xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/init.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/bitops.h>
38 #include <linux/irq.h>
39 #include <linux/delay.h>
40 #include <asm/byteorder.h>
41 #include <linux/time.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/crash_dump.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/tcp.h>
49 #include <net/vxlan.h>
50 #include <net/checksum.h>
51 #include <net/ip6_checksum.h>
52 #include <linux/workqueue.h>
53 #include <linux/crc32.h>
54 #include <linux/crc32c.h>
55 #include <linux/prefetch.h>
56 #include <linux/zlib.h>
57 #include <linux/io.h>
58 #include <linux/semaphore.h>
59 #include <linux/stringify.h>
60 #include <linux/vmalloc.h>
61 #include "bnx2x.h"
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
67 #include "bnx2x_sp.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
70 /* FW files */
71 #define FW_FILE_VERSION					\
72 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
75 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
76 
77 #define FW_FILE_VERSION_V15				\
78 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
79 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
80 	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
81 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
82 
83 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
84 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
87 #define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
89 
90 /* Time in jiffies before concluding the transmitter is hung */
91 #define TX_TIMEOUT		(5*HZ)
92 
93 MODULE_AUTHOR("Eliezer Tamir");
94 MODULE_DESCRIPTION("QLogic "
95 		   "BCM57710/57711/57711E/"
96 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
97 		   "57840/57840_MF Driver");
98 MODULE_LICENSE("GPL");
99 MODULE_FIRMWARE(FW_FILE_NAME_E1);
100 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
101 MODULE_FIRMWARE(FW_FILE_NAME_E2);
102 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
105 
106 int bnx2x_num_queues;
107 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
108 MODULE_PARM_DESC(num_queues,
109 		 " Set number of queues (default is as a number of CPUs)");
110 
111 static int disable_tpa;
112 module_param(disable_tpa, int, 0444);
113 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
114 
115 static int int_mode;
116 module_param(int_mode, int, 0444);
117 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
118 				"(1 INT#x; 2 MSI)");
119 
120 static int dropless_fc;
121 module_param(dropless_fc, int, 0444);
122 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
123 
124 static int mrrs = -1;
125 module_param(mrrs, int, 0444);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127 
128 static int debug;
129 module_param(debug, int, 0444);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131 
132 static struct workqueue_struct *bnx2x_wq;
133 struct workqueue_struct *bnx2x_iov_wq;
134 
135 struct bnx2x_mac_vals {
136 	u32 xmac_addr;
137 	u32 xmac_val;
138 	u32 emac_addr;
139 	u32 emac_val;
140 	u32 umac_addr[2];
141 	u32 umac_val[2];
142 	u32 bmac_addr;
143 	u32 bmac_val[2];
144 };
145 
146 enum bnx2x_board_type {
147 	BCM57710 = 0,
148 	BCM57711,
149 	BCM57711E,
150 	BCM57712,
151 	BCM57712_MF,
152 	BCM57712_VF,
153 	BCM57800,
154 	BCM57800_MF,
155 	BCM57800_VF,
156 	BCM57810,
157 	BCM57810_MF,
158 	BCM57810_VF,
159 	BCM57840_4_10,
160 	BCM57840_2_20,
161 	BCM57840_MF,
162 	BCM57840_VF,
163 	BCM57811,
164 	BCM57811_MF,
165 	BCM57840_O,
166 	BCM57840_MFO,
167 	BCM57811_VF
168 };
169 
170 /* indexed by board_type, above */
171 static struct {
172 	char *name;
173 } board_info[] = {
174 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
175 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
176 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
177 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
178 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
179 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
180 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
181 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
182 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
183 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
184 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
185 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
186 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
187 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
188 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
189 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
190 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
191 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
192 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
193 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
194 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
195 };
196 
197 #ifndef PCI_DEVICE_ID_NX2_57710
198 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57711
201 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57711E
204 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712
207 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57712_MF
210 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57712_VF
213 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800
216 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57800_MF
219 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57800_VF
222 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810
225 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_MF
228 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_O
231 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57810_VF
234 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
237 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
240 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
243 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57840_MF
246 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57840_VF
249 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811
252 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
253 #endif
254 #ifndef PCI_DEVICE_ID_NX2_57811_MF
255 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
256 #endif
257 #ifndef PCI_DEVICE_ID_NX2_57811_VF
258 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
259 #endif
260 
261 static const struct pci_device_id bnx2x_pci_tbl[] = {
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
280 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
282 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
284 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
285 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
286 	{ 0 }
287 };
288 
289 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
290 
291 const u32 dmae_reg_go_c[] = {
292 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
293 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
294 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
295 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
296 };
297 
298 /* Global resources for unloading a previously loaded device */
299 #define BNX2X_PREV_WAIT_NEEDED 1
300 static DEFINE_SEMAPHORE(bnx2x_prev_sem, 1);
301 static LIST_HEAD(bnx2x_prev_list);
302 
303 /* Forward declaration */
304 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
305 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
306 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
307 
308 /****************************************************************************
309 * General service functions
310 ****************************************************************************/
311 
312 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
313 
314 static void __storm_memset_dma_mapping(struct bnx2x *bp,
315 				       u32 addr, dma_addr_t mapping)
316 {
317 	REG_WR(bp,  addr, U64_LO(mapping));
318 	REG_WR(bp,  addr + 4, U64_HI(mapping));
319 }
320 
321 static void storm_memset_spq_addr(struct bnx2x *bp,
322 				  dma_addr_t mapping, u16 abs_fid)
323 {
324 	u32 addr = XSEM_REG_FAST_MEMORY +
325 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
326 
327 	__storm_memset_dma_mapping(bp, addr, mapping);
328 }
329 
330 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
331 				  u16 pf_id)
332 {
333 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
334 		pf_id);
335 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
336 		pf_id);
337 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
338 		pf_id);
339 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
340 		pf_id);
341 }
342 
343 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
344 				 u8 enable)
345 {
346 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
347 		enable);
348 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
349 		enable);
350 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
351 		enable);
352 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
353 		enable);
354 }
355 
356 static void storm_memset_eq_data(struct bnx2x *bp,
357 				 struct event_ring_data *eq_data,
358 				u16 pfid)
359 {
360 	size_t size = sizeof(struct event_ring_data);
361 
362 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
363 
364 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
365 }
366 
367 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
368 				 u16 pfid)
369 {
370 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
371 	REG_WR16(bp, addr, eq_prod);
372 }
373 
374 /* used only at init
375  * locking is done by mcp
376  */
377 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
378 {
379 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
380 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
381 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
382 			       PCICFG_VENDOR_ID_OFFSET);
383 }
384 
385 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
386 {
387 	u32 val;
388 
389 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
390 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
391 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
392 			       PCICFG_VENDOR_ID_OFFSET);
393 
394 	return val;
395 }
396 
397 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
398 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
399 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
400 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
401 #define DMAE_DP_DST_NONE	"dst_addr [none]"
402 
403 static void bnx2x_dp_dmae(struct bnx2x *bp,
404 			  struct dmae_command *dmae, int msglvl)
405 {
406 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
407 	int i;
408 
409 	switch (dmae->opcode & DMAE_COMMAND_DST) {
410 	case DMAE_CMD_DST_PCI:
411 		if (src_type == DMAE_CMD_SRC_PCI)
412 			DP(msglvl, "DMAE: opcode 0x%08x\n"
413 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
414 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
415 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
417 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
418 			   dmae->comp_val);
419 		else
420 			DP(msglvl, "DMAE: opcode 0x%08x\n"
421 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
422 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
423 			   dmae->opcode, dmae->src_addr_lo >> 2,
424 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
425 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
426 			   dmae->comp_val);
427 		break;
428 	case DMAE_CMD_DST_GRC:
429 		if (src_type == DMAE_CMD_SRC_PCI)
430 			DP(msglvl, "DMAE: opcode 0x%08x\n"
431 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
432 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
433 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434 			   dmae->len, dmae->dst_addr_lo >> 2,
435 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
436 			   dmae->comp_val);
437 		else
438 			DP(msglvl, "DMAE: opcode 0x%08x\n"
439 			   "src [%08x], len [%d*4], dst [%08x]\n"
440 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
441 			   dmae->opcode, dmae->src_addr_lo >> 2,
442 			   dmae->len, dmae->dst_addr_lo >> 2,
443 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
444 			   dmae->comp_val);
445 		break;
446 	default:
447 		if (src_type == DMAE_CMD_SRC_PCI)
448 			DP(msglvl, "DMAE: opcode 0x%08x\n"
449 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
450 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
451 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
452 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
453 			   dmae->comp_val);
454 		else
455 			DP(msglvl, "DMAE: opcode 0x%08x\n"
456 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
457 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
458 			   dmae->opcode, dmae->src_addr_lo >> 2,
459 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
460 			   dmae->comp_val);
461 		break;
462 	}
463 
464 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
465 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
466 		   i, *(((u32 *)dmae) + i));
467 }
468 
469 /* copy command into DMAE command memory and set DMAE command go */
470 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
471 {
472 	u32 cmd_offset;
473 	int i;
474 
475 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
476 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
477 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
478 	}
479 	REG_WR(bp, dmae_reg_go_c[idx], 1);
480 }
481 
482 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
483 {
484 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
485 			   DMAE_CMD_C_ENABLE);
486 }
487 
488 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
489 {
490 	return opcode & ~DMAE_CMD_SRC_RESET;
491 }
492 
493 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
494 			     bool with_comp, u8 comp_type)
495 {
496 	u32 opcode = 0;
497 
498 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
499 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
500 
501 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
502 
503 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
504 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
505 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
506 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
507 
508 #ifdef __BIG_ENDIAN
509 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
510 #else
511 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
512 #endif
513 	if (with_comp)
514 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
515 	return opcode;
516 }
517 
518 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
519 				      struct dmae_command *dmae,
520 				      u8 src_type, u8 dst_type)
521 {
522 	memset(dmae, 0, sizeof(struct dmae_command));
523 
524 	/* set the opcode */
525 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
526 					 true, DMAE_COMP_PCI);
527 
528 	/* fill in the completion parameters */
529 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
530 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
531 	dmae->comp_val = DMAE_COMP_VAL;
532 }
533 
534 /* issue a dmae command over the init-channel and wait for completion */
535 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
536 			       u32 *comp)
537 {
538 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
539 	int rc = 0;
540 
541 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
542 
543 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
544 	 * as long as this code is called both from syscall context and
545 	 * from ndo_set_rx_mode() flow that may be called from BH.
546 	 */
547 
548 	spin_lock_bh(&bp->dmae_lock);
549 
550 	/* reset completion */
551 	*comp = 0;
552 
553 	/* post the command on the channel used for initializations */
554 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
555 
556 	/* wait for completion */
557 	udelay(5);
558 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
559 
560 		if (!cnt ||
561 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
562 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
563 			BNX2X_ERR("DMAE timeout!\n");
564 			rc = DMAE_TIMEOUT;
565 			goto unlock;
566 		}
567 		cnt--;
568 		udelay(50);
569 	}
570 	if (*comp & DMAE_PCI_ERR_FLAG) {
571 		BNX2X_ERR("DMAE PCI error!\n");
572 		rc = DMAE_PCI_ERROR;
573 	}
574 
575 unlock:
576 
577 	spin_unlock_bh(&bp->dmae_lock);
578 
579 	return rc;
580 }
581 
582 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
583 		      u32 len32)
584 {
585 	int rc;
586 	struct dmae_command dmae;
587 
588 	if (!bp->dmae_ready) {
589 		u32 *data = bnx2x_sp(bp, wb_data[0]);
590 
591 		if (CHIP_IS_E1(bp))
592 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
593 		else
594 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
595 		return;
596 	}
597 
598 	/* set opcode and fixed command fields */
599 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
600 
601 	/* fill in addresses and len */
602 	dmae.src_addr_lo = U64_LO(dma_addr);
603 	dmae.src_addr_hi = U64_HI(dma_addr);
604 	dmae.dst_addr_lo = dst_addr >> 2;
605 	dmae.dst_addr_hi = 0;
606 	dmae.len = len32;
607 
608 	/* issue the command and wait for completion */
609 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
610 	if (rc) {
611 		BNX2X_ERR("DMAE returned failure %d\n", rc);
612 #ifdef BNX2X_STOP_ON_ERROR
613 		bnx2x_panic();
614 #endif
615 	}
616 }
617 
618 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
619 {
620 	int rc;
621 	struct dmae_command dmae;
622 
623 	if (!bp->dmae_ready) {
624 		u32 *data = bnx2x_sp(bp, wb_data[0]);
625 		int i;
626 
627 		if (CHIP_IS_E1(bp))
628 			for (i = 0; i < len32; i++)
629 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
630 		else
631 			for (i = 0; i < len32; i++)
632 				data[i] = REG_RD(bp, src_addr + i*4);
633 
634 		return;
635 	}
636 
637 	/* set opcode and fixed command fields */
638 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
639 
640 	/* fill in addresses and len */
641 	dmae.src_addr_lo = src_addr >> 2;
642 	dmae.src_addr_hi = 0;
643 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
644 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
645 	dmae.len = len32;
646 
647 	/* issue the command and wait for completion */
648 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
649 	if (rc) {
650 		BNX2X_ERR("DMAE returned failure %d\n", rc);
651 #ifdef BNX2X_STOP_ON_ERROR
652 		bnx2x_panic();
653 #endif
654 	}
655 }
656 
657 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
658 				      u32 addr, u32 len)
659 {
660 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
661 	int offset = 0;
662 
663 	while (len > dmae_wr_max) {
664 		bnx2x_write_dmae(bp, phys_addr + offset,
665 				 addr + offset, dmae_wr_max);
666 		offset += dmae_wr_max * 4;
667 		len -= dmae_wr_max;
668 	}
669 
670 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
671 }
672 
673 enum storms {
674 	   XSTORM,
675 	   TSTORM,
676 	   CSTORM,
677 	   USTORM,
678 	   MAX_STORMS
679 };
680 
681 #define STORMS_NUM 4
682 #define REGS_IN_ENTRY 4
683 
684 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
685 					      enum storms storm,
686 					      int entry)
687 {
688 	switch (storm) {
689 	case XSTORM:
690 		return XSTORM_ASSERT_LIST_OFFSET(entry);
691 	case TSTORM:
692 		return TSTORM_ASSERT_LIST_OFFSET(entry);
693 	case CSTORM:
694 		return CSTORM_ASSERT_LIST_OFFSET(entry);
695 	case USTORM:
696 		return USTORM_ASSERT_LIST_OFFSET(entry);
697 	case MAX_STORMS:
698 	default:
699 		BNX2X_ERR("unknown storm\n");
700 	}
701 	return -EINVAL;
702 }
703 
704 static int bnx2x_mc_assert(struct bnx2x *bp)
705 {
706 	char last_idx;
707 	int i, j, rc = 0;
708 	enum storms storm;
709 	u32 regs[REGS_IN_ENTRY];
710 	u32 bar_storm_intmem[STORMS_NUM] = {
711 		BAR_XSTRORM_INTMEM,
712 		BAR_TSTRORM_INTMEM,
713 		BAR_CSTRORM_INTMEM,
714 		BAR_USTRORM_INTMEM
715 	};
716 	u32 storm_assert_list_index[STORMS_NUM] = {
717 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
718 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
719 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
720 		USTORM_ASSERT_LIST_INDEX_OFFSET
721 	};
722 	char *storms_string[STORMS_NUM] = {
723 		"XSTORM",
724 		"TSTORM",
725 		"CSTORM",
726 		"USTORM"
727 	};
728 
729 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
730 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
731 				   storm_assert_list_index[storm]);
732 		if (last_idx)
733 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
734 				  storms_string[storm], last_idx);
735 
736 		/* print the asserts */
737 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
738 			/* read a single assert entry */
739 			for (j = 0; j < REGS_IN_ENTRY; j++)
740 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
741 					  bnx2x_get_assert_list_entry(bp,
742 								      storm,
743 								      i) +
744 					  sizeof(u32) * j);
745 
746 			/* log entry if it contains a valid assert */
747 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
748 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
749 					  storms_string[storm], i, regs[3],
750 					  regs[2], regs[1], regs[0]);
751 				rc++;
752 			} else {
753 				break;
754 			}
755 		}
756 	}
757 
758 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
759 		  CHIP_IS_E1(bp) ? "everest1" :
760 		  CHIP_IS_E1H(bp) ? "everest1h" :
761 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
762 		  bp->fw_major, bp->fw_minor, bp->fw_rev);
763 
764 	return rc;
765 }
766 
767 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
768 #define SCRATCH_BUFFER_SIZE(bp)	\
769 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
770 
771 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
772 {
773 	u32 addr, val;
774 	u32 mark, offset;
775 	__be32 data[9];
776 	int word;
777 	u32 trace_shmem_base;
778 	if (BP_NOMCP(bp)) {
779 		BNX2X_ERR("NO MCP - can not dump\n");
780 		return;
781 	}
782 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
783 		(bp->common.bc_ver & 0xff0000) >> 16,
784 		(bp->common.bc_ver & 0xff00) >> 8,
785 		(bp->common.bc_ver & 0xff));
786 
787 	if (pci_channel_offline(bp->pdev)) {
788 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
789 		return;
790 	}
791 
792 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
793 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
794 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
795 
796 	if (BP_PATH(bp) == 0)
797 		trace_shmem_base = bp->common.shmem_base;
798 	else
799 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
800 
801 	/* sanity */
802 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
803 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
804 				SCRATCH_BUFFER_SIZE(bp)) {
805 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
806 			  trace_shmem_base);
807 		return;
808 	}
809 
810 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
811 
812 	/* validate TRCB signature */
813 	mark = REG_RD(bp, addr);
814 	if (mark != MFW_TRACE_SIGNATURE) {
815 		BNX2X_ERR("Trace buffer signature is missing.");
816 		return ;
817 	}
818 
819 	/* read cyclic buffer pointer */
820 	addr += 4;
821 	mark = REG_RD(bp, addr);
822 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
823 	if (mark >= trace_shmem_base || mark < addr + 4) {
824 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
825 		return;
826 	}
827 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
828 
829 	printk("%s", lvl);
830 
831 	/* dump buffer after the mark */
832 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
833 		for (word = 0; word < 8; word++)
834 			data[word] = htonl(REG_RD(bp, offset + 4*word));
835 		data[8] = 0x0;
836 		pr_cont("%s", (char *)data);
837 	}
838 
839 	/* dump buffer before the mark */
840 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
841 		for (word = 0; word < 8; word++)
842 			data[word] = htonl(REG_RD(bp, offset + 4*word));
843 		data[8] = 0x0;
844 		pr_cont("%s", (char *)data);
845 	}
846 	printk("%s" "end of fw dump\n", lvl);
847 }
848 
849 static void bnx2x_fw_dump(struct bnx2x *bp)
850 {
851 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
852 }
853 
854 static void bnx2x_hc_int_disable(struct bnx2x *bp)
855 {
856 	int port = BP_PORT(bp);
857 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
858 	u32 val = REG_RD(bp, addr);
859 
860 	/* in E1 we must use only PCI configuration space to disable
861 	 * MSI/MSIX capability
862 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
863 	 */
864 	if (CHIP_IS_E1(bp)) {
865 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
866 		 * Use mask register to prevent from HC sending interrupts
867 		 * after we exit the function
868 		 */
869 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
870 
871 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
872 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
873 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
874 	} else
875 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
876 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
877 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
878 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
879 
880 	DP(NETIF_MSG_IFDOWN,
881 	   "write %x to HC %d (addr 0x%x)\n",
882 	   val, port, addr);
883 
884 	REG_WR(bp, addr, val);
885 	if (REG_RD(bp, addr) != val)
886 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887 }
888 
889 static void bnx2x_igu_int_disable(struct bnx2x *bp)
890 {
891 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
892 
893 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
894 		 IGU_PF_CONF_INT_LINE_EN |
895 		 IGU_PF_CONF_ATTN_BIT_EN);
896 
897 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
898 
899 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903 
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906 	if (bp->common.int_block == INT_BLOCK_HC)
907 		bnx2x_hc_int_disable(bp);
908 	else
909 		bnx2x_igu_int_disable(bp);
910 }
911 
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914 	int i;
915 	u16 j;
916 	struct hc_sp_status_block_data sp_sb_data;
917 	int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919 	u16 start = 0, end = 0;
920 	u8 cos;
921 #endif
922 	if (IS_PF(bp) && disable_int)
923 		bnx2x_int_disable(bp);
924 
925 	bp->stats_state = STATS_STATE_DISABLED;
926 	bp->eth_stats.unrecoverable_error++;
927 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928 
929 	BNX2X_ERR("begin crash dump -----------------\n");
930 
931 	/* Indices */
932 	/* Common */
933 	if (IS_PF(bp)) {
934 		struct host_sp_status_block *def_sb = bp->def_status_blk;
935 		int data_size, cstorm_offset;
936 
937 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
939 			  bp->spq_prod_idx, bp->stats_counter);
940 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941 			  def_sb->atten_status_block.attn_bits,
942 			  def_sb->atten_status_block.attn_bits_ack,
943 			  def_sb->atten_status_block.status_block_id,
944 			  def_sb->atten_status_block.attn_bits_index);
945 		BNX2X_ERR("     def (");
946 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947 			pr_cont("0x%x%s",
948 				def_sb->sp_sb.index_values[i],
949 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950 
951 		data_size = sizeof(struct hc_sp_status_block_data) /
952 			    sizeof(u32);
953 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954 		for (i = 0; i < data_size; i++)
955 			*((u32 *)&sp_sb_data + i) =
956 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957 					   i * sizeof(u32));
958 
959 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960 			sp_sb_data.igu_sb_id,
961 			sp_sb_data.igu_seg_id,
962 			sp_sb_data.p_func.pf_id,
963 			sp_sb_data.p_func.vnic_id,
964 			sp_sb_data.p_func.vf_id,
965 			sp_sb_data.p_func.vf_valid,
966 			sp_sb_data.state);
967 	}
968 
969 	for_each_eth_queue(bp, i) {
970 		struct bnx2x_fastpath *fp = &bp->fp[i];
971 		int loop;
972 		struct hc_status_block_data_e2 sb_data_e2;
973 		struct hc_status_block_data_e1x sb_data_e1x;
974 		struct hc_status_block_sm  *hc_sm_p =
975 			CHIP_IS_E1x(bp) ?
976 			sb_data_e1x.common.state_machine :
977 			sb_data_e2.common.state_machine;
978 		struct hc_index_data *hc_index_p =
979 			CHIP_IS_E1x(bp) ?
980 			sb_data_e1x.index_data :
981 			sb_data_e2.index_data;
982 		u8 data_size, cos;
983 		u32 *sb_data_p;
984 		struct bnx2x_fp_txdata txdata;
985 
986 		if (!bp->fp)
987 			break;
988 
989 		if (!fp->rx_cons_sb)
990 			continue;
991 
992 		/* Rx */
993 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
994 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
995 			  fp->rx_comp_prod,
996 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
997 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
998 			  fp->rx_sge_prod, fp->last_max_sge,
999 			  le16_to_cpu(fp->fp_hc_idx));
1000 
1001 		/* Tx */
1002 		for_each_cos_in_tx_queue(fp, cos)
1003 		{
1004 			if (!fp->txdata_ptr[cos])
1005 				break;
1006 
1007 			txdata = *fp->txdata_ptr[cos];
1008 
1009 			if (!txdata.tx_cons_sb)
1010 				continue;
1011 
1012 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1013 				  i, txdata.tx_pkt_prod,
1014 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1015 				  txdata.tx_bd_cons,
1016 				  le16_to_cpu(*txdata.tx_cons_sb));
1017 		}
1018 
1019 		loop = CHIP_IS_E1x(bp) ?
1020 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1021 
1022 		/* host sb data */
1023 
1024 		if (IS_FCOE_FP(fp))
1025 			continue;
1026 
1027 		BNX2X_ERR("     run indexes (");
1028 		for (j = 0; j < HC_SB_MAX_SM; j++)
1029 			pr_cont("0x%x%s",
1030 			       fp->sb_running_index[j],
1031 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1032 
1033 		BNX2X_ERR("     indexes (");
1034 		for (j = 0; j < loop; j++)
1035 			pr_cont("0x%x%s",
1036 			       fp->sb_index_values[j],
1037 			       (j == loop - 1) ? ")" : " ");
1038 
1039 		/* VF cannot access FW refelection for status block */
1040 		if (IS_VF(bp))
1041 			continue;
1042 
1043 		/* fw sb data */
1044 		data_size = CHIP_IS_E1x(bp) ?
1045 			sizeof(struct hc_status_block_data_e1x) :
1046 			sizeof(struct hc_status_block_data_e2);
1047 		data_size /= sizeof(u32);
1048 		sb_data_p = CHIP_IS_E1x(bp) ?
1049 			(u32 *)&sb_data_e1x :
1050 			(u32 *)&sb_data_e2;
1051 		/* copy sb data in here */
1052 		for (j = 0; j < data_size; j++)
1053 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1054 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1055 				j * sizeof(u32));
1056 
1057 		if (!CHIP_IS_E1x(bp)) {
1058 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1059 				sb_data_e2.common.p_func.pf_id,
1060 				sb_data_e2.common.p_func.vf_id,
1061 				sb_data_e2.common.p_func.vf_valid,
1062 				sb_data_e2.common.p_func.vnic_id,
1063 				sb_data_e2.common.same_igu_sb_1b,
1064 				sb_data_e2.common.state);
1065 		} else {
1066 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1067 				sb_data_e1x.common.p_func.pf_id,
1068 				sb_data_e1x.common.p_func.vf_id,
1069 				sb_data_e1x.common.p_func.vf_valid,
1070 				sb_data_e1x.common.p_func.vnic_id,
1071 				sb_data_e1x.common.same_igu_sb_1b,
1072 				sb_data_e1x.common.state);
1073 		}
1074 
1075 		/* SB_SMs data */
1076 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1077 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1078 				j, hc_sm_p[j].__flags,
1079 				hc_sm_p[j].igu_sb_id,
1080 				hc_sm_p[j].igu_seg_id,
1081 				hc_sm_p[j].time_to_expire,
1082 				hc_sm_p[j].timer_value);
1083 		}
1084 
1085 		/* Indices data */
1086 		for (j = 0; j < loop; j++) {
1087 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1088 			       hc_index_p[j].flags,
1089 			       hc_index_p[j].timeout);
1090 		}
1091 	}
1092 
1093 #ifdef BNX2X_STOP_ON_ERROR
1094 	if (IS_PF(bp)) {
1095 		/* event queue */
1096 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1097 		for (i = 0; i < NUM_EQ_DESC; i++) {
1098 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1099 
1100 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1101 				  i, bp->eq_ring[i].message.opcode,
1102 				  bp->eq_ring[i].message.error);
1103 			BNX2X_ERR("data: %x %x %x\n",
1104 				  data[0], data[1], data[2]);
1105 		}
1106 	}
1107 
1108 	/* Rings */
1109 	/* Rx */
1110 	for_each_valid_rx_queue(bp, i) {
1111 		struct bnx2x_fastpath *fp = &bp->fp[i];
1112 
1113 		if (!bp->fp)
1114 			break;
1115 
1116 		if (!fp->rx_cons_sb)
1117 			continue;
1118 
1119 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1120 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1121 		for (j = start; j != end; j = RX_BD(j + 1)) {
1122 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1123 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1124 
1125 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1126 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1127 		}
1128 
1129 		start = RX_SGE(fp->rx_sge_prod);
1130 		end = RX_SGE(fp->last_max_sge);
1131 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1132 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1133 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1134 
1135 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1136 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1137 		}
1138 
1139 		start = RCQ_BD(fp->rx_comp_cons - 10);
1140 		end = RCQ_BD(fp->rx_comp_cons + 503);
1141 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1142 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1143 
1144 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1145 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1146 		}
1147 	}
1148 
1149 	/* Tx */
1150 	for_each_valid_tx_queue(bp, i) {
1151 		struct bnx2x_fastpath *fp = &bp->fp[i];
1152 
1153 		if (!bp->fp)
1154 			break;
1155 
1156 		for_each_cos_in_tx_queue(fp, cos) {
1157 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1158 
1159 			if (!fp->txdata_ptr[cos])
1160 				break;
1161 
1162 			if (!txdata->tx_cons_sb)
1163 				continue;
1164 
1165 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1166 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1167 			for (j = start; j != end; j = TX_BD(j + 1)) {
1168 				struct sw_tx_bd *sw_bd =
1169 					&txdata->tx_buf_ring[j];
1170 
1171 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1172 					  i, cos, j, sw_bd->skb,
1173 					  sw_bd->first_bd);
1174 			}
1175 
1176 			start = TX_BD(txdata->tx_bd_cons - 10);
1177 			end = TX_BD(txdata->tx_bd_cons + 254);
1178 			for (j = start; j != end; j = TX_BD(j + 1)) {
1179 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1180 
1181 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1182 					  i, cos, j, tx_bd[0], tx_bd[1],
1183 					  tx_bd[2], tx_bd[3]);
1184 			}
1185 		}
1186 	}
1187 #endif
1188 	if (IS_PF(bp)) {
1189 		int tmp_msg_en = bp->msg_enable;
1190 
1191 		bnx2x_fw_dump(bp);
1192 		bp->msg_enable |= NETIF_MSG_HW;
1193 		BNX2X_ERR("Idle check (1st round) ----------\n");
1194 		bnx2x_idle_chk(bp);
1195 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1196 		bnx2x_idle_chk(bp);
1197 		bp->msg_enable = tmp_msg_en;
1198 		bnx2x_mc_assert(bp);
1199 	}
1200 
1201 	BNX2X_ERR("end crash dump -----------------\n");
1202 }
1203 
1204 /*
1205  * FLR Support for E2
1206  *
1207  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1208  * initialization.
1209  */
1210 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1211 #define FLR_WAIT_INTERVAL	50	/* usec */
1212 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1213 
1214 struct pbf_pN_buf_regs {
1215 	int pN;
1216 	u32 init_crd;
1217 	u32 crd;
1218 	u32 crd_freed;
1219 };
1220 
1221 struct pbf_pN_cmd_regs {
1222 	int pN;
1223 	u32 lines_occup;
1224 	u32 lines_freed;
1225 };
1226 
1227 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1228 				     struct pbf_pN_buf_regs *regs,
1229 				     u32 poll_count)
1230 {
1231 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1232 	u32 cur_cnt = poll_count;
1233 
1234 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1235 	crd = crd_start = REG_RD(bp, regs->crd);
1236 	init_crd = REG_RD(bp, regs->init_crd);
1237 
1238 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1239 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1240 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1241 
1242 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1243 	       (init_crd - crd_start))) {
1244 		if (cur_cnt--) {
1245 			udelay(FLR_WAIT_INTERVAL);
1246 			crd = REG_RD(bp, regs->crd);
1247 			crd_freed = REG_RD(bp, regs->crd_freed);
1248 		} else {
1249 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1250 			   regs->pN);
1251 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1252 			   regs->pN, crd);
1253 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1254 			   regs->pN, crd_freed);
1255 			break;
1256 		}
1257 	}
1258 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1259 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1260 }
1261 
1262 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1263 				     struct pbf_pN_cmd_regs *regs,
1264 				     u32 poll_count)
1265 {
1266 	u32 occup, to_free, freed, freed_start;
1267 	u32 cur_cnt = poll_count;
1268 
1269 	occup = to_free = REG_RD(bp, regs->lines_occup);
1270 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1271 
1272 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1273 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1274 
1275 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1276 		if (cur_cnt--) {
1277 			udelay(FLR_WAIT_INTERVAL);
1278 			occup = REG_RD(bp, regs->lines_occup);
1279 			freed = REG_RD(bp, regs->lines_freed);
1280 		} else {
1281 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1282 			   regs->pN);
1283 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1284 			   regs->pN, occup);
1285 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1286 			   regs->pN, freed);
1287 			break;
1288 		}
1289 	}
1290 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1291 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1292 }
1293 
1294 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1295 				    u32 expected, u32 poll_count)
1296 {
1297 	u32 cur_cnt = poll_count;
1298 	u32 val;
1299 
1300 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1301 		udelay(FLR_WAIT_INTERVAL);
1302 
1303 	return val;
1304 }
1305 
1306 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1307 				    char *msg, u32 poll_cnt)
1308 {
1309 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1310 	if (val != 0) {
1311 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1312 		return 1;
1313 	}
1314 	return 0;
1315 }
1316 
1317 /* Common routines with VF FLR cleanup */
1318 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1319 {
1320 	/* adjust polling timeout */
1321 	if (CHIP_REV_IS_EMUL(bp))
1322 		return FLR_POLL_CNT * 2000;
1323 
1324 	if (CHIP_REV_IS_FPGA(bp))
1325 		return FLR_POLL_CNT * 120;
1326 
1327 	return FLR_POLL_CNT;
1328 }
1329 
1330 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1331 {
1332 	struct pbf_pN_cmd_regs cmd_regs[] = {
1333 		{0, (CHIP_IS_E3B0(bp)) ?
1334 			PBF_REG_TQ_OCCUPANCY_Q0 :
1335 			PBF_REG_P0_TQ_OCCUPANCY,
1336 		    (CHIP_IS_E3B0(bp)) ?
1337 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1338 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1339 		{1, (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_TQ_OCCUPANCY_Q1 :
1341 			PBF_REG_P1_TQ_OCCUPANCY,
1342 		    (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1344 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1345 		{4, (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1347 			PBF_REG_P4_TQ_OCCUPANCY,
1348 		    (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1350 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1351 	};
1352 
1353 	struct pbf_pN_buf_regs buf_regs[] = {
1354 		{0, (CHIP_IS_E3B0(bp)) ?
1355 			PBF_REG_INIT_CRD_Q0 :
1356 			PBF_REG_P0_INIT_CRD ,
1357 		    (CHIP_IS_E3B0(bp)) ?
1358 			PBF_REG_CREDIT_Q0 :
1359 			PBF_REG_P0_CREDIT,
1360 		    (CHIP_IS_E3B0(bp)) ?
1361 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1362 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1363 		{1, (CHIP_IS_E3B0(bp)) ?
1364 			PBF_REG_INIT_CRD_Q1 :
1365 			PBF_REG_P1_INIT_CRD,
1366 		    (CHIP_IS_E3B0(bp)) ?
1367 			PBF_REG_CREDIT_Q1 :
1368 			PBF_REG_P1_CREDIT,
1369 		    (CHIP_IS_E3B0(bp)) ?
1370 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1371 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1372 		{4, (CHIP_IS_E3B0(bp)) ?
1373 			PBF_REG_INIT_CRD_LB_Q :
1374 			PBF_REG_P4_INIT_CRD,
1375 		    (CHIP_IS_E3B0(bp)) ?
1376 			PBF_REG_CREDIT_LB_Q :
1377 			PBF_REG_P4_CREDIT,
1378 		    (CHIP_IS_E3B0(bp)) ?
1379 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1380 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1381 	};
1382 
1383 	int i;
1384 
1385 	/* Verify the command queues are flushed P0, P1, P4 */
1386 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1387 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1388 
1389 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1390 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1391 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1392 }
1393 
1394 #define OP_GEN_PARAM(param) \
1395 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1396 
1397 #define OP_GEN_TYPE(type) \
1398 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1399 
1400 #define OP_GEN_AGG_VECT(index) \
1401 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1402 
1403 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1404 {
1405 	u32 op_gen_command = 0;
1406 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1407 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1408 
1409 	if (REG_RD(bp, comp_addr)) {
1410 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1411 		return 1;
1412 	}
1413 
1414 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1415 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1416 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1417 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1418 
1419 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1420 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1421 
1422 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1423 		BNX2X_ERR("FW final cleanup did not succeed\n");
1424 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1425 		   (REG_RD(bp, comp_addr)));
1426 		bnx2x_panic();
1427 		return 1;
1428 	}
1429 	/* Zero completion for next FLR */
1430 	REG_WR(bp, comp_addr, 0);
1431 
1432 	return 0;
1433 }
1434 
1435 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1436 {
1437 	u16 status;
1438 
1439 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1440 	return status & PCI_EXP_DEVSTA_TRPND;
1441 }
1442 
1443 /* PF FLR specific routines
1444 */
1445 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1446 {
1447 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1448 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1450 			"CFC PF usage counter timed out",
1451 			poll_cnt))
1452 		return 1;
1453 
1454 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1455 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 			DORQ_REG_PF_USAGE_CNT,
1457 			"DQ PF usage counter timed out",
1458 			poll_cnt))
1459 		return 1;
1460 
1461 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1462 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1464 			"QM PF usage counter timed out",
1465 			poll_cnt))
1466 		return 1;
1467 
1468 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1469 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1470 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1471 			"Timers VNIC usage counter timed out",
1472 			poll_cnt))
1473 		return 1;
1474 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1475 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1476 			"Timers NUM_SCANS usage counter timed out",
1477 			poll_cnt))
1478 		return 1;
1479 
1480 	/* Wait DMAE PF usage counter to zero */
1481 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1482 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1483 			"DMAE command register timed out",
1484 			poll_cnt))
1485 		return 1;
1486 
1487 	return 0;
1488 }
1489 
1490 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1491 {
1492 	u32 val;
1493 
1494 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1495 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1496 
1497 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1498 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1499 
1500 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1501 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1502 
1503 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1504 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1505 
1506 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1507 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1508 
1509 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1510 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1511 
1512 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1513 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1514 
1515 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1516 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1517 	   val);
1518 }
1519 
1520 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1521 {
1522 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1523 
1524 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1525 
1526 	/* Re-enable PF target read access */
1527 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1528 
1529 	/* Poll HW usage counters */
1530 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1531 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1532 		return -EBUSY;
1533 
1534 	/* Zero the igu 'trailing edge' and 'leading edge' */
1535 
1536 	/* Send the FW cleanup command */
1537 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1538 		return -EBUSY;
1539 
1540 	/* ATC cleanup */
1541 
1542 	/* Verify TX hw is flushed */
1543 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1544 
1545 	/* Wait 100ms (not adjusted according to platform) */
1546 	msleep(100);
1547 
1548 	/* Verify no pending pci transactions */
1549 	if (bnx2x_is_pcie_pending(bp->pdev))
1550 		BNX2X_ERR("PCIE Transactions still pending\n");
1551 
1552 	/* Debug */
1553 	bnx2x_hw_enable_status(bp);
1554 
1555 	/*
1556 	 * Master enable - Due to WB DMAE writes performed before this
1557 	 * register is re-initialized as part of the regular function init
1558 	 */
1559 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1560 
1561 	return 0;
1562 }
1563 
1564 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1565 {
1566 	int port = BP_PORT(bp);
1567 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1568 	u32 val = REG_RD(bp, addr);
1569 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1570 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1571 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1572 
1573 	if (msix) {
1574 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1575 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1576 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1577 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1578 		if (single_msix)
1579 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1580 	} else if (msi) {
1581 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1582 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1583 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1584 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1585 	} else {
1586 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1587 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1588 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1589 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1590 
1591 		if (!CHIP_IS_E1(bp)) {
1592 			DP(NETIF_MSG_IFUP,
1593 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1594 
1595 			REG_WR(bp, addr, val);
1596 
1597 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1598 		}
1599 	}
1600 
1601 	if (CHIP_IS_E1(bp))
1602 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1603 
1604 	DP(NETIF_MSG_IFUP,
1605 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1606 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1607 
1608 	REG_WR(bp, addr, val);
1609 	/*
1610 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1611 	 */
1612 	barrier();
1613 
1614 	if (!CHIP_IS_E1(bp)) {
1615 		/* init leading/trailing edge */
1616 		if (IS_MF(bp)) {
1617 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1618 			if (bp->port.pmf)
1619 				/* enable nig and gpio3 attention */
1620 				val |= 0x1100;
1621 		} else
1622 			val = 0xffff;
1623 
1624 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1625 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1626 	}
1627 }
1628 
1629 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1630 {
1631 	u32 val;
1632 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1633 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1634 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1635 
1636 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1637 
1638 	if (msix) {
1639 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1640 			 IGU_PF_CONF_SINGLE_ISR_EN);
1641 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1642 			IGU_PF_CONF_ATTN_BIT_EN);
1643 
1644 		if (single_msix)
1645 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1646 	} else if (msi) {
1647 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1648 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1649 			IGU_PF_CONF_ATTN_BIT_EN |
1650 			IGU_PF_CONF_SINGLE_ISR_EN);
1651 	} else {
1652 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1653 		val |= (IGU_PF_CONF_INT_LINE_EN |
1654 			IGU_PF_CONF_ATTN_BIT_EN |
1655 			IGU_PF_CONF_SINGLE_ISR_EN);
1656 	}
1657 
1658 	/* Clean previous status - need to configure igu prior to ack*/
1659 	if ((!msix) || single_msix) {
1660 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1661 		bnx2x_ack_int(bp);
1662 	}
1663 
1664 	val |= IGU_PF_CONF_FUNC_EN;
1665 
1666 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1667 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1668 
1669 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1670 
1671 	if (val & IGU_PF_CONF_INT_LINE_EN)
1672 		pci_intx(bp->pdev, true);
1673 
1674 	barrier();
1675 
1676 	/* init leading/trailing edge */
1677 	if (IS_MF(bp)) {
1678 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1679 		if (bp->port.pmf)
1680 			/* enable nig and gpio3 attention */
1681 			val |= 0x1100;
1682 	} else
1683 		val = 0xffff;
1684 
1685 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1686 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1687 }
1688 
1689 void bnx2x_int_enable(struct bnx2x *bp)
1690 {
1691 	if (bp->common.int_block == INT_BLOCK_HC)
1692 		bnx2x_hc_int_enable(bp);
1693 	else
1694 		bnx2x_igu_int_enable(bp);
1695 }
1696 
1697 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1698 {
1699 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1700 	int i, offset;
1701 
1702 	if (disable_hw)
1703 		/* prevent the HW from sending interrupts */
1704 		bnx2x_int_disable(bp);
1705 
1706 	/* make sure all ISRs are done */
1707 	if (msix) {
1708 		synchronize_irq(bp->msix_table[0].vector);
1709 		offset = 1;
1710 		if (CNIC_SUPPORT(bp))
1711 			offset++;
1712 		for_each_eth_queue(bp, i)
1713 			synchronize_irq(bp->msix_table[offset++].vector);
1714 	} else
1715 		synchronize_irq(bp->pdev->irq);
1716 
1717 	/* make sure sp_task is not running */
1718 	cancel_delayed_work(&bp->sp_task);
1719 	cancel_delayed_work(&bp->period_task);
1720 	flush_workqueue(bnx2x_wq);
1721 }
1722 
1723 /* fast path */
1724 
1725 /*
1726  * General service functions
1727  */
1728 
1729 /* Return true if succeeded to acquire the lock */
1730 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1731 {
1732 	u32 lock_status;
1733 	u32 resource_bit = (1 << resource);
1734 	int func = BP_FUNC(bp);
1735 	u32 hw_lock_control_reg;
1736 
1737 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1738 	   "Trying to take a lock on resource %d\n", resource);
1739 
1740 	/* Validating that the resource is within range */
1741 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1742 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1743 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1744 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1745 		return false;
1746 	}
1747 
1748 	if (func <= 5)
1749 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1750 	else
1751 		hw_lock_control_reg =
1752 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1753 
1754 	/* Try to acquire the lock */
1755 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1756 	lock_status = REG_RD(bp, hw_lock_control_reg);
1757 	if (lock_status & resource_bit)
1758 		return true;
1759 
1760 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1761 	   "Failed to get a lock on resource %d\n", resource);
1762 	return false;
1763 }
1764 
1765 /**
1766  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1767  *
1768  * @bp:	driver handle
1769  *
1770  * Returns the recovery leader resource id according to the engine this function
1771  * belongs to. Currently only only 2 engines is supported.
1772  */
1773 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1774 {
1775 	if (BP_PATH(bp))
1776 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1777 	else
1778 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1779 }
1780 
1781 /**
1782  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1783  *
1784  * @bp: driver handle
1785  *
1786  * Tries to acquire a leader lock for current engine.
1787  */
1788 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1789 {
1790 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1791 }
1792 
1793 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1794 
1795 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1796 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1797 {
1798 	/* Set the interrupt occurred bit for the sp-task to recognize it
1799 	 * must ack the interrupt and transition according to the IGU
1800 	 * state machine.
1801 	 */
1802 	atomic_set(&bp->interrupt_occurred, 1);
1803 
1804 	/* The sp_task must execute only after this bit
1805 	 * is set, otherwise we will get out of sync and miss all
1806 	 * further interrupts. Hence, the barrier.
1807 	 */
1808 	smp_wmb();
1809 
1810 	/* schedule sp_task to workqueue */
1811 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1812 }
1813 
1814 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1815 {
1816 	struct bnx2x *bp = fp->bp;
1817 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1818 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1820 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1821 
1822 	DP(BNX2X_MSG_SP,
1823 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1824 	   fp->index, cid, command, bp->state,
1825 	   rr_cqe->ramrod_cqe.ramrod_type);
1826 
1827 	/* If cid is within VF range, replace the slowpath object with the
1828 	 * one corresponding to this VF
1829 	 */
1830 	if (cid >= BNX2X_FIRST_VF_CID  &&
1831 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1832 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1833 
1834 	switch (command) {
1835 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1836 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1837 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1838 		break;
1839 
1840 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1841 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1842 		drv_cmd = BNX2X_Q_CMD_SETUP;
1843 		break;
1844 
1845 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1846 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1847 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1848 		break;
1849 
1850 	case (RAMROD_CMD_ID_ETH_HALT):
1851 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1852 		drv_cmd = BNX2X_Q_CMD_HALT;
1853 		break;
1854 
1855 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1856 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1857 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1858 		break;
1859 
1860 	case (RAMROD_CMD_ID_ETH_EMPTY):
1861 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1862 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1863 		break;
1864 
1865 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1866 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1867 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1868 		break;
1869 
1870 	default:
1871 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1872 			  command, fp->index);
1873 		return;
1874 	}
1875 
1876 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1877 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1878 		/* q_obj->complete_cmd() failure means that this was
1879 		 * an unexpected completion.
1880 		 *
1881 		 * In this case we don't want to increase the bp->spq_left
1882 		 * because apparently we haven't sent this command the first
1883 		 * place.
1884 		 */
1885 #ifdef BNX2X_STOP_ON_ERROR
1886 		bnx2x_panic();
1887 #else
1888 		return;
1889 #endif
1890 
1891 	smp_mb__before_atomic();
1892 	atomic_inc(&bp->cq_spq_left);
1893 	/* push the change in bp->spq_left and towards the memory */
1894 	smp_mb__after_atomic();
1895 
1896 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1897 
1898 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1899 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1900 		/* if Q update ramrod is completed for last Q in AFEX vif set
1901 		 * flow, then ACK MCP at the end
1902 		 *
1903 		 * mark pending ACK to MCP bit.
1904 		 * prevent case that both bits are cleared.
1905 		 * At the end of load/unload driver checks that
1906 		 * sp_state is cleared, and this order prevents
1907 		 * races
1908 		 */
1909 		smp_mb__before_atomic();
1910 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1911 		wmb();
1912 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1913 		smp_mb__after_atomic();
1914 
1915 		/* schedule the sp task as mcp ack is required */
1916 		bnx2x_schedule_sp_task(bp);
1917 	}
1918 
1919 	return;
1920 }
1921 
1922 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1923 {
1924 	struct bnx2x *bp = netdev_priv(dev_instance);
1925 	u16 status = bnx2x_ack_int(bp);
1926 	u16 mask;
1927 	int i;
1928 	u8 cos;
1929 
1930 	/* Return here if interrupt is shared and it's not for us */
1931 	if (unlikely(status == 0)) {
1932 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1933 		return IRQ_NONE;
1934 	}
1935 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1936 
1937 #ifdef BNX2X_STOP_ON_ERROR
1938 	if (unlikely(bp->panic))
1939 		return IRQ_HANDLED;
1940 #endif
1941 
1942 	for_each_eth_queue(bp, i) {
1943 		struct bnx2x_fastpath *fp = &bp->fp[i];
1944 
1945 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1946 		if (status & mask) {
1947 			/* Handle Rx or Tx according to SB id */
1948 			for_each_cos_in_tx_queue(fp, cos)
1949 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1950 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1951 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1952 			status &= ~mask;
1953 		}
1954 	}
1955 
1956 	if (CNIC_SUPPORT(bp)) {
1957 		mask = 0x2;
1958 		if (status & (mask | 0x1)) {
1959 			struct cnic_ops *c_ops = NULL;
1960 
1961 			rcu_read_lock();
1962 			c_ops = rcu_dereference(bp->cnic_ops);
1963 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1964 				      CNIC_DRV_STATE_HANDLES_IRQ))
1965 				c_ops->cnic_handler(bp->cnic_data, NULL);
1966 			rcu_read_unlock();
1967 
1968 			status &= ~mask;
1969 		}
1970 	}
1971 
1972 	if (unlikely(status & 0x1)) {
1973 
1974 		/* schedule sp task to perform default status block work, ack
1975 		 * attentions and enable interrupts.
1976 		 */
1977 		bnx2x_schedule_sp_task(bp);
1978 
1979 		status &= ~0x1;
1980 		if (!status)
1981 			return IRQ_HANDLED;
1982 	}
1983 
1984 	if (unlikely(status))
1985 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1986 		   status);
1987 
1988 	return IRQ_HANDLED;
1989 }
1990 
1991 /* Link */
1992 
1993 /*
1994  * General service functions
1995  */
1996 
1997 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1998 {
1999 	u32 lock_status;
2000 	u32 resource_bit = (1 << resource);
2001 	int func = BP_FUNC(bp);
2002 	u32 hw_lock_control_reg;
2003 	int cnt;
2004 
2005 	/* Validating that the resource is within range */
2006 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2007 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2008 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (func <= 5) {
2013 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2014 	} else {
2015 		hw_lock_control_reg =
2016 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2017 	}
2018 
2019 	/* Validating that the resource is not already taken */
2020 	lock_status = REG_RD(bp, hw_lock_control_reg);
2021 	if (lock_status & resource_bit) {
2022 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2023 		   lock_status, resource_bit);
2024 		return -EEXIST;
2025 	}
2026 
2027 	/* Try for 5 second every 5ms */
2028 	for (cnt = 0; cnt < 1000; cnt++) {
2029 		/* Try to acquire the lock */
2030 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2031 		lock_status = REG_RD(bp, hw_lock_control_reg);
2032 		if (lock_status & resource_bit)
2033 			return 0;
2034 
2035 		usleep_range(5000, 10000);
2036 	}
2037 	BNX2X_ERR("Timeout\n");
2038 	return -EAGAIN;
2039 }
2040 
2041 int bnx2x_release_leader_lock(struct bnx2x *bp)
2042 {
2043 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2044 }
2045 
2046 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2047 {
2048 	u32 lock_status;
2049 	u32 resource_bit = (1 << resource);
2050 	int func = BP_FUNC(bp);
2051 	u32 hw_lock_control_reg;
2052 
2053 	/* Validating that the resource is within range */
2054 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2055 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2056 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2057 		return -EINVAL;
2058 	}
2059 
2060 	if (func <= 5) {
2061 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2062 	} else {
2063 		hw_lock_control_reg =
2064 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2065 	}
2066 
2067 	/* Validating that the resource is currently taken */
2068 	lock_status = REG_RD(bp, hw_lock_control_reg);
2069 	if (!(lock_status & resource_bit)) {
2070 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2071 			  lock_status, resource_bit);
2072 		return -EFAULT;
2073 	}
2074 
2075 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2076 	return 0;
2077 }
2078 
2079 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2080 {
2081 	/* The GPIO should be swapped if swap register is set and active */
2082 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084 	int gpio_shift = gpio_num +
2085 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086 	u32 gpio_mask = (1 << gpio_shift);
2087 	u32 gpio_reg;
2088 	int value;
2089 
2090 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2091 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2092 		return -EINVAL;
2093 	}
2094 
2095 	/* read GPIO value */
2096 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2097 
2098 	/* get the requested pin value */
2099 	if ((gpio_reg & gpio_mask) == gpio_mask)
2100 		value = 1;
2101 	else
2102 		value = 0;
2103 
2104 	return value;
2105 }
2106 
2107 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2108 {
2109 	/* The GPIO should be swapped if swap register is set and active */
2110 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2111 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2112 	int gpio_shift = gpio_num +
2113 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2114 	u32 gpio_mask = (1 << gpio_shift);
2115 	u32 gpio_reg;
2116 
2117 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2118 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2119 		return -EINVAL;
2120 	}
2121 
2122 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2123 	/* read GPIO and mask except the float bits */
2124 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2125 
2126 	switch (mode) {
2127 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2128 		DP(NETIF_MSG_LINK,
2129 		   "Set GPIO %d (shift %d) -> output low\n",
2130 		   gpio_num, gpio_shift);
2131 		/* clear FLOAT and set CLR */
2132 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2134 		break;
2135 
2136 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2137 		DP(NETIF_MSG_LINK,
2138 		   "Set GPIO %d (shift %d) -> output high\n",
2139 		   gpio_num, gpio_shift);
2140 		/* clear FLOAT and set SET */
2141 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2143 		break;
2144 
2145 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2146 		DP(NETIF_MSG_LINK,
2147 		   "Set GPIO %d (shift %d) -> input\n",
2148 		   gpio_num, gpio_shift);
2149 		/* set FLOAT */
2150 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2151 		break;
2152 
2153 	default:
2154 		break;
2155 	}
2156 
2157 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2158 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2159 
2160 	return 0;
2161 }
2162 
2163 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2164 {
2165 	u32 gpio_reg = 0;
2166 	int rc = 0;
2167 
2168 	/* Any port swapping should be handled by caller. */
2169 
2170 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2171 	/* read GPIO and mask except the float bits */
2172 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2173 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2176 
2177 	switch (mode) {
2178 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2179 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2180 		/* set CLR */
2181 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2182 		break;
2183 
2184 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2185 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2186 		/* set SET */
2187 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2188 		break;
2189 
2190 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2191 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2192 		/* set FLOAT */
2193 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2194 		break;
2195 
2196 	default:
2197 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2198 		rc = -EINVAL;
2199 		break;
2200 	}
2201 
2202 	if (rc == 0)
2203 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2204 
2205 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2206 
2207 	return rc;
2208 }
2209 
2210 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2211 {
2212 	/* The GPIO should be swapped if swap register is set and active */
2213 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2214 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2215 	int gpio_shift = gpio_num +
2216 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2217 	u32 gpio_mask = (1 << gpio_shift);
2218 	u32 gpio_reg;
2219 
2220 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2221 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2222 		return -EINVAL;
2223 	}
2224 
2225 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226 	/* read GPIO int */
2227 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2228 
2229 	switch (mode) {
2230 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2231 		DP(NETIF_MSG_LINK,
2232 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2233 		   gpio_num, gpio_shift);
2234 		/* clear SET and set CLR */
2235 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2236 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2237 		break;
2238 
2239 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2240 		DP(NETIF_MSG_LINK,
2241 		   "Set GPIO INT %d (shift %d) -> output high\n",
2242 		   gpio_num, gpio_shift);
2243 		/* clear CLR and set SET */
2244 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2245 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2246 		break;
2247 
2248 	default:
2249 		break;
2250 	}
2251 
2252 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2253 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2254 
2255 	return 0;
2256 }
2257 
2258 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2259 {
2260 	u32 spio_reg;
2261 
2262 	/* Only 2 SPIOs are configurable */
2263 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2264 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2265 		return -EINVAL;
2266 	}
2267 
2268 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2269 	/* read SPIO and mask except the float bits */
2270 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2271 
2272 	switch (mode) {
2273 	case MISC_SPIO_OUTPUT_LOW:
2274 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2275 		/* clear FLOAT and set CLR */
2276 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2278 		break;
2279 
2280 	case MISC_SPIO_OUTPUT_HIGH:
2281 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2282 		/* clear FLOAT and set SET */
2283 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2284 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2285 		break;
2286 
2287 	case MISC_SPIO_INPUT_HI_Z:
2288 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2289 		/* set FLOAT */
2290 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2291 		break;
2292 
2293 	default:
2294 		break;
2295 	}
2296 
2297 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2298 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2299 
2300 	return 0;
2301 }
2302 
2303 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2304 {
2305 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2306 
2307 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308 					   ADVERTISED_Pause);
2309 	switch (bp->link_vars.ieee_fc &
2310 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2311 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2312 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2313 						  ADVERTISED_Pause);
2314 		break;
2315 
2316 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2317 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2318 		break;
2319 
2320 	default:
2321 		break;
2322 	}
2323 }
2324 
2325 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2326 {
2327 	/* Initialize link parameters structure variables
2328 	 * It is recommended to turn off RX FC for jumbo frames
2329 	 *  for better performance
2330 	 */
2331 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2332 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2333 	else
2334 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2335 }
2336 
2337 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2338 {
2339 	u32 pause_enabled = 0;
2340 
2341 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2342 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2343 			pause_enabled = 1;
2344 
2345 		REG_WR(bp, BAR_USTRORM_INTMEM +
2346 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2347 		       pause_enabled);
2348 	}
2349 
2350 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2351 	   pause_enabled ? "enabled" : "disabled");
2352 }
2353 
2354 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2355 {
2356 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2357 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2358 
2359 	if (!BP_NOMCP(bp)) {
2360 		bnx2x_set_requested_fc(bp);
2361 		bnx2x_acquire_phy_lock(bp);
2362 
2363 		if (load_mode == LOAD_DIAG) {
2364 			struct link_params *lp = &bp->link_params;
2365 			lp->loopback_mode = LOOPBACK_XGXS;
2366 			/* Prefer doing PHY loopback at highest speed */
2367 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2368 				if (lp->speed_cap_mask[cfx_idx] &
2369 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2370 					lp->req_line_speed[cfx_idx] =
2371 					SPEED_20000;
2372 				else if (lp->speed_cap_mask[cfx_idx] &
2373 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2374 						lp->req_line_speed[cfx_idx] =
2375 						SPEED_10000;
2376 				else
2377 					lp->req_line_speed[cfx_idx] =
2378 					SPEED_1000;
2379 			}
2380 		}
2381 
2382 		if (load_mode == LOAD_LOOPBACK_EXT) {
2383 			struct link_params *lp = &bp->link_params;
2384 			lp->loopback_mode = LOOPBACK_EXT;
2385 		}
2386 
2387 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2388 
2389 		bnx2x_release_phy_lock(bp);
2390 
2391 		bnx2x_init_dropless_fc(bp);
2392 
2393 		bnx2x_calc_fc_adv(bp);
2394 
2395 		if (bp->link_vars.link_up) {
2396 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2397 			bnx2x_link_report(bp);
2398 		}
2399 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2400 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2401 		return rc;
2402 	}
2403 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2404 	return -EINVAL;
2405 }
2406 
2407 void bnx2x_link_set(struct bnx2x *bp)
2408 {
2409 	if (!BP_NOMCP(bp)) {
2410 		bnx2x_acquire_phy_lock(bp);
2411 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2412 		bnx2x_release_phy_lock(bp);
2413 
2414 		bnx2x_init_dropless_fc(bp);
2415 
2416 		bnx2x_calc_fc_adv(bp);
2417 	} else
2418 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2419 }
2420 
2421 static void bnx2x__link_reset(struct bnx2x *bp)
2422 {
2423 	if (!BP_NOMCP(bp)) {
2424 		bnx2x_acquire_phy_lock(bp);
2425 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2426 		bnx2x_release_phy_lock(bp);
2427 	} else
2428 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2429 }
2430 
2431 void bnx2x_force_link_reset(struct bnx2x *bp)
2432 {
2433 	bnx2x_acquire_phy_lock(bp);
2434 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2435 	bnx2x_release_phy_lock(bp);
2436 }
2437 
2438 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2439 {
2440 	u8 rc = 0;
2441 
2442 	if (!BP_NOMCP(bp)) {
2443 		bnx2x_acquire_phy_lock(bp);
2444 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2445 				     is_serdes);
2446 		bnx2x_release_phy_lock(bp);
2447 	} else
2448 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2449 
2450 	return rc;
2451 }
2452 
2453 /* Calculates the sum of vn_min_rates.
2454    It's needed for further normalizing of the min_rates.
2455    Returns:
2456      sum of vn_min_rates.
2457        or
2458      0 - if all the min_rates are 0.
2459      In the later case fairness algorithm should be deactivated.
2460      If not all min_rates are zero then those that are zeroes will be set to 1.
2461  */
2462 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2463 				      struct cmng_init_input *input)
2464 {
2465 	int all_zero = 1;
2466 	int vn;
2467 
2468 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2469 		u32 vn_cfg = bp->mf_config[vn];
2470 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2471 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2472 
2473 		/* Skip hidden vns */
2474 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2475 			vn_min_rate = 0;
2476 		/* If min rate is zero - set it to 1 */
2477 		else if (!vn_min_rate)
2478 			vn_min_rate = DEF_MIN_RATE;
2479 		else
2480 			all_zero = 0;
2481 
2482 		input->vnic_min_rate[vn] = vn_min_rate;
2483 	}
2484 
2485 	/* if ETS or all min rates are zeros - disable fairness */
2486 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2487 		input->flags.cmng_enables &=
2488 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2490 	} else if (all_zero) {
2491 		input->flags.cmng_enables &=
2492 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2493 		DP(NETIF_MSG_IFUP,
2494 		   "All MIN values are zeroes fairness will be disabled\n");
2495 	} else
2496 		input->flags.cmng_enables |=
2497 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2498 }
2499 
2500 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2501 				    struct cmng_init_input *input)
2502 {
2503 	u16 vn_max_rate;
2504 	u32 vn_cfg = bp->mf_config[vn];
2505 
2506 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2507 		vn_max_rate = 0;
2508 	else {
2509 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2510 
2511 		if (IS_MF_PERCENT_BW(bp)) {
2512 			/* maxCfg in percents of linkspeed */
2513 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2514 		} else /* SD modes */
2515 			/* maxCfg is absolute in 100Mb units */
2516 			vn_max_rate = maxCfg * 100;
2517 	}
2518 
2519 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2520 
2521 	input->vnic_max_rate[vn] = vn_max_rate;
2522 }
2523 
2524 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2525 {
2526 	if (CHIP_REV_IS_SLOW(bp))
2527 		return CMNG_FNS_NONE;
2528 	if (IS_MF(bp))
2529 		return CMNG_FNS_MINMAX;
2530 
2531 	return CMNG_FNS_NONE;
2532 }
2533 
2534 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2535 {
2536 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2537 
2538 	if (BP_NOMCP(bp))
2539 		return; /* what should be the default value in this case */
2540 
2541 	/* For 2 port configuration the absolute function number formula
2542 	 * is:
2543 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2544 	 *
2545 	 *      and there are 4 functions per port
2546 	 *
2547 	 * For 4 port configuration it is
2548 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2549 	 *
2550 	 *      and there are 2 functions per port
2551 	 */
2552 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2553 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2554 
2555 		if (func >= E1H_FUNC_MAX)
2556 			break;
2557 
2558 		bp->mf_config[vn] =
2559 			MF_CFG_RD(bp, func_mf_config[func].config);
2560 	}
2561 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2562 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2563 		bp->flags |= MF_FUNC_DIS;
2564 	} else {
2565 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2566 		bp->flags &= ~MF_FUNC_DIS;
2567 	}
2568 }
2569 
2570 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2571 {
2572 	struct cmng_init_input input;
2573 	memset(&input, 0, sizeof(struct cmng_init_input));
2574 
2575 	input.port_rate = bp->link_vars.line_speed;
2576 
2577 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2578 		int vn;
2579 
2580 		/* read mf conf from shmem */
2581 		if (read_cfg)
2582 			bnx2x_read_mf_cfg(bp);
2583 
2584 		/* vn_weight_sum and enable fairness if not 0 */
2585 		bnx2x_calc_vn_min(bp, &input);
2586 
2587 		/* calculate and set min-max rate for each vn */
2588 		if (bp->port.pmf)
2589 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2590 				bnx2x_calc_vn_max(bp, vn, &input);
2591 
2592 		/* always enable rate shaping and fairness */
2593 		input.flags.cmng_enables |=
2594 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2595 
2596 		bnx2x_init_cmng(&input, &bp->cmng);
2597 		return;
2598 	}
2599 
2600 	/* rate shaping and fairness are disabled */
2601 	DP(NETIF_MSG_IFUP,
2602 	   "rate shaping and fairness are disabled\n");
2603 }
2604 
2605 static void storm_memset_cmng(struct bnx2x *bp,
2606 			      struct cmng_init *cmng,
2607 			      u8 port)
2608 {
2609 	int vn;
2610 	size_t size = sizeof(struct cmng_struct_per_port);
2611 
2612 	u32 addr = BAR_XSTRORM_INTMEM +
2613 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2614 
2615 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2616 
2617 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2618 		int func = func_by_vn(bp, vn);
2619 
2620 		addr = BAR_XSTRORM_INTMEM +
2621 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2622 		size = sizeof(struct rate_shaping_vars_per_vn);
2623 		__storm_memset_struct(bp, addr, size,
2624 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2625 
2626 		addr = BAR_XSTRORM_INTMEM +
2627 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2628 		size = sizeof(struct fairness_vars_per_vn);
2629 		__storm_memset_struct(bp, addr, size,
2630 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2631 	}
2632 }
2633 
2634 /* init cmng mode in HW according to local configuration */
2635 void bnx2x_set_local_cmng(struct bnx2x *bp)
2636 {
2637 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2638 
2639 	if (cmng_fns != CMNG_FNS_NONE) {
2640 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2641 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2642 	} else {
2643 		/* rate shaping and fairness are disabled */
2644 		DP(NETIF_MSG_IFUP,
2645 		   "single function mode without fairness\n");
2646 	}
2647 }
2648 
2649 /* This function is called upon link interrupt */
2650 static void bnx2x_link_attn(struct bnx2x *bp)
2651 {
2652 	/* Make sure that we are synced with the current statistics */
2653 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2654 
2655 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2656 
2657 	bnx2x_init_dropless_fc(bp);
2658 
2659 	if (bp->link_vars.link_up) {
2660 
2661 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2662 			struct host_port_stats *pstats;
2663 
2664 			pstats = bnx2x_sp(bp, port_stats);
2665 			/* reset old mac stats */
2666 			memset(&(pstats->mac_stx[0]), 0,
2667 			       sizeof(struct mac_stx));
2668 		}
2669 		if (bp->state == BNX2X_STATE_OPEN)
2670 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2671 	}
2672 
2673 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2674 		bnx2x_set_local_cmng(bp);
2675 
2676 	__bnx2x_link_report(bp);
2677 
2678 	if (IS_MF(bp))
2679 		bnx2x_link_sync_notify(bp);
2680 }
2681 
2682 void bnx2x__link_status_update(struct bnx2x *bp)
2683 {
2684 	if (bp->state != BNX2X_STATE_OPEN)
2685 		return;
2686 
2687 	/* read updated dcb configuration */
2688 	if (IS_PF(bp)) {
2689 		bnx2x_dcbx_pmf_update(bp);
2690 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2691 		if (bp->link_vars.link_up)
2692 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2693 		else
2694 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2695 			/* indicate link status */
2696 		bnx2x_link_report(bp);
2697 
2698 	} else { /* VF */
2699 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2700 					  SUPPORTED_10baseT_Full |
2701 					  SUPPORTED_100baseT_Half |
2702 					  SUPPORTED_100baseT_Full |
2703 					  SUPPORTED_1000baseT_Full |
2704 					  SUPPORTED_2500baseX_Full |
2705 					  SUPPORTED_10000baseT_Full |
2706 					  SUPPORTED_TP |
2707 					  SUPPORTED_FIBRE |
2708 					  SUPPORTED_Autoneg |
2709 					  SUPPORTED_Pause |
2710 					  SUPPORTED_Asym_Pause);
2711 		bp->port.advertising[0] = bp->port.supported[0];
2712 
2713 		bp->link_params.bp = bp;
2714 		bp->link_params.port = BP_PORT(bp);
2715 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2716 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2717 		bp->link_params.req_line_speed[0] = SPEED_10000;
2718 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2719 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2720 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2721 		bp->link_vars.line_speed = SPEED_10000;
2722 		bp->link_vars.link_status =
2723 			(LINK_STATUS_LINK_UP |
2724 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2725 		bp->link_vars.link_up = 1;
2726 		bp->link_vars.duplex = DUPLEX_FULL;
2727 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2728 		__bnx2x_link_report(bp);
2729 
2730 		bnx2x_sample_bulletin(bp);
2731 
2732 		/* if bulletin board did not have an update for link status
2733 		 * __bnx2x_link_report will report current status
2734 		 * but it will NOT duplicate report in case of already reported
2735 		 * during sampling bulletin board.
2736 		 */
2737 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2738 	}
2739 }
2740 
2741 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2742 				  u16 vlan_val, u8 allowed_prio)
2743 {
2744 	struct bnx2x_func_state_params func_params = {NULL};
2745 	struct bnx2x_func_afex_update_params *f_update_params =
2746 		&func_params.params.afex_update;
2747 
2748 	func_params.f_obj = &bp->func_obj;
2749 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2750 
2751 	/* no need to wait for RAMROD completion, so don't
2752 	 * set RAMROD_COMP_WAIT flag
2753 	 */
2754 
2755 	f_update_params->vif_id = vifid;
2756 	f_update_params->afex_default_vlan = vlan_val;
2757 	f_update_params->allowed_priorities = allowed_prio;
2758 
2759 	/* if ramrod can not be sent, response to MCP immediately */
2760 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2761 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2762 
2763 	return 0;
2764 }
2765 
2766 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2767 					  u16 vif_index, u8 func_bit_map)
2768 {
2769 	struct bnx2x_func_state_params func_params = {NULL};
2770 	struct bnx2x_func_afex_viflists_params *update_params =
2771 		&func_params.params.afex_viflists;
2772 	int rc;
2773 	u32 drv_msg_code;
2774 
2775 	/* validate only LIST_SET and LIST_GET are received from switch */
2776 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2777 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2778 			  cmd_type);
2779 
2780 	func_params.f_obj = &bp->func_obj;
2781 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2782 
2783 	/* set parameters according to cmd_type */
2784 	update_params->afex_vif_list_command = cmd_type;
2785 	update_params->vif_list_index = vif_index;
2786 	update_params->func_bit_map =
2787 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2788 	update_params->func_to_clear = 0;
2789 	drv_msg_code =
2790 		(cmd_type == VIF_LIST_RULE_GET) ?
2791 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2792 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2793 
2794 	/* if ramrod can not be sent, respond to MCP immediately for
2795 	 * SET and GET requests (other are not triggered from MCP)
2796 	 */
2797 	rc = bnx2x_func_state_change(bp, &func_params);
2798 	if (rc < 0)
2799 		bnx2x_fw_command(bp, drv_msg_code, 0);
2800 
2801 	return 0;
2802 }
2803 
2804 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2805 {
2806 	struct afex_stats afex_stats;
2807 	u32 func = BP_ABS_FUNC(bp);
2808 	u32 mf_config;
2809 	u16 vlan_val;
2810 	u32 vlan_prio;
2811 	u16 vif_id;
2812 	u8 allowed_prio;
2813 	u8 vlan_mode;
2814 	u32 addr_to_write, vifid, addrs, stats_type, i;
2815 
2816 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2817 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 		DP(BNX2X_MSG_MCP,
2819 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2820 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2821 	}
2822 
2823 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2824 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2825 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2826 		DP(BNX2X_MSG_MCP,
2827 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2828 		   vifid, addrs);
2829 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2830 					       addrs);
2831 	}
2832 
2833 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2834 		addr_to_write = SHMEM2_RD(bp,
2835 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2836 		stats_type = SHMEM2_RD(bp,
2837 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2838 
2839 		DP(BNX2X_MSG_MCP,
2840 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2841 		   addr_to_write);
2842 
2843 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2844 
2845 		/* write response to scratchpad, for MCP */
2846 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2847 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2848 			       *(((u32 *)(&afex_stats))+i));
2849 
2850 		/* send ack message to MCP */
2851 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2852 	}
2853 
2854 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2855 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2856 		bp->mf_config[BP_VN(bp)] = mf_config;
2857 		DP(BNX2X_MSG_MCP,
2858 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2859 		   mf_config);
2860 
2861 		/* if VIF_SET is "enabled" */
2862 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2863 			/* set rate limit directly to internal RAM */
2864 			struct cmng_init_input cmng_input;
2865 			struct rate_shaping_vars_per_vn m_rs_vn;
2866 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2867 			u32 addr = BAR_XSTRORM_INTMEM +
2868 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2869 
2870 			bp->mf_config[BP_VN(bp)] = mf_config;
2871 
2872 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2873 			m_rs_vn.vn_counter.rate =
2874 				cmng_input.vnic_max_rate[BP_VN(bp)];
2875 			m_rs_vn.vn_counter.quota =
2876 				(m_rs_vn.vn_counter.rate *
2877 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2878 
2879 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2880 
2881 			/* read relevant values from mf_cfg struct in shmem */
2882 			vif_id =
2883 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2884 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2885 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2886 			vlan_val =
2887 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2888 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2889 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2890 			vlan_prio = (mf_config &
2891 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2892 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2893 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2894 			vlan_mode =
2895 				(MF_CFG_RD(bp,
2896 					   func_mf_config[func].afex_config) &
2897 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2898 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2899 			allowed_prio =
2900 				(MF_CFG_RD(bp,
2901 					   func_mf_config[func].afex_config) &
2902 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2903 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2904 
2905 			/* send ramrod to FW, return in case of failure */
2906 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2907 						   allowed_prio))
2908 				return;
2909 
2910 			bp->afex_def_vlan_tag = vlan_val;
2911 			bp->afex_vlan_mode = vlan_mode;
2912 		} else {
2913 			/* notify link down because BP->flags is disabled */
2914 			bnx2x_link_report(bp);
2915 
2916 			/* send INVALID VIF ramrod to FW */
2917 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2918 
2919 			/* Reset the default afex VLAN */
2920 			bp->afex_def_vlan_tag = -1;
2921 		}
2922 	}
2923 }
2924 
2925 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2926 {
2927 	struct bnx2x_func_switch_update_params *switch_update_params;
2928 	struct bnx2x_func_state_params func_params;
2929 
2930 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2931 	switch_update_params = &func_params.params.switch_update;
2932 	func_params.f_obj = &bp->func_obj;
2933 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2934 
2935 	/* Prepare parameters for function state transitions */
2936 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2937 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2938 
2939 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2940 		int func = BP_ABS_FUNC(bp);
2941 		u32 val;
2942 
2943 		/* Re-learn the S-tag from shmem */
2944 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2945 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2946 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2947 			bp->mf_ov = val;
2948 		} else {
2949 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2950 			goto fail;
2951 		}
2952 
2953 		/* Configure new S-tag in LLH */
2954 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2955 		       bp->mf_ov);
2956 
2957 		/* Send Ramrod to update FW of change */
2958 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2959 			  &switch_update_params->changes);
2960 		switch_update_params->vlan = bp->mf_ov;
2961 
2962 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2963 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2964 				  bp->mf_ov);
2965 			goto fail;
2966 		} else {
2967 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2968 			   bp->mf_ov);
2969 		}
2970 	} else {
2971 		goto fail;
2972 	}
2973 
2974 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2975 	return;
2976 fail:
2977 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2978 }
2979 
2980 static void bnx2x_pmf_update(struct bnx2x *bp)
2981 {
2982 	int port = BP_PORT(bp);
2983 	u32 val;
2984 
2985 	bp->port.pmf = 1;
2986 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2987 
2988 	/*
2989 	 * We need the mb() to ensure the ordering between the writing to
2990 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2991 	 */
2992 	smp_mb();
2993 
2994 	/* queue a periodic task */
2995 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2996 
2997 	bnx2x_dcbx_pmf_update(bp);
2998 
2999 	/* enable nig attention */
3000 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3001 	if (bp->common.int_block == INT_BLOCK_HC) {
3002 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3003 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3004 	} else if (!CHIP_IS_E1x(bp)) {
3005 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3006 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3007 	}
3008 
3009 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3010 }
3011 
3012 /* end of Link */
3013 
3014 /* slow path */
3015 
3016 /*
3017  * General service functions
3018  */
3019 
3020 /* send the MCP a request, block until there is a reply */
3021 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3022 {
3023 	int mb_idx = BP_FW_MB_IDX(bp);
3024 	u32 seq;
3025 	u32 rc = 0;
3026 	u32 cnt = 1;
3027 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3028 
3029 	mutex_lock(&bp->fw_mb_mutex);
3030 	seq = ++bp->fw_seq;
3031 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3032 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3033 
3034 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3035 			(command | seq), param);
3036 
3037 	do {
3038 		/* let the FW do it's magic ... */
3039 		msleep(delay);
3040 
3041 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3042 
3043 		/* Give the FW up to 5 second (500*10ms) */
3044 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3045 
3046 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3047 	   cnt*delay, rc, seq);
3048 
3049 	/* is this a reply to our command? */
3050 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3051 		rc &= FW_MSG_CODE_MASK;
3052 	else {
3053 		/* FW BUG! */
3054 		BNX2X_ERR("FW failed to respond!\n");
3055 		bnx2x_fw_dump(bp);
3056 		rc = 0;
3057 	}
3058 	mutex_unlock(&bp->fw_mb_mutex);
3059 
3060 	return rc;
3061 }
3062 
3063 static void storm_memset_func_cfg(struct bnx2x *bp,
3064 				 struct tstorm_eth_function_common_config *tcfg,
3065 				 u16 abs_fid)
3066 {
3067 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3068 
3069 	u32 addr = BAR_TSTRORM_INTMEM +
3070 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3071 
3072 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3073 }
3074 
3075 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3076 {
3077 	if (CHIP_IS_E1x(bp)) {
3078 		struct tstorm_eth_function_common_config tcfg = {0};
3079 
3080 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3081 	}
3082 
3083 	/* Enable the function in the FW */
3084 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3085 	storm_memset_func_en(bp, p->func_id, 1);
3086 
3087 	/* spq */
3088 	if (p->spq_active) {
3089 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3090 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3091 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3092 	}
3093 }
3094 
3095 /**
3096  * bnx2x_get_common_flags - Return common flags
3097  *
3098  * @bp:		device handle
3099  * @fp:		queue handle
3100  * @zero_stats:	TRUE if statistics zeroing is needed
3101  *
3102  * Return the flags that are common for the Tx-only and not normal connections.
3103  */
3104 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3105 					    struct bnx2x_fastpath *fp,
3106 					    bool zero_stats)
3107 {
3108 	unsigned long flags = 0;
3109 
3110 	/* PF driver will always initialize the Queue to an ACTIVE state */
3111 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3112 
3113 	/* tx only connections collect statistics (on the same index as the
3114 	 * parent connection). The statistics are zeroed when the parent
3115 	 * connection is initialized.
3116 	 */
3117 
3118 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3119 	if (zero_stats)
3120 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3121 
3122 	if (bp->flags & TX_SWITCHING)
3123 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3124 
3125 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3126 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3127 
3128 #ifdef BNX2X_STOP_ON_ERROR
3129 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3130 #endif
3131 
3132 	return flags;
3133 }
3134 
3135 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3136 				       struct bnx2x_fastpath *fp,
3137 				       bool leading)
3138 {
3139 	unsigned long flags = 0;
3140 
3141 	/* calculate other queue flags */
3142 	if (IS_MF_SD(bp))
3143 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3144 
3145 	if (IS_FCOE_FP(fp)) {
3146 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3147 		/* For FCoE - force usage of default priority (for afex) */
3148 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3149 	}
3150 
3151 	if (fp->mode != TPA_MODE_DISABLED) {
3152 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3153 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3154 		if (fp->mode == TPA_MODE_GRO)
3155 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3156 	}
3157 
3158 	if (leading) {
3159 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3160 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3161 	}
3162 
3163 	/* Always set HW VLAN stripping */
3164 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3165 
3166 	/* configure silent vlan removal */
3167 	if (IS_MF_AFEX(bp))
3168 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3169 
3170 	return flags | bnx2x_get_common_flags(bp, fp, true);
3171 }
3172 
3173 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3174 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3175 	u8 cos)
3176 {
3177 	gen_init->stat_id = bnx2x_stats_id(fp);
3178 	gen_init->spcl_id = fp->cl_id;
3179 
3180 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3181 	if (IS_FCOE_FP(fp))
3182 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3183 	else
3184 		gen_init->mtu = bp->dev->mtu;
3185 
3186 	gen_init->cos = cos;
3187 
3188 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3189 }
3190 
3191 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3192 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3193 	struct bnx2x_rxq_setup_params *rxq_init)
3194 {
3195 	u8 max_sge = 0;
3196 	u16 sge_sz = 0;
3197 	u16 tpa_agg_size = 0;
3198 
3199 	if (fp->mode != TPA_MODE_DISABLED) {
3200 		pause->sge_th_lo = SGE_TH_LO(bp);
3201 		pause->sge_th_hi = SGE_TH_HI(bp);
3202 
3203 		/* validate SGE ring has enough to cross high threshold */
3204 		WARN_ON(bp->dropless_fc &&
3205 				pause->sge_th_hi + FW_PREFETCH_CNT >
3206 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3207 
3208 		tpa_agg_size = TPA_AGG_SIZE;
3209 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3210 			SGE_PAGE_SHIFT;
3211 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3212 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3213 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3214 	}
3215 
3216 	/* pause - not for e1 */
3217 	if (!CHIP_IS_E1(bp)) {
3218 		pause->bd_th_lo = BD_TH_LO(bp);
3219 		pause->bd_th_hi = BD_TH_HI(bp);
3220 
3221 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3222 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3223 		/*
3224 		 * validate that rings have enough entries to cross
3225 		 * high thresholds
3226 		 */
3227 		WARN_ON(bp->dropless_fc &&
3228 				pause->bd_th_hi + FW_PREFETCH_CNT >
3229 				bp->rx_ring_size);
3230 		WARN_ON(bp->dropless_fc &&
3231 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3232 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3233 
3234 		pause->pri_map = 1;
3235 	}
3236 
3237 	/* rxq setup */
3238 	rxq_init->dscr_map = fp->rx_desc_mapping;
3239 	rxq_init->sge_map = fp->rx_sge_mapping;
3240 	rxq_init->rcq_map = fp->rx_comp_mapping;
3241 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3242 
3243 	/* This should be a maximum number of data bytes that may be
3244 	 * placed on the BD (not including paddings).
3245 	 */
3246 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3247 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3248 
3249 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3250 	rxq_init->tpa_agg_sz = tpa_agg_size;
3251 	rxq_init->sge_buf_sz = sge_sz;
3252 	rxq_init->max_sges_pkt = max_sge;
3253 	rxq_init->rss_engine_id = BP_FUNC(bp);
3254 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3255 
3256 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3257 	 *
3258 	 * For PF Clients it should be the maximum available number.
3259 	 * VF driver(s) may want to define it to a smaller value.
3260 	 */
3261 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3262 
3263 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3264 	rxq_init->fw_sb_id = fp->fw_sb_id;
3265 
3266 	if (IS_FCOE_FP(fp))
3267 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3268 	else
3269 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3270 	/* configure silent vlan removal
3271 	 * if multi function mode is afex, then mask default vlan
3272 	 */
3273 	if (IS_MF_AFEX(bp)) {
3274 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3275 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3276 	}
3277 }
3278 
3279 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3280 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3281 	u8 cos)
3282 {
3283 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3284 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3285 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3286 	txq_init->fw_sb_id = fp->fw_sb_id;
3287 
3288 	/*
3289 	 * set the tss leading client id for TX classification ==
3290 	 * leading RSS client id
3291 	 */
3292 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3293 
3294 	if (IS_FCOE_FP(fp)) {
3295 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3296 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3297 	}
3298 }
3299 
3300 static void bnx2x_pf_init(struct bnx2x *bp)
3301 {
3302 	struct bnx2x_func_init_params func_init = {0};
3303 	struct event_ring_data eq_data = { {0} };
3304 
3305 	if (!CHIP_IS_E1x(bp)) {
3306 		/* reset IGU PF statistics: MSIX + ATTN */
3307 		/* PF */
3308 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3309 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3310 			   (CHIP_MODE_IS_4_PORT(bp) ?
3311 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3312 		/* ATTN */
3313 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3314 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3315 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3316 			   (CHIP_MODE_IS_4_PORT(bp) ?
3317 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3318 	}
3319 
3320 	func_init.spq_active = true;
3321 	func_init.pf_id = BP_FUNC(bp);
3322 	func_init.func_id = BP_FUNC(bp);
3323 	func_init.spq_map = bp->spq_mapping;
3324 	func_init.spq_prod = bp->spq_prod_idx;
3325 
3326 	bnx2x_func_init(bp, &func_init);
3327 
3328 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3329 
3330 	/*
3331 	 * Congestion management values depend on the link rate
3332 	 * There is no active link so initial link rate is set to 10 Gbps.
3333 	 * When the link comes up The congestion management values are
3334 	 * re-calculated according to the actual link rate.
3335 	 */
3336 	bp->link_vars.line_speed = SPEED_10000;
3337 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3338 
3339 	/* Only the PMF sets the HW */
3340 	if (bp->port.pmf)
3341 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3342 
3343 	/* init Event Queue - PCI bus guarantees correct endianity*/
3344 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3345 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3346 	eq_data.producer = bp->eq_prod;
3347 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3348 	eq_data.sb_id = DEF_SB_ID;
3349 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3350 }
3351 
3352 static void bnx2x_e1h_disable(struct bnx2x *bp)
3353 {
3354 	int port = BP_PORT(bp);
3355 
3356 	bnx2x_tx_disable(bp);
3357 
3358 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3359 }
3360 
3361 static void bnx2x_e1h_enable(struct bnx2x *bp)
3362 {
3363 	int port = BP_PORT(bp);
3364 
3365 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3366 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3367 
3368 	/* Tx queue should be only re-enabled */
3369 	netif_tx_wake_all_queues(bp->dev);
3370 
3371 	/*
3372 	 * Should not call netif_carrier_on since it will be called if the link
3373 	 * is up when checking for link state
3374 	 */
3375 }
3376 
3377 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3378 
3379 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3380 {
3381 	struct eth_stats_info *ether_stat =
3382 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3383 	struct bnx2x_vlan_mac_obj *mac_obj =
3384 		&bp->sp_objs->mac_obj;
3385 	int i;
3386 
3387 	strscpy(ether_stat->version, DRV_MODULE_VERSION,
3388 		ETH_STAT_INFO_VERSION_LEN);
3389 
3390 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3391 	 * mac_local field in ether_stat struct. The base address is offset by 2
3392 	 * bytes to account for the field being 8 bytes but a mac address is
3393 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3394 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3395 	 * allocated by the ether_stat struct, so the macs will land in their
3396 	 * proper positions.
3397 	 */
3398 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3399 		memset(ether_stat->mac_local + i, 0,
3400 		       sizeof(ether_stat->mac_local[0]));
3401 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3402 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3403 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3404 				ETH_ALEN);
3405 	ether_stat->mtu_size = bp->dev->mtu;
3406 	if (bp->dev->features & NETIF_F_RXCSUM)
3407 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3408 	if (bp->dev->features & NETIF_F_TSO)
3409 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3410 	ether_stat->feature_flags |= bp->common.boot_mode;
3411 
3412 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3413 
3414 	ether_stat->txq_size = bp->tx_ring_size;
3415 	ether_stat->rxq_size = bp->rx_ring_size;
3416 
3417 #ifdef CONFIG_BNX2X_SRIOV
3418 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3419 #endif
3420 }
3421 
3422 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3423 {
3424 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3425 	struct fcoe_stats_info *fcoe_stat =
3426 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3427 
3428 	if (!CNIC_LOADED(bp))
3429 		return;
3430 
3431 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3432 
3433 	fcoe_stat->qos_priority =
3434 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3435 
3436 	/* insert FCoE stats from ramrod response */
3437 	if (!NO_FCOE(bp)) {
3438 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3439 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3440 			tstorm_queue_statistics;
3441 
3442 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3443 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3444 			xstorm_queue_statistics;
3445 
3446 		struct fcoe_statistics_params *fw_fcoe_stat =
3447 			&bp->fw_stats_data->fcoe;
3448 
3449 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3450 			  fcoe_stat->rx_bytes_lo,
3451 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3452 
3453 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3454 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3455 			  fcoe_stat->rx_bytes_lo,
3456 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3457 
3458 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3459 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3460 			  fcoe_stat->rx_bytes_lo,
3461 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3462 
3463 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3464 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3465 			  fcoe_stat->rx_bytes_lo,
3466 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3467 
3468 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3469 			  fcoe_stat->rx_frames_lo,
3470 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3471 
3472 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3473 			  fcoe_stat->rx_frames_lo,
3474 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3475 
3476 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3477 			  fcoe_stat->rx_frames_lo,
3478 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3479 
3480 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3481 			  fcoe_stat->rx_frames_lo,
3482 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3483 
3484 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3485 			  fcoe_stat->tx_bytes_lo,
3486 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3487 
3488 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3489 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3490 			  fcoe_stat->tx_bytes_lo,
3491 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3492 
3493 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3494 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3495 			  fcoe_stat->tx_bytes_lo,
3496 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3497 
3498 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3499 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3500 			  fcoe_stat->tx_bytes_lo,
3501 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3502 
3503 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3504 			  fcoe_stat->tx_frames_lo,
3505 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3506 
3507 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3508 			  fcoe_stat->tx_frames_lo,
3509 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3510 
3511 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3512 			  fcoe_stat->tx_frames_lo,
3513 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3514 
3515 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3516 			  fcoe_stat->tx_frames_lo,
3517 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3518 	}
3519 
3520 	/* ask L5 driver to add data to the struct */
3521 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3522 }
3523 
3524 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3525 {
3526 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3527 	struct iscsi_stats_info *iscsi_stat =
3528 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3529 
3530 	if (!CNIC_LOADED(bp))
3531 		return;
3532 
3533 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3534 	       ETH_ALEN);
3535 
3536 	iscsi_stat->qos_priority =
3537 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3538 
3539 	/* ask L5 driver to add data to the struct */
3540 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3541 }
3542 
3543 /* called due to MCP event (on pmf):
3544  *	reread new bandwidth configuration
3545  *	configure FW
3546  *	notify others function about the change
3547  */
3548 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3549 {
3550 	/* Workaround for MFW bug.
3551 	 * MFW is not supposed to generate BW attention in
3552 	 * single function mode.
3553 	 */
3554 	if (!IS_MF(bp)) {
3555 		DP(BNX2X_MSG_MCP,
3556 		   "Ignoring MF BW config in single function mode\n");
3557 		return;
3558 	}
3559 
3560 	if (bp->link_vars.link_up) {
3561 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3562 		bnx2x_link_sync_notify(bp);
3563 	}
3564 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3565 }
3566 
3567 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3568 {
3569 	bnx2x_config_mf_bw(bp);
3570 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3571 }
3572 
3573 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3574 {
3575 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3576 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3577 }
3578 
3579 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3580 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3581 
3582 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3583 {
3584 	enum drv_info_opcode op_code;
3585 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3586 	bool release = false;
3587 	int wait;
3588 
3589 	/* if drv_info version supported by MFW doesn't match - send NACK */
3590 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3591 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592 		return;
3593 	}
3594 
3595 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3596 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3597 
3598 	/* Must prevent other flows from accessing drv_info_to_mcp */
3599 	mutex_lock(&bp->drv_info_mutex);
3600 
3601 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3602 	       sizeof(union drv_info_to_mcp));
3603 
3604 	switch (op_code) {
3605 	case ETH_STATS_OPCODE:
3606 		bnx2x_drv_info_ether_stat(bp);
3607 		break;
3608 	case FCOE_STATS_OPCODE:
3609 		bnx2x_drv_info_fcoe_stat(bp);
3610 		break;
3611 	case ISCSI_STATS_OPCODE:
3612 		bnx2x_drv_info_iscsi_stat(bp);
3613 		break;
3614 	default:
3615 		/* if op code isn't supported - send NACK */
3616 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3617 		goto out;
3618 	}
3619 
3620 	/* if we got drv_info attn from MFW then these fields are defined in
3621 	 * shmem2 for sure
3622 	 */
3623 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3624 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3625 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3626 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3627 
3628 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3629 
3630 	/* Since possible management wants both this and get_driver_version
3631 	 * need to wait until management notifies us it finished utilizing
3632 	 * the buffer.
3633 	 */
3634 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3635 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3636 	} else if (!bp->drv_info_mng_owner) {
3637 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3638 
3639 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3640 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3641 
3642 			/* Management is done; need to clear indication */
3643 			if (indication & bit) {
3644 				SHMEM2_WR(bp, mfw_drv_indication,
3645 					  indication & ~bit);
3646 				release = true;
3647 				break;
3648 			}
3649 
3650 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3651 		}
3652 	}
3653 	if (!release) {
3654 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3655 		bp->drv_info_mng_owner = true;
3656 	}
3657 
3658 out:
3659 	mutex_unlock(&bp->drv_info_mutex);
3660 }
3661 
3662 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3663 {
3664 	u8 vals[4];
3665 	int i = 0;
3666 
3667 	if (bnx2x_format) {
3668 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3669 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3670 		if (i > 0)
3671 			vals[0] -= '0';
3672 	} else {
3673 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3674 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3675 	}
3676 
3677 	while (i < 4)
3678 		vals[i++] = 0;
3679 
3680 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3681 }
3682 
3683 void bnx2x_update_mng_version(struct bnx2x *bp)
3684 {
3685 	u32 iscsiver = DRV_VER_NOT_LOADED;
3686 	u32 fcoever = DRV_VER_NOT_LOADED;
3687 	u32 ethver = DRV_VER_NOT_LOADED;
3688 	int idx = BP_FW_MB_IDX(bp);
3689 	u8 *version;
3690 
3691 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3692 		return;
3693 
3694 	mutex_lock(&bp->drv_info_mutex);
3695 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3696 	if (bp->drv_info_mng_owner)
3697 		goto out;
3698 
3699 	if (bp->state != BNX2X_STATE_OPEN)
3700 		goto out;
3701 
3702 	/* Parse ethernet driver version */
3703 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3704 	if (!CNIC_LOADED(bp))
3705 		goto out;
3706 
3707 	/* Try getting storage driver version via cnic */
3708 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3709 	       sizeof(union drv_info_to_mcp));
3710 	bnx2x_drv_info_iscsi_stat(bp);
3711 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3712 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3713 
3714 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3715 	       sizeof(union drv_info_to_mcp));
3716 	bnx2x_drv_info_fcoe_stat(bp);
3717 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3718 	fcoever = bnx2x_update_mng_version_utility(version, false);
3719 
3720 out:
3721 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3722 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3723 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3724 
3725 	mutex_unlock(&bp->drv_info_mutex);
3726 
3727 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3728 	   ethver, iscsiver, fcoever);
3729 }
3730 
3731 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3732 {
3733 	u32 drv_ver;
3734 	u32 valid_dump;
3735 
3736 	if (!SHMEM2_HAS(bp, drv_info))
3737 		return;
3738 
3739 	/* Update Driver load time, possibly broken in y2038 */
3740 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3741 
3742 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3743 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3744 
3745 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3746 
3747 	/* Check & notify On-Chip dump. */
3748 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3749 
3750 	if (valid_dump & FIRST_DUMP_VALID)
3751 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3752 
3753 	if (valid_dump & SECOND_DUMP_VALID)
3754 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3755 }
3756 
3757 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3758 {
3759 	u32 cmd_ok, cmd_fail;
3760 
3761 	/* sanity */
3762 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3763 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3764 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3765 		return;
3766 	}
3767 
3768 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3769 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3770 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3771 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3772 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3773 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3774 	}
3775 
3776 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3777 
3778 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3779 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3780 		/* This is the only place besides the function initialization
3781 		 * where the bp->flags can change so it is done without any
3782 		 * locks
3783 		 */
3784 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3785 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3786 			bp->flags |= MF_FUNC_DIS;
3787 
3788 			bnx2x_e1h_disable(bp);
3789 		} else {
3790 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3791 			bp->flags &= ~MF_FUNC_DIS;
3792 
3793 			bnx2x_e1h_enable(bp);
3794 		}
3795 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3796 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3797 	}
3798 
3799 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3800 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3801 		bnx2x_config_mf_bw(bp);
3802 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3803 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3804 	}
3805 
3806 	/* Report results to MCP */
3807 	if (event)
3808 		bnx2x_fw_command(bp, cmd_fail, 0);
3809 	else
3810 		bnx2x_fw_command(bp, cmd_ok, 0);
3811 }
3812 
3813 /* must be called under the spq lock */
3814 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3815 {
3816 	struct eth_spe *next_spe = bp->spq_prod_bd;
3817 
3818 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3819 		bp->spq_prod_bd = bp->spq;
3820 		bp->spq_prod_idx = 0;
3821 		DP(BNX2X_MSG_SP, "end of spq\n");
3822 	} else {
3823 		bp->spq_prod_bd++;
3824 		bp->spq_prod_idx++;
3825 	}
3826 	return next_spe;
3827 }
3828 
3829 /* must be called under the spq lock */
3830 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3831 {
3832 	int func = BP_FUNC(bp);
3833 
3834 	/*
3835 	 * Make sure that BD data is updated before writing the producer:
3836 	 * BD data is written to the memory, the producer is read from the
3837 	 * memory, thus we need a full memory barrier to ensure the ordering.
3838 	 */
3839 	mb();
3840 
3841 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3842 			 bp->spq_prod_idx);
3843 }
3844 
3845 /**
3846  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3847  *
3848  * @cmd:	command to check
3849  * @cmd_type:	command type
3850  */
3851 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3852 {
3853 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3854 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3855 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3856 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3857 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3858 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3859 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3860 		return true;
3861 	else
3862 		return false;
3863 }
3864 
3865 /**
3866  * bnx2x_sp_post - place a single command on an SP ring
3867  *
3868  * @bp:		driver handle
3869  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3870  * @cid:	SW CID the command is related to
3871  * @data_hi:	command private data address (high 32 bits)
3872  * @data_lo:	command private data address (low 32 bits)
3873  * @cmd_type:	command type (e.g. NONE, ETH)
3874  *
3875  * SP data is handled as if it's always an address pair, thus data fields are
3876  * not swapped to little endian in upper functions. Instead this function swaps
3877  * data as if it's two u32 fields.
3878  */
3879 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3880 		  u32 data_hi, u32 data_lo, int cmd_type)
3881 {
3882 	struct eth_spe *spe;
3883 	u16 type;
3884 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3885 
3886 #ifdef BNX2X_STOP_ON_ERROR
3887 	if (unlikely(bp->panic)) {
3888 		BNX2X_ERR("Can't post SP when there is panic\n");
3889 		return -EIO;
3890 	}
3891 #endif
3892 
3893 	spin_lock_bh(&bp->spq_lock);
3894 
3895 	if (common) {
3896 		if (!atomic_read(&bp->eq_spq_left)) {
3897 			BNX2X_ERR("BUG! EQ ring full!\n");
3898 			spin_unlock_bh(&bp->spq_lock);
3899 			bnx2x_panic();
3900 			return -EBUSY;
3901 		}
3902 	} else if (!atomic_read(&bp->cq_spq_left)) {
3903 			BNX2X_ERR("BUG! SPQ ring full!\n");
3904 			spin_unlock_bh(&bp->spq_lock);
3905 			bnx2x_panic();
3906 			return -EBUSY;
3907 	}
3908 
3909 	spe = bnx2x_sp_get_next(bp);
3910 
3911 	/* CID needs port number to be encoded int it */
3912 	spe->hdr.conn_and_cmd_data =
3913 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3914 				    HW_CID(bp, cid));
3915 
3916 	/* In some cases, type may already contain the func-id
3917 	 * mainly in SRIOV related use cases, so we add it here only
3918 	 * if it's not already set.
3919 	 */
3920 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3921 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3922 			SPE_HDR_CONN_TYPE;
3923 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3924 			 SPE_HDR_FUNCTION_ID);
3925 	} else {
3926 		type = cmd_type;
3927 	}
3928 
3929 	spe->hdr.type = cpu_to_le16(type);
3930 
3931 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3932 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3933 
3934 	/*
3935 	 * It's ok if the actual decrement is issued towards the memory
3936 	 * somewhere between the spin_lock and spin_unlock. Thus no
3937 	 * more explicit memory barrier is needed.
3938 	 */
3939 	if (common)
3940 		atomic_dec(&bp->eq_spq_left);
3941 	else
3942 		atomic_dec(&bp->cq_spq_left);
3943 
3944 	DP(BNX2X_MSG_SP,
3945 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3946 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3947 	   (u32)(U64_LO(bp->spq_mapping) +
3948 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3949 	   HW_CID(bp, cid), data_hi, data_lo, type,
3950 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3951 
3952 	bnx2x_sp_prod_update(bp);
3953 	spin_unlock_bh(&bp->spq_lock);
3954 	return 0;
3955 }
3956 
3957 /* acquire split MCP access lock register */
3958 static int bnx2x_acquire_alr(struct bnx2x *bp)
3959 {
3960 	u32 j, val;
3961 	int rc = 0;
3962 
3963 	might_sleep();
3964 	for (j = 0; j < 1000; j++) {
3965 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3966 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3967 		if (val & MCPR_ACCESS_LOCK_LOCK)
3968 			break;
3969 
3970 		usleep_range(5000, 10000);
3971 	}
3972 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3973 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3974 		rc = -EBUSY;
3975 	}
3976 
3977 	return rc;
3978 }
3979 
3980 /* release split MCP access lock register */
3981 static void bnx2x_release_alr(struct bnx2x *bp)
3982 {
3983 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3984 }
3985 
3986 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3987 #define BNX2X_DEF_SB_IDX	0x0002
3988 
3989 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3990 {
3991 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3992 	u16 rc = 0;
3993 
3994 	barrier(); /* status block is written to by the chip */
3995 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3996 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3997 		rc |= BNX2X_DEF_SB_ATT_IDX;
3998 	}
3999 
4000 	if (bp->def_idx != def_sb->sp_sb.running_index) {
4001 		bp->def_idx = def_sb->sp_sb.running_index;
4002 		rc |= BNX2X_DEF_SB_IDX;
4003 	}
4004 
4005 	/* Do not reorder: indices reading should complete before handling */
4006 	barrier();
4007 	return rc;
4008 }
4009 
4010 /*
4011  * slow path service functions
4012  */
4013 
4014 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4015 {
4016 	int port = BP_PORT(bp);
4017 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4018 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4019 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4020 				       NIG_REG_MASK_INTERRUPT_PORT0;
4021 	u32 aeu_mask;
4022 	u32 nig_mask = 0;
4023 	u32 reg_addr;
4024 
4025 	if (bp->attn_state & asserted)
4026 		BNX2X_ERR("IGU ERROR\n");
4027 
4028 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029 	aeu_mask = REG_RD(bp, aeu_addr);
4030 
4031 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4032 	   aeu_mask, asserted);
4033 	aeu_mask &= ~(asserted & 0x3ff);
4034 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4035 
4036 	REG_WR(bp, aeu_addr, aeu_mask);
4037 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4038 
4039 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4040 	bp->attn_state |= asserted;
4041 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4042 
4043 	if (asserted & ATTN_HARD_WIRED_MASK) {
4044 		if (asserted & ATTN_NIG_FOR_FUNC) {
4045 
4046 			bnx2x_acquire_phy_lock(bp);
4047 
4048 			/* save nig interrupt mask */
4049 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4050 
4051 			/* If nig_mask is not set, no need to call the update
4052 			 * function.
4053 			 */
4054 			if (nig_mask) {
4055 				REG_WR(bp, nig_int_mask_addr, 0);
4056 
4057 				bnx2x_link_attn(bp);
4058 			}
4059 
4060 			/* handle unicore attn? */
4061 		}
4062 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4063 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4064 
4065 		if (asserted & GPIO_2_FUNC)
4066 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4067 
4068 		if (asserted & GPIO_3_FUNC)
4069 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4070 
4071 		if (asserted & GPIO_4_FUNC)
4072 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4073 
4074 		if (port == 0) {
4075 			if (asserted & ATTN_GENERAL_ATTN_1) {
4076 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4077 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4078 			}
4079 			if (asserted & ATTN_GENERAL_ATTN_2) {
4080 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4081 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4082 			}
4083 			if (asserted & ATTN_GENERAL_ATTN_3) {
4084 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4085 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4086 			}
4087 		} else {
4088 			if (asserted & ATTN_GENERAL_ATTN_4) {
4089 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4090 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4091 			}
4092 			if (asserted & ATTN_GENERAL_ATTN_5) {
4093 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4094 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4095 			}
4096 			if (asserted & ATTN_GENERAL_ATTN_6) {
4097 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4098 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4099 			}
4100 		}
4101 
4102 	} /* if hardwired */
4103 
4104 	if (bp->common.int_block == INT_BLOCK_HC)
4105 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4106 			    COMMAND_REG_ATTN_BITS_SET);
4107 	else
4108 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4109 
4110 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4111 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4112 	REG_WR(bp, reg_addr, asserted);
4113 
4114 	/* now set back the mask */
4115 	if (asserted & ATTN_NIG_FOR_FUNC) {
4116 		/* Verify that IGU ack through BAR was written before restoring
4117 		 * NIG mask. This loop should exit after 2-3 iterations max.
4118 		 */
4119 		if (bp->common.int_block != INT_BLOCK_HC) {
4120 			u32 cnt = 0, igu_acked;
4121 			do {
4122 				igu_acked = REG_RD(bp,
4123 						   IGU_REG_ATTENTION_ACK_BITS);
4124 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4125 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4126 			if (!igu_acked)
4127 				DP(NETIF_MSG_HW,
4128 				   "Failed to verify IGU ack on time\n");
4129 			barrier();
4130 		}
4131 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4132 		bnx2x_release_phy_lock(bp);
4133 	}
4134 }
4135 
4136 static void bnx2x_fan_failure(struct bnx2x *bp)
4137 {
4138 	int port = BP_PORT(bp);
4139 	u32 ext_phy_config;
4140 	/* mark the failure */
4141 	ext_phy_config =
4142 		SHMEM_RD(bp,
4143 			 dev_info.port_hw_config[port].external_phy_config);
4144 
4145 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4146 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4147 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4148 		 ext_phy_config);
4149 
4150 	/* log the failure */
4151 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4152 			    "Please contact OEM Support for assistance\n");
4153 
4154 	/* Schedule device reset (unload)
4155 	 * This is due to some boards consuming sufficient power when driver is
4156 	 * up to overheat if fan fails.
4157 	 */
4158 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4159 }
4160 
4161 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4162 {
4163 	int port = BP_PORT(bp);
4164 	int reg_offset;
4165 	u32 val;
4166 
4167 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4168 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4169 
4170 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4171 
4172 		val = REG_RD(bp, reg_offset);
4173 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4174 		REG_WR(bp, reg_offset, val);
4175 
4176 		BNX2X_ERR("SPIO5 hw attention\n");
4177 
4178 		/* Fan failure attention */
4179 		bnx2x_hw_reset_phy(&bp->link_params);
4180 		bnx2x_fan_failure(bp);
4181 	}
4182 
4183 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4184 		bnx2x_acquire_phy_lock(bp);
4185 		bnx2x_handle_module_detect_int(&bp->link_params);
4186 		bnx2x_release_phy_lock(bp);
4187 	}
4188 
4189 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4190 
4191 		val = REG_RD(bp, reg_offset);
4192 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4193 		REG_WR(bp, reg_offset, val);
4194 
4195 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4196 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4197 		bnx2x_panic();
4198 	}
4199 }
4200 
4201 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4202 {
4203 	u32 val;
4204 
4205 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4206 
4207 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4208 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4209 		/* DORQ discard attention */
4210 		if (val & 0x2)
4211 			BNX2X_ERR("FATAL error from DORQ\n");
4212 	}
4213 
4214 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4215 
4216 		int port = BP_PORT(bp);
4217 		int reg_offset;
4218 
4219 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4220 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4221 
4222 		val = REG_RD(bp, reg_offset);
4223 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4224 		REG_WR(bp, reg_offset, val);
4225 
4226 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4227 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4228 		bnx2x_panic();
4229 	}
4230 }
4231 
4232 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4233 {
4234 	u32 val;
4235 
4236 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4237 
4238 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4239 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4240 		/* CFC error attention */
4241 		if (val & 0x2)
4242 			BNX2X_ERR("FATAL error from CFC\n");
4243 	}
4244 
4245 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4246 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4247 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4248 		/* RQ_USDMDP_FIFO_OVERFLOW */
4249 		if (val & 0x18000)
4250 			BNX2X_ERR("FATAL error from PXP\n");
4251 
4252 		if (!CHIP_IS_E1x(bp)) {
4253 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4254 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4255 		}
4256 	}
4257 
4258 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4259 
4260 		int port = BP_PORT(bp);
4261 		int reg_offset;
4262 
4263 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4264 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4265 
4266 		val = REG_RD(bp, reg_offset);
4267 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4268 		REG_WR(bp, reg_offset, val);
4269 
4270 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4271 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4272 		bnx2x_panic();
4273 	}
4274 }
4275 
4276 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4277 {
4278 	u32 val;
4279 
4280 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4281 
4282 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4283 			int func = BP_FUNC(bp);
4284 
4285 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4286 			bnx2x_read_mf_cfg(bp);
4287 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4288 					func_mf_config[BP_ABS_FUNC(bp)].config);
4289 			val = SHMEM_RD(bp,
4290 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4291 
4292 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4293 				   DRV_STATUS_OEM_EVENT_MASK))
4294 				bnx2x_oem_event(bp,
4295 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4296 						DRV_STATUS_OEM_EVENT_MASK)));
4297 
4298 			if (val & DRV_STATUS_SET_MF_BW)
4299 				bnx2x_set_mf_bw(bp);
4300 
4301 			if (val & DRV_STATUS_DRV_INFO_REQ)
4302 				bnx2x_handle_drv_info_req(bp);
4303 
4304 			if (val & DRV_STATUS_VF_DISABLED)
4305 				bnx2x_schedule_iov_task(bp,
4306 							BNX2X_IOV_HANDLE_FLR);
4307 
4308 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4309 				bnx2x_pmf_update(bp);
4310 
4311 			if (bp->port.pmf &&
4312 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4313 				bp->dcbx_enabled > 0)
4314 				/* start dcbx state machine */
4315 				bnx2x_dcbx_set_params(bp,
4316 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4317 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4318 				bnx2x_handle_afex_cmd(bp,
4319 					val & DRV_STATUS_AFEX_EVENT_MASK);
4320 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4321 				bnx2x_handle_eee_event(bp);
4322 
4323 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4324 				bnx2x_schedule_sp_rtnl(bp,
4325 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4326 
4327 			if (bp->link_vars.periodic_flags &
4328 			    PERIODIC_FLAGS_LINK_EVENT) {
4329 				/*  sync with link */
4330 				bnx2x_acquire_phy_lock(bp);
4331 				bp->link_vars.periodic_flags &=
4332 					~PERIODIC_FLAGS_LINK_EVENT;
4333 				bnx2x_release_phy_lock(bp);
4334 				if (IS_MF(bp))
4335 					bnx2x_link_sync_notify(bp);
4336 				bnx2x_link_report(bp);
4337 			}
4338 			/* Always call it here: bnx2x_link_report() will
4339 			 * prevent the link indication duplication.
4340 			 */
4341 			bnx2x__link_status_update(bp);
4342 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4343 
4344 			BNX2X_ERR("MC assert!\n");
4345 			bnx2x_mc_assert(bp);
4346 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4347 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4348 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4349 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4350 			bnx2x_panic();
4351 
4352 		} else if (attn & BNX2X_MCP_ASSERT) {
4353 
4354 			BNX2X_ERR("MCP assert!\n");
4355 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4356 			bnx2x_fw_dump(bp);
4357 
4358 		} else
4359 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4360 	}
4361 
4362 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4363 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4364 		if (attn & BNX2X_GRC_TIMEOUT) {
4365 			val = CHIP_IS_E1(bp) ? 0 :
4366 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4367 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4368 		}
4369 		if (attn & BNX2X_GRC_RSV) {
4370 			val = CHIP_IS_E1(bp) ? 0 :
4371 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4372 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4373 		}
4374 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4375 	}
4376 }
4377 
4378 /*
4379  * Bits map:
4380  * 0-7   - Engine0 load counter.
4381  * 8-15  - Engine1 load counter.
4382  * 16    - Engine0 RESET_IN_PROGRESS bit.
4383  * 17    - Engine1 RESET_IN_PROGRESS bit.
4384  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4385  *         on the engine
4386  * 19    - Engine1 ONE_IS_LOADED.
4387  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4388  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4389  *         just the one belonging to its engine).
4390  *
4391  */
4392 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4393 
4394 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4395 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4396 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4397 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4398 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4399 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4400 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4401 
4402 /*
4403  * Set the GLOBAL_RESET bit.
4404  *
4405  * Should be run under rtnl lock
4406  */
4407 void bnx2x_set_reset_global(struct bnx2x *bp)
4408 {
4409 	u32 val;
4410 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4413 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 }
4415 
4416 /*
4417  * Clear the GLOBAL_RESET bit.
4418  *
4419  * Should be run under rtnl lock
4420  */
4421 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4422 {
4423 	u32 val;
4424 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4426 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4427 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428 }
4429 
4430 /*
4431  * Checks the GLOBAL_RESET bit.
4432  *
4433  * should be run under rtnl lock
4434  */
4435 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4436 {
4437 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4438 
4439 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4440 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4441 }
4442 
4443 /*
4444  * Clear RESET_IN_PROGRESS bit for the current engine.
4445  *
4446  * Should be run under rtnl lock
4447  */
4448 static void bnx2x_set_reset_done(struct bnx2x *bp)
4449 {
4450 	u32 val;
4451 	u32 bit = BP_PATH(bp) ?
4452 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4455 
4456 	/* Clear the bit */
4457 	val &= ~bit;
4458 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4459 
4460 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4461 }
4462 
4463 /*
4464  * Set RESET_IN_PROGRESS for the current engine.
4465  *
4466  * should be run under rtnl lock
4467  */
4468 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4469 {
4470 	u32 val;
4471 	u32 bit = BP_PATH(bp) ?
4472 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4473 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4475 
4476 	/* Set the bit */
4477 	val |= bit;
4478 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4479 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4480 }
4481 
4482 /*
4483  * Checks the RESET_IN_PROGRESS bit for the given engine.
4484  * should be run under rtnl lock
4485  */
4486 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4487 {
4488 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4489 	u32 bit = engine ?
4490 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4491 
4492 	/* return false if bit is set */
4493 	return (val & bit) ? false : true;
4494 }
4495 
4496 /*
4497  * set pf load for the current pf.
4498  *
4499  * should be run under rtnl lock
4500  */
4501 void bnx2x_set_pf_load(struct bnx2x *bp)
4502 {
4503 	u32 val1, val;
4504 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4505 			     BNX2X_PATH0_LOAD_CNT_MASK;
4506 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4507 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4508 
4509 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4510 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4511 
4512 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4513 
4514 	/* get the current counter value */
4515 	val1 = (val & mask) >> shift;
4516 
4517 	/* set bit of that PF */
4518 	val1 |= (1 << bp->pf_num);
4519 
4520 	/* clear the old value */
4521 	val &= ~mask;
4522 
4523 	/* set the new one */
4524 	val |= ((val1 << shift) & mask);
4525 
4526 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4527 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4528 }
4529 
4530 /**
4531  * bnx2x_clear_pf_load - clear pf load mark
4532  *
4533  * @bp:		driver handle
4534  *
4535  * Should be run under rtnl lock.
4536  * Decrements the load counter for the current engine. Returns
4537  * whether other functions are still loaded
4538  */
4539 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4540 {
4541 	u32 val1, val;
4542 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4543 			     BNX2X_PATH0_LOAD_CNT_MASK;
4544 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4545 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4546 
4547 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4548 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4549 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4550 
4551 	/* get the current counter value */
4552 	val1 = (val & mask) >> shift;
4553 
4554 	/* clear bit of that PF */
4555 	val1 &= ~(1 << bp->pf_num);
4556 
4557 	/* clear the old value */
4558 	val &= ~mask;
4559 
4560 	/* set the new one */
4561 	val |= ((val1 << shift) & mask);
4562 
4563 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4564 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4565 	return val1 != 0;
4566 }
4567 
4568 /*
4569  * Read the load status for the current engine.
4570  *
4571  * should be run under rtnl lock
4572  */
4573 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4574 {
4575 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4576 			     BNX2X_PATH0_LOAD_CNT_MASK);
4577 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4578 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4579 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4580 
4581 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4582 
4583 	val = (val & mask) >> shift;
4584 
4585 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4586 	   engine, val);
4587 
4588 	return val != 0;
4589 }
4590 
4591 static void _print_parity(struct bnx2x *bp, u32 reg)
4592 {
4593 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4594 }
4595 
4596 static void _print_next_block(int idx, const char *blk)
4597 {
4598 	pr_cont("%s%s", idx ? ", " : "", blk);
4599 }
4600 
4601 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4602 					    int *par_num, bool print)
4603 {
4604 	u32 cur_bit;
4605 	bool res;
4606 	int i;
4607 
4608 	res = false;
4609 
4610 	for (i = 0; sig; i++) {
4611 		cur_bit = (0x1UL << i);
4612 		if (sig & cur_bit) {
4613 			res |= true; /* Each bit is real error! */
4614 
4615 			if (print) {
4616 				switch (cur_bit) {
4617 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4618 					_print_next_block((*par_num)++, "BRB");
4619 					_print_parity(bp,
4620 						      BRB1_REG_BRB1_PRTY_STS);
4621 					break;
4622 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4623 					_print_next_block((*par_num)++,
4624 							  "PARSER");
4625 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4626 					break;
4627 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4628 					_print_next_block((*par_num)++, "TSDM");
4629 					_print_parity(bp,
4630 						      TSDM_REG_TSDM_PRTY_STS);
4631 					break;
4632 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4633 					_print_next_block((*par_num)++,
4634 							  "SEARCHER");
4635 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4636 					break;
4637 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4638 					_print_next_block((*par_num)++, "TCM");
4639 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4640 					break;
4641 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4642 					_print_next_block((*par_num)++,
4643 							  "TSEMI");
4644 					_print_parity(bp,
4645 						      TSEM_REG_TSEM_PRTY_STS_0);
4646 					_print_parity(bp,
4647 						      TSEM_REG_TSEM_PRTY_STS_1);
4648 					break;
4649 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4650 					_print_next_block((*par_num)++, "XPB");
4651 					_print_parity(bp, GRCBASE_XPB +
4652 							  PB_REG_PB_PRTY_STS);
4653 					break;
4654 				}
4655 			}
4656 
4657 			/* Clear the bit */
4658 			sig &= ~cur_bit;
4659 		}
4660 	}
4661 
4662 	return res;
4663 }
4664 
4665 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4666 					    int *par_num, bool *global,
4667 					    bool print)
4668 {
4669 	u32 cur_bit;
4670 	bool res;
4671 	int i;
4672 
4673 	res = false;
4674 
4675 	for (i = 0; sig; i++) {
4676 		cur_bit = (0x1UL << i);
4677 		if (sig & cur_bit) {
4678 			res |= true; /* Each bit is real error! */
4679 			switch (cur_bit) {
4680 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4681 				if (print) {
4682 					_print_next_block((*par_num)++, "PBF");
4683 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4684 				}
4685 				break;
4686 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4687 				if (print) {
4688 					_print_next_block((*par_num)++, "QM");
4689 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4690 				}
4691 				break;
4692 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4693 				if (print) {
4694 					_print_next_block((*par_num)++, "TM");
4695 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4696 				}
4697 				break;
4698 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4699 				if (print) {
4700 					_print_next_block((*par_num)++, "XSDM");
4701 					_print_parity(bp,
4702 						      XSDM_REG_XSDM_PRTY_STS);
4703 				}
4704 				break;
4705 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4706 				if (print) {
4707 					_print_next_block((*par_num)++, "XCM");
4708 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4709 				}
4710 				break;
4711 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4712 				if (print) {
4713 					_print_next_block((*par_num)++,
4714 							  "XSEMI");
4715 					_print_parity(bp,
4716 						      XSEM_REG_XSEM_PRTY_STS_0);
4717 					_print_parity(bp,
4718 						      XSEM_REG_XSEM_PRTY_STS_1);
4719 				}
4720 				break;
4721 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4722 				if (print) {
4723 					_print_next_block((*par_num)++,
4724 							  "DOORBELLQ");
4725 					_print_parity(bp,
4726 						      DORQ_REG_DORQ_PRTY_STS);
4727 				}
4728 				break;
4729 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4730 				if (print) {
4731 					_print_next_block((*par_num)++, "NIG");
4732 					if (CHIP_IS_E1x(bp)) {
4733 						_print_parity(bp,
4734 							NIG_REG_NIG_PRTY_STS);
4735 					} else {
4736 						_print_parity(bp,
4737 							NIG_REG_NIG_PRTY_STS_0);
4738 						_print_parity(bp,
4739 							NIG_REG_NIG_PRTY_STS_1);
4740 					}
4741 				}
4742 				break;
4743 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4744 				if (print)
4745 					_print_next_block((*par_num)++,
4746 							  "VAUX PCI CORE");
4747 				*global = true;
4748 				break;
4749 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4750 				if (print) {
4751 					_print_next_block((*par_num)++,
4752 							  "DEBUG");
4753 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4754 				}
4755 				break;
4756 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4757 				if (print) {
4758 					_print_next_block((*par_num)++, "USDM");
4759 					_print_parity(bp,
4760 						      USDM_REG_USDM_PRTY_STS);
4761 				}
4762 				break;
4763 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4764 				if (print) {
4765 					_print_next_block((*par_num)++, "UCM");
4766 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4767 				}
4768 				break;
4769 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4770 				if (print) {
4771 					_print_next_block((*par_num)++,
4772 							  "USEMI");
4773 					_print_parity(bp,
4774 						      USEM_REG_USEM_PRTY_STS_0);
4775 					_print_parity(bp,
4776 						      USEM_REG_USEM_PRTY_STS_1);
4777 				}
4778 				break;
4779 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4780 				if (print) {
4781 					_print_next_block((*par_num)++, "UPB");
4782 					_print_parity(bp, GRCBASE_UPB +
4783 							  PB_REG_PB_PRTY_STS);
4784 				}
4785 				break;
4786 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4787 				if (print) {
4788 					_print_next_block((*par_num)++, "CSDM");
4789 					_print_parity(bp,
4790 						      CSDM_REG_CSDM_PRTY_STS);
4791 				}
4792 				break;
4793 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4794 				if (print) {
4795 					_print_next_block((*par_num)++, "CCM");
4796 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4797 				}
4798 				break;
4799 			}
4800 
4801 			/* Clear the bit */
4802 			sig &= ~cur_bit;
4803 		}
4804 	}
4805 
4806 	return res;
4807 }
4808 
4809 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4810 					    int *par_num, bool print)
4811 {
4812 	u32 cur_bit;
4813 	bool res;
4814 	int i;
4815 
4816 	res = false;
4817 
4818 	for (i = 0; sig; i++) {
4819 		cur_bit = (0x1UL << i);
4820 		if (sig & cur_bit) {
4821 			res = true; /* Each bit is real error! */
4822 			if (print) {
4823 				switch (cur_bit) {
4824 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4825 					_print_next_block((*par_num)++,
4826 							  "CSEMI");
4827 					_print_parity(bp,
4828 						      CSEM_REG_CSEM_PRTY_STS_0);
4829 					_print_parity(bp,
4830 						      CSEM_REG_CSEM_PRTY_STS_1);
4831 					break;
4832 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4833 					_print_next_block((*par_num)++, "PXP");
4834 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4835 					_print_parity(bp,
4836 						      PXP2_REG_PXP2_PRTY_STS_0);
4837 					_print_parity(bp,
4838 						      PXP2_REG_PXP2_PRTY_STS_1);
4839 					break;
4840 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4841 					_print_next_block((*par_num)++,
4842 							  "PXPPCICLOCKCLIENT");
4843 					break;
4844 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4845 					_print_next_block((*par_num)++, "CFC");
4846 					_print_parity(bp,
4847 						      CFC_REG_CFC_PRTY_STS);
4848 					break;
4849 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4850 					_print_next_block((*par_num)++, "CDU");
4851 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4852 					break;
4853 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4854 					_print_next_block((*par_num)++, "DMAE");
4855 					_print_parity(bp,
4856 						      DMAE_REG_DMAE_PRTY_STS);
4857 					break;
4858 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4859 					_print_next_block((*par_num)++, "IGU");
4860 					if (CHIP_IS_E1x(bp))
4861 						_print_parity(bp,
4862 							HC_REG_HC_PRTY_STS);
4863 					else
4864 						_print_parity(bp,
4865 							IGU_REG_IGU_PRTY_STS);
4866 					break;
4867 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4868 					_print_next_block((*par_num)++, "MISC");
4869 					_print_parity(bp,
4870 						      MISC_REG_MISC_PRTY_STS);
4871 					break;
4872 				}
4873 			}
4874 
4875 			/* Clear the bit */
4876 			sig &= ~cur_bit;
4877 		}
4878 	}
4879 
4880 	return res;
4881 }
4882 
4883 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4884 					    int *par_num, bool *global,
4885 					    bool print)
4886 {
4887 	bool res = false;
4888 	u32 cur_bit;
4889 	int i;
4890 
4891 	for (i = 0; sig; i++) {
4892 		cur_bit = (0x1UL << i);
4893 		if (sig & cur_bit) {
4894 			switch (cur_bit) {
4895 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4896 				if (print)
4897 					_print_next_block((*par_num)++,
4898 							  "MCP ROM");
4899 				*global = true;
4900 				res = true;
4901 				break;
4902 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4903 				if (print)
4904 					_print_next_block((*par_num)++,
4905 							  "MCP UMP RX");
4906 				*global = true;
4907 				res = true;
4908 				break;
4909 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4910 				if (print)
4911 					_print_next_block((*par_num)++,
4912 							  "MCP UMP TX");
4913 				*global = true;
4914 				res = true;
4915 				break;
4916 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4917 				(*par_num)++;
4918 				/* clear latched SCPAD PATIRY from MCP */
4919 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4920 				       1UL << 10);
4921 				break;
4922 			}
4923 
4924 			/* Clear the bit */
4925 			sig &= ~cur_bit;
4926 		}
4927 	}
4928 
4929 	return res;
4930 }
4931 
4932 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4933 					    int *par_num, bool print)
4934 {
4935 	u32 cur_bit;
4936 	bool res;
4937 	int i;
4938 
4939 	res = false;
4940 
4941 	for (i = 0; sig; i++) {
4942 		cur_bit = (0x1UL << i);
4943 		if (sig & cur_bit) {
4944 			res = true; /* Each bit is real error! */
4945 			if (print) {
4946 				switch (cur_bit) {
4947 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4948 					_print_next_block((*par_num)++,
4949 							  "PGLUE_B");
4950 					_print_parity(bp,
4951 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4952 					break;
4953 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4954 					_print_next_block((*par_num)++, "ATC");
4955 					_print_parity(bp,
4956 						      ATC_REG_ATC_PRTY_STS);
4957 					break;
4958 				}
4959 			}
4960 			/* Clear the bit */
4961 			sig &= ~cur_bit;
4962 		}
4963 	}
4964 
4965 	return res;
4966 }
4967 
4968 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4969 			      u32 *sig)
4970 {
4971 	bool res = false;
4972 
4973 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4974 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4975 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4976 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4977 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4978 		int par_num = 0;
4979 
4980 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4981 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4982 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4983 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4984 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4985 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4986 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4987 		if (print) {
4988 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4989 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4990 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4991 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4992 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4993 				netdev_err(bp->dev,
4994 					   "Parity errors detected in blocks: ");
4995 			} else {
4996 				print = false;
4997 			}
4998 		}
4999 		res |= bnx2x_check_blocks_with_parity0(bp,
5000 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5001 		res |= bnx2x_check_blocks_with_parity1(bp,
5002 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5003 		res |= bnx2x_check_blocks_with_parity2(bp,
5004 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5005 		res |= bnx2x_check_blocks_with_parity3(bp,
5006 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5007 		res |= bnx2x_check_blocks_with_parity4(bp,
5008 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5009 
5010 		if (print)
5011 			pr_cont("\n");
5012 	}
5013 
5014 	return res;
5015 }
5016 
5017 /**
5018  * bnx2x_chk_parity_attn - checks for parity attentions.
5019  *
5020  * @bp:		driver handle
5021  * @global:	true if there was a global attention
5022  * @print:	show parity attention in syslog
5023  */
5024 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5025 {
5026 	struct attn_route attn = { {0} };
5027 	int port = BP_PORT(bp);
5028 
5029 	attn.sig[0] = REG_RD(bp,
5030 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5031 			     port*4);
5032 	attn.sig[1] = REG_RD(bp,
5033 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5034 			     port*4);
5035 	attn.sig[2] = REG_RD(bp,
5036 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5037 			     port*4);
5038 	attn.sig[3] = REG_RD(bp,
5039 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5040 			     port*4);
5041 	/* Since MCP attentions can't be disabled inside the block, we need to
5042 	 * read AEU registers to see whether they're currently disabled
5043 	 */
5044 	attn.sig[3] &= ((REG_RD(bp,
5045 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5046 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5047 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5048 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5049 
5050 	if (!CHIP_IS_E1x(bp))
5051 		attn.sig[4] = REG_RD(bp,
5052 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5053 				     port*4);
5054 
5055 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5056 }
5057 
5058 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5059 {
5060 	u32 val;
5061 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5062 
5063 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5064 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5065 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5066 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5067 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5068 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5069 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5070 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5071 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5072 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5073 		if (val &
5074 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5075 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5076 		if (val &
5077 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5078 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5079 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5080 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5081 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5082 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5083 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5084 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5085 	}
5086 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5087 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5088 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5089 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5090 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5091 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5092 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5093 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5094 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5095 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5096 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5097 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5098 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5099 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5100 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5101 	}
5102 
5103 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5104 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5105 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5106 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5107 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5108 	}
5109 }
5110 
5111 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5112 {
5113 	struct attn_route attn, *group_mask;
5114 	int port = BP_PORT(bp);
5115 	int index;
5116 	u32 reg_addr;
5117 	u32 val;
5118 	u32 aeu_mask;
5119 	bool global = false;
5120 
5121 	/* need to take HW lock because MCP or other port might also
5122 	   try to handle this event */
5123 	bnx2x_acquire_alr(bp);
5124 
5125 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5126 #ifndef BNX2X_STOP_ON_ERROR
5127 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5128 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5129 		/* Disable HW interrupts */
5130 		bnx2x_int_disable(bp);
5131 		/* In case of parity errors don't handle attentions so that
5132 		 * other function would "see" parity errors.
5133 		 */
5134 #else
5135 		bnx2x_panic();
5136 #endif
5137 		bnx2x_release_alr(bp);
5138 		return;
5139 	}
5140 
5141 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5142 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5143 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5144 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5145 	if (!CHIP_IS_E1x(bp))
5146 		attn.sig[4] =
5147 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5148 	else
5149 		attn.sig[4] = 0;
5150 
5151 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5152 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5153 
5154 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5155 		if (deasserted & (1 << index)) {
5156 			group_mask = &bp->attn_group[index];
5157 
5158 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5159 			   index,
5160 			   group_mask->sig[0], group_mask->sig[1],
5161 			   group_mask->sig[2], group_mask->sig[3],
5162 			   group_mask->sig[4]);
5163 
5164 			bnx2x_attn_int_deasserted4(bp,
5165 					attn.sig[4] & group_mask->sig[4]);
5166 			bnx2x_attn_int_deasserted3(bp,
5167 					attn.sig[3] & group_mask->sig[3]);
5168 			bnx2x_attn_int_deasserted1(bp,
5169 					attn.sig[1] & group_mask->sig[1]);
5170 			bnx2x_attn_int_deasserted2(bp,
5171 					attn.sig[2] & group_mask->sig[2]);
5172 			bnx2x_attn_int_deasserted0(bp,
5173 					attn.sig[0] & group_mask->sig[0]);
5174 		}
5175 	}
5176 
5177 	bnx2x_release_alr(bp);
5178 
5179 	if (bp->common.int_block == INT_BLOCK_HC)
5180 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5181 			    COMMAND_REG_ATTN_BITS_CLR);
5182 	else
5183 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5184 
5185 	val = ~deasserted;
5186 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5187 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5188 	REG_WR(bp, reg_addr, val);
5189 
5190 	if (~bp->attn_state & deasserted)
5191 		BNX2X_ERR("IGU ERROR\n");
5192 
5193 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5194 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5195 
5196 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197 	aeu_mask = REG_RD(bp, reg_addr);
5198 
5199 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5200 	   aeu_mask, deasserted);
5201 	aeu_mask |= (deasserted & 0x3ff);
5202 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5203 
5204 	REG_WR(bp, reg_addr, aeu_mask);
5205 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5206 
5207 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5208 	bp->attn_state &= ~deasserted;
5209 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5210 }
5211 
5212 static void bnx2x_attn_int(struct bnx2x *bp)
5213 {
5214 	/* read local copy of bits */
5215 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5216 								attn_bits);
5217 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5218 								attn_bits_ack);
5219 	u32 attn_state = bp->attn_state;
5220 
5221 	/* look for changed bits */
5222 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5223 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5224 
5225 	DP(NETIF_MSG_HW,
5226 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5227 	   attn_bits, attn_ack, asserted, deasserted);
5228 
5229 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5230 		BNX2X_ERR("BAD attention state\n");
5231 
5232 	/* handle bits that were raised */
5233 	if (asserted)
5234 		bnx2x_attn_int_asserted(bp, asserted);
5235 
5236 	if (deasserted)
5237 		bnx2x_attn_int_deasserted(bp, deasserted);
5238 }
5239 
5240 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5241 		      u16 index, u8 op, u8 update)
5242 {
5243 	u32 igu_addr = bp->igu_base_addr;
5244 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5245 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5246 			     igu_addr);
5247 }
5248 
5249 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5250 {
5251 	/* No memory barriers */
5252 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5253 }
5254 
5255 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5256 				      union event_ring_elem *elem)
5257 {
5258 	u8 err = elem->message.error;
5259 
5260 	if (!bp->cnic_eth_dev.starting_cid  ||
5261 	    (cid < bp->cnic_eth_dev.starting_cid &&
5262 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5263 		return 1;
5264 
5265 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5266 
5267 	if (unlikely(err)) {
5268 
5269 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5270 			  cid);
5271 		bnx2x_panic_dump(bp, false);
5272 	}
5273 	bnx2x_cnic_cfc_comp(bp, cid, err);
5274 	return 0;
5275 }
5276 
5277 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5278 {
5279 	struct bnx2x_mcast_ramrod_params rparam;
5280 	int rc;
5281 
5282 	memset(&rparam, 0, sizeof(rparam));
5283 
5284 	rparam.mcast_obj = &bp->mcast_obj;
5285 
5286 	netif_addr_lock_bh(bp->dev);
5287 
5288 	/* Clear pending state for the last command */
5289 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5290 
5291 	/* If there are pending mcast commands - send them */
5292 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5293 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5294 		if (rc < 0)
5295 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5296 				  rc);
5297 	}
5298 
5299 	netif_addr_unlock_bh(bp->dev);
5300 }
5301 
5302 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5303 					    union event_ring_elem *elem)
5304 {
5305 	unsigned long ramrod_flags = 0;
5306 	int rc = 0;
5307 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5308 	u32 cid = echo & BNX2X_SWCID_MASK;
5309 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5310 
5311 	/* Always push next commands out, don't wait here */
5312 	__set_bit(RAMROD_CONT, &ramrod_flags);
5313 
5314 	switch (echo >> BNX2X_SWCID_SHIFT) {
5315 	case BNX2X_FILTER_MAC_PENDING:
5316 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5317 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5318 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5319 		else
5320 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5321 
5322 		break;
5323 	case BNX2X_FILTER_VLAN_PENDING:
5324 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5325 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5326 		break;
5327 	case BNX2X_FILTER_MCAST_PENDING:
5328 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5329 		/* This is only relevant for 57710 where multicast MACs are
5330 		 * configured as unicast MACs using the same ramrod.
5331 		 */
5332 		bnx2x_handle_mcast_eqe(bp);
5333 		return;
5334 	default:
5335 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5336 		return;
5337 	}
5338 
5339 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5340 
5341 	if (rc < 0)
5342 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5343 	else if (rc > 0)
5344 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5345 }
5346 
5347 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5348 
5349 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5350 {
5351 	netif_addr_lock_bh(bp->dev);
5352 
5353 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5354 
5355 	/* Send rx_mode command again if was requested */
5356 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5357 		bnx2x_set_storm_rx_mode(bp);
5358 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5359 				    &bp->sp_state))
5360 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5361 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5362 				    &bp->sp_state))
5363 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5364 
5365 	netif_addr_unlock_bh(bp->dev);
5366 }
5367 
5368 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5369 					      union event_ring_elem *elem)
5370 {
5371 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5372 		DP(BNX2X_MSG_SP,
5373 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5374 		   elem->message.data.vif_list_event.func_bit_map);
5375 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5376 			elem->message.data.vif_list_event.func_bit_map);
5377 	} else if (elem->message.data.vif_list_event.echo ==
5378 		   VIF_LIST_RULE_SET) {
5379 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5380 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5381 	}
5382 }
5383 
5384 /* called with rtnl_lock */
5385 static void bnx2x_after_function_update(struct bnx2x *bp)
5386 {
5387 	int q, rc;
5388 	struct bnx2x_fastpath *fp;
5389 	struct bnx2x_queue_state_params queue_params = {NULL};
5390 	struct bnx2x_queue_update_params *q_update_params =
5391 		&queue_params.params.update;
5392 
5393 	/* Send Q update command with afex vlan removal values for all Qs */
5394 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5395 
5396 	/* set silent vlan removal values according to vlan mode */
5397 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5398 		  &q_update_params->update_flags);
5399 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5400 		  &q_update_params->update_flags);
5401 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5402 
5403 	/* in access mode mark mask and value are 0 to strip all vlans */
5404 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5405 		q_update_params->silent_removal_value = 0;
5406 		q_update_params->silent_removal_mask = 0;
5407 	} else {
5408 		q_update_params->silent_removal_value =
5409 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5410 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5411 	}
5412 
5413 	for_each_eth_queue(bp, q) {
5414 		/* Set the appropriate Queue object */
5415 		fp = &bp->fp[q];
5416 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5417 
5418 		/* send the ramrod */
5419 		rc = bnx2x_queue_state_change(bp, &queue_params);
5420 		if (rc < 0)
5421 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5422 				  q);
5423 	}
5424 
5425 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5426 		fp = &bp->fp[FCOE_IDX(bp)];
5427 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5428 
5429 		/* clear pending completion bit */
5430 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5431 
5432 		/* mark latest Q bit */
5433 		smp_mb__before_atomic();
5434 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5435 		smp_mb__after_atomic();
5436 
5437 		/* send Q update ramrod for FCoE Q */
5438 		rc = bnx2x_queue_state_change(bp, &queue_params);
5439 		if (rc < 0)
5440 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5441 				  q);
5442 	} else {
5443 		/* If no FCoE ring - ACK MCP now */
5444 		bnx2x_link_report(bp);
5445 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5446 	}
5447 }
5448 
5449 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5450 	struct bnx2x *bp, u32 cid)
5451 {
5452 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5453 
5454 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5455 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5456 	else
5457 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5458 }
5459 
5460 static void bnx2x_eq_int(struct bnx2x *bp)
5461 {
5462 	u16 hw_cons, sw_cons, sw_prod;
5463 	union event_ring_elem *elem;
5464 	u8 echo;
5465 	u32 cid;
5466 	u8 opcode;
5467 	int rc, spqe_cnt = 0;
5468 	struct bnx2x_queue_sp_obj *q_obj;
5469 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5470 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5471 
5472 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5473 
5474 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5475 	 * when we get the next-page we need to adjust so the loop
5476 	 * condition below will be met. The next element is the size of a
5477 	 * regular element and hence incrementing by 1
5478 	 */
5479 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5480 		hw_cons++;
5481 
5482 	/* This function may never run in parallel with itself for a
5483 	 * specific bp, thus there is no need in "paired" read memory
5484 	 * barrier here.
5485 	 */
5486 	sw_cons = bp->eq_cons;
5487 	sw_prod = bp->eq_prod;
5488 
5489 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5490 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5491 
5492 	for (; sw_cons != hw_cons;
5493 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5494 
5495 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5496 
5497 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5498 		if (!rc) {
5499 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5500 			   rc);
5501 			goto next_spqe;
5502 		}
5503 
5504 		opcode = elem->message.opcode;
5505 
5506 		/* handle eq element */
5507 		switch (opcode) {
5508 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5509 			bnx2x_vf_mbx_schedule(bp,
5510 					      &elem->message.data.vf_pf_event);
5511 			continue;
5512 
5513 		case EVENT_RING_OPCODE_STAT_QUERY:
5514 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5515 			       "got statistics comp event %d\n",
5516 			       bp->stats_comp++);
5517 			/* nothing to do with stats comp */
5518 			goto next_spqe;
5519 
5520 		case EVENT_RING_OPCODE_CFC_DEL:
5521 			/* handle according to cid range */
5522 			/*
5523 			 * we may want to verify here that the bp state is
5524 			 * HALTING
5525 			 */
5526 
5527 			/* elem CID originates from FW; actually LE */
5528 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5529 
5530 			DP(BNX2X_MSG_SP,
5531 			   "got delete ramrod for MULTI[%d]\n", cid);
5532 
5533 			if (CNIC_LOADED(bp) &&
5534 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5535 				goto next_spqe;
5536 
5537 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5538 
5539 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5540 				break;
5541 
5542 			goto next_spqe;
5543 
5544 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5545 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5546 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5547 			if (f_obj->complete_cmd(bp, f_obj,
5548 						BNX2X_F_CMD_TX_STOP))
5549 				break;
5550 			goto next_spqe;
5551 
5552 		case EVENT_RING_OPCODE_START_TRAFFIC:
5553 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5554 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5555 			if (f_obj->complete_cmd(bp, f_obj,
5556 						BNX2X_F_CMD_TX_START))
5557 				break;
5558 			goto next_spqe;
5559 
5560 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5561 			echo = elem->message.data.function_update_event.echo;
5562 			if (echo == SWITCH_UPDATE) {
5563 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5564 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5565 				if (f_obj->complete_cmd(
5566 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5567 					break;
5568 
5569 			} else {
5570 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5571 
5572 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5573 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5574 				f_obj->complete_cmd(bp, f_obj,
5575 						    BNX2X_F_CMD_AFEX_UPDATE);
5576 
5577 				/* We will perform the Queues update from
5578 				 * sp_rtnl task as all Queue SP operations
5579 				 * should run under rtnl_lock.
5580 				 */
5581 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5582 			}
5583 
5584 			goto next_spqe;
5585 
5586 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5587 			f_obj->complete_cmd(bp, f_obj,
5588 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5589 			bnx2x_after_afex_vif_lists(bp, elem);
5590 			goto next_spqe;
5591 		case EVENT_RING_OPCODE_FUNCTION_START:
5592 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5593 			   "got FUNC_START ramrod\n");
5594 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5595 				break;
5596 
5597 			goto next_spqe;
5598 
5599 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5600 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5601 			   "got FUNC_STOP ramrod\n");
5602 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5603 				break;
5604 
5605 			goto next_spqe;
5606 
5607 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5608 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5609 			   "got set_timesync ramrod completion\n");
5610 			if (f_obj->complete_cmd(bp, f_obj,
5611 						BNX2X_F_CMD_SET_TIMESYNC))
5612 				break;
5613 			goto next_spqe;
5614 		}
5615 
5616 		switch (opcode | bp->state) {
5617 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5618 		      BNX2X_STATE_OPEN):
5619 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5621 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5623 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5624 			   SW_CID(elem->message.data.eth_event.echo));
5625 			rss_raw->clear_pending(rss_raw);
5626 			break;
5627 
5628 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5629 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5630 		case (EVENT_RING_OPCODE_SET_MAC |
5631 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5632 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5633 		      BNX2X_STATE_OPEN):
5634 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5635 		      BNX2X_STATE_DIAG):
5636 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5639 			bnx2x_handle_classification_eqe(bp, elem);
5640 			break;
5641 
5642 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5643 		      BNX2X_STATE_OPEN):
5644 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5645 		      BNX2X_STATE_DIAG):
5646 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5648 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5649 			bnx2x_handle_mcast_eqe(bp);
5650 			break;
5651 
5652 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5653 		      BNX2X_STATE_OPEN):
5654 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5655 		      BNX2X_STATE_DIAG):
5656 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5657 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5658 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5659 			bnx2x_handle_rx_mode_eqe(bp);
5660 			break;
5661 		default:
5662 			/* unknown event log error and continue */
5663 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5664 				  elem->message.opcode, bp->state);
5665 		}
5666 next_spqe:
5667 		spqe_cnt++;
5668 	} /* for */
5669 
5670 	smp_mb__before_atomic();
5671 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5672 
5673 	bp->eq_cons = sw_cons;
5674 	bp->eq_prod = sw_prod;
5675 	/* Make sure that above mem writes were issued towards the memory */
5676 	smp_wmb();
5677 
5678 	/* update producer */
5679 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5680 }
5681 
5682 static void bnx2x_sp_task(struct work_struct *work)
5683 {
5684 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5685 
5686 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5687 
5688 	/* make sure the atomic interrupt_occurred has been written */
5689 	smp_rmb();
5690 	if (atomic_read(&bp->interrupt_occurred)) {
5691 
5692 		/* what work needs to be performed? */
5693 		u16 status = bnx2x_update_dsb_idx(bp);
5694 
5695 		DP(BNX2X_MSG_SP, "status %x\n", status);
5696 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5697 		atomic_set(&bp->interrupt_occurred, 0);
5698 
5699 		/* HW attentions */
5700 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5701 			bnx2x_attn_int(bp);
5702 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5703 		}
5704 
5705 		/* SP events: STAT_QUERY and others */
5706 		if (status & BNX2X_DEF_SB_IDX) {
5707 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5708 
5709 			if (FCOE_INIT(bp) &&
5710 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5711 				/* Prevent local bottom-halves from running as
5712 				 * we are going to change the local NAPI list.
5713 				 */
5714 				local_bh_disable();
5715 				napi_schedule(&bnx2x_fcoe(bp, napi));
5716 				local_bh_enable();
5717 			}
5718 
5719 			/* Handle EQ completions */
5720 			bnx2x_eq_int(bp);
5721 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5722 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5723 
5724 			status &= ~BNX2X_DEF_SB_IDX;
5725 		}
5726 
5727 		/* if status is non zero then perhaps something went wrong */
5728 		if (unlikely(status))
5729 			DP(BNX2X_MSG_SP,
5730 			   "got an unknown interrupt! (status 0x%x)\n", status);
5731 
5732 		/* ack status block only if something was actually handled */
5733 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5734 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5735 	}
5736 
5737 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5738 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5739 			       &bp->sp_state)) {
5740 		bnx2x_link_report(bp);
5741 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5742 	}
5743 }
5744 
5745 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5746 {
5747 	struct net_device *dev = dev_instance;
5748 	struct bnx2x *bp = netdev_priv(dev);
5749 
5750 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5751 		     IGU_INT_DISABLE, 0);
5752 
5753 #ifdef BNX2X_STOP_ON_ERROR
5754 	if (unlikely(bp->panic))
5755 		return IRQ_HANDLED;
5756 #endif
5757 
5758 	if (CNIC_LOADED(bp)) {
5759 		struct cnic_ops *c_ops;
5760 
5761 		rcu_read_lock();
5762 		c_ops = rcu_dereference(bp->cnic_ops);
5763 		if (c_ops)
5764 			c_ops->cnic_handler(bp->cnic_data, NULL);
5765 		rcu_read_unlock();
5766 	}
5767 
5768 	/* schedule sp task to perform default status block work, ack
5769 	 * attentions and enable interrupts.
5770 	 */
5771 	bnx2x_schedule_sp_task(bp);
5772 
5773 	return IRQ_HANDLED;
5774 }
5775 
5776 /* end of slow path */
5777 
5778 void bnx2x_drv_pulse(struct bnx2x *bp)
5779 {
5780 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5781 		 bp->fw_drv_pulse_wr_seq);
5782 }
5783 
5784 static void bnx2x_timer(struct timer_list *t)
5785 {
5786 	struct bnx2x *bp = from_timer(bp, t, timer);
5787 
5788 	if (!netif_running(bp->dev))
5789 		return;
5790 
5791 	if (IS_PF(bp) &&
5792 	    !BP_NOMCP(bp)) {
5793 		int mb_idx = BP_FW_MB_IDX(bp);
5794 		u16 drv_pulse;
5795 		u16 mcp_pulse;
5796 
5797 		++bp->fw_drv_pulse_wr_seq;
5798 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5799 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5800 		bnx2x_drv_pulse(bp);
5801 
5802 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5803 			     MCP_PULSE_SEQ_MASK);
5804 		/* The delta between driver pulse and mcp response
5805 		 * should not get too big. If the MFW is more than 5 pulses
5806 		 * behind, we should worry about it enough to generate an error
5807 		 * log.
5808 		 */
5809 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5810 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5811 				  drv_pulse, mcp_pulse);
5812 	}
5813 
5814 	if (bp->state == BNX2X_STATE_OPEN)
5815 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5816 
5817 	/* sample pf vf bulletin board for new posts from pf */
5818 	if (IS_VF(bp))
5819 		bnx2x_timer_sriov(bp);
5820 
5821 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5822 }
5823 
5824 /* end of Statistics */
5825 
5826 /* nic init */
5827 
5828 /*
5829  * nic init service functions
5830  */
5831 
5832 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5833 {
5834 	u32 i;
5835 	if (!(len%4) && !(addr%4))
5836 		for (i = 0; i < len; i += 4)
5837 			REG_WR(bp, addr + i, fill);
5838 	else
5839 		for (i = 0; i < len; i++)
5840 			REG_WR8(bp, addr + i, fill);
5841 }
5842 
5843 /* helper: writes FP SP data to FW - data_size in dwords */
5844 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5845 				int fw_sb_id,
5846 				u32 *sb_data_p,
5847 				u32 data_size)
5848 {
5849 	int index;
5850 	for (index = 0; index < data_size; index++)
5851 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5852 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5853 			sizeof(u32)*index,
5854 			*(sb_data_p + index));
5855 }
5856 
5857 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5858 {
5859 	u32 *sb_data_p;
5860 	u32 data_size = 0;
5861 	struct hc_status_block_data_e2 sb_data_e2;
5862 	struct hc_status_block_data_e1x sb_data_e1x;
5863 
5864 	/* disable the function first */
5865 	if (!CHIP_IS_E1x(bp)) {
5866 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5867 		sb_data_e2.common.state = SB_DISABLED;
5868 		sb_data_e2.common.p_func.vf_valid = false;
5869 		sb_data_p = (u32 *)&sb_data_e2;
5870 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5871 	} else {
5872 		memset(&sb_data_e1x, 0,
5873 		       sizeof(struct hc_status_block_data_e1x));
5874 		sb_data_e1x.common.state = SB_DISABLED;
5875 		sb_data_e1x.common.p_func.vf_valid = false;
5876 		sb_data_p = (u32 *)&sb_data_e1x;
5877 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5878 	}
5879 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5880 
5881 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5882 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5883 			CSTORM_STATUS_BLOCK_SIZE);
5884 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5885 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5886 			CSTORM_SYNC_BLOCK_SIZE);
5887 }
5888 
5889 /* helper:  writes SP SB data to FW */
5890 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5891 		struct hc_sp_status_block_data *sp_sb_data)
5892 {
5893 	int func = BP_FUNC(bp);
5894 	int i;
5895 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5896 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5897 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5898 			i*sizeof(u32),
5899 			*((u32 *)sp_sb_data + i));
5900 }
5901 
5902 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5903 {
5904 	int func = BP_FUNC(bp);
5905 	struct hc_sp_status_block_data sp_sb_data;
5906 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5907 
5908 	sp_sb_data.state = SB_DISABLED;
5909 	sp_sb_data.p_func.vf_valid = false;
5910 
5911 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5912 
5913 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5914 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5915 			CSTORM_SP_STATUS_BLOCK_SIZE);
5916 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5917 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5918 			CSTORM_SP_SYNC_BLOCK_SIZE);
5919 }
5920 
5921 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5922 					   int igu_sb_id, int igu_seg_id)
5923 {
5924 	hc_sm->igu_sb_id = igu_sb_id;
5925 	hc_sm->igu_seg_id = igu_seg_id;
5926 	hc_sm->timer_value = 0xFF;
5927 	hc_sm->time_to_expire = 0xFFFFFFFF;
5928 }
5929 
5930 /* allocates state machine ids. */
5931 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5932 {
5933 	/* zero out state machine indices */
5934 	/* rx indices */
5935 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5936 
5937 	/* tx indices */
5938 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5939 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5940 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5941 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5942 
5943 	/* map indices */
5944 	/* rx indices */
5945 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5946 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5947 
5948 	/* tx indices */
5949 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5950 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5951 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5952 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5954 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5956 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5957 }
5958 
5959 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5960 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5961 {
5962 	int igu_seg_id;
5963 
5964 	struct hc_status_block_data_e2 sb_data_e2;
5965 	struct hc_status_block_data_e1x sb_data_e1x;
5966 	struct hc_status_block_sm  *hc_sm_p;
5967 	int data_size;
5968 	u32 *sb_data_p;
5969 
5970 	if (CHIP_INT_MODE_IS_BC(bp))
5971 		igu_seg_id = HC_SEG_ACCESS_NORM;
5972 	else
5973 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5974 
5975 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5976 
5977 	if (!CHIP_IS_E1x(bp)) {
5978 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5979 		sb_data_e2.common.state = SB_ENABLED;
5980 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5981 		sb_data_e2.common.p_func.vf_id = vfid;
5982 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5983 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5984 		sb_data_e2.common.same_igu_sb_1b = true;
5985 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5986 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5987 		hc_sm_p = sb_data_e2.common.state_machine;
5988 		sb_data_p = (u32 *)&sb_data_e2;
5989 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5990 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5991 	} else {
5992 		memset(&sb_data_e1x, 0,
5993 		       sizeof(struct hc_status_block_data_e1x));
5994 		sb_data_e1x.common.state = SB_ENABLED;
5995 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5996 		sb_data_e1x.common.p_func.vf_id = 0xff;
5997 		sb_data_e1x.common.p_func.vf_valid = false;
5998 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5999 		sb_data_e1x.common.same_igu_sb_1b = true;
6000 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6001 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6002 		hc_sm_p = sb_data_e1x.common.state_machine;
6003 		sb_data_p = (u32 *)&sb_data_e1x;
6004 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6005 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6006 	}
6007 
6008 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6009 				       igu_sb_id, igu_seg_id);
6010 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6011 				       igu_sb_id, igu_seg_id);
6012 
6013 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6014 
6015 	/* write indices to HW - PCI guarantees endianity of regpairs */
6016 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6017 }
6018 
6019 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6020 				     u16 tx_usec, u16 rx_usec)
6021 {
6022 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6023 				    false, rx_usec);
6024 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6025 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6026 				       tx_usec);
6027 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6028 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6029 				       tx_usec);
6030 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6031 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6032 				       tx_usec);
6033 }
6034 
6035 static void bnx2x_init_def_sb(struct bnx2x *bp)
6036 {
6037 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6038 	dma_addr_t mapping = bp->def_status_blk_mapping;
6039 	int igu_sp_sb_index;
6040 	int igu_seg_id;
6041 	int port = BP_PORT(bp);
6042 	int func = BP_FUNC(bp);
6043 	int reg_offset, reg_offset_en5;
6044 	u64 section;
6045 	int index;
6046 	struct hc_sp_status_block_data sp_sb_data;
6047 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6048 
6049 	if (CHIP_INT_MODE_IS_BC(bp)) {
6050 		igu_sp_sb_index = DEF_SB_IGU_ID;
6051 		igu_seg_id = HC_SEG_ACCESS_DEF;
6052 	} else {
6053 		igu_sp_sb_index = bp->igu_dsb_id;
6054 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6055 	}
6056 
6057 	/* ATTN */
6058 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6059 					    atten_status_block);
6060 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6061 
6062 	bp->attn_state = 0;
6063 
6064 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6065 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6066 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6067 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6068 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6069 		int sindex;
6070 		/* take care of sig[0]..sig[4] */
6071 		for (sindex = 0; sindex < 4; sindex++)
6072 			bp->attn_group[index].sig[sindex] =
6073 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6074 
6075 		if (!CHIP_IS_E1x(bp))
6076 			/*
6077 			 * enable5 is separate from the rest of the registers,
6078 			 * and therefore the address skip is 4
6079 			 * and not 16 between the different groups
6080 			 */
6081 			bp->attn_group[index].sig[4] = REG_RD(bp,
6082 					reg_offset_en5 + 0x4*index);
6083 		else
6084 			bp->attn_group[index].sig[4] = 0;
6085 	}
6086 
6087 	if (bp->common.int_block == INT_BLOCK_HC) {
6088 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6089 				     HC_REG_ATTN_MSG0_ADDR_L);
6090 
6091 		REG_WR(bp, reg_offset, U64_LO(section));
6092 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6093 	} else if (!CHIP_IS_E1x(bp)) {
6094 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6095 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6096 	}
6097 
6098 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6099 					    sp_sb);
6100 
6101 	bnx2x_zero_sp_sb(bp);
6102 
6103 	/* PCI guarantees endianity of regpairs */
6104 	sp_sb_data.state		= SB_ENABLED;
6105 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6106 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6107 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6108 	sp_sb_data.igu_seg_id		= igu_seg_id;
6109 	sp_sb_data.p_func.pf_id		= func;
6110 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6111 	sp_sb_data.p_func.vf_id		= 0xff;
6112 
6113 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6114 
6115 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6116 }
6117 
6118 void bnx2x_update_coalesce(struct bnx2x *bp)
6119 {
6120 	int i;
6121 
6122 	for_each_eth_queue(bp, i)
6123 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6124 					 bp->tx_ticks, bp->rx_ticks);
6125 }
6126 
6127 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6128 {
6129 	spin_lock_init(&bp->spq_lock);
6130 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6131 
6132 	bp->spq_prod_idx = 0;
6133 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6134 	bp->spq_prod_bd = bp->spq;
6135 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6136 }
6137 
6138 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6139 {
6140 	int i;
6141 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6142 		union event_ring_elem *elem =
6143 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6144 
6145 		elem->next_page.addr.hi =
6146 			cpu_to_le32(U64_HI(bp->eq_mapping +
6147 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6148 		elem->next_page.addr.lo =
6149 			cpu_to_le32(U64_LO(bp->eq_mapping +
6150 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6151 	}
6152 	bp->eq_cons = 0;
6153 	bp->eq_prod = NUM_EQ_DESC;
6154 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6155 	/* we want a warning message before it gets wrought... */
6156 	atomic_set(&bp->eq_spq_left,
6157 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6158 }
6159 
6160 /* called with netif_addr_lock_bh() */
6161 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6162 			       unsigned long rx_mode_flags,
6163 			       unsigned long rx_accept_flags,
6164 			       unsigned long tx_accept_flags,
6165 			       unsigned long ramrod_flags)
6166 {
6167 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6168 	int rc;
6169 
6170 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6171 
6172 	/* Prepare ramrod parameters */
6173 	ramrod_param.cid = 0;
6174 	ramrod_param.cl_id = cl_id;
6175 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6176 	ramrod_param.func_id = BP_FUNC(bp);
6177 
6178 	ramrod_param.pstate = &bp->sp_state;
6179 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6180 
6181 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6182 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6183 
6184 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6185 
6186 	ramrod_param.ramrod_flags = ramrod_flags;
6187 	ramrod_param.rx_mode_flags = rx_mode_flags;
6188 
6189 	ramrod_param.rx_accept_flags = rx_accept_flags;
6190 	ramrod_param.tx_accept_flags = tx_accept_flags;
6191 
6192 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6193 	if (rc < 0) {
6194 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6195 		return rc;
6196 	}
6197 
6198 	return 0;
6199 }
6200 
6201 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6202 				   unsigned long *rx_accept_flags,
6203 				   unsigned long *tx_accept_flags)
6204 {
6205 	/* Clear the flags first */
6206 	*rx_accept_flags = 0;
6207 	*tx_accept_flags = 0;
6208 
6209 	switch (rx_mode) {
6210 	case BNX2X_RX_MODE_NONE:
6211 		/*
6212 		 * 'drop all' supersedes any accept flags that may have been
6213 		 * passed to the function.
6214 		 */
6215 		break;
6216 	case BNX2X_RX_MODE_NORMAL:
6217 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6218 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6219 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6220 
6221 		/* internal switching mode */
6222 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6223 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6224 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6225 
6226 		if (bp->accept_any_vlan) {
6227 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6228 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6229 		}
6230 
6231 		break;
6232 	case BNX2X_RX_MODE_ALLMULTI:
6233 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6235 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6236 
6237 		/* internal switching mode */
6238 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6239 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241 
6242 		if (bp->accept_any_vlan) {
6243 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6244 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6245 		}
6246 
6247 		break;
6248 	case BNX2X_RX_MODE_PROMISC:
6249 		/* According to definition of SI mode, iface in promisc mode
6250 		 * should receive matched and unmatched (in resolution of port)
6251 		 * unicast packets.
6252 		 */
6253 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6254 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6255 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6256 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6257 
6258 		/* internal switching mode */
6259 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6260 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6261 
6262 		if (IS_MF_SI(bp))
6263 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6264 		else
6265 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6266 
6267 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6268 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6269 
6270 		break;
6271 	default:
6272 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6273 		return -EINVAL;
6274 	}
6275 
6276 	return 0;
6277 }
6278 
6279 /* called with netif_addr_lock_bh() */
6280 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6281 {
6282 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6283 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6284 	int rc;
6285 
6286 	if (!NO_FCOE(bp))
6287 		/* Configure rx_mode of FCoE Queue */
6288 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6289 
6290 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6291 				     &tx_accept_flags);
6292 	if (rc)
6293 		return rc;
6294 
6295 	__set_bit(RAMROD_RX, &ramrod_flags);
6296 	__set_bit(RAMROD_TX, &ramrod_flags);
6297 
6298 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6299 				   rx_accept_flags, tx_accept_flags,
6300 				   ramrod_flags);
6301 }
6302 
6303 static void bnx2x_init_internal_common(struct bnx2x *bp)
6304 {
6305 	int i;
6306 
6307 	/* Zero this manually as its initialization is
6308 	   currently missing in the initTool */
6309 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6310 		REG_WR(bp, BAR_USTRORM_INTMEM +
6311 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6312 	if (!CHIP_IS_E1x(bp)) {
6313 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6314 			CHIP_INT_MODE_IS_BC(bp) ?
6315 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6316 	}
6317 }
6318 
6319 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6320 {
6321 	switch (load_code) {
6322 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6323 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6324 		bnx2x_init_internal_common(bp);
6325 		fallthrough;
6326 
6327 	case FW_MSG_CODE_DRV_LOAD_PORT:
6328 		/* nothing to do */
6329 		fallthrough;
6330 
6331 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6332 		/* internal memory per function is
6333 		   initialized inside bnx2x_pf_init */
6334 		break;
6335 
6336 	default:
6337 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6338 		break;
6339 	}
6340 }
6341 
6342 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6343 {
6344 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6345 }
6346 
6347 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6348 {
6349 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6350 }
6351 
6352 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6353 {
6354 	if (CHIP_IS_E1x(fp->bp))
6355 		return BP_L_ID(fp->bp) + fp->index;
6356 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6357 		return bnx2x_fp_igu_sb_id(fp);
6358 }
6359 
6360 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6361 {
6362 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6363 	u8 cos;
6364 	unsigned long q_type = 0;
6365 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6366 	fp->rx_queue = fp_idx;
6367 	fp->cid = fp_idx;
6368 	fp->cl_id = bnx2x_fp_cl_id(fp);
6369 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6370 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6371 	/* qZone id equals to FW (per path) client id */
6372 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6373 
6374 	/* init shortcut */
6375 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6376 
6377 	/* Setup SB indices */
6378 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6379 
6380 	/* Configure Queue State object */
6381 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6382 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6383 
6384 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6385 
6386 	/* init tx data */
6387 	for_each_cos_in_tx_queue(fp, cos) {
6388 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6389 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6390 				  FP_COS_TO_TXQ(fp, cos, bp),
6391 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6392 		cids[cos] = fp->txdata_ptr[cos]->cid;
6393 	}
6394 
6395 	/* nothing more for vf to do here */
6396 	if (IS_VF(bp))
6397 		return;
6398 
6399 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6400 		      fp->fw_sb_id, fp->igu_sb_id);
6401 	bnx2x_update_fpsb_idx(fp);
6402 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6403 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6404 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6405 
6406 	/**
6407 	 * Configure classification DBs: Always enable Tx switching
6408 	 */
6409 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6410 
6411 	DP(NETIF_MSG_IFUP,
6412 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6413 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6414 	   fp->igu_sb_id);
6415 }
6416 
6417 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6418 {
6419 	int i;
6420 
6421 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6422 		struct eth_tx_next_bd *tx_next_bd =
6423 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6424 
6425 		tx_next_bd->addr_hi =
6426 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6427 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6428 		tx_next_bd->addr_lo =
6429 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6430 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6431 	}
6432 
6433 	*txdata->tx_cons_sb = cpu_to_le16(0);
6434 
6435 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6436 	txdata->tx_db.data.zero_fill1 = 0;
6437 	txdata->tx_db.data.prod = 0;
6438 
6439 	txdata->tx_pkt_prod = 0;
6440 	txdata->tx_pkt_cons = 0;
6441 	txdata->tx_bd_prod = 0;
6442 	txdata->tx_bd_cons = 0;
6443 	txdata->tx_pkt = 0;
6444 }
6445 
6446 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6447 {
6448 	int i;
6449 
6450 	for_each_tx_queue_cnic(bp, i)
6451 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6452 }
6453 
6454 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6455 {
6456 	int i;
6457 	u8 cos;
6458 
6459 	for_each_eth_queue(bp, i)
6460 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6461 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6462 }
6463 
6464 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6465 {
6466 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6467 	unsigned long q_type = 0;
6468 
6469 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6470 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6471 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6472 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6473 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6474 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6475 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6476 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6477 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6478 			  fp);
6479 
6480 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6481 
6482 	/* qZone id equals to FW (per path) client id */
6483 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6484 	/* init shortcut */
6485 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6486 		bnx2x_rx_ustorm_prods_offset(fp);
6487 
6488 	/* Configure Queue State object */
6489 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6490 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6491 
6492 	/* No multi-CoS for FCoE L2 client */
6493 	BUG_ON(fp->max_cos != 1);
6494 
6495 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6496 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6497 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6498 
6499 	DP(NETIF_MSG_IFUP,
6500 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6501 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6502 	   fp->igu_sb_id);
6503 }
6504 
6505 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6506 {
6507 	if (!NO_FCOE(bp))
6508 		bnx2x_init_fcoe_fp(bp);
6509 
6510 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6511 		      BNX2X_VF_ID_INVALID, false,
6512 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6513 
6514 	/* ensure status block indices were read */
6515 	rmb();
6516 	bnx2x_init_rx_rings_cnic(bp);
6517 	bnx2x_init_tx_rings_cnic(bp);
6518 
6519 	/* flush all */
6520 	mb();
6521 }
6522 
6523 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6524 {
6525 	int i;
6526 
6527 	/* Setup NIC internals and enable interrupts */
6528 	for_each_eth_queue(bp, i)
6529 		bnx2x_init_eth_fp(bp, i);
6530 
6531 	/* ensure status block indices were read */
6532 	rmb();
6533 	bnx2x_init_rx_rings(bp);
6534 	bnx2x_init_tx_rings(bp);
6535 
6536 	if (IS_PF(bp)) {
6537 		/* Initialize MOD_ABS interrupts */
6538 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6539 				       bp->common.shmem_base,
6540 				       bp->common.shmem2_base, BP_PORT(bp));
6541 
6542 		/* initialize the default status block and sp ring */
6543 		bnx2x_init_def_sb(bp);
6544 		bnx2x_update_dsb_idx(bp);
6545 		bnx2x_init_sp_ring(bp);
6546 	} else {
6547 		bnx2x_memset_stats(bp);
6548 	}
6549 }
6550 
6551 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6552 {
6553 	bnx2x_init_eq_ring(bp);
6554 	bnx2x_init_internal(bp, load_code);
6555 	bnx2x_pf_init(bp);
6556 	bnx2x_stats_init(bp);
6557 
6558 	/* flush all before enabling interrupts */
6559 	mb();
6560 
6561 	bnx2x_int_enable(bp);
6562 
6563 	/* Check for SPIO5 */
6564 	bnx2x_attn_int_deasserted0(bp,
6565 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6566 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6567 }
6568 
6569 /* gzip service functions */
6570 static int bnx2x_gunzip_init(struct bnx2x *bp)
6571 {
6572 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6573 					    &bp->gunzip_mapping, GFP_KERNEL);
6574 	if (bp->gunzip_buf  == NULL)
6575 		goto gunzip_nomem1;
6576 
6577 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6578 	if (bp->strm  == NULL)
6579 		goto gunzip_nomem2;
6580 
6581 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6582 	if (bp->strm->workspace == NULL)
6583 		goto gunzip_nomem3;
6584 
6585 	return 0;
6586 
6587 gunzip_nomem3:
6588 	kfree(bp->strm);
6589 	bp->strm = NULL;
6590 
6591 gunzip_nomem2:
6592 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593 			  bp->gunzip_mapping);
6594 	bp->gunzip_buf = NULL;
6595 
6596 gunzip_nomem1:
6597 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6598 	return -ENOMEM;
6599 }
6600 
6601 static void bnx2x_gunzip_end(struct bnx2x *bp)
6602 {
6603 	if (bp->strm) {
6604 		vfree(bp->strm->workspace);
6605 		kfree(bp->strm);
6606 		bp->strm = NULL;
6607 	}
6608 
6609 	if (bp->gunzip_buf) {
6610 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6611 				  bp->gunzip_mapping);
6612 		bp->gunzip_buf = NULL;
6613 	}
6614 }
6615 
6616 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6617 {
6618 	int n, rc;
6619 
6620 	/* check gzip header */
6621 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6622 		BNX2X_ERR("Bad gzip header\n");
6623 		return -EINVAL;
6624 	}
6625 
6626 	n = 10;
6627 
6628 #define FNAME				0x8
6629 
6630 	if (zbuf[3] & FNAME)
6631 		while ((zbuf[n++] != 0) && (n < len));
6632 
6633 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6634 	bp->strm->avail_in = len - n;
6635 	bp->strm->next_out = bp->gunzip_buf;
6636 	bp->strm->avail_out = FW_BUF_SIZE;
6637 
6638 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6639 	if (rc != Z_OK)
6640 		return rc;
6641 
6642 	rc = zlib_inflate(bp->strm, Z_FINISH);
6643 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6644 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6645 			   bp->strm->msg);
6646 
6647 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6648 	if (bp->gunzip_outlen & 0x3)
6649 		netdev_err(bp->dev,
6650 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6651 				bp->gunzip_outlen);
6652 	bp->gunzip_outlen >>= 2;
6653 
6654 	zlib_inflateEnd(bp->strm);
6655 
6656 	if (rc == Z_STREAM_END)
6657 		return 0;
6658 
6659 	return rc;
6660 }
6661 
6662 /* nic load/unload */
6663 
6664 /*
6665  * General service functions
6666  */
6667 
6668 /* send a NIG loopback debug packet */
6669 static void bnx2x_lb_pckt(struct bnx2x *bp)
6670 {
6671 	u32 wb_write[3];
6672 
6673 	/* Ethernet source and destination addresses */
6674 	wb_write[0] = 0x55555555;
6675 	wb_write[1] = 0x55555555;
6676 	wb_write[2] = 0x20;		/* SOP */
6677 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6678 
6679 	/* NON-IP protocol */
6680 	wb_write[0] = 0x09000000;
6681 	wb_write[1] = 0x55555555;
6682 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6683 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6684 }
6685 
6686 /* some of the internal memories
6687  * are not directly readable from the driver
6688  * to test them we send debug packets
6689  */
6690 static int bnx2x_int_mem_test(struct bnx2x *bp)
6691 {
6692 	int factor;
6693 	int count, i;
6694 	u32 val = 0;
6695 
6696 	if (CHIP_REV_IS_FPGA(bp))
6697 		factor = 120;
6698 	else if (CHIP_REV_IS_EMUL(bp))
6699 		factor = 200;
6700 	else
6701 		factor = 1;
6702 
6703 	/* Disable inputs of parser neighbor blocks */
6704 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6705 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6706 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6707 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6708 
6709 	/*  Write 0 to parser credits for CFC search request */
6710 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6711 
6712 	/* send Ethernet packet */
6713 	bnx2x_lb_pckt(bp);
6714 
6715 	/* TODO do i reset NIG statistic? */
6716 	/* Wait until NIG register shows 1 packet of size 0x10 */
6717 	count = 1000 * factor;
6718 	while (count) {
6719 
6720 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6721 		val = *bnx2x_sp(bp, wb_data[0]);
6722 		if (val == 0x10)
6723 			break;
6724 
6725 		usleep_range(10000, 20000);
6726 		count--;
6727 	}
6728 	if (val != 0x10) {
6729 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6730 		return -1;
6731 	}
6732 
6733 	/* Wait until PRS register shows 1 packet */
6734 	count = 1000 * factor;
6735 	while (count) {
6736 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6737 		if (val == 1)
6738 			break;
6739 
6740 		usleep_range(10000, 20000);
6741 		count--;
6742 	}
6743 	if (val != 0x1) {
6744 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6745 		return -2;
6746 	}
6747 
6748 	/* Reset and init BRB, PRS */
6749 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6750 	msleep(50);
6751 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6752 	msleep(50);
6753 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6754 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6755 
6756 	DP(NETIF_MSG_HW, "part2\n");
6757 
6758 	/* Disable inputs of parser neighbor blocks */
6759 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6760 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6761 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6762 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6763 
6764 	/* Write 0 to parser credits for CFC search request */
6765 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6766 
6767 	/* send 10 Ethernet packets */
6768 	for (i = 0; i < 10; i++)
6769 		bnx2x_lb_pckt(bp);
6770 
6771 	/* Wait until NIG register shows 10 + 1
6772 	   packets of size 11*0x10 = 0xb0 */
6773 	count = 1000 * factor;
6774 	while (count) {
6775 
6776 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6777 		val = *bnx2x_sp(bp, wb_data[0]);
6778 		if (val == 0xb0)
6779 			break;
6780 
6781 		usleep_range(10000, 20000);
6782 		count--;
6783 	}
6784 	if (val != 0xb0) {
6785 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6786 		return -3;
6787 	}
6788 
6789 	/* Wait until PRS register shows 2 packets */
6790 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6791 	if (val != 2)
6792 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6793 
6794 	/* Write 1 to parser credits for CFC search request */
6795 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6796 
6797 	/* Wait until PRS register shows 3 packets */
6798 	msleep(10 * factor);
6799 	/* Wait until NIG register shows 1 packet of size 0x10 */
6800 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6801 	if (val != 3)
6802 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6803 
6804 	/* clear NIG EOP FIFO */
6805 	for (i = 0; i < 11; i++)
6806 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6807 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6808 	if (val != 1) {
6809 		BNX2X_ERR("clear of NIG failed\n");
6810 		return -4;
6811 	}
6812 
6813 	/* Reset and init BRB, PRS, NIG */
6814 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6815 	msleep(50);
6816 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6817 	msleep(50);
6818 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6819 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6820 	if (!CNIC_SUPPORT(bp))
6821 		/* set NIC mode */
6822 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6823 
6824 	/* Enable inputs of parser neighbor blocks */
6825 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6826 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6827 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6828 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6829 
6830 	DP(NETIF_MSG_HW, "done\n");
6831 
6832 	return 0; /* OK */
6833 }
6834 
6835 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6836 {
6837 	u32 val;
6838 
6839 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6840 	if (!CHIP_IS_E1x(bp))
6841 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6842 	else
6843 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6844 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6845 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6846 	/*
6847 	 * mask read length error interrupts in brb for parser
6848 	 * (parsing unit and 'checksum and crc' unit)
6849 	 * these errors are legal (PU reads fixed length and CAC can cause
6850 	 * read length error on truncated packets)
6851 	 */
6852 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6853 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6854 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6855 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6856 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6857 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6858 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6859 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6860 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6861 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6862 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6863 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6864 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6865 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6866 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6867 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6868 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6869 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6870 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6871 
6872 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6873 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6874 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6875 	if (!CHIP_IS_E1x(bp))
6876 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6877 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6878 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6879 
6880 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6881 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6882 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6883 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6884 
6885 	if (!CHIP_IS_E1x(bp))
6886 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6887 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6888 
6889 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6890 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6891 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6892 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6893 }
6894 
6895 static void bnx2x_reset_common(struct bnx2x *bp)
6896 {
6897 	u32 val = 0x1400;
6898 
6899 	/* reset_common */
6900 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6901 	       0xd3ffff7f);
6902 
6903 	if (CHIP_IS_E3(bp)) {
6904 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6905 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6906 	}
6907 
6908 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6909 }
6910 
6911 static void bnx2x_setup_dmae(struct bnx2x *bp)
6912 {
6913 	bp->dmae_ready = 0;
6914 	spin_lock_init(&bp->dmae_lock);
6915 }
6916 
6917 static void bnx2x_init_pxp(struct bnx2x *bp)
6918 {
6919 	u16 devctl;
6920 	int r_order, w_order;
6921 
6922 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6923 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6924 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6925 	if (bp->mrrs == -1)
6926 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6927 	else {
6928 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6929 		r_order = bp->mrrs;
6930 	}
6931 
6932 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6933 }
6934 
6935 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6936 {
6937 	int is_required;
6938 	u32 val;
6939 	int port;
6940 
6941 	if (BP_NOMCP(bp))
6942 		return;
6943 
6944 	is_required = 0;
6945 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6946 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6947 
6948 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6949 		is_required = 1;
6950 
6951 	/*
6952 	 * The fan failure mechanism is usually related to the PHY type since
6953 	 * the power consumption of the board is affected by the PHY. Currently,
6954 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6955 	 */
6956 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6957 		for (port = PORT_0; port < PORT_MAX; port++) {
6958 			is_required |=
6959 				bnx2x_fan_failure_det_req(
6960 					bp,
6961 					bp->common.shmem_base,
6962 					bp->common.shmem2_base,
6963 					port);
6964 		}
6965 
6966 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6967 
6968 	if (is_required == 0)
6969 		return;
6970 
6971 	/* Fan failure is indicated by SPIO 5 */
6972 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6973 
6974 	/* set to active low mode */
6975 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6976 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6977 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6978 
6979 	/* enable interrupt to signal the IGU */
6980 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6981 	val |= MISC_SPIO_SPIO5;
6982 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6983 }
6984 
6985 void bnx2x_pf_disable(struct bnx2x *bp)
6986 {
6987 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6988 	val &= ~IGU_PF_CONF_FUNC_EN;
6989 
6990 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6991 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6992 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6993 }
6994 
6995 static void bnx2x__common_init_phy(struct bnx2x *bp)
6996 {
6997 	u32 shmem_base[2], shmem2_base[2];
6998 	/* Avoid common init in case MFW supports LFA */
6999 	if (SHMEM2_RD(bp, size) >
7000 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7001 		return;
7002 	shmem_base[0] =  bp->common.shmem_base;
7003 	shmem2_base[0] = bp->common.shmem2_base;
7004 	if (!CHIP_IS_E1x(bp)) {
7005 		shmem_base[1] =
7006 			SHMEM2_RD(bp, other_shmem_base_addr);
7007 		shmem2_base[1] =
7008 			SHMEM2_RD(bp, other_shmem2_base_addr);
7009 	}
7010 	bnx2x_acquire_phy_lock(bp);
7011 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7012 			      bp->common.chip_id);
7013 	bnx2x_release_phy_lock(bp);
7014 }
7015 
7016 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7017 {
7018 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7019 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7020 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7021 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7022 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7023 
7024 	/* make sure this value is 0 */
7025 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7026 
7027 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7028 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7029 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7030 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7031 }
7032 
7033 static void bnx2x_set_endianity(struct bnx2x *bp)
7034 {
7035 #ifdef __BIG_ENDIAN
7036 	bnx2x_config_endianity(bp, 1);
7037 #else
7038 	bnx2x_config_endianity(bp, 0);
7039 #endif
7040 }
7041 
7042 static void bnx2x_reset_endianity(struct bnx2x *bp)
7043 {
7044 	bnx2x_config_endianity(bp, 0);
7045 }
7046 
7047 /**
7048  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7049  *
7050  * @bp:		driver handle
7051  */
7052 static int bnx2x_init_hw_common(struct bnx2x *bp)
7053 {
7054 	u32 val;
7055 
7056 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7057 
7058 	/*
7059 	 * take the RESET lock to protect undi_unload flow from accessing
7060 	 * registers while we're resetting the chip
7061 	 */
7062 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7063 
7064 	bnx2x_reset_common(bp);
7065 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7066 
7067 	val = 0xfffc;
7068 	if (CHIP_IS_E3(bp)) {
7069 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7070 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7071 	}
7072 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7073 
7074 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7075 
7076 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7077 
7078 	if (!CHIP_IS_E1x(bp)) {
7079 		u8 abs_func_id;
7080 
7081 		/**
7082 		 * 4-port mode or 2-port mode we need to turn of master-enable
7083 		 * for everyone, after that, turn it back on for self.
7084 		 * so, we disregard multi-function or not, and always disable
7085 		 * for all functions on the given path, this means 0,2,4,6 for
7086 		 * path 0 and 1,3,5,7 for path 1
7087 		 */
7088 		for (abs_func_id = BP_PATH(bp);
7089 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7090 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7091 				REG_WR(bp,
7092 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7093 				    1);
7094 				continue;
7095 			}
7096 
7097 			bnx2x_pretend_func(bp, abs_func_id);
7098 			/* clear pf enable */
7099 			bnx2x_pf_disable(bp);
7100 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7101 		}
7102 	}
7103 
7104 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7105 	if (CHIP_IS_E1(bp)) {
7106 		/* enable HW interrupt from PXP on USDM overflow
7107 		   bit 16 on INT_MASK_0 */
7108 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7109 	}
7110 
7111 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7112 	bnx2x_init_pxp(bp);
7113 	bnx2x_set_endianity(bp);
7114 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7115 
7116 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7117 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7118 
7119 	/* let the HW do it's magic ... */
7120 	msleep(100);
7121 	/* finish PXP init */
7122 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7123 	if (val != 1) {
7124 		BNX2X_ERR("PXP2 CFG failed\n");
7125 		return -EBUSY;
7126 	}
7127 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7128 	if (val != 1) {
7129 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7130 		return -EBUSY;
7131 	}
7132 
7133 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7134 	 * have entries with value "0" and valid bit on.
7135 	 * This needs to be done by the first PF that is loaded in a path
7136 	 * (i.e. common phase)
7137 	 */
7138 	if (!CHIP_IS_E1x(bp)) {
7139 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7140  * (i.e. vnic3) to start even if it is marked as "scan-off".
7141  * This occurs when a different function (func2,3) is being marked
7142  * as "scan-off". Real-life scenario for example: if a driver is being
7143  * load-unloaded while func6,7 are down. This will cause the timer to access
7144  * the ilt, translate to a logical address and send a request to read/write.
7145  * Since the ilt for the function that is down is not valid, this will cause
7146  * a translation error which is unrecoverable.
7147  * The Workaround is intended to make sure that when this happens nothing fatal
7148  * will occur. The workaround:
7149  *	1.  First PF driver which loads on a path will:
7150  *		a.  After taking the chip out of reset, by using pretend,
7151  *		    it will write "0" to the following registers of
7152  *		    the other vnics.
7153  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7154  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7155  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7156  *		    And for itself it will write '1' to
7157  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7158  *		    dmae-operations (writing to pram for example.)
7159  *		    note: can be done for only function 6,7 but cleaner this
7160  *			  way.
7161  *		b.  Write zero+valid to the entire ILT.
7162  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7163  *		    VNIC3 (of that port). The range allocated will be the
7164  *		    entire ILT. This is needed to prevent  ILT range error.
7165  *	2.  Any PF driver load flow:
7166  *		a.  ILT update with the physical addresses of the allocated
7167  *		    logical pages.
7168  *		b.  Wait 20msec. - note that this timeout is needed to make
7169  *		    sure there are no requests in one of the PXP internal
7170  *		    queues with "old" ILT addresses.
7171  *		c.  PF enable in the PGLC.
7172  *		d.  Clear the was_error of the PF in the PGLC. (could have
7173  *		    occurred while driver was down)
7174  *		e.  PF enable in the CFC (WEAK + STRONG)
7175  *		f.  Timers scan enable
7176  *	3.  PF driver unload flow:
7177  *		a.  Clear the Timers scan_en.
7178  *		b.  Polling for scan_on=0 for that PF.
7179  *		c.  Clear the PF enable bit in the PXP.
7180  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7181  *		e.  Write zero+valid to all ILT entries (The valid bit must
7182  *		    stay set)
7183  *		f.  If this is VNIC 3 of a port then also init
7184  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7185  *		    to the last entry in the ILT.
7186  *
7187  *	Notes:
7188  *	Currently the PF error in the PGLC is non recoverable.
7189  *	In the future the there will be a recovery routine for this error.
7190  *	Currently attention is masked.
7191  *	Having an MCP lock on the load/unload process does not guarantee that
7192  *	there is no Timer disable during Func6/7 enable. This is because the
7193  *	Timers scan is currently being cleared by the MCP on FLR.
7194  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7195  *	there is error before clearing it. But the flow above is simpler and
7196  *	more general.
7197  *	All ILT entries are written by zero+valid and not just PF6/7
7198  *	ILT entries since in the future the ILT entries allocation for
7199  *	PF-s might be dynamic.
7200  */
7201 		struct ilt_client_info ilt_cli;
7202 		struct bnx2x_ilt ilt;
7203 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7204 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7205 
7206 		/* initialize dummy TM client */
7207 		ilt_cli.start = 0;
7208 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7209 		ilt_cli.client_num = ILT_CLIENT_TM;
7210 
7211 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7212 		 * Step 2: set the timers first/last ilt entry to point
7213 		 * to the entire range to prevent ILT range error for 3rd/4th
7214 		 * vnic	(this code assumes existence of the vnic)
7215 		 *
7216 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7217 		 * with dummy TM client
7218 		 *
7219 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7220 		 * and his brother are split registers
7221 		 */
7222 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7223 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7224 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7225 
7226 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7227 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7228 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7229 	}
7230 
7231 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7232 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7233 
7234 	if (!CHIP_IS_E1x(bp)) {
7235 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7236 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7237 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7238 
7239 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7240 
7241 		/* let the HW do it's magic ... */
7242 		do {
7243 			msleep(200);
7244 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7245 		} while (factor-- && (val != 1));
7246 
7247 		if (val != 1) {
7248 			BNX2X_ERR("ATC_INIT failed\n");
7249 			return -EBUSY;
7250 		}
7251 	}
7252 
7253 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7254 
7255 	bnx2x_iov_init_dmae(bp);
7256 
7257 	/* clean the DMAE memory */
7258 	bp->dmae_ready = 1;
7259 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7260 
7261 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7262 
7263 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7264 
7265 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7266 
7267 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7268 
7269 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7270 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7271 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7272 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7273 
7274 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7275 
7276 	/* QM queues pointers table */
7277 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7278 
7279 	/* soft reset pulse */
7280 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7281 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7282 
7283 	if (CNIC_SUPPORT(bp))
7284 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7285 
7286 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7287 
7288 	if (!CHIP_REV_IS_SLOW(bp))
7289 		/* enable hw interrupt from doorbell Q */
7290 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7291 
7292 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7293 
7294 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7295 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7296 
7297 	if (!CHIP_IS_E1(bp))
7298 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7299 
7300 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7301 		if (IS_MF_AFEX(bp)) {
7302 			/* configure that VNTag and VLAN headers must be
7303 			 * received in afex mode
7304 			 */
7305 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7306 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7307 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7308 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7309 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7310 		} else {
7311 			/* Bit-map indicating which L2 hdrs may appear
7312 			 * after the basic Ethernet header
7313 			 */
7314 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7315 			       bp->path_has_ovlan ? 7 : 6);
7316 		}
7317 	}
7318 
7319 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7320 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7321 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7322 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7323 
7324 	if (!CHIP_IS_E1x(bp)) {
7325 		/* reset VFC memories */
7326 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7327 			   VFC_MEMORIES_RST_REG_CAM_RST |
7328 			   VFC_MEMORIES_RST_REG_RAM_RST);
7329 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7330 			   VFC_MEMORIES_RST_REG_CAM_RST |
7331 			   VFC_MEMORIES_RST_REG_RAM_RST);
7332 
7333 		msleep(20);
7334 	}
7335 
7336 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7337 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7338 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7339 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7340 
7341 	/* sync semi rtc */
7342 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7343 	       0x80000000);
7344 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7345 	       0x80000000);
7346 
7347 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7348 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7349 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7350 
7351 	if (!CHIP_IS_E1x(bp)) {
7352 		if (IS_MF_AFEX(bp)) {
7353 			/* configure that VNTag and VLAN headers must be
7354 			 * sent in afex mode
7355 			 */
7356 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7357 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7358 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7359 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7360 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7361 		} else {
7362 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7363 			       bp->path_has_ovlan ? 7 : 6);
7364 		}
7365 	}
7366 
7367 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7368 
7369 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7370 
7371 	if (CNIC_SUPPORT(bp)) {
7372 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7373 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7374 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7375 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7376 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7377 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7378 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7379 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7380 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7381 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7382 	}
7383 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7384 
7385 	if (sizeof(union cdu_context) != 1024)
7386 		/* we currently assume that a context is 1024 bytes */
7387 		dev_alert(&bp->pdev->dev,
7388 			  "please adjust the size of cdu_context(%ld)\n",
7389 			  (long)sizeof(union cdu_context));
7390 
7391 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7392 	val = (4 << 24) + (0 << 12) + 1024;
7393 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7394 
7395 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7396 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7397 	/* enable context validation interrupt from CFC */
7398 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7399 
7400 	/* set the thresholds to prevent CFC/CDU race */
7401 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7402 
7403 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7404 
7405 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7406 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7407 
7408 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7409 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7410 
7411 	/* Reset PCIE errors for debug */
7412 	REG_WR(bp, 0x2814, 0xffffffff);
7413 	REG_WR(bp, 0x3820, 0xffffffff);
7414 
7415 	if (!CHIP_IS_E1x(bp)) {
7416 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7417 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7418 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7419 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7420 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7421 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7422 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7423 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7424 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7425 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7426 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7427 	}
7428 
7429 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7430 	if (!CHIP_IS_E1(bp)) {
7431 		/* in E3 this done in per-port section */
7432 		if (!CHIP_IS_E3(bp))
7433 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7434 	}
7435 	if (CHIP_IS_E1H(bp))
7436 		/* not applicable for E2 (and above ...) */
7437 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7438 
7439 	if (CHIP_REV_IS_SLOW(bp))
7440 		msleep(200);
7441 
7442 	/* finish CFC init */
7443 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7444 	if (val != 1) {
7445 		BNX2X_ERR("CFC LL_INIT failed\n");
7446 		return -EBUSY;
7447 	}
7448 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7449 	if (val != 1) {
7450 		BNX2X_ERR("CFC AC_INIT failed\n");
7451 		return -EBUSY;
7452 	}
7453 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7454 	if (val != 1) {
7455 		BNX2X_ERR("CFC CAM_INIT failed\n");
7456 		return -EBUSY;
7457 	}
7458 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7459 
7460 	if (CHIP_IS_E1(bp)) {
7461 		/* read NIG statistic
7462 		   to see if this is our first up since powerup */
7463 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7464 		val = *bnx2x_sp(bp, wb_data[0]);
7465 
7466 		/* do internal memory self test */
7467 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7468 			BNX2X_ERR("internal mem self test failed\n");
7469 			return -EBUSY;
7470 		}
7471 	}
7472 
7473 	bnx2x_setup_fan_failure_detection(bp);
7474 
7475 	/* clear PXP2 attentions */
7476 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7477 
7478 	bnx2x_enable_blocks_attention(bp);
7479 	bnx2x_enable_blocks_parity(bp);
7480 
7481 	if (!BP_NOMCP(bp)) {
7482 		if (CHIP_IS_E1x(bp))
7483 			bnx2x__common_init_phy(bp);
7484 	} else
7485 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7486 
7487 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7488 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7489 
7490 	return 0;
7491 }
7492 
7493 /**
7494  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7495  *
7496  * @bp:		driver handle
7497  */
7498 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7499 {
7500 	int rc = bnx2x_init_hw_common(bp);
7501 
7502 	if (rc)
7503 		return rc;
7504 
7505 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7506 	if (!BP_NOMCP(bp))
7507 		bnx2x__common_init_phy(bp);
7508 
7509 	return 0;
7510 }
7511 
7512 static int bnx2x_init_hw_port(struct bnx2x *bp)
7513 {
7514 	int port = BP_PORT(bp);
7515 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7516 	u32 low, high;
7517 	u32 val, reg;
7518 
7519 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7520 
7521 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7522 
7523 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7524 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7525 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7526 
7527 	/* Timers bug workaround: disables the pf_master bit in pglue at
7528 	 * common phase, we need to enable it here before any dmae access are
7529 	 * attempted. Therefore we manually added the enable-master to the
7530 	 * port phase (it also happens in the function phase)
7531 	 */
7532 	if (!CHIP_IS_E1x(bp))
7533 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7534 
7535 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7536 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7537 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7538 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7539 
7540 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7541 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7542 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7543 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7544 
7545 	/* QM cid (connection) count */
7546 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7547 
7548 	if (CNIC_SUPPORT(bp)) {
7549 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7550 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7551 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7552 	}
7553 
7554 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7555 
7556 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7557 
7558 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7559 
7560 		if (IS_MF(bp))
7561 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7562 		else if (bp->dev->mtu > 4096) {
7563 			if (bp->flags & ONE_PORT_FLAG)
7564 				low = 160;
7565 			else {
7566 				val = bp->dev->mtu;
7567 				/* (24*1024 + val*4)/256 */
7568 				low = 96 + (val/64) +
7569 						((val % 64) ? 1 : 0);
7570 			}
7571 		} else
7572 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7573 		high = low + 56;	/* 14*1024/256 */
7574 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7575 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7576 	}
7577 
7578 	if (CHIP_MODE_IS_4_PORT(bp))
7579 		REG_WR(bp, (BP_PORT(bp) ?
7580 			    BRB1_REG_MAC_GUARANTIED_1 :
7581 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7582 
7583 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7584 	if (CHIP_IS_E3B0(bp)) {
7585 		if (IS_MF_AFEX(bp)) {
7586 			/* configure headers for AFEX mode */
7587 			REG_WR(bp, BP_PORT(bp) ?
7588 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7589 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7590 			REG_WR(bp, BP_PORT(bp) ?
7591 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7592 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7593 			REG_WR(bp, BP_PORT(bp) ?
7594 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7595 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7596 		} else {
7597 			/* Ovlan exists only if we are in multi-function +
7598 			 * switch-dependent mode, in switch-independent there
7599 			 * is no ovlan headers
7600 			 */
7601 			REG_WR(bp, BP_PORT(bp) ?
7602 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7603 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7604 			       (bp->path_has_ovlan ? 7 : 6));
7605 		}
7606 	}
7607 
7608 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7609 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7610 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7612 
7613 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7614 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7615 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7617 
7618 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7619 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7620 
7621 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7622 
7623 	if (CHIP_IS_E1x(bp)) {
7624 		/* configure PBF to work without PAUSE mtu 9000 */
7625 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7626 
7627 		/* update threshold */
7628 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7629 		/* update init credit */
7630 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7631 
7632 		/* probe changes */
7633 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7634 		udelay(50);
7635 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7636 	}
7637 
7638 	if (CNIC_SUPPORT(bp))
7639 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7640 
7641 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7642 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7643 
7644 	if (CHIP_IS_E1(bp)) {
7645 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7646 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7647 	}
7648 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7649 
7650 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7651 
7652 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7653 	/* init aeu_mask_attn_func_0/1:
7654 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7655 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7656 	 *             bits 4-7 are used for "per vn group attention" */
7657 	val = IS_MF(bp) ? 0xF7 : 0x7;
7658 	/* Enable DCBX attention for all but E1 */
7659 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7660 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7661 
7662 	/* SCPAD_PARITY should NOT trigger close the gates */
7663 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7664 	REG_WR(bp, reg,
7665 	       REG_RD(bp, reg) &
7666 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7667 
7668 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7669 	REG_WR(bp, reg,
7670 	       REG_RD(bp, reg) &
7671 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7672 
7673 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7674 
7675 	if (!CHIP_IS_E1x(bp)) {
7676 		/* Bit-map indicating which L2 hdrs may appear after the
7677 		 * basic Ethernet header
7678 		 */
7679 		if (IS_MF_AFEX(bp))
7680 			REG_WR(bp, BP_PORT(bp) ?
7681 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7682 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7683 		else
7684 			REG_WR(bp, BP_PORT(bp) ?
7685 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7686 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7687 			       IS_MF_SD(bp) ? 7 : 6);
7688 
7689 		if (CHIP_IS_E3(bp))
7690 			REG_WR(bp, BP_PORT(bp) ?
7691 				   NIG_REG_LLH1_MF_MODE :
7692 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7693 	}
7694 	if (!CHIP_IS_E3(bp))
7695 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7696 
7697 	if (!CHIP_IS_E1(bp)) {
7698 		/* 0x2 disable mf_ov, 0x1 enable */
7699 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7700 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7701 
7702 		if (!CHIP_IS_E1x(bp)) {
7703 			val = 0;
7704 			switch (bp->mf_mode) {
7705 			case MULTI_FUNCTION_SD:
7706 				val = 1;
7707 				break;
7708 			case MULTI_FUNCTION_SI:
7709 			case MULTI_FUNCTION_AFEX:
7710 				val = 2;
7711 				break;
7712 			}
7713 
7714 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7715 						  NIG_REG_LLH0_CLS_TYPE), val);
7716 		}
7717 		{
7718 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7719 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7720 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7721 		}
7722 	}
7723 
7724 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7725 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7726 	if (val & MISC_SPIO_SPIO5) {
7727 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7728 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7729 		val = REG_RD(bp, reg_addr);
7730 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7731 		REG_WR(bp, reg_addr, val);
7732 	}
7733 
7734 	if (CHIP_IS_E3B0(bp))
7735 		bp->flags |= PTP_SUPPORTED;
7736 
7737 	return 0;
7738 }
7739 
7740 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7741 {
7742 	int reg;
7743 	u32 wb_write[2];
7744 
7745 	if (CHIP_IS_E1(bp))
7746 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7747 	else
7748 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7749 
7750 	wb_write[0] = ONCHIP_ADDR1(addr);
7751 	wb_write[1] = ONCHIP_ADDR2(addr);
7752 	REG_WR_DMAE(bp, reg, wb_write, 2);
7753 }
7754 
7755 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7756 {
7757 	u32 data, ctl, cnt = 100;
7758 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7759 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7760 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7761 	u32 sb_bit =  1 << (idu_sb_id%32);
7762 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7763 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7764 
7765 	/* Not supported in BC mode */
7766 	if (CHIP_INT_MODE_IS_BC(bp))
7767 		return;
7768 
7769 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7770 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7771 		IGU_REGULAR_CLEANUP_SET				|
7772 		IGU_REGULAR_BCLEANUP;
7773 
7774 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7775 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7776 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7777 
7778 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7779 			 data, igu_addr_data);
7780 	REG_WR(bp, igu_addr_data, data);
7781 	barrier();
7782 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7783 			  ctl, igu_addr_ctl);
7784 	REG_WR(bp, igu_addr_ctl, ctl);
7785 	barrier();
7786 
7787 	/* wait for clean up to finish */
7788 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7789 		msleep(20);
7790 
7791 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7792 		DP(NETIF_MSG_HW,
7793 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7794 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7795 	}
7796 }
7797 
7798 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7799 {
7800 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7801 }
7802 
7803 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7804 {
7805 	u32 i, base = FUNC_ILT_BASE(func);
7806 	for (i = base; i < base + ILT_PER_FUNC; i++)
7807 		bnx2x_ilt_wr(bp, i, 0);
7808 }
7809 
7810 static void bnx2x_init_searcher(struct bnx2x *bp)
7811 {
7812 	int port = BP_PORT(bp);
7813 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7814 	/* T1 hash bits value determines the T1 number of entries */
7815 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7816 }
7817 
7818 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7819 {
7820 	int rc;
7821 	struct bnx2x_func_state_params func_params = {NULL};
7822 	struct bnx2x_func_switch_update_params *switch_update_params =
7823 		&func_params.params.switch_update;
7824 
7825 	/* Prepare parameters for function state transitions */
7826 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7827 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7828 
7829 	func_params.f_obj = &bp->func_obj;
7830 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7831 
7832 	/* Function parameters */
7833 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7834 		  &switch_update_params->changes);
7835 	if (suspend)
7836 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7837 			  &switch_update_params->changes);
7838 
7839 	rc = bnx2x_func_state_change(bp, &func_params);
7840 
7841 	return rc;
7842 }
7843 
7844 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7845 {
7846 	int rc, i, port = BP_PORT(bp);
7847 	int vlan_en = 0, mac_en[NUM_MACS];
7848 
7849 	/* Close input from network */
7850 	if (bp->mf_mode == SINGLE_FUNCTION) {
7851 		bnx2x_set_rx_filter(&bp->link_params, 0);
7852 	} else {
7853 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7854 				   NIG_REG_LLH0_FUNC_EN);
7855 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856 			  NIG_REG_LLH0_FUNC_EN, 0);
7857 		for (i = 0; i < NUM_MACS; i++) {
7858 			mac_en[i] = REG_RD(bp, port ?
7859 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7860 					      4 * i) :
7861 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7862 					      4 * i));
7863 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7864 					      4 * i) :
7865 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7866 		}
7867 	}
7868 
7869 	/* Close BMC to host */
7870 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7871 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7872 
7873 	/* Suspend Tx switching to the PF. Completion of this ramrod
7874 	 * further guarantees that all the packets of that PF / child
7875 	 * VFs in BRB were processed by the Parser, so it is safe to
7876 	 * change the NIC_MODE register.
7877 	 */
7878 	rc = bnx2x_func_switch_update(bp, 1);
7879 	if (rc) {
7880 		BNX2X_ERR("Can't suspend tx-switching!\n");
7881 		return rc;
7882 	}
7883 
7884 	/* Change NIC_MODE register */
7885 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7886 
7887 	/* Open input from network */
7888 	if (bp->mf_mode == SINGLE_FUNCTION) {
7889 		bnx2x_set_rx_filter(&bp->link_params, 1);
7890 	} else {
7891 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7892 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7893 		for (i = 0; i < NUM_MACS; i++) {
7894 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7895 					      4 * i) :
7896 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7897 				  mac_en[i]);
7898 		}
7899 	}
7900 
7901 	/* Enable BMC to host */
7902 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7903 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7904 
7905 	/* Resume Tx switching to the PF */
7906 	rc = bnx2x_func_switch_update(bp, 0);
7907 	if (rc) {
7908 		BNX2X_ERR("Can't resume tx-switching!\n");
7909 		return rc;
7910 	}
7911 
7912 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7913 	return 0;
7914 }
7915 
7916 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7917 {
7918 	int rc;
7919 
7920 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7921 
7922 	if (CONFIGURE_NIC_MODE(bp)) {
7923 		/* Configure searcher as part of function hw init */
7924 		bnx2x_init_searcher(bp);
7925 
7926 		/* Reset NIC mode */
7927 		rc = bnx2x_reset_nic_mode(bp);
7928 		if (rc)
7929 			BNX2X_ERR("Can't change NIC mode!\n");
7930 		return rc;
7931 	}
7932 
7933 	return 0;
7934 }
7935 
7936 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7937  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7938  * the addresses of the transaction, resulting in was-error bit set in the pci
7939  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7940  * to clear the interrupt which detected this from the pglueb and the was done
7941  * bit
7942  */
7943 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7944 {
7945 	if (!CHIP_IS_E1x(bp))
7946 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7947 		       1 << BP_ABS_FUNC(bp));
7948 }
7949 
7950 static int bnx2x_init_hw_func(struct bnx2x *bp)
7951 {
7952 	int port = BP_PORT(bp);
7953 	int func = BP_FUNC(bp);
7954 	int init_phase = PHASE_PF0 + func;
7955 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7956 	u16 cdu_ilt_start;
7957 	u32 addr, val;
7958 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7959 	int i, main_mem_width, rc;
7960 
7961 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7962 
7963 	/* FLR cleanup - hmmm */
7964 	if (!CHIP_IS_E1x(bp)) {
7965 		rc = bnx2x_pf_flr_clnup(bp);
7966 		if (rc) {
7967 			bnx2x_fw_dump(bp);
7968 			return rc;
7969 		}
7970 	}
7971 
7972 	/* set MSI reconfigure capability */
7973 	if (bp->common.int_block == INT_BLOCK_HC) {
7974 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7975 		val = REG_RD(bp, addr);
7976 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7977 		REG_WR(bp, addr, val);
7978 	}
7979 
7980 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7981 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7982 
7983 	ilt = BP_ILT(bp);
7984 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985 
7986 	if (IS_SRIOV(bp))
7987 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7988 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7989 
7990 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7991 	 * those of the VFs, so start line should be reset
7992 	 */
7993 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7994 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7995 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7996 		ilt->lines[cdu_ilt_start + i].page_mapping =
7997 			bp->context[i].cxt_mapping;
7998 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7999 	}
8000 
8001 	bnx2x_ilt_init_op(bp, INITOP_SET);
8002 
8003 	if (!CONFIGURE_NIC_MODE(bp)) {
8004 		bnx2x_init_searcher(bp);
8005 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8006 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8007 	} else {
8008 		/* Set NIC mode */
8009 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8010 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8011 	}
8012 
8013 	if (!CHIP_IS_E1x(bp)) {
8014 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8015 
8016 		/* Turn on a single ISR mode in IGU if driver is going to use
8017 		 * INT#x or MSI
8018 		 */
8019 		if (!(bp->flags & USING_MSIX_FLAG))
8020 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8021 		/*
8022 		 * Timers workaround bug: function init part.
8023 		 * Need to wait 20msec after initializing ILT,
8024 		 * needed to make sure there are no requests in
8025 		 * one of the PXP internal queues with "old" ILT addresses
8026 		 */
8027 		msleep(20);
8028 		/*
8029 		 * Master enable - Due to WB DMAE writes performed before this
8030 		 * register is re-initialized as part of the regular function
8031 		 * init
8032 		 */
8033 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8034 		/* Enable the function in IGU */
8035 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8036 	}
8037 
8038 	bp->dmae_ready = 1;
8039 
8040 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8041 
8042 	bnx2x_clean_pglue_errors(bp);
8043 
8044 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8045 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8048 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8057 
8058 	if (!CHIP_IS_E1x(bp))
8059 		REG_WR(bp, QM_REG_PF_EN, 1);
8060 
8061 	if (!CHIP_IS_E1x(bp)) {
8062 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066 	}
8067 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8068 
8069 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8070 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8071 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8072 
8073 	bnx2x_iov_init_dq(bp);
8074 
8075 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8076 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8077 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8078 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8079 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8080 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8081 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8082 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8083 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8084 	if (!CHIP_IS_E1x(bp))
8085 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8086 
8087 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8088 
8089 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8090 
8091 	if (!CHIP_IS_E1x(bp))
8092 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8093 
8094 	if (IS_MF(bp)) {
8095 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8096 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8097 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8098 			       bp->mf_ov);
8099 		}
8100 	}
8101 
8102 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8103 
8104 	/* HC init per function */
8105 	if (bp->common.int_block == INT_BLOCK_HC) {
8106 		if (CHIP_IS_E1H(bp)) {
8107 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8108 
8109 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8110 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8111 		}
8112 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8113 
8114 	} else {
8115 		int num_segs, sb_idx, prod_offset;
8116 
8117 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8118 
8119 		if (!CHIP_IS_E1x(bp)) {
8120 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8121 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8122 		}
8123 
8124 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8125 
8126 		if (!CHIP_IS_E1x(bp)) {
8127 			int dsb_idx = 0;
8128 			/**
8129 			 * Producer memory:
8130 			 * E2 mode: address 0-135 match to the mapping memory;
8131 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8132 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8133 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8134 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8135 			 * 144-147 reserved.
8136 			 *
8137 			 * E1.5 mode - In backward compatible mode;
8138 			 * for non default SB; each even line in the memory
8139 			 * holds the U producer and each odd line hold
8140 			 * the C producer. The first 128 producers are for
8141 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8142 			 * producers are for the DSB for each PF.
8143 			 * Each PF has five segments: (the order inside each
8144 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8145 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8146 			 * 144-147 attn prods;
8147 			 */
8148 			/* non-default-status-blocks */
8149 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8151 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8152 				prod_offset = (bp->igu_base_sb + sb_idx) *
8153 					num_segs;
8154 
8155 				for (i = 0; i < num_segs; i++) {
8156 					addr = IGU_REG_PROD_CONS_MEMORY +
8157 							(prod_offset + i) * 4;
8158 					REG_WR(bp, addr, 0);
8159 				}
8160 				/* send consumer update with value 0 */
8161 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8162 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8163 				bnx2x_igu_clear_sb(bp,
8164 						   bp->igu_base_sb + sb_idx);
8165 			}
8166 
8167 			/* default-status-blocks */
8168 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8169 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8170 
8171 			if (CHIP_MODE_IS_4_PORT(bp))
8172 				dsb_idx = BP_FUNC(bp);
8173 			else
8174 				dsb_idx = BP_VN(bp);
8175 
8176 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8177 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8178 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8179 
8180 			/*
8181 			 * igu prods come in chunks of E1HVN_MAX (4) -
8182 			 * does not matters what is the current chip mode
8183 			 */
8184 			for (i = 0; i < (num_segs * E1HVN_MAX);
8185 			     i += E1HVN_MAX) {
8186 				addr = IGU_REG_PROD_CONS_MEMORY +
8187 							(prod_offset + i)*4;
8188 				REG_WR(bp, addr, 0);
8189 			}
8190 			/* send consumer update with 0 */
8191 			if (CHIP_INT_MODE_IS_BC(bp)) {
8192 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8193 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8194 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8196 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8198 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8200 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8202 			} else {
8203 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8204 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8205 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8207 			}
8208 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8209 
8210 			/* !!! These should become driver const once
8211 			   rf-tool supports split-68 const */
8212 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8213 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8214 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8215 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8216 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8217 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8218 		}
8219 	}
8220 
8221 	/* Reset PCIE errors for debug */
8222 	REG_WR(bp, 0x2114, 0xffffffff);
8223 	REG_WR(bp, 0x2120, 0xffffffff);
8224 
8225 	if (CHIP_IS_E1x(bp)) {
8226 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8227 		main_mem_base = HC_REG_MAIN_MEMORY +
8228 				BP_PORT(bp) * (main_mem_size * 4);
8229 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8230 		main_mem_width = 8;
8231 
8232 		val = REG_RD(bp, main_mem_prty_clr);
8233 		if (val)
8234 			DP(NETIF_MSG_HW,
8235 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8236 			   val);
8237 
8238 		/* Clear "false" parity errors in MSI-X table */
8239 		for (i = main_mem_base;
8240 		     i < main_mem_base + main_mem_size * 4;
8241 		     i += main_mem_width) {
8242 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8243 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8244 					 i, main_mem_width / 4);
8245 		}
8246 		/* Clear HC parity attention */
8247 		REG_RD(bp, main_mem_prty_clr);
8248 	}
8249 
8250 #ifdef BNX2X_STOP_ON_ERROR
8251 	/* Enable STORMs SP logging */
8252 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8253 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8254 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8255 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8257 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8259 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8260 #endif
8261 
8262 	bnx2x_phy_probe(&bp->link_params);
8263 
8264 	return 0;
8265 }
8266 
8267 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8268 {
8269 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8270 
8271 	if (!CHIP_IS_E1x(bp))
8272 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8273 			       sizeof(struct host_hc_status_block_e2));
8274 	else
8275 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8276 			       sizeof(struct host_hc_status_block_e1x));
8277 
8278 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8279 }
8280 
8281 void bnx2x_free_mem(struct bnx2x *bp)
8282 {
8283 	int i;
8284 
8285 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8286 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8287 
8288 	if (IS_VF(bp))
8289 		return;
8290 
8291 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8292 		       sizeof(struct host_sp_status_block));
8293 
8294 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8295 		       sizeof(struct bnx2x_slowpath));
8296 
8297 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8298 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8299 			       bp->context[i].size);
8300 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8301 
8302 	BNX2X_FREE(bp->ilt->lines);
8303 
8304 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8305 
8306 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8307 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8308 
8309 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8310 
8311 	bnx2x_iov_free_mem(bp);
8312 }
8313 
8314 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8315 {
8316 	if (!CHIP_IS_E1x(bp)) {
8317 		/* size = the status block + ramrod buffers */
8318 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8319 						    sizeof(struct host_hc_status_block_e2));
8320 		if (!bp->cnic_sb.e2_sb)
8321 			goto alloc_mem_err;
8322 	} else {
8323 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8324 						     sizeof(struct host_hc_status_block_e1x));
8325 		if (!bp->cnic_sb.e1x_sb)
8326 			goto alloc_mem_err;
8327 	}
8328 
8329 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8330 		/* allocate searcher T2 table, as it wasn't allocated before */
8331 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8332 		if (!bp->t2)
8333 			goto alloc_mem_err;
8334 	}
8335 
8336 	/* write address to which L5 should insert its values */
8337 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8338 		&bp->slowpath->drv_info_to_mcp;
8339 
8340 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8341 		goto alloc_mem_err;
8342 
8343 	return 0;
8344 
8345 alloc_mem_err:
8346 	bnx2x_free_mem_cnic(bp);
8347 	BNX2X_ERR("Can't allocate memory\n");
8348 	return -ENOMEM;
8349 }
8350 
8351 int bnx2x_alloc_mem(struct bnx2x *bp)
8352 {
8353 	int i, allocated, context_size;
8354 
8355 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8356 		/* allocate searcher T2 table */
8357 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8358 		if (!bp->t2)
8359 			goto alloc_mem_err;
8360 	}
8361 
8362 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8363 					     sizeof(struct host_sp_status_block));
8364 	if (!bp->def_status_blk)
8365 		goto alloc_mem_err;
8366 
8367 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8368 				       sizeof(struct bnx2x_slowpath));
8369 	if (!bp->slowpath)
8370 		goto alloc_mem_err;
8371 
8372 	/* Allocate memory for CDU context:
8373 	 * This memory is allocated separately and not in the generic ILT
8374 	 * functions because CDU differs in few aspects:
8375 	 * 1. There are multiple entities allocating memory for context -
8376 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8377 	 * its own ILT lines.
8378 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8379 	 * for the other ILT clients), to be efficient we want to support
8380 	 * allocation of sub-page-size in the last entry.
8381 	 * 3. Context pointers are used by the driver to pass to FW / update
8382 	 * the context (for the other ILT clients the pointers are used just to
8383 	 * free the memory during unload).
8384 	 */
8385 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8386 
8387 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8388 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8389 					  (context_size - allocated));
8390 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8391 						      bp->context[i].size);
8392 		if (!bp->context[i].vcxt)
8393 			goto alloc_mem_err;
8394 		allocated += bp->context[i].size;
8395 	}
8396 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8397 				 GFP_KERNEL);
8398 	if (!bp->ilt->lines)
8399 		goto alloc_mem_err;
8400 
8401 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8402 		goto alloc_mem_err;
8403 
8404 	if (bnx2x_iov_alloc_mem(bp))
8405 		goto alloc_mem_err;
8406 
8407 	/* Slow path ring */
8408 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8409 	if (!bp->spq)
8410 		goto alloc_mem_err;
8411 
8412 	/* EQ */
8413 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8414 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8415 	if (!bp->eq_ring)
8416 		goto alloc_mem_err;
8417 
8418 	return 0;
8419 
8420 alloc_mem_err:
8421 	bnx2x_free_mem(bp);
8422 	BNX2X_ERR("Can't allocate memory\n");
8423 	return -ENOMEM;
8424 }
8425 
8426 /*
8427  * Init service functions
8428  */
8429 
8430 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8431 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8432 		      int mac_type, unsigned long *ramrod_flags)
8433 {
8434 	int rc;
8435 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8436 
8437 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8438 
8439 	/* Fill general parameters */
8440 	ramrod_param.vlan_mac_obj = obj;
8441 	ramrod_param.ramrod_flags = *ramrod_flags;
8442 
8443 	/* Fill a user request section if needed */
8444 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8445 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8446 
8447 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8448 
8449 		/* Set the command: ADD or DEL */
8450 		if (set)
8451 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8452 		else
8453 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8454 	}
8455 
8456 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8457 
8458 	if (rc == -EEXIST) {
8459 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8460 		/* do not treat adding same MAC as error */
8461 		rc = 0;
8462 	} else if (rc < 0)
8463 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8464 
8465 	return rc;
8466 }
8467 
8468 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8469 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8470 		       unsigned long *ramrod_flags)
8471 {
8472 	int rc;
8473 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8474 
8475 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8476 
8477 	/* Fill general parameters */
8478 	ramrod_param.vlan_mac_obj = obj;
8479 	ramrod_param.ramrod_flags = *ramrod_flags;
8480 
8481 	/* Fill a user request section if needed */
8482 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8483 		ramrod_param.user_req.u.vlan.vlan = vlan;
8484 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8485 		/* Set the command: ADD or DEL */
8486 		if (set)
8487 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8488 		else
8489 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8490 	}
8491 
8492 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8493 
8494 	if (rc == -EEXIST) {
8495 		/* Do not treat adding same vlan as error. */
8496 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8497 		rc = 0;
8498 	} else if (rc < 0) {
8499 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8500 	}
8501 
8502 	return rc;
8503 }
8504 
8505 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8506 {
8507 	struct bnx2x_vlan_entry *vlan;
8508 
8509 	/* Mark that hw forgot all entries */
8510 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8511 		vlan->hw = false;
8512 
8513 	bp->vlan_cnt = 0;
8514 }
8515 
8516 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8517 {
8518 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8519 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8520 	int rc;
8521 
8522 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523 	__set_bit(BNX2X_VLAN, &vlan_flags);
8524 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8525 	if (rc)
8526 		return rc;
8527 
8528 	bnx2x_clear_vlan_info(bp);
8529 
8530 	return 0;
8531 }
8532 
8533 int bnx2x_del_all_macs(struct bnx2x *bp,
8534 		       struct bnx2x_vlan_mac_obj *mac_obj,
8535 		       int mac_type, bool wait_for_comp)
8536 {
8537 	int rc;
8538 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8539 
8540 	/* Wait for completion of requested */
8541 	if (wait_for_comp)
8542 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8543 
8544 	/* Set the mac type of addresses we want to clear */
8545 	__set_bit(mac_type, &vlan_mac_flags);
8546 
8547 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8548 	if (rc < 0)
8549 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8550 
8551 	return rc;
8552 }
8553 
8554 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8555 {
8556 	if (IS_PF(bp)) {
8557 		unsigned long ramrod_flags = 0;
8558 
8559 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8560 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8561 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8562 					 &bp->sp_objs->mac_obj, set,
8563 					 BNX2X_ETH_MAC, &ramrod_flags);
8564 	} else { /* vf */
8565 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8566 					     bp->fp->index, set);
8567 	}
8568 }
8569 
8570 int bnx2x_setup_leading(struct bnx2x *bp)
8571 {
8572 	if (IS_PF(bp))
8573 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8574 	else /* VF */
8575 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8576 }
8577 
8578 /**
8579  * bnx2x_set_int_mode - configure interrupt mode
8580  *
8581  * @bp:		driver handle
8582  *
8583  * In case of MSI-X it will also try to enable MSI-X.
8584  */
8585 int bnx2x_set_int_mode(struct bnx2x *bp)
8586 {
8587 	int rc = 0;
8588 
8589 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8590 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8591 		return -EINVAL;
8592 	}
8593 
8594 	switch (int_mode) {
8595 	case BNX2X_INT_MODE_MSIX:
8596 		/* attempt to enable msix */
8597 		rc = bnx2x_enable_msix(bp);
8598 
8599 		/* msix attained */
8600 		if (!rc)
8601 			return 0;
8602 
8603 		/* vfs use only msix */
8604 		if (rc && IS_VF(bp))
8605 			return rc;
8606 
8607 		/* failed to enable multiple MSI-X */
8608 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8609 			       bp->num_queues,
8610 			       1 + bp->num_cnic_queues);
8611 
8612 		fallthrough;
8613 	case BNX2X_INT_MODE_MSI:
8614 		bnx2x_enable_msi(bp);
8615 
8616 		fallthrough;
8617 	case BNX2X_INT_MODE_INTX:
8618 		bp->num_ethernet_queues = 1;
8619 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8620 		BNX2X_DEV_INFO("set number of queues to 1\n");
8621 		break;
8622 	default:
8623 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8624 		return -EINVAL;
8625 	}
8626 	return 0;
8627 }
8628 
8629 /* must be called prior to any HW initializations */
8630 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8631 {
8632 	if (IS_SRIOV(bp))
8633 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8634 	return L2_ILT_LINES(bp);
8635 }
8636 
8637 void bnx2x_ilt_set_info(struct bnx2x *bp)
8638 {
8639 	struct ilt_client_info *ilt_client;
8640 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8641 	u16 line = 0;
8642 
8643 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8644 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8645 
8646 	/* CDU */
8647 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8648 	ilt_client->client_num = ILT_CLIENT_CDU;
8649 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8650 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8651 	ilt_client->start = line;
8652 	line += bnx2x_cid_ilt_lines(bp);
8653 
8654 	if (CNIC_SUPPORT(bp))
8655 		line += CNIC_ILT_LINES;
8656 	ilt_client->end = line - 1;
8657 
8658 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8659 	   ilt_client->start,
8660 	   ilt_client->end,
8661 	   ilt_client->page_size,
8662 	   ilt_client->flags,
8663 	   ilog2(ilt_client->page_size >> 12));
8664 
8665 	/* QM */
8666 	if (QM_INIT(bp->qm_cid_count)) {
8667 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8668 		ilt_client->client_num = ILT_CLIENT_QM;
8669 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8670 		ilt_client->flags = 0;
8671 		ilt_client->start = line;
8672 
8673 		/* 4 bytes for each cid */
8674 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8675 							 QM_ILT_PAGE_SZ);
8676 
8677 		ilt_client->end = line - 1;
8678 
8679 		DP(NETIF_MSG_IFUP,
8680 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8681 		   ilt_client->start,
8682 		   ilt_client->end,
8683 		   ilt_client->page_size,
8684 		   ilt_client->flags,
8685 		   ilog2(ilt_client->page_size >> 12));
8686 	}
8687 
8688 	if (CNIC_SUPPORT(bp)) {
8689 		/* SRC */
8690 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8691 		ilt_client->client_num = ILT_CLIENT_SRC;
8692 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8693 		ilt_client->flags = 0;
8694 		ilt_client->start = line;
8695 		line += SRC_ILT_LINES;
8696 		ilt_client->end = line - 1;
8697 
8698 		DP(NETIF_MSG_IFUP,
8699 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8700 		   ilt_client->start,
8701 		   ilt_client->end,
8702 		   ilt_client->page_size,
8703 		   ilt_client->flags,
8704 		   ilog2(ilt_client->page_size >> 12));
8705 
8706 		/* TM */
8707 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8708 		ilt_client->client_num = ILT_CLIENT_TM;
8709 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8710 		ilt_client->flags = 0;
8711 		ilt_client->start = line;
8712 		line += TM_ILT_LINES;
8713 		ilt_client->end = line - 1;
8714 
8715 		DP(NETIF_MSG_IFUP,
8716 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8717 		   ilt_client->start,
8718 		   ilt_client->end,
8719 		   ilt_client->page_size,
8720 		   ilt_client->flags,
8721 		   ilog2(ilt_client->page_size >> 12));
8722 	}
8723 
8724 	BUG_ON(line > ILT_MAX_LINES);
8725 }
8726 
8727 /**
8728  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8729  *
8730  * @bp:			driver handle
8731  * @fp:			pointer to fastpath
8732  * @init_params:	pointer to parameters structure
8733  *
8734  * parameters configured:
8735  *      - HC configuration
8736  *      - Queue's CDU context
8737  */
8738 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8739 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8740 {
8741 	u8 cos;
8742 	int cxt_index, cxt_offset;
8743 
8744 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8745 	if (!IS_FCOE_FP(fp)) {
8746 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8747 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8748 
8749 		/* If HC is supported, enable host coalescing in the transition
8750 		 * to INIT state.
8751 		 */
8752 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8753 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8754 
8755 		/* HC rate */
8756 		init_params->rx.hc_rate = bp->rx_ticks ?
8757 			(1000000 / bp->rx_ticks) : 0;
8758 		init_params->tx.hc_rate = bp->tx_ticks ?
8759 			(1000000 / bp->tx_ticks) : 0;
8760 
8761 		/* FW SB ID */
8762 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8763 			fp->fw_sb_id;
8764 
8765 		/*
8766 		 * CQ index among the SB indices: FCoE clients uses the default
8767 		 * SB, therefore it's different.
8768 		 */
8769 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8770 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8771 	}
8772 
8773 	/* set maximum number of COSs supported by this queue */
8774 	init_params->max_cos = fp->max_cos;
8775 
8776 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8777 	    fp->index, init_params->max_cos);
8778 
8779 	/* set the context pointers queue object */
8780 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8781 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8782 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8783 				ILT_PAGE_CIDS);
8784 		init_params->cxts[cos] =
8785 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8786 	}
8787 }
8788 
8789 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8790 			struct bnx2x_queue_state_params *q_params,
8791 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8792 			int tx_index, bool leading)
8793 {
8794 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8795 
8796 	/* Set the command */
8797 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8798 
8799 	/* Set tx-only QUEUE flags: don't zero statistics */
8800 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8801 
8802 	/* choose the index of the cid to send the slow path on */
8803 	tx_only_params->cid_index = tx_index;
8804 
8805 	/* Set general TX_ONLY_SETUP parameters */
8806 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8807 
8808 	/* Set Tx TX_ONLY_SETUP parameters */
8809 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8810 
8811 	DP(NETIF_MSG_IFUP,
8812 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8813 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8814 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8815 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8816 
8817 	/* send the ramrod */
8818 	return bnx2x_queue_state_change(bp, q_params);
8819 }
8820 
8821 /**
8822  * bnx2x_setup_queue - setup queue
8823  *
8824  * @bp:		driver handle
8825  * @fp:		pointer to fastpath
8826  * @leading:	is leading
8827  *
8828  * This function performs 2 steps in a Queue state machine
8829  *      actually: 1) RESET->INIT 2) INIT->SETUP
8830  */
8831 
8832 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8833 		       bool leading)
8834 {
8835 	struct bnx2x_queue_state_params q_params = {NULL};
8836 	struct bnx2x_queue_setup_params *setup_params =
8837 						&q_params.params.setup;
8838 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8839 						&q_params.params.tx_only;
8840 	int rc;
8841 	u8 tx_index;
8842 
8843 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8844 
8845 	/* reset IGU state skip FCoE L2 queue */
8846 	if (!IS_FCOE_FP(fp))
8847 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8848 			     IGU_INT_ENABLE, 0);
8849 
8850 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8851 	/* We want to wait for completion in this context */
8852 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8853 
8854 	/* Prepare the INIT parameters */
8855 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8856 
8857 	/* Set the command */
8858 	q_params.cmd = BNX2X_Q_CMD_INIT;
8859 
8860 	/* Change the state to INIT */
8861 	rc = bnx2x_queue_state_change(bp, &q_params);
8862 	if (rc) {
8863 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8864 		return rc;
8865 	}
8866 
8867 	DP(NETIF_MSG_IFUP, "init complete\n");
8868 
8869 	/* Now move the Queue to the SETUP state... */
8870 	memset(setup_params, 0, sizeof(*setup_params));
8871 
8872 	/* Set QUEUE flags */
8873 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8874 
8875 	/* Set general SETUP parameters */
8876 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8877 				FIRST_TX_COS_INDEX);
8878 
8879 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8880 			    &setup_params->rxq_params);
8881 
8882 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8883 			   FIRST_TX_COS_INDEX);
8884 
8885 	/* Set the command */
8886 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8887 
8888 	if (IS_FCOE_FP(fp))
8889 		bp->fcoe_init = true;
8890 
8891 	/* Change the state to SETUP */
8892 	rc = bnx2x_queue_state_change(bp, &q_params);
8893 	if (rc) {
8894 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8895 		return rc;
8896 	}
8897 
8898 	/* loop through the relevant tx-only indices */
8899 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8900 	      tx_index < fp->max_cos;
8901 	      tx_index++) {
8902 
8903 		/* prepare and send tx-only ramrod*/
8904 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8905 					  tx_only_params, tx_index, leading);
8906 		if (rc) {
8907 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8908 				  fp->index, tx_index);
8909 			return rc;
8910 		}
8911 	}
8912 
8913 	return rc;
8914 }
8915 
8916 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8917 {
8918 	struct bnx2x_fastpath *fp = &bp->fp[index];
8919 	struct bnx2x_fp_txdata *txdata;
8920 	struct bnx2x_queue_state_params q_params = {NULL};
8921 	int rc, tx_index;
8922 
8923 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8924 
8925 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8926 	/* We want to wait for completion in this context */
8927 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8928 
8929 	/* close tx-only connections */
8930 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8931 	     tx_index < fp->max_cos;
8932 	     tx_index++){
8933 
8934 		/* ascertain this is a normal queue*/
8935 		txdata = fp->txdata_ptr[tx_index];
8936 
8937 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8938 							txdata->txq_index);
8939 
8940 		/* send halt terminate on tx-only connection */
8941 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8942 		memset(&q_params.params.terminate, 0,
8943 		       sizeof(q_params.params.terminate));
8944 		q_params.params.terminate.cid_index = tx_index;
8945 
8946 		rc = bnx2x_queue_state_change(bp, &q_params);
8947 		if (rc)
8948 			return rc;
8949 
8950 		/* send halt terminate on tx-only connection */
8951 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8952 		memset(&q_params.params.cfc_del, 0,
8953 		       sizeof(q_params.params.cfc_del));
8954 		q_params.params.cfc_del.cid_index = tx_index;
8955 		rc = bnx2x_queue_state_change(bp, &q_params);
8956 		if (rc)
8957 			return rc;
8958 	}
8959 	/* Stop the primary connection: */
8960 	/* ...halt the connection */
8961 	q_params.cmd = BNX2X_Q_CMD_HALT;
8962 	rc = bnx2x_queue_state_change(bp, &q_params);
8963 	if (rc)
8964 		return rc;
8965 
8966 	/* ...terminate the connection */
8967 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8968 	memset(&q_params.params.terminate, 0,
8969 	       sizeof(q_params.params.terminate));
8970 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8971 	rc = bnx2x_queue_state_change(bp, &q_params);
8972 	if (rc)
8973 		return rc;
8974 	/* ...delete cfc entry */
8975 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8976 	memset(&q_params.params.cfc_del, 0,
8977 	       sizeof(q_params.params.cfc_del));
8978 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8979 	return bnx2x_queue_state_change(bp, &q_params);
8980 }
8981 
8982 static void bnx2x_reset_func(struct bnx2x *bp)
8983 {
8984 	int port = BP_PORT(bp);
8985 	int func = BP_FUNC(bp);
8986 	int i;
8987 
8988 	/* Disable the function in the FW */
8989 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8990 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8991 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8992 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8993 
8994 	/* FP SBs */
8995 	for_each_eth_queue(bp, i) {
8996 		struct bnx2x_fastpath *fp = &bp->fp[i];
8997 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8998 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8999 			   SB_DISABLED);
9000 	}
9001 
9002 	if (CNIC_LOADED(bp))
9003 		/* CNIC SB */
9004 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9005 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9006 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9007 
9008 	/* SP SB */
9009 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9010 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9011 		SB_DISABLED);
9012 
9013 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9014 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9015 		       0);
9016 
9017 	/* Configure IGU */
9018 	if (bp->common.int_block == INT_BLOCK_HC) {
9019 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9020 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9021 	} else {
9022 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9023 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9024 	}
9025 
9026 	if (CNIC_LOADED(bp)) {
9027 		/* Disable Timer scan */
9028 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9029 		/*
9030 		 * Wait for at least 10ms and up to 2 second for the timers
9031 		 * scan to complete
9032 		 */
9033 		for (i = 0; i < 200; i++) {
9034 			usleep_range(10000, 20000);
9035 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9036 				break;
9037 		}
9038 	}
9039 	/* Clear ILT */
9040 	bnx2x_clear_func_ilt(bp, func);
9041 
9042 	/* Timers workaround bug for E2: if this is vnic-3,
9043 	 * we need to set the entire ilt range for this timers.
9044 	 */
9045 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9046 		struct ilt_client_info ilt_cli;
9047 		/* use dummy TM client */
9048 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9049 		ilt_cli.start = 0;
9050 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9051 		ilt_cli.client_num = ILT_CLIENT_TM;
9052 
9053 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9054 	}
9055 
9056 	/* this assumes that reset_port() called before reset_func()*/
9057 	if (!CHIP_IS_E1x(bp))
9058 		bnx2x_pf_disable(bp);
9059 
9060 	bp->dmae_ready = 0;
9061 }
9062 
9063 static void bnx2x_reset_port(struct bnx2x *bp)
9064 {
9065 	int port = BP_PORT(bp);
9066 	u32 val;
9067 
9068 	/* Reset physical Link */
9069 	bnx2x__link_reset(bp);
9070 
9071 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9072 
9073 	/* Do not rcv packets to BRB */
9074 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9075 	/* Do not direct rcv packets that are not for MCP to the BRB */
9076 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9077 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9078 
9079 	/* Configure AEU */
9080 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9081 
9082 	msleep(100);
9083 	/* Check for BRB port occupancy */
9084 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9085 	if (val)
9086 		DP(NETIF_MSG_IFDOWN,
9087 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9088 
9089 	/* TODO: Close Doorbell port? */
9090 }
9091 
9092 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9093 {
9094 	struct bnx2x_func_state_params func_params = {NULL};
9095 
9096 	/* Prepare parameters for function state transitions */
9097 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9098 
9099 	func_params.f_obj = &bp->func_obj;
9100 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9101 
9102 	func_params.params.hw_init.load_phase = load_code;
9103 
9104 	return bnx2x_func_state_change(bp, &func_params);
9105 }
9106 
9107 static int bnx2x_func_stop(struct bnx2x *bp)
9108 {
9109 	struct bnx2x_func_state_params func_params = {NULL};
9110 	int rc;
9111 
9112 	/* Prepare parameters for function state transitions */
9113 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9114 	func_params.f_obj = &bp->func_obj;
9115 	func_params.cmd = BNX2X_F_CMD_STOP;
9116 
9117 	/*
9118 	 * Try to stop the function the 'good way'. If fails (in case
9119 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9120 	 * not in a debug mode, perform a state transaction in order to
9121 	 * enable further HW_RESET transaction.
9122 	 */
9123 	rc = bnx2x_func_state_change(bp, &func_params);
9124 	if (rc) {
9125 #ifdef BNX2X_STOP_ON_ERROR
9126 		return rc;
9127 #else
9128 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9129 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9130 		return bnx2x_func_state_change(bp, &func_params);
9131 #endif
9132 	}
9133 
9134 	return 0;
9135 }
9136 
9137 /**
9138  * bnx2x_send_unload_req - request unload mode from the MCP.
9139  *
9140  * @bp:			driver handle
9141  * @unload_mode:	requested function's unload mode
9142  *
9143  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9144  */
9145 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9146 {
9147 	u32 reset_code = 0;
9148 	int port = BP_PORT(bp);
9149 
9150 	/* Select the UNLOAD request mode */
9151 	if (unload_mode == UNLOAD_NORMAL)
9152 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9153 
9154 	else if (bp->flags & NO_WOL_FLAG)
9155 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9156 
9157 	else if (bp->wol) {
9158 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9159 		const u8 *mac_addr = bp->dev->dev_addr;
9160 		struct pci_dev *pdev = bp->pdev;
9161 		u32 val;
9162 		u16 pmc;
9163 
9164 		/* The mac address is written to entries 1-4 to
9165 		 * preserve entry 0 which is used by the PMF
9166 		 */
9167 		u8 entry = (BP_VN(bp) + 1)*8;
9168 
9169 		val = (mac_addr[0] << 8) | mac_addr[1];
9170 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9171 
9172 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9173 		      (mac_addr[4] << 8) | mac_addr[5];
9174 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9175 
9176 		/* Enable the PME and clear the status */
9177 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9178 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9179 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9180 
9181 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9182 
9183 	} else
9184 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9185 
9186 	/* Send the request to the MCP */
9187 	if (!BP_NOMCP(bp))
9188 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9189 	else {
9190 		int path = BP_PATH(bp);
9191 
9192 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9193 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9194 		   bnx2x_load_count[path][2]);
9195 		bnx2x_load_count[path][0]--;
9196 		bnx2x_load_count[path][1 + port]--;
9197 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9198 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9199 		   bnx2x_load_count[path][2]);
9200 		if (bnx2x_load_count[path][0] == 0)
9201 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9202 		else if (bnx2x_load_count[path][1 + port] == 0)
9203 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9204 		else
9205 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9206 	}
9207 
9208 	return reset_code;
9209 }
9210 
9211 /**
9212  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9213  *
9214  * @bp:		driver handle
9215  * @keep_link:		true iff link should be kept up
9216  */
9217 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9218 {
9219 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9220 
9221 	/* Report UNLOAD_DONE to MCP */
9222 	if (!BP_NOMCP(bp))
9223 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9224 }
9225 
9226 static int bnx2x_func_wait_started(struct bnx2x *bp)
9227 {
9228 	int tout = 50;
9229 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9230 
9231 	if (!bp->port.pmf)
9232 		return 0;
9233 
9234 	/*
9235 	 * (assumption: No Attention from MCP at this stage)
9236 	 * PMF probably in the middle of TX disable/enable transaction
9237 	 * 1. Sync IRS for default SB
9238 	 * 2. Sync SP queue - this guarantees us that attention handling started
9239 	 * 3. Wait, that TX disable/enable transaction completes
9240 	 *
9241 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9242 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9243 	 * received completion for the transaction the state is TX_STOPPED.
9244 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9245 	 * transaction.
9246 	 */
9247 
9248 	/* make sure default SB ISR is done */
9249 	if (msix)
9250 		synchronize_irq(bp->msix_table[0].vector);
9251 	else
9252 		synchronize_irq(bp->pdev->irq);
9253 
9254 	flush_workqueue(bnx2x_wq);
9255 	flush_workqueue(bnx2x_iov_wq);
9256 
9257 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9258 				BNX2X_F_STATE_STARTED && tout--)
9259 		msleep(20);
9260 
9261 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9262 						BNX2X_F_STATE_STARTED) {
9263 #ifdef BNX2X_STOP_ON_ERROR
9264 		BNX2X_ERR("Wrong function state\n");
9265 		return -EBUSY;
9266 #else
9267 		/*
9268 		 * Failed to complete the transaction in a "good way"
9269 		 * Force both transactions with CLR bit
9270 		 */
9271 		struct bnx2x_func_state_params func_params = {NULL};
9272 
9273 		DP(NETIF_MSG_IFDOWN,
9274 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9275 
9276 		func_params.f_obj = &bp->func_obj;
9277 		__set_bit(RAMROD_DRV_CLR_ONLY,
9278 					&func_params.ramrod_flags);
9279 
9280 		/* STARTED-->TX_ST0PPED */
9281 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9282 		bnx2x_func_state_change(bp, &func_params);
9283 
9284 		/* TX_ST0PPED-->STARTED */
9285 		func_params.cmd = BNX2X_F_CMD_TX_START;
9286 		return bnx2x_func_state_change(bp, &func_params);
9287 #endif
9288 	}
9289 
9290 	return 0;
9291 }
9292 
9293 static void bnx2x_disable_ptp(struct bnx2x *bp)
9294 {
9295 	int port = BP_PORT(bp);
9296 
9297 	/* Disable sending PTP packets to host */
9298 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9299 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9300 
9301 	/* Reset PTP event detection rules */
9302 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9303 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9304 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9305 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9306 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9307 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9308 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9309 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9310 
9311 	/* Disable the PTP feature */
9312 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9313 	       NIG_REG_P0_PTP_EN, 0x0);
9314 }
9315 
9316 /* Called during unload, to stop PTP-related stuff */
9317 static void bnx2x_stop_ptp(struct bnx2x *bp)
9318 {
9319 	/* Cancel PTP work queue. Should be done after the Tx queues are
9320 	 * drained to prevent additional scheduling.
9321 	 */
9322 	cancel_work_sync(&bp->ptp_task);
9323 
9324 	if (bp->ptp_tx_skb) {
9325 		dev_kfree_skb_any(bp->ptp_tx_skb);
9326 		bp->ptp_tx_skb = NULL;
9327 	}
9328 
9329 	/* Disable PTP in HW */
9330 	bnx2x_disable_ptp(bp);
9331 
9332 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9333 }
9334 
9335 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9336 {
9337 	int port = BP_PORT(bp);
9338 	int i, rc = 0;
9339 	u8 cos;
9340 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9341 	u32 reset_code;
9342 
9343 	/* Wait until tx fastpath tasks complete */
9344 	for_each_tx_queue(bp, i) {
9345 		struct bnx2x_fastpath *fp = &bp->fp[i];
9346 
9347 		for_each_cos_in_tx_queue(fp, cos)
9348 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9349 #ifdef BNX2X_STOP_ON_ERROR
9350 		if (rc)
9351 			return;
9352 #endif
9353 	}
9354 
9355 	/* Give HW time to discard old tx messages */
9356 	usleep_range(1000, 2000);
9357 
9358 	/* Clean all ETH MACs */
9359 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9360 				false);
9361 	if (rc < 0)
9362 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9363 
9364 	/* Clean up UC list  */
9365 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9366 				true);
9367 	if (rc < 0)
9368 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9369 			  rc);
9370 
9371 	/* The whole *vlan_obj structure may be not initialized if VLAN
9372 	 * filtering offload is not supported by hardware. Currently this is
9373 	 * true for all hardware covered by CHIP_IS_E1x().
9374 	 */
9375 	if (!CHIP_IS_E1x(bp)) {
9376 		/* Remove all currently configured VLANs */
9377 		rc = bnx2x_del_all_vlans(bp);
9378 		if (rc < 0)
9379 			BNX2X_ERR("Failed to delete all VLANs\n");
9380 	}
9381 
9382 	/* Disable LLH */
9383 	if (!CHIP_IS_E1(bp))
9384 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9385 
9386 	/* Set "drop all" (stop Rx).
9387 	 * We need to take a netif_addr_lock() here in order to prevent
9388 	 * a race between the completion code and this code.
9389 	 */
9390 	netif_addr_lock_bh(bp->dev);
9391 	/* Schedule the rx_mode command */
9392 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9393 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9394 	else if (bp->slowpath)
9395 		bnx2x_set_storm_rx_mode(bp);
9396 
9397 	/* Cleanup multicast configuration */
9398 	rparam.mcast_obj = &bp->mcast_obj;
9399 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9400 	if (rc < 0)
9401 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9402 
9403 	netif_addr_unlock_bh(bp->dev);
9404 
9405 	bnx2x_iov_chip_cleanup(bp);
9406 
9407 	/*
9408 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9409 	 * this function should perform FUNC, PORT or COMMON HW
9410 	 * reset.
9411 	 */
9412 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9413 
9414 	/*
9415 	 * (assumption: No Attention from MCP at this stage)
9416 	 * PMF probably in the middle of TX disable/enable transaction
9417 	 */
9418 	rc = bnx2x_func_wait_started(bp);
9419 	if (rc) {
9420 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9421 #ifdef BNX2X_STOP_ON_ERROR
9422 		return;
9423 #endif
9424 	}
9425 
9426 	/* Close multi and leading connections
9427 	 * Completions for ramrods are collected in a synchronous way
9428 	 */
9429 	for_each_eth_queue(bp, i)
9430 		if (bnx2x_stop_queue(bp, i))
9431 #ifdef BNX2X_STOP_ON_ERROR
9432 			return;
9433 #else
9434 			goto unload_error;
9435 #endif
9436 
9437 	if (CNIC_LOADED(bp)) {
9438 		for_each_cnic_queue(bp, i)
9439 			if (bnx2x_stop_queue(bp, i))
9440 #ifdef BNX2X_STOP_ON_ERROR
9441 				return;
9442 #else
9443 				goto unload_error;
9444 #endif
9445 	}
9446 
9447 	/* If SP settings didn't get completed so far - something
9448 	 * very wrong has happen.
9449 	 */
9450 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9451 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9452 
9453 #ifndef BNX2X_STOP_ON_ERROR
9454 unload_error:
9455 #endif
9456 	rc = bnx2x_func_stop(bp);
9457 	if (rc) {
9458 		BNX2X_ERR("Function stop failed!\n");
9459 #ifdef BNX2X_STOP_ON_ERROR
9460 		return;
9461 #endif
9462 	}
9463 
9464 	/* stop_ptp should be after the Tx queues are drained to prevent
9465 	 * scheduling to the cancelled PTP work queue. It should also be after
9466 	 * function stop ramrod is sent, since as part of this ramrod FW access
9467 	 * PTP registers.
9468 	 */
9469 	if (bp->flags & PTP_SUPPORTED) {
9470 		bnx2x_stop_ptp(bp);
9471 		if (bp->ptp_clock) {
9472 			ptp_clock_unregister(bp->ptp_clock);
9473 			bp->ptp_clock = NULL;
9474 		}
9475 	}
9476 
9477 	if (!bp->nic_stopped) {
9478 		/* Disable HW interrupts, NAPI */
9479 		bnx2x_netif_stop(bp, 1);
9480 		/* Delete all NAPI objects */
9481 		bnx2x_del_all_napi(bp);
9482 		if (CNIC_LOADED(bp))
9483 			bnx2x_del_all_napi_cnic(bp);
9484 
9485 		/* Release IRQs */
9486 		bnx2x_free_irq(bp);
9487 		bp->nic_stopped = true;
9488 	}
9489 
9490 	/* Reset the chip, unless PCI function is offline. If we reach this
9491 	 * point following a PCI error handling, it means device is really
9492 	 * in a bad state and we're about to remove it, so reset the chip
9493 	 * is not a good idea.
9494 	 */
9495 	if (!pci_channel_offline(bp->pdev)) {
9496 		rc = bnx2x_reset_hw(bp, reset_code);
9497 		if (rc)
9498 			BNX2X_ERR("HW_RESET failed\n");
9499 	}
9500 
9501 	/* Report UNLOAD_DONE to MCP */
9502 	bnx2x_send_unload_done(bp, keep_link);
9503 }
9504 
9505 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9506 {
9507 	u32 val;
9508 
9509 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9510 
9511 	if (CHIP_IS_E1(bp)) {
9512 		int port = BP_PORT(bp);
9513 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9514 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9515 
9516 		val = REG_RD(bp, addr);
9517 		val &= ~(0x300);
9518 		REG_WR(bp, addr, val);
9519 	} else {
9520 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9521 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9522 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9523 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9524 	}
9525 }
9526 
9527 /* Close gates #2, #3 and #4: */
9528 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9529 {
9530 	u32 val;
9531 
9532 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9533 	if (!CHIP_IS_E1(bp)) {
9534 		/* #4 */
9535 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9536 		/* #2 */
9537 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9538 	}
9539 
9540 	/* #3 */
9541 	if (CHIP_IS_E1x(bp)) {
9542 		/* Prevent interrupts from HC on both ports */
9543 		val = REG_RD(bp, HC_REG_CONFIG_1);
9544 		REG_WR(bp, HC_REG_CONFIG_1,
9545 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9546 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9547 
9548 		val = REG_RD(bp, HC_REG_CONFIG_0);
9549 		REG_WR(bp, HC_REG_CONFIG_0,
9550 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9551 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9552 	} else {
9553 		/* Prevent incoming interrupts in IGU */
9554 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9555 
9556 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9557 		       (!close) ?
9558 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9559 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9560 	}
9561 
9562 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9563 		close ? "closing" : "opening");
9564 }
9565 
9566 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9567 
9568 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9569 {
9570 	/* Do some magic... */
9571 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9572 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9573 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9574 }
9575 
9576 /**
9577  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9578  *
9579  * @bp:		driver handle
9580  * @magic_val:	old value of the `magic' bit.
9581  */
9582 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9583 {
9584 	/* Restore the `magic' bit value... */
9585 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9586 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9587 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9588 }
9589 
9590 /**
9591  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9592  *
9593  * @bp:		driver handle
9594  * @magic_val:	old value of 'magic' bit.
9595  *
9596  * Takes care of CLP configurations.
9597  */
9598 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9599 {
9600 	u32 shmem;
9601 	u32 validity_offset;
9602 
9603 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9604 
9605 	/* Set `magic' bit in order to save MF config */
9606 	if (!CHIP_IS_E1(bp))
9607 		bnx2x_clp_reset_prep(bp, magic_val);
9608 
9609 	/* Get shmem offset */
9610 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9611 	validity_offset =
9612 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9613 
9614 	/* Clear validity map flags */
9615 	if (shmem > 0)
9616 		REG_WR(bp, shmem + validity_offset, 0);
9617 }
9618 
9619 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9620 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9621 
9622 /**
9623  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9624  *
9625  * @bp:	driver handle
9626  */
9627 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9628 {
9629 	/* special handling for emulation and FPGA,
9630 	   wait 10 times longer */
9631 	if (CHIP_REV_IS_SLOW(bp))
9632 		msleep(MCP_ONE_TIMEOUT*10);
9633 	else
9634 		msleep(MCP_ONE_TIMEOUT);
9635 }
9636 
9637 /*
9638  * initializes bp->common.shmem_base and waits for validity signature to appear
9639  */
9640 static int bnx2x_init_shmem(struct bnx2x *bp)
9641 {
9642 	int cnt = 0;
9643 	u32 val = 0;
9644 
9645 	do {
9646 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9647 
9648 		/* If we read all 0xFFs, means we are in PCI error state and
9649 		 * should bail out to avoid crashes on adapter's FW reads.
9650 		 */
9651 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9652 			bp->flags |= NO_MCP_FLAG;
9653 			return -ENODEV;
9654 		}
9655 
9656 		if (bp->common.shmem_base) {
9657 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9658 			if (val & SHR_MEM_VALIDITY_MB)
9659 				return 0;
9660 		}
9661 
9662 		bnx2x_mcp_wait_one(bp);
9663 
9664 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9665 
9666 	BNX2X_ERR("BAD MCP validity signature\n");
9667 
9668 	return -ENODEV;
9669 }
9670 
9671 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9672 {
9673 	int rc = bnx2x_init_shmem(bp);
9674 
9675 	/* Restore the `magic' bit value */
9676 	if (!CHIP_IS_E1(bp))
9677 		bnx2x_clp_reset_done(bp, magic_val);
9678 
9679 	return rc;
9680 }
9681 
9682 static void bnx2x_pxp_prep(struct bnx2x *bp)
9683 {
9684 	if (!CHIP_IS_E1(bp)) {
9685 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9686 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9687 	}
9688 }
9689 
9690 /*
9691  * Reset the whole chip except for:
9692  *      - PCIE core
9693  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9694  *              one reset bit)
9695  *      - IGU
9696  *      - MISC (including AEU)
9697  *      - GRC
9698  *      - RBCN, RBCP
9699  */
9700 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9701 {
9702 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9703 	u32 global_bits2, stay_reset2;
9704 
9705 	/*
9706 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9707 	 * (per chip) blocks.
9708 	 */
9709 	global_bits2 =
9710 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9711 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9712 
9713 	/* Don't reset the following blocks.
9714 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9715 	 *            reset, as in 4 port device they might still be owned
9716 	 *            by the MCP (there is only one leader per path).
9717 	 */
9718 	not_reset_mask1 =
9719 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9720 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9721 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9722 
9723 	not_reset_mask2 =
9724 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9725 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9726 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9727 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9728 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9729 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9730 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9731 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9732 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9733 		MISC_REGISTERS_RESET_REG_2_PGLC |
9734 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9735 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9736 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9737 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9738 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9739 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9740 
9741 	/*
9742 	 * Keep the following blocks in reset:
9743 	 *  - all xxMACs are handled by the bnx2x_link code.
9744 	 */
9745 	stay_reset2 =
9746 		MISC_REGISTERS_RESET_REG_2_XMAC |
9747 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9748 
9749 	/* Full reset masks according to the chip */
9750 	reset_mask1 = 0xffffffff;
9751 
9752 	if (CHIP_IS_E1(bp))
9753 		reset_mask2 = 0xffff;
9754 	else if (CHIP_IS_E1H(bp))
9755 		reset_mask2 = 0x1ffff;
9756 	else if (CHIP_IS_E2(bp))
9757 		reset_mask2 = 0xfffff;
9758 	else /* CHIP_IS_E3 */
9759 		reset_mask2 = 0x3ffffff;
9760 
9761 	/* Don't reset global blocks unless we need to */
9762 	if (!global)
9763 		reset_mask2 &= ~global_bits2;
9764 
9765 	/*
9766 	 * In case of attention in the QM, we need to reset PXP
9767 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9768 	 * because otherwise QM reset would release 'close the gates' shortly
9769 	 * before resetting the PXP, then the PSWRQ would send a write
9770 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9771 	 * read the payload data from PSWWR, but PSWWR would not
9772 	 * respond. The write queue in PGLUE would stuck, dmae commands
9773 	 * would not return. Therefore it's important to reset the second
9774 	 * reset register (containing the
9775 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9776 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9777 	 * bit).
9778 	 */
9779 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9780 	       reset_mask2 & (~not_reset_mask2));
9781 
9782 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9783 	       reset_mask1 & (~not_reset_mask1));
9784 
9785 	barrier();
9786 
9787 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9788 	       reset_mask2 & (~stay_reset2));
9789 
9790 	barrier();
9791 
9792 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9793 }
9794 
9795 /**
9796  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9797  * It should get cleared in no more than 1s.
9798  *
9799  * @bp:	driver handle
9800  *
9801  * It should get cleared in no more than 1s. Returns 0 if
9802  * pending writes bit gets cleared.
9803  */
9804 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9805 {
9806 	u32 cnt = 1000;
9807 	u32 pend_bits = 0;
9808 
9809 	do {
9810 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9811 
9812 		if (pend_bits == 0)
9813 			break;
9814 
9815 		usleep_range(1000, 2000);
9816 	} while (cnt-- > 0);
9817 
9818 	if (cnt <= 0) {
9819 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9820 			  pend_bits);
9821 		return -EBUSY;
9822 	}
9823 
9824 	return 0;
9825 }
9826 
9827 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9828 {
9829 	int cnt = 1000;
9830 	u32 val = 0;
9831 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9832 	u32 tags_63_32 = 0;
9833 
9834 	/* Empty the Tetris buffer, wait for 1s */
9835 	do {
9836 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9837 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9838 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9839 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9840 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9841 		if (CHIP_IS_E3(bp))
9842 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9843 
9844 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9845 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9846 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9847 		    (pgl_exp_rom2 == 0xffffffff) &&
9848 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9849 			break;
9850 		usleep_range(1000, 2000);
9851 	} while (cnt-- > 0);
9852 
9853 	if (cnt <= 0) {
9854 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9855 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9856 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9857 			  pgl_exp_rom2);
9858 		return -EAGAIN;
9859 	}
9860 
9861 	barrier();
9862 
9863 	/* Close gates #2, #3 and #4 */
9864 	bnx2x_set_234_gates(bp, true);
9865 
9866 	/* Poll for IGU VQs for 57712 and newer chips */
9867 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9868 		return -EAGAIN;
9869 
9870 	/* TBD: Indicate that "process kill" is in progress to MCP */
9871 
9872 	/* Clear "unprepared" bit */
9873 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9874 	barrier();
9875 
9876 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9877 	 * PSWHST, GRC and PSWRD Tetris buffer.
9878 	 */
9879 	usleep_range(1000, 2000);
9880 
9881 	/* Prepare to chip reset: */
9882 	/* MCP */
9883 	if (global)
9884 		bnx2x_reset_mcp_prep(bp, &val);
9885 
9886 	/* PXP */
9887 	bnx2x_pxp_prep(bp);
9888 	barrier();
9889 
9890 	/* reset the chip */
9891 	bnx2x_process_kill_chip_reset(bp, global);
9892 	barrier();
9893 
9894 	/* clear errors in PGB */
9895 	if (!CHIP_IS_E1x(bp))
9896 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9897 
9898 	/* Recover after reset: */
9899 	/* MCP */
9900 	if (global && bnx2x_reset_mcp_comp(bp, val))
9901 		return -EAGAIN;
9902 
9903 	/* TBD: Add resetting the NO_MCP mode DB here */
9904 
9905 	/* Open the gates #2, #3 and #4 */
9906 	bnx2x_set_234_gates(bp, false);
9907 
9908 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9909 	 * reset state, re-enable attentions. */
9910 
9911 	return 0;
9912 }
9913 
9914 static int bnx2x_leader_reset(struct bnx2x *bp)
9915 {
9916 	int rc = 0;
9917 	bool global = bnx2x_reset_is_global(bp);
9918 	u32 load_code;
9919 
9920 	/* if not going to reset MCP - load "fake" driver to reset HW while
9921 	 * driver is owner of the HW
9922 	 */
9923 	if (!global && !BP_NOMCP(bp)) {
9924 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9925 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9926 		if (!load_code) {
9927 			BNX2X_ERR("MCP response failure, aborting\n");
9928 			rc = -EAGAIN;
9929 			goto exit_leader_reset;
9930 		}
9931 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9932 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9933 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9934 			rc = -EAGAIN;
9935 			goto exit_leader_reset2;
9936 		}
9937 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9938 		if (!load_code) {
9939 			BNX2X_ERR("MCP response failure, aborting\n");
9940 			rc = -EAGAIN;
9941 			goto exit_leader_reset2;
9942 		}
9943 	}
9944 
9945 	/* Try to recover after the failure */
9946 	if (bnx2x_process_kill(bp, global)) {
9947 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9948 			  BP_PATH(bp));
9949 		rc = -EAGAIN;
9950 		goto exit_leader_reset2;
9951 	}
9952 
9953 	/*
9954 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9955 	 * state.
9956 	 */
9957 	bnx2x_set_reset_done(bp);
9958 	if (global)
9959 		bnx2x_clear_reset_global(bp);
9960 
9961 exit_leader_reset2:
9962 	/* unload "fake driver" if it was loaded */
9963 	if (!global && !BP_NOMCP(bp)) {
9964 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9965 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9966 	}
9967 exit_leader_reset:
9968 	bp->is_leader = 0;
9969 	bnx2x_release_leader_lock(bp);
9970 	smp_mb();
9971 	return rc;
9972 }
9973 
9974 static void bnx2x_recovery_failed(struct bnx2x *bp)
9975 {
9976 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9977 
9978 	/* Disconnect this device */
9979 	netif_device_detach(bp->dev);
9980 
9981 	/*
9982 	 * Block ifup for all function on this engine until "process kill"
9983 	 * or power cycle.
9984 	 */
9985 	bnx2x_set_reset_in_progress(bp);
9986 
9987 	/* Shut down the power */
9988 	bnx2x_set_power_state(bp, PCI_D3hot);
9989 
9990 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9991 
9992 	smp_mb();
9993 }
9994 
9995 /*
9996  * Assumption: runs under rtnl lock. This together with the fact
9997  * that it's called only from bnx2x_sp_rtnl() ensure that it
9998  * will never be called when netif_running(bp->dev) is false.
9999  */
10000 static void bnx2x_parity_recover(struct bnx2x *bp)
10001 {
10002 	u32 error_recovered, error_unrecovered;
10003 	bool is_parity, global = false;
10004 #ifdef CONFIG_BNX2X_SRIOV
10005 	int vf_idx;
10006 
10007 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10008 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10009 
10010 		if (vf)
10011 			vf->state = VF_LOST;
10012 	}
10013 #endif
10014 	DP(NETIF_MSG_HW, "Handling parity\n");
10015 	while (1) {
10016 		switch (bp->recovery_state) {
10017 		case BNX2X_RECOVERY_INIT:
10018 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10019 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10020 			WARN_ON(!is_parity);
10021 
10022 			/* Try to get a LEADER_LOCK HW lock */
10023 			if (bnx2x_trylock_leader_lock(bp)) {
10024 				bnx2x_set_reset_in_progress(bp);
10025 				/*
10026 				 * Check if there is a global attention and if
10027 				 * there was a global attention, set the global
10028 				 * reset bit.
10029 				 */
10030 
10031 				if (global)
10032 					bnx2x_set_reset_global(bp);
10033 
10034 				bp->is_leader = 1;
10035 			}
10036 
10037 			/* Stop the driver */
10038 			/* If interface has been removed - break */
10039 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10040 				return;
10041 
10042 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10043 
10044 			/* Ensure "is_leader", MCP command sequence and
10045 			 * "recovery_state" update values are seen on other
10046 			 * CPUs.
10047 			 */
10048 			smp_mb();
10049 			break;
10050 
10051 		case BNX2X_RECOVERY_WAIT:
10052 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10053 			if (bp->is_leader) {
10054 				int other_engine = BP_PATH(bp) ? 0 : 1;
10055 				bool other_load_status =
10056 					bnx2x_get_load_status(bp, other_engine);
10057 				bool load_status =
10058 					bnx2x_get_load_status(bp, BP_PATH(bp));
10059 				global = bnx2x_reset_is_global(bp);
10060 
10061 				/*
10062 				 * In case of a parity in a global block, let
10063 				 * the first leader that performs a
10064 				 * leader_reset() reset the global blocks in
10065 				 * order to clear global attentions. Otherwise
10066 				 * the gates will remain closed for that
10067 				 * engine.
10068 				 */
10069 				if (load_status ||
10070 				    (global && other_load_status)) {
10071 					/* Wait until all other functions get
10072 					 * down.
10073 					 */
10074 					schedule_delayed_work(&bp->sp_rtnl_task,
10075 								HZ/10);
10076 					return;
10077 				} else {
10078 					/* If all other functions got down -
10079 					 * try to bring the chip back to
10080 					 * normal. In any case it's an exit
10081 					 * point for a leader.
10082 					 */
10083 					if (bnx2x_leader_reset(bp)) {
10084 						bnx2x_recovery_failed(bp);
10085 						return;
10086 					}
10087 
10088 					/* If we are here, means that the
10089 					 * leader has succeeded and doesn't
10090 					 * want to be a leader any more. Try
10091 					 * to continue as a none-leader.
10092 					 */
10093 					break;
10094 				}
10095 			} else { /* non-leader */
10096 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10097 					/* Try to get a LEADER_LOCK HW lock as
10098 					 * long as a former leader may have
10099 					 * been unloaded by the user or
10100 					 * released a leadership by another
10101 					 * reason.
10102 					 */
10103 					if (bnx2x_trylock_leader_lock(bp)) {
10104 						/* I'm a leader now! Restart a
10105 						 * switch case.
10106 						 */
10107 						bp->is_leader = 1;
10108 						break;
10109 					}
10110 
10111 					schedule_delayed_work(&bp->sp_rtnl_task,
10112 								HZ/10);
10113 					return;
10114 
10115 				} else {
10116 					/*
10117 					 * If there was a global attention, wait
10118 					 * for it to be cleared.
10119 					 */
10120 					if (bnx2x_reset_is_global(bp)) {
10121 						schedule_delayed_work(
10122 							&bp->sp_rtnl_task,
10123 							HZ/10);
10124 						return;
10125 					}
10126 
10127 					error_recovered =
10128 					  bp->eth_stats.recoverable_error;
10129 					error_unrecovered =
10130 					  bp->eth_stats.unrecoverable_error;
10131 					bp->recovery_state =
10132 						BNX2X_RECOVERY_NIC_LOADING;
10133 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10134 						error_unrecovered++;
10135 						netdev_err(bp->dev,
10136 							   "Recovery failed. Power cycle needed\n");
10137 						/* Disconnect this device */
10138 						netif_device_detach(bp->dev);
10139 						/* Shut down the power */
10140 						bnx2x_set_power_state(
10141 							bp, PCI_D3hot);
10142 						smp_mb();
10143 					} else {
10144 						bp->recovery_state =
10145 							BNX2X_RECOVERY_DONE;
10146 						error_recovered++;
10147 						smp_mb();
10148 					}
10149 					bp->eth_stats.recoverable_error =
10150 						error_recovered;
10151 					bp->eth_stats.unrecoverable_error =
10152 						error_unrecovered;
10153 
10154 					return;
10155 				}
10156 			}
10157 		default:
10158 			return;
10159 		}
10160 	}
10161 }
10162 
10163 static int bnx2x_udp_port_update(struct bnx2x *bp)
10164 {
10165 	struct bnx2x_func_switch_update_params *switch_update_params;
10166 	struct bnx2x_func_state_params func_params = {NULL};
10167 	u16 vxlan_port = 0, geneve_port = 0;
10168 	int rc;
10169 
10170 	switch_update_params = &func_params.params.switch_update;
10171 
10172 	/* Prepare parameters for function state transitions */
10173 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10174 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10175 
10176 	func_params.f_obj = &bp->func_obj;
10177 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10178 
10179 	/* Function parameters */
10180 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10181 		  &switch_update_params->changes);
10182 
10183 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10184 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10185 		switch_update_params->geneve_dst_port = geneve_port;
10186 	}
10187 
10188 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10189 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10190 		switch_update_params->vxlan_dst_port = vxlan_port;
10191 	}
10192 
10193 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10194 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10195 		  &switch_update_params->changes);
10196 
10197 	rc = bnx2x_func_state_change(bp, &func_params);
10198 	if (rc)
10199 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10200 			  vxlan_port, geneve_port, rc);
10201 	else
10202 		DP(BNX2X_MSG_SP,
10203 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10204 		   vxlan_port, geneve_port);
10205 
10206 	return rc;
10207 }
10208 
10209 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10210 {
10211 	struct bnx2x *bp = netdev_priv(netdev);
10212 	struct udp_tunnel_info ti;
10213 
10214 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10215 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10216 
10217 	return bnx2x_udp_port_update(bp);
10218 }
10219 
10220 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10221 	.sync_table	= bnx2x_udp_tunnel_sync,
10222 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10223 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10224 	.tables		= {
10225 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10226 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10227 	},
10228 };
10229 
10230 static int bnx2x_close(struct net_device *dev);
10231 
10232 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10233  * scheduled on a general queue in order to prevent a dead lock.
10234  */
10235 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10236 {
10237 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10238 
10239 	rtnl_lock();
10240 
10241 	if (!netif_running(bp->dev)) {
10242 		rtnl_unlock();
10243 		return;
10244 	}
10245 
10246 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10247 #ifdef BNX2X_STOP_ON_ERROR
10248 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10249 			  "you will need to reboot when done\n");
10250 		goto sp_rtnl_not_reset;
10251 #endif
10252 		/*
10253 		 * Clear all pending SP commands as we are going to reset the
10254 		 * function anyway.
10255 		 */
10256 		bp->sp_rtnl_state = 0;
10257 		smp_mb();
10258 
10259 		bnx2x_parity_recover(bp);
10260 
10261 		rtnl_unlock();
10262 		return;
10263 	}
10264 
10265 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10266 #ifdef BNX2X_STOP_ON_ERROR
10267 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10268 			  "you will need to reboot when done\n");
10269 		goto sp_rtnl_not_reset;
10270 #endif
10271 
10272 		/*
10273 		 * Clear all pending SP commands as we are going to reset the
10274 		 * function anyway.
10275 		 */
10276 		bp->sp_rtnl_state = 0;
10277 		smp_mb();
10278 
10279 		/* Immediately indicate link as down */
10280 		bp->link_vars.link_up = 0;
10281 		bp->force_link_down = true;
10282 		netif_carrier_off(bp->dev);
10283 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10284 
10285 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10286 		/* When ret value shows failure of allocation failure,
10287 		 * the nic is rebooted again. If open still fails, a error
10288 		 * message to notify the user.
10289 		 */
10290 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10291 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10292 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10293 				BNX2X_ERR("Open the NIC fails again!\n");
10294 		}
10295 		rtnl_unlock();
10296 		return;
10297 	}
10298 #ifdef BNX2X_STOP_ON_ERROR
10299 sp_rtnl_not_reset:
10300 #endif
10301 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10302 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10303 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10304 		bnx2x_after_function_update(bp);
10305 	/*
10306 	 * in case of fan failure we need to reset id if the "stop on error"
10307 	 * debug flag is set, since we trying to prevent permanent overheating
10308 	 * damage
10309 	 */
10310 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10311 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10312 		netif_device_detach(bp->dev);
10313 		bnx2x_close(bp->dev);
10314 		rtnl_unlock();
10315 		return;
10316 	}
10317 
10318 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10319 		DP(BNX2X_MSG_SP,
10320 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10321 		bnx2x_vfpf_set_mcast(bp->dev);
10322 	}
10323 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10324 			       &bp->sp_rtnl_state)){
10325 		if (netif_carrier_ok(bp->dev)) {
10326 			bnx2x_tx_disable(bp);
10327 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10328 		}
10329 	}
10330 
10331 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10332 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10333 		bnx2x_set_rx_mode_inner(bp);
10334 	}
10335 
10336 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10337 			       &bp->sp_rtnl_state))
10338 		bnx2x_pf_set_vfs_vlan(bp);
10339 
10340 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10341 		bnx2x_dcbx_stop_hw_tx(bp);
10342 		bnx2x_dcbx_resume_hw_tx(bp);
10343 	}
10344 
10345 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10346 			       &bp->sp_rtnl_state))
10347 		bnx2x_update_mng_version(bp);
10348 
10349 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10350 		bnx2x_handle_update_svid_cmd(bp);
10351 
10352 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10353 	 * can be called from other contexts as well)
10354 	 */
10355 	rtnl_unlock();
10356 
10357 	/* enable SR-IOV if applicable */
10358 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10359 					       &bp->sp_rtnl_state)) {
10360 		bnx2x_disable_sriov(bp);
10361 		bnx2x_enable_sriov(bp);
10362 	}
10363 }
10364 
10365 static void bnx2x_period_task(struct work_struct *work)
10366 {
10367 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10368 
10369 	if (!netif_running(bp->dev))
10370 		goto period_task_exit;
10371 
10372 	if (CHIP_REV_IS_SLOW(bp)) {
10373 		BNX2X_ERR("period task called on emulation, ignoring\n");
10374 		goto period_task_exit;
10375 	}
10376 
10377 	bnx2x_acquire_phy_lock(bp);
10378 	/*
10379 	 * The barrier is needed to ensure the ordering between the writing to
10380 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10381 	 * the reading here.
10382 	 */
10383 	smp_mb();
10384 	if (bp->port.pmf) {
10385 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10386 
10387 		/* Re-queue task in 1 sec */
10388 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10389 	}
10390 
10391 	bnx2x_release_phy_lock(bp);
10392 period_task_exit:
10393 	return;
10394 }
10395 
10396 /*
10397  * Init service functions
10398  */
10399 
10400 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10401 {
10402 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10403 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10404 	return base + (BP_ABS_FUNC(bp)) * stride;
10405 }
10406 
10407 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10408 					 u8 port, u32 reset_reg,
10409 					 struct bnx2x_mac_vals *vals)
10410 {
10411 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10412 	u32 base_addr;
10413 
10414 	if (!(mask & reset_reg))
10415 		return false;
10416 
10417 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10418 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10419 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10420 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10421 	REG_WR(bp, vals->umac_addr[port], 0);
10422 
10423 	return true;
10424 }
10425 
10426 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10427 					struct bnx2x_mac_vals *vals)
10428 {
10429 	u32 val, base_addr, offset, mask, reset_reg;
10430 	bool mac_stopped = false;
10431 	u8 port = BP_PORT(bp);
10432 
10433 	/* reset addresses as they also mark which values were changed */
10434 	memset(vals, 0, sizeof(*vals));
10435 
10436 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10437 
10438 	if (!CHIP_IS_E3(bp)) {
10439 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10440 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10441 		if ((mask & reset_reg) && val) {
10442 			u32 wb_data[2];
10443 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10444 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10445 						: NIG_REG_INGRESS_BMAC0_MEM;
10446 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10447 						: BIGMAC_REGISTER_BMAC_CONTROL;
10448 
10449 			/*
10450 			 * use rd/wr since we cannot use dmae. This is safe
10451 			 * since MCP won't access the bus due to the request
10452 			 * to unload, and no function on the path can be
10453 			 * loaded at this time.
10454 			 */
10455 			wb_data[0] = REG_RD(bp, base_addr + offset);
10456 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10457 			vals->bmac_addr = base_addr + offset;
10458 			vals->bmac_val[0] = wb_data[0];
10459 			vals->bmac_val[1] = wb_data[1];
10460 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10461 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10462 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10463 		}
10464 		BNX2X_DEV_INFO("Disable emac Rx\n");
10465 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10466 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10467 		REG_WR(bp, vals->emac_addr, 0);
10468 		mac_stopped = true;
10469 	} else {
10470 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10471 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10472 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10473 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10474 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475 			       val & ~(1 << 1));
10476 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10477 			       val | (1 << 1));
10478 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10479 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10480 			REG_WR(bp, vals->xmac_addr, 0);
10481 			mac_stopped = true;
10482 		}
10483 
10484 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10485 							    reset_reg, vals);
10486 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10487 							    reset_reg, vals);
10488 	}
10489 
10490 	if (mac_stopped)
10491 		msleep(20);
10492 }
10493 
10494 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10495 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10496 					0x1848 + ((f) << 4))
10497 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10498 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10499 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10500 
10501 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10502 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10503 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10504 
10505 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10506 {
10507 	/* UNDI marks its presence in DORQ -
10508 	 * it initializes CID offset for normal bell to 0x7
10509 	 */
10510 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10511 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10512 		return false;
10513 
10514 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10515 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10516 		return true;
10517 	}
10518 
10519 	return false;
10520 }
10521 
10522 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10523 {
10524 	u16 rcq, bd;
10525 	u32 addr, tmp_reg;
10526 
10527 	if (BP_FUNC(bp) < 2)
10528 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10529 	else
10530 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10531 
10532 	tmp_reg = REG_RD(bp, addr);
10533 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10534 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10535 
10536 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10537 	REG_WR(bp, addr, tmp_reg);
10538 
10539 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10540 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10541 }
10542 
10543 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10544 {
10545 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10546 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10547 	if (!rc) {
10548 		BNX2X_ERR("MCP response failure, aborting\n");
10549 		return -EBUSY;
10550 	}
10551 
10552 	return 0;
10553 }
10554 
10555 static struct bnx2x_prev_path_list *
10556 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10557 {
10558 	struct bnx2x_prev_path_list *tmp_list;
10559 
10560 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10561 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10562 		    bp->pdev->bus->number == tmp_list->bus &&
10563 		    BP_PATH(bp) == tmp_list->path)
10564 			return tmp_list;
10565 
10566 	return NULL;
10567 }
10568 
10569 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10570 {
10571 	struct bnx2x_prev_path_list *tmp_list;
10572 	int rc;
10573 
10574 	rc = down_interruptible(&bnx2x_prev_sem);
10575 	if (rc) {
10576 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10577 		return rc;
10578 	}
10579 
10580 	tmp_list = bnx2x_prev_path_get_entry(bp);
10581 	if (tmp_list) {
10582 		tmp_list->aer = 1;
10583 		rc = 0;
10584 	} else {
10585 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10586 			  BP_PATH(bp));
10587 	}
10588 
10589 	up(&bnx2x_prev_sem);
10590 
10591 	return rc;
10592 }
10593 
10594 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10595 {
10596 	struct bnx2x_prev_path_list *tmp_list;
10597 	bool rc = false;
10598 
10599 	if (down_trylock(&bnx2x_prev_sem))
10600 		return false;
10601 
10602 	tmp_list = bnx2x_prev_path_get_entry(bp);
10603 	if (tmp_list) {
10604 		if (tmp_list->aer) {
10605 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10606 			   BP_PATH(bp));
10607 		} else {
10608 			rc = true;
10609 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10610 				       BP_PATH(bp));
10611 		}
10612 	}
10613 
10614 	up(&bnx2x_prev_sem);
10615 
10616 	return rc;
10617 }
10618 
10619 bool bnx2x_port_after_undi(struct bnx2x *bp)
10620 {
10621 	struct bnx2x_prev_path_list *entry;
10622 	bool val;
10623 
10624 	down(&bnx2x_prev_sem);
10625 
10626 	entry = bnx2x_prev_path_get_entry(bp);
10627 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10628 
10629 	up(&bnx2x_prev_sem);
10630 
10631 	return val;
10632 }
10633 
10634 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10635 {
10636 	struct bnx2x_prev_path_list *tmp_list;
10637 	int rc;
10638 
10639 	rc = down_interruptible(&bnx2x_prev_sem);
10640 	if (rc) {
10641 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10642 		return rc;
10643 	}
10644 
10645 	/* Check whether the entry for this path already exists */
10646 	tmp_list = bnx2x_prev_path_get_entry(bp);
10647 	if (tmp_list) {
10648 		if (!tmp_list->aer) {
10649 			BNX2X_ERR("Re-Marking the path.\n");
10650 		} else {
10651 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10652 			   BP_PATH(bp));
10653 			tmp_list->aer = 0;
10654 		}
10655 		up(&bnx2x_prev_sem);
10656 		return 0;
10657 	}
10658 	up(&bnx2x_prev_sem);
10659 
10660 	/* Create an entry for this path and add it */
10661 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10662 	if (!tmp_list) {
10663 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10664 		return -ENOMEM;
10665 	}
10666 
10667 	tmp_list->bus = bp->pdev->bus->number;
10668 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10669 	tmp_list->path = BP_PATH(bp);
10670 	tmp_list->aer = 0;
10671 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10672 
10673 	rc = down_interruptible(&bnx2x_prev_sem);
10674 	if (rc) {
10675 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10676 		kfree(tmp_list);
10677 	} else {
10678 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10679 		   BP_PATH(bp));
10680 		list_add(&tmp_list->list, &bnx2x_prev_list);
10681 		up(&bnx2x_prev_sem);
10682 	}
10683 
10684 	return rc;
10685 }
10686 
10687 static int bnx2x_do_flr(struct bnx2x *bp)
10688 {
10689 	struct pci_dev *dev = bp->pdev;
10690 
10691 	if (CHIP_IS_E1x(bp)) {
10692 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10693 		return -EINVAL;
10694 	}
10695 
10696 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10697 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10698 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10699 			  bp->common.bc_ver);
10700 		return -EINVAL;
10701 	}
10702 
10703 	if (!pci_wait_for_pending_transaction(dev))
10704 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10705 
10706 	BNX2X_DEV_INFO("Initiating FLR\n");
10707 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10708 
10709 	return 0;
10710 }
10711 
10712 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10713 {
10714 	int rc;
10715 
10716 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10717 
10718 	/* Test if previous unload process was already finished for this path */
10719 	if (bnx2x_prev_is_path_marked(bp))
10720 		return bnx2x_prev_mcp_done(bp);
10721 
10722 	BNX2X_DEV_INFO("Path is unmarked\n");
10723 
10724 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10725 	if (bnx2x_prev_is_after_undi(bp))
10726 		goto out;
10727 
10728 	/* If function has FLR capabilities, and existing FW version matches
10729 	 * the one required, then FLR will be sufficient to clean any residue
10730 	 * left by previous driver
10731 	 */
10732 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10733 
10734 	if (!rc) {
10735 		/* fw version is good */
10736 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10737 		rc = bnx2x_do_flr(bp);
10738 	}
10739 
10740 	if (!rc) {
10741 		/* FLR was performed */
10742 		BNX2X_DEV_INFO("FLR successful\n");
10743 		return 0;
10744 	}
10745 
10746 	BNX2X_DEV_INFO("Could not FLR\n");
10747 
10748 out:
10749 	/* Close the MCP request, return failure*/
10750 	rc = bnx2x_prev_mcp_done(bp);
10751 	if (!rc)
10752 		rc = BNX2X_PREV_WAIT_NEEDED;
10753 
10754 	return rc;
10755 }
10756 
10757 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10758 {
10759 	u32 reset_reg, tmp_reg = 0, rc;
10760 	bool prev_undi = false;
10761 	struct bnx2x_mac_vals mac_vals;
10762 
10763 	/* It is possible a previous function received 'common' answer,
10764 	 * but hasn't loaded yet, therefore creating a scenario of
10765 	 * multiple functions receiving 'common' on the same path.
10766 	 */
10767 	BNX2X_DEV_INFO("Common unload Flow\n");
10768 
10769 	memset(&mac_vals, 0, sizeof(mac_vals));
10770 
10771 	if (bnx2x_prev_is_path_marked(bp))
10772 		return bnx2x_prev_mcp_done(bp);
10773 
10774 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10775 
10776 	/* Reset should be performed after BRB is emptied */
10777 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10778 		u32 timer_count = 1000;
10779 
10780 		/* Close the MAC Rx to prevent BRB from filling up */
10781 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10782 
10783 		/* close LLH filters for both ports towards the BRB */
10784 		bnx2x_set_rx_filter(&bp->link_params, 0);
10785 		bp->link_params.port ^= 1;
10786 		bnx2x_set_rx_filter(&bp->link_params, 0);
10787 		bp->link_params.port ^= 1;
10788 
10789 		/* Check if the UNDI driver was previously loaded */
10790 		if (bnx2x_prev_is_after_undi(bp)) {
10791 			prev_undi = true;
10792 			/* clear the UNDI indication */
10793 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10794 			/* clear possible idle check errors */
10795 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10796 		}
10797 		if (!CHIP_IS_E1x(bp))
10798 			/* block FW from writing to host */
10799 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10800 
10801 		/* wait until BRB is empty */
10802 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10803 		while (timer_count) {
10804 			u32 prev_brb = tmp_reg;
10805 
10806 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10807 			if (!tmp_reg)
10808 				break;
10809 
10810 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10811 
10812 			/* reset timer as long as BRB actually gets emptied */
10813 			if (prev_brb > tmp_reg)
10814 				timer_count = 1000;
10815 			else
10816 				timer_count--;
10817 
10818 			/* If UNDI resides in memory, manually increment it */
10819 			if (prev_undi)
10820 				bnx2x_prev_unload_undi_inc(bp, 1);
10821 
10822 			udelay(10);
10823 		}
10824 
10825 		if (!timer_count)
10826 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10827 	}
10828 
10829 	/* No packets are in the pipeline, path is ready for reset */
10830 	bnx2x_reset_common(bp);
10831 
10832 	if (mac_vals.xmac_addr)
10833 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10834 	if (mac_vals.umac_addr[0])
10835 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10836 	if (mac_vals.umac_addr[1])
10837 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10838 	if (mac_vals.emac_addr)
10839 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10840 	if (mac_vals.bmac_addr) {
10841 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10842 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10843 	}
10844 
10845 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10846 	if (rc) {
10847 		bnx2x_prev_mcp_done(bp);
10848 		return rc;
10849 	}
10850 
10851 	return bnx2x_prev_mcp_done(bp);
10852 }
10853 
10854 static int bnx2x_prev_unload(struct bnx2x *bp)
10855 {
10856 	int time_counter = 10;
10857 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10858 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10859 
10860 	/* clear hw from errors which may have resulted from an interrupted
10861 	 * dmae transaction.
10862 	 */
10863 	bnx2x_clean_pglue_errors(bp);
10864 
10865 	/* Release previously held locks */
10866 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10867 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10868 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10869 
10870 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10871 	if (hw_lock_val) {
10872 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10873 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10874 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10875 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10876 		}
10877 
10878 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10879 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10880 	} else
10881 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10882 
10883 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10884 		BNX2X_DEV_INFO("Release previously held alr\n");
10885 		bnx2x_release_alr(bp);
10886 	}
10887 
10888 	do {
10889 		int aer = 0;
10890 		/* Lock MCP using an unload request */
10891 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10892 		if (!fw) {
10893 			BNX2X_ERR("MCP response failure, aborting\n");
10894 			rc = -EBUSY;
10895 			break;
10896 		}
10897 
10898 		rc = down_interruptible(&bnx2x_prev_sem);
10899 		if (rc) {
10900 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10901 				  rc);
10902 		} else {
10903 			/* If Path is marked by EEH, ignore unload status */
10904 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10905 				 bnx2x_prev_path_get_entry(bp)->aer);
10906 			up(&bnx2x_prev_sem);
10907 		}
10908 
10909 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10910 			rc = bnx2x_prev_unload_common(bp);
10911 			break;
10912 		}
10913 
10914 		/* non-common reply from MCP might require looping */
10915 		rc = bnx2x_prev_unload_uncommon(bp);
10916 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10917 			break;
10918 
10919 		msleep(20);
10920 	} while (--time_counter);
10921 
10922 	if (!time_counter || rc) {
10923 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10924 		rc = -EPROBE_DEFER;
10925 	}
10926 
10927 	/* Mark function if its port was used to boot from SAN */
10928 	if (bnx2x_port_after_undi(bp))
10929 		bp->link_params.feature_config_flags |=
10930 			FEATURE_CONFIG_BOOT_FROM_SAN;
10931 
10932 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10933 
10934 	return rc;
10935 }
10936 
10937 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10938 {
10939 	u32 val, val2, val3, val4, id, boot_mode;
10940 	u16 pmc;
10941 
10942 	/* Get the chip revision id and number. */
10943 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10944 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10945 	id = ((val & 0xffff) << 16);
10946 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10947 	id |= ((val & 0xf) << 12);
10948 
10949 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10950 	 * the configuration space (so we need to reg_rd)
10951 	 */
10952 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10953 	id |= (((val >> 24) & 0xf) << 4);
10954 	val = REG_RD(bp, MISC_REG_BOND_ID);
10955 	id |= (val & 0xf);
10956 	bp->common.chip_id = id;
10957 
10958 	/* force 57811 according to MISC register */
10959 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10960 		if (CHIP_IS_57810(bp))
10961 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10962 				(bp->common.chip_id & 0x0000FFFF);
10963 		else if (CHIP_IS_57810_MF(bp))
10964 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10965 				(bp->common.chip_id & 0x0000FFFF);
10966 		bp->common.chip_id |= 0x1;
10967 	}
10968 
10969 	/* Set doorbell size */
10970 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10971 
10972 	if (!CHIP_IS_E1x(bp)) {
10973 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10974 		if ((val & 1) == 0)
10975 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10976 		else
10977 			val = (val >> 1) & 1;
10978 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10979 						       "2_PORT_MODE");
10980 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10981 						 CHIP_2_PORT_MODE;
10982 
10983 		if (CHIP_MODE_IS_4_PORT(bp))
10984 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10985 		else
10986 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10987 	} else {
10988 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10989 		bp->pfid = bp->pf_num;			/* 0..7 */
10990 	}
10991 
10992 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10993 
10994 	bp->link_params.chip_id = bp->common.chip_id;
10995 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10996 
10997 	val = (REG_RD(bp, 0x2874) & 0x55);
10998 	if ((bp->common.chip_id & 0x1) ||
10999 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11000 		bp->flags |= ONE_PORT_FLAG;
11001 		BNX2X_DEV_INFO("single port device\n");
11002 	}
11003 
11004 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11005 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11006 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11007 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11008 		       bp->common.flash_size, bp->common.flash_size);
11009 
11010 	bnx2x_init_shmem(bp);
11011 
11012 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11013 					MISC_REG_GENERIC_CR_1 :
11014 					MISC_REG_GENERIC_CR_0));
11015 
11016 	bp->link_params.shmem_base = bp->common.shmem_base;
11017 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11018 	if (SHMEM2_RD(bp, size) >
11019 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11020 		bp->link_params.lfa_base =
11021 		REG_RD(bp, bp->common.shmem2_base +
11022 		       (u32)offsetof(struct shmem2_region,
11023 				     lfa_host_addr[BP_PORT(bp)]));
11024 	else
11025 		bp->link_params.lfa_base = 0;
11026 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11027 		       bp->common.shmem_base, bp->common.shmem2_base);
11028 
11029 	if (!bp->common.shmem_base) {
11030 		BNX2X_DEV_INFO("MCP not active\n");
11031 		bp->flags |= NO_MCP_FLAG;
11032 		return;
11033 	}
11034 
11035 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11036 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11037 
11038 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11039 					SHARED_HW_CFG_LED_MODE_MASK) >>
11040 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11041 
11042 	bp->link_params.feature_config_flags = 0;
11043 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11044 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11045 		bp->link_params.feature_config_flags |=
11046 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11047 	else
11048 		bp->link_params.feature_config_flags &=
11049 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11050 
11051 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11052 	bp->common.bc_ver = val;
11053 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11054 	if (val < BNX2X_BC_VER) {
11055 		/* for now only warn
11056 		 * later we might need to enforce this */
11057 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11058 			  BNX2X_BC_VER, val);
11059 	}
11060 	bp->link_params.feature_config_flags |=
11061 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11062 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11063 
11064 	bp->link_params.feature_config_flags |=
11065 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11066 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11067 	bp->link_params.feature_config_flags |=
11068 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11069 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11070 	bp->link_params.feature_config_flags |=
11071 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11072 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11073 
11074 	bp->link_params.feature_config_flags |=
11075 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11076 		FEATURE_CONFIG_MT_SUPPORT : 0;
11077 
11078 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11079 			BC_SUPPORTS_PFC_STATS : 0;
11080 
11081 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11082 			BC_SUPPORTS_FCOE_FEATURES : 0;
11083 
11084 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11085 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11086 
11087 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11088 			BC_SUPPORTS_RMMOD_CMD : 0;
11089 
11090 	boot_mode = SHMEM_RD(bp,
11091 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11092 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11093 	switch (boot_mode) {
11094 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11095 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11096 		break;
11097 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11098 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11099 		break;
11100 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11101 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11102 		break;
11103 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11104 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11105 		break;
11106 	}
11107 
11108 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11109 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11110 
11111 	BNX2X_DEV_INFO("%sWoL capable\n",
11112 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11113 
11114 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11115 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11116 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11117 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11118 
11119 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11120 		 val, val2, val3, val4);
11121 }
11122 
11123 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11124 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11125 
11126 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11127 {
11128 	int pfid = BP_FUNC(bp);
11129 	int igu_sb_id;
11130 	u32 val;
11131 	u8 fid, igu_sb_cnt = 0;
11132 
11133 	bp->igu_base_sb = 0xff;
11134 	if (CHIP_INT_MODE_IS_BC(bp)) {
11135 		int vn = BP_VN(bp);
11136 		igu_sb_cnt = bp->igu_sb_cnt;
11137 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11138 			FP_SB_MAX_E1x;
11139 
11140 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11141 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11142 
11143 		return 0;
11144 	}
11145 
11146 	/* IGU in normal mode - read CAM */
11147 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11148 	     igu_sb_id++) {
11149 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11150 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11151 			continue;
11152 		fid = IGU_FID(val);
11153 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11154 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11155 				continue;
11156 			if (IGU_VEC(val) == 0)
11157 				/* default status block */
11158 				bp->igu_dsb_id = igu_sb_id;
11159 			else {
11160 				if (bp->igu_base_sb == 0xff)
11161 					bp->igu_base_sb = igu_sb_id;
11162 				igu_sb_cnt++;
11163 			}
11164 		}
11165 	}
11166 
11167 #ifdef CONFIG_PCI_MSI
11168 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11169 	 * optional that number of CAM entries will not be equal to the value
11170 	 * advertised in PCI.
11171 	 * Driver should use the minimal value of both as the actual status
11172 	 * block count
11173 	 */
11174 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11175 #endif
11176 
11177 	if (igu_sb_cnt == 0) {
11178 		BNX2X_ERR("CAM configuration error\n");
11179 		return -EINVAL;
11180 	}
11181 
11182 	return 0;
11183 }
11184 
11185 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11186 {
11187 	int cfg_size = 0, idx, port = BP_PORT(bp);
11188 
11189 	/* Aggregation of supported attributes of all external phys */
11190 	bp->port.supported[0] = 0;
11191 	bp->port.supported[1] = 0;
11192 	switch (bp->link_params.num_phys) {
11193 	case 1:
11194 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11195 		cfg_size = 1;
11196 		break;
11197 	case 2:
11198 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11199 		cfg_size = 1;
11200 		break;
11201 	case 3:
11202 		if (bp->link_params.multi_phy_config &
11203 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11204 			bp->port.supported[1] =
11205 				bp->link_params.phy[EXT_PHY1].supported;
11206 			bp->port.supported[0] =
11207 				bp->link_params.phy[EXT_PHY2].supported;
11208 		} else {
11209 			bp->port.supported[0] =
11210 				bp->link_params.phy[EXT_PHY1].supported;
11211 			bp->port.supported[1] =
11212 				bp->link_params.phy[EXT_PHY2].supported;
11213 		}
11214 		cfg_size = 2;
11215 		break;
11216 	}
11217 
11218 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11219 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11220 			   SHMEM_RD(bp,
11221 			   dev_info.port_hw_config[port].external_phy_config),
11222 			   SHMEM_RD(bp,
11223 			   dev_info.port_hw_config[port].external_phy_config2));
11224 		return;
11225 	}
11226 
11227 	if (CHIP_IS_E3(bp))
11228 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11229 	else {
11230 		switch (switch_cfg) {
11231 		case SWITCH_CFG_1G:
11232 			bp->port.phy_addr = REG_RD(
11233 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11234 			break;
11235 		case SWITCH_CFG_10G:
11236 			bp->port.phy_addr = REG_RD(
11237 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11238 			break;
11239 		default:
11240 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11241 				  bp->port.link_config[0]);
11242 			return;
11243 		}
11244 	}
11245 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11246 	/* mask what we support according to speed_cap_mask per configuration */
11247 	for (idx = 0; idx < cfg_size; idx++) {
11248 		if (!(bp->link_params.speed_cap_mask[idx] &
11249 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11250 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11251 
11252 		if (!(bp->link_params.speed_cap_mask[idx] &
11253 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11254 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11255 
11256 		if (!(bp->link_params.speed_cap_mask[idx] &
11257 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11258 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11259 
11260 		if (!(bp->link_params.speed_cap_mask[idx] &
11261 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11262 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11263 
11264 		if (!(bp->link_params.speed_cap_mask[idx] &
11265 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11266 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11267 						     SUPPORTED_1000baseT_Full);
11268 
11269 		if (!(bp->link_params.speed_cap_mask[idx] &
11270 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11271 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11272 
11273 		if (!(bp->link_params.speed_cap_mask[idx] &
11274 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11275 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11276 
11277 		if (!(bp->link_params.speed_cap_mask[idx] &
11278 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11279 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11280 	}
11281 
11282 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11283 		       bp->port.supported[1]);
11284 }
11285 
11286 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11287 {
11288 	u32 link_config, idx, cfg_size = 0;
11289 	bp->port.advertising[0] = 0;
11290 	bp->port.advertising[1] = 0;
11291 	switch (bp->link_params.num_phys) {
11292 	case 1:
11293 	case 2:
11294 		cfg_size = 1;
11295 		break;
11296 	case 3:
11297 		cfg_size = 2;
11298 		break;
11299 	}
11300 	for (idx = 0; idx < cfg_size; idx++) {
11301 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11302 		link_config = bp->port.link_config[idx];
11303 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11304 		case PORT_FEATURE_LINK_SPEED_AUTO:
11305 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11306 				bp->link_params.req_line_speed[idx] =
11307 					SPEED_AUTO_NEG;
11308 				bp->port.advertising[idx] |=
11309 					bp->port.supported[idx];
11310 				if (bp->link_params.phy[EXT_PHY1].type ==
11311 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11312 					bp->port.advertising[idx] |=
11313 					(SUPPORTED_100baseT_Half |
11314 					 SUPPORTED_100baseT_Full);
11315 			} else {
11316 				/* force 10G, no AN */
11317 				bp->link_params.req_line_speed[idx] =
11318 					SPEED_10000;
11319 				bp->port.advertising[idx] |=
11320 					(ADVERTISED_10000baseT_Full |
11321 					 ADVERTISED_FIBRE);
11322 				continue;
11323 			}
11324 			break;
11325 
11326 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11327 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11328 				bp->link_params.req_line_speed[idx] =
11329 					SPEED_10;
11330 				bp->port.advertising[idx] |=
11331 					(ADVERTISED_10baseT_Full |
11332 					 ADVERTISED_TP);
11333 			} else {
11334 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11335 					    link_config,
11336 				    bp->link_params.speed_cap_mask[idx]);
11337 				return;
11338 			}
11339 			break;
11340 
11341 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11342 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11343 				bp->link_params.req_line_speed[idx] =
11344 					SPEED_10;
11345 				bp->link_params.req_duplex[idx] =
11346 					DUPLEX_HALF;
11347 				bp->port.advertising[idx] |=
11348 					(ADVERTISED_10baseT_Half |
11349 					 ADVERTISED_TP);
11350 			} else {
11351 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11352 					    link_config,
11353 					  bp->link_params.speed_cap_mask[idx]);
11354 				return;
11355 			}
11356 			break;
11357 
11358 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11359 			if (bp->port.supported[idx] &
11360 			    SUPPORTED_100baseT_Full) {
11361 				bp->link_params.req_line_speed[idx] =
11362 					SPEED_100;
11363 				bp->port.advertising[idx] |=
11364 					(ADVERTISED_100baseT_Full |
11365 					 ADVERTISED_TP);
11366 			} else {
11367 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11368 					    link_config,
11369 					  bp->link_params.speed_cap_mask[idx]);
11370 				return;
11371 			}
11372 			break;
11373 
11374 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11375 			if (bp->port.supported[idx] &
11376 			    SUPPORTED_100baseT_Half) {
11377 				bp->link_params.req_line_speed[idx] =
11378 								SPEED_100;
11379 				bp->link_params.req_duplex[idx] =
11380 								DUPLEX_HALF;
11381 				bp->port.advertising[idx] |=
11382 					(ADVERTISED_100baseT_Half |
11383 					 ADVERTISED_TP);
11384 			} else {
11385 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11386 				    link_config,
11387 				    bp->link_params.speed_cap_mask[idx]);
11388 				return;
11389 			}
11390 			break;
11391 
11392 		case PORT_FEATURE_LINK_SPEED_1G:
11393 			if (bp->port.supported[idx] &
11394 			    SUPPORTED_1000baseT_Full) {
11395 				bp->link_params.req_line_speed[idx] =
11396 					SPEED_1000;
11397 				bp->port.advertising[idx] |=
11398 					(ADVERTISED_1000baseT_Full |
11399 					 ADVERTISED_TP);
11400 			} else if (bp->port.supported[idx] &
11401 				   SUPPORTED_1000baseKX_Full) {
11402 				bp->link_params.req_line_speed[idx] =
11403 					SPEED_1000;
11404 				bp->port.advertising[idx] |=
11405 					ADVERTISED_1000baseKX_Full;
11406 			} else {
11407 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11408 				    link_config,
11409 				    bp->link_params.speed_cap_mask[idx]);
11410 				return;
11411 			}
11412 			break;
11413 
11414 		case PORT_FEATURE_LINK_SPEED_2_5G:
11415 			if (bp->port.supported[idx] &
11416 			    SUPPORTED_2500baseX_Full) {
11417 				bp->link_params.req_line_speed[idx] =
11418 					SPEED_2500;
11419 				bp->port.advertising[idx] |=
11420 					(ADVERTISED_2500baseX_Full |
11421 						ADVERTISED_TP);
11422 			} else {
11423 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11424 				    link_config,
11425 				    bp->link_params.speed_cap_mask[idx]);
11426 				return;
11427 			}
11428 			break;
11429 
11430 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11431 			if (bp->port.supported[idx] &
11432 			    SUPPORTED_10000baseT_Full) {
11433 				bp->link_params.req_line_speed[idx] =
11434 					SPEED_10000;
11435 				bp->port.advertising[idx] |=
11436 					(ADVERTISED_10000baseT_Full |
11437 						ADVERTISED_FIBRE);
11438 			} else if (bp->port.supported[idx] &
11439 				   SUPPORTED_10000baseKR_Full) {
11440 				bp->link_params.req_line_speed[idx] =
11441 					SPEED_10000;
11442 				bp->port.advertising[idx] |=
11443 					(ADVERTISED_10000baseKR_Full |
11444 						ADVERTISED_FIBRE);
11445 			} else {
11446 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11447 				    link_config,
11448 				    bp->link_params.speed_cap_mask[idx]);
11449 				return;
11450 			}
11451 			break;
11452 		case PORT_FEATURE_LINK_SPEED_20G:
11453 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11454 
11455 			break;
11456 		default:
11457 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11458 				  link_config);
11459 				bp->link_params.req_line_speed[idx] =
11460 							SPEED_AUTO_NEG;
11461 				bp->port.advertising[idx] =
11462 						bp->port.supported[idx];
11463 			break;
11464 		}
11465 
11466 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11467 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11468 		if (bp->link_params.req_flow_ctrl[idx] ==
11469 		    BNX2X_FLOW_CTRL_AUTO) {
11470 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11471 				bp->link_params.req_flow_ctrl[idx] =
11472 							BNX2X_FLOW_CTRL_NONE;
11473 			else
11474 				bnx2x_set_requested_fc(bp);
11475 		}
11476 
11477 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11478 			       bp->link_params.req_line_speed[idx],
11479 			       bp->link_params.req_duplex[idx],
11480 			       bp->link_params.req_flow_ctrl[idx],
11481 			       bp->port.advertising[idx]);
11482 	}
11483 }
11484 
11485 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11486 {
11487 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11488 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11489 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11490 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11491 }
11492 
11493 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11494 {
11495 	int port = BP_PORT(bp);
11496 	u32 config;
11497 	u32 ext_phy_type, ext_phy_config, eee_mode;
11498 
11499 	bp->link_params.bp = bp;
11500 	bp->link_params.port = port;
11501 
11502 	bp->link_params.lane_config =
11503 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11504 
11505 	bp->link_params.speed_cap_mask[0] =
11506 		SHMEM_RD(bp,
11507 			 dev_info.port_hw_config[port].speed_capability_mask) &
11508 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11509 	bp->link_params.speed_cap_mask[1] =
11510 		SHMEM_RD(bp,
11511 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11512 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11513 	bp->port.link_config[0] =
11514 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11515 
11516 	bp->port.link_config[1] =
11517 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11518 
11519 	bp->link_params.multi_phy_config =
11520 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11521 	/* If the device is capable of WoL, set the default state according
11522 	 * to the HW
11523 	 */
11524 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11525 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11526 		   (config & PORT_FEATURE_WOL_ENABLED));
11527 
11528 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11529 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11530 		bp->flags |= NO_ISCSI_FLAG;
11531 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11532 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11533 		bp->flags |= NO_FCOE_FLAG;
11534 
11535 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11536 		       bp->link_params.lane_config,
11537 		       bp->link_params.speed_cap_mask[0],
11538 		       bp->port.link_config[0]);
11539 
11540 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11541 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11542 	bnx2x_phy_probe(&bp->link_params);
11543 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11544 
11545 	bnx2x_link_settings_requested(bp);
11546 
11547 	/*
11548 	 * If connected directly, work with the internal PHY, otherwise, work
11549 	 * with the external PHY
11550 	 */
11551 	ext_phy_config =
11552 		SHMEM_RD(bp,
11553 			 dev_info.port_hw_config[port].external_phy_config);
11554 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11555 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11556 		bp->mdio.prtad = bp->port.phy_addr;
11557 
11558 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11559 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11560 		bp->mdio.prtad =
11561 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11562 
11563 	/* Configure link feature according to nvram value */
11564 	eee_mode = (((SHMEM_RD(bp, dev_info.
11565 		      port_feature_config[port].eee_power_mode)) &
11566 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11567 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11568 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11569 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11570 					   EEE_MODE_ENABLE_LPI |
11571 					   EEE_MODE_OUTPUT_TIME;
11572 	} else {
11573 		bp->link_params.eee_mode = 0;
11574 	}
11575 }
11576 
11577 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11578 {
11579 	u32 no_flags = NO_ISCSI_FLAG;
11580 	int port = BP_PORT(bp);
11581 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11582 				drv_lic_key[port].max_iscsi_conn);
11583 
11584 	if (!CNIC_SUPPORT(bp)) {
11585 		bp->flags |= no_flags;
11586 		return;
11587 	}
11588 
11589 	/* Get the number of maximum allowed iSCSI connections */
11590 	bp->cnic_eth_dev.max_iscsi_conn =
11591 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11592 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11593 
11594 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11595 		       bp->cnic_eth_dev.max_iscsi_conn);
11596 
11597 	/*
11598 	 * If maximum allowed number of connections is zero -
11599 	 * disable the feature.
11600 	 */
11601 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11602 		bp->flags |= no_flags;
11603 }
11604 
11605 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11606 {
11607 	/* Port info */
11608 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11609 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11610 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11611 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11612 
11613 	/* Node info */
11614 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11615 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11616 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11617 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11618 }
11619 
11620 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11621 {
11622 	u8 count = 0;
11623 
11624 	if (IS_MF(bp)) {
11625 		u8 fid;
11626 
11627 		/* iterate over absolute function ids for this path: */
11628 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11629 			if (IS_MF_SD(bp)) {
11630 				u32 cfg = MF_CFG_RD(bp,
11631 						    func_mf_config[fid].config);
11632 
11633 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11634 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11635 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11636 					count++;
11637 			} else {
11638 				u32 cfg = MF_CFG_RD(bp,
11639 						    func_ext_config[fid].
11640 								      func_cfg);
11641 
11642 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11643 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11644 					count++;
11645 			}
11646 		}
11647 	} else { /* SF */
11648 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11649 
11650 		for (port = 0; port < port_cnt; port++) {
11651 			u32 lic = SHMEM_RD(bp,
11652 					   drv_lic_key[port].max_fcoe_conn) ^
11653 				  FW_ENCODE_32BIT_PATTERN;
11654 			if (lic)
11655 				count++;
11656 		}
11657 	}
11658 
11659 	return count;
11660 }
11661 
11662 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11663 {
11664 	int port = BP_PORT(bp);
11665 	int func = BP_ABS_FUNC(bp);
11666 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11667 				drv_lic_key[port].max_fcoe_conn);
11668 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11669 
11670 	if (!CNIC_SUPPORT(bp)) {
11671 		bp->flags |= NO_FCOE_FLAG;
11672 		return;
11673 	}
11674 
11675 	/* Get the number of maximum allowed FCoE connections */
11676 	bp->cnic_eth_dev.max_fcoe_conn =
11677 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11678 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11679 
11680 	/* Calculate the number of maximum allowed FCoE tasks */
11681 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11682 
11683 	/* check if FCoE resources must be shared between different functions */
11684 	if (num_fcoe_func)
11685 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11686 
11687 	/* Read the WWN: */
11688 	if (!IS_MF(bp)) {
11689 		/* Port info */
11690 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11691 			SHMEM_RD(bp,
11692 				 dev_info.port_hw_config[port].
11693 				 fcoe_wwn_port_name_upper);
11694 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11695 			SHMEM_RD(bp,
11696 				 dev_info.port_hw_config[port].
11697 				 fcoe_wwn_port_name_lower);
11698 
11699 		/* Node info */
11700 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11701 			SHMEM_RD(bp,
11702 				 dev_info.port_hw_config[port].
11703 				 fcoe_wwn_node_name_upper);
11704 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11705 			SHMEM_RD(bp,
11706 				 dev_info.port_hw_config[port].
11707 				 fcoe_wwn_node_name_lower);
11708 	} else if (!IS_MF_SD(bp)) {
11709 		/* Read the WWN info only if the FCoE feature is enabled for
11710 		 * this function.
11711 		 */
11712 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11713 			bnx2x_get_ext_wwn_info(bp, func);
11714 	} else {
11715 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11716 			bnx2x_get_ext_wwn_info(bp, func);
11717 	}
11718 
11719 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11720 
11721 	/*
11722 	 * If maximum allowed number of connections is zero -
11723 	 * disable the feature.
11724 	 */
11725 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11726 		bp->flags |= NO_FCOE_FLAG;
11727 		eth_zero_addr(bp->fip_mac);
11728 	}
11729 }
11730 
11731 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11732 {
11733 	/*
11734 	 * iSCSI may be dynamically disabled but reading
11735 	 * info here we will decrease memory usage by driver
11736 	 * if the feature is disabled for good
11737 	 */
11738 	bnx2x_get_iscsi_info(bp);
11739 	bnx2x_get_fcoe_info(bp);
11740 }
11741 
11742 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11743 {
11744 	u32 val, val2;
11745 	int func = BP_ABS_FUNC(bp);
11746 	int port = BP_PORT(bp);
11747 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11748 	u8 *fip_mac = bp->fip_mac;
11749 
11750 	if (IS_MF(bp)) {
11751 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11752 		 * FCoE MAC then the appropriate feature should be disabled.
11753 		 * In non SD mode features configuration comes from struct
11754 		 * func_ext_config.
11755 		 */
11756 		if (!IS_MF_SD(bp)) {
11757 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11758 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11759 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11760 						 iscsi_mac_addr_upper);
11761 				val = MF_CFG_RD(bp, func_ext_config[func].
11762 						iscsi_mac_addr_lower);
11763 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11764 				BNX2X_DEV_INFO
11765 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11766 			} else {
11767 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11768 			}
11769 
11770 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11771 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11772 						 fcoe_mac_addr_upper);
11773 				val = MF_CFG_RD(bp, func_ext_config[func].
11774 						fcoe_mac_addr_lower);
11775 				bnx2x_set_mac_buf(fip_mac, val, val2);
11776 				BNX2X_DEV_INFO
11777 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11778 			} else {
11779 				bp->flags |= NO_FCOE_FLAG;
11780 			}
11781 
11782 			bp->mf_ext_config = cfg;
11783 
11784 		} else { /* SD MODE */
11785 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11786 				/* use primary mac as iscsi mac */
11787 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11788 
11789 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11790 				BNX2X_DEV_INFO
11791 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11792 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11793 				/* use primary mac as fip mac */
11794 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11795 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11796 				BNX2X_DEV_INFO
11797 					("Read FIP MAC: %pM\n", fip_mac);
11798 			}
11799 		}
11800 
11801 		/* If this is a storage-only interface, use SAN mac as
11802 		 * primary MAC. Notice that for SD this is already the case,
11803 		 * as the SAN mac was copied from the primary MAC.
11804 		 */
11805 		if (IS_MF_FCOE_AFEX(bp))
11806 			eth_hw_addr_set(bp->dev, fip_mac);
11807 	} else {
11808 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809 				iscsi_mac_upper);
11810 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811 			       iscsi_mac_lower);
11812 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11813 
11814 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11815 				fcoe_fip_mac_upper);
11816 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11817 			       fcoe_fip_mac_lower);
11818 		bnx2x_set_mac_buf(fip_mac, val, val2);
11819 	}
11820 
11821 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11822 	if (!is_valid_ether_addr(iscsi_mac)) {
11823 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11824 		eth_zero_addr(iscsi_mac);
11825 	}
11826 
11827 	/* Disable FCoE if MAC configuration is invalid. */
11828 	if (!is_valid_ether_addr(fip_mac)) {
11829 		bp->flags |= NO_FCOE_FLAG;
11830 		eth_zero_addr(bp->fip_mac);
11831 	}
11832 }
11833 
11834 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11835 {
11836 	u32 val, val2;
11837 	int func = BP_ABS_FUNC(bp);
11838 	int port = BP_PORT(bp);
11839 	u8 addr[ETH_ALEN] = {};
11840 
11841 	/* Zero primary MAC configuration */
11842 	eth_hw_addr_set(bp->dev, addr);
11843 
11844 	if (BP_NOMCP(bp)) {
11845 		BNX2X_ERROR("warning: random MAC workaround active\n");
11846 		eth_hw_addr_random(bp->dev);
11847 	} else if (IS_MF(bp)) {
11848 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11849 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11850 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11851 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11852 			bnx2x_set_mac_buf(addr, val, val2);
11853 			eth_hw_addr_set(bp->dev, addr);
11854 		}
11855 
11856 		if (CNIC_SUPPORT(bp))
11857 			bnx2x_get_cnic_mac_hwinfo(bp);
11858 	} else {
11859 		/* in SF read MACs from port configuration */
11860 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11861 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11862 		bnx2x_set_mac_buf(addr, val, val2);
11863 		eth_hw_addr_set(bp->dev, addr);
11864 
11865 		if (CNIC_SUPPORT(bp))
11866 			bnx2x_get_cnic_mac_hwinfo(bp);
11867 	}
11868 
11869 	if (!BP_NOMCP(bp)) {
11870 		/* Read physical port identifier from shmem */
11871 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11872 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11873 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11874 		bp->flags |= HAS_PHYS_PORT_ID;
11875 	}
11876 
11877 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11878 
11879 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11880 		dev_err(&bp->pdev->dev,
11881 			"bad Ethernet MAC address configuration: %pM\n"
11882 			"change it manually before bringing up the appropriate network interface\n",
11883 			bp->dev->dev_addr);
11884 }
11885 
11886 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11887 {
11888 	int tmp;
11889 	u32 cfg;
11890 
11891 	if (IS_VF(bp))
11892 		return false;
11893 
11894 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11895 		/* Take function: tmp = func */
11896 		tmp = BP_ABS_FUNC(bp);
11897 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11898 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11899 	} else {
11900 		/* Take port: tmp = port */
11901 		tmp = BP_PORT(bp);
11902 		cfg = SHMEM_RD(bp,
11903 			       dev_info.port_hw_config[tmp].generic_features);
11904 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11905 	}
11906 	return cfg;
11907 }
11908 
11909 static void validate_set_si_mode(struct bnx2x *bp)
11910 {
11911 	u8 func = BP_ABS_FUNC(bp);
11912 	u32 val;
11913 
11914 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11915 
11916 	/* check for legal mac (upper bytes) */
11917 	if (val != 0xffff) {
11918 		bp->mf_mode = MULTI_FUNCTION_SI;
11919 		bp->mf_config[BP_VN(bp)] =
11920 			MF_CFG_RD(bp, func_mf_config[func].config);
11921 	} else
11922 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11923 }
11924 
11925 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11926 {
11927 	int /*abs*/func = BP_ABS_FUNC(bp);
11928 	int vn;
11929 	u32 val = 0, val2 = 0;
11930 	int rc = 0;
11931 
11932 	/* Validate that chip access is feasible */
11933 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11934 		dev_err(&bp->pdev->dev,
11935 			"Chip read returns all Fs. Preventing probe from continuing\n");
11936 		return -EINVAL;
11937 	}
11938 
11939 	bnx2x_get_common_hwinfo(bp);
11940 
11941 	/*
11942 	 * initialize IGU parameters
11943 	 */
11944 	if (CHIP_IS_E1x(bp)) {
11945 		bp->common.int_block = INT_BLOCK_HC;
11946 
11947 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11948 		bp->igu_base_sb = 0;
11949 	} else {
11950 		bp->common.int_block = INT_BLOCK_IGU;
11951 
11952 		/* do not allow device reset during IGU info processing */
11953 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11954 
11955 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11956 
11957 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11958 			int tout = 5000;
11959 
11960 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11961 
11962 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11963 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11964 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11965 
11966 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967 				tout--;
11968 				usleep_range(1000, 2000);
11969 			}
11970 
11971 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11972 				dev_err(&bp->pdev->dev,
11973 					"FORCING Normal Mode failed!!!\n");
11974 				bnx2x_release_hw_lock(bp,
11975 						      HW_LOCK_RESOURCE_RESET);
11976 				return -EPERM;
11977 			}
11978 		}
11979 
11980 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11981 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11982 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11983 		} else
11984 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11985 
11986 		rc = bnx2x_get_igu_cam_info(bp);
11987 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11988 		if (rc)
11989 			return rc;
11990 	}
11991 
11992 	/*
11993 	 * set base FW non-default (fast path) status block id, this value is
11994 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11995 	 * determine the id used by the FW.
11996 	 */
11997 	if (CHIP_IS_E1x(bp))
11998 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11999 	else /*
12000 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12001 	      * the same queue are indicated on the same IGU SB). So we prefer
12002 	      * FW and IGU SBs to be the same value.
12003 	      */
12004 		bp->base_fw_ndsb = bp->igu_base_sb;
12005 
12006 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12007 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12008 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12009 
12010 	/*
12011 	 * Initialize MF configuration
12012 	 */
12013 	bp->mf_ov = 0;
12014 	bp->mf_mode = 0;
12015 	bp->mf_sub_mode = 0;
12016 	vn = BP_VN(bp);
12017 
12018 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12019 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12020 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12021 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12022 
12023 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12024 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12025 		else
12026 			bp->common.mf_cfg_base = bp->common.shmem_base +
12027 				offsetof(struct shmem_region, func_mb) +
12028 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12029 		/*
12030 		 * get mf configuration:
12031 		 * 1. Existence of MF configuration
12032 		 * 2. MAC address must be legal (check only upper bytes)
12033 		 *    for  Switch-Independent mode;
12034 		 *    OVLAN must be legal for Switch-Dependent mode
12035 		 * 3. SF_MODE configures specific MF mode
12036 		 */
12037 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12038 			/* get mf configuration */
12039 			val = SHMEM_RD(bp,
12040 				       dev_info.shared_feature_config.config);
12041 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12042 
12043 			switch (val) {
12044 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12045 				validate_set_si_mode(bp);
12046 				break;
12047 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12048 				if ((!CHIP_IS_E1x(bp)) &&
12049 				    (MF_CFG_RD(bp, func_mf_config[func].
12050 					       mac_upper) != 0xffff) &&
12051 				    (SHMEM2_HAS(bp,
12052 						afex_driver_support))) {
12053 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12054 					bp->mf_config[vn] = MF_CFG_RD(bp,
12055 						func_mf_config[func].config);
12056 				} else {
12057 					BNX2X_DEV_INFO("can not configure afex mode\n");
12058 				}
12059 				break;
12060 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12061 				/* get OV configuration */
12062 				val = MF_CFG_RD(bp,
12063 					func_mf_config[FUNC_0].e1hov_tag);
12064 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12065 
12066 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12067 					bp->mf_mode = MULTI_FUNCTION_SD;
12068 					bp->mf_config[vn] = MF_CFG_RD(bp,
12069 						func_mf_config[func].config);
12070 				} else
12071 					BNX2X_DEV_INFO("illegal OV for SD\n");
12072 				break;
12073 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12074 				bp->mf_mode = MULTI_FUNCTION_SD;
12075 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12076 				bp->mf_config[vn] =
12077 					MF_CFG_RD(bp,
12078 						  func_mf_config[func].config);
12079 
12080 				if (SHMEM2_HAS(bp, mtu_size)) {
12081 					int mtu_idx = BP_FW_MB_IDX(bp);
12082 					u16 mtu_size;
12083 					u32 mtu;
12084 
12085 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12086 					mtu_size = (u16)mtu;
12087 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12088 					   mtu_size, mtu);
12089 
12090 					/* if valid: update device mtu */
12091 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12092 					    (mtu_size <=
12093 					     ETH_MAX_JUMBO_PACKET_SIZE))
12094 						bp->dev->mtu = mtu_size;
12095 				}
12096 				break;
12097 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12098 				bp->mf_mode = MULTI_FUNCTION_SD;
12099 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12100 				bp->mf_config[vn] =
12101 					MF_CFG_RD(bp,
12102 						  func_mf_config[func].config);
12103 				break;
12104 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12105 				bp->mf_config[vn] = 0;
12106 				break;
12107 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12108 				val2 = SHMEM_RD(bp,
12109 					dev_info.shared_hw_config.config_3);
12110 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12111 				switch (val2) {
12112 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12113 					validate_set_si_mode(bp);
12114 					bp->mf_sub_mode =
12115 							SUB_MF_MODE_NPAR1_DOT_5;
12116 					break;
12117 				default:
12118 					/* Unknown configuration */
12119 					bp->mf_config[vn] = 0;
12120 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12121 						       val);
12122 				}
12123 				break;
12124 			default:
12125 				/* Unknown configuration: reset mf_config */
12126 				bp->mf_config[vn] = 0;
12127 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12128 			}
12129 		}
12130 
12131 		BNX2X_DEV_INFO("%s function mode\n",
12132 			       IS_MF(bp) ? "multi" : "single");
12133 
12134 		switch (bp->mf_mode) {
12135 		case MULTI_FUNCTION_SD:
12136 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12137 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12138 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12139 				bp->mf_ov = val;
12140 				bp->path_has_ovlan = true;
12141 
12142 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12143 					       func, bp->mf_ov, bp->mf_ov);
12144 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12145 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12146 				dev_err(&bp->pdev->dev,
12147 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12148 					func);
12149 				bp->path_has_ovlan = true;
12150 			} else {
12151 				dev_err(&bp->pdev->dev,
12152 					"No valid MF OV for func %d, aborting\n",
12153 					func);
12154 				return -EPERM;
12155 			}
12156 			break;
12157 		case MULTI_FUNCTION_AFEX:
12158 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12159 			break;
12160 		case MULTI_FUNCTION_SI:
12161 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12162 				       func);
12163 			break;
12164 		default:
12165 			if (vn) {
12166 				dev_err(&bp->pdev->dev,
12167 					"VN %d is in a single function mode, aborting\n",
12168 					vn);
12169 				return -EPERM;
12170 			}
12171 			break;
12172 		}
12173 
12174 		/* check if other port on the path needs ovlan:
12175 		 * Since MF configuration is shared between ports
12176 		 * Possible mixed modes are only
12177 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12178 		 */
12179 		if (CHIP_MODE_IS_4_PORT(bp) &&
12180 		    !bp->path_has_ovlan &&
12181 		    !IS_MF(bp) &&
12182 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12183 			u8 other_port = !BP_PORT(bp);
12184 			u8 other_func = BP_PATH(bp) + 2*other_port;
12185 			val = MF_CFG_RD(bp,
12186 					func_mf_config[other_func].e1hov_tag);
12187 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12188 				bp->path_has_ovlan = true;
12189 		}
12190 	}
12191 
12192 	/* adjust igu_sb_cnt to MF for E1H */
12193 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12194 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12195 
12196 	/* port info */
12197 	bnx2x_get_port_hwinfo(bp);
12198 
12199 	/* Get MAC addresses */
12200 	bnx2x_get_mac_hwinfo(bp);
12201 
12202 	bnx2x_get_cnic_info(bp);
12203 
12204 	return rc;
12205 }
12206 
12207 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12208 {
12209 	char str_id[VENDOR_ID_LEN + 1];
12210 	unsigned int vpd_len, kw_len;
12211 	u8 *vpd_data;
12212 	int rodi;
12213 
12214 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12215 
12216 	vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12217 	if (IS_ERR(vpd_data))
12218 		return;
12219 
12220 	rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12221 					    PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12222 	if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12223 		goto out_not_found;
12224 
12225 	/* vendor specific info */
12226 	snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12227 	if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12228 		rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12229 						    PCI_VPD_RO_KEYWORD_VENDOR0,
12230 						    &kw_len);
12231 		if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12232 			memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12233 			bp->fw_ver[kw_len] = ' ';
12234 		}
12235 	}
12236 out_not_found:
12237 	kfree(vpd_data);
12238 }
12239 
12240 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12241 {
12242 	u32 flags = 0;
12243 
12244 	if (CHIP_REV_IS_FPGA(bp))
12245 		SET_FLAGS(flags, MODE_FPGA);
12246 	else if (CHIP_REV_IS_EMUL(bp))
12247 		SET_FLAGS(flags, MODE_EMUL);
12248 	else
12249 		SET_FLAGS(flags, MODE_ASIC);
12250 
12251 	if (CHIP_MODE_IS_4_PORT(bp))
12252 		SET_FLAGS(flags, MODE_PORT4);
12253 	else
12254 		SET_FLAGS(flags, MODE_PORT2);
12255 
12256 	if (CHIP_IS_E2(bp))
12257 		SET_FLAGS(flags, MODE_E2);
12258 	else if (CHIP_IS_E3(bp)) {
12259 		SET_FLAGS(flags, MODE_E3);
12260 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12261 			SET_FLAGS(flags, MODE_E3_A0);
12262 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12263 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12264 	}
12265 
12266 	if (IS_MF(bp)) {
12267 		SET_FLAGS(flags, MODE_MF);
12268 		switch (bp->mf_mode) {
12269 		case MULTI_FUNCTION_SD:
12270 			SET_FLAGS(flags, MODE_MF_SD);
12271 			break;
12272 		case MULTI_FUNCTION_SI:
12273 			SET_FLAGS(flags, MODE_MF_SI);
12274 			break;
12275 		case MULTI_FUNCTION_AFEX:
12276 			SET_FLAGS(flags, MODE_MF_AFEX);
12277 			break;
12278 		}
12279 	} else
12280 		SET_FLAGS(flags, MODE_SF);
12281 
12282 #if defined(__LITTLE_ENDIAN)
12283 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12284 #else /*(__BIG_ENDIAN)*/
12285 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12286 #endif
12287 	INIT_MODE_FLAGS(bp) = flags;
12288 }
12289 
12290 static int bnx2x_init_bp(struct bnx2x *bp)
12291 {
12292 	int func;
12293 	int rc;
12294 
12295 	mutex_init(&bp->port.phy_mutex);
12296 	mutex_init(&bp->fw_mb_mutex);
12297 	mutex_init(&bp->drv_info_mutex);
12298 	sema_init(&bp->stats_lock, 1);
12299 	bp->drv_info_mng_owner = false;
12300 	INIT_LIST_HEAD(&bp->vlan_reg);
12301 
12302 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12303 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12304 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12305 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12306 	if (IS_PF(bp)) {
12307 		rc = bnx2x_get_hwinfo(bp);
12308 		if (rc)
12309 			return rc;
12310 	} else {
12311 		static const u8 zero_addr[ETH_ALEN] = {};
12312 
12313 		eth_hw_addr_set(bp->dev, zero_addr);
12314 	}
12315 
12316 	bnx2x_set_modes_bitmap(bp);
12317 
12318 	rc = bnx2x_alloc_mem_bp(bp);
12319 	if (rc)
12320 		return rc;
12321 
12322 	bnx2x_read_fwinfo(bp);
12323 
12324 	func = BP_FUNC(bp);
12325 
12326 	/* need to reset chip if undi was active */
12327 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12328 		/* init fw_seq */
12329 		bp->fw_seq =
12330 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12331 							DRV_MSG_SEQ_NUMBER_MASK;
12332 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12333 
12334 		rc = bnx2x_prev_unload(bp);
12335 		if (rc) {
12336 			bnx2x_free_mem_bp(bp);
12337 			return rc;
12338 		}
12339 	}
12340 
12341 	if (CHIP_REV_IS_FPGA(bp))
12342 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12343 
12344 	if (BP_NOMCP(bp) && (func == 0))
12345 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12346 
12347 	bp->disable_tpa = disable_tpa;
12348 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12349 	/* Reduce memory usage in kdump environment by disabling TPA */
12350 	bp->disable_tpa |= is_kdump_kernel();
12351 
12352 	/* Set TPA flags */
12353 	if (bp->disable_tpa) {
12354 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12355 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12356 	}
12357 
12358 	if (CHIP_IS_E1(bp))
12359 		bp->dropless_fc = false;
12360 	else
12361 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12362 
12363 	bp->mrrs = mrrs;
12364 
12365 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12366 	if (IS_VF(bp))
12367 		bp->rx_ring_size = MAX_RX_AVAIL;
12368 
12369 	/* make sure that the numbers are in the right granularity */
12370 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12371 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12372 
12373 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12374 
12375 	timer_setup(&bp->timer, bnx2x_timer, 0);
12376 	bp->timer.expires = jiffies + bp->current_interval;
12377 
12378 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12379 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12380 	    SHMEM2_HAS(bp, dcbx_en) &&
12381 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12382 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12383 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12384 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12385 		bnx2x_dcbx_init_params(bp);
12386 	} else {
12387 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12388 	}
12389 
12390 	if (CHIP_IS_E1x(bp))
12391 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12392 	else
12393 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12394 
12395 	/* multiple tx priority */
12396 	if (IS_VF(bp))
12397 		bp->max_cos = 1;
12398 	else if (CHIP_IS_E1x(bp))
12399 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12400 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12401 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12402 	else if (CHIP_IS_E3B0(bp))
12403 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12404 	else
12405 		BNX2X_ERR("unknown chip %x revision %x\n",
12406 			  CHIP_NUM(bp), CHIP_REV(bp));
12407 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12408 
12409 	/* We need at least one default status block for slow-path events,
12410 	 * second status block for the L2 queue, and a third status block for
12411 	 * CNIC if supported.
12412 	 */
12413 	if (IS_VF(bp))
12414 		bp->min_msix_vec_cnt = 1;
12415 	else if (CNIC_SUPPORT(bp))
12416 		bp->min_msix_vec_cnt = 3;
12417 	else /* PF w/o cnic */
12418 		bp->min_msix_vec_cnt = 2;
12419 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12420 
12421 	bp->dump_preset_idx = 1;
12422 
12423 	return rc;
12424 }
12425 
12426 /****************************************************************************
12427 * General service functions
12428 ****************************************************************************/
12429 
12430 /*
12431  * net_device service functions
12432  */
12433 
12434 /* called with rtnl_lock */
12435 static int bnx2x_open(struct net_device *dev)
12436 {
12437 	struct bnx2x *bp = netdev_priv(dev);
12438 	int rc;
12439 
12440 	bp->stats_init = true;
12441 
12442 	netif_carrier_off(dev);
12443 
12444 	bnx2x_set_power_state(bp, PCI_D0);
12445 
12446 	/* If parity had happen during the unload, then attentions
12447 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12448 	 * want the first function loaded on the current engine to
12449 	 * complete the recovery.
12450 	 * Parity recovery is only relevant for PF driver.
12451 	 */
12452 	if (IS_PF(bp)) {
12453 		int other_engine = BP_PATH(bp) ? 0 : 1;
12454 		bool other_load_status, load_status;
12455 		bool global = false;
12456 
12457 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12458 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12459 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12460 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12461 			do {
12462 				/* If there are attentions and they are in a
12463 				 * global blocks, set the GLOBAL_RESET bit
12464 				 * regardless whether it will be this function
12465 				 * that will complete the recovery or not.
12466 				 */
12467 				if (global)
12468 					bnx2x_set_reset_global(bp);
12469 
12470 				/* Only the first function on the current
12471 				 * engine should try to recover in open. In case
12472 				 * of attentions in global blocks only the first
12473 				 * in the chip should try to recover.
12474 				 */
12475 				if ((!load_status &&
12476 				     (!global || !other_load_status)) &&
12477 				      bnx2x_trylock_leader_lock(bp) &&
12478 				      !bnx2x_leader_reset(bp)) {
12479 					netdev_info(bp->dev,
12480 						    "Recovered in open\n");
12481 					break;
12482 				}
12483 
12484 				/* recovery has failed... */
12485 				bnx2x_set_power_state(bp, PCI_D3hot);
12486 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12487 
12488 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12489 					  "If you still see this message after a few retries then power cycle is required.\n");
12490 
12491 				return -EAGAIN;
12492 			} while (0);
12493 		}
12494 	}
12495 
12496 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12497 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12498 	if (rc)
12499 		return rc;
12500 
12501 	return 0;
12502 }
12503 
12504 /* called with rtnl_lock */
12505 static int bnx2x_close(struct net_device *dev)
12506 {
12507 	struct bnx2x *bp = netdev_priv(dev);
12508 
12509 	/* Unload the driver, release IRQs */
12510 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12511 
12512 	return 0;
12513 }
12514 
12515 struct bnx2x_mcast_list_elem_group
12516 {
12517 	struct list_head mcast_group_link;
12518 	struct bnx2x_mcast_list_elem mcast_elems[];
12519 };
12520 
12521 #define MCAST_ELEMS_PER_PG \
12522 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12523 	sizeof(struct bnx2x_mcast_list_elem))
12524 
12525 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12526 {
12527 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12528 
12529 	while (!list_empty(mcast_group_list)) {
12530 		current_mcast_group = list_first_entry(mcast_group_list,
12531 				      struct bnx2x_mcast_list_elem_group,
12532 				      mcast_group_link);
12533 		list_del(&current_mcast_group->mcast_group_link);
12534 		free_page((unsigned long)current_mcast_group);
12535 	}
12536 }
12537 
12538 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12539 				      struct bnx2x_mcast_ramrod_params *p,
12540 				      struct list_head *mcast_group_list)
12541 {
12542 	struct bnx2x_mcast_list_elem *mc_mac;
12543 	struct netdev_hw_addr *ha;
12544 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12545 	int mc_count = netdev_mc_count(bp->dev);
12546 	int offset = 0;
12547 
12548 	INIT_LIST_HEAD(&p->mcast_list);
12549 	netdev_for_each_mc_addr(ha, bp->dev) {
12550 		if (!offset) {
12551 			current_mcast_group =
12552 				(struct bnx2x_mcast_list_elem_group *)
12553 				__get_free_page(GFP_ATOMIC);
12554 			if (!current_mcast_group) {
12555 				bnx2x_free_mcast_macs_list(mcast_group_list);
12556 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12557 				return -ENOMEM;
12558 			}
12559 			list_add(&current_mcast_group->mcast_group_link,
12560 				 mcast_group_list);
12561 		}
12562 		mc_mac = &current_mcast_group->mcast_elems[offset];
12563 		mc_mac->mac = bnx2x_mc_addr(ha);
12564 		list_add_tail(&mc_mac->link, &p->mcast_list);
12565 		offset++;
12566 		if (offset == MCAST_ELEMS_PER_PG)
12567 			offset = 0;
12568 	}
12569 	p->mcast_list_len = mc_count;
12570 	return 0;
12571 }
12572 
12573 /**
12574  * bnx2x_set_uc_list - configure a new unicast MACs list.
12575  *
12576  * @bp: driver handle
12577  *
12578  * We will use zero (0) as a MAC type for these MACs.
12579  */
12580 static int bnx2x_set_uc_list(struct bnx2x *bp)
12581 {
12582 	int rc;
12583 	struct net_device *dev = bp->dev;
12584 	struct netdev_hw_addr *ha;
12585 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12586 	unsigned long ramrod_flags = 0;
12587 
12588 	/* First schedule a cleanup up of old configuration */
12589 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12590 	if (rc < 0) {
12591 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12592 		return rc;
12593 	}
12594 
12595 	netdev_for_each_uc_addr(ha, dev) {
12596 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12597 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12598 		if (rc == -EEXIST) {
12599 			DP(BNX2X_MSG_SP,
12600 			   "Failed to schedule ADD operations: %d\n", rc);
12601 			/* do not treat adding same MAC as error */
12602 			rc = 0;
12603 
12604 		} else if (rc < 0) {
12605 
12606 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12607 				  rc);
12608 			return rc;
12609 		}
12610 	}
12611 
12612 	/* Execute the pending commands */
12613 	__set_bit(RAMROD_CONT, &ramrod_flags);
12614 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12615 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12616 }
12617 
12618 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12619 {
12620 	LIST_HEAD(mcast_group_list);
12621 	struct net_device *dev = bp->dev;
12622 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12623 	int rc = 0;
12624 
12625 	rparam.mcast_obj = &bp->mcast_obj;
12626 
12627 	/* first, clear all configured multicast MACs */
12628 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12629 	if (rc < 0) {
12630 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12631 		return rc;
12632 	}
12633 
12634 	/* then, configure a new MACs list */
12635 	if (netdev_mc_count(dev)) {
12636 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12637 		if (rc)
12638 			return rc;
12639 
12640 		/* Now add the new MACs */
12641 		rc = bnx2x_config_mcast(bp, &rparam,
12642 					BNX2X_MCAST_CMD_ADD);
12643 		if (rc < 0)
12644 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12645 				  rc);
12646 
12647 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12648 	}
12649 
12650 	return rc;
12651 }
12652 
12653 static int bnx2x_set_mc_list(struct bnx2x *bp)
12654 {
12655 	LIST_HEAD(mcast_group_list);
12656 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12657 	struct net_device *dev = bp->dev;
12658 	int rc = 0;
12659 
12660 	/* On older adapters, we need to flush and re-add filters */
12661 	if (CHIP_IS_E1x(bp))
12662 		return bnx2x_set_mc_list_e1x(bp);
12663 
12664 	rparam.mcast_obj = &bp->mcast_obj;
12665 
12666 	if (netdev_mc_count(dev)) {
12667 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12668 		if (rc)
12669 			return rc;
12670 
12671 		/* Override the curently configured set of mc filters */
12672 		rc = bnx2x_config_mcast(bp, &rparam,
12673 					BNX2X_MCAST_CMD_SET);
12674 		if (rc < 0)
12675 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12676 				  rc);
12677 
12678 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12679 	} else {
12680 		/* If no mc addresses are required, flush the configuration */
12681 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12682 		if (rc < 0)
12683 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12684 				  rc);
12685 	}
12686 
12687 	return rc;
12688 }
12689 
12690 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12691 static void bnx2x_set_rx_mode(struct net_device *dev)
12692 {
12693 	struct bnx2x *bp = netdev_priv(dev);
12694 
12695 	if (bp->state != BNX2X_STATE_OPEN) {
12696 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12697 		return;
12698 	} else {
12699 		/* Schedule an SP task to handle rest of change */
12700 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12701 				       NETIF_MSG_IFUP);
12702 	}
12703 }
12704 
12705 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12706 {
12707 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12708 
12709 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12710 
12711 	netif_addr_lock_bh(bp->dev);
12712 
12713 	if (bp->dev->flags & IFF_PROMISC) {
12714 		rx_mode = BNX2X_RX_MODE_PROMISC;
12715 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12716 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12717 		    CHIP_IS_E1(bp))) {
12718 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12719 	} else {
12720 		if (IS_PF(bp)) {
12721 			/* some multicasts */
12722 			if (bnx2x_set_mc_list(bp) < 0)
12723 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12724 
12725 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12726 			netif_addr_unlock_bh(bp->dev);
12727 			if (bnx2x_set_uc_list(bp) < 0)
12728 				rx_mode = BNX2X_RX_MODE_PROMISC;
12729 			netif_addr_lock_bh(bp->dev);
12730 		} else {
12731 			/* configuring mcast to a vf involves sleeping (when we
12732 			 * wait for the pf's response).
12733 			 */
12734 			bnx2x_schedule_sp_rtnl(bp,
12735 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12736 		}
12737 	}
12738 
12739 	bp->rx_mode = rx_mode;
12740 	/* handle ISCSI SD mode */
12741 	if (IS_MF_ISCSI_ONLY(bp))
12742 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12743 
12744 	/* Schedule the rx_mode command */
12745 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12746 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12747 		netif_addr_unlock_bh(bp->dev);
12748 		return;
12749 	}
12750 
12751 	if (IS_PF(bp)) {
12752 		bnx2x_set_storm_rx_mode(bp);
12753 		netif_addr_unlock_bh(bp->dev);
12754 	} else {
12755 		/* VF will need to request the PF to make this change, and so
12756 		 * the VF needs to release the bottom-half lock prior to the
12757 		 * request (as it will likely require sleep on the VF side)
12758 		 */
12759 		netif_addr_unlock_bh(bp->dev);
12760 		bnx2x_vfpf_storm_rx_mode(bp);
12761 	}
12762 }
12763 
12764 /* called with rtnl_lock */
12765 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12766 			   int devad, u16 addr)
12767 {
12768 	struct bnx2x *bp = netdev_priv(netdev);
12769 	u16 value;
12770 	int rc;
12771 
12772 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12773 	   prtad, devad, addr);
12774 
12775 	/* The HW expects different devad if CL22 is used */
12776 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12777 
12778 	bnx2x_acquire_phy_lock(bp);
12779 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12780 	bnx2x_release_phy_lock(bp);
12781 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12782 
12783 	if (!rc)
12784 		rc = value;
12785 	return rc;
12786 }
12787 
12788 /* called with rtnl_lock */
12789 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12790 			    u16 addr, u16 value)
12791 {
12792 	struct bnx2x *bp = netdev_priv(netdev);
12793 	int rc;
12794 
12795 	DP(NETIF_MSG_LINK,
12796 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12797 	   prtad, devad, addr, value);
12798 
12799 	/* The HW expects different devad if CL22 is used */
12800 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12801 
12802 	bnx2x_acquire_phy_lock(bp);
12803 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12804 	bnx2x_release_phy_lock(bp);
12805 	return rc;
12806 }
12807 
12808 /* called with rtnl_lock */
12809 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12810 {
12811 	struct bnx2x *bp = netdev_priv(dev);
12812 	struct mii_ioctl_data *mdio = if_mii(ifr);
12813 
12814 	if (!netif_running(dev))
12815 		return -EAGAIN;
12816 
12817 	switch (cmd) {
12818 	case SIOCSHWTSTAMP:
12819 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12820 	default:
12821 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12822 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12823 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12824 	}
12825 }
12826 
12827 static int bnx2x_validate_addr(struct net_device *dev)
12828 {
12829 	struct bnx2x *bp = netdev_priv(dev);
12830 
12831 	/* query the bulletin board for mac address configured by the PF */
12832 	if (IS_VF(bp))
12833 		bnx2x_sample_bulletin(bp);
12834 
12835 	if (!is_valid_ether_addr(dev->dev_addr)) {
12836 		BNX2X_ERR("Non-valid Ethernet address\n");
12837 		return -EADDRNOTAVAIL;
12838 	}
12839 	return 0;
12840 }
12841 
12842 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12843 				  struct netdev_phys_item_id *ppid)
12844 {
12845 	struct bnx2x *bp = netdev_priv(netdev);
12846 
12847 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12848 		return -EOPNOTSUPP;
12849 
12850 	ppid->id_len = sizeof(bp->phys_port_id);
12851 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12852 
12853 	return 0;
12854 }
12855 
12856 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12857 					      struct net_device *dev,
12858 					      netdev_features_t features)
12859 {
12860 	/*
12861 	 * A skb with gso_size + header length > 9700 will cause a
12862 	 * firmware panic. Drop GSO support.
12863 	 *
12864 	 * Eventually the upper layer should not pass these packets down.
12865 	 *
12866 	 * For speed, if the gso_size is <= 9000, assume there will
12867 	 * not be 700 bytes of headers and pass it through. Only do a
12868 	 * full (slow) validation if the gso_size is > 9000.
12869 	 *
12870 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12871 	 * validation in that case.)
12872 	 */
12873 	if (unlikely(skb_is_gso(skb) &&
12874 		     (skb_shinfo(skb)->gso_size > 9000) &&
12875 		     !skb_gso_validate_mac_len(skb, 9700)))
12876 		features &= ~NETIF_F_GSO_MASK;
12877 
12878 	features = vlan_features_check(skb, features);
12879 	return vxlan_features_check(skb, features);
12880 }
12881 
12882 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12883 {
12884 	int rc;
12885 
12886 	if (IS_PF(bp)) {
12887 		unsigned long ramrod_flags = 0;
12888 
12889 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12890 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12891 					add, &ramrod_flags);
12892 	} else {
12893 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12894 	}
12895 
12896 	return rc;
12897 }
12898 
12899 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12900 {
12901 	struct bnx2x_vlan_entry *vlan;
12902 	int rc = 0;
12903 
12904 	/* Configure all non-configured entries */
12905 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12906 		if (vlan->hw)
12907 			continue;
12908 
12909 		if (bp->vlan_cnt >= bp->vlan_credit)
12910 			return -ENOBUFS;
12911 
12912 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12913 		if (rc) {
12914 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12915 			return rc;
12916 		}
12917 
12918 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12919 		vlan->hw = true;
12920 		bp->vlan_cnt++;
12921 	}
12922 
12923 	return 0;
12924 }
12925 
12926 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12927 {
12928 	bool need_accept_any_vlan;
12929 
12930 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12931 
12932 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12933 		bp->accept_any_vlan = need_accept_any_vlan;
12934 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12935 		   bp->accept_any_vlan ? "raised" : "cleared");
12936 		if (set_rx_mode) {
12937 			if (IS_PF(bp))
12938 				bnx2x_set_rx_mode_inner(bp);
12939 			else
12940 				bnx2x_vfpf_storm_rx_mode(bp);
12941 		}
12942 	}
12943 }
12944 
12945 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12946 {
12947 	/* Don't set rx mode here. Our caller will do it. */
12948 	bnx2x_vlan_configure(bp, false);
12949 
12950 	return 0;
12951 }
12952 
12953 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12954 {
12955 	struct bnx2x *bp = netdev_priv(dev);
12956 	struct bnx2x_vlan_entry *vlan;
12957 
12958 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12959 
12960 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12961 	if (!vlan)
12962 		return -ENOMEM;
12963 
12964 	vlan->vid = vid;
12965 	vlan->hw = false;
12966 	list_add_tail(&vlan->link, &bp->vlan_reg);
12967 
12968 	if (netif_running(dev))
12969 		bnx2x_vlan_configure(bp, true);
12970 
12971 	return 0;
12972 }
12973 
12974 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12975 {
12976 	struct bnx2x *bp = netdev_priv(dev);
12977 	struct bnx2x_vlan_entry *vlan;
12978 	bool found = false;
12979 	int rc = 0;
12980 
12981 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12982 
12983 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12984 		if (vlan->vid == vid) {
12985 			found = true;
12986 			break;
12987 		}
12988 
12989 	if (!found) {
12990 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12991 		return -EINVAL;
12992 	}
12993 
12994 	if (netif_running(dev) && vlan->hw) {
12995 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12996 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12997 		bp->vlan_cnt--;
12998 	}
12999 
13000 	list_del(&vlan->link);
13001 	kfree(vlan);
13002 
13003 	if (netif_running(dev))
13004 		bnx2x_vlan_configure(bp, true);
13005 
13006 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13007 
13008 	return rc;
13009 }
13010 
13011 static const struct net_device_ops bnx2x_netdev_ops = {
13012 	.ndo_open		= bnx2x_open,
13013 	.ndo_stop		= bnx2x_close,
13014 	.ndo_start_xmit		= bnx2x_start_xmit,
13015 	.ndo_select_queue	= bnx2x_select_queue,
13016 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13017 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13018 	.ndo_validate_addr	= bnx2x_validate_addr,
13019 	.ndo_eth_ioctl		= bnx2x_ioctl,
13020 	.ndo_change_mtu		= bnx2x_change_mtu,
13021 	.ndo_fix_features	= bnx2x_fix_features,
13022 	.ndo_set_features	= bnx2x_set_features,
13023 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13024 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13025 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13026 	.ndo_setup_tc		= __bnx2x_setup_tc,
13027 #ifdef CONFIG_BNX2X_SRIOV
13028 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13029 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13030 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13031 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13032 #endif
13033 #ifdef NETDEV_FCOE_WWNN
13034 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13035 #endif
13036 
13037 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13038 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13039 	.ndo_features_check	= bnx2x_features_check,
13040 };
13041 
13042 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13043 			  struct net_device *dev, unsigned long board_type)
13044 {
13045 	int rc;
13046 	u32 pci_cfg_dword;
13047 	bool chip_is_e1x = (board_type == BCM57710 ||
13048 			    board_type == BCM57711 ||
13049 			    board_type == BCM57711E);
13050 
13051 	SET_NETDEV_DEV(dev, &pdev->dev);
13052 
13053 	bp->dev = dev;
13054 	bp->pdev = pdev;
13055 
13056 	rc = pci_enable_device(pdev);
13057 	if (rc) {
13058 		dev_err(&bp->pdev->dev,
13059 			"Cannot enable PCI device, aborting\n");
13060 		goto err_out;
13061 	}
13062 
13063 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13064 		dev_err(&bp->pdev->dev,
13065 			"Cannot find PCI device base address, aborting\n");
13066 		rc = -ENODEV;
13067 		goto err_out_disable;
13068 	}
13069 
13070 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13071 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13072 		rc = -ENODEV;
13073 		goto err_out_disable;
13074 	}
13075 
13076 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13077 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13078 	    PCICFG_REVESION_ID_ERROR_VAL) {
13079 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13080 		rc = -ENODEV;
13081 		goto err_out_disable;
13082 	}
13083 
13084 	if (atomic_read(&pdev->enable_cnt) == 1) {
13085 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13086 		if (rc) {
13087 			dev_err(&bp->pdev->dev,
13088 				"Cannot obtain PCI resources, aborting\n");
13089 			goto err_out_disable;
13090 		}
13091 
13092 		pci_set_master(pdev);
13093 		pci_save_state(pdev);
13094 	}
13095 
13096 	if (IS_PF(bp)) {
13097 		if (!pdev->pm_cap) {
13098 			dev_err(&bp->pdev->dev,
13099 				"Cannot find power management capability, aborting\n");
13100 			rc = -EIO;
13101 			goto err_out_release;
13102 		}
13103 	}
13104 
13105 	if (!pci_is_pcie(pdev)) {
13106 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13107 		rc = -EIO;
13108 		goto err_out_release;
13109 	}
13110 
13111 	rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13112 	if (rc) {
13113 		dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13114 		goto err_out_release;
13115 	}
13116 
13117 	dev->mem_start = pci_resource_start(pdev, 0);
13118 	dev->base_addr = dev->mem_start;
13119 	dev->mem_end = pci_resource_end(pdev, 0);
13120 
13121 	dev->irq = pdev->irq;
13122 
13123 	bp->regview = pci_ioremap_bar(pdev, 0);
13124 	if (!bp->regview) {
13125 		dev_err(&bp->pdev->dev,
13126 			"Cannot map register space, aborting\n");
13127 		rc = -ENOMEM;
13128 		goto err_out_release;
13129 	}
13130 
13131 	/* In E1/E1H use pci device function given by kernel.
13132 	 * In E2/E3 read physical function from ME register since these chips
13133 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13134 	 * (depending on hypervisor).
13135 	 */
13136 	if (chip_is_e1x) {
13137 		bp->pf_num = PCI_FUNC(pdev->devfn);
13138 	} else {
13139 		/* chip is E2/3*/
13140 		pci_read_config_dword(bp->pdev,
13141 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13142 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13143 				  ME_REG_ABS_PF_NUM_SHIFT);
13144 	}
13145 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13146 
13147 	/* clean indirect addresses */
13148 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13149 			       PCICFG_VENDOR_ID_OFFSET);
13150 
13151 	/* Set PCIe reset type to fundamental for EEH recovery */
13152 	pdev->needs_freset = 1;
13153 
13154 	/*
13155 	 * Clean the following indirect addresses for all functions since it
13156 	 * is not used by the driver.
13157 	 */
13158 	if (IS_PF(bp)) {
13159 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13160 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13161 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13162 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13163 
13164 		if (chip_is_e1x) {
13165 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13166 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13167 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13168 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13169 		}
13170 
13171 		/* Enable internal target-read (in case we are probed after PF
13172 		 * FLR). Must be done prior to any BAR read access. Only for
13173 		 * 57712 and up
13174 		 */
13175 		if (!chip_is_e1x)
13176 			REG_WR(bp,
13177 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13178 	}
13179 
13180 	dev->watchdog_timeo = TX_TIMEOUT;
13181 
13182 	dev->netdev_ops = &bnx2x_netdev_ops;
13183 	bnx2x_set_ethtool_ops(bp, dev);
13184 
13185 	dev->priv_flags |= IFF_UNICAST_FLT;
13186 
13187 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13188 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13189 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13190 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13191 	if (!chip_is_e1x) {
13192 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13193 				    NETIF_F_GSO_IPXIP4 |
13194 				    NETIF_F_GSO_UDP_TUNNEL |
13195 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13196 				    NETIF_F_GSO_PARTIAL;
13197 
13198 		dev->hw_enc_features =
13199 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13200 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13201 			NETIF_F_GSO_IPXIP4 |
13202 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13203 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13204 			NETIF_F_GSO_PARTIAL;
13205 
13206 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13207 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13208 
13209 		if (IS_PF(bp))
13210 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13211 	}
13212 
13213 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13214 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13215 
13216 	if (IS_PF(bp)) {
13217 		if (chip_is_e1x)
13218 			bp->accept_any_vlan = true;
13219 		else
13220 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13221 	}
13222 	/* For VF we'll know whether to enable VLAN filtering after
13223 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13224 	 */
13225 
13226 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13227 	dev->features |= NETIF_F_HIGHDMA;
13228 	if (dev->features & NETIF_F_LRO)
13229 		dev->features &= ~NETIF_F_GRO_HW;
13230 
13231 	/* Add Loopback capability to the device */
13232 	dev->hw_features |= NETIF_F_LOOPBACK;
13233 
13234 #ifdef BCM_DCBNL
13235 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13236 #endif
13237 
13238 	/* MTU range, 46 - 9600 */
13239 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13240 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13241 
13242 	/* get_port_hwinfo() will set prtad and mmds properly */
13243 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13244 	bp->mdio.mmds = 0;
13245 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13246 	bp->mdio.dev = dev;
13247 	bp->mdio.mdio_read = bnx2x_mdio_read;
13248 	bp->mdio.mdio_write = bnx2x_mdio_write;
13249 
13250 	return 0;
13251 
13252 err_out_release:
13253 	if (atomic_read(&pdev->enable_cnt) == 1)
13254 		pci_release_regions(pdev);
13255 
13256 err_out_disable:
13257 	pci_disable_device(pdev);
13258 
13259 err_out:
13260 	return rc;
13261 }
13262 
13263 static int bnx2x_check_firmware(struct bnx2x *bp)
13264 {
13265 	const struct firmware *firmware = bp->firmware;
13266 	struct bnx2x_fw_file_hdr *fw_hdr;
13267 	struct bnx2x_fw_file_section *sections;
13268 	u32 offset, len, num_ops;
13269 	__be16 *ops_offsets;
13270 	int i;
13271 	const u8 *fw_ver;
13272 
13273 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13274 		BNX2X_ERR("Wrong FW size\n");
13275 		return -EINVAL;
13276 	}
13277 
13278 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13279 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13280 
13281 	/* Make sure none of the offsets and sizes make us read beyond
13282 	 * the end of the firmware data */
13283 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13284 		offset = be32_to_cpu(sections[i].offset);
13285 		len = be32_to_cpu(sections[i].len);
13286 		if (offset + len > firmware->size) {
13287 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13288 			return -EINVAL;
13289 		}
13290 	}
13291 
13292 	/* Likewise for the init_ops offsets */
13293 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13294 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13295 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13296 
13297 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13298 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13299 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13300 			return -EINVAL;
13301 		}
13302 	}
13303 
13304 	/* Check FW version */
13305 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13306 	fw_ver = firmware->data + offset;
13307 	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13308 	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13309 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13310 			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13311 			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13312 		return -EINVAL;
13313 	}
13314 
13315 	return 0;
13316 }
13317 
13318 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13319 {
13320 	const __be32 *source = (const __be32 *)_source;
13321 	u32 *target = (u32 *)_target;
13322 	u32 i;
13323 
13324 	for (i = 0; i < n/4; i++)
13325 		target[i] = be32_to_cpu(source[i]);
13326 }
13327 
13328 /*
13329    Ops array is stored in the following format:
13330    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13331  */
13332 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13333 {
13334 	const __be32 *source = (const __be32 *)_source;
13335 	struct raw_op *target = (struct raw_op *)_target;
13336 	u32 i, j, tmp;
13337 
13338 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13339 		tmp = be32_to_cpu(source[j]);
13340 		target[i].op = (tmp >> 24) & 0xff;
13341 		target[i].offset = tmp & 0xffffff;
13342 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13343 	}
13344 }
13345 
13346 /* IRO array is stored in the following format:
13347  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13348  */
13349 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13350 {
13351 	const __be32 *source = (const __be32 *)_source;
13352 	struct iro *target = (struct iro *)_target;
13353 	u32 i, j, tmp;
13354 
13355 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13356 		target[i].base = be32_to_cpu(source[j]);
13357 		j++;
13358 		tmp = be32_to_cpu(source[j]);
13359 		target[i].m1 = (tmp >> 16) & 0xffff;
13360 		target[i].m2 = tmp & 0xffff;
13361 		j++;
13362 		tmp = be32_to_cpu(source[j]);
13363 		target[i].m3 = (tmp >> 16) & 0xffff;
13364 		target[i].size = tmp & 0xffff;
13365 		j++;
13366 	}
13367 }
13368 
13369 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13370 {
13371 	const __be16 *source = (const __be16 *)_source;
13372 	u16 *target = (u16 *)_target;
13373 	u32 i;
13374 
13375 	for (i = 0; i < n/2; i++)
13376 		target[i] = be16_to_cpu(source[i]);
13377 }
13378 
13379 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13380 do {									\
13381 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13382 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13383 	if (!bp->arr)							\
13384 		goto lbl;						\
13385 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13386 	     (u8 *)bp->arr, len);					\
13387 } while (0)
13388 
13389 static int bnx2x_init_firmware(struct bnx2x *bp)
13390 {
13391 	const char *fw_file_name, *fw_file_name_v15;
13392 	struct bnx2x_fw_file_hdr *fw_hdr;
13393 	int rc;
13394 
13395 	if (bp->firmware)
13396 		return 0;
13397 
13398 	if (CHIP_IS_E1(bp)) {
13399 		fw_file_name = FW_FILE_NAME_E1;
13400 		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13401 	} else if (CHIP_IS_E1H(bp)) {
13402 		fw_file_name = FW_FILE_NAME_E1H;
13403 		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13404 	} else if (!CHIP_IS_E1x(bp)) {
13405 		fw_file_name = FW_FILE_NAME_E2;
13406 		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13407 	} else {
13408 		BNX2X_ERR("Unsupported chip revision\n");
13409 		return -EINVAL;
13410 	}
13411 
13412 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13413 
13414 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13415 	if (rc) {
13416 		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13417 
13418 		/* try to load prev version */
13419 		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13420 
13421 		if (rc)
13422 			goto request_firmware_exit;
13423 
13424 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13425 	} else {
13426 		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13427 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13428 	}
13429 
13430 	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13431 	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13432 	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13433 
13434 	rc = bnx2x_check_firmware(bp);
13435 	if (rc) {
13436 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13437 		goto request_firmware_exit;
13438 	}
13439 
13440 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13441 
13442 	/* Initialize the pointers to the init arrays */
13443 	/* Blob */
13444 	rc = -ENOMEM;
13445 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13446 
13447 	/* Opcodes */
13448 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13449 
13450 	/* Offsets */
13451 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13452 			    be16_to_cpu_n);
13453 
13454 	/* STORMs firmware */
13455 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13456 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13457 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13458 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13459 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13460 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13461 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13462 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13463 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13464 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13465 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13466 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13467 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13468 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13469 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13470 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13471 	/* IRO */
13472 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13473 
13474 	return 0;
13475 
13476 iro_alloc_err:
13477 	kfree(bp->init_ops_offsets);
13478 init_offsets_alloc_err:
13479 	kfree(bp->init_ops);
13480 init_ops_alloc_err:
13481 	kfree(bp->init_data);
13482 request_firmware_exit:
13483 	release_firmware(bp->firmware);
13484 	bp->firmware = NULL;
13485 
13486 	return rc;
13487 }
13488 
13489 static void bnx2x_release_firmware(struct bnx2x *bp)
13490 {
13491 	kfree(bp->init_ops_offsets);
13492 	kfree(bp->init_ops);
13493 	kfree(bp->init_data);
13494 	release_firmware(bp->firmware);
13495 	bp->firmware = NULL;
13496 }
13497 
13498 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13499 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13500 	.init_hw_cmn      = bnx2x_init_hw_common,
13501 	.init_hw_port     = bnx2x_init_hw_port,
13502 	.init_hw_func     = bnx2x_init_hw_func,
13503 
13504 	.reset_hw_cmn     = bnx2x_reset_common,
13505 	.reset_hw_port    = bnx2x_reset_port,
13506 	.reset_hw_func    = bnx2x_reset_func,
13507 
13508 	.gunzip_init      = bnx2x_gunzip_init,
13509 	.gunzip_end       = bnx2x_gunzip_end,
13510 
13511 	.init_fw          = bnx2x_init_firmware,
13512 	.release_fw       = bnx2x_release_firmware,
13513 };
13514 
13515 void bnx2x__init_func_obj(struct bnx2x *bp)
13516 {
13517 	/* Prepare DMAE related driver resources */
13518 	bnx2x_setup_dmae(bp);
13519 
13520 	bnx2x_init_func_obj(bp, &bp->func_obj,
13521 			    bnx2x_sp(bp, func_rdata),
13522 			    bnx2x_sp_mapping(bp, func_rdata),
13523 			    bnx2x_sp(bp, func_afex_rdata),
13524 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13525 			    &bnx2x_func_sp_drv);
13526 }
13527 
13528 /* must be called after sriov-enable */
13529 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13530 {
13531 	int cid_count = BNX2X_L2_MAX_CID(bp);
13532 
13533 	if (IS_SRIOV(bp))
13534 		cid_count += BNX2X_VF_CIDS;
13535 
13536 	if (CNIC_SUPPORT(bp))
13537 		cid_count += CNIC_CID_MAX;
13538 
13539 	return roundup(cid_count, QM_CID_ROUND);
13540 }
13541 
13542 /**
13543  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13544  * @pdev: pci device
13545  * @cnic_cnt: count
13546  *
13547  */
13548 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13549 {
13550 	int index;
13551 	u16 control = 0;
13552 
13553 	/*
13554 	 * If MSI-X is not supported - return number of SBs needed to support
13555 	 * one fast path queue: one FP queue + SB for CNIC
13556 	 */
13557 	if (!pdev->msix_cap) {
13558 		dev_info(&pdev->dev, "no msix capability found\n");
13559 		return 1 + cnic_cnt;
13560 	}
13561 	dev_info(&pdev->dev, "msix capability found\n");
13562 
13563 	/*
13564 	 * The value in the PCI configuration space is the index of the last
13565 	 * entry, namely one less than the actual size of the table, which is
13566 	 * exactly what we want to return from this function: number of all SBs
13567 	 * without the default SB.
13568 	 * For VFs there is no default SB, then we return (index+1).
13569 	 */
13570 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13571 
13572 	index = control & PCI_MSIX_FLAGS_QSIZE;
13573 
13574 	return index;
13575 }
13576 
13577 static int set_max_cos_est(int chip_id)
13578 {
13579 	switch (chip_id) {
13580 	case BCM57710:
13581 	case BCM57711:
13582 	case BCM57711E:
13583 		return BNX2X_MULTI_TX_COS_E1X;
13584 	case BCM57712:
13585 	case BCM57712_MF:
13586 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13587 	case BCM57800:
13588 	case BCM57800_MF:
13589 	case BCM57810:
13590 	case BCM57810_MF:
13591 	case BCM57840_4_10:
13592 	case BCM57840_2_20:
13593 	case BCM57840_O:
13594 	case BCM57840_MFO:
13595 	case BCM57840_MF:
13596 	case BCM57811:
13597 	case BCM57811_MF:
13598 		return BNX2X_MULTI_TX_COS_E3B0;
13599 	case BCM57712_VF:
13600 	case BCM57800_VF:
13601 	case BCM57810_VF:
13602 	case BCM57840_VF:
13603 	case BCM57811_VF:
13604 		return 1;
13605 	default:
13606 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13607 		return -ENODEV;
13608 	}
13609 }
13610 
13611 static int set_is_vf(int chip_id)
13612 {
13613 	switch (chip_id) {
13614 	case BCM57712_VF:
13615 	case BCM57800_VF:
13616 	case BCM57810_VF:
13617 	case BCM57840_VF:
13618 	case BCM57811_VF:
13619 		return true;
13620 	default:
13621 		return false;
13622 	}
13623 }
13624 
13625 /* nig_tsgen registers relative address */
13626 #define tsgen_ctrl 0x0
13627 #define tsgen_freecount 0x10
13628 #define tsgen_synctime_t0 0x20
13629 #define tsgen_offset_t0 0x28
13630 #define tsgen_drift_t0 0x30
13631 #define tsgen_synctime_t1 0x58
13632 #define tsgen_offset_t1 0x60
13633 #define tsgen_drift_t1 0x68
13634 
13635 /* FW workaround for setting drift */
13636 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13637 					  int best_val, int best_period)
13638 {
13639 	struct bnx2x_func_state_params func_params = {NULL};
13640 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13641 		&func_params.params.set_timesync;
13642 
13643 	/* Prepare parameters for function state transitions */
13644 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13645 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13646 
13647 	func_params.f_obj = &bp->func_obj;
13648 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13649 
13650 	/* Function parameters */
13651 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13652 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13653 	set_timesync_params->add_sub_drift_adjust_value =
13654 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13655 	set_timesync_params->drift_adjust_value = best_val;
13656 	set_timesync_params->drift_adjust_period = best_period;
13657 
13658 	return bnx2x_func_state_change(bp, &func_params);
13659 }
13660 
13661 static int bnx2x_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
13662 {
13663 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13664 	int rc;
13665 	int drift_dir = 1;
13666 	int val, period, period1, period2, dif, dif1, dif2;
13667 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13668 	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
13669 
13670 	DP(BNX2X_MSG_PTP, "PTP adjfine called, ppb = %d\n", ppb);
13671 
13672 	if (!netif_running(bp->dev)) {
13673 		DP(BNX2X_MSG_PTP,
13674 		   "PTP adjfine called while the interface is down\n");
13675 		return -ENETDOWN;
13676 	}
13677 
13678 	if (ppb < 0) {
13679 		ppb = -ppb;
13680 		drift_dir = 0;
13681 	}
13682 
13683 	if (ppb == 0) {
13684 		best_val = 1;
13685 		best_period = 0x1FFFFFF;
13686 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13687 		best_val = 31;
13688 		best_period = 1;
13689 	} else {
13690 		/* Changed not to allow val = 8, 16, 24 as these values
13691 		 * are not supported in workaround.
13692 		 */
13693 		for (val = 0; val <= 31; val++) {
13694 			if ((val & 0x7) == 0)
13695 				continue;
13696 			period1 = val * 1000000 / ppb;
13697 			period2 = period1 + 1;
13698 			if (period1 != 0)
13699 				dif1 = ppb - (val * 1000000 / period1);
13700 			else
13701 				dif1 = BNX2X_MAX_PHC_DRIFT;
13702 			if (dif1 < 0)
13703 				dif1 = -dif1;
13704 			dif2 = ppb - (val * 1000000 / period2);
13705 			if (dif2 < 0)
13706 				dif2 = -dif2;
13707 			dif = (dif1 < dif2) ? dif1 : dif2;
13708 			period = (dif1 < dif2) ? period1 : period2;
13709 			if (dif < best_dif) {
13710 				best_dif = dif;
13711 				best_val = val;
13712 				best_period = period;
13713 			}
13714 		}
13715 	}
13716 
13717 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13718 					    best_period);
13719 	if (rc) {
13720 		BNX2X_ERR("Failed to set drift\n");
13721 		return -EFAULT;
13722 	}
13723 
13724 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13725 	   best_period);
13726 
13727 	return 0;
13728 }
13729 
13730 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13731 {
13732 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13733 
13734 	if (!netif_running(bp->dev)) {
13735 		DP(BNX2X_MSG_PTP,
13736 		   "PTP adjtime called while the interface is down\n");
13737 		return -ENETDOWN;
13738 	}
13739 
13740 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13741 
13742 	timecounter_adjtime(&bp->timecounter, delta);
13743 
13744 	return 0;
13745 }
13746 
13747 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13748 {
13749 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13750 	u64 ns;
13751 
13752 	if (!netif_running(bp->dev)) {
13753 		DP(BNX2X_MSG_PTP,
13754 		   "PTP gettime called while the interface is down\n");
13755 		return -ENETDOWN;
13756 	}
13757 
13758 	ns = timecounter_read(&bp->timecounter);
13759 
13760 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13761 
13762 	*ts = ns_to_timespec64(ns);
13763 
13764 	return 0;
13765 }
13766 
13767 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13768 			     const struct timespec64 *ts)
13769 {
13770 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13771 	u64 ns;
13772 
13773 	if (!netif_running(bp->dev)) {
13774 		DP(BNX2X_MSG_PTP,
13775 		   "PTP settime called while the interface is down\n");
13776 		return -ENETDOWN;
13777 	}
13778 
13779 	ns = timespec64_to_ns(ts);
13780 
13781 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13782 
13783 	/* Re-init the timecounter */
13784 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13785 
13786 	return 0;
13787 }
13788 
13789 /* Enable (or disable) ancillary features of the phc subsystem */
13790 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13791 			    struct ptp_clock_request *rq, int on)
13792 {
13793 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13794 
13795 	BNX2X_ERR("PHC ancillary features are not supported\n");
13796 	return -ENOTSUPP;
13797 }
13798 
13799 void bnx2x_register_phc(struct bnx2x *bp)
13800 {
13801 	/* Fill the ptp_clock_info struct and register PTP clock*/
13802 	bp->ptp_clock_info.owner = THIS_MODULE;
13803 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13804 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13805 	bp->ptp_clock_info.n_alarm = 0;
13806 	bp->ptp_clock_info.n_ext_ts = 0;
13807 	bp->ptp_clock_info.n_per_out = 0;
13808 	bp->ptp_clock_info.pps = 0;
13809 	bp->ptp_clock_info.adjfine = bnx2x_ptp_adjfine;
13810 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13811 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13812 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13813 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13814 
13815 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13816 	if (IS_ERR(bp->ptp_clock)) {
13817 		bp->ptp_clock = NULL;
13818 		BNX2X_ERR("PTP clock registration failed\n");
13819 	}
13820 }
13821 
13822 static int bnx2x_init_one(struct pci_dev *pdev,
13823 				    const struct pci_device_id *ent)
13824 {
13825 	struct net_device *dev = NULL;
13826 	struct bnx2x *bp;
13827 	int rc, max_non_def_sbs;
13828 	int rx_count, tx_count, rss_count, doorbell_size;
13829 	int max_cos_est;
13830 	bool is_vf;
13831 	int cnic_cnt;
13832 
13833 	/* Management FW 'remembers' living interfaces. Allow it some time
13834 	 * to forget previously living interfaces, allowing a proper re-load.
13835 	 */
13836 	if (is_kdump_kernel()) {
13837 		ktime_t now = ktime_get_boottime();
13838 		ktime_t fw_ready_time = ktime_set(5, 0);
13839 
13840 		if (ktime_before(now, fw_ready_time))
13841 			msleep(ktime_ms_delta(fw_ready_time, now));
13842 	}
13843 
13844 	/* An estimated maximum supported CoS number according to the chip
13845 	 * version.
13846 	 * We will try to roughly estimate the maximum number of CoSes this chip
13847 	 * may support in order to minimize the memory allocated for Tx
13848 	 * netdev_queue's. This number will be accurately calculated during the
13849 	 * initialization of bp->max_cos based on the chip versions AND chip
13850 	 * revision in the bnx2x_init_bp().
13851 	 */
13852 	max_cos_est = set_max_cos_est(ent->driver_data);
13853 	if (max_cos_est < 0)
13854 		return max_cos_est;
13855 	is_vf = set_is_vf(ent->driver_data);
13856 	cnic_cnt = is_vf ? 0 : 1;
13857 
13858 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13859 
13860 	/* add another SB for VF as it has no default SB */
13861 	max_non_def_sbs += is_vf ? 1 : 0;
13862 
13863 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13864 	rss_count = max_non_def_sbs - cnic_cnt;
13865 
13866 	if (rss_count < 1)
13867 		return -EINVAL;
13868 
13869 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13870 	rx_count = rss_count + cnic_cnt;
13871 
13872 	/* Maximum number of netdev Tx queues:
13873 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13874 	 */
13875 	tx_count = rss_count * max_cos_est + cnic_cnt;
13876 
13877 	/* dev zeroed in init_etherdev */
13878 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13879 	if (!dev)
13880 		return -ENOMEM;
13881 
13882 	bp = netdev_priv(dev);
13883 
13884 	bp->flags = 0;
13885 	if (is_vf)
13886 		bp->flags |= IS_VF_FLAG;
13887 
13888 	bp->igu_sb_cnt = max_non_def_sbs;
13889 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13890 	bp->msg_enable = debug;
13891 	bp->cnic_support = cnic_cnt;
13892 	bp->cnic_probe = bnx2x_cnic_probe;
13893 
13894 	pci_set_drvdata(pdev, dev);
13895 
13896 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13897 	if (rc < 0) {
13898 		free_netdev(dev);
13899 		return rc;
13900 	}
13901 
13902 	BNX2X_DEV_INFO("This is a %s function\n",
13903 		       IS_PF(bp) ? "physical" : "virtual");
13904 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13905 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13906 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13907 		       tx_count, rx_count);
13908 
13909 	rc = bnx2x_init_bp(bp);
13910 	if (rc)
13911 		goto init_one_exit;
13912 
13913 	/* Map doorbells here as we need the real value of bp->max_cos which
13914 	 * is initialized in bnx2x_init_bp() to determine the number of
13915 	 * l2 connections.
13916 	 */
13917 	if (IS_VF(bp)) {
13918 		bp->doorbells = bnx2x_vf_doorbells(bp);
13919 		rc = bnx2x_vf_pci_alloc(bp);
13920 		if (rc)
13921 			goto init_one_freemem;
13922 	} else {
13923 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13924 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13925 			dev_err(&bp->pdev->dev,
13926 				"Cannot map doorbells, bar size too small, aborting\n");
13927 			rc = -ENOMEM;
13928 			goto init_one_freemem;
13929 		}
13930 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13931 						doorbell_size);
13932 	}
13933 	if (!bp->doorbells) {
13934 		dev_err(&bp->pdev->dev,
13935 			"Cannot map doorbell space, aborting\n");
13936 		rc = -ENOMEM;
13937 		goto init_one_freemem;
13938 	}
13939 
13940 	if (IS_VF(bp)) {
13941 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13942 		if (rc)
13943 			goto init_one_freemem;
13944 
13945 #ifdef CONFIG_BNX2X_SRIOV
13946 		/* VF with OLD Hypervisor or old PF do not support filtering */
13947 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13948 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13949 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13950 		}
13951 #endif
13952 	}
13953 
13954 	/* Enable SRIOV if capability found in configuration space */
13955 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13956 	if (rc)
13957 		goto init_one_freemem;
13958 
13959 	/* calc qm_cid_count */
13960 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13961 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13962 
13963 	/* disable FCOE L2 queue for E1x*/
13964 	if (CHIP_IS_E1x(bp))
13965 		bp->flags |= NO_FCOE_FLAG;
13966 
13967 	/* Set bp->num_queues for MSI-X mode*/
13968 	bnx2x_set_num_queues(bp);
13969 
13970 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13971 	 * needed.
13972 	 */
13973 	rc = bnx2x_set_int_mode(bp);
13974 	if (rc) {
13975 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13976 		goto init_one_freemem;
13977 	}
13978 	BNX2X_DEV_INFO("set interrupts successfully\n");
13979 
13980 	/* register the net device */
13981 	rc = register_netdev(dev);
13982 	if (rc) {
13983 		dev_err(&pdev->dev, "Cannot register net device\n");
13984 		goto init_one_freemem;
13985 	}
13986 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13987 
13988 	if (!NO_FCOE(bp)) {
13989 		/* Add storage MAC address */
13990 		rtnl_lock();
13991 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13992 		rtnl_unlock();
13993 	}
13994 	BNX2X_DEV_INFO(
13995 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
13996 	       board_info[ent->driver_data].name,
13997 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13998 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13999 	pcie_print_link_status(bp->pdev);
14000 
14001 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14002 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14003 
14004 	return 0;
14005 
14006 init_one_freemem:
14007 	bnx2x_free_mem_bp(bp);
14008 
14009 init_one_exit:
14010 	if (bp->regview)
14011 		iounmap(bp->regview);
14012 
14013 	if (IS_PF(bp) && bp->doorbells)
14014 		iounmap(bp->doorbells);
14015 
14016 	free_netdev(dev);
14017 
14018 	if (atomic_read(&pdev->enable_cnt) == 1)
14019 		pci_release_regions(pdev);
14020 
14021 	pci_disable_device(pdev);
14022 
14023 	return rc;
14024 }
14025 
14026 static void __bnx2x_remove(struct pci_dev *pdev,
14027 			   struct net_device *dev,
14028 			   struct bnx2x *bp,
14029 			   bool remove_netdev)
14030 {
14031 	/* Delete storage MAC address */
14032 	if (!NO_FCOE(bp)) {
14033 		rtnl_lock();
14034 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14035 		rtnl_unlock();
14036 	}
14037 
14038 #ifdef BCM_DCBNL
14039 	/* Delete app tlvs from dcbnl */
14040 	bnx2x_dcbnl_update_applist(bp, true);
14041 #endif
14042 
14043 	if (IS_PF(bp) &&
14044 	    !BP_NOMCP(bp) &&
14045 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14046 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14047 
14048 	/* Close the interface - either directly or implicitly */
14049 	if (remove_netdev) {
14050 		unregister_netdev(dev);
14051 	} else {
14052 		rtnl_lock();
14053 		dev_close(dev);
14054 		rtnl_unlock();
14055 	}
14056 
14057 	bnx2x_iov_remove_one(bp);
14058 
14059 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14060 	if (IS_PF(bp)) {
14061 		bnx2x_set_power_state(bp, PCI_D0);
14062 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14063 
14064 		/* Set endianity registers to reset values in case next driver
14065 		 * boots in different endianty environment.
14066 		 */
14067 		bnx2x_reset_endianity(bp);
14068 	}
14069 
14070 	/* Disable MSI/MSI-X */
14071 	bnx2x_disable_msi(bp);
14072 
14073 	/* Power off */
14074 	if (IS_PF(bp))
14075 		bnx2x_set_power_state(bp, PCI_D3hot);
14076 
14077 	/* Make sure RESET task is not scheduled before continuing */
14078 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14079 
14080 	/* send message via vfpf channel to release the resources of this vf */
14081 	if (IS_VF(bp))
14082 		bnx2x_vfpf_release(bp);
14083 
14084 	/* Assumes no further PCIe PM changes will occur */
14085 	if (system_state == SYSTEM_POWER_OFF) {
14086 		pci_wake_from_d3(pdev, bp->wol);
14087 		pci_set_power_state(pdev, PCI_D3hot);
14088 	}
14089 
14090 	if (remove_netdev) {
14091 		if (bp->regview)
14092 			iounmap(bp->regview);
14093 
14094 		/* For vfs, doorbells are part of the regview and were unmapped
14095 		 * along with it. FW is only loaded by PF.
14096 		 */
14097 		if (IS_PF(bp)) {
14098 			if (bp->doorbells)
14099 				iounmap(bp->doorbells);
14100 
14101 			bnx2x_release_firmware(bp);
14102 		} else {
14103 			bnx2x_vf_pci_dealloc(bp);
14104 		}
14105 		bnx2x_free_mem_bp(bp);
14106 
14107 		free_netdev(dev);
14108 
14109 		if (atomic_read(&pdev->enable_cnt) == 1)
14110 			pci_release_regions(pdev);
14111 
14112 		pci_disable_device(pdev);
14113 	}
14114 }
14115 
14116 static void bnx2x_remove_one(struct pci_dev *pdev)
14117 {
14118 	struct net_device *dev = pci_get_drvdata(pdev);
14119 	struct bnx2x *bp;
14120 
14121 	if (!dev) {
14122 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14123 		return;
14124 	}
14125 	bp = netdev_priv(dev);
14126 
14127 	__bnx2x_remove(pdev, dev, bp, true);
14128 }
14129 
14130 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14131 {
14132 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14133 
14134 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14135 
14136 	if (CNIC_LOADED(bp))
14137 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14138 
14139 	/* Stop Tx */
14140 	bnx2x_tx_disable(bp);
14141 	netdev_reset_tc(bp->dev);
14142 
14143 	del_timer_sync(&bp->timer);
14144 	cancel_delayed_work_sync(&bp->sp_task);
14145 	cancel_delayed_work_sync(&bp->period_task);
14146 
14147 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14148 		bp->stats_state = STATS_STATE_DISABLED;
14149 		up(&bp->stats_lock);
14150 	}
14151 
14152 	bnx2x_save_statistics(bp);
14153 
14154 	netif_carrier_off(bp->dev);
14155 
14156 	return 0;
14157 }
14158 
14159 /**
14160  * bnx2x_io_error_detected - called when PCI error is detected
14161  * @pdev: Pointer to PCI device
14162  * @state: The current pci connection state
14163  *
14164  * This function is called after a PCI bus error affecting
14165  * this device has been detected.
14166  */
14167 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14168 						pci_channel_state_t state)
14169 {
14170 	struct net_device *dev = pci_get_drvdata(pdev);
14171 	struct bnx2x *bp = netdev_priv(dev);
14172 
14173 	rtnl_lock();
14174 
14175 	BNX2X_ERR("IO error detected\n");
14176 
14177 	netif_device_detach(dev);
14178 
14179 	if (state == pci_channel_io_perm_failure) {
14180 		rtnl_unlock();
14181 		return PCI_ERS_RESULT_DISCONNECT;
14182 	}
14183 
14184 	if (netif_running(dev))
14185 		bnx2x_eeh_nic_unload(bp);
14186 
14187 	bnx2x_prev_path_mark_eeh(bp);
14188 
14189 	pci_disable_device(pdev);
14190 
14191 	rtnl_unlock();
14192 
14193 	/* Request a slot reset */
14194 	return PCI_ERS_RESULT_NEED_RESET;
14195 }
14196 
14197 /**
14198  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14199  * @pdev: Pointer to PCI device
14200  *
14201  * Restart the card from scratch, as if from a cold-boot.
14202  */
14203 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14204 {
14205 	struct net_device *dev = pci_get_drvdata(pdev);
14206 	struct bnx2x *bp = netdev_priv(dev);
14207 	int i;
14208 
14209 	rtnl_lock();
14210 	BNX2X_ERR("IO slot reset initializing...\n");
14211 	if (pci_enable_device(pdev)) {
14212 		dev_err(&pdev->dev,
14213 			"Cannot re-enable PCI device after reset\n");
14214 		rtnl_unlock();
14215 		return PCI_ERS_RESULT_DISCONNECT;
14216 	}
14217 
14218 	pci_set_master(pdev);
14219 	pci_restore_state(pdev);
14220 	pci_save_state(pdev);
14221 
14222 	if (netif_running(dev))
14223 		bnx2x_set_power_state(bp, PCI_D0);
14224 
14225 	if (netif_running(dev)) {
14226 		BNX2X_ERR("IO slot reset --> driver unload\n");
14227 
14228 		/* MCP should have been reset; Need to wait for validity */
14229 		if (bnx2x_init_shmem(bp)) {
14230 			rtnl_unlock();
14231 			return PCI_ERS_RESULT_DISCONNECT;
14232 		}
14233 
14234 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14235 			u32 v;
14236 
14237 			v = SHMEM2_RD(bp,
14238 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14239 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14240 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14241 		}
14242 		bnx2x_drain_tx_queues(bp);
14243 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14244 		if (!bp->nic_stopped) {
14245 			bnx2x_netif_stop(bp, 1);
14246 			bnx2x_del_all_napi(bp);
14247 
14248 			if (CNIC_LOADED(bp))
14249 				bnx2x_del_all_napi_cnic(bp);
14250 
14251 			bnx2x_free_irq(bp);
14252 			bp->nic_stopped = true;
14253 		}
14254 
14255 		/* Report UNLOAD_DONE to MCP */
14256 		bnx2x_send_unload_done(bp, true);
14257 
14258 		bp->sp_state = 0;
14259 		bp->port.pmf = 0;
14260 
14261 		bnx2x_prev_unload(bp);
14262 
14263 		/* We should have reseted the engine, so It's fair to
14264 		 * assume the FW will no longer write to the bnx2x driver.
14265 		 */
14266 		bnx2x_squeeze_objects(bp);
14267 		bnx2x_free_skbs(bp);
14268 		for_each_rx_queue(bp, i)
14269 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14270 		bnx2x_free_fp_mem(bp);
14271 		bnx2x_free_mem(bp);
14272 
14273 		bp->state = BNX2X_STATE_CLOSED;
14274 	}
14275 
14276 	rtnl_unlock();
14277 
14278 	return PCI_ERS_RESULT_RECOVERED;
14279 }
14280 
14281 /**
14282  * bnx2x_io_resume - called when traffic can start flowing again
14283  * @pdev: Pointer to PCI device
14284  *
14285  * This callback is called when the error recovery driver tells us that
14286  * its OK to resume normal operation.
14287  */
14288 static void bnx2x_io_resume(struct pci_dev *pdev)
14289 {
14290 	struct net_device *dev = pci_get_drvdata(pdev);
14291 	struct bnx2x *bp = netdev_priv(dev);
14292 
14293 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14294 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14295 		return;
14296 	}
14297 
14298 	rtnl_lock();
14299 
14300 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14301 							DRV_MSG_SEQ_NUMBER_MASK;
14302 
14303 	if (netif_running(dev)) {
14304 		if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14305 			netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14306 			goto done;
14307 		}
14308 	}
14309 
14310 	netif_device_attach(dev);
14311 
14312 done:
14313 	rtnl_unlock();
14314 }
14315 
14316 static const struct pci_error_handlers bnx2x_err_handler = {
14317 	.error_detected = bnx2x_io_error_detected,
14318 	.slot_reset     = bnx2x_io_slot_reset,
14319 	.resume         = bnx2x_io_resume,
14320 };
14321 
14322 static void bnx2x_shutdown(struct pci_dev *pdev)
14323 {
14324 	struct net_device *dev = pci_get_drvdata(pdev);
14325 	struct bnx2x *bp;
14326 
14327 	if (!dev)
14328 		return;
14329 
14330 	bp = netdev_priv(dev);
14331 	if (!bp)
14332 		return;
14333 
14334 	rtnl_lock();
14335 	netif_device_detach(dev);
14336 	rtnl_unlock();
14337 
14338 	/* Don't remove the netdevice, as there are scenarios which will cause
14339 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14340 	 * rootfs is mounted from SAN.
14341 	 */
14342 	__bnx2x_remove(pdev, dev, bp, false);
14343 }
14344 
14345 static struct pci_driver bnx2x_pci_driver = {
14346 	.name        = DRV_MODULE_NAME,
14347 	.id_table    = bnx2x_pci_tbl,
14348 	.probe       = bnx2x_init_one,
14349 	.remove      = bnx2x_remove_one,
14350 	.driver.pm   = &bnx2x_pm_ops,
14351 	.err_handler = &bnx2x_err_handler,
14352 #ifdef CONFIG_BNX2X_SRIOV
14353 	.sriov_configure = bnx2x_sriov_configure,
14354 #endif
14355 	.shutdown    = bnx2x_shutdown,
14356 };
14357 
14358 static int __init bnx2x_init(void)
14359 {
14360 	int ret;
14361 
14362 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14363 	if (bnx2x_wq == NULL) {
14364 		pr_err("Cannot create workqueue\n");
14365 		return -ENOMEM;
14366 	}
14367 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14368 	if (!bnx2x_iov_wq) {
14369 		pr_err("Cannot create iov workqueue\n");
14370 		destroy_workqueue(bnx2x_wq);
14371 		return -ENOMEM;
14372 	}
14373 
14374 	ret = pci_register_driver(&bnx2x_pci_driver);
14375 	if (ret) {
14376 		pr_err("Cannot register driver\n");
14377 		destroy_workqueue(bnx2x_wq);
14378 		destroy_workqueue(bnx2x_iov_wq);
14379 	}
14380 	return ret;
14381 }
14382 
14383 static void __exit bnx2x_cleanup(void)
14384 {
14385 	struct list_head *pos, *q;
14386 
14387 	pci_unregister_driver(&bnx2x_pci_driver);
14388 
14389 	destroy_workqueue(bnx2x_wq);
14390 	destroy_workqueue(bnx2x_iov_wq);
14391 
14392 	/* Free globally allocated resources */
14393 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14394 		struct bnx2x_prev_path_list *tmp =
14395 			list_entry(pos, struct bnx2x_prev_path_list, list);
14396 		list_del(pos);
14397 		kfree(tmp);
14398 	}
14399 }
14400 
14401 void bnx2x_notify_link_changed(struct bnx2x *bp)
14402 {
14403 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14404 }
14405 
14406 module_init(bnx2x_init);
14407 module_exit(bnx2x_cleanup);
14408 
14409 /**
14410  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14411  * @bp:		driver handle
14412  *
14413  * This function will wait until the ramrod completion returns.
14414  * Return 0 if success, -ENODEV if ramrod doesn't return.
14415  */
14416 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14417 {
14418 	unsigned long ramrod_flags = 0;
14419 
14420 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14421 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14422 				 &bp->iscsi_l2_mac_obj, true,
14423 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14424 }
14425 
14426 /* count denotes the number of new completions we have seen */
14427 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14428 {
14429 	struct eth_spe *spe;
14430 	int cxt_index, cxt_offset;
14431 
14432 #ifdef BNX2X_STOP_ON_ERROR
14433 	if (unlikely(bp->panic))
14434 		return;
14435 #endif
14436 
14437 	spin_lock_bh(&bp->spq_lock);
14438 	BUG_ON(bp->cnic_spq_pending < count);
14439 	bp->cnic_spq_pending -= count;
14440 
14441 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14442 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14443 				& SPE_HDR_CONN_TYPE) >>
14444 				SPE_HDR_CONN_TYPE_SHIFT;
14445 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14446 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14447 
14448 		/* Set validation for iSCSI L2 client before sending SETUP
14449 		 *  ramrod
14450 		 */
14451 		if (type == ETH_CONNECTION_TYPE) {
14452 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14453 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14454 					ILT_PAGE_CIDS;
14455 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14456 					(cxt_index * ILT_PAGE_CIDS);
14457 				bnx2x_set_ctx_validation(bp,
14458 					&bp->context[cxt_index].
14459 							 vcxt[cxt_offset].eth,
14460 					BNX2X_ISCSI_ETH_CID(bp));
14461 			}
14462 		}
14463 
14464 		/*
14465 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14466 		 * and in the air. We also check that number of outstanding
14467 		 * COMMON ramrods is not more than the EQ and SPQ can
14468 		 * accommodate.
14469 		 */
14470 		if (type == ETH_CONNECTION_TYPE) {
14471 			if (!atomic_read(&bp->cq_spq_left))
14472 				break;
14473 			else
14474 				atomic_dec(&bp->cq_spq_left);
14475 		} else if (type == NONE_CONNECTION_TYPE) {
14476 			if (!atomic_read(&bp->eq_spq_left))
14477 				break;
14478 			else
14479 				atomic_dec(&bp->eq_spq_left);
14480 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14481 			   (type == FCOE_CONNECTION_TYPE)) {
14482 			if (bp->cnic_spq_pending >=
14483 			    bp->cnic_eth_dev.max_kwqe_pending)
14484 				break;
14485 			else
14486 				bp->cnic_spq_pending++;
14487 		} else {
14488 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14489 			bnx2x_panic();
14490 			break;
14491 		}
14492 
14493 		spe = bnx2x_sp_get_next(bp);
14494 		*spe = *bp->cnic_kwq_cons;
14495 
14496 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14497 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14498 
14499 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14500 			bp->cnic_kwq_cons = bp->cnic_kwq;
14501 		else
14502 			bp->cnic_kwq_cons++;
14503 	}
14504 	bnx2x_sp_prod_update(bp);
14505 	spin_unlock_bh(&bp->spq_lock);
14506 }
14507 
14508 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14509 			       struct kwqe_16 *kwqes[], u32 count)
14510 {
14511 	struct bnx2x *bp = netdev_priv(dev);
14512 	int i;
14513 
14514 #ifdef BNX2X_STOP_ON_ERROR
14515 	if (unlikely(bp->panic)) {
14516 		BNX2X_ERR("Can't post to SP queue while panic\n");
14517 		return -EIO;
14518 	}
14519 #endif
14520 
14521 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14522 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14523 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14524 		return -EAGAIN;
14525 	}
14526 
14527 	spin_lock_bh(&bp->spq_lock);
14528 
14529 	for (i = 0; i < count; i++) {
14530 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14531 
14532 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14533 			break;
14534 
14535 		*bp->cnic_kwq_prod = *spe;
14536 
14537 		bp->cnic_kwq_pending++;
14538 
14539 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14540 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14541 		   spe->data.update_data_addr.hi,
14542 		   spe->data.update_data_addr.lo,
14543 		   bp->cnic_kwq_pending);
14544 
14545 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14546 			bp->cnic_kwq_prod = bp->cnic_kwq;
14547 		else
14548 			bp->cnic_kwq_prod++;
14549 	}
14550 
14551 	spin_unlock_bh(&bp->spq_lock);
14552 
14553 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14554 		bnx2x_cnic_sp_post(bp, 0);
14555 
14556 	return i;
14557 }
14558 
14559 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14560 {
14561 	struct cnic_ops *c_ops;
14562 	int rc = 0;
14563 
14564 	mutex_lock(&bp->cnic_mutex);
14565 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14566 					  lockdep_is_held(&bp->cnic_mutex));
14567 	if (c_ops)
14568 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14569 	mutex_unlock(&bp->cnic_mutex);
14570 
14571 	return rc;
14572 }
14573 
14574 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14575 {
14576 	struct cnic_ops *c_ops;
14577 	int rc = 0;
14578 
14579 	rcu_read_lock();
14580 	c_ops = rcu_dereference(bp->cnic_ops);
14581 	if (c_ops)
14582 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14583 	rcu_read_unlock();
14584 
14585 	return rc;
14586 }
14587 
14588 /*
14589  * for commands that have no data
14590  */
14591 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14592 {
14593 	struct cnic_ctl_info ctl = {0};
14594 
14595 	ctl.cmd = cmd;
14596 
14597 	return bnx2x_cnic_ctl_send(bp, &ctl);
14598 }
14599 
14600 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14601 {
14602 	struct cnic_ctl_info ctl = {0};
14603 
14604 	/* first we tell CNIC and only then we count this as a completion */
14605 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14606 	ctl.data.comp.cid = cid;
14607 	ctl.data.comp.error = err;
14608 
14609 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14610 	bnx2x_cnic_sp_post(bp, 0);
14611 }
14612 
14613 /* Called with netif_addr_lock_bh() taken.
14614  * Sets an rx_mode config for an iSCSI ETH client.
14615  * Doesn't block.
14616  * Completion should be checked outside.
14617  */
14618 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14619 {
14620 	unsigned long accept_flags = 0, ramrod_flags = 0;
14621 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14622 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14623 
14624 	if (start) {
14625 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14626 		 * because it's the only way for UIO Queue to accept
14627 		 * multicasts (in non-promiscuous mode only one Queue per
14628 		 * function will receive multicast packets (leading in our
14629 		 * case).
14630 		 */
14631 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14632 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14633 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14634 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14635 
14636 		/* Clear STOP_PENDING bit if START is requested */
14637 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14638 
14639 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14640 	} else
14641 		/* Clear START_PENDING bit if STOP is requested */
14642 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14643 
14644 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14645 		set_bit(sched_state, &bp->sp_state);
14646 	else {
14647 		__set_bit(RAMROD_RX, &ramrod_flags);
14648 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14649 				    ramrod_flags);
14650 	}
14651 }
14652 
14653 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14654 {
14655 	struct bnx2x *bp = netdev_priv(dev);
14656 	int rc = 0;
14657 
14658 	switch (ctl->cmd) {
14659 	case DRV_CTL_CTXTBL_WR_CMD: {
14660 		u32 index = ctl->data.io.offset;
14661 		dma_addr_t addr = ctl->data.io.dma_addr;
14662 
14663 		bnx2x_ilt_wr(bp, index, addr);
14664 		break;
14665 	}
14666 
14667 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14668 		int count = ctl->data.credit.credit_count;
14669 
14670 		bnx2x_cnic_sp_post(bp, count);
14671 		break;
14672 	}
14673 
14674 	/* rtnl_lock is held.  */
14675 	case DRV_CTL_START_L2_CMD: {
14676 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14677 		unsigned long sp_bits = 0;
14678 
14679 		/* Configure the iSCSI classification object */
14680 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14681 				   cp->iscsi_l2_client_id,
14682 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14683 				   bnx2x_sp(bp, mac_rdata),
14684 				   bnx2x_sp_mapping(bp, mac_rdata),
14685 				   BNX2X_FILTER_MAC_PENDING,
14686 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14687 				   &bp->macs_pool);
14688 
14689 		/* Set iSCSI MAC address */
14690 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14691 		if (rc)
14692 			break;
14693 
14694 		barrier();
14695 
14696 		/* Start accepting on iSCSI L2 ring */
14697 
14698 		netif_addr_lock_bh(dev);
14699 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14700 		netif_addr_unlock_bh(dev);
14701 
14702 		/* bits to wait on */
14703 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14704 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14705 
14706 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14707 			BNX2X_ERR("rx_mode completion timed out!\n");
14708 
14709 		break;
14710 	}
14711 
14712 	/* rtnl_lock is held.  */
14713 	case DRV_CTL_STOP_L2_CMD: {
14714 		unsigned long sp_bits = 0;
14715 
14716 		/* Stop accepting on iSCSI L2 ring */
14717 		netif_addr_lock_bh(dev);
14718 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14719 		netif_addr_unlock_bh(dev);
14720 
14721 		/* bits to wait on */
14722 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14723 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14724 
14725 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14726 			BNX2X_ERR("rx_mode completion timed out!\n");
14727 
14728 		barrier();
14729 
14730 		/* Unset iSCSI L2 MAC */
14731 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14732 					BNX2X_ISCSI_ETH_MAC, true);
14733 		break;
14734 	}
14735 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14736 		int count = ctl->data.credit.credit_count;
14737 
14738 		smp_mb__before_atomic();
14739 		atomic_add(count, &bp->cq_spq_left);
14740 		smp_mb__after_atomic();
14741 		break;
14742 	}
14743 	case DRV_CTL_ULP_REGISTER_CMD: {
14744 		int ulp_type = ctl->data.register_data.ulp_type;
14745 
14746 		if (CHIP_IS_E3(bp)) {
14747 			int idx = BP_FW_MB_IDX(bp);
14748 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14749 			int path = BP_PATH(bp);
14750 			int port = BP_PORT(bp);
14751 			int i;
14752 			u32 scratch_offset;
14753 			u32 *host_addr;
14754 
14755 			/* first write capability to shmem2 */
14756 			if (ulp_type == CNIC_ULP_ISCSI)
14757 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14758 			else if (ulp_type == CNIC_ULP_FCOE)
14759 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14760 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14761 
14762 			if ((ulp_type != CNIC_ULP_FCOE) ||
14763 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14764 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14765 				break;
14766 
14767 			/* if reached here - should write fcoe capabilities */
14768 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14769 			if (!scratch_offset)
14770 				break;
14771 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14772 						   fcoe_features[path][port]);
14773 			host_addr = (u32 *) &(ctl->data.register_data.
14774 					      fcoe_features);
14775 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14776 			     i += 4)
14777 				REG_WR(bp, scratch_offset + i,
14778 				       *(host_addr + i/4));
14779 		}
14780 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14781 		break;
14782 	}
14783 
14784 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14785 		int ulp_type = ctl->data.ulp_type;
14786 
14787 		if (CHIP_IS_E3(bp)) {
14788 			int idx = BP_FW_MB_IDX(bp);
14789 			u32 cap;
14790 
14791 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14792 			if (ulp_type == CNIC_ULP_ISCSI)
14793 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14794 			else if (ulp_type == CNIC_ULP_FCOE)
14795 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14796 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14797 		}
14798 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14799 		break;
14800 	}
14801 
14802 	default:
14803 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14804 		rc = -EINVAL;
14805 	}
14806 
14807 	/* For storage-only interfaces, change driver state */
14808 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14809 		switch (ctl->drv_state) {
14810 		case DRV_NOP:
14811 			break;
14812 		case DRV_ACTIVE:
14813 			bnx2x_set_os_driver_state(bp,
14814 						  OS_DRIVER_STATE_ACTIVE);
14815 			break;
14816 		case DRV_INACTIVE:
14817 			bnx2x_set_os_driver_state(bp,
14818 						  OS_DRIVER_STATE_DISABLED);
14819 			break;
14820 		case DRV_UNLOADED:
14821 			bnx2x_set_os_driver_state(bp,
14822 						  OS_DRIVER_STATE_NOT_LOADED);
14823 			break;
14824 		default:
14825 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14826 		}
14827 	}
14828 
14829 	return rc;
14830 }
14831 
14832 static int bnx2x_get_fc_npiv(struct net_device *dev,
14833 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14834 {
14835 	struct bnx2x *bp = netdev_priv(dev);
14836 	struct bdn_fc_npiv_tbl *tbl = NULL;
14837 	u32 offset, entries;
14838 	int rc = -EINVAL;
14839 	int i;
14840 
14841 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14842 		goto out;
14843 
14844 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14845 
14846 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14847 	if (!tbl) {
14848 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14849 		goto out;
14850 	}
14851 
14852 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14853 	if (!offset) {
14854 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14855 		goto out;
14856 	}
14857 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14858 
14859 	/* Read the table contents from nvram */
14860 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14861 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14862 		goto out;
14863 	}
14864 
14865 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14866 	 * the number of entries back to cpu endianness.
14867 	 */
14868 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14869 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14870 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14871 
14872 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14873 		DP(BNX2X_MSG_MCP,
14874 		   "No FC-NPIV table [valid, simply not present]\n");
14875 		goto out;
14876 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14877 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14878 			  tbl->fc_npiv_cfg.num_of_npiv);
14879 		goto out;
14880 	} else {
14881 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14882 		   tbl->fc_npiv_cfg.num_of_npiv);
14883 	}
14884 
14885 	/* Copy the data into cnic-provided struct */
14886 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14887 	for (i = 0; i < cnic_tbl->count; i++) {
14888 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14889 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14890 	}
14891 
14892 	rc = 0;
14893 out:
14894 	kfree(tbl);
14895 	return rc;
14896 }
14897 
14898 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14899 {
14900 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14901 
14902 	if (bp->flags & USING_MSIX_FLAG) {
14903 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14904 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14905 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14906 	} else {
14907 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14908 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14909 	}
14910 	if (!CHIP_IS_E1x(bp))
14911 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14912 	else
14913 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14914 
14915 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14916 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14917 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14918 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14919 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14920 
14921 	cp->num_irq = 2;
14922 }
14923 
14924 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14925 {
14926 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14927 
14928 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14929 			     bnx2x_cid_ilt_lines(bp);
14930 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14931 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14932 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14933 
14934 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14935 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14936 	   cp->iscsi_l2_cid);
14937 
14938 	if (NO_ISCSI_OOO(bp))
14939 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14940 }
14941 
14942 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14943 			       void *data)
14944 {
14945 	struct bnx2x *bp = netdev_priv(dev);
14946 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14947 	int rc;
14948 
14949 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14950 
14951 	if (ops == NULL) {
14952 		BNX2X_ERR("NULL ops received\n");
14953 		return -EINVAL;
14954 	}
14955 
14956 	if (!CNIC_SUPPORT(bp)) {
14957 		BNX2X_ERR("Can't register CNIC when not supported\n");
14958 		return -EOPNOTSUPP;
14959 	}
14960 
14961 	if (!CNIC_LOADED(bp)) {
14962 		rc = bnx2x_load_cnic(bp);
14963 		if (rc) {
14964 			BNX2X_ERR("CNIC-related load failed\n");
14965 			return rc;
14966 		}
14967 	}
14968 
14969 	bp->cnic_enabled = true;
14970 
14971 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14972 	if (!bp->cnic_kwq)
14973 		return -ENOMEM;
14974 
14975 	bp->cnic_kwq_cons = bp->cnic_kwq;
14976 	bp->cnic_kwq_prod = bp->cnic_kwq;
14977 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14978 
14979 	bp->cnic_spq_pending = 0;
14980 	bp->cnic_kwq_pending = 0;
14981 
14982 	bp->cnic_data = data;
14983 
14984 	cp->num_irq = 0;
14985 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14986 	cp->iro_arr = bp->iro_arr;
14987 
14988 	bnx2x_setup_cnic_irq_info(bp);
14989 
14990 	rcu_assign_pointer(bp->cnic_ops, ops);
14991 
14992 	/* Schedule driver to read CNIC driver versions */
14993 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14994 
14995 	return 0;
14996 }
14997 
14998 static int bnx2x_unregister_cnic(struct net_device *dev)
14999 {
15000 	struct bnx2x *bp = netdev_priv(dev);
15001 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15002 
15003 	mutex_lock(&bp->cnic_mutex);
15004 	cp->drv_state = 0;
15005 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15006 	mutex_unlock(&bp->cnic_mutex);
15007 	synchronize_rcu();
15008 	bp->cnic_enabled = false;
15009 	kfree(bp->cnic_kwq);
15010 	bp->cnic_kwq = NULL;
15011 
15012 	return 0;
15013 }
15014 
15015 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15016 {
15017 	struct bnx2x *bp = netdev_priv(dev);
15018 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15019 
15020 	/* If both iSCSI and FCoE are disabled - return NULL in
15021 	 * order to indicate CNIC that it should not try to work
15022 	 * with this device.
15023 	 */
15024 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15025 		return NULL;
15026 
15027 	cp->drv_owner = THIS_MODULE;
15028 	cp->chip_id = CHIP_ID(bp);
15029 	cp->pdev = bp->pdev;
15030 	cp->io_base = bp->regview;
15031 	cp->io_base2 = bp->doorbells;
15032 	cp->max_kwqe_pending = 8;
15033 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15034 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15035 			     bnx2x_cid_ilt_lines(bp);
15036 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15037 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15038 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15039 	cp->drv_ctl = bnx2x_drv_ctl;
15040 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15041 	cp->drv_register_cnic = bnx2x_register_cnic;
15042 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15043 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15044 	cp->iscsi_l2_client_id =
15045 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15046 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15047 
15048 	if (NO_ISCSI_OOO(bp))
15049 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15050 
15051 	if (NO_ISCSI(bp))
15052 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15053 
15054 	if (NO_FCOE(bp))
15055 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15056 
15057 	BNX2X_DEV_INFO(
15058 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15059 	   cp->ctx_blk_size,
15060 	   cp->ctx_tbl_offset,
15061 	   cp->ctx_tbl_len,
15062 	   cp->starting_cid);
15063 	return cp;
15064 }
15065 
15066 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15067 {
15068 	struct bnx2x *bp = fp->bp;
15069 	u32 offset = BAR_USTRORM_INTMEM;
15070 
15071 	if (IS_VF(bp))
15072 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15073 	else if (!CHIP_IS_E1x(bp))
15074 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15075 	else
15076 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15077 
15078 	return offset;
15079 }
15080 
15081 /* called only on E1H or E2.
15082  * When pretending to be PF, the pretend value is the function number 0...7
15083  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15084  * combination
15085  */
15086 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15087 {
15088 	u32 pretend_reg;
15089 
15090 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15091 		return -1;
15092 
15093 	/* get my own pretend register */
15094 	pretend_reg = bnx2x_get_pretend_reg(bp);
15095 	REG_WR(bp, pretend_reg, pretend_func_val);
15096 	REG_RD(bp, pretend_reg);
15097 	return 0;
15098 }
15099 
15100 static void bnx2x_ptp_task(struct work_struct *work)
15101 {
15102 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15103 	int port = BP_PORT(bp);
15104 	u32 val_seq;
15105 	u64 timestamp, ns;
15106 	struct skb_shared_hwtstamps shhwtstamps;
15107 	bool bail = true;
15108 	int i;
15109 
15110 	/* FW may take a while to complete timestamping; try a bit and if it's
15111 	 * still not complete, may indicate an error state - bail out then.
15112 	 */
15113 	for (i = 0; i < 10; i++) {
15114 		/* Read Tx timestamp registers */
15115 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15116 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15117 		if (val_seq & 0x10000) {
15118 			bail = false;
15119 			break;
15120 		}
15121 		msleep(1 << i);
15122 	}
15123 
15124 	if (!bail) {
15125 		/* There is a valid timestamp value */
15126 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15127 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15128 		timestamp <<= 32;
15129 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15130 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15131 		/* Reset timestamp register to allow new timestamp */
15132 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15133 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15134 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15135 
15136 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15137 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15138 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15139 
15140 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15141 		   timestamp, ns);
15142 	} else {
15143 		DP(BNX2X_MSG_PTP,
15144 		   "Tx timestamp is not recorded (register read=%u)\n",
15145 		   val_seq);
15146 		bp->eth_stats.ptp_skip_tx_ts++;
15147 	}
15148 
15149 	dev_kfree_skb_any(bp->ptp_tx_skb);
15150 	bp->ptp_tx_skb = NULL;
15151 }
15152 
15153 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15154 {
15155 	int port = BP_PORT(bp);
15156 	u64 timestamp, ns;
15157 
15158 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15159 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15160 	timestamp <<= 32;
15161 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15162 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15163 
15164 	/* Reset timestamp register to allow new timestamp */
15165 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15166 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15167 
15168 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15169 
15170 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15171 
15172 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15173 	   timestamp, ns);
15174 }
15175 
15176 /* Read the PHC */
15177 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15178 {
15179 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15180 	int port = BP_PORT(bp);
15181 	u32 wb_data[2];
15182 	u64 phc_cycles;
15183 
15184 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15185 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15186 	phc_cycles = wb_data[1];
15187 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15188 
15189 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15190 
15191 	return phc_cycles;
15192 }
15193 
15194 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15195 {
15196 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15197 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15198 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15199 	bp->cyclecounter.shift = 0;
15200 	bp->cyclecounter.mult = 1;
15201 }
15202 
15203 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15204 {
15205 	struct bnx2x_func_state_params func_params = {NULL};
15206 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15207 		&func_params.params.set_timesync;
15208 
15209 	/* Prepare parameters for function state transitions */
15210 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15211 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15212 
15213 	func_params.f_obj = &bp->func_obj;
15214 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15215 
15216 	/* Function parameters */
15217 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15218 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15219 
15220 	return bnx2x_func_state_change(bp, &func_params);
15221 }
15222 
15223 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15224 {
15225 	struct bnx2x_queue_state_params q_params;
15226 	int rc, i;
15227 
15228 	/* send queue update ramrod to enable PTP packets */
15229 	memset(&q_params, 0, sizeof(q_params));
15230 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15231 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15232 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15233 		  &q_params.params.update.update_flags);
15234 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15235 		  &q_params.params.update.update_flags);
15236 
15237 	/* send the ramrod on all the queues of the PF */
15238 	for_each_eth_queue(bp, i) {
15239 		struct bnx2x_fastpath *fp = &bp->fp[i];
15240 
15241 		/* Set the appropriate Queue object */
15242 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15243 
15244 		/* Update the Queue state */
15245 		rc = bnx2x_queue_state_change(bp, &q_params);
15246 		if (rc) {
15247 			BNX2X_ERR("Failed to enable PTP packets\n");
15248 			return rc;
15249 		}
15250 	}
15251 
15252 	return 0;
15253 }
15254 
15255 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15256 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15257 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15258 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15259 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15260 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15261 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15262 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15263 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15264 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15265 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15266 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15267 
15268 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15269 {
15270 	int port = BP_PORT(bp);
15271 	u32 param, rule;
15272 	int rc;
15273 
15274 	if (!bp->hwtstamp_ioctl_called)
15275 		return 0;
15276 
15277 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15278 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15279 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15280 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15281 	switch (bp->tx_type) {
15282 	case HWTSTAMP_TX_ON:
15283 		bp->flags |= TX_TIMESTAMPING_EN;
15284 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15285 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15286 		break;
15287 	case HWTSTAMP_TX_ONESTEP_SYNC:
15288 	case HWTSTAMP_TX_ONESTEP_P2P:
15289 		BNX2X_ERR("One-step timestamping is not supported\n");
15290 		return -ERANGE;
15291 	}
15292 
15293 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15294 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15295 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15296 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15297 	switch (bp->rx_filter) {
15298 	case HWTSTAMP_FILTER_NONE:
15299 		break;
15300 	case HWTSTAMP_FILTER_ALL:
15301 	case HWTSTAMP_FILTER_SOME:
15302 	case HWTSTAMP_FILTER_NTP_ALL:
15303 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15304 		break;
15305 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15306 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15307 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15308 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15309 		/* Initialize PTP detection for UDP/IPv4 events */
15310 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15311 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15312 		break;
15313 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15314 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15315 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15316 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15317 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15318 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15319 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15320 		break;
15321 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15322 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15323 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15324 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15325 		/* Initialize PTP detection L2 events */
15326 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15327 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15328 
15329 		break;
15330 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15331 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15332 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15333 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15334 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15335 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15336 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15337 		break;
15338 	}
15339 
15340 	/* Indicate to FW that this PF expects recorded PTP packets */
15341 	rc = bnx2x_enable_ptp_packets(bp);
15342 	if (rc)
15343 		return rc;
15344 
15345 	/* Enable sending PTP packets to host */
15346 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15347 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15348 
15349 	return 0;
15350 }
15351 
15352 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15353 {
15354 	struct hwtstamp_config config;
15355 	int rc;
15356 
15357 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15358 
15359 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15360 		return -EFAULT;
15361 
15362 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15363 	   config.tx_type, config.rx_filter);
15364 
15365 	bp->hwtstamp_ioctl_called = true;
15366 	bp->tx_type = config.tx_type;
15367 	bp->rx_filter = config.rx_filter;
15368 
15369 	rc = bnx2x_configure_ptp_filters(bp);
15370 	if (rc)
15371 		return rc;
15372 
15373 	config.rx_filter = bp->rx_filter;
15374 
15375 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15376 		-EFAULT : 0;
15377 }
15378 
15379 /* Configures HW for PTP */
15380 static int bnx2x_configure_ptp(struct bnx2x *bp)
15381 {
15382 	int rc, port = BP_PORT(bp);
15383 	u32 wb_data[2];
15384 
15385 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15386 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15387 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15388 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15389 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15390 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15391 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15392 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15393 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15394 
15395 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15396 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15397 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15398 
15399 	/* Enable the PTP feature */
15400 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15401 	       NIG_REG_P0_PTP_EN, 0x3F);
15402 
15403 	/* Enable the free-running counter */
15404 	wb_data[0] = 0;
15405 	wb_data[1] = 0;
15406 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15407 
15408 	/* Reset drift register (offset register is not reset) */
15409 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15410 	if (rc) {
15411 		BNX2X_ERR("Failed to reset PHC drift register\n");
15412 		return -EFAULT;
15413 	}
15414 
15415 	/* Reset possibly old timestamps */
15416 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15417 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15418 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15419 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15420 
15421 	return 0;
15422 }
15423 
15424 /* Called during load, to initialize PTP-related stuff */
15425 void bnx2x_init_ptp(struct bnx2x *bp)
15426 {
15427 	int rc;
15428 
15429 	/* Configure PTP in HW */
15430 	rc = bnx2x_configure_ptp(bp);
15431 	if (rc) {
15432 		BNX2X_ERR("Stopping PTP initialization\n");
15433 		return;
15434 	}
15435 
15436 	/* Init work queue for Tx timestamping */
15437 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15438 
15439 	/* Init cyclecounter and timecounter. This is done only in the first
15440 	 * load. If done in every load, PTP application will fail when doing
15441 	 * unload / load (e.g. MTU change) while it is running.
15442 	 */
15443 	if (!bp->timecounter_init_done) {
15444 		bnx2x_init_cyclecounter(bp);
15445 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15446 				 ktime_to_ns(ktime_get_real()));
15447 		bp->timecounter_init_done = true;
15448 	}
15449 
15450 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15451 }
15452