xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2011 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT		(5*HZ)
79 
80 static char version[] __devinitdata =
81 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 			     "(0 Disable; 1 Enable (default))");
99 
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 				" (default is as a number of CPUs)");
104 
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108 
109 #define INT_MODE_INTx			1
110 #define INT_MODE_MSI			2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 				"(1 INT#x; 2 MSI)");
115 
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119 
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
123 
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127 
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131 
132 
133 
134 struct workqueue_struct *bnx2x_wq;
135 
136 enum bnx2x_board_type {
137 	BCM57710 = 0,
138 	BCM57711,
139 	BCM57711E,
140 	BCM57712,
141 	BCM57712_MF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57810,
145 	BCM57810_MF,
146 	BCM57840,
147 	BCM57840_MF
148 };
149 
150 /* indexed by board_type, above */
151 static struct {
152 	char *name;
153 } board_info[] __devinitdata = {
154 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 						"Ethernet Multi Function"}
166 };
167 
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 	{ 0 }
214 };
215 
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217 
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
221 
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 				       u32 addr, dma_addr_t mapping)
224 {
225 	REG_WR(bp,  addr, U64_LO(mapping));
226 	REG_WR(bp,  addr + 4, U64_HI(mapping));
227 }
228 
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 					 dma_addr_t mapping, u16 abs_fid)
231 {
232 	u32 addr = XSEM_REG_FAST_MEMORY +
233 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234 
235 	__storm_memset_dma_mapping(bp, addr, mapping);
236 }
237 
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 					 u16 pf_id)
240 {
241 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 		pf_id);
243 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 		pf_id);
245 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 		pf_id);
247 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 		pf_id);
249 }
250 
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 					u8 enable)
253 {
254 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 		enable);
256 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 		enable);
258 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 		enable);
260 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 		enable);
262 }
263 
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 				struct event_ring_data *eq_data,
266 				u16 pfid)
267 {
268 	size_t size = sizeof(struct event_ring_data);
269 
270 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271 
272 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273 }
274 
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 					u16 pfid)
277 {
278 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 	REG_WR16(bp, addr, eq_prod);
280 }
281 
282 /* used only at init
283  * locking is done by mcp
284  */
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286 {
287 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 			       PCICFG_VENDOR_ID_OFFSET);
291 }
292 
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294 {
295 	u32 val;
296 
297 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 			       PCICFG_VENDOR_ID_OFFSET);
301 
302 	return val;
303 }
304 
305 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE	"dst_addr [none]"
310 
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 			  int msglvl)
313 {
314 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315 
316 	switch (dmae->opcode & DMAE_COMMAND_DST) {
317 	case DMAE_CMD_DST_PCI:
318 		if (src_type == DMAE_CMD_SRC_PCI)
319 			DP(msglvl, "DMAE: opcode 0x%08x\n"
320 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325 			   dmae->comp_val);
326 		else
327 			DP(msglvl, "DMAE: opcode 0x%08x\n"
328 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 			   dmae->opcode, dmae->src_addr_lo >> 2,
331 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333 			   dmae->comp_val);
334 		break;
335 	case DMAE_CMD_DST_GRC:
336 		if (src_type == DMAE_CMD_SRC_PCI)
337 			DP(msglvl, "DMAE: opcode 0x%08x\n"
338 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 			   dmae->len, dmae->dst_addr_lo >> 2,
342 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343 			   dmae->comp_val);
344 		else
345 			DP(msglvl, "DMAE: opcode 0x%08x\n"
346 			   "src [%08x], len [%d*4], dst [%08x]\n"
347 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 			   dmae->opcode, dmae->src_addr_lo >> 2,
349 			   dmae->len, dmae->dst_addr_lo >> 2,
350 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351 			   dmae->comp_val);
352 		break;
353 	default:
354 		if (src_type == DMAE_CMD_SRC_PCI)
355 			DP(msglvl, "DMAE: opcode 0x%08x\n"
356 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 			   dmae->comp_val);
361 		else
362 			DP(msglvl, "DMAE: opcode 0x%08x\n"
363 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365 			   dmae->opcode, dmae->src_addr_lo >> 2,
366 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 			   dmae->comp_val);
368 		break;
369 	}
370 
371 }
372 
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375 {
376 	u32 cmd_offset;
377 	int i;
378 
379 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382 
383 		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385 	}
386 	REG_WR(bp, dmae_reg_go_c[idx], 1);
387 }
388 
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390 {
391 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 			   DMAE_CMD_C_ENABLE);
393 }
394 
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396 {
397 	return opcode & ~DMAE_CMD_SRC_RESET;
398 }
399 
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 			     bool with_comp, u8 comp_type)
402 {
403 	u32 opcode = 0;
404 
405 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407 
408 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409 
410 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414 
415 #ifdef __BIG_ENDIAN
416 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 	if (with_comp)
421 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 	return opcode;
423 }
424 
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 				      struct dmae_command *dmae,
427 				      u8 src_type, u8 dst_type)
428 {
429 	memset(dmae, 0, sizeof(struct dmae_command));
430 
431 	/* set the opcode */
432 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 					 true, DMAE_COMP_PCI);
434 
435 	/* fill in the completion parameters */
436 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 	dmae->comp_val = DMAE_COMP_VAL;
439 }
440 
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 				      struct dmae_command *dmae)
444 {
445 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 	int rc = 0;
448 
449 	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452 
453 	/*
454 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 	 * as long as this code is called both from syscall context and
456 	 * from ndo_set_rx_mode() flow that may be called from BH.
457 	 */
458 	spin_lock_bh(&bp->dmae_lock);
459 
460 	/* reset completion */
461 	*wb_comp = 0;
462 
463 	/* post the command on the channel used for initializations */
464 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465 
466 	/* wait for completion */
467 	udelay(5);
468 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470 
471 		if (!cnt) {
472 			BNX2X_ERR("DMAE timeout!\n");
473 			rc = DMAE_TIMEOUT;
474 			goto unlock;
475 		}
476 		cnt--;
477 		udelay(50);
478 	}
479 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480 		BNX2X_ERR("DMAE PCI error!\n");
481 		rc = DMAE_PCI_ERROR;
482 	}
483 
484 	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485 	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486 	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487 
488 unlock:
489 	spin_unlock_bh(&bp->dmae_lock);
490 	return rc;
491 }
492 
493 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494 		      u32 len32)
495 {
496 	struct dmae_command dmae;
497 
498 	if (!bp->dmae_ready) {
499 		u32 *data = bnx2x_sp(bp, wb_data[0]);
500 
501 		DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
502 		   "  using indirect\n", dst_addr, len32);
503 		bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504 		return;
505 	}
506 
507 	/* set opcode and fixed command fields */
508 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
509 
510 	/* fill in addresses and len */
511 	dmae.src_addr_lo = U64_LO(dma_addr);
512 	dmae.src_addr_hi = U64_HI(dma_addr);
513 	dmae.dst_addr_lo = dst_addr >> 2;
514 	dmae.dst_addr_hi = 0;
515 	dmae.len = len32;
516 
517 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
518 
519 	/* issue the command and wait for completion */
520 	bnx2x_issue_dmae_with_comp(bp, &dmae);
521 }
522 
523 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
524 {
525 	struct dmae_command dmae;
526 
527 	if (!bp->dmae_ready) {
528 		u32 *data = bnx2x_sp(bp, wb_data[0]);
529 		int i;
530 
531 		DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
532 		   "  using indirect\n", src_addr, len32);
533 		for (i = 0; i < len32; i++)
534 			data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535 		return;
536 	}
537 
538 	/* set opcode and fixed command fields */
539 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
540 
541 	/* fill in addresses and len */
542 	dmae.src_addr_lo = src_addr >> 2;
543 	dmae.src_addr_hi = 0;
544 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546 	dmae.len = len32;
547 
548 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
549 
550 	/* issue the command and wait for completion */
551 	bnx2x_issue_dmae_with_comp(bp, &dmae);
552 }
553 
554 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555 				      u32 addr, u32 len)
556 {
557 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558 	int offset = 0;
559 
560 	while (len > dmae_wr_max) {
561 		bnx2x_write_dmae(bp, phys_addr + offset,
562 				 addr + offset, dmae_wr_max);
563 		offset += dmae_wr_max * 4;
564 		len -= dmae_wr_max;
565 	}
566 
567 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
568 }
569 
570 /* used only for slowpath so not inlined */
571 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
572 {
573 	u32 wb_write[2];
574 
575 	wb_write[0] = val_hi;
576 	wb_write[1] = val_lo;
577 	REG_WR_DMAE(bp, reg, wb_write, 2);
578 }
579 
580 #ifdef USE_WB_RD
581 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
582 {
583 	u32 wb_data[2];
584 
585 	REG_RD_DMAE(bp, reg, wb_data, 2);
586 
587 	return HILO_U64(wb_data[0], wb_data[1]);
588 }
589 #endif
590 
591 static int bnx2x_mc_assert(struct bnx2x *bp)
592 {
593 	char last_idx;
594 	int i, rc = 0;
595 	u32 row0, row1, row2, row3;
596 
597 	/* XSTORM */
598 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
600 	if (last_idx)
601 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602 
603 	/* print the asserts */
604 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605 
606 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607 			      XSTORM_ASSERT_LIST_OFFSET(i));
608 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
614 
615 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617 				  " 0x%08x 0x%08x 0x%08x\n",
618 				  i, row3, row2, row1, row0);
619 			rc++;
620 		} else {
621 			break;
622 		}
623 	}
624 
625 	/* TSTORM */
626 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
628 	if (last_idx)
629 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630 
631 	/* print the asserts */
632 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633 
634 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 			      TSTORM_ASSERT_LIST_OFFSET(i));
636 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
642 
643 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645 				  " 0x%08x 0x%08x 0x%08x\n",
646 				  i, row3, row2, row1, row0);
647 			rc++;
648 		} else {
649 			break;
650 		}
651 	}
652 
653 	/* CSTORM */
654 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
656 	if (last_idx)
657 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
658 
659 	/* print the asserts */
660 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
661 
662 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663 			      CSTORM_ASSERT_LIST_OFFSET(i));
664 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
670 
671 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673 				  " 0x%08x 0x%08x 0x%08x\n",
674 				  i, row3, row2, row1, row0);
675 			rc++;
676 		} else {
677 			break;
678 		}
679 	}
680 
681 	/* USTORM */
682 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
684 	if (last_idx)
685 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686 
687 	/* print the asserts */
688 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689 
690 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691 			      USTORM_ASSERT_LIST_OFFSET(i));
692 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
694 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
696 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
698 
699 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701 				  " 0x%08x 0x%08x 0x%08x\n",
702 				  i, row3, row2, row1, row0);
703 			rc++;
704 		} else {
705 			break;
706 		}
707 	}
708 
709 	return rc;
710 }
711 
712 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
713 {
714 	u32 addr, val;
715 	u32 mark, offset;
716 	__be32 data[9];
717 	int word;
718 	u32 trace_shmem_base;
719 	if (BP_NOMCP(bp)) {
720 		BNX2X_ERR("NO MCP - can not dump\n");
721 		return;
722 	}
723 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724 		(bp->common.bc_ver & 0xff0000) >> 16,
725 		(bp->common.bc_ver & 0xff00) >> 8,
726 		(bp->common.bc_ver & 0xff));
727 
728 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730 		printk("%s" "MCP PC at 0x%x\n", lvl, val);
731 
732 	if (BP_PATH(bp) == 0)
733 		trace_shmem_base = bp->common.shmem_base;
734 	else
735 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736 	addr = trace_shmem_base - 0x0800 + 4;
737 	mark = REG_RD(bp, addr);
738 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
740 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
741 
742 	printk("%s", lvl);
743 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744 		for (word = 0; word < 8; word++)
745 			data[word] = htonl(REG_RD(bp, offset + 4*word));
746 		data[8] = 0x0;
747 		pr_cont("%s", (char *)data);
748 	}
749 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750 		for (word = 0; word < 8; word++)
751 			data[word] = htonl(REG_RD(bp, offset + 4*word));
752 		data[8] = 0x0;
753 		pr_cont("%s", (char *)data);
754 	}
755 	printk("%s" "end of fw dump\n", lvl);
756 }
757 
758 static inline void bnx2x_fw_dump(struct bnx2x *bp)
759 {
760 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
761 }
762 
763 void bnx2x_panic_dump(struct bnx2x *bp)
764 {
765 	int i;
766 	u16 j;
767 	struct hc_sp_status_block_data sp_sb_data;
768 	int func = BP_FUNC(bp);
769 #ifdef BNX2X_STOP_ON_ERROR
770 	u16 start = 0, end = 0;
771 	u8 cos;
772 #endif
773 
774 	bp->stats_state = STATS_STATE_DISABLED;
775 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
776 
777 	BNX2X_ERR("begin crash dump -----------------\n");
778 
779 	/* Indices */
780 	/* Common */
781 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
782 		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
784 		  bp->spq_prod_idx, bp->stats_counter);
785 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
786 		  bp->def_status_blk->atten_status_block.attn_bits,
787 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
788 		  bp->def_status_blk->atten_status_block.status_block_id,
789 		  bp->def_status_blk->atten_status_block.attn_bits_index);
790 	BNX2X_ERR("     def (");
791 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792 		pr_cont("0x%x%s",
793 			bp->def_status_blk->sp_sb.index_values[i],
794 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
795 
796 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799 			i*sizeof(u32));
800 
801 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
802 	       sp_sb_data.igu_sb_id,
803 	       sp_sb_data.igu_seg_id,
804 	       sp_sb_data.p_func.pf_id,
805 	       sp_sb_data.p_func.vnic_id,
806 	       sp_sb_data.p_func.vf_id,
807 	       sp_sb_data.p_func.vf_valid,
808 	       sp_sb_data.state);
809 
810 
811 	for_each_eth_queue(bp, i) {
812 		struct bnx2x_fastpath *fp = &bp->fp[i];
813 		int loop;
814 		struct hc_status_block_data_e2 sb_data_e2;
815 		struct hc_status_block_data_e1x sb_data_e1x;
816 		struct hc_status_block_sm  *hc_sm_p =
817 			CHIP_IS_E1x(bp) ?
818 			sb_data_e1x.common.state_machine :
819 			sb_data_e2.common.state_machine;
820 		struct hc_index_data *hc_index_p =
821 			CHIP_IS_E1x(bp) ?
822 			sb_data_e1x.index_data :
823 			sb_data_e2.index_data;
824 		u8 data_size, cos;
825 		u32 *sb_data_p;
826 		struct bnx2x_fp_txdata txdata;
827 
828 		/* Rx */
829 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
830 			  "  rx_comp_prod(0x%x)"
831 			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
832 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
833 			  fp->rx_comp_prod,
834 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
836 			  "  fp_hc_idx(0x%x)\n",
837 			  fp->rx_sge_prod, fp->last_max_sge,
838 			  le16_to_cpu(fp->fp_hc_idx));
839 
840 		/* Tx */
841 		for_each_cos_in_tx_queue(fp, cos)
842 		{
843 			txdata = fp->txdata[cos];
844 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
845 				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
846 				  "  *tx_cons_sb(0x%x)\n",
847 				  i, txdata.tx_pkt_prod,
848 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
849 				  txdata.tx_bd_cons,
850 				  le16_to_cpu(*txdata.tx_cons_sb));
851 		}
852 
853 		loop = CHIP_IS_E1x(bp) ?
854 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
855 
856 		/* host sb data */
857 
858 #ifdef BCM_CNIC
859 		if (IS_FCOE_FP(fp))
860 			continue;
861 #endif
862 		BNX2X_ERR("     run indexes (");
863 		for (j = 0; j < HC_SB_MAX_SM; j++)
864 			pr_cont("0x%x%s",
865 			       fp->sb_running_index[j],
866 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
867 
868 		BNX2X_ERR("     indexes (");
869 		for (j = 0; j < loop; j++)
870 			pr_cont("0x%x%s",
871 			       fp->sb_index_values[j],
872 			       (j == loop - 1) ? ")" : " ");
873 		/* fw sb data */
874 		data_size = CHIP_IS_E1x(bp) ?
875 			sizeof(struct hc_status_block_data_e1x) :
876 			sizeof(struct hc_status_block_data_e2);
877 		data_size /= sizeof(u32);
878 		sb_data_p = CHIP_IS_E1x(bp) ?
879 			(u32 *)&sb_data_e1x :
880 			(u32 *)&sb_data_e2;
881 		/* copy sb data in here */
882 		for (j = 0; j < data_size; j++)
883 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885 				j * sizeof(u32));
886 
887 		if (!CHIP_IS_E1x(bp)) {
888 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
889 				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
890 				"state(0x%x)\n",
891 				sb_data_e2.common.p_func.pf_id,
892 				sb_data_e2.common.p_func.vf_id,
893 				sb_data_e2.common.p_func.vf_valid,
894 				sb_data_e2.common.p_func.vnic_id,
895 				sb_data_e2.common.same_igu_sb_1b,
896 				sb_data_e2.common.state);
897 		} else {
898 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
899 				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
900 				"state(0x%x)\n",
901 				sb_data_e1x.common.p_func.pf_id,
902 				sb_data_e1x.common.p_func.vf_id,
903 				sb_data_e1x.common.p_func.vf_valid,
904 				sb_data_e1x.common.p_func.vnic_id,
905 				sb_data_e1x.common.same_igu_sb_1b,
906 				sb_data_e1x.common.state);
907 		}
908 
909 		/* SB_SMs data */
910 		for (j = 0; j < HC_SB_MAX_SM; j++) {
911 			pr_cont("SM[%d] __flags (0x%x) "
912 			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
913 			       "time_to_expire (0x%x) "
914 			       "timer_value(0x%x)\n", j,
915 			       hc_sm_p[j].__flags,
916 			       hc_sm_p[j].igu_sb_id,
917 			       hc_sm_p[j].igu_seg_id,
918 			       hc_sm_p[j].time_to_expire,
919 			       hc_sm_p[j].timer_value);
920 		}
921 
922 		/* Indecies data */
923 		for (j = 0; j < loop; j++) {
924 			pr_cont("INDEX[%d] flags (0x%x) "
925 					 "timeout (0x%x)\n", j,
926 			       hc_index_p[j].flags,
927 			       hc_index_p[j].timeout);
928 		}
929 	}
930 
931 #ifdef BNX2X_STOP_ON_ERROR
932 	/* Rings */
933 	/* Rx */
934 	for_each_rx_queue(bp, i) {
935 		struct bnx2x_fastpath *fp = &bp->fp[i];
936 
937 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939 		for (j = start; j != end; j = RX_BD(j + 1)) {
940 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
942 
943 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
944 				  i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
945 		}
946 
947 		start = RX_SGE(fp->rx_sge_prod);
948 		end = RX_SGE(fp->last_max_sge);
949 		for (j = start; j != end; j = RX_SGE(j + 1)) {
950 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
952 
953 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
954 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
955 		}
956 
957 		start = RCQ_BD(fp->rx_comp_cons - 10);
958 		end = RCQ_BD(fp->rx_comp_cons + 503);
959 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
960 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
961 
962 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
964 		}
965 	}
966 
967 	/* Tx */
968 	for_each_tx_queue(bp, i) {
969 		struct bnx2x_fastpath *fp = &bp->fp[i];
970 		for_each_cos_in_tx_queue(fp, cos) {
971 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
972 
973 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975 			for (j = start; j != end; j = TX_BD(j + 1)) {
976 				struct sw_tx_bd *sw_bd =
977 					&txdata->tx_buf_ring[j];
978 
979 				BNX2X_ERR("fp%d: txdata %d, "
980 					  "packet[%x]=[%p,%x]\n",
981 					  i, cos, j, sw_bd->skb,
982 					  sw_bd->first_bd);
983 			}
984 
985 			start = TX_BD(txdata->tx_bd_cons - 10);
986 			end = TX_BD(txdata->tx_bd_cons + 254);
987 			for (j = start; j != end; j = TX_BD(j + 1)) {
988 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
989 
990 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991 					  "[%x:%x:%x:%x]\n",
992 					  i, cos, j, tx_bd[0], tx_bd[1],
993 					  tx_bd[2], tx_bd[3]);
994 			}
995 		}
996 	}
997 #endif
998 	bnx2x_fw_dump(bp);
999 	bnx2x_mc_assert(bp);
1000 	BNX2X_ERR("end crash dump -----------------\n");
1001 }
1002 
1003 /*
1004  * FLR Support for E2
1005  *
1006  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007  * initialization.
1008  */
1009 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1010 #define FLR_WAIT_INTERAVAL	50	/* usec */
1011 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1012 
1013 struct pbf_pN_buf_regs {
1014 	int pN;
1015 	u32 init_crd;
1016 	u32 crd;
1017 	u32 crd_freed;
1018 };
1019 
1020 struct pbf_pN_cmd_regs {
1021 	int pN;
1022 	u32 lines_occup;
1023 	u32 lines_freed;
1024 };
1025 
1026 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027 				     struct pbf_pN_buf_regs *regs,
1028 				     u32 poll_count)
1029 {
1030 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031 	u32 cur_cnt = poll_count;
1032 
1033 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034 	crd = crd_start = REG_RD(bp, regs->crd);
1035 	init_crd = REG_RD(bp, regs->init_crd);
1036 
1037 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1039 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1040 
1041 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042 	       (init_crd - crd_start))) {
1043 		if (cur_cnt--) {
1044 			udelay(FLR_WAIT_INTERAVAL);
1045 			crd = REG_RD(bp, regs->crd);
1046 			crd_freed = REG_RD(bp, regs->crd_freed);
1047 		} else {
1048 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049 			   regs->pN);
1050 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1051 			   regs->pN, crd);
1052 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053 			   regs->pN, crd_freed);
1054 			break;
1055 		}
1056 	}
1057 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058 	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1059 }
1060 
1061 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062 				     struct pbf_pN_cmd_regs *regs,
1063 				     u32 poll_count)
1064 {
1065 	u32 occup, to_free, freed, freed_start;
1066 	u32 cur_cnt = poll_count;
1067 
1068 	occup = to_free = REG_RD(bp, regs->lines_occup);
1069 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1070 
1071 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1072 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1073 
1074 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075 		if (cur_cnt--) {
1076 			udelay(FLR_WAIT_INTERAVAL);
1077 			occup = REG_RD(bp, regs->lines_occup);
1078 			freed = REG_RD(bp, regs->lines_freed);
1079 		} else {
1080 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081 			   regs->pN);
1082 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1083 			   regs->pN, occup);
1084 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085 			   regs->pN, freed);
1086 			break;
1087 		}
1088 	}
1089 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090 	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1091 }
1092 
1093 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094 				     u32 expected, u32 poll_count)
1095 {
1096 	u32 cur_cnt = poll_count;
1097 	u32 val;
1098 
1099 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100 		udelay(FLR_WAIT_INTERAVAL);
1101 
1102 	return val;
1103 }
1104 
1105 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106 						  char *msg, u32 poll_cnt)
1107 {
1108 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109 	if (val != 0) {
1110 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1111 		return 1;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1117 {
1118 	/* adjust polling timeout */
1119 	if (CHIP_REV_IS_EMUL(bp))
1120 		return FLR_POLL_CNT * 2000;
1121 
1122 	if (CHIP_REV_IS_FPGA(bp))
1123 		return FLR_POLL_CNT * 120;
1124 
1125 	return FLR_POLL_CNT;
1126 }
1127 
1128 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1129 {
1130 	struct pbf_pN_cmd_regs cmd_regs[] = {
1131 		{0, (CHIP_IS_E3B0(bp)) ?
1132 			PBF_REG_TQ_OCCUPANCY_Q0 :
1133 			PBF_REG_P0_TQ_OCCUPANCY,
1134 		    (CHIP_IS_E3B0(bp)) ?
1135 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1137 		{1, (CHIP_IS_E3B0(bp)) ?
1138 			PBF_REG_TQ_OCCUPANCY_Q1 :
1139 			PBF_REG_P1_TQ_OCCUPANCY,
1140 		    (CHIP_IS_E3B0(bp)) ?
1141 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1143 		{4, (CHIP_IS_E3B0(bp)) ?
1144 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1145 			PBF_REG_P4_TQ_OCCUPANCY,
1146 		    (CHIP_IS_E3B0(bp)) ?
1147 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1149 	};
1150 
1151 	struct pbf_pN_buf_regs buf_regs[] = {
1152 		{0, (CHIP_IS_E3B0(bp)) ?
1153 			PBF_REG_INIT_CRD_Q0 :
1154 			PBF_REG_P0_INIT_CRD ,
1155 		    (CHIP_IS_E3B0(bp)) ?
1156 			PBF_REG_CREDIT_Q0 :
1157 			PBF_REG_P0_CREDIT,
1158 		    (CHIP_IS_E3B0(bp)) ?
1159 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161 		{1, (CHIP_IS_E3B0(bp)) ?
1162 			PBF_REG_INIT_CRD_Q1 :
1163 			PBF_REG_P1_INIT_CRD,
1164 		    (CHIP_IS_E3B0(bp)) ?
1165 			PBF_REG_CREDIT_Q1 :
1166 			PBF_REG_P1_CREDIT,
1167 		    (CHIP_IS_E3B0(bp)) ?
1168 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170 		{4, (CHIP_IS_E3B0(bp)) ?
1171 			PBF_REG_INIT_CRD_LB_Q :
1172 			PBF_REG_P4_INIT_CRD,
1173 		    (CHIP_IS_E3B0(bp)) ?
1174 			PBF_REG_CREDIT_LB_Q :
1175 			PBF_REG_P4_CREDIT,
1176 		    (CHIP_IS_E3B0(bp)) ?
1177 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1179 	};
1180 
1181 	int i;
1182 
1183 	/* Verify the command queues are flushed P0, P1, P4 */
1184 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1186 
1187 
1188 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1189 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1191 }
1192 
1193 #define OP_GEN_PARAM(param) \
1194 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1195 
1196 #define OP_GEN_TYPE(type) \
1197 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1198 
1199 #define OP_GEN_AGG_VECT(index) \
1200 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1201 
1202 
1203 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204 					 u32 poll_cnt)
1205 {
1206 	struct sdm_op_gen op_gen = {0};
1207 
1208 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1209 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210 	int ret = 0;
1211 
1212 	if (REG_RD(bp, comp_addr)) {
1213 		BNX2X_ERR("Cleanup complete is not 0\n");
1214 		return 1;
1215 	}
1216 
1217 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1221 
1222 	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1224 
1225 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226 		BNX2X_ERR("FW final cleanup did not succeed\n");
1227 		ret = 1;
1228 	}
1229 	/* Zero completion for nxt FLR */
1230 	REG_WR(bp, comp_addr, 0);
1231 
1232 	return ret;
1233 }
1234 
1235 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1236 {
1237 	int pos;
1238 	u16 status;
1239 
1240 	pos = pci_pcie_cap(dev);
1241 	if (!pos)
1242 		return false;
1243 
1244 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245 	return status & PCI_EXP_DEVSTA_TRPND;
1246 }
1247 
1248 /* PF FLR specific routines
1249 */
1250 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1251 {
1252 
1253 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1256 			"CFC PF usage counter timed out",
1257 			poll_cnt))
1258 		return 1;
1259 
1260 
1261 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263 			DORQ_REG_PF_USAGE_CNT,
1264 			"DQ PF usage counter timed out",
1265 			poll_cnt))
1266 		return 1;
1267 
1268 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271 			"QM PF usage counter timed out",
1272 			poll_cnt))
1273 		return 1;
1274 
1275 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278 			"Timers VNIC usage counter timed out",
1279 			poll_cnt))
1280 		return 1;
1281 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283 			"Timers NUM_SCANS usage counter timed out",
1284 			poll_cnt))
1285 		return 1;
1286 
1287 	/* Wait DMAE PF usage counter to zero */
1288 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1290 			"DMAE dommand register timed out",
1291 			poll_cnt))
1292 		return 1;
1293 
1294 	return 0;
1295 }
1296 
1297 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1298 {
1299 	u32 val;
1300 
1301 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1303 
1304 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1306 
1307 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1309 
1310 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1312 
1313 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1315 
1316 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1318 
1319 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1321 
1322 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324 	   val);
1325 }
1326 
1327 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1328 {
1329 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1330 
1331 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1332 
1333 	/* Re-enable PF target read access */
1334 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1335 
1336 	/* Poll HW usage counters */
1337 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338 		return -EBUSY;
1339 
1340 	/* Zero the igu 'trailing edge' and 'leading edge' */
1341 
1342 	/* Send the FW cleanup command */
1343 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344 		return -EBUSY;
1345 
1346 	/* ATC cleanup */
1347 
1348 	/* Verify TX hw is flushed */
1349 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1350 
1351 	/* Wait 100ms (not adjusted according to platform) */
1352 	msleep(100);
1353 
1354 	/* Verify no pending pci transactions */
1355 	if (bnx2x_is_pcie_pending(bp->pdev))
1356 		BNX2X_ERR("PCIE Transactions still pending\n");
1357 
1358 	/* Debug */
1359 	bnx2x_hw_enable_status(bp);
1360 
1361 	/*
1362 	 * Master enable - Due to WB DMAE writes performed before this
1363 	 * register is re-initialized as part of the regular function init
1364 	 */
1365 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1366 
1367 	return 0;
1368 }
1369 
1370 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1371 {
1372 	int port = BP_PORT(bp);
1373 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374 	u32 val = REG_RD(bp, addr);
1375 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1377 
1378 	if (msix) {
1379 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383 	} else if (msi) {
1384 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388 	} else {
1389 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393 
1394 		if (!CHIP_IS_E1(bp)) {
1395 			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396 			   val, port, addr);
1397 
1398 			REG_WR(bp, addr, val);
1399 
1400 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1401 		}
1402 	}
1403 
1404 	if (CHIP_IS_E1(bp))
1405 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1406 
1407 	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1408 	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1409 
1410 	REG_WR(bp, addr, val);
1411 	/*
1412 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413 	 */
1414 	mmiowb();
1415 	barrier();
1416 
1417 	if (!CHIP_IS_E1(bp)) {
1418 		/* init leading/trailing edge */
1419 		if (IS_MF(bp)) {
1420 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1421 			if (bp->port.pmf)
1422 				/* enable nig and gpio3 attention */
1423 				val |= 0x1100;
1424 		} else
1425 			val = 0xffff;
1426 
1427 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1429 	}
1430 
1431 	/* Make sure that interrupts are indeed enabled from here on */
1432 	mmiowb();
1433 }
1434 
1435 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1436 {
1437 	u32 val;
1438 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1440 
1441 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1442 
1443 	if (msix) {
1444 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445 			 IGU_PF_CONF_SINGLE_ISR_EN);
1446 		val |= (IGU_PF_CONF_FUNC_EN |
1447 			IGU_PF_CONF_MSI_MSIX_EN |
1448 			IGU_PF_CONF_ATTN_BIT_EN);
1449 	} else if (msi) {
1450 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1451 		val |= (IGU_PF_CONF_FUNC_EN |
1452 			IGU_PF_CONF_MSI_MSIX_EN |
1453 			IGU_PF_CONF_ATTN_BIT_EN |
1454 			IGU_PF_CONF_SINGLE_ISR_EN);
1455 	} else {
1456 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457 		val |= (IGU_PF_CONF_FUNC_EN |
1458 			IGU_PF_CONF_INT_LINE_EN |
1459 			IGU_PF_CONF_ATTN_BIT_EN |
1460 			IGU_PF_CONF_SINGLE_ISR_EN);
1461 	}
1462 
1463 	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1464 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1465 
1466 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467 
1468 	barrier();
1469 
1470 	/* init leading/trailing edge */
1471 	if (IS_MF(bp)) {
1472 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1473 		if (bp->port.pmf)
1474 			/* enable nig and gpio3 attention */
1475 			val |= 0x1100;
1476 	} else
1477 		val = 0xffff;
1478 
1479 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1481 
1482 	/* Make sure that interrupts are indeed enabled from here on */
1483 	mmiowb();
1484 }
1485 
1486 void bnx2x_int_enable(struct bnx2x *bp)
1487 {
1488 	if (bp->common.int_block == INT_BLOCK_HC)
1489 		bnx2x_hc_int_enable(bp);
1490 	else
1491 		bnx2x_igu_int_enable(bp);
1492 }
1493 
1494 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1495 {
1496 	int port = BP_PORT(bp);
1497 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498 	u32 val = REG_RD(bp, addr);
1499 
1500 	/*
1501 	 * in E1 we must use only PCI configuration space to disable
1502 	 * MSI/MSIX capablility
1503 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1504 	 */
1505 	if (CHIP_IS_E1(bp)) {
1506 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507 		 *  Use mask register to prevent from HC sending interrupts
1508 		 *  after we exit the function
1509 		 */
1510 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1511 
1512 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515 	} else
1516 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1520 
1521 	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522 	   val, port, addr);
1523 
1524 	/* flush all outstanding writes */
1525 	mmiowb();
1526 
1527 	REG_WR(bp, addr, val);
1528 	if (REG_RD(bp, addr) != val)
1529 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1530 }
1531 
1532 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1533 {
1534 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1535 
1536 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537 		 IGU_PF_CONF_INT_LINE_EN |
1538 		 IGU_PF_CONF_ATTN_BIT_EN);
1539 
1540 	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1541 
1542 	/* flush all outstanding writes */
1543 	mmiowb();
1544 
1545 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1548 }
1549 
1550 void bnx2x_int_disable(struct bnx2x *bp)
1551 {
1552 	if (bp->common.int_block == INT_BLOCK_HC)
1553 		bnx2x_hc_int_disable(bp);
1554 	else
1555 		bnx2x_igu_int_disable(bp);
1556 }
1557 
1558 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1559 {
1560 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561 	int i, offset;
1562 
1563 	if (disable_hw)
1564 		/* prevent the HW from sending interrupts */
1565 		bnx2x_int_disable(bp);
1566 
1567 	/* make sure all ISRs are done */
1568 	if (msix) {
1569 		synchronize_irq(bp->msix_table[0].vector);
1570 		offset = 1;
1571 #ifdef BCM_CNIC
1572 		offset++;
1573 #endif
1574 		for_each_eth_queue(bp, i)
1575 			synchronize_irq(bp->msix_table[offset++].vector);
1576 	} else
1577 		synchronize_irq(bp->pdev->irq);
1578 
1579 	/* make sure sp_task is not running */
1580 	cancel_delayed_work(&bp->sp_task);
1581 	cancel_delayed_work(&bp->period_task);
1582 	flush_workqueue(bnx2x_wq);
1583 }
1584 
1585 /* fast path */
1586 
1587 /*
1588  * General service functions
1589  */
1590 
1591 /* Return true if succeeded to acquire the lock */
1592 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1593 {
1594 	u32 lock_status;
1595 	u32 resource_bit = (1 << resource);
1596 	int func = BP_FUNC(bp);
1597 	u32 hw_lock_control_reg;
1598 
1599 	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1600 
1601 	/* Validating that the resource is within range */
1602 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603 		DP(NETIF_MSG_HW,
1604 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606 		return false;
1607 	}
1608 
1609 	if (func <= 5)
1610 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611 	else
1612 		hw_lock_control_reg =
1613 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1614 
1615 	/* Try to acquire the lock */
1616 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617 	lock_status = REG_RD(bp, hw_lock_control_reg);
1618 	if (lock_status & resource_bit)
1619 		return true;
1620 
1621 	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622 	return false;
1623 }
1624 
1625 /**
1626  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1627  *
1628  * @bp:	driver handle
1629  *
1630  * Returns the recovery leader resource id according to the engine this function
1631  * belongs to. Currently only only 2 engines is supported.
1632  */
1633 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1634 {
1635 	if (BP_PATH(bp))
1636 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637 	else
1638 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1639 }
1640 
1641 /**
1642  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1643  *
1644  * @bp: driver handle
1645  *
1646  * Tries to aquire a leader lock for cuurent engine.
1647  */
1648 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1649 {
1650 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1651 }
1652 
1653 #ifdef BCM_CNIC
1654 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655 #endif
1656 
1657 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1658 {
1659 	struct bnx2x *bp = fp->bp;
1660 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1664 
1665 	DP(BNX2X_MSG_SP,
1666 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1667 	   fp->index, cid, command, bp->state,
1668 	   rr_cqe->ramrod_cqe.ramrod_type);
1669 
1670 	switch (command) {
1671 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1674 		break;
1675 
1676 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678 		drv_cmd = BNX2X_Q_CMD_SETUP;
1679 		break;
1680 
1681 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682 		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684 		break;
1685 
1686 	case (RAMROD_CMD_ID_ETH_HALT):
1687 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688 		drv_cmd = BNX2X_Q_CMD_HALT;
1689 		break;
1690 
1691 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1692 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694 		break;
1695 
1696 	case (RAMROD_CMD_ID_ETH_EMPTY):
1697 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1699 		break;
1700 
1701 	default:
1702 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703 			  command, fp->index);
1704 		return;
1705 	}
1706 
1707 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709 		/* q_obj->complete_cmd() failure means that this was
1710 		 * an unexpected completion.
1711 		 *
1712 		 * In this case we don't want to increase the bp->spq_left
1713 		 * because apparently we haven't sent this command the first
1714 		 * place.
1715 		 */
1716 #ifdef BNX2X_STOP_ON_ERROR
1717 		bnx2x_panic();
1718 #else
1719 		return;
1720 #endif
1721 
1722 	smp_mb__before_atomic_inc();
1723 	atomic_inc(&bp->cq_spq_left);
1724 	/* push the change in bp->spq_left and towards the memory */
1725 	smp_mb__after_atomic_inc();
1726 
1727 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1728 
1729 	return;
1730 }
1731 
1732 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1734 {
1735 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1736 
1737 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738 				 start);
1739 }
1740 
1741 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1742 {
1743 	struct bnx2x *bp = netdev_priv(dev_instance);
1744 	u16 status = bnx2x_ack_int(bp);
1745 	u16 mask;
1746 	int i;
1747 	u8 cos;
1748 
1749 	/* Return here if interrupt is shared and it's not for us */
1750 	if (unlikely(status == 0)) {
1751 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752 		return IRQ_NONE;
1753 	}
1754 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1755 
1756 #ifdef BNX2X_STOP_ON_ERROR
1757 	if (unlikely(bp->panic))
1758 		return IRQ_HANDLED;
1759 #endif
1760 
1761 	for_each_eth_queue(bp, i) {
1762 		struct bnx2x_fastpath *fp = &bp->fp[i];
1763 
1764 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1765 		if (status & mask) {
1766 			/* Handle Rx or Tx according to SB id */
1767 			prefetch(fp->rx_cons_sb);
1768 			for_each_cos_in_tx_queue(fp, cos)
1769 				prefetch(fp->txdata[cos].tx_cons_sb);
1770 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1771 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772 			status &= ~mask;
1773 		}
1774 	}
1775 
1776 #ifdef BCM_CNIC
1777 	mask = 0x2;
1778 	if (status & (mask | 0x1)) {
1779 		struct cnic_ops *c_ops = NULL;
1780 
1781 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782 			rcu_read_lock();
1783 			c_ops = rcu_dereference(bp->cnic_ops);
1784 			if (c_ops)
1785 				c_ops->cnic_handler(bp->cnic_data, NULL);
1786 			rcu_read_unlock();
1787 		}
1788 
1789 		status &= ~mask;
1790 	}
1791 #endif
1792 
1793 	if (unlikely(status & 0x1)) {
1794 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795 
1796 		status &= ~0x1;
1797 		if (!status)
1798 			return IRQ_HANDLED;
1799 	}
1800 
1801 	if (unlikely(status))
1802 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803 		   status);
1804 
1805 	return IRQ_HANDLED;
1806 }
1807 
1808 /* Link */
1809 
1810 /*
1811  * General service functions
1812  */
1813 
1814 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1815 {
1816 	u32 lock_status;
1817 	u32 resource_bit = (1 << resource);
1818 	int func = BP_FUNC(bp);
1819 	u32 hw_lock_control_reg;
1820 	int cnt;
1821 
1822 	/* Validating that the resource is within range */
1823 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824 		DP(NETIF_MSG_HW,
1825 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827 		return -EINVAL;
1828 	}
1829 
1830 	if (func <= 5) {
1831 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832 	} else {
1833 		hw_lock_control_reg =
1834 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1835 	}
1836 
1837 	/* Validating that the resource is not already taken */
1838 	lock_status = REG_RD(bp, hw_lock_control_reg);
1839 	if (lock_status & resource_bit) {
1840 		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1841 		   lock_status, resource_bit);
1842 		return -EEXIST;
1843 	}
1844 
1845 	/* Try for 5 second every 5ms */
1846 	for (cnt = 0; cnt < 1000; cnt++) {
1847 		/* Try to acquire the lock */
1848 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849 		lock_status = REG_RD(bp, hw_lock_control_reg);
1850 		if (lock_status & resource_bit)
1851 			return 0;
1852 
1853 		msleep(5);
1854 	}
1855 	DP(NETIF_MSG_HW, "Timeout\n");
1856 	return -EAGAIN;
1857 }
1858 
1859 int bnx2x_release_leader_lock(struct bnx2x *bp)
1860 {
1861 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1862 }
1863 
1864 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1865 {
1866 	u32 lock_status;
1867 	u32 resource_bit = (1 << resource);
1868 	int func = BP_FUNC(bp);
1869 	u32 hw_lock_control_reg;
1870 
1871 	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1872 
1873 	/* Validating that the resource is within range */
1874 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875 		DP(NETIF_MSG_HW,
1876 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878 		return -EINVAL;
1879 	}
1880 
1881 	if (func <= 5) {
1882 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883 	} else {
1884 		hw_lock_control_reg =
1885 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1886 	}
1887 
1888 	/* Validating that the resource is currently taken */
1889 	lock_status = REG_RD(bp, hw_lock_control_reg);
1890 	if (!(lock_status & resource_bit)) {
1891 		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1892 		   lock_status, resource_bit);
1893 		return -EFAULT;
1894 	}
1895 
1896 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1897 	return 0;
1898 }
1899 
1900 
1901 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1902 {
1903 	/* The GPIO should be swapped if swap register is set and active */
1904 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906 	int gpio_shift = gpio_num +
1907 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908 	u32 gpio_mask = (1 << gpio_shift);
1909 	u32 gpio_reg;
1910 	int value;
1911 
1912 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914 		return -EINVAL;
1915 	}
1916 
1917 	/* read GPIO value */
1918 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1919 
1920 	/* get the requested pin value */
1921 	if ((gpio_reg & gpio_mask) == gpio_mask)
1922 		value = 1;
1923 	else
1924 		value = 0;
1925 
1926 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1927 
1928 	return value;
1929 }
1930 
1931 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1932 {
1933 	/* The GPIO should be swapped if swap register is set and active */
1934 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936 	int gpio_shift = gpio_num +
1937 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938 	u32 gpio_mask = (1 << gpio_shift);
1939 	u32 gpio_reg;
1940 
1941 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943 		return -EINVAL;
1944 	}
1945 
1946 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947 	/* read GPIO and mask except the float bits */
1948 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1949 
1950 	switch (mode) {
1951 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953 		   gpio_num, gpio_shift);
1954 		/* clear FLOAT and set CLR */
1955 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957 		break;
1958 
1959 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961 		   gpio_num, gpio_shift);
1962 		/* clear FLOAT and set SET */
1963 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965 		break;
1966 
1967 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969 		   gpio_num, gpio_shift);
1970 		/* set FLOAT */
1971 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 		break;
1973 
1974 	default:
1975 		break;
1976 	}
1977 
1978 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1980 
1981 	return 0;
1982 }
1983 
1984 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1985 {
1986 	u32 gpio_reg = 0;
1987 	int rc = 0;
1988 
1989 	/* Any port swapping should be handled by caller. */
1990 
1991 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992 	/* read GPIO and mask except the float bits */
1993 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1997 
1998 	switch (mode) {
1999 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001 		/* set CLR */
2002 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003 		break;
2004 
2005 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007 		/* set SET */
2008 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009 		break;
2010 
2011 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013 		/* set FLOAT */
2014 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015 		break;
2016 
2017 	default:
2018 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019 		rc = -EINVAL;
2020 		break;
2021 	}
2022 
2023 	if (rc == 0)
2024 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2025 
2026 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2027 
2028 	return rc;
2029 }
2030 
2031 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032 {
2033 	/* The GPIO should be swapped if swap register is set and active */
2034 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 	int gpio_shift = gpio_num +
2037 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 	u32 gpio_mask = (1 << gpio_shift);
2039 	u32 gpio_reg;
2040 
2041 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 		return -EINVAL;
2044 	}
2045 
2046 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 	/* read GPIO int */
2048 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2049 
2050 	switch (mode) {
2051 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052 		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053 				   "output low\n", gpio_num, gpio_shift);
2054 		/* clear SET and set CLR */
2055 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057 		break;
2058 
2059 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060 		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061 				   "output high\n", gpio_num, gpio_shift);
2062 		/* clear CLR and set SET */
2063 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065 		break;
2066 
2067 	default:
2068 		break;
2069 	}
2070 
2071 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2073 
2074 	return 0;
2075 }
2076 
2077 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2078 {
2079 	u32 spio_mask = (1 << spio_num);
2080 	u32 spio_reg;
2081 
2082 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2084 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085 		return -EINVAL;
2086 	}
2087 
2088 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089 	/* read SPIO and mask except the float bits */
2090 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2091 
2092 	switch (mode) {
2093 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094 		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095 		/* clear FLOAT and set CLR */
2096 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098 		break;
2099 
2100 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101 		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102 		/* clear FLOAT and set SET */
2103 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105 		break;
2106 
2107 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108 		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109 		/* set FLOAT */
2110 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111 		break;
2112 
2113 	default:
2114 		break;
2115 	}
2116 
2117 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2119 
2120 	return 0;
2121 }
2122 
2123 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2124 {
2125 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126 	switch (bp->link_vars.ieee_fc &
2127 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130 						   ADVERTISED_Pause);
2131 		break;
2132 
2133 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135 						  ADVERTISED_Pause);
2136 		break;
2137 
2138 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140 		break;
2141 
2142 	default:
2143 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144 						   ADVERTISED_Pause);
2145 		break;
2146 	}
2147 }
2148 
2149 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2150 {
2151 	if (!BP_NOMCP(bp)) {
2152 		u8 rc;
2153 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2155 		/*
2156 		 * Initialize link parameters structure variables
2157 		 * It is recommended to turn off RX FC for jumbo frames
2158 		 * for better performance
2159 		 */
2160 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162 		else
2163 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2164 
2165 		bnx2x_acquire_phy_lock(bp);
2166 
2167 		if (load_mode == LOAD_DIAG) {
2168 			struct link_params *lp = &bp->link_params;
2169 			lp->loopback_mode = LOOPBACK_XGXS;
2170 			/* do PHY loopback at 10G speed, if possible */
2171 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172 				if (lp->speed_cap_mask[cfx_idx] &
2173 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174 					lp->req_line_speed[cfx_idx] =
2175 					SPEED_10000;
2176 				else
2177 					lp->req_line_speed[cfx_idx] =
2178 					SPEED_1000;
2179 			}
2180 		}
2181 
2182 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2183 
2184 		bnx2x_release_phy_lock(bp);
2185 
2186 		bnx2x_calc_fc_adv(bp);
2187 
2188 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190 			bnx2x_link_report(bp);
2191 		} else
2192 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194 		return rc;
2195 	}
2196 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197 	return -EINVAL;
2198 }
2199 
2200 void bnx2x_link_set(struct bnx2x *bp)
2201 {
2202 	if (!BP_NOMCP(bp)) {
2203 		bnx2x_acquire_phy_lock(bp);
2204 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206 		bnx2x_release_phy_lock(bp);
2207 
2208 		bnx2x_calc_fc_adv(bp);
2209 	} else
2210 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2211 }
2212 
2213 static void bnx2x__link_reset(struct bnx2x *bp)
2214 {
2215 	if (!BP_NOMCP(bp)) {
2216 		bnx2x_acquire_phy_lock(bp);
2217 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218 		bnx2x_release_phy_lock(bp);
2219 	} else
2220 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2221 }
2222 
2223 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2224 {
2225 	u8 rc = 0;
2226 
2227 	if (!BP_NOMCP(bp)) {
2228 		bnx2x_acquire_phy_lock(bp);
2229 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230 				     is_serdes);
2231 		bnx2x_release_phy_lock(bp);
2232 	} else
2233 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2234 
2235 	return rc;
2236 }
2237 
2238 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2239 {
2240 	u32 r_param = bp->link_vars.line_speed / 8;
2241 	u32 fair_periodic_timeout_usec;
2242 	u32 t_fair;
2243 
2244 	memset(&(bp->cmng.rs_vars), 0,
2245 	       sizeof(struct rate_shaping_vars_per_port));
2246 	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2247 
2248 	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249 	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2250 
2251 	/* this is the threshold below which no timer arming will occur
2252 	   1.25 coefficient is for the threshold to be a little bigger
2253 	   than the real time, to compensate for timer in-accuracy */
2254 	bp->cmng.rs_vars.rs_threshold =
2255 				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2256 
2257 	/* resolution of fairness timer */
2258 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259 	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2260 	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2261 
2262 	/* this is the threshold below which we won't arm the timer anymore */
2263 	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2264 
2265 	/* we multiply by 1e3/8 to get bytes/msec.
2266 	   We don't want the credits to pass a credit
2267 	   of the t_fair*FAIR_MEM (algorithm resolution) */
2268 	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269 	/* since each tick is 4 usec */
2270 	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2271 }
2272 
2273 /* Calculates the sum of vn_min_rates.
2274    It's needed for further normalizing of the min_rates.
2275    Returns:
2276      sum of vn_min_rates.
2277        or
2278      0 - if all the min_rates are 0.
2279      In the later case fainess algorithm should be deactivated.
2280      If not all min_rates are zero then those that are zeroes will be set to 1.
2281  */
2282 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2283 {
2284 	int all_zero = 1;
2285 	int vn;
2286 
2287 	bp->vn_weight_sum = 0;
2288 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2289 		u32 vn_cfg = bp->mf_config[vn];
2290 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2292 
2293 		/* Skip hidden vns */
2294 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295 			continue;
2296 
2297 		/* If min rate is zero - set it to 1 */
2298 		if (!vn_min_rate)
2299 			vn_min_rate = DEF_MIN_RATE;
2300 		else
2301 			all_zero = 0;
2302 
2303 		bp->vn_weight_sum += vn_min_rate;
2304 	}
2305 
2306 	/* if ETS or all min rates are zeros - disable fairness */
2307 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2308 		bp->cmng.flags.cmng_enables &=
2309 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311 	} else if (all_zero) {
2312 		bp->cmng.flags.cmng_enables &=
2313 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314 		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315 		   "  fairness will be disabled\n");
2316 	} else
2317 		bp->cmng.flags.cmng_enables |=
2318 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2319 }
2320 
2321 /* returns func by VN for current port */
2322 static inline int func_by_vn(struct bnx2x *bp, int vn)
2323 {
2324 	return 2 * vn + BP_PORT(bp);
2325 }
2326 
2327 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2328 {
2329 	struct rate_shaping_vars_per_vn m_rs_vn;
2330 	struct fairness_vars_per_vn m_fair_vn;
2331 	u32 vn_cfg = bp->mf_config[vn];
2332 	int func = func_by_vn(bp, vn);
2333 	u16 vn_min_rate, vn_max_rate;
2334 	int i;
2335 
2336 	/* If function is hidden - set min and max to zeroes */
2337 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2338 		vn_min_rate = 0;
2339 		vn_max_rate = 0;
2340 
2341 	} else {
2342 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2343 
2344 		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2345 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2346 		/* If fairness is enabled (not all min rates are zeroes) and
2347 		   if current min rate is zero - set it to 1.
2348 		   This is a requirement of the algorithm. */
2349 		if (bp->vn_weight_sum && (vn_min_rate == 0))
2350 			vn_min_rate = DEF_MIN_RATE;
2351 
2352 		if (IS_MF_SI(bp))
2353 			/* maxCfg in percents of linkspeed */
2354 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2355 		else
2356 			/* maxCfg is absolute in 100Mb units */
2357 			vn_max_rate = maxCfg * 100;
2358 	}
2359 
2360 	DP(NETIF_MSG_IFUP,
2361 	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2362 	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2363 
2364 	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2365 	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2366 
2367 	/* global vn counter - maximal Mbps for this vn */
2368 	m_rs_vn.vn_counter.rate = vn_max_rate;
2369 
2370 	/* quota - number of bytes transmitted in this period */
2371 	m_rs_vn.vn_counter.quota =
2372 				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2373 
2374 	if (bp->vn_weight_sum) {
2375 		/* credit for each period of the fairness algorithm:
2376 		   number of bytes in T_FAIR (the vn share the port rate).
2377 		   vn_weight_sum should not be larger than 10000, thus
2378 		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2379 		   than zero */
2380 		m_fair_vn.vn_credit_delta =
2381 			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2382 						   (8 * bp->vn_weight_sum))),
2383 			      (bp->cmng.fair_vars.fair_threshold +
2384 							MIN_ABOVE_THRESH));
2385 		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2386 		   m_fair_vn.vn_credit_delta);
2387 	}
2388 
2389 	/* Store it to internal memory */
2390 	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2391 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2392 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2393 		       ((u32 *)(&m_rs_vn))[i]);
2394 
2395 	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2396 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2397 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2398 		       ((u32 *)(&m_fair_vn))[i]);
2399 }
2400 
2401 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2402 {
2403 	if (CHIP_REV_IS_SLOW(bp))
2404 		return CMNG_FNS_NONE;
2405 	if (IS_MF(bp))
2406 		return CMNG_FNS_MINMAX;
2407 
2408 	return CMNG_FNS_NONE;
2409 }
2410 
2411 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2412 {
2413 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2414 
2415 	if (BP_NOMCP(bp))
2416 		return; /* what should be the default bvalue in this case */
2417 
2418 	/* For 2 port configuration the absolute function number formula
2419 	 * is:
2420 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2421 	 *
2422 	 *      and there are 4 functions per port
2423 	 *
2424 	 * For 4 port configuration it is
2425 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2426 	 *
2427 	 *      and there are 2 functions per port
2428 	 */
2429 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2430 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2431 
2432 		if (func >= E1H_FUNC_MAX)
2433 			break;
2434 
2435 		bp->mf_config[vn] =
2436 			MF_CFG_RD(bp, func_mf_config[func].config);
2437 	}
2438 }
2439 
2440 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2441 {
2442 
2443 	if (cmng_type == CMNG_FNS_MINMAX) {
2444 		int vn;
2445 
2446 		/* clear cmng_enables */
2447 		bp->cmng.flags.cmng_enables = 0;
2448 
2449 		/* read mf conf from shmem */
2450 		if (read_cfg)
2451 			bnx2x_read_mf_cfg(bp);
2452 
2453 		/* Init rate shaping and fairness contexts */
2454 		bnx2x_init_port_minmax(bp);
2455 
2456 		/* vn_weight_sum and enable fairness if not 0 */
2457 		bnx2x_calc_vn_weight_sum(bp);
2458 
2459 		/* calculate and set min-max rate for each vn */
2460 		if (bp->port.pmf)
2461 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2462 				bnx2x_init_vn_minmax(bp, vn);
2463 
2464 		/* always enable rate shaping and fairness */
2465 		bp->cmng.flags.cmng_enables |=
2466 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2467 		if (!bp->vn_weight_sum)
2468 			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2469 				   "  fairness will be disabled\n");
2470 		return;
2471 	}
2472 
2473 	/* rate shaping and fairness are disabled */
2474 	DP(NETIF_MSG_IFUP,
2475 	   "rate shaping and fairness are disabled\n");
2476 }
2477 
2478 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
2479 {
2480 	int func;
2481 	int vn;
2482 
2483 	/* Set the attention towards other drivers on the same port */
2484 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2485 		if (vn == BP_VN(bp))
2486 			continue;
2487 
2488 		func = func_by_vn(bp, vn);
2489 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
2490 		       (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
2491 	}
2492 }
2493 
2494 /* This function is called upon link interrupt */
2495 static void bnx2x_link_attn(struct bnx2x *bp)
2496 {
2497 	/* Make sure that we are synced with the current statistics */
2498 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2499 
2500 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2501 
2502 	if (bp->link_vars.link_up) {
2503 
2504 		/* dropless flow control */
2505 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2506 			int port = BP_PORT(bp);
2507 			u32 pause_enabled = 0;
2508 
2509 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2510 				pause_enabled = 1;
2511 
2512 			REG_WR(bp, BAR_USTRORM_INTMEM +
2513 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2514 			       pause_enabled);
2515 		}
2516 
2517 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2518 			struct host_port_stats *pstats;
2519 
2520 			pstats = bnx2x_sp(bp, port_stats);
2521 			/* reset old mac stats */
2522 			memset(&(pstats->mac_stx[0]), 0,
2523 			       sizeof(struct mac_stx));
2524 		}
2525 		if (bp->state == BNX2X_STATE_OPEN)
2526 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2527 	}
2528 
2529 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2530 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2531 
2532 		if (cmng_fns != CMNG_FNS_NONE) {
2533 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2534 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2535 		} else
2536 			/* rate shaping and fairness are disabled */
2537 			DP(NETIF_MSG_IFUP,
2538 			   "single function mode without fairness\n");
2539 	}
2540 
2541 	__bnx2x_link_report(bp);
2542 
2543 	if (IS_MF(bp))
2544 		bnx2x_link_sync_notify(bp);
2545 }
2546 
2547 void bnx2x__link_status_update(struct bnx2x *bp)
2548 {
2549 	if (bp->state != BNX2X_STATE_OPEN)
2550 		return;
2551 
2552 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2553 
2554 	if (bp->link_vars.link_up)
2555 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2556 	else
2557 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2558 
2559 	/* indicate link status */
2560 	bnx2x_link_report(bp);
2561 }
2562 
2563 static void bnx2x_pmf_update(struct bnx2x *bp)
2564 {
2565 	int port = BP_PORT(bp);
2566 	u32 val;
2567 
2568 	bp->port.pmf = 1;
2569 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2570 
2571 	/*
2572 	 * We need the mb() to ensure the ordering between the writing to
2573 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2574 	 */
2575 	smp_mb();
2576 
2577 	/* queue a periodic task */
2578 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2579 
2580 	bnx2x_dcbx_pmf_update(bp);
2581 
2582 	/* enable nig attention */
2583 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2584 	if (bp->common.int_block == INT_BLOCK_HC) {
2585 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2586 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2587 	} else if (!CHIP_IS_E1x(bp)) {
2588 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2589 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2590 	}
2591 
2592 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2593 }
2594 
2595 /* end of Link */
2596 
2597 /* slow path */
2598 
2599 /*
2600  * General service functions
2601  */
2602 
2603 /* send the MCP a request, block until there is a reply */
2604 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2605 {
2606 	int mb_idx = BP_FW_MB_IDX(bp);
2607 	u32 seq;
2608 	u32 rc = 0;
2609 	u32 cnt = 1;
2610 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2611 
2612 	mutex_lock(&bp->fw_mb_mutex);
2613 	seq = ++bp->fw_seq;
2614 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2615 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2616 
2617 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2618 			(command | seq), param);
2619 
2620 	do {
2621 		/* let the FW do it's magic ... */
2622 		msleep(delay);
2623 
2624 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2625 
2626 		/* Give the FW up to 5 second (500*10ms) */
2627 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2628 
2629 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2630 	   cnt*delay, rc, seq);
2631 
2632 	/* is this a reply to our command? */
2633 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2634 		rc &= FW_MSG_CODE_MASK;
2635 	else {
2636 		/* FW BUG! */
2637 		BNX2X_ERR("FW failed to respond!\n");
2638 		bnx2x_fw_dump(bp);
2639 		rc = 0;
2640 	}
2641 	mutex_unlock(&bp->fw_mb_mutex);
2642 
2643 	return rc;
2644 }
2645 
2646 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2647 {
2648 #ifdef BCM_CNIC
2649 	/* Statistics are not supported for CNIC Clients at the moment */
2650 	if (IS_FCOE_FP(fp))
2651 		return false;
2652 #endif
2653 	return true;
2654 }
2655 
2656 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2657 {
2658 	if (CHIP_IS_E1x(bp)) {
2659 		struct tstorm_eth_function_common_config tcfg = {0};
2660 
2661 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2662 	}
2663 
2664 	/* Enable the function in the FW */
2665 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2666 	storm_memset_func_en(bp, p->func_id, 1);
2667 
2668 	/* spq */
2669 	if (p->func_flgs & FUNC_FLG_SPQ) {
2670 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2671 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2672 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2673 	}
2674 }
2675 
2676 /**
2677  * bnx2x_get_tx_only_flags - Return common flags
2678  *
2679  * @bp		device handle
2680  * @fp		queue handle
2681  * @zero_stats	TRUE if statistics zeroing is needed
2682  *
2683  * Return the flags that are common for the Tx-only and not normal connections.
2684  */
2685 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2686 						   struct bnx2x_fastpath *fp,
2687 						   bool zero_stats)
2688 {
2689 	unsigned long flags = 0;
2690 
2691 	/* PF driver will always initialize the Queue to an ACTIVE state */
2692 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2693 
2694 	/* tx only connections collect statistics (on the same index as the
2695 	 *  parent connection). The statistics are zeroed when the parent
2696 	 *  connection is initialized.
2697 	 */
2698 	if (stat_counter_valid(bp, fp)) {
2699 		__set_bit(BNX2X_Q_FLG_STATS, &flags);
2700 		if (zero_stats)
2701 			__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2702 	}
2703 
2704 	return flags;
2705 }
2706 
2707 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2708 					      struct bnx2x_fastpath *fp,
2709 					      bool leading)
2710 {
2711 	unsigned long flags = 0;
2712 
2713 	/* calculate other queue flags */
2714 	if (IS_MF_SD(bp))
2715 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2716 
2717 	if (IS_FCOE_FP(fp))
2718 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2719 
2720 	if (!fp->disable_tpa) {
2721 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2722 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2723 	}
2724 
2725 	if (leading) {
2726 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2727 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2728 	}
2729 
2730 	/* Always set HW VLAN stripping */
2731 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2732 
2733 
2734 	return flags | bnx2x_get_common_flags(bp, fp, true);
2735 }
2736 
2737 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2738 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2739 	u8 cos)
2740 {
2741 	gen_init->stat_id = bnx2x_stats_id(fp);
2742 	gen_init->spcl_id = fp->cl_id;
2743 
2744 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2745 	if (IS_FCOE_FP(fp))
2746 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2747 	else
2748 		gen_init->mtu = bp->dev->mtu;
2749 
2750 	gen_init->cos = cos;
2751 }
2752 
2753 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2754 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2755 	struct bnx2x_rxq_setup_params *rxq_init)
2756 {
2757 	u8 max_sge = 0;
2758 	u16 sge_sz = 0;
2759 	u16 tpa_agg_size = 0;
2760 
2761 	if (!fp->disable_tpa) {
2762 		pause->sge_th_lo = SGE_TH_LO(bp);
2763 		pause->sge_th_hi = SGE_TH_HI(bp);
2764 
2765 		/* validate SGE ring has enough to cross high threshold */
2766 		WARN_ON(bp->dropless_fc &&
2767 				pause->sge_th_hi + FW_PREFETCH_CNT >
2768 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2769 
2770 		tpa_agg_size = min_t(u32,
2771 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2772 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2773 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2774 			SGE_PAGE_SHIFT;
2775 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2776 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2777 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2778 				    0xffff);
2779 	}
2780 
2781 	/* pause - not for e1 */
2782 	if (!CHIP_IS_E1(bp)) {
2783 		pause->bd_th_lo = BD_TH_LO(bp);
2784 		pause->bd_th_hi = BD_TH_HI(bp);
2785 
2786 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2787 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2788 		/*
2789 		 * validate that rings have enough entries to cross
2790 		 * high thresholds
2791 		 */
2792 		WARN_ON(bp->dropless_fc &&
2793 				pause->bd_th_hi + FW_PREFETCH_CNT >
2794 				bp->rx_ring_size);
2795 		WARN_ON(bp->dropless_fc &&
2796 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2797 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2798 
2799 		pause->pri_map = 1;
2800 	}
2801 
2802 	/* rxq setup */
2803 	rxq_init->dscr_map = fp->rx_desc_mapping;
2804 	rxq_init->sge_map = fp->rx_sge_mapping;
2805 	rxq_init->rcq_map = fp->rx_comp_mapping;
2806 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2807 
2808 	/* This should be a maximum number of data bytes that may be
2809 	 * placed on the BD (not including paddings).
2810 	 */
2811 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN -
2812 		IP_HEADER_ALIGNMENT_PADDING;
2813 
2814 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2815 	rxq_init->tpa_agg_sz = tpa_agg_size;
2816 	rxq_init->sge_buf_sz = sge_sz;
2817 	rxq_init->max_sges_pkt = max_sge;
2818 	rxq_init->rss_engine_id = BP_FUNC(bp);
2819 
2820 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2821 	 *
2822 	 * For PF Clients it should be the maximum avaliable number.
2823 	 * VF driver(s) may want to define it to a smaller value.
2824 	 */
2825 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2826 
2827 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2828 	rxq_init->fw_sb_id = fp->fw_sb_id;
2829 
2830 	if (IS_FCOE_FP(fp))
2831 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2832 	else
2833 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2834 }
2835 
2836 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2837 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2838 	u8 cos)
2839 {
2840 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2841 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2842 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2843 	txq_init->fw_sb_id = fp->fw_sb_id;
2844 
2845 	/*
2846 	 * set the tss leading client id for TX classfication ==
2847 	 * leading RSS client id
2848 	 */
2849 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2850 
2851 	if (IS_FCOE_FP(fp)) {
2852 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2853 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2854 	}
2855 }
2856 
2857 static void bnx2x_pf_init(struct bnx2x *bp)
2858 {
2859 	struct bnx2x_func_init_params func_init = {0};
2860 	struct event_ring_data eq_data = { {0} };
2861 	u16 flags;
2862 
2863 	if (!CHIP_IS_E1x(bp)) {
2864 		/* reset IGU PF statistics: MSIX + ATTN */
2865 		/* PF */
2866 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2867 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2868 			   (CHIP_MODE_IS_4_PORT(bp) ?
2869 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2870 		/* ATTN */
2871 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2872 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2873 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2874 			   (CHIP_MODE_IS_4_PORT(bp) ?
2875 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2876 	}
2877 
2878 	/* function setup flags */
2879 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2880 
2881 	/* This flag is relevant for E1x only.
2882 	 * E2 doesn't have a TPA configuration in a function level.
2883 	 */
2884 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2885 
2886 	func_init.func_flgs = flags;
2887 	func_init.pf_id = BP_FUNC(bp);
2888 	func_init.func_id = BP_FUNC(bp);
2889 	func_init.spq_map = bp->spq_mapping;
2890 	func_init.spq_prod = bp->spq_prod_idx;
2891 
2892 	bnx2x_func_init(bp, &func_init);
2893 
2894 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2895 
2896 	/*
2897 	 * Congestion management values depend on the link rate
2898 	 * There is no active link so initial link rate is set to 10 Gbps.
2899 	 * When the link comes up The congestion management values are
2900 	 * re-calculated according to the actual link rate.
2901 	 */
2902 	bp->link_vars.line_speed = SPEED_10000;
2903 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2904 
2905 	/* Only the PMF sets the HW */
2906 	if (bp->port.pmf)
2907 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2908 
2909 	/* init Event Queue */
2910 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2911 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2912 	eq_data.producer = bp->eq_prod;
2913 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2914 	eq_data.sb_id = DEF_SB_ID;
2915 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2916 }
2917 
2918 
2919 static void bnx2x_e1h_disable(struct bnx2x *bp)
2920 {
2921 	int port = BP_PORT(bp);
2922 
2923 	bnx2x_tx_disable(bp);
2924 
2925 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2926 }
2927 
2928 static void bnx2x_e1h_enable(struct bnx2x *bp)
2929 {
2930 	int port = BP_PORT(bp);
2931 
2932 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2933 
2934 	/* Tx queue should be only reenabled */
2935 	netif_tx_wake_all_queues(bp->dev);
2936 
2937 	/*
2938 	 * Should not call netif_carrier_on since it will be called if the link
2939 	 * is up when checking for link state
2940 	 */
2941 }
2942 
2943 /* called due to MCP event (on pmf):
2944  *	reread new bandwidth configuration
2945  *	configure FW
2946  *	notify others function about the change
2947  */
2948 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2949 {
2950 	if (bp->link_vars.link_up) {
2951 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2952 		bnx2x_link_sync_notify(bp);
2953 	}
2954 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2955 }
2956 
2957 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2958 {
2959 	bnx2x_config_mf_bw(bp);
2960 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2961 }
2962 
2963 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2964 {
2965 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2966 
2967 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2968 
2969 		/*
2970 		 * This is the only place besides the function initialization
2971 		 * where the bp->flags can change so it is done without any
2972 		 * locks
2973 		 */
2974 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2975 			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2976 			bp->flags |= MF_FUNC_DIS;
2977 
2978 			bnx2x_e1h_disable(bp);
2979 		} else {
2980 			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2981 			bp->flags &= ~MF_FUNC_DIS;
2982 
2983 			bnx2x_e1h_enable(bp);
2984 		}
2985 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2986 	}
2987 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2988 		bnx2x_config_mf_bw(bp);
2989 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2990 	}
2991 
2992 	/* Report results to MCP */
2993 	if (dcc_event)
2994 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2995 	else
2996 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2997 }
2998 
2999 /* must be called under the spq lock */
3000 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3001 {
3002 	struct eth_spe *next_spe = bp->spq_prod_bd;
3003 
3004 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3005 		bp->spq_prod_bd = bp->spq;
3006 		bp->spq_prod_idx = 0;
3007 		DP(NETIF_MSG_TIMER, "end of spq\n");
3008 	} else {
3009 		bp->spq_prod_bd++;
3010 		bp->spq_prod_idx++;
3011 	}
3012 	return next_spe;
3013 }
3014 
3015 /* must be called under the spq lock */
3016 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3017 {
3018 	int func = BP_FUNC(bp);
3019 
3020 	/*
3021 	 * Make sure that BD data is updated before writing the producer:
3022 	 * BD data is written to the memory, the producer is read from the
3023 	 * memory, thus we need a full memory barrier to ensure the ordering.
3024 	 */
3025 	mb();
3026 
3027 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3028 		 bp->spq_prod_idx);
3029 	mmiowb();
3030 }
3031 
3032 /**
3033  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3034  *
3035  * @cmd:	command to check
3036  * @cmd_type:	command type
3037  */
3038 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3039 {
3040 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3041 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3042 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3043 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3044 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3045 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3046 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3047 		return true;
3048 	else
3049 		return false;
3050 
3051 }
3052 
3053 
3054 /**
3055  * bnx2x_sp_post - place a single command on an SP ring
3056  *
3057  * @bp:		driver handle
3058  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3059  * @cid:	SW CID the command is related to
3060  * @data_hi:	command private data address (high 32 bits)
3061  * @data_lo:	command private data address (low 32 bits)
3062  * @cmd_type:	command type (e.g. NONE, ETH)
3063  *
3064  * SP data is handled as if it's always an address pair, thus data fields are
3065  * not swapped to little endian in upper functions. Instead this function swaps
3066  * data as if it's two u32 fields.
3067  */
3068 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3069 		  u32 data_hi, u32 data_lo, int cmd_type)
3070 {
3071 	struct eth_spe *spe;
3072 	u16 type;
3073 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3074 
3075 #ifdef BNX2X_STOP_ON_ERROR
3076 	if (unlikely(bp->panic))
3077 		return -EIO;
3078 #endif
3079 
3080 	spin_lock_bh(&bp->spq_lock);
3081 
3082 	if (common) {
3083 		if (!atomic_read(&bp->eq_spq_left)) {
3084 			BNX2X_ERR("BUG! EQ ring full!\n");
3085 			spin_unlock_bh(&bp->spq_lock);
3086 			bnx2x_panic();
3087 			return -EBUSY;
3088 		}
3089 	} else if (!atomic_read(&bp->cq_spq_left)) {
3090 			BNX2X_ERR("BUG! SPQ ring full!\n");
3091 			spin_unlock_bh(&bp->spq_lock);
3092 			bnx2x_panic();
3093 			return -EBUSY;
3094 	}
3095 
3096 	spe = bnx2x_sp_get_next(bp);
3097 
3098 	/* CID needs port number to be encoded int it */
3099 	spe->hdr.conn_and_cmd_data =
3100 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3101 				    HW_CID(bp, cid));
3102 
3103 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3104 
3105 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3106 		 SPE_HDR_FUNCTION_ID);
3107 
3108 	spe->hdr.type = cpu_to_le16(type);
3109 
3110 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3111 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3112 
3113 	/*
3114 	 * It's ok if the actual decrement is issued towards the memory
3115 	 * somewhere between the spin_lock and spin_unlock. Thus no
3116 	 * more explict memory barrier is needed.
3117 	 */
3118 	if (common)
3119 		atomic_dec(&bp->eq_spq_left);
3120 	else
3121 		atomic_dec(&bp->cq_spq_left);
3122 
3123 
3124 	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3125 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3126 	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3127 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3128 	   (u32)(U64_LO(bp->spq_mapping) +
3129 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3130 	   HW_CID(bp, cid), data_hi, data_lo, type,
3131 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3132 
3133 	bnx2x_sp_prod_update(bp);
3134 	spin_unlock_bh(&bp->spq_lock);
3135 	return 0;
3136 }
3137 
3138 /* acquire split MCP access lock register */
3139 static int bnx2x_acquire_alr(struct bnx2x *bp)
3140 {
3141 	u32 j, val;
3142 	int rc = 0;
3143 
3144 	might_sleep();
3145 	for (j = 0; j < 1000; j++) {
3146 		val = (1UL << 31);
3147 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3148 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3149 		if (val & (1L << 31))
3150 			break;
3151 
3152 		msleep(5);
3153 	}
3154 	if (!(val & (1L << 31))) {
3155 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3156 		rc = -EBUSY;
3157 	}
3158 
3159 	return rc;
3160 }
3161 
3162 /* release split MCP access lock register */
3163 static void bnx2x_release_alr(struct bnx2x *bp)
3164 {
3165 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3166 }
3167 
3168 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3169 #define BNX2X_DEF_SB_IDX	0x0002
3170 
3171 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3172 {
3173 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3174 	u16 rc = 0;
3175 
3176 	barrier(); /* status block is written to by the chip */
3177 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3178 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3179 		rc |= BNX2X_DEF_SB_ATT_IDX;
3180 	}
3181 
3182 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3183 		bp->def_idx = def_sb->sp_sb.running_index;
3184 		rc |= BNX2X_DEF_SB_IDX;
3185 	}
3186 
3187 	/* Do not reorder: indecies reading should complete before handling */
3188 	barrier();
3189 	return rc;
3190 }
3191 
3192 /*
3193  * slow path service functions
3194  */
3195 
3196 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3197 {
3198 	int port = BP_PORT(bp);
3199 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3200 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3201 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3202 				       NIG_REG_MASK_INTERRUPT_PORT0;
3203 	u32 aeu_mask;
3204 	u32 nig_mask = 0;
3205 	u32 reg_addr;
3206 
3207 	if (bp->attn_state & asserted)
3208 		BNX2X_ERR("IGU ERROR\n");
3209 
3210 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3211 	aeu_mask = REG_RD(bp, aeu_addr);
3212 
3213 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3214 	   aeu_mask, asserted);
3215 	aeu_mask &= ~(asserted & 0x3ff);
3216 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3217 
3218 	REG_WR(bp, aeu_addr, aeu_mask);
3219 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3220 
3221 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3222 	bp->attn_state |= asserted;
3223 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3224 
3225 	if (asserted & ATTN_HARD_WIRED_MASK) {
3226 		if (asserted & ATTN_NIG_FOR_FUNC) {
3227 
3228 			bnx2x_acquire_phy_lock(bp);
3229 
3230 			/* save nig interrupt mask */
3231 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3232 
3233 			/* If nig_mask is not set, no need to call the update
3234 			 * function.
3235 			 */
3236 			if (nig_mask) {
3237 				REG_WR(bp, nig_int_mask_addr, 0);
3238 
3239 				bnx2x_link_attn(bp);
3240 			}
3241 
3242 			/* handle unicore attn? */
3243 		}
3244 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3245 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3246 
3247 		if (asserted & GPIO_2_FUNC)
3248 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3249 
3250 		if (asserted & GPIO_3_FUNC)
3251 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3252 
3253 		if (asserted & GPIO_4_FUNC)
3254 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3255 
3256 		if (port == 0) {
3257 			if (asserted & ATTN_GENERAL_ATTN_1) {
3258 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3259 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3260 			}
3261 			if (asserted & ATTN_GENERAL_ATTN_2) {
3262 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3263 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3264 			}
3265 			if (asserted & ATTN_GENERAL_ATTN_3) {
3266 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3267 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3268 			}
3269 		} else {
3270 			if (asserted & ATTN_GENERAL_ATTN_4) {
3271 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3272 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3273 			}
3274 			if (asserted & ATTN_GENERAL_ATTN_5) {
3275 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3276 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3277 			}
3278 			if (asserted & ATTN_GENERAL_ATTN_6) {
3279 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3280 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3281 			}
3282 		}
3283 
3284 	} /* if hardwired */
3285 
3286 	if (bp->common.int_block == INT_BLOCK_HC)
3287 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3288 			    COMMAND_REG_ATTN_BITS_SET);
3289 	else
3290 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3291 
3292 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3293 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3294 	REG_WR(bp, reg_addr, asserted);
3295 
3296 	/* now set back the mask */
3297 	if (asserted & ATTN_NIG_FOR_FUNC) {
3298 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3299 		bnx2x_release_phy_lock(bp);
3300 	}
3301 }
3302 
3303 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3304 {
3305 	int port = BP_PORT(bp);
3306 	u32 ext_phy_config;
3307 	/* mark the failure */
3308 	ext_phy_config =
3309 		SHMEM_RD(bp,
3310 			 dev_info.port_hw_config[port].external_phy_config);
3311 
3312 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3313 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3314 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3315 		 ext_phy_config);
3316 
3317 	/* log the failure */
3318 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3319 	       " the driver to shutdown the card to prevent permanent"
3320 	       " damage.  Please contact OEM Support for assistance\n");
3321 }
3322 
3323 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3324 {
3325 	int port = BP_PORT(bp);
3326 	int reg_offset;
3327 	u32 val;
3328 
3329 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3330 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3331 
3332 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3333 
3334 		val = REG_RD(bp, reg_offset);
3335 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3336 		REG_WR(bp, reg_offset, val);
3337 
3338 		BNX2X_ERR("SPIO5 hw attention\n");
3339 
3340 		/* Fan failure attention */
3341 		bnx2x_hw_reset_phy(&bp->link_params);
3342 		bnx2x_fan_failure(bp);
3343 	}
3344 
3345 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3346 		bnx2x_acquire_phy_lock(bp);
3347 		bnx2x_handle_module_detect_int(&bp->link_params);
3348 		bnx2x_release_phy_lock(bp);
3349 	}
3350 
3351 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3352 
3353 		val = REG_RD(bp, reg_offset);
3354 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3355 		REG_WR(bp, reg_offset, val);
3356 
3357 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3358 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3359 		bnx2x_panic();
3360 	}
3361 }
3362 
3363 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3364 {
3365 	u32 val;
3366 
3367 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3368 
3369 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3370 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3371 		/* DORQ discard attention */
3372 		if (val & 0x2)
3373 			BNX2X_ERR("FATAL error from DORQ\n");
3374 	}
3375 
3376 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3377 
3378 		int port = BP_PORT(bp);
3379 		int reg_offset;
3380 
3381 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3382 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3383 
3384 		val = REG_RD(bp, reg_offset);
3385 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3386 		REG_WR(bp, reg_offset, val);
3387 
3388 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3389 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3390 		bnx2x_panic();
3391 	}
3392 }
3393 
3394 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3395 {
3396 	u32 val;
3397 
3398 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3399 
3400 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3401 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3402 		/* CFC error attention */
3403 		if (val & 0x2)
3404 			BNX2X_ERR("FATAL error from CFC\n");
3405 	}
3406 
3407 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3408 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3409 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3410 		/* RQ_USDMDP_FIFO_OVERFLOW */
3411 		if (val & 0x18000)
3412 			BNX2X_ERR("FATAL error from PXP\n");
3413 
3414 		if (!CHIP_IS_E1x(bp)) {
3415 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3416 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3417 		}
3418 	}
3419 
3420 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3421 
3422 		int port = BP_PORT(bp);
3423 		int reg_offset;
3424 
3425 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3426 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3427 
3428 		val = REG_RD(bp, reg_offset);
3429 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3430 		REG_WR(bp, reg_offset, val);
3431 
3432 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3433 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3434 		bnx2x_panic();
3435 	}
3436 }
3437 
3438 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3439 {
3440 	u32 val;
3441 
3442 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3443 
3444 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3445 			int func = BP_FUNC(bp);
3446 
3447 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3448 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3449 					func_mf_config[BP_ABS_FUNC(bp)].config);
3450 			val = SHMEM_RD(bp,
3451 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3452 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3453 				bnx2x_dcc_event(bp,
3454 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3455 
3456 			if (val & DRV_STATUS_SET_MF_BW)
3457 				bnx2x_set_mf_bw(bp);
3458 
3459 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3460 				bnx2x_pmf_update(bp);
3461 
3462 			if (bp->port.pmf &&
3463 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3464 				bp->dcbx_enabled > 0)
3465 				/* start dcbx state machine */
3466 				bnx2x_dcbx_set_params(bp,
3467 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3468 			if (bp->link_vars.periodic_flags &
3469 			    PERIODIC_FLAGS_LINK_EVENT) {
3470 				/*  sync with link */
3471 				bnx2x_acquire_phy_lock(bp);
3472 				bp->link_vars.periodic_flags &=
3473 					~PERIODIC_FLAGS_LINK_EVENT;
3474 				bnx2x_release_phy_lock(bp);
3475 				if (IS_MF(bp))
3476 					bnx2x_link_sync_notify(bp);
3477 				bnx2x_link_report(bp);
3478 			}
3479 			/* Always call it here: bnx2x_link_report() will
3480 			 * prevent the link indication duplication.
3481 			 */
3482 			bnx2x__link_status_update(bp);
3483 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3484 
3485 			BNX2X_ERR("MC assert!\n");
3486 			bnx2x_mc_assert(bp);
3487 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3488 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3489 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3490 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3491 			bnx2x_panic();
3492 
3493 		} else if (attn & BNX2X_MCP_ASSERT) {
3494 
3495 			BNX2X_ERR("MCP assert!\n");
3496 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3497 			bnx2x_fw_dump(bp);
3498 
3499 		} else
3500 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3501 	}
3502 
3503 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3504 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3505 		if (attn & BNX2X_GRC_TIMEOUT) {
3506 			val = CHIP_IS_E1(bp) ? 0 :
3507 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3508 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3509 		}
3510 		if (attn & BNX2X_GRC_RSV) {
3511 			val = CHIP_IS_E1(bp) ? 0 :
3512 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3513 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3514 		}
3515 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3516 	}
3517 }
3518 
3519 /*
3520  * Bits map:
3521  * 0-7   - Engine0 load counter.
3522  * 8-15  - Engine1 load counter.
3523  * 16    - Engine0 RESET_IN_PROGRESS bit.
3524  * 17    - Engine1 RESET_IN_PROGRESS bit.
3525  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3526  *         on the engine
3527  * 19    - Engine1 ONE_IS_LOADED.
3528  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3529  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3530  *         just the one belonging to its engine).
3531  *
3532  */
3533 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3534 
3535 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3536 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3537 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3538 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3539 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3540 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3541 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3542 
3543 /*
3544  * Set the GLOBAL_RESET bit.
3545  *
3546  * Should be run under rtnl lock
3547  */
3548 void bnx2x_set_reset_global(struct bnx2x *bp)
3549 {
3550 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3551 
3552 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3553 	barrier();
3554 	mmiowb();
3555 }
3556 
3557 /*
3558  * Clear the GLOBAL_RESET bit.
3559  *
3560  * Should be run under rtnl lock
3561  */
3562 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3563 {
3564 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3565 
3566 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3567 	barrier();
3568 	mmiowb();
3569 }
3570 
3571 /*
3572  * Checks the GLOBAL_RESET bit.
3573  *
3574  * should be run under rtnl lock
3575  */
3576 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3577 {
3578 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3579 
3580 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3581 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3582 }
3583 
3584 /*
3585  * Clear RESET_IN_PROGRESS bit for the current engine.
3586  *
3587  * Should be run under rtnl lock
3588  */
3589 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3590 {
3591 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3592 	u32 bit = BP_PATH(bp) ?
3593 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3594 
3595 	/* Clear the bit */
3596 	val &= ~bit;
3597 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3598 	barrier();
3599 	mmiowb();
3600 }
3601 
3602 /*
3603  * Set RESET_IN_PROGRESS for the current engine.
3604  *
3605  * should be run under rtnl lock
3606  */
3607 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3608 {
3609 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3610 	u32 bit = BP_PATH(bp) ?
3611 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3612 
3613 	/* Set the bit */
3614 	val |= bit;
3615 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3616 	barrier();
3617 	mmiowb();
3618 }
3619 
3620 /*
3621  * Checks the RESET_IN_PROGRESS bit for the given engine.
3622  * should be run under rtnl lock
3623  */
3624 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3625 {
3626 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3627 	u32 bit = engine ?
3628 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3629 
3630 	/* return false if bit is set */
3631 	return (val & bit) ? false : true;
3632 }
3633 
3634 /*
3635  * Increment the load counter for the current engine.
3636  *
3637  * should be run under rtnl lock
3638  */
3639 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3640 {
3641 	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3642 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3643 			     BNX2X_PATH0_LOAD_CNT_MASK;
3644 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3645 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3646 
3647 	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3648 
3649 	/* get the current counter value */
3650 	val1 = (val & mask) >> shift;
3651 
3652 	/* increment... */
3653 	val1++;
3654 
3655 	/* clear the old value */
3656 	val &= ~mask;
3657 
3658 	/* set the new one */
3659 	val |= ((val1 << shift) & mask);
3660 
3661 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3662 	barrier();
3663 	mmiowb();
3664 }
3665 
3666 /**
3667  * bnx2x_dec_load_cnt - decrement the load counter
3668  *
3669  * @bp:		driver handle
3670  *
3671  * Should be run under rtnl lock.
3672  * Decrements the load counter for the current engine. Returns
3673  * the new counter value.
3674  */
3675 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3676 {
3677 	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3678 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3679 			     BNX2X_PATH0_LOAD_CNT_MASK;
3680 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3681 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3682 
3683 	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3684 
3685 	/* get the current counter value */
3686 	val1 = (val & mask) >> shift;
3687 
3688 	/* decrement... */
3689 	val1--;
3690 
3691 	/* clear the old value */
3692 	val &= ~mask;
3693 
3694 	/* set the new one */
3695 	val |= ((val1 << shift) & mask);
3696 
3697 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3698 	barrier();
3699 	mmiowb();
3700 
3701 	return val1;
3702 }
3703 
3704 /*
3705  * Read the load counter for the current engine.
3706  *
3707  * should be run under rtnl lock
3708  */
3709 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3710 {
3711 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3712 			     BNX2X_PATH0_LOAD_CNT_MASK);
3713 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3714 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3715 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3716 
3717 	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3718 
3719 	val = (val & mask) >> shift;
3720 
3721 	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3722 
3723 	return val;
3724 }
3725 
3726 /*
3727  * Reset the load counter for the current engine.
3728  *
3729  * should be run under rtnl lock
3730  */
3731 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3732 {
3733 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3734 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3735 			     BNX2X_PATH0_LOAD_CNT_MASK);
3736 
3737 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3738 }
3739 
3740 static inline void _print_next_block(int idx, const char *blk)
3741 {
3742 	pr_cont("%s%s", idx ? ", " : "", blk);
3743 }
3744 
3745 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3746 						  bool print)
3747 {
3748 	int i = 0;
3749 	u32 cur_bit = 0;
3750 	for (i = 0; sig; i++) {
3751 		cur_bit = ((u32)0x1 << i);
3752 		if (sig & cur_bit) {
3753 			switch (cur_bit) {
3754 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3755 				if (print)
3756 					_print_next_block(par_num++, "BRB");
3757 				break;
3758 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3759 				if (print)
3760 					_print_next_block(par_num++, "PARSER");
3761 				break;
3762 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3763 				if (print)
3764 					_print_next_block(par_num++, "TSDM");
3765 				break;
3766 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3767 				if (print)
3768 					_print_next_block(par_num++,
3769 							  "SEARCHER");
3770 				break;
3771 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3772 				if (print)
3773 					_print_next_block(par_num++, "TCM");
3774 				break;
3775 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3776 				if (print)
3777 					_print_next_block(par_num++, "TSEMI");
3778 				break;
3779 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3780 				if (print)
3781 					_print_next_block(par_num++, "XPB");
3782 				break;
3783 			}
3784 
3785 			/* Clear the bit */
3786 			sig &= ~cur_bit;
3787 		}
3788 	}
3789 
3790 	return par_num;
3791 }
3792 
3793 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3794 						  bool *global, bool print)
3795 {
3796 	int i = 0;
3797 	u32 cur_bit = 0;
3798 	for (i = 0; sig; i++) {
3799 		cur_bit = ((u32)0x1 << i);
3800 		if (sig & cur_bit) {
3801 			switch (cur_bit) {
3802 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3803 				if (print)
3804 					_print_next_block(par_num++, "PBF");
3805 				break;
3806 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3807 				if (print)
3808 					_print_next_block(par_num++, "QM");
3809 				break;
3810 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3811 				if (print)
3812 					_print_next_block(par_num++, "TM");
3813 				break;
3814 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3815 				if (print)
3816 					_print_next_block(par_num++, "XSDM");
3817 				break;
3818 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3819 				if (print)
3820 					_print_next_block(par_num++, "XCM");
3821 				break;
3822 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3823 				if (print)
3824 					_print_next_block(par_num++, "XSEMI");
3825 				break;
3826 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3827 				if (print)
3828 					_print_next_block(par_num++,
3829 							  "DOORBELLQ");
3830 				break;
3831 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3832 				if (print)
3833 					_print_next_block(par_num++, "NIG");
3834 				break;
3835 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3836 				if (print)
3837 					_print_next_block(par_num++,
3838 							  "VAUX PCI CORE");
3839 				*global = true;
3840 				break;
3841 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3842 				if (print)
3843 					_print_next_block(par_num++, "DEBUG");
3844 				break;
3845 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3846 				if (print)
3847 					_print_next_block(par_num++, "USDM");
3848 				break;
3849 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3850 				if (print)
3851 					_print_next_block(par_num++, "UCM");
3852 				break;
3853 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3854 				if (print)
3855 					_print_next_block(par_num++, "USEMI");
3856 				break;
3857 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3858 				if (print)
3859 					_print_next_block(par_num++, "UPB");
3860 				break;
3861 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3862 				if (print)
3863 					_print_next_block(par_num++, "CSDM");
3864 				break;
3865 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3866 				if (print)
3867 					_print_next_block(par_num++, "CCM");
3868 				break;
3869 			}
3870 
3871 			/* Clear the bit */
3872 			sig &= ~cur_bit;
3873 		}
3874 	}
3875 
3876 	return par_num;
3877 }
3878 
3879 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3880 						  bool print)
3881 {
3882 	int i = 0;
3883 	u32 cur_bit = 0;
3884 	for (i = 0; sig; i++) {
3885 		cur_bit = ((u32)0x1 << i);
3886 		if (sig & cur_bit) {
3887 			switch (cur_bit) {
3888 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3889 				if (print)
3890 					_print_next_block(par_num++, "CSEMI");
3891 				break;
3892 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3893 				if (print)
3894 					_print_next_block(par_num++, "PXP");
3895 				break;
3896 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3897 				if (print)
3898 					_print_next_block(par_num++,
3899 					"PXPPCICLOCKCLIENT");
3900 				break;
3901 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3902 				if (print)
3903 					_print_next_block(par_num++, "CFC");
3904 				break;
3905 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3906 				if (print)
3907 					_print_next_block(par_num++, "CDU");
3908 				break;
3909 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3910 				if (print)
3911 					_print_next_block(par_num++, "DMAE");
3912 				break;
3913 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3914 				if (print)
3915 					_print_next_block(par_num++, "IGU");
3916 				break;
3917 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3918 				if (print)
3919 					_print_next_block(par_num++, "MISC");
3920 				break;
3921 			}
3922 
3923 			/* Clear the bit */
3924 			sig &= ~cur_bit;
3925 		}
3926 	}
3927 
3928 	return par_num;
3929 }
3930 
3931 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3932 						  bool *global, bool print)
3933 {
3934 	int i = 0;
3935 	u32 cur_bit = 0;
3936 	for (i = 0; sig; i++) {
3937 		cur_bit = ((u32)0x1 << i);
3938 		if (sig & cur_bit) {
3939 			switch (cur_bit) {
3940 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3941 				if (print)
3942 					_print_next_block(par_num++, "MCP ROM");
3943 				*global = true;
3944 				break;
3945 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3946 				if (print)
3947 					_print_next_block(par_num++,
3948 							  "MCP UMP RX");
3949 				*global = true;
3950 				break;
3951 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3952 				if (print)
3953 					_print_next_block(par_num++,
3954 							  "MCP UMP TX");
3955 				*global = true;
3956 				break;
3957 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3958 				if (print)
3959 					_print_next_block(par_num++,
3960 							  "MCP SCPAD");
3961 				*global = true;
3962 				break;
3963 			}
3964 
3965 			/* Clear the bit */
3966 			sig &= ~cur_bit;
3967 		}
3968 	}
3969 
3970 	return par_num;
3971 }
3972 
3973 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3974 						  bool print)
3975 {
3976 	int i = 0;
3977 	u32 cur_bit = 0;
3978 	for (i = 0; sig; i++) {
3979 		cur_bit = ((u32)0x1 << i);
3980 		if (sig & cur_bit) {
3981 			switch (cur_bit) {
3982 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3983 				if (print)
3984 					_print_next_block(par_num++, "PGLUE_B");
3985 				break;
3986 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3987 				if (print)
3988 					_print_next_block(par_num++, "ATC");
3989 				break;
3990 			}
3991 
3992 			/* Clear the bit */
3993 			sig &= ~cur_bit;
3994 		}
3995 	}
3996 
3997 	return par_num;
3998 }
3999 
4000 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4001 				     u32 *sig)
4002 {
4003 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4004 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4005 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4006 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4007 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4008 		int par_num = 0;
4009 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4010 			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4011 			"[4]:0x%08x\n",
4012 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4013 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4014 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4015 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4016 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4017 		if (print)
4018 			netdev_err(bp->dev,
4019 				   "Parity errors detected in blocks: ");
4020 		par_num = bnx2x_check_blocks_with_parity0(
4021 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4022 		par_num = bnx2x_check_blocks_with_parity1(
4023 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4024 		par_num = bnx2x_check_blocks_with_parity2(
4025 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4026 		par_num = bnx2x_check_blocks_with_parity3(
4027 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4028 		par_num = bnx2x_check_blocks_with_parity4(
4029 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4030 
4031 		if (print)
4032 			pr_cont("\n");
4033 
4034 		return true;
4035 	} else
4036 		return false;
4037 }
4038 
4039 /**
4040  * bnx2x_chk_parity_attn - checks for parity attentions.
4041  *
4042  * @bp:		driver handle
4043  * @global:	true if there was a global attention
4044  * @print:	show parity attention in syslog
4045  */
4046 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4047 {
4048 	struct attn_route attn = { {0} };
4049 	int port = BP_PORT(bp);
4050 
4051 	attn.sig[0] = REG_RD(bp,
4052 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4053 			     port*4);
4054 	attn.sig[1] = REG_RD(bp,
4055 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4056 			     port*4);
4057 	attn.sig[2] = REG_RD(bp,
4058 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4059 			     port*4);
4060 	attn.sig[3] = REG_RD(bp,
4061 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4062 			     port*4);
4063 
4064 	if (!CHIP_IS_E1x(bp))
4065 		attn.sig[4] = REG_RD(bp,
4066 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4067 				     port*4);
4068 
4069 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4070 }
4071 
4072 
4073 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4074 {
4075 	u32 val;
4076 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4077 
4078 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4079 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4080 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4081 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4082 				  "ADDRESS_ERROR\n");
4083 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4084 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4085 				  "INCORRECT_RCV_BEHAVIOR\n");
4086 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4087 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4088 				  "WAS_ERROR_ATTN\n");
4089 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4090 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4091 				  "VF_LENGTH_VIOLATION_ATTN\n");
4092 		if (val &
4093 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4094 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4095 				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4096 		if (val &
4097 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4098 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4099 				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4100 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4101 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4102 				  "TCPL_ERROR_ATTN\n");
4103 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4104 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4105 				  "TCPL_IN_TWO_RCBS_ATTN\n");
4106 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4107 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4108 				  "CSSNOOP_FIFO_OVERFLOW\n");
4109 	}
4110 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4111 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4112 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4113 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4114 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4115 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4116 			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4117 				  "_ATC_TCPL_TO_NOT_PEND\n");
4118 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4119 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4120 				  "ATC_GPA_MULTIPLE_HITS\n");
4121 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4122 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4123 				  "ATC_RCPL_TO_EMPTY_CNT\n");
4124 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4125 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4126 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4127 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4128 				  "ATC_IREQ_LESS_THAN_STU\n");
4129 	}
4130 
4131 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4132 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4133 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4134 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4135 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4136 	}
4137 
4138 }
4139 
4140 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4141 {
4142 	struct attn_route attn, *group_mask;
4143 	int port = BP_PORT(bp);
4144 	int index;
4145 	u32 reg_addr;
4146 	u32 val;
4147 	u32 aeu_mask;
4148 	bool global = false;
4149 
4150 	/* need to take HW lock because MCP or other port might also
4151 	   try to handle this event */
4152 	bnx2x_acquire_alr(bp);
4153 
4154 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4155 #ifndef BNX2X_STOP_ON_ERROR
4156 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4157 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4158 		/* Disable HW interrupts */
4159 		bnx2x_int_disable(bp);
4160 		/* In case of parity errors don't handle attentions so that
4161 		 * other function would "see" parity errors.
4162 		 */
4163 #else
4164 		bnx2x_panic();
4165 #endif
4166 		bnx2x_release_alr(bp);
4167 		return;
4168 	}
4169 
4170 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4171 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4172 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4173 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4174 	if (!CHIP_IS_E1x(bp))
4175 		attn.sig[4] =
4176 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4177 	else
4178 		attn.sig[4] = 0;
4179 
4180 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4181 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4182 
4183 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4184 		if (deasserted & (1 << index)) {
4185 			group_mask = &bp->attn_group[index];
4186 
4187 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4188 					 "%08x %08x %08x\n",
4189 			   index,
4190 			   group_mask->sig[0], group_mask->sig[1],
4191 			   group_mask->sig[2], group_mask->sig[3],
4192 			   group_mask->sig[4]);
4193 
4194 			bnx2x_attn_int_deasserted4(bp,
4195 					attn.sig[4] & group_mask->sig[4]);
4196 			bnx2x_attn_int_deasserted3(bp,
4197 					attn.sig[3] & group_mask->sig[3]);
4198 			bnx2x_attn_int_deasserted1(bp,
4199 					attn.sig[1] & group_mask->sig[1]);
4200 			bnx2x_attn_int_deasserted2(bp,
4201 					attn.sig[2] & group_mask->sig[2]);
4202 			bnx2x_attn_int_deasserted0(bp,
4203 					attn.sig[0] & group_mask->sig[0]);
4204 		}
4205 	}
4206 
4207 	bnx2x_release_alr(bp);
4208 
4209 	if (bp->common.int_block == INT_BLOCK_HC)
4210 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4211 			    COMMAND_REG_ATTN_BITS_CLR);
4212 	else
4213 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4214 
4215 	val = ~deasserted;
4216 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4217 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4218 	REG_WR(bp, reg_addr, val);
4219 
4220 	if (~bp->attn_state & deasserted)
4221 		BNX2X_ERR("IGU ERROR\n");
4222 
4223 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4224 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4225 
4226 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4227 	aeu_mask = REG_RD(bp, reg_addr);
4228 
4229 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4230 	   aeu_mask, deasserted);
4231 	aeu_mask |= (deasserted & 0x3ff);
4232 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4233 
4234 	REG_WR(bp, reg_addr, aeu_mask);
4235 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4236 
4237 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4238 	bp->attn_state &= ~deasserted;
4239 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4240 }
4241 
4242 static void bnx2x_attn_int(struct bnx2x *bp)
4243 {
4244 	/* read local copy of bits */
4245 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4246 								attn_bits);
4247 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4248 								attn_bits_ack);
4249 	u32 attn_state = bp->attn_state;
4250 
4251 	/* look for changed bits */
4252 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4253 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4254 
4255 	DP(NETIF_MSG_HW,
4256 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4257 	   attn_bits, attn_ack, asserted, deasserted);
4258 
4259 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4260 		BNX2X_ERR("BAD attention state\n");
4261 
4262 	/* handle bits that were raised */
4263 	if (asserted)
4264 		bnx2x_attn_int_asserted(bp, asserted);
4265 
4266 	if (deasserted)
4267 		bnx2x_attn_int_deasserted(bp, deasserted);
4268 }
4269 
4270 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4271 		      u16 index, u8 op, u8 update)
4272 {
4273 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4274 
4275 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4276 			     igu_addr);
4277 }
4278 
4279 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4280 {
4281 	/* No memory barriers */
4282 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4283 	mmiowb(); /* keep prod updates ordered */
4284 }
4285 
4286 #ifdef BCM_CNIC
4287 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4288 				      union event_ring_elem *elem)
4289 {
4290 	u8 err = elem->message.error;
4291 
4292 	if (!bp->cnic_eth_dev.starting_cid  ||
4293 	    (cid < bp->cnic_eth_dev.starting_cid &&
4294 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4295 		return 1;
4296 
4297 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4298 
4299 	if (unlikely(err)) {
4300 
4301 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4302 			  cid);
4303 		bnx2x_panic_dump(bp);
4304 	}
4305 	bnx2x_cnic_cfc_comp(bp, cid, err);
4306 	return 0;
4307 }
4308 #endif
4309 
4310 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4311 {
4312 	struct bnx2x_mcast_ramrod_params rparam;
4313 	int rc;
4314 
4315 	memset(&rparam, 0, sizeof(rparam));
4316 
4317 	rparam.mcast_obj = &bp->mcast_obj;
4318 
4319 	netif_addr_lock_bh(bp->dev);
4320 
4321 	/* Clear pending state for the last command */
4322 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4323 
4324 	/* If there are pending mcast commands - send them */
4325 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4326 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4327 		if (rc < 0)
4328 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4329 				  rc);
4330 	}
4331 
4332 	netif_addr_unlock_bh(bp->dev);
4333 }
4334 
4335 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4336 						   union event_ring_elem *elem)
4337 {
4338 	unsigned long ramrod_flags = 0;
4339 	int rc = 0;
4340 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4341 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4342 
4343 	/* Always push next commands out, don't wait here */
4344 	__set_bit(RAMROD_CONT, &ramrod_flags);
4345 
4346 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4347 	case BNX2X_FILTER_MAC_PENDING:
4348 #ifdef BCM_CNIC
4349 		if (cid == BNX2X_ISCSI_ETH_CID)
4350 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4351 		else
4352 #endif
4353 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4354 
4355 		break;
4356 	case BNX2X_FILTER_MCAST_PENDING:
4357 		/* This is only relevant for 57710 where multicast MACs are
4358 		 * configured as unicast MACs using the same ramrod.
4359 		 */
4360 		bnx2x_handle_mcast_eqe(bp);
4361 		return;
4362 	default:
4363 		BNX2X_ERR("Unsupported classification command: %d\n",
4364 			  elem->message.data.eth_event.echo);
4365 		return;
4366 	}
4367 
4368 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4369 
4370 	if (rc < 0)
4371 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4372 	else if (rc > 0)
4373 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4374 
4375 }
4376 
4377 #ifdef BCM_CNIC
4378 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4379 #endif
4380 
4381 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4382 {
4383 	netif_addr_lock_bh(bp->dev);
4384 
4385 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4386 
4387 	/* Send rx_mode command again if was requested */
4388 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4389 		bnx2x_set_storm_rx_mode(bp);
4390 #ifdef BCM_CNIC
4391 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4392 				    &bp->sp_state))
4393 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4394 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4395 				    &bp->sp_state))
4396 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4397 #endif
4398 
4399 	netif_addr_unlock_bh(bp->dev);
4400 }
4401 
4402 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4403 	struct bnx2x *bp, u32 cid)
4404 {
4405 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4406 #ifdef BCM_CNIC
4407 	if (cid == BNX2X_FCOE_ETH_CID)
4408 		return &bnx2x_fcoe(bp, q_obj);
4409 	else
4410 #endif
4411 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4412 }
4413 
4414 static void bnx2x_eq_int(struct bnx2x *bp)
4415 {
4416 	u16 hw_cons, sw_cons, sw_prod;
4417 	union event_ring_elem *elem;
4418 	u32 cid;
4419 	u8 opcode;
4420 	int spqe_cnt = 0;
4421 	struct bnx2x_queue_sp_obj *q_obj;
4422 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4423 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4424 
4425 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4426 
4427 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4428 	 * when we get the the next-page we nned to adjust so the loop
4429 	 * condition below will be met. The next element is the size of a
4430 	 * regular element and hence incrementing by 1
4431 	 */
4432 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4433 		hw_cons++;
4434 
4435 	/* This function may never run in parallel with itself for a
4436 	 * specific bp, thus there is no need in "paired" read memory
4437 	 * barrier here.
4438 	 */
4439 	sw_cons = bp->eq_cons;
4440 	sw_prod = bp->eq_prod;
4441 
4442 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4443 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4444 
4445 	for (; sw_cons != hw_cons;
4446 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4447 
4448 
4449 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4450 
4451 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4452 		opcode = elem->message.opcode;
4453 
4454 
4455 		/* handle eq element */
4456 		switch (opcode) {
4457 		case EVENT_RING_OPCODE_STAT_QUERY:
4458 			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4459 			   bp->stats_comp++);
4460 			/* nothing to do with stats comp */
4461 			goto next_spqe;
4462 
4463 		case EVENT_RING_OPCODE_CFC_DEL:
4464 			/* handle according to cid range */
4465 			/*
4466 			 * we may want to verify here that the bp state is
4467 			 * HALTING
4468 			 */
4469 			DP(BNX2X_MSG_SP,
4470 			   "got delete ramrod for MULTI[%d]\n", cid);
4471 #ifdef BCM_CNIC
4472 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4473 				goto next_spqe;
4474 #endif
4475 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4476 
4477 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4478 				break;
4479 
4480 
4481 
4482 			goto next_spqe;
4483 
4484 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4485 			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4486 			if (f_obj->complete_cmd(bp, f_obj,
4487 						BNX2X_F_CMD_TX_STOP))
4488 				break;
4489 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4490 			goto next_spqe;
4491 
4492 		case EVENT_RING_OPCODE_START_TRAFFIC:
4493 			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4494 			if (f_obj->complete_cmd(bp, f_obj,
4495 						BNX2X_F_CMD_TX_START))
4496 				break;
4497 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4498 			goto next_spqe;
4499 		case EVENT_RING_OPCODE_FUNCTION_START:
4500 			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4501 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4502 				break;
4503 
4504 			goto next_spqe;
4505 
4506 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4507 			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4508 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4509 				break;
4510 
4511 			goto next_spqe;
4512 		}
4513 
4514 		switch (opcode | bp->state) {
4515 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4516 		      BNX2X_STATE_OPEN):
4517 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4518 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4519 			cid = elem->message.data.eth_event.echo &
4520 				BNX2X_SWCID_MASK;
4521 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4522 			   cid);
4523 			rss_raw->clear_pending(rss_raw);
4524 			break;
4525 
4526 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4527 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4528 		case (EVENT_RING_OPCODE_SET_MAC |
4529 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4530 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4531 		      BNX2X_STATE_OPEN):
4532 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4533 		      BNX2X_STATE_DIAG):
4534 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4535 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4536 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4537 			bnx2x_handle_classification_eqe(bp, elem);
4538 			break;
4539 
4540 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4541 		      BNX2X_STATE_OPEN):
4542 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4543 		      BNX2X_STATE_DIAG):
4544 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4545 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4546 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4547 			bnx2x_handle_mcast_eqe(bp);
4548 			break;
4549 
4550 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4551 		      BNX2X_STATE_OPEN):
4552 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4553 		      BNX2X_STATE_DIAG):
4554 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4555 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4556 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4557 			bnx2x_handle_rx_mode_eqe(bp);
4558 			break;
4559 		default:
4560 			/* unknown event log error and continue */
4561 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4562 				  elem->message.opcode, bp->state);
4563 		}
4564 next_spqe:
4565 		spqe_cnt++;
4566 	} /* for */
4567 
4568 	smp_mb__before_atomic_inc();
4569 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4570 
4571 	bp->eq_cons = sw_cons;
4572 	bp->eq_prod = sw_prod;
4573 	/* Make sure that above mem writes were issued towards the memory */
4574 	smp_wmb();
4575 
4576 	/* update producer */
4577 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4578 }
4579 
4580 static void bnx2x_sp_task(struct work_struct *work)
4581 {
4582 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4583 	u16 status;
4584 
4585 	status = bnx2x_update_dsb_idx(bp);
4586 /*	if (status == 0)				     */
4587 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4588 
4589 	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4590 
4591 	/* HW attentions */
4592 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4593 		bnx2x_attn_int(bp);
4594 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4595 	}
4596 
4597 	/* SP events: STAT_QUERY and others */
4598 	if (status & BNX2X_DEF_SB_IDX) {
4599 #ifdef BCM_CNIC
4600 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4601 
4602 		if ((!NO_FCOE(bp)) &&
4603 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4604 			/*
4605 			 * Prevent local bottom-halves from running as
4606 			 * we are going to change the local NAPI list.
4607 			 */
4608 			local_bh_disable();
4609 			napi_schedule(&bnx2x_fcoe(bp, napi));
4610 			local_bh_enable();
4611 		}
4612 #endif
4613 		/* Handle EQ completions */
4614 		bnx2x_eq_int(bp);
4615 
4616 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4617 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4618 
4619 		status &= ~BNX2X_DEF_SB_IDX;
4620 	}
4621 
4622 	if (unlikely(status))
4623 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4624 		   status);
4625 
4626 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4627 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4628 }
4629 
4630 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4631 {
4632 	struct net_device *dev = dev_instance;
4633 	struct bnx2x *bp = netdev_priv(dev);
4634 
4635 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4636 		     IGU_INT_DISABLE, 0);
4637 
4638 #ifdef BNX2X_STOP_ON_ERROR
4639 	if (unlikely(bp->panic))
4640 		return IRQ_HANDLED;
4641 #endif
4642 
4643 #ifdef BCM_CNIC
4644 	{
4645 		struct cnic_ops *c_ops;
4646 
4647 		rcu_read_lock();
4648 		c_ops = rcu_dereference(bp->cnic_ops);
4649 		if (c_ops)
4650 			c_ops->cnic_handler(bp->cnic_data, NULL);
4651 		rcu_read_unlock();
4652 	}
4653 #endif
4654 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4655 
4656 	return IRQ_HANDLED;
4657 }
4658 
4659 /* end of slow path */
4660 
4661 
4662 void bnx2x_drv_pulse(struct bnx2x *bp)
4663 {
4664 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4665 		 bp->fw_drv_pulse_wr_seq);
4666 }
4667 
4668 
4669 static void bnx2x_timer(unsigned long data)
4670 {
4671 	u8 cos;
4672 	struct bnx2x *bp = (struct bnx2x *) data;
4673 
4674 	if (!netif_running(bp->dev))
4675 		return;
4676 
4677 	if (poll) {
4678 		struct bnx2x_fastpath *fp = &bp->fp[0];
4679 
4680 		for_each_cos_in_tx_queue(fp, cos)
4681 			bnx2x_tx_int(bp, &fp->txdata[cos]);
4682 		bnx2x_rx_int(fp, 1000);
4683 	}
4684 
4685 	if (!BP_NOMCP(bp)) {
4686 		int mb_idx = BP_FW_MB_IDX(bp);
4687 		u32 drv_pulse;
4688 		u32 mcp_pulse;
4689 
4690 		++bp->fw_drv_pulse_wr_seq;
4691 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4692 		/* TBD - add SYSTEM_TIME */
4693 		drv_pulse = bp->fw_drv_pulse_wr_seq;
4694 		bnx2x_drv_pulse(bp);
4695 
4696 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4697 			     MCP_PULSE_SEQ_MASK);
4698 		/* The delta between driver pulse and mcp response
4699 		 * should be 1 (before mcp response) or 0 (after mcp response)
4700 		 */
4701 		if ((drv_pulse != mcp_pulse) &&
4702 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4703 			/* someone lost a heartbeat... */
4704 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4705 				  drv_pulse, mcp_pulse);
4706 		}
4707 	}
4708 
4709 	if (bp->state == BNX2X_STATE_OPEN)
4710 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4711 
4712 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4713 }
4714 
4715 /* end of Statistics */
4716 
4717 /* nic init */
4718 
4719 /*
4720  * nic init service functions
4721  */
4722 
4723 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4724 {
4725 	u32 i;
4726 	if (!(len%4) && !(addr%4))
4727 		for (i = 0; i < len; i += 4)
4728 			REG_WR(bp, addr + i, fill);
4729 	else
4730 		for (i = 0; i < len; i++)
4731 			REG_WR8(bp, addr + i, fill);
4732 
4733 }
4734 
4735 /* helper: writes FP SP data to FW - data_size in dwords */
4736 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4737 				       int fw_sb_id,
4738 				       u32 *sb_data_p,
4739 				       u32 data_size)
4740 {
4741 	int index;
4742 	for (index = 0; index < data_size; index++)
4743 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4744 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4745 			sizeof(u32)*index,
4746 			*(sb_data_p + index));
4747 }
4748 
4749 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4750 {
4751 	u32 *sb_data_p;
4752 	u32 data_size = 0;
4753 	struct hc_status_block_data_e2 sb_data_e2;
4754 	struct hc_status_block_data_e1x sb_data_e1x;
4755 
4756 	/* disable the function first */
4757 	if (!CHIP_IS_E1x(bp)) {
4758 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4759 		sb_data_e2.common.state = SB_DISABLED;
4760 		sb_data_e2.common.p_func.vf_valid = false;
4761 		sb_data_p = (u32 *)&sb_data_e2;
4762 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4763 	} else {
4764 		memset(&sb_data_e1x, 0,
4765 		       sizeof(struct hc_status_block_data_e1x));
4766 		sb_data_e1x.common.state = SB_DISABLED;
4767 		sb_data_e1x.common.p_func.vf_valid = false;
4768 		sb_data_p = (u32 *)&sb_data_e1x;
4769 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4770 	}
4771 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4772 
4773 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4774 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4775 			CSTORM_STATUS_BLOCK_SIZE);
4776 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4777 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4778 			CSTORM_SYNC_BLOCK_SIZE);
4779 }
4780 
4781 /* helper:  writes SP SB data to FW */
4782 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4783 		struct hc_sp_status_block_data *sp_sb_data)
4784 {
4785 	int func = BP_FUNC(bp);
4786 	int i;
4787 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4788 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4789 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4790 			i*sizeof(u32),
4791 			*((u32 *)sp_sb_data + i));
4792 }
4793 
4794 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4795 {
4796 	int func = BP_FUNC(bp);
4797 	struct hc_sp_status_block_data sp_sb_data;
4798 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4799 
4800 	sp_sb_data.state = SB_DISABLED;
4801 	sp_sb_data.p_func.vf_valid = false;
4802 
4803 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4804 
4805 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4806 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4807 			CSTORM_SP_STATUS_BLOCK_SIZE);
4808 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4809 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4810 			CSTORM_SP_SYNC_BLOCK_SIZE);
4811 
4812 }
4813 
4814 
4815 static inline
4816 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4817 					   int igu_sb_id, int igu_seg_id)
4818 {
4819 	hc_sm->igu_sb_id = igu_sb_id;
4820 	hc_sm->igu_seg_id = igu_seg_id;
4821 	hc_sm->timer_value = 0xFF;
4822 	hc_sm->time_to_expire = 0xFFFFFFFF;
4823 }
4824 
4825 
4826 /* allocates state machine ids. */
4827 static inline
4828 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4829 {
4830 	/* zero out state machine indices */
4831 	/* rx indices */
4832 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4833 
4834 	/* tx indices */
4835 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4836 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4837 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4838 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4839 
4840 	/* map indices */
4841 	/* rx indices */
4842 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4843 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4844 
4845 	/* tx indices */
4846 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4847 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4848 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4849 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4850 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4851 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4852 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4853 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4854 }
4855 
4856 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4857 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
4858 {
4859 	int igu_seg_id;
4860 
4861 	struct hc_status_block_data_e2 sb_data_e2;
4862 	struct hc_status_block_data_e1x sb_data_e1x;
4863 	struct hc_status_block_sm  *hc_sm_p;
4864 	int data_size;
4865 	u32 *sb_data_p;
4866 
4867 	if (CHIP_INT_MODE_IS_BC(bp))
4868 		igu_seg_id = HC_SEG_ACCESS_NORM;
4869 	else
4870 		igu_seg_id = IGU_SEG_ACCESS_NORM;
4871 
4872 	bnx2x_zero_fp_sb(bp, fw_sb_id);
4873 
4874 	if (!CHIP_IS_E1x(bp)) {
4875 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4876 		sb_data_e2.common.state = SB_ENABLED;
4877 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4878 		sb_data_e2.common.p_func.vf_id = vfid;
4879 		sb_data_e2.common.p_func.vf_valid = vf_valid;
4880 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4881 		sb_data_e2.common.same_igu_sb_1b = true;
4882 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4883 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4884 		hc_sm_p = sb_data_e2.common.state_machine;
4885 		sb_data_p = (u32 *)&sb_data_e2;
4886 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4887 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4888 	} else {
4889 		memset(&sb_data_e1x, 0,
4890 		       sizeof(struct hc_status_block_data_e1x));
4891 		sb_data_e1x.common.state = SB_ENABLED;
4892 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4893 		sb_data_e1x.common.p_func.vf_id = 0xff;
4894 		sb_data_e1x.common.p_func.vf_valid = false;
4895 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4896 		sb_data_e1x.common.same_igu_sb_1b = true;
4897 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4898 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4899 		hc_sm_p = sb_data_e1x.common.state_machine;
4900 		sb_data_p = (u32 *)&sb_data_e1x;
4901 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4902 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4903 	}
4904 
4905 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4906 				       igu_sb_id, igu_seg_id);
4907 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4908 				       igu_sb_id, igu_seg_id);
4909 
4910 	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4911 
4912 	/* write indecies to HW */
4913 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4914 }
4915 
4916 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4917 				     u16 tx_usec, u16 rx_usec)
4918 {
4919 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4920 				    false, rx_usec);
4921 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4922 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4923 				       tx_usec);
4924 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4925 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4926 				       tx_usec);
4927 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4928 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4929 				       tx_usec);
4930 }
4931 
4932 static void bnx2x_init_def_sb(struct bnx2x *bp)
4933 {
4934 	struct host_sp_status_block *def_sb = bp->def_status_blk;
4935 	dma_addr_t mapping = bp->def_status_blk_mapping;
4936 	int igu_sp_sb_index;
4937 	int igu_seg_id;
4938 	int port = BP_PORT(bp);
4939 	int func = BP_FUNC(bp);
4940 	int reg_offset, reg_offset_en5;
4941 	u64 section;
4942 	int index;
4943 	struct hc_sp_status_block_data sp_sb_data;
4944 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4945 
4946 	if (CHIP_INT_MODE_IS_BC(bp)) {
4947 		igu_sp_sb_index = DEF_SB_IGU_ID;
4948 		igu_seg_id = HC_SEG_ACCESS_DEF;
4949 	} else {
4950 		igu_sp_sb_index = bp->igu_dsb_id;
4951 		igu_seg_id = IGU_SEG_ACCESS_DEF;
4952 	}
4953 
4954 	/* ATTN */
4955 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4956 					    atten_status_block);
4957 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4958 
4959 	bp->attn_state = 0;
4960 
4961 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4962 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4963 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
4964 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
4965 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4966 		int sindex;
4967 		/* take care of sig[0]..sig[4] */
4968 		for (sindex = 0; sindex < 4; sindex++)
4969 			bp->attn_group[index].sig[sindex] =
4970 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4971 
4972 		if (!CHIP_IS_E1x(bp))
4973 			/*
4974 			 * enable5 is separate from the rest of the registers,
4975 			 * and therefore the address skip is 4
4976 			 * and not 16 between the different groups
4977 			 */
4978 			bp->attn_group[index].sig[4] = REG_RD(bp,
4979 					reg_offset_en5 + 0x4*index);
4980 		else
4981 			bp->attn_group[index].sig[4] = 0;
4982 	}
4983 
4984 	if (bp->common.int_block == INT_BLOCK_HC) {
4985 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4986 				     HC_REG_ATTN_MSG0_ADDR_L);
4987 
4988 		REG_WR(bp, reg_offset, U64_LO(section));
4989 		REG_WR(bp, reg_offset + 4, U64_HI(section));
4990 	} else if (!CHIP_IS_E1x(bp)) {
4991 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4992 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4993 	}
4994 
4995 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4996 					    sp_sb);
4997 
4998 	bnx2x_zero_sp_sb(bp);
4999 
5000 	sp_sb_data.state		= SB_ENABLED;
5001 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5002 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5003 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5004 	sp_sb_data.igu_seg_id		= igu_seg_id;
5005 	sp_sb_data.p_func.pf_id		= func;
5006 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5007 	sp_sb_data.p_func.vf_id		= 0xff;
5008 
5009 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5010 
5011 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5012 }
5013 
5014 void bnx2x_update_coalesce(struct bnx2x *bp)
5015 {
5016 	int i;
5017 
5018 	for_each_eth_queue(bp, i)
5019 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5020 					 bp->tx_ticks, bp->rx_ticks);
5021 }
5022 
5023 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5024 {
5025 	spin_lock_init(&bp->spq_lock);
5026 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5027 
5028 	bp->spq_prod_idx = 0;
5029 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5030 	bp->spq_prod_bd = bp->spq;
5031 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5032 }
5033 
5034 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5035 {
5036 	int i;
5037 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5038 		union event_ring_elem *elem =
5039 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5040 
5041 		elem->next_page.addr.hi =
5042 			cpu_to_le32(U64_HI(bp->eq_mapping +
5043 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5044 		elem->next_page.addr.lo =
5045 			cpu_to_le32(U64_LO(bp->eq_mapping +
5046 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5047 	}
5048 	bp->eq_cons = 0;
5049 	bp->eq_prod = NUM_EQ_DESC;
5050 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5051 	/* we want a warning message before it gets rought... */
5052 	atomic_set(&bp->eq_spq_left,
5053 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5054 }
5055 
5056 
5057 /* called with netif_addr_lock_bh() */
5058 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5059 			 unsigned long rx_mode_flags,
5060 			 unsigned long rx_accept_flags,
5061 			 unsigned long tx_accept_flags,
5062 			 unsigned long ramrod_flags)
5063 {
5064 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5065 	int rc;
5066 
5067 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5068 
5069 	/* Prepare ramrod parameters */
5070 	ramrod_param.cid = 0;
5071 	ramrod_param.cl_id = cl_id;
5072 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5073 	ramrod_param.func_id = BP_FUNC(bp);
5074 
5075 	ramrod_param.pstate = &bp->sp_state;
5076 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5077 
5078 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5079 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5080 
5081 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5082 
5083 	ramrod_param.ramrod_flags = ramrod_flags;
5084 	ramrod_param.rx_mode_flags = rx_mode_flags;
5085 
5086 	ramrod_param.rx_accept_flags = rx_accept_flags;
5087 	ramrod_param.tx_accept_flags = tx_accept_flags;
5088 
5089 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5090 	if (rc < 0) {
5091 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5092 		return;
5093 	}
5094 }
5095 
5096 /* called with netif_addr_lock_bh() */
5097 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5098 {
5099 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5100 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5101 
5102 #ifdef BCM_CNIC
5103 	if (!NO_FCOE(bp))
5104 
5105 		/* Configure rx_mode of FCoE Queue */
5106 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5107 #endif
5108 
5109 	switch (bp->rx_mode) {
5110 	case BNX2X_RX_MODE_NONE:
5111 		/*
5112 		 * 'drop all' supersedes any accept flags that may have been
5113 		 * passed to the function.
5114 		 */
5115 		break;
5116 	case BNX2X_RX_MODE_NORMAL:
5117 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5118 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5119 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5120 
5121 		/* internal switching mode */
5122 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5123 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5124 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5125 
5126 		break;
5127 	case BNX2X_RX_MODE_ALLMULTI:
5128 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5129 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5130 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5131 
5132 		/* internal switching mode */
5133 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5134 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5135 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5136 
5137 		break;
5138 	case BNX2X_RX_MODE_PROMISC:
5139 		/* According to deffinition of SI mode, iface in promisc mode
5140 		 * should receive matched and unmatched (in resolution of port)
5141 		 * unicast packets.
5142 		 */
5143 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5144 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5145 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5146 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5147 
5148 		/* internal switching mode */
5149 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5150 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5151 
5152 		if (IS_MF_SI(bp))
5153 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5154 		else
5155 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5156 
5157 		break;
5158 	default:
5159 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5160 		return;
5161 	}
5162 
5163 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5164 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5165 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5166 	}
5167 
5168 	__set_bit(RAMROD_RX, &ramrod_flags);
5169 	__set_bit(RAMROD_TX, &ramrod_flags);
5170 
5171 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5172 			    tx_accept_flags, ramrod_flags);
5173 }
5174 
5175 static void bnx2x_init_internal_common(struct bnx2x *bp)
5176 {
5177 	int i;
5178 
5179 	if (IS_MF_SI(bp))
5180 		/*
5181 		 * In switch independent mode, the TSTORM needs to accept
5182 		 * packets that failed classification, since approximate match
5183 		 * mac addresses aren't written to NIG LLH
5184 		 */
5185 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5186 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5187 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5188 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5189 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5190 
5191 	/* Zero this manually as its initialization is
5192 	   currently missing in the initTool */
5193 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5194 		REG_WR(bp, BAR_USTRORM_INTMEM +
5195 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5196 	if (!CHIP_IS_E1x(bp)) {
5197 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5198 			CHIP_INT_MODE_IS_BC(bp) ?
5199 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5200 	}
5201 }
5202 
5203 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5204 {
5205 	switch (load_code) {
5206 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5207 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5208 		bnx2x_init_internal_common(bp);
5209 		/* no break */
5210 
5211 	case FW_MSG_CODE_DRV_LOAD_PORT:
5212 		/* nothing to do */
5213 		/* no break */
5214 
5215 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5216 		/* internal memory per function is
5217 		   initialized inside bnx2x_pf_init */
5218 		break;
5219 
5220 	default:
5221 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5222 		break;
5223 	}
5224 }
5225 
5226 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5227 {
5228 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5229 }
5230 
5231 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5232 {
5233 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5234 }
5235 
5236 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5237 {
5238 	if (CHIP_IS_E1x(fp->bp))
5239 		return BP_L_ID(fp->bp) + fp->index;
5240 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5241 		return bnx2x_fp_igu_sb_id(fp);
5242 }
5243 
5244 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5245 {
5246 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5247 	u8 cos;
5248 	unsigned long q_type = 0;
5249 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5250 
5251 	fp->cid = fp_idx;
5252 	fp->cl_id = bnx2x_fp_cl_id(fp);
5253 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5254 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5255 	/* qZone id equals to FW (per path) client id */
5256 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5257 
5258 	/* init shortcut */
5259 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5260 	/* Setup SB indicies */
5261 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5262 
5263 	/* Configure Queue State object */
5264 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5265 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5266 
5267 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5268 
5269 	/* init tx data */
5270 	for_each_cos_in_tx_queue(fp, cos) {
5271 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5272 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5273 				  FP_COS_TO_TXQ(fp, cos),
5274 				  BNX2X_TX_SB_INDEX_BASE + cos);
5275 		cids[cos] = fp->txdata[cos].cid;
5276 	}
5277 
5278 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5279 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5280 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5281 
5282 	/**
5283 	 * Configure classification DBs: Always enable Tx switching
5284 	 */
5285 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5286 
5287 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5288 				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5289 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5290 		   fp->igu_sb_id);
5291 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5292 		      fp->fw_sb_id, fp->igu_sb_id);
5293 
5294 	bnx2x_update_fpsb_idx(fp);
5295 }
5296 
5297 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5298 {
5299 	int i;
5300 
5301 	for_each_eth_queue(bp, i)
5302 		bnx2x_init_eth_fp(bp, i);
5303 #ifdef BCM_CNIC
5304 	if (!NO_FCOE(bp))
5305 		bnx2x_init_fcoe_fp(bp);
5306 
5307 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5308 		      BNX2X_VF_ID_INVALID, false,
5309 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5310 
5311 #endif
5312 
5313 	/* Initialize MOD_ABS interrupts */
5314 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5315 			       bp->common.shmem_base, bp->common.shmem2_base,
5316 			       BP_PORT(bp));
5317 	/* ensure status block indices were read */
5318 	rmb();
5319 
5320 	bnx2x_init_def_sb(bp);
5321 	bnx2x_update_dsb_idx(bp);
5322 	bnx2x_init_rx_rings(bp);
5323 	bnx2x_init_tx_rings(bp);
5324 	bnx2x_init_sp_ring(bp);
5325 	bnx2x_init_eq_ring(bp);
5326 	bnx2x_init_internal(bp, load_code);
5327 	bnx2x_pf_init(bp);
5328 	bnx2x_stats_init(bp);
5329 
5330 	/* flush all before enabling interrupts */
5331 	mb();
5332 	mmiowb();
5333 
5334 	bnx2x_int_enable(bp);
5335 
5336 	/* Check for SPIO5 */
5337 	bnx2x_attn_int_deasserted0(bp,
5338 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5339 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5340 }
5341 
5342 /* end of nic init */
5343 
5344 /*
5345  * gzip service functions
5346  */
5347 
5348 static int bnx2x_gunzip_init(struct bnx2x *bp)
5349 {
5350 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5351 					    &bp->gunzip_mapping, GFP_KERNEL);
5352 	if (bp->gunzip_buf  == NULL)
5353 		goto gunzip_nomem1;
5354 
5355 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5356 	if (bp->strm  == NULL)
5357 		goto gunzip_nomem2;
5358 
5359 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5360 	if (bp->strm->workspace == NULL)
5361 		goto gunzip_nomem3;
5362 
5363 	return 0;
5364 
5365 gunzip_nomem3:
5366 	kfree(bp->strm);
5367 	bp->strm = NULL;
5368 
5369 gunzip_nomem2:
5370 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5371 			  bp->gunzip_mapping);
5372 	bp->gunzip_buf = NULL;
5373 
5374 gunzip_nomem1:
5375 	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5376 	       " un-compression\n");
5377 	return -ENOMEM;
5378 }
5379 
5380 static void bnx2x_gunzip_end(struct bnx2x *bp)
5381 {
5382 	if (bp->strm) {
5383 		vfree(bp->strm->workspace);
5384 		kfree(bp->strm);
5385 		bp->strm = NULL;
5386 	}
5387 
5388 	if (bp->gunzip_buf) {
5389 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5390 				  bp->gunzip_mapping);
5391 		bp->gunzip_buf = NULL;
5392 	}
5393 }
5394 
5395 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5396 {
5397 	int n, rc;
5398 
5399 	/* check gzip header */
5400 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5401 		BNX2X_ERR("Bad gzip header\n");
5402 		return -EINVAL;
5403 	}
5404 
5405 	n = 10;
5406 
5407 #define FNAME				0x8
5408 
5409 	if (zbuf[3] & FNAME)
5410 		while ((zbuf[n++] != 0) && (n < len));
5411 
5412 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5413 	bp->strm->avail_in = len - n;
5414 	bp->strm->next_out = bp->gunzip_buf;
5415 	bp->strm->avail_out = FW_BUF_SIZE;
5416 
5417 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5418 	if (rc != Z_OK)
5419 		return rc;
5420 
5421 	rc = zlib_inflate(bp->strm, Z_FINISH);
5422 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5423 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5424 			   bp->strm->msg);
5425 
5426 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5427 	if (bp->gunzip_outlen & 0x3)
5428 		netdev_err(bp->dev, "Firmware decompression error:"
5429 				    " gunzip_outlen (%d) not aligned\n",
5430 				bp->gunzip_outlen);
5431 	bp->gunzip_outlen >>= 2;
5432 
5433 	zlib_inflateEnd(bp->strm);
5434 
5435 	if (rc == Z_STREAM_END)
5436 		return 0;
5437 
5438 	return rc;
5439 }
5440 
5441 /* nic load/unload */
5442 
5443 /*
5444  * General service functions
5445  */
5446 
5447 /* send a NIG loopback debug packet */
5448 static void bnx2x_lb_pckt(struct bnx2x *bp)
5449 {
5450 	u32 wb_write[3];
5451 
5452 	/* Ethernet source and destination addresses */
5453 	wb_write[0] = 0x55555555;
5454 	wb_write[1] = 0x55555555;
5455 	wb_write[2] = 0x20;		/* SOP */
5456 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5457 
5458 	/* NON-IP protocol */
5459 	wb_write[0] = 0x09000000;
5460 	wb_write[1] = 0x55555555;
5461 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5462 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5463 }
5464 
5465 /* some of the internal memories
5466  * are not directly readable from the driver
5467  * to test them we send debug packets
5468  */
5469 static int bnx2x_int_mem_test(struct bnx2x *bp)
5470 {
5471 	int factor;
5472 	int count, i;
5473 	u32 val = 0;
5474 
5475 	if (CHIP_REV_IS_FPGA(bp))
5476 		factor = 120;
5477 	else if (CHIP_REV_IS_EMUL(bp))
5478 		factor = 200;
5479 	else
5480 		factor = 1;
5481 
5482 	/* Disable inputs of parser neighbor blocks */
5483 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5484 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5485 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5486 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5487 
5488 	/*  Write 0 to parser credits for CFC search request */
5489 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5490 
5491 	/* send Ethernet packet */
5492 	bnx2x_lb_pckt(bp);
5493 
5494 	/* TODO do i reset NIG statistic? */
5495 	/* Wait until NIG register shows 1 packet of size 0x10 */
5496 	count = 1000 * factor;
5497 	while (count) {
5498 
5499 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5500 		val = *bnx2x_sp(bp, wb_data[0]);
5501 		if (val == 0x10)
5502 			break;
5503 
5504 		msleep(10);
5505 		count--;
5506 	}
5507 	if (val != 0x10) {
5508 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5509 		return -1;
5510 	}
5511 
5512 	/* Wait until PRS register shows 1 packet */
5513 	count = 1000 * factor;
5514 	while (count) {
5515 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5516 		if (val == 1)
5517 			break;
5518 
5519 		msleep(10);
5520 		count--;
5521 	}
5522 	if (val != 0x1) {
5523 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5524 		return -2;
5525 	}
5526 
5527 	/* Reset and init BRB, PRS */
5528 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5529 	msleep(50);
5530 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5531 	msleep(50);
5532 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5533 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5534 
5535 	DP(NETIF_MSG_HW, "part2\n");
5536 
5537 	/* Disable inputs of parser neighbor blocks */
5538 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5539 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5540 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5541 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5542 
5543 	/* Write 0 to parser credits for CFC search request */
5544 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5545 
5546 	/* send 10 Ethernet packets */
5547 	for (i = 0; i < 10; i++)
5548 		bnx2x_lb_pckt(bp);
5549 
5550 	/* Wait until NIG register shows 10 + 1
5551 	   packets of size 11*0x10 = 0xb0 */
5552 	count = 1000 * factor;
5553 	while (count) {
5554 
5555 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5556 		val = *bnx2x_sp(bp, wb_data[0]);
5557 		if (val == 0xb0)
5558 			break;
5559 
5560 		msleep(10);
5561 		count--;
5562 	}
5563 	if (val != 0xb0) {
5564 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5565 		return -3;
5566 	}
5567 
5568 	/* Wait until PRS register shows 2 packets */
5569 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5570 	if (val != 2)
5571 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5572 
5573 	/* Write 1 to parser credits for CFC search request */
5574 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5575 
5576 	/* Wait until PRS register shows 3 packets */
5577 	msleep(10 * factor);
5578 	/* Wait until NIG register shows 1 packet of size 0x10 */
5579 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5580 	if (val != 3)
5581 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5582 
5583 	/* clear NIG EOP FIFO */
5584 	for (i = 0; i < 11; i++)
5585 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5586 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5587 	if (val != 1) {
5588 		BNX2X_ERR("clear of NIG failed\n");
5589 		return -4;
5590 	}
5591 
5592 	/* Reset and init BRB, PRS, NIG */
5593 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5594 	msleep(50);
5595 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5596 	msleep(50);
5597 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5598 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5599 #ifndef BCM_CNIC
5600 	/* set NIC mode */
5601 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5602 #endif
5603 
5604 	/* Enable inputs of parser neighbor blocks */
5605 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5606 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5607 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5608 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5609 
5610 	DP(NETIF_MSG_HW, "done\n");
5611 
5612 	return 0; /* OK */
5613 }
5614 
5615 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5616 {
5617 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5618 	if (!CHIP_IS_E1x(bp))
5619 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5620 	else
5621 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5622 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5623 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5624 	/*
5625 	 * mask read length error interrupts in brb for parser
5626 	 * (parsing unit and 'checksum and crc' unit)
5627 	 * these errors are legal (PU reads fixed length and CAC can cause
5628 	 * read length error on truncated packets)
5629 	 */
5630 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5631 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5632 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5633 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5634 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5635 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5636 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5637 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5638 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5639 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5640 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5641 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5642 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5643 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5644 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5645 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5646 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5647 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5648 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5649 
5650 	if (CHIP_REV_IS_FPGA(bp))
5651 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5652 	else if (!CHIP_IS_E1x(bp))
5653 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5654 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5655 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5656 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5657 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5658 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5659 	else
5660 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5661 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5662 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5663 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5664 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5665 
5666 	if (!CHIP_IS_E1x(bp))
5667 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5668 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5669 
5670 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5671 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5672 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5673 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5674 }
5675 
5676 static void bnx2x_reset_common(struct bnx2x *bp)
5677 {
5678 	u32 val = 0x1400;
5679 
5680 	/* reset_common */
5681 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5682 	       0xd3ffff7f);
5683 
5684 	if (CHIP_IS_E3(bp)) {
5685 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5686 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5687 	}
5688 
5689 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5690 }
5691 
5692 static void bnx2x_setup_dmae(struct bnx2x *bp)
5693 {
5694 	bp->dmae_ready = 0;
5695 	spin_lock_init(&bp->dmae_lock);
5696 }
5697 
5698 static void bnx2x_init_pxp(struct bnx2x *bp)
5699 {
5700 	u16 devctl;
5701 	int r_order, w_order;
5702 
5703 	pci_read_config_word(bp->pdev,
5704 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5705 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5706 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5707 	if (bp->mrrs == -1)
5708 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5709 	else {
5710 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5711 		r_order = bp->mrrs;
5712 	}
5713 
5714 	bnx2x_init_pxp_arb(bp, r_order, w_order);
5715 }
5716 
5717 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5718 {
5719 	int is_required;
5720 	u32 val;
5721 	int port;
5722 
5723 	if (BP_NOMCP(bp))
5724 		return;
5725 
5726 	is_required = 0;
5727 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5728 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5729 
5730 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5731 		is_required = 1;
5732 
5733 	/*
5734 	 * The fan failure mechanism is usually related to the PHY type since
5735 	 * the power consumption of the board is affected by the PHY. Currently,
5736 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5737 	 */
5738 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5739 		for (port = PORT_0; port < PORT_MAX; port++) {
5740 			is_required |=
5741 				bnx2x_fan_failure_det_req(
5742 					bp,
5743 					bp->common.shmem_base,
5744 					bp->common.shmem2_base,
5745 					port);
5746 		}
5747 
5748 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5749 
5750 	if (is_required == 0)
5751 		return;
5752 
5753 	/* Fan failure is indicated by SPIO 5 */
5754 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5755 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5756 
5757 	/* set to active low mode */
5758 	val = REG_RD(bp, MISC_REG_SPIO_INT);
5759 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5760 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5761 	REG_WR(bp, MISC_REG_SPIO_INT, val);
5762 
5763 	/* enable interrupt to signal the IGU */
5764 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5765 	val |= (1 << MISC_REGISTERS_SPIO_5);
5766 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5767 }
5768 
5769 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5770 {
5771 	u32 offset = 0;
5772 
5773 	if (CHIP_IS_E1(bp))
5774 		return;
5775 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5776 		return;
5777 
5778 	switch (BP_ABS_FUNC(bp)) {
5779 	case 0:
5780 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5781 		break;
5782 	case 1:
5783 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5784 		break;
5785 	case 2:
5786 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5787 		break;
5788 	case 3:
5789 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5790 		break;
5791 	case 4:
5792 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5793 		break;
5794 	case 5:
5795 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5796 		break;
5797 	case 6:
5798 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5799 		break;
5800 	case 7:
5801 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5802 		break;
5803 	default:
5804 		return;
5805 	}
5806 
5807 	REG_WR(bp, offset, pretend_func_num);
5808 	REG_RD(bp, offset);
5809 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5810 }
5811 
5812 void bnx2x_pf_disable(struct bnx2x *bp)
5813 {
5814 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5815 	val &= ~IGU_PF_CONF_FUNC_EN;
5816 
5817 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5818 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5819 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5820 }
5821 
5822 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5823 {
5824 	u32 shmem_base[2], shmem2_base[2];
5825 	shmem_base[0] =  bp->common.shmem_base;
5826 	shmem2_base[0] = bp->common.shmem2_base;
5827 	if (!CHIP_IS_E1x(bp)) {
5828 		shmem_base[1] =
5829 			SHMEM2_RD(bp, other_shmem_base_addr);
5830 		shmem2_base[1] =
5831 			SHMEM2_RD(bp, other_shmem2_base_addr);
5832 	}
5833 	bnx2x_acquire_phy_lock(bp);
5834 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5835 			      bp->common.chip_id);
5836 	bnx2x_release_phy_lock(bp);
5837 }
5838 
5839 /**
5840  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5841  *
5842  * @bp:		driver handle
5843  */
5844 static int bnx2x_init_hw_common(struct bnx2x *bp)
5845 {
5846 	u32 val;
5847 
5848 	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5849 
5850 	/*
5851 	 * take the UNDI lock to protect undi_unload flow from accessing
5852 	 * registers while we're resetting the chip
5853 	 */
5854 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5855 
5856 	bnx2x_reset_common(bp);
5857 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5858 
5859 	val = 0xfffc;
5860 	if (CHIP_IS_E3(bp)) {
5861 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5862 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5863 	}
5864 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5865 
5866 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5867 
5868 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5869 
5870 	if (!CHIP_IS_E1x(bp)) {
5871 		u8 abs_func_id;
5872 
5873 		/**
5874 		 * 4-port mode or 2-port mode we need to turn of master-enable
5875 		 * for everyone, after that, turn it back on for self.
5876 		 * so, we disregard multi-function or not, and always disable
5877 		 * for all functions on the given path, this means 0,2,4,6 for
5878 		 * path 0 and 1,3,5,7 for path 1
5879 		 */
5880 		for (abs_func_id = BP_PATH(bp);
5881 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5882 			if (abs_func_id == BP_ABS_FUNC(bp)) {
5883 				REG_WR(bp,
5884 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5885 				    1);
5886 				continue;
5887 			}
5888 
5889 			bnx2x_pretend_func(bp, abs_func_id);
5890 			/* clear pf enable */
5891 			bnx2x_pf_disable(bp);
5892 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5893 		}
5894 	}
5895 
5896 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5897 	if (CHIP_IS_E1(bp)) {
5898 		/* enable HW interrupt from PXP on USDM overflow
5899 		   bit 16 on INT_MASK_0 */
5900 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5901 	}
5902 
5903 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5904 	bnx2x_init_pxp(bp);
5905 
5906 #ifdef __BIG_ENDIAN
5907 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5908 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5909 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5910 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5911 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5912 	/* make sure this value is 0 */
5913 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5914 
5915 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5916 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5917 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5918 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5919 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5920 #endif
5921 
5922 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
5923 
5924 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5925 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5926 
5927 	/* let the HW do it's magic ... */
5928 	msleep(100);
5929 	/* finish PXP init */
5930 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5931 	if (val != 1) {
5932 		BNX2X_ERR("PXP2 CFG failed\n");
5933 		return -EBUSY;
5934 	}
5935 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5936 	if (val != 1) {
5937 		BNX2X_ERR("PXP2 RD_INIT failed\n");
5938 		return -EBUSY;
5939 	}
5940 
5941 	/* Timers bug workaround E2 only. We need to set the entire ILT to
5942 	 * have entries with value "0" and valid bit on.
5943 	 * This needs to be done by the first PF that is loaded in a path
5944 	 * (i.e. common phase)
5945 	 */
5946 	if (!CHIP_IS_E1x(bp)) {
5947 /* In E2 there is a bug in the timers block that can cause function 6 / 7
5948  * (i.e. vnic3) to start even if it is marked as "scan-off".
5949  * This occurs when a different function (func2,3) is being marked
5950  * as "scan-off". Real-life scenario for example: if a driver is being
5951  * load-unloaded while func6,7 are down. This will cause the timer to access
5952  * the ilt, translate to a logical address and send a request to read/write.
5953  * Since the ilt for the function that is down is not valid, this will cause
5954  * a translation error which is unrecoverable.
5955  * The Workaround is intended to make sure that when this happens nothing fatal
5956  * will occur. The workaround:
5957  *	1.  First PF driver which loads on a path will:
5958  *		a.  After taking the chip out of reset, by using pretend,
5959  *		    it will write "0" to the following registers of
5960  *		    the other vnics.
5961  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5962  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5963  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5964  *		    And for itself it will write '1' to
5965  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5966  *		    dmae-operations (writing to pram for example.)
5967  *		    note: can be done for only function 6,7 but cleaner this
5968  *			  way.
5969  *		b.  Write zero+valid to the entire ILT.
5970  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
5971  *		    VNIC3 (of that port). The range allocated will be the
5972  *		    entire ILT. This is needed to prevent  ILT range error.
5973  *	2.  Any PF driver load flow:
5974  *		a.  ILT update with the physical addresses of the allocated
5975  *		    logical pages.
5976  *		b.  Wait 20msec. - note that this timeout is needed to make
5977  *		    sure there are no requests in one of the PXP internal
5978  *		    queues with "old" ILT addresses.
5979  *		c.  PF enable in the PGLC.
5980  *		d.  Clear the was_error of the PF in the PGLC. (could have
5981  *		    occured while driver was down)
5982  *		e.  PF enable in the CFC (WEAK + STRONG)
5983  *		f.  Timers scan enable
5984  *	3.  PF driver unload flow:
5985  *		a.  Clear the Timers scan_en.
5986  *		b.  Polling for scan_on=0 for that PF.
5987  *		c.  Clear the PF enable bit in the PXP.
5988  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
5989  *		e.  Write zero+valid to all ILT entries (The valid bit must
5990  *		    stay set)
5991  *		f.  If this is VNIC 3 of a port then also init
5992  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
5993  *		    to the last enrty in the ILT.
5994  *
5995  *	Notes:
5996  *	Currently the PF error in the PGLC is non recoverable.
5997  *	In the future the there will be a recovery routine for this error.
5998  *	Currently attention is masked.
5999  *	Having an MCP lock on the load/unload process does not guarantee that
6000  *	there is no Timer disable during Func6/7 enable. This is because the
6001  *	Timers scan is currently being cleared by the MCP on FLR.
6002  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6003  *	there is error before clearing it. But the flow above is simpler and
6004  *	more general.
6005  *	All ILT entries are written by zero+valid and not just PF6/7
6006  *	ILT entries since in the future the ILT entries allocation for
6007  *	PF-s might be dynamic.
6008  */
6009 		struct ilt_client_info ilt_cli;
6010 		struct bnx2x_ilt ilt;
6011 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6012 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6013 
6014 		/* initialize dummy TM client */
6015 		ilt_cli.start = 0;
6016 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6017 		ilt_cli.client_num = ILT_CLIENT_TM;
6018 
6019 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6020 		 * Step 2: set the timers first/last ilt entry to point
6021 		 * to the entire range to prevent ILT range error for 3rd/4th
6022 		 * vnic	(this code assumes existance of the vnic)
6023 		 *
6024 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6025 		 * with dummy TM client
6026 		 *
6027 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6028 		 * and his brother are split registers
6029 		 */
6030 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6031 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6032 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6033 
6034 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6035 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6036 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6037 	}
6038 
6039 
6040 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6041 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6042 
6043 	if (!CHIP_IS_E1x(bp)) {
6044 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6045 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6046 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6047 
6048 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6049 
6050 		/* let the HW do it's magic ... */
6051 		do {
6052 			msleep(200);
6053 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6054 		} while (factor-- && (val != 1));
6055 
6056 		if (val != 1) {
6057 			BNX2X_ERR("ATC_INIT failed\n");
6058 			return -EBUSY;
6059 		}
6060 	}
6061 
6062 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6063 
6064 	/* clean the DMAE memory */
6065 	bp->dmae_ready = 1;
6066 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6067 
6068 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6069 
6070 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6071 
6072 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6073 
6074 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6075 
6076 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6077 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6078 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6079 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6080 
6081 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6082 
6083 
6084 	/* QM queues pointers table */
6085 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6086 
6087 	/* soft reset pulse */
6088 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6089 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6090 
6091 #ifdef BCM_CNIC
6092 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6093 #endif
6094 
6095 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6096 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6097 	if (!CHIP_REV_IS_SLOW(bp))
6098 		/* enable hw interrupt from doorbell Q */
6099 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6100 
6101 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6102 
6103 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6104 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6105 
6106 	if (!CHIP_IS_E1(bp))
6107 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6108 
6109 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6110 		/* Bit-map indicating which L2 hdrs may appear
6111 		 * after the basic Ethernet header
6112 		 */
6113 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6114 		       bp->path_has_ovlan ? 7 : 6);
6115 
6116 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6117 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6118 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6119 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6120 
6121 	if (!CHIP_IS_E1x(bp)) {
6122 		/* reset VFC memories */
6123 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6124 			   VFC_MEMORIES_RST_REG_CAM_RST |
6125 			   VFC_MEMORIES_RST_REG_RAM_RST);
6126 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6127 			   VFC_MEMORIES_RST_REG_CAM_RST |
6128 			   VFC_MEMORIES_RST_REG_RAM_RST);
6129 
6130 		msleep(20);
6131 	}
6132 
6133 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6134 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6135 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6136 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6137 
6138 	/* sync semi rtc */
6139 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6140 	       0x80000000);
6141 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6142 	       0x80000000);
6143 
6144 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6145 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6146 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6147 
6148 	if (!CHIP_IS_E1x(bp))
6149 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6150 		       bp->path_has_ovlan ? 7 : 6);
6151 
6152 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6153 
6154 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6155 
6156 #ifdef BCM_CNIC
6157 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6158 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6159 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6160 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6161 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6162 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6163 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6164 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6165 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6166 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6167 #endif
6168 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6169 
6170 	if (sizeof(union cdu_context) != 1024)
6171 		/* we currently assume that a context is 1024 bytes */
6172 		dev_alert(&bp->pdev->dev, "please adjust the size "
6173 					  "of cdu_context(%ld)\n",
6174 			 (long)sizeof(union cdu_context));
6175 
6176 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6177 	val = (4 << 24) + (0 << 12) + 1024;
6178 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6179 
6180 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6181 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6182 	/* enable context validation interrupt from CFC */
6183 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6184 
6185 	/* set the thresholds to prevent CFC/CDU race */
6186 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6187 
6188 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6189 
6190 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6191 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6192 
6193 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6194 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6195 
6196 	/* Reset PCIE errors for debug */
6197 	REG_WR(bp, 0x2814, 0xffffffff);
6198 	REG_WR(bp, 0x3820, 0xffffffff);
6199 
6200 	if (!CHIP_IS_E1x(bp)) {
6201 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6202 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6203 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6204 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6205 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6206 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6207 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6208 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6209 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6210 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6211 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6212 	}
6213 
6214 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6215 	if (!CHIP_IS_E1(bp)) {
6216 		/* in E3 this done in per-port section */
6217 		if (!CHIP_IS_E3(bp))
6218 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6219 	}
6220 	if (CHIP_IS_E1H(bp))
6221 		/* not applicable for E2 (and above ...) */
6222 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6223 
6224 	if (CHIP_REV_IS_SLOW(bp))
6225 		msleep(200);
6226 
6227 	/* finish CFC init */
6228 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6229 	if (val != 1) {
6230 		BNX2X_ERR("CFC LL_INIT failed\n");
6231 		return -EBUSY;
6232 	}
6233 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6234 	if (val != 1) {
6235 		BNX2X_ERR("CFC AC_INIT failed\n");
6236 		return -EBUSY;
6237 	}
6238 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6239 	if (val != 1) {
6240 		BNX2X_ERR("CFC CAM_INIT failed\n");
6241 		return -EBUSY;
6242 	}
6243 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6244 
6245 	if (CHIP_IS_E1(bp)) {
6246 		/* read NIG statistic
6247 		   to see if this is our first up since powerup */
6248 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6249 		val = *bnx2x_sp(bp, wb_data[0]);
6250 
6251 		/* do internal memory self test */
6252 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6253 			BNX2X_ERR("internal mem self test failed\n");
6254 			return -EBUSY;
6255 		}
6256 	}
6257 
6258 	bnx2x_setup_fan_failure_detection(bp);
6259 
6260 	/* clear PXP2 attentions */
6261 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6262 
6263 	bnx2x_enable_blocks_attention(bp);
6264 	bnx2x_enable_blocks_parity(bp);
6265 
6266 	if (!BP_NOMCP(bp)) {
6267 		if (CHIP_IS_E1x(bp))
6268 			bnx2x__common_init_phy(bp);
6269 	} else
6270 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6271 
6272 	return 0;
6273 }
6274 
6275 /**
6276  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6277  *
6278  * @bp:		driver handle
6279  */
6280 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6281 {
6282 	int rc = bnx2x_init_hw_common(bp);
6283 
6284 	if (rc)
6285 		return rc;
6286 
6287 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6288 	if (!BP_NOMCP(bp))
6289 		bnx2x__common_init_phy(bp);
6290 
6291 	return 0;
6292 }
6293 
6294 static int bnx2x_init_hw_port(struct bnx2x *bp)
6295 {
6296 	int port = BP_PORT(bp);
6297 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6298 	u32 low, high;
6299 	u32 val;
6300 
6301 	bnx2x__link_reset(bp);
6302 
6303 	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6304 
6305 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6306 
6307 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6308 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6309 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6310 
6311 	/* Timers bug workaround: disables the pf_master bit in pglue at
6312 	 * common phase, we need to enable it here before any dmae access are
6313 	 * attempted. Therefore we manually added the enable-master to the
6314 	 * port phase (it also happens in the function phase)
6315 	 */
6316 	if (!CHIP_IS_E1x(bp))
6317 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6318 
6319 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6320 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6321 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6322 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6323 
6324 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6325 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6326 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6327 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6328 
6329 	/* QM cid (connection) count */
6330 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6331 
6332 #ifdef BCM_CNIC
6333 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6334 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6335 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6336 #endif
6337 
6338 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6339 
6340 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6341 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6342 
6343 		if (IS_MF(bp))
6344 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6345 		else if (bp->dev->mtu > 4096) {
6346 			if (bp->flags & ONE_PORT_FLAG)
6347 				low = 160;
6348 			else {
6349 				val = bp->dev->mtu;
6350 				/* (24*1024 + val*4)/256 */
6351 				low = 96 + (val/64) +
6352 						((val % 64) ? 1 : 0);
6353 			}
6354 		} else
6355 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6356 		high = low + 56;	/* 14*1024/256 */
6357 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6358 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6359 	}
6360 
6361 	if (CHIP_MODE_IS_4_PORT(bp))
6362 		REG_WR(bp, (BP_PORT(bp) ?
6363 			    BRB1_REG_MAC_GUARANTIED_1 :
6364 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6365 
6366 
6367 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6368 	if (CHIP_IS_E3B0(bp))
6369 		/* Ovlan exists only if we are in multi-function +
6370 		 * switch-dependent mode, in switch-independent there
6371 		 * is no ovlan headers
6372 		 */
6373 		REG_WR(bp, BP_PORT(bp) ?
6374 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6375 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6376 		       (bp->path_has_ovlan ? 7 : 6));
6377 
6378 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6379 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6380 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6381 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6382 
6383 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6384 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6385 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6386 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6387 
6388 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6389 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6390 
6391 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6392 
6393 	if (CHIP_IS_E1x(bp)) {
6394 		/* configure PBF to work without PAUSE mtu 9000 */
6395 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6396 
6397 		/* update threshold */
6398 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6399 		/* update init credit */
6400 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6401 
6402 		/* probe changes */
6403 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6404 		udelay(50);
6405 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6406 	}
6407 
6408 #ifdef BCM_CNIC
6409 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6410 #endif
6411 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6412 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6413 
6414 	if (CHIP_IS_E1(bp)) {
6415 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6416 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6417 	}
6418 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6419 
6420 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6421 
6422 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6423 	/* init aeu_mask_attn_func_0/1:
6424 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6425 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6426 	 *             bits 4-7 are used for "per vn group attention" */
6427 	val = IS_MF(bp) ? 0xF7 : 0x7;
6428 	/* Enable DCBX attention for all but E1 */
6429 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6430 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6431 
6432 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6433 
6434 	if (!CHIP_IS_E1x(bp)) {
6435 		/* Bit-map indicating which L2 hdrs may appear after the
6436 		 * basic Ethernet header
6437 		 */
6438 		REG_WR(bp, BP_PORT(bp) ?
6439 			   NIG_REG_P1_HDRS_AFTER_BASIC :
6440 			   NIG_REG_P0_HDRS_AFTER_BASIC,
6441 			   IS_MF_SD(bp) ? 7 : 6);
6442 
6443 		if (CHIP_IS_E3(bp))
6444 			REG_WR(bp, BP_PORT(bp) ?
6445 				   NIG_REG_LLH1_MF_MODE :
6446 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6447 	}
6448 	if (!CHIP_IS_E3(bp))
6449 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6450 
6451 	if (!CHIP_IS_E1(bp)) {
6452 		/* 0x2 disable mf_ov, 0x1 enable */
6453 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6454 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6455 
6456 		if (!CHIP_IS_E1x(bp)) {
6457 			val = 0;
6458 			switch (bp->mf_mode) {
6459 			case MULTI_FUNCTION_SD:
6460 				val = 1;
6461 				break;
6462 			case MULTI_FUNCTION_SI:
6463 				val = 2;
6464 				break;
6465 			}
6466 
6467 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6468 						  NIG_REG_LLH0_CLS_TYPE), val);
6469 		}
6470 		{
6471 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6472 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6473 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6474 		}
6475 	}
6476 
6477 
6478 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6479 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6480 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6481 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6482 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6483 		val = REG_RD(bp, reg_addr);
6484 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6485 		REG_WR(bp, reg_addr, val);
6486 	}
6487 
6488 	return 0;
6489 }
6490 
6491 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6492 {
6493 	int reg;
6494 
6495 	if (CHIP_IS_E1(bp))
6496 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6497 	else
6498 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6499 
6500 	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6501 }
6502 
6503 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6504 {
6505 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6506 }
6507 
6508 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6509 {
6510 	u32 i, base = FUNC_ILT_BASE(func);
6511 	for (i = base; i < base + ILT_PER_FUNC; i++)
6512 		bnx2x_ilt_wr(bp, i, 0);
6513 }
6514 
6515 static int bnx2x_init_hw_func(struct bnx2x *bp)
6516 {
6517 	int port = BP_PORT(bp);
6518 	int func = BP_FUNC(bp);
6519 	int init_phase = PHASE_PF0 + func;
6520 	struct bnx2x_ilt *ilt = BP_ILT(bp);
6521 	u16 cdu_ilt_start;
6522 	u32 addr, val;
6523 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6524 	int i, main_mem_width;
6525 
6526 	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6527 
6528 	/* FLR cleanup - hmmm */
6529 	if (!CHIP_IS_E1x(bp))
6530 		bnx2x_pf_flr_clnup(bp);
6531 
6532 	/* set MSI reconfigure capability */
6533 	if (bp->common.int_block == INT_BLOCK_HC) {
6534 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6535 		val = REG_RD(bp, addr);
6536 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6537 		REG_WR(bp, addr, val);
6538 	}
6539 
6540 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6541 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6542 
6543 	ilt = BP_ILT(bp);
6544 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6545 
6546 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6547 		ilt->lines[cdu_ilt_start + i].page =
6548 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6549 		ilt->lines[cdu_ilt_start + i].page_mapping =
6550 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6551 		/* cdu ilt pages are allocated manually so there's no need to
6552 		set the size */
6553 	}
6554 	bnx2x_ilt_init_op(bp, INITOP_SET);
6555 
6556 #ifdef BCM_CNIC
6557 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6558 
6559 	/* T1 hash bits value determines the T1 number of entries */
6560 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6561 #endif
6562 
6563 #ifndef BCM_CNIC
6564 	/* set NIC mode */
6565 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6566 #endif  /* BCM_CNIC */
6567 
6568 	if (!CHIP_IS_E1x(bp)) {
6569 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6570 
6571 		/* Turn on a single ISR mode in IGU if driver is going to use
6572 		 * INT#x or MSI
6573 		 */
6574 		if (!(bp->flags & USING_MSIX_FLAG))
6575 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6576 		/*
6577 		 * Timers workaround bug: function init part.
6578 		 * Need to wait 20msec after initializing ILT,
6579 		 * needed to make sure there are no requests in
6580 		 * one of the PXP internal queues with "old" ILT addresses
6581 		 */
6582 		msleep(20);
6583 		/*
6584 		 * Master enable - Due to WB DMAE writes performed before this
6585 		 * register is re-initialized as part of the regular function
6586 		 * init
6587 		 */
6588 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6589 		/* Enable the function in IGU */
6590 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6591 	}
6592 
6593 	bp->dmae_ready = 1;
6594 
6595 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6596 
6597 	if (!CHIP_IS_E1x(bp))
6598 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6599 
6600 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6601 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6602 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6603 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6604 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6605 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6606 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6607 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6608 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6609 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6610 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6611 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6612 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6613 
6614 	if (!CHIP_IS_E1x(bp))
6615 		REG_WR(bp, QM_REG_PF_EN, 1);
6616 
6617 	if (!CHIP_IS_E1x(bp)) {
6618 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6619 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6620 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6621 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6622 	}
6623 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6624 
6625 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6626 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6627 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6628 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6629 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6630 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6631 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6632 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6633 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6634 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6635 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6636 	if (!CHIP_IS_E1x(bp))
6637 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6638 
6639 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6640 
6641 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6642 
6643 	if (!CHIP_IS_E1x(bp))
6644 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6645 
6646 	if (IS_MF(bp)) {
6647 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6648 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6649 	}
6650 
6651 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6652 
6653 	/* HC init per function */
6654 	if (bp->common.int_block == INT_BLOCK_HC) {
6655 		if (CHIP_IS_E1H(bp)) {
6656 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6657 
6658 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6659 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6660 		}
6661 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6662 
6663 	} else {
6664 		int num_segs, sb_idx, prod_offset;
6665 
6666 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6667 
6668 		if (!CHIP_IS_E1x(bp)) {
6669 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6670 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6671 		}
6672 
6673 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6674 
6675 		if (!CHIP_IS_E1x(bp)) {
6676 			int dsb_idx = 0;
6677 			/**
6678 			 * Producer memory:
6679 			 * E2 mode: address 0-135 match to the mapping memory;
6680 			 * 136 - PF0 default prod; 137 - PF1 default prod;
6681 			 * 138 - PF2 default prod; 139 - PF3 default prod;
6682 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6683 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6684 			 * 144-147 reserved.
6685 			 *
6686 			 * E1.5 mode - In backward compatible mode;
6687 			 * for non default SB; each even line in the memory
6688 			 * holds the U producer and each odd line hold
6689 			 * the C producer. The first 128 producers are for
6690 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6691 			 * producers are for the DSB for each PF.
6692 			 * Each PF has five segments: (the order inside each
6693 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6694 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6695 			 * 144-147 attn prods;
6696 			 */
6697 			/* non-default-status-blocks */
6698 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6699 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6700 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6701 				prod_offset = (bp->igu_base_sb + sb_idx) *
6702 					num_segs;
6703 
6704 				for (i = 0; i < num_segs; i++) {
6705 					addr = IGU_REG_PROD_CONS_MEMORY +
6706 							(prod_offset + i) * 4;
6707 					REG_WR(bp, addr, 0);
6708 				}
6709 				/* send consumer update with value 0 */
6710 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6711 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6712 				bnx2x_igu_clear_sb(bp,
6713 						   bp->igu_base_sb + sb_idx);
6714 			}
6715 
6716 			/* default-status-blocks */
6717 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6718 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6719 
6720 			if (CHIP_MODE_IS_4_PORT(bp))
6721 				dsb_idx = BP_FUNC(bp);
6722 			else
6723 				dsb_idx = BP_VN(bp);
6724 
6725 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6726 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6727 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6728 
6729 			/*
6730 			 * igu prods come in chunks of E1HVN_MAX (4) -
6731 			 * does not matters what is the current chip mode
6732 			 */
6733 			for (i = 0; i < (num_segs * E1HVN_MAX);
6734 			     i += E1HVN_MAX) {
6735 				addr = IGU_REG_PROD_CONS_MEMORY +
6736 							(prod_offset + i)*4;
6737 				REG_WR(bp, addr, 0);
6738 			}
6739 			/* send consumer update with 0 */
6740 			if (CHIP_INT_MODE_IS_BC(bp)) {
6741 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6742 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6743 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6744 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6745 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6746 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6747 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6748 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6749 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6750 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6751 			} else {
6752 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6753 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6754 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6755 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6756 			}
6757 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6758 
6759 			/* !!! these should become driver const once
6760 			   rf-tool supports split-68 const */
6761 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6762 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6763 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6764 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6765 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6766 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6767 		}
6768 	}
6769 
6770 	/* Reset PCIE errors for debug */
6771 	REG_WR(bp, 0x2114, 0xffffffff);
6772 	REG_WR(bp, 0x2120, 0xffffffff);
6773 
6774 	if (CHIP_IS_E1x(bp)) {
6775 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6776 		main_mem_base = HC_REG_MAIN_MEMORY +
6777 				BP_PORT(bp) * (main_mem_size * 4);
6778 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6779 		main_mem_width = 8;
6780 
6781 		val = REG_RD(bp, main_mem_prty_clr);
6782 		if (val)
6783 			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6784 					  "block during "
6785 					  "function init (0x%x)!\n", val);
6786 
6787 		/* Clear "false" parity errors in MSI-X table */
6788 		for (i = main_mem_base;
6789 		     i < main_mem_base + main_mem_size * 4;
6790 		     i += main_mem_width) {
6791 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6792 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6793 					 i, main_mem_width / 4);
6794 		}
6795 		/* Clear HC parity attention */
6796 		REG_RD(bp, main_mem_prty_clr);
6797 	}
6798 
6799 #ifdef BNX2X_STOP_ON_ERROR
6800 	/* Enable STORMs SP logging */
6801 	REG_WR8(bp, BAR_USTRORM_INTMEM +
6802 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6803 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6804 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6805 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6806 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6807 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6808 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6809 #endif
6810 
6811 	bnx2x_phy_probe(&bp->link_params);
6812 
6813 	return 0;
6814 }
6815 
6816 
6817 void bnx2x_free_mem(struct bnx2x *bp)
6818 {
6819 	/* fastpath */
6820 	bnx2x_free_fp_mem(bp);
6821 	/* end of fastpath */
6822 
6823 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6824 		       sizeof(struct host_sp_status_block));
6825 
6826 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6827 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6828 
6829 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6830 		       sizeof(struct bnx2x_slowpath));
6831 
6832 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6833 		       bp->context.size);
6834 
6835 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6836 
6837 	BNX2X_FREE(bp->ilt->lines);
6838 
6839 #ifdef BCM_CNIC
6840 	if (!CHIP_IS_E1x(bp))
6841 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6842 			       sizeof(struct host_hc_status_block_e2));
6843 	else
6844 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6845 			       sizeof(struct host_hc_status_block_e1x));
6846 
6847 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6848 #endif
6849 
6850 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6851 
6852 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6853 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
6854 }
6855 
6856 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6857 {
6858 	int num_groups;
6859 
6860 	/* number of eth_queues */
6861 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
6862 
6863 	/* Total number of FW statistics requests =
6864 	 * 1 for port stats + 1 for PF stats + num_eth_queues */
6865 	bp->fw_stats_num = 2 + num_queue_stats;
6866 
6867 
6868 	/* Request is built from stats_query_header and an array of
6869 	 * stats_query_cmd_group each of which contains
6870 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6871 	 * configured in the stats_query_header.
6872 	 */
6873 	num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
6874 		(((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6875 
6876 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6877 			num_groups * sizeof(struct stats_query_cmd_group);
6878 
6879 	/* Data for statistics requests + stats_conter
6880 	 *
6881 	 * stats_counter holds per-STORM counters that are incremented
6882 	 * when STORM has finished with the current request.
6883 	 */
6884 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6885 		sizeof(struct per_pf_stats) +
6886 		sizeof(struct per_queue_stats) * num_queue_stats +
6887 		sizeof(struct stats_counter);
6888 
6889 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6890 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6891 
6892 	/* Set shortcuts */
6893 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6894 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6895 
6896 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6897 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6898 
6899 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6900 				   bp->fw_stats_req_sz;
6901 	return 0;
6902 
6903 alloc_mem_err:
6904 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6905 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6906 	return -ENOMEM;
6907 }
6908 
6909 
6910 int bnx2x_alloc_mem(struct bnx2x *bp)
6911 {
6912 #ifdef BCM_CNIC
6913 	if (!CHIP_IS_E1x(bp))
6914 		/* size = the status block + ramrod buffers */
6915 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6916 				sizeof(struct host_hc_status_block_e2));
6917 	else
6918 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6919 				sizeof(struct host_hc_status_block_e1x));
6920 
6921 	/* allocate searcher T2 table */
6922 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6923 #endif
6924 
6925 
6926 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6927 			sizeof(struct host_sp_status_block));
6928 
6929 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6930 			sizeof(struct bnx2x_slowpath));
6931 
6932 	/* Allocated memory for FW statistics  */
6933 	if (bnx2x_alloc_fw_stats_mem(bp))
6934 		goto alloc_mem_err;
6935 
6936 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6937 
6938 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6939 			bp->context.size);
6940 
6941 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6942 
6943 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6944 		goto alloc_mem_err;
6945 
6946 	/* Slow path ring */
6947 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6948 
6949 	/* EQ */
6950 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6951 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
6952 
6953 
6954 	/* fastpath */
6955 	/* need to be done at the end, since it's self adjusting to amount
6956 	 * of memory available for RSS queues
6957 	 */
6958 	if (bnx2x_alloc_fp_mem(bp))
6959 		goto alloc_mem_err;
6960 	return 0;
6961 
6962 alloc_mem_err:
6963 	bnx2x_free_mem(bp);
6964 	return -ENOMEM;
6965 }
6966 
6967 /*
6968  * Init service functions
6969  */
6970 
6971 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6972 		      struct bnx2x_vlan_mac_obj *obj, bool set,
6973 		      int mac_type, unsigned long *ramrod_flags)
6974 {
6975 	int rc;
6976 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6977 
6978 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6979 
6980 	/* Fill general parameters */
6981 	ramrod_param.vlan_mac_obj = obj;
6982 	ramrod_param.ramrod_flags = *ramrod_flags;
6983 
6984 	/* Fill a user request section if needed */
6985 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6986 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6987 
6988 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6989 
6990 		/* Set the command: ADD or DEL */
6991 		if (set)
6992 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6993 		else
6994 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6995 	}
6996 
6997 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6998 	if (rc < 0)
6999 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7000 	return rc;
7001 }
7002 
7003 int bnx2x_del_all_macs(struct bnx2x *bp,
7004 		       struct bnx2x_vlan_mac_obj *mac_obj,
7005 		       int mac_type, bool wait_for_comp)
7006 {
7007 	int rc;
7008 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7009 
7010 	/* Wait for completion of requested */
7011 	if (wait_for_comp)
7012 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7013 
7014 	/* Set the mac type of addresses we want to clear */
7015 	__set_bit(mac_type, &vlan_mac_flags);
7016 
7017 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7018 	if (rc < 0)
7019 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7020 
7021 	return rc;
7022 }
7023 
7024 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7025 {
7026 	unsigned long ramrod_flags = 0;
7027 
7028 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7029 
7030 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7031 	/* Eth MAC is set on RSS leading client (fp[0]) */
7032 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7033 				 BNX2X_ETH_MAC, &ramrod_flags);
7034 }
7035 
7036 int bnx2x_setup_leading(struct bnx2x *bp)
7037 {
7038 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7039 }
7040 
7041 /**
7042  * bnx2x_set_int_mode - configure interrupt mode
7043  *
7044  * @bp:		driver handle
7045  *
7046  * In case of MSI-X it will also try to enable MSI-X.
7047  */
7048 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7049 {
7050 	switch (int_mode) {
7051 	case INT_MODE_MSI:
7052 		bnx2x_enable_msi(bp);
7053 		/* falling through... */
7054 	case INT_MODE_INTx:
7055 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7056 		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7057 		break;
7058 	default:
7059 		/* Set number of queues according to bp->multi_mode value */
7060 		bnx2x_set_num_queues(bp);
7061 
7062 		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7063 		   bp->num_queues);
7064 
7065 		/* if we can't use MSI-X we only need one fp,
7066 		 * so try to enable MSI-X with the requested number of fp's
7067 		 * and fallback to MSI or legacy INTx with one fp
7068 		 */
7069 		if (bnx2x_enable_msix(bp)) {
7070 			/* failed to enable MSI-X */
7071 			if (bp->multi_mode)
7072 				DP(NETIF_MSG_IFUP,
7073 					  "Multi requested but failed to "
7074 					  "enable MSI-X (%d), "
7075 					  "set number of queues to %d\n",
7076 				   bp->num_queues,
7077 				   1 + NON_ETH_CONTEXT_USE);
7078 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7079 
7080 			/* Try to enable MSI */
7081 			if (!(bp->flags & DISABLE_MSI_FLAG))
7082 				bnx2x_enable_msi(bp);
7083 		}
7084 		break;
7085 	}
7086 }
7087 
7088 /* must be called prioir to any HW initializations */
7089 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7090 {
7091 	return L2_ILT_LINES(bp);
7092 }
7093 
7094 void bnx2x_ilt_set_info(struct bnx2x *bp)
7095 {
7096 	struct ilt_client_info *ilt_client;
7097 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7098 	u16 line = 0;
7099 
7100 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7101 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7102 
7103 	/* CDU */
7104 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7105 	ilt_client->client_num = ILT_CLIENT_CDU;
7106 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7107 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7108 	ilt_client->start = line;
7109 	line += bnx2x_cid_ilt_lines(bp);
7110 #ifdef BCM_CNIC
7111 	line += CNIC_ILT_LINES;
7112 #endif
7113 	ilt_client->end = line - 1;
7114 
7115 	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7116 					 "flags 0x%x, hw psz %d\n",
7117 	   ilt_client->start,
7118 	   ilt_client->end,
7119 	   ilt_client->page_size,
7120 	   ilt_client->flags,
7121 	   ilog2(ilt_client->page_size >> 12));
7122 
7123 	/* QM */
7124 	if (QM_INIT(bp->qm_cid_count)) {
7125 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7126 		ilt_client->client_num = ILT_CLIENT_QM;
7127 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7128 		ilt_client->flags = 0;
7129 		ilt_client->start = line;
7130 
7131 		/* 4 bytes for each cid */
7132 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7133 							 QM_ILT_PAGE_SZ);
7134 
7135 		ilt_client->end = line - 1;
7136 
7137 		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7138 						 "flags 0x%x, hw psz %d\n",
7139 		   ilt_client->start,
7140 		   ilt_client->end,
7141 		   ilt_client->page_size,
7142 		   ilt_client->flags,
7143 		   ilog2(ilt_client->page_size >> 12));
7144 
7145 	}
7146 	/* SRC */
7147 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7148 #ifdef BCM_CNIC
7149 	ilt_client->client_num = ILT_CLIENT_SRC;
7150 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7151 	ilt_client->flags = 0;
7152 	ilt_client->start = line;
7153 	line += SRC_ILT_LINES;
7154 	ilt_client->end = line - 1;
7155 
7156 	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7157 					 "flags 0x%x, hw psz %d\n",
7158 	   ilt_client->start,
7159 	   ilt_client->end,
7160 	   ilt_client->page_size,
7161 	   ilt_client->flags,
7162 	   ilog2(ilt_client->page_size >> 12));
7163 
7164 #else
7165 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7166 #endif
7167 
7168 	/* TM */
7169 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7170 #ifdef BCM_CNIC
7171 	ilt_client->client_num = ILT_CLIENT_TM;
7172 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7173 	ilt_client->flags = 0;
7174 	ilt_client->start = line;
7175 	line += TM_ILT_LINES;
7176 	ilt_client->end = line - 1;
7177 
7178 	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7179 					 "flags 0x%x, hw psz %d\n",
7180 	   ilt_client->start,
7181 	   ilt_client->end,
7182 	   ilt_client->page_size,
7183 	   ilt_client->flags,
7184 	   ilog2(ilt_client->page_size >> 12));
7185 
7186 #else
7187 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7188 #endif
7189 	BUG_ON(line > ILT_MAX_LINES);
7190 }
7191 
7192 /**
7193  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7194  *
7195  * @bp:			driver handle
7196  * @fp:			pointer to fastpath
7197  * @init_params:	pointer to parameters structure
7198  *
7199  * parameters configured:
7200  *      - HC configuration
7201  *      - Queue's CDU context
7202  */
7203 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7204 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7205 {
7206 
7207 	u8 cos;
7208 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7209 	if (!IS_FCOE_FP(fp)) {
7210 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7211 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7212 
7213 		/* If HC is supporterd, enable host coalescing in the transition
7214 		 * to INIT state.
7215 		 */
7216 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7217 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7218 
7219 		/* HC rate */
7220 		init_params->rx.hc_rate = bp->rx_ticks ?
7221 			(1000000 / bp->rx_ticks) : 0;
7222 		init_params->tx.hc_rate = bp->tx_ticks ?
7223 			(1000000 / bp->tx_ticks) : 0;
7224 
7225 		/* FW SB ID */
7226 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7227 			fp->fw_sb_id;
7228 
7229 		/*
7230 		 * CQ index among the SB indices: FCoE clients uses the default
7231 		 * SB, therefore it's different.
7232 		 */
7233 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7234 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7235 	}
7236 
7237 	/* set maximum number of COSs supported by this queue */
7238 	init_params->max_cos = fp->max_cos;
7239 
7240 	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7241 	    fp->index, init_params->max_cos);
7242 
7243 	/* set the context pointers queue object */
7244 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7245 		init_params->cxts[cos] =
7246 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7247 }
7248 
7249 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7250 			struct bnx2x_queue_state_params *q_params,
7251 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7252 			int tx_index, bool leading)
7253 {
7254 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7255 
7256 	/* Set the command */
7257 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7258 
7259 	/* Set tx-only QUEUE flags: don't zero statistics */
7260 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7261 
7262 	/* choose the index of the cid to send the slow path on */
7263 	tx_only_params->cid_index = tx_index;
7264 
7265 	/* Set general TX_ONLY_SETUP parameters */
7266 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7267 
7268 	/* Set Tx TX_ONLY_SETUP parameters */
7269 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7270 
7271 	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7272 			 "cos %d, primary cid %d, cid %d, "
7273 			 "client id %d, sp-client id %d, flags %lx\n",
7274 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7275 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7276 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7277 
7278 	/* send the ramrod */
7279 	return bnx2x_queue_state_change(bp, q_params);
7280 }
7281 
7282 
7283 /**
7284  * bnx2x_setup_queue - setup queue
7285  *
7286  * @bp:		driver handle
7287  * @fp:		pointer to fastpath
7288  * @leading:	is leading
7289  *
7290  * This function performs 2 steps in a Queue state machine
7291  *      actually: 1) RESET->INIT 2) INIT->SETUP
7292  */
7293 
7294 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7295 		       bool leading)
7296 {
7297 	struct bnx2x_queue_state_params q_params = {0};
7298 	struct bnx2x_queue_setup_params *setup_params =
7299 						&q_params.params.setup;
7300 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7301 						&q_params.params.tx_only;
7302 	int rc;
7303 	u8 tx_index;
7304 
7305 	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7306 
7307 	/* reset IGU state skip FCoE L2 queue */
7308 	if (!IS_FCOE_FP(fp))
7309 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7310 			     IGU_INT_ENABLE, 0);
7311 
7312 	q_params.q_obj = &fp->q_obj;
7313 	/* We want to wait for completion in this context */
7314 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7315 
7316 	/* Prepare the INIT parameters */
7317 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7318 
7319 	/* Set the command */
7320 	q_params.cmd = BNX2X_Q_CMD_INIT;
7321 
7322 	/* Change the state to INIT */
7323 	rc = bnx2x_queue_state_change(bp, &q_params);
7324 	if (rc) {
7325 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7326 		return rc;
7327 	}
7328 
7329 	DP(BNX2X_MSG_SP, "init complete\n");
7330 
7331 
7332 	/* Now move the Queue to the SETUP state... */
7333 	memset(setup_params, 0, sizeof(*setup_params));
7334 
7335 	/* Set QUEUE flags */
7336 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7337 
7338 	/* Set general SETUP parameters */
7339 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7340 				FIRST_TX_COS_INDEX);
7341 
7342 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7343 			    &setup_params->rxq_params);
7344 
7345 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7346 			   FIRST_TX_COS_INDEX);
7347 
7348 	/* Set the command */
7349 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7350 
7351 	/* Change the state to SETUP */
7352 	rc = bnx2x_queue_state_change(bp, &q_params);
7353 	if (rc) {
7354 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7355 		return rc;
7356 	}
7357 
7358 	/* loop through the relevant tx-only indices */
7359 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7360 	      tx_index < fp->max_cos;
7361 	      tx_index++) {
7362 
7363 		/* prepare and send tx-only ramrod*/
7364 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7365 					  tx_only_params, tx_index, leading);
7366 		if (rc) {
7367 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7368 				  fp->index, tx_index);
7369 			return rc;
7370 		}
7371 	}
7372 
7373 	return rc;
7374 }
7375 
7376 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7377 {
7378 	struct bnx2x_fastpath *fp = &bp->fp[index];
7379 	struct bnx2x_fp_txdata *txdata;
7380 	struct bnx2x_queue_state_params q_params = {0};
7381 	int rc, tx_index;
7382 
7383 	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7384 
7385 	q_params.q_obj = &fp->q_obj;
7386 	/* We want to wait for completion in this context */
7387 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7388 
7389 
7390 	/* close tx-only connections */
7391 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7392 	     tx_index < fp->max_cos;
7393 	     tx_index++){
7394 
7395 		/* ascertain this is a normal queue*/
7396 		txdata = &fp->txdata[tx_index];
7397 
7398 		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7399 							txdata->txq_index);
7400 
7401 		/* send halt terminate on tx-only connection */
7402 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7403 		memset(&q_params.params.terminate, 0,
7404 		       sizeof(q_params.params.terminate));
7405 		q_params.params.terminate.cid_index = tx_index;
7406 
7407 		rc = bnx2x_queue_state_change(bp, &q_params);
7408 		if (rc)
7409 			return rc;
7410 
7411 		/* send halt terminate on tx-only connection */
7412 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7413 		memset(&q_params.params.cfc_del, 0,
7414 		       sizeof(q_params.params.cfc_del));
7415 		q_params.params.cfc_del.cid_index = tx_index;
7416 		rc = bnx2x_queue_state_change(bp, &q_params);
7417 		if (rc)
7418 			return rc;
7419 	}
7420 	/* Stop the primary connection: */
7421 	/* ...halt the connection */
7422 	q_params.cmd = BNX2X_Q_CMD_HALT;
7423 	rc = bnx2x_queue_state_change(bp, &q_params);
7424 	if (rc)
7425 		return rc;
7426 
7427 	/* ...terminate the connection */
7428 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7429 	memset(&q_params.params.terminate, 0,
7430 	       sizeof(q_params.params.terminate));
7431 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7432 	rc = bnx2x_queue_state_change(bp, &q_params);
7433 	if (rc)
7434 		return rc;
7435 	/* ...delete cfc entry */
7436 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7437 	memset(&q_params.params.cfc_del, 0,
7438 	       sizeof(q_params.params.cfc_del));
7439 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7440 	return bnx2x_queue_state_change(bp, &q_params);
7441 }
7442 
7443 
7444 static void bnx2x_reset_func(struct bnx2x *bp)
7445 {
7446 	int port = BP_PORT(bp);
7447 	int func = BP_FUNC(bp);
7448 	int i;
7449 
7450 	/* Disable the function in the FW */
7451 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7452 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7453 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7454 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7455 
7456 	/* FP SBs */
7457 	for_each_eth_queue(bp, i) {
7458 		struct bnx2x_fastpath *fp = &bp->fp[i];
7459 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7460 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7461 			   SB_DISABLED);
7462 	}
7463 
7464 #ifdef BCM_CNIC
7465 	/* CNIC SB */
7466 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7467 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7468 		SB_DISABLED);
7469 #endif
7470 	/* SP SB */
7471 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7472 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7473 		   SB_DISABLED);
7474 
7475 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7476 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7477 		       0);
7478 
7479 	/* Configure IGU */
7480 	if (bp->common.int_block == INT_BLOCK_HC) {
7481 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7482 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7483 	} else {
7484 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7485 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7486 	}
7487 
7488 #ifdef BCM_CNIC
7489 	/* Disable Timer scan */
7490 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7491 	/*
7492 	 * Wait for at least 10ms and up to 2 second for the timers scan to
7493 	 * complete
7494 	 */
7495 	for (i = 0; i < 200; i++) {
7496 		msleep(10);
7497 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7498 			break;
7499 	}
7500 #endif
7501 	/* Clear ILT */
7502 	bnx2x_clear_func_ilt(bp, func);
7503 
7504 	/* Timers workaround bug for E2: if this is vnic-3,
7505 	 * we need to set the entire ilt range for this timers.
7506 	 */
7507 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7508 		struct ilt_client_info ilt_cli;
7509 		/* use dummy TM client */
7510 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7511 		ilt_cli.start = 0;
7512 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7513 		ilt_cli.client_num = ILT_CLIENT_TM;
7514 
7515 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7516 	}
7517 
7518 	/* this assumes that reset_port() called before reset_func()*/
7519 	if (!CHIP_IS_E1x(bp))
7520 		bnx2x_pf_disable(bp);
7521 
7522 	bp->dmae_ready = 0;
7523 }
7524 
7525 static void bnx2x_reset_port(struct bnx2x *bp)
7526 {
7527 	int port = BP_PORT(bp);
7528 	u32 val;
7529 
7530 	/* Reset physical Link */
7531 	bnx2x__link_reset(bp);
7532 
7533 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7534 
7535 	/* Do not rcv packets to BRB */
7536 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7537 	/* Do not direct rcv packets that are not for MCP to the BRB */
7538 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7539 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7540 
7541 	/* Configure AEU */
7542 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7543 
7544 	msleep(100);
7545 	/* Check for BRB port occupancy */
7546 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7547 	if (val)
7548 		DP(NETIF_MSG_IFDOWN,
7549 		   "BRB1 is not empty  %d blocks are occupied\n", val);
7550 
7551 	/* TODO: Close Doorbell port? */
7552 }
7553 
7554 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7555 {
7556 	struct bnx2x_func_state_params func_params = {0};
7557 
7558 	/* Prepare parameters for function state transitions */
7559 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7560 
7561 	func_params.f_obj = &bp->func_obj;
7562 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7563 
7564 	func_params.params.hw_init.load_phase = load_code;
7565 
7566 	return bnx2x_func_state_change(bp, &func_params);
7567 }
7568 
7569 static inline int bnx2x_func_stop(struct bnx2x *bp)
7570 {
7571 	struct bnx2x_func_state_params func_params = {0};
7572 	int rc;
7573 
7574 	/* Prepare parameters for function state transitions */
7575 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7576 	func_params.f_obj = &bp->func_obj;
7577 	func_params.cmd = BNX2X_F_CMD_STOP;
7578 
7579 	/*
7580 	 * Try to stop the function the 'good way'. If fails (in case
7581 	 * of a parity error during bnx2x_chip_cleanup()) and we are
7582 	 * not in a debug mode, perform a state transaction in order to
7583 	 * enable further HW_RESET transaction.
7584 	 */
7585 	rc = bnx2x_func_state_change(bp, &func_params);
7586 	if (rc) {
7587 #ifdef BNX2X_STOP_ON_ERROR
7588 		return rc;
7589 #else
7590 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7591 			  "transaction\n");
7592 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7593 		return bnx2x_func_state_change(bp, &func_params);
7594 #endif
7595 	}
7596 
7597 	return 0;
7598 }
7599 
7600 /**
7601  * bnx2x_send_unload_req - request unload mode from the MCP.
7602  *
7603  * @bp:			driver handle
7604  * @unload_mode:	requested function's unload mode
7605  *
7606  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7607  */
7608 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7609 {
7610 	u32 reset_code = 0;
7611 	int port = BP_PORT(bp);
7612 
7613 	/* Select the UNLOAD request mode */
7614 	if (unload_mode == UNLOAD_NORMAL)
7615 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7616 
7617 	else if (bp->flags & NO_WOL_FLAG)
7618 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7619 
7620 	else if (bp->wol) {
7621 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7622 		u8 *mac_addr = bp->dev->dev_addr;
7623 		u32 val;
7624 		u16 pmc;
7625 
7626 		/* The mac address is written to entries 1-4 to
7627 		 * preserve entry 0 which is used by the PMF
7628 		 */
7629 		u8 entry = (BP_VN(bp) + 1)*8;
7630 
7631 		val = (mac_addr[0] << 8) | mac_addr[1];
7632 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7633 
7634 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7635 		      (mac_addr[4] << 8) | mac_addr[5];
7636 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7637 
7638 		/* Enable the PME and clear the status */
7639 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7640 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7641 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7642 
7643 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7644 
7645 	} else
7646 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7647 
7648 	/* Send the request to the MCP */
7649 	if (!BP_NOMCP(bp))
7650 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7651 	else {
7652 		int path = BP_PATH(bp);
7653 
7654 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7655 				     "%d, %d, %d\n",
7656 		   path, load_count[path][0], load_count[path][1],
7657 		   load_count[path][2]);
7658 		load_count[path][0]--;
7659 		load_count[path][1 + port]--;
7660 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7661 				     "%d, %d, %d\n",
7662 		   path, load_count[path][0], load_count[path][1],
7663 		   load_count[path][2]);
7664 		if (load_count[path][0] == 0)
7665 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7666 		else if (load_count[path][1 + port] == 0)
7667 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7668 		else
7669 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7670 	}
7671 
7672 	return reset_code;
7673 }
7674 
7675 /**
7676  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7677  *
7678  * @bp:		driver handle
7679  */
7680 void bnx2x_send_unload_done(struct bnx2x *bp)
7681 {
7682 	/* Report UNLOAD_DONE to MCP */
7683 	if (!BP_NOMCP(bp))
7684 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7685 }
7686 
7687 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7688 {
7689 	int tout = 50;
7690 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7691 
7692 	if (!bp->port.pmf)
7693 		return 0;
7694 
7695 	/*
7696 	 * (assumption: No Attention from MCP at this stage)
7697 	 * PMF probably in the middle of TXdisable/enable transaction
7698 	 * 1. Sync IRS for default SB
7699 	 * 2. Sync SP queue - this guarantes us that attention handling started
7700 	 * 3. Wait, that TXdisable/enable transaction completes
7701 	 *
7702 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7703 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7704 	 * received complettion for the transaction the state is TX_STOPPED.
7705 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7706 	 * transaction.
7707 	 */
7708 
7709 	/* make sure default SB ISR is done */
7710 	if (msix)
7711 		synchronize_irq(bp->msix_table[0].vector);
7712 	else
7713 		synchronize_irq(bp->pdev->irq);
7714 
7715 	flush_workqueue(bnx2x_wq);
7716 
7717 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7718 				BNX2X_F_STATE_STARTED && tout--)
7719 		msleep(20);
7720 
7721 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7722 						BNX2X_F_STATE_STARTED) {
7723 #ifdef BNX2X_STOP_ON_ERROR
7724 		return -EBUSY;
7725 #else
7726 		/*
7727 		 * Failed to complete the transaction in a "good way"
7728 		 * Force both transactions with CLR bit
7729 		 */
7730 		struct bnx2x_func_state_params func_params = {0};
7731 
7732 		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7733 			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7734 
7735 		func_params.f_obj = &bp->func_obj;
7736 		__set_bit(RAMROD_DRV_CLR_ONLY,
7737 					&func_params.ramrod_flags);
7738 
7739 		/* STARTED-->TX_ST0PPED */
7740 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7741 		bnx2x_func_state_change(bp, &func_params);
7742 
7743 		/* TX_ST0PPED-->STARTED */
7744 		func_params.cmd = BNX2X_F_CMD_TX_START;
7745 		return bnx2x_func_state_change(bp, &func_params);
7746 #endif
7747 	}
7748 
7749 	return 0;
7750 }
7751 
7752 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7753 {
7754 	int port = BP_PORT(bp);
7755 	int i, rc = 0;
7756 	u8 cos;
7757 	struct bnx2x_mcast_ramrod_params rparam = {0};
7758 	u32 reset_code;
7759 
7760 	/* Wait until tx fastpath tasks complete */
7761 	for_each_tx_queue(bp, i) {
7762 		struct bnx2x_fastpath *fp = &bp->fp[i];
7763 
7764 		for_each_cos_in_tx_queue(fp, cos)
7765 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7766 #ifdef BNX2X_STOP_ON_ERROR
7767 		if (rc)
7768 			return;
7769 #endif
7770 	}
7771 
7772 	/* Give HW time to discard old tx messages */
7773 	usleep_range(1000, 1000);
7774 
7775 	/* Clean all ETH MACs */
7776 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7777 	if (rc < 0)
7778 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7779 
7780 	/* Clean up UC list  */
7781 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7782 				true);
7783 	if (rc < 0)
7784 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7785 			  "%d\n", rc);
7786 
7787 	/* Disable LLH */
7788 	if (!CHIP_IS_E1(bp))
7789 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7790 
7791 	/* Set "drop all" (stop Rx).
7792 	 * We need to take a netif_addr_lock() here in order to prevent
7793 	 * a race between the completion code and this code.
7794 	 */
7795 	netif_addr_lock_bh(bp->dev);
7796 	/* Schedule the rx_mode command */
7797 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7798 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7799 	else
7800 		bnx2x_set_storm_rx_mode(bp);
7801 
7802 	/* Cleanup multicast configuration */
7803 	rparam.mcast_obj = &bp->mcast_obj;
7804 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7805 	if (rc < 0)
7806 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7807 
7808 	netif_addr_unlock_bh(bp->dev);
7809 
7810 
7811 
7812 	/*
7813 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7814 	 * this function should perform FUNC, PORT or COMMON HW
7815 	 * reset.
7816 	 */
7817 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7818 
7819 	/*
7820 	 * (assumption: No Attention from MCP at this stage)
7821 	 * PMF probably in the middle of TXdisable/enable transaction
7822 	 */
7823 	rc = bnx2x_func_wait_started(bp);
7824 	if (rc) {
7825 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7826 #ifdef BNX2X_STOP_ON_ERROR
7827 		return;
7828 #endif
7829 	}
7830 
7831 	/* Close multi and leading connections
7832 	 * Completions for ramrods are collected in a synchronous way
7833 	 */
7834 	for_each_queue(bp, i)
7835 		if (bnx2x_stop_queue(bp, i))
7836 #ifdef BNX2X_STOP_ON_ERROR
7837 			return;
7838 #else
7839 			goto unload_error;
7840 #endif
7841 	/* If SP settings didn't get completed so far - something
7842 	 * very wrong has happen.
7843 	 */
7844 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7845 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7846 
7847 #ifndef BNX2X_STOP_ON_ERROR
7848 unload_error:
7849 #endif
7850 	rc = bnx2x_func_stop(bp);
7851 	if (rc) {
7852 		BNX2X_ERR("Function stop failed!\n");
7853 #ifdef BNX2X_STOP_ON_ERROR
7854 		return;
7855 #endif
7856 	}
7857 
7858 	/* Disable HW interrupts, NAPI */
7859 	bnx2x_netif_stop(bp, 1);
7860 
7861 	/* Release IRQs */
7862 	bnx2x_free_irq(bp);
7863 
7864 	/* Reset the chip */
7865 	rc = bnx2x_reset_hw(bp, reset_code);
7866 	if (rc)
7867 		BNX2X_ERR("HW_RESET failed\n");
7868 
7869 
7870 	/* Report UNLOAD_DONE to MCP */
7871 	bnx2x_send_unload_done(bp);
7872 }
7873 
7874 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7875 {
7876 	u32 val;
7877 
7878 	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7879 
7880 	if (CHIP_IS_E1(bp)) {
7881 		int port = BP_PORT(bp);
7882 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7883 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
7884 
7885 		val = REG_RD(bp, addr);
7886 		val &= ~(0x300);
7887 		REG_WR(bp, addr, val);
7888 	} else {
7889 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7890 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7891 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7892 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7893 	}
7894 }
7895 
7896 /* Close gates #2, #3 and #4: */
7897 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7898 {
7899 	u32 val;
7900 
7901 	/* Gates #2 and #4a are closed/opened for "not E1" only */
7902 	if (!CHIP_IS_E1(bp)) {
7903 		/* #4 */
7904 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7905 		/* #2 */
7906 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7907 	}
7908 
7909 	/* #3 */
7910 	if (CHIP_IS_E1x(bp)) {
7911 		/* Prevent interrupts from HC on both ports */
7912 		val = REG_RD(bp, HC_REG_CONFIG_1);
7913 		REG_WR(bp, HC_REG_CONFIG_1,
7914 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7915 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7916 
7917 		val = REG_RD(bp, HC_REG_CONFIG_0);
7918 		REG_WR(bp, HC_REG_CONFIG_0,
7919 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7920 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7921 	} else {
7922 		/* Prevent incomming interrupts in IGU */
7923 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7924 
7925 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7926 		       (!close) ?
7927 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7928 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7929 	}
7930 
7931 	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7932 		close ? "closing" : "opening");
7933 	mmiowb();
7934 }
7935 
7936 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
7937 
7938 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7939 {
7940 	/* Do some magic... */
7941 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7942 	*magic_val = val & SHARED_MF_CLP_MAGIC;
7943 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7944 }
7945 
7946 /**
7947  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7948  *
7949  * @bp:		driver handle
7950  * @magic_val:	old value of the `magic' bit.
7951  */
7952 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7953 {
7954 	/* Restore the `magic' bit value... */
7955 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7956 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
7957 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7958 }
7959 
7960 /**
7961  * bnx2x_reset_mcp_prep - prepare for MCP reset.
7962  *
7963  * @bp:		driver handle
7964  * @magic_val:	old value of 'magic' bit.
7965  *
7966  * Takes care of CLP configurations.
7967  */
7968 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7969 {
7970 	u32 shmem;
7971 	u32 validity_offset;
7972 
7973 	DP(NETIF_MSG_HW, "Starting\n");
7974 
7975 	/* Set `magic' bit in order to save MF config */
7976 	if (!CHIP_IS_E1(bp))
7977 		bnx2x_clp_reset_prep(bp, magic_val);
7978 
7979 	/* Get shmem offset */
7980 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7981 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
7982 
7983 	/* Clear validity map flags */
7984 	if (shmem > 0)
7985 		REG_WR(bp, shmem + validity_offset, 0);
7986 }
7987 
7988 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
7989 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
7990 
7991 /**
7992  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7993  *
7994  * @bp:	driver handle
7995  */
7996 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7997 {
7998 	/* special handling for emulation and FPGA,
7999 	   wait 10 times longer */
8000 	if (CHIP_REV_IS_SLOW(bp))
8001 		msleep(MCP_ONE_TIMEOUT*10);
8002 	else
8003 		msleep(MCP_ONE_TIMEOUT);
8004 }
8005 
8006 /*
8007  * initializes bp->common.shmem_base and waits for validity signature to appear
8008  */
8009 static int bnx2x_init_shmem(struct bnx2x *bp)
8010 {
8011 	int cnt = 0;
8012 	u32 val = 0;
8013 
8014 	do {
8015 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8016 		if (bp->common.shmem_base) {
8017 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8018 			if (val & SHR_MEM_VALIDITY_MB)
8019 				return 0;
8020 		}
8021 
8022 		bnx2x_mcp_wait_one(bp);
8023 
8024 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8025 
8026 	BNX2X_ERR("BAD MCP validity signature\n");
8027 
8028 	return -ENODEV;
8029 }
8030 
8031 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8032 {
8033 	int rc = bnx2x_init_shmem(bp);
8034 
8035 	/* Restore the `magic' bit value */
8036 	if (!CHIP_IS_E1(bp))
8037 		bnx2x_clp_reset_done(bp, magic_val);
8038 
8039 	return rc;
8040 }
8041 
8042 static void bnx2x_pxp_prep(struct bnx2x *bp)
8043 {
8044 	if (!CHIP_IS_E1(bp)) {
8045 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8046 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8047 		mmiowb();
8048 	}
8049 }
8050 
8051 /*
8052  * Reset the whole chip except for:
8053  *      - PCIE core
8054  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8055  *              one reset bit)
8056  *      - IGU
8057  *      - MISC (including AEU)
8058  *      - GRC
8059  *      - RBCN, RBCP
8060  */
8061 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8062 {
8063 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8064 	u32 global_bits2, stay_reset2;
8065 
8066 	/*
8067 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8068 	 * (per chip) blocks.
8069 	 */
8070 	global_bits2 =
8071 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8072 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8073 
8074 	/* Don't reset the following blocks */
8075 	not_reset_mask1 =
8076 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8077 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8078 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8079 
8080 	not_reset_mask2 =
8081 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8082 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8083 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8084 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8085 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8086 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8087 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8088 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8089 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8090 		MISC_REGISTERS_RESET_REG_2_PGLC;
8091 
8092 	/*
8093 	 * Keep the following blocks in reset:
8094 	 *  - all xxMACs are handled by the bnx2x_link code.
8095 	 */
8096 	stay_reset2 =
8097 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8098 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8099 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8100 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8101 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8102 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8103 		MISC_REGISTERS_RESET_REG_2_XMAC |
8104 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8105 
8106 	/* Full reset masks according to the chip */
8107 	reset_mask1 = 0xffffffff;
8108 
8109 	if (CHIP_IS_E1(bp))
8110 		reset_mask2 = 0xffff;
8111 	else if (CHIP_IS_E1H(bp))
8112 		reset_mask2 = 0x1ffff;
8113 	else if (CHIP_IS_E2(bp))
8114 		reset_mask2 = 0xfffff;
8115 	else /* CHIP_IS_E3 */
8116 		reset_mask2 = 0x3ffffff;
8117 
8118 	/* Don't reset global blocks unless we need to */
8119 	if (!global)
8120 		reset_mask2 &= ~global_bits2;
8121 
8122 	/*
8123 	 * In case of attention in the QM, we need to reset PXP
8124 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8125 	 * because otherwise QM reset would release 'close the gates' shortly
8126 	 * before resetting the PXP, then the PSWRQ would send a write
8127 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8128 	 * read the payload data from PSWWR, but PSWWR would not
8129 	 * respond. The write queue in PGLUE would stuck, dmae commands
8130 	 * would not return. Therefore it's important to reset the second
8131 	 * reset register (containing the
8132 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8133 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8134 	 * bit).
8135 	 */
8136 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8137 	       reset_mask2 & (~not_reset_mask2));
8138 
8139 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8140 	       reset_mask1 & (~not_reset_mask1));
8141 
8142 	barrier();
8143 	mmiowb();
8144 
8145 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8146 	       reset_mask2 & (~stay_reset2));
8147 
8148 	barrier();
8149 	mmiowb();
8150 
8151 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8152 	mmiowb();
8153 }
8154 
8155 /**
8156  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8157  * It should get cleared in no more than 1s.
8158  *
8159  * @bp:	driver handle
8160  *
8161  * It should get cleared in no more than 1s. Returns 0 if
8162  * pending writes bit gets cleared.
8163  */
8164 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8165 {
8166 	u32 cnt = 1000;
8167 	u32 pend_bits = 0;
8168 
8169 	do {
8170 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8171 
8172 		if (pend_bits == 0)
8173 			break;
8174 
8175 		usleep_range(1000, 1000);
8176 	} while (cnt-- > 0);
8177 
8178 	if (cnt <= 0) {
8179 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8180 			  pend_bits);
8181 		return -EBUSY;
8182 	}
8183 
8184 	return 0;
8185 }
8186 
8187 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8188 {
8189 	int cnt = 1000;
8190 	u32 val = 0;
8191 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8192 
8193 
8194 	/* Empty the Tetris buffer, wait for 1s */
8195 	do {
8196 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8197 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8198 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8199 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8200 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8201 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8202 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8203 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8204 		    (pgl_exp_rom2 == 0xffffffff))
8205 			break;
8206 		usleep_range(1000, 1000);
8207 	} while (cnt-- > 0);
8208 
8209 	if (cnt <= 0) {
8210 		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8211 			  " are still"
8212 			  " outstanding read requests after 1s!\n");
8213 		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8214 			  " port_is_idle_0=0x%08x,"
8215 			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8216 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8217 			  pgl_exp_rom2);
8218 		return -EAGAIN;
8219 	}
8220 
8221 	barrier();
8222 
8223 	/* Close gates #2, #3 and #4 */
8224 	bnx2x_set_234_gates(bp, true);
8225 
8226 	/* Poll for IGU VQs for 57712 and newer chips */
8227 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8228 		return -EAGAIN;
8229 
8230 
8231 	/* TBD: Indicate that "process kill" is in progress to MCP */
8232 
8233 	/* Clear "unprepared" bit */
8234 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8235 	barrier();
8236 
8237 	/* Make sure all is written to the chip before the reset */
8238 	mmiowb();
8239 
8240 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8241 	 * PSWHST, GRC and PSWRD Tetris buffer.
8242 	 */
8243 	usleep_range(1000, 1000);
8244 
8245 	/* Prepare to chip reset: */
8246 	/* MCP */
8247 	if (global)
8248 		bnx2x_reset_mcp_prep(bp, &val);
8249 
8250 	/* PXP */
8251 	bnx2x_pxp_prep(bp);
8252 	barrier();
8253 
8254 	/* reset the chip */
8255 	bnx2x_process_kill_chip_reset(bp, global);
8256 	barrier();
8257 
8258 	/* Recover after reset: */
8259 	/* MCP */
8260 	if (global && bnx2x_reset_mcp_comp(bp, val))
8261 		return -EAGAIN;
8262 
8263 	/* TBD: Add resetting the NO_MCP mode DB here */
8264 
8265 	/* PXP */
8266 	bnx2x_pxp_prep(bp);
8267 
8268 	/* Open the gates #2, #3 and #4 */
8269 	bnx2x_set_234_gates(bp, false);
8270 
8271 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8272 	 * reset state, re-enable attentions. */
8273 
8274 	return 0;
8275 }
8276 
8277 int bnx2x_leader_reset(struct bnx2x *bp)
8278 {
8279 	int rc = 0;
8280 	bool global = bnx2x_reset_is_global(bp);
8281 
8282 	/* Try to recover after the failure */
8283 	if (bnx2x_process_kill(bp, global)) {
8284 		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8285 				    "Aii!\n", BP_PATH(bp));
8286 		rc = -EAGAIN;
8287 		goto exit_leader_reset;
8288 	}
8289 
8290 	/*
8291 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8292 	 * state.
8293 	 */
8294 	bnx2x_set_reset_done(bp);
8295 	if (global)
8296 		bnx2x_clear_reset_global(bp);
8297 
8298 exit_leader_reset:
8299 	bp->is_leader = 0;
8300 	bnx2x_release_leader_lock(bp);
8301 	smp_mb();
8302 	return rc;
8303 }
8304 
8305 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8306 {
8307 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8308 
8309 	/* Disconnect this device */
8310 	netif_device_detach(bp->dev);
8311 
8312 	/*
8313 	 * Block ifup for all function on this engine until "process kill"
8314 	 * or power cycle.
8315 	 */
8316 	bnx2x_set_reset_in_progress(bp);
8317 
8318 	/* Shut down the power */
8319 	bnx2x_set_power_state(bp, PCI_D3hot);
8320 
8321 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8322 
8323 	smp_mb();
8324 }
8325 
8326 /*
8327  * Assumption: runs under rtnl lock. This together with the fact
8328  * that it's called only from bnx2x_sp_rtnl() ensure that it
8329  * will never be called when netif_running(bp->dev) is false.
8330  */
8331 static void bnx2x_parity_recover(struct bnx2x *bp)
8332 {
8333 	bool global = false;
8334 
8335 	DP(NETIF_MSG_HW, "Handling parity\n");
8336 	while (1) {
8337 		switch (bp->recovery_state) {
8338 		case BNX2X_RECOVERY_INIT:
8339 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8340 			bnx2x_chk_parity_attn(bp, &global, false);
8341 
8342 			/* Try to get a LEADER_LOCK HW lock */
8343 			if (bnx2x_trylock_leader_lock(bp)) {
8344 				bnx2x_set_reset_in_progress(bp);
8345 				/*
8346 				 * Check if there is a global attention and if
8347 				 * there was a global attention, set the global
8348 				 * reset bit.
8349 				 */
8350 
8351 				if (global)
8352 					bnx2x_set_reset_global(bp);
8353 
8354 				bp->is_leader = 1;
8355 			}
8356 
8357 			/* Stop the driver */
8358 			/* If interface has been removed - break */
8359 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8360 				return;
8361 
8362 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8363 
8364 			/*
8365 			 * Reset MCP command sequence number and MCP mail box
8366 			 * sequence as we are going to reset the MCP.
8367 			 */
8368 			if (global) {
8369 				bp->fw_seq = 0;
8370 				bp->fw_drv_pulse_wr_seq = 0;
8371 			}
8372 
8373 			/* Ensure "is_leader", MCP command sequence and
8374 			 * "recovery_state" update values are seen on other
8375 			 * CPUs.
8376 			 */
8377 			smp_mb();
8378 			break;
8379 
8380 		case BNX2X_RECOVERY_WAIT:
8381 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8382 			if (bp->is_leader) {
8383 				int other_engine = BP_PATH(bp) ? 0 : 1;
8384 				u32 other_load_counter =
8385 					bnx2x_get_load_cnt(bp, other_engine);
8386 				u32 load_counter =
8387 					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8388 				global = bnx2x_reset_is_global(bp);
8389 
8390 				/*
8391 				 * In case of a parity in a global block, let
8392 				 * the first leader that performs a
8393 				 * leader_reset() reset the global blocks in
8394 				 * order to clear global attentions. Otherwise
8395 				 * the the gates will remain closed for that
8396 				 * engine.
8397 				 */
8398 				if (load_counter ||
8399 				    (global && other_load_counter)) {
8400 					/* Wait until all other functions get
8401 					 * down.
8402 					 */
8403 					schedule_delayed_work(&bp->sp_rtnl_task,
8404 								HZ/10);
8405 					return;
8406 				} else {
8407 					/* If all other functions got down -
8408 					 * try to bring the chip back to
8409 					 * normal. In any case it's an exit
8410 					 * point for a leader.
8411 					 */
8412 					if (bnx2x_leader_reset(bp)) {
8413 						bnx2x_recovery_failed(bp);
8414 						return;
8415 					}
8416 
8417 					/* If we are here, means that the
8418 					 * leader has succeeded and doesn't
8419 					 * want to be a leader any more. Try
8420 					 * to continue as a none-leader.
8421 					 */
8422 					break;
8423 				}
8424 			} else { /* non-leader */
8425 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8426 					/* Try to get a LEADER_LOCK HW lock as
8427 					 * long as a former leader may have
8428 					 * been unloaded by the user or
8429 					 * released a leadership by another
8430 					 * reason.
8431 					 */
8432 					if (bnx2x_trylock_leader_lock(bp)) {
8433 						/* I'm a leader now! Restart a
8434 						 * switch case.
8435 						 */
8436 						bp->is_leader = 1;
8437 						break;
8438 					}
8439 
8440 					schedule_delayed_work(&bp->sp_rtnl_task,
8441 								HZ/10);
8442 					return;
8443 
8444 				} else {
8445 					/*
8446 					 * If there was a global attention, wait
8447 					 * for it to be cleared.
8448 					 */
8449 					if (bnx2x_reset_is_global(bp)) {
8450 						schedule_delayed_work(
8451 							&bp->sp_rtnl_task,
8452 							HZ/10);
8453 						return;
8454 					}
8455 
8456 					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8457 						bnx2x_recovery_failed(bp);
8458 					else {
8459 						bp->recovery_state =
8460 							BNX2X_RECOVERY_DONE;
8461 						smp_mb();
8462 					}
8463 
8464 					return;
8465 				}
8466 			}
8467 		default:
8468 			return;
8469 		}
8470 	}
8471 }
8472 
8473 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8474  * scheduled on a general queue in order to prevent a dead lock.
8475  */
8476 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8477 {
8478 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8479 
8480 	rtnl_lock();
8481 
8482 	if (!netif_running(bp->dev))
8483 		goto sp_rtnl_exit;
8484 
8485 	/* if stop on error is defined no recovery flows should be executed */
8486 #ifdef BNX2X_STOP_ON_ERROR
8487 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8488 		  "so reset not done to allow debug dump,\n"
8489 		  "you will need to reboot when done\n");
8490 	goto sp_rtnl_not_reset;
8491 #endif
8492 
8493 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8494 		/*
8495 		 * Clear all pending SP commands as we are going to reset the
8496 		 * function anyway.
8497 		 */
8498 		bp->sp_rtnl_state = 0;
8499 		smp_mb();
8500 
8501 		bnx2x_parity_recover(bp);
8502 
8503 		goto sp_rtnl_exit;
8504 	}
8505 
8506 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8507 		/*
8508 		 * Clear all pending SP commands as we are going to reset the
8509 		 * function anyway.
8510 		 */
8511 		bp->sp_rtnl_state = 0;
8512 		smp_mb();
8513 
8514 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8515 		bnx2x_nic_load(bp, LOAD_NORMAL);
8516 
8517 		goto sp_rtnl_exit;
8518 	}
8519 #ifdef BNX2X_STOP_ON_ERROR
8520 sp_rtnl_not_reset:
8521 #endif
8522 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8523 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8524 
8525 sp_rtnl_exit:
8526 	rtnl_unlock();
8527 }
8528 
8529 /* end of nic load/unload */
8530 
8531 static void bnx2x_period_task(struct work_struct *work)
8532 {
8533 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8534 
8535 	if (!netif_running(bp->dev))
8536 		goto period_task_exit;
8537 
8538 	if (CHIP_REV_IS_SLOW(bp)) {
8539 		BNX2X_ERR("period task called on emulation, ignoring\n");
8540 		goto period_task_exit;
8541 	}
8542 
8543 	bnx2x_acquire_phy_lock(bp);
8544 	/*
8545 	 * The barrier is needed to ensure the ordering between the writing to
8546 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8547 	 * the reading here.
8548 	 */
8549 	smp_mb();
8550 	if (bp->port.pmf) {
8551 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8552 
8553 		/* Re-queue task in 1 sec */
8554 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8555 	}
8556 
8557 	bnx2x_release_phy_lock(bp);
8558 period_task_exit:
8559 	return;
8560 }
8561 
8562 /*
8563  * Init service functions
8564  */
8565 
8566 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8567 {
8568 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8569 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8570 	return base + (BP_ABS_FUNC(bp)) * stride;
8571 }
8572 
8573 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8574 {
8575 	u32 reg = bnx2x_get_pretend_reg(bp);
8576 
8577 	/* Flush all outstanding writes */
8578 	mmiowb();
8579 
8580 	/* Pretend to be function 0 */
8581 	REG_WR(bp, reg, 0);
8582 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8583 
8584 	/* From now we are in the "like-E1" mode */
8585 	bnx2x_int_disable(bp);
8586 
8587 	/* Flush all outstanding writes */
8588 	mmiowb();
8589 
8590 	/* Restore the original function */
8591 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8592 	REG_RD(bp, reg);
8593 }
8594 
8595 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8596 {
8597 	if (CHIP_IS_E1(bp))
8598 		bnx2x_int_disable(bp);
8599 	else
8600 		bnx2x_undi_int_disable_e1h(bp);
8601 }
8602 
8603 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8604 {
8605 	u32 val;
8606 
8607 	/* Check if there is any driver already loaded */
8608 	val = REG_RD(bp, MISC_REG_UNPREPARED);
8609 	if (val == 0x1) {
8610 
8611 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8612 		/*
8613 		 * Check if it is the UNDI driver
8614 		 * UNDI driver initializes CID offset for normal bell to 0x7
8615 		 */
8616 		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8617 		if (val == 0x7) {
8618 			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8619 			/* save our pf_num */
8620 			int orig_pf_num = bp->pf_num;
8621 			int port;
8622 			u32 swap_en, swap_val, value;
8623 
8624 			/* clear the UNDI indication */
8625 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8626 
8627 			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8628 
8629 			/* try unload UNDI on port 0 */
8630 			bp->pf_num = 0;
8631 			bp->fw_seq =
8632 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8633 				DRV_MSG_SEQ_NUMBER_MASK);
8634 			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8635 
8636 			/* if UNDI is loaded on the other port */
8637 			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8638 
8639 				/* send "DONE" for previous unload */
8640 				bnx2x_fw_command(bp,
8641 						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8642 
8643 				/* unload UNDI on port 1 */
8644 				bp->pf_num = 1;
8645 				bp->fw_seq =
8646 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8647 					DRV_MSG_SEQ_NUMBER_MASK);
8648 				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8649 
8650 				bnx2x_fw_command(bp, reset_code, 0);
8651 			}
8652 
8653 			bnx2x_undi_int_disable(bp);
8654 			port = BP_PORT(bp);
8655 
8656 			/* close input traffic and wait for it */
8657 			/* Do not rcv packets to BRB */
8658 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8659 					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8660 			/* Do not direct rcv packets that are not for MCP to
8661 			 * the BRB */
8662 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8663 					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8664 			/* clear AEU */
8665 			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8666 					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8667 			msleep(10);
8668 
8669 			/* save NIG port swap info */
8670 			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8671 			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8672 			/* reset device */
8673 			REG_WR(bp,
8674 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8675 			       0xd3ffffff);
8676 
8677 			value = 0x1400;
8678 			if (CHIP_IS_E3(bp)) {
8679 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8680 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8681 			}
8682 
8683 			REG_WR(bp,
8684 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8685 			       value);
8686 
8687 			/* take the NIG out of reset and restore swap values */
8688 			REG_WR(bp,
8689 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8690 			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8691 			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8692 			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8693 
8694 			/* send unload done to the MCP */
8695 			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8696 
8697 			/* restore our func and fw_seq */
8698 			bp->pf_num = orig_pf_num;
8699 			bp->fw_seq =
8700 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8701 				DRV_MSG_SEQ_NUMBER_MASK);
8702 		}
8703 
8704 		/* now it's safe to release the lock */
8705 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8706 	}
8707 }
8708 
8709 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8710 {
8711 	u32 val, val2, val3, val4, id;
8712 	u16 pmc;
8713 
8714 	/* Get the chip revision id and number. */
8715 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8716 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8717 	id = ((val & 0xffff) << 16);
8718 	val = REG_RD(bp, MISC_REG_CHIP_REV);
8719 	id |= ((val & 0xf) << 12);
8720 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8721 	id |= ((val & 0xff) << 4);
8722 	val = REG_RD(bp, MISC_REG_BOND_ID);
8723 	id |= (val & 0xf);
8724 	bp->common.chip_id = id;
8725 
8726 	/* Set doorbell size */
8727 	bp->db_size = (1 << BNX2X_DB_SHIFT);
8728 
8729 	if (!CHIP_IS_E1x(bp)) {
8730 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8731 		if ((val & 1) == 0)
8732 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8733 		else
8734 			val = (val >> 1) & 1;
8735 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8736 						       "2_PORT_MODE");
8737 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8738 						 CHIP_2_PORT_MODE;
8739 
8740 		if (CHIP_MODE_IS_4_PORT(bp))
8741 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8742 		else
8743 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8744 	} else {
8745 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8746 		bp->pfid = bp->pf_num;			/* 0..7 */
8747 	}
8748 
8749 	bp->link_params.chip_id = bp->common.chip_id;
8750 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8751 
8752 	val = (REG_RD(bp, 0x2874) & 0x55);
8753 	if ((bp->common.chip_id & 0x1) ||
8754 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8755 		bp->flags |= ONE_PORT_FLAG;
8756 		BNX2X_DEV_INFO("single port device\n");
8757 	}
8758 
8759 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8760 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8761 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8762 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8763 		       bp->common.flash_size, bp->common.flash_size);
8764 
8765 	bnx2x_init_shmem(bp);
8766 
8767 
8768 
8769 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8770 					MISC_REG_GENERIC_CR_1 :
8771 					MISC_REG_GENERIC_CR_0));
8772 
8773 	bp->link_params.shmem_base = bp->common.shmem_base;
8774 	bp->link_params.shmem2_base = bp->common.shmem2_base;
8775 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8776 		       bp->common.shmem_base, bp->common.shmem2_base);
8777 
8778 	if (!bp->common.shmem_base) {
8779 		BNX2X_DEV_INFO("MCP not active\n");
8780 		bp->flags |= NO_MCP_FLAG;
8781 		return;
8782 	}
8783 
8784 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8785 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8786 
8787 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8788 					SHARED_HW_CFG_LED_MODE_MASK) >>
8789 				       SHARED_HW_CFG_LED_MODE_SHIFT);
8790 
8791 	bp->link_params.feature_config_flags = 0;
8792 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8793 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8794 		bp->link_params.feature_config_flags |=
8795 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8796 	else
8797 		bp->link_params.feature_config_flags &=
8798 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8799 
8800 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8801 	bp->common.bc_ver = val;
8802 	BNX2X_DEV_INFO("bc_ver %X\n", val);
8803 	if (val < BNX2X_BC_VER) {
8804 		/* for now only warn
8805 		 * later we might need to enforce this */
8806 		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8807 			  "please upgrade BC\n", BNX2X_BC_VER, val);
8808 	}
8809 	bp->link_params.feature_config_flags |=
8810 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8811 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8812 
8813 	bp->link_params.feature_config_flags |=
8814 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8815 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8816 
8817 	bp->link_params.feature_config_flags |=
8818 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8819 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8820 
8821 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8822 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8823 
8824 	BNX2X_DEV_INFO("%sWoL capable\n",
8825 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
8826 
8827 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8828 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8829 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8830 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8831 
8832 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8833 		 val, val2, val3, val4);
8834 }
8835 
8836 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8837 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8838 
8839 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8840 {
8841 	int pfid = BP_FUNC(bp);
8842 	int igu_sb_id;
8843 	u32 val;
8844 	u8 fid, igu_sb_cnt = 0;
8845 
8846 	bp->igu_base_sb = 0xff;
8847 	if (CHIP_INT_MODE_IS_BC(bp)) {
8848 		int vn = BP_VN(bp);
8849 		igu_sb_cnt = bp->igu_sb_cnt;
8850 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8851 			FP_SB_MAX_E1x;
8852 
8853 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
8854 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8855 
8856 		return;
8857 	}
8858 
8859 	/* IGU in normal mode - read CAM */
8860 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8861 	     igu_sb_id++) {
8862 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8863 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8864 			continue;
8865 		fid = IGU_FID(val);
8866 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
8867 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8868 				continue;
8869 			if (IGU_VEC(val) == 0)
8870 				/* default status block */
8871 				bp->igu_dsb_id = igu_sb_id;
8872 			else {
8873 				if (bp->igu_base_sb == 0xff)
8874 					bp->igu_base_sb = igu_sb_id;
8875 				igu_sb_cnt++;
8876 			}
8877 		}
8878 	}
8879 
8880 #ifdef CONFIG_PCI_MSI
8881 	/*
8882 	 * It's expected that number of CAM entries for this functions is equal
8883 	 * to the number evaluated based on the MSI-X table size. We want a
8884 	 * harsh warning if these values are different!
8885 	 */
8886 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8887 #endif
8888 
8889 	if (igu_sb_cnt == 0)
8890 		BNX2X_ERR("CAM configuration error\n");
8891 }
8892 
8893 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8894 						    u32 switch_cfg)
8895 {
8896 	int cfg_size = 0, idx, port = BP_PORT(bp);
8897 
8898 	/* Aggregation of supported attributes of all external phys */
8899 	bp->port.supported[0] = 0;
8900 	bp->port.supported[1] = 0;
8901 	switch (bp->link_params.num_phys) {
8902 	case 1:
8903 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8904 		cfg_size = 1;
8905 		break;
8906 	case 2:
8907 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8908 		cfg_size = 1;
8909 		break;
8910 	case 3:
8911 		if (bp->link_params.multi_phy_config &
8912 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8913 			bp->port.supported[1] =
8914 				bp->link_params.phy[EXT_PHY1].supported;
8915 			bp->port.supported[0] =
8916 				bp->link_params.phy[EXT_PHY2].supported;
8917 		} else {
8918 			bp->port.supported[0] =
8919 				bp->link_params.phy[EXT_PHY1].supported;
8920 			bp->port.supported[1] =
8921 				bp->link_params.phy[EXT_PHY2].supported;
8922 		}
8923 		cfg_size = 2;
8924 		break;
8925 	}
8926 
8927 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
8928 		BNX2X_ERR("NVRAM config error. BAD phy config."
8929 			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
8930 			   SHMEM_RD(bp,
8931 			   dev_info.port_hw_config[port].external_phy_config),
8932 			   SHMEM_RD(bp,
8933 			   dev_info.port_hw_config[port].external_phy_config2));
8934 			return;
8935 	}
8936 
8937 	if (CHIP_IS_E3(bp))
8938 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8939 	else {
8940 		switch (switch_cfg) {
8941 		case SWITCH_CFG_1G:
8942 			bp->port.phy_addr = REG_RD(
8943 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8944 			break;
8945 		case SWITCH_CFG_10G:
8946 			bp->port.phy_addr = REG_RD(
8947 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8948 			break;
8949 		default:
8950 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8951 				  bp->port.link_config[0]);
8952 			return;
8953 		}
8954 	}
8955 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8956 	/* mask what we support according to speed_cap_mask per configuration */
8957 	for (idx = 0; idx < cfg_size; idx++) {
8958 		if (!(bp->link_params.speed_cap_mask[idx] &
8959 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8960 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8961 
8962 		if (!(bp->link_params.speed_cap_mask[idx] &
8963 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8964 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8965 
8966 		if (!(bp->link_params.speed_cap_mask[idx] &
8967 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8968 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8969 
8970 		if (!(bp->link_params.speed_cap_mask[idx] &
8971 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8972 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8973 
8974 		if (!(bp->link_params.speed_cap_mask[idx] &
8975 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8976 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8977 						     SUPPORTED_1000baseT_Full);
8978 
8979 		if (!(bp->link_params.speed_cap_mask[idx] &
8980 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8981 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8982 
8983 		if (!(bp->link_params.speed_cap_mask[idx] &
8984 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8985 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8986 
8987 	}
8988 
8989 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
8990 		       bp->port.supported[1]);
8991 }
8992 
8993 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
8994 {
8995 	u32 link_config, idx, cfg_size = 0;
8996 	bp->port.advertising[0] = 0;
8997 	bp->port.advertising[1] = 0;
8998 	switch (bp->link_params.num_phys) {
8999 	case 1:
9000 	case 2:
9001 		cfg_size = 1;
9002 		break;
9003 	case 3:
9004 		cfg_size = 2;
9005 		break;
9006 	}
9007 	for (idx = 0; idx < cfg_size; idx++) {
9008 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9009 		link_config = bp->port.link_config[idx];
9010 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9011 		case PORT_FEATURE_LINK_SPEED_AUTO:
9012 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9013 				bp->link_params.req_line_speed[idx] =
9014 					SPEED_AUTO_NEG;
9015 				bp->port.advertising[idx] |=
9016 					bp->port.supported[idx];
9017 			} else {
9018 				/* force 10G, no AN */
9019 				bp->link_params.req_line_speed[idx] =
9020 					SPEED_10000;
9021 				bp->port.advertising[idx] |=
9022 					(ADVERTISED_10000baseT_Full |
9023 					 ADVERTISED_FIBRE);
9024 				continue;
9025 			}
9026 			break;
9027 
9028 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9029 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9030 				bp->link_params.req_line_speed[idx] =
9031 					SPEED_10;
9032 				bp->port.advertising[idx] |=
9033 					(ADVERTISED_10baseT_Full |
9034 					 ADVERTISED_TP);
9035 			} else {
9036 				BNX2X_ERR("NVRAM config error. "
9037 					    "Invalid link_config 0x%x"
9038 					    "  speed_cap_mask 0x%x\n",
9039 					    link_config,
9040 				    bp->link_params.speed_cap_mask[idx]);
9041 				return;
9042 			}
9043 			break;
9044 
9045 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9046 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9047 				bp->link_params.req_line_speed[idx] =
9048 					SPEED_10;
9049 				bp->link_params.req_duplex[idx] =
9050 					DUPLEX_HALF;
9051 				bp->port.advertising[idx] |=
9052 					(ADVERTISED_10baseT_Half |
9053 					 ADVERTISED_TP);
9054 			} else {
9055 				BNX2X_ERR("NVRAM config error. "
9056 					    "Invalid link_config 0x%x"
9057 					    "  speed_cap_mask 0x%x\n",
9058 					    link_config,
9059 					  bp->link_params.speed_cap_mask[idx]);
9060 				return;
9061 			}
9062 			break;
9063 
9064 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9065 			if (bp->port.supported[idx] &
9066 			    SUPPORTED_100baseT_Full) {
9067 				bp->link_params.req_line_speed[idx] =
9068 					SPEED_100;
9069 				bp->port.advertising[idx] |=
9070 					(ADVERTISED_100baseT_Full |
9071 					 ADVERTISED_TP);
9072 			} else {
9073 				BNX2X_ERR("NVRAM config error. "
9074 					    "Invalid link_config 0x%x"
9075 					    "  speed_cap_mask 0x%x\n",
9076 					    link_config,
9077 					  bp->link_params.speed_cap_mask[idx]);
9078 				return;
9079 			}
9080 			break;
9081 
9082 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9083 			if (bp->port.supported[idx] &
9084 			    SUPPORTED_100baseT_Half) {
9085 				bp->link_params.req_line_speed[idx] =
9086 								SPEED_100;
9087 				bp->link_params.req_duplex[idx] =
9088 								DUPLEX_HALF;
9089 				bp->port.advertising[idx] |=
9090 					(ADVERTISED_100baseT_Half |
9091 					 ADVERTISED_TP);
9092 			} else {
9093 				BNX2X_ERR("NVRAM config error. "
9094 				    "Invalid link_config 0x%x"
9095 				    "  speed_cap_mask 0x%x\n",
9096 				    link_config,
9097 				    bp->link_params.speed_cap_mask[idx]);
9098 				return;
9099 			}
9100 			break;
9101 
9102 		case PORT_FEATURE_LINK_SPEED_1G:
9103 			if (bp->port.supported[idx] &
9104 			    SUPPORTED_1000baseT_Full) {
9105 				bp->link_params.req_line_speed[idx] =
9106 					SPEED_1000;
9107 				bp->port.advertising[idx] |=
9108 					(ADVERTISED_1000baseT_Full |
9109 					 ADVERTISED_TP);
9110 			} else {
9111 				BNX2X_ERR("NVRAM config error. "
9112 				    "Invalid link_config 0x%x"
9113 				    "  speed_cap_mask 0x%x\n",
9114 				    link_config,
9115 				    bp->link_params.speed_cap_mask[idx]);
9116 				return;
9117 			}
9118 			break;
9119 
9120 		case PORT_FEATURE_LINK_SPEED_2_5G:
9121 			if (bp->port.supported[idx] &
9122 			    SUPPORTED_2500baseX_Full) {
9123 				bp->link_params.req_line_speed[idx] =
9124 					SPEED_2500;
9125 				bp->port.advertising[idx] |=
9126 					(ADVERTISED_2500baseX_Full |
9127 						ADVERTISED_TP);
9128 			} else {
9129 				BNX2X_ERR("NVRAM config error. "
9130 				    "Invalid link_config 0x%x"
9131 				    "  speed_cap_mask 0x%x\n",
9132 				    link_config,
9133 				    bp->link_params.speed_cap_mask[idx]);
9134 				return;
9135 			}
9136 			break;
9137 
9138 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9139 			if (bp->port.supported[idx] &
9140 			    SUPPORTED_10000baseT_Full) {
9141 				bp->link_params.req_line_speed[idx] =
9142 					SPEED_10000;
9143 				bp->port.advertising[idx] |=
9144 					(ADVERTISED_10000baseT_Full |
9145 						ADVERTISED_FIBRE);
9146 			} else {
9147 				BNX2X_ERR("NVRAM config error. "
9148 				    "Invalid link_config 0x%x"
9149 				    "  speed_cap_mask 0x%x\n",
9150 				    link_config,
9151 				    bp->link_params.speed_cap_mask[idx]);
9152 				return;
9153 			}
9154 			break;
9155 		case PORT_FEATURE_LINK_SPEED_20G:
9156 			bp->link_params.req_line_speed[idx] = SPEED_20000;
9157 
9158 			break;
9159 		default:
9160 			BNX2X_ERR("NVRAM config error. "
9161 				  "BAD link speed link_config 0x%x\n",
9162 				  link_config);
9163 				bp->link_params.req_line_speed[idx] =
9164 							SPEED_AUTO_NEG;
9165 				bp->port.advertising[idx] =
9166 						bp->port.supported[idx];
9167 			break;
9168 		}
9169 
9170 		bp->link_params.req_flow_ctrl[idx] = (link_config &
9171 					 PORT_FEATURE_FLOW_CONTROL_MASK);
9172 		if ((bp->link_params.req_flow_ctrl[idx] ==
9173 		     BNX2X_FLOW_CTRL_AUTO) &&
9174 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9175 			bp->link_params.req_flow_ctrl[idx] =
9176 				BNX2X_FLOW_CTRL_NONE;
9177 		}
9178 
9179 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9180 			       " 0x%x advertising 0x%x\n",
9181 			       bp->link_params.req_line_speed[idx],
9182 			       bp->link_params.req_duplex[idx],
9183 			       bp->link_params.req_flow_ctrl[idx],
9184 			       bp->port.advertising[idx]);
9185 	}
9186 }
9187 
9188 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9189 {
9190 	mac_hi = cpu_to_be16(mac_hi);
9191 	mac_lo = cpu_to_be32(mac_lo);
9192 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9193 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9194 }
9195 
9196 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9197 {
9198 	int port = BP_PORT(bp);
9199 	u32 config;
9200 	u32 ext_phy_type, ext_phy_config;
9201 
9202 	bp->link_params.bp = bp;
9203 	bp->link_params.port = port;
9204 
9205 	bp->link_params.lane_config =
9206 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9207 
9208 	bp->link_params.speed_cap_mask[0] =
9209 		SHMEM_RD(bp,
9210 			 dev_info.port_hw_config[port].speed_capability_mask);
9211 	bp->link_params.speed_cap_mask[1] =
9212 		SHMEM_RD(bp,
9213 			 dev_info.port_hw_config[port].speed_capability_mask2);
9214 	bp->port.link_config[0] =
9215 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9216 
9217 	bp->port.link_config[1] =
9218 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9219 
9220 	bp->link_params.multi_phy_config =
9221 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9222 	/* If the device is capable of WoL, set the default state according
9223 	 * to the HW
9224 	 */
9225 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9226 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9227 		   (config & PORT_FEATURE_WOL_ENABLED));
9228 
9229 	BNX2X_DEV_INFO("lane_config 0x%08x  "
9230 		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9231 		       bp->link_params.lane_config,
9232 		       bp->link_params.speed_cap_mask[0],
9233 		       bp->port.link_config[0]);
9234 
9235 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9236 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9237 	bnx2x_phy_probe(&bp->link_params);
9238 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9239 
9240 	bnx2x_link_settings_requested(bp);
9241 
9242 	/*
9243 	 * If connected directly, work with the internal PHY, otherwise, work
9244 	 * with the external PHY
9245 	 */
9246 	ext_phy_config =
9247 		SHMEM_RD(bp,
9248 			 dev_info.port_hw_config[port].external_phy_config);
9249 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9250 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9251 		bp->mdio.prtad = bp->port.phy_addr;
9252 
9253 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9254 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9255 		bp->mdio.prtad =
9256 			XGXS_EXT_PHY_ADDR(ext_phy_config);
9257 
9258 	/*
9259 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9260 	 * In MF mode, it is set to cover self test cases
9261 	 */
9262 	if (IS_MF(bp))
9263 		bp->port.need_hw_lock = 1;
9264 	else
9265 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9266 							bp->common.shmem_base,
9267 							bp->common.shmem2_base);
9268 }
9269 
9270 #ifdef BCM_CNIC
9271 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9272 {
9273 	int port = BP_PORT(bp);
9274 	int func = BP_ABS_FUNC(bp);
9275 
9276 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9277 				drv_lic_key[port].max_iscsi_conn);
9278 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9279 				drv_lic_key[port].max_fcoe_conn);
9280 
9281 	/* Get the number of maximum allowed iSCSI and FCoE connections */
9282 	bp->cnic_eth_dev.max_iscsi_conn =
9283 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9284 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9285 
9286 	bp->cnic_eth_dev.max_fcoe_conn =
9287 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9288 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9289 
9290 	/* Read the WWN: */
9291 	if (!IS_MF(bp)) {
9292 		/* Port info */
9293 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9294 			SHMEM_RD(bp,
9295 				dev_info.port_hw_config[port].
9296 				 fcoe_wwn_port_name_upper);
9297 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9298 			SHMEM_RD(bp,
9299 				dev_info.port_hw_config[port].
9300 				 fcoe_wwn_port_name_lower);
9301 
9302 		/* Node info */
9303 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9304 			SHMEM_RD(bp,
9305 				dev_info.port_hw_config[port].
9306 				 fcoe_wwn_node_name_upper);
9307 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9308 			SHMEM_RD(bp,
9309 				dev_info.port_hw_config[port].
9310 				 fcoe_wwn_node_name_lower);
9311 	} else if (!IS_MF_SD(bp)) {
9312 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9313 
9314 		/*
9315 		 * Read the WWN info only if the FCoE feature is enabled for
9316 		 * this function.
9317 		 */
9318 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9319 			/* Port info */
9320 			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9321 				MF_CFG_RD(bp, func_ext_config[func].
9322 						fcoe_wwn_port_name_upper);
9323 			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9324 				MF_CFG_RD(bp, func_ext_config[func].
9325 						fcoe_wwn_port_name_lower);
9326 
9327 			/* Node info */
9328 			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9329 				MF_CFG_RD(bp, func_ext_config[func].
9330 						fcoe_wwn_node_name_upper);
9331 			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9332 				MF_CFG_RD(bp, func_ext_config[func].
9333 						fcoe_wwn_node_name_lower);
9334 		}
9335 	}
9336 
9337 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x max_fcoe_conn 0x%x\n",
9338 		       bp->cnic_eth_dev.max_iscsi_conn,
9339 		       bp->cnic_eth_dev.max_fcoe_conn);
9340 
9341 	/*
9342 	 * If maximum allowed number of connections is zero -
9343 	 * disable the feature.
9344 	 */
9345 	if (!bp->cnic_eth_dev.max_iscsi_conn)
9346 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9347 
9348 	if (!bp->cnic_eth_dev.max_fcoe_conn)
9349 		bp->flags |= NO_FCOE_FLAG;
9350 }
9351 #endif
9352 
9353 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9354 {
9355 	u32 val, val2;
9356 	int func = BP_ABS_FUNC(bp);
9357 	int port = BP_PORT(bp);
9358 #ifdef BCM_CNIC
9359 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9360 	u8 *fip_mac = bp->fip_mac;
9361 #endif
9362 
9363 	/* Zero primary MAC configuration */
9364 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9365 
9366 	if (BP_NOMCP(bp)) {
9367 		BNX2X_ERROR("warning: random MAC workaround active\n");
9368 		random_ether_addr(bp->dev->dev_addr);
9369 	} else if (IS_MF(bp)) {
9370 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9371 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9372 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9373 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9374 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9375 
9376 #ifdef BCM_CNIC
9377 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9378 		 * FCoE MAC then the appropriate feature should be disabled.
9379 		 */
9380 		if (IS_MF_SI(bp)) {
9381 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9382 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9383 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9384 						     iscsi_mac_addr_upper);
9385 				val = MF_CFG_RD(bp, func_ext_config[func].
9386 						    iscsi_mac_addr_lower);
9387 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9388 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9389 					       iscsi_mac);
9390 			} else
9391 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9392 
9393 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9394 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9395 						     fcoe_mac_addr_upper);
9396 				val = MF_CFG_RD(bp, func_ext_config[func].
9397 						    fcoe_mac_addr_lower);
9398 				bnx2x_set_mac_buf(fip_mac, val, val2);
9399 				BNX2X_DEV_INFO("Read FCoE L2 MAC to %pM\n",
9400 					       fip_mac);
9401 
9402 			} else
9403 				bp->flags |= NO_FCOE_FLAG;
9404 		}
9405 #endif
9406 	} else {
9407 		/* in SF read MACs from port configuration */
9408 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9409 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9410 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9411 
9412 #ifdef BCM_CNIC
9413 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9414 				    iscsi_mac_upper);
9415 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9416 				   iscsi_mac_lower);
9417 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9418 
9419 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9420 				    fcoe_fip_mac_upper);
9421 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9422 				   fcoe_fip_mac_lower);
9423 		bnx2x_set_mac_buf(fip_mac, val, val2);
9424 #endif
9425 	}
9426 
9427 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9428 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9429 
9430 #ifdef BCM_CNIC
9431 	/* Set the FCoE MAC in MF_SD mode */
9432 	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9433 		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9434 
9435 	/* Disable iSCSI if MAC configuration is
9436 	 * invalid.
9437 	 */
9438 	if (!is_valid_ether_addr(iscsi_mac)) {
9439 		bp->flags |= NO_ISCSI_FLAG;
9440 		memset(iscsi_mac, 0, ETH_ALEN);
9441 	}
9442 
9443 	/* Disable FCoE if MAC configuration is
9444 	 * invalid.
9445 	 */
9446 	if (!is_valid_ether_addr(fip_mac)) {
9447 		bp->flags |= NO_FCOE_FLAG;
9448 		memset(bp->fip_mac, 0, ETH_ALEN);
9449 	}
9450 #endif
9451 
9452 	if (!is_valid_ether_addr(bp->dev->dev_addr))
9453 		dev_err(&bp->pdev->dev,
9454 			"bad Ethernet MAC address configuration: "
9455 			"%pM, change it manually before bringing up "
9456 			"the appropriate network interface\n",
9457 			bp->dev->dev_addr);
9458 }
9459 
9460 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9461 {
9462 	int /*abs*/func = BP_ABS_FUNC(bp);
9463 	int vn;
9464 	u32 val = 0;
9465 	int rc = 0;
9466 
9467 	bnx2x_get_common_hwinfo(bp);
9468 
9469 	/*
9470 	 * initialize IGU parameters
9471 	 */
9472 	if (CHIP_IS_E1x(bp)) {
9473 		bp->common.int_block = INT_BLOCK_HC;
9474 
9475 		bp->igu_dsb_id = DEF_SB_IGU_ID;
9476 		bp->igu_base_sb = 0;
9477 	} else {
9478 		bp->common.int_block = INT_BLOCK_IGU;
9479 
9480 		/* do not allow device reset during IGU info preocessing */
9481 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9482 
9483 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9484 
9485 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9486 			int tout = 5000;
9487 
9488 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9489 
9490 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9491 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9492 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9493 
9494 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9495 				tout--;
9496 				usleep_range(1000, 1000);
9497 			}
9498 
9499 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9500 				dev_err(&bp->pdev->dev,
9501 					"FORCING Normal Mode failed!!!\n");
9502 				return -EPERM;
9503 			}
9504 		}
9505 
9506 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9507 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9508 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9509 		} else
9510 			BNX2X_DEV_INFO("IGU Normal Mode\n");
9511 
9512 		bnx2x_get_igu_cam_info(bp);
9513 
9514 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9515 	}
9516 
9517 	/*
9518 	 * set base FW non-default (fast path) status block id, this value is
9519 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9520 	 * determine the id used by the FW.
9521 	 */
9522 	if (CHIP_IS_E1x(bp))
9523 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9524 	else /*
9525 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9526 	      * the same queue are indicated on the same IGU SB). So we prefer
9527 	      * FW and IGU SBs to be the same value.
9528 	      */
9529 		bp->base_fw_ndsb = bp->igu_base_sb;
9530 
9531 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9532 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9533 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9534 
9535 	/*
9536 	 * Initialize MF configuration
9537 	 */
9538 
9539 	bp->mf_ov = 0;
9540 	bp->mf_mode = 0;
9541 	vn = BP_VN(bp);
9542 
9543 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9544 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9545 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9546 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9547 
9548 		if (SHMEM2_HAS(bp, mf_cfg_addr))
9549 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9550 		else
9551 			bp->common.mf_cfg_base = bp->common.shmem_base +
9552 				offsetof(struct shmem_region, func_mb) +
9553 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9554 		/*
9555 		 * get mf configuration:
9556 		 * 1. existence of MF configuration
9557 		 * 2. MAC address must be legal (check only upper bytes)
9558 		 *    for  Switch-Independent mode;
9559 		 *    OVLAN must be legal for Switch-Dependent mode
9560 		 * 3. SF_MODE configures specific MF mode
9561 		 */
9562 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9563 			/* get mf configuration */
9564 			val = SHMEM_RD(bp,
9565 				       dev_info.shared_feature_config.config);
9566 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9567 
9568 			switch (val) {
9569 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9570 				val = MF_CFG_RD(bp, func_mf_config[func].
9571 						mac_upper);
9572 				/* check for legal mac (upper bytes)*/
9573 				if (val != 0xffff) {
9574 					bp->mf_mode = MULTI_FUNCTION_SI;
9575 					bp->mf_config[vn] = MF_CFG_RD(bp,
9576 						   func_mf_config[func].config);
9577 				} else
9578 					BNX2X_DEV_INFO("illegal MAC address "
9579 						       "for SI\n");
9580 				break;
9581 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9582 				/* get OV configuration */
9583 				val = MF_CFG_RD(bp,
9584 					func_mf_config[FUNC_0].e1hov_tag);
9585 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9586 
9587 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9588 					bp->mf_mode = MULTI_FUNCTION_SD;
9589 					bp->mf_config[vn] = MF_CFG_RD(bp,
9590 						func_mf_config[func].config);
9591 				} else
9592 					BNX2X_DEV_INFO("illegal OV for SD\n");
9593 				break;
9594 			default:
9595 				/* Unknown configuration: reset mf_config */
9596 				bp->mf_config[vn] = 0;
9597 				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9598 			}
9599 		}
9600 
9601 		BNX2X_DEV_INFO("%s function mode\n",
9602 			       IS_MF(bp) ? "multi" : "single");
9603 
9604 		switch (bp->mf_mode) {
9605 		case MULTI_FUNCTION_SD:
9606 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9607 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9608 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9609 				bp->mf_ov = val;
9610 				bp->path_has_ovlan = true;
9611 
9612 				BNX2X_DEV_INFO("MF OV for func %d is %d "
9613 					       "(0x%04x)\n", func, bp->mf_ov,
9614 					       bp->mf_ov);
9615 			} else {
9616 				dev_err(&bp->pdev->dev,
9617 					"No valid MF OV for func %d, "
9618 					"aborting\n", func);
9619 				return -EPERM;
9620 			}
9621 			break;
9622 		case MULTI_FUNCTION_SI:
9623 			BNX2X_DEV_INFO("func %d is in MF "
9624 				       "switch-independent mode\n", func);
9625 			break;
9626 		default:
9627 			if (vn) {
9628 				dev_err(&bp->pdev->dev,
9629 					"VN %d is in a single function mode, "
9630 					"aborting\n", vn);
9631 				return -EPERM;
9632 			}
9633 			break;
9634 		}
9635 
9636 		/* check if other port on the path needs ovlan:
9637 		 * Since MF configuration is shared between ports
9638 		 * Possible mixed modes are only
9639 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9640 		 */
9641 		if (CHIP_MODE_IS_4_PORT(bp) &&
9642 		    !bp->path_has_ovlan &&
9643 		    !IS_MF(bp) &&
9644 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9645 			u8 other_port = !BP_PORT(bp);
9646 			u8 other_func = BP_PATH(bp) + 2*other_port;
9647 			val = MF_CFG_RD(bp,
9648 					func_mf_config[other_func].e1hov_tag);
9649 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9650 				bp->path_has_ovlan = true;
9651 		}
9652 	}
9653 
9654 	/* adjust igu_sb_cnt to MF for E1x */
9655 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9656 		bp->igu_sb_cnt /= E1HVN_MAX;
9657 
9658 	/* port info */
9659 	bnx2x_get_port_hwinfo(bp);
9660 
9661 	/* Get MAC addresses */
9662 	bnx2x_get_mac_hwinfo(bp);
9663 
9664 #ifdef BCM_CNIC
9665 	bnx2x_get_cnic_info(bp);
9666 #endif
9667 
9668 	/* Get current FW pulse sequence */
9669 	if (!BP_NOMCP(bp)) {
9670 		int mb_idx = BP_FW_MB_IDX(bp);
9671 
9672 		bp->fw_drv_pulse_wr_seq =
9673 				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9674 				 DRV_PULSE_SEQ_MASK);
9675 		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9676 	}
9677 
9678 	return rc;
9679 }
9680 
9681 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9682 {
9683 	int cnt, i, block_end, rodi;
9684 	char vpd_data[BNX2X_VPD_LEN+1];
9685 	char str_id_reg[VENDOR_ID_LEN+1];
9686 	char str_id_cap[VENDOR_ID_LEN+1];
9687 	u8 len;
9688 
9689 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9690 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9691 
9692 	if (cnt < BNX2X_VPD_LEN)
9693 		goto out_not_found;
9694 
9695 	i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9696 			     PCI_VPD_LRDT_RO_DATA);
9697 	if (i < 0)
9698 		goto out_not_found;
9699 
9700 
9701 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9702 		    pci_vpd_lrdt_size(&vpd_data[i]);
9703 
9704 	i += PCI_VPD_LRDT_TAG_SIZE;
9705 
9706 	if (block_end > BNX2X_VPD_LEN)
9707 		goto out_not_found;
9708 
9709 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9710 				   PCI_VPD_RO_KEYWORD_MFR_ID);
9711 	if (rodi < 0)
9712 		goto out_not_found;
9713 
9714 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9715 
9716 	if (len != VENDOR_ID_LEN)
9717 		goto out_not_found;
9718 
9719 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9720 
9721 	/* vendor specific info */
9722 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9723 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9724 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9725 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9726 
9727 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9728 						PCI_VPD_RO_KEYWORD_VENDOR0);
9729 		if (rodi >= 0) {
9730 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
9731 
9732 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9733 
9734 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9735 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
9736 				bp->fw_ver[len] = ' ';
9737 			}
9738 		}
9739 		return;
9740 	}
9741 out_not_found:
9742 	return;
9743 }
9744 
9745 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9746 {
9747 	u32 flags = 0;
9748 
9749 	if (CHIP_REV_IS_FPGA(bp))
9750 		SET_FLAGS(flags, MODE_FPGA);
9751 	else if (CHIP_REV_IS_EMUL(bp))
9752 		SET_FLAGS(flags, MODE_EMUL);
9753 	else
9754 		SET_FLAGS(flags, MODE_ASIC);
9755 
9756 	if (CHIP_MODE_IS_4_PORT(bp))
9757 		SET_FLAGS(flags, MODE_PORT4);
9758 	else
9759 		SET_FLAGS(flags, MODE_PORT2);
9760 
9761 	if (CHIP_IS_E2(bp))
9762 		SET_FLAGS(flags, MODE_E2);
9763 	else if (CHIP_IS_E3(bp)) {
9764 		SET_FLAGS(flags, MODE_E3);
9765 		if (CHIP_REV(bp) == CHIP_REV_Ax)
9766 			SET_FLAGS(flags, MODE_E3_A0);
9767 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9768 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9769 	}
9770 
9771 	if (IS_MF(bp)) {
9772 		SET_FLAGS(flags, MODE_MF);
9773 		switch (bp->mf_mode) {
9774 		case MULTI_FUNCTION_SD:
9775 			SET_FLAGS(flags, MODE_MF_SD);
9776 			break;
9777 		case MULTI_FUNCTION_SI:
9778 			SET_FLAGS(flags, MODE_MF_SI);
9779 			break;
9780 		}
9781 	} else
9782 		SET_FLAGS(flags, MODE_SF);
9783 
9784 #if defined(__LITTLE_ENDIAN)
9785 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9786 #else /*(__BIG_ENDIAN)*/
9787 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
9788 #endif
9789 	INIT_MODE_FLAGS(bp) = flags;
9790 }
9791 
9792 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9793 {
9794 	int func;
9795 	int timer_interval;
9796 	int rc;
9797 
9798 	mutex_init(&bp->port.phy_mutex);
9799 	mutex_init(&bp->fw_mb_mutex);
9800 	spin_lock_init(&bp->stats_lock);
9801 #ifdef BCM_CNIC
9802 	mutex_init(&bp->cnic_mutex);
9803 #endif
9804 
9805 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9806 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9807 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9808 	rc = bnx2x_get_hwinfo(bp);
9809 	if (rc)
9810 		return rc;
9811 
9812 	bnx2x_set_modes_bitmap(bp);
9813 
9814 	rc = bnx2x_alloc_mem_bp(bp);
9815 	if (rc)
9816 		return rc;
9817 
9818 	bnx2x_read_fwinfo(bp);
9819 
9820 	func = BP_FUNC(bp);
9821 
9822 	/* need to reset chip if undi was active */
9823 	if (!BP_NOMCP(bp))
9824 		bnx2x_undi_unload(bp);
9825 
9826 	/* init fw_seq after undi_unload! */
9827 	if (!BP_NOMCP(bp)) {
9828 		bp->fw_seq =
9829 			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9830 			 DRV_MSG_SEQ_NUMBER_MASK);
9831 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9832 	}
9833 
9834 	if (CHIP_REV_IS_FPGA(bp))
9835 		dev_err(&bp->pdev->dev, "FPGA detected\n");
9836 
9837 	if (BP_NOMCP(bp) && (func == 0))
9838 		dev_err(&bp->pdev->dev, "MCP disabled, "
9839 					"must load devices in order!\n");
9840 
9841 	bp->multi_mode = multi_mode;
9842 
9843 	/* Set TPA flags */
9844 	if (disable_tpa) {
9845 		bp->flags &= ~TPA_ENABLE_FLAG;
9846 		bp->dev->features &= ~NETIF_F_LRO;
9847 	} else {
9848 		bp->flags |= TPA_ENABLE_FLAG;
9849 		bp->dev->features |= NETIF_F_LRO;
9850 	}
9851 	bp->disable_tpa = disable_tpa;
9852 
9853 	if (CHIP_IS_E1(bp))
9854 		bp->dropless_fc = 0;
9855 	else
9856 		bp->dropless_fc = dropless_fc;
9857 
9858 	bp->mrrs = mrrs;
9859 
9860 	bp->tx_ring_size = MAX_TX_AVAIL;
9861 
9862 	/* make sure that the numbers are in the right granularity */
9863 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9864 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9865 
9866 	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9867 	bp->current_interval = (poll ? poll : timer_interval);
9868 
9869 	init_timer(&bp->timer);
9870 	bp->timer.expires = jiffies + bp->current_interval;
9871 	bp->timer.data = (unsigned long) bp;
9872 	bp->timer.function = bnx2x_timer;
9873 
9874 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9875 	bnx2x_dcbx_init_params(bp);
9876 
9877 #ifdef BCM_CNIC
9878 	if (CHIP_IS_E1x(bp))
9879 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9880 	else
9881 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
9882 #endif
9883 
9884 	/* multiple tx priority */
9885 	if (CHIP_IS_E1x(bp))
9886 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9887 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9888 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9889 	if (CHIP_IS_E3B0(bp))
9890 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9891 
9892 	return rc;
9893 }
9894 
9895 
9896 /****************************************************************************
9897 * General service functions
9898 ****************************************************************************/
9899 
9900 /*
9901  * net_device service functions
9902  */
9903 
9904 /* called with rtnl_lock */
9905 static int bnx2x_open(struct net_device *dev)
9906 {
9907 	struct bnx2x *bp = netdev_priv(dev);
9908 	bool global = false;
9909 	int other_engine = BP_PATH(bp) ? 0 : 1;
9910 	u32 other_load_counter, load_counter;
9911 
9912 	netif_carrier_off(dev);
9913 
9914 	bnx2x_set_power_state(bp, PCI_D0);
9915 
9916 	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9917 	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9918 
9919 	/*
9920 	 * If parity had happen during the unload, then attentions
9921 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9922 	 * want the first function loaded on the current engine to
9923 	 * complete the recovery.
9924 	 */
9925 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9926 	    bnx2x_chk_parity_attn(bp, &global, true))
9927 		do {
9928 			/*
9929 			 * If there are attentions and they are in a global
9930 			 * blocks, set the GLOBAL_RESET bit regardless whether
9931 			 * it will be this function that will complete the
9932 			 * recovery or not.
9933 			 */
9934 			if (global)
9935 				bnx2x_set_reset_global(bp);
9936 
9937 			/*
9938 			 * Only the first function on the current engine should
9939 			 * try to recover in open. In case of attentions in
9940 			 * global blocks only the first in the chip should try
9941 			 * to recover.
9942 			 */
9943 			if ((!load_counter &&
9944 			     (!global || !other_load_counter)) &&
9945 			    bnx2x_trylock_leader_lock(bp) &&
9946 			    !bnx2x_leader_reset(bp)) {
9947 				netdev_info(bp->dev, "Recovered in open\n");
9948 				break;
9949 			}
9950 
9951 			/* recovery has failed... */
9952 			bnx2x_set_power_state(bp, PCI_D3hot);
9953 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
9954 
9955 			netdev_err(bp->dev, "Recovery flow hasn't been properly"
9956 			" completed yet. Try again later. If u still see this"
9957 			" message after a few retries then power cycle is"
9958 			" required.\n");
9959 
9960 			return -EAGAIN;
9961 		} while (0);
9962 
9963 	bp->recovery_state = BNX2X_RECOVERY_DONE;
9964 	return bnx2x_nic_load(bp, LOAD_OPEN);
9965 }
9966 
9967 /* called with rtnl_lock */
9968 static int bnx2x_close(struct net_device *dev)
9969 {
9970 	struct bnx2x *bp = netdev_priv(dev);
9971 
9972 	/* Unload the driver, release IRQs */
9973 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
9974 
9975 	/* Power off */
9976 	bnx2x_set_power_state(bp, PCI_D3hot);
9977 
9978 	return 0;
9979 }
9980 
9981 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
9982 					 struct bnx2x_mcast_ramrod_params *p)
9983 {
9984 	int mc_count = netdev_mc_count(bp->dev);
9985 	struct bnx2x_mcast_list_elem *mc_mac =
9986 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
9987 	struct netdev_hw_addr *ha;
9988 
9989 	if (!mc_mac)
9990 		return -ENOMEM;
9991 
9992 	INIT_LIST_HEAD(&p->mcast_list);
9993 
9994 	netdev_for_each_mc_addr(ha, bp->dev) {
9995 		mc_mac->mac = bnx2x_mc_addr(ha);
9996 		list_add_tail(&mc_mac->link, &p->mcast_list);
9997 		mc_mac++;
9998 	}
9999 
10000 	p->mcast_list_len = mc_count;
10001 
10002 	return 0;
10003 }
10004 
10005 static inline void bnx2x_free_mcast_macs_list(
10006 	struct bnx2x_mcast_ramrod_params *p)
10007 {
10008 	struct bnx2x_mcast_list_elem *mc_mac =
10009 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10010 				 link);
10011 
10012 	WARN_ON(!mc_mac);
10013 	kfree(mc_mac);
10014 }
10015 
10016 /**
10017  * bnx2x_set_uc_list - configure a new unicast MACs list.
10018  *
10019  * @bp: driver handle
10020  *
10021  * We will use zero (0) as a MAC type for these MACs.
10022  */
10023 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10024 {
10025 	int rc;
10026 	struct net_device *dev = bp->dev;
10027 	struct netdev_hw_addr *ha;
10028 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10029 	unsigned long ramrod_flags = 0;
10030 
10031 	/* First schedule a cleanup up of old configuration */
10032 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10033 	if (rc < 0) {
10034 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10035 		return rc;
10036 	}
10037 
10038 	netdev_for_each_uc_addr(ha, dev) {
10039 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10040 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10041 		if (rc < 0) {
10042 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10043 				  rc);
10044 			return rc;
10045 		}
10046 	}
10047 
10048 	/* Execute the pending commands */
10049 	__set_bit(RAMROD_CONT, &ramrod_flags);
10050 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10051 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10052 }
10053 
10054 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10055 {
10056 	struct net_device *dev = bp->dev;
10057 	struct bnx2x_mcast_ramrod_params rparam = {0};
10058 	int rc = 0;
10059 
10060 	rparam.mcast_obj = &bp->mcast_obj;
10061 
10062 	/* first, clear all configured multicast MACs */
10063 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10064 	if (rc < 0) {
10065 		BNX2X_ERR("Failed to clear multicast "
10066 			  "configuration: %d\n", rc);
10067 		return rc;
10068 	}
10069 
10070 	/* then, configure a new MACs list */
10071 	if (netdev_mc_count(dev)) {
10072 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10073 		if (rc) {
10074 			BNX2X_ERR("Failed to create multicast MACs "
10075 				  "list: %d\n", rc);
10076 			return rc;
10077 		}
10078 
10079 		/* Now add the new MACs */
10080 		rc = bnx2x_config_mcast(bp, &rparam,
10081 					BNX2X_MCAST_CMD_ADD);
10082 		if (rc < 0)
10083 			BNX2X_ERR("Failed to set a new multicast "
10084 				  "configuration: %d\n", rc);
10085 
10086 		bnx2x_free_mcast_macs_list(&rparam);
10087 	}
10088 
10089 	return rc;
10090 }
10091 
10092 
10093 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10094 void bnx2x_set_rx_mode(struct net_device *dev)
10095 {
10096 	struct bnx2x *bp = netdev_priv(dev);
10097 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10098 
10099 	if (bp->state != BNX2X_STATE_OPEN) {
10100 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10101 		return;
10102 	}
10103 
10104 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10105 
10106 	if (dev->flags & IFF_PROMISC)
10107 		rx_mode = BNX2X_RX_MODE_PROMISC;
10108 	else if ((dev->flags & IFF_ALLMULTI) ||
10109 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10110 		  CHIP_IS_E1(bp)))
10111 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10112 	else {
10113 		/* some multicasts */
10114 		if (bnx2x_set_mc_list(bp) < 0)
10115 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10116 
10117 		if (bnx2x_set_uc_list(bp) < 0)
10118 			rx_mode = BNX2X_RX_MODE_PROMISC;
10119 	}
10120 
10121 	bp->rx_mode = rx_mode;
10122 
10123 	/* Schedule the rx_mode command */
10124 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10125 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10126 		return;
10127 	}
10128 
10129 	bnx2x_set_storm_rx_mode(bp);
10130 }
10131 
10132 /* called with rtnl_lock */
10133 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10134 			   int devad, u16 addr)
10135 {
10136 	struct bnx2x *bp = netdev_priv(netdev);
10137 	u16 value;
10138 	int rc;
10139 
10140 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10141 	   prtad, devad, addr);
10142 
10143 	/* The HW expects different devad if CL22 is used */
10144 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10145 
10146 	bnx2x_acquire_phy_lock(bp);
10147 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10148 	bnx2x_release_phy_lock(bp);
10149 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10150 
10151 	if (!rc)
10152 		rc = value;
10153 	return rc;
10154 }
10155 
10156 /* called with rtnl_lock */
10157 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10158 			    u16 addr, u16 value)
10159 {
10160 	struct bnx2x *bp = netdev_priv(netdev);
10161 	int rc;
10162 
10163 	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10164 			   " value 0x%x\n", prtad, devad, addr, value);
10165 
10166 	/* The HW expects different devad if CL22 is used */
10167 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10168 
10169 	bnx2x_acquire_phy_lock(bp);
10170 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10171 	bnx2x_release_phy_lock(bp);
10172 	return rc;
10173 }
10174 
10175 /* called with rtnl_lock */
10176 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10177 {
10178 	struct bnx2x *bp = netdev_priv(dev);
10179 	struct mii_ioctl_data *mdio = if_mii(ifr);
10180 
10181 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10182 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10183 
10184 	if (!netif_running(dev))
10185 		return -EAGAIN;
10186 
10187 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10188 }
10189 
10190 #ifdef CONFIG_NET_POLL_CONTROLLER
10191 static void poll_bnx2x(struct net_device *dev)
10192 {
10193 	struct bnx2x *bp = netdev_priv(dev);
10194 
10195 	disable_irq(bp->pdev->irq);
10196 	bnx2x_interrupt(bp->pdev->irq, dev);
10197 	enable_irq(bp->pdev->irq);
10198 }
10199 #endif
10200 
10201 static const struct net_device_ops bnx2x_netdev_ops = {
10202 	.ndo_open		= bnx2x_open,
10203 	.ndo_stop		= bnx2x_close,
10204 	.ndo_start_xmit		= bnx2x_start_xmit,
10205 	.ndo_select_queue	= bnx2x_select_queue,
10206 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10207 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10208 	.ndo_validate_addr	= eth_validate_addr,
10209 	.ndo_do_ioctl		= bnx2x_ioctl,
10210 	.ndo_change_mtu		= bnx2x_change_mtu,
10211 	.ndo_fix_features	= bnx2x_fix_features,
10212 	.ndo_set_features	= bnx2x_set_features,
10213 	.ndo_tx_timeout		= bnx2x_tx_timeout,
10214 #ifdef CONFIG_NET_POLL_CONTROLLER
10215 	.ndo_poll_controller	= poll_bnx2x,
10216 #endif
10217 	.ndo_setup_tc		= bnx2x_setup_tc,
10218 
10219 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10220 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10221 #endif
10222 };
10223 
10224 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10225 {
10226 	struct device *dev = &bp->pdev->dev;
10227 
10228 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10229 		bp->flags |= USING_DAC_FLAG;
10230 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10231 			dev_err(dev, "dma_set_coherent_mask failed, "
10232 				     "aborting\n");
10233 			return -EIO;
10234 		}
10235 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10236 		dev_err(dev, "System does not support DMA, aborting\n");
10237 		return -EIO;
10238 	}
10239 
10240 	return 0;
10241 }
10242 
10243 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10244 				    struct net_device *dev,
10245 				    unsigned long board_type)
10246 {
10247 	struct bnx2x *bp;
10248 	int rc;
10249 
10250 	SET_NETDEV_DEV(dev, &pdev->dev);
10251 	bp = netdev_priv(dev);
10252 
10253 	bp->dev = dev;
10254 	bp->pdev = pdev;
10255 	bp->flags = 0;
10256 	bp->pf_num = PCI_FUNC(pdev->devfn);
10257 
10258 	rc = pci_enable_device(pdev);
10259 	if (rc) {
10260 		dev_err(&bp->pdev->dev,
10261 			"Cannot enable PCI device, aborting\n");
10262 		goto err_out;
10263 	}
10264 
10265 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10266 		dev_err(&bp->pdev->dev,
10267 			"Cannot find PCI device base address, aborting\n");
10268 		rc = -ENODEV;
10269 		goto err_out_disable;
10270 	}
10271 
10272 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10273 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10274 		       " base address, aborting\n");
10275 		rc = -ENODEV;
10276 		goto err_out_disable;
10277 	}
10278 
10279 	if (atomic_read(&pdev->enable_cnt) == 1) {
10280 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10281 		if (rc) {
10282 			dev_err(&bp->pdev->dev,
10283 				"Cannot obtain PCI resources, aborting\n");
10284 			goto err_out_disable;
10285 		}
10286 
10287 		pci_set_master(pdev);
10288 		pci_save_state(pdev);
10289 	}
10290 
10291 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10292 	if (bp->pm_cap == 0) {
10293 		dev_err(&bp->pdev->dev,
10294 			"Cannot find power management capability, aborting\n");
10295 		rc = -EIO;
10296 		goto err_out_release;
10297 	}
10298 
10299 	if (!pci_is_pcie(pdev)) {
10300 		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10301 		rc = -EIO;
10302 		goto err_out_release;
10303 	}
10304 
10305 	rc = bnx2x_set_coherency_mask(bp);
10306 	if (rc)
10307 		goto err_out_release;
10308 
10309 	dev->mem_start = pci_resource_start(pdev, 0);
10310 	dev->base_addr = dev->mem_start;
10311 	dev->mem_end = pci_resource_end(pdev, 0);
10312 
10313 	dev->irq = pdev->irq;
10314 
10315 	bp->regview = pci_ioremap_bar(pdev, 0);
10316 	if (!bp->regview) {
10317 		dev_err(&bp->pdev->dev,
10318 			"Cannot map register space, aborting\n");
10319 		rc = -ENOMEM;
10320 		goto err_out_release;
10321 	}
10322 
10323 	bnx2x_set_power_state(bp, PCI_D0);
10324 
10325 	/* clean indirect addresses */
10326 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10327 			       PCICFG_VENDOR_ID_OFFSET);
10328 	/*
10329 	 * Clean the following indirect addresses for all functions since it
10330 	 * is not used by the driver.
10331 	 */
10332 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10333 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10334 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10335 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10336 
10337 	if (CHIP_IS_E1x(bp)) {
10338 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10339 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10340 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10341 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10342 	}
10343 
10344 	/*
10345 	 * Enable internal target-read (in case we are probed after PF FLR).
10346 	 * Must be done prior to any BAR read access. Only for 57712 and up
10347 	 */
10348 	if (board_type != BCM57710 &&
10349 	    board_type != BCM57711 &&
10350 	    board_type != BCM57711E)
10351 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10352 
10353 	/* Reset the load counter */
10354 	bnx2x_clear_load_cnt(bp);
10355 
10356 	dev->watchdog_timeo = TX_TIMEOUT;
10357 
10358 	dev->netdev_ops = &bnx2x_netdev_ops;
10359 	bnx2x_set_ethtool_ops(dev);
10360 
10361 	dev->priv_flags |= IFF_UNICAST_FLT;
10362 
10363 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10364 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10365 		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10366 
10367 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10368 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10369 
10370 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10371 	if (bp->flags & USING_DAC_FLAG)
10372 		dev->features |= NETIF_F_HIGHDMA;
10373 
10374 	/* Add Loopback capability to the device */
10375 	dev->hw_features |= NETIF_F_LOOPBACK;
10376 
10377 #ifdef BCM_DCBNL
10378 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10379 #endif
10380 
10381 	/* get_port_hwinfo() will set prtad and mmds properly */
10382 	bp->mdio.prtad = MDIO_PRTAD_NONE;
10383 	bp->mdio.mmds = 0;
10384 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10385 	bp->mdio.dev = dev;
10386 	bp->mdio.mdio_read = bnx2x_mdio_read;
10387 	bp->mdio.mdio_write = bnx2x_mdio_write;
10388 
10389 	return 0;
10390 
10391 err_out_release:
10392 	if (atomic_read(&pdev->enable_cnt) == 1)
10393 		pci_release_regions(pdev);
10394 
10395 err_out_disable:
10396 	pci_disable_device(pdev);
10397 	pci_set_drvdata(pdev, NULL);
10398 
10399 err_out:
10400 	return rc;
10401 }
10402 
10403 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10404 						 int *width, int *speed)
10405 {
10406 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10407 
10408 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10409 
10410 	/* return value of 1=2.5GHz 2=5GHz */
10411 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10412 }
10413 
10414 static int bnx2x_check_firmware(struct bnx2x *bp)
10415 {
10416 	const struct firmware *firmware = bp->firmware;
10417 	struct bnx2x_fw_file_hdr *fw_hdr;
10418 	struct bnx2x_fw_file_section *sections;
10419 	u32 offset, len, num_ops;
10420 	u16 *ops_offsets;
10421 	int i;
10422 	const u8 *fw_ver;
10423 
10424 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10425 		return -EINVAL;
10426 
10427 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10428 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10429 
10430 	/* Make sure none of the offsets and sizes make us read beyond
10431 	 * the end of the firmware data */
10432 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10433 		offset = be32_to_cpu(sections[i].offset);
10434 		len = be32_to_cpu(sections[i].len);
10435 		if (offset + len > firmware->size) {
10436 			dev_err(&bp->pdev->dev,
10437 				"Section %d length is out of bounds\n", i);
10438 			return -EINVAL;
10439 		}
10440 	}
10441 
10442 	/* Likewise for the init_ops offsets */
10443 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10444 	ops_offsets = (u16 *)(firmware->data + offset);
10445 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10446 
10447 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10448 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10449 			dev_err(&bp->pdev->dev,
10450 				"Section offset %d is out of bounds\n", i);
10451 			return -EINVAL;
10452 		}
10453 	}
10454 
10455 	/* Check FW version */
10456 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10457 	fw_ver = firmware->data + offset;
10458 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10459 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10460 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10461 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10462 		dev_err(&bp->pdev->dev,
10463 			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10464 		       fw_ver[0], fw_ver[1], fw_ver[2],
10465 		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10466 		       BCM_5710_FW_MINOR_VERSION,
10467 		       BCM_5710_FW_REVISION_VERSION,
10468 		       BCM_5710_FW_ENGINEERING_VERSION);
10469 		return -EINVAL;
10470 	}
10471 
10472 	return 0;
10473 }
10474 
10475 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10476 {
10477 	const __be32 *source = (const __be32 *)_source;
10478 	u32 *target = (u32 *)_target;
10479 	u32 i;
10480 
10481 	for (i = 0; i < n/4; i++)
10482 		target[i] = be32_to_cpu(source[i]);
10483 }
10484 
10485 /*
10486    Ops array is stored in the following format:
10487    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10488  */
10489 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10490 {
10491 	const __be32 *source = (const __be32 *)_source;
10492 	struct raw_op *target = (struct raw_op *)_target;
10493 	u32 i, j, tmp;
10494 
10495 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10496 		tmp = be32_to_cpu(source[j]);
10497 		target[i].op = (tmp >> 24) & 0xff;
10498 		target[i].offset = tmp & 0xffffff;
10499 		target[i].raw_data = be32_to_cpu(source[j + 1]);
10500 	}
10501 }
10502 
10503 /**
10504  * IRO array is stored in the following format:
10505  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10506  */
10507 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10508 {
10509 	const __be32 *source = (const __be32 *)_source;
10510 	struct iro *target = (struct iro *)_target;
10511 	u32 i, j, tmp;
10512 
10513 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10514 		target[i].base = be32_to_cpu(source[j]);
10515 		j++;
10516 		tmp = be32_to_cpu(source[j]);
10517 		target[i].m1 = (tmp >> 16) & 0xffff;
10518 		target[i].m2 = tmp & 0xffff;
10519 		j++;
10520 		tmp = be32_to_cpu(source[j]);
10521 		target[i].m3 = (tmp >> 16) & 0xffff;
10522 		target[i].size = tmp & 0xffff;
10523 		j++;
10524 	}
10525 }
10526 
10527 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10528 {
10529 	const __be16 *source = (const __be16 *)_source;
10530 	u16 *target = (u16 *)_target;
10531 	u32 i;
10532 
10533 	for (i = 0; i < n/2; i++)
10534 		target[i] = be16_to_cpu(source[i]);
10535 }
10536 
10537 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10538 do {									\
10539 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10540 	bp->arr = kmalloc(len, GFP_KERNEL);				\
10541 	if (!bp->arr) {							\
10542 		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10543 		goto lbl;						\
10544 	}								\
10545 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10546 	     (u8 *)bp->arr, len);					\
10547 } while (0)
10548 
10549 int bnx2x_init_firmware(struct bnx2x *bp)
10550 {
10551 	const char *fw_file_name;
10552 	struct bnx2x_fw_file_hdr *fw_hdr;
10553 	int rc;
10554 
10555 	if (CHIP_IS_E1(bp))
10556 		fw_file_name = FW_FILE_NAME_E1;
10557 	else if (CHIP_IS_E1H(bp))
10558 		fw_file_name = FW_FILE_NAME_E1H;
10559 	else if (!CHIP_IS_E1x(bp))
10560 		fw_file_name = FW_FILE_NAME_E2;
10561 	else {
10562 		BNX2X_ERR("Unsupported chip revision\n");
10563 		return -EINVAL;
10564 	}
10565 
10566 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10567 
10568 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10569 	if (rc) {
10570 		BNX2X_ERR("Can't load firmware file %s\n", fw_file_name);
10571 		goto request_firmware_exit;
10572 	}
10573 
10574 	rc = bnx2x_check_firmware(bp);
10575 	if (rc) {
10576 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10577 		goto request_firmware_exit;
10578 	}
10579 
10580 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10581 
10582 	/* Initialize the pointers to the init arrays */
10583 	/* Blob */
10584 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10585 
10586 	/* Opcodes */
10587 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10588 
10589 	/* Offsets */
10590 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10591 			    be16_to_cpu_n);
10592 
10593 	/* STORMs firmware */
10594 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10595 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10596 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10597 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10598 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10599 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10600 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10601 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10602 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10603 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10604 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10605 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10606 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10607 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10608 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10609 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10610 	/* IRO */
10611 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10612 
10613 	return 0;
10614 
10615 iro_alloc_err:
10616 	kfree(bp->init_ops_offsets);
10617 init_offsets_alloc_err:
10618 	kfree(bp->init_ops);
10619 init_ops_alloc_err:
10620 	kfree(bp->init_data);
10621 request_firmware_exit:
10622 	release_firmware(bp->firmware);
10623 
10624 	return rc;
10625 }
10626 
10627 static void bnx2x_release_firmware(struct bnx2x *bp)
10628 {
10629 	kfree(bp->init_ops_offsets);
10630 	kfree(bp->init_ops);
10631 	kfree(bp->init_data);
10632 	release_firmware(bp->firmware);
10633 }
10634 
10635 
10636 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10637 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10638 	.init_hw_cmn      = bnx2x_init_hw_common,
10639 	.init_hw_port     = bnx2x_init_hw_port,
10640 	.init_hw_func     = bnx2x_init_hw_func,
10641 
10642 	.reset_hw_cmn     = bnx2x_reset_common,
10643 	.reset_hw_port    = bnx2x_reset_port,
10644 	.reset_hw_func    = bnx2x_reset_func,
10645 
10646 	.gunzip_init      = bnx2x_gunzip_init,
10647 	.gunzip_end       = bnx2x_gunzip_end,
10648 
10649 	.init_fw          = bnx2x_init_firmware,
10650 	.release_fw       = bnx2x_release_firmware,
10651 };
10652 
10653 void bnx2x__init_func_obj(struct bnx2x *bp)
10654 {
10655 	/* Prepare DMAE related driver resources */
10656 	bnx2x_setup_dmae(bp);
10657 
10658 	bnx2x_init_func_obj(bp, &bp->func_obj,
10659 			    bnx2x_sp(bp, func_rdata),
10660 			    bnx2x_sp_mapping(bp, func_rdata),
10661 			    &bnx2x_func_sp_drv);
10662 }
10663 
10664 /* must be called after sriov-enable */
10665 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10666 {
10667 	int cid_count = BNX2X_L2_CID_COUNT(bp);
10668 
10669 #ifdef BCM_CNIC
10670 	cid_count += CNIC_CID_MAX;
10671 #endif
10672 	return roundup(cid_count, QM_CID_ROUND);
10673 }
10674 
10675 /**
10676  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10677  *
10678  * @dev:	pci device
10679  *
10680  */
10681 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10682 {
10683 	int pos;
10684 	u16 control;
10685 
10686 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10687 
10688 	/*
10689 	 * If MSI-X is not supported - return number of SBs needed to support
10690 	 * one fast path queue: one FP queue + SB for CNIC
10691 	 */
10692 	if (!pos)
10693 		return 1 + CNIC_PRESENT;
10694 
10695 	/*
10696 	 * The value in the PCI configuration space is the index of the last
10697 	 * entry, namely one less than the actual size of the table, which is
10698 	 * exactly what we want to return from this function: number of all SBs
10699 	 * without the default SB.
10700 	 */
10701 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10702 	return control & PCI_MSIX_FLAGS_QSIZE;
10703 }
10704 
10705 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10706 				    const struct pci_device_id *ent)
10707 {
10708 	struct net_device *dev = NULL;
10709 	struct bnx2x *bp;
10710 	int pcie_width, pcie_speed;
10711 	int rc, max_non_def_sbs;
10712 	int rx_count, tx_count, rss_count;
10713 	/*
10714 	 * An estimated maximum supported CoS number according to the chip
10715 	 * version.
10716 	 * We will try to roughly estimate the maximum number of CoSes this chip
10717 	 * may support in order to minimize the memory allocated for Tx
10718 	 * netdev_queue's. This number will be accurately calculated during the
10719 	 * initialization of bp->max_cos based on the chip versions AND chip
10720 	 * revision in the bnx2x_init_bp().
10721 	 */
10722 	u8 max_cos_est = 0;
10723 
10724 	switch (ent->driver_data) {
10725 	case BCM57710:
10726 	case BCM57711:
10727 	case BCM57711E:
10728 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10729 		break;
10730 
10731 	case BCM57712:
10732 	case BCM57712_MF:
10733 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10734 		break;
10735 
10736 	case BCM57800:
10737 	case BCM57800_MF:
10738 	case BCM57810:
10739 	case BCM57810_MF:
10740 	case BCM57840:
10741 	case BCM57840_MF:
10742 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10743 		break;
10744 
10745 	default:
10746 		pr_err("Unknown board_type (%ld), aborting\n",
10747 			   ent->driver_data);
10748 		return -ENODEV;
10749 	}
10750 
10751 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10752 
10753 	/* !!! FIXME !!!
10754 	 * Do not allow the maximum SB count to grow above 16
10755 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10756 	 * We will use the FP_SB_MAX_E1x macro for this matter.
10757 	 */
10758 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10759 
10760 	WARN_ON(!max_non_def_sbs);
10761 
10762 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
10763 	rss_count = max_non_def_sbs - CNIC_PRESENT;
10764 
10765 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10766 	rx_count = rss_count + FCOE_PRESENT;
10767 
10768 	/*
10769 	 * Maximum number of netdev Tx queues:
10770 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
10771 	 */
10772 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10773 
10774 	/* dev zeroed in init_etherdev */
10775 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10776 	if (!dev) {
10777 		dev_err(&pdev->dev, "Cannot allocate net device\n");
10778 		return -ENOMEM;
10779 	}
10780 
10781 	bp = netdev_priv(dev);
10782 
10783 	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10784 			  tx_count, rx_count);
10785 
10786 	bp->igu_sb_cnt = max_non_def_sbs;
10787 	bp->msg_enable = debug;
10788 	pci_set_drvdata(pdev, dev);
10789 
10790 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10791 	if (rc < 0) {
10792 		free_netdev(dev);
10793 		return rc;
10794 	}
10795 
10796 	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
10797 
10798 	rc = bnx2x_init_bp(bp);
10799 	if (rc)
10800 		goto init_one_exit;
10801 
10802 	/*
10803 	 * Map doorbels here as we need the real value of bp->max_cos which
10804 	 * is initialized in bnx2x_init_bp().
10805 	 */
10806 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10807 					min_t(u64, BNX2X_DB_SIZE(bp),
10808 					      pci_resource_len(pdev, 2)));
10809 	if (!bp->doorbells) {
10810 		dev_err(&bp->pdev->dev,
10811 			"Cannot map doorbell space, aborting\n");
10812 		rc = -ENOMEM;
10813 		goto init_one_exit;
10814 	}
10815 
10816 	/* calc qm_cid_count */
10817 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10818 
10819 #ifdef BCM_CNIC
10820 	/* disable FCOE L2 queue for E1x and E3*/
10821 	if (CHIP_IS_E1x(bp) || CHIP_IS_E3(bp))
10822 		bp->flags |= NO_FCOE_FLAG;
10823 
10824 #endif
10825 
10826 	/* Configure interrupt mode: try to enable MSI-X/MSI if
10827 	 * needed, set bp->num_queues appropriately.
10828 	 */
10829 	bnx2x_set_int_mode(bp);
10830 
10831 	/* Add all NAPI objects */
10832 	bnx2x_add_all_napi(bp);
10833 
10834 	rc = register_netdev(dev);
10835 	if (rc) {
10836 		dev_err(&pdev->dev, "Cannot register net device\n");
10837 		goto init_one_exit;
10838 	}
10839 
10840 #ifdef BCM_CNIC
10841 	if (!NO_FCOE(bp)) {
10842 		/* Add storage MAC address */
10843 		rtnl_lock();
10844 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10845 		rtnl_unlock();
10846 	}
10847 #endif
10848 
10849 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10850 
10851 	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
10852 		    board_info[ent->driver_data].name,
10853 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10854 		    pcie_width,
10855 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10856 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10857 		    "5GHz (Gen2)" : "2.5GHz",
10858 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
10859 
10860 	return 0;
10861 
10862 init_one_exit:
10863 	if (bp->regview)
10864 		iounmap(bp->regview);
10865 
10866 	if (bp->doorbells)
10867 		iounmap(bp->doorbells);
10868 
10869 	free_netdev(dev);
10870 
10871 	if (atomic_read(&pdev->enable_cnt) == 1)
10872 		pci_release_regions(pdev);
10873 
10874 	pci_disable_device(pdev);
10875 	pci_set_drvdata(pdev, NULL);
10876 
10877 	return rc;
10878 }
10879 
10880 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10881 {
10882 	struct net_device *dev = pci_get_drvdata(pdev);
10883 	struct bnx2x *bp;
10884 
10885 	if (!dev) {
10886 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10887 		return;
10888 	}
10889 	bp = netdev_priv(dev);
10890 
10891 #ifdef BCM_CNIC
10892 	/* Delete storage MAC address */
10893 	if (!NO_FCOE(bp)) {
10894 		rtnl_lock();
10895 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10896 		rtnl_unlock();
10897 	}
10898 #endif
10899 
10900 #ifdef BCM_DCBNL
10901 	/* Delete app tlvs from dcbnl */
10902 	bnx2x_dcbnl_update_applist(bp, true);
10903 #endif
10904 
10905 	unregister_netdev(dev);
10906 
10907 	/* Delete all NAPI objects */
10908 	bnx2x_del_all_napi(bp);
10909 
10910 	/* Power on: we can't let PCI layer write to us while we are in D3 */
10911 	bnx2x_set_power_state(bp, PCI_D0);
10912 
10913 	/* Disable MSI/MSI-X */
10914 	bnx2x_disable_msi(bp);
10915 
10916 	/* Power off */
10917 	bnx2x_set_power_state(bp, PCI_D3hot);
10918 
10919 	/* Make sure RESET task is not scheduled before continuing */
10920 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
10921 
10922 	if (bp->regview)
10923 		iounmap(bp->regview);
10924 
10925 	if (bp->doorbells)
10926 		iounmap(bp->doorbells);
10927 
10928 	bnx2x_free_mem_bp(bp);
10929 
10930 	free_netdev(dev);
10931 
10932 	if (atomic_read(&pdev->enable_cnt) == 1)
10933 		pci_release_regions(pdev);
10934 
10935 	pci_disable_device(pdev);
10936 	pci_set_drvdata(pdev, NULL);
10937 }
10938 
10939 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
10940 {
10941 	int i;
10942 
10943 	bp->state = BNX2X_STATE_ERROR;
10944 
10945 	bp->rx_mode = BNX2X_RX_MODE_NONE;
10946 
10947 #ifdef BCM_CNIC
10948 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
10949 #endif
10950 	/* Stop Tx */
10951 	bnx2x_tx_disable(bp);
10952 
10953 	bnx2x_netif_stop(bp, 0);
10954 
10955 	del_timer_sync(&bp->timer);
10956 
10957 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
10958 
10959 	/* Release IRQs */
10960 	bnx2x_free_irq(bp);
10961 
10962 	/* Free SKBs, SGEs, TPA pool and driver internals */
10963 	bnx2x_free_skbs(bp);
10964 
10965 	for_each_rx_queue(bp, i)
10966 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
10967 
10968 	bnx2x_free_mem(bp);
10969 
10970 	bp->state = BNX2X_STATE_CLOSED;
10971 
10972 	netif_carrier_off(bp->dev);
10973 
10974 	return 0;
10975 }
10976 
10977 static void bnx2x_eeh_recover(struct bnx2x *bp)
10978 {
10979 	u32 val;
10980 
10981 	mutex_init(&bp->port.phy_mutex);
10982 
10983 	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
10984 	bp->link_params.shmem_base = bp->common.shmem_base;
10985 	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
10986 
10987 	if (!bp->common.shmem_base ||
10988 	    (bp->common.shmem_base < 0xA0000) ||
10989 	    (bp->common.shmem_base >= 0xC0000)) {
10990 		BNX2X_DEV_INFO("MCP not active\n");
10991 		bp->flags |= NO_MCP_FLAG;
10992 		return;
10993 	}
10994 
10995 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
10996 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10997 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10998 		BNX2X_ERR("BAD MCP validity signature\n");
10999 
11000 	if (!BP_NOMCP(bp)) {
11001 		bp->fw_seq =
11002 		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11003 		    DRV_MSG_SEQ_NUMBER_MASK);
11004 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11005 	}
11006 }
11007 
11008 /**
11009  * bnx2x_io_error_detected - called when PCI error is detected
11010  * @pdev: Pointer to PCI device
11011  * @state: The current pci connection state
11012  *
11013  * This function is called after a PCI bus error affecting
11014  * this device has been detected.
11015  */
11016 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11017 						pci_channel_state_t state)
11018 {
11019 	struct net_device *dev = pci_get_drvdata(pdev);
11020 	struct bnx2x *bp = netdev_priv(dev);
11021 
11022 	rtnl_lock();
11023 
11024 	netif_device_detach(dev);
11025 
11026 	if (state == pci_channel_io_perm_failure) {
11027 		rtnl_unlock();
11028 		return PCI_ERS_RESULT_DISCONNECT;
11029 	}
11030 
11031 	if (netif_running(dev))
11032 		bnx2x_eeh_nic_unload(bp);
11033 
11034 	pci_disable_device(pdev);
11035 
11036 	rtnl_unlock();
11037 
11038 	/* Request a slot reset */
11039 	return PCI_ERS_RESULT_NEED_RESET;
11040 }
11041 
11042 /**
11043  * bnx2x_io_slot_reset - called after the PCI bus has been reset
11044  * @pdev: Pointer to PCI device
11045  *
11046  * Restart the card from scratch, as if from a cold-boot.
11047  */
11048 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11049 {
11050 	struct net_device *dev = pci_get_drvdata(pdev);
11051 	struct bnx2x *bp = netdev_priv(dev);
11052 
11053 	rtnl_lock();
11054 
11055 	if (pci_enable_device(pdev)) {
11056 		dev_err(&pdev->dev,
11057 			"Cannot re-enable PCI device after reset\n");
11058 		rtnl_unlock();
11059 		return PCI_ERS_RESULT_DISCONNECT;
11060 	}
11061 
11062 	pci_set_master(pdev);
11063 	pci_restore_state(pdev);
11064 
11065 	if (netif_running(dev))
11066 		bnx2x_set_power_state(bp, PCI_D0);
11067 
11068 	rtnl_unlock();
11069 
11070 	return PCI_ERS_RESULT_RECOVERED;
11071 }
11072 
11073 /**
11074  * bnx2x_io_resume - called when traffic can start flowing again
11075  * @pdev: Pointer to PCI device
11076  *
11077  * This callback is called when the error recovery driver tells us that
11078  * its OK to resume normal operation.
11079  */
11080 static void bnx2x_io_resume(struct pci_dev *pdev)
11081 {
11082 	struct net_device *dev = pci_get_drvdata(pdev);
11083 	struct bnx2x *bp = netdev_priv(dev);
11084 
11085 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11086 		netdev_err(bp->dev, "Handling parity error recovery. "
11087 				    "Try again later\n");
11088 		return;
11089 	}
11090 
11091 	rtnl_lock();
11092 
11093 	bnx2x_eeh_recover(bp);
11094 
11095 	if (netif_running(dev))
11096 		bnx2x_nic_load(bp, LOAD_NORMAL);
11097 
11098 	netif_device_attach(dev);
11099 
11100 	rtnl_unlock();
11101 }
11102 
11103 static struct pci_error_handlers bnx2x_err_handler = {
11104 	.error_detected = bnx2x_io_error_detected,
11105 	.slot_reset     = bnx2x_io_slot_reset,
11106 	.resume         = bnx2x_io_resume,
11107 };
11108 
11109 static struct pci_driver bnx2x_pci_driver = {
11110 	.name        = DRV_MODULE_NAME,
11111 	.id_table    = bnx2x_pci_tbl,
11112 	.probe       = bnx2x_init_one,
11113 	.remove      = __devexit_p(bnx2x_remove_one),
11114 	.suspend     = bnx2x_suspend,
11115 	.resume      = bnx2x_resume,
11116 	.err_handler = &bnx2x_err_handler,
11117 };
11118 
11119 static int __init bnx2x_init(void)
11120 {
11121 	int ret;
11122 
11123 	pr_info("%s", version);
11124 
11125 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11126 	if (bnx2x_wq == NULL) {
11127 		pr_err("Cannot create workqueue\n");
11128 		return -ENOMEM;
11129 	}
11130 
11131 	ret = pci_register_driver(&bnx2x_pci_driver);
11132 	if (ret) {
11133 		pr_err("Cannot register driver\n");
11134 		destroy_workqueue(bnx2x_wq);
11135 	}
11136 	return ret;
11137 }
11138 
11139 static void __exit bnx2x_cleanup(void)
11140 {
11141 	pci_unregister_driver(&bnx2x_pci_driver);
11142 
11143 	destroy_workqueue(bnx2x_wq);
11144 }
11145 
11146 void bnx2x_notify_link_changed(struct bnx2x *bp)
11147 {
11148 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11149 }
11150 
11151 module_init(bnx2x_init);
11152 module_exit(bnx2x_cleanup);
11153 
11154 #ifdef BCM_CNIC
11155 /**
11156  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11157  *
11158  * @bp:		driver handle
11159  * @set:	set or clear the CAM entry
11160  *
11161  * This function will wait until the ramdord completion returns.
11162  * Return 0 if success, -ENODEV if ramrod doesn't return.
11163  */
11164 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11165 {
11166 	unsigned long ramrod_flags = 0;
11167 
11168 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11169 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11170 				 &bp->iscsi_l2_mac_obj, true,
11171 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11172 }
11173 
11174 /* count denotes the number of new completions we have seen */
11175 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11176 {
11177 	struct eth_spe *spe;
11178 
11179 #ifdef BNX2X_STOP_ON_ERROR
11180 	if (unlikely(bp->panic))
11181 		return;
11182 #endif
11183 
11184 	spin_lock_bh(&bp->spq_lock);
11185 	BUG_ON(bp->cnic_spq_pending < count);
11186 	bp->cnic_spq_pending -= count;
11187 
11188 
11189 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11190 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11191 				& SPE_HDR_CONN_TYPE) >>
11192 				SPE_HDR_CONN_TYPE_SHIFT;
11193 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11194 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11195 
11196 		/* Set validation for iSCSI L2 client before sending SETUP
11197 		 *  ramrod
11198 		 */
11199 		if (type == ETH_CONNECTION_TYPE) {
11200 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11201 				bnx2x_set_ctx_validation(bp, &bp->context.
11202 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11203 					BNX2X_ISCSI_ETH_CID);
11204 		}
11205 
11206 		/*
11207 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11208 		 * and in the air. We also check that number of outstanding
11209 		 * COMMON ramrods is not more than the EQ and SPQ can
11210 		 * accommodate.
11211 		 */
11212 		if (type == ETH_CONNECTION_TYPE) {
11213 			if (!atomic_read(&bp->cq_spq_left))
11214 				break;
11215 			else
11216 				atomic_dec(&bp->cq_spq_left);
11217 		} else if (type == NONE_CONNECTION_TYPE) {
11218 			if (!atomic_read(&bp->eq_spq_left))
11219 				break;
11220 			else
11221 				atomic_dec(&bp->eq_spq_left);
11222 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11223 			   (type == FCOE_CONNECTION_TYPE)) {
11224 			if (bp->cnic_spq_pending >=
11225 			    bp->cnic_eth_dev.max_kwqe_pending)
11226 				break;
11227 			else
11228 				bp->cnic_spq_pending++;
11229 		} else {
11230 			BNX2X_ERR("Unknown SPE type: %d\n", type);
11231 			bnx2x_panic();
11232 			break;
11233 		}
11234 
11235 		spe = bnx2x_sp_get_next(bp);
11236 		*spe = *bp->cnic_kwq_cons;
11237 
11238 		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11239 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11240 
11241 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11242 			bp->cnic_kwq_cons = bp->cnic_kwq;
11243 		else
11244 			bp->cnic_kwq_cons++;
11245 	}
11246 	bnx2x_sp_prod_update(bp);
11247 	spin_unlock_bh(&bp->spq_lock);
11248 }
11249 
11250 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11251 			       struct kwqe_16 *kwqes[], u32 count)
11252 {
11253 	struct bnx2x *bp = netdev_priv(dev);
11254 	int i;
11255 
11256 #ifdef BNX2X_STOP_ON_ERROR
11257 	if (unlikely(bp->panic))
11258 		return -EIO;
11259 #endif
11260 
11261 	spin_lock_bh(&bp->spq_lock);
11262 
11263 	for (i = 0; i < count; i++) {
11264 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11265 
11266 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11267 			break;
11268 
11269 		*bp->cnic_kwq_prod = *spe;
11270 
11271 		bp->cnic_kwq_pending++;
11272 
11273 		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11274 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11275 		   spe->data.update_data_addr.hi,
11276 		   spe->data.update_data_addr.lo,
11277 		   bp->cnic_kwq_pending);
11278 
11279 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11280 			bp->cnic_kwq_prod = bp->cnic_kwq;
11281 		else
11282 			bp->cnic_kwq_prod++;
11283 	}
11284 
11285 	spin_unlock_bh(&bp->spq_lock);
11286 
11287 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11288 		bnx2x_cnic_sp_post(bp, 0);
11289 
11290 	return i;
11291 }
11292 
11293 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11294 {
11295 	struct cnic_ops *c_ops;
11296 	int rc = 0;
11297 
11298 	mutex_lock(&bp->cnic_mutex);
11299 	c_ops = rcu_dereference_protected(bp->cnic_ops,
11300 					  lockdep_is_held(&bp->cnic_mutex));
11301 	if (c_ops)
11302 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11303 	mutex_unlock(&bp->cnic_mutex);
11304 
11305 	return rc;
11306 }
11307 
11308 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11309 {
11310 	struct cnic_ops *c_ops;
11311 	int rc = 0;
11312 
11313 	rcu_read_lock();
11314 	c_ops = rcu_dereference(bp->cnic_ops);
11315 	if (c_ops)
11316 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11317 	rcu_read_unlock();
11318 
11319 	return rc;
11320 }
11321 
11322 /*
11323  * for commands that have no data
11324  */
11325 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11326 {
11327 	struct cnic_ctl_info ctl = {0};
11328 
11329 	ctl.cmd = cmd;
11330 
11331 	return bnx2x_cnic_ctl_send(bp, &ctl);
11332 }
11333 
11334 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11335 {
11336 	struct cnic_ctl_info ctl = {0};
11337 
11338 	/* first we tell CNIC and only then we count this as a completion */
11339 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11340 	ctl.data.comp.cid = cid;
11341 	ctl.data.comp.error = err;
11342 
11343 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11344 	bnx2x_cnic_sp_post(bp, 0);
11345 }
11346 
11347 
11348 /* Called with netif_addr_lock_bh() taken.
11349  * Sets an rx_mode config for an iSCSI ETH client.
11350  * Doesn't block.
11351  * Completion should be checked outside.
11352  */
11353 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11354 {
11355 	unsigned long accept_flags = 0, ramrod_flags = 0;
11356 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11357 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11358 
11359 	if (start) {
11360 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11361 		 * because it's the only way for UIO Queue to accept
11362 		 * multicasts (in non-promiscuous mode only one Queue per
11363 		 * function will receive multicast packets (leading in our
11364 		 * case).
11365 		 */
11366 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11367 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11368 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11369 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11370 
11371 		/* Clear STOP_PENDING bit if START is requested */
11372 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11373 
11374 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11375 	} else
11376 		/* Clear START_PENDING bit if STOP is requested */
11377 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11378 
11379 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11380 		set_bit(sched_state, &bp->sp_state);
11381 	else {
11382 		__set_bit(RAMROD_RX, &ramrod_flags);
11383 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11384 				    ramrod_flags);
11385 	}
11386 }
11387 
11388 
11389 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11390 {
11391 	struct bnx2x *bp = netdev_priv(dev);
11392 	int rc = 0;
11393 
11394 	switch (ctl->cmd) {
11395 	case DRV_CTL_CTXTBL_WR_CMD: {
11396 		u32 index = ctl->data.io.offset;
11397 		dma_addr_t addr = ctl->data.io.dma_addr;
11398 
11399 		bnx2x_ilt_wr(bp, index, addr);
11400 		break;
11401 	}
11402 
11403 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11404 		int count = ctl->data.credit.credit_count;
11405 
11406 		bnx2x_cnic_sp_post(bp, count);
11407 		break;
11408 	}
11409 
11410 	/* rtnl_lock is held.  */
11411 	case DRV_CTL_START_L2_CMD: {
11412 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11413 		unsigned long sp_bits = 0;
11414 
11415 		/* Configure the iSCSI classification object */
11416 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11417 				   cp->iscsi_l2_client_id,
11418 				   cp->iscsi_l2_cid, BP_FUNC(bp),
11419 				   bnx2x_sp(bp, mac_rdata),
11420 				   bnx2x_sp_mapping(bp, mac_rdata),
11421 				   BNX2X_FILTER_MAC_PENDING,
11422 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11423 				   &bp->macs_pool);
11424 
11425 		/* Set iSCSI MAC address */
11426 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11427 		if (rc)
11428 			break;
11429 
11430 		mmiowb();
11431 		barrier();
11432 
11433 		/* Start accepting on iSCSI L2 ring */
11434 
11435 		netif_addr_lock_bh(dev);
11436 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11437 		netif_addr_unlock_bh(dev);
11438 
11439 		/* bits to wait on */
11440 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11441 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11442 
11443 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11444 			BNX2X_ERR("rx_mode completion timed out!\n");
11445 
11446 		break;
11447 	}
11448 
11449 	/* rtnl_lock is held.  */
11450 	case DRV_CTL_STOP_L2_CMD: {
11451 		unsigned long sp_bits = 0;
11452 
11453 		/* Stop accepting on iSCSI L2 ring */
11454 		netif_addr_lock_bh(dev);
11455 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11456 		netif_addr_unlock_bh(dev);
11457 
11458 		/* bits to wait on */
11459 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11460 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11461 
11462 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11463 			BNX2X_ERR("rx_mode completion timed out!\n");
11464 
11465 		mmiowb();
11466 		barrier();
11467 
11468 		/* Unset iSCSI L2 MAC */
11469 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11470 					BNX2X_ISCSI_ETH_MAC, true);
11471 		break;
11472 	}
11473 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11474 		int count = ctl->data.credit.credit_count;
11475 
11476 		smp_mb__before_atomic_inc();
11477 		atomic_add(count, &bp->cq_spq_left);
11478 		smp_mb__after_atomic_inc();
11479 		break;
11480 	}
11481 
11482 	default:
11483 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11484 		rc = -EINVAL;
11485 	}
11486 
11487 	return rc;
11488 }
11489 
11490 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11491 {
11492 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11493 
11494 	if (bp->flags & USING_MSIX_FLAG) {
11495 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11496 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11497 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11498 	} else {
11499 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11500 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11501 	}
11502 	if (!CHIP_IS_E1x(bp))
11503 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11504 	else
11505 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11506 
11507 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11508 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11509 	cp->irq_arr[1].status_blk = bp->def_status_blk;
11510 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11511 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11512 
11513 	cp->num_irq = 2;
11514 }
11515 
11516 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11517 			       void *data)
11518 {
11519 	struct bnx2x *bp = netdev_priv(dev);
11520 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11521 
11522 	if (ops == NULL)
11523 		return -EINVAL;
11524 
11525 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11526 	if (!bp->cnic_kwq)
11527 		return -ENOMEM;
11528 
11529 	bp->cnic_kwq_cons = bp->cnic_kwq;
11530 	bp->cnic_kwq_prod = bp->cnic_kwq;
11531 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11532 
11533 	bp->cnic_spq_pending = 0;
11534 	bp->cnic_kwq_pending = 0;
11535 
11536 	bp->cnic_data = data;
11537 
11538 	cp->num_irq = 0;
11539 	cp->drv_state |= CNIC_DRV_STATE_REGD;
11540 	cp->iro_arr = bp->iro_arr;
11541 
11542 	bnx2x_setup_cnic_irq_info(bp);
11543 
11544 	rcu_assign_pointer(bp->cnic_ops, ops);
11545 
11546 	return 0;
11547 }
11548 
11549 static int bnx2x_unregister_cnic(struct net_device *dev)
11550 {
11551 	struct bnx2x *bp = netdev_priv(dev);
11552 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11553 
11554 	mutex_lock(&bp->cnic_mutex);
11555 	cp->drv_state = 0;
11556 	rcu_assign_pointer(bp->cnic_ops, NULL);
11557 	mutex_unlock(&bp->cnic_mutex);
11558 	synchronize_rcu();
11559 	kfree(bp->cnic_kwq);
11560 	bp->cnic_kwq = NULL;
11561 
11562 	return 0;
11563 }
11564 
11565 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11566 {
11567 	struct bnx2x *bp = netdev_priv(dev);
11568 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11569 
11570 	/* If both iSCSI and FCoE are disabled - return NULL in
11571 	 * order to indicate CNIC that it should not try to work
11572 	 * with this device.
11573 	 */
11574 	if (NO_ISCSI(bp) && NO_FCOE(bp))
11575 		return NULL;
11576 
11577 	cp->drv_owner = THIS_MODULE;
11578 	cp->chip_id = CHIP_ID(bp);
11579 	cp->pdev = bp->pdev;
11580 	cp->io_base = bp->regview;
11581 	cp->io_base2 = bp->doorbells;
11582 	cp->max_kwqe_pending = 8;
11583 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11584 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11585 			     bnx2x_cid_ilt_lines(bp);
11586 	cp->ctx_tbl_len = CNIC_ILT_LINES;
11587 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11588 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11589 	cp->drv_ctl = bnx2x_drv_ctl;
11590 	cp->drv_register_cnic = bnx2x_register_cnic;
11591 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11592 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11593 	cp->iscsi_l2_client_id =
11594 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11595 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11596 
11597 	if (NO_ISCSI_OOO(bp))
11598 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11599 
11600 	if (NO_ISCSI(bp))
11601 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11602 
11603 	if (NO_FCOE(bp))
11604 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11605 
11606 	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11607 			 "starting cid %d\n",
11608 	   cp->ctx_blk_size,
11609 	   cp->ctx_tbl_offset,
11610 	   cp->ctx_tbl_len,
11611 	   cp->starting_cid);
11612 	return cp;
11613 }
11614 EXPORT_SYMBOL(bnx2x_cnic_probe);
11615 
11616 #endif /* BCM_CNIC */
11617 
11618