x *bp = netdev_priv(dev); 2819 struct bnx2x_vlan_mac_obj *vlan_obj; 2820 unsigned long vlan_mac_flags = 0; 2821 unsigned long ramrod_flags = 0; 2822 struct bnx2x_virtf *vf = NULL; 2823 unsigned long accept_flags; 2824 int rc; 2825 2826 if (vlan > 4095) { 2827 BNX2X_ERR("illegal vlan value %d\n", vlan); 2828 return -EINVAL; 2829 } 2830 2831 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", 2832 vfidx, vlan, 0); 2833 2834 /* sanity and init */ 2835 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true); 2836 if (rc) 2837 return rc; 2838 2839 /* update PF's copy of the VF's bulletin. No point in posting the vlan 2840 * to the VF since it doesn't have anything to do with it. But it useful 2841 * to store it here in case the VF is not up yet and we can only 2842 * configure the vlan later when it does. Treat vlan id 0 as remove the 2843 * Host tag. 2844 */ 2845 mutex_lock(&bp->vfdb->bulletin_mutex); 2846 2847 if (vlan > 0) 2848 bulletin->valid_bitmap |= 1 << VLAN_VALID; 2849 else 2850 bulletin->valid_bitmap &= ~(1 << VLAN_VALID); 2851 bulletin->vlan = vlan; 2852 2853 mutex_unlock(&bp->vfdb->bulletin_mutex); 2854 2855 /* is vf initialized and queue set up? */ 2856 if (vf->state != VF_ENABLED || 2857 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) != 2858 BNX2X_Q_LOGICAL_STATE_ACTIVE) 2859 return rc; 2860 2861 /* User should be able to see error in system logs */ 2862 if (!bnx2x_validate_vf_sp_objs(bp, vf, true)) 2863 return -EINVAL; 2864 2865 /* must lock vfpf channel to protect against vf flows */ 2866 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2867 2868 /* remove existing vlans */ 2869 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2870 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj); 2871 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, 2872 &ramrod_flags); 2873 if (rc) { 2874 BNX2X_ERR("failed to delete vlans\n"); 2875 rc = -EINVAL; 2876 goto out; 2877 } 2878 2879 /* need to remove/add the VF's accept_any_vlan bit */ 2880 accept_flags = bnx2x_leading_vfq(vf, accept_flags); 2881 if (vlan) 2882 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2883 else 2884 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 2885 2886 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf, 2887 accept_flags); 2888 bnx2x_leading_vfq(vf, accept_flags) = accept_flags; 2889 bnx2x_config_rx_mode(bp, &rx_ramrod); 2890 2891 /* configure the new vlan to device */ 2892 memset(&ramrod_param, 0, sizeof(ramrod_param)); 2893 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2894 ramrod_param.vlan_mac_obj = vlan_obj; 2895 ramrod_param.ramrod_flags = ramrod_flags; 2896 set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 2897 &ramrod_param.user_req.vlan_mac_flags); 2898 ramrod_param.user_req.u.vlan.vlan = vlan; 2899 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 2900 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 2901 if (rc) { 2902 BNX2X_ERR("failed to configure vlan\n"); 2903 rc = -EINVAL; 2904 goto out; 2905 } 2906 2907 /* send queue update ramrod to configure default vlan and silent 2908 * vlan removal 2909 */ 2910 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 2911 q_params.cmd = BNX2X_Q_CMD_UPDATE; 2912 q_params.q_obj = &bnx2x_leading_vfq(vf, sp_obj); 2913 update_params = &q_params.params.update; 2914 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 2915 &update_params->update_flags); 2916 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 2917 &update_params->update_flags); 2918 if (vlan == 0) { 2919 /* if vlan is 0 then we want to leave the VF traffic 2920 * untagged, and leave the incoming traffic untouched 2921 * (i.e. do not remove any vlan tags). 2922 */ 2923 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2924 &update_params->update_flags); 2925 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2926 &update_params->update_flags); 2927 } else { 2928 /* configure default vlan to vf queue and set silent 2929 * vlan removal (the vf remains unaware of this vlan). 2930 */ 2931 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, 2932 &update_params->update_flags); 2933 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 2934 &update_params->update_flags); 2935 update_params->def_vlan = vlan; 2936 update_params->silent_removal_value = 2937 vlan & VLAN_VID_MASK; 2938 update_params->silent_removal_mask = VLAN_VID_MASK; 2939 } 2940 2941 /* Update the Queue state */ 2942 rc = bnx2x_queue_state_change(bp, &q_params); 2943 if (rc) { 2944 BNX2X_ERR("Failed to configure default VLAN\n"); 2945 goto out; 2946 } 2947 2948 2949 /* clear the flag indicating that this VF needs its vlan 2950 * (will only be set if the HV configured the Vlan before vf was 2951 * up and we were called because the VF came up later 2952 */ 2953 out: 2954 vf->cfg_flags &= ~VF_CFG_VLAN; 2955 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); 2956 2957 return rc; 2958 } 2959 2960 /* crc is the first field in the bulletin board. Compute the crc over the 2961 * entire bulletin board excluding the crc field itself. Use the length field 2962 * as the Bulletin Board was posted by a PF with possibly a different version 2963 * from the vf which will sample it. Therefore, the length is computed by the 2964 * PF and then used blindly by the VF. 2965 */ 2966 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin) 2967 { 2968 return crc32(BULLETIN_CRC_SEED, 2969 ((u8 *)bulletin) + sizeof(bulletin->crc), 2970 bulletin->length - sizeof(bulletin->crc)); 2971 } 2972 2973 /* Check for new posts on the bulletin board */ 2974 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) 2975 { 2976 struct pf_vf_bulletin_content *bulletin; 2977 int attempts; 2978 2979 /* sampling structure in mid post may result with corrupted data 2980 * validate crc to ensure coherency. 2981 */ 2982 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { 2983 u32 crc; 2984 2985 /* sample the bulletin board */ 2986 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin, 2987 sizeof(union pf_vf_bulletin)); 2988 2989 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content); 2990 2991 if (bp->shadow_bulletin.content.crc == crc) 2992 break; 2993 2994 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", 2995 bp->shadow_bulletin.content.crc, crc); 2996 } 2997 2998 if (attempts >= BULLETIN_ATTEMPTS) { 2999 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", 3000 attempts); 3001 return PFVF_BULLETIN_CRC_ERR; 3002 } 3003 bulletin = &bp->shadow_bulletin.content; 3004 3005 /* bulletin board hasn't changed since last sample */ 3006 if (bp->old_bulletin.version == bulletin->version) 3007 return PFVF_BULLETIN_UNCHANGED; 3008 3009 /* the mac address in bulletin board is valid and is new */ 3010 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID && 3011 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) { 3012 /* update new mac to net device */ 3013 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN); 3014 } 3015 3016 if (bulletin->valid_bitmap & (1 << LINK_VALID)) { 3017 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n", 3018 bulletin->link_speed, bulletin->link_flags); 3019 3020 bp->vf_link_vars.line_speed = bulletin->link_speed; 3021 bp->vf_link_vars.link_report_flags = 0; 3022 /* Link is down */ 3023 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN) 3024 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 3025 &bp->vf_link_vars.link_report_flags); 3026 /* Full DUPLEX */ 3027 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX) 3028 __set_bit(BNX2X_LINK_REPORT_FD, 3029 &bp->vf_link_vars.link_report_flags); 3030 /* Rx Flow Control is ON */ 3031 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON) 3032 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 3033 &bp->vf_link_vars.link_report_flags); 3034 /* Tx Flow Control is ON */ 3035 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON) 3036 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 3037 &bp->vf_link_vars.link_report_flags); 3038 __bnx2x_link_report(bp); 3039 } 3040 3041 /* copy new bulletin board to bp */ 3042 memcpy(&bp->old_bulletin, bulletin, 3043 sizeof(struct pf_vf_bulletin_content)); 3044 3045 return PFVF_BULLETIN_UPDATED; 3046 } 3047 3048 void bnx2x_timer_sriov(struct bnx2x *bp) 3049 { 3050 bnx2x_sample_bulletin(bp); 3051 3052 /* if channel is down we need to self destruct */ 3053 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) 3054 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 3055 BNX2X_MSG_IOV); 3056 } 3057 3058 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) 3059 { 3060 /* vf doorbells are embedded within the regview */ 3061 return bp->regview + PXP_VF_ADDR_DB_START; 3062 } 3063 3064 void bnx2x_vf_pci_dealloc(struct bnx2x *bp) 3065 { 3066 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, 3067 sizeof(struct bnx2x_vf_mbx_msg)); 3068 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping, 3069 sizeof(union pf_vf_bulletin)); 3070 } 3071 3072 int bnx2x_vf_pci_alloc(struct bnx2x *bp) 3073 { 3074 mutex_init(&bp->vf2pf_mutex); 3075 3076 /* allocate vf2pf mailbox for vf to pf channel */ 3077 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping, 3078 sizeof(struct bnx2x_vf_mbx_msg)); 3079 if (!bp->vf2pf_mbox) 3080 goto alloc_mem_err; 3081 3082 /* allocate pf 2 vf bulletin board */ 3083 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping, 3084 sizeof(union pf_vf_bulletin)); 3085 if (!bp->pf2vf_bulletin) 3086 goto alloc_mem_err; 3087 3088 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true); 3089 3090 return 0; 3091 3092 alloc_mem_err: 3093 bnx2x_vf_pci_dealloc(bp); 3094 return -ENOMEM; 3095 } 3096 3097 void bnx2x_iov_channel_down(struct bnx2x *bp) 3098 { 3099 int vf_idx; 3100 struct pf_vf_bulletin_content *bulletin; 3101 3102 if (!IS_SRIOV(bp)) 3103 return; 3104 3105 for_each_vf(bp, vf_idx) { 3106 /* locate this VFs bulletin board and update the channel down 3107 * bit 3108 */ 3109 bulletin = BP_VF_BULLETIN(bp, vf_idx); 3110 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; 3111 3112 /* update vf bulletin board */ 3113 bnx2x_post_vf_bulletin(bp, vf_idx); 3114 } 3115 } 3116 3117 void bnx2x_iov_task(struct work_struct *work) 3118 { 3119 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work); 3120 3121 if (!netif_running(bp->dev)) 3122 return; 3123 3124 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR, 3125 &bp->iov_task_state)) 3126 bnx2x_vf_handle_flr_event(bp); 3127 3128 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG, 3129 &bp->iov_task_state)) 3130 bnx2x_vf_mbx(bp); 3131 } 3132 3133 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag) 3134 { 3135 smp_mb__before_atomic(); 3136 set_bit(flag, &bp->iov_task_state); 3137 smp_mb__after_atomic(); 3138 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3139 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0); 3140 } 3141