xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] __devinitdata =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101 		 " Set number of queues (default is as a number of CPUs)");
102 
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106 
107 #define INT_MODE_INTx			1
108 #define INT_MODE_MSI			2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112 				"(1 INT#x; 2 MSI)");
113 
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117 
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121 
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125 
126 
127 
128 struct workqueue_struct *bnx2x_wq;
129 
130 enum bnx2x_board_type {
131 	BCM57710 = 0,
132 	BCM57711,
133 	BCM57711E,
134 	BCM57712,
135 	BCM57712_MF,
136 	BCM57800,
137 	BCM57800_MF,
138 	BCM57810,
139 	BCM57810_MF,
140 	BCM57840_O,
141 	BCM57840_4_10,
142 	BCM57840_2_20,
143 	BCM57840_MFO,
144 	BCM57840_MF,
145 	BCM57811,
146 	BCM57811_MF
147 };
148 
149 /* indexed by board_type, above */
150 static struct {
151 	char *name;
152 } board_info[] __devinitdata = {
153 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
154 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
155 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
156 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
157 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
158 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
159 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
160 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
161 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
162 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
163 	{ "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
164 	{ "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
165 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
166 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
167 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
168 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
169 };
170 
171 #ifndef PCI_DEVICE_ID_NX2_57710
172 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711
175 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57711E
178 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712
181 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57712_MF
184 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800
187 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57800_MF
190 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810
193 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57810_MF
196 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_O
199 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
202 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
205 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
208 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57840_MF
211 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57811
214 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57811_MF
217 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
218 #endif
219 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
220 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
221 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
222 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
223 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
224 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
225 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
226 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
227 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
228 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
229 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
230 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
231 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
232 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
233 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
234 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
235 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
236 	{ 0 }
237 };
238 
239 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
240 
241 /* Global resources for unloading a previously loaded device */
242 #define BNX2X_PREV_WAIT_NEEDED 1
243 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
244 static LIST_HEAD(bnx2x_prev_list);
245 /****************************************************************************
246 * General service functions
247 ****************************************************************************/
248 
249 static void __storm_memset_dma_mapping(struct bnx2x *bp,
250 				       u32 addr, dma_addr_t mapping)
251 {
252 	REG_WR(bp,  addr, U64_LO(mapping));
253 	REG_WR(bp,  addr + 4, U64_HI(mapping));
254 }
255 
256 static void storm_memset_spq_addr(struct bnx2x *bp,
257 				  dma_addr_t mapping, u16 abs_fid)
258 {
259 	u32 addr = XSEM_REG_FAST_MEMORY +
260 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
261 
262 	__storm_memset_dma_mapping(bp, addr, mapping);
263 }
264 
265 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
266 				  u16 pf_id)
267 {
268 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
269 		pf_id);
270 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
271 		pf_id);
272 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
273 		pf_id);
274 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
275 		pf_id);
276 }
277 
278 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
279 				 u8 enable)
280 {
281 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
282 		enable);
283 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
284 		enable);
285 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
286 		enable);
287 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
288 		enable);
289 }
290 
291 static void storm_memset_eq_data(struct bnx2x *bp,
292 				 struct event_ring_data *eq_data,
293 				u16 pfid)
294 {
295 	size_t size = sizeof(struct event_ring_data);
296 
297 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
298 
299 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
300 }
301 
302 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
303 				 u16 pfid)
304 {
305 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
306 	REG_WR16(bp, addr, eq_prod);
307 }
308 
309 /* used only at init
310  * locking is done by mcp
311  */
312 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
313 {
314 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
315 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
316 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
317 			       PCICFG_VENDOR_ID_OFFSET);
318 }
319 
320 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
321 {
322 	u32 val;
323 
324 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
325 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
326 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
327 			       PCICFG_VENDOR_ID_OFFSET);
328 
329 	return val;
330 }
331 
332 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
333 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
334 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
335 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
336 #define DMAE_DP_DST_NONE	"dst_addr [none]"
337 
338 
339 /* copy command into DMAE command memory and set DMAE command go */
340 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
341 {
342 	u32 cmd_offset;
343 	int i;
344 
345 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
346 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
347 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
348 	}
349 	REG_WR(bp, dmae_reg_go_c[idx], 1);
350 }
351 
352 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
353 {
354 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
355 			   DMAE_CMD_C_ENABLE);
356 }
357 
358 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
359 {
360 	return opcode & ~DMAE_CMD_SRC_RESET;
361 }
362 
363 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
364 			     bool with_comp, u8 comp_type)
365 {
366 	u32 opcode = 0;
367 
368 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
369 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
370 
371 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
372 
373 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
374 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
375 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
376 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
377 
378 #ifdef __BIG_ENDIAN
379 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
380 #else
381 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
382 #endif
383 	if (with_comp)
384 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
385 	return opcode;
386 }
387 
388 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
389 				      struct dmae_command *dmae,
390 				      u8 src_type, u8 dst_type)
391 {
392 	memset(dmae, 0, sizeof(struct dmae_command));
393 
394 	/* set the opcode */
395 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
396 					 true, DMAE_COMP_PCI);
397 
398 	/* fill in the completion parameters */
399 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
400 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
401 	dmae->comp_val = DMAE_COMP_VAL;
402 }
403 
404 /* issue a dmae command over the init-channel and wailt for completion */
405 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
406 				      struct dmae_command *dmae)
407 {
408 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
409 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
410 	int rc = 0;
411 
412 	/*
413 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
414 	 * as long as this code is called both from syscall context and
415 	 * from ndo_set_rx_mode() flow that may be called from BH.
416 	 */
417 	spin_lock_bh(&bp->dmae_lock);
418 
419 	/* reset completion */
420 	*wb_comp = 0;
421 
422 	/* post the command on the channel used for initializations */
423 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
424 
425 	/* wait for completion */
426 	udelay(5);
427 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
428 
429 		if (!cnt ||
430 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
431 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
432 			BNX2X_ERR("DMAE timeout!\n");
433 			rc = DMAE_TIMEOUT;
434 			goto unlock;
435 		}
436 		cnt--;
437 		udelay(50);
438 	}
439 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
440 		BNX2X_ERR("DMAE PCI error!\n");
441 		rc = DMAE_PCI_ERROR;
442 	}
443 
444 unlock:
445 	spin_unlock_bh(&bp->dmae_lock);
446 	return rc;
447 }
448 
449 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
450 		      u32 len32)
451 {
452 	struct dmae_command dmae;
453 
454 	if (!bp->dmae_ready) {
455 		u32 *data = bnx2x_sp(bp, wb_data[0]);
456 
457 		if (CHIP_IS_E1(bp))
458 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
459 		else
460 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
461 		return;
462 	}
463 
464 	/* set opcode and fixed command fields */
465 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
466 
467 	/* fill in addresses and len */
468 	dmae.src_addr_lo = U64_LO(dma_addr);
469 	dmae.src_addr_hi = U64_HI(dma_addr);
470 	dmae.dst_addr_lo = dst_addr >> 2;
471 	dmae.dst_addr_hi = 0;
472 	dmae.len = len32;
473 
474 	/* issue the command and wait for completion */
475 	bnx2x_issue_dmae_with_comp(bp, &dmae);
476 }
477 
478 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
479 {
480 	struct dmae_command dmae;
481 
482 	if (!bp->dmae_ready) {
483 		u32 *data = bnx2x_sp(bp, wb_data[0]);
484 		int i;
485 
486 		if (CHIP_IS_E1(bp))
487 			for (i = 0; i < len32; i++)
488 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
489 		else
490 			for (i = 0; i < len32; i++)
491 				data[i] = REG_RD(bp, src_addr + i*4);
492 
493 		return;
494 	}
495 
496 	/* set opcode and fixed command fields */
497 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
498 
499 	/* fill in addresses and len */
500 	dmae.src_addr_lo = src_addr >> 2;
501 	dmae.src_addr_hi = 0;
502 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
503 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
504 	dmae.len = len32;
505 
506 	/* issue the command and wait for completion */
507 	bnx2x_issue_dmae_with_comp(bp, &dmae);
508 }
509 
510 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
511 				      u32 addr, u32 len)
512 {
513 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
514 	int offset = 0;
515 
516 	while (len > dmae_wr_max) {
517 		bnx2x_write_dmae(bp, phys_addr + offset,
518 				 addr + offset, dmae_wr_max);
519 		offset += dmae_wr_max * 4;
520 		len -= dmae_wr_max;
521 	}
522 
523 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
524 }
525 
526 static int bnx2x_mc_assert(struct bnx2x *bp)
527 {
528 	char last_idx;
529 	int i, rc = 0;
530 	u32 row0, row1, row2, row3;
531 
532 	/* XSTORM */
533 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
534 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
535 	if (last_idx)
536 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
537 
538 	/* print the asserts */
539 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
540 
541 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
542 			      XSTORM_ASSERT_LIST_OFFSET(i));
543 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
544 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
545 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
546 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
547 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
548 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
549 
550 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
551 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
552 				  i, row3, row2, row1, row0);
553 			rc++;
554 		} else {
555 			break;
556 		}
557 	}
558 
559 	/* TSTORM */
560 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
561 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
562 	if (last_idx)
563 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
564 
565 	/* print the asserts */
566 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
567 
568 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
569 			      TSTORM_ASSERT_LIST_OFFSET(i));
570 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
571 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
572 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
573 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
574 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
575 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
576 
577 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
578 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
579 				  i, row3, row2, row1, row0);
580 			rc++;
581 		} else {
582 			break;
583 		}
584 	}
585 
586 	/* CSTORM */
587 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
588 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
589 	if (last_idx)
590 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
591 
592 	/* print the asserts */
593 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
594 
595 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
596 			      CSTORM_ASSERT_LIST_OFFSET(i));
597 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
598 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
599 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
600 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
601 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
602 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
603 
604 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
605 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
606 				  i, row3, row2, row1, row0);
607 			rc++;
608 		} else {
609 			break;
610 		}
611 	}
612 
613 	/* USTORM */
614 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
615 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
616 	if (last_idx)
617 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
618 
619 	/* print the asserts */
620 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
621 
622 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
623 			      USTORM_ASSERT_LIST_OFFSET(i));
624 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
625 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
626 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
627 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
628 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
629 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
630 
631 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
632 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
633 				  i, row3, row2, row1, row0);
634 			rc++;
635 		} else {
636 			break;
637 		}
638 	}
639 
640 	return rc;
641 }
642 
643 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
644 {
645 	u32 addr, val;
646 	u32 mark, offset;
647 	__be32 data[9];
648 	int word;
649 	u32 trace_shmem_base;
650 	if (BP_NOMCP(bp)) {
651 		BNX2X_ERR("NO MCP - can not dump\n");
652 		return;
653 	}
654 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
655 		(bp->common.bc_ver & 0xff0000) >> 16,
656 		(bp->common.bc_ver & 0xff00) >> 8,
657 		(bp->common.bc_ver & 0xff));
658 
659 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
660 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
661 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
662 
663 	if (BP_PATH(bp) == 0)
664 		trace_shmem_base = bp->common.shmem_base;
665 	else
666 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
667 	addr = trace_shmem_base - 0x800;
668 
669 	/* validate TRCB signature */
670 	mark = REG_RD(bp, addr);
671 	if (mark != MFW_TRACE_SIGNATURE) {
672 		BNX2X_ERR("Trace buffer signature is missing.");
673 		return ;
674 	}
675 
676 	/* read cyclic buffer pointer */
677 	addr += 4;
678 	mark = REG_RD(bp, addr);
679 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
680 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
681 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
682 
683 	printk("%s", lvl);
684 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
685 		for (word = 0; word < 8; word++)
686 			data[word] = htonl(REG_RD(bp, offset + 4*word));
687 		data[8] = 0x0;
688 		pr_cont("%s", (char *)data);
689 	}
690 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
691 		for (word = 0; word < 8; word++)
692 			data[word] = htonl(REG_RD(bp, offset + 4*word));
693 		data[8] = 0x0;
694 		pr_cont("%s", (char *)data);
695 	}
696 	printk("%s" "end of fw dump\n", lvl);
697 }
698 
699 static void bnx2x_fw_dump(struct bnx2x *bp)
700 {
701 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
702 }
703 
704 void bnx2x_panic_dump(struct bnx2x *bp)
705 {
706 	int i;
707 	u16 j;
708 	struct hc_sp_status_block_data sp_sb_data;
709 	int func = BP_FUNC(bp);
710 #ifdef BNX2X_STOP_ON_ERROR
711 	u16 start = 0, end = 0;
712 	u8 cos;
713 #endif
714 
715 	bp->stats_state = STATS_STATE_DISABLED;
716 	bp->eth_stats.unrecoverable_error++;
717 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
718 
719 	BNX2X_ERR("begin crash dump -----------------\n");
720 
721 	/* Indices */
722 	/* Common */
723 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
724 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
725 		  bp->spq_prod_idx, bp->stats_counter);
726 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
727 		  bp->def_status_blk->atten_status_block.attn_bits,
728 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
729 		  bp->def_status_blk->atten_status_block.status_block_id,
730 		  bp->def_status_blk->atten_status_block.attn_bits_index);
731 	BNX2X_ERR("     def (");
732 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
733 		pr_cont("0x%x%s",
734 			bp->def_status_blk->sp_sb.index_values[i],
735 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
736 
737 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
738 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
739 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
740 			i*sizeof(u32));
741 
742 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
743 	       sp_sb_data.igu_sb_id,
744 	       sp_sb_data.igu_seg_id,
745 	       sp_sb_data.p_func.pf_id,
746 	       sp_sb_data.p_func.vnic_id,
747 	       sp_sb_data.p_func.vf_id,
748 	       sp_sb_data.p_func.vf_valid,
749 	       sp_sb_data.state);
750 
751 
752 	for_each_eth_queue(bp, i) {
753 		struct bnx2x_fastpath *fp = &bp->fp[i];
754 		int loop;
755 		struct hc_status_block_data_e2 sb_data_e2;
756 		struct hc_status_block_data_e1x sb_data_e1x;
757 		struct hc_status_block_sm  *hc_sm_p =
758 			CHIP_IS_E1x(bp) ?
759 			sb_data_e1x.common.state_machine :
760 			sb_data_e2.common.state_machine;
761 		struct hc_index_data *hc_index_p =
762 			CHIP_IS_E1x(bp) ?
763 			sb_data_e1x.index_data :
764 			sb_data_e2.index_data;
765 		u8 data_size, cos;
766 		u32 *sb_data_p;
767 		struct bnx2x_fp_txdata txdata;
768 
769 		/* Rx */
770 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
771 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
772 			  fp->rx_comp_prod,
773 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
774 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
775 			  fp->rx_sge_prod, fp->last_max_sge,
776 			  le16_to_cpu(fp->fp_hc_idx));
777 
778 		/* Tx */
779 		for_each_cos_in_tx_queue(fp, cos)
780 		{
781 			txdata = *fp->txdata_ptr[cos];
782 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
783 				  i, txdata.tx_pkt_prod,
784 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
785 				  txdata.tx_bd_cons,
786 				  le16_to_cpu(*txdata.tx_cons_sb));
787 		}
788 
789 		loop = CHIP_IS_E1x(bp) ?
790 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
791 
792 		/* host sb data */
793 
794 #ifdef BCM_CNIC
795 		if (IS_FCOE_FP(fp))
796 			continue;
797 #endif
798 		BNX2X_ERR("     run indexes (");
799 		for (j = 0; j < HC_SB_MAX_SM; j++)
800 			pr_cont("0x%x%s",
801 			       fp->sb_running_index[j],
802 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
803 
804 		BNX2X_ERR("     indexes (");
805 		for (j = 0; j < loop; j++)
806 			pr_cont("0x%x%s",
807 			       fp->sb_index_values[j],
808 			       (j == loop - 1) ? ")" : " ");
809 		/* fw sb data */
810 		data_size = CHIP_IS_E1x(bp) ?
811 			sizeof(struct hc_status_block_data_e1x) :
812 			sizeof(struct hc_status_block_data_e2);
813 		data_size /= sizeof(u32);
814 		sb_data_p = CHIP_IS_E1x(bp) ?
815 			(u32 *)&sb_data_e1x :
816 			(u32 *)&sb_data_e2;
817 		/* copy sb data in here */
818 		for (j = 0; j < data_size; j++)
819 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
820 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
821 				j * sizeof(u32));
822 
823 		if (!CHIP_IS_E1x(bp)) {
824 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
825 				sb_data_e2.common.p_func.pf_id,
826 				sb_data_e2.common.p_func.vf_id,
827 				sb_data_e2.common.p_func.vf_valid,
828 				sb_data_e2.common.p_func.vnic_id,
829 				sb_data_e2.common.same_igu_sb_1b,
830 				sb_data_e2.common.state);
831 		} else {
832 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
833 				sb_data_e1x.common.p_func.pf_id,
834 				sb_data_e1x.common.p_func.vf_id,
835 				sb_data_e1x.common.p_func.vf_valid,
836 				sb_data_e1x.common.p_func.vnic_id,
837 				sb_data_e1x.common.same_igu_sb_1b,
838 				sb_data_e1x.common.state);
839 		}
840 
841 		/* SB_SMs data */
842 		for (j = 0; j < HC_SB_MAX_SM; j++) {
843 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
844 				j, hc_sm_p[j].__flags,
845 				hc_sm_p[j].igu_sb_id,
846 				hc_sm_p[j].igu_seg_id,
847 				hc_sm_p[j].time_to_expire,
848 				hc_sm_p[j].timer_value);
849 		}
850 
851 		/* Indecies data */
852 		for (j = 0; j < loop; j++) {
853 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
854 			       hc_index_p[j].flags,
855 			       hc_index_p[j].timeout);
856 		}
857 	}
858 
859 #ifdef BNX2X_STOP_ON_ERROR
860 	/* Rings */
861 	/* Rx */
862 	for_each_rx_queue(bp, i) {
863 		struct bnx2x_fastpath *fp = &bp->fp[i];
864 
865 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
866 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
867 		for (j = start; j != end; j = RX_BD(j + 1)) {
868 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
869 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
870 
871 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
872 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
873 		}
874 
875 		start = RX_SGE(fp->rx_sge_prod);
876 		end = RX_SGE(fp->last_max_sge);
877 		for (j = start; j != end; j = RX_SGE(j + 1)) {
878 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
879 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
880 
881 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
882 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
883 		}
884 
885 		start = RCQ_BD(fp->rx_comp_cons - 10);
886 		end = RCQ_BD(fp->rx_comp_cons + 503);
887 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
888 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
889 
890 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
891 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
892 		}
893 	}
894 
895 	/* Tx */
896 	for_each_tx_queue(bp, i) {
897 		struct bnx2x_fastpath *fp = &bp->fp[i];
898 		for_each_cos_in_tx_queue(fp, cos) {
899 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
900 
901 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
902 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
903 			for (j = start; j != end; j = TX_BD(j + 1)) {
904 				struct sw_tx_bd *sw_bd =
905 					&txdata->tx_buf_ring[j];
906 
907 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
908 					  i, cos, j, sw_bd->skb,
909 					  sw_bd->first_bd);
910 			}
911 
912 			start = TX_BD(txdata->tx_bd_cons - 10);
913 			end = TX_BD(txdata->tx_bd_cons + 254);
914 			for (j = start; j != end; j = TX_BD(j + 1)) {
915 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
916 
917 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
918 					  i, cos, j, tx_bd[0], tx_bd[1],
919 					  tx_bd[2], tx_bd[3]);
920 			}
921 		}
922 	}
923 #endif
924 	bnx2x_fw_dump(bp);
925 	bnx2x_mc_assert(bp);
926 	BNX2X_ERR("end crash dump -----------------\n");
927 }
928 
929 /*
930  * FLR Support for E2
931  *
932  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
933  * initialization.
934  */
935 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
936 #define FLR_WAIT_INTERVAL	50	/* usec */
937 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
938 
939 struct pbf_pN_buf_regs {
940 	int pN;
941 	u32 init_crd;
942 	u32 crd;
943 	u32 crd_freed;
944 };
945 
946 struct pbf_pN_cmd_regs {
947 	int pN;
948 	u32 lines_occup;
949 	u32 lines_freed;
950 };
951 
952 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
953 				     struct pbf_pN_buf_regs *regs,
954 				     u32 poll_count)
955 {
956 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
957 	u32 cur_cnt = poll_count;
958 
959 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
960 	crd = crd_start = REG_RD(bp, regs->crd);
961 	init_crd = REG_RD(bp, regs->init_crd);
962 
963 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
964 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
965 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
966 
967 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
968 	       (init_crd - crd_start))) {
969 		if (cur_cnt--) {
970 			udelay(FLR_WAIT_INTERVAL);
971 			crd = REG_RD(bp, regs->crd);
972 			crd_freed = REG_RD(bp, regs->crd_freed);
973 		} else {
974 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
975 			   regs->pN);
976 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
977 			   regs->pN, crd);
978 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
979 			   regs->pN, crd_freed);
980 			break;
981 		}
982 	}
983 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
984 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
985 }
986 
987 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
988 				     struct pbf_pN_cmd_regs *regs,
989 				     u32 poll_count)
990 {
991 	u32 occup, to_free, freed, freed_start;
992 	u32 cur_cnt = poll_count;
993 
994 	occup = to_free = REG_RD(bp, regs->lines_occup);
995 	freed = freed_start = REG_RD(bp, regs->lines_freed);
996 
997 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
998 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
999 
1000 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1001 		if (cur_cnt--) {
1002 			udelay(FLR_WAIT_INTERVAL);
1003 			occup = REG_RD(bp, regs->lines_occup);
1004 			freed = REG_RD(bp, regs->lines_freed);
1005 		} else {
1006 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1007 			   regs->pN);
1008 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1009 			   regs->pN, occup);
1010 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1011 			   regs->pN, freed);
1012 			break;
1013 		}
1014 	}
1015 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1016 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1017 }
1018 
1019 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1020 				    u32 expected, u32 poll_count)
1021 {
1022 	u32 cur_cnt = poll_count;
1023 	u32 val;
1024 
1025 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1026 		udelay(FLR_WAIT_INTERVAL);
1027 
1028 	return val;
1029 }
1030 
1031 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1032 					   char *msg, u32 poll_cnt)
1033 {
1034 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1035 	if (val != 0) {
1036 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1037 		return 1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1043 {
1044 	/* adjust polling timeout */
1045 	if (CHIP_REV_IS_EMUL(bp))
1046 		return FLR_POLL_CNT * 2000;
1047 
1048 	if (CHIP_REV_IS_FPGA(bp))
1049 		return FLR_POLL_CNT * 120;
1050 
1051 	return FLR_POLL_CNT;
1052 }
1053 
1054 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1055 {
1056 	struct pbf_pN_cmd_regs cmd_regs[] = {
1057 		{0, (CHIP_IS_E3B0(bp)) ?
1058 			PBF_REG_TQ_OCCUPANCY_Q0 :
1059 			PBF_REG_P0_TQ_OCCUPANCY,
1060 		    (CHIP_IS_E3B0(bp)) ?
1061 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1062 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1063 		{1, (CHIP_IS_E3B0(bp)) ?
1064 			PBF_REG_TQ_OCCUPANCY_Q1 :
1065 			PBF_REG_P1_TQ_OCCUPANCY,
1066 		    (CHIP_IS_E3B0(bp)) ?
1067 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1068 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1069 		{4, (CHIP_IS_E3B0(bp)) ?
1070 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1071 			PBF_REG_P4_TQ_OCCUPANCY,
1072 		    (CHIP_IS_E3B0(bp)) ?
1073 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1074 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1075 	};
1076 
1077 	struct pbf_pN_buf_regs buf_regs[] = {
1078 		{0, (CHIP_IS_E3B0(bp)) ?
1079 			PBF_REG_INIT_CRD_Q0 :
1080 			PBF_REG_P0_INIT_CRD ,
1081 		    (CHIP_IS_E3B0(bp)) ?
1082 			PBF_REG_CREDIT_Q0 :
1083 			PBF_REG_P0_CREDIT,
1084 		    (CHIP_IS_E3B0(bp)) ?
1085 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1086 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1087 		{1, (CHIP_IS_E3B0(bp)) ?
1088 			PBF_REG_INIT_CRD_Q1 :
1089 			PBF_REG_P1_INIT_CRD,
1090 		    (CHIP_IS_E3B0(bp)) ?
1091 			PBF_REG_CREDIT_Q1 :
1092 			PBF_REG_P1_CREDIT,
1093 		    (CHIP_IS_E3B0(bp)) ?
1094 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1095 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1096 		{4, (CHIP_IS_E3B0(bp)) ?
1097 			PBF_REG_INIT_CRD_LB_Q :
1098 			PBF_REG_P4_INIT_CRD,
1099 		    (CHIP_IS_E3B0(bp)) ?
1100 			PBF_REG_CREDIT_LB_Q :
1101 			PBF_REG_P4_CREDIT,
1102 		    (CHIP_IS_E3B0(bp)) ?
1103 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1104 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1105 	};
1106 
1107 	int i;
1108 
1109 	/* Verify the command queues are flushed P0, P1, P4 */
1110 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1111 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1112 
1113 
1114 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1115 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1116 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1117 }
1118 
1119 #define OP_GEN_PARAM(param) \
1120 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1121 
1122 #define OP_GEN_TYPE(type) \
1123 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1124 
1125 #define OP_GEN_AGG_VECT(index) \
1126 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1127 
1128 
1129 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1130 					 u32 poll_cnt)
1131 {
1132 	struct sdm_op_gen op_gen = {0};
1133 
1134 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1135 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1136 	int ret = 0;
1137 
1138 	if (REG_RD(bp, comp_addr)) {
1139 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1140 		return 1;
1141 	}
1142 
1143 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1144 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1145 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1146 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1147 
1148 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1149 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1150 
1151 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1152 		BNX2X_ERR("FW final cleanup did not succeed\n");
1153 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1154 		   (REG_RD(bp, comp_addr)));
1155 		ret = 1;
1156 	}
1157 	/* Zero completion for nxt FLR */
1158 	REG_WR(bp, comp_addr, 0);
1159 
1160 	return ret;
1161 }
1162 
1163 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1164 {
1165 	u16 status;
1166 
1167 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1168 	return status & PCI_EXP_DEVSTA_TRPND;
1169 }
1170 
1171 /* PF FLR specific routines
1172 */
1173 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1174 {
1175 
1176 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1177 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1178 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1179 			"CFC PF usage counter timed out",
1180 			poll_cnt))
1181 		return 1;
1182 
1183 
1184 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1185 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1186 			DORQ_REG_PF_USAGE_CNT,
1187 			"DQ PF usage counter timed out",
1188 			poll_cnt))
1189 		return 1;
1190 
1191 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1192 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1193 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1194 			"QM PF usage counter timed out",
1195 			poll_cnt))
1196 		return 1;
1197 
1198 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1199 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1200 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1201 			"Timers VNIC usage counter timed out",
1202 			poll_cnt))
1203 		return 1;
1204 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1205 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1206 			"Timers NUM_SCANS usage counter timed out",
1207 			poll_cnt))
1208 		return 1;
1209 
1210 	/* Wait DMAE PF usage counter to zero */
1211 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1212 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1213 			"DMAE dommand register timed out",
1214 			poll_cnt))
1215 		return 1;
1216 
1217 	return 0;
1218 }
1219 
1220 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1221 {
1222 	u32 val;
1223 
1224 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1225 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1226 
1227 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1228 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1229 
1230 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1231 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1232 
1233 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1234 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1235 
1236 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1237 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1238 
1239 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1240 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1241 
1242 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1243 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1244 
1245 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1246 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1247 	   val);
1248 }
1249 
1250 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1251 {
1252 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1253 
1254 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1255 
1256 	/* Re-enable PF target read access */
1257 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1258 
1259 	/* Poll HW usage counters */
1260 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1261 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1262 		return -EBUSY;
1263 
1264 	/* Zero the igu 'trailing edge' and 'leading edge' */
1265 
1266 	/* Send the FW cleanup command */
1267 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1268 		return -EBUSY;
1269 
1270 	/* ATC cleanup */
1271 
1272 	/* Verify TX hw is flushed */
1273 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1274 
1275 	/* Wait 100ms (not adjusted according to platform) */
1276 	msleep(100);
1277 
1278 	/* Verify no pending pci transactions */
1279 	if (bnx2x_is_pcie_pending(bp->pdev))
1280 		BNX2X_ERR("PCIE Transactions still pending\n");
1281 
1282 	/* Debug */
1283 	bnx2x_hw_enable_status(bp);
1284 
1285 	/*
1286 	 * Master enable - Due to WB DMAE writes performed before this
1287 	 * register is re-initialized as part of the regular function init
1288 	 */
1289 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1290 
1291 	return 0;
1292 }
1293 
1294 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1295 {
1296 	int port = BP_PORT(bp);
1297 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1298 	u32 val = REG_RD(bp, addr);
1299 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1300 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1301 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1302 
1303 	if (msix) {
1304 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1305 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1306 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1307 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1308 		if (single_msix)
1309 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1310 	} else if (msi) {
1311 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1312 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1313 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1314 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1315 	} else {
1316 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1317 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1318 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1319 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1320 
1321 		if (!CHIP_IS_E1(bp)) {
1322 			DP(NETIF_MSG_IFUP,
1323 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1324 
1325 			REG_WR(bp, addr, val);
1326 
1327 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1328 		}
1329 	}
1330 
1331 	if (CHIP_IS_E1(bp))
1332 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1333 
1334 	DP(NETIF_MSG_IFUP,
1335 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1336 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1337 
1338 	REG_WR(bp, addr, val);
1339 	/*
1340 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1341 	 */
1342 	mmiowb();
1343 	barrier();
1344 
1345 	if (!CHIP_IS_E1(bp)) {
1346 		/* init leading/trailing edge */
1347 		if (IS_MF(bp)) {
1348 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1349 			if (bp->port.pmf)
1350 				/* enable nig and gpio3 attention */
1351 				val |= 0x1100;
1352 		} else
1353 			val = 0xffff;
1354 
1355 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1356 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1357 	}
1358 
1359 	/* Make sure that interrupts are indeed enabled from here on */
1360 	mmiowb();
1361 }
1362 
1363 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1364 {
1365 	u32 val;
1366 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1367 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1368 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1369 
1370 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1371 
1372 	if (msix) {
1373 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1374 			 IGU_PF_CONF_SINGLE_ISR_EN);
1375 		val |= (IGU_PF_CONF_FUNC_EN |
1376 			IGU_PF_CONF_MSI_MSIX_EN |
1377 			IGU_PF_CONF_ATTN_BIT_EN);
1378 
1379 		if (single_msix)
1380 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1381 	} else if (msi) {
1382 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1383 		val |= (IGU_PF_CONF_FUNC_EN |
1384 			IGU_PF_CONF_MSI_MSIX_EN |
1385 			IGU_PF_CONF_ATTN_BIT_EN |
1386 			IGU_PF_CONF_SINGLE_ISR_EN);
1387 	} else {
1388 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1389 		val |= (IGU_PF_CONF_FUNC_EN |
1390 			IGU_PF_CONF_INT_LINE_EN |
1391 			IGU_PF_CONF_ATTN_BIT_EN |
1392 			IGU_PF_CONF_SINGLE_ISR_EN);
1393 	}
1394 
1395 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1396 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1397 
1398 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1399 
1400 	if (val & IGU_PF_CONF_INT_LINE_EN)
1401 		pci_intx(bp->pdev, true);
1402 
1403 	barrier();
1404 
1405 	/* init leading/trailing edge */
1406 	if (IS_MF(bp)) {
1407 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1408 		if (bp->port.pmf)
1409 			/* enable nig and gpio3 attention */
1410 			val |= 0x1100;
1411 	} else
1412 		val = 0xffff;
1413 
1414 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1415 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1416 
1417 	/* Make sure that interrupts are indeed enabled from here on */
1418 	mmiowb();
1419 }
1420 
1421 void bnx2x_int_enable(struct bnx2x *bp)
1422 {
1423 	if (bp->common.int_block == INT_BLOCK_HC)
1424 		bnx2x_hc_int_enable(bp);
1425 	else
1426 		bnx2x_igu_int_enable(bp);
1427 }
1428 
1429 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1430 {
1431 	int port = BP_PORT(bp);
1432 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1433 	u32 val = REG_RD(bp, addr);
1434 
1435 	/*
1436 	 * in E1 we must use only PCI configuration space to disable
1437 	 * MSI/MSIX capablility
1438 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1439 	 */
1440 	if (CHIP_IS_E1(bp)) {
1441 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1442 		 *  Use mask register to prevent from HC sending interrupts
1443 		 *  after we exit the function
1444 		 */
1445 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1446 
1447 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1448 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1449 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1450 	} else
1451 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1452 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1453 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1454 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1455 
1456 	DP(NETIF_MSG_IFDOWN,
1457 	   "write %x to HC %d (addr 0x%x)\n",
1458 	   val, port, addr);
1459 
1460 	/* flush all outstanding writes */
1461 	mmiowb();
1462 
1463 	REG_WR(bp, addr, val);
1464 	if (REG_RD(bp, addr) != val)
1465 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1466 }
1467 
1468 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1469 {
1470 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1471 
1472 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1473 		 IGU_PF_CONF_INT_LINE_EN |
1474 		 IGU_PF_CONF_ATTN_BIT_EN);
1475 
1476 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1477 
1478 	/* flush all outstanding writes */
1479 	mmiowb();
1480 
1481 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1482 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1483 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1484 }
1485 
1486 void bnx2x_int_disable(struct bnx2x *bp)
1487 {
1488 	if (bp->common.int_block == INT_BLOCK_HC)
1489 		bnx2x_hc_int_disable(bp);
1490 	else
1491 		bnx2x_igu_int_disable(bp);
1492 }
1493 
1494 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1495 {
1496 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1497 	int i, offset;
1498 
1499 	if (disable_hw)
1500 		/* prevent the HW from sending interrupts */
1501 		bnx2x_int_disable(bp);
1502 
1503 	/* make sure all ISRs are done */
1504 	if (msix) {
1505 		synchronize_irq(bp->msix_table[0].vector);
1506 		offset = 1;
1507 #ifdef BCM_CNIC
1508 		offset++;
1509 #endif
1510 		for_each_eth_queue(bp, i)
1511 			synchronize_irq(bp->msix_table[offset++].vector);
1512 	} else
1513 		synchronize_irq(bp->pdev->irq);
1514 
1515 	/* make sure sp_task is not running */
1516 	cancel_delayed_work(&bp->sp_task);
1517 	cancel_delayed_work(&bp->period_task);
1518 	flush_workqueue(bnx2x_wq);
1519 }
1520 
1521 /* fast path */
1522 
1523 /*
1524  * General service functions
1525  */
1526 
1527 /* Return true if succeeded to acquire the lock */
1528 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1529 {
1530 	u32 lock_status;
1531 	u32 resource_bit = (1 << resource);
1532 	int func = BP_FUNC(bp);
1533 	u32 hw_lock_control_reg;
1534 
1535 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1536 	   "Trying to take a lock on resource %d\n", resource);
1537 
1538 	/* Validating that the resource is within range */
1539 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1540 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1541 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1542 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1543 		return false;
1544 	}
1545 
1546 	if (func <= 5)
1547 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1548 	else
1549 		hw_lock_control_reg =
1550 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1551 
1552 	/* Try to acquire the lock */
1553 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1554 	lock_status = REG_RD(bp, hw_lock_control_reg);
1555 	if (lock_status & resource_bit)
1556 		return true;
1557 
1558 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1559 	   "Failed to get a lock on resource %d\n", resource);
1560 	return false;
1561 }
1562 
1563 /**
1564  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1565  *
1566  * @bp:	driver handle
1567  *
1568  * Returns the recovery leader resource id according to the engine this function
1569  * belongs to. Currently only only 2 engines is supported.
1570  */
1571 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1572 {
1573 	if (BP_PATH(bp))
1574 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1575 	else
1576 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1577 }
1578 
1579 /**
1580  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1581  *
1582  * @bp: driver handle
1583  *
1584  * Tries to aquire a leader lock for current engine.
1585  */
1586 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1587 {
1588 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1589 }
1590 
1591 #ifdef BCM_CNIC
1592 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1593 #endif
1594 
1595 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1596 {
1597 	struct bnx2x *bp = fp->bp;
1598 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1599 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1600 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1601 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1602 
1603 	DP(BNX2X_MSG_SP,
1604 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1605 	   fp->index, cid, command, bp->state,
1606 	   rr_cqe->ramrod_cqe.ramrod_type);
1607 
1608 	switch (command) {
1609 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1610 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1611 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1612 		break;
1613 
1614 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1615 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1616 		drv_cmd = BNX2X_Q_CMD_SETUP;
1617 		break;
1618 
1619 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1620 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1621 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1622 		break;
1623 
1624 	case (RAMROD_CMD_ID_ETH_HALT):
1625 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1626 		drv_cmd = BNX2X_Q_CMD_HALT;
1627 		break;
1628 
1629 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1630 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1631 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1632 		break;
1633 
1634 	case (RAMROD_CMD_ID_ETH_EMPTY):
1635 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1636 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1637 		break;
1638 
1639 	default:
1640 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1641 			  command, fp->index);
1642 		return;
1643 	}
1644 
1645 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1646 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1647 		/* q_obj->complete_cmd() failure means that this was
1648 		 * an unexpected completion.
1649 		 *
1650 		 * In this case we don't want to increase the bp->spq_left
1651 		 * because apparently we haven't sent this command the first
1652 		 * place.
1653 		 */
1654 #ifdef BNX2X_STOP_ON_ERROR
1655 		bnx2x_panic();
1656 #else
1657 		return;
1658 #endif
1659 
1660 	smp_mb__before_atomic_inc();
1661 	atomic_inc(&bp->cq_spq_left);
1662 	/* push the change in bp->spq_left and towards the memory */
1663 	smp_mb__after_atomic_inc();
1664 
1665 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1666 
1667 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1668 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1669 		/* if Q update ramrod is completed for last Q in AFEX vif set
1670 		 * flow, then ACK MCP at the end
1671 		 *
1672 		 * mark pending ACK to MCP bit.
1673 		 * prevent case that both bits are cleared.
1674 		 * At the end of load/unload driver checks that
1675 		 * sp_state is cleaerd, and this order prevents
1676 		 * races
1677 		 */
1678 		smp_mb__before_clear_bit();
1679 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1680 		wmb();
1681 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1682 		smp_mb__after_clear_bit();
1683 
1684 		/* schedule workqueue to send ack to MCP */
1685 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1686 	}
1687 
1688 	return;
1689 }
1690 
1691 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1692 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1693 {
1694 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1695 
1696 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1697 				 start);
1698 }
1699 
1700 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1701 {
1702 	struct bnx2x *bp = netdev_priv(dev_instance);
1703 	u16 status = bnx2x_ack_int(bp);
1704 	u16 mask;
1705 	int i;
1706 	u8 cos;
1707 
1708 	/* Return here if interrupt is shared and it's not for us */
1709 	if (unlikely(status == 0)) {
1710 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1711 		return IRQ_NONE;
1712 	}
1713 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1714 
1715 #ifdef BNX2X_STOP_ON_ERROR
1716 	if (unlikely(bp->panic))
1717 		return IRQ_HANDLED;
1718 #endif
1719 
1720 	for_each_eth_queue(bp, i) {
1721 		struct bnx2x_fastpath *fp = &bp->fp[i];
1722 
1723 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1724 		if (status & mask) {
1725 			/* Handle Rx or Tx according to SB id */
1726 			prefetch(fp->rx_cons_sb);
1727 			for_each_cos_in_tx_queue(fp, cos)
1728 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1729 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1730 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1731 			status &= ~mask;
1732 		}
1733 	}
1734 
1735 #ifdef BCM_CNIC
1736 	mask = 0x2;
1737 	if (status & (mask | 0x1)) {
1738 		struct cnic_ops *c_ops = NULL;
1739 
1740 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1741 			rcu_read_lock();
1742 			c_ops = rcu_dereference(bp->cnic_ops);
1743 			if (c_ops)
1744 				c_ops->cnic_handler(bp->cnic_data, NULL);
1745 			rcu_read_unlock();
1746 		}
1747 
1748 		status &= ~mask;
1749 	}
1750 #endif
1751 
1752 	if (unlikely(status & 0x1)) {
1753 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1754 
1755 		status &= ~0x1;
1756 		if (!status)
1757 			return IRQ_HANDLED;
1758 	}
1759 
1760 	if (unlikely(status))
1761 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1762 		   status);
1763 
1764 	return IRQ_HANDLED;
1765 }
1766 
1767 /* Link */
1768 
1769 /*
1770  * General service functions
1771  */
1772 
1773 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1774 {
1775 	u32 lock_status;
1776 	u32 resource_bit = (1 << resource);
1777 	int func = BP_FUNC(bp);
1778 	u32 hw_lock_control_reg;
1779 	int cnt;
1780 
1781 	/* Validating that the resource is within range */
1782 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1783 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1784 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1785 		return -EINVAL;
1786 	}
1787 
1788 	if (func <= 5) {
1789 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1790 	} else {
1791 		hw_lock_control_reg =
1792 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1793 	}
1794 
1795 	/* Validating that the resource is not already taken */
1796 	lock_status = REG_RD(bp, hw_lock_control_reg);
1797 	if (lock_status & resource_bit) {
1798 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1799 		   lock_status, resource_bit);
1800 		return -EEXIST;
1801 	}
1802 
1803 	/* Try for 5 second every 5ms */
1804 	for (cnt = 0; cnt < 1000; cnt++) {
1805 		/* Try to acquire the lock */
1806 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1807 		lock_status = REG_RD(bp, hw_lock_control_reg);
1808 		if (lock_status & resource_bit)
1809 			return 0;
1810 
1811 		msleep(5);
1812 	}
1813 	BNX2X_ERR("Timeout\n");
1814 	return -EAGAIN;
1815 }
1816 
1817 int bnx2x_release_leader_lock(struct bnx2x *bp)
1818 {
1819 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1820 }
1821 
1822 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1823 {
1824 	u32 lock_status;
1825 	u32 resource_bit = (1 << resource);
1826 	int func = BP_FUNC(bp);
1827 	u32 hw_lock_control_reg;
1828 
1829 	/* Validating that the resource is within range */
1830 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1831 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1832 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1833 		return -EINVAL;
1834 	}
1835 
1836 	if (func <= 5) {
1837 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1838 	} else {
1839 		hw_lock_control_reg =
1840 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1841 	}
1842 
1843 	/* Validating that the resource is currently taken */
1844 	lock_status = REG_RD(bp, hw_lock_control_reg);
1845 	if (!(lock_status & resource_bit)) {
1846 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1847 		   lock_status, resource_bit);
1848 		return -EFAULT;
1849 	}
1850 
1851 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1852 	return 0;
1853 }
1854 
1855 
1856 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1857 {
1858 	/* The GPIO should be swapped if swap register is set and active */
1859 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1860 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1861 	int gpio_shift = gpio_num +
1862 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1863 	u32 gpio_mask = (1 << gpio_shift);
1864 	u32 gpio_reg;
1865 	int value;
1866 
1867 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1868 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1869 		return -EINVAL;
1870 	}
1871 
1872 	/* read GPIO value */
1873 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1874 
1875 	/* get the requested pin value */
1876 	if ((gpio_reg & gpio_mask) == gpio_mask)
1877 		value = 1;
1878 	else
1879 		value = 0;
1880 
1881 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1882 
1883 	return value;
1884 }
1885 
1886 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1887 {
1888 	/* The GPIO should be swapped if swap register is set and active */
1889 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1890 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1891 	int gpio_shift = gpio_num +
1892 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1893 	u32 gpio_mask = (1 << gpio_shift);
1894 	u32 gpio_reg;
1895 
1896 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1897 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1898 		return -EINVAL;
1899 	}
1900 
1901 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1902 	/* read GPIO and mask except the float bits */
1903 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1904 
1905 	switch (mode) {
1906 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1907 		DP(NETIF_MSG_LINK,
1908 		   "Set GPIO %d (shift %d) -> output low\n",
1909 		   gpio_num, gpio_shift);
1910 		/* clear FLOAT and set CLR */
1911 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1912 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1913 		break;
1914 
1915 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1916 		DP(NETIF_MSG_LINK,
1917 		   "Set GPIO %d (shift %d) -> output high\n",
1918 		   gpio_num, gpio_shift);
1919 		/* clear FLOAT and set SET */
1920 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1921 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1922 		break;
1923 
1924 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1925 		DP(NETIF_MSG_LINK,
1926 		   "Set GPIO %d (shift %d) -> input\n",
1927 		   gpio_num, gpio_shift);
1928 		/* set FLOAT */
1929 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1930 		break;
1931 
1932 	default:
1933 		break;
1934 	}
1935 
1936 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1937 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1938 
1939 	return 0;
1940 }
1941 
1942 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1943 {
1944 	u32 gpio_reg = 0;
1945 	int rc = 0;
1946 
1947 	/* Any port swapping should be handled by caller. */
1948 
1949 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1950 	/* read GPIO and mask except the float bits */
1951 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1952 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1953 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1954 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1955 
1956 	switch (mode) {
1957 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1958 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1959 		/* set CLR */
1960 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1961 		break;
1962 
1963 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1964 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1965 		/* set SET */
1966 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1967 		break;
1968 
1969 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1970 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1971 		/* set FLOAT */
1972 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1973 		break;
1974 
1975 	default:
1976 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1977 		rc = -EINVAL;
1978 		break;
1979 	}
1980 
1981 	if (rc == 0)
1982 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1983 
1984 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1985 
1986 	return rc;
1987 }
1988 
1989 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1990 {
1991 	/* The GPIO should be swapped if swap register is set and active */
1992 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1993 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1994 	int gpio_shift = gpio_num +
1995 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1996 	u32 gpio_mask = (1 << gpio_shift);
1997 	u32 gpio_reg;
1998 
1999 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2000 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2001 		return -EINVAL;
2002 	}
2003 
2004 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2005 	/* read GPIO int */
2006 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2007 
2008 	switch (mode) {
2009 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2010 		DP(NETIF_MSG_LINK,
2011 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2012 		   gpio_num, gpio_shift);
2013 		/* clear SET and set CLR */
2014 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2015 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2016 		break;
2017 
2018 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2019 		DP(NETIF_MSG_LINK,
2020 		   "Set GPIO INT %d (shift %d) -> output high\n",
2021 		   gpio_num, gpio_shift);
2022 		/* clear CLR and set SET */
2023 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2024 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2025 		break;
2026 
2027 	default:
2028 		break;
2029 	}
2030 
2031 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2032 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2033 
2034 	return 0;
2035 }
2036 
2037 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2038 {
2039 	u32 spio_mask = (1 << spio_num);
2040 	u32 spio_reg;
2041 
2042 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2043 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2044 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2045 		return -EINVAL;
2046 	}
2047 
2048 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2049 	/* read SPIO and mask except the float bits */
2050 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2051 
2052 	switch (mode) {
2053 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2054 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2055 		/* clear FLOAT and set CLR */
2056 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2057 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2058 		break;
2059 
2060 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2061 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2062 		/* clear FLOAT and set SET */
2063 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2064 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2065 		break;
2066 
2067 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2068 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2069 		/* set FLOAT */
2070 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2071 		break;
2072 
2073 	default:
2074 		break;
2075 	}
2076 
2077 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2078 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2079 
2080 	return 0;
2081 }
2082 
2083 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2084 {
2085 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2086 	switch (bp->link_vars.ieee_fc &
2087 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2088 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2089 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2090 						   ADVERTISED_Pause);
2091 		break;
2092 
2093 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2094 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2095 						  ADVERTISED_Pause);
2096 		break;
2097 
2098 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2099 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2100 		break;
2101 
2102 	default:
2103 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2104 						   ADVERTISED_Pause);
2105 		break;
2106 	}
2107 }
2108 
2109 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2110 {
2111 	if (!BP_NOMCP(bp)) {
2112 		u8 rc;
2113 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2114 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2115 		/*
2116 		 * Initialize link parameters structure variables
2117 		 * It is recommended to turn off RX FC for jumbo frames
2118 		 * for better performance
2119 		 */
2120 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2121 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2122 		else
2123 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2124 
2125 		bnx2x_acquire_phy_lock(bp);
2126 
2127 		if (load_mode == LOAD_DIAG) {
2128 			struct link_params *lp = &bp->link_params;
2129 			lp->loopback_mode = LOOPBACK_XGXS;
2130 			/* do PHY loopback at 10G speed, if possible */
2131 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2132 				if (lp->speed_cap_mask[cfx_idx] &
2133 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2134 					lp->req_line_speed[cfx_idx] =
2135 					SPEED_10000;
2136 				else
2137 					lp->req_line_speed[cfx_idx] =
2138 					SPEED_1000;
2139 			}
2140 		}
2141 
2142 		if (load_mode == LOAD_LOOPBACK_EXT) {
2143 			struct link_params *lp = &bp->link_params;
2144 			lp->loopback_mode = LOOPBACK_EXT;
2145 		}
2146 
2147 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2148 
2149 		bnx2x_release_phy_lock(bp);
2150 
2151 		bnx2x_calc_fc_adv(bp);
2152 
2153 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2154 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2155 			bnx2x_link_report(bp);
2156 		} else
2157 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2158 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2159 		return rc;
2160 	}
2161 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2162 	return -EINVAL;
2163 }
2164 
2165 void bnx2x_link_set(struct bnx2x *bp)
2166 {
2167 	if (!BP_NOMCP(bp)) {
2168 		bnx2x_acquire_phy_lock(bp);
2169 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2170 		bnx2x_release_phy_lock(bp);
2171 
2172 		bnx2x_calc_fc_adv(bp);
2173 	} else
2174 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2175 }
2176 
2177 static void bnx2x__link_reset(struct bnx2x *bp)
2178 {
2179 	if (!BP_NOMCP(bp)) {
2180 		bnx2x_acquire_phy_lock(bp);
2181 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2182 		bnx2x_release_phy_lock(bp);
2183 	} else
2184 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2185 }
2186 
2187 void bnx2x_force_link_reset(struct bnx2x *bp)
2188 {
2189 	bnx2x_acquire_phy_lock(bp);
2190 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2191 	bnx2x_release_phy_lock(bp);
2192 }
2193 
2194 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2195 {
2196 	u8 rc = 0;
2197 
2198 	if (!BP_NOMCP(bp)) {
2199 		bnx2x_acquire_phy_lock(bp);
2200 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2201 				     is_serdes);
2202 		bnx2x_release_phy_lock(bp);
2203 	} else
2204 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2205 
2206 	return rc;
2207 }
2208 
2209 
2210 /* Calculates the sum of vn_min_rates.
2211    It's needed for further normalizing of the min_rates.
2212    Returns:
2213      sum of vn_min_rates.
2214        or
2215      0 - if all the min_rates are 0.
2216      In the later case fainess algorithm should be deactivated.
2217      If not all min_rates are zero then those that are zeroes will be set to 1.
2218  */
2219 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2220 				      struct cmng_init_input *input)
2221 {
2222 	int all_zero = 1;
2223 	int vn;
2224 
2225 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2226 		u32 vn_cfg = bp->mf_config[vn];
2227 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2228 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2229 
2230 		/* Skip hidden vns */
2231 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2232 			vn_min_rate = 0;
2233 		/* If min rate is zero - set it to 1 */
2234 		else if (!vn_min_rate)
2235 			vn_min_rate = DEF_MIN_RATE;
2236 		else
2237 			all_zero = 0;
2238 
2239 		input->vnic_min_rate[vn] = vn_min_rate;
2240 	}
2241 
2242 	/* if ETS or all min rates are zeros - disable fairness */
2243 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2244 		input->flags.cmng_enables &=
2245 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2246 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2247 	} else if (all_zero) {
2248 		input->flags.cmng_enables &=
2249 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2250 		DP(NETIF_MSG_IFUP,
2251 		   "All MIN values are zeroes fairness will be disabled\n");
2252 	} else
2253 		input->flags.cmng_enables |=
2254 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2255 }
2256 
2257 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2258 				    struct cmng_init_input *input)
2259 {
2260 	u16 vn_max_rate;
2261 	u32 vn_cfg = bp->mf_config[vn];
2262 
2263 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2264 		vn_max_rate = 0;
2265 	else {
2266 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2267 
2268 		if (IS_MF_SI(bp)) {
2269 			/* maxCfg in percents of linkspeed */
2270 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2271 		} else /* SD modes */
2272 			/* maxCfg is absolute in 100Mb units */
2273 			vn_max_rate = maxCfg * 100;
2274 	}
2275 
2276 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2277 
2278 	input->vnic_max_rate[vn] = vn_max_rate;
2279 }
2280 
2281 
2282 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2283 {
2284 	if (CHIP_REV_IS_SLOW(bp))
2285 		return CMNG_FNS_NONE;
2286 	if (IS_MF(bp))
2287 		return CMNG_FNS_MINMAX;
2288 
2289 	return CMNG_FNS_NONE;
2290 }
2291 
2292 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2293 {
2294 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2295 
2296 	if (BP_NOMCP(bp))
2297 		return; /* what should be the default bvalue in this case */
2298 
2299 	/* For 2 port configuration the absolute function number formula
2300 	 * is:
2301 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2302 	 *
2303 	 *      and there are 4 functions per port
2304 	 *
2305 	 * For 4 port configuration it is
2306 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2307 	 *
2308 	 *      and there are 2 functions per port
2309 	 */
2310 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2311 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2312 
2313 		if (func >= E1H_FUNC_MAX)
2314 			break;
2315 
2316 		bp->mf_config[vn] =
2317 			MF_CFG_RD(bp, func_mf_config[func].config);
2318 	}
2319 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2320 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2321 		bp->flags |= MF_FUNC_DIS;
2322 	} else {
2323 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2324 		bp->flags &= ~MF_FUNC_DIS;
2325 	}
2326 }
2327 
2328 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2329 {
2330 	struct cmng_init_input input;
2331 	memset(&input, 0, sizeof(struct cmng_init_input));
2332 
2333 	input.port_rate = bp->link_vars.line_speed;
2334 
2335 	if (cmng_type == CMNG_FNS_MINMAX) {
2336 		int vn;
2337 
2338 		/* read mf conf from shmem */
2339 		if (read_cfg)
2340 			bnx2x_read_mf_cfg(bp);
2341 
2342 		/* vn_weight_sum and enable fairness if not 0 */
2343 		bnx2x_calc_vn_min(bp, &input);
2344 
2345 		/* calculate and set min-max rate for each vn */
2346 		if (bp->port.pmf)
2347 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2348 				bnx2x_calc_vn_max(bp, vn, &input);
2349 
2350 		/* always enable rate shaping and fairness */
2351 		input.flags.cmng_enables |=
2352 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2353 
2354 		bnx2x_init_cmng(&input, &bp->cmng);
2355 		return;
2356 	}
2357 
2358 	/* rate shaping and fairness are disabled */
2359 	DP(NETIF_MSG_IFUP,
2360 	   "rate shaping and fairness are disabled\n");
2361 }
2362 
2363 static void storm_memset_cmng(struct bnx2x *bp,
2364 			      struct cmng_init *cmng,
2365 			      u8 port)
2366 {
2367 	int vn;
2368 	size_t size = sizeof(struct cmng_struct_per_port);
2369 
2370 	u32 addr = BAR_XSTRORM_INTMEM +
2371 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2372 
2373 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2374 
2375 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2376 		int func = func_by_vn(bp, vn);
2377 
2378 		addr = BAR_XSTRORM_INTMEM +
2379 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2380 		size = sizeof(struct rate_shaping_vars_per_vn);
2381 		__storm_memset_struct(bp, addr, size,
2382 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2383 
2384 		addr = BAR_XSTRORM_INTMEM +
2385 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2386 		size = sizeof(struct fairness_vars_per_vn);
2387 		__storm_memset_struct(bp, addr, size,
2388 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2389 	}
2390 }
2391 
2392 /* This function is called upon link interrupt */
2393 static void bnx2x_link_attn(struct bnx2x *bp)
2394 {
2395 	/* Make sure that we are synced with the current statistics */
2396 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2397 
2398 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2399 
2400 	if (bp->link_vars.link_up) {
2401 
2402 		/* dropless flow control */
2403 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2404 			int port = BP_PORT(bp);
2405 			u32 pause_enabled = 0;
2406 
2407 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2408 				pause_enabled = 1;
2409 
2410 			REG_WR(bp, BAR_USTRORM_INTMEM +
2411 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2412 			       pause_enabled);
2413 		}
2414 
2415 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2416 			struct host_port_stats *pstats;
2417 
2418 			pstats = bnx2x_sp(bp, port_stats);
2419 			/* reset old mac stats */
2420 			memset(&(pstats->mac_stx[0]), 0,
2421 			       sizeof(struct mac_stx));
2422 		}
2423 		if (bp->state == BNX2X_STATE_OPEN)
2424 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2425 	}
2426 
2427 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2428 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2429 
2430 		if (cmng_fns != CMNG_FNS_NONE) {
2431 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2432 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2433 		} else
2434 			/* rate shaping and fairness are disabled */
2435 			DP(NETIF_MSG_IFUP,
2436 			   "single function mode without fairness\n");
2437 	}
2438 
2439 	__bnx2x_link_report(bp);
2440 
2441 	if (IS_MF(bp))
2442 		bnx2x_link_sync_notify(bp);
2443 }
2444 
2445 void bnx2x__link_status_update(struct bnx2x *bp)
2446 {
2447 	if (bp->state != BNX2X_STATE_OPEN)
2448 		return;
2449 
2450 	/* read updated dcb configuration */
2451 	bnx2x_dcbx_pmf_update(bp);
2452 
2453 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2454 
2455 	if (bp->link_vars.link_up)
2456 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2457 	else
2458 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2459 
2460 	/* indicate link status */
2461 	bnx2x_link_report(bp);
2462 }
2463 
2464 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2465 				  u16 vlan_val, u8 allowed_prio)
2466 {
2467 	struct bnx2x_func_state_params func_params = {0};
2468 	struct bnx2x_func_afex_update_params *f_update_params =
2469 		&func_params.params.afex_update;
2470 
2471 	func_params.f_obj = &bp->func_obj;
2472 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2473 
2474 	/* no need to wait for RAMROD completion, so don't
2475 	 * set RAMROD_COMP_WAIT flag
2476 	 */
2477 
2478 	f_update_params->vif_id = vifid;
2479 	f_update_params->afex_default_vlan = vlan_val;
2480 	f_update_params->allowed_priorities = allowed_prio;
2481 
2482 	/* if ramrod can not be sent, response to MCP immediately */
2483 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2484 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2485 
2486 	return 0;
2487 }
2488 
2489 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2490 					  u16 vif_index, u8 func_bit_map)
2491 {
2492 	struct bnx2x_func_state_params func_params = {0};
2493 	struct bnx2x_func_afex_viflists_params *update_params =
2494 		&func_params.params.afex_viflists;
2495 	int rc;
2496 	u32 drv_msg_code;
2497 
2498 	/* validate only LIST_SET and LIST_GET are received from switch */
2499 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2500 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2501 			  cmd_type);
2502 
2503 	func_params.f_obj = &bp->func_obj;
2504 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2505 
2506 	/* set parameters according to cmd_type */
2507 	update_params->afex_vif_list_command = cmd_type;
2508 	update_params->vif_list_index = cpu_to_le16(vif_index);
2509 	update_params->func_bit_map =
2510 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2511 	update_params->func_to_clear = 0;
2512 	drv_msg_code =
2513 		(cmd_type == VIF_LIST_RULE_GET) ?
2514 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2515 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2516 
2517 	/* if ramrod can not be sent, respond to MCP immediately for
2518 	 * SET and GET requests (other are not triggered from MCP)
2519 	 */
2520 	rc = bnx2x_func_state_change(bp, &func_params);
2521 	if (rc < 0)
2522 		bnx2x_fw_command(bp, drv_msg_code, 0);
2523 
2524 	return 0;
2525 }
2526 
2527 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2528 {
2529 	struct afex_stats afex_stats;
2530 	u32 func = BP_ABS_FUNC(bp);
2531 	u32 mf_config;
2532 	u16 vlan_val;
2533 	u32 vlan_prio;
2534 	u16 vif_id;
2535 	u8 allowed_prio;
2536 	u8 vlan_mode;
2537 	u32 addr_to_write, vifid, addrs, stats_type, i;
2538 
2539 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2540 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2541 		DP(BNX2X_MSG_MCP,
2542 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2543 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2544 	}
2545 
2546 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2547 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2548 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2549 		DP(BNX2X_MSG_MCP,
2550 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2551 		   vifid, addrs);
2552 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2553 					       addrs);
2554 	}
2555 
2556 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2557 		addr_to_write = SHMEM2_RD(bp,
2558 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2559 		stats_type = SHMEM2_RD(bp,
2560 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2561 
2562 		DP(BNX2X_MSG_MCP,
2563 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2564 		   addr_to_write);
2565 
2566 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2567 
2568 		/* write response to scratchpad, for MCP */
2569 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2570 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2571 			       *(((u32 *)(&afex_stats))+i));
2572 
2573 		/* send ack message to MCP */
2574 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2575 	}
2576 
2577 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2578 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2579 		bp->mf_config[BP_VN(bp)] = mf_config;
2580 		DP(BNX2X_MSG_MCP,
2581 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2582 		   mf_config);
2583 
2584 		/* if VIF_SET is "enabled" */
2585 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2586 			/* set rate limit directly to internal RAM */
2587 			struct cmng_init_input cmng_input;
2588 			struct rate_shaping_vars_per_vn m_rs_vn;
2589 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2590 			u32 addr = BAR_XSTRORM_INTMEM +
2591 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2592 
2593 			bp->mf_config[BP_VN(bp)] = mf_config;
2594 
2595 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2596 			m_rs_vn.vn_counter.rate =
2597 				cmng_input.vnic_max_rate[BP_VN(bp)];
2598 			m_rs_vn.vn_counter.quota =
2599 				(m_rs_vn.vn_counter.rate *
2600 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2601 
2602 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2603 
2604 			/* read relevant values from mf_cfg struct in shmem */
2605 			vif_id =
2606 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2607 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2608 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2609 			vlan_val =
2610 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2611 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2612 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2613 			vlan_prio = (mf_config &
2614 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2615 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2616 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2617 			vlan_mode =
2618 				(MF_CFG_RD(bp,
2619 					   func_mf_config[func].afex_config) &
2620 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2621 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2622 			allowed_prio =
2623 				(MF_CFG_RD(bp,
2624 					   func_mf_config[func].afex_config) &
2625 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2626 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2627 
2628 			/* send ramrod to FW, return in case of failure */
2629 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2630 						   allowed_prio))
2631 				return;
2632 
2633 			bp->afex_def_vlan_tag = vlan_val;
2634 			bp->afex_vlan_mode = vlan_mode;
2635 		} else {
2636 			/* notify link down because BP->flags is disabled */
2637 			bnx2x_link_report(bp);
2638 
2639 			/* send INVALID VIF ramrod to FW */
2640 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2641 
2642 			/* Reset the default afex VLAN */
2643 			bp->afex_def_vlan_tag = -1;
2644 		}
2645 	}
2646 }
2647 
2648 static void bnx2x_pmf_update(struct bnx2x *bp)
2649 {
2650 	int port = BP_PORT(bp);
2651 	u32 val;
2652 
2653 	bp->port.pmf = 1;
2654 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2655 
2656 	/*
2657 	 * We need the mb() to ensure the ordering between the writing to
2658 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2659 	 */
2660 	smp_mb();
2661 
2662 	/* queue a periodic task */
2663 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2664 
2665 	bnx2x_dcbx_pmf_update(bp);
2666 
2667 	/* enable nig attention */
2668 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2669 	if (bp->common.int_block == INT_BLOCK_HC) {
2670 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2671 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2672 	} else if (!CHIP_IS_E1x(bp)) {
2673 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2674 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2675 	}
2676 
2677 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2678 }
2679 
2680 /* end of Link */
2681 
2682 /* slow path */
2683 
2684 /*
2685  * General service functions
2686  */
2687 
2688 /* send the MCP a request, block until there is a reply */
2689 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2690 {
2691 	int mb_idx = BP_FW_MB_IDX(bp);
2692 	u32 seq;
2693 	u32 rc = 0;
2694 	u32 cnt = 1;
2695 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2696 
2697 	mutex_lock(&bp->fw_mb_mutex);
2698 	seq = ++bp->fw_seq;
2699 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2700 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2701 
2702 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2703 			(command | seq), param);
2704 
2705 	do {
2706 		/* let the FW do it's magic ... */
2707 		msleep(delay);
2708 
2709 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2710 
2711 		/* Give the FW up to 5 second (500*10ms) */
2712 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2713 
2714 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2715 	   cnt*delay, rc, seq);
2716 
2717 	/* is this a reply to our command? */
2718 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2719 		rc &= FW_MSG_CODE_MASK;
2720 	else {
2721 		/* FW BUG! */
2722 		BNX2X_ERR("FW failed to respond!\n");
2723 		bnx2x_fw_dump(bp);
2724 		rc = 0;
2725 	}
2726 	mutex_unlock(&bp->fw_mb_mutex);
2727 
2728 	return rc;
2729 }
2730 
2731 
2732 static void storm_memset_func_cfg(struct bnx2x *bp,
2733 				 struct tstorm_eth_function_common_config *tcfg,
2734 				 u16 abs_fid)
2735 {
2736 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2737 
2738 	u32 addr = BAR_TSTRORM_INTMEM +
2739 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2740 
2741 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2742 }
2743 
2744 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2745 {
2746 	if (CHIP_IS_E1x(bp)) {
2747 		struct tstorm_eth_function_common_config tcfg = {0};
2748 
2749 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2750 	}
2751 
2752 	/* Enable the function in the FW */
2753 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2754 	storm_memset_func_en(bp, p->func_id, 1);
2755 
2756 	/* spq */
2757 	if (p->func_flgs & FUNC_FLG_SPQ) {
2758 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2759 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2760 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2761 	}
2762 }
2763 
2764 /**
2765  * bnx2x_get_tx_only_flags - Return common flags
2766  *
2767  * @bp		device handle
2768  * @fp		queue handle
2769  * @zero_stats	TRUE if statistics zeroing is needed
2770  *
2771  * Return the flags that are common for the Tx-only and not normal connections.
2772  */
2773 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2774 					    struct bnx2x_fastpath *fp,
2775 					    bool zero_stats)
2776 {
2777 	unsigned long flags = 0;
2778 
2779 	/* PF driver will always initialize the Queue to an ACTIVE state */
2780 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2781 
2782 	/* tx only connections collect statistics (on the same index as the
2783 	 *  parent connection). The statistics are zeroed when the parent
2784 	 *  connection is initialized.
2785 	 */
2786 
2787 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2788 	if (zero_stats)
2789 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2790 
2791 
2792 	return flags;
2793 }
2794 
2795 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2796 				       struct bnx2x_fastpath *fp,
2797 				       bool leading)
2798 {
2799 	unsigned long flags = 0;
2800 
2801 	/* calculate other queue flags */
2802 	if (IS_MF_SD(bp))
2803 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2804 
2805 	if (IS_FCOE_FP(fp)) {
2806 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2807 		/* For FCoE - force usage of default priority (for afex) */
2808 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2809 	}
2810 
2811 	if (!fp->disable_tpa) {
2812 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2813 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2814 		if (fp->mode == TPA_MODE_GRO)
2815 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2816 	}
2817 
2818 	if (leading) {
2819 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2820 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2821 	}
2822 
2823 	/* Always set HW VLAN stripping */
2824 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2825 
2826 	/* configure silent vlan removal */
2827 	if (IS_MF_AFEX(bp))
2828 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2829 
2830 
2831 	return flags | bnx2x_get_common_flags(bp, fp, true);
2832 }
2833 
2834 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2835 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2836 	u8 cos)
2837 {
2838 	gen_init->stat_id = bnx2x_stats_id(fp);
2839 	gen_init->spcl_id = fp->cl_id;
2840 
2841 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2842 	if (IS_FCOE_FP(fp))
2843 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2844 	else
2845 		gen_init->mtu = bp->dev->mtu;
2846 
2847 	gen_init->cos = cos;
2848 }
2849 
2850 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2851 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2852 	struct bnx2x_rxq_setup_params *rxq_init)
2853 {
2854 	u8 max_sge = 0;
2855 	u16 sge_sz = 0;
2856 	u16 tpa_agg_size = 0;
2857 
2858 	if (!fp->disable_tpa) {
2859 		pause->sge_th_lo = SGE_TH_LO(bp);
2860 		pause->sge_th_hi = SGE_TH_HI(bp);
2861 
2862 		/* validate SGE ring has enough to cross high threshold */
2863 		WARN_ON(bp->dropless_fc &&
2864 				pause->sge_th_hi + FW_PREFETCH_CNT >
2865 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2866 
2867 		tpa_agg_size = min_t(u32,
2868 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2869 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2870 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2871 			SGE_PAGE_SHIFT;
2872 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2873 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2874 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2875 				    0xffff);
2876 	}
2877 
2878 	/* pause - not for e1 */
2879 	if (!CHIP_IS_E1(bp)) {
2880 		pause->bd_th_lo = BD_TH_LO(bp);
2881 		pause->bd_th_hi = BD_TH_HI(bp);
2882 
2883 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2884 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2885 		/*
2886 		 * validate that rings have enough entries to cross
2887 		 * high thresholds
2888 		 */
2889 		WARN_ON(bp->dropless_fc &&
2890 				pause->bd_th_hi + FW_PREFETCH_CNT >
2891 				bp->rx_ring_size);
2892 		WARN_ON(bp->dropless_fc &&
2893 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2894 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2895 
2896 		pause->pri_map = 1;
2897 	}
2898 
2899 	/* rxq setup */
2900 	rxq_init->dscr_map = fp->rx_desc_mapping;
2901 	rxq_init->sge_map = fp->rx_sge_mapping;
2902 	rxq_init->rcq_map = fp->rx_comp_mapping;
2903 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2904 
2905 	/* This should be a maximum number of data bytes that may be
2906 	 * placed on the BD (not including paddings).
2907 	 */
2908 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2909 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2910 
2911 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2912 	rxq_init->tpa_agg_sz = tpa_agg_size;
2913 	rxq_init->sge_buf_sz = sge_sz;
2914 	rxq_init->max_sges_pkt = max_sge;
2915 	rxq_init->rss_engine_id = BP_FUNC(bp);
2916 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2917 
2918 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2919 	 *
2920 	 * For PF Clients it should be the maximum avaliable number.
2921 	 * VF driver(s) may want to define it to a smaller value.
2922 	 */
2923 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2924 
2925 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2926 	rxq_init->fw_sb_id = fp->fw_sb_id;
2927 
2928 	if (IS_FCOE_FP(fp))
2929 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2930 	else
2931 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2932 	/* configure silent vlan removal
2933 	 * if multi function mode is afex, then mask default vlan
2934 	 */
2935 	if (IS_MF_AFEX(bp)) {
2936 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2937 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
2938 	}
2939 }
2940 
2941 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2942 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2943 	u8 cos)
2944 {
2945 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2946 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2947 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2948 	txq_init->fw_sb_id = fp->fw_sb_id;
2949 
2950 	/*
2951 	 * set the tss leading client id for TX classfication ==
2952 	 * leading RSS client id
2953 	 */
2954 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2955 
2956 	if (IS_FCOE_FP(fp)) {
2957 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2958 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2959 	}
2960 }
2961 
2962 static void bnx2x_pf_init(struct bnx2x *bp)
2963 {
2964 	struct bnx2x_func_init_params func_init = {0};
2965 	struct event_ring_data eq_data = { {0} };
2966 	u16 flags;
2967 
2968 	if (!CHIP_IS_E1x(bp)) {
2969 		/* reset IGU PF statistics: MSIX + ATTN */
2970 		/* PF */
2971 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2972 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2973 			   (CHIP_MODE_IS_4_PORT(bp) ?
2974 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2975 		/* ATTN */
2976 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2977 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2978 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2979 			   (CHIP_MODE_IS_4_PORT(bp) ?
2980 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2981 	}
2982 
2983 	/* function setup flags */
2984 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2985 
2986 	/* This flag is relevant for E1x only.
2987 	 * E2 doesn't have a TPA configuration in a function level.
2988 	 */
2989 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2990 
2991 	func_init.func_flgs = flags;
2992 	func_init.pf_id = BP_FUNC(bp);
2993 	func_init.func_id = BP_FUNC(bp);
2994 	func_init.spq_map = bp->spq_mapping;
2995 	func_init.spq_prod = bp->spq_prod_idx;
2996 
2997 	bnx2x_func_init(bp, &func_init);
2998 
2999 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3000 
3001 	/*
3002 	 * Congestion management values depend on the link rate
3003 	 * There is no active link so initial link rate is set to 10 Gbps.
3004 	 * When the link comes up The congestion management values are
3005 	 * re-calculated according to the actual link rate.
3006 	 */
3007 	bp->link_vars.line_speed = SPEED_10000;
3008 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3009 
3010 	/* Only the PMF sets the HW */
3011 	if (bp->port.pmf)
3012 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3013 
3014 	/* init Event Queue */
3015 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3016 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3017 	eq_data.producer = bp->eq_prod;
3018 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3019 	eq_data.sb_id = DEF_SB_ID;
3020 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3021 }
3022 
3023 
3024 static void bnx2x_e1h_disable(struct bnx2x *bp)
3025 {
3026 	int port = BP_PORT(bp);
3027 
3028 	bnx2x_tx_disable(bp);
3029 
3030 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3031 }
3032 
3033 static void bnx2x_e1h_enable(struct bnx2x *bp)
3034 {
3035 	int port = BP_PORT(bp);
3036 
3037 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3038 
3039 	/* Tx queue should be only reenabled */
3040 	netif_tx_wake_all_queues(bp->dev);
3041 
3042 	/*
3043 	 * Should not call netif_carrier_on since it will be called if the link
3044 	 * is up when checking for link state
3045 	 */
3046 }
3047 
3048 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3049 
3050 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3051 {
3052 	struct eth_stats_info *ether_stat =
3053 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3054 
3055 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3056 		ETH_STAT_INFO_VERSION_LEN);
3057 
3058 	bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3059 					DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3060 					ether_stat->mac_local);
3061 
3062 	ether_stat->mtu_size = bp->dev->mtu;
3063 
3064 	if (bp->dev->features & NETIF_F_RXCSUM)
3065 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3066 	if (bp->dev->features & NETIF_F_TSO)
3067 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3068 	ether_stat->feature_flags |= bp->common.boot_mode;
3069 
3070 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3071 
3072 	ether_stat->txq_size = bp->tx_ring_size;
3073 	ether_stat->rxq_size = bp->rx_ring_size;
3074 }
3075 
3076 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3077 {
3078 #ifdef BCM_CNIC
3079 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3080 	struct fcoe_stats_info *fcoe_stat =
3081 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3082 
3083 	memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3084 	       bp->fip_mac, ETH_ALEN);
3085 
3086 	fcoe_stat->qos_priority =
3087 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3088 
3089 	/* insert FCoE stats from ramrod response */
3090 	if (!NO_FCOE(bp)) {
3091 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3092 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3093 			tstorm_queue_statistics;
3094 
3095 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3096 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3097 			xstorm_queue_statistics;
3098 
3099 		struct fcoe_statistics_params *fw_fcoe_stat =
3100 			&bp->fw_stats_data->fcoe;
3101 
3102 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3103 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3104 
3105 		ADD_64(fcoe_stat->rx_bytes_hi,
3106 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3107 		       fcoe_stat->rx_bytes_lo,
3108 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3109 
3110 		ADD_64(fcoe_stat->rx_bytes_hi,
3111 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3112 		       fcoe_stat->rx_bytes_lo,
3113 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3114 
3115 		ADD_64(fcoe_stat->rx_bytes_hi,
3116 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3117 		       fcoe_stat->rx_bytes_lo,
3118 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3119 
3120 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3121 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3122 
3123 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3124 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3125 
3126 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3127 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3128 
3129 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3130 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3131 
3132 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3133 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3134 
3135 		ADD_64(fcoe_stat->tx_bytes_hi,
3136 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3137 		       fcoe_stat->tx_bytes_lo,
3138 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3139 
3140 		ADD_64(fcoe_stat->tx_bytes_hi,
3141 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3142 		       fcoe_stat->tx_bytes_lo,
3143 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3144 
3145 		ADD_64(fcoe_stat->tx_bytes_hi,
3146 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3147 		       fcoe_stat->tx_bytes_lo,
3148 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3149 
3150 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3151 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3152 
3153 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3154 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3155 
3156 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3157 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3158 
3159 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3160 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3161 	}
3162 
3163 	/* ask L5 driver to add data to the struct */
3164 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3165 #endif
3166 }
3167 
3168 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3169 {
3170 #ifdef BCM_CNIC
3171 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3172 	struct iscsi_stats_info *iscsi_stat =
3173 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3174 
3175 	memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3176 	       bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3177 
3178 	iscsi_stat->qos_priority =
3179 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3180 
3181 	/* ask L5 driver to add data to the struct */
3182 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3183 #endif
3184 }
3185 
3186 /* called due to MCP event (on pmf):
3187  *	reread new bandwidth configuration
3188  *	configure FW
3189  *	notify others function about the change
3190  */
3191 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3192 {
3193 	if (bp->link_vars.link_up) {
3194 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3195 		bnx2x_link_sync_notify(bp);
3196 	}
3197 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3198 }
3199 
3200 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3201 {
3202 	bnx2x_config_mf_bw(bp);
3203 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3204 }
3205 
3206 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3207 {
3208 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3209 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3210 }
3211 
3212 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3213 {
3214 	enum drv_info_opcode op_code;
3215 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3216 
3217 	/* if drv_info version supported by MFW doesn't match - send NACK */
3218 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3219 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3220 		return;
3221 	}
3222 
3223 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3224 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3225 
3226 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3227 	       sizeof(union drv_info_to_mcp));
3228 
3229 	switch (op_code) {
3230 	case ETH_STATS_OPCODE:
3231 		bnx2x_drv_info_ether_stat(bp);
3232 		break;
3233 	case FCOE_STATS_OPCODE:
3234 		bnx2x_drv_info_fcoe_stat(bp);
3235 		break;
3236 	case ISCSI_STATS_OPCODE:
3237 		bnx2x_drv_info_iscsi_stat(bp);
3238 		break;
3239 	default:
3240 		/* if op code isn't supported - send NACK */
3241 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3242 		return;
3243 	}
3244 
3245 	/* if we got drv_info attn from MFW then these fields are defined in
3246 	 * shmem2 for sure
3247 	 */
3248 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3249 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3250 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3251 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3252 
3253 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3254 }
3255 
3256 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3257 {
3258 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3259 
3260 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3261 
3262 		/*
3263 		 * This is the only place besides the function initialization
3264 		 * where the bp->flags can change so it is done without any
3265 		 * locks
3266 		 */
3267 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3268 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3269 			bp->flags |= MF_FUNC_DIS;
3270 
3271 			bnx2x_e1h_disable(bp);
3272 		} else {
3273 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3274 			bp->flags &= ~MF_FUNC_DIS;
3275 
3276 			bnx2x_e1h_enable(bp);
3277 		}
3278 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3279 	}
3280 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3281 		bnx2x_config_mf_bw(bp);
3282 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3283 	}
3284 
3285 	/* Report results to MCP */
3286 	if (dcc_event)
3287 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3288 	else
3289 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3290 }
3291 
3292 /* must be called under the spq lock */
3293 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3294 {
3295 	struct eth_spe *next_spe = bp->spq_prod_bd;
3296 
3297 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3298 		bp->spq_prod_bd = bp->spq;
3299 		bp->spq_prod_idx = 0;
3300 		DP(BNX2X_MSG_SP, "end of spq\n");
3301 	} else {
3302 		bp->spq_prod_bd++;
3303 		bp->spq_prod_idx++;
3304 	}
3305 	return next_spe;
3306 }
3307 
3308 /* must be called under the spq lock */
3309 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3310 {
3311 	int func = BP_FUNC(bp);
3312 
3313 	/*
3314 	 * Make sure that BD data is updated before writing the producer:
3315 	 * BD data is written to the memory, the producer is read from the
3316 	 * memory, thus we need a full memory barrier to ensure the ordering.
3317 	 */
3318 	mb();
3319 
3320 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3321 		 bp->spq_prod_idx);
3322 	mmiowb();
3323 }
3324 
3325 /**
3326  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3327  *
3328  * @cmd:	command to check
3329  * @cmd_type:	command type
3330  */
3331 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3332 {
3333 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3334 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3335 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3336 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3337 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3338 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3339 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3340 		return true;
3341 	else
3342 		return false;
3343 
3344 }
3345 
3346 
3347 /**
3348  * bnx2x_sp_post - place a single command on an SP ring
3349  *
3350  * @bp:		driver handle
3351  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3352  * @cid:	SW CID the command is related to
3353  * @data_hi:	command private data address (high 32 bits)
3354  * @data_lo:	command private data address (low 32 bits)
3355  * @cmd_type:	command type (e.g. NONE, ETH)
3356  *
3357  * SP data is handled as if it's always an address pair, thus data fields are
3358  * not swapped to little endian in upper functions. Instead this function swaps
3359  * data as if it's two u32 fields.
3360  */
3361 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3362 		  u32 data_hi, u32 data_lo, int cmd_type)
3363 {
3364 	struct eth_spe *spe;
3365 	u16 type;
3366 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3367 
3368 #ifdef BNX2X_STOP_ON_ERROR
3369 	if (unlikely(bp->panic)) {
3370 		BNX2X_ERR("Can't post SP when there is panic\n");
3371 		return -EIO;
3372 	}
3373 #endif
3374 
3375 	spin_lock_bh(&bp->spq_lock);
3376 
3377 	if (common) {
3378 		if (!atomic_read(&bp->eq_spq_left)) {
3379 			BNX2X_ERR("BUG! EQ ring full!\n");
3380 			spin_unlock_bh(&bp->spq_lock);
3381 			bnx2x_panic();
3382 			return -EBUSY;
3383 		}
3384 	} else if (!atomic_read(&bp->cq_spq_left)) {
3385 			BNX2X_ERR("BUG! SPQ ring full!\n");
3386 			spin_unlock_bh(&bp->spq_lock);
3387 			bnx2x_panic();
3388 			return -EBUSY;
3389 	}
3390 
3391 	spe = bnx2x_sp_get_next(bp);
3392 
3393 	/* CID needs port number to be encoded int it */
3394 	spe->hdr.conn_and_cmd_data =
3395 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3396 				    HW_CID(bp, cid));
3397 
3398 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3399 
3400 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3401 		 SPE_HDR_FUNCTION_ID);
3402 
3403 	spe->hdr.type = cpu_to_le16(type);
3404 
3405 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3406 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3407 
3408 	/*
3409 	 * It's ok if the actual decrement is issued towards the memory
3410 	 * somewhere between the spin_lock and spin_unlock. Thus no
3411 	 * more explict memory barrier is needed.
3412 	 */
3413 	if (common)
3414 		atomic_dec(&bp->eq_spq_left);
3415 	else
3416 		atomic_dec(&bp->cq_spq_left);
3417 
3418 
3419 	DP(BNX2X_MSG_SP,
3420 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3421 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3422 	   (u32)(U64_LO(bp->spq_mapping) +
3423 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3424 	   HW_CID(bp, cid), data_hi, data_lo, type,
3425 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3426 
3427 	bnx2x_sp_prod_update(bp);
3428 	spin_unlock_bh(&bp->spq_lock);
3429 	return 0;
3430 }
3431 
3432 /* acquire split MCP access lock register */
3433 static int bnx2x_acquire_alr(struct bnx2x *bp)
3434 {
3435 	u32 j, val;
3436 	int rc = 0;
3437 
3438 	might_sleep();
3439 	for (j = 0; j < 1000; j++) {
3440 		val = (1UL << 31);
3441 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3442 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3443 		if (val & (1L << 31))
3444 			break;
3445 
3446 		msleep(5);
3447 	}
3448 	if (!(val & (1L << 31))) {
3449 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3450 		rc = -EBUSY;
3451 	}
3452 
3453 	return rc;
3454 }
3455 
3456 /* release split MCP access lock register */
3457 static void bnx2x_release_alr(struct bnx2x *bp)
3458 {
3459 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3460 }
3461 
3462 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3463 #define BNX2X_DEF_SB_IDX	0x0002
3464 
3465 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3466 {
3467 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3468 	u16 rc = 0;
3469 
3470 	barrier(); /* status block is written to by the chip */
3471 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3472 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3473 		rc |= BNX2X_DEF_SB_ATT_IDX;
3474 	}
3475 
3476 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3477 		bp->def_idx = def_sb->sp_sb.running_index;
3478 		rc |= BNX2X_DEF_SB_IDX;
3479 	}
3480 
3481 	/* Do not reorder: indecies reading should complete before handling */
3482 	barrier();
3483 	return rc;
3484 }
3485 
3486 /*
3487  * slow path service functions
3488  */
3489 
3490 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3491 {
3492 	int port = BP_PORT(bp);
3493 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3494 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3495 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3496 				       NIG_REG_MASK_INTERRUPT_PORT0;
3497 	u32 aeu_mask;
3498 	u32 nig_mask = 0;
3499 	u32 reg_addr;
3500 
3501 	if (bp->attn_state & asserted)
3502 		BNX2X_ERR("IGU ERROR\n");
3503 
3504 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3505 	aeu_mask = REG_RD(bp, aeu_addr);
3506 
3507 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3508 	   aeu_mask, asserted);
3509 	aeu_mask &= ~(asserted & 0x3ff);
3510 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3511 
3512 	REG_WR(bp, aeu_addr, aeu_mask);
3513 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3514 
3515 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3516 	bp->attn_state |= asserted;
3517 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3518 
3519 	if (asserted & ATTN_HARD_WIRED_MASK) {
3520 		if (asserted & ATTN_NIG_FOR_FUNC) {
3521 
3522 			bnx2x_acquire_phy_lock(bp);
3523 
3524 			/* save nig interrupt mask */
3525 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3526 
3527 			/* If nig_mask is not set, no need to call the update
3528 			 * function.
3529 			 */
3530 			if (nig_mask) {
3531 				REG_WR(bp, nig_int_mask_addr, 0);
3532 
3533 				bnx2x_link_attn(bp);
3534 			}
3535 
3536 			/* handle unicore attn? */
3537 		}
3538 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3539 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3540 
3541 		if (asserted & GPIO_2_FUNC)
3542 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3543 
3544 		if (asserted & GPIO_3_FUNC)
3545 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3546 
3547 		if (asserted & GPIO_4_FUNC)
3548 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3549 
3550 		if (port == 0) {
3551 			if (asserted & ATTN_GENERAL_ATTN_1) {
3552 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3553 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3554 			}
3555 			if (asserted & ATTN_GENERAL_ATTN_2) {
3556 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3557 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3558 			}
3559 			if (asserted & ATTN_GENERAL_ATTN_3) {
3560 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3561 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3562 			}
3563 		} else {
3564 			if (asserted & ATTN_GENERAL_ATTN_4) {
3565 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3566 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3567 			}
3568 			if (asserted & ATTN_GENERAL_ATTN_5) {
3569 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3570 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3571 			}
3572 			if (asserted & ATTN_GENERAL_ATTN_6) {
3573 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3574 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3575 			}
3576 		}
3577 
3578 	} /* if hardwired */
3579 
3580 	if (bp->common.int_block == INT_BLOCK_HC)
3581 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3582 			    COMMAND_REG_ATTN_BITS_SET);
3583 	else
3584 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3585 
3586 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3587 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3588 	REG_WR(bp, reg_addr, asserted);
3589 
3590 	/* now set back the mask */
3591 	if (asserted & ATTN_NIG_FOR_FUNC) {
3592 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3593 		bnx2x_release_phy_lock(bp);
3594 	}
3595 }
3596 
3597 static void bnx2x_fan_failure(struct bnx2x *bp)
3598 {
3599 	int port = BP_PORT(bp);
3600 	u32 ext_phy_config;
3601 	/* mark the failure */
3602 	ext_phy_config =
3603 		SHMEM_RD(bp,
3604 			 dev_info.port_hw_config[port].external_phy_config);
3605 
3606 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3607 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3608 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3609 		 ext_phy_config);
3610 
3611 	/* log the failure */
3612 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3613 			    "Please contact OEM Support for assistance\n");
3614 
3615 	/*
3616 	 * Scheudle device reset (unload)
3617 	 * This is due to some boards consuming sufficient power when driver is
3618 	 * up to overheat if fan fails.
3619 	 */
3620 	smp_mb__before_clear_bit();
3621 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3622 	smp_mb__after_clear_bit();
3623 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3624 
3625 }
3626 
3627 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3628 {
3629 	int port = BP_PORT(bp);
3630 	int reg_offset;
3631 	u32 val;
3632 
3633 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3634 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3635 
3636 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3637 
3638 		val = REG_RD(bp, reg_offset);
3639 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3640 		REG_WR(bp, reg_offset, val);
3641 
3642 		BNX2X_ERR("SPIO5 hw attention\n");
3643 
3644 		/* Fan failure attention */
3645 		bnx2x_hw_reset_phy(&bp->link_params);
3646 		bnx2x_fan_failure(bp);
3647 	}
3648 
3649 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3650 		bnx2x_acquire_phy_lock(bp);
3651 		bnx2x_handle_module_detect_int(&bp->link_params);
3652 		bnx2x_release_phy_lock(bp);
3653 	}
3654 
3655 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3656 
3657 		val = REG_RD(bp, reg_offset);
3658 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3659 		REG_WR(bp, reg_offset, val);
3660 
3661 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3662 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3663 		bnx2x_panic();
3664 	}
3665 }
3666 
3667 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3668 {
3669 	u32 val;
3670 
3671 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3672 
3673 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3674 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3675 		/* DORQ discard attention */
3676 		if (val & 0x2)
3677 			BNX2X_ERR("FATAL error from DORQ\n");
3678 	}
3679 
3680 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3681 
3682 		int port = BP_PORT(bp);
3683 		int reg_offset;
3684 
3685 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3686 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3687 
3688 		val = REG_RD(bp, reg_offset);
3689 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3690 		REG_WR(bp, reg_offset, val);
3691 
3692 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3693 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3694 		bnx2x_panic();
3695 	}
3696 }
3697 
3698 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3699 {
3700 	u32 val;
3701 
3702 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3703 
3704 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3705 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3706 		/* CFC error attention */
3707 		if (val & 0x2)
3708 			BNX2X_ERR("FATAL error from CFC\n");
3709 	}
3710 
3711 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3712 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3713 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3714 		/* RQ_USDMDP_FIFO_OVERFLOW */
3715 		if (val & 0x18000)
3716 			BNX2X_ERR("FATAL error from PXP\n");
3717 
3718 		if (!CHIP_IS_E1x(bp)) {
3719 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3720 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3721 		}
3722 	}
3723 
3724 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3725 
3726 		int port = BP_PORT(bp);
3727 		int reg_offset;
3728 
3729 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3730 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3731 
3732 		val = REG_RD(bp, reg_offset);
3733 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3734 		REG_WR(bp, reg_offset, val);
3735 
3736 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3737 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3738 		bnx2x_panic();
3739 	}
3740 }
3741 
3742 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3743 {
3744 	u32 val;
3745 
3746 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3747 
3748 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3749 			int func = BP_FUNC(bp);
3750 
3751 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3752 			bnx2x_read_mf_cfg(bp);
3753 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3754 					func_mf_config[BP_ABS_FUNC(bp)].config);
3755 			val = SHMEM_RD(bp,
3756 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3757 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3758 				bnx2x_dcc_event(bp,
3759 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3760 
3761 			if (val & DRV_STATUS_SET_MF_BW)
3762 				bnx2x_set_mf_bw(bp);
3763 
3764 			if (val & DRV_STATUS_DRV_INFO_REQ)
3765 				bnx2x_handle_drv_info_req(bp);
3766 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3767 				bnx2x_pmf_update(bp);
3768 
3769 			if (bp->port.pmf &&
3770 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3771 				bp->dcbx_enabled > 0)
3772 				/* start dcbx state machine */
3773 				bnx2x_dcbx_set_params(bp,
3774 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3775 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3776 				bnx2x_handle_afex_cmd(bp,
3777 					val & DRV_STATUS_AFEX_EVENT_MASK);
3778 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3779 				bnx2x_handle_eee_event(bp);
3780 			if (bp->link_vars.periodic_flags &
3781 			    PERIODIC_FLAGS_LINK_EVENT) {
3782 				/*  sync with link */
3783 				bnx2x_acquire_phy_lock(bp);
3784 				bp->link_vars.periodic_flags &=
3785 					~PERIODIC_FLAGS_LINK_EVENT;
3786 				bnx2x_release_phy_lock(bp);
3787 				if (IS_MF(bp))
3788 					bnx2x_link_sync_notify(bp);
3789 				bnx2x_link_report(bp);
3790 			}
3791 			/* Always call it here: bnx2x_link_report() will
3792 			 * prevent the link indication duplication.
3793 			 */
3794 			bnx2x__link_status_update(bp);
3795 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3796 
3797 			BNX2X_ERR("MC assert!\n");
3798 			bnx2x_mc_assert(bp);
3799 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3800 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3801 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3802 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3803 			bnx2x_panic();
3804 
3805 		} else if (attn & BNX2X_MCP_ASSERT) {
3806 
3807 			BNX2X_ERR("MCP assert!\n");
3808 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3809 			bnx2x_fw_dump(bp);
3810 
3811 		} else
3812 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3813 	}
3814 
3815 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3816 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3817 		if (attn & BNX2X_GRC_TIMEOUT) {
3818 			val = CHIP_IS_E1(bp) ? 0 :
3819 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3820 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3821 		}
3822 		if (attn & BNX2X_GRC_RSV) {
3823 			val = CHIP_IS_E1(bp) ? 0 :
3824 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3825 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3826 		}
3827 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3828 	}
3829 }
3830 
3831 /*
3832  * Bits map:
3833  * 0-7   - Engine0 load counter.
3834  * 8-15  - Engine1 load counter.
3835  * 16    - Engine0 RESET_IN_PROGRESS bit.
3836  * 17    - Engine1 RESET_IN_PROGRESS bit.
3837  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3838  *         on the engine
3839  * 19    - Engine1 ONE_IS_LOADED.
3840  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3841  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3842  *         just the one belonging to its engine).
3843  *
3844  */
3845 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3846 
3847 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3848 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3849 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3850 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3851 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3852 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3853 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3854 
3855 /*
3856  * Set the GLOBAL_RESET bit.
3857  *
3858  * Should be run under rtnl lock
3859  */
3860 void bnx2x_set_reset_global(struct bnx2x *bp)
3861 {
3862 	u32 val;
3863 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3864 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3865 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3866 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3867 }
3868 
3869 /*
3870  * Clear the GLOBAL_RESET bit.
3871  *
3872  * Should be run under rtnl lock
3873  */
3874 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3875 {
3876 	u32 val;
3877 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3878 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3879 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3880 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3881 }
3882 
3883 /*
3884  * Checks the GLOBAL_RESET bit.
3885  *
3886  * should be run under rtnl lock
3887  */
3888 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3889 {
3890 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3891 
3892 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3893 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3894 }
3895 
3896 /*
3897  * Clear RESET_IN_PROGRESS bit for the current engine.
3898  *
3899  * Should be run under rtnl lock
3900  */
3901 static void bnx2x_set_reset_done(struct bnx2x *bp)
3902 {
3903 	u32 val;
3904 	u32 bit = BP_PATH(bp) ?
3905 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3906 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3907 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3908 
3909 	/* Clear the bit */
3910 	val &= ~bit;
3911 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3912 
3913 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3914 }
3915 
3916 /*
3917  * Set RESET_IN_PROGRESS for the current engine.
3918  *
3919  * should be run under rtnl lock
3920  */
3921 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3922 {
3923 	u32 val;
3924 	u32 bit = BP_PATH(bp) ?
3925 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3926 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3927 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3928 
3929 	/* Set the bit */
3930 	val |= bit;
3931 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3932 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3933 }
3934 
3935 /*
3936  * Checks the RESET_IN_PROGRESS bit for the given engine.
3937  * should be run under rtnl lock
3938  */
3939 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3940 {
3941 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3942 	u32 bit = engine ?
3943 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3944 
3945 	/* return false if bit is set */
3946 	return (val & bit) ? false : true;
3947 }
3948 
3949 /*
3950  * set pf load for the current pf.
3951  *
3952  * should be run under rtnl lock
3953  */
3954 void bnx2x_set_pf_load(struct bnx2x *bp)
3955 {
3956 	u32 val1, val;
3957 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3958 			     BNX2X_PATH0_LOAD_CNT_MASK;
3959 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3960 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3961 
3962 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3963 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3964 
3965 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3966 
3967 	/* get the current counter value */
3968 	val1 = (val & mask) >> shift;
3969 
3970 	/* set bit of that PF */
3971 	val1 |= (1 << bp->pf_num);
3972 
3973 	/* clear the old value */
3974 	val &= ~mask;
3975 
3976 	/* set the new one */
3977 	val |= ((val1 << shift) & mask);
3978 
3979 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3980 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3981 }
3982 
3983 /**
3984  * bnx2x_clear_pf_load - clear pf load mark
3985  *
3986  * @bp:		driver handle
3987  *
3988  * Should be run under rtnl lock.
3989  * Decrements the load counter for the current engine. Returns
3990  * whether other functions are still loaded
3991  */
3992 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3993 {
3994 	u32 val1, val;
3995 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3996 			     BNX2X_PATH0_LOAD_CNT_MASK;
3997 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3998 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3999 
4000 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4001 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4002 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4003 
4004 	/* get the current counter value */
4005 	val1 = (val & mask) >> shift;
4006 
4007 	/* clear bit of that PF */
4008 	val1 &= ~(1 << bp->pf_num);
4009 
4010 	/* clear the old value */
4011 	val &= ~mask;
4012 
4013 	/* set the new one */
4014 	val |= ((val1 << shift) & mask);
4015 
4016 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4017 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4018 	return val1 != 0;
4019 }
4020 
4021 /*
4022  * Read the load status for the current engine.
4023  *
4024  * should be run under rtnl lock
4025  */
4026 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4027 {
4028 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4029 			     BNX2X_PATH0_LOAD_CNT_MASK);
4030 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4031 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4032 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4033 
4034 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4035 
4036 	val = (val & mask) >> shift;
4037 
4038 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4039 	   engine, val);
4040 
4041 	return val != 0;
4042 }
4043 
4044 static void _print_next_block(int idx, const char *blk)
4045 {
4046 	pr_cont("%s%s", idx ? ", " : "", blk);
4047 }
4048 
4049 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4050 					   bool print)
4051 {
4052 	int i = 0;
4053 	u32 cur_bit = 0;
4054 	for (i = 0; sig; i++) {
4055 		cur_bit = ((u32)0x1 << i);
4056 		if (sig & cur_bit) {
4057 			switch (cur_bit) {
4058 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4059 				if (print)
4060 					_print_next_block(par_num++, "BRB");
4061 				break;
4062 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4063 				if (print)
4064 					_print_next_block(par_num++, "PARSER");
4065 				break;
4066 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4067 				if (print)
4068 					_print_next_block(par_num++, "TSDM");
4069 				break;
4070 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4071 				if (print)
4072 					_print_next_block(par_num++,
4073 							  "SEARCHER");
4074 				break;
4075 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4076 				if (print)
4077 					_print_next_block(par_num++, "TCM");
4078 				break;
4079 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4080 				if (print)
4081 					_print_next_block(par_num++, "TSEMI");
4082 				break;
4083 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4084 				if (print)
4085 					_print_next_block(par_num++, "XPB");
4086 				break;
4087 			}
4088 
4089 			/* Clear the bit */
4090 			sig &= ~cur_bit;
4091 		}
4092 	}
4093 
4094 	return par_num;
4095 }
4096 
4097 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4098 					   bool *global, bool print)
4099 {
4100 	int i = 0;
4101 	u32 cur_bit = 0;
4102 	for (i = 0; sig; i++) {
4103 		cur_bit = ((u32)0x1 << i);
4104 		if (sig & cur_bit) {
4105 			switch (cur_bit) {
4106 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4107 				if (print)
4108 					_print_next_block(par_num++, "PBF");
4109 				break;
4110 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4111 				if (print)
4112 					_print_next_block(par_num++, "QM");
4113 				break;
4114 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4115 				if (print)
4116 					_print_next_block(par_num++, "TM");
4117 				break;
4118 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4119 				if (print)
4120 					_print_next_block(par_num++, "XSDM");
4121 				break;
4122 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4123 				if (print)
4124 					_print_next_block(par_num++, "XCM");
4125 				break;
4126 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4127 				if (print)
4128 					_print_next_block(par_num++, "XSEMI");
4129 				break;
4130 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4131 				if (print)
4132 					_print_next_block(par_num++,
4133 							  "DOORBELLQ");
4134 				break;
4135 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4136 				if (print)
4137 					_print_next_block(par_num++, "NIG");
4138 				break;
4139 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4140 				if (print)
4141 					_print_next_block(par_num++,
4142 							  "VAUX PCI CORE");
4143 				*global = true;
4144 				break;
4145 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4146 				if (print)
4147 					_print_next_block(par_num++, "DEBUG");
4148 				break;
4149 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4150 				if (print)
4151 					_print_next_block(par_num++, "USDM");
4152 				break;
4153 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4154 				if (print)
4155 					_print_next_block(par_num++, "UCM");
4156 				break;
4157 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4158 				if (print)
4159 					_print_next_block(par_num++, "USEMI");
4160 				break;
4161 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4162 				if (print)
4163 					_print_next_block(par_num++, "UPB");
4164 				break;
4165 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4166 				if (print)
4167 					_print_next_block(par_num++, "CSDM");
4168 				break;
4169 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4170 				if (print)
4171 					_print_next_block(par_num++, "CCM");
4172 				break;
4173 			}
4174 
4175 			/* Clear the bit */
4176 			sig &= ~cur_bit;
4177 		}
4178 	}
4179 
4180 	return par_num;
4181 }
4182 
4183 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4184 					   bool print)
4185 {
4186 	int i = 0;
4187 	u32 cur_bit = 0;
4188 	for (i = 0; sig; i++) {
4189 		cur_bit = ((u32)0x1 << i);
4190 		if (sig & cur_bit) {
4191 			switch (cur_bit) {
4192 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4193 				if (print)
4194 					_print_next_block(par_num++, "CSEMI");
4195 				break;
4196 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4197 				if (print)
4198 					_print_next_block(par_num++, "PXP");
4199 				break;
4200 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4201 				if (print)
4202 					_print_next_block(par_num++,
4203 					"PXPPCICLOCKCLIENT");
4204 				break;
4205 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4206 				if (print)
4207 					_print_next_block(par_num++, "CFC");
4208 				break;
4209 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4210 				if (print)
4211 					_print_next_block(par_num++, "CDU");
4212 				break;
4213 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4214 				if (print)
4215 					_print_next_block(par_num++, "DMAE");
4216 				break;
4217 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4218 				if (print)
4219 					_print_next_block(par_num++, "IGU");
4220 				break;
4221 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4222 				if (print)
4223 					_print_next_block(par_num++, "MISC");
4224 				break;
4225 			}
4226 
4227 			/* Clear the bit */
4228 			sig &= ~cur_bit;
4229 		}
4230 	}
4231 
4232 	return par_num;
4233 }
4234 
4235 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4236 					   bool *global, bool print)
4237 {
4238 	int i = 0;
4239 	u32 cur_bit = 0;
4240 	for (i = 0; sig; i++) {
4241 		cur_bit = ((u32)0x1 << i);
4242 		if (sig & cur_bit) {
4243 			switch (cur_bit) {
4244 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4245 				if (print)
4246 					_print_next_block(par_num++, "MCP ROM");
4247 				*global = true;
4248 				break;
4249 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4250 				if (print)
4251 					_print_next_block(par_num++,
4252 							  "MCP UMP RX");
4253 				*global = true;
4254 				break;
4255 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4256 				if (print)
4257 					_print_next_block(par_num++,
4258 							  "MCP UMP TX");
4259 				*global = true;
4260 				break;
4261 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4262 				if (print)
4263 					_print_next_block(par_num++,
4264 							  "MCP SCPAD");
4265 				*global = true;
4266 				break;
4267 			}
4268 
4269 			/* Clear the bit */
4270 			sig &= ~cur_bit;
4271 		}
4272 	}
4273 
4274 	return par_num;
4275 }
4276 
4277 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4278 					   bool print)
4279 {
4280 	int i = 0;
4281 	u32 cur_bit = 0;
4282 	for (i = 0; sig; i++) {
4283 		cur_bit = ((u32)0x1 << i);
4284 		if (sig & cur_bit) {
4285 			switch (cur_bit) {
4286 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4287 				if (print)
4288 					_print_next_block(par_num++, "PGLUE_B");
4289 				break;
4290 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4291 				if (print)
4292 					_print_next_block(par_num++, "ATC");
4293 				break;
4294 			}
4295 
4296 			/* Clear the bit */
4297 			sig &= ~cur_bit;
4298 		}
4299 	}
4300 
4301 	return par_num;
4302 }
4303 
4304 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4305 			      u32 *sig)
4306 {
4307 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4308 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4309 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4310 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4311 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4312 		int par_num = 0;
4313 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4314 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4315 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4316 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4317 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4318 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4319 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4320 		if (print)
4321 			netdev_err(bp->dev,
4322 				   "Parity errors detected in blocks: ");
4323 		par_num = bnx2x_check_blocks_with_parity0(
4324 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4325 		par_num = bnx2x_check_blocks_with_parity1(
4326 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4327 		par_num = bnx2x_check_blocks_with_parity2(
4328 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4329 		par_num = bnx2x_check_blocks_with_parity3(
4330 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4331 		par_num = bnx2x_check_blocks_with_parity4(
4332 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4333 
4334 		if (print)
4335 			pr_cont("\n");
4336 
4337 		return true;
4338 	} else
4339 		return false;
4340 }
4341 
4342 /**
4343  * bnx2x_chk_parity_attn - checks for parity attentions.
4344  *
4345  * @bp:		driver handle
4346  * @global:	true if there was a global attention
4347  * @print:	show parity attention in syslog
4348  */
4349 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4350 {
4351 	struct attn_route attn = { {0} };
4352 	int port = BP_PORT(bp);
4353 
4354 	attn.sig[0] = REG_RD(bp,
4355 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4356 			     port*4);
4357 	attn.sig[1] = REG_RD(bp,
4358 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4359 			     port*4);
4360 	attn.sig[2] = REG_RD(bp,
4361 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4362 			     port*4);
4363 	attn.sig[3] = REG_RD(bp,
4364 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4365 			     port*4);
4366 
4367 	if (!CHIP_IS_E1x(bp))
4368 		attn.sig[4] = REG_RD(bp,
4369 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4370 				     port*4);
4371 
4372 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4373 }
4374 
4375 
4376 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4377 {
4378 	u32 val;
4379 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4380 
4381 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4382 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4383 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4384 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4385 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4386 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4387 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4388 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4389 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4390 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4391 		if (val &
4392 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4393 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4394 		if (val &
4395 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4396 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4397 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4398 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4399 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4400 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4401 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4402 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4403 	}
4404 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4405 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4406 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4407 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4408 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4409 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4410 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4411 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4412 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4413 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4414 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4415 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4416 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4417 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4418 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4419 	}
4420 
4421 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4422 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4423 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4424 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4425 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4426 	}
4427 
4428 }
4429 
4430 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4431 {
4432 	struct attn_route attn, *group_mask;
4433 	int port = BP_PORT(bp);
4434 	int index;
4435 	u32 reg_addr;
4436 	u32 val;
4437 	u32 aeu_mask;
4438 	bool global = false;
4439 
4440 	/* need to take HW lock because MCP or other port might also
4441 	   try to handle this event */
4442 	bnx2x_acquire_alr(bp);
4443 
4444 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4445 #ifndef BNX2X_STOP_ON_ERROR
4446 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4447 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4448 		/* Disable HW interrupts */
4449 		bnx2x_int_disable(bp);
4450 		/* In case of parity errors don't handle attentions so that
4451 		 * other function would "see" parity errors.
4452 		 */
4453 #else
4454 		bnx2x_panic();
4455 #endif
4456 		bnx2x_release_alr(bp);
4457 		return;
4458 	}
4459 
4460 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4461 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4462 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4463 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4464 	if (!CHIP_IS_E1x(bp))
4465 		attn.sig[4] =
4466 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4467 	else
4468 		attn.sig[4] = 0;
4469 
4470 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4471 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4472 
4473 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4474 		if (deasserted & (1 << index)) {
4475 			group_mask = &bp->attn_group[index];
4476 
4477 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4478 			   index,
4479 			   group_mask->sig[0], group_mask->sig[1],
4480 			   group_mask->sig[2], group_mask->sig[3],
4481 			   group_mask->sig[4]);
4482 
4483 			bnx2x_attn_int_deasserted4(bp,
4484 					attn.sig[4] & group_mask->sig[4]);
4485 			bnx2x_attn_int_deasserted3(bp,
4486 					attn.sig[3] & group_mask->sig[3]);
4487 			bnx2x_attn_int_deasserted1(bp,
4488 					attn.sig[1] & group_mask->sig[1]);
4489 			bnx2x_attn_int_deasserted2(bp,
4490 					attn.sig[2] & group_mask->sig[2]);
4491 			bnx2x_attn_int_deasserted0(bp,
4492 					attn.sig[0] & group_mask->sig[0]);
4493 		}
4494 	}
4495 
4496 	bnx2x_release_alr(bp);
4497 
4498 	if (bp->common.int_block == INT_BLOCK_HC)
4499 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4500 			    COMMAND_REG_ATTN_BITS_CLR);
4501 	else
4502 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4503 
4504 	val = ~deasserted;
4505 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4506 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4507 	REG_WR(bp, reg_addr, val);
4508 
4509 	if (~bp->attn_state & deasserted)
4510 		BNX2X_ERR("IGU ERROR\n");
4511 
4512 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4513 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4514 
4515 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4516 	aeu_mask = REG_RD(bp, reg_addr);
4517 
4518 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4519 	   aeu_mask, deasserted);
4520 	aeu_mask |= (deasserted & 0x3ff);
4521 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4522 
4523 	REG_WR(bp, reg_addr, aeu_mask);
4524 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4525 
4526 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4527 	bp->attn_state &= ~deasserted;
4528 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4529 }
4530 
4531 static void bnx2x_attn_int(struct bnx2x *bp)
4532 {
4533 	/* read local copy of bits */
4534 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4535 								attn_bits);
4536 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4537 								attn_bits_ack);
4538 	u32 attn_state = bp->attn_state;
4539 
4540 	/* look for changed bits */
4541 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4542 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4543 
4544 	DP(NETIF_MSG_HW,
4545 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4546 	   attn_bits, attn_ack, asserted, deasserted);
4547 
4548 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4549 		BNX2X_ERR("BAD attention state\n");
4550 
4551 	/* handle bits that were raised */
4552 	if (asserted)
4553 		bnx2x_attn_int_asserted(bp, asserted);
4554 
4555 	if (deasserted)
4556 		bnx2x_attn_int_deasserted(bp, deasserted);
4557 }
4558 
4559 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4560 		      u16 index, u8 op, u8 update)
4561 {
4562 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4563 
4564 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4565 			     igu_addr);
4566 }
4567 
4568 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4569 {
4570 	/* No memory barriers */
4571 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4572 	mmiowb(); /* keep prod updates ordered */
4573 }
4574 
4575 #ifdef BCM_CNIC
4576 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4577 				      union event_ring_elem *elem)
4578 {
4579 	u8 err = elem->message.error;
4580 
4581 	if (!bp->cnic_eth_dev.starting_cid  ||
4582 	    (cid < bp->cnic_eth_dev.starting_cid &&
4583 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4584 		return 1;
4585 
4586 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4587 
4588 	if (unlikely(err)) {
4589 
4590 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4591 			  cid);
4592 		bnx2x_panic_dump(bp);
4593 	}
4594 	bnx2x_cnic_cfc_comp(bp, cid, err);
4595 	return 0;
4596 }
4597 #endif
4598 
4599 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4600 {
4601 	struct bnx2x_mcast_ramrod_params rparam;
4602 	int rc;
4603 
4604 	memset(&rparam, 0, sizeof(rparam));
4605 
4606 	rparam.mcast_obj = &bp->mcast_obj;
4607 
4608 	netif_addr_lock_bh(bp->dev);
4609 
4610 	/* Clear pending state for the last command */
4611 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4612 
4613 	/* If there are pending mcast commands - send them */
4614 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4615 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4616 		if (rc < 0)
4617 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4618 				  rc);
4619 	}
4620 
4621 	netif_addr_unlock_bh(bp->dev);
4622 }
4623 
4624 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4625 					    union event_ring_elem *elem)
4626 {
4627 	unsigned long ramrod_flags = 0;
4628 	int rc = 0;
4629 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4630 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4631 
4632 	/* Always push next commands out, don't wait here */
4633 	__set_bit(RAMROD_CONT, &ramrod_flags);
4634 
4635 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4636 	case BNX2X_FILTER_MAC_PENDING:
4637 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4638 #ifdef BCM_CNIC
4639 		if (cid == BNX2X_ISCSI_ETH_CID(bp))
4640 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4641 		else
4642 #endif
4643 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4644 
4645 		break;
4646 	case BNX2X_FILTER_MCAST_PENDING:
4647 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4648 		/* This is only relevant for 57710 where multicast MACs are
4649 		 * configured as unicast MACs using the same ramrod.
4650 		 */
4651 		bnx2x_handle_mcast_eqe(bp);
4652 		return;
4653 	default:
4654 		BNX2X_ERR("Unsupported classification command: %d\n",
4655 			  elem->message.data.eth_event.echo);
4656 		return;
4657 	}
4658 
4659 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4660 
4661 	if (rc < 0)
4662 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4663 	else if (rc > 0)
4664 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4665 
4666 }
4667 
4668 #ifdef BCM_CNIC
4669 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4670 #endif
4671 
4672 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4673 {
4674 	netif_addr_lock_bh(bp->dev);
4675 
4676 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4677 
4678 	/* Send rx_mode command again if was requested */
4679 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4680 		bnx2x_set_storm_rx_mode(bp);
4681 #ifdef BCM_CNIC
4682 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4683 				    &bp->sp_state))
4684 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4685 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4686 				    &bp->sp_state))
4687 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4688 #endif
4689 
4690 	netif_addr_unlock_bh(bp->dev);
4691 }
4692 
4693 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4694 					      union event_ring_elem *elem)
4695 {
4696 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4697 		DP(BNX2X_MSG_SP,
4698 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4699 		   elem->message.data.vif_list_event.func_bit_map);
4700 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4701 			elem->message.data.vif_list_event.func_bit_map);
4702 	} else if (elem->message.data.vif_list_event.echo ==
4703 		   VIF_LIST_RULE_SET) {
4704 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4705 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4706 	}
4707 }
4708 
4709 /* called with rtnl_lock */
4710 static void bnx2x_after_function_update(struct bnx2x *bp)
4711 {
4712 	int q, rc;
4713 	struct bnx2x_fastpath *fp;
4714 	struct bnx2x_queue_state_params queue_params = {NULL};
4715 	struct bnx2x_queue_update_params *q_update_params =
4716 		&queue_params.params.update;
4717 
4718 	/* Send Q update command with afex vlan removal values	for all Qs */
4719 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4720 
4721 	/* set silent vlan removal values according to vlan mode */
4722 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4723 		  &q_update_params->update_flags);
4724 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4725 		  &q_update_params->update_flags);
4726 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4727 
4728 	/* in access mode mark mask and value are 0 to strip all vlans */
4729 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4730 		q_update_params->silent_removal_value = 0;
4731 		q_update_params->silent_removal_mask = 0;
4732 	} else {
4733 		q_update_params->silent_removal_value =
4734 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4735 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4736 	}
4737 
4738 	for_each_eth_queue(bp, q) {
4739 		/* Set the appropriate Queue object */
4740 		fp = &bp->fp[q];
4741 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4742 
4743 		/* send the ramrod */
4744 		rc = bnx2x_queue_state_change(bp, &queue_params);
4745 		if (rc < 0)
4746 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4747 				  q);
4748 	}
4749 
4750 #ifdef BCM_CNIC
4751 	if (!NO_FCOE(bp)) {
4752 		fp = &bp->fp[FCOE_IDX(bp)];
4753 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4754 
4755 		/* clear pending completion bit */
4756 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4757 
4758 		/* mark latest Q bit */
4759 		smp_mb__before_clear_bit();
4760 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4761 		smp_mb__after_clear_bit();
4762 
4763 		/* send Q update ramrod for FCoE Q */
4764 		rc = bnx2x_queue_state_change(bp, &queue_params);
4765 		if (rc < 0)
4766 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4767 				  q);
4768 	} else {
4769 		/* If no FCoE ring - ACK MCP now */
4770 		bnx2x_link_report(bp);
4771 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4772 	}
4773 #else
4774 	/* If no FCoE ring - ACK MCP now */
4775 	bnx2x_link_report(bp);
4776 	bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4777 #endif /* BCM_CNIC */
4778 }
4779 
4780 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4781 	struct bnx2x *bp, u32 cid)
4782 {
4783 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4784 #ifdef BCM_CNIC
4785 	if (cid == BNX2X_FCOE_ETH_CID(bp))
4786 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
4787 	else
4788 #endif
4789 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4790 }
4791 
4792 static void bnx2x_eq_int(struct bnx2x *bp)
4793 {
4794 	u16 hw_cons, sw_cons, sw_prod;
4795 	union event_ring_elem *elem;
4796 	u32 cid;
4797 	u8 opcode;
4798 	int spqe_cnt = 0;
4799 	struct bnx2x_queue_sp_obj *q_obj;
4800 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4801 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4802 
4803 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4804 
4805 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4806 	 * when we get the the next-page we nned to adjust so the loop
4807 	 * condition below will be met. The next element is the size of a
4808 	 * regular element and hence incrementing by 1
4809 	 */
4810 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4811 		hw_cons++;
4812 
4813 	/* This function may never run in parallel with itself for a
4814 	 * specific bp, thus there is no need in "paired" read memory
4815 	 * barrier here.
4816 	 */
4817 	sw_cons = bp->eq_cons;
4818 	sw_prod = bp->eq_prod;
4819 
4820 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4821 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4822 
4823 	for (; sw_cons != hw_cons;
4824 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4825 
4826 
4827 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4828 
4829 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4830 		opcode = elem->message.opcode;
4831 
4832 
4833 		/* handle eq element */
4834 		switch (opcode) {
4835 		case EVENT_RING_OPCODE_STAT_QUERY:
4836 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4837 			   "got statistics comp event %d\n",
4838 			   bp->stats_comp++);
4839 			/* nothing to do with stats comp */
4840 			goto next_spqe;
4841 
4842 		case EVENT_RING_OPCODE_CFC_DEL:
4843 			/* handle according to cid range */
4844 			/*
4845 			 * we may want to verify here that the bp state is
4846 			 * HALTING
4847 			 */
4848 			DP(BNX2X_MSG_SP,
4849 			   "got delete ramrod for MULTI[%d]\n", cid);
4850 #ifdef BCM_CNIC
4851 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4852 				goto next_spqe;
4853 #endif
4854 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4855 
4856 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4857 				break;
4858 
4859 
4860 
4861 			goto next_spqe;
4862 
4863 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4864 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4865 			if (f_obj->complete_cmd(bp, f_obj,
4866 						BNX2X_F_CMD_TX_STOP))
4867 				break;
4868 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4869 			goto next_spqe;
4870 
4871 		case EVENT_RING_OPCODE_START_TRAFFIC:
4872 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4873 			if (f_obj->complete_cmd(bp, f_obj,
4874 						BNX2X_F_CMD_TX_START))
4875 				break;
4876 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4877 			goto next_spqe;
4878 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4879 			DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4880 			   "AFEX: ramrod completed FUNCTION_UPDATE\n");
4881 			f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_AFEX_UPDATE);
4882 
4883 			/* We will perform the Queues update from sp_rtnl task
4884 			 * as all Queue SP operations should run under
4885 			 * rtnl_lock.
4886 			 */
4887 			smp_mb__before_clear_bit();
4888 			set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4889 				&bp->sp_rtnl_state);
4890 			smp_mb__after_clear_bit();
4891 
4892 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
4893 			goto next_spqe;
4894 
4895 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4896 			f_obj->complete_cmd(bp, f_obj,
4897 					    BNX2X_F_CMD_AFEX_VIFLISTS);
4898 			bnx2x_after_afex_vif_lists(bp, elem);
4899 			goto next_spqe;
4900 		case EVENT_RING_OPCODE_FUNCTION_START:
4901 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4902 			   "got FUNC_START ramrod\n");
4903 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4904 				break;
4905 
4906 			goto next_spqe;
4907 
4908 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4909 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4910 			   "got FUNC_STOP ramrod\n");
4911 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4912 				break;
4913 
4914 			goto next_spqe;
4915 		}
4916 
4917 		switch (opcode | bp->state) {
4918 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4919 		      BNX2X_STATE_OPEN):
4920 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4921 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4922 			cid = elem->message.data.eth_event.echo &
4923 				BNX2X_SWCID_MASK;
4924 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4925 			   cid);
4926 			rss_raw->clear_pending(rss_raw);
4927 			break;
4928 
4929 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4930 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4931 		case (EVENT_RING_OPCODE_SET_MAC |
4932 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4933 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4934 		      BNX2X_STATE_OPEN):
4935 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4936 		      BNX2X_STATE_DIAG):
4937 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4938 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4939 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4940 			bnx2x_handle_classification_eqe(bp, elem);
4941 			break;
4942 
4943 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4944 		      BNX2X_STATE_OPEN):
4945 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4946 		      BNX2X_STATE_DIAG):
4947 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4948 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4949 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4950 			bnx2x_handle_mcast_eqe(bp);
4951 			break;
4952 
4953 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4954 		      BNX2X_STATE_OPEN):
4955 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4956 		      BNX2X_STATE_DIAG):
4957 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4958 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4959 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4960 			bnx2x_handle_rx_mode_eqe(bp);
4961 			break;
4962 		default:
4963 			/* unknown event log error and continue */
4964 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4965 				  elem->message.opcode, bp->state);
4966 		}
4967 next_spqe:
4968 		spqe_cnt++;
4969 	} /* for */
4970 
4971 	smp_mb__before_atomic_inc();
4972 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4973 
4974 	bp->eq_cons = sw_cons;
4975 	bp->eq_prod = sw_prod;
4976 	/* Make sure that above mem writes were issued towards the memory */
4977 	smp_wmb();
4978 
4979 	/* update producer */
4980 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4981 }
4982 
4983 static void bnx2x_sp_task(struct work_struct *work)
4984 {
4985 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4986 	u16 status;
4987 
4988 	status = bnx2x_update_dsb_idx(bp);
4989 /*	if (status == 0)				     */
4990 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4991 
4992 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4993 
4994 	/* HW attentions */
4995 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4996 		bnx2x_attn_int(bp);
4997 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4998 	}
4999 
5000 	/* SP events: STAT_QUERY and others */
5001 	if (status & BNX2X_DEF_SB_IDX) {
5002 #ifdef BCM_CNIC
5003 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5004 
5005 		if ((!NO_FCOE(bp)) &&
5006 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5007 			/*
5008 			 * Prevent local bottom-halves from running as
5009 			 * we are going to change the local NAPI list.
5010 			 */
5011 			local_bh_disable();
5012 			napi_schedule(&bnx2x_fcoe(bp, napi));
5013 			local_bh_enable();
5014 		}
5015 #endif
5016 		/* Handle EQ completions */
5017 		bnx2x_eq_int(bp);
5018 
5019 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5020 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5021 
5022 		status &= ~BNX2X_DEF_SB_IDX;
5023 	}
5024 
5025 	if (unlikely(status))
5026 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5027 		   status);
5028 
5029 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5030 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5031 
5032 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5033 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5034 			       &bp->sp_state)) {
5035 		bnx2x_link_report(bp);
5036 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5037 	}
5038 }
5039 
5040 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5041 {
5042 	struct net_device *dev = dev_instance;
5043 	struct bnx2x *bp = netdev_priv(dev);
5044 
5045 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5046 		     IGU_INT_DISABLE, 0);
5047 
5048 #ifdef BNX2X_STOP_ON_ERROR
5049 	if (unlikely(bp->panic))
5050 		return IRQ_HANDLED;
5051 #endif
5052 
5053 #ifdef BCM_CNIC
5054 	{
5055 		struct cnic_ops *c_ops;
5056 
5057 		rcu_read_lock();
5058 		c_ops = rcu_dereference(bp->cnic_ops);
5059 		if (c_ops)
5060 			c_ops->cnic_handler(bp->cnic_data, NULL);
5061 		rcu_read_unlock();
5062 	}
5063 #endif
5064 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5065 
5066 	return IRQ_HANDLED;
5067 }
5068 
5069 /* end of slow path */
5070 
5071 
5072 void bnx2x_drv_pulse(struct bnx2x *bp)
5073 {
5074 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5075 		 bp->fw_drv_pulse_wr_seq);
5076 }
5077 
5078 
5079 static void bnx2x_timer(unsigned long data)
5080 {
5081 	struct bnx2x *bp = (struct bnx2x *) data;
5082 
5083 	if (!netif_running(bp->dev))
5084 		return;
5085 
5086 	if (!BP_NOMCP(bp)) {
5087 		int mb_idx = BP_FW_MB_IDX(bp);
5088 		u32 drv_pulse;
5089 		u32 mcp_pulse;
5090 
5091 		++bp->fw_drv_pulse_wr_seq;
5092 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5093 		/* TBD - add SYSTEM_TIME */
5094 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5095 		bnx2x_drv_pulse(bp);
5096 
5097 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5098 			     MCP_PULSE_SEQ_MASK);
5099 		/* The delta between driver pulse and mcp response
5100 		 * should be 1 (before mcp response) or 0 (after mcp response)
5101 		 */
5102 		if ((drv_pulse != mcp_pulse) &&
5103 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5104 			/* someone lost a heartbeat... */
5105 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5106 				  drv_pulse, mcp_pulse);
5107 		}
5108 	}
5109 
5110 	if (bp->state == BNX2X_STATE_OPEN)
5111 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5112 
5113 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5114 }
5115 
5116 /* end of Statistics */
5117 
5118 /* nic init */
5119 
5120 /*
5121  * nic init service functions
5122  */
5123 
5124 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5125 {
5126 	u32 i;
5127 	if (!(len%4) && !(addr%4))
5128 		for (i = 0; i < len; i += 4)
5129 			REG_WR(bp, addr + i, fill);
5130 	else
5131 		for (i = 0; i < len; i++)
5132 			REG_WR8(bp, addr + i, fill);
5133 
5134 }
5135 
5136 /* helper: writes FP SP data to FW - data_size in dwords */
5137 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5138 				int fw_sb_id,
5139 				u32 *sb_data_p,
5140 				u32 data_size)
5141 {
5142 	int index;
5143 	for (index = 0; index < data_size; index++)
5144 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5145 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5146 			sizeof(u32)*index,
5147 			*(sb_data_p + index));
5148 }
5149 
5150 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5151 {
5152 	u32 *sb_data_p;
5153 	u32 data_size = 0;
5154 	struct hc_status_block_data_e2 sb_data_e2;
5155 	struct hc_status_block_data_e1x sb_data_e1x;
5156 
5157 	/* disable the function first */
5158 	if (!CHIP_IS_E1x(bp)) {
5159 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5160 		sb_data_e2.common.state = SB_DISABLED;
5161 		sb_data_e2.common.p_func.vf_valid = false;
5162 		sb_data_p = (u32 *)&sb_data_e2;
5163 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5164 	} else {
5165 		memset(&sb_data_e1x, 0,
5166 		       sizeof(struct hc_status_block_data_e1x));
5167 		sb_data_e1x.common.state = SB_DISABLED;
5168 		sb_data_e1x.common.p_func.vf_valid = false;
5169 		sb_data_p = (u32 *)&sb_data_e1x;
5170 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5171 	}
5172 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5173 
5174 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5175 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5176 			CSTORM_STATUS_BLOCK_SIZE);
5177 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5178 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5179 			CSTORM_SYNC_BLOCK_SIZE);
5180 }
5181 
5182 /* helper:  writes SP SB data to FW */
5183 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5184 		struct hc_sp_status_block_data *sp_sb_data)
5185 {
5186 	int func = BP_FUNC(bp);
5187 	int i;
5188 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5189 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5190 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5191 			i*sizeof(u32),
5192 			*((u32 *)sp_sb_data + i));
5193 }
5194 
5195 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5196 {
5197 	int func = BP_FUNC(bp);
5198 	struct hc_sp_status_block_data sp_sb_data;
5199 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5200 
5201 	sp_sb_data.state = SB_DISABLED;
5202 	sp_sb_data.p_func.vf_valid = false;
5203 
5204 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5205 
5206 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5207 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5208 			CSTORM_SP_STATUS_BLOCK_SIZE);
5209 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5210 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5211 			CSTORM_SP_SYNC_BLOCK_SIZE);
5212 
5213 }
5214 
5215 
5216 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5217 					   int igu_sb_id, int igu_seg_id)
5218 {
5219 	hc_sm->igu_sb_id = igu_sb_id;
5220 	hc_sm->igu_seg_id = igu_seg_id;
5221 	hc_sm->timer_value = 0xFF;
5222 	hc_sm->time_to_expire = 0xFFFFFFFF;
5223 }
5224 
5225 
5226 /* allocates state machine ids. */
5227 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5228 {
5229 	/* zero out state machine indices */
5230 	/* rx indices */
5231 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5232 
5233 	/* tx indices */
5234 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5235 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5236 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5237 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5238 
5239 	/* map indices */
5240 	/* rx indices */
5241 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5242 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5243 
5244 	/* tx indices */
5245 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5246 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5247 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5248 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5249 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5250 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5251 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5252 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5253 }
5254 
5255 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5256 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5257 {
5258 	int igu_seg_id;
5259 
5260 	struct hc_status_block_data_e2 sb_data_e2;
5261 	struct hc_status_block_data_e1x sb_data_e1x;
5262 	struct hc_status_block_sm  *hc_sm_p;
5263 	int data_size;
5264 	u32 *sb_data_p;
5265 
5266 	if (CHIP_INT_MODE_IS_BC(bp))
5267 		igu_seg_id = HC_SEG_ACCESS_NORM;
5268 	else
5269 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5270 
5271 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5272 
5273 	if (!CHIP_IS_E1x(bp)) {
5274 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5275 		sb_data_e2.common.state = SB_ENABLED;
5276 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5277 		sb_data_e2.common.p_func.vf_id = vfid;
5278 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5279 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5280 		sb_data_e2.common.same_igu_sb_1b = true;
5281 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5282 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5283 		hc_sm_p = sb_data_e2.common.state_machine;
5284 		sb_data_p = (u32 *)&sb_data_e2;
5285 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5286 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5287 	} else {
5288 		memset(&sb_data_e1x, 0,
5289 		       sizeof(struct hc_status_block_data_e1x));
5290 		sb_data_e1x.common.state = SB_ENABLED;
5291 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5292 		sb_data_e1x.common.p_func.vf_id = 0xff;
5293 		sb_data_e1x.common.p_func.vf_valid = false;
5294 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5295 		sb_data_e1x.common.same_igu_sb_1b = true;
5296 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5297 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5298 		hc_sm_p = sb_data_e1x.common.state_machine;
5299 		sb_data_p = (u32 *)&sb_data_e1x;
5300 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5301 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5302 	}
5303 
5304 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5305 				       igu_sb_id, igu_seg_id);
5306 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5307 				       igu_sb_id, igu_seg_id);
5308 
5309 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5310 
5311 	/* write indecies to HW */
5312 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5313 }
5314 
5315 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5316 				     u16 tx_usec, u16 rx_usec)
5317 {
5318 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5319 				    false, rx_usec);
5320 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5321 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5322 				       tx_usec);
5323 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5324 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5325 				       tx_usec);
5326 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5327 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5328 				       tx_usec);
5329 }
5330 
5331 static void bnx2x_init_def_sb(struct bnx2x *bp)
5332 {
5333 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5334 	dma_addr_t mapping = bp->def_status_blk_mapping;
5335 	int igu_sp_sb_index;
5336 	int igu_seg_id;
5337 	int port = BP_PORT(bp);
5338 	int func = BP_FUNC(bp);
5339 	int reg_offset, reg_offset_en5;
5340 	u64 section;
5341 	int index;
5342 	struct hc_sp_status_block_data sp_sb_data;
5343 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5344 
5345 	if (CHIP_INT_MODE_IS_BC(bp)) {
5346 		igu_sp_sb_index = DEF_SB_IGU_ID;
5347 		igu_seg_id = HC_SEG_ACCESS_DEF;
5348 	} else {
5349 		igu_sp_sb_index = bp->igu_dsb_id;
5350 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5351 	}
5352 
5353 	/* ATTN */
5354 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5355 					    atten_status_block);
5356 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5357 
5358 	bp->attn_state = 0;
5359 
5360 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5361 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5362 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5363 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5364 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5365 		int sindex;
5366 		/* take care of sig[0]..sig[4] */
5367 		for (sindex = 0; sindex < 4; sindex++)
5368 			bp->attn_group[index].sig[sindex] =
5369 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5370 
5371 		if (!CHIP_IS_E1x(bp))
5372 			/*
5373 			 * enable5 is separate from the rest of the registers,
5374 			 * and therefore the address skip is 4
5375 			 * and not 16 between the different groups
5376 			 */
5377 			bp->attn_group[index].sig[4] = REG_RD(bp,
5378 					reg_offset_en5 + 0x4*index);
5379 		else
5380 			bp->attn_group[index].sig[4] = 0;
5381 	}
5382 
5383 	if (bp->common.int_block == INT_BLOCK_HC) {
5384 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5385 				     HC_REG_ATTN_MSG0_ADDR_L);
5386 
5387 		REG_WR(bp, reg_offset, U64_LO(section));
5388 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5389 	} else if (!CHIP_IS_E1x(bp)) {
5390 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5391 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5392 	}
5393 
5394 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5395 					    sp_sb);
5396 
5397 	bnx2x_zero_sp_sb(bp);
5398 
5399 	sp_sb_data.state		= SB_ENABLED;
5400 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5401 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5402 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5403 	sp_sb_data.igu_seg_id		= igu_seg_id;
5404 	sp_sb_data.p_func.pf_id		= func;
5405 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5406 	sp_sb_data.p_func.vf_id		= 0xff;
5407 
5408 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5409 
5410 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5411 }
5412 
5413 void bnx2x_update_coalesce(struct bnx2x *bp)
5414 {
5415 	int i;
5416 
5417 	for_each_eth_queue(bp, i)
5418 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5419 					 bp->tx_ticks, bp->rx_ticks);
5420 }
5421 
5422 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5423 {
5424 	spin_lock_init(&bp->spq_lock);
5425 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5426 
5427 	bp->spq_prod_idx = 0;
5428 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5429 	bp->spq_prod_bd = bp->spq;
5430 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5431 }
5432 
5433 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5434 {
5435 	int i;
5436 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5437 		union event_ring_elem *elem =
5438 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5439 
5440 		elem->next_page.addr.hi =
5441 			cpu_to_le32(U64_HI(bp->eq_mapping +
5442 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5443 		elem->next_page.addr.lo =
5444 			cpu_to_le32(U64_LO(bp->eq_mapping +
5445 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5446 	}
5447 	bp->eq_cons = 0;
5448 	bp->eq_prod = NUM_EQ_DESC;
5449 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5450 	/* we want a warning message before it gets rought... */
5451 	atomic_set(&bp->eq_spq_left,
5452 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5453 }
5454 
5455 
5456 /* called with netif_addr_lock_bh() */
5457 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5458 			 unsigned long rx_mode_flags,
5459 			 unsigned long rx_accept_flags,
5460 			 unsigned long tx_accept_flags,
5461 			 unsigned long ramrod_flags)
5462 {
5463 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5464 	int rc;
5465 
5466 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5467 
5468 	/* Prepare ramrod parameters */
5469 	ramrod_param.cid = 0;
5470 	ramrod_param.cl_id = cl_id;
5471 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5472 	ramrod_param.func_id = BP_FUNC(bp);
5473 
5474 	ramrod_param.pstate = &bp->sp_state;
5475 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5476 
5477 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5478 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5479 
5480 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5481 
5482 	ramrod_param.ramrod_flags = ramrod_flags;
5483 	ramrod_param.rx_mode_flags = rx_mode_flags;
5484 
5485 	ramrod_param.rx_accept_flags = rx_accept_flags;
5486 	ramrod_param.tx_accept_flags = tx_accept_flags;
5487 
5488 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5489 	if (rc < 0) {
5490 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5491 		return;
5492 	}
5493 }
5494 
5495 /* called with netif_addr_lock_bh() */
5496 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5497 {
5498 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5499 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5500 
5501 #ifdef BCM_CNIC
5502 	if (!NO_FCOE(bp))
5503 
5504 		/* Configure rx_mode of FCoE Queue */
5505 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5506 #endif
5507 
5508 	switch (bp->rx_mode) {
5509 	case BNX2X_RX_MODE_NONE:
5510 		/*
5511 		 * 'drop all' supersedes any accept flags that may have been
5512 		 * passed to the function.
5513 		 */
5514 		break;
5515 	case BNX2X_RX_MODE_NORMAL:
5516 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5517 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5518 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5519 
5520 		/* internal switching mode */
5521 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5522 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5523 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5524 
5525 		break;
5526 	case BNX2X_RX_MODE_ALLMULTI:
5527 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5528 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5529 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5530 
5531 		/* internal switching mode */
5532 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5533 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5534 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5535 
5536 		break;
5537 	case BNX2X_RX_MODE_PROMISC:
5538 		/* According to deffinition of SI mode, iface in promisc mode
5539 		 * should receive matched and unmatched (in resolution of port)
5540 		 * unicast packets.
5541 		 */
5542 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5543 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5544 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5545 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5546 
5547 		/* internal switching mode */
5548 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5549 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5550 
5551 		if (IS_MF_SI(bp))
5552 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5553 		else
5554 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5555 
5556 		break;
5557 	default:
5558 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5559 		return;
5560 	}
5561 
5562 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5563 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5564 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5565 	}
5566 
5567 	__set_bit(RAMROD_RX, &ramrod_flags);
5568 	__set_bit(RAMROD_TX, &ramrod_flags);
5569 
5570 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5571 			    tx_accept_flags, ramrod_flags);
5572 }
5573 
5574 static void bnx2x_init_internal_common(struct bnx2x *bp)
5575 {
5576 	int i;
5577 
5578 	if (IS_MF_SI(bp))
5579 		/*
5580 		 * In switch independent mode, the TSTORM needs to accept
5581 		 * packets that failed classification, since approximate match
5582 		 * mac addresses aren't written to NIG LLH
5583 		 */
5584 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5585 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5586 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5587 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5588 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5589 
5590 	/* Zero this manually as its initialization is
5591 	   currently missing in the initTool */
5592 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5593 		REG_WR(bp, BAR_USTRORM_INTMEM +
5594 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5595 	if (!CHIP_IS_E1x(bp)) {
5596 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5597 			CHIP_INT_MODE_IS_BC(bp) ?
5598 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5599 	}
5600 }
5601 
5602 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5603 {
5604 	switch (load_code) {
5605 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5606 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5607 		bnx2x_init_internal_common(bp);
5608 		/* no break */
5609 
5610 	case FW_MSG_CODE_DRV_LOAD_PORT:
5611 		/* nothing to do */
5612 		/* no break */
5613 
5614 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5615 		/* internal memory per function is
5616 		   initialized inside bnx2x_pf_init */
5617 		break;
5618 
5619 	default:
5620 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5621 		break;
5622 	}
5623 }
5624 
5625 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5626 {
5627 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5628 }
5629 
5630 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5631 {
5632 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5633 }
5634 
5635 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5636 {
5637 	if (CHIP_IS_E1x(fp->bp))
5638 		return BP_L_ID(fp->bp) + fp->index;
5639 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5640 		return bnx2x_fp_igu_sb_id(fp);
5641 }
5642 
5643 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5644 {
5645 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5646 	u8 cos;
5647 	unsigned long q_type = 0;
5648 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5649 	fp->rx_queue = fp_idx;
5650 	fp->cid = fp_idx;
5651 	fp->cl_id = bnx2x_fp_cl_id(fp);
5652 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5653 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5654 	/* qZone id equals to FW (per path) client id */
5655 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5656 
5657 	/* init shortcut */
5658 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5659 
5660 	/* Setup SB indicies */
5661 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5662 
5663 	/* Configure Queue State object */
5664 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5665 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5666 
5667 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5668 
5669 	/* init tx data */
5670 	for_each_cos_in_tx_queue(fp, cos) {
5671 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5672 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5673 				  FP_COS_TO_TXQ(fp, cos, bp),
5674 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
5675 		cids[cos] = fp->txdata_ptr[cos]->cid;
5676 	}
5677 
5678 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5679 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5680 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5681 
5682 	/**
5683 	 * Configure classification DBs: Always enable Tx switching
5684 	 */
5685 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5686 
5687 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5688 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5689 		   fp->igu_sb_id);
5690 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5691 		      fp->fw_sb_id, fp->igu_sb_id);
5692 
5693 	bnx2x_update_fpsb_idx(fp);
5694 }
5695 
5696 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5697 {
5698 	int i;
5699 
5700 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5701 		struct eth_tx_next_bd *tx_next_bd =
5702 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5703 
5704 		tx_next_bd->addr_hi =
5705 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5706 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5707 		tx_next_bd->addr_lo =
5708 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5709 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5710 	}
5711 
5712 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5713 	txdata->tx_db.data.zero_fill1 = 0;
5714 	txdata->tx_db.data.prod = 0;
5715 
5716 	txdata->tx_pkt_prod = 0;
5717 	txdata->tx_pkt_cons = 0;
5718 	txdata->tx_bd_prod = 0;
5719 	txdata->tx_bd_cons = 0;
5720 	txdata->tx_pkt = 0;
5721 }
5722 
5723 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5724 {
5725 	int i;
5726 	u8 cos;
5727 
5728 	for_each_tx_queue(bp, i)
5729 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
5730 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5731 }
5732 
5733 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5734 {
5735 	int i;
5736 
5737 	for_each_eth_queue(bp, i)
5738 		bnx2x_init_eth_fp(bp, i);
5739 #ifdef BCM_CNIC
5740 	if (!NO_FCOE(bp))
5741 		bnx2x_init_fcoe_fp(bp);
5742 
5743 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5744 		      BNX2X_VF_ID_INVALID, false,
5745 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5746 
5747 #endif
5748 
5749 	/* Initialize MOD_ABS interrupts */
5750 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5751 			       bp->common.shmem_base, bp->common.shmem2_base,
5752 			       BP_PORT(bp));
5753 	/* ensure status block indices were read */
5754 	rmb();
5755 
5756 	bnx2x_init_def_sb(bp);
5757 	bnx2x_update_dsb_idx(bp);
5758 	bnx2x_init_rx_rings(bp);
5759 	bnx2x_init_tx_rings(bp);
5760 	bnx2x_init_sp_ring(bp);
5761 	bnx2x_init_eq_ring(bp);
5762 	bnx2x_init_internal(bp, load_code);
5763 	bnx2x_pf_init(bp);
5764 	bnx2x_stats_init(bp);
5765 
5766 	/* flush all before enabling interrupts */
5767 	mb();
5768 	mmiowb();
5769 
5770 	bnx2x_int_enable(bp);
5771 
5772 	/* Check for SPIO5 */
5773 	bnx2x_attn_int_deasserted0(bp,
5774 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5775 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5776 }
5777 
5778 /* end of nic init */
5779 
5780 /*
5781  * gzip service functions
5782  */
5783 
5784 static int bnx2x_gunzip_init(struct bnx2x *bp)
5785 {
5786 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5787 					    &bp->gunzip_mapping, GFP_KERNEL);
5788 	if (bp->gunzip_buf  == NULL)
5789 		goto gunzip_nomem1;
5790 
5791 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5792 	if (bp->strm  == NULL)
5793 		goto gunzip_nomem2;
5794 
5795 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5796 	if (bp->strm->workspace == NULL)
5797 		goto gunzip_nomem3;
5798 
5799 	return 0;
5800 
5801 gunzip_nomem3:
5802 	kfree(bp->strm);
5803 	bp->strm = NULL;
5804 
5805 gunzip_nomem2:
5806 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5807 			  bp->gunzip_mapping);
5808 	bp->gunzip_buf = NULL;
5809 
5810 gunzip_nomem1:
5811 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5812 	return -ENOMEM;
5813 }
5814 
5815 static void bnx2x_gunzip_end(struct bnx2x *bp)
5816 {
5817 	if (bp->strm) {
5818 		vfree(bp->strm->workspace);
5819 		kfree(bp->strm);
5820 		bp->strm = NULL;
5821 	}
5822 
5823 	if (bp->gunzip_buf) {
5824 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5825 				  bp->gunzip_mapping);
5826 		bp->gunzip_buf = NULL;
5827 	}
5828 }
5829 
5830 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5831 {
5832 	int n, rc;
5833 
5834 	/* check gzip header */
5835 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5836 		BNX2X_ERR("Bad gzip header\n");
5837 		return -EINVAL;
5838 	}
5839 
5840 	n = 10;
5841 
5842 #define FNAME				0x8
5843 
5844 	if (zbuf[3] & FNAME)
5845 		while ((zbuf[n++] != 0) && (n < len));
5846 
5847 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5848 	bp->strm->avail_in = len - n;
5849 	bp->strm->next_out = bp->gunzip_buf;
5850 	bp->strm->avail_out = FW_BUF_SIZE;
5851 
5852 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5853 	if (rc != Z_OK)
5854 		return rc;
5855 
5856 	rc = zlib_inflate(bp->strm, Z_FINISH);
5857 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5858 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5859 			   bp->strm->msg);
5860 
5861 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5862 	if (bp->gunzip_outlen & 0x3)
5863 		netdev_err(bp->dev,
5864 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5865 				bp->gunzip_outlen);
5866 	bp->gunzip_outlen >>= 2;
5867 
5868 	zlib_inflateEnd(bp->strm);
5869 
5870 	if (rc == Z_STREAM_END)
5871 		return 0;
5872 
5873 	return rc;
5874 }
5875 
5876 /* nic load/unload */
5877 
5878 /*
5879  * General service functions
5880  */
5881 
5882 /* send a NIG loopback debug packet */
5883 static void bnx2x_lb_pckt(struct bnx2x *bp)
5884 {
5885 	u32 wb_write[3];
5886 
5887 	/* Ethernet source and destination addresses */
5888 	wb_write[0] = 0x55555555;
5889 	wb_write[1] = 0x55555555;
5890 	wb_write[2] = 0x20;		/* SOP */
5891 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5892 
5893 	/* NON-IP protocol */
5894 	wb_write[0] = 0x09000000;
5895 	wb_write[1] = 0x55555555;
5896 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5897 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5898 }
5899 
5900 /* some of the internal memories
5901  * are not directly readable from the driver
5902  * to test them we send debug packets
5903  */
5904 static int bnx2x_int_mem_test(struct bnx2x *bp)
5905 {
5906 	int factor;
5907 	int count, i;
5908 	u32 val = 0;
5909 
5910 	if (CHIP_REV_IS_FPGA(bp))
5911 		factor = 120;
5912 	else if (CHIP_REV_IS_EMUL(bp))
5913 		factor = 200;
5914 	else
5915 		factor = 1;
5916 
5917 	/* Disable inputs of parser neighbor blocks */
5918 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5919 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5920 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5921 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5922 
5923 	/*  Write 0 to parser credits for CFC search request */
5924 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5925 
5926 	/* send Ethernet packet */
5927 	bnx2x_lb_pckt(bp);
5928 
5929 	/* TODO do i reset NIG statistic? */
5930 	/* Wait until NIG register shows 1 packet of size 0x10 */
5931 	count = 1000 * factor;
5932 	while (count) {
5933 
5934 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5935 		val = *bnx2x_sp(bp, wb_data[0]);
5936 		if (val == 0x10)
5937 			break;
5938 
5939 		msleep(10);
5940 		count--;
5941 	}
5942 	if (val != 0x10) {
5943 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5944 		return -1;
5945 	}
5946 
5947 	/* Wait until PRS register shows 1 packet */
5948 	count = 1000 * factor;
5949 	while (count) {
5950 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5951 		if (val == 1)
5952 			break;
5953 
5954 		msleep(10);
5955 		count--;
5956 	}
5957 	if (val != 0x1) {
5958 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5959 		return -2;
5960 	}
5961 
5962 	/* Reset and init BRB, PRS */
5963 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5964 	msleep(50);
5965 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5966 	msleep(50);
5967 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5968 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5969 
5970 	DP(NETIF_MSG_HW, "part2\n");
5971 
5972 	/* Disable inputs of parser neighbor blocks */
5973 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5974 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5975 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5976 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5977 
5978 	/* Write 0 to parser credits for CFC search request */
5979 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5980 
5981 	/* send 10 Ethernet packets */
5982 	for (i = 0; i < 10; i++)
5983 		bnx2x_lb_pckt(bp);
5984 
5985 	/* Wait until NIG register shows 10 + 1
5986 	   packets of size 11*0x10 = 0xb0 */
5987 	count = 1000 * factor;
5988 	while (count) {
5989 
5990 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5991 		val = *bnx2x_sp(bp, wb_data[0]);
5992 		if (val == 0xb0)
5993 			break;
5994 
5995 		msleep(10);
5996 		count--;
5997 	}
5998 	if (val != 0xb0) {
5999 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6000 		return -3;
6001 	}
6002 
6003 	/* Wait until PRS register shows 2 packets */
6004 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6005 	if (val != 2)
6006 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6007 
6008 	/* Write 1 to parser credits for CFC search request */
6009 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6010 
6011 	/* Wait until PRS register shows 3 packets */
6012 	msleep(10 * factor);
6013 	/* Wait until NIG register shows 1 packet of size 0x10 */
6014 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6015 	if (val != 3)
6016 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6017 
6018 	/* clear NIG EOP FIFO */
6019 	for (i = 0; i < 11; i++)
6020 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6021 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6022 	if (val != 1) {
6023 		BNX2X_ERR("clear of NIG failed\n");
6024 		return -4;
6025 	}
6026 
6027 	/* Reset and init BRB, PRS, NIG */
6028 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6029 	msleep(50);
6030 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6031 	msleep(50);
6032 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6033 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6034 #ifndef BCM_CNIC
6035 	/* set NIC mode */
6036 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6037 #endif
6038 
6039 	/* Enable inputs of parser neighbor blocks */
6040 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6041 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6042 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6043 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6044 
6045 	DP(NETIF_MSG_HW, "done\n");
6046 
6047 	return 0; /* OK */
6048 }
6049 
6050 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6051 {
6052 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6053 	if (!CHIP_IS_E1x(bp))
6054 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6055 	else
6056 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6057 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6058 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6059 	/*
6060 	 * mask read length error interrupts in brb for parser
6061 	 * (parsing unit and 'checksum and crc' unit)
6062 	 * these errors are legal (PU reads fixed length and CAC can cause
6063 	 * read length error on truncated packets)
6064 	 */
6065 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6066 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6067 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6068 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6069 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6070 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6071 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6072 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6073 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6074 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6075 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6076 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6077 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6078 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6079 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6080 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6081 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6082 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6083 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6084 
6085 	if (CHIP_REV_IS_FPGA(bp))
6086 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
6087 	else if (!CHIP_IS_E1x(bp))
6088 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
6089 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
6090 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
6091 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
6092 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
6093 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
6094 	else
6095 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
6096 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6097 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6098 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6099 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6100 
6101 	if (!CHIP_IS_E1x(bp))
6102 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6103 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6104 
6105 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6106 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6107 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6108 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6109 }
6110 
6111 static void bnx2x_reset_common(struct bnx2x *bp)
6112 {
6113 	u32 val = 0x1400;
6114 
6115 	/* reset_common */
6116 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6117 	       0xd3ffff7f);
6118 
6119 	if (CHIP_IS_E3(bp)) {
6120 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6121 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6122 	}
6123 
6124 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6125 }
6126 
6127 static void bnx2x_setup_dmae(struct bnx2x *bp)
6128 {
6129 	bp->dmae_ready = 0;
6130 	spin_lock_init(&bp->dmae_lock);
6131 }
6132 
6133 static void bnx2x_init_pxp(struct bnx2x *bp)
6134 {
6135 	u16 devctl;
6136 	int r_order, w_order;
6137 
6138 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6139 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6140 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6141 	if (bp->mrrs == -1)
6142 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6143 	else {
6144 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6145 		r_order = bp->mrrs;
6146 	}
6147 
6148 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6149 }
6150 
6151 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6152 {
6153 	int is_required;
6154 	u32 val;
6155 	int port;
6156 
6157 	if (BP_NOMCP(bp))
6158 		return;
6159 
6160 	is_required = 0;
6161 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6162 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6163 
6164 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6165 		is_required = 1;
6166 
6167 	/*
6168 	 * The fan failure mechanism is usually related to the PHY type since
6169 	 * the power consumption of the board is affected by the PHY. Currently,
6170 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6171 	 */
6172 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6173 		for (port = PORT_0; port < PORT_MAX; port++) {
6174 			is_required |=
6175 				bnx2x_fan_failure_det_req(
6176 					bp,
6177 					bp->common.shmem_base,
6178 					bp->common.shmem2_base,
6179 					port);
6180 		}
6181 
6182 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6183 
6184 	if (is_required == 0)
6185 		return;
6186 
6187 	/* Fan failure is indicated by SPIO 5 */
6188 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
6189 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
6190 
6191 	/* set to active low mode */
6192 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6193 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
6194 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
6195 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6196 
6197 	/* enable interrupt to signal the IGU */
6198 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6199 	val |= (1 << MISC_REGISTERS_SPIO_5);
6200 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6201 }
6202 
6203 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6204 {
6205 	u32 offset = 0;
6206 
6207 	if (CHIP_IS_E1(bp))
6208 		return;
6209 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6210 		return;
6211 
6212 	switch (BP_ABS_FUNC(bp)) {
6213 	case 0:
6214 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6215 		break;
6216 	case 1:
6217 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6218 		break;
6219 	case 2:
6220 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6221 		break;
6222 	case 3:
6223 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6224 		break;
6225 	case 4:
6226 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6227 		break;
6228 	case 5:
6229 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6230 		break;
6231 	case 6:
6232 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6233 		break;
6234 	case 7:
6235 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6236 		break;
6237 	default:
6238 		return;
6239 	}
6240 
6241 	REG_WR(bp, offset, pretend_func_num);
6242 	REG_RD(bp, offset);
6243 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6244 }
6245 
6246 void bnx2x_pf_disable(struct bnx2x *bp)
6247 {
6248 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6249 	val &= ~IGU_PF_CONF_FUNC_EN;
6250 
6251 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6252 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6253 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6254 }
6255 
6256 static void bnx2x__common_init_phy(struct bnx2x *bp)
6257 {
6258 	u32 shmem_base[2], shmem2_base[2];
6259 	shmem_base[0] =  bp->common.shmem_base;
6260 	shmem2_base[0] = bp->common.shmem2_base;
6261 	if (!CHIP_IS_E1x(bp)) {
6262 		shmem_base[1] =
6263 			SHMEM2_RD(bp, other_shmem_base_addr);
6264 		shmem2_base[1] =
6265 			SHMEM2_RD(bp, other_shmem2_base_addr);
6266 	}
6267 	bnx2x_acquire_phy_lock(bp);
6268 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6269 			      bp->common.chip_id);
6270 	bnx2x_release_phy_lock(bp);
6271 }
6272 
6273 /**
6274  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6275  *
6276  * @bp:		driver handle
6277  */
6278 static int bnx2x_init_hw_common(struct bnx2x *bp)
6279 {
6280 	u32 val;
6281 
6282 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6283 
6284 	/*
6285 	 * take the UNDI lock to protect undi_unload flow from accessing
6286 	 * registers while we're resetting the chip
6287 	 */
6288 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6289 
6290 	bnx2x_reset_common(bp);
6291 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6292 
6293 	val = 0xfffc;
6294 	if (CHIP_IS_E3(bp)) {
6295 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6296 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6297 	}
6298 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6299 
6300 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6301 
6302 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6303 
6304 	if (!CHIP_IS_E1x(bp)) {
6305 		u8 abs_func_id;
6306 
6307 		/**
6308 		 * 4-port mode or 2-port mode we need to turn of master-enable
6309 		 * for everyone, after that, turn it back on for self.
6310 		 * so, we disregard multi-function or not, and always disable
6311 		 * for all functions on the given path, this means 0,2,4,6 for
6312 		 * path 0 and 1,3,5,7 for path 1
6313 		 */
6314 		for (abs_func_id = BP_PATH(bp);
6315 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6316 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6317 				REG_WR(bp,
6318 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6319 				    1);
6320 				continue;
6321 			}
6322 
6323 			bnx2x_pretend_func(bp, abs_func_id);
6324 			/* clear pf enable */
6325 			bnx2x_pf_disable(bp);
6326 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6327 		}
6328 	}
6329 
6330 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6331 	if (CHIP_IS_E1(bp)) {
6332 		/* enable HW interrupt from PXP on USDM overflow
6333 		   bit 16 on INT_MASK_0 */
6334 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6335 	}
6336 
6337 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6338 	bnx2x_init_pxp(bp);
6339 
6340 #ifdef __BIG_ENDIAN
6341 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6342 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6343 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6344 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6345 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6346 	/* make sure this value is 0 */
6347 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6348 
6349 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6350 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6351 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6352 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6353 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6354 #endif
6355 
6356 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6357 
6358 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6359 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6360 
6361 	/* let the HW do it's magic ... */
6362 	msleep(100);
6363 	/* finish PXP init */
6364 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6365 	if (val != 1) {
6366 		BNX2X_ERR("PXP2 CFG failed\n");
6367 		return -EBUSY;
6368 	}
6369 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6370 	if (val != 1) {
6371 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6372 		return -EBUSY;
6373 	}
6374 
6375 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6376 	 * have entries with value "0" and valid bit on.
6377 	 * This needs to be done by the first PF that is loaded in a path
6378 	 * (i.e. common phase)
6379 	 */
6380 	if (!CHIP_IS_E1x(bp)) {
6381 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6382  * (i.e. vnic3) to start even if it is marked as "scan-off".
6383  * This occurs when a different function (func2,3) is being marked
6384  * as "scan-off". Real-life scenario for example: if a driver is being
6385  * load-unloaded while func6,7 are down. This will cause the timer to access
6386  * the ilt, translate to a logical address and send a request to read/write.
6387  * Since the ilt for the function that is down is not valid, this will cause
6388  * a translation error which is unrecoverable.
6389  * The Workaround is intended to make sure that when this happens nothing fatal
6390  * will occur. The workaround:
6391  *	1.  First PF driver which loads on a path will:
6392  *		a.  After taking the chip out of reset, by using pretend,
6393  *		    it will write "0" to the following registers of
6394  *		    the other vnics.
6395  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6396  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6397  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6398  *		    And for itself it will write '1' to
6399  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6400  *		    dmae-operations (writing to pram for example.)
6401  *		    note: can be done for only function 6,7 but cleaner this
6402  *			  way.
6403  *		b.  Write zero+valid to the entire ILT.
6404  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6405  *		    VNIC3 (of that port). The range allocated will be the
6406  *		    entire ILT. This is needed to prevent  ILT range error.
6407  *	2.  Any PF driver load flow:
6408  *		a.  ILT update with the physical addresses of the allocated
6409  *		    logical pages.
6410  *		b.  Wait 20msec. - note that this timeout is needed to make
6411  *		    sure there are no requests in one of the PXP internal
6412  *		    queues with "old" ILT addresses.
6413  *		c.  PF enable in the PGLC.
6414  *		d.  Clear the was_error of the PF in the PGLC. (could have
6415  *		    occured while driver was down)
6416  *		e.  PF enable in the CFC (WEAK + STRONG)
6417  *		f.  Timers scan enable
6418  *	3.  PF driver unload flow:
6419  *		a.  Clear the Timers scan_en.
6420  *		b.  Polling for scan_on=0 for that PF.
6421  *		c.  Clear the PF enable bit in the PXP.
6422  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6423  *		e.  Write zero+valid to all ILT entries (The valid bit must
6424  *		    stay set)
6425  *		f.  If this is VNIC 3 of a port then also init
6426  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6427  *		    to the last enrty in the ILT.
6428  *
6429  *	Notes:
6430  *	Currently the PF error in the PGLC is non recoverable.
6431  *	In the future the there will be a recovery routine for this error.
6432  *	Currently attention is masked.
6433  *	Having an MCP lock on the load/unload process does not guarantee that
6434  *	there is no Timer disable during Func6/7 enable. This is because the
6435  *	Timers scan is currently being cleared by the MCP on FLR.
6436  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6437  *	there is error before clearing it. But the flow above is simpler and
6438  *	more general.
6439  *	All ILT entries are written by zero+valid and not just PF6/7
6440  *	ILT entries since in the future the ILT entries allocation for
6441  *	PF-s might be dynamic.
6442  */
6443 		struct ilt_client_info ilt_cli;
6444 		struct bnx2x_ilt ilt;
6445 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6446 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6447 
6448 		/* initialize dummy TM client */
6449 		ilt_cli.start = 0;
6450 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6451 		ilt_cli.client_num = ILT_CLIENT_TM;
6452 
6453 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6454 		 * Step 2: set the timers first/last ilt entry to point
6455 		 * to the entire range to prevent ILT range error for 3rd/4th
6456 		 * vnic	(this code assumes existance of the vnic)
6457 		 *
6458 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6459 		 * with dummy TM client
6460 		 *
6461 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6462 		 * and his brother are split registers
6463 		 */
6464 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6465 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6466 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6467 
6468 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6469 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6470 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6471 	}
6472 
6473 
6474 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6475 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6476 
6477 	if (!CHIP_IS_E1x(bp)) {
6478 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6479 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6480 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6481 
6482 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6483 
6484 		/* let the HW do it's magic ... */
6485 		do {
6486 			msleep(200);
6487 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6488 		} while (factor-- && (val != 1));
6489 
6490 		if (val != 1) {
6491 			BNX2X_ERR("ATC_INIT failed\n");
6492 			return -EBUSY;
6493 		}
6494 	}
6495 
6496 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6497 
6498 	/* clean the DMAE memory */
6499 	bp->dmae_ready = 1;
6500 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6501 
6502 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6503 
6504 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6505 
6506 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6507 
6508 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6509 
6510 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6511 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6512 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6513 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6514 
6515 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6516 
6517 
6518 	/* QM queues pointers table */
6519 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6520 
6521 	/* soft reset pulse */
6522 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6523 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6524 
6525 #ifdef BCM_CNIC
6526 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6527 #endif
6528 
6529 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6530 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6531 	if (!CHIP_REV_IS_SLOW(bp))
6532 		/* enable hw interrupt from doorbell Q */
6533 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6534 
6535 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6536 
6537 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6538 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6539 
6540 	if (!CHIP_IS_E1(bp))
6541 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6542 
6543 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6544 		if (IS_MF_AFEX(bp)) {
6545 			/* configure that VNTag and VLAN headers must be
6546 			 * received in afex mode
6547 			 */
6548 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6549 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6550 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6551 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6552 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6553 		} else {
6554 			/* Bit-map indicating which L2 hdrs may appear
6555 			 * after the basic Ethernet header
6556 			 */
6557 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6558 			       bp->path_has_ovlan ? 7 : 6);
6559 		}
6560 	}
6561 
6562 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6563 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6564 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6565 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6566 
6567 	if (!CHIP_IS_E1x(bp)) {
6568 		/* reset VFC memories */
6569 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6570 			   VFC_MEMORIES_RST_REG_CAM_RST |
6571 			   VFC_MEMORIES_RST_REG_RAM_RST);
6572 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6573 			   VFC_MEMORIES_RST_REG_CAM_RST |
6574 			   VFC_MEMORIES_RST_REG_RAM_RST);
6575 
6576 		msleep(20);
6577 	}
6578 
6579 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6580 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6581 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6582 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6583 
6584 	/* sync semi rtc */
6585 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6586 	       0x80000000);
6587 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6588 	       0x80000000);
6589 
6590 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6591 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6592 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6593 
6594 	if (!CHIP_IS_E1x(bp)) {
6595 		if (IS_MF_AFEX(bp)) {
6596 			/* configure that VNTag and VLAN headers must be
6597 			 * sent in afex mode
6598 			 */
6599 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6600 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6601 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6602 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6603 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6604 		} else {
6605 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6606 			       bp->path_has_ovlan ? 7 : 6);
6607 		}
6608 	}
6609 
6610 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6611 
6612 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6613 
6614 #ifdef BCM_CNIC
6615 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6616 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6617 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6618 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6619 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6620 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6621 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6622 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6623 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6624 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6625 #endif
6626 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6627 
6628 	if (sizeof(union cdu_context) != 1024)
6629 		/* we currently assume that a context is 1024 bytes */
6630 		dev_alert(&bp->pdev->dev,
6631 			  "please adjust the size of cdu_context(%ld)\n",
6632 			  (long)sizeof(union cdu_context));
6633 
6634 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6635 	val = (4 << 24) + (0 << 12) + 1024;
6636 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6637 
6638 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6639 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6640 	/* enable context validation interrupt from CFC */
6641 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6642 
6643 	/* set the thresholds to prevent CFC/CDU race */
6644 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6645 
6646 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6647 
6648 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6649 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6650 
6651 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6652 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6653 
6654 	/* Reset PCIE errors for debug */
6655 	REG_WR(bp, 0x2814, 0xffffffff);
6656 	REG_WR(bp, 0x3820, 0xffffffff);
6657 
6658 	if (!CHIP_IS_E1x(bp)) {
6659 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6660 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6661 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6662 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6663 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6664 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6665 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6666 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6667 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6668 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6669 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6670 	}
6671 
6672 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6673 	if (!CHIP_IS_E1(bp)) {
6674 		/* in E3 this done in per-port section */
6675 		if (!CHIP_IS_E3(bp))
6676 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6677 	}
6678 	if (CHIP_IS_E1H(bp))
6679 		/* not applicable for E2 (and above ...) */
6680 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6681 
6682 	if (CHIP_REV_IS_SLOW(bp))
6683 		msleep(200);
6684 
6685 	/* finish CFC init */
6686 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6687 	if (val != 1) {
6688 		BNX2X_ERR("CFC LL_INIT failed\n");
6689 		return -EBUSY;
6690 	}
6691 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6692 	if (val != 1) {
6693 		BNX2X_ERR("CFC AC_INIT failed\n");
6694 		return -EBUSY;
6695 	}
6696 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6697 	if (val != 1) {
6698 		BNX2X_ERR("CFC CAM_INIT failed\n");
6699 		return -EBUSY;
6700 	}
6701 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6702 
6703 	if (CHIP_IS_E1(bp)) {
6704 		/* read NIG statistic
6705 		   to see if this is our first up since powerup */
6706 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6707 		val = *bnx2x_sp(bp, wb_data[0]);
6708 
6709 		/* do internal memory self test */
6710 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6711 			BNX2X_ERR("internal mem self test failed\n");
6712 			return -EBUSY;
6713 		}
6714 	}
6715 
6716 	bnx2x_setup_fan_failure_detection(bp);
6717 
6718 	/* clear PXP2 attentions */
6719 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6720 
6721 	bnx2x_enable_blocks_attention(bp);
6722 	bnx2x_enable_blocks_parity(bp);
6723 
6724 	if (!BP_NOMCP(bp)) {
6725 		if (CHIP_IS_E1x(bp))
6726 			bnx2x__common_init_phy(bp);
6727 	} else
6728 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6729 
6730 	return 0;
6731 }
6732 
6733 /**
6734  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6735  *
6736  * @bp:		driver handle
6737  */
6738 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6739 {
6740 	int rc = bnx2x_init_hw_common(bp);
6741 
6742 	if (rc)
6743 		return rc;
6744 
6745 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6746 	if (!BP_NOMCP(bp))
6747 		bnx2x__common_init_phy(bp);
6748 
6749 	return 0;
6750 }
6751 
6752 static int bnx2x_init_hw_port(struct bnx2x *bp)
6753 {
6754 	int port = BP_PORT(bp);
6755 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6756 	u32 low, high;
6757 	u32 val;
6758 
6759 
6760 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6761 
6762 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6763 
6764 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6765 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6766 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6767 
6768 	/* Timers bug workaround: disables the pf_master bit in pglue at
6769 	 * common phase, we need to enable it here before any dmae access are
6770 	 * attempted. Therefore we manually added the enable-master to the
6771 	 * port phase (it also happens in the function phase)
6772 	 */
6773 	if (!CHIP_IS_E1x(bp))
6774 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6775 
6776 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6777 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6778 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6779 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6780 
6781 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6782 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6783 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6784 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6785 
6786 	/* QM cid (connection) count */
6787 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6788 
6789 #ifdef BCM_CNIC
6790 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6791 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6792 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6793 #endif
6794 
6795 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6796 
6797 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6798 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6799 
6800 		if (IS_MF(bp))
6801 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6802 		else if (bp->dev->mtu > 4096) {
6803 			if (bp->flags & ONE_PORT_FLAG)
6804 				low = 160;
6805 			else {
6806 				val = bp->dev->mtu;
6807 				/* (24*1024 + val*4)/256 */
6808 				low = 96 + (val/64) +
6809 						((val % 64) ? 1 : 0);
6810 			}
6811 		} else
6812 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6813 		high = low + 56;	/* 14*1024/256 */
6814 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6815 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6816 	}
6817 
6818 	if (CHIP_MODE_IS_4_PORT(bp))
6819 		REG_WR(bp, (BP_PORT(bp) ?
6820 			    BRB1_REG_MAC_GUARANTIED_1 :
6821 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6822 
6823 
6824 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6825 	if (CHIP_IS_E3B0(bp)) {
6826 		if (IS_MF_AFEX(bp)) {
6827 			/* configure headers for AFEX mode */
6828 			REG_WR(bp, BP_PORT(bp) ?
6829 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6830 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6831 			REG_WR(bp, BP_PORT(bp) ?
6832 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6833 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6834 			REG_WR(bp, BP_PORT(bp) ?
6835 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6836 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6837 		} else {
6838 			/* Ovlan exists only if we are in multi-function +
6839 			 * switch-dependent mode, in switch-independent there
6840 			 * is no ovlan headers
6841 			 */
6842 			REG_WR(bp, BP_PORT(bp) ?
6843 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6844 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6845 			       (bp->path_has_ovlan ? 7 : 6));
6846 		}
6847 	}
6848 
6849 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6850 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6851 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6852 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6853 
6854 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6855 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6856 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6857 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6858 
6859 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6860 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6861 
6862 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6863 
6864 	if (CHIP_IS_E1x(bp)) {
6865 		/* configure PBF to work without PAUSE mtu 9000 */
6866 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6867 
6868 		/* update threshold */
6869 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6870 		/* update init credit */
6871 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6872 
6873 		/* probe changes */
6874 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6875 		udelay(50);
6876 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6877 	}
6878 
6879 #ifdef BCM_CNIC
6880 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6881 #endif
6882 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6883 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6884 
6885 	if (CHIP_IS_E1(bp)) {
6886 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6887 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6888 	}
6889 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6890 
6891 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6892 
6893 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6894 	/* init aeu_mask_attn_func_0/1:
6895 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6896 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6897 	 *             bits 4-7 are used for "per vn group attention" */
6898 	val = IS_MF(bp) ? 0xF7 : 0x7;
6899 	/* Enable DCBX attention for all but E1 */
6900 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6901 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6902 
6903 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6904 
6905 	if (!CHIP_IS_E1x(bp)) {
6906 		/* Bit-map indicating which L2 hdrs may appear after the
6907 		 * basic Ethernet header
6908 		 */
6909 		if (IS_MF_AFEX(bp))
6910 			REG_WR(bp, BP_PORT(bp) ?
6911 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6912 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6913 		else
6914 			REG_WR(bp, BP_PORT(bp) ?
6915 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6916 			       NIG_REG_P0_HDRS_AFTER_BASIC,
6917 			       IS_MF_SD(bp) ? 7 : 6);
6918 
6919 		if (CHIP_IS_E3(bp))
6920 			REG_WR(bp, BP_PORT(bp) ?
6921 				   NIG_REG_LLH1_MF_MODE :
6922 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6923 	}
6924 	if (!CHIP_IS_E3(bp))
6925 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6926 
6927 	if (!CHIP_IS_E1(bp)) {
6928 		/* 0x2 disable mf_ov, 0x1 enable */
6929 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6930 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6931 
6932 		if (!CHIP_IS_E1x(bp)) {
6933 			val = 0;
6934 			switch (bp->mf_mode) {
6935 			case MULTI_FUNCTION_SD:
6936 				val = 1;
6937 				break;
6938 			case MULTI_FUNCTION_SI:
6939 			case MULTI_FUNCTION_AFEX:
6940 				val = 2;
6941 				break;
6942 			}
6943 
6944 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6945 						  NIG_REG_LLH0_CLS_TYPE), val);
6946 		}
6947 		{
6948 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6949 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6950 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6951 		}
6952 	}
6953 
6954 
6955 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6956 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6957 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6958 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6959 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6960 		val = REG_RD(bp, reg_addr);
6961 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6962 		REG_WR(bp, reg_addr, val);
6963 	}
6964 
6965 	return 0;
6966 }
6967 
6968 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6969 {
6970 	int reg;
6971 	u32 wb_write[2];
6972 
6973 	if (CHIP_IS_E1(bp))
6974 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6975 	else
6976 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6977 
6978 	wb_write[0] = ONCHIP_ADDR1(addr);
6979 	wb_write[1] = ONCHIP_ADDR2(addr);
6980 	REG_WR_DMAE(bp, reg, wb_write, 2);
6981 }
6982 
6983 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
6984 				   u8 idu_sb_id, bool is_Pf)
6985 {
6986 	u32 data, ctl, cnt = 100;
6987 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
6988 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
6989 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
6990 	u32 sb_bit =  1 << (idu_sb_id%32);
6991 	u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
6992 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
6993 
6994 	/* Not supported in BC mode */
6995 	if (CHIP_INT_MODE_IS_BC(bp))
6996 		return;
6997 
6998 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
6999 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7000 		IGU_REGULAR_CLEANUP_SET				|
7001 		IGU_REGULAR_BCLEANUP;
7002 
7003 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7004 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7005 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7006 
7007 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7008 			 data, igu_addr_data);
7009 	REG_WR(bp, igu_addr_data, data);
7010 	mmiowb();
7011 	barrier();
7012 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7013 			  ctl, igu_addr_ctl);
7014 	REG_WR(bp, igu_addr_ctl, ctl);
7015 	mmiowb();
7016 	barrier();
7017 
7018 	/* wait for clean up to finish */
7019 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7020 		msleep(20);
7021 
7022 
7023 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7024 		DP(NETIF_MSG_HW,
7025 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7026 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7027 	}
7028 }
7029 
7030 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7031 {
7032 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7033 }
7034 
7035 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7036 {
7037 	u32 i, base = FUNC_ILT_BASE(func);
7038 	for (i = base; i < base + ILT_PER_FUNC; i++)
7039 		bnx2x_ilt_wr(bp, i, 0);
7040 }
7041 
7042 static int bnx2x_init_hw_func(struct bnx2x *bp)
7043 {
7044 	int port = BP_PORT(bp);
7045 	int func = BP_FUNC(bp);
7046 	int init_phase = PHASE_PF0 + func;
7047 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7048 	u16 cdu_ilt_start;
7049 	u32 addr, val;
7050 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7051 	int i, main_mem_width, rc;
7052 
7053 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7054 
7055 	/* FLR cleanup - hmmm */
7056 	if (!CHIP_IS_E1x(bp)) {
7057 		rc = bnx2x_pf_flr_clnup(bp);
7058 		if (rc)
7059 			return rc;
7060 	}
7061 
7062 	/* set MSI reconfigure capability */
7063 	if (bp->common.int_block == INT_BLOCK_HC) {
7064 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7065 		val = REG_RD(bp, addr);
7066 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7067 		REG_WR(bp, addr, val);
7068 	}
7069 
7070 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7071 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7072 
7073 	ilt = BP_ILT(bp);
7074 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7075 
7076 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7077 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7078 		ilt->lines[cdu_ilt_start + i].page_mapping =
7079 			bp->context[i].cxt_mapping;
7080 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7081 	}
7082 	bnx2x_ilt_init_op(bp, INITOP_SET);
7083 
7084 #ifdef BCM_CNIC
7085 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7086 
7087 	/* T1 hash bits value determines the T1 number of entries */
7088 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7089 #endif
7090 
7091 #ifndef BCM_CNIC
7092 	/* set NIC mode */
7093 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
7094 #endif  /* BCM_CNIC */
7095 
7096 	if (!CHIP_IS_E1x(bp)) {
7097 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7098 
7099 		/* Turn on a single ISR mode in IGU if driver is going to use
7100 		 * INT#x or MSI
7101 		 */
7102 		if (!(bp->flags & USING_MSIX_FLAG))
7103 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7104 		/*
7105 		 * Timers workaround bug: function init part.
7106 		 * Need to wait 20msec after initializing ILT,
7107 		 * needed to make sure there are no requests in
7108 		 * one of the PXP internal queues with "old" ILT addresses
7109 		 */
7110 		msleep(20);
7111 		/*
7112 		 * Master enable - Due to WB DMAE writes performed before this
7113 		 * register is re-initialized as part of the regular function
7114 		 * init
7115 		 */
7116 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7117 		/* Enable the function in IGU */
7118 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7119 	}
7120 
7121 	bp->dmae_ready = 1;
7122 
7123 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7124 
7125 	if (!CHIP_IS_E1x(bp))
7126 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7127 
7128 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7129 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7130 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7131 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7132 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7133 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7134 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7135 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7136 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7137 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7138 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7139 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7140 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7141 
7142 	if (!CHIP_IS_E1x(bp))
7143 		REG_WR(bp, QM_REG_PF_EN, 1);
7144 
7145 	if (!CHIP_IS_E1x(bp)) {
7146 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7147 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7148 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7149 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7150 	}
7151 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7152 
7153 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7154 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7155 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7156 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7157 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7158 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7159 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7160 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7161 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7162 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7163 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7164 	if (!CHIP_IS_E1x(bp))
7165 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7166 
7167 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7168 
7169 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7170 
7171 	if (!CHIP_IS_E1x(bp))
7172 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7173 
7174 	if (IS_MF(bp)) {
7175 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7176 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7177 	}
7178 
7179 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7180 
7181 	/* HC init per function */
7182 	if (bp->common.int_block == INT_BLOCK_HC) {
7183 		if (CHIP_IS_E1H(bp)) {
7184 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7185 
7186 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7187 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7188 		}
7189 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7190 
7191 	} else {
7192 		int num_segs, sb_idx, prod_offset;
7193 
7194 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7195 
7196 		if (!CHIP_IS_E1x(bp)) {
7197 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7198 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7199 		}
7200 
7201 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7202 
7203 		if (!CHIP_IS_E1x(bp)) {
7204 			int dsb_idx = 0;
7205 			/**
7206 			 * Producer memory:
7207 			 * E2 mode: address 0-135 match to the mapping memory;
7208 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7209 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7210 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7211 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7212 			 * 144-147 reserved.
7213 			 *
7214 			 * E1.5 mode - In backward compatible mode;
7215 			 * for non default SB; each even line in the memory
7216 			 * holds the U producer and each odd line hold
7217 			 * the C producer. The first 128 producers are for
7218 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7219 			 * producers are for the DSB for each PF.
7220 			 * Each PF has five segments: (the order inside each
7221 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7222 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7223 			 * 144-147 attn prods;
7224 			 */
7225 			/* non-default-status-blocks */
7226 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7227 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7228 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7229 				prod_offset = (bp->igu_base_sb + sb_idx) *
7230 					num_segs;
7231 
7232 				for (i = 0; i < num_segs; i++) {
7233 					addr = IGU_REG_PROD_CONS_MEMORY +
7234 							(prod_offset + i) * 4;
7235 					REG_WR(bp, addr, 0);
7236 				}
7237 				/* send consumer update with value 0 */
7238 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7239 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7240 				bnx2x_igu_clear_sb(bp,
7241 						   bp->igu_base_sb + sb_idx);
7242 			}
7243 
7244 			/* default-status-blocks */
7245 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7246 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7247 
7248 			if (CHIP_MODE_IS_4_PORT(bp))
7249 				dsb_idx = BP_FUNC(bp);
7250 			else
7251 				dsb_idx = BP_VN(bp);
7252 
7253 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7254 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7255 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7256 
7257 			/*
7258 			 * igu prods come in chunks of E1HVN_MAX (4) -
7259 			 * does not matters what is the current chip mode
7260 			 */
7261 			for (i = 0; i < (num_segs * E1HVN_MAX);
7262 			     i += E1HVN_MAX) {
7263 				addr = IGU_REG_PROD_CONS_MEMORY +
7264 							(prod_offset + i)*4;
7265 				REG_WR(bp, addr, 0);
7266 			}
7267 			/* send consumer update with 0 */
7268 			if (CHIP_INT_MODE_IS_BC(bp)) {
7269 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7270 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7271 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7272 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7273 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7274 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7275 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7276 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7277 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7278 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7279 			} else {
7280 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7281 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7282 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7283 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7284 			}
7285 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7286 
7287 			/* !!! these should become driver const once
7288 			   rf-tool supports split-68 const */
7289 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7290 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7291 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7292 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7293 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7294 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7295 		}
7296 	}
7297 
7298 	/* Reset PCIE errors for debug */
7299 	REG_WR(bp, 0x2114, 0xffffffff);
7300 	REG_WR(bp, 0x2120, 0xffffffff);
7301 
7302 	if (CHIP_IS_E1x(bp)) {
7303 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7304 		main_mem_base = HC_REG_MAIN_MEMORY +
7305 				BP_PORT(bp) * (main_mem_size * 4);
7306 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7307 		main_mem_width = 8;
7308 
7309 		val = REG_RD(bp, main_mem_prty_clr);
7310 		if (val)
7311 			DP(NETIF_MSG_HW,
7312 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7313 			   val);
7314 
7315 		/* Clear "false" parity errors in MSI-X table */
7316 		for (i = main_mem_base;
7317 		     i < main_mem_base + main_mem_size * 4;
7318 		     i += main_mem_width) {
7319 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7320 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7321 					 i, main_mem_width / 4);
7322 		}
7323 		/* Clear HC parity attention */
7324 		REG_RD(bp, main_mem_prty_clr);
7325 	}
7326 
7327 #ifdef BNX2X_STOP_ON_ERROR
7328 	/* Enable STORMs SP logging */
7329 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7330 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7331 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7332 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7333 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7334 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7335 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7336 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7337 #endif
7338 
7339 	bnx2x_phy_probe(&bp->link_params);
7340 
7341 	return 0;
7342 }
7343 
7344 
7345 void bnx2x_free_mem(struct bnx2x *bp)
7346 {
7347 	int i;
7348 
7349 	/* fastpath */
7350 	bnx2x_free_fp_mem(bp);
7351 	/* end of fastpath */
7352 
7353 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7354 		       sizeof(struct host_sp_status_block));
7355 
7356 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7357 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7358 
7359 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7360 		       sizeof(struct bnx2x_slowpath));
7361 
7362 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7363 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7364 			       bp->context[i].size);
7365 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7366 
7367 	BNX2X_FREE(bp->ilt->lines);
7368 
7369 #ifdef BCM_CNIC
7370 	if (!CHIP_IS_E1x(bp))
7371 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7372 			       sizeof(struct host_hc_status_block_e2));
7373 	else
7374 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7375 			       sizeof(struct host_hc_status_block_e1x));
7376 
7377 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7378 #endif
7379 
7380 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7381 
7382 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7383 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7384 }
7385 
7386 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7387 {
7388 	int num_groups;
7389 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7390 
7391 	/* number of queues for statistics is number of eth queues + FCoE */
7392 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7393 
7394 	/* Total number of FW statistics requests =
7395 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7396 	 * num of queues
7397 	 */
7398 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7399 
7400 
7401 	/* Request is built from stats_query_header and an array of
7402 	 * stats_query_cmd_group each of which contains
7403 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7404 	 * configured in the stats_query_header.
7405 	 */
7406 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7407 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7408 
7409 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7410 			num_groups * sizeof(struct stats_query_cmd_group);
7411 
7412 	/* Data for statistics requests + stats_conter
7413 	 *
7414 	 * stats_counter holds per-STORM counters that are incremented
7415 	 * when STORM has finished with the current request.
7416 	 *
7417 	 * memory for FCoE offloaded statistics are counted anyway,
7418 	 * even if they will not be sent.
7419 	 */
7420 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7421 		sizeof(struct per_pf_stats) +
7422 		sizeof(struct fcoe_statistics_params) +
7423 		sizeof(struct per_queue_stats) * num_queue_stats +
7424 		sizeof(struct stats_counter);
7425 
7426 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7427 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7428 
7429 	/* Set shortcuts */
7430 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7431 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7432 
7433 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7434 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7435 
7436 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7437 				   bp->fw_stats_req_sz;
7438 	return 0;
7439 
7440 alloc_mem_err:
7441 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7442 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7443 	BNX2X_ERR("Can't allocate memory\n");
7444 	return -ENOMEM;
7445 }
7446 
7447 
7448 int bnx2x_alloc_mem(struct bnx2x *bp)
7449 {
7450 	int i, allocated, context_size;
7451 
7452 #ifdef BCM_CNIC
7453 	if (!CHIP_IS_E1x(bp))
7454 		/* size = the status block + ramrod buffers */
7455 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7456 				sizeof(struct host_hc_status_block_e2));
7457 	else
7458 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7459 				sizeof(struct host_hc_status_block_e1x));
7460 
7461 	/* allocate searcher T2 table */
7462 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7463 #endif
7464 
7465 
7466 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7467 			sizeof(struct host_sp_status_block));
7468 
7469 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7470 			sizeof(struct bnx2x_slowpath));
7471 
7472 #ifdef BCM_CNIC
7473 	/* write address to which L5 should insert its values */
7474 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7475 #endif
7476 
7477 	/* Allocated memory for FW statistics  */
7478 	if (bnx2x_alloc_fw_stats_mem(bp))
7479 		goto alloc_mem_err;
7480 
7481 	/* Allocate memory for CDU context:
7482 	 * This memory is allocated separately and not in the generic ILT
7483 	 * functions because CDU differs in few aspects:
7484 	 * 1. There are multiple entities allocating memory for context -
7485 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7486 	 * its own ILT lines.
7487 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7488 	 * for the other ILT clients), to be efficient we want to support
7489 	 * allocation of sub-page-size in the last entry.
7490 	 * 3. Context pointers are used by the driver to pass to FW / update
7491 	 * the context (for the other ILT clients the pointers are used just to
7492 	 * free the memory during unload).
7493 	 */
7494 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7495 
7496 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7497 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7498 					  (context_size - allocated));
7499 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7500 				&bp->context[i].cxt_mapping,
7501 				bp->context[i].size);
7502 		allocated += bp->context[i].size;
7503 	}
7504 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7505 
7506 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7507 		goto alloc_mem_err;
7508 
7509 	/* Slow path ring */
7510 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7511 
7512 	/* EQ */
7513 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7514 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7515 
7516 
7517 	/* fastpath */
7518 	/* need to be done at the end, since it's self adjusting to amount
7519 	 * of memory available for RSS queues
7520 	 */
7521 	if (bnx2x_alloc_fp_mem(bp))
7522 		goto alloc_mem_err;
7523 	return 0;
7524 
7525 alloc_mem_err:
7526 	bnx2x_free_mem(bp);
7527 	BNX2X_ERR("Can't allocate memory\n");
7528 	return -ENOMEM;
7529 }
7530 
7531 /*
7532  * Init service functions
7533  */
7534 
7535 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7536 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7537 		      int mac_type, unsigned long *ramrod_flags)
7538 {
7539 	int rc;
7540 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7541 
7542 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7543 
7544 	/* Fill general parameters */
7545 	ramrod_param.vlan_mac_obj = obj;
7546 	ramrod_param.ramrod_flags = *ramrod_flags;
7547 
7548 	/* Fill a user request section if needed */
7549 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7550 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7551 
7552 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7553 
7554 		/* Set the command: ADD or DEL */
7555 		if (set)
7556 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7557 		else
7558 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7559 	}
7560 
7561 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7562 
7563 	if (rc == -EEXIST) {
7564 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7565 		/* do not treat adding same MAC as error */
7566 		rc = 0;
7567 	} else if (rc < 0)
7568 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7569 
7570 	return rc;
7571 }
7572 
7573 int bnx2x_del_all_macs(struct bnx2x *bp,
7574 		       struct bnx2x_vlan_mac_obj *mac_obj,
7575 		       int mac_type, bool wait_for_comp)
7576 {
7577 	int rc;
7578 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7579 
7580 	/* Wait for completion of requested */
7581 	if (wait_for_comp)
7582 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7583 
7584 	/* Set the mac type of addresses we want to clear */
7585 	__set_bit(mac_type, &vlan_mac_flags);
7586 
7587 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7588 	if (rc < 0)
7589 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7590 
7591 	return rc;
7592 }
7593 
7594 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7595 {
7596 	unsigned long ramrod_flags = 0;
7597 
7598 #ifdef BCM_CNIC
7599 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7600 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7601 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7602 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7603 		return 0;
7604 	}
7605 #endif
7606 
7607 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7608 
7609 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7610 	/* Eth MAC is set on RSS leading client (fp[0]) */
7611 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7612 				 set, BNX2X_ETH_MAC, &ramrod_flags);
7613 }
7614 
7615 int bnx2x_setup_leading(struct bnx2x *bp)
7616 {
7617 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7618 }
7619 
7620 /**
7621  * bnx2x_set_int_mode - configure interrupt mode
7622  *
7623  * @bp:		driver handle
7624  *
7625  * In case of MSI-X it will also try to enable MSI-X.
7626  */
7627 void bnx2x_set_int_mode(struct bnx2x *bp)
7628 {
7629 	switch (int_mode) {
7630 	case INT_MODE_MSI:
7631 		bnx2x_enable_msi(bp);
7632 		/* falling through... */
7633 	case INT_MODE_INTx:
7634 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7635 		BNX2X_DEV_INFO("set number of queues to 1\n");
7636 		break;
7637 	default:
7638 		/* if we can't use MSI-X we only need one fp,
7639 		 * so try to enable MSI-X with the requested number of fp's
7640 		 * and fallback to MSI or legacy INTx with one fp
7641 		 */
7642 		if (bnx2x_enable_msix(bp) ||
7643 		    bp->flags & USING_SINGLE_MSIX_FLAG) {
7644 			/* failed to enable multiple MSI-X */
7645 			BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7646 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7647 
7648 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7649 
7650 			/* Try to enable MSI */
7651 			if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7652 			    !(bp->flags & DISABLE_MSI_FLAG))
7653 				bnx2x_enable_msi(bp);
7654 		}
7655 		break;
7656 	}
7657 }
7658 
7659 /* must be called prioir to any HW initializations */
7660 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7661 {
7662 	return L2_ILT_LINES(bp);
7663 }
7664 
7665 void bnx2x_ilt_set_info(struct bnx2x *bp)
7666 {
7667 	struct ilt_client_info *ilt_client;
7668 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7669 	u16 line = 0;
7670 
7671 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7672 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7673 
7674 	/* CDU */
7675 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7676 	ilt_client->client_num = ILT_CLIENT_CDU;
7677 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7678 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7679 	ilt_client->start = line;
7680 	line += bnx2x_cid_ilt_lines(bp);
7681 #ifdef BCM_CNIC
7682 	line += CNIC_ILT_LINES;
7683 #endif
7684 	ilt_client->end = line - 1;
7685 
7686 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7687 	   ilt_client->start,
7688 	   ilt_client->end,
7689 	   ilt_client->page_size,
7690 	   ilt_client->flags,
7691 	   ilog2(ilt_client->page_size >> 12));
7692 
7693 	/* QM */
7694 	if (QM_INIT(bp->qm_cid_count)) {
7695 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7696 		ilt_client->client_num = ILT_CLIENT_QM;
7697 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7698 		ilt_client->flags = 0;
7699 		ilt_client->start = line;
7700 
7701 		/* 4 bytes for each cid */
7702 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7703 							 QM_ILT_PAGE_SZ);
7704 
7705 		ilt_client->end = line - 1;
7706 
7707 		DP(NETIF_MSG_IFUP,
7708 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7709 		   ilt_client->start,
7710 		   ilt_client->end,
7711 		   ilt_client->page_size,
7712 		   ilt_client->flags,
7713 		   ilog2(ilt_client->page_size >> 12));
7714 
7715 	}
7716 	/* SRC */
7717 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7718 #ifdef BCM_CNIC
7719 	ilt_client->client_num = ILT_CLIENT_SRC;
7720 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7721 	ilt_client->flags = 0;
7722 	ilt_client->start = line;
7723 	line += SRC_ILT_LINES;
7724 	ilt_client->end = line - 1;
7725 
7726 	DP(NETIF_MSG_IFUP,
7727 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7728 	   ilt_client->start,
7729 	   ilt_client->end,
7730 	   ilt_client->page_size,
7731 	   ilt_client->flags,
7732 	   ilog2(ilt_client->page_size >> 12));
7733 
7734 #else
7735 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7736 #endif
7737 
7738 	/* TM */
7739 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7740 #ifdef BCM_CNIC
7741 	ilt_client->client_num = ILT_CLIENT_TM;
7742 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7743 	ilt_client->flags = 0;
7744 	ilt_client->start = line;
7745 	line += TM_ILT_LINES;
7746 	ilt_client->end = line - 1;
7747 
7748 	DP(NETIF_MSG_IFUP,
7749 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7750 	   ilt_client->start,
7751 	   ilt_client->end,
7752 	   ilt_client->page_size,
7753 	   ilt_client->flags,
7754 	   ilog2(ilt_client->page_size >> 12));
7755 
7756 #else
7757 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7758 #endif
7759 	BUG_ON(line > ILT_MAX_LINES);
7760 }
7761 
7762 /**
7763  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7764  *
7765  * @bp:			driver handle
7766  * @fp:			pointer to fastpath
7767  * @init_params:	pointer to parameters structure
7768  *
7769  * parameters configured:
7770  *      - HC configuration
7771  *      - Queue's CDU context
7772  */
7773 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7774 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7775 {
7776 
7777 	u8 cos;
7778 	int cxt_index, cxt_offset;
7779 
7780 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7781 	if (!IS_FCOE_FP(fp)) {
7782 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7783 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7784 
7785 		/* If HC is supporterd, enable host coalescing in the transition
7786 		 * to INIT state.
7787 		 */
7788 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7789 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7790 
7791 		/* HC rate */
7792 		init_params->rx.hc_rate = bp->rx_ticks ?
7793 			(1000000 / bp->rx_ticks) : 0;
7794 		init_params->tx.hc_rate = bp->tx_ticks ?
7795 			(1000000 / bp->tx_ticks) : 0;
7796 
7797 		/* FW SB ID */
7798 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7799 			fp->fw_sb_id;
7800 
7801 		/*
7802 		 * CQ index among the SB indices: FCoE clients uses the default
7803 		 * SB, therefore it's different.
7804 		 */
7805 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7806 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7807 	}
7808 
7809 	/* set maximum number of COSs supported by this queue */
7810 	init_params->max_cos = fp->max_cos;
7811 
7812 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7813 	    fp->index, init_params->max_cos);
7814 
7815 	/* set the context pointers queue object */
7816 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7817 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7818 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7819 				ILT_PAGE_CIDS);
7820 		init_params->cxts[cos] =
7821 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
7822 	}
7823 }
7824 
7825 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7826 			struct bnx2x_queue_state_params *q_params,
7827 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7828 			int tx_index, bool leading)
7829 {
7830 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7831 
7832 	/* Set the command */
7833 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7834 
7835 	/* Set tx-only QUEUE flags: don't zero statistics */
7836 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7837 
7838 	/* choose the index of the cid to send the slow path on */
7839 	tx_only_params->cid_index = tx_index;
7840 
7841 	/* Set general TX_ONLY_SETUP parameters */
7842 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7843 
7844 	/* Set Tx TX_ONLY_SETUP parameters */
7845 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7846 
7847 	DP(NETIF_MSG_IFUP,
7848 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7849 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7850 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7851 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7852 
7853 	/* send the ramrod */
7854 	return bnx2x_queue_state_change(bp, q_params);
7855 }
7856 
7857 
7858 /**
7859  * bnx2x_setup_queue - setup queue
7860  *
7861  * @bp:		driver handle
7862  * @fp:		pointer to fastpath
7863  * @leading:	is leading
7864  *
7865  * This function performs 2 steps in a Queue state machine
7866  *      actually: 1) RESET->INIT 2) INIT->SETUP
7867  */
7868 
7869 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7870 		       bool leading)
7871 {
7872 	struct bnx2x_queue_state_params q_params = {NULL};
7873 	struct bnx2x_queue_setup_params *setup_params =
7874 						&q_params.params.setup;
7875 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7876 						&q_params.params.tx_only;
7877 	int rc;
7878 	u8 tx_index;
7879 
7880 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7881 
7882 	/* reset IGU state skip FCoE L2 queue */
7883 	if (!IS_FCOE_FP(fp))
7884 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7885 			     IGU_INT_ENABLE, 0);
7886 
7887 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
7888 	/* We want to wait for completion in this context */
7889 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7890 
7891 	/* Prepare the INIT parameters */
7892 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7893 
7894 	/* Set the command */
7895 	q_params.cmd = BNX2X_Q_CMD_INIT;
7896 
7897 	/* Change the state to INIT */
7898 	rc = bnx2x_queue_state_change(bp, &q_params);
7899 	if (rc) {
7900 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7901 		return rc;
7902 	}
7903 
7904 	DP(NETIF_MSG_IFUP, "init complete\n");
7905 
7906 
7907 	/* Now move the Queue to the SETUP state... */
7908 	memset(setup_params, 0, sizeof(*setup_params));
7909 
7910 	/* Set QUEUE flags */
7911 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7912 
7913 	/* Set general SETUP parameters */
7914 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7915 				FIRST_TX_COS_INDEX);
7916 
7917 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7918 			    &setup_params->rxq_params);
7919 
7920 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7921 			   FIRST_TX_COS_INDEX);
7922 
7923 	/* Set the command */
7924 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7925 
7926 	/* Change the state to SETUP */
7927 	rc = bnx2x_queue_state_change(bp, &q_params);
7928 	if (rc) {
7929 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7930 		return rc;
7931 	}
7932 
7933 	/* loop through the relevant tx-only indices */
7934 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7935 	      tx_index < fp->max_cos;
7936 	      tx_index++) {
7937 
7938 		/* prepare and send tx-only ramrod*/
7939 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7940 					  tx_only_params, tx_index, leading);
7941 		if (rc) {
7942 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7943 				  fp->index, tx_index);
7944 			return rc;
7945 		}
7946 	}
7947 
7948 	return rc;
7949 }
7950 
7951 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7952 {
7953 	struct bnx2x_fastpath *fp = &bp->fp[index];
7954 	struct bnx2x_fp_txdata *txdata;
7955 	struct bnx2x_queue_state_params q_params = {NULL};
7956 	int rc, tx_index;
7957 
7958 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7959 
7960 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
7961 	/* We want to wait for completion in this context */
7962 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7963 
7964 
7965 	/* close tx-only connections */
7966 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7967 	     tx_index < fp->max_cos;
7968 	     tx_index++){
7969 
7970 		/* ascertain this is a normal queue*/
7971 		txdata = fp->txdata_ptr[tx_index];
7972 
7973 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7974 							txdata->txq_index);
7975 
7976 		/* send halt terminate on tx-only connection */
7977 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7978 		memset(&q_params.params.terminate, 0,
7979 		       sizeof(q_params.params.terminate));
7980 		q_params.params.terminate.cid_index = tx_index;
7981 
7982 		rc = bnx2x_queue_state_change(bp, &q_params);
7983 		if (rc)
7984 			return rc;
7985 
7986 		/* send halt terminate on tx-only connection */
7987 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7988 		memset(&q_params.params.cfc_del, 0,
7989 		       sizeof(q_params.params.cfc_del));
7990 		q_params.params.cfc_del.cid_index = tx_index;
7991 		rc = bnx2x_queue_state_change(bp, &q_params);
7992 		if (rc)
7993 			return rc;
7994 	}
7995 	/* Stop the primary connection: */
7996 	/* ...halt the connection */
7997 	q_params.cmd = BNX2X_Q_CMD_HALT;
7998 	rc = bnx2x_queue_state_change(bp, &q_params);
7999 	if (rc)
8000 		return rc;
8001 
8002 	/* ...terminate the connection */
8003 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8004 	memset(&q_params.params.terminate, 0,
8005 	       sizeof(q_params.params.terminate));
8006 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8007 	rc = bnx2x_queue_state_change(bp, &q_params);
8008 	if (rc)
8009 		return rc;
8010 	/* ...delete cfc entry */
8011 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8012 	memset(&q_params.params.cfc_del, 0,
8013 	       sizeof(q_params.params.cfc_del));
8014 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8015 	return bnx2x_queue_state_change(bp, &q_params);
8016 }
8017 
8018 
8019 static void bnx2x_reset_func(struct bnx2x *bp)
8020 {
8021 	int port = BP_PORT(bp);
8022 	int func = BP_FUNC(bp);
8023 	int i;
8024 
8025 	/* Disable the function in the FW */
8026 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8027 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8028 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8029 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8030 
8031 	/* FP SBs */
8032 	for_each_eth_queue(bp, i) {
8033 		struct bnx2x_fastpath *fp = &bp->fp[i];
8034 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8035 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8036 			   SB_DISABLED);
8037 	}
8038 
8039 #ifdef BCM_CNIC
8040 	/* CNIC SB */
8041 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8042 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
8043 		SB_DISABLED);
8044 #endif
8045 	/* SP SB */
8046 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8047 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8048 		   SB_DISABLED);
8049 
8050 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8051 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8052 		       0);
8053 
8054 	/* Configure IGU */
8055 	if (bp->common.int_block == INT_BLOCK_HC) {
8056 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8057 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8058 	} else {
8059 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8060 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8061 	}
8062 
8063 #ifdef BCM_CNIC
8064 	/* Disable Timer scan */
8065 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8066 	/*
8067 	 * Wait for at least 10ms and up to 2 second for the timers scan to
8068 	 * complete
8069 	 */
8070 	for (i = 0; i < 200; i++) {
8071 		msleep(10);
8072 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8073 			break;
8074 	}
8075 #endif
8076 	/* Clear ILT */
8077 	bnx2x_clear_func_ilt(bp, func);
8078 
8079 	/* Timers workaround bug for E2: if this is vnic-3,
8080 	 * we need to set the entire ilt range for this timers.
8081 	 */
8082 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8083 		struct ilt_client_info ilt_cli;
8084 		/* use dummy TM client */
8085 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8086 		ilt_cli.start = 0;
8087 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8088 		ilt_cli.client_num = ILT_CLIENT_TM;
8089 
8090 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8091 	}
8092 
8093 	/* this assumes that reset_port() called before reset_func()*/
8094 	if (!CHIP_IS_E1x(bp))
8095 		bnx2x_pf_disable(bp);
8096 
8097 	bp->dmae_ready = 0;
8098 }
8099 
8100 static void bnx2x_reset_port(struct bnx2x *bp)
8101 {
8102 	int port = BP_PORT(bp);
8103 	u32 val;
8104 
8105 	/* Reset physical Link */
8106 	bnx2x__link_reset(bp);
8107 
8108 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8109 
8110 	/* Do not rcv packets to BRB */
8111 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8112 	/* Do not direct rcv packets that are not for MCP to the BRB */
8113 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8114 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8115 
8116 	/* Configure AEU */
8117 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8118 
8119 	msleep(100);
8120 	/* Check for BRB port occupancy */
8121 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8122 	if (val)
8123 		DP(NETIF_MSG_IFDOWN,
8124 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8125 
8126 	/* TODO: Close Doorbell port? */
8127 }
8128 
8129 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8130 {
8131 	struct bnx2x_func_state_params func_params = {NULL};
8132 
8133 	/* Prepare parameters for function state transitions */
8134 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8135 
8136 	func_params.f_obj = &bp->func_obj;
8137 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8138 
8139 	func_params.params.hw_init.load_phase = load_code;
8140 
8141 	return bnx2x_func_state_change(bp, &func_params);
8142 }
8143 
8144 static int bnx2x_func_stop(struct bnx2x *bp)
8145 {
8146 	struct bnx2x_func_state_params func_params = {NULL};
8147 	int rc;
8148 
8149 	/* Prepare parameters for function state transitions */
8150 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8151 	func_params.f_obj = &bp->func_obj;
8152 	func_params.cmd = BNX2X_F_CMD_STOP;
8153 
8154 	/*
8155 	 * Try to stop the function the 'good way'. If fails (in case
8156 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8157 	 * not in a debug mode, perform a state transaction in order to
8158 	 * enable further HW_RESET transaction.
8159 	 */
8160 	rc = bnx2x_func_state_change(bp, &func_params);
8161 	if (rc) {
8162 #ifdef BNX2X_STOP_ON_ERROR
8163 		return rc;
8164 #else
8165 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8166 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8167 		return bnx2x_func_state_change(bp, &func_params);
8168 #endif
8169 	}
8170 
8171 	return 0;
8172 }
8173 
8174 /**
8175  * bnx2x_send_unload_req - request unload mode from the MCP.
8176  *
8177  * @bp:			driver handle
8178  * @unload_mode:	requested function's unload mode
8179  *
8180  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8181  */
8182 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8183 {
8184 	u32 reset_code = 0;
8185 	int port = BP_PORT(bp);
8186 
8187 	/* Select the UNLOAD request mode */
8188 	if (unload_mode == UNLOAD_NORMAL)
8189 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8190 
8191 	else if (bp->flags & NO_WOL_FLAG)
8192 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8193 
8194 	else if (bp->wol) {
8195 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8196 		u8 *mac_addr = bp->dev->dev_addr;
8197 		u32 val;
8198 		u16 pmc;
8199 
8200 		/* The mac address is written to entries 1-4 to
8201 		 * preserve entry 0 which is used by the PMF
8202 		 */
8203 		u8 entry = (BP_VN(bp) + 1)*8;
8204 
8205 		val = (mac_addr[0] << 8) | mac_addr[1];
8206 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8207 
8208 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8209 		      (mac_addr[4] << 8) | mac_addr[5];
8210 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8211 
8212 		/* Enable the PME and clear the status */
8213 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8214 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8215 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8216 
8217 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8218 
8219 	} else
8220 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8221 
8222 	/* Send the request to the MCP */
8223 	if (!BP_NOMCP(bp))
8224 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8225 	else {
8226 		int path = BP_PATH(bp);
8227 
8228 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8229 		   path, load_count[path][0], load_count[path][1],
8230 		   load_count[path][2]);
8231 		load_count[path][0]--;
8232 		load_count[path][1 + port]--;
8233 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8234 		   path, load_count[path][0], load_count[path][1],
8235 		   load_count[path][2]);
8236 		if (load_count[path][0] == 0)
8237 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8238 		else if (load_count[path][1 + port] == 0)
8239 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8240 		else
8241 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8242 	}
8243 
8244 	return reset_code;
8245 }
8246 
8247 /**
8248  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8249  *
8250  * @bp:		driver handle
8251  * @keep_link:		true iff link should be kept up
8252  */
8253 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8254 {
8255 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8256 
8257 	/* Report UNLOAD_DONE to MCP */
8258 	if (!BP_NOMCP(bp))
8259 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8260 }
8261 
8262 static int bnx2x_func_wait_started(struct bnx2x *bp)
8263 {
8264 	int tout = 50;
8265 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8266 
8267 	if (!bp->port.pmf)
8268 		return 0;
8269 
8270 	/*
8271 	 * (assumption: No Attention from MCP at this stage)
8272 	 * PMF probably in the middle of TXdisable/enable transaction
8273 	 * 1. Sync IRS for default SB
8274 	 * 2. Sync SP queue - this guarantes us that attention handling started
8275 	 * 3. Wait, that TXdisable/enable transaction completes
8276 	 *
8277 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8278 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8279 	 * received complettion for the transaction the state is TX_STOPPED.
8280 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8281 	 * transaction.
8282 	 */
8283 
8284 	/* make sure default SB ISR is done */
8285 	if (msix)
8286 		synchronize_irq(bp->msix_table[0].vector);
8287 	else
8288 		synchronize_irq(bp->pdev->irq);
8289 
8290 	flush_workqueue(bnx2x_wq);
8291 
8292 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8293 				BNX2X_F_STATE_STARTED && tout--)
8294 		msleep(20);
8295 
8296 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8297 						BNX2X_F_STATE_STARTED) {
8298 #ifdef BNX2X_STOP_ON_ERROR
8299 		BNX2X_ERR("Wrong function state\n");
8300 		return -EBUSY;
8301 #else
8302 		/*
8303 		 * Failed to complete the transaction in a "good way"
8304 		 * Force both transactions with CLR bit
8305 		 */
8306 		struct bnx2x_func_state_params func_params = {NULL};
8307 
8308 		DP(NETIF_MSG_IFDOWN,
8309 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8310 
8311 		func_params.f_obj = &bp->func_obj;
8312 		__set_bit(RAMROD_DRV_CLR_ONLY,
8313 					&func_params.ramrod_flags);
8314 
8315 		/* STARTED-->TX_ST0PPED */
8316 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8317 		bnx2x_func_state_change(bp, &func_params);
8318 
8319 		/* TX_ST0PPED-->STARTED */
8320 		func_params.cmd = BNX2X_F_CMD_TX_START;
8321 		return bnx2x_func_state_change(bp, &func_params);
8322 #endif
8323 	}
8324 
8325 	return 0;
8326 }
8327 
8328 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8329 {
8330 	int port = BP_PORT(bp);
8331 	int i, rc = 0;
8332 	u8 cos;
8333 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8334 	u32 reset_code;
8335 
8336 	/* Wait until tx fastpath tasks complete */
8337 	for_each_tx_queue(bp, i) {
8338 		struct bnx2x_fastpath *fp = &bp->fp[i];
8339 
8340 		for_each_cos_in_tx_queue(fp, cos)
8341 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8342 #ifdef BNX2X_STOP_ON_ERROR
8343 		if (rc)
8344 			return;
8345 #endif
8346 	}
8347 
8348 	/* Give HW time to discard old tx messages */
8349 	usleep_range(1000, 1000);
8350 
8351 	/* Clean all ETH MACs */
8352 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8353 				false);
8354 	if (rc < 0)
8355 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8356 
8357 	/* Clean up UC list  */
8358 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8359 				true);
8360 	if (rc < 0)
8361 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8362 			  rc);
8363 
8364 	/* Disable LLH */
8365 	if (!CHIP_IS_E1(bp))
8366 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8367 
8368 	/* Set "drop all" (stop Rx).
8369 	 * We need to take a netif_addr_lock() here in order to prevent
8370 	 * a race between the completion code and this code.
8371 	 */
8372 	netif_addr_lock_bh(bp->dev);
8373 	/* Schedule the rx_mode command */
8374 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8375 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8376 	else
8377 		bnx2x_set_storm_rx_mode(bp);
8378 
8379 	/* Cleanup multicast configuration */
8380 	rparam.mcast_obj = &bp->mcast_obj;
8381 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8382 	if (rc < 0)
8383 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8384 
8385 	netif_addr_unlock_bh(bp->dev);
8386 
8387 
8388 
8389 	/*
8390 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8391 	 * this function should perform FUNC, PORT or COMMON HW
8392 	 * reset.
8393 	 */
8394 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8395 
8396 	/*
8397 	 * (assumption: No Attention from MCP at this stage)
8398 	 * PMF probably in the middle of TXdisable/enable transaction
8399 	 */
8400 	rc = bnx2x_func_wait_started(bp);
8401 	if (rc) {
8402 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8403 #ifdef BNX2X_STOP_ON_ERROR
8404 		return;
8405 #endif
8406 	}
8407 
8408 	/* Close multi and leading connections
8409 	 * Completions for ramrods are collected in a synchronous way
8410 	 */
8411 	for_each_queue(bp, i)
8412 		if (bnx2x_stop_queue(bp, i))
8413 #ifdef BNX2X_STOP_ON_ERROR
8414 			return;
8415 #else
8416 			goto unload_error;
8417 #endif
8418 	/* If SP settings didn't get completed so far - something
8419 	 * very wrong has happen.
8420 	 */
8421 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8422 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8423 
8424 #ifndef BNX2X_STOP_ON_ERROR
8425 unload_error:
8426 #endif
8427 	rc = bnx2x_func_stop(bp);
8428 	if (rc) {
8429 		BNX2X_ERR("Function stop failed!\n");
8430 #ifdef BNX2X_STOP_ON_ERROR
8431 		return;
8432 #endif
8433 	}
8434 
8435 	/* Disable HW interrupts, NAPI */
8436 	bnx2x_netif_stop(bp, 1);
8437 	/* Delete all NAPI objects */
8438 	bnx2x_del_all_napi(bp);
8439 
8440 	/* Release IRQs */
8441 	bnx2x_free_irq(bp);
8442 
8443 	/* Reset the chip */
8444 	rc = bnx2x_reset_hw(bp, reset_code);
8445 	if (rc)
8446 		BNX2X_ERR("HW_RESET failed\n");
8447 
8448 
8449 	/* Report UNLOAD_DONE to MCP */
8450 	bnx2x_send_unload_done(bp, keep_link);
8451 }
8452 
8453 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8454 {
8455 	u32 val;
8456 
8457 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8458 
8459 	if (CHIP_IS_E1(bp)) {
8460 		int port = BP_PORT(bp);
8461 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8462 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8463 
8464 		val = REG_RD(bp, addr);
8465 		val &= ~(0x300);
8466 		REG_WR(bp, addr, val);
8467 	} else {
8468 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8469 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8470 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8471 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8472 	}
8473 }
8474 
8475 /* Close gates #2, #3 and #4: */
8476 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8477 {
8478 	u32 val;
8479 
8480 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8481 	if (!CHIP_IS_E1(bp)) {
8482 		/* #4 */
8483 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8484 		/* #2 */
8485 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8486 	}
8487 
8488 	/* #3 */
8489 	if (CHIP_IS_E1x(bp)) {
8490 		/* Prevent interrupts from HC on both ports */
8491 		val = REG_RD(bp, HC_REG_CONFIG_1);
8492 		REG_WR(bp, HC_REG_CONFIG_1,
8493 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8494 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8495 
8496 		val = REG_RD(bp, HC_REG_CONFIG_0);
8497 		REG_WR(bp, HC_REG_CONFIG_0,
8498 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8499 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8500 	} else {
8501 		/* Prevent incomming interrupts in IGU */
8502 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8503 
8504 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8505 		       (!close) ?
8506 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8507 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8508 	}
8509 
8510 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8511 		close ? "closing" : "opening");
8512 	mmiowb();
8513 }
8514 
8515 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8516 
8517 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8518 {
8519 	/* Do some magic... */
8520 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8521 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8522 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8523 }
8524 
8525 /**
8526  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8527  *
8528  * @bp:		driver handle
8529  * @magic_val:	old value of the `magic' bit.
8530  */
8531 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8532 {
8533 	/* Restore the `magic' bit value... */
8534 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8535 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8536 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8537 }
8538 
8539 /**
8540  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8541  *
8542  * @bp:		driver handle
8543  * @magic_val:	old value of 'magic' bit.
8544  *
8545  * Takes care of CLP configurations.
8546  */
8547 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8548 {
8549 	u32 shmem;
8550 	u32 validity_offset;
8551 
8552 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8553 
8554 	/* Set `magic' bit in order to save MF config */
8555 	if (!CHIP_IS_E1(bp))
8556 		bnx2x_clp_reset_prep(bp, magic_val);
8557 
8558 	/* Get shmem offset */
8559 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8560 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8561 
8562 	/* Clear validity map flags */
8563 	if (shmem > 0)
8564 		REG_WR(bp, shmem + validity_offset, 0);
8565 }
8566 
8567 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8568 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8569 
8570 /**
8571  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8572  *
8573  * @bp:	driver handle
8574  */
8575 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8576 {
8577 	/* special handling for emulation and FPGA,
8578 	   wait 10 times longer */
8579 	if (CHIP_REV_IS_SLOW(bp))
8580 		msleep(MCP_ONE_TIMEOUT*10);
8581 	else
8582 		msleep(MCP_ONE_TIMEOUT);
8583 }
8584 
8585 /*
8586  * initializes bp->common.shmem_base and waits for validity signature to appear
8587  */
8588 static int bnx2x_init_shmem(struct bnx2x *bp)
8589 {
8590 	int cnt = 0;
8591 	u32 val = 0;
8592 
8593 	do {
8594 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8595 		if (bp->common.shmem_base) {
8596 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8597 			if (val & SHR_MEM_VALIDITY_MB)
8598 				return 0;
8599 		}
8600 
8601 		bnx2x_mcp_wait_one(bp);
8602 
8603 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8604 
8605 	BNX2X_ERR("BAD MCP validity signature\n");
8606 
8607 	return -ENODEV;
8608 }
8609 
8610 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8611 {
8612 	int rc = bnx2x_init_shmem(bp);
8613 
8614 	/* Restore the `magic' bit value */
8615 	if (!CHIP_IS_E1(bp))
8616 		bnx2x_clp_reset_done(bp, magic_val);
8617 
8618 	return rc;
8619 }
8620 
8621 static void bnx2x_pxp_prep(struct bnx2x *bp)
8622 {
8623 	if (!CHIP_IS_E1(bp)) {
8624 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8625 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8626 		mmiowb();
8627 	}
8628 }
8629 
8630 /*
8631  * Reset the whole chip except for:
8632  *      - PCIE core
8633  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8634  *              one reset bit)
8635  *      - IGU
8636  *      - MISC (including AEU)
8637  *      - GRC
8638  *      - RBCN, RBCP
8639  */
8640 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8641 {
8642 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8643 	u32 global_bits2, stay_reset2;
8644 
8645 	/*
8646 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8647 	 * (per chip) blocks.
8648 	 */
8649 	global_bits2 =
8650 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8651 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8652 
8653 	/* Don't reset the following blocks */
8654 	not_reset_mask1 =
8655 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8656 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8657 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8658 
8659 	not_reset_mask2 =
8660 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8661 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8662 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8663 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8664 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8665 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8666 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8667 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8668 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8669 		MISC_REGISTERS_RESET_REG_2_PGLC;
8670 
8671 	/*
8672 	 * Keep the following blocks in reset:
8673 	 *  - all xxMACs are handled by the bnx2x_link code.
8674 	 */
8675 	stay_reset2 =
8676 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8677 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8678 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8679 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8680 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8681 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8682 		MISC_REGISTERS_RESET_REG_2_XMAC |
8683 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8684 
8685 	/* Full reset masks according to the chip */
8686 	reset_mask1 = 0xffffffff;
8687 
8688 	if (CHIP_IS_E1(bp))
8689 		reset_mask2 = 0xffff;
8690 	else if (CHIP_IS_E1H(bp))
8691 		reset_mask2 = 0x1ffff;
8692 	else if (CHIP_IS_E2(bp))
8693 		reset_mask2 = 0xfffff;
8694 	else /* CHIP_IS_E3 */
8695 		reset_mask2 = 0x3ffffff;
8696 
8697 	/* Don't reset global blocks unless we need to */
8698 	if (!global)
8699 		reset_mask2 &= ~global_bits2;
8700 
8701 	/*
8702 	 * In case of attention in the QM, we need to reset PXP
8703 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8704 	 * because otherwise QM reset would release 'close the gates' shortly
8705 	 * before resetting the PXP, then the PSWRQ would send a write
8706 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8707 	 * read the payload data from PSWWR, but PSWWR would not
8708 	 * respond. The write queue in PGLUE would stuck, dmae commands
8709 	 * would not return. Therefore it's important to reset the second
8710 	 * reset register (containing the
8711 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8712 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8713 	 * bit).
8714 	 */
8715 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8716 	       reset_mask2 & (~not_reset_mask2));
8717 
8718 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8719 	       reset_mask1 & (~not_reset_mask1));
8720 
8721 	barrier();
8722 	mmiowb();
8723 
8724 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8725 	       reset_mask2 & (~stay_reset2));
8726 
8727 	barrier();
8728 	mmiowb();
8729 
8730 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8731 	mmiowb();
8732 }
8733 
8734 /**
8735  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8736  * It should get cleared in no more than 1s.
8737  *
8738  * @bp:	driver handle
8739  *
8740  * It should get cleared in no more than 1s. Returns 0 if
8741  * pending writes bit gets cleared.
8742  */
8743 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8744 {
8745 	u32 cnt = 1000;
8746 	u32 pend_bits = 0;
8747 
8748 	do {
8749 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8750 
8751 		if (pend_bits == 0)
8752 			break;
8753 
8754 		usleep_range(1000, 1000);
8755 	} while (cnt-- > 0);
8756 
8757 	if (cnt <= 0) {
8758 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8759 			  pend_bits);
8760 		return -EBUSY;
8761 	}
8762 
8763 	return 0;
8764 }
8765 
8766 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8767 {
8768 	int cnt = 1000;
8769 	u32 val = 0;
8770 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8771 
8772 
8773 	/* Empty the Tetris buffer, wait for 1s */
8774 	do {
8775 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8776 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8777 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8778 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8779 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8780 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8781 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8782 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8783 		    (pgl_exp_rom2 == 0xffffffff))
8784 			break;
8785 		usleep_range(1000, 1000);
8786 	} while (cnt-- > 0);
8787 
8788 	if (cnt <= 0) {
8789 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8790 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8791 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8792 			  pgl_exp_rom2);
8793 		return -EAGAIN;
8794 	}
8795 
8796 	barrier();
8797 
8798 	/* Close gates #2, #3 and #4 */
8799 	bnx2x_set_234_gates(bp, true);
8800 
8801 	/* Poll for IGU VQs for 57712 and newer chips */
8802 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8803 		return -EAGAIN;
8804 
8805 
8806 	/* TBD: Indicate that "process kill" is in progress to MCP */
8807 
8808 	/* Clear "unprepared" bit */
8809 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8810 	barrier();
8811 
8812 	/* Make sure all is written to the chip before the reset */
8813 	mmiowb();
8814 
8815 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8816 	 * PSWHST, GRC and PSWRD Tetris buffer.
8817 	 */
8818 	usleep_range(1000, 1000);
8819 
8820 	/* Prepare to chip reset: */
8821 	/* MCP */
8822 	if (global)
8823 		bnx2x_reset_mcp_prep(bp, &val);
8824 
8825 	/* PXP */
8826 	bnx2x_pxp_prep(bp);
8827 	barrier();
8828 
8829 	/* reset the chip */
8830 	bnx2x_process_kill_chip_reset(bp, global);
8831 	barrier();
8832 
8833 	/* Recover after reset: */
8834 	/* MCP */
8835 	if (global && bnx2x_reset_mcp_comp(bp, val))
8836 		return -EAGAIN;
8837 
8838 	/* TBD: Add resetting the NO_MCP mode DB here */
8839 
8840 	/* PXP */
8841 	bnx2x_pxp_prep(bp);
8842 
8843 	/* Open the gates #2, #3 and #4 */
8844 	bnx2x_set_234_gates(bp, false);
8845 
8846 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8847 	 * reset state, re-enable attentions. */
8848 
8849 	return 0;
8850 }
8851 
8852 int bnx2x_leader_reset(struct bnx2x *bp)
8853 {
8854 	int rc = 0;
8855 	bool global = bnx2x_reset_is_global(bp);
8856 	u32 load_code;
8857 
8858 	/* if not going to reset MCP - load "fake" driver to reset HW while
8859 	 * driver is owner of the HW
8860 	 */
8861 	if (!global && !BP_NOMCP(bp)) {
8862 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
8863 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
8864 		if (!load_code) {
8865 			BNX2X_ERR("MCP response failure, aborting\n");
8866 			rc = -EAGAIN;
8867 			goto exit_leader_reset;
8868 		}
8869 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8870 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8871 			BNX2X_ERR("MCP unexpected resp, aborting\n");
8872 			rc = -EAGAIN;
8873 			goto exit_leader_reset2;
8874 		}
8875 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8876 		if (!load_code) {
8877 			BNX2X_ERR("MCP response failure, aborting\n");
8878 			rc = -EAGAIN;
8879 			goto exit_leader_reset2;
8880 		}
8881 	}
8882 
8883 	/* Try to recover after the failure */
8884 	if (bnx2x_process_kill(bp, global)) {
8885 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8886 			  BP_PATH(bp));
8887 		rc = -EAGAIN;
8888 		goto exit_leader_reset2;
8889 	}
8890 
8891 	/*
8892 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8893 	 * state.
8894 	 */
8895 	bnx2x_set_reset_done(bp);
8896 	if (global)
8897 		bnx2x_clear_reset_global(bp);
8898 
8899 exit_leader_reset2:
8900 	/* unload "fake driver" if it was loaded */
8901 	if (!global && !BP_NOMCP(bp)) {
8902 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8903 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8904 	}
8905 exit_leader_reset:
8906 	bp->is_leader = 0;
8907 	bnx2x_release_leader_lock(bp);
8908 	smp_mb();
8909 	return rc;
8910 }
8911 
8912 static void bnx2x_recovery_failed(struct bnx2x *bp)
8913 {
8914 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8915 
8916 	/* Disconnect this device */
8917 	netif_device_detach(bp->dev);
8918 
8919 	/*
8920 	 * Block ifup for all function on this engine until "process kill"
8921 	 * or power cycle.
8922 	 */
8923 	bnx2x_set_reset_in_progress(bp);
8924 
8925 	/* Shut down the power */
8926 	bnx2x_set_power_state(bp, PCI_D3hot);
8927 
8928 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8929 
8930 	smp_mb();
8931 }
8932 
8933 /*
8934  * Assumption: runs under rtnl lock. This together with the fact
8935  * that it's called only from bnx2x_sp_rtnl() ensure that it
8936  * will never be called when netif_running(bp->dev) is false.
8937  */
8938 static void bnx2x_parity_recover(struct bnx2x *bp)
8939 {
8940 	bool global = false;
8941 	u32 error_recovered, error_unrecovered;
8942 	bool is_parity;
8943 
8944 	DP(NETIF_MSG_HW, "Handling parity\n");
8945 	while (1) {
8946 		switch (bp->recovery_state) {
8947 		case BNX2X_RECOVERY_INIT:
8948 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8949 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8950 			WARN_ON(!is_parity);
8951 
8952 			/* Try to get a LEADER_LOCK HW lock */
8953 			if (bnx2x_trylock_leader_lock(bp)) {
8954 				bnx2x_set_reset_in_progress(bp);
8955 				/*
8956 				 * Check if there is a global attention and if
8957 				 * there was a global attention, set the global
8958 				 * reset bit.
8959 				 */
8960 
8961 				if (global)
8962 					bnx2x_set_reset_global(bp);
8963 
8964 				bp->is_leader = 1;
8965 			}
8966 
8967 			/* Stop the driver */
8968 			/* If interface has been removed - break */
8969 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
8970 				return;
8971 
8972 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8973 
8974 			/* Ensure "is_leader", MCP command sequence and
8975 			 * "recovery_state" update values are seen on other
8976 			 * CPUs.
8977 			 */
8978 			smp_mb();
8979 			break;
8980 
8981 		case BNX2X_RECOVERY_WAIT:
8982 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8983 			if (bp->is_leader) {
8984 				int other_engine = BP_PATH(bp) ? 0 : 1;
8985 				bool other_load_status =
8986 					bnx2x_get_load_status(bp, other_engine);
8987 				bool load_status =
8988 					bnx2x_get_load_status(bp, BP_PATH(bp));
8989 				global = bnx2x_reset_is_global(bp);
8990 
8991 				/*
8992 				 * In case of a parity in a global block, let
8993 				 * the first leader that performs a
8994 				 * leader_reset() reset the global blocks in
8995 				 * order to clear global attentions. Otherwise
8996 				 * the the gates will remain closed for that
8997 				 * engine.
8998 				 */
8999 				if (load_status ||
9000 				    (global && other_load_status)) {
9001 					/* Wait until all other functions get
9002 					 * down.
9003 					 */
9004 					schedule_delayed_work(&bp->sp_rtnl_task,
9005 								HZ/10);
9006 					return;
9007 				} else {
9008 					/* If all other functions got down -
9009 					 * try to bring the chip back to
9010 					 * normal. In any case it's an exit
9011 					 * point for a leader.
9012 					 */
9013 					if (bnx2x_leader_reset(bp)) {
9014 						bnx2x_recovery_failed(bp);
9015 						return;
9016 					}
9017 
9018 					/* If we are here, means that the
9019 					 * leader has succeeded and doesn't
9020 					 * want to be a leader any more. Try
9021 					 * to continue as a none-leader.
9022 					 */
9023 					break;
9024 				}
9025 			} else { /* non-leader */
9026 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9027 					/* Try to get a LEADER_LOCK HW lock as
9028 					 * long as a former leader may have
9029 					 * been unloaded by the user or
9030 					 * released a leadership by another
9031 					 * reason.
9032 					 */
9033 					if (bnx2x_trylock_leader_lock(bp)) {
9034 						/* I'm a leader now! Restart a
9035 						 * switch case.
9036 						 */
9037 						bp->is_leader = 1;
9038 						break;
9039 					}
9040 
9041 					schedule_delayed_work(&bp->sp_rtnl_task,
9042 								HZ/10);
9043 					return;
9044 
9045 				} else {
9046 					/*
9047 					 * If there was a global attention, wait
9048 					 * for it to be cleared.
9049 					 */
9050 					if (bnx2x_reset_is_global(bp)) {
9051 						schedule_delayed_work(
9052 							&bp->sp_rtnl_task,
9053 							HZ/10);
9054 						return;
9055 					}
9056 
9057 					error_recovered =
9058 					  bp->eth_stats.recoverable_error;
9059 					error_unrecovered =
9060 					  bp->eth_stats.unrecoverable_error;
9061 					bp->recovery_state =
9062 						BNX2X_RECOVERY_NIC_LOADING;
9063 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9064 						error_unrecovered++;
9065 						netdev_err(bp->dev,
9066 							   "Recovery failed. Power cycle needed\n");
9067 						/* Disconnect this device */
9068 						netif_device_detach(bp->dev);
9069 						/* Shut down the power */
9070 						bnx2x_set_power_state(
9071 							bp, PCI_D3hot);
9072 						smp_mb();
9073 					} else {
9074 						bp->recovery_state =
9075 							BNX2X_RECOVERY_DONE;
9076 						error_recovered++;
9077 						smp_mb();
9078 					}
9079 					bp->eth_stats.recoverable_error =
9080 						error_recovered;
9081 					bp->eth_stats.unrecoverable_error =
9082 						error_unrecovered;
9083 
9084 					return;
9085 				}
9086 			}
9087 		default:
9088 			return;
9089 		}
9090 	}
9091 }
9092 
9093 static int bnx2x_close(struct net_device *dev);
9094 
9095 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9096  * scheduled on a general queue in order to prevent a dead lock.
9097  */
9098 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9099 {
9100 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9101 
9102 	rtnl_lock();
9103 
9104 	if (!netif_running(bp->dev))
9105 		goto sp_rtnl_exit;
9106 
9107 	/* if stop on error is defined no recovery flows should be executed */
9108 #ifdef BNX2X_STOP_ON_ERROR
9109 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9110 		  "you will need to reboot when done\n");
9111 	goto sp_rtnl_not_reset;
9112 #endif
9113 
9114 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9115 		/*
9116 		 * Clear all pending SP commands as we are going to reset the
9117 		 * function anyway.
9118 		 */
9119 		bp->sp_rtnl_state = 0;
9120 		smp_mb();
9121 
9122 		bnx2x_parity_recover(bp);
9123 
9124 		goto sp_rtnl_exit;
9125 	}
9126 
9127 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9128 		/*
9129 		 * Clear all pending SP commands as we are going to reset the
9130 		 * function anyway.
9131 		 */
9132 		bp->sp_rtnl_state = 0;
9133 		smp_mb();
9134 
9135 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9136 		bnx2x_nic_load(bp, LOAD_NORMAL);
9137 
9138 		goto sp_rtnl_exit;
9139 	}
9140 #ifdef BNX2X_STOP_ON_ERROR
9141 sp_rtnl_not_reset:
9142 #endif
9143 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9144 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9145 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9146 		bnx2x_after_function_update(bp);
9147 	/*
9148 	 * in case of fan failure we need to reset id if the "stop on error"
9149 	 * debug flag is set, since we trying to prevent permanent overheating
9150 	 * damage
9151 	 */
9152 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9153 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9154 		netif_device_detach(bp->dev);
9155 		bnx2x_close(bp->dev);
9156 	}
9157 
9158 sp_rtnl_exit:
9159 	rtnl_unlock();
9160 }
9161 
9162 /* end of nic load/unload */
9163 
9164 static void bnx2x_period_task(struct work_struct *work)
9165 {
9166 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9167 
9168 	if (!netif_running(bp->dev))
9169 		goto period_task_exit;
9170 
9171 	if (CHIP_REV_IS_SLOW(bp)) {
9172 		BNX2X_ERR("period task called on emulation, ignoring\n");
9173 		goto period_task_exit;
9174 	}
9175 
9176 	bnx2x_acquire_phy_lock(bp);
9177 	/*
9178 	 * The barrier is needed to ensure the ordering between the writing to
9179 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9180 	 * the reading here.
9181 	 */
9182 	smp_mb();
9183 	if (bp->port.pmf) {
9184 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9185 
9186 		/* Re-queue task in 1 sec */
9187 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9188 	}
9189 
9190 	bnx2x_release_phy_lock(bp);
9191 period_task_exit:
9192 	return;
9193 }
9194 
9195 /*
9196  * Init service functions
9197  */
9198 
9199 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9200 {
9201 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9202 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9203 	return base + (BP_ABS_FUNC(bp)) * stride;
9204 }
9205 
9206 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9207 {
9208 	u32 reg = bnx2x_get_pretend_reg(bp);
9209 
9210 	/* Flush all outstanding writes */
9211 	mmiowb();
9212 
9213 	/* Pretend to be function 0 */
9214 	REG_WR(bp, reg, 0);
9215 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
9216 
9217 	/* From now we are in the "like-E1" mode */
9218 	bnx2x_int_disable(bp);
9219 
9220 	/* Flush all outstanding writes */
9221 	mmiowb();
9222 
9223 	/* Restore the original function */
9224 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
9225 	REG_RD(bp, reg);
9226 }
9227 
9228 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9229 {
9230 	if (CHIP_IS_E1(bp))
9231 		bnx2x_int_disable(bp);
9232 	else
9233 		bnx2x_undi_int_disable_e1h(bp);
9234 }
9235 
9236 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9237 {
9238 	u32 val, base_addr, offset, mask, reset_reg;
9239 	bool mac_stopped = false;
9240 	u8 port = BP_PORT(bp);
9241 
9242 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9243 
9244 	if (!CHIP_IS_E3(bp)) {
9245 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9246 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9247 		if ((mask & reset_reg) && val) {
9248 			u32 wb_data[2];
9249 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9250 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9251 						: NIG_REG_INGRESS_BMAC0_MEM;
9252 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9253 						: BIGMAC_REGISTER_BMAC_CONTROL;
9254 
9255 			/*
9256 			 * use rd/wr since we cannot use dmae. This is safe
9257 			 * since MCP won't access the bus due to the request
9258 			 * to unload, and no function on the path can be
9259 			 * loaded at this time.
9260 			 */
9261 			wb_data[0] = REG_RD(bp, base_addr + offset);
9262 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9263 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9264 			REG_WR(bp, base_addr + offset, wb_data[0]);
9265 			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9266 
9267 		}
9268 		BNX2X_DEV_INFO("Disable emac Rx\n");
9269 		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9270 
9271 		mac_stopped = true;
9272 	} else {
9273 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9274 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9275 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9276 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9277 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9278 			       val & ~(1 << 1));
9279 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9280 			       val | (1 << 1));
9281 			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9282 			mac_stopped = true;
9283 		}
9284 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9285 		if (mask & reset_reg) {
9286 			BNX2X_DEV_INFO("Disable umac Rx\n");
9287 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9288 			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9289 			mac_stopped = true;
9290 		}
9291 	}
9292 
9293 	if (mac_stopped)
9294 		msleep(20);
9295 
9296 }
9297 
9298 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9299 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9300 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9301 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9302 
9303 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
9304 						 u8 inc)
9305 {
9306 	u16 rcq, bd;
9307 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9308 
9309 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9310 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9311 
9312 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9313 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9314 
9315 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9316 		       port, bd, rcq);
9317 }
9318 
9319 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
9320 {
9321 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9322 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9323 	if (!rc) {
9324 		BNX2X_ERR("MCP response failure, aborting\n");
9325 		return -EBUSY;
9326 	}
9327 
9328 	return 0;
9329 }
9330 
9331 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
9332 {
9333 	struct bnx2x_prev_path_list *tmp_list;
9334 	int rc = false;
9335 
9336 	if (down_trylock(&bnx2x_prev_sem))
9337 		return false;
9338 
9339 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9340 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9341 		    bp->pdev->bus->number == tmp_list->bus &&
9342 		    BP_PATH(bp) == tmp_list->path) {
9343 			rc = true;
9344 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9345 				       BP_PATH(bp));
9346 			break;
9347 		}
9348 	}
9349 
9350 	up(&bnx2x_prev_sem);
9351 
9352 	return rc;
9353 }
9354 
9355 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
9356 {
9357 	struct bnx2x_prev_path_list *tmp_list;
9358 	int rc;
9359 
9360 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9361 	if (!tmp_list) {
9362 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9363 		return -ENOMEM;
9364 	}
9365 
9366 	tmp_list->bus = bp->pdev->bus->number;
9367 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9368 	tmp_list->path = BP_PATH(bp);
9369 
9370 	rc = down_interruptible(&bnx2x_prev_sem);
9371 	if (rc) {
9372 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9373 		kfree(tmp_list);
9374 	} else {
9375 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9376 				BP_PATH(bp));
9377 		list_add(&tmp_list->list, &bnx2x_prev_list);
9378 		up(&bnx2x_prev_sem);
9379 	}
9380 
9381 	return rc;
9382 }
9383 
9384 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
9385 {
9386 	int i;
9387 	u16 status;
9388 	struct pci_dev *dev = bp->pdev;
9389 
9390 
9391 	if (CHIP_IS_E1x(bp)) {
9392 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9393 		return -EINVAL;
9394 	}
9395 
9396 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9397 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9398 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9399 			  bp->common.bc_ver);
9400 		return -EINVAL;
9401 	}
9402 
9403 	/* Wait for Transaction Pending bit clean */
9404 	for (i = 0; i < 4; i++) {
9405 		if (i)
9406 			msleep((1 << (i - 1)) * 100);
9407 
9408 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9409 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9410 			goto clear;
9411 	}
9412 
9413 	dev_err(&dev->dev,
9414 		"transaction is not cleared; proceeding with reset anyway\n");
9415 
9416 clear:
9417 
9418 	BNX2X_DEV_INFO("Initiating FLR\n");
9419 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9420 
9421 	return 0;
9422 }
9423 
9424 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9425 {
9426 	int rc;
9427 
9428 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9429 
9430 	/* Test if previous unload process was already finished for this path */
9431 	if (bnx2x_prev_is_path_marked(bp))
9432 		return bnx2x_prev_mcp_done(bp);
9433 
9434 	/* If function has FLR capabilities, and existing FW version matches
9435 	 * the one required, then FLR will be sufficient to clean any residue
9436 	 * left by previous driver
9437 	 */
9438 	rc = bnx2x_test_firmware_version(bp, false);
9439 
9440 	if (!rc) {
9441 		/* fw version is good */
9442 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9443 		rc = bnx2x_do_flr(bp);
9444 	}
9445 
9446 	if (!rc) {
9447 		/* FLR was performed */
9448 		BNX2X_DEV_INFO("FLR successful\n");
9449 		return 0;
9450 	}
9451 
9452 	BNX2X_DEV_INFO("Could not FLR\n");
9453 
9454 	/* Close the MCP request, return failure*/
9455 	rc = bnx2x_prev_mcp_done(bp);
9456 	if (!rc)
9457 		rc = BNX2X_PREV_WAIT_NEEDED;
9458 
9459 	return rc;
9460 }
9461 
9462 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9463 {
9464 	u32 reset_reg, tmp_reg = 0, rc;
9465 	/* It is possible a previous function received 'common' answer,
9466 	 * but hasn't loaded yet, therefore creating a scenario of
9467 	 * multiple functions receiving 'common' on the same path.
9468 	 */
9469 	BNX2X_DEV_INFO("Common unload Flow\n");
9470 
9471 	if (bnx2x_prev_is_path_marked(bp))
9472 		return bnx2x_prev_mcp_done(bp);
9473 
9474 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9475 
9476 	/* Reset should be performed after BRB is emptied */
9477 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9478 		u32 timer_count = 1000;
9479 		bool prev_undi = false;
9480 
9481 		/* Close the MAC Rx to prevent BRB from filling up */
9482 		bnx2x_prev_unload_close_mac(bp);
9483 
9484 		/* Check if the UNDI driver was previously loaded
9485 		 * UNDI driver initializes CID offset for normal bell to 0x7
9486 		 */
9487 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9488 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9489 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9490 			if (tmp_reg == 0x7) {
9491 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9492 				prev_undi = true;
9493 				/* clear the UNDI indication */
9494 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9495 			}
9496 		}
9497 		/* wait until BRB is empty */
9498 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9499 		while (timer_count) {
9500 			u32 prev_brb = tmp_reg;
9501 
9502 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9503 			if (!tmp_reg)
9504 				break;
9505 
9506 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9507 
9508 			/* reset timer as long as BRB actually gets emptied */
9509 			if (prev_brb > tmp_reg)
9510 				timer_count = 1000;
9511 			else
9512 				timer_count--;
9513 
9514 			/* If UNDI resides in memory, manually increment it */
9515 			if (prev_undi)
9516 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9517 
9518 			udelay(10);
9519 		}
9520 
9521 		if (!timer_count)
9522 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9523 
9524 	}
9525 
9526 	/* No packets are in the pipeline, path is ready for reset */
9527 	bnx2x_reset_common(bp);
9528 
9529 	rc = bnx2x_prev_mark_path(bp);
9530 	if (rc) {
9531 		bnx2x_prev_mcp_done(bp);
9532 		return rc;
9533 	}
9534 
9535 	return bnx2x_prev_mcp_done(bp);
9536 }
9537 
9538 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9539  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9540  * the addresses of the transaction, resulting in was-error bit set in the pci
9541  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9542  * to clear the interrupt which detected this from the pglueb and the was done
9543  * bit
9544  */
9545 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9546 {
9547 	u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9548 	if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9549 		BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9550 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << BP_FUNC(bp));
9551 	}
9552 }
9553 
9554 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9555 {
9556 	int time_counter = 10;
9557 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9558 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9559 
9560 	/* clear hw from errors which may have resulted from an interrupted
9561 	 * dmae transaction.
9562 	 */
9563 	bnx2x_prev_interrupted_dmae(bp);
9564 
9565 	/* Release previously held locks */
9566 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9567 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9568 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9569 
9570 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9571 	if (hw_lock_val) {
9572 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9573 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9574 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9575 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9576 		}
9577 
9578 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9579 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9580 	} else
9581 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9582 
9583 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9584 		BNX2X_DEV_INFO("Release previously held alr\n");
9585 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9586 	}
9587 
9588 
9589 	do {
9590 		/* Lock MCP using an unload request */
9591 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9592 		if (!fw) {
9593 			BNX2X_ERR("MCP response failure, aborting\n");
9594 			rc = -EBUSY;
9595 			break;
9596 		}
9597 
9598 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9599 			rc = bnx2x_prev_unload_common(bp);
9600 			break;
9601 		}
9602 
9603 		/* non-common reply from MCP night require looping */
9604 		rc = bnx2x_prev_unload_uncommon(bp);
9605 		if (rc != BNX2X_PREV_WAIT_NEEDED)
9606 			break;
9607 
9608 		msleep(20);
9609 	} while (--time_counter);
9610 
9611 	if (!time_counter || rc) {
9612 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9613 		rc = -EBUSY;
9614 	}
9615 
9616 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9617 
9618 	return rc;
9619 }
9620 
9621 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9622 {
9623 	u32 val, val2, val3, val4, id, boot_mode;
9624 	u16 pmc;
9625 
9626 	/* Get the chip revision id and number. */
9627 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9628 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9629 	id = ((val & 0xffff) << 16);
9630 	val = REG_RD(bp, MISC_REG_CHIP_REV);
9631 	id |= ((val & 0xf) << 12);
9632 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9633 	id |= ((val & 0xff) << 4);
9634 	val = REG_RD(bp, MISC_REG_BOND_ID);
9635 	id |= (val & 0xf);
9636 	bp->common.chip_id = id;
9637 
9638 	/* force 57811 according to MISC register */
9639 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9640 		if (CHIP_IS_57810(bp))
9641 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9642 				(bp->common.chip_id & 0x0000FFFF);
9643 		else if (CHIP_IS_57810_MF(bp))
9644 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9645 				(bp->common.chip_id & 0x0000FFFF);
9646 		bp->common.chip_id |= 0x1;
9647 	}
9648 
9649 	/* Set doorbell size */
9650 	bp->db_size = (1 << BNX2X_DB_SHIFT);
9651 
9652 	if (!CHIP_IS_E1x(bp)) {
9653 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9654 		if ((val & 1) == 0)
9655 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9656 		else
9657 			val = (val >> 1) & 1;
9658 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9659 						       "2_PORT_MODE");
9660 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9661 						 CHIP_2_PORT_MODE;
9662 
9663 		if (CHIP_MODE_IS_4_PORT(bp))
9664 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9665 		else
9666 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9667 	} else {
9668 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9669 		bp->pfid = bp->pf_num;			/* 0..7 */
9670 	}
9671 
9672 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9673 
9674 	bp->link_params.chip_id = bp->common.chip_id;
9675 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9676 
9677 	val = (REG_RD(bp, 0x2874) & 0x55);
9678 	if ((bp->common.chip_id & 0x1) ||
9679 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9680 		bp->flags |= ONE_PORT_FLAG;
9681 		BNX2X_DEV_INFO("single port device\n");
9682 	}
9683 
9684 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9685 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9686 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9687 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9688 		       bp->common.flash_size, bp->common.flash_size);
9689 
9690 	bnx2x_init_shmem(bp);
9691 
9692 
9693 
9694 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9695 					MISC_REG_GENERIC_CR_1 :
9696 					MISC_REG_GENERIC_CR_0));
9697 
9698 	bp->link_params.shmem_base = bp->common.shmem_base;
9699 	bp->link_params.shmem2_base = bp->common.shmem2_base;
9700 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9701 		       bp->common.shmem_base, bp->common.shmem2_base);
9702 
9703 	if (!bp->common.shmem_base) {
9704 		BNX2X_DEV_INFO("MCP not active\n");
9705 		bp->flags |= NO_MCP_FLAG;
9706 		return;
9707 	}
9708 
9709 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9710 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9711 
9712 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9713 					SHARED_HW_CFG_LED_MODE_MASK) >>
9714 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9715 
9716 	bp->link_params.feature_config_flags = 0;
9717 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9718 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9719 		bp->link_params.feature_config_flags |=
9720 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9721 	else
9722 		bp->link_params.feature_config_flags &=
9723 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9724 
9725 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9726 	bp->common.bc_ver = val;
9727 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9728 	if (val < BNX2X_BC_VER) {
9729 		/* for now only warn
9730 		 * later we might need to enforce this */
9731 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9732 			  BNX2X_BC_VER, val);
9733 	}
9734 	bp->link_params.feature_config_flags |=
9735 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9736 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9737 
9738 	bp->link_params.feature_config_flags |=
9739 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9740 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9741 	bp->link_params.feature_config_flags |=
9742 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9743 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9744 	bp->link_params.feature_config_flags |=
9745 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9746 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9747 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9748 			BC_SUPPORTS_PFC_STATS : 0;
9749 
9750 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
9751 			BC_SUPPORTS_FCOE_FEATURES : 0;
9752 
9753 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
9754 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
9755 	boot_mode = SHMEM_RD(bp,
9756 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9757 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9758 	switch (boot_mode) {
9759 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9760 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9761 		break;
9762 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9763 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9764 		break;
9765 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9766 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9767 		break;
9768 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9769 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9770 		break;
9771 	}
9772 
9773 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9774 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9775 
9776 	BNX2X_DEV_INFO("%sWoL capable\n",
9777 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9778 
9779 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9780 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9781 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9782 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9783 
9784 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9785 		 val, val2, val3, val4);
9786 }
9787 
9788 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9789 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9790 
9791 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9792 {
9793 	int pfid = BP_FUNC(bp);
9794 	int igu_sb_id;
9795 	u32 val;
9796 	u8 fid, igu_sb_cnt = 0;
9797 
9798 	bp->igu_base_sb = 0xff;
9799 	if (CHIP_INT_MODE_IS_BC(bp)) {
9800 		int vn = BP_VN(bp);
9801 		igu_sb_cnt = bp->igu_sb_cnt;
9802 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9803 			FP_SB_MAX_E1x;
9804 
9805 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9806 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9807 
9808 		return;
9809 	}
9810 
9811 	/* IGU in normal mode - read CAM */
9812 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9813 	     igu_sb_id++) {
9814 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9815 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9816 			continue;
9817 		fid = IGU_FID(val);
9818 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9819 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9820 				continue;
9821 			if (IGU_VEC(val) == 0)
9822 				/* default status block */
9823 				bp->igu_dsb_id = igu_sb_id;
9824 			else {
9825 				if (bp->igu_base_sb == 0xff)
9826 					bp->igu_base_sb = igu_sb_id;
9827 				igu_sb_cnt++;
9828 			}
9829 		}
9830 	}
9831 
9832 #ifdef CONFIG_PCI_MSI
9833 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
9834 	 * optional that number of CAM entries will not be equal to the value
9835 	 * advertised in PCI.
9836 	 * Driver should use the minimal value of both as the actual status
9837 	 * block count
9838 	 */
9839 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
9840 #endif
9841 
9842 	if (igu_sb_cnt == 0)
9843 		BNX2X_ERR("CAM configuration error\n");
9844 }
9845 
9846 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9847 						    u32 switch_cfg)
9848 {
9849 	int cfg_size = 0, idx, port = BP_PORT(bp);
9850 
9851 	/* Aggregation of supported attributes of all external phys */
9852 	bp->port.supported[0] = 0;
9853 	bp->port.supported[1] = 0;
9854 	switch (bp->link_params.num_phys) {
9855 	case 1:
9856 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9857 		cfg_size = 1;
9858 		break;
9859 	case 2:
9860 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9861 		cfg_size = 1;
9862 		break;
9863 	case 3:
9864 		if (bp->link_params.multi_phy_config &
9865 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9866 			bp->port.supported[1] =
9867 				bp->link_params.phy[EXT_PHY1].supported;
9868 			bp->port.supported[0] =
9869 				bp->link_params.phy[EXT_PHY2].supported;
9870 		} else {
9871 			bp->port.supported[0] =
9872 				bp->link_params.phy[EXT_PHY1].supported;
9873 			bp->port.supported[1] =
9874 				bp->link_params.phy[EXT_PHY2].supported;
9875 		}
9876 		cfg_size = 2;
9877 		break;
9878 	}
9879 
9880 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9881 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9882 			   SHMEM_RD(bp,
9883 			   dev_info.port_hw_config[port].external_phy_config),
9884 			   SHMEM_RD(bp,
9885 			   dev_info.port_hw_config[port].external_phy_config2));
9886 			return;
9887 	}
9888 
9889 	if (CHIP_IS_E3(bp))
9890 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9891 	else {
9892 		switch (switch_cfg) {
9893 		case SWITCH_CFG_1G:
9894 			bp->port.phy_addr = REG_RD(
9895 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9896 			break;
9897 		case SWITCH_CFG_10G:
9898 			bp->port.phy_addr = REG_RD(
9899 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9900 			break;
9901 		default:
9902 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9903 				  bp->port.link_config[0]);
9904 			return;
9905 		}
9906 	}
9907 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9908 	/* mask what we support according to speed_cap_mask per configuration */
9909 	for (idx = 0; idx < cfg_size; idx++) {
9910 		if (!(bp->link_params.speed_cap_mask[idx] &
9911 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9912 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9913 
9914 		if (!(bp->link_params.speed_cap_mask[idx] &
9915 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9916 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9917 
9918 		if (!(bp->link_params.speed_cap_mask[idx] &
9919 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9920 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9921 
9922 		if (!(bp->link_params.speed_cap_mask[idx] &
9923 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9924 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9925 
9926 		if (!(bp->link_params.speed_cap_mask[idx] &
9927 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9928 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9929 						     SUPPORTED_1000baseT_Full);
9930 
9931 		if (!(bp->link_params.speed_cap_mask[idx] &
9932 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9933 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9934 
9935 		if (!(bp->link_params.speed_cap_mask[idx] &
9936 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9937 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9938 
9939 	}
9940 
9941 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9942 		       bp->port.supported[1]);
9943 }
9944 
9945 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9946 {
9947 	u32 link_config, idx, cfg_size = 0;
9948 	bp->port.advertising[0] = 0;
9949 	bp->port.advertising[1] = 0;
9950 	switch (bp->link_params.num_phys) {
9951 	case 1:
9952 	case 2:
9953 		cfg_size = 1;
9954 		break;
9955 	case 3:
9956 		cfg_size = 2;
9957 		break;
9958 	}
9959 	for (idx = 0; idx < cfg_size; idx++) {
9960 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9961 		link_config = bp->port.link_config[idx];
9962 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9963 		case PORT_FEATURE_LINK_SPEED_AUTO:
9964 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9965 				bp->link_params.req_line_speed[idx] =
9966 					SPEED_AUTO_NEG;
9967 				bp->port.advertising[idx] |=
9968 					bp->port.supported[idx];
9969 				if (bp->link_params.phy[EXT_PHY1].type ==
9970 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9971 					bp->port.advertising[idx] |=
9972 					(SUPPORTED_100baseT_Half |
9973 					 SUPPORTED_100baseT_Full);
9974 			} else {
9975 				/* force 10G, no AN */
9976 				bp->link_params.req_line_speed[idx] =
9977 					SPEED_10000;
9978 				bp->port.advertising[idx] |=
9979 					(ADVERTISED_10000baseT_Full |
9980 					 ADVERTISED_FIBRE);
9981 				continue;
9982 			}
9983 			break;
9984 
9985 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9986 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9987 				bp->link_params.req_line_speed[idx] =
9988 					SPEED_10;
9989 				bp->port.advertising[idx] |=
9990 					(ADVERTISED_10baseT_Full |
9991 					 ADVERTISED_TP);
9992 			} else {
9993 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9994 					    link_config,
9995 				    bp->link_params.speed_cap_mask[idx]);
9996 				return;
9997 			}
9998 			break;
9999 
10000 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10001 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10002 				bp->link_params.req_line_speed[idx] =
10003 					SPEED_10;
10004 				bp->link_params.req_duplex[idx] =
10005 					DUPLEX_HALF;
10006 				bp->port.advertising[idx] |=
10007 					(ADVERTISED_10baseT_Half |
10008 					 ADVERTISED_TP);
10009 			} else {
10010 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10011 					    link_config,
10012 					  bp->link_params.speed_cap_mask[idx]);
10013 				return;
10014 			}
10015 			break;
10016 
10017 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10018 			if (bp->port.supported[idx] &
10019 			    SUPPORTED_100baseT_Full) {
10020 				bp->link_params.req_line_speed[idx] =
10021 					SPEED_100;
10022 				bp->port.advertising[idx] |=
10023 					(ADVERTISED_100baseT_Full |
10024 					 ADVERTISED_TP);
10025 			} else {
10026 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10027 					    link_config,
10028 					  bp->link_params.speed_cap_mask[idx]);
10029 				return;
10030 			}
10031 			break;
10032 
10033 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10034 			if (bp->port.supported[idx] &
10035 			    SUPPORTED_100baseT_Half) {
10036 				bp->link_params.req_line_speed[idx] =
10037 								SPEED_100;
10038 				bp->link_params.req_duplex[idx] =
10039 								DUPLEX_HALF;
10040 				bp->port.advertising[idx] |=
10041 					(ADVERTISED_100baseT_Half |
10042 					 ADVERTISED_TP);
10043 			} else {
10044 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10045 				    link_config,
10046 				    bp->link_params.speed_cap_mask[idx]);
10047 				return;
10048 			}
10049 			break;
10050 
10051 		case PORT_FEATURE_LINK_SPEED_1G:
10052 			if (bp->port.supported[idx] &
10053 			    SUPPORTED_1000baseT_Full) {
10054 				bp->link_params.req_line_speed[idx] =
10055 					SPEED_1000;
10056 				bp->port.advertising[idx] |=
10057 					(ADVERTISED_1000baseT_Full |
10058 					 ADVERTISED_TP);
10059 			} else {
10060 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10061 				    link_config,
10062 				    bp->link_params.speed_cap_mask[idx]);
10063 				return;
10064 			}
10065 			break;
10066 
10067 		case PORT_FEATURE_LINK_SPEED_2_5G:
10068 			if (bp->port.supported[idx] &
10069 			    SUPPORTED_2500baseX_Full) {
10070 				bp->link_params.req_line_speed[idx] =
10071 					SPEED_2500;
10072 				bp->port.advertising[idx] |=
10073 					(ADVERTISED_2500baseX_Full |
10074 						ADVERTISED_TP);
10075 			} else {
10076 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10077 				    link_config,
10078 				    bp->link_params.speed_cap_mask[idx]);
10079 				return;
10080 			}
10081 			break;
10082 
10083 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10084 			if (bp->port.supported[idx] &
10085 			    SUPPORTED_10000baseT_Full) {
10086 				bp->link_params.req_line_speed[idx] =
10087 					SPEED_10000;
10088 				bp->port.advertising[idx] |=
10089 					(ADVERTISED_10000baseT_Full |
10090 						ADVERTISED_FIBRE);
10091 			} else {
10092 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10093 				    link_config,
10094 				    bp->link_params.speed_cap_mask[idx]);
10095 				return;
10096 			}
10097 			break;
10098 		case PORT_FEATURE_LINK_SPEED_20G:
10099 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10100 
10101 			break;
10102 		default:
10103 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10104 				  link_config);
10105 				bp->link_params.req_line_speed[idx] =
10106 							SPEED_AUTO_NEG;
10107 				bp->port.advertising[idx] =
10108 						bp->port.supported[idx];
10109 			break;
10110 		}
10111 
10112 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10113 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10114 		if ((bp->link_params.req_flow_ctrl[idx] ==
10115 		     BNX2X_FLOW_CTRL_AUTO) &&
10116 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
10117 			bp->link_params.req_flow_ctrl[idx] =
10118 				BNX2X_FLOW_CTRL_NONE;
10119 		}
10120 
10121 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10122 			       bp->link_params.req_line_speed[idx],
10123 			       bp->link_params.req_duplex[idx],
10124 			       bp->link_params.req_flow_ctrl[idx],
10125 			       bp->port.advertising[idx]);
10126 	}
10127 }
10128 
10129 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10130 {
10131 	mac_hi = cpu_to_be16(mac_hi);
10132 	mac_lo = cpu_to_be32(mac_lo);
10133 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10134 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10135 }
10136 
10137 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
10138 {
10139 	int port = BP_PORT(bp);
10140 	u32 config;
10141 	u32 ext_phy_type, ext_phy_config, eee_mode;
10142 
10143 	bp->link_params.bp = bp;
10144 	bp->link_params.port = port;
10145 
10146 	bp->link_params.lane_config =
10147 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10148 
10149 	bp->link_params.speed_cap_mask[0] =
10150 		SHMEM_RD(bp,
10151 			 dev_info.port_hw_config[port].speed_capability_mask);
10152 	bp->link_params.speed_cap_mask[1] =
10153 		SHMEM_RD(bp,
10154 			 dev_info.port_hw_config[port].speed_capability_mask2);
10155 	bp->port.link_config[0] =
10156 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10157 
10158 	bp->port.link_config[1] =
10159 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10160 
10161 	bp->link_params.multi_phy_config =
10162 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10163 	/* If the device is capable of WoL, set the default state according
10164 	 * to the HW
10165 	 */
10166 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10167 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10168 		   (config & PORT_FEATURE_WOL_ENABLED));
10169 
10170 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10171 		       bp->link_params.lane_config,
10172 		       bp->link_params.speed_cap_mask[0],
10173 		       bp->port.link_config[0]);
10174 
10175 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10176 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10177 	bnx2x_phy_probe(&bp->link_params);
10178 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10179 
10180 	bnx2x_link_settings_requested(bp);
10181 
10182 	/*
10183 	 * If connected directly, work with the internal PHY, otherwise, work
10184 	 * with the external PHY
10185 	 */
10186 	ext_phy_config =
10187 		SHMEM_RD(bp,
10188 			 dev_info.port_hw_config[port].external_phy_config);
10189 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10190 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10191 		bp->mdio.prtad = bp->port.phy_addr;
10192 
10193 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10194 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10195 		bp->mdio.prtad =
10196 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10197 
10198 	/*
10199 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
10200 	 * In MF mode, it is set to cover self test cases
10201 	 */
10202 	if (IS_MF(bp))
10203 		bp->port.need_hw_lock = 1;
10204 	else
10205 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
10206 							bp->common.shmem_base,
10207 							bp->common.shmem2_base);
10208 
10209 	/* Configure link feature according to nvram value */
10210 	eee_mode = (((SHMEM_RD(bp, dev_info.
10211 		      port_feature_config[port].eee_power_mode)) &
10212 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10213 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10214 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10215 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10216 					   EEE_MODE_ENABLE_LPI |
10217 					   EEE_MODE_OUTPUT_TIME;
10218 	} else {
10219 		bp->link_params.eee_mode = 0;
10220 	}
10221 }
10222 
10223 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10224 {
10225 	u32 no_flags = NO_ISCSI_FLAG;
10226 #ifdef BCM_CNIC
10227 	int port = BP_PORT(bp);
10228 
10229 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10230 				drv_lic_key[port].max_iscsi_conn);
10231 
10232 	/* Get the number of maximum allowed iSCSI connections */
10233 	bp->cnic_eth_dev.max_iscsi_conn =
10234 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10235 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10236 
10237 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10238 		       bp->cnic_eth_dev.max_iscsi_conn);
10239 
10240 	/*
10241 	 * If maximum allowed number of connections is zero -
10242 	 * disable the feature.
10243 	 */
10244 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10245 		bp->flags |= no_flags;
10246 #else
10247 	bp->flags |= no_flags;
10248 #endif
10249 }
10250 
10251 #ifdef BCM_CNIC
10252 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10253 {
10254 	/* Port info */
10255 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10256 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10257 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10258 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10259 
10260 	/* Node info */
10261 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10262 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10263 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10264 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10265 }
10266 #endif
10267 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
10268 {
10269 #ifdef BCM_CNIC
10270 	int port = BP_PORT(bp);
10271 	int func = BP_ABS_FUNC(bp);
10272 
10273 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10274 				drv_lic_key[port].max_fcoe_conn);
10275 
10276 	/* Get the number of maximum allowed FCoE connections */
10277 	bp->cnic_eth_dev.max_fcoe_conn =
10278 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10279 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10280 
10281 	/* Read the WWN: */
10282 	if (!IS_MF(bp)) {
10283 		/* Port info */
10284 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10285 			SHMEM_RD(bp,
10286 				dev_info.port_hw_config[port].
10287 				 fcoe_wwn_port_name_upper);
10288 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10289 			SHMEM_RD(bp,
10290 				dev_info.port_hw_config[port].
10291 				 fcoe_wwn_port_name_lower);
10292 
10293 		/* Node info */
10294 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10295 			SHMEM_RD(bp,
10296 				dev_info.port_hw_config[port].
10297 				 fcoe_wwn_node_name_upper);
10298 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10299 			SHMEM_RD(bp,
10300 				dev_info.port_hw_config[port].
10301 				 fcoe_wwn_node_name_lower);
10302 	} else if (!IS_MF_SD(bp)) {
10303 		/*
10304 		 * Read the WWN info only if the FCoE feature is enabled for
10305 		 * this function.
10306 		 */
10307 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10308 			bnx2x_get_ext_wwn_info(bp, func);
10309 
10310 	} else if (IS_MF_FCOE_SD(bp))
10311 		bnx2x_get_ext_wwn_info(bp, func);
10312 
10313 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10314 
10315 	/*
10316 	 * If maximum allowed number of connections is zero -
10317 	 * disable the feature.
10318 	 */
10319 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10320 		bp->flags |= NO_FCOE_FLAG;
10321 #else
10322 	bp->flags |= NO_FCOE_FLAG;
10323 #endif
10324 }
10325 
10326 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
10327 {
10328 	/*
10329 	 * iSCSI may be dynamically disabled but reading
10330 	 * info here we will decrease memory usage by driver
10331 	 * if the feature is disabled for good
10332 	 */
10333 	bnx2x_get_iscsi_info(bp);
10334 	bnx2x_get_fcoe_info(bp);
10335 }
10336 
10337 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10338 {
10339 	u32 val, val2;
10340 	int func = BP_ABS_FUNC(bp);
10341 	int port = BP_PORT(bp);
10342 #ifdef BCM_CNIC
10343 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10344 	u8 *fip_mac = bp->fip_mac;
10345 #endif
10346 
10347 	/* Zero primary MAC configuration */
10348 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10349 
10350 	if (BP_NOMCP(bp)) {
10351 		BNX2X_ERROR("warning: random MAC workaround active\n");
10352 		eth_hw_addr_random(bp->dev);
10353 	} else if (IS_MF(bp)) {
10354 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10355 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10356 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10357 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10358 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10359 
10360 #ifdef BCM_CNIC
10361 		/*
10362 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10363 		 * FCoE MAC then the appropriate feature should be disabled.
10364 		 *
10365 		 * In non SD mode features configuration comes from
10366 		 * struct func_ext_config.
10367 		 */
10368 		if (!IS_MF_SD(bp)) {
10369 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10370 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10371 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10372 						     iscsi_mac_addr_upper);
10373 				val = MF_CFG_RD(bp, func_ext_config[func].
10374 						    iscsi_mac_addr_lower);
10375 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10376 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10377 					       iscsi_mac);
10378 			} else
10379 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10380 
10381 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10382 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10383 						     fcoe_mac_addr_upper);
10384 				val = MF_CFG_RD(bp, func_ext_config[func].
10385 						    fcoe_mac_addr_lower);
10386 				bnx2x_set_mac_buf(fip_mac, val, val2);
10387 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
10388 					       fip_mac);
10389 
10390 			} else
10391 				bp->flags |= NO_FCOE_FLAG;
10392 
10393 			bp->mf_ext_config = cfg;
10394 
10395 		} else { /* SD MODE */
10396 			if (IS_MF_STORAGE_SD(bp)) {
10397 				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10398 					/* use primary mac as iscsi mac */
10399 					memcpy(iscsi_mac, bp->dev->dev_addr,
10400 					       ETH_ALEN);
10401 
10402 					BNX2X_DEV_INFO("SD ISCSI MODE\n");
10403 					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10404 						       iscsi_mac);
10405 				} else { /* FCoE */
10406 					memcpy(fip_mac, bp->dev->dev_addr,
10407 					       ETH_ALEN);
10408 					BNX2X_DEV_INFO("SD FCoE MODE\n");
10409 					BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
10410 						       fip_mac);
10411 				}
10412 				/* Zero primary MAC configuration */
10413 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
10414 			}
10415 		}
10416 
10417 		if (IS_MF_FCOE_AFEX(bp))
10418 			/* use FIP MAC as primary MAC */
10419 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10420 
10421 #endif
10422 	} else {
10423 		/* in SF read MACs from port configuration */
10424 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10425 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10426 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10427 
10428 #ifdef BCM_CNIC
10429 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10430 				    iscsi_mac_upper);
10431 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10432 				   iscsi_mac_lower);
10433 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10434 
10435 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10436 				    fcoe_fip_mac_upper);
10437 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10438 				   fcoe_fip_mac_lower);
10439 		bnx2x_set_mac_buf(fip_mac, val, val2);
10440 #endif
10441 	}
10442 
10443 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10444 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10445 
10446 #ifdef BCM_CNIC
10447 	/* Disable iSCSI if MAC configuration is
10448 	 * invalid.
10449 	 */
10450 	if (!is_valid_ether_addr(iscsi_mac)) {
10451 		bp->flags |= NO_ISCSI_FLAG;
10452 		memset(iscsi_mac, 0, ETH_ALEN);
10453 	}
10454 
10455 	/* Disable FCoE if MAC configuration is
10456 	 * invalid.
10457 	 */
10458 	if (!is_valid_ether_addr(fip_mac)) {
10459 		bp->flags |= NO_FCOE_FLAG;
10460 		memset(bp->fip_mac, 0, ETH_ALEN);
10461 	}
10462 #endif
10463 
10464 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10465 		dev_err(&bp->pdev->dev,
10466 			"bad Ethernet MAC address configuration: %pM\n"
10467 			"change it manually before bringing up the appropriate network interface\n",
10468 			bp->dev->dev_addr);
10469 
10470 
10471 }
10472 
10473 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10474 {
10475 	int /*abs*/func = BP_ABS_FUNC(bp);
10476 	int vn;
10477 	u32 val = 0;
10478 	int rc = 0;
10479 
10480 	bnx2x_get_common_hwinfo(bp);
10481 
10482 	/*
10483 	 * initialize IGU parameters
10484 	 */
10485 	if (CHIP_IS_E1x(bp)) {
10486 		bp->common.int_block = INT_BLOCK_HC;
10487 
10488 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10489 		bp->igu_base_sb = 0;
10490 	} else {
10491 		bp->common.int_block = INT_BLOCK_IGU;
10492 
10493 		/* do not allow device reset during IGU info preocessing */
10494 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10495 
10496 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10497 
10498 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10499 			int tout = 5000;
10500 
10501 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10502 
10503 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10504 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10505 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10506 
10507 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10508 				tout--;
10509 				usleep_range(1000, 1000);
10510 			}
10511 
10512 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10513 				dev_err(&bp->pdev->dev,
10514 					"FORCING Normal Mode failed!!!\n");
10515 				return -EPERM;
10516 			}
10517 		}
10518 
10519 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10520 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10521 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10522 		} else
10523 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10524 
10525 		bnx2x_get_igu_cam_info(bp);
10526 
10527 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10528 	}
10529 
10530 	/*
10531 	 * set base FW non-default (fast path) status block id, this value is
10532 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10533 	 * determine the id used by the FW.
10534 	 */
10535 	if (CHIP_IS_E1x(bp))
10536 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10537 	else /*
10538 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10539 	      * the same queue are indicated on the same IGU SB). So we prefer
10540 	      * FW and IGU SBs to be the same value.
10541 	      */
10542 		bp->base_fw_ndsb = bp->igu_base_sb;
10543 
10544 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10545 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10546 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10547 
10548 	/*
10549 	 * Initialize MF configuration
10550 	 */
10551 
10552 	bp->mf_ov = 0;
10553 	bp->mf_mode = 0;
10554 	vn = BP_VN(bp);
10555 
10556 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10557 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10558 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10559 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10560 
10561 		if (SHMEM2_HAS(bp, mf_cfg_addr))
10562 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10563 		else
10564 			bp->common.mf_cfg_base = bp->common.shmem_base +
10565 				offsetof(struct shmem_region, func_mb) +
10566 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10567 		/*
10568 		 * get mf configuration:
10569 		 * 1. existence of MF configuration
10570 		 * 2. MAC address must be legal (check only upper bytes)
10571 		 *    for  Switch-Independent mode;
10572 		 *    OVLAN must be legal for Switch-Dependent mode
10573 		 * 3. SF_MODE configures specific MF mode
10574 		 */
10575 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10576 			/* get mf configuration */
10577 			val = SHMEM_RD(bp,
10578 				       dev_info.shared_feature_config.config);
10579 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10580 
10581 			switch (val) {
10582 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10583 				val = MF_CFG_RD(bp, func_mf_config[func].
10584 						mac_upper);
10585 				/* check for legal mac (upper bytes)*/
10586 				if (val != 0xffff) {
10587 					bp->mf_mode = MULTI_FUNCTION_SI;
10588 					bp->mf_config[vn] = MF_CFG_RD(bp,
10589 						   func_mf_config[func].config);
10590 				} else
10591 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10592 				break;
10593 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10594 				if ((!CHIP_IS_E1x(bp)) &&
10595 				    (MF_CFG_RD(bp, func_mf_config[func].
10596 					       mac_upper) != 0xffff) &&
10597 				    (SHMEM2_HAS(bp,
10598 						afex_driver_support))) {
10599 					bp->mf_mode = MULTI_FUNCTION_AFEX;
10600 					bp->mf_config[vn] = MF_CFG_RD(bp,
10601 						func_mf_config[func].config);
10602 				} else {
10603 					BNX2X_DEV_INFO("can not configure afex mode\n");
10604 				}
10605 				break;
10606 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10607 				/* get OV configuration */
10608 				val = MF_CFG_RD(bp,
10609 					func_mf_config[FUNC_0].e1hov_tag);
10610 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10611 
10612 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10613 					bp->mf_mode = MULTI_FUNCTION_SD;
10614 					bp->mf_config[vn] = MF_CFG_RD(bp,
10615 						func_mf_config[func].config);
10616 				} else
10617 					BNX2X_DEV_INFO("illegal OV for SD\n");
10618 				break;
10619 			default:
10620 				/* Unknown configuration: reset mf_config */
10621 				bp->mf_config[vn] = 0;
10622 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10623 			}
10624 		}
10625 
10626 		BNX2X_DEV_INFO("%s function mode\n",
10627 			       IS_MF(bp) ? "multi" : "single");
10628 
10629 		switch (bp->mf_mode) {
10630 		case MULTI_FUNCTION_SD:
10631 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10632 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10633 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10634 				bp->mf_ov = val;
10635 				bp->path_has_ovlan = true;
10636 
10637 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10638 					       func, bp->mf_ov, bp->mf_ov);
10639 			} else {
10640 				dev_err(&bp->pdev->dev,
10641 					"No valid MF OV for func %d, aborting\n",
10642 					func);
10643 				return -EPERM;
10644 			}
10645 			break;
10646 		case MULTI_FUNCTION_AFEX:
10647 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10648 			break;
10649 		case MULTI_FUNCTION_SI:
10650 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10651 				       func);
10652 			break;
10653 		default:
10654 			if (vn) {
10655 				dev_err(&bp->pdev->dev,
10656 					"VN %d is in a single function mode, aborting\n",
10657 					vn);
10658 				return -EPERM;
10659 			}
10660 			break;
10661 		}
10662 
10663 		/* check if other port on the path needs ovlan:
10664 		 * Since MF configuration is shared between ports
10665 		 * Possible mixed modes are only
10666 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10667 		 */
10668 		if (CHIP_MODE_IS_4_PORT(bp) &&
10669 		    !bp->path_has_ovlan &&
10670 		    !IS_MF(bp) &&
10671 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10672 			u8 other_port = !BP_PORT(bp);
10673 			u8 other_func = BP_PATH(bp) + 2*other_port;
10674 			val = MF_CFG_RD(bp,
10675 					func_mf_config[other_func].e1hov_tag);
10676 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10677 				bp->path_has_ovlan = true;
10678 		}
10679 	}
10680 
10681 	/* adjust igu_sb_cnt to MF for E1x */
10682 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10683 		bp->igu_sb_cnt /= E1HVN_MAX;
10684 
10685 	/* port info */
10686 	bnx2x_get_port_hwinfo(bp);
10687 
10688 	/* Get MAC addresses */
10689 	bnx2x_get_mac_hwinfo(bp);
10690 
10691 	bnx2x_get_cnic_info(bp);
10692 
10693 	return rc;
10694 }
10695 
10696 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10697 {
10698 	int cnt, i, block_end, rodi;
10699 	char vpd_start[BNX2X_VPD_LEN+1];
10700 	char str_id_reg[VENDOR_ID_LEN+1];
10701 	char str_id_cap[VENDOR_ID_LEN+1];
10702 	char *vpd_data;
10703 	char *vpd_extended_data = NULL;
10704 	u8 len;
10705 
10706 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10707 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10708 
10709 	if (cnt < BNX2X_VPD_LEN)
10710 		goto out_not_found;
10711 
10712 	/* VPD RO tag should be first tag after identifier string, hence
10713 	 * we should be able to find it in first BNX2X_VPD_LEN chars
10714 	 */
10715 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10716 			     PCI_VPD_LRDT_RO_DATA);
10717 	if (i < 0)
10718 		goto out_not_found;
10719 
10720 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10721 		    pci_vpd_lrdt_size(&vpd_start[i]);
10722 
10723 	i += PCI_VPD_LRDT_TAG_SIZE;
10724 
10725 	if (block_end > BNX2X_VPD_LEN) {
10726 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10727 		if (vpd_extended_data  == NULL)
10728 			goto out_not_found;
10729 
10730 		/* read rest of vpd image into vpd_extended_data */
10731 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10732 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10733 				   block_end - BNX2X_VPD_LEN,
10734 				   vpd_extended_data + BNX2X_VPD_LEN);
10735 		if (cnt < (block_end - BNX2X_VPD_LEN))
10736 			goto out_not_found;
10737 		vpd_data = vpd_extended_data;
10738 	} else
10739 		vpd_data = vpd_start;
10740 
10741 	/* now vpd_data holds full vpd content in both cases */
10742 
10743 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10744 				   PCI_VPD_RO_KEYWORD_MFR_ID);
10745 	if (rodi < 0)
10746 		goto out_not_found;
10747 
10748 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10749 
10750 	if (len != VENDOR_ID_LEN)
10751 		goto out_not_found;
10752 
10753 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10754 
10755 	/* vendor specific info */
10756 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10757 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10758 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10759 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10760 
10761 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10762 						PCI_VPD_RO_KEYWORD_VENDOR0);
10763 		if (rodi >= 0) {
10764 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10765 
10766 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10767 
10768 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10769 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10770 				bp->fw_ver[len] = ' ';
10771 			}
10772 		}
10773 		kfree(vpd_extended_data);
10774 		return;
10775 	}
10776 out_not_found:
10777 	kfree(vpd_extended_data);
10778 	return;
10779 }
10780 
10781 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10782 {
10783 	u32 flags = 0;
10784 
10785 	if (CHIP_REV_IS_FPGA(bp))
10786 		SET_FLAGS(flags, MODE_FPGA);
10787 	else if (CHIP_REV_IS_EMUL(bp))
10788 		SET_FLAGS(flags, MODE_EMUL);
10789 	else
10790 		SET_FLAGS(flags, MODE_ASIC);
10791 
10792 	if (CHIP_MODE_IS_4_PORT(bp))
10793 		SET_FLAGS(flags, MODE_PORT4);
10794 	else
10795 		SET_FLAGS(flags, MODE_PORT2);
10796 
10797 	if (CHIP_IS_E2(bp))
10798 		SET_FLAGS(flags, MODE_E2);
10799 	else if (CHIP_IS_E3(bp)) {
10800 		SET_FLAGS(flags, MODE_E3);
10801 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10802 			SET_FLAGS(flags, MODE_E3_A0);
10803 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10804 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10805 	}
10806 
10807 	if (IS_MF(bp)) {
10808 		SET_FLAGS(flags, MODE_MF);
10809 		switch (bp->mf_mode) {
10810 		case MULTI_FUNCTION_SD:
10811 			SET_FLAGS(flags, MODE_MF_SD);
10812 			break;
10813 		case MULTI_FUNCTION_SI:
10814 			SET_FLAGS(flags, MODE_MF_SI);
10815 			break;
10816 		case MULTI_FUNCTION_AFEX:
10817 			SET_FLAGS(flags, MODE_MF_AFEX);
10818 			break;
10819 		}
10820 	} else
10821 		SET_FLAGS(flags, MODE_SF);
10822 
10823 #if defined(__LITTLE_ENDIAN)
10824 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10825 #else /*(__BIG_ENDIAN)*/
10826 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10827 #endif
10828 	INIT_MODE_FLAGS(bp) = flags;
10829 }
10830 
10831 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10832 {
10833 	int func;
10834 	int rc;
10835 
10836 	mutex_init(&bp->port.phy_mutex);
10837 	mutex_init(&bp->fw_mb_mutex);
10838 	spin_lock_init(&bp->stats_lock);
10839 #ifdef BCM_CNIC
10840 	mutex_init(&bp->cnic_mutex);
10841 #endif
10842 
10843 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10844 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10845 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10846 	rc = bnx2x_get_hwinfo(bp);
10847 	if (rc)
10848 		return rc;
10849 
10850 	bnx2x_set_modes_bitmap(bp);
10851 
10852 	rc = bnx2x_alloc_mem_bp(bp);
10853 	if (rc)
10854 		return rc;
10855 
10856 	bnx2x_read_fwinfo(bp);
10857 
10858 	func = BP_FUNC(bp);
10859 
10860 	/* need to reset chip if undi was active */
10861 	if (!BP_NOMCP(bp)) {
10862 		/* init fw_seq */
10863 		bp->fw_seq =
10864 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10865 							DRV_MSG_SEQ_NUMBER_MASK;
10866 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10867 
10868 		bnx2x_prev_unload(bp);
10869 	}
10870 
10871 
10872 	if (CHIP_REV_IS_FPGA(bp))
10873 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10874 
10875 	if (BP_NOMCP(bp) && (func == 0))
10876 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10877 
10878 	bp->disable_tpa = disable_tpa;
10879 
10880 #ifdef BCM_CNIC
10881 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
10882 #endif
10883 
10884 	/* Set TPA flags */
10885 	if (bp->disable_tpa) {
10886 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10887 		bp->dev->features &= ~NETIF_F_LRO;
10888 	} else {
10889 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10890 		bp->dev->features |= NETIF_F_LRO;
10891 	}
10892 
10893 	if (CHIP_IS_E1(bp))
10894 		bp->dropless_fc = 0;
10895 	else
10896 		bp->dropless_fc = dropless_fc;
10897 
10898 	bp->mrrs = mrrs;
10899 
10900 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
10901 
10902 	/* make sure that the numbers are in the right granularity */
10903 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10904 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10905 
10906 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10907 
10908 	init_timer(&bp->timer);
10909 	bp->timer.expires = jiffies + bp->current_interval;
10910 	bp->timer.data = (unsigned long) bp;
10911 	bp->timer.function = bnx2x_timer;
10912 
10913 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10914 	bnx2x_dcbx_init_params(bp);
10915 
10916 #ifdef BCM_CNIC
10917 	if (CHIP_IS_E1x(bp))
10918 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10919 	else
10920 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10921 #endif
10922 
10923 	/* multiple tx priority */
10924 	if (CHIP_IS_E1x(bp))
10925 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10926 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10927 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10928 	if (CHIP_IS_E3B0(bp))
10929 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10930 
10931 	return rc;
10932 }
10933 
10934 
10935 /****************************************************************************
10936 * General service functions
10937 ****************************************************************************/
10938 
10939 /*
10940  * net_device service functions
10941  */
10942 
10943 /* called with rtnl_lock */
10944 static int bnx2x_open(struct net_device *dev)
10945 {
10946 	struct bnx2x *bp = netdev_priv(dev);
10947 	bool global = false;
10948 	int other_engine = BP_PATH(bp) ? 0 : 1;
10949 	bool other_load_status, load_status;
10950 
10951 	bp->stats_init = true;
10952 
10953 	netif_carrier_off(dev);
10954 
10955 	bnx2x_set_power_state(bp, PCI_D0);
10956 
10957 	other_load_status = bnx2x_get_load_status(bp, other_engine);
10958 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10959 
10960 	/*
10961 	 * If parity had happen during the unload, then attentions
10962 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10963 	 * want the first function loaded on the current engine to
10964 	 * complete the recovery.
10965 	 */
10966 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10967 	    bnx2x_chk_parity_attn(bp, &global, true))
10968 		do {
10969 			/*
10970 			 * If there are attentions and they are in a global
10971 			 * blocks, set the GLOBAL_RESET bit regardless whether
10972 			 * it will be this function that will complete the
10973 			 * recovery or not.
10974 			 */
10975 			if (global)
10976 				bnx2x_set_reset_global(bp);
10977 
10978 			/*
10979 			 * Only the first function on the current engine should
10980 			 * try to recover in open. In case of attentions in
10981 			 * global blocks only the first in the chip should try
10982 			 * to recover.
10983 			 */
10984 			if ((!load_status &&
10985 			     (!global || !other_load_status)) &&
10986 			    bnx2x_trylock_leader_lock(bp) &&
10987 			    !bnx2x_leader_reset(bp)) {
10988 				netdev_info(bp->dev, "Recovered in open\n");
10989 				break;
10990 			}
10991 
10992 			/* recovery has failed... */
10993 			bnx2x_set_power_state(bp, PCI_D3hot);
10994 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10995 
10996 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10997 				  "If you still see this message after a few retries then power cycle is required.\n");
10998 
10999 			return -EAGAIN;
11000 		} while (0);
11001 
11002 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11003 	return bnx2x_nic_load(bp, LOAD_OPEN);
11004 }
11005 
11006 /* called with rtnl_lock */
11007 static int bnx2x_close(struct net_device *dev)
11008 {
11009 	struct bnx2x *bp = netdev_priv(dev);
11010 
11011 	/* Unload the driver, release IRQs */
11012 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11013 
11014 	/* Power off */
11015 	bnx2x_set_power_state(bp, PCI_D3hot);
11016 
11017 	return 0;
11018 }
11019 
11020 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11021 				      struct bnx2x_mcast_ramrod_params *p)
11022 {
11023 	int mc_count = netdev_mc_count(bp->dev);
11024 	struct bnx2x_mcast_list_elem *mc_mac =
11025 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11026 	struct netdev_hw_addr *ha;
11027 
11028 	if (!mc_mac)
11029 		return -ENOMEM;
11030 
11031 	INIT_LIST_HEAD(&p->mcast_list);
11032 
11033 	netdev_for_each_mc_addr(ha, bp->dev) {
11034 		mc_mac->mac = bnx2x_mc_addr(ha);
11035 		list_add_tail(&mc_mac->link, &p->mcast_list);
11036 		mc_mac++;
11037 	}
11038 
11039 	p->mcast_list_len = mc_count;
11040 
11041 	return 0;
11042 }
11043 
11044 static void bnx2x_free_mcast_macs_list(
11045 	struct bnx2x_mcast_ramrod_params *p)
11046 {
11047 	struct bnx2x_mcast_list_elem *mc_mac =
11048 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11049 				 link);
11050 
11051 	WARN_ON(!mc_mac);
11052 	kfree(mc_mac);
11053 }
11054 
11055 /**
11056  * bnx2x_set_uc_list - configure a new unicast MACs list.
11057  *
11058  * @bp: driver handle
11059  *
11060  * We will use zero (0) as a MAC type for these MACs.
11061  */
11062 static int bnx2x_set_uc_list(struct bnx2x *bp)
11063 {
11064 	int rc;
11065 	struct net_device *dev = bp->dev;
11066 	struct netdev_hw_addr *ha;
11067 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11068 	unsigned long ramrod_flags = 0;
11069 
11070 	/* First schedule a cleanup up of old configuration */
11071 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11072 	if (rc < 0) {
11073 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11074 		return rc;
11075 	}
11076 
11077 	netdev_for_each_uc_addr(ha, dev) {
11078 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11079 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11080 		if (rc == -EEXIST) {
11081 			DP(BNX2X_MSG_SP,
11082 			   "Failed to schedule ADD operations: %d\n", rc);
11083 			/* do not treat adding same MAC as error */
11084 			rc = 0;
11085 
11086 		} else if (rc < 0) {
11087 
11088 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11089 				  rc);
11090 			return rc;
11091 		}
11092 	}
11093 
11094 	/* Execute the pending commands */
11095 	__set_bit(RAMROD_CONT, &ramrod_flags);
11096 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11097 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11098 }
11099 
11100 static int bnx2x_set_mc_list(struct bnx2x *bp)
11101 {
11102 	struct net_device *dev = bp->dev;
11103 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11104 	int rc = 0;
11105 
11106 	rparam.mcast_obj = &bp->mcast_obj;
11107 
11108 	/* first, clear all configured multicast MACs */
11109 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11110 	if (rc < 0) {
11111 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11112 		return rc;
11113 	}
11114 
11115 	/* then, configure a new MACs list */
11116 	if (netdev_mc_count(dev)) {
11117 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11118 		if (rc) {
11119 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11120 				  rc);
11121 			return rc;
11122 		}
11123 
11124 		/* Now add the new MACs */
11125 		rc = bnx2x_config_mcast(bp, &rparam,
11126 					BNX2X_MCAST_CMD_ADD);
11127 		if (rc < 0)
11128 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11129 				  rc);
11130 
11131 		bnx2x_free_mcast_macs_list(&rparam);
11132 	}
11133 
11134 	return rc;
11135 }
11136 
11137 
11138 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11139 void bnx2x_set_rx_mode(struct net_device *dev)
11140 {
11141 	struct bnx2x *bp = netdev_priv(dev);
11142 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11143 
11144 	if (bp->state != BNX2X_STATE_OPEN) {
11145 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11146 		return;
11147 	}
11148 
11149 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11150 
11151 	if (dev->flags & IFF_PROMISC)
11152 		rx_mode = BNX2X_RX_MODE_PROMISC;
11153 	else if ((dev->flags & IFF_ALLMULTI) ||
11154 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11155 		  CHIP_IS_E1(bp)))
11156 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11157 	else {
11158 		/* some multicasts */
11159 		if (bnx2x_set_mc_list(bp) < 0)
11160 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
11161 
11162 		if (bnx2x_set_uc_list(bp) < 0)
11163 			rx_mode = BNX2X_RX_MODE_PROMISC;
11164 	}
11165 
11166 	bp->rx_mode = rx_mode;
11167 #ifdef BCM_CNIC
11168 	/* handle ISCSI SD mode */
11169 	if (IS_MF_ISCSI_SD(bp))
11170 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11171 #endif
11172 
11173 	/* Schedule the rx_mode command */
11174 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11175 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11176 		return;
11177 	}
11178 
11179 	bnx2x_set_storm_rx_mode(bp);
11180 }
11181 
11182 /* called with rtnl_lock */
11183 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11184 			   int devad, u16 addr)
11185 {
11186 	struct bnx2x *bp = netdev_priv(netdev);
11187 	u16 value;
11188 	int rc;
11189 
11190 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11191 	   prtad, devad, addr);
11192 
11193 	/* The HW expects different devad if CL22 is used */
11194 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11195 
11196 	bnx2x_acquire_phy_lock(bp);
11197 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11198 	bnx2x_release_phy_lock(bp);
11199 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11200 
11201 	if (!rc)
11202 		rc = value;
11203 	return rc;
11204 }
11205 
11206 /* called with rtnl_lock */
11207 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11208 			    u16 addr, u16 value)
11209 {
11210 	struct bnx2x *bp = netdev_priv(netdev);
11211 	int rc;
11212 
11213 	DP(NETIF_MSG_LINK,
11214 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11215 	   prtad, devad, addr, value);
11216 
11217 	/* The HW expects different devad if CL22 is used */
11218 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11219 
11220 	bnx2x_acquire_phy_lock(bp);
11221 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11222 	bnx2x_release_phy_lock(bp);
11223 	return rc;
11224 }
11225 
11226 /* called with rtnl_lock */
11227 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11228 {
11229 	struct bnx2x *bp = netdev_priv(dev);
11230 	struct mii_ioctl_data *mdio = if_mii(ifr);
11231 
11232 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11233 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11234 
11235 	if (!netif_running(dev))
11236 		return -EAGAIN;
11237 
11238 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11239 }
11240 
11241 #ifdef CONFIG_NET_POLL_CONTROLLER
11242 static void poll_bnx2x(struct net_device *dev)
11243 {
11244 	struct bnx2x *bp = netdev_priv(dev);
11245 	int i;
11246 
11247 	for_each_eth_queue(bp, i) {
11248 		struct bnx2x_fastpath *fp = &bp->fp[i];
11249 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11250 	}
11251 }
11252 #endif
11253 
11254 static int bnx2x_validate_addr(struct net_device *dev)
11255 {
11256 	struct bnx2x *bp = netdev_priv(dev);
11257 
11258 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11259 		BNX2X_ERR("Non-valid Ethernet address\n");
11260 		return -EADDRNOTAVAIL;
11261 	}
11262 	return 0;
11263 }
11264 
11265 static const struct net_device_ops bnx2x_netdev_ops = {
11266 	.ndo_open		= bnx2x_open,
11267 	.ndo_stop		= bnx2x_close,
11268 	.ndo_start_xmit		= bnx2x_start_xmit,
11269 	.ndo_select_queue	= bnx2x_select_queue,
11270 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11271 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11272 	.ndo_validate_addr	= bnx2x_validate_addr,
11273 	.ndo_do_ioctl		= bnx2x_ioctl,
11274 	.ndo_change_mtu		= bnx2x_change_mtu,
11275 	.ndo_fix_features	= bnx2x_fix_features,
11276 	.ndo_set_features	= bnx2x_set_features,
11277 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11278 #ifdef CONFIG_NET_POLL_CONTROLLER
11279 	.ndo_poll_controller	= poll_bnx2x,
11280 #endif
11281 	.ndo_setup_tc		= bnx2x_setup_tc,
11282 
11283 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
11284 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11285 #endif
11286 };
11287 
11288 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11289 {
11290 	struct device *dev = &bp->pdev->dev;
11291 
11292 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11293 		bp->flags |= USING_DAC_FLAG;
11294 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11295 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11296 			return -EIO;
11297 		}
11298 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11299 		dev_err(dev, "System does not support DMA, aborting\n");
11300 		return -EIO;
11301 	}
11302 
11303 	return 0;
11304 }
11305 
11306 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
11307 				    struct net_device *dev,
11308 				    unsigned long board_type)
11309 {
11310 	struct bnx2x *bp;
11311 	int rc;
11312 	u32 pci_cfg_dword;
11313 	bool chip_is_e1x = (board_type == BCM57710 ||
11314 			    board_type == BCM57711 ||
11315 			    board_type == BCM57711E);
11316 
11317 	SET_NETDEV_DEV(dev, &pdev->dev);
11318 	bp = netdev_priv(dev);
11319 
11320 	bp->dev = dev;
11321 	bp->pdev = pdev;
11322 	bp->flags = 0;
11323 
11324 	rc = pci_enable_device(pdev);
11325 	if (rc) {
11326 		dev_err(&bp->pdev->dev,
11327 			"Cannot enable PCI device, aborting\n");
11328 		goto err_out;
11329 	}
11330 
11331 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11332 		dev_err(&bp->pdev->dev,
11333 			"Cannot find PCI device base address, aborting\n");
11334 		rc = -ENODEV;
11335 		goto err_out_disable;
11336 	}
11337 
11338 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11339 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11340 		       " base address, aborting\n");
11341 		rc = -ENODEV;
11342 		goto err_out_disable;
11343 	}
11344 
11345 	if (atomic_read(&pdev->enable_cnt) == 1) {
11346 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11347 		if (rc) {
11348 			dev_err(&bp->pdev->dev,
11349 				"Cannot obtain PCI resources, aborting\n");
11350 			goto err_out_disable;
11351 		}
11352 
11353 		pci_set_master(pdev);
11354 		pci_save_state(pdev);
11355 	}
11356 
11357 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11358 	if (bp->pm_cap == 0) {
11359 		dev_err(&bp->pdev->dev,
11360 			"Cannot find power management capability, aborting\n");
11361 		rc = -EIO;
11362 		goto err_out_release;
11363 	}
11364 
11365 	if (!pci_is_pcie(pdev)) {
11366 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11367 		rc = -EIO;
11368 		goto err_out_release;
11369 	}
11370 
11371 	rc = bnx2x_set_coherency_mask(bp);
11372 	if (rc)
11373 		goto err_out_release;
11374 
11375 	dev->mem_start = pci_resource_start(pdev, 0);
11376 	dev->base_addr = dev->mem_start;
11377 	dev->mem_end = pci_resource_end(pdev, 0);
11378 
11379 	dev->irq = pdev->irq;
11380 
11381 	bp->regview = pci_ioremap_bar(pdev, 0);
11382 	if (!bp->regview) {
11383 		dev_err(&bp->pdev->dev,
11384 			"Cannot map register space, aborting\n");
11385 		rc = -ENOMEM;
11386 		goto err_out_release;
11387 	}
11388 
11389 	/* In E1/E1H use pci device function given by kernel.
11390 	 * In E2/E3 read physical function from ME register since these chips
11391 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11392 	 * (depending on hypervisor).
11393 	 */
11394 	if (chip_is_e1x)
11395 		bp->pf_num = PCI_FUNC(pdev->devfn);
11396 	else {/* chip is E2/3*/
11397 		pci_read_config_dword(bp->pdev,
11398 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
11399 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11400 		    ME_REG_ABS_PF_NUM_SHIFT);
11401 	}
11402 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11403 
11404 	bnx2x_set_power_state(bp, PCI_D0);
11405 
11406 	/* clean indirect addresses */
11407 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11408 			       PCICFG_VENDOR_ID_OFFSET);
11409 	/*
11410 	 * Clean the following indirect addresses for all functions since it
11411 	 * is not used by the driver.
11412 	 */
11413 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11414 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11415 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11416 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11417 
11418 	if (chip_is_e1x) {
11419 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11420 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11421 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11422 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11423 	}
11424 
11425 	/*
11426 	 * Enable internal target-read (in case we are probed after PF FLR).
11427 	 * Must be done prior to any BAR read access. Only for 57712 and up
11428 	 */
11429 	if (!chip_is_e1x)
11430 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11431 
11432 	dev->watchdog_timeo = TX_TIMEOUT;
11433 
11434 	dev->netdev_ops = &bnx2x_netdev_ops;
11435 	bnx2x_set_ethtool_ops(dev);
11436 
11437 	dev->priv_flags |= IFF_UNICAST_FLT;
11438 
11439 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11440 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11441 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11442 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11443 
11444 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11445 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11446 
11447 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11448 	if (bp->flags & USING_DAC_FLAG)
11449 		dev->features |= NETIF_F_HIGHDMA;
11450 
11451 	/* Add Loopback capability to the device */
11452 	dev->hw_features |= NETIF_F_LOOPBACK;
11453 
11454 #ifdef BCM_DCBNL
11455 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11456 #endif
11457 
11458 	/* get_port_hwinfo() will set prtad and mmds properly */
11459 	bp->mdio.prtad = MDIO_PRTAD_NONE;
11460 	bp->mdio.mmds = 0;
11461 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11462 	bp->mdio.dev = dev;
11463 	bp->mdio.mdio_read = bnx2x_mdio_read;
11464 	bp->mdio.mdio_write = bnx2x_mdio_write;
11465 
11466 	return 0;
11467 
11468 err_out_release:
11469 	if (atomic_read(&pdev->enable_cnt) == 1)
11470 		pci_release_regions(pdev);
11471 
11472 err_out_disable:
11473 	pci_disable_device(pdev);
11474 	pci_set_drvdata(pdev, NULL);
11475 
11476 err_out:
11477 	return rc;
11478 }
11479 
11480 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11481 						 int *width, int *speed)
11482 {
11483 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11484 
11485 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11486 
11487 	/* return value of 1=2.5GHz 2=5GHz */
11488 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11489 }
11490 
11491 static int bnx2x_check_firmware(struct bnx2x *bp)
11492 {
11493 	const struct firmware *firmware = bp->firmware;
11494 	struct bnx2x_fw_file_hdr *fw_hdr;
11495 	struct bnx2x_fw_file_section *sections;
11496 	u32 offset, len, num_ops;
11497 	u16 *ops_offsets;
11498 	int i;
11499 	const u8 *fw_ver;
11500 
11501 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11502 		BNX2X_ERR("Wrong FW size\n");
11503 		return -EINVAL;
11504 	}
11505 
11506 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11507 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11508 
11509 	/* Make sure none of the offsets and sizes make us read beyond
11510 	 * the end of the firmware data */
11511 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11512 		offset = be32_to_cpu(sections[i].offset);
11513 		len = be32_to_cpu(sections[i].len);
11514 		if (offset + len > firmware->size) {
11515 			BNX2X_ERR("Section %d length is out of bounds\n", i);
11516 			return -EINVAL;
11517 		}
11518 	}
11519 
11520 	/* Likewise for the init_ops offsets */
11521 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11522 	ops_offsets = (u16 *)(firmware->data + offset);
11523 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11524 
11525 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11526 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11527 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11528 			return -EINVAL;
11529 		}
11530 	}
11531 
11532 	/* Check FW version */
11533 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11534 	fw_ver = firmware->data + offset;
11535 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11536 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11537 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11538 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11539 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11540 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11541 		       BCM_5710_FW_MAJOR_VERSION,
11542 		       BCM_5710_FW_MINOR_VERSION,
11543 		       BCM_5710_FW_REVISION_VERSION,
11544 		       BCM_5710_FW_ENGINEERING_VERSION);
11545 		return -EINVAL;
11546 	}
11547 
11548 	return 0;
11549 }
11550 
11551 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11552 {
11553 	const __be32 *source = (const __be32 *)_source;
11554 	u32 *target = (u32 *)_target;
11555 	u32 i;
11556 
11557 	for (i = 0; i < n/4; i++)
11558 		target[i] = be32_to_cpu(source[i]);
11559 }
11560 
11561 /*
11562    Ops array is stored in the following format:
11563    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11564  */
11565 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11566 {
11567 	const __be32 *source = (const __be32 *)_source;
11568 	struct raw_op *target = (struct raw_op *)_target;
11569 	u32 i, j, tmp;
11570 
11571 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11572 		tmp = be32_to_cpu(source[j]);
11573 		target[i].op = (tmp >> 24) & 0xff;
11574 		target[i].offset = tmp & 0xffffff;
11575 		target[i].raw_data = be32_to_cpu(source[j + 1]);
11576 	}
11577 }
11578 
11579 /* IRO array is stored in the following format:
11580  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11581  */
11582 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11583 {
11584 	const __be32 *source = (const __be32 *)_source;
11585 	struct iro *target = (struct iro *)_target;
11586 	u32 i, j, tmp;
11587 
11588 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11589 		target[i].base = be32_to_cpu(source[j]);
11590 		j++;
11591 		tmp = be32_to_cpu(source[j]);
11592 		target[i].m1 = (tmp >> 16) & 0xffff;
11593 		target[i].m2 = tmp & 0xffff;
11594 		j++;
11595 		tmp = be32_to_cpu(source[j]);
11596 		target[i].m3 = (tmp >> 16) & 0xffff;
11597 		target[i].size = tmp & 0xffff;
11598 		j++;
11599 	}
11600 }
11601 
11602 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11603 {
11604 	const __be16 *source = (const __be16 *)_source;
11605 	u16 *target = (u16 *)_target;
11606 	u32 i;
11607 
11608 	for (i = 0; i < n/2; i++)
11609 		target[i] = be16_to_cpu(source[i]);
11610 }
11611 
11612 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11613 do {									\
11614 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11615 	bp->arr = kmalloc(len, GFP_KERNEL);				\
11616 	if (!bp->arr)							\
11617 		goto lbl;						\
11618 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11619 	     (u8 *)bp->arr, len);					\
11620 } while (0)
11621 
11622 static int bnx2x_init_firmware(struct bnx2x *bp)
11623 {
11624 	const char *fw_file_name;
11625 	struct bnx2x_fw_file_hdr *fw_hdr;
11626 	int rc;
11627 
11628 	if (bp->firmware)
11629 		return 0;
11630 
11631 	if (CHIP_IS_E1(bp))
11632 		fw_file_name = FW_FILE_NAME_E1;
11633 	else if (CHIP_IS_E1H(bp))
11634 		fw_file_name = FW_FILE_NAME_E1H;
11635 	else if (!CHIP_IS_E1x(bp))
11636 		fw_file_name = FW_FILE_NAME_E2;
11637 	else {
11638 		BNX2X_ERR("Unsupported chip revision\n");
11639 		return -EINVAL;
11640 	}
11641 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11642 
11643 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11644 	if (rc) {
11645 		BNX2X_ERR("Can't load firmware file %s\n",
11646 			  fw_file_name);
11647 		goto request_firmware_exit;
11648 	}
11649 
11650 	rc = bnx2x_check_firmware(bp);
11651 	if (rc) {
11652 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11653 		goto request_firmware_exit;
11654 	}
11655 
11656 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11657 
11658 	/* Initialize the pointers to the init arrays */
11659 	/* Blob */
11660 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11661 
11662 	/* Opcodes */
11663 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11664 
11665 	/* Offsets */
11666 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11667 			    be16_to_cpu_n);
11668 
11669 	/* STORMs firmware */
11670 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11671 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11672 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11673 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11674 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11675 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11676 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11677 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11678 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11679 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11680 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11681 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11682 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11683 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11684 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11685 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11686 	/* IRO */
11687 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11688 
11689 	return 0;
11690 
11691 iro_alloc_err:
11692 	kfree(bp->init_ops_offsets);
11693 init_offsets_alloc_err:
11694 	kfree(bp->init_ops);
11695 init_ops_alloc_err:
11696 	kfree(bp->init_data);
11697 request_firmware_exit:
11698 	release_firmware(bp->firmware);
11699 	bp->firmware = NULL;
11700 
11701 	return rc;
11702 }
11703 
11704 static void bnx2x_release_firmware(struct bnx2x *bp)
11705 {
11706 	kfree(bp->init_ops_offsets);
11707 	kfree(bp->init_ops);
11708 	kfree(bp->init_data);
11709 	release_firmware(bp->firmware);
11710 	bp->firmware = NULL;
11711 }
11712 
11713 
11714 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11715 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11716 	.init_hw_cmn      = bnx2x_init_hw_common,
11717 	.init_hw_port     = bnx2x_init_hw_port,
11718 	.init_hw_func     = bnx2x_init_hw_func,
11719 
11720 	.reset_hw_cmn     = bnx2x_reset_common,
11721 	.reset_hw_port    = bnx2x_reset_port,
11722 	.reset_hw_func    = bnx2x_reset_func,
11723 
11724 	.gunzip_init      = bnx2x_gunzip_init,
11725 	.gunzip_end       = bnx2x_gunzip_end,
11726 
11727 	.init_fw          = bnx2x_init_firmware,
11728 	.release_fw       = bnx2x_release_firmware,
11729 };
11730 
11731 void bnx2x__init_func_obj(struct bnx2x *bp)
11732 {
11733 	/* Prepare DMAE related driver resources */
11734 	bnx2x_setup_dmae(bp);
11735 
11736 	bnx2x_init_func_obj(bp, &bp->func_obj,
11737 			    bnx2x_sp(bp, func_rdata),
11738 			    bnx2x_sp_mapping(bp, func_rdata),
11739 			    bnx2x_sp(bp, func_afex_rdata),
11740 			    bnx2x_sp_mapping(bp, func_afex_rdata),
11741 			    &bnx2x_func_sp_drv);
11742 }
11743 
11744 /* must be called after sriov-enable */
11745 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11746 {
11747 	int cid_count = BNX2X_L2_MAX_CID(bp);
11748 
11749 #ifdef BCM_CNIC
11750 	cid_count += CNIC_CID_MAX;
11751 #endif
11752 	return roundup(cid_count, QM_CID_ROUND);
11753 }
11754 
11755 /**
11756  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11757  *
11758  * @dev:	pci device
11759  *
11760  */
11761 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11762 {
11763 	int pos;
11764 	u16 control;
11765 
11766 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11767 
11768 	/*
11769 	 * If MSI-X is not supported - return number of SBs needed to support
11770 	 * one fast path queue: one FP queue + SB for CNIC
11771 	 */
11772 	if (!pos)
11773 		return 1 + CNIC_PRESENT;
11774 
11775 	/*
11776 	 * The value in the PCI configuration space is the index of the last
11777 	 * entry, namely one less than the actual size of the table, which is
11778 	 * exactly what we want to return from this function: number of all SBs
11779 	 * without the default SB.
11780 	 */
11781 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11782 	return control & PCI_MSIX_FLAGS_QSIZE;
11783 }
11784 
11785 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11786 				    const struct pci_device_id *ent)
11787 {
11788 	struct net_device *dev = NULL;
11789 	struct bnx2x *bp;
11790 	int pcie_width, pcie_speed;
11791 	int rc, max_non_def_sbs;
11792 	int rx_count, tx_count, rss_count, doorbell_size;
11793 	/*
11794 	 * An estimated maximum supported CoS number according to the chip
11795 	 * version.
11796 	 * We will try to roughly estimate the maximum number of CoSes this chip
11797 	 * may support in order to minimize the memory allocated for Tx
11798 	 * netdev_queue's. This number will be accurately calculated during the
11799 	 * initialization of bp->max_cos based on the chip versions AND chip
11800 	 * revision in the bnx2x_init_bp().
11801 	 */
11802 	u8 max_cos_est = 0;
11803 
11804 	switch (ent->driver_data) {
11805 	case BCM57710:
11806 	case BCM57711:
11807 	case BCM57711E:
11808 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11809 		break;
11810 
11811 	case BCM57712:
11812 	case BCM57712_MF:
11813 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11814 		break;
11815 
11816 	case BCM57800:
11817 	case BCM57800_MF:
11818 	case BCM57810:
11819 	case BCM57810_MF:
11820 	case BCM57840_O:
11821 	case BCM57840_4_10:
11822 	case BCM57840_2_20:
11823 	case BCM57840_MFO:
11824 	case BCM57840_MF:
11825 	case BCM57811:
11826 	case BCM57811_MF:
11827 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11828 		break;
11829 
11830 	default:
11831 		pr_err("Unknown board_type (%ld), aborting\n",
11832 			   ent->driver_data);
11833 		return -ENODEV;
11834 	}
11835 
11836 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11837 
11838 	WARN_ON(!max_non_def_sbs);
11839 
11840 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11841 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11842 
11843 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11844 	rx_count = rss_count + FCOE_PRESENT;
11845 
11846 	/*
11847 	 * Maximum number of netdev Tx queues:
11848 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11849 	 */
11850 	tx_count = rss_count * max_cos_est + FCOE_PRESENT;
11851 
11852 	/* dev zeroed in init_etherdev */
11853 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11854 	if (!dev)
11855 		return -ENOMEM;
11856 
11857 	bp = netdev_priv(dev);
11858 
11859 	bp->igu_sb_cnt = max_non_def_sbs;
11860 	bp->msg_enable = debug;
11861 	pci_set_drvdata(pdev, dev);
11862 
11863 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11864 	if (rc < 0) {
11865 		free_netdev(dev);
11866 		return rc;
11867 	}
11868 
11869 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11870 
11871 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11872 			  tx_count, rx_count);
11873 
11874 	rc = bnx2x_init_bp(bp);
11875 	if (rc)
11876 		goto init_one_exit;
11877 
11878 	/*
11879 	 * Map doorbels here as we need the real value of bp->max_cos which
11880 	 * is initialized in bnx2x_init_bp().
11881 	 */
11882 	doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
11883 	if (doorbell_size > pci_resource_len(pdev, 2)) {
11884 		dev_err(&bp->pdev->dev,
11885 			"Cannot map doorbells, bar size too small, aborting\n");
11886 		rc = -ENOMEM;
11887 		goto init_one_exit;
11888 	}
11889 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11890 					doorbell_size);
11891 	if (!bp->doorbells) {
11892 		dev_err(&bp->pdev->dev,
11893 			"Cannot map doorbell space, aborting\n");
11894 		rc = -ENOMEM;
11895 		goto init_one_exit;
11896 	}
11897 
11898 	/* calc qm_cid_count */
11899 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11900 
11901 #ifdef BCM_CNIC
11902 	/* disable FCOE L2 queue for E1x */
11903 	if (CHIP_IS_E1x(bp))
11904 		bp->flags |= NO_FCOE_FLAG;
11905 
11906 #endif
11907 
11908 
11909 	/* Set bp->num_queues for MSI-X mode*/
11910 	bnx2x_set_num_queues(bp);
11911 
11912 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11913 	 * needed.
11914 	 */
11915 	bnx2x_set_int_mode(bp);
11916 
11917 	rc = register_netdev(dev);
11918 	if (rc) {
11919 		dev_err(&pdev->dev, "Cannot register net device\n");
11920 		goto init_one_exit;
11921 	}
11922 
11923 #ifdef BCM_CNIC
11924 	if (!NO_FCOE(bp)) {
11925 		/* Add storage MAC address */
11926 		rtnl_lock();
11927 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11928 		rtnl_unlock();
11929 	}
11930 #endif
11931 
11932 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11933 
11934 	BNX2X_DEV_INFO(
11935 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11936 		    board_info[ent->driver_data].name,
11937 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11938 		    pcie_width,
11939 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11940 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11941 		    "5GHz (Gen2)" : "2.5GHz",
11942 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11943 
11944 	return 0;
11945 
11946 init_one_exit:
11947 	if (bp->regview)
11948 		iounmap(bp->regview);
11949 
11950 	if (bp->doorbells)
11951 		iounmap(bp->doorbells);
11952 
11953 	free_netdev(dev);
11954 
11955 	if (atomic_read(&pdev->enable_cnt) == 1)
11956 		pci_release_regions(pdev);
11957 
11958 	pci_disable_device(pdev);
11959 	pci_set_drvdata(pdev, NULL);
11960 
11961 	return rc;
11962 }
11963 
11964 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11965 {
11966 	struct net_device *dev = pci_get_drvdata(pdev);
11967 	struct bnx2x *bp;
11968 
11969 	if (!dev) {
11970 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11971 		return;
11972 	}
11973 	bp = netdev_priv(dev);
11974 
11975 #ifdef BCM_CNIC
11976 	/* Delete storage MAC address */
11977 	if (!NO_FCOE(bp)) {
11978 		rtnl_lock();
11979 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11980 		rtnl_unlock();
11981 	}
11982 #endif
11983 
11984 #ifdef BCM_DCBNL
11985 	/* Delete app tlvs from dcbnl */
11986 	bnx2x_dcbnl_update_applist(bp, true);
11987 #endif
11988 
11989 	unregister_netdev(dev);
11990 
11991 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11992 	bnx2x_set_power_state(bp, PCI_D0);
11993 
11994 	/* Disable MSI/MSI-X */
11995 	bnx2x_disable_msi(bp);
11996 
11997 	/* Power off */
11998 	bnx2x_set_power_state(bp, PCI_D3hot);
11999 
12000 	/* Make sure RESET task is not scheduled before continuing */
12001 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12002 
12003 	if (bp->regview)
12004 		iounmap(bp->regview);
12005 
12006 	if (bp->doorbells)
12007 		iounmap(bp->doorbells);
12008 
12009 	bnx2x_release_firmware(bp);
12010 
12011 	bnx2x_free_mem_bp(bp);
12012 
12013 	free_netdev(dev);
12014 
12015 	if (atomic_read(&pdev->enable_cnt) == 1)
12016 		pci_release_regions(pdev);
12017 
12018 	pci_disable_device(pdev);
12019 	pci_set_drvdata(pdev, NULL);
12020 }
12021 
12022 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12023 {
12024 	int i;
12025 
12026 	bp->state = BNX2X_STATE_ERROR;
12027 
12028 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12029 
12030 #ifdef BCM_CNIC
12031 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12032 #endif
12033 	/* Stop Tx */
12034 	bnx2x_tx_disable(bp);
12035 
12036 	bnx2x_netif_stop(bp, 0);
12037 	/* Delete all NAPI objects */
12038 	bnx2x_del_all_napi(bp);
12039 
12040 	del_timer_sync(&bp->timer);
12041 
12042 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12043 
12044 	/* Release IRQs */
12045 	bnx2x_free_irq(bp);
12046 
12047 	/* Free SKBs, SGEs, TPA pool and driver internals */
12048 	bnx2x_free_skbs(bp);
12049 
12050 	for_each_rx_queue(bp, i)
12051 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12052 
12053 	bnx2x_free_mem(bp);
12054 
12055 	bp->state = BNX2X_STATE_CLOSED;
12056 
12057 	netif_carrier_off(bp->dev);
12058 
12059 	return 0;
12060 }
12061 
12062 static void bnx2x_eeh_recover(struct bnx2x *bp)
12063 {
12064 	u32 val;
12065 
12066 	mutex_init(&bp->port.phy_mutex);
12067 
12068 
12069 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12070 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12071 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12072 		BNX2X_ERR("BAD MCP validity signature\n");
12073 }
12074 
12075 /**
12076  * bnx2x_io_error_detected - called when PCI error is detected
12077  * @pdev: Pointer to PCI device
12078  * @state: The current pci connection state
12079  *
12080  * This function is called after a PCI bus error affecting
12081  * this device has been detected.
12082  */
12083 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12084 						pci_channel_state_t state)
12085 {
12086 	struct net_device *dev = pci_get_drvdata(pdev);
12087 	struct bnx2x *bp = netdev_priv(dev);
12088 
12089 	rtnl_lock();
12090 
12091 	netif_device_detach(dev);
12092 
12093 	if (state == pci_channel_io_perm_failure) {
12094 		rtnl_unlock();
12095 		return PCI_ERS_RESULT_DISCONNECT;
12096 	}
12097 
12098 	if (netif_running(dev))
12099 		bnx2x_eeh_nic_unload(bp);
12100 
12101 	pci_disable_device(pdev);
12102 
12103 	rtnl_unlock();
12104 
12105 	/* Request a slot reset */
12106 	return PCI_ERS_RESULT_NEED_RESET;
12107 }
12108 
12109 /**
12110  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12111  * @pdev: Pointer to PCI device
12112  *
12113  * Restart the card from scratch, as if from a cold-boot.
12114  */
12115 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12116 {
12117 	struct net_device *dev = pci_get_drvdata(pdev);
12118 	struct bnx2x *bp = netdev_priv(dev);
12119 
12120 	rtnl_lock();
12121 
12122 	if (pci_enable_device(pdev)) {
12123 		dev_err(&pdev->dev,
12124 			"Cannot re-enable PCI device after reset\n");
12125 		rtnl_unlock();
12126 		return PCI_ERS_RESULT_DISCONNECT;
12127 	}
12128 
12129 	pci_set_master(pdev);
12130 	pci_restore_state(pdev);
12131 
12132 	if (netif_running(dev))
12133 		bnx2x_set_power_state(bp, PCI_D0);
12134 
12135 	rtnl_unlock();
12136 
12137 	return PCI_ERS_RESULT_RECOVERED;
12138 }
12139 
12140 /**
12141  * bnx2x_io_resume - called when traffic can start flowing again
12142  * @pdev: Pointer to PCI device
12143  *
12144  * This callback is called when the error recovery driver tells us that
12145  * its OK to resume normal operation.
12146  */
12147 static void bnx2x_io_resume(struct pci_dev *pdev)
12148 {
12149 	struct net_device *dev = pci_get_drvdata(pdev);
12150 	struct bnx2x *bp = netdev_priv(dev);
12151 
12152 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12153 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12154 		return;
12155 	}
12156 
12157 	rtnl_lock();
12158 
12159 	bnx2x_eeh_recover(bp);
12160 
12161 	if (netif_running(dev))
12162 		bnx2x_nic_load(bp, LOAD_NORMAL);
12163 
12164 	netif_device_attach(dev);
12165 
12166 	rtnl_unlock();
12167 }
12168 
12169 static const struct pci_error_handlers bnx2x_err_handler = {
12170 	.error_detected = bnx2x_io_error_detected,
12171 	.slot_reset     = bnx2x_io_slot_reset,
12172 	.resume         = bnx2x_io_resume,
12173 };
12174 
12175 static struct pci_driver bnx2x_pci_driver = {
12176 	.name        = DRV_MODULE_NAME,
12177 	.id_table    = bnx2x_pci_tbl,
12178 	.probe       = bnx2x_init_one,
12179 	.remove      = __devexit_p(bnx2x_remove_one),
12180 	.suspend     = bnx2x_suspend,
12181 	.resume      = bnx2x_resume,
12182 	.err_handler = &bnx2x_err_handler,
12183 };
12184 
12185 static int __init bnx2x_init(void)
12186 {
12187 	int ret;
12188 
12189 	pr_info("%s", version);
12190 
12191 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12192 	if (bnx2x_wq == NULL) {
12193 		pr_err("Cannot create workqueue\n");
12194 		return -ENOMEM;
12195 	}
12196 
12197 	ret = pci_register_driver(&bnx2x_pci_driver);
12198 	if (ret) {
12199 		pr_err("Cannot register driver\n");
12200 		destroy_workqueue(bnx2x_wq);
12201 	}
12202 	return ret;
12203 }
12204 
12205 static void __exit bnx2x_cleanup(void)
12206 {
12207 	struct list_head *pos, *q;
12208 	pci_unregister_driver(&bnx2x_pci_driver);
12209 
12210 	destroy_workqueue(bnx2x_wq);
12211 
12212 	/* Free globablly allocated resources */
12213 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12214 		struct bnx2x_prev_path_list *tmp =
12215 			list_entry(pos, struct bnx2x_prev_path_list, list);
12216 		list_del(pos);
12217 		kfree(tmp);
12218 	}
12219 }
12220 
12221 void bnx2x_notify_link_changed(struct bnx2x *bp)
12222 {
12223 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12224 }
12225 
12226 module_init(bnx2x_init);
12227 module_exit(bnx2x_cleanup);
12228 
12229 #ifdef BCM_CNIC
12230 /**
12231  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12232  *
12233  * @bp:		driver handle
12234  * @set:	set or clear the CAM entry
12235  *
12236  * This function will wait until the ramdord completion returns.
12237  * Return 0 if success, -ENODEV if ramrod doesn't return.
12238  */
12239 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12240 {
12241 	unsigned long ramrod_flags = 0;
12242 
12243 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12244 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12245 				 &bp->iscsi_l2_mac_obj, true,
12246 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12247 }
12248 
12249 /* count denotes the number of new completions we have seen */
12250 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12251 {
12252 	struct eth_spe *spe;
12253 	int cxt_index, cxt_offset;
12254 
12255 #ifdef BNX2X_STOP_ON_ERROR
12256 	if (unlikely(bp->panic))
12257 		return;
12258 #endif
12259 
12260 	spin_lock_bh(&bp->spq_lock);
12261 	BUG_ON(bp->cnic_spq_pending < count);
12262 	bp->cnic_spq_pending -= count;
12263 
12264 
12265 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12266 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12267 				& SPE_HDR_CONN_TYPE) >>
12268 				SPE_HDR_CONN_TYPE_SHIFT;
12269 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12270 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12271 
12272 		/* Set validation for iSCSI L2 client before sending SETUP
12273 		 *  ramrod
12274 		 */
12275 		if (type == ETH_CONNECTION_TYPE) {
12276 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12277 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12278 					ILT_PAGE_CIDS;
12279 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12280 					(cxt_index * ILT_PAGE_CIDS);
12281 				bnx2x_set_ctx_validation(bp,
12282 					&bp->context[cxt_index].
12283 							 vcxt[cxt_offset].eth,
12284 					BNX2X_ISCSI_ETH_CID(bp));
12285 			}
12286 		}
12287 
12288 		/*
12289 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
12290 		 * and in the air. We also check that number of outstanding
12291 		 * COMMON ramrods is not more than the EQ and SPQ can
12292 		 * accommodate.
12293 		 */
12294 		if (type == ETH_CONNECTION_TYPE) {
12295 			if (!atomic_read(&bp->cq_spq_left))
12296 				break;
12297 			else
12298 				atomic_dec(&bp->cq_spq_left);
12299 		} else if (type == NONE_CONNECTION_TYPE) {
12300 			if (!atomic_read(&bp->eq_spq_left))
12301 				break;
12302 			else
12303 				atomic_dec(&bp->eq_spq_left);
12304 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
12305 			   (type == FCOE_CONNECTION_TYPE)) {
12306 			if (bp->cnic_spq_pending >=
12307 			    bp->cnic_eth_dev.max_kwqe_pending)
12308 				break;
12309 			else
12310 				bp->cnic_spq_pending++;
12311 		} else {
12312 			BNX2X_ERR("Unknown SPE type: %d\n", type);
12313 			bnx2x_panic();
12314 			break;
12315 		}
12316 
12317 		spe = bnx2x_sp_get_next(bp);
12318 		*spe = *bp->cnic_kwq_cons;
12319 
12320 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12321 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12322 
12323 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12324 			bp->cnic_kwq_cons = bp->cnic_kwq;
12325 		else
12326 			bp->cnic_kwq_cons++;
12327 	}
12328 	bnx2x_sp_prod_update(bp);
12329 	spin_unlock_bh(&bp->spq_lock);
12330 }
12331 
12332 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12333 			       struct kwqe_16 *kwqes[], u32 count)
12334 {
12335 	struct bnx2x *bp = netdev_priv(dev);
12336 	int i;
12337 
12338 #ifdef BNX2X_STOP_ON_ERROR
12339 	if (unlikely(bp->panic)) {
12340 		BNX2X_ERR("Can't post to SP queue while panic\n");
12341 		return -EIO;
12342 	}
12343 #endif
12344 
12345 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12346 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12347 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
12348 		return -EAGAIN;
12349 	}
12350 
12351 	spin_lock_bh(&bp->spq_lock);
12352 
12353 	for (i = 0; i < count; i++) {
12354 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12355 
12356 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12357 			break;
12358 
12359 		*bp->cnic_kwq_prod = *spe;
12360 
12361 		bp->cnic_kwq_pending++;
12362 
12363 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12364 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
12365 		   spe->data.update_data_addr.hi,
12366 		   spe->data.update_data_addr.lo,
12367 		   bp->cnic_kwq_pending);
12368 
12369 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12370 			bp->cnic_kwq_prod = bp->cnic_kwq;
12371 		else
12372 			bp->cnic_kwq_prod++;
12373 	}
12374 
12375 	spin_unlock_bh(&bp->spq_lock);
12376 
12377 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12378 		bnx2x_cnic_sp_post(bp, 0);
12379 
12380 	return i;
12381 }
12382 
12383 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12384 {
12385 	struct cnic_ops *c_ops;
12386 	int rc = 0;
12387 
12388 	mutex_lock(&bp->cnic_mutex);
12389 	c_ops = rcu_dereference_protected(bp->cnic_ops,
12390 					  lockdep_is_held(&bp->cnic_mutex));
12391 	if (c_ops)
12392 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12393 	mutex_unlock(&bp->cnic_mutex);
12394 
12395 	return rc;
12396 }
12397 
12398 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12399 {
12400 	struct cnic_ops *c_ops;
12401 	int rc = 0;
12402 
12403 	rcu_read_lock();
12404 	c_ops = rcu_dereference(bp->cnic_ops);
12405 	if (c_ops)
12406 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12407 	rcu_read_unlock();
12408 
12409 	return rc;
12410 }
12411 
12412 /*
12413  * for commands that have no data
12414  */
12415 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12416 {
12417 	struct cnic_ctl_info ctl = {0};
12418 
12419 	ctl.cmd = cmd;
12420 
12421 	return bnx2x_cnic_ctl_send(bp, &ctl);
12422 }
12423 
12424 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12425 {
12426 	struct cnic_ctl_info ctl = {0};
12427 
12428 	/* first we tell CNIC and only then we count this as a completion */
12429 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12430 	ctl.data.comp.cid = cid;
12431 	ctl.data.comp.error = err;
12432 
12433 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
12434 	bnx2x_cnic_sp_post(bp, 0);
12435 }
12436 
12437 
12438 /* Called with netif_addr_lock_bh() taken.
12439  * Sets an rx_mode config for an iSCSI ETH client.
12440  * Doesn't block.
12441  * Completion should be checked outside.
12442  */
12443 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12444 {
12445 	unsigned long accept_flags = 0, ramrod_flags = 0;
12446 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12447 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12448 
12449 	if (start) {
12450 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
12451 		 * because it's the only way for UIO Queue to accept
12452 		 * multicasts (in non-promiscuous mode only one Queue per
12453 		 * function will receive multicast packets (leading in our
12454 		 * case).
12455 		 */
12456 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12457 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12458 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12459 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12460 
12461 		/* Clear STOP_PENDING bit if START is requested */
12462 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12463 
12464 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12465 	} else
12466 		/* Clear START_PENDING bit if STOP is requested */
12467 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12468 
12469 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12470 		set_bit(sched_state, &bp->sp_state);
12471 	else {
12472 		__set_bit(RAMROD_RX, &ramrod_flags);
12473 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12474 				    ramrod_flags);
12475 	}
12476 }
12477 
12478 
12479 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12480 {
12481 	struct bnx2x *bp = netdev_priv(dev);
12482 	int rc = 0;
12483 
12484 	switch (ctl->cmd) {
12485 	case DRV_CTL_CTXTBL_WR_CMD: {
12486 		u32 index = ctl->data.io.offset;
12487 		dma_addr_t addr = ctl->data.io.dma_addr;
12488 
12489 		bnx2x_ilt_wr(bp, index, addr);
12490 		break;
12491 	}
12492 
12493 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12494 		int count = ctl->data.credit.credit_count;
12495 
12496 		bnx2x_cnic_sp_post(bp, count);
12497 		break;
12498 	}
12499 
12500 	/* rtnl_lock is held.  */
12501 	case DRV_CTL_START_L2_CMD: {
12502 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12503 		unsigned long sp_bits = 0;
12504 
12505 		/* Configure the iSCSI classification object */
12506 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12507 				   cp->iscsi_l2_client_id,
12508 				   cp->iscsi_l2_cid, BP_FUNC(bp),
12509 				   bnx2x_sp(bp, mac_rdata),
12510 				   bnx2x_sp_mapping(bp, mac_rdata),
12511 				   BNX2X_FILTER_MAC_PENDING,
12512 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12513 				   &bp->macs_pool);
12514 
12515 		/* Set iSCSI MAC address */
12516 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12517 		if (rc)
12518 			break;
12519 
12520 		mmiowb();
12521 		barrier();
12522 
12523 		/* Start accepting on iSCSI L2 ring */
12524 
12525 		netif_addr_lock_bh(dev);
12526 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12527 		netif_addr_unlock_bh(dev);
12528 
12529 		/* bits to wait on */
12530 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12531 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12532 
12533 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12534 			BNX2X_ERR("rx_mode completion timed out!\n");
12535 
12536 		break;
12537 	}
12538 
12539 	/* rtnl_lock is held.  */
12540 	case DRV_CTL_STOP_L2_CMD: {
12541 		unsigned long sp_bits = 0;
12542 
12543 		/* Stop accepting on iSCSI L2 ring */
12544 		netif_addr_lock_bh(dev);
12545 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12546 		netif_addr_unlock_bh(dev);
12547 
12548 		/* bits to wait on */
12549 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12550 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12551 
12552 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12553 			BNX2X_ERR("rx_mode completion timed out!\n");
12554 
12555 		mmiowb();
12556 		barrier();
12557 
12558 		/* Unset iSCSI L2 MAC */
12559 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12560 					BNX2X_ISCSI_ETH_MAC, true);
12561 		break;
12562 	}
12563 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12564 		int count = ctl->data.credit.credit_count;
12565 
12566 		smp_mb__before_atomic_inc();
12567 		atomic_add(count, &bp->cq_spq_left);
12568 		smp_mb__after_atomic_inc();
12569 		break;
12570 	}
12571 	case DRV_CTL_ULP_REGISTER_CMD: {
12572 		int ulp_type = ctl->data.register_data.ulp_type;
12573 
12574 		if (CHIP_IS_E3(bp)) {
12575 			int idx = BP_FW_MB_IDX(bp);
12576 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12577 			int path = BP_PATH(bp);
12578 			int port = BP_PORT(bp);
12579 			int i;
12580 			u32 scratch_offset;
12581 			u32 *host_addr;
12582 
12583 			/* first write capability to shmem2 */
12584 			if (ulp_type == CNIC_ULP_ISCSI)
12585 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12586 			else if (ulp_type == CNIC_ULP_FCOE)
12587 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12588 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12589 
12590 			if ((ulp_type != CNIC_ULP_FCOE) ||
12591 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12592 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
12593 				break;
12594 
12595 			/* if reached here - should write fcoe capabilities */
12596 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12597 			if (!scratch_offset)
12598 				break;
12599 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
12600 						   fcoe_features[path][port]);
12601 			host_addr = (u32 *) &(ctl->data.register_data.
12602 					      fcoe_features);
12603 			for (i = 0; i < sizeof(struct fcoe_capabilities);
12604 			     i += 4)
12605 				REG_WR(bp, scratch_offset + i,
12606 				       *(host_addr + i/4));
12607 		}
12608 		break;
12609 	}
12610 
12611 	case DRV_CTL_ULP_UNREGISTER_CMD: {
12612 		int ulp_type = ctl->data.ulp_type;
12613 
12614 		if (CHIP_IS_E3(bp)) {
12615 			int idx = BP_FW_MB_IDX(bp);
12616 			u32 cap;
12617 
12618 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12619 			if (ulp_type == CNIC_ULP_ISCSI)
12620 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12621 			else if (ulp_type == CNIC_ULP_FCOE)
12622 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12623 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12624 		}
12625 		break;
12626 	}
12627 
12628 	default:
12629 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12630 		rc = -EINVAL;
12631 	}
12632 
12633 	return rc;
12634 }
12635 
12636 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12637 {
12638 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12639 
12640 	if (bp->flags & USING_MSIX_FLAG) {
12641 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12642 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12643 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12644 	} else {
12645 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12646 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12647 	}
12648 	if (!CHIP_IS_E1x(bp))
12649 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12650 	else
12651 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12652 
12653 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12654 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12655 	cp->irq_arr[1].status_blk = bp->def_status_blk;
12656 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12657 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12658 
12659 	cp->num_irq = 2;
12660 }
12661 
12662 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12663 {
12664 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12665 
12666 
12667 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12668 			     bnx2x_cid_ilt_lines(bp);
12669 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12670 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12671 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12672 
12673 	if (NO_ISCSI_OOO(bp))
12674 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12675 }
12676 
12677 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12678 			       void *data)
12679 {
12680 	struct bnx2x *bp = netdev_priv(dev);
12681 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12682 
12683 	if (ops == NULL) {
12684 		BNX2X_ERR("NULL ops received\n");
12685 		return -EINVAL;
12686 	}
12687 
12688 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12689 	if (!bp->cnic_kwq)
12690 		return -ENOMEM;
12691 
12692 	bp->cnic_kwq_cons = bp->cnic_kwq;
12693 	bp->cnic_kwq_prod = bp->cnic_kwq;
12694 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12695 
12696 	bp->cnic_spq_pending = 0;
12697 	bp->cnic_kwq_pending = 0;
12698 
12699 	bp->cnic_data = data;
12700 
12701 	cp->num_irq = 0;
12702 	cp->drv_state |= CNIC_DRV_STATE_REGD;
12703 	cp->iro_arr = bp->iro_arr;
12704 
12705 	bnx2x_setup_cnic_irq_info(bp);
12706 
12707 	rcu_assign_pointer(bp->cnic_ops, ops);
12708 
12709 	return 0;
12710 }
12711 
12712 static int bnx2x_unregister_cnic(struct net_device *dev)
12713 {
12714 	struct bnx2x *bp = netdev_priv(dev);
12715 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12716 
12717 	mutex_lock(&bp->cnic_mutex);
12718 	cp->drv_state = 0;
12719 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
12720 	mutex_unlock(&bp->cnic_mutex);
12721 	synchronize_rcu();
12722 	kfree(bp->cnic_kwq);
12723 	bp->cnic_kwq = NULL;
12724 
12725 	return 0;
12726 }
12727 
12728 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12729 {
12730 	struct bnx2x *bp = netdev_priv(dev);
12731 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12732 
12733 	/* If both iSCSI and FCoE are disabled - return NULL in
12734 	 * order to indicate CNIC that it should not try to work
12735 	 * with this device.
12736 	 */
12737 	if (NO_ISCSI(bp) && NO_FCOE(bp))
12738 		return NULL;
12739 
12740 	cp->drv_owner = THIS_MODULE;
12741 	cp->chip_id = CHIP_ID(bp);
12742 	cp->pdev = bp->pdev;
12743 	cp->io_base = bp->regview;
12744 	cp->io_base2 = bp->doorbells;
12745 	cp->max_kwqe_pending = 8;
12746 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12747 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12748 			     bnx2x_cid_ilt_lines(bp);
12749 	cp->ctx_tbl_len = CNIC_ILT_LINES;
12750 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12751 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12752 	cp->drv_ctl = bnx2x_drv_ctl;
12753 	cp->drv_register_cnic = bnx2x_register_cnic;
12754 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12755 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12756 	cp->iscsi_l2_client_id =
12757 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12758 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12759 
12760 	if (NO_ISCSI_OOO(bp))
12761 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12762 
12763 	if (NO_ISCSI(bp))
12764 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12765 
12766 	if (NO_FCOE(bp))
12767 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12768 
12769 	BNX2X_DEV_INFO(
12770 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12771 	   cp->ctx_blk_size,
12772 	   cp->ctx_tbl_offset,
12773 	   cp->ctx_tbl_len,
12774 	   cp->starting_cid);
12775 	return cp;
12776 }
12777 EXPORT_SYMBOL(bnx2x_cnic_probe);
12778 
12779 #endif /* BCM_CNIC */
12780 
12781