xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 static char version[] =
85 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87 
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 		   "BCM57710/57711/57711E/"
91 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 		   "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98 
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
101 MODULE_PARM_DESC(num_queues,
102 		 " Set number of queues (default is as a number of CPUs)");
103 
104 static int disable_tpa;
105 module_param(disable_tpa, int, 0444);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 
108 static int int_mode;
109 module_param(int_mode, int, 0444);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0444);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int mrrs = -1;
118 module_param(mrrs, int, 0444);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120 
121 static int debug;
122 module_param(debug, int, 0444);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124 
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127 
128 struct bnx2x_mac_vals {
129 	u32 xmac_addr;
130 	u32 xmac_val;
131 	u32 emac_addr;
132 	u32 emac_val;
133 	u32 umac_addr[2];
134 	u32 umac_val[2];
135 	u32 bmac_addr;
136 	u32 bmac_val[2];
137 };
138 
139 enum bnx2x_board_type {
140 	BCM57710 = 0,
141 	BCM57711,
142 	BCM57711E,
143 	BCM57712,
144 	BCM57712_MF,
145 	BCM57712_VF,
146 	BCM57800,
147 	BCM57800_MF,
148 	BCM57800_VF,
149 	BCM57810,
150 	BCM57810_MF,
151 	BCM57810_VF,
152 	BCM57840_4_10,
153 	BCM57840_2_20,
154 	BCM57840_MF,
155 	BCM57840_VF,
156 	BCM57811,
157 	BCM57811_MF,
158 	BCM57840_O,
159 	BCM57840_MFO,
160 	BCM57811_VF
161 };
162 
163 /* indexed by board_type, above */
164 static struct {
165 	char *name;
166 } board_info[] = {
167 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
169 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
170 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
171 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
174 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
177 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
180 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
181 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
184 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189 
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
252 #endif
253 
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 	{ 0 }
280 };
281 
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283 
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288 
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293 
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297 
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299 
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 				       u32 addr, dma_addr_t mapping)
302 {
303 	REG_WR(bp,  addr, U64_LO(mapping));
304 	REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306 
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 				  dma_addr_t mapping, u16 abs_fid)
309 {
310 	u32 addr = XSEM_REG_FAST_MEMORY +
311 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312 
313 	__storm_memset_dma_mapping(bp, addr, mapping);
314 }
315 
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 				  u16 pf_id)
318 {
319 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 		pf_id);
321 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 }
328 
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 				 u8 enable)
331 {
332 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 		enable);
334 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 }
341 
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 				 struct event_ring_data *eq_data,
344 				u16 pfid)
345 {
346 	size_t size = sizeof(struct event_ring_data);
347 
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349 
350 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352 
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 				 u16 pfid)
355 {
356 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 	REG_WR16(bp, addr, eq_prod);
358 }
359 
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 			       PCICFG_VENDOR_ID_OFFSET);
369 }
370 
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 	u32 val;
374 
375 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 			       PCICFG_VENDOR_ID_OFFSET);
379 
380 	return val;
381 }
382 
383 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE	"dst_addr [none]"
388 
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 			  struct dmae_command *dmae, int msglvl)
391 {
392 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 	int i;
394 
395 	switch (dmae->opcode & DMAE_COMMAND_DST) {
396 	case DMAE_CMD_DST_PCI:
397 		if (src_type == DMAE_CMD_SRC_PCI)
398 			DP(msglvl, "DMAE: opcode 0x%08x\n"
399 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404 			   dmae->comp_val);
405 		else
406 			DP(msglvl, "DMAE: opcode 0x%08x\n"
407 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 			   dmae->opcode, dmae->src_addr_lo >> 2,
410 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
412 			   dmae->comp_val);
413 		break;
414 	case DMAE_CMD_DST_GRC:
415 		if (src_type == DMAE_CMD_SRC_PCI)
416 			DP(msglvl, "DMAE: opcode 0x%08x\n"
417 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 			   dmae->len, dmae->dst_addr_lo >> 2,
421 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422 			   dmae->comp_val);
423 		else
424 			DP(msglvl, "DMAE: opcode 0x%08x\n"
425 			   "src [%08x], len [%d*4], dst [%08x]\n"
426 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 			   dmae->opcode, dmae->src_addr_lo >> 2,
428 			   dmae->len, dmae->dst_addr_lo >> 2,
429 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
430 			   dmae->comp_val);
431 		break;
432 	default:
433 		if (src_type == DMAE_CMD_SRC_PCI)
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		else
441 			DP(msglvl, "DMAE: opcode 0x%08x\n"
442 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444 			   dmae->opcode, dmae->src_addr_lo >> 2,
445 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 			   dmae->comp_val);
447 		break;
448 	}
449 
450 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 		   i, *(((u32 *)dmae) + i));
453 }
454 
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 	u32 cmd_offset;
459 	int i;
460 
461 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 	}
465 	REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467 
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 			   DMAE_CMD_C_ENABLE);
472 }
473 
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 	return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478 
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 			     bool with_comp, u8 comp_type)
481 {
482 	u32 opcode = 0;
483 
484 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
486 
487 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488 
489 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493 
494 #ifdef __BIG_ENDIAN
495 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 	if (with_comp)
500 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 	return opcode;
502 }
503 
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 				      struct dmae_command *dmae,
506 				      u8 src_type, u8 dst_type)
507 {
508 	memset(dmae, 0, sizeof(struct dmae_command));
509 
510 	/* set the opcode */
511 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 					 true, DMAE_COMP_PCI);
513 
514 	/* fill in the completion parameters */
515 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 	dmae->comp_val = DMAE_COMP_VAL;
518 }
519 
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 			       u32 *comp)
523 {
524 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 	int rc = 0;
526 
527 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528 
529 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 	 * as long as this code is called both from syscall context and
531 	 * from ndo_set_rx_mode() flow that may be called from BH.
532 	 */
533 
534 	spin_lock_bh(&bp->dmae_lock);
535 
536 	/* reset completion */
537 	*comp = 0;
538 
539 	/* post the command on the channel used for initializations */
540 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541 
542 	/* wait for completion */
543 	udelay(5);
544 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545 
546 		if (!cnt ||
547 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 			BNX2X_ERR("DMAE timeout!\n");
550 			rc = DMAE_TIMEOUT;
551 			goto unlock;
552 		}
553 		cnt--;
554 		udelay(50);
555 	}
556 	if (*comp & DMAE_PCI_ERR_FLAG) {
557 		BNX2X_ERR("DMAE PCI error!\n");
558 		rc = DMAE_PCI_ERROR;
559 	}
560 
561 unlock:
562 
563 	spin_unlock_bh(&bp->dmae_lock);
564 
565 	return rc;
566 }
567 
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 		      u32 len32)
570 {
571 	int rc;
572 	struct dmae_command dmae;
573 
574 	if (!bp->dmae_ready) {
575 		u32 *data = bnx2x_sp(bp, wb_data[0]);
576 
577 		if (CHIP_IS_E1(bp))
578 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 		else
580 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 		return;
582 	}
583 
584 	/* set opcode and fixed command fields */
585 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586 
587 	/* fill in addresses and len */
588 	dmae.src_addr_lo = U64_LO(dma_addr);
589 	dmae.src_addr_hi = U64_HI(dma_addr);
590 	dmae.dst_addr_lo = dst_addr >> 2;
591 	dmae.dst_addr_hi = 0;
592 	dmae.len = len32;
593 
594 	/* issue the command and wait for completion */
595 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 	if (rc) {
597 		BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 		bnx2x_panic();
600 #endif
601 	}
602 }
603 
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 	int rc;
607 	struct dmae_command dmae;
608 
609 	if (!bp->dmae_ready) {
610 		u32 *data = bnx2x_sp(bp, wb_data[0]);
611 		int i;
612 
613 		if (CHIP_IS_E1(bp))
614 			for (i = 0; i < len32; i++)
615 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 		else
617 			for (i = 0; i < len32; i++)
618 				data[i] = REG_RD(bp, src_addr + i*4);
619 
620 		return;
621 	}
622 
623 	/* set opcode and fixed command fields */
624 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625 
626 	/* fill in addresses and len */
627 	dmae.src_addr_lo = src_addr >> 2;
628 	dmae.src_addr_hi = 0;
629 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 	dmae.len = len32;
632 
633 	/* issue the command and wait for completion */
634 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 	if (rc) {
636 		BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 		bnx2x_panic();
639 #endif
640 	}
641 }
642 
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 				      u32 addr, u32 len)
645 {
646 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 	int offset = 0;
648 
649 	while (len > dmae_wr_max) {
650 		bnx2x_write_dmae(bp, phys_addr + offset,
651 				 addr + offset, dmae_wr_max);
652 		offset += dmae_wr_max * 4;
653 		len -= dmae_wr_max;
654 	}
655 
656 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658 
659 enum storms {
660 	   XSTORM,
661 	   TSTORM,
662 	   CSTORM,
663 	   USTORM,
664 	   MAX_STORMS
665 };
666 
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669 
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 					      enum storms storm,
672 					      int entry)
673 {
674 	switch (storm) {
675 	case XSTORM:
676 		return XSTORM_ASSERT_LIST_OFFSET(entry);
677 	case TSTORM:
678 		return TSTORM_ASSERT_LIST_OFFSET(entry);
679 	case CSTORM:
680 		return CSTORM_ASSERT_LIST_OFFSET(entry);
681 	case USTORM:
682 		return USTORM_ASSERT_LIST_OFFSET(entry);
683 	case MAX_STORMS:
684 	default:
685 		BNX2X_ERR("unknown storm\n");
686 	}
687 	return -EINVAL;
688 }
689 
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 	char last_idx;
693 	int i, j, rc = 0;
694 	enum storms storm;
695 	u32 regs[REGS_IN_ENTRY];
696 	u32 bar_storm_intmem[STORMS_NUM] = {
697 		BAR_XSTRORM_INTMEM,
698 		BAR_TSTRORM_INTMEM,
699 		BAR_CSTRORM_INTMEM,
700 		BAR_USTRORM_INTMEM
701 	};
702 	u32 storm_assert_list_index[STORMS_NUM] = {
703 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		USTORM_ASSERT_LIST_INDEX_OFFSET
707 	};
708 	char *storms_string[STORMS_NUM] = {
709 		"XSTORM",
710 		"TSTORM",
711 		"CSTORM",
712 		"USTORM"
713 	};
714 
715 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 				   storm_assert_list_index[storm]);
718 		if (last_idx)
719 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 				  storms_string[storm], last_idx);
721 
722 		/* print the asserts */
723 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 			/* read a single assert entry */
725 			for (j = 0; j < REGS_IN_ENTRY; j++)
726 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 					  bnx2x_get_assert_list_entry(bp,
728 								      storm,
729 								      i) +
730 					  sizeof(u32) * j);
731 
732 			/* log entry if it contains a valid assert */
733 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 					  storms_string[storm], i, regs[3],
736 					  regs[2], regs[1], regs[0]);
737 				rc++;
738 			} else {
739 				break;
740 			}
741 		}
742 	}
743 
744 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 		  CHIP_IS_E1(bp) ? "everest1" :
746 		  CHIP_IS_E1H(bp) ? "everest1h" :
747 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 		  BCM_5710_FW_MAJOR_VERSION,
749 		  BCM_5710_FW_MINOR_VERSION,
750 		  BCM_5710_FW_REVISION_VERSION);
751 
752 	return rc;
753 }
754 
755 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
756 #define SCRATCH_BUFFER_SIZE(bp)	\
757 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758 
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 	u32 addr, val;
762 	u32 mark, offset;
763 	__be32 data[9];
764 	int word;
765 	u32 trace_shmem_base;
766 	if (BP_NOMCP(bp)) {
767 		BNX2X_ERR("NO MCP - can not dump\n");
768 		return;
769 	}
770 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 		(bp->common.bc_ver & 0xff0000) >> 16,
772 		(bp->common.bc_ver & 0xff00) >> 8,
773 		(bp->common.bc_ver & 0xff));
774 
775 	if (pci_channel_offline(bp->pdev)) {
776 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 		return;
778 	}
779 
780 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783 
784 	if (BP_PATH(bp) == 0)
785 		trace_shmem_base = bp->common.shmem_base;
786 	else
787 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788 
789 	/* sanity */
790 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 				SCRATCH_BUFFER_SIZE(bp)) {
793 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 			  trace_shmem_base);
795 		return;
796 	}
797 
798 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799 
800 	/* validate TRCB signature */
801 	mark = REG_RD(bp, addr);
802 	if (mark != MFW_TRACE_SIGNATURE) {
803 		BNX2X_ERR("Trace buffer signature is missing.");
804 		return ;
805 	}
806 
807 	/* read cyclic buffer pointer */
808 	addr += 4;
809 	mark = REG_RD(bp, addr);
810 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 	if (mark >= trace_shmem_base || mark < addr + 4) {
812 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 		return;
814 	}
815 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816 
817 	printk("%s", lvl);
818 
819 	/* dump buffer after the mark */
820 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 		for (word = 0; word < 8; word++)
822 			data[word] = htonl(REG_RD(bp, offset + 4*word));
823 		data[8] = 0x0;
824 		pr_cont("%s", (char *)data);
825 	}
826 
827 	/* dump buffer before the mark */
828 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 		for (word = 0; word < 8; word++)
830 			data[word] = htonl(REG_RD(bp, offset + 4*word));
831 		data[8] = 0x0;
832 		pr_cont("%s", (char *)data);
833 	}
834 	printk("%s" "end of fw dump\n", lvl);
835 }
836 
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841 
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 	int port = BP_PORT(bp);
845 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 	u32 val = REG_RD(bp, addr);
847 
848 	/* in E1 we must use only PCI configuration space to disable
849 	 * MSI/MSIX capability
850 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 	 */
852 	if (CHIP_IS_E1(bp)) {
853 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 		 * Use mask register to prevent from HC sending interrupts
855 		 * after we exit the function
856 		 */
857 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858 
859 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 	} else
863 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867 
868 	DP(NETIF_MSG_IFDOWN,
869 	   "write %x to HC %d (addr 0x%x)\n",
870 	   val, port, addr);
871 
872 	/* flush all outstanding writes */
873 	mmiowb();
874 
875 	REG_WR(bp, addr, val);
876 	if (REG_RD(bp, addr) != val)
877 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879 
880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883 
884 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885 		 IGU_PF_CONF_INT_LINE_EN |
886 		 IGU_PF_CONF_ATTN_BIT_EN);
887 
888 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889 
890 	/* flush all outstanding writes */
891 	mmiowb();
892 
893 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897 
898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900 	if (bp->common.int_block == INT_BLOCK_HC)
901 		bnx2x_hc_int_disable(bp);
902 	else
903 		bnx2x_igu_int_disable(bp);
904 }
905 
906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908 	int i;
909 	u16 j;
910 	struct hc_sp_status_block_data sp_sb_data;
911 	int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913 	u16 start = 0, end = 0;
914 	u8 cos;
915 #endif
916 	if (IS_PF(bp) && disable_int)
917 		bnx2x_int_disable(bp);
918 
919 	bp->stats_state = STATS_STATE_DISABLED;
920 	bp->eth_stats.unrecoverable_error++;
921 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922 
923 	BNX2X_ERR("begin crash dump -----------------\n");
924 
925 	/* Indices */
926 	/* Common */
927 	if (IS_PF(bp)) {
928 		struct host_sp_status_block *def_sb = bp->def_status_blk;
929 		int data_size, cstorm_offset;
930 
931 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
933 			  bp->spq_prod_idx, bp->stats_counter);
934 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
935 			  def_sb->atten_status_block.attn_bits,
936 			  def_sb->atten_status_block.attn_bits_ack,
937 			  def_sb->atten_status_block.status_block_id,
938 			  def_sb->atten_status_block.attn_bits_index);
939 		BNX2X_ERR("     def (");
940 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941 			pr_cont("0x%x%s",
942 				def_sb->sp_sb.index_values[i],
943 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
944 
945 		data_size = sizeof(struct hc_sp_status_block_data) /
946 			    sizeof(u32);
947 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948 		for (i = 0; i < data_size; i++)
949 			*((u32 *)&sp_sb_data + i) =
950 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951 					   i * sizeof(u32));
952 
953 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
954 			sp_sb_data.igu_sb_id,
955 			sp_sb_data.igu_seg_id,
956 			sp_sb_data.p_func.pf_id,
957 			sp_sb_data.p_func.vnic_id,
958 			sp_sb_data.p_func.vf_id,
959 			sp_sb_data.p_func.vf_valid,
960 			sp_sb_data.state);
961 	}
962 
963 	for_each_eth_queue(bp, i) {
964 		struct bnx2x_fastpath *fp = &bp->fp[i];
965 		int loop;
966 		struct hc_status_block_data_e2 sb_data_e2;
967 		struct hc_status_block_data_e1x sb_data_e1x;
968 		struct hc_status_block_sm  *hc_sm_p =
969 			CHIP_IS_E1x(bp) ?
970 			sb_data_e1x.common.state_machine :
971 			sb_data_e2.common.state_machine;
972 		struct hc_index_data *hc_index_p =
973 			CHIP_IS_E1x(bp) ?
974 			sb_data_e1x.index_data :
975 			sb_data_e2.index_data;
976 		u8 data_size, cos;
977 		u32 *sb_data_p;
978 		struct bnx2x_fp_txdata txdata;
979 
980 		if (!bp->fp)
981 			break;
982 
983 		if (!fp->rx_cons_sb)
984 			continue;
985 
986 		/* Rx */
987 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
989 			  fp->rx_comp_prod,
990 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992 			  fp->rx_sge_prod, fp->last_max_sge,
993 			  le16_to_cpu(fp->fp_hc_idx));
994 
995 		/* Tx */
996 		for_each_cos_in_tx_queue(fp, cos)
997 		{
998 			if (!fp->txdata_ptr[cos])
999 				break;
1000 
1001 			txdata = *fp->txdata_ptr[cos];
1002 
1003 			if (!txdata.tx_cons_sb)
1004 				continue;
1005 
1006 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1007 				  i, txdata.tx_pkt_prod,
1008 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009 				  txdata.tx_bd_cons,
1010 				  le16_to_cpu(*txdata.tx_cons_sb));
1011 		}
1012 
1013 		loop = CHIP_IS_E1x(bp) ?
1014 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015 
1016 		/* host sb data */
1017 
1018 		if (IS_FCOE_FP(fp))
1019 			continue;
1020 
1021 		BNX2X_ERR("     run indexes (");
1022 		for (j = 0; j < HC_SB_MAX_SM; j++)
1023 			pr_cont("0x%x%s",
1024 			       fp->sb_running_index[j],
1025 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026 
1027 		BNX2X_ERR("     indexes (");
1028 		for (j = 0; j < loop; j++)
1029 			pr_cont("0x%x%s",
1030 			       fp->sb_index_values[j],
1031 			       (j == loop - 1) ? ")" : " ");
1032 
1033 		/* VF cannot access FW refelection for status block */
1034 		if (IS_VF(bp))
1035 			continue;
1036 
1037 		/* fw sb data */
1038 		data_size = CHIP_IS_E1x(bp) ?
1039 			sizeof(struct hc_status_block_data_e1x) :
1040 			sizeof(struct hc_status_block_data_e2);
1041 		data_size /= sizeof(u32);
1042 		sb_data_p = CHIP_IS_E1x(bp) ?
1043 			(u32 *)&sb_data_e1x :
1044 			(u32 *)&sb_data_e2;
1045 		/* copy sb data in here */
1046 		for (j = 0; j < data_size; j++)
1047 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049 				j * sizeof(u32));
1050 
1051 		if (!CHIP_IS_E1x(bp)) {
1052 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1053 				sb_data_e2.common.p_func.pf_id,
1054 				sb_data_e2.common.p_func.vf_id,
1055 				sb_data_e2.common.p_func.vf_valid,
1056 				sb_data_e2.common.p_func.vnic_id,
1057 				sb_data_e2.common.same_igu_sb_1b,
1058 				sb_data_e2.common.state);
1059 		} else {
1060 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1061 				sb_data_e1x.common.p_func.pf_id,
1062 				sb_data_e1x.common.p_func.vf_id,
1063 				sb_data_e1x.common.p_func.vf_valid,
1064 				sb_data_e1x.common.p_func.vnic_id,
1065 				sb_data_e1x.common.same_igu_sb_1b,
1066 				sb_data_e1x.common.state);
1067 		}
1068 
1069 		/* SB_SMs data */
1070 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1071 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072 				j, hc_sm_p[j].__flags,
1073 				hc_sm_p[j].igu_sb_id,
1074 				hc_sm_p[j].igu_seg_id,
1075 				hc_sm_p[j].time_to_expire,
1076 				hc_sm_p[j].timer_value);
1077 		}
1078 
1079 		/* Indices data */
1080 		for (j = 0; j < loop; j++) {
1081 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082 			       hc_index_p[j].flags,
1083 			       hc_index_p[j].timeout);
1084 		}
1085 	}
1086 
1087 #ifdef BNX2X_STOP_ON_ERROR
1088 	if (IS_PF(bp)) {
1089 		/* event queue */
1090 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091 		for (i = 0; i < NUM_EQ_DESC; i++) {
1092 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093 
1094 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095 				  i, bp->eq_ring[i].message.opcode,
1096 				  bp->eq_ring[i].message.error);
1097 			BNX2X_ERR("data: %x %x %x\n",
1098 				  data[0], data[1], data[2]);
1099 		}
1100 	}
1101 
1102 	/* Rings */
1103 	/* Rx */
1104 	for_each_valid_rx_queue(bp, i) {
1105 		struct bnx2x_fastpath *fp = &bp->fp[i];
1106 
1107 		if (!bp->fp)
1108 			break;
1109 
1110 		if (!fp->rx_cons_sb)
1111 			continue;
1112 
1113 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115 		for (j = start; j != end; j = RX_BD(j + 1)) {
1116 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118 
1119 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1120 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121 		}
1122 
1123 		start = RX_SGE(fp->rx_sge_prod);
1124 		end = RX_SGE(fp->last_max_sge);
1125 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1126 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128 
1129 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1130 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131 		}
1132 
1133 		start = RCQ_BD(fp->rx_comp_cons - 10);
1134 		end = RCQ_BD(fp->rx_comp_cons + 503);
1135 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137 
1138 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140 		}
1141 	}
1142 
1143 	/* Tx */
1144 	for_each_valid_tx_queue(bp, i) {
1145 		struct bnx2x_fastpath *fp = &bp->fp[i];
1146 
1147 		if (!bp->fp)
1148 			break;
1149 
1150 		for_each_cos_in_tx_queue(fp, cos) {
1151 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152 
1153 			if (!fp->txdata_ptr[cos])
1154 				break;
1155 
1156 			if (!txdata->tx_cons_sb)
1157 				continue;
1158 
1159 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161 			for (j = start; j != end; j = TX_BD(j + 1)) {
1162 				struct sw_tx_bd *sw_bd =
1163 					&txdata->tx_buf_ring[j];
1164 
1165 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166 					  i, cos, j, sw_bd->skb,
1167 					  sw_bd->first_bd);
1168 			}
1169 
1170 			start = TX_BD(txdata->tx_bd_cons - 10);
1171 			end = TX_BD(txdata->tx_bd_cons + 254);
1172 			for (j = start; j != end; j = TX_BD(j + 1)) {
1173 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174 
1175 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176 					  i, cos, j, tx_bd[0], tx_bd[1],
1177 					  tx_bd[2], tx_bd[3]);
1178 			}
1179 		}
1180 	}
1181 #endif
1182 	if (IS_PF(bp)) {
1183 		bnx2x_fw_dump(bp);
1184 		bnx2x_mc_assert(bp);
1185 	}
1186 	BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188 
1189 /*
1190  * FLR Support for E2
1191  *
1192  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193  * initialization.
1194  */
1195 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL	50	/* usec */
1197 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198 
1199 struct pbf_pN_buf_regs {
1200 	int pN;
1201 	u32 init_crd;
1202 	u32 crd;
1203 	u32 crd_freed;
1204 };
1205 
1206 struct pbf_pN_cmd_regs {
1207 	int pN;
1208 	u32 lines_occup;
1209 	u32 lines_freed;
1210 };
1211 
1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213 				     struct pbf_pN_buf_regs *regs,
1214 				     u32 poll_count)
1215 {
1216 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217 	u32 cur_cnt = poll_count;
1218 
1219 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220 	crd = crd_start = REG_RD(bp, regs->crd);
1221 	init_crd = REG_RD(bp, regs->init_crd);
1222 
1223 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1225 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226 
1227 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228 	       (init_crd - crd_start))) {
1229 		if (cur_cnt--) {
1230 			udelay(FLR_WAIT_INTERVAL);
1231 			crd = REG_RD(bp, regs->crd);
1232 			crd_freed = REG_RD(bp, regs->crd_freed);
1233 		} else {
1234 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235 			   regs->pN);
1236 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1237 			   regs->pN, crd);
1238 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239 			   regs->pN, crd_freed);
1240 			break;
1241 		}
1242 	}
1243 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246 
1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248 				     struct pbf_pN_cmd_regs *regs,
1249 				     u32 poll_count)
1250 {
1251 	u32 occup, to_free, freed, freed_start;
1252 	u32 cur_cnt = poll_count;
1253 
1254 	occup = to_free = REG_RD(bp, regs->lines_occup);
1255 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1256 
1257 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1258 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259 
1260 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261 		if (cur_cnt--) {
1262 			udelay(FLR_WAIT_INTERVAL);
1263 			occup = REG_RD(bp, regs->lines_occup);
1264 			freed = REG_RD(bp, regs->lines_freed);
1265 		} else {
1266 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267 			   regs->pN);
1268 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1269 			   regs->pN, occup);
1270 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271 			   regs->pN, freed);
1272 			break;
1273 		}
1274 	}
1275 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278 
1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280 				    u32 expected, u32 poll_count)
1281 {
1282 	u32 cur_cnt = poll_count;
1283 	u32 val;
1284 
1285 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286 		udelay(FLR_WAIT_INTERVAL);
1287 
1288 	return val;
1289 }
1290 
1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292 				    char *msg, u32 poll_cnt)
1293 {
1294 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295 	if (val != 0) {
1296 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1297 		return 1;
1298 	}
1299 	return 0;
1300 }
1301 
1302 /* Common routines with VF FLR cleanup */
1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305 	/* adjust polling timeout */
1306 	if (CHIP_REV_IS_EMUL(bp))
1307 		return FLR_POLL_CNT * 2000;
1308 
1309 	if (CHIP_REV_IS_FPGA(bp))
1310 		return FLR_POLL_CNT * 120;
1311 
1312 	return FLR_POLL_CNT;
1313 }
1314 
1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317 	struct pbf_pN_cmd_regs cmd_regs[] = {
1318 		{0, (CHIP_IS_E3B0(bp)) ?
1319 			PBF_REG_TQ_OCCUPANCY_Q0 :
1320 			PBF_REG_P0_TQ_OCCUPANCY,
1321 		    (CHIP_IS_E3B0(bp)) ?
1322 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1324 		{1, (CHIP_IS_E3B0(bp)) ?
1325 			PBF_REG_TQ_OCCUPANCY_Q1 :
1326 			PBF_REG_P1_TQ_OCCUPANCY,
1327 		    (CHIP_IS_E3B0(bp)) ?
1328 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1330 		{4, (CHIP_IS_E3B0(bp)) ?
1331 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1332 			PBF_REG_P4_TQ_OCCUPANCY,
1333 		    (CHIP_IS_E3B0(bp)) ?
1334 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1336 	};
1337 
1338 	struct pbf_pN_buf_regs buf_regs[] = {
1339 		{0, (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_INIT_CRD_Q0 :
1341 			PBF_REG_P0_INIT_CRD ,
1342 		    (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_CREDIT_Q0 :
1344 			PBF_REG_P0_CREDIT,
1345 		    (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348 		{1, (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_INIT_CRD_Q1 :
1350 			PBF_REG_P1_INIT_CRD,
1351 		    (CHIP_IS_E3B0(bp)) ?
1352 			PBF_REG_CREDIT_Q1 :
1353 			PBF_REG_P1_CREDIT,
1354 		    (CHIP_IS_E3B0(bp)) ?
1355 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357 		{4, (CHIP_IS_E3B0(bp)) ?
1358 			PBF_REG_INIT_CRD_LB_Q :
1359 			PBF_REG_P4_INIT_CRD,
1360 		    (CHIP_IS_E3B0(bp)) ?
1361 			PBF_REG_CREDIT_LB_Q :
1362 			PBF_REG_P4_CREDIT,
1363 		    (CHIP_IS_E3B0(bp)) ?
1364 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366 	};
1367 
1368 	int i;
1369 
1370 	/* Verify the command queues are flushed P0, P1, P4 */
1371 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373 
1374 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1375 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378 
1379 #define OP_GEN_PARAM(param) \
1380 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381 
1382 #define OP_GEN_TYPE(type) \
1383 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384 
1385 #define OP_GEN_AGG_VECT(index) \
1386 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387 
1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390 	u32 op_gen_command = 0;
1391 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1392 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393 	int ret = 0;
1394 
1395 	if (REG_RD(bp, comp_addr)) {
1396 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397 		return 1;
1398 	}
1399 
1400 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404 
1405 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407 
1408 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409 		BNX2X_ERR("FW final cleanup did not succeed\n");
1410 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411 		   (REG_RD(bp, comp_addr)));
1412 		bnx2x_panic();
1413 		return 1;
1414 	}
1415 	/* Zero completion for next FLR */
1416 	REG_WR(bp, comp_addr, 0);
1417 
1418 	return ret;
1419 }
1420 
1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423 	u16 status;
1424 
1425 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426 	return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428 
1429 /* PF FLR specific routines
1430 */
1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1436 			"CFC PF usage counter timed out",
1437 			poll_cnt))
1438 		return 1;
1439 
1440 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442 			DORQ_REG_PF_USAGE_CNT,
1443 			"DQ PF usage counter timed out",
1444 			poll_cnt))
1445 		return 1;
1446 
1447 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450 			"QM PF usage counter timed out",
1451 			poll_cnt))
1452 		return 1;
1453 
1454 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457 			"Timers VNIC usage counter timed out",
1458 			poll_cnt))
1459 		return 1;
1460 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462 			"Timers NUM_SCANS usage counter timed out",
1463 			poll_cnt))
1464 		return 1;
1465 
1466 	/* Wait DMAE PF usage counter to zero */
1467 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1469 			"DMAE command register timed out",
1470 			poll_cnt))
1471 		return 1;
1472 
1473 	return 0;
1474 }
1475 
1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478 	u32 val;
1479 
1480 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482 
1483 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485 
1486 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488 
1489 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491 
1492 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494 
1495 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497 
1498 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500 
1501 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503 	   val);
1504 }
1505 
1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509 
1510 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511 
1512 	/* Re-enable PF target read access */
1513 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514 
1515 	/* Poll HW usage counters */
1516 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518 		return -EBUSY;
1519 
1520 	/* Zero the igu 'trailing edge' and 'leading edge' */
1521 
1522 	/* Send the FW cleanup command */
1523 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524 		return -EBUSY;
1525 
1526 	/* ATC cleanup */
1527 
1528 	/* Verify TX hw is flushed */
1529 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1530 
1531 	/* Wait 100ms (not adjusted according to platform) */
1532 	msleep(100);
1533 
1534 	/* Verify no pending pci transactions */
1535 	if (bnx2x_is_pcie_pending(bp->pdev))
1536 		BNX2X_ERR("PCIE Transactions still pending\n");
1537 
1538 	/* Debug */
1539 	bnx2x_hw_enable_status(bp);
1540 
1541 	/*
1542 	 * Master enable - Due to WB DMAE writes performed before this
1543 	 * register is re-initialized as part of the regular function init
1544 	 */
1545 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546 
1547 	return 0;
1548 }
1549 
1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552 	int port = BP_PORT(bp);
1553 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554 	u32 val = REG_RD(bp, addr);
1555 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558 
1559 	if (msix) {
1560 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1562 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564 		if (single_msix)
1565 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566 	} else if (msi) {
1567 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571 	} else {
1572 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576 
1577 		if (!CHIP_IS_E1(bp)) {
1578 			DP(NETIF_MSG_IFUP,
1579 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580 
1581 			REG_WR(bp, addr, val);
1582 
1583 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584 		}
1585 	}
1586 
1587 	if (CHIP_IS_E1(bp))
1588 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589 
1590 	DP(NETIF_MSG_IFUP,
1591 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593 
1594 	REG_WR(bp, addr, val);
1595 	/*
1596 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1597 	 */
1598 	mmiowb();
1599 	barrier();
1600 
1601 	if (!CHIP_IS_E1(bp)) {
1602 		/* init leading/trailing edge */
1603 		if (IS_MF(bp)) {
1604 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605 			if (bp->port.pmf)
1606 				/* enable nig and gpio3 attention */
1607 				val |= 0x1100;
1608 		} else
1609 			val = 0xffff;
1610 
1611 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613 	}
1614 
1615 	/* Make sure that interrupts are indeed enabled from here on */
1616 	mmiowb();
1617 }
1618 
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621 	u32 val;
1622 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625 
1626 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627 
1628 	if (msix) {
1629 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630 			 IGU_PF_CONF_SINGLE_ISR_EN);
1631 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632 			IGU_PF_CONF_ATTN_BIT_EN);
1633 
1634 		if (single_msix)
1635 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636 	} else if (msi) {
1637 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1638 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639 			IGU_PF_CONF_ATTN_BIT_EN |
1640 			IGU_PF_CONF_SINGLE_ISR_EN);
1641 	} else {
1642 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643 		val |= (IGU_PF_CONF_INT_LINE_EN |
1644 			IGU_PF_CONF_ATTN_BIT_EN |
1645 			IGU_PF_CONF_SINGLE_ISR_EN);
1646 	}
1647 
1648 	/* Clean previous status - need to configure igu prior to ack*/
1649 	if ((!msix) || single_msix) {
1650 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 		bnx2x_ack_int(bp);
1652 	}
1653 
1654 	val |= IGU_PF_CONF_FUNC_EN;
1655 
1656 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658 
1659 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660 
1661 	if (val & IGU_PF_CONF_INT_LINE_EN)
1662 		pci_intx(bp->pdev, true);
1663 
1664 	barrier();
1665 
1666 	/* init leading/trailing edge */
1667 	if (IS_MF(bp)) {
1668 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669 		if (bp->port.pmf)
1670 			/* enable nig and gpio3 attention */
1671 			val |= 0x1100;
1672 	} else
1673 		val = 0xffff;
1674 
1675 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677 
1678 	/* Make sure that interrupts are indeed enabled from here on */
1679 	mmiowb();
1680 }
1681 
1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684 	if (bp->common.int_block == INT_BLOCK_HC)
1685 		bnx2x_hc_int_enable(bp);
1686 	else
1687 		bnx2x_igu_int_enable(bp);
1688 }
1689 
1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693 	int i, offset;
1694 
1695 	if (disable_hw)
1696 		/* prevent the HW from sending interrupts */
1697 		bnx2x_int_disable(bp);
1698 
1699 	/* make sure all ISRs are done */
1700 	if (msix) {
1701 		synchronize_irq(bp->msix_table[0].vector);
1702 		offset = 1;
1703 		if (CNIC_SUPPORT(bp))
1704 			offset++;
1705 		for_each_eth_queue(bp, i)
1706 			synchronize_irq(bp->msix_table[offset++].vector);
1707 	} else
1708 		synchronize_irq(bp->pdev->irq);
1709 
1710 	/* make sure sp_task is not running */
1711 	cancel_delayed_work(&bp->sp_task);
1712 	cancel_delayed_work(&bp->period_task);
1713 	flush_workqueue(bnx2x_wq);
1714 }
1715 
1716 /* fast path */
1717 
1718 /*
1719  * General service functions
1720  */
1721 
1722 /* Return true if succeeded to acquire the lock */
1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725 	u32 lock_status;
1726 	u32 resource_bit = (1 << resource);
1727 	int func = BP_FUNC(bp);
1728 	u32 hw_lock_control_reg;
1729 
1730 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 	   "Trying to take a lock on resource %d\n", resource);
1732 
1733 	/* Validating that the resource is within range */
1734 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738 		return false;
1739 	}
1740 
1741 	if (func <= 5)
1742 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743 	else
1744 		hw_lock_control_reg =
1745 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746 
1747 	/* Try to acquire the lock */
1748 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749 	lock_status = REG_RD(bp, hw_lock_control_reg);
1750 	if (lock_status & resource_bit)
1751 		return true;
1752 
1753 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754 	   "Failed to get a lock on resource %d\n", resource);
1755 	return false;
1756 }
1757 
1758 /**
1759  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760  *
1761  * @bp:	driver handle
1762  *
1763  * Returns the recovery leader resource id according to the engine this function
1764  * belongs to. Currently only only 2 engines is supported.
1765  */
1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768 	if (BP_PATH(bp))
1769 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770 	else
1771 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773 
1774 /**
1775  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776  *
1777  * @bp: driver handle
1778  *
1779  * Tries to acquire a leader lock for current engine.
1780  */
1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785 
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787 
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791 	/* Set the interrupt occurred bit for the sp-task to recognize it
1792 	 * must ack the interrupt and transition according to the IGU
1793 	 * state machine.
1794 	 */
1795 	atomic_set(&bp->interrupt_occurred, 1);
1796 
1797 	/* The sp_task must execute only after this bit
1798 	 * is set, otherwise we will get out of sync and miss all
1799 	 * further interrupts. Hence, the barrier.
1800 	 */
1801 	smp_wmb();
1802 
1803 	/* schedule sp_task to workqueue */
1804 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806 
1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809 	struct bnx2x *bp = fp->bp;
1810 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814 
1815 	DP(BNX2X_MSG_SP,
1816 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1817 	   fp->index, cid, command, bp->state,
1818 	   rr_cqe->ramrod_cqe.ramrod_type);
1819 
1820 	/* If cid is within VF range, replace the slowpath object with the
1821 	 * one corresponding to this VF
1822 	 */
1823 	if (cid >= BNX2X_FIRST_VF_CID  &&
1824 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826 
1827 	switch (command) {
1828 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1831 		break;
1832 
1833 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835 		drv_cmd = BNX2X_Q_CMD_SETUP;
1836 		break;
1837 
1838 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841 		break;
1842 
1843 	case (RAMROD_CMD_ID_ETH_HALT):
1844 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845 		drv_cmd = BNX2X_Q_CMD_HALT;
1846 		break;
1847 
1848 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1849 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851 		break;
1852 
1853 	case (RAMROD_CMD_ID_ETH_EMPTY):
1854 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1856 		break;
1857 
1858 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861 		break;
1862 
1863 	default:
1864 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865 			  command, fp->index);
1866 		return;
1867 	}
1868 
1869 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871 		/* q_obj->complete_cmd() failure means that this was
1872 		 * an unexpected completion.
1873 		 *
1874 		 * In this case we don't want to increase the bp->spq_left
1875 		 * because apparently we haven't sent this command the first
1876 		 * place.
1877 		 */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879 		bnx2x_panic();
1880 #else
1881 		return;
1882 #endif
1883 
1884 	smp_mb__before_atomic();
1885 	atomic_inc(&bp->cq_spq_left);
1886 	/* push the change in bp->spq_left and towards the memory */
1887 	smp_mb__after_atomic();
1888 
1889 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890 
1891 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893 		/* if Q update ramrod is completed for last Q in AFEX vif set
1894 		 * flow, then ACK MCP at the end
1895 		 *
1896 		 * mark pending ACK to MCP bit.
1897 		 * prevent case that both bits are cleared.
1898 		 * At the end of load/unload driver checks that
1899 		 * sp_state is cleared, and this order prevents
1900 		 * races
1901 		 */
1902 		smp_mb__before_atomic();
1903 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904 		wmb();
1905 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906 		smp_mb__after_atomic();
1907 
1908 		/* schedule the sp task as mcp ack is required */
1909 		bnx2x_schedule_sp_task(bp);
1910 	}
1911 
1912 	return;
1913 }
1914 
1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917 	struct bnx2x *bp = netdev_priv(dev_instance);
1918 	u16 status = bnx2x_ack_int(bp);
1919 	u16 mask;
1920 	int i;
1921 	u8 cos;
1922 
1923 	/* Return here if interrupt is shared and it's not for us */
1924 	if (unlikely(status == 0)) {
1925 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926 		return IRQ_NONE;
1927 	}
1928 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1929 
1930 #ifdef BNX2X_STOP_ON_ERROR
1931 	if (unlikely(bp->panic))
1932 		return IRQ_HANDLED;
1933 #endif
1934 
1935 	for_each_eth_queue(bp, i) {
1936 		struct bnx2x_fastpath *fp = &bp->fp[i];
1937 
1938 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939 		if (status & mask) {
1940 			/* Handle Rx or Tx according to SB id */
1941 			for_each_cos_in_tx_queue(fp, cos)
1942 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1944 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945 			status &= ~mask;
1946 		}
1947 	}
1948 
1949 	if (CNIC_SUPPORT(bp)) {
1950 		mask = 0x2;
1951 		if (status & (mask | 0x1)) {
1952 			struct cnic_ops *c_ops = NULL;
1953 
1954 			rcu_read_lock();
1955 			c_ops = rcu_dereference(bp->cnic_ops);
1956 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1957 				      CNIC_DRV_STATE_HANDLES_IRQ))
1958 				c_ops->cnic_handler(bp->cnic_data, NULL);
1959 			rcu_read_unlock();
1960 
1961 			status &= ~mask;
1962 		}
1963 	}
1964 
1965 	if (unlikely(status & 0x1)) {
1966 
1967 		/* schedule sp task to perform default status block work, ack
1968 		 * attentions and enable interrupts.
1969 		 */
1970 		bnx2x_schedule_sp_task(bp);
1971 
1972 		status &= ~0x1;
1973 		if (!status)
1974 			return IRQ_HANDLED;
1975 	}
1976 
1977 	if (unlikely(status))
1978 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979 		   status);
1980 
1981 	return IRQ_HANDLED;
1982 }
1983 
1984 /* Link */
1985 
1986 /*
1987  * General service functions
1988  */
1989 
1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992 	u32 lock_status;
1993 	u32 resource_bit = (1 << resource);
1994 	int func = BP_FUNC(bp);
1995 	u32 hw_lock_control_reg;
1996 	int cnt;
1997 
1998 	/* Validating that the resource is within range */
1999 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (func <= 5) {
2006 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007 	} else {
2008 		hw_lock_control_reg =
2009 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010 	}
2011 
2012 	/* Validating that the resource is not already taken */
2013 	lock_status = REG_RD(bp, hw_lock_control_reg);
2014 	if (lock_status & resource_bit) {
2015 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2016 		   lock_status, resource_bit);
2017 		return -EEXIST;
2018 	}
2019 
2020 	/* Try for 5 second every 5ms */
2021 	for (cnt = 0; cnt < 1000; cnt++) {
2022 		/* Try to acquire the lock */
2023 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024 		lock_status = REG_RD(bp, hw_lock_control_reg);
2025 		if (lock_status & resource_bit)
2026 			return 0;
2027 
2028 		usleep_range(5000, 10000);
2029 	}
2030 	BNX2X_ERR("Timeout\n");
2031 	return -EAGAIN;
2032 }
2033 
2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038 
2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041 	u32 lock_status;
2042 	u32 resource_bit = (1 << resource);
2043 	int func = BP_FUNC(bp);
2044 	u32 hw_lock_control_reg;
2045 
2046 	/* Validating that the resource is within range */
2047 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050 		return -EINVAL;
2051 	}
2052 
2053 	if (func <= 5) {
2054 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055 	} else {
2056 		hw_lock_control_reg =
2057 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058 	}
2059 
2060 	/* Validating that the resource is currently taken */
2061 	lock_status = REG_RD(bp, hw_lock_control_reg);
2062 	if (!(lock_status & resource_bit)) {
2063 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064 			  lock_status, resource_bit);
2065 		return -EFAULT;
2066 	}
2067 
2068 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2069 	return 0;
2070 }
2071 
2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074 	/* The GPIO should be swapped if swap register is set and active */
2075 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077 	int gpio_shift = gpio_num +
2078 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079 	u32 gpio_mask = (1 << gpio_shift);
2080 	u32 gpio_reg;
2081 	int value;
2082 
2083 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085 		return -EINVAL;
2086 	}
2087 
2088 	/* read GPIO value */
2089 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090 
2091 	/* get the requested pin value */
2092 	if ((gpio_reg & gpio_mask) == gpio_mask)
2093 		value = 1;
2094 	else
2095 		value = 0;
2096 
2097 	return value;
2098 }
2099 
2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102 	/* The GPIO should be swapped if swap register is set and active */
2103 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105 	int gpio_shift = gpio_num +
2106 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107 	u32 gpio_mask = (1 << gpio_shift);
2108 	u32 gpio_reg;
2109 
2110 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112 		return -EINVAL;
2113 	}
2114 
2115 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116 	/* read GPIO and mask except the float bits */
2117 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118 
2119 	switch (mode) {
2120 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121 		DP(NETIF_MSG_LINK,
2122 		   "Set GPIO %d (shift %d) -> output low\n",
2123 		   gpio_num, gpio_shift);
2124 		/* clear FLOAT and set CLR */
2125 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127 		break;
2128 
2129 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130 		DP(NETIF_MSG_LINK,
2131 		   "Set GPIO %d (shift %d) -> output high\n",
2132 		   gpio_num, gpio_shift);
2133 		/* clear FLOAT and set SET */
2134 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136 		break;
2137 
2138 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139 		DP(NETIF_MSG_LINK,
2140 		   "Set GPIO %d (shift %d) -> input\n",
2141 		   gpio_num, gpio_shift);
2142 		/* set FLOAT */
2143 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 		break;
2145 
2146 	default:
2147 		break;
2148 	}
2149 
2150 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152 
2153 	return 0;
2154 }
2155 
2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158 	u32 gpio_reg = 0;
2159 	int rc = 0;
2160 
2161 	/* Any port swapping should be handled by caller. */
2162 
2163 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164 	/* read GPIO and mask except the float bits */
2165 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169 
2170 	switch (mode) {
2171 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173 		/* set CLR */
2174 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 		break;
2176 
2177 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179 		/* set SET */
2180 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181 		break;
2182 
2183 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185 		/* set FLOAT */
2186 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187 		break;
2188 
2189 	default:
2190 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191 		rc = -EINVAL;
2192 		break;
2193 	}
2194 
2195 	if (rc == 0)
2196 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197 
2198 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199 
2200 	return rc;
2201 }
2202 
2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205 	/* The GPIO should be swapped if swap register is set and active */
2206 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208 	int gpio_shift = gpio_num +
2209 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210 	u32 gpio_mask = (1 << gpio_shift);
2211 	u32 gpio_reg;
2212 
2213 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215 		return -EINVAL;
2216 	}
2217 
2218 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219 	/* read GPIO int */
2220 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221 
2222 	switch (mode) {
2223 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224 		DP(NETIF_MSG_LINK,
2225 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2226 		   gpio_num, gpio_shift);
2227 		/* clear SET and set CLR */
2228 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230 		break;
2231 
2232 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233 		DP(NETIF_MSG_LINK,
2234 		   "Set GPIO INT %d (shift %d) -> output high\n",
2235 		   gpio_num, gpio_shift);
2236 		/* clear CLR and set SET */
2237 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239 		break;
2240 
2241 	default:
2242 		break;
2243 	}
2244 
2245 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247 
2248 	return 0;
2249 }
2250 
2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253 	u32 spio_reg;
2254 
2255 	/* Only 2 SPIOs are configurable */
2256 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258 		return -EINVAL;
2259 	}
2260 
2261 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262 	/* read SPIO and mask except the float bits */
2263 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264 
2265 	switch (mode) {
2266 	case MISC_SPIO_OUTPUT_LOW:
2267 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268 		/* clear FLOAT and set CLR */
2269 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2271 		break;
2272 
2273 	case MISC_SPIO_OUTPUT_HIGH:
2274 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275 		/* clear FLOAT and set SET */
2276 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2278 		break;
2279 
2280 	case MISC_SPIO_INPUT_HI_Z:
2281 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282 		/* set FLOAT */
2283 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284 		break;
2285 
2286 	default:
2287 		break;
2288 	}
2289 
2290 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292 
2293 	return 0;
2294 }
2295 
2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299 
2300 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301 					   ADVERTISED_Pause);
2302 	switch (bp->link_vars.ieee_fc &
2303 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306 						  ADVERTISED_Pause);
2307 		break;
2308 
2309 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311 		break;
2312 
2313 	default:
2314 		break;
2315 	}
2316 }
2317 
2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320 	/* Initialize link parameters structure variables
2321 	 * It is recommended to turn off RX FC for jumbo frames
2322 	 *  for better performance
2323 	 */
2324 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326 	else
2327 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329 
2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332 	u32 pause_enabled = 0;
2333 
2334 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336 			pause_enabled = 1;
2337 
2338 		REG_WR(bp, BAR_USTRORM_INTMEM +
2339 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340 		       pause_enabled);
2341 	}
2342 
2343 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344 	   pause_enabled ? "enabled" : "disabled");
2345 }
2346 
2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351 
2352 	if (!BP_NOMCP(bp)) {
2353 		bnx2x_set_requested_fc(bp);
2354 		bnx2x_acquire_phy_lock(bp);
2355 
2356 		if (load_mode == LOAD_DIAG) {
2357 			struct link_params *lp = &bp->link_params;
2358 			lp->loopback_mode = LOOPBACK_XGXS;
2359 			/* Prefer doing PHY loopback at highest speed */
2360 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361 				if (lp->speed_cap_mask[cfx_idx] &
2362 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363 					lp->req_line_speed[cfx_idx] =
2364 					SPEED_20000;
2365 				else if (lp->speed_cap_mask[cfx_idx] &
2366 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367 						lp->req_line_speed[cfx_idx] =
2368 						SPEED_10000;
2369 				else
2370 					lp->req_line_speed[cfx_idx] =
2371 					SPEED_1000;
2372 			}
2373 		}
2374 
2375 		if (load_mode == LOAD_LOOPBACK_EXT) {
2376 			struct link_params *lp = &bp->link_params;
2377 			lp->loopback_mode = LOOPBACK_EXT;
2378 		}
2379 
2380 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381 
2382 		bnx2x_release_phy_lock(bp);
2383 
2384 		bnx2x_init_dropless_fc(bp);
2385 
2386 		bnx2x_calc_fc_adv(bp);
2387 
2388 		if (bp->link_vars.link_up) {
2389 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390 			bnx2x_link_report(bp);
2391 		}
2392 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394 		return rc;
2395 	}
2396 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397 	return -EINVAL;
2398 }
2399 
2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402 	if (!BP_NOMCP(bp)) {
2403 		bnx2x_acquire_phy_lock(bp);
2404 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405 		bnx2x_release_phy_lock(bp);
2406 
2407 		bnx2x_init_dropless_fc(bp);
2408 
2409 		bnx2x_calc_fc_adv(bp);
2410 	} else
2411 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413 
2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416 	if (!BP_NOMCP(bp)) {
2417 		bnx2x_acquire_phy_lock(bp);
2418 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419 		bnx2x_release_phy_lock(bp);
2420 	} else
2421 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423 
2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426 	bnx2x_acquire_phy_lock(bp);
2427 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428 	bnx2x_release_phy_lock(bp);
2429 }
2430 
2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433 	u8 rc = 0;
2434 
2435 	if (!BP_NOMCP(bp)) {
2436 		bnx2x_acquire_phy_lock(bp);
2437 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438 				     is_serdes);
2439 		bnx2x_release_phy_lock(bp);
2440 	} else
2441 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2442 
2443 	return rc;
2444 }
2445 
2446 /* Calculates the sum of vn_min_rates.
2447    It's needed for further normalizing of the min_rates.
2448    Returns:
2449      sum of vn_min_rates.
2450        or
2451      0 - if all the min_rates are 0.
2452      In the later case fairness algorithm should be deactivated.
2453      If not all min_rates are zero then those that are zeroes will be set to 1.
2454  */
2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456 				      struct cmng_init_input *input)
2457 {
2458 	int all_zero = 1;
2459 	int vn;
2460 
2461 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462 		u32 vn_cfg = bp->mf_config[vn];
2463 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465 
2466 		/* Skip hidden vns */
2467 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468 			vn_min_rate = 0;
2469 		/* If min rate is zero - set it to 1 */
2470 		else if (!vn_min_rate)
2471 			vn_min_rate = DEF_MIN_RATE;
2472 		else
2473 			all_zero = 0;
2474 
2475 		input->vnic_min_rate[vn] = vn_min_rate;
2476 	}
2477 
2478 	/* if ETS or all min rates are zeros - disable fairness */
2479 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2480 		input->flags.cmng_enables &=
2481 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483 	} else if (all_zero) {
2484 		input->flags.cmng_enables &=
2485 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 		DP(NETIF_MSG_IFUP,
2487 		   "All MIN values are zeroes fairness will be disabled\n");
2488 	} else
2489 		input->flags.cmng_enables |=
2490 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492 
2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494 				    struct cmng_init_input *input)
2495 {
2496 	u16 vn_max_rate;
2497 	u32 vn_cfg = bp->mf_config[vn];
2498 
2499 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500 		vn_max_rate = 0;
2501 	else {
2502 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503 
2504 		if (IS_MF_PERCENT_BW(bp)) {
2505 			/* maxCfg in percents of linkspeed */
2506 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507 		} else /* SD modes */
2508 			/* maxCfg is absolute in 100Mb units */
2509 			vn_max_rate = maxCfg * 100;
2510 	}
2511 
2512 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513 
2514 	input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516 
2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519 	if (CHIP_REV_IS_SLOW(bp))
2520 		return CMNG_FNS_NONE;
2521 	if (IS_MF(bp))
2522 		return CMNG_FNS_MINMAX;
2523 
2524 	return CMNG_FNS_NONE;
2525 }
2526 
2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530 
2531 	if (BP_NOMCP(bp))
2532 		return; /* what should be the default value in this case */
2533 
2534 	/* For 2 port configuration the absolute function number formula
2535 	 * is:
2536 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2537 	 *
2538 	 *      and there are 4 functions per port
2539 	 *
2540 	 * For 4 port configuration it is
2541 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542 	 *
2543 	 *      and there are 2 functions per port
2544 	 */
2545 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547 
2548 		if (func >= E1H_FUNC_MAX)
2549 			break;
2550 
2551 		bp->mf_config[vn] =
2552 			MF_CFG_RD(bp, func_mf_config[func].config);
2553 	}
2554 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556 		bp->flags |= MF_FUNC_DIS;
2557 	} else {
2558 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559 		bp->flags &= ~MF_FUNC_DIS;
2560 	}
2561 }
2562 
2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565 	struct cmng_init_input input;
2566 	memset(&input, 0, sizeof(struct cmng_init_input));
2567 
2568 	input.port_rate = bp->link_vars.line_speed;
2569 
2570 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571 		int vn;
2572 
2573 		/* read mf conf from shmem */
2574 		if (read_cfg)
2575 			bnx2x_read_mf_cfg(bp);
2576 
2577 		/* vn_weight_sum and enable fairness if not 0 */
2578 		bnx2x_calc_vn_min(bp, &input);
2579 
2580 		/* calculate and set min-max rate for each vn */
2581 		if (bp->port.pmf)
2582 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583 				bnx2x_calc_vn_max(bp, vn, &input);
2584 
2585 		/* always enable rate shaping and fairness */
2586 		input.flags.cmng_enables |=
2587 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588 
2589 		bnx2x_init_cmng(&input, &bp->cmng);
2590 		return;
2591 	}
2592 
2593 	/* rate shaping and fairness are disabled */
2594 	DP(NETIF_MSG_IFUP,
2595 	   "rate shaping and fairness are disabled\n");
2596 }
2597 
2598 static void storm_memset_cmng(struct bnx2x *bp,
2599 			      struct cmng_init *cmng,
2600 			      u8 port)
2601 {
2602 	int vn;
2603 	size_t size = sizeof(struct cmng_struct_per_port);
2604 
2605 	u32 addr = BAR_XSTRORM_INTMEM +
2606 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607 
2608 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609 
2610 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611 		int func = func_by_vn(bp, vn);
2612 
2613 		addr = BAR_XSTRORM_INTMEM +
2614 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615 		size = sizeof(struct rate_shaping_vars_per_vn);
2616 		__storm_memset_struct(bp, addr, size,
2617 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618 
2619 		addr = BAR_XSTRORM_INTMEM +
2620 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621 		size = sizeof(struct fairness_vars_per_vn);
2622 		__storm_memset_struct(bp, addr, size,
2623 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624 	}
2625 }
2626 
2627 /* init cmng mode in HW according to local configuration */
2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631 
2632 	if (cmng_fns != CMNG_FNS_NONE) {
2633 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635 	} else {
2636 		/* rate shaping and fairness are disabled */
2637 		DP(NETIF_MSG_IFUP,
2638 		   "single function mode without fairness\n");
2639 	}
2640 }
2641 
2642 /* This function is called upon link interrupt */
2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645 	/* Make sure that we are synced with the current statistics */
2646 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647 
2648 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649 
2650 	bnx2x_init_dropless_fc(bp);
2651 
2652 	if (bp->link_vars.link_up) {
2653 
2654 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655 			struct host_port_stats *pstats;
2656 
2657 			pstats = bnx2x_sp(bp, port_stats);
2658 			/* reset old mac stats */
2659 			memset(&(pstats->mac_stx[0]), 0,
2660 			       sizeof(struct mac_stx));
2661 		}
2662 		if (bp->state == BNX2X_STATE_OPEN)
2663 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664 	}
2665 
2666 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667 		bnx2x_set_local_cmng(bp);
2668 
2669 	__bnx2x_link_report(bp);
2670 
2671 	if (IS_MF(bp))
2672 		bnx2x_link_sync_notify(bp);
2673 }
2674 
2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677 	if (bp->state != BNX2X_STATE_OPEN)
2678 		return;
2679 
2680 	/* read updated dcb configuration */
2681 	if (IS_PF(bp)) {
2682 		bnx2x_dcbx_pmf_update(bp);
2683 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684 		if (bp->link_vars.link_up)
2685 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686 		else
2687 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688 			/* indicate link status */
2689 		bnx2x_link_report(bp);
2690 
2691 	} else { /* VF */
2692 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693 					  SUPPORTED_10baseT_Full |
2694 					  SUPPORTED_100baseT_Half |
2695 					  SUPPORTED_100baseT_Full |
2696 					  SUPPORTED_1000baseT_Full |
2697 					  SUPPORTED_2500baseX_Full |
2698 					  SUPPORTED_10000baseT_Full |
2699 					  SUPPORTED_TP |
2700 					  SUPPORTED_FIBRE |
2701 					  SUPPORTED_Autoneg |
2702 					  SUPPORTED_Pause |
2703 					  SUPPORTED_Asym_Pause);
2704 		bp->port.advertising[0] = bp->port.supported[0];
2705 
2706 		bp->link_params.bp = bp;
2707 		bp->link_params.port = BP_PORT(bp);
2708 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710 		bp->link_params.req_line_speed[0] = SPEED_10000;
2711 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714 		bp->link_vars.line_speed = SPEED_10000;
2715 		bp->link_vars.link_status =
2716 			(LINK_STATUS_LINK_UP |
2717 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718 		bp->link_vars.link_up = 1;
2719 		bp->link_vars.duplex = DUPLEX_FULL;
2720 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721 		__bnx2x_link_report(bp);
2722 
2723 		bnx2x_sample_bulletin(bp);
2724 
2725 		/* if bulletin board did not have an update for link status
2726 		 * __bnx2x_link_report will report current status
2727 		 * but it will NOT duplicate report in case of already reported
2728 		 * during sampling bulletin board.
2729 		 */
2730 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731 	}
2732 }
2733 
2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735 				  u16 vlan_val, u8 allowed_prio)
2736 {
2737 	struct bnx2x_func_state_params func_params = {NULL};
2738 	struct bnx2x_func_afex_update_params *f_update_params =
2739 		&func_params.params.afex_update;
2740 
2741 	func_params.f_obj = &bp->func_obj;
2742 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743 
2744 	/* no need to wait for RAMROD completion, so don't
2745 	 * set RAMROD_COMP_WAIT flag
2746 	 */
2747 
2748 	f_update_params->vif_id = vifid;
2749 	f_update_params->afex_default_vlan = vlan_val;
2750 	f_update_params->allowed_priorities = allowed_prio;
2751 
2752 	/* if ramrod can not be sent, response to MCP immediately */
2753 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2754 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755 
2756 	return 0;
2757 }
2758 
2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760 					  u16 vif_index, u8 func_bit_map)
2761 {
2762 	struct bnx2x_func_state_params func_params = {NULL};
2763 	struct bnx2x_func_afex_viflists_params *update_params =
2764 		&func_params.params.afex_viflists;
2765 	int rc;
2766 	u32 drv_msg_code;
2767 
2768 	/* validate only LIST_SET and LIST_GET are received from switch */
2769 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771 			  cmd_type);
2772 
2773 	func_params.f_obj = &bp->func_obj;
2774 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775 
2776 	/* set parameters according to cmd_type */
2777 	update_params->afex_vif_list_command = cmd_type;
2778 	update_params->vif_list_index = vif_index;
2779 	update_params->func_bit_map =
2780 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781 	update_params->func_to_clear = 0;
2782 	drv_msg_code =
2783 		(cmd_type == VIF_LIST_RULE_GET) ?
2784 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786 
2787 	/* if ramrod can not be sent, respond to MCP immediately for
2788 	 * SET and GET requests (other are not triggered from MCP)
2789 	 */
2790 	rc = bnx2x_func_state_change(bp, &func_params);
2791 	if (rc < 0)
2792 		bnx2x_fw_command(bp, drv_msg_code, 0);
2793 
2794 	return 0;
2795 }
2796 
2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799 	struct afex_stats afex_stats;
2800 	u32 func = BP_ABS_FUNC(bp);
2801 	u32 mf_config;
2802 	u16 vlan_val;
2803 	u32 vlan_prio;
2804 	u16 vif_id;
2805 	u8 allowed_prio;
2806 	u8 vlan_mode;
2807 	u32 addr_to_write, vifid, addrs, stats_type, i;
2808 
2809 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811 		DP(BNX2X_MSG_MCP,
2812 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814 	}
2815 
2816 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819 		DP(BNX2X_MSG_MCP,
2820 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821 		   vifid, addrs);
2822 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823 					       addrs);
2824 	}
2825 
2826 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827 		addr_to_write = SHMEM2_RD(bp,
2828 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829 		stats_type = SHMEM2_RD(bp,
2830 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831 
2832 		DP(BNX2X_MSG_MCP,
2833 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834 		   addr_to_write);
2835 
2836 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837 
2838 		/* write response to scratchpad, for MCP */
2839 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2841 			       *(((u32 *)(&afex_stats))+i));
2842 
2843 		/* send ack message to MCP */
2844 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845 	}
2846 
2847 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849 		bp->mf_config[BP_VN(bp)] = mf_config;
2850 		DP(BNX2X_MSG_MCP,
2851 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852 		   mf_config);
2853 
2854 		/* if VIF_SET is "enabled" */
2855 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856 			/* set rate limit directly to internal RAM */
2857 			struct cmng_init_input cmng_input;
2858 			struct rate_shaping_vars_per_vn m_rs_vn;
2859 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860 			u32 addr = BAR_XSTRORM_INTMEM +
2861 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862 
2863 			bp->mf_config[BP_VN(bp)] = mf_config;
2864 
2865 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866 			m_rs_vn.vn_counter.rate =
2867 				cmng_input.vnic_max_rate[BP_VN(bp)];
2868 			m_rs_vn.vn_counter.quota =
2869 				(m_rs_vn.vn_counter.rate *
2870 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2871 
2872 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873 
2874 			/* read relevant values from mf_cfg struct in shmem */
2875 			vif_id =
2876 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879 			vlan_val =
2880 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883 			vlan_prio = (mf_config &
2884 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887 			vlan_mode =
2888 				(MF_CFG_RD(bp,
2889 					   func_mf_config[func].afex_config) &
2890 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892 			allowed_prio =
2893 				(MF_CFG_RD(bp,
2894 					   func_mf_config[func].afex_config) &
2895 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897 
2898 			/* send ramrod to FW, return in case of failure */
2899 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900 						   allowed_prio))
2901 				return;
2902 
2903 			bp->afex_def_vlan_tag = vlan_val;
2904 			bp->afex_vlan_mode = vlan_mode;
2905 		} else {
2906 			/* notify link down because BP->flags is disabled */
2907 			bnx2x_link_report(bp);
2908 
2909 			/* send INVALID VIF ramrod to FW */
2910 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911 
2912 			/* Reset the default afex VLAN */
2913 			bp->afex_def_vlan_tag = -1;
2914 		}
2915 	}
2916 }
2917 
2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920 	struct bnx2x_func_switch_update_params *switch_update_params;
2921 	struct bnx2x_func_state_params func_params;
2922 
2923 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924 	switch_update_params = &func_params.params.switch_update;
2925 	func_params.f_obj = &bp->func_obj;
2926 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927 
2928 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2929 		int func = BP_ABS_FUNC(bp);
2930 		u32 val;
2931 
2932 		/* Re-learn the S-tag from shmem */
2933 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2934 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2935 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2936 			bp->mf_ov = val;
2937 		} else {
2938 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2939 			goto fail;
2940 		}
2941 
2942 		/* Configure new S-tag in LLH */
2943 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2944 		       bp->mf_ov);
2945 
2946 		/* Send Ramrod to update FW of change */
2947 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2948 			  &switch_update_params->changes);
2949 		switch_update_params->vlan = bp->mf_ov;
2950 
2951 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2952 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2953 				  bp->mf_ov);
2954 			goto fail;
2955 		} else {
2956 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2957 			   bp->mf_ov);
2958 		}
2959 	} else {
2960 		goto fail;
2961 	}
2962 
2963 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2964 	return;
2965 fail:
2966 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2967 }
2968 
2969 static void bnx2x_pmf_update(struct bnx2x *bp)
2970 {
2971 	int port = BP_PORT(bp);
2972 	u32 val;
2973 
2974 	bp->port.pmf = 1;
2975 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2976 
2977 	/*
2978 	 * We need the mb() to ensure the ordering between the writing to
2979 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2980 	 */
2981 	smp_mb();
2982 
2983 	/* queue a periodic task */
2984 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2985 
2986 	bnx2x_dcbx_pmf_update(bp);
2987 
2988 	/* enable nig attention */
2989 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2990 	if (bp->common.int_block == INT_BLOCK_HC) {
2991 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2992 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2993 	} else if (!CHIP_IS_E1x(bp)) {
2994 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2995 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2996 	}
2997 
2998 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2999 }
3000 
3001 /* end of Link */
3002 
3003 /* slow path */
3004 
3005 /*
3006  * General service functions
3007  */
3008 
3009 /* send the MCP a request, block until there is a reply */
3010 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3011 {
3012 	int mb_idx = BP_FW_MB_IDX(bp);
3013 	u32 seq;
3014 	u32 rc = 0;
3015 	u32 cnt = 1;
3016 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3017 
3018 	mutex_lock(&bp->fw_mb_mutex);
3019 	seq = ++bp->fw_seq;
3020 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3021 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3022 
3023 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3024 			(command | seq), param);
3025 
3026 	do {
3027 		/* let the FW do it's magic ... */
3028 		msleep(delay);
3029 
3030 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3031 
3032 		/* Give the FW up to 5 second (500*10ms) */
3033 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3034 
3035 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3036 	   cnt*delay, rc, seq);
3037 
3038 	/* is this a reply to our command? */
3039 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3040 		rc &= FW_MSG_CODE_MASK;
3041 	else {
3042 		/* FW BUG! */
3043 		BNX2X_ERR("FW failed to respond!\n");
3044 		bnx2x_fw_dump(bp);
3045 		rc = 0;
3046 	}
3047 	mutex_unlock(&bp->fw_mb_mutex);
3048 
3049 	return rc;
3050 }
3051 
3052 static void storm_memset_func_cfg(struct bnx2x *bp,
3053 				 struct tstorm_eth_function_common_config *tcfg,
3054 				 u16 abs_fid)
3055 {
3056 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3057 
3058 	u32 addr = BAR_TSTRORM_INTMEM +
3059 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3060 
3061 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3062 }
3063 
3064 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3065 {
3066 	if (CHIP_IS_E1x(bp)) {
3067 		struct tstorm_eth_function_common_config tcfg = {0};
3068 
3069 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3070 	}
3071 
3072 	/* Enable the function in the FW */
3073 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3074 	storm_memset_func_en(bp, p->func_id, 1);
3075 
3076 	/* spq */
3077 	if (p->spq_active) {
3078 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3079 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3080 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3081 	}
3082 }
3083 
3084 /**
3085  * bnx2x_get_common_flags - Return common flags
3086  *
3087  * @bp		device handle
3088  * @fp		queue handle
3089  * @zero_stats	TRUE if statistics zeroing is needed
3090  *
3091  * Return the flags that are common for the Tx-only and not normal connections.
3092  */
3093 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3094 					    struct bnx2x_fastpath *fp,
3095 					    bool zero_stats)
3096 {
3097 	unsigned long flags = 0;
3098 
3099 	/* PF driver will always initialize the Queue to an ACTIVE state */
3100 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3101 
3102 	/* tx only connections collect statistics (on the same index as the
3103 	 * parent connection). The statistics are zeroed when the parent
3104 	 * connection is initialized.
3105 	 */
3106 
3107 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3108 	if (zero_stats)
3109 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3110 
3111 	if (bp->flags & TX_SWITCHING)
3112 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3113 
3114 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3115 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3116 
3117 #ifdef BNX2X_STOP_ON_ERROR
3118 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3119 #endif
3120 
3121 	return flags;
3122 }
3123 
3124 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3125 				       struct bnx2x_fastpath *fp,
3126 				       bool leading)
3127 {
3128 	unsigned long flags = 0;
3129 
3130 	/* calculate other queue flags */
3131 	if (IS_MF_SD(bp))
3132 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3133 
3134 	if (IS_FCOE_FP(fp)) {
3135 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3136 		/* For FCoE - force usage of default priority (for afex) */
3137 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3138 	}
3139 
3140 	if (fp->mode != TPA_MODE_DISABLED) {
3141 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3142 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3143 		if (fp->mode == TPA_MODE_GRO)
3144 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3145 	}
3146 
3147 	if (leading) {
3148 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3149 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3150 	}
3151 
3152 	/* Always set HW VLAN stripping */
3153 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3154 
3155 	/* configure silent vlan removal */
3156 	if (IS_MF_AFEX(bp))
3157 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3158 
3159 	return flags | bnx2x_get_common_flags(bp, fp, true);
3160 }
3161 
3162 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3163 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3164 	u8 cos)
3165 {
3166 	gen_init->stat_id = bnx2x_stats_id(fp);
3167 	gen_init->spcl_id = fp->cl_id;
3168 
3169 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3170 	if (IS_FCOE_FP(fp))
3171 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3172 	else
3173 		gen_init->mtu = bp->dev->mtu;
3174 
3175 	gen_init->cos = cos;
3176 
3177 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3178 }
3179 
3180 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3181 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3182 	struct bnx2x_rxq_setup_params *rxq_init)
3183 {
3184 	u8 max_sge = 0;
3185 	u16 sge_sz = 0;
3186 	u16 tpa_agg_size = 0;
3187 
3188 	if (fp->mode != TPA_MODE_DISABLED) {
3189 		pause->sge_th_lo = SGE_TH_LO(bp);
3190 		pause->sge_th_hi = SGE_TH_HI(bp);
3191 
3192 		/* validate SGE ring has enough to cross high threshold */
3193 		WARN_ON(bp->dropless_fc &&
3194 				pause->sge_th_hi + FW_PREFETCH_CNT >
3195 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3196 
3197 		tpa_agg_size = TPA_AGG_SIZE;
3198 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3199 			SGE_PAGE_SHIFT;
3200 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3201 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3202 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3203 	}
3204 
3205 	/* pause - not for e1 */
3206 	if (!CHIP_IS_E1(bp)) {
3207 		pause->bd_th_lo = BD_TH_LO(bp);
3208 		pause->bd_th_hi = BD_TH_HI(bp);
3209 
3210 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3211 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3212 		/*
3213 		 * validate that rings have enough entries to cross
3214 		 * high thresholds
3215 		 */
3216 		WARN_ON(bp->dropless_fc &&
3217 				pause->bd_th_hi + FW_PREFETCH_CNT >
3218 				bp->rx_ring_size);
3219 		WARN_ON(bp->dropless_fc &&
3220 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3221 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3222 
3223 		pause->pri_map = 1;
3224 	}
3225 
3226 	/* rxq setup */
3227 	rxq_init->dscr_map = fp->rx_desc_mapping;
3228 	rxq_init->sge_map = fp->rx_sge_mapping;
3229 	rxq_init->rcq_map = fp->rx_comp_mapping;
3230 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3231 
3232 	/* This should be a maximum number of data bytes that may be
3233 	 * placed on the BD (not including paddings).
3234 	 */
3235 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3236 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3237 
3238 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3239 	rxq_init->tpa_agg_sz = tpa_agg_size;
3240 	rxq_init->sge_buf_sz = sge_sz;
3241 	rxq_init->max_sges_pkt = max_sge;
3242 	rxq_init->rss_engine_id = BP_FUNC(bp);
3243 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3244 
3245 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3246 	 *
3247 	 * For PF Clients it should be the maximum available number.
3248 	 * VF driver(s) may want to define it to a smaller value.
3249 	 */
3250 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3251 
3252 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3253 	rxq_init->fw_sb_id = fp->fw_sb_id;
3254 
3255 	if (IS_FCOE_FP(fp))
3256 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3257 	else
3258 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3259 	/* configure silent vlan removal
3260 	 * if multi function mode is afex, then mask default vlan
3261 	 */
3262 	if (IS_MF_AFEX(bp)) {
3263 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3264 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3265 	}
3266 }
3267 
3268 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3269 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3270 	u8 cos)
3271 {
3272 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3273 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3274 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3275 	txq_init->fw_sb_id = fp->fw_sb_id;
3276 
3277 	/*
3278 	 * set the tss leading client id for TX classification ==
3279 	 * leading RSS client id
3280 	 */
3281 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3282 
3283 	if (IS_FCOE_FP(fp)) {
3284 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3285 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3286 	}
3287 }
3288 
3289 static void bnx2x_pf_init(struct bnx2x *bp)
3290 {
3291 	struct bnx2x_func_init_params func_init = {0};
3292 	struct event_ring_data eq_data = { {0} };
3293 
3294 	if (!CHIP_IS_E1x(bp)) {
3295 		/* reset IGU PF statistics: MSIX + ATTN */
3296 		/* PF */
3297 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299 			   (CHIP_MODE_IS_4_PORT(bp) ?
3300 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3301 		/* ATTN */
3302 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3303 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3304 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3305 			   (CHIP_MODE_IS_4_PORT(bp) ?
3306 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3307 	}
3308 
3309 	func_init.spq_active = true;
3310 	func_init.pf_id = BP_FUNC(bp);
3311 	func_init.func_id = BP_FUNC(bp);
3312 	func_init.spq_map = bp->spq_mapping;
3313 	func_init.spq_prod = bp->spq_prod_idx;
3314 
3315 	bnx2x_func_init(bp, &func_init);
3316 
3317 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318 
3319 	/*
3320 	 * Congestion management values depend on the link rate
3321 	 * There is no active link so initial link rate is set to 10 Gbps.
3322 	 * When the link comes up The congestion management values are
3323 	 * re-calculated according to the actual link rate.
3324 	 */
3325 	bp->link_vars.line_speed = SPEED_10000;
3326 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327 
3328 	/* Only the PMF sets the HW */
3329 	if (bp->port.pmf)
3330 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331 
3332 	/* init Event Queue - PCI bus guarantees correct endianity*/
3333 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335 	eq_data.producer = bp->eq_prod;
3336 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337 	eq_data.sb_id = DEF_SB_ID;
3338 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340 
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343 	int port = BP_PORT(bp);
3344 
3345 	bnx2x_tx_disable(bp);
3346 
3347 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349 
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352 	int port = BP_PORT(bp);
3353 
3354 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356 
3357 	/* Tx queue should be only re-enabled */
3358 	netif_tx_wake_all_queues(bp->dev);
3359 
3360 	/*
3361 	 * Should not call netif_carrier_on since it will be called if the link
3362 	 * is up when checking for link state
3363 	 */
3364 }
3365 
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367 
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370 	struct eth_stats_info *ether_stat =
3371 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3372 	struct bnx2x_vlan_mac_obj *mac_obj =
3373 		&bp->sp_objs->mac_obj;
3374 	int i;
3375 
3376 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377 		ETH_STAT_INFO_VERSION_LEN);
3378 
3379 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380 	 * mac_local field in ether_stat struct. The base address is offset by 2
3381 	 * bytes to account for the field being 8 bytes but a mac address is
3382 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384 	 * allocated by the ether_stat struct, so the macs will land in their
3385 	 * proper positions.
3386 	 */
3387 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388 		memset(ether_stat->mac_local + i, 0,
3389 		       sizeof(ether_stat->mac_local[0]));
3390 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393 				ETH_ALEN);
3394 	ether_stat->mtu_size = bp->dev->mtu;
3395 	if (bp->dev->features & NETIF_F_RXCSUM)
3396 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397 	if (bp->dev->features & NETIF_F_TSO)
3398 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399 	ether_stat->feature_flags |= bp->common.boot_mode;
3400 
3401 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402 
3403 	ether_stat->txq_size = bp->tx_ring_size;
3404 	ether_stat->rxq_size = bp->rx_ring_size;
3405 
3406 #ifdef CONFIG_BNX2X_SRIOV
3407 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410 
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414 	struct fcoe_stats_info *fcoe_stat =
3415 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416 
3417 	if (!CNIC_LOADED(bp))
3418 		return;
3419 
3420 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421 
3422 	fcoe_stat->qos_priority =
3423 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424 
3425 	/* insert FCoE stats from ramrod response */
3426 	if (!NO_FCOE(bp)) {
3427 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429 			tstorm_queue_statistics;
3430 
3431 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 			xstorm_queue_statistics;
3434 
3435 		struct fcoe_statistics_params *fw_fcoe_stat =
3436 			&bp->fw_stats_data->fcoe;
3437 
3438 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439 			  fcoe_stat->rx_bytes_lo,
3440 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441 
3442 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444 			  fcoe_stat->rx_bytes_lo,
3445 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446 
3447 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449 			  fcoe_stat->rx_bytes_lo,
3450 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451 
3452 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454 			  fcoe_stat->rx_bytes_lo,
3455 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456 
3457 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458 			  fcoe_stat->rx_frames_lo,
3459 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460 
3461 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 			  fcoe_stat->rx_frames_lo,
3463 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464 
3465 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 			  fcoe_stat->rx_frames_lo,
3467 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468 
3469 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 			  fcoe_stat->rx_frames_lo,
3471 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472 
3473 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474 			  fcoe_stat->tx_bytes_lo,
3475 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476 
3477 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479 			  fcoe_stat->tx_bytes_lo,
3480 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481 
3482 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484 			  fcoe_stat->tx_bytes_lo,
3485 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489 			  fcoe_stat->tx_bytes_lo,
3490 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491 
3492 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493 			  fcoe_stat->tx_frames_lo,
3494 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495 
3496 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 			  fcoe_stat->tx_frames_lo,
3498 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3499 
3500 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 			  fcoe_stat->tx_frames_lo,
3502 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3503 
3504 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 			  fcoe_stat->tx_frames_lo,
3506 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3507 	}
3508 
3509 	/* ask L5 driver to add data to the struct */
3510 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512 
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516 	struct iscsi_stats_info *iscsi_stat =
3517 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518 
3519 	if (!CNIC_LOADED(bp))
3520 		return;
3521 
3522 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523 	       ETH_ALEN);
3524 
3525 	iscsi_stat->qos_priority =
3526 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527 
3528 	/* ask L5 driver to add data to the struct */
3529 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531 
3532 /* called due to MCP event (on pmf):
3533  *	reread new bandwidth configuration
3534  *	configure FW
3535  *	notify others function about the change
3536  */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539 	if (bp->link_vars.link_up) {
3540 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541 		bnx2x_link_sync_notify(bp);
3542 	}
3543 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544 }
3545 
3546 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547 {
3548 	bnx2x_config_mf_bw(bp);
3549 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550 }
3551 
3552 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553 {
3554 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556 }
3557 
3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3560 
3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562 {
3563 	enum drv_info_opcode op_code;
3564 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565 	bool release = false;
3566 	int wait;
3567 
3568 	/* if drv_info version supported by MFW doesn't match - send NACK */
3569 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571 		return;
3572 	}
3573 
3574 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576 
3577 	/* Must prevent other flows from accessing drv_info_to_mcp */
3578 	mutex_lock(&bp->drv_info_mutex);
3579 
3580 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3581 	       sizeof(union drv_info_to_mcp));
3582 
3583 	switch (op_code) {
3584 	case ETH_STATS_OPCODE:
3585 		bnx2x_drv_info_ether_stat(bp);
3586 		break;
3587 	case FCOE_STATS_OPCODE:
3588 		bnx2x_drv_info_fcoe_stat(bp);
3589 		break;
3590 	case ISCSI_STATS_OPCODE:
3591 		bnx2x_drv_info_iscsi_stat(bp);
3592 		break;
3593 	default:
3594 		/* if op code isn't supported - send NACK */
3595 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596 		goto out;
3597 	}
3598 
3599 	/* if we got drv_info attn from MFW then these fields are defined in
3600 	 * shmem2 for sure
3601 	 */
3602 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3603 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3605 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606 
3607 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608 
3609 	/* Since possible management wants both this and get_driver_version
3610 	 * need to wait until management notifies us it finished utilizing
3611 	 * the buffer.
3612 	 */
3613 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615 	} else if (!bp->drv_info_mng_owner) {
3616 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617 
3618 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620 
3621 			/* Management is done; need to clear indication */
3622 			if (indication & bit) {
3623 				SHMEM2_WR(bp, mfw_drv_indication,
3624 					  indication & ~bit);
3625 				release = true;
3626 				break;
3627 			}
3628 
3629 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630 		}
3631 	}
3632 	if (!release) {
3633 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634 		bp->drv_info_mng_owner = true;
3635 	}
3636 
3637 out:
3638 	mutex_unlock(&bp->drv_info_mutex);
3639 }
3640 
3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642 {
3643 	u8 vals[4];
3644 	int i = 0;
3645 
3646 	if (bnx2x_format) {
3647 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3649 		if (i > 0)
3650 			vals[0] -= '0';
3651 	} else {
3652 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3654 	}
3655 
3656 	while (i < 4)
3657 		vals[i++] = 0;
3658 
3659 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660 }
3661 
3662 void bnx2x_update_mng_version(struct bnx2x *bp)
3663 {
3664 	u32 iscsiver = DRV_VER_NOT_LOADED;
3665 	u32 fcoever = DRV_VER_NOT_LOADED;
3666 	u32 ethver = DRV_VER_NOT_LOADED;
3667 	int idx = BP_FW_MB_IDX(bp);
3668 	u8 *version;
3669 
3670 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671 		return;
3672 
3673 	mutex_lock(&bp->drv_info_mutex);
3674 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675 	if (bp->drv_info_mng_owner)
3676 		goto out;
3677 
3678 	if (bp->state != BNX2X_STATE_OPEN)
3679 		goto out;
3680 
3681 	/* Parse ethernet driver version */
3682 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683 	if (!CNIC_LOADED(bp))
3684 		goto out;
3685 
3686 	/* Try getting storage driver version via cnic */
3687 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3688 	       sizeof(union drv_info_to_mcp));
3689 	bnx2x_drv_info_iscsi_stat(bp);
3690 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3692 
3693 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3694 	       sizeof(union drv_info_to_mcp));
3695 	bnx2x_drv_info_fcoe_stat(bp);
3696 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697 	fcoever = bnx2x_update_mng_version_utility(version, false);
3698 
3699 out:
3700 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703 
3704 	mutex_unlock(&bp->drv_info_mutex);
3705 
3706 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707 	   ethver, iscsiver, fcoever);
3708 }
3709 
3710 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3711 {
3712 	u32 drv_ver;
3713 	u32 valid_dump;
3714 
3715 	if (!SHMEM2_HAS(bp, drv_info))
3716 		return;
3717 
3718 	/* Update Driver load time, possibly broken in y2038 */
3719 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3720 
3721 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3722 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3723 
3724 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3725 
3726 	/* Check & notify On-Chip dump. */
3727 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3728 
3729 	if (valid_dump & FIRST_DUMP_VALID)
3730 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3731 
3732 	if (valid_dump & SECOND_DUMP_VALID)
3733 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3734 }
3735 
3736 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3737 {
3738 	u32 cmd_ok, cmd_fail;
3739 
3740 	/* sanity */
3741 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3742 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3743 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3744 		return;
3745 	}
3746 
3747 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3748 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3749 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3750 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3751 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3752 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3753 	}
3754 
3755 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3756 
3757 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3758 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3759 		/* This is the only place besides the function initialization
3760 		 * where the bp->flags can change so it is done without any
3761 		 * locks
3762 		 */
3763 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3764 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3765 			bp->flags |= MF_FUNC_DIS;
3766 
3767 			bnx2x_e1h_disable(bp);
3768 		} else {
3769 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3770 			bp->flags &= ~MF_FUNC_DIS;
3771 
3772 			bnx2x_e1h_enable(bp);
3773 		}
3774 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3775 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3776 	}
3777 
3778 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3779 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3780 		bnx2x_config_mf_bw(bp);
3781 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3782 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3783 	}
3784 
3785 	/* Report results to MCP */
3786 	if (event)
3787 		bnx2x_fw_command(bp, cmd_fail, 0);
3788 	else
3789 		bnx2x_fw_command(bp, cmd_ok, 0);
3790 }
3791 
3792 /* must be called under the spq lock */
3793 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3794 {
3795 	struct eth_spe *next_spe = bp->spq_prod_bd;
3796 
3797 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3798 		bp->spq_prod_bd = bp->spq;
3799 		bp->spq_prod_idx = 0;
3800 		DP(BNX2X_MSG_SP, "end of spq\n");
3801 	} else {
3802 		bp->spq_prod_bd++;
3803 		bp->spq_prod_idx++;
3804 	}
3805 	return next_spe;
3806 }
3807 
3808 /* must be called under the spq lock */
3809 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3810 {
3811 	int func = BP_FUNC(bp);
3812 
3813 	/*
3814 	 * Make sure that BD data is updated before writing the producer:
3815 	 * BD data is written to the memory, the producer is read from the
3816 	 * memory, thus we need a full memory barrier to ensure the ordering.
3817 	 */
3818 	mb();
3819 
3820 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3821 			 bp->spq_prod_idx);
3822 	mmiowb();
3823 }
3824 
3825 /**
3826  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3827  *
3828  * @cmd:	command to check
3829  * @cmd_type:	command type
3830  */
3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3832 {
3833 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3834 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3835 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3836 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3837 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3838 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3839 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3840 		return true;
3841 	else
3842 		return false;
3843 }
3844 
3845 /**
3846  * bnx2x_sp_post - place a single command on an SP ring
3847  *
3848  * @bp:		driver handle
3849  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3850  * @cid:	SW CID the command is related to
3851  * @data_hi:	command private data address (high 32 bits)
3852  * @data_lo:	command private data address (low 32 bits)
3853  * @cmd_type:	command type (e.g. NONE, ETH)
3854  *
3855  * SP data is handled as if it's always an address pair, thus data fields are
3856  * not swapped to little endian in upper functions. Instead this function swaps
3857  * data as if it's two u32 fields.
3858  */
3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3860 		  u32 data_hi, u32 data_lo, int cmd_type)
3861 {
3862 	struct eth_spe *spe;
3863 	u16 type;
3864 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3865 
3866 #ifdef BNX2X_STOP_ON_ERROR
3867 	if (unlikely(bp->panic)) {
3868 		BNX2X_ERR("Can't post SP when there is panic\n");
3869 		return -EIO;
3870 	}
3871 #endif
3872 
3873 	spin_lock_bh(&bp->spq_lock);
3874 
3875 	if (common) {
3876 		if (!atomic_read(&bp->eq_spq_left)) {
3877 			BNX2X_ERR("BUG! EQ ring full!\n");
3878 			spin_unlock_bh(&bp->spq_lock);
3879 			bnx2x_panic();
3880 			return -EBUSY;
3881 		}
3882 	} else if (!atomic_read(&bp->cq_spq_left)) {
3883 			BNX2X_ERR("BUG! SPQ ring full!\n");
3884 			spin_unlock_bh(&bp->spq_lock);
3885 			bnx2x_panic();
3886 			return -EBUSY;
3887 	}
3888 
3889 	spe = bnx2x_sp_get_next(bp);
3890 
3891 	/* CID needs port number to be encoded int it */
3892 	spe->hdr.conn_and_cmd_data =
3893 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3894 				    HW_CID(bp, cid));
3895 
3896 	/* In some cases, type may already contain the func-id
3897 	 * mainly in SRIOV related use cases, so we add it here only
3898 	 * if it's not already set.
3899 	 */
3900 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3901 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3902 			SPE_HDR_CONN_TYPE;
3903 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3904 			 SPE_HDR_FUNCTION_ID);
3905 	} else {
3906 		type = cmd_type;
3907 	}
3908 
3909 	spe->hdr.type = cpu_to_le16(type);
3910 
3911 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3912 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3913 
3914 	/*
3915 	 * It's ok if the actual decrement is issued towards the memory
3916 	 * somewhere between the spin_lock and spin_unlock. Thus no
3917 	 * more explicit memory barrier is needed.
3918 	 */
3919 	if (common)
3920 		atomic_dec(&bp->eq_spq_left);
3921 	else
3922 		atomic_dec(&bp->cq_spq_left);
3923 
3924 	DP(BNX2X_MSG_SP,
3925 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3926 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3927 	   (u32)(U64_LO(bp->spq_mapping) +
3928 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3929 	   HW_CID(bp, cid), data_hi, data_lo, type,
3930 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3931 
3932 	bnx2x_sp_prod_update(bp);
3933 	spin_unlock_bh(&bp->spq_lock);
3934 	return 0;
3935 }
3936 
3937 /* acquire split MCP access lock register */
3938 static int bnx2x_acquire_alr(struct bnx2x *bp)
3939 {
3940 	u32 j, val;
3941 	int rc = 0;
3942 
3943 	might_sleep();
3944 	for (j = 0; j < 1000; j++) {
3945 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3946 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3947 		if (val & MCPR_ACCESS_LOCK_LOCK)
3948 			break;
3949 
3950 		usleep_range(5000, 10000);
3951 	}
3952 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3953 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3954 		rc = -EBUSY;
3955 	}
3956 
3957 	return rc;
3958 }
3959 
3960 /* release split MCP access lock register */
3961 static void bnx2x_release_alr(struct bnx2x *bp)
3962 {
3963 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3964 }
3965 
3966 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3967 #define BNX2X_DEF_SB_IDX	0x0002
3968 
3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3970 {
3971 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3972 	u16 rc = 0;
3973 
3974 	barrier(); /* status block is written to by the chip */
3975 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3976 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3977 		rc |= BNX2X_DEF_SB_ATT_IDX;
3978 	}
3979 
3980 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3981 		bp->def_idx = def_sb->sp_sb.running_index;
3982 		rc |= BNX2X_DEF_SB_IDX;
3983 	}
3984 
3985 	/* Do not reorder: indices reading should complete before handling */
3986 	barrier();
3987 	return rc;
3988 }
3989 
3990 /*
3991  * slow path service functions
3992  */
3993 
3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3995 {
3996 	int port = BP_PORT(bp);
3997 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3998 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3999 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4000 				       NIG_REG_MASK_INTERRUPT_PORT0;
4001 	u32 aeu_mask;
4002 	u32 nig_mask = 0;
4003 	u32 reg_addr;
4004 
4005 	if (bp->attn_state & asserted)
4006 		BNX2X_ERR("IGU ERROR\n");
4007 
4008 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4009 	aeu_mask = REG_RD(bp, aeu_addr);
4010 
4011 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4012 	   aeu_mask, asserted);
4013 	aeu_mask &= ~(asserted & 0x3ff);
4014 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4015 
4016 	REG_WR(bp, aeu_addr, aeu_mask);
4017 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4018 
4019 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4020 	bp->attn_state |= asserted;
4021 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4022 
4023 	if (asserted & ATTN_HARD_WIRED_MASK) {
4024 		if (asserted & ATTN_NIG_FOR_FUNC) {
4025 
4026 			bnx2x_acquire_phy_lock(bp);
4027 
4028 			/* save nig interrupt mask */
4029 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4030 
4031 			/* If nig_mask is not set, no need to call the update
4032 			 * function.
4033 			 */
4034 			if (nig_mask) {
4035 				REG_WR(bp, nig_int_mask_addr, 0);
4036 
4037 				bnx2x_link_attn(bp);
4038 			}
4039 
4040 			/* handle unicore attn? */
4041 		}
4042 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4043 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4044 
4045 		if (asserted & GPIO_2_FUNC)
4046 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4047 
4048 		if (asserted & GPIO_3_FUNC)
4049 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4050 
4051 		if (asserted & GPIO_4_FUNC)
4052 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4053 
4054 		if (port == 0) {
4055 			if (asserted & ATTN_GENERAL_ATTN_1) {
4056 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4057 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4058 			}
4059 			if (asserted & ATTN_GENERAL_ATTN_2) {
4060 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4061 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4062 			}
4063 			if (asserted & ATTN_GENERAL_ATTN_3) {
4064 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4065 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4066 			}
4067 		} else {
4068 			if (asserted & ATTN_GENERAL_ATTN_4) {
4069 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4070 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4071 			}
4072 			if (asserted & ATTN_GENERAL_ATTN_5) {
4073 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4074 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4075 			}
4076 			if (asserted & ATTN_GENERAL_ATTN_6) {
4077 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4078 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4079 			}
4080 		}
4081 
4082 	} /* if hardwired */
4083 
4084 	if (bp->common.int_block == INT_BLOCK_HC)
4085 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4086 			    COMMAND_REG_ATTN_BITS_SET);
4087 	else
4088 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4089 
4090 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4091 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4092 	REG_WR(bp, reg_addr, asserted);
4093 
4094 	/* now set back the mask */
4095 	if (asserted & ATTN_NIG_FOR_FUNC) {
4096 		/* Verify that IGU ack through BAR was written before restoring
4097 		 * NIG mask. This loop should exit after 2-3 iterations max.
4098 		 */
4099 		if (bp->common.int_block != INT_BLOCK_HC) {
4100 			u32 cnt = 0, igu_acked;
4101 			do {
4102 				igu_acked = REG_RD(bp,
4103 						   IGU_REG_ATTENTION_ACK_BITS);
4104 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4105 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4106 			if (!igu_acked)
4107 				DP(NETIF_MSG_HW,
4108 				   "Failed to verify IGU ack on time\n");
4109 			barrier();
4110 		}
4111 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4112 		bnx2x_release_phy_lock(bp);
4113 	}
4114 }
4115 
4116 static void bnx2x_fan_failure(struct bnx2x *bp)
4117 {
4118 	int port = BP_PORT(bp);
4119 	u32 ext_phy_config;
4120 	/* mark the failure */
4121 	ext_phy_config =
4122 		SHMEM_RD(bp,
4123 			 dev_info.port_hw_config[port].external_phy_config);
4124 
4125 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4126 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4127 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4128 		 ext_phy_config);
4129 
4130 	/* log the failure */
4131 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4132 			    "Please contact OEM Support for assistance\n");
4133 
4134 	/* Schedule device reset (unload)
4135 	 * This is due to some boards consuming sufficient power when driver is
4136 	 * up to overheat if fan fails.
4137 	 */
4138 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4139 }
4140 
4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4142 {
4143 	int port = BP_PORT(bp);
4144 	int reg_offset;
4145 	u32 val;
4146 
4147 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4148 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4149 
4150 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4151 
4152 		val = REG_RD(bp, reg_offset);
4153 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4154 		REG_WR(bp, reg_offset, val);
4155 
4156 		BNX2X_ERR("SPIO5 hw attention\n");
4157 
4158 		/* Fan failure attention */
4159 		bnx2x_hw_reset_phy(&bp->link_params);
4160 		bnx2x_fan_failure(bp);
4161 	}
4162 
4163 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4164 		bnx2x_acquire_phy_lock(bp);
4165 		bnx2x_handle_module_detect_int(&bp->link_params);
4166 		bnx2x_release_phy_lock(bp);
4167 	}
4168 
4169 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4170 
4171 		val = REG_RD(bp, reg_offset);
4172 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4173 		REG_WR(bp, reg_offset, val);
4174 
4175 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4176 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4177 		bnx2x_panic();
4178 	}
4179 }
4180 
4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4182 {
4183 	u32 val;
4184 
4185 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4186 
4187 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4188 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4189 		/* DORQ discard attention */
4190 		if (val & 0x2)
4191 			BNX2X_ERR("FATAL error from DORQ\n");
4192 	}
4193 
4194 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4195 
4196 		int port = BP_PORT(bp);
4197 		int reg_offset;
4198 
4199 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4200 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4201 
4202 		val = REG_RD(bp, reg_offset);
4203 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4204 		REG_WR(bp, reg_offset, val);
4205 
4206 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4207 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4208 		bnx2x_panic();
4209 	}
4210 }
4211 
4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4213 {
4214 	u32 val;
4215 
4216 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4217 
4218 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4219 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4220 		/* CFC error attention */
4221 		if (val & 0x2)
4222 			BNX2X_ERR("FATAL error from CFC\n");
4223 	}
4224 
4225 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4226 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4227 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4228 		/* RQ_USDMDP_FIFO_OVERFLOW */
4229 		if (val & 0x18000)
4230 			BNX2X_ERR("FATAL error from PXP\n");
4231 
4232 		if (!CHIP_IS_E1x(bp)) {
4233 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4234 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4235 		}
4236 	}
4237 
4238 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4239 
4240 		int port = BP_PORT(bp);
4241 		int reg_offset;
4242 
4243 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4244 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4245 
4246 		val = REG_RD(bp, reg_offset);
4247 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4248 		REG_WR(bp, reg_offset, val);
4249 
4250 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4251 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4252 		bnx2x_panic();
4253 	}
4254 }
4255 
4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4257 {
4258 	u32 val;
4259 
4260 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4261 
4262 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4263 			int func = BP_FUNC(bp);
4264 
4265 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4266 			bnx2x_read_mf_cfg(bp);
4267 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4268 					func_mf_config[BP_ABS_FUNC(bp)].config);
4269 			val = SHMEM_RD(bp,
4270 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4271 
4272 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4273 				   DRV_STATUS_OEM_EVENT_MASK))
4274 				bnx2x_oem_event(bp,
4275 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4276 						DRV_STATUS_OEM_EVENT_MASK)));
4277 
4278 			if (val & DRV_STATUS_SET_MF_BW)
4279 				bnx2x_set_mf_bw(bp);
4280 
4281 			if (val & DRV_STATUS_DRV_INFO_REQ)
4282 				bnx2x_handle_drv_info_req(bp);
4283 
4284 			if (val & DRV_STATUS_VF_DISABLED)
4285 				bnx2x_schedule_iov_task(bp,
4286 							BNX2X_IOV_HANDLE_FLR);
4287 
4288 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4289 				bnx2x_pmf_update(bp);
4290 
4291 			if (bp->port.pmf &&
4292 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4293 				bp->dcbx_enabled > 0)
4294 				/* start dcbx state machine */
4295 				bnx2x_dcbx_set_params(bp,
4296 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4297 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4298 				bnx2x_handle_afex_cmd(bp,
4299 					val & DRV_STATUS_AFEX_EVENT_MASK);
4300 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4301 				bnx2x_handle_eee_event(bp);
4302 
4303 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4304 				bnx2x_handle_update_svid_cmd(bp);
4305 
4306 			if (bp->link_vars.periodic_flags &
4307 			    PERIODIC_FLAGS_LINK_EVENT) {
4308 				/*  sync with link */
4309 				bnx2x_acquire_phy_lock(bp);
4310 				bp->link_vars.periodic_flags &=
4311 					~PERIODIC_FLAGS_LINK_EVENT;
4312 				bnx2x_release_phy_lock(bp);
4313 				if (IS_MF(bp))
4314 					bnx2x_link_sync_notify(bp);
4315 				bnx2x_link_report(bp);
4316 			}
4317 			/* Always call it here: bnx2x_link_report() will
4318 			 * prevent the link indication duplication.
4319 			 */
4320 			bnx2x__link_status_update(bp);
4321 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4322 
4323 			BNX2X_ERR("MC assert!\n");
4324 			bnx2x_mc_assert(bp);
4325 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4326 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4327 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4328 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4329 			bnx2x_panic();
4330 
4331 		} else if (attn & BNX2X_MCP_ASSERT) {
4332 
4333 			BNX2X_ERR("MCP assert!\n");
4334 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4335 			bnx2x_fw_dump(bp);
4336 
4337 		} else
4338 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4339 	}
4340 
4341 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4342 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4343 		if (attn & BNX2X_GRC_TIMEOUT) {
4344 			val = CHIP_IS_E1(bp) ? 0 :
4345 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4346 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4347 		}
4348 		if (attn & BNX2X_GRC_RSV) {
4349 			val = CHIP_IS_E1(bp) ? 0 :
4350 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4351 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4352 		}
4353 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4354 	}
4355 }
4356 
4357 /*
4358  * Bits map:
4359  * 0-7   - Engine0 load counter.
4360  * 8-15  - Engine1 load counter.
4361  * 16    - Engine0 RESET_IN_PROGRESS bit.
4362  * 17    - Engine1 RESET_IN_PROGRESS bit.
4363  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4364  *         on the engine
4365  * 19    - Engine1 ONE_IS_LOADED.
4366  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4367  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4368  *         just the one belonging to its engine).
4369  *
4370  */
4371 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4372 
4373 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4374 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4375 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4376 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4377 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4378 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4379 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4380 
4381 /*
4382  * Set the GLOBAL_RESET bit.
4383  *
4384  * Should be run under rtnl lock
4385  */
4386 void bnx2x_set_reset_global(struct bnx2x *bp)
4387 {
4388 	u32 val;
4389 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4390 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4392 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4393 }
4394 
4395 /*
4396  * Clear the GLOBAL_RESET bit.
4397  *
4398  * Should be run under rtnl lock
4399  */
4400 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4401 {
4402 	u32 val;
4403 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4405 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4406 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407 }
4408 
4409 /*
4410  * Checks the GLOBAL_RESET bit.
4411  *
4412  * should be run under rtnl lock
4413  */
4414 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4415 {
4416 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417 
4418 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4419 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4420 }
4421 
4422 /*
4423  * Clear RESET_IN_PROGRESS bit for the current engine.
4424  *
4425  * Should be run under rtnl lock
4426  */
4427 static void bnx2x_set_reset_done(struct bnx2x *bp)
4428 {
4429 	u32 val;
4430 	u32 bit = BP_PATH(bp) ?
4431 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4432 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4434 
4435 	/* Clear the bit */
4436 	val &= ~bit;
4437 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4438 
4439 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4440 }
4441 
4442 /*
4443  * Set RESET_IN_PROGRESS for the current engine.
4444  *
4445  * should be run under rtnl lock
4446  */
4447 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4448 {
4449 	u32 val;
4450 	u32 bit = BP_PATH(bp) ?
4451 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4452 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4453 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4454 
4455 	/* Set the bit */
4456 	val |= bit;
4457 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4458 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4459 }
4460 
4461 /*
4462  * Checks the RESET_IN_PROGRESS bit for the given engine.
4463  * should be run under rtnl lock
4464  */
4465 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4466 {
4467 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4468 	u32 bit = engine ?
4469 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4470 
4471 	/* return false if bit is set */
4472 	return (val & bit) ? false : true;
4473 }
4474 
4475 /*
4476  * set pf load for the current pf.
4477  *
4478  * should be run under rtnl lock
4479  */
4480 void bnx2x_set_pf_load(struct bnx2x *bp)
4481 {
4482 	u32 val1, val;
4483 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4484 			     BNX2X_PATH0_LOAD_CNT_MASK;
4485 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4486 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4487 
4488 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4489 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490 
4491 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4492 
4493 	/* get the current counter value */
4494 	val1 = (val & mask) >> shift;
4495 
4496 	/* set bit of that PF */
4497 	val1 |= (1 << bp->pf_num);
4498 
4499 	/* clear the old value */
4500 	val &= ~mask;
4501 
4502 	/* set the new one */
4503 	val |= ((val1 << shift) & mask);
4504 
4505 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4506 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4507 }
4508 
4509 /**
4510  * bnx2x_clear_pf_load - clear pf load mark
4511  *
4512  * @bp:		driver handle
4513  *
4514  * Should be run under rtnl lock.
4515  * Decrements the load counter for the current engine. Returns
4516  * whether other functions are still loaded
4517  */
4518 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4519 {
4520 	u32 val1, val;
4521 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4522 			     BNX2X_PATH0_LOAD_CNT_MASK;
4523 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4524 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4525 
4526 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4527 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4528 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4529 
4530 	/* get the current counter value */
4531 	val1 = (val & mask) >> shift;
4532 
4533 	/* clear bit of that PF */
4534 	val1 &= ~(1 << bp->pf_num);
4535 
4536 	/* clear the old value */
4537 	val &= ~mask;
4538 
4539 	/* set the new one */
4540 	val |= ((val1 << shift) & mask);
4541 
4542 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4543 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4544 	return val1 != 0;
4545 }
4546 
4547 /*
4548  * Read the load status for the current engine.
4549  *
4550  * should be run under rtnl lock
4551  */
4552 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4553 {
4554 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4555 			     BNX2X_PATH0_LOAD_CNT_MASK);
4556 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4557 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4558 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4559 
4560 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4561 
4562 	val = (val & mask) >> shift;
4563 
4564 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4565 	   engine, val);
4566 
4567 	return val != 0;
4568 }
4569 
4570 static void _print_parity(struct bnx2x *bp, u32 reg)
4571 {
4572 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4573 }
4574 
4575 static void _print_next_block(int idx, const char *blk)
4576 {
4577 	pr_cont("%s%s", idx ? ", " : "", blk);
4578 }
4579 
4580 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4581 					    int *par_num, bool print)
4582 {
4583 	u32 cur_bit;
4584 	bool res;
4585 	int i;
4586 
4587 	res = false;
4588 
4589 	for (i = 0; sig; i++) {
4590 		cur_bit = (0x1UL << i);
4591 		if (sig & cur_bit) {
4592 			res |= true; /* Each bit is real error! */
4593 
4594 			if (print) {
4595 				switch (cur_bit) {
4596 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4597 					_print_next_block((*par_num)++, "BRB");
4598 					_print_parity(bp,
4599 						      BRB1_REG_BRB1_PRTY_STS);
4600 					break;
4601 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4602 					_print_next_block((*par_num)++,
4603 							  "PARSER");
4604 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4605 					break;
4606 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4607 					_print_next_block((*par_num)++, "TSDM");
4608 					_print_parity(bp,
4609 						      TSDM_REG_TSDM_PRTY_STS);
4610 					break;
4611 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4612 					_print_next_block((*par_num)++,
4613 							  "SEARCHER");
4614 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4615 					break;
4616 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4617 					_print_next_block((*par_num)++, "TCM");
4618 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4619 					break;
4620 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4621 					_print_next_block((*par_num)++,
4622 							  "TSEMI");
4623 					_print_parity(bp,
4624 						      TSEM_REG_TSEM_PRTY_STS_0);
4625 					_print_parity(bp,
4626 						      TSEM_REG_TSEM_PRTY_STS_1);
4627 					break;
4628 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4629 					_print_next_block((*par_num)++, "XPB");
4630 					_print_parity(bp, GRCBASE_XPB +
4631 							  PB_REG_PB_PRTY_STS);
4632 					break;
4633 				}
4634 			}
4635 
4636 			/* Clear the bit */
4637 			sig &= ~cur_bit;
4638 		}
4639 	}
4640 
4641 	return res;
4642 }
4643 
4644 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4645 					    int *par_num, bool *global,
4646 					    bool print)
4647 {
4648 	u32 cur_bit;
4649 	bool res;
4650 	int i;
4651 
4652 	res = false;
4653 
4654 	for (i = 0; sig; i++) {
4655 		cur_bit = (0x1UL << i);
4656 		if (sig & cur_bit) {
4657 			res |= true; /* Each bit is real error! */
4658 			switch (cur_bit) {
4659 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4660 				if (print) {
4661 					_print_next_block((*par_num)++, "PBF");
4662 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4663 				}
4664 				break;
4665 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4666 				if (print) {
4667 					_print_next_block((*par_num)++, "QM");
4668 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4669 				}
4670 				break;
4671 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4672 				if (print) {
4673 					_print_next_block((*par_num)++, "TM");
4674 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4675 				}
4676 				break;
4677 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4678 				if (print) {
4679 					_print_next_block((*par_num)++, "XSDM");
4680 					_print_parity(bp,
4681 						      XSDM_REG_XSDM_PRTY_STS);
4682 				}
4683 				break;
4684 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4685 				if (print) {
4686 					_print_next_block((*par_num)++, "XCM");
4687 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4688 				}
4689 				break;
4690 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4691 				if (print) {
4692 					_print_next_block((*par_num)++,
4693 							  "XSEMI");
4694 					_print_parity(bp,
4695 						      XSEM_REG_XSEM_PRTY_STS_0);
4696 					_print_parity(bp,
4697 						      XSEM_REG_XSEM_PRTY_STS_1);
4698 				}
4699 				break;
4700 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4701 				if (print) {
4702 					_print_next_block((*par_num)++,
4703 							  "DOORBELLQ");
4704 					_print_parity(bp,
4705 						      DORQ_REG_DORQ_PRTY_STS);
4706 				}
4707 				break;
4708 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4709 				if (print) {
4710 					_print_next_block((*par_num)++, "NIG");
4711 					if (CHIP_IS_E1x(bp)) {
4712 						_print_parity(bp,
4713 							NIG_REG_NIG_PRTY_STS);
4714 					} else {
4715 						_print_parity(bp,
4716 							NIG_REG_NIG_PRTY_STS_0);
4717 						_print_parity(bp,
4718 							NIG_REG_NIG_PRTY_STS_1);
4719 					}
4720 				}
4721 				break;
4722 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4723 				if (print)
4724 					_print_next_block((*par_num)++,
4725 							  "VAUX PCI CORE");
4726 				*global = true;
4727 				break;
4728 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4729 				if (print) {
4730 					_print_next_block((*par_num)++,
4731 							  "DEBUG");
4732 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4733 				}
4734 				break;
4735 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4736 				if (print) {
4737 					_print_next_block((*par_num)++, "USDM");
4738 					_print_parity(bp,
4739 						      USDM_REG_USDM_PRTY_STS);
4740 				}
4741 				break;
4742 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4743 				if (print) {
4744 					_print_next_block((*par_num)++, "UCM");
4745 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4746 				}
4747 				break;
4748 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4749 				if (print) {
4750 					_print_next_block((*par_num)++,
4751 							  "USEMI");
4752 					_print_parity(bp,
4753 						      USEM_REG_USEM_PRTY_STS_0);
4754 					_print_parity(bp,
4755 						      USEM_REG_USEM_PRTY_STS_1);
4756 				}
4757 				break;
4758 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4759 				if (print) {
4760 					_print_next_block((*par_num)++, "UPB");
4761 					_print_parity(bp, GRCBASE_UPB +
4762 							  PB_REG_PB_PRTY_STS);
4763 				}
4764 				break;
4765 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4766 				if (print) {
4767 					_print_next_block((*par_num)++, "CSDM");
4768 					_print_parity(bp,
4769 						      CSDM_REG_CSDM_PRTY_STS);
4770 				}
4771 				break;
4772 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4773 				if (print) {
4774 					_print_next_block((*par_num)++, "CCM");
4775 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4776 				}
4777 				break;
4778 			}
4779 
4780 			/* Clear the bit */
4781 			sig &= ~cur_bit;
4782 		}
4783 	}
4784 
4785 	return res;
4786 }
4787 
4788 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4789 					    int *par_num, bool print)
4790 {
4791 	u32 cur_bit;
4792 	bool res;
4793 	int i;
4794 
4795 	res = false;
4796 
4797 	for (i = 0; sig; i++) {
4798 		cur_bit = (0x1UL << i);
4799 		if (sig & cur_bit) {
4800 			res = true; /* Each bit is real error! */
4801 			if (print) {
4802 				switch (cur_bit) {
4803 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4804 					_print_next_block((*par_num)++,
4805 							  "CSEMI");
4806 					_print_parity(bp,
4807 						      CSEM_REG_CSEM_PRTY_STS_0);
4808 					_print_parity(bp,
4809 						      CSEM_REG_CSEM_PRTY_STS_1);
4810 					break;
4811 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4812 					_print_next_block((*par_num)++, "PXP");
4813 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4814 					_print_parity(bp,
4815 						      PXP2_REG_PXP2_PRTY_STS_0);
4816 					_print_parity(bp,
4817 						      PXP2_REG_PXP2_PRTY_STS_1);
4818 					break;
4819 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4820 					_print_next_block((*par_num)++,
4821 							  "PXPPCICLOCKCLIENT");
4822 					break;
4823 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4824 					_print_next_block((*par_num)++, "CFC");
4825 					_print_parity(bp,
4826 						      CFC_REG_CFC_PRTY_STS);
4827 					break;
4828 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4829 					_print_next_block((*par_num)++, "CDU");
4830 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4831 					break;
4832 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4833 					_print_next_block((*par_num)++, "DMAE");
4834 					_print_parity(bp,
4835 						      DMAE_REG_DMAE_PRTY_STS);
4836 					break;
4837 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4838 					_print_next_block((*par_num)++, "IGU");
4839 					if (CHIP_IS_E1x(bp))
4840 						_print_parity(bp,
4841 							HC_REG_HC_PRTY_STS);
4842 					else
4843 						_print_parity(bp,
4844 							IGU_REG_IGU_PRTY_STS);
4845 					break;
4846 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4847 					_print_next_block((*par_num)++, "MISC");
4848 					_print_parity(bp,
4849 						      MISC_REG_MISC_PRTY_STS);
4850 					break;
4851 				}
4852 			}
4853 
4854 			/* Clear the bit */
4855 			sig &= ~cur_bit;
4856 		}
4857 	}
4858 
4859 	return res;
4860 }
4861 
4862 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4863 					    int *par_num, bool *global,
4864 					    bool print)
4865 {
4866 	bool res = false;
4867 	u32 cur_bit;
4868 	int i;
4869 
4870 	for (i = 0; sig; i++) {
4871 		cur_bit = (0x1UL << i);
4872 		if (sig & cur_bit) {
4873 			switch (cur_bit) {
4874 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4875 				if (print)
4876 					_print_next_block((*par_num)++,
4877 							  "MCP ROM");
4878 				*global = true;
4879 				res = true;
4880 				break;
4881 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4882 				if (print)
4883 					_print_next_block((*par_num)++,
4884 							  "MCP UMP RX");
4885 				*global = true;
4886 				res = true;
4887 				break;
4888 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4889 				if (print)
4890 					_print_next_block((*par_num)++,
4891 							  "MCP UMP TX");
4892 				*global = true;
4893 				res = true;
4894 				break;
4895 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4896 				(*par_num)++;
4897 				/* clear latched SCPAD PATIRY from MCP */
4898 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4899 				       1UL << 10);
4900 				break;
4901 			}
4902 
4903 			/* Clear the bit */
4904 			sig &= ~cur_bit;
4905 		}
4906 	}
4907 
4908 	return res;
4909 }
4910 
4911 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4912 					    int *par_num, bool print)
4913 {
4914 	u32 cur_bit;
4915 	bool res;
4916 	int i;
4917 
4918 	res = false;
4919 
4920 	for (i = 0; sig; i++) {
4921 		cur_bit = (0x1UL << i);
4922 		if (sig & cur_bit) {
4923 			res = true; /* Each bit is real error! */
4924 			if (print) {
4925 				switch (cur_bit) {
4926 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4927 					_print_next_block((*par_num)++,
4928 							  "PGLUE_B");
4929 					_print_parity(bp,
4930 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4931 					break;
4932 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4933 					_print_next_block((*par_num)++, "ATC");
4934 					_print_parity(bp,
4935 						      ATC_REG_ATC_PRTY_STS);
4936 					break;
4937 				}
4938 			}
4939 			/* Clear the bit */
4940 			sig &= ~cur_bit;
4941 		}
4942 	}
4943 
4944 	return res;
4945 }
4946 
4947 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4948 			      u32 *sig)
4949 {
4950 	bool res = false;
4951 
4952 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4953 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4954 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4955 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4956 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4957 		int par_num = 0;
4958 
4959 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4960 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4961 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4962 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4963 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4964 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4965 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4966 		if (print) {
4967 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4968 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4969 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4970 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4971 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4972 				netdev_err(bp->dev,
4973 					   "Parity errors detected in blocks: ");
4974 			} else {
4975 				print = false;
4976 			}
4977 		}
4978 		res |= bnx2x_check_blocks_with_parity0(bp,
4979 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4980 		res |= bnx2x_check_blocks_with_parity1(bp,
4981 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4982 		res |= bnx2x_check_blocks_with_parity2(bp,
4983 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4984 		res |= bnx2x_check_blocks_with_parity3(bp,
4985 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4986 		res |= bnx2x_check_blocks_with_parity4(bp,
4987 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4988 
4989 		if (print)
4990 			pr_cont("\n");
4991 	}
4992 
4993 	return res;
4994 }
4995 
4996 /**
4997  * bnx2x_chk_parity_attn - checks for parity attentions.
4998  *
4999  * @bp:		driver handle
5000  * @global:	true if there was a global attention
5001  * @print:	show parity attention in syslog
5002  */
5003 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5004 {
5005 	struct attn_route attn = { {0} };
5006 	int port = BP_PORT(bp);
5007 
5008 	attn.sig[0] = REG_RD(bp,
5009 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5010 			     port*4);
5011 	attn.sig[1] = REG_RD(bp,
5012 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5013 			     port*4);
5014 	attn.sig[2] = REG_RD(bp,
5015 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5016 			     port*4);
5017 	attn.sig[3] = REG_RD(bp,
5018 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5019 			     port*4);
5020 	/* Since MCP attentions can't be disabled inside the block, we need to
5021 	 * read AEU registers to see whether they're currently disabled
5022 	 */
5023 	attn.sig[3] &= ((REG_RD(bp,
5024 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5025 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5026 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5027 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5028 
5029 	if (!CHIP_IS_E1x(bp))
5030 		attn.sig[4] = REG_RD(bp,
5031 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5032 				     port*4);
5033 
5034 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5035 }
5036 
5037 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5038 {
5039 	u32 val;
5040 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5041 
5042 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5043 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5044 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5045 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5046 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5047 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5048 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5049 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5050 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5051 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5052 		if (val &
5053 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5054 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5055 		if (val &
5056 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5057 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5058 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5059 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5060 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5061 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5062 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5063 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5064 	}
5065 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5066 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5067 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5068 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5069 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5070 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5071 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5072 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5073 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5074 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5075 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5076 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5077 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5078 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5079 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5080 	}
5081 
5082 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5083 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5084 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5085 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5086 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5087 	}
5088 }
5089 
5090 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5091 {
5092 	struct attn_route attn, *group_mask;
5093 	int port = BP_PORT(bp);
5094 	int index;
5095 	u32 reg_addr;
5096 	u32 val;
5097 	u32 aeu_mask;
5098 	bool global = false;
5099 
5100 	/* need to take HW lock because MCP or other port might also
5101 	   try to handle this event */
5102 	bnx2x_acquire_alr(bp);
5103 
5104 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5105 #ifndef BNX2X_STOP_ON_ERROR
5106 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5107 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5108 		/* Disable HW interrupts */
5109 		bnx2x_int_disable(bp);
5110 		/* In case of parity errors don't handle attentions so that
5111 		 * other function would "see" parity errors.
5112 		 */
5113 #else
5114 		bnx2x_panic();
5115 #endif
5116 		bnx2x_release_alr(bp);
5117 		return;
5118 	}
5119 
5120 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5121 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5122 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5123 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5124 	if (!CHIP_IS_E1x(bp))
5125 		attn.sig[4] =
5126 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5127 	else
5128 		attn.sig[4] = 0;
5129 
5130 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5131 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5132 
5133 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5134 		if (deasserted & (1 << index)) {
5135 			group_mask = &bp->attn_group[index];
5136 
5137 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5138 			   index,
5139 			   group_mask->sig[0], group_mask->sig[1],
5140 			   group_mask->sig[2], group_mask->sig[3],
5141 			   group_mask->sig[4]);
5142 
5143 			bnx2x_attn_int_deasserted4(bp,
5144 					attn.sig[4] & group_mask->sig[4]);
5145 			bnx2x_attn_int_deasserted3(bp,
5146 					attn.sig[3] & group_mask->sig[3]);
5147 			bnx2x_attn_int_deasserted1(bp,
5148 					attn.sig[1] & group_mask->sig[1]);
5149 			bnx2x_attn_int_deasserted2(bp,
5150 					attn.sig[2] & group_mask->sig[2]);
5151 			bnx2x_attn_int_deasserted0(bp,
5152 					attn.sig[0] & group_mask->sig[0]);
5153 		}
5154 	}
5155 
5156 	bnx2x_release_alr(bp);
5157 
5158 	if (bp->common.int_block == INT_BLOCK_HC)
5159 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5160 			    COMMAND_REG_ATTN_BITS_CLR);
5161 	else
5162 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5163 
5164 	val = ~deasserted;
5165 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5166 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5167 	REG_WR(bp, reg_addr, val);
5168 
5169 	if (~bp->attn_state & deasserted)
5170 		BNX2X_ERR("IGU ERROR\n");
5171 
5172 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5173 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5174 
5175 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5176 	aeu_mask = REG_RD(bp, reg_addr);
5177 
5178 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5179 	   aeu_mask, deasserted);
5180 	aeu_mask |= (deasserted & 0x3ff);
5181 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5182 
5183 	REG_WR(bp, reg_addr, aeu_mask);
5184 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5185 
5186 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5187 	bp->attn_state &= ~deasserted;
5188 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5189 }
5190 
5191 static void bnx2x_attn_int(struct bnx2x *bp)
5192 {
5193 	/* read local copy of bits */
5194 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5195 								attn_bits);
5196 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5197 								attn_bits_ack);
5198 	u32 attn_state = bp->attn_state;
5199 
5200 	/* look for changed bits */
5201 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5202 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5203 
5204 	DP(NETIF_MSG_HW,
5205 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5206 	   attn_bits, attn_ack, asserted, deasserted);
5207 
5208 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5209 		BNX2X_ERR("BAD attention state\n");
5210 
5211 	/* handle bits that were raised */
5212 	if (asserted)
5213 		bnx2x_attn_int_asserted(bp, asserted);
5214 
5215 	if (deasserted)
5216 		bnx2x_attn_int_deasserted(bp, deasserted);
5217 }
5218 
5219 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5220 		      u16 index, u8 op, u8 update)
5221 {
5222 	u32 igu_addr = bp->igu_base_addr;
5223 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5224 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5225 			     igu_addr);
5226 }
5227 
5228 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5229 {
5230 	/* No memory barriers */
5231 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5232 	mmiowb(); /* keep prod updates ordered */
5233 }
5234 
5235 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5236 				      union event_ring_elem *elem)
5237 {
5238 	u8 err = elem->message.error;
5239 
5240 	if (!bp->cnic_eth_dev.starting_cid  ||
5241 	    (cid < bp->cnic_eth_dev.starting_cid &&
5242 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5243 		return 1;
5244 
5245 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5246 
5247 	if (unlikely(err)) {
5248 
5249 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5250 			  cid);
5251 		bnx2x_panic_dump(bp, false);
5252 	}
5253 	bnx2x_cnic_cfc_comp(bp, cid, err);
5254 	return 0;
5255 }
5256 
5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5258 {
5259 	struct bnx2x_mcast_ramrod_params rparam;
5260 	int rc;
5261 
5262 	memset(&rparam, 0, sizeof(rparam));
5263 
5264 	rparam.mcast_obj = &bp->mcast_obj;
5265 
5266 	netif_addr_lock_bh(bp->dev);
5267 
5268 	/* Clear pending state for the last command */
5269 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5270 
5271 	/* If there are pending mcast commands - send them */
5272 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5273 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5274 		if (rc < 0)
5275 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5276 				  rc);
5277 	}
5278 
5279 	netif_addr_unlock_bh(bp->dev);
5280 }
5281 
5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5283 					    union event_ring_elem *elem)
5284 {
5285 	unsigned long ramrod_flags = 0;
5286 	int rc = 0;
5287 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5288 	u32 cid = echo & BNX2X_SWCID_MASK;
5289 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5290 
5291 	/* Always push next commands out, don't wait here */
5292 	__set_bit(RAMROD_CONT, &ramrod_flags);
5293 
5294 	switch (echo >> BNX2X_SWCID_SHIFT) {
5295 	case BNX2X_FILTER_MAC_PENDING:
5296 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5297 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5298 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5299 		else
5300 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5301 
5302 		break;
5303 	case BNX2X_FILTER_VLAN_PENDING:
5304 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5305 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5306 		break;
5307 	case BNX2X_FILTER_MCAST_PENDING:
5308 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5309 		/* This is only relevant for 57710 where multicast MACs are
5310 		 * configured as unicast MACs using the same ramrod.
5311 		 */
5312 		bnx2x_handle_mcast_eqe(bp);
5313 		return;
5314 	default:
5315 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5316 		return;
5317 	}
5318 
5319 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5320 
5321 	if (rc < 0)
5322 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5323 	else if (rc > 0)
5324 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5325 }
5326 
5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5328 
5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5330 {
5331 	netif_addr_lock_bh(bp->dev);
5332 
5333 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5334 
5335 	/* Send rx_mode command again if was requested */
5336 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5337 		bnx2x_set_storm_rx_mode(bp);
5338 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5339 				    &bp->sp_state))
5340 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5341 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5342 				    &bp->sp_state))
5343 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5344 
5345 	netif_addr_unlock_bh(bp->dev);
5346 }
5347 
5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5349 					      union event_ring_elem *elem)
5350 {
5351 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5352 		DP(BNX2X_MSG_SP,
5353 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5354 		   elem->message.data.vif_list_event.func_bit_map);
5355 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5356 			elem->message.data.vif_list_event.func_bit_map);
5357 	} else if (elem->message.data.vif_list_event.echo ==
5358 		   VIF_LIST_RULE_SET) {
5359 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5360 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5361 	}
5362 }
5363 
5364 /* called with rtnl_lock */
5365 static void bnx2x_after_function_update(struct bnx2x *bp)
5366 {
5367 	int q, rc;
5368 	struct bnx2x_fastpath *fp;
5369 	struct bnx2x_queue_state_params queue_params = {NULL};
5370 	struct bnx2x_queue_update_params *q_update_params =
5371 		&queue_params.params.update;
5372 
5373 	/* Send Q update command with afex vlan removal values for all Qs */
5374 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5375 
5376 	/* set silent vlan removal values according to vlan mode */
5377 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5378 		  &q_update_params->update_flags);
5379 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5380 		  &q_update_params->update_flags);
5381 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382 
5383 	/* in access mode mark mask and value are 0 to strip all vlans */
5384 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5385 		q_update_params->silent_removal_value = 0;
5386 		q_update_params->silent_removal_mask = 0;
5387 	} else {
5388 		q_update_params->silent_removal_value =
5389 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5390 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5391 	}
5392 
5393 	for_each_eth_queue(bp, q) {
5394 		/* Set the appropriate Queue object */
5395 		fp = &bp->fp[q];
5396 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5397 
5398 		/* send the ramrod */
5399 		rc = bnx2x_queue_state_change(bp, &queue_params);
5400 		if (rc < 0)
5401 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5402 				  q);
5403 	}
5404 
5405 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5406 		fp = &bp->fp[FCOE_IDX(bp)];
5407 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408 
5409 		/* clear pending completion bit */
5410 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5411 
5412 		/* mark latest Q bit */
5413 		smp_mb__before_atomic();
5414 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5415 		smp_mb__after_atomic();
5416 
5417 		/* send Q update ramrod for FCoE Q */
5418 		rc = bnx2x_queue_state_change(bp, &queue_params);
5419 		if (rc < 0)
5420 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421 				  q);
5422 	} else {
5423 		/* If no FCoE ring - ACK MCP now */
5424 		bnx2x_link_report(bp);
5425 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5426 	}
5427 }
5428 
5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5430 	struct bnx2x *bp, u32 cid)
5431 {
5432 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5433 
5434 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5435 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5436 	else
5437 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5438 }
5439 
5440 static void bnx2x_eq_int(struct bnx2x *bp)
5441 {
5442 	u16 hw_cons, sw_cons, sw_prod;
5443 	union event_ring_elem *elem;
5444 	u8 echo;
5445 	u32 cid;
5446 	u8 opcode;
5447 	int rc, spqe_cnt = 0;
5448 	struct bnx2x_queue_sp_obj *q_obj;
5449 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5450 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5451 
5452 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5453 
5454 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5455 	 * when we get the next-page we need to adjust so the loop
5456 	 * condition below will be met. The next element is the size of a
5457 	 * regular element and hence incrementing by 1
5458 	 */
5459 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5460 		hw_cons++;
5461 
5462 	/* This function may never run in parallel with itself for a
5463 	 * specific bp, thus there is no need in "paired" read memory
5464 	 * barrier here.
5465 	 */
5466 	sw_cons = bp->eq_cons;
5467 	sw_prod = bp->eq_prod;
5468 
5469 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5470 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5471 
5472 	for (; sw_cons != hw_cons;
5473 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5474 
5475 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5476 
5477 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5478 		if (!rc) {
5479 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5480 			   rc);
5481 			goto next_spqe;
5482 		}
5483 
5484 		opcode = elem->message.opcode;
5485 
5486 		/* handle eq element */
5487 		switch (opcode) {
5488 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489 			bnx2x_vf_mbx_schedule(bp,
5490 					      &elem->message.data.vf_pf_event);
5491 			continue;
5492 
5493 		case EVENT_RING_OPCODE_STAT_QUERY:
5494 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495 			       "got statistics comp event %d\n",
5496 			       bp->stats_comp++);
5497 			/* nothing to do with stats comp */
5498 			goto next_spqe;
5499 
5500 		case EVENT_RING_OPCODE_CFC_DEL:
5501 			/* handle according to cid range */
5502 			/*
5503 			 * we may want to verify here that the bp state is
5504 			 * HALTING
5505 			 */
5506 
5507 			/* elem CID originates from FW; actually LE */
5508 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5509 
5510 			DP(BNX2X_MSG_SP,
5511 			   "got delete ramrod for MULTI[%d]\n", cid);
5512 
5513 			if (CNIC_LOADED(bp) &&
5514 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5515 				goto next_spqe;
5516 
5517 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5518 
5519 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5520 				break;
5521 
5522 			goto next_spqe;
5523 
5524 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5525 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5526 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5527 			if (f_obj->complete_cmd(bp, f_obj,
5528 						BNX2X_F_CMD_TX_STOP))
5529 				break;
5530 			goto next_spqe;
5531 
5532 		case EVENT_RING_OPCODE_START_TRAFFIC:
5533 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5534 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5535 			if (f_obj->complete_cmd(bp, f_obj,
5536 						BNX2X_F_CMD_TX_START))
5537 				break;
5538 			goto next_spqe;
5539 
5540 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5541 			echo = elem->message.data.function_update_event.echo;
5542 			if (echo == SWITCH_UPDATE) {
5543 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5544 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5545 				if (f_obj->complete_cmd(
5546 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5547 					break;
5548 
5549 			} else {
5550 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5551 
5552 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5553 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5554 				f_obj->complete_cmd(bp, f_obj,
5555 						    BNX2X_F_CMD_AFEX_UPDATE);
5556 
5557 				/* We will perform the Queues update from
5558 				 * sp_rtnl task as all Queue SP operations
5559 				 * should run under rtnl_lock.
5560 				 */
5561 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5562 			}
5563 
5564 			goto next_spqe;
5565 
5566 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5567 			f_obj->complete_cmd(bp, f_obj,
5568 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5569 			bnx2x_after_afex_vif_lists(bp, elem);
5570 			goto next_spqe;
5571 		case EVENT_RING_OPCODE_FUNCTION_START:
5572 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5573 			   "got FUNC_START ramrod\n");
5574 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5575 				break;
5576 
5577 			goto next_spqe;
5578 
5579 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5580 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5581 			   "got FUNC_STOP ramrod\n");
5582 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5583 				break;
5584 
5585 			goto next_spqe;
5586 
5587 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5588 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5589 			   "got set_timesync ramrod completion\n");
5590 			if (f_obj->complete_cmd(bp, f_obj,
5591 						BNX2X_F_CMD_SET_TIMESYNC))
5592 				break;
5593 			goto next_spqe;
5594 		}
5595 
5596 		switch (opcode | bp->state) {
5597 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598 		      BNX2X_STATE_OPEN):
5599 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5601 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5602 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5603 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604 			   SW_CID(elem->message.data.eth_event.echo));
5605 			rss_raw->clear_pending(rss_raw);
5606 			break;
5607 
5608 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610 		case (EVENT_RING_OPCODE_SET_MAC |
5611 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5612 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613 		      BNX2X_STATE_OPEN):
5614 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615 		      BNX2X_STATE_DIAG):
5616 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5618 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619 			bnx2x_handle_classification_eqe(bp, elem);
5620 			break;
5621 
5622 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623 		      BNX2X_STATE_OPEN):
5624 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625 		      BNX2X_STATE_DIAG):
5626 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5628 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629 			bnx2x_handle_mcast_eqe(bp);
5630 			break;
5631 
5632 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5633 		      BNX2X_STATE_OPEN):
5634 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5635 		      BNX2X_STATE_DIAG):
5636 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5637 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639 			bnx2x_handle_rx_mode_eqe(bp);
5640 			break;
5641 		default:
5642 			/* unknown event log error and continue */
5643 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644 				  elem->message.opcode, bp->state);
5645 		}
5646 next_spqe:
5647 		spqe_cnt++;
5648 	} /* for */
5649 
5650 	smp_mb__before_atomic();
5651 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5652 
5653 	bp->eq_cons = sw_cons;
5654 	bp->eq_prod = sw_prod;
5655 	/* Make sure that above mem writes were issued towards the memory */
5656 	smp_wmb();
5657 
5658 	/* update producer */
5659 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5660 }
5661 
5662 static void bnx2x_sp_task(struct work_struct *work)
5663 {
5664 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665 
5666 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5667 
5668 	/* make sure the atomic interrupt_occurred has been written */
5669 	smp_rmb();
5670 	if (atomic_read(&bp->interrupt_occurred)) {
5671 
5672 		/* what work needs to be performed? */
5673 		u16 status = bnx2x_update_dsb_idx(bp);
5674 
5675 		DP(BNX2X_MSG_SP, "status %x\n", status);
5676 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677 		atomic_set(&bp->interrupt_occurred, 0);
5678 
5679 		/* HW attentions */
5680 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5681 			bnx2x_attn_int(bp);
5682 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5683 		}
5684 
5685 		/* SP events: STAT_QUERY and others */
5686 		if (status & BNX2X_DEF_SB_IDX) {
5687 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688 
5689 			if (FCOE_INIT(bp) &&
5690 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691 				/* Prevent local bottom-halves from running as
5692 				 * we are going to change the local NAPI list.
5693 				 */
5694 				local_bh_disable();
5695 				napi_schedule(&bnx2x_fcoe(bp, napi));
5696 				local_bh_enable();
5697 			}
5698 
5699 			/* Handle EQ completions */
5700 			bnx2x_eq_int(bp);
5701 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703 
5704 			status &= ~BNX2X_DEF_SB_IDX;
5705 		}
5706 
5707 		/* if status is non zero then perhaps something went wrong */
5708 		if (unlikely(status))
5709 			DP(BNX2X_MSG_SP,
5710 			   "got an unknown interrupt! (status 0x%x)\n", status);
5711 
5712 		/* ack status block only if something was actually handled */
5713 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715 	}
5716 
5717 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719 			       &bp->sp_state)) {
5720 		bnx2x_link_report(bp);
5721 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722 	}
5723 }
5724 
5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726 {
5727 	struct net_device *dev = dev_instance;
5728 	struct bnx2x *bp = netdev_priv(dev);
5729 
5730 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731 		     IGU_INT_DISABLE, 0);
5732 
5733 #ifdef BNX2X_STOP_ON_ERROR
5734 	if (unlikely(bp->panic))
5735 		return IRQ_HANDLED;
5736 #endif
5737 
5738 	if (CNIC_LOADED(bp)) {
5739 		struct cnic_ops *c_ops;
5740 
5741 		rcu_read_lock();
5742 		c_ops = rcu_dereference(bp->cnic_ops);
5743 		if (c_ops)
5744 			c_ops->cnic_handler(bp->cnic_data, NULL);
5745 		rcu_read_unlock();
5746 	}
5747 
5748 	/* schedule sp task to perform default status block work, ack
5749 	 * attentions and enable interrupts.
5750 	 */
5751 	bnx2x_schedule_sp_task(bp);
5752 
5753 	return IRQ_HANDLED;
5754 }
5755 
5756 /* end of slow path */
5757 
5758 void bnx2x_drv_pulse(struct bnx2x *bp)
5759 {
5760 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761 		 bp->fw_drv_pulse_wr_seq);
5762 }
5763 
5764 static void bnx2x_timer(struct timer_list *t)
5765 {
5766 	struct bnx2x *bp = from_timer(bp, t, timer);
5767 
5768 	if (!netif_running(bp->dev))
5769 		return;
5770 
5771 	if (IS_PF(bp) &&
5772 	    !BP_NOMCP(bp)) {
5773 		int mb_idx = BP_FW_MB_IDX(bp);
5774 		u16 drv_pulse;
5775 		u16 mcp_pulse;
5776 
5777 		++bp->fw_drv_pulse_wr_seq;
5778 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5780 		bnx2x_drv_pulse(bp);
5781 
5782 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783 			     MCP_PULSE_SEQ_MASK);
5784 		/* The delta between driver pulse and mcp response
5785 		 * should not get too big. If the MFW is more than 5 pulses
5786 		 * behind, we should worry about it enough to generate an error
5787 		 * log.
5788 		 */
5789 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791 				  drv_pulse, mcp_pulse);
5792 	}
5793 
5794 	if (bp->state == BNX2X_STATE_OPEN)
5795 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796 
5797 	/* sample pf vf bulletin board for new posts from pf */
5798 	if (IS_VF(bp))
5799 		bnx2x_timer_sriov(bp);
5800 
5801 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5802 }
5803 
5804 /* end of Statistics */
5805 
5806 /* nic init */
5807 
5808 /*
5809  * nic init service functions
5810  */
5811 
5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813 {
5814 	u32 i;
5815 	if (!(len%4) && !(addr%4))
5816 		for (i = 0; i < len; i += 4)
5817 			REG_WR(bp, addr + i, fill);
5818 	else
5819 		for (i = 0; i < len; i++)
5820 			REG_WR8(bp, addr + i, fill);
5821 }
5822 
5823 /* helper: writes FP SP data to FW - data_size in dwords */
5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825 				int fw_sb_id,
5826 				u32 *sb_data_p,
5827 				u32 data_size)
5828 {
5829 	int index;
5830 	for (index = 0; index < data_size; index++)
5831 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5832 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833 			sizeof(u32)*index,
5834 			*(sb_data_p + index));
5835 }
5836 
5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838 {
5839 	u32 *sb_data_p;
5840 	u32 data_size = 0;
5841 	struct hc_status_block_data_e2 sb_data_e2;
5842 	struct hc_status_block_data_e1x sb_data_e1x;
5843 
5844 	/* disable the function first */
5845 	if (!CHIP_IS_E1x(bp)) {
5846 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847 		sb_data_e2.common.state = SB_DISABLED;
5848 		sb_data_e2.common.p_func.vf_valid = false;
5849 		sb_data_p = (u32 *)&sb_data_e2;
5850 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851 	} else {
5852 		memset(&sb_data_e1x, 0,
5853 		       sizeof(struct hc_status_block_data_e1x));
5854 		sb_data_e1x.common.state = SB_DISABLED;
5855 		sb_data_e1x.common.p_func.vf_valid = false;
5856 		sb_data_p = (u32 *)&sb_data_e1x;
5857 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858 	}
5859 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860 
5861 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863 			CSTORM_STATUS_BLOCK_SIZE);
5864 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866 			CSTORM_SYNC_BLOCK_SIZE);
5867 }
5868 
5869 /* helper:  writes SP SB data to FW */
5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871 		struct hc_sp_status_block_data *sp_sb_data)
5872 {
5873 	int func = BP_FUNC(bp);
5874 	int i;
5875 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5877 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878 			i*sizeof(u32),
5879 			*((u32 *)sp_sb_data + i));
5880 }
5881 
5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883 {
5884 	int func = BP_FUNC(bp);
5885 	struct hc_sp_status_block_data sp_sb_data;
5886 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887 
5888 	sp_sb_data.state = SB_DISABLED;
5889 	sp_sb_data.p_func.vf_valid = false;
5890 
5891 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892 
5893 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895 			CSTORM_SP_STATUS_BLOCK_SIZE);
5896 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898 			CSTORM_SP_SYNC_BLOCK_SIZE);
5899 }
5900 
5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902 					   int igu_sb_id, int igu_seg_id)
5903 {
5904 	hc_sm->igu_sb_id = igu_sb_id;
5905 	hc_sm->igu_seg_id = igu_seg_id;
5906 	hc_sm->timer_value = 0xFF;
5907 	hc_sm->time_to_expire = 0xFFFFFFFF;
5908 }
5909 
5910 /* allocates state machine ids. */
5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912 {
5913 	/* zero out state machine indices */
5914 	/* rx indices */
5915 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916 
5917 	/* tx indices */
5918 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922 
5923 	/* map indices */
5924 	/* rx indices */
5925 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927 
5928 	/* tx indices */
5929 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 }
5938 
5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941 {
5942 	int igu_seg_id;
5943 
5944 	struct hc_status_block_data_e2 sb_data_e2;
5945 	struct hc_status_block_data_e1x sb_data_e1x;
5946 	struct hc_status_block_sm  *hc_sm_p;
5947 	int data_size;
5948 	u32 *sb_data_p;
5949 
5950 	if (CHIP_INT_MODE_IS_BC(bp))
5951 		igu_seg_id = HC_SEG_ACCESS_NORM;
5952 	else
5953 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5954 
5955 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5956 
5957 	if (!CHIP_IS_E1x(bp)) {
5958 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959 		sb_data_e2.common.state = SB_ENABLED;
5960 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961 		sb_data_e2.common.p_func.vf_id = vfid;
5962 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5963 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964 		sb_data_e2.common.same_igu_sb_1b = true;
5965 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967 		hc_sm_p = sb_data_e2.common.state_machine;
5968 		sb_data_p = (u32 *)&sb_data_e2;
5969 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971 	} else {
5972 		memset(&sb_data_e1x, 0,
5973 		       sizeof(struct hc_status_block_data_e1x));
5974 		sb_data_e1x.common.state = SB_ENABLED;
5975 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976 		sb_data_e1x.common.p_func.vf_id = 0xff;
5977 		sb_data_e1x.common.p_func.vf_valid = false;
5978 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979 		sb_data_e1x.common.same_igu_sb_1b = true;
5980 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982 		hc_sm_p = sb_data_e1x.common.state_machine;
5983 		sb_data_p = (u32 *)&sb_data_e1x;
5984 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986 	}
5987 
5988 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989 				       igu_sb_id, igu_seg_id);
5990 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991 				       igu_sb_id, igu_seg_id);
5992 
5993 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994 
5995 	/* write indices to HW - PCI guarantees endianity of regpairs */
5996 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997 }
5998 
5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000 				     u16 tx_usec, u16 rx_usec)
6001 {
6002 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003 				    false, rx_usec);
6004 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006 				       tx_usec);
6007 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009 				       tx_usec);
6010 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012 				       tx_usec);
6013 }
6014 
6015 static void bnx2x_init_def_sb(struct bnx2x *bp)
6016 {
6017 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6018 	dma_addr_t mapping = bp->def_status_blk_mapping;
6019 	int igu_sp_sb_index;
6020 	int igu_seg_id;
6021 	int port = BP_PORT(bp);
6022 	int func = BP_FUNC(bp);
6023 	int reg_offset, reg_offset_en5;
6024 	u64 section;
6025 	int index;
6026 	struct hc_sp_status_block_data sp_sb_data;
6027 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028 
6029 	if (CHIP_INT_MODE_IS_BC(bp)) {
6030 		igu_sp_sb_index = DEF_SB_IGU_ID;
6031 		igu_seg_id = HC_SEG_ACCESS_DEF;
6032 	} else {
6033 		igu_sp_sb_index = bp->igu_dsb_id;
6034 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6035 	}
6036 
6037 	/* ATTN */
6038 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039 					    atten_status_block);
6040 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041 
6042 	bp->attn_state = 0;
6043 
6044 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049 		int sindex;
6050 		/* take care of sig[0]..sig[4] */
6051 		for (sindex = 0; sindex < 4; sindex++)
6052 			bp->attn_group[index].sig[sindex] =
6053 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054 
6055 		if (!CHIP_IS_E1x(bp))
6056 			/*
6057 			 * enable5 is separate from the rest of the registers,
6058 			 * and therefore the address skip is 4
6059 			 * and not 16 between the different groups
6060 			 */
6061 			bp->attn_group[index].sig[4] = REG_RD(bp,
6062 					reg_offset_en5 + 0x4*index);
6063 		else
6064 			bp->attn_group[index].sig[4] = 0;
6065 	}
6066 
6067 	if (bp->common.int_block == INT_BLOCK_HC) {
6068 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069 				     HC_REG_ATTN_MSG0_ADDR_L);
6070 
6071 		REG_WR(bp, reg_offset, U64_LO(section));
6072 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6073 	} else if (!CHIP_IS_E1x(bp)) {
6074 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076 	}
6077 
6078 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079 					    sp_sb);
6080 
6081 	bnx2x_zero_sp_sb(bp);
6082 
6083 	/* PCI guarantees endianity of regpairs */
6084 	sp_sb_data.state		= SB_ENABLED;
6085 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6086 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6087 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6088 	sp_sb_data.igu_seg_id		= igu_seg_id;
6089 	sp_sb_data.p_func.pf_id		= func;
6090 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6091 	sp_sb_data.p_func.vf_id		= 0xff;
6092 
6093 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094 
6095 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096 }
6097 
6098 void bnx2x_update_coalesce(struct bnx2x *bp)
6099 {
6100 	int i;
6101 
6102 	for_each_eth_queue(bp, i)
6103 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104 					 bp->tx_ticks, bp->rx_ticks);
6105 }
6106 
6107 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108 {
6109 	spin_lock_init(&bp->spq_lock);
6110 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111 
6112 	bp->spq_prod_idx = 0;
6113 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114 	bp->spq_prod_bd = bp->spq;
6115 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116 }
6117 
6118 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119 {
6120 	int i;
6121 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122 		union event_ring_elem *elem =
6123 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124 
6125 		elem->next_page.addr.hi =
6126 			cpu_to_le32(U64_HI(bp->eq_mapping +
6127 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128 		elem->next_page.addr.lo =
6129 			cpu_to_le32(U64_LO(bp->eq_mapping +
6130 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131 	}
6132 	bp->eq_cons = 0;
6133 	bp->eq_prod = NUM_EQ_DESC;
6134 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135 	/* we want a warning message before it gets wrought... */
6136 	atomic_set(&bp->eq_spq_left,
6137 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138 }
6139 
6140 /* called with netif_addr_lock_bh() */
6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142 			       unsigned long rx_mode_flags,
6143 			       unsigned long rx_accept_flags,
6144 			       unsigned long tx_accept_flags,
6145 			       unsigned long ramrod_flags)
6146 {
6147 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148 	int rc;
6149 
6150 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6151 
6152 	/* Prepare ramrod parameters */
6153 	ramrod_param.cid = 0;
6154 	ramrod_param.cl_id = cl_id;
6155 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156 	ramrod_param.func_id = BP_FUNC(bp);
6157 
6158 	ramrod_param.pstate = &bp->sp_state;
6159 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160 
6161 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163 
6164 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165 
6166 	ramrod_param.ramrod_flags = ramrod_flags;
6167 	ramrod_param.rx_mode_flags = rx_mode_flags;
6168 
6169 	ramrod_param.rx_accept_flags = rx_accept_flags;
6170 	ramrod_param.tx_accept_flags = tx_accept_flags;
6171 
6172 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173 	if (rc < 0) {
6174 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175 		return rc;
6176 	}
6177 
6178 	return 0;
6179 }
6180 
6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182 				   unsigned long *rx_accept_flags,
6183 				   unsigned long *tx_accept_flags)
6184 {
6185 	/* Clear the flags first */
6186 	*rx_accept_flags = 0;
6187 	*tx_accept_flags = 0;
6188 
6189 	switch (rx_mode) {
6190 	case BNX2X_RX_MODE_NONE:
6191 		/*
6192 		 * 'drop all' supersedes any accept flags that may have been
6193 		 * passed to the function.
6194 		 */
6195 		break;
6196 	case BNX2X_RX_MODE_NORMAL:
6197 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200 
6201 		/* internal switching mode */
6202 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205 
6206 		if (bp->accept_any_vlan) {
6207 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209 		}
6210 
6211 		break;
6212 	case BNX2X_RX_MODE_ALLMULTI:
6213 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216 
6217 		/* internal switching mode */
6218 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221 
6222 		if (bp->accept_any_vlan) {
6223 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225 		}
6226 
6227 		break;
6228 	case BNX2X_RX_MODE_PROMISC:
6229 		/* According to definition of SI mode, iface in promisc mode
6230 		 * should receive matched and unmatched (in resolution of port)
6231 		 * unicast packets.
6232 		 */
6233 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237 
6238 		/* internal switching mode */
6239 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241 
6242 		if (IS_MF_SI(bp))
6243 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244 		else
6245 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246 
6247 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249 
6250 		break;
6251 	default:
6252 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253 		return -EINVAL;
6254 	}
6255 
6256 	return 0;
6257 }
6258 
6259 /* called with netif_addr_lock_bh() */
6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261 {
6262 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264 	int rc;
6265 
6266 	if (!NO_FCOE(bp))
6267 		/* Configure rx_mode of FCoE Queue */
6268 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269 
6270 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271 				     &tx_accept_flags);
6272 	if (rc)
6273 		return rc;
6274 
6275 	__set_bit(RAMROD_RX, &ramrod_flags);
6276 	__set_bit(RAMROD_TX, &ramrod_flags);
6277 
6278 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279 				   rx_accept_flags, tx_accept_flags,
6280 				   ramrod_flags);
6281 }
6282 
6283 static void bnx2x_init_internal_common(struct bnx2x *bp)
6284 {
6285 	int i;
6286 
6287 	/* Zero this manually as its initialization is
6288 	   currently missing in the initTool */
6289 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290 		REG_WR(bp, BAR_USTRORM_INTMEM +
6291 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292 	if (!CHIP_IS_E1x(bp)) {
6293 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294 			CHIP_INT_MODE_IS_BC(bp) ?
6295 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296 	}
6297 }
6298 
6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300 {
6301 	switch (load_code) {
6302 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6303 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304 		bnx2x_init_internal_common(bp);
6305 		/* no break */
6306 
6307 	case FW_MSG_CODE_DRV_LOAD_PORT:
6308 		/* nothing to do */
6309 		/* no break */
6310 
6311 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312 		/* internal memory per function is
6313 		   initialized inside bnx2x_pf_init */
6314 		break;
6315 
6316 	default:
6317 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318 		break;
6319 	}
6320 }
6321 
6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326 
6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331 
6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333 {
6334 	if (CHIP_IS_E1x(fp->bp))
6335 		return BP_L_ID(fp->bp) + fp->index;
6336 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6337 		return bnx2x_fp_igu_sb_id(fp);
6338 }
6339 
6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341 {
6342 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343 	u8 cos;
6344 	unsigned long q_type = 0;
6345 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346 	fp->rx_queue = fp_idx;
6347 	fp->cid = fp_idx;
6348 	fp->cl_id = bnx2x_fp_cl_id(fp);
6349 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351 	/* qZone id equals to FW (per path) client id */
6352 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6353 
6354 	/* init shortcut */
6355 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356 
6357 	/* Setup SB indices */
6358 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359 
6360 	/* Configure Queue State object */
6361 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363 
6364 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365 
6366 	/* init tx data */
6367 	for_each_cos_in_tx_queue(fp, cos) {
6368 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370 				  FP_COS_TO_TXQ(fp, cos, bp),
6371 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372 		cids[cos] = fp->txdata_ptr[cos]->cid;
6373 	}
6374 
6375 	/* nothing more for vf to do here */
6376 	if (IS_VF(bp))
6377 		return;
6378 
6379 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380 		      fp->fw_sb_id, fp->igu_sb_id);
6381 	bnx2x_update_fpsb_idx(fp);
6382 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6385 
6386 	/**
6387 	 * Configure classification DBs: Always enable Tx switching
6388 	 */
6389 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390 
6391 	DP(NETIF_MSG_IFUP,
6392 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6393 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394 	   fp->igu_sb_id);
6395 }
6396 
6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398 {
6399 	int i;
6400 
6401 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6402 		struct eth_tx_next_bd *tx_next_bd =
6403 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404 
6405 		tx_next_bd->addr_hi =
6406 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408 		tx_next_bd->addr_lo =
6409 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411 	}
6412 
6413 	*txdata->tx_cons_sb = cpu_to_le16(0);
6414 
6415 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416 	txdata->tx_db.data.zero_fill1 = 0;
6417 	txdata->tx_db.data.prod = 0;
6418 
6419 	txdata->tx_pkt_prod = 0;
6420 	txdata->tx_pkt_cons = 0;
6421 	txdata->tx_bd_prod = 0;
6422 	txdata->tx_bd_cons = 0;
6423 	txdata->tx_pkt = 0;
6424 }
6425 
6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427 {
6428 	int i;
6429 
6430 	for_each_tx_queue_cnic(bp, i)
6431 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432 }
6433 
6434 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435 {
6436 	int i;
6437 	u8 cos;
6438 
6439 	for_each_eth_queue(bp, i)
6440 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442 }
6443 
6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445 {
6446 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447 	unsigned long q_type = 0;
6448 
6449 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6452 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458 			  fp);
6459 
6460 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461 
6462 	/* qZone id equals to FW (per path) client id */
6463 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464 	/* init shortcut */
6465 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466 		bnx2x_rx_ustorm_prods_offset(fp);
6467 
6468 	/* Configure Queue State object */
6469 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471 
6472 	/* No multi-CoS for FCoE L2 client */
6473 	BUG_ON(fp->max_cos != 1);
6474 
6475 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6478 
6479 	DP(NETIF_MSG_IFUP,
6480 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482 	   fp->igu_sb_id);
6483 }
6484 
6485 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486 {
6487 	if (!NO_FCOE(bp))
6488 		bnx2x_init_fcoe_fp(bp);
6489 
6490 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491 		      BNX2X_VF_ID_INVALID, false,
6492 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493 
6494 	/* ensure status block indices were read */
6495 	rmb();
6496 	bnx2x_init_rx_rings_cnic(bp);
6497 	bnx2x_init_tx_rings_cnic(bp);
6498 
6499 	/* flush all */
6500 	mb();
6501 	mmiowb();
6502 }
6503 
6504 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6505 {
6506 	int i;
6507 
6508 	/* Setup NIC internals and enable interrupts */
6509 	for_each_eth_queue(bp, i)
6510 		bnx2x_init_eth_fp(bp, i);
6511 
6512 	/* ensure status block indices were read */
6513 	rmb();
6514 	bnx2x_init_rx_rings(bp);
6515 	bnx2x_init_tx_rings(bp);
6516 
6517 	if (IS_PF(bp)) {
6518 		/* Initialize MOD_ABS interrupts */
6519 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6520 				       bp->common.shmem_base,
6521 				       bp->common.shmem2_base, BP_PORT(bp));
6522 
6523 		/* initialize the default status block and sp ring */
6524 		bnx2x_init_def_sb(bp);
6525 		bnx2x_update_dsb_idx(bp);
6526 		bnx2x_init_sp_ring(bp);
6527 	} else {
6528 		bnx2x_memset_stats(bp);
6529 	}
6530 }
6531 
6532 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6533 {
6534 	bnx2x_init_eq_ring(bp);
6535 	bnx2x_init_internal(bp, load_code);
6536 	bnx2x_pf_init(bp);
6537 	bnx2x_stats_init(bp);
6538 
6539 	/* flush all before enabling interrupts */
6540 	mb();
6541 	mmiowb();
6542 
6543 	bnx2x_int_enable(bp);
6544 
6545 	/* Check for SPIO5 */
6546 	bnx2x_attn_int_deasserted0(bp,
6547 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6548 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6549 }
6550 
6551 /* gzip service functions */
6552 static int bnx2x_gunzip_init(struct bnx2x *bp)
6553 {
6554 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6555 					    &bp->gunzip_mapping, GFP_KERNEL);
6556 	if (bp->gunzip_buf  == NULL)
6557 		goto gunzip_nomem1;
6558 
6559 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6560 	if (bp->strm  == NULL)
6561 		goto gunzip_nomem2;
6562 
6563 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6564 	if (bp->strm->workspace == NULL)
6565 		goto gunzip_nomem3;
6566 
6567 	return 0;
6568 
6569 gunzip_nomem3:
6570 	kfree(bp->strm);
6571 	bp->strm = NULL;
6572 
6573 gunzip_nomem2:
6574 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6575 			  bp->gunzip_mapping);
6576 	bp->gunzip_buf = NULL;
6577 
6578 gunzip_nomem1:
6579 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6580 	return -ENOMEM;
6581 }
6582 
6583 static void bnx2x_gunzip_end(struct bnx2x *bp)
6584 {
6585 	if (bp->strm) {
6586 		vfree(bp->strm->workspace);
6587 		kfree(bp->strm);
6588 		bp->strm = NULL;
6589 	}
6590 
6591 	if (bp->gunzip_buf) {
6592 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593 				  bp->gunzip_mapping);
6594 		bp->gunzip_buf = NULL;
6595 	}
6596 }
6597 
6598 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6599 {
6600 	int n, rc;
6601 
6602 	/* check gzip header */
6603 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6604 		BNX2X_ERR("Bad gzip header\n");
6605 		return -EINVAL;
6606 	}
6607 
6608 	n = 10;
6609 
6610 #define FNAME				0x8
6611 
6612 	if (zbuf[3] & FNAME)
6613 		while ((zbuf[n++] != 0) && (n < len));
6614 
6615 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6616 	bp->strm->avail_in = len - n;
6617 	bp->strm->next_out = bp->gunzip_buf;
6618 	bp->strm->avail_out = FW_BUF_SIZE;
6619 
6620 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6621 	if (rc != Z_OK)
6622 		return rc;
6623 
6624 	rc = zlib_inflate(bp->strm, Z_FINISH);
6625 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6626 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6627 			   bp->strm->msg);
6628 
6629 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6630 	if (bp->gunzip_outlen & 0x3)
6631 		netdev_err(bp->dev,
6632 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6633 				bp->gunzip_outlen);
6634 	bp->gunzip_outlen >>= 2;
6635 
6636 	zlib_inflateEnd(bp->strm);
6637 
6638 	if (rc == Z_STREAM_END)
6639 		return 0;
6640 
6641 	return rc;
6642 }
6643 
6644 /* nic load/unload */
6645 
6646 /*
6647  * General service functions
6648  */
6649 
6650 /* send a NIG loopback debug packet */
6651 static void bnx2x_lb_pckt(struct bnx2x *bp)
6652 {
6653 	u32 wb_write[3];
6654 
6655 	/* Ethernet source and destination addresses */
6656 	wb_write[0] = 0x55555555;
6657 	wb_write[1] = 0x55555555;
6658 	wb_write[2] = 0x20;		/* SOP */
6659 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6660 
6661 	/* NON-IP protocol */
6662 	wb_write[0] = 0x09000000;
6663 	wb_write[1] = 0x55555555;
6664 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6665 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6666 }
6667 
6668 /* some of the internal memories
6669  * are not directly readable from the driver
6670  * to test them we send debug packets
6671  */
6672 static int bnx2x_int_mem_test(struct bnx2x *bp)
6673 {
6674 	int factor;
6675 	int count, i;
6676 	u32 val = 0;
6677 
6678 	if (CHIP_REV_IS_FPGA(bp))
6679 		factor = 120;
6680 	else if (CHIP_REV_IS_EMUL(bp))
6681 		factor = 200;
6682 	else
6683 		factor = 1;
6684 
6685 	/* Disable inputs of parser neighbor blocks */
6686 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6687 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6688 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6689 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6690 
6691 	/*  Write 0 to parser credits for CFC search request */
6692 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6693 
6694 	/* send Ethernet packet */
6695 	bnx2x_lb_pckt(bp);
6696 
6697 	/* TODO do i reset NIG statistic? */
6698 	/* Wait until NIG register shows 1 packet of size 0x10 */
6699 	count = 1000 * factor;
6700 	while (count) {
6701 
6702 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6703 		val = *bnx2x_sp(bp, wb_data[0]);
6704 		if (val == 0x10)
6705 			break;
6706 
6707 		usleep_range(10000, 20000);
6708 		count--;
6709 	}
6710 	if (val != 0x10) {
6711 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6712 		return -1;
6713 	}
6714 
6715 	/* Wait until PRS register shows 1 packet */
6716 	count = 1000 * factor;
6717 	while (count) {
6718 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6719 		if (val == 1)
6720 			break;
6721 
6722 		usleep_range(10000, 20000);
6723 		count--;
6724 	}
6725 	if (val != 0x1) {
6726 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6727 		return -2;
6728 	}
6729 
6730 	/* Reset and init BRB, PRS */
6731 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6732 	msleep(50);
6733 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6734 	msleep(50);
6735 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6736 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6737 
6738 	DP(NETIF_MSG_HW, "part2\n");
6739 
6740 	/* Disable inputs of parser neighbor blocks */
6741 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6742 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6743 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6744 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6745 
6746 	/* Write 0 to parser credits for CFC search request */
6747 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6748 
6749 	/* send 10 Ethernet packets */
6750 	for (i = 0; i < 10; i++)
6751 		bnx2x_lb_pckt(bp);
6752 
6753 	/* Wait until NIG register shows 10 + 1
6754 	   packets of size 11*0x10 = 0xb0 */
6755 	count = 1000 * factor;
6756 	while (count) {
6757 
6758 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6759 		val = *bnx2x_sp(bp, wb_data[0]);
6760 		if (val == 0xb0)
6761 			break;
6762 
6763 		usleep_range(10000, 20000);
6764 		count--;
6765 	}
6766 	if (val != 0xb0) {
6767 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6768 		return -3;
6769 	}
6770 
6771 	/* Wait until PRS register shows 2 packets */
6772 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6773 	if (val != 2)
6774 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6775 
6776 	/* Write 1 to parser credits for CFC search request */
6777 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6778 
6779 	/* Wait until PRS register shows 3 packets */
6780 	msleep(10 * factor);
6781 	/* Wait until NIG register shows 1 packet of size 0x10 */
6782 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6783 	if (val != 3)
6784 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6785 
6786 	/* clear NIG EOP FIFO */
6787 	for (i = 0; i < 11; i++)
6788 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6789 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6790 	if (val != 1) {
6791 		BNX2X_ERR("clear of NIG failed\n");
6792 		return -4;
6793 	}
6794 
6795 	/* Reset and init BRB, PRS, NIG */
6796 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6797 	msleep(50);
6798 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6799 	msleep(50);
6800 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6801 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6802 	if (!CNIC_SUPPORT(bp))
6803 		/* set NIC mode */
6804 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6805 
6806 	/* Enable inputs of parser neighbor blocks */
6807 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6808 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6809 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6810 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6811 
6812 	DP(NETIF_MSG_HW, "done\n");
6813 
6814 	return 0; /* OK */
6815 }
6816 
6817 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6818 {
6819 	u32 val;
6820 
6821 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6822 	if (!CHIP_IS_E1x(bp))
6823 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6824 	else
6825 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6826 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6827 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6828 	/*
6829 	 * mask read length error interrupts in brb for parser
6830 	 * (parsing unit and 'checksum and crc' unit)
6831 	 * these errors are legal (PU reads fixed length and CAC can cause
6832 	 * read length error on truncated packets)
6833 	 */
6834 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6835 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6836 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6837 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6838 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6839 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6840 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6841 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6842 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6843 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6844 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6845 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6846 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6847 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6848 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6849 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6850 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6851 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6852 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6853 
6854 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6855 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6856 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6857 	if (!CHIP_IS_E1x(bp))
6858 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6859 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6860 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6861 
6862 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6863 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6864 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6865 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6866 
6867 	if (!CHIP_IS_E1x(bp))
6868 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6869 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6870 
6871 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6872 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6873 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6874 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6875 }
6876 
6877 static void bnx2x_reset_common(struct bnx2x *bp)
6878 {
6879 	u32 val = 0x1400;
6880 
6881 	/* reset_common */
6882 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6883 	       0xd3ffff7f);
6884 
6885 	if (CHIP_IS_E3(bp)) {
6886 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6887 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6888 	}
6889 
6890 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6891 }
6892 
6893 static void bnx2x_setup_dmae(struct bnx2x *bp)
6894 {
6895 	bp->dmae_ready = 0;
6896 	spin_lock_init(&bp->dmae_lock);
6897 }
6898 
6899 static void bnx2x_init_pxp(struct bnx2x *bp)
6900 {
6901 	u16 devctl;
6902 	int r_order, w_order;
6903 
6904 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6905 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6906 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6907 	if (bp->mrrs == -1)
6908 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6909 	else {
6910 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6911 		r_order = bp->mrrs;
6912 	}
6913 
6914 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6915 }
6916 
6917 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6918 {
6919 	int is_required;
6920 	u32 val;
6921 	int port;
6922 
6923 	if (BP_NOMCP(bp))
6924 		return;
6925 
6926 	is_required = 0;
6927 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6928 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6929 
6930 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6931 		is_required = 1;
6932 
6933 	/*
6934 	 * The fan failure mechanism is usually related to the PHY type since
6935 	 * the power consumption of the board is affected by the PHY. Currently,
6936 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6937 	 */
6938 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6939 		for (port = PORT_0; port < PORT_MAX; port++) {
6940 			is_required |=
6941 				bnx2x_fan_failure_det_req(
6942 					bp,
6943 					bp->common.shmem_base,
6944 					bp->common.shmem2_base,
6945 					port);
6946 		}
6947 
6948 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6949 
6950 	if (is_required == 0)
6951 		return;
6952 
6953 	/* Fan failure is indicated by SPIO 5 */
6954 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6955 
6956 	/* set to active low mode */
6957 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6958 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6959 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6960 
6961 	/* enable interrupt to signal the IGU */
6962 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6963 	val |= MISC_SPIO_SPIO5;
6964 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6965 }
6966 
6967 void bnx2x_pf_disable(struct bnx2x *bp)
6968 {
6969 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6970 	val &= ~IGU_PF_CONF_FUNC_EN;
6971 
6972 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6973 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6974 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6975 }
6976 
6977 static void bnx2x__common_init_phy(struct bnx2x *bp)
6978 {
6979 	u32 shmem_base[2], shmem2_base[2];
6980 	/* Avoid common init in case MFW supports LFA */
6981 	if (SHMEM2_RD(bp, size) >
6982 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6983 		return;
6984 	shmem_base[0] =  bp->common.shmem_base;
6985 	shmem2_base[0] = bp->common.shmem2_base;
6986 	if (!CHIP_IS_E1x(bp)) {
6987 		shmem_base[1] =
6988 			SHMEM2_RD(bp, other_shmem_base_addr);
6989 		shmem2_base[1] =
6990 			SHMEM2_RD(bp, other_shmem2_base_addr);
6991 	}
6992 	bnx2x_acquire_phy_lock(bp);
6993 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6994 			      bp->common.chip_id);
6995 	bnx2x_release_phy_lock(bp);
6996 }
6997 
6998 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6999 {
7000 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7001 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7002 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7003 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7004 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7005 
7006 	/* make sure this value is 0 */
7007 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7008 
7009 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7010 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7011 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7012 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7013 }
7014 
7015 static void bnx2x_set_endianity(struct bnx2x *bp)
7016 {
7017 #ifdef __BIG_ENDIAN
7018 	bnx2x_config_endianity(bp, 1);
7019 #else
7020 	bnx2x_config_endianity(bp, 0);
7021 #endif
7022 }
7023 
7024 static void bnx2x_reset_endianity(struct bnx2x *bp)
7025 {
7026 	bnx2x_config_endianity(bp, 0);
7027 }
7028 
7029 /**
7030  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7031  *
7032  * @bp:		driver handle
7033  */
7034 static int bnx2x_init_hw_common(struct bnx2x *bp)
7035 {
7036 	u32 val;
7037 
7038 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7039 
7040 	/*
7041 	 * take the RESET lock to protect undi_unload flow from accessing
7042 	 * registers while we're resetting the chip
7043 	 */
7044 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7045 
7046 	bnx2x_reset_common(bp);
7047 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7048 
7049 	val = 0xfffc;
7050 	if (CHIP_IS_E3(bp)) {
7051 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7052 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7053 	}
7054 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7055 
7056 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7057 
7058 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7059 
7060 	if (!CHIP_IS_E1x(bp)) {
7061 		u8 abs_func_id;
7062 
7063 		/**
7064 		 * 4-port mode or 2-port mode we need to turn of master-enable
7065 		 * for everyone, after that, turn it back on for self.
7066 		 * so, we disregard multi-function or not, and always disable
7067 		 * for all functions on the given path, this means 0,2,4,6 for
7068 		 * path 0 and 1,3,5,7 for path 1
7069 		 */
7070 		for (abs_func_id = BP_PATH(bp);
7071 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7072 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7073 				REG_WR(bp,
7074 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7075 				    1);
7076 				continue;
7077 			}
7078 
7079 			bnx2x_pretend_func(bp, abs_func_id);
7080 			/* clear pf enable */
7081 			bnx2x_pf_disable(bp);
7082 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7083 		}
7084 	}
7085 
7086 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7087 	if (CHIP_IS_E1(bp)) {
7088 		/* enable HW interrupt from PXP on USDM overflow
7089 		   bit 16 on INT_MASK_0 */
7090 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7091 	}
7092 
7093 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7094 	bnx2x_init_pxp(bp);
7095 	bnx2x_set_endianity(bp);
7096 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7097 
7098 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7099 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7100 
7101 	/* let the HW do it's magic ... */
7102 	msleep(100);
7103 	/* finish PXP init */
7104 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7105 	if (val != 1) {
7106 		BNX2X_ERR("PXP2 CFG failed\n");
7107 		return -EBUSY;
7108 	}
7109 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7110 	if (val != 1) {
7111 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7112 		return -EBUSY;
7113 	}
7114 
7115 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7116 	 * have entries with value "0" and valid bit on.
7117 	 * This needs to be done by the first PF that is loaded in a path
7118 	 * (i.e. common phase)
7119 	 */
7120 	if (!CHIP_IS_E1x(bp)) {
7121 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7122  * (i.e. vnic3) to start even if it is marked as "scan-off".
7123  * This occurs when a different function (func2,3) is being marked
7124  * as "scan-off". Real-life scenario for example: if a driver is being
7125  * load-unloaded while func6,7 are down. This will cause the timer to access
7126  * the ilt, translate to a logical address and send a request to read/write.
7127  * Since the ilt for the function that is down is not valid, this will cause
7128  * a translation error which is unrecoverable.
7129  * The Workaround is intended to make sure that when this happens nothing fatal
7130  * will occur. The workaround:
7131  *	1.  First PF driver which loads on a path will:
7132  *		a.  After taking the chip out of reset, by using pretend,
7133  *		    it will write "0" to the following registers of
7134  *		    the other vnics.
7135  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7136  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7137  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7138  *		    And for itself it will write '1' to
7139  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7140  *		    dmae-operations (writing to pram for example.)
7141  *		    note: can be done for only function 6,7 but cleaner this
7142  *			  way.
7143  *		b.  Write zero+valid to the entire ILT.
7144  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7145  *		    VNIC3 (of that port). The range allocated will be the
7146  *		    entire ILT. This is needed to prevent  ILT range error.
7147  *	2.  Any PF driver load flow:
7148  *		a.  ILT update with the physical addresses of the allocated
7149  *		    logical pages.
7150  *		b.  Wait 20msec. - note that this timeout is needed to make
7151  *		    sure there are no requests in one of the PXP internal
7152  *		    queues with "old" ILT addresses.
7153  *		c.  PF enable in the PGLC.
7154  *		d.  Clear the was_error of the PF in the PGLC. (could have
7155  *		    occurred while driver was down)
7156  *		e.  PF enable in the CFC (WEAK + STRONG)
7157  *		f.  Timers scan enable
7158  *	3.  PF driver unload flow:
7159  *		a.  Clear the Timers scan_en.
7160  *		b.  Polling for scan_on=0 for that PF.
7161  *		c.  Clear the PF enable bit in the PXP.
7162  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7163  *		e.  Write zero+valid to all ILT entries (The valid bit must
7164  *		    stay set)
7165  *		f.  If this is VNIC 3 of a port then also init
7166  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7167  *		    to the last entry in the ILT.
7168  *
7169  *	Notes:
7170  *	Currently the PF error in the PGLC is non recoverable.
7171  *	In the future the there will be a recovery routine for this error.
7172  *	Currently attention is masked.
7173  *	Having an MCP lock on the load/unload process does not guarantee that
7174  *	there is no Timer disable during Func6/7 enable. This is because the
7175  *	Timers scan is currently being cleared by the MCP on FLR.
7176  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7177  *	there is error before clearing it. But the flow above is simpler and
7178  *	more general.
7179  *	All ILT entries are written by zero+valid and not just PF6/7
7180  *	ILT entries since in the future the ILT entries allocation for
7181  *	PF-s might be dynamic.
7182  */
7183 		struct ilt_client_info ilt_cli;
7184 		struct bnx2x_ilt ilt;
7185 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7186 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7187 
7188 		/* initialize dummy TM client */
7189 		ilt_cli.start = 0;
7190 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7191 		ilt_cli.client_num = ILT_CLIENT_TM;
7192 
7193 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7194 		 * Step 2: set the timers first/last ilt entry to point
7195 		 * to the entire range to prevent ILT range error for 3rd/4th
7196 		 * vnic	(this code assumes existence of the vnic)
7197 		 *
7198 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7199 		 * with dummy TM client
7200 		 *
7201 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7202 		 * and his brother are split registers
7203 		 */
7204 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7205 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7206 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7207 
7208 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7209 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7210 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7211 	}
7212 
7213 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7214 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7215 
7216 	if (!CHIP_IS_E1x(bp)) {
7217 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7218 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7219 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7220 
7221 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7222 
7223 		/* let the HW do it's magic ... */
7224 		do {
7225 			msleep(200);
7226 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7227 		} while (factor-- && (val != 1));
7228 
7229 		if (val != 1) {
7230 			BNX2X_ERR("ATC_INIT failed\n");
7231 			return -EBUSY;
7232 		}
7233 	}
7234 
7235 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7236 
7237 	bnx2x_iov_init_dmae(bp);
7238 
7239 	/* clean the DMAE memory */
7240 	bp->dmae_ready = 1;
7241 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7242 
7243 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7244 
7245 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7246 
7247 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7248 
7249 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7250 
7251 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7252 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7253 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7254 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7255 
7256 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7257 
7258 	/* QM queues pointers table */
7259 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7260 
7261 	/* soft reset pulse */
7262 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7263 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7264 
7265 	if (CNIC_SUPPORT(bp))
7266 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7267 
7268 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7269 
7270 	if (!CHIP_REV_IS_SLOW(bp))
7271 		/* enable hw interrupt from doorbell Q */
7272 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7273 
7274 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7275 
7276 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7277 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7278 
7279 	if (!CHIP_IS_E1(bp))
7280 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7281 
7282 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7283 		if (IS_MF_AFEX(bp)) {
7284 			/* configure that VNTag and VLAN headers must be
7285 			 * received in afex mode
7286 			 */
7287 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7288 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7289 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7290 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7291 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7292 		} else {
7293 			/* Bit-map indicating which L2 hdrs may appear
7294 			 * after the basic Ethernet header
7295 			 */
7296 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7297 			       bp->path_has_ovlan ? 7 : 6);
7298 		}
7299 	}
7300 
7301 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7302 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7303 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7304 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7305 
7306 	if (!CHIP_IS_E1x(bp)) {
7307 		/* reset VFC memories */
7308 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7309 			   VFC_MEMORIES_RST_REG_CAM_RST |
7310 			   VFC_MEMORIES_RST_REG_RAM_RST);
7311 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7312 			   VFC_MEMORIES_RST_REG_CAM_RST |
7313 			   VFC_MEMORIES_RST_REG_RAM_RST);
7314 
7315 		msleep(20);
7316 	}
7317 
7318 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7319 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7320 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7321 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7322 
7323 	/* sync semi rtc */
7324 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7325 	       0x80000000);
7326 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7327 	       0x80000000);
7328 
7329 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7330 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7331 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7332 
7333 	if (!CHIP_IS_E1x(bp)) {
7334 		if (IS_MF_AFEX(bp)) {
7335 			/* configure that VNTag and VLAN headers must be
7336 			 * sent in afex mode
7337 			 */
7338 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7339 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7340 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7341 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7342 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7343 		} else {
7344 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7345 			       bp->path_has_ovlan ? 7 : 6);
7346 		}
7347 	}
7348 
7349 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7350 
7351 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7352 
7353 	if (CNIC_SUPPORT(bp)) {
7354 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7355 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7356 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7357 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7358 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7359 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7360 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7361 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7362 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7363 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7364 	}
7365 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7366 
7367 	if (sizeof(union cdu_context) != 1024)
7368 		/* we currently assume that a context is 1024 bytes */
7369 		dev_alert(&bp->pdev->dev,
7370 			  "please adjust the size of cdu_context(%ld)\n",
7371 			  (long)sizeof(union cdu_context));
7372 
7373 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7374 	val = (4 << 24) + (0 << 12) + 1024;
7375 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7376 
7377 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7378 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7379 	/* enable context validation interrupt from CFC */
7380 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7381 
7382 	/* set the thresholds to prevent CFC/CDU race */
7383 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7384 
7385 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7386 
7387 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7388 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7389 
7390 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7391 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7392 
7393 	/* Reset PCIE errors for debug */
7394 	REG_WR(bp, 0x2814, 0xffffffff);
7395 	REG_WR(bp, 0x3820, 0xffffffff);
7396 
7397 	if (!CHIP_IS_E1x(bp)) {
7398 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7399 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7400 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7401 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7402 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7403 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7404 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7405 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7406 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7407 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7408 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7409 	}
7410 
7411 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7412 	if (!CHIP_IS_E1(bp)) {
7413 		/* in E3 this done in per-port section */
7414 		if (!CHIP_IS_E3(bp))
7415 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7416 	}
7417 	if (CHIP_IS_E1H(bp))
7418 		/* not applicable for E2 (and above ...) */
7419 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7420 
7421 	if (CHIP_REV_IS_SLOW(bp))
7422 		msleep(200);
7423 
7424 	/* finish CFC init */
7425 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7426 	if (val != 1) {
7427 		BNX2X_ERR("CFC LL_INIT failed\n");
7428 		return -EBUSY;
7429 	}
7430 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7431 	if (val != 1) {
7432 		BNX2X_ERR("CFC AC_INIT failed\n");
7433 		return -EBUSY;
7434 	}
7435 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7436 	if (val != 1) {
7437 		BNX2X_ERR("CFC CAM_INIT failed\n");
7438 		return -EBUSY;
7439 	}
7440 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7441 
7442 	if (CHIP_IS_E1(bp)) {
7443 		/* read NIG statistic
7444 		   to see if this is our first up since powerup */
7445 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7446 		val = *bnx2x_sp(bp, wb_data[0]);
7447 
7448 		/* do internal memory self test */
7449 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7450 			BNX2X_ERR("internal mem self test failed\n");
7451 			return -EBUSY;
7452 		}
7453 	}
7454 
7455 	bnx2x_setup_fan_failure_detection(bp);
7456 
7457 	/* clear PXP2 attentions */
7458 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7459 
7460 	bnx2x_enable_blocks_attention(bp);
7461 	bnx2x_enable_blocks_parity(bp);
7462 
7463 	if (!BP_NOMCP(bp)) {
7464 		if (CHIP_IS_E1x(bp))
7465 			bnx2x__common_init_phy(bp);
7466 	} else
7467 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7468 
7469 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7470 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7471 
7472 	return 0;
7473 }
7474 
7475 /**
7476  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7477  *
7478  * @bp:		driver handle
7479  */
7480 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7481 {
7482 	int rc = bnx2x_init_hw_common(bp);
7483 
7484 	if (rc)
7485 		return rc;
7486 
7487 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7488 	if (!BP_NOMCP(bp))
7489 		bnx2x__common_init_phy(bp);
7490 
7491 	return 0;
7492 }
7493 
7494 static int bnx2x_init_hw_port(struct bnx2x *bp)
7495 {
7496 	int port = BP_PORT(bp);
7497 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7498 	u32 low, high;
7499 	u32 val, reg;
7500 
7501 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7502 
7503 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7504 
7505 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7506 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7507 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7508 
7509 	/* Timers bug workaround: disables the pf_master bit in pglue at
7510 	 * common phase, we need to enable it here before any dmae access are
7511 	 * attempted. Therefore we manually added the enable-master to the
7512 	 * port phase (it also happens in the function phase)
7513 	 */
7514 	if (!CHIP_IS_E1x(bp))
7515 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7516 
7517 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7518 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7519 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7520 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7521 
7522 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7523 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7524 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7525 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7526 
7527 	/* QM cid (connection) count */
7528 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7529 
7530 	if (CNIC_SUPPORT(bp)) {
7531 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7532 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7533 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7534 	}
7535 
7536 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7537 
7538 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7539 
7540 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7541 
7542 		if (IS_MF(bp))
7543 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7544 		else if (bp->dev->mtu > 4096) {
7545 			if (bp->flags & ONE_PORT_FLAG)
7546 				low = 160;
7547 			else {
7548 				val = bp->dev->mtu;
7549 				/* (24*1024 + val*4)/256 */
7550 				low = 96 + (val/64) +
7551 						((val % 64) ? 1 : 0);
7552 			}
7553 		} else
7554 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7555 		high = low + 56;	/* 14*1024/256 */
7556 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7557 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7558 	}
7559 
7560 	if (CHIP_MODE_IS_4_PORT(bp))
7561 		REG_WR(bp, (BP_PORT(bp) ?
7562 			    BRB1_REG_MAC_GUARANTIED_1 :
7563 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7564 
7565 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7566 	if (CHIP_IS_E3B0(bp)) {
7567 		if (IS_MF_AFEX(bp)) {
7568 			/* configure headers for AFEX mode */
7569 			REG_WR(bp, BP_PORT(bp) ?
7570 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7571 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7572 			REG_WR(bp, BP_PORT(bp) ?
7573 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7574 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7575 			REG_WR(bp, BP_PORT(bp) ?
7576 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7577 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7578 		} else {
7579 			/* Ovlan exists only if we are in multi-function +
7580 			 * switch-dependent mode, in switch-independent there
7581 			 * is no ovlan headers
7582 			 */
7583 			REG_WR(bp, BP_PORT(bp) ?
7584 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7585 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7586 			       (bp->path_has_ovlan ? 7 : 6));
7587 		}
7588 	}
7589 
7590 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7591 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7592 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7593 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7594 
7595 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7596 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7597 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7598 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7599 
7600 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7601 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7602 
7603 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7604 
7605 	if (CHIP_IS_E1x(bp)) {
7606 		/* configure PBF to work without PAUSE mtu 9000 */
7607 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7608 
7609 		/* update threshold */
7610 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7611 		/* update init credit */
7612 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7613 
7614 		/* probe changes */
7615 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7616 		udelay(50);
7617 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7618 	}
7619 
7620 	if (CNIC_SUPPORT(bp))
7621 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7622 
7623 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7624 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7625 
7626 	if (CHIP_IS_E1(bp)) {
7627 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7628 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7629 	}
7630 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7631 
7632 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7633 
7634 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7635 	/* init aeu_mask_attn_func_0/1:
7636 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7637 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7638 	 *             bits 4-7 are used for "per vn group attention" */
7639 	val = IS_MF(bp) ? 0xF7 : 0x7;
7640 	/* Enable DCBX attention for all but E1 */
7641 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7642 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7643 
7644 	/* SCPAD_PARITY should NOT trigger close the gates */
7645 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7646 	REG_WR(bp, reg,
7647 	       REG_RD(bp, reg) &
7648 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649 
7650 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7651 	REG_WR(bp, reg,
7652 	       REG_RD(bp, reg) &
7653 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7654 
7655 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7656 
7657 	if (!CHIP_IS_E1x(bp)) {
7658 		/* Bit-map indicating which L2 hdrs may appear after the
7659 		 * basic Ethernet header
7660 		 */
7661 		if (IS_MF_AFEX(bp))
7662 			REG_WR(bp, BP_PORT(bp) ?
7663 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7664 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7665 		else
7666 			REG_WR(bp, BP_PORT(bp) ?
7667 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7668 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7669 			       IS_MF_SD(bp) ? 7 : 6);
7670 
7671 		if (CHIP_IS_E3(bp))
7672 			REG_WR(bp, BP_PORT(bp) ?
7673 				   NIG_REG_LLH1_MF_MODE :
7674 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7675 	}
7676 	if (!CHIP_IS_E3(bp))
7677 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7678 
7679 	if (!CHIP_IS_E1(bp)) {
7680 		/* 0x2 disable mf_ov, 0x1 enable */
7681 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7682 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7683 
7684 		if (!CHIP_IS_E1x(bp)) {
7685 			val = 0;
7686 			switch (bp->mf_mode) {
7687 			case MULTI_FUNCTION_SD:
7688 				val = 1;
7689 				break;
7690 			case MULTI_FUNCTION_SI:
7691 			case MULTI_FUNCTION_AFEX:
7692 				val = 2;
7693 				break;
7694 			}
7695 
7696 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7697 						  NIG_REG_LLH0_CLS_TYPE), val);
7698 		}
7699 		{
7700 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7701 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7702 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7703 		}
7704 	}
7705 
7706 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7707 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7708 	if (val & MISC_SPIO_SPIO5) {
7709 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7710 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7711 		val = REG_RD(bp, reg_addr);
7712 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7713 		REG_WR(bp, reg_addr, val);
7714 	}
7715 
7716 	return 0;
7717 }
7718 
7719 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7720 {
7721 	int reg;
7722 	u32 wb_write[2];
7723 
7724 	if (CHIP_IS_E1(bp))
7725 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7726 	else
7727 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7728 
7729 	wb_write[0] = ONCHIP_ADDR1(addr);
7730 	wb_write[1] = ONCHIP_ADDR2(addr);
7731 	REG_WR_DMAE(bp, reg, wb_write, 2);
7732 }
7733 
7734 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7735 {
7736 	u32 data, ctl, cnt = 100;
7737 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7738 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7739 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7740 	u32 sb_bit =  1 << (idu_sb_id%32);
7741 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7742 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7743 
7744 	/* Not supported in BC mode */
7745 	if (CHIP_INT_MODE_IS_BC(bp))
7746 		return;
7747 
7748 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7749 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7750 		IGU_REGULAR_CLEANUP_SET				|
7751 		IGU_REGULAR_BCLEANUP;
7752 
7753 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7754 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7755 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7756 
7757 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758 			 data, igu_addr_data);
7759 	REG_WR(bp, igu_addr_data, data);
7760 	mmiowb();
7761 	barrier();
7762 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763 			  ctl, igu_addr_ctl);
7764 	REG_WR(bp, igu_addr_ctl, ctl);
7765 	mmiowb();
7766 	barrier();
7767 
7768 	/* wait for clean up to finish */
7769 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7770 		msleep(20);
7771 
7772 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7773 		DP(NETIF_MSG_HW,
7774 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7775 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7776 	}
7777 }
7778 
7779 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7780 {
7781 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7782 }
7783 
7784 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7785 {
7786 	u32 i, base = FUNC_ILT_BASE(func);
7787 	for (i = base; i < base + ILT_PER_FUNC; i++)
7788 		bnx2x_ilt_wr(bp, i, 0);
7789 }
7790 
7791 static void bnx2x_init_searcher(struct bnx2x *bp)
7792 {
7793 	int port = BP_PORT(bp);
7794 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7795 	/* T1 hash bits value determines the T1 number of entries */
7796 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7797 }
7798 
7799 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7800 {
7801 	int rc;
7802 	struct bnx2x_func_state_params func_params = {NULL};
7803 	struct bnx2x_func_switch_update_params *switch_update_params =
7804 		&func_params.params.switch_update;
7805 
7806 	/* Prepare parameters for function state transitions */
7807 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7808 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7809 
7810 	func_params.f_obj = &bp->func_obj;
7811 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7812 
7813 	/* Function parameters */
7814 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7815 		  &switch_update_params->changes);
7816 	if (suspend)
7817 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7818 			  &switch_update_params->changes);
7819 
7820 	rc = bnx2x_func_state_change(bp, &func_params);
7821 
7822 	return rc;
7823 }
7824 
7825 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7826 {
7827 	int rc, i, port = BP_PORT(bp);
7828 	int vlan_en = 0, mac_en[NUM_MACS];
7829 
7830 	/* Close input from network */
7831 	if (bp->mf_mode == SINGLE_FUNCTION) {
7832 		bnx2x_set_rx_filter(&bp->link_params, 0);
7833 	} else {
7834 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835 				   NIG_REG_LLH0_FUNC_EN);
7836 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7837 			  NIG_REG_LLH0_FUNC_EN, 0);
7838 		for (i = 0; i < NUM_MACS; i++) {
7839 			mac_en[i] = REG_RD(bp, port ?
7840 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7841 					      4 * i) :
7842 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7843 					      4 * i));
7844 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7845 					      4 * i) :
7846 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7847 		}
7848 	}
7849 
7850 	/* Close BMC to host */
7851 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7852 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7853 
7854 	/* Suspend Tx switching to the PF. Completion of this ramrod
7855 	 * further guarantees that all the packets of that PF / child
7856 	 * VFs in BRB were processed by the Parser, so it is safe to
7857 	 * change the NIC_MODE register.
7858 	 */
7859 	rc = bnx2x_func_switch_update(bp, 1);
7860 	if (rc) {
7861 		BNX2X_ERR("Can't suspend tx-switching!\n");
7862 		return rc;
7863 	}
7864 
7865 	/* Change NIC_MODE register */
7866 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7867 
7868 	/* Open input from network */
7869 	if (bp->mf_mode == SINGLE_FUNCTION) {
7870 		bnx2x_set_rx_filter(&bp->link_params, 1);
7871 	} else {
7872 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7873 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7874 		for (i = 0; i < NUM_MACS; i++) {
7875 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7876 					      4 * i) :
7877 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7878 				  mac_en[i]);
7879 		}
7880 	}
7881 
7882 	/* Enable BMC to host */
7883 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7884 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7885 
7886 	/* Resume Tx switching to the PF */
7887 	rc = bnx2x_func_switch_update(bp, 0);
7888 	if (rc) {
7889 		BNX2X_ERR("Can't resume tx-switching!\n");
7890 		return rc;
7891 	}
7892 
7893 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7894 	return 0;
7895 }
7896 
7897 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7898 {
7899 	int rc;
7900 
7901 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7902 
7903 	if (CONFIGURE_NIC_MODE(bp)) {
7904 		/* Configure searcher as part of function hw init */
7905 		bnx2x_init_searcher(bp);
7906 
7907 		/* Reset NIC mode */
7908 		rc = bnx2x_reset_nic_mode(bp);
7909 		if (rc)
7910 			BNX2X_ERR("Can't change NIC mode!\n");
7911 		return rc;
7912 	}
7913 
7914 	return 0;
7915 }
7916 
7917 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7918  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7919  * the addresses of the transaction, resulting in was-error bit set in the pci
7920  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7921  * to clear the interrupt which detected this from the pglueb and the was done
7922  * bit
7923  */
7924 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7925 {
7926 	if (!CHIP_IS_E1x(bp))
7927 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7928 		       1 << BP_ABS_FUNC(bp));
7929 }
7930 
7931 static int bnx2x_init_hw_func(struct bnx2x *bp)
7932 {
7933 	int port = BP_PORT(bp);
7934 	int func = BP_FUNC(bp);
7935 	int init_phase = PHASE_PF0 + func;
7936 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7937 	u16 cdu_ilt_start;
7938 	u32 addr, val;
7939 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7940 	int i, main_mem_width, rc;
7941 
7942 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7943 
7944 	/* FLR cleanup - hmmm */
7945 	if (!CHIP_IS_E1x(bp)) {
7946 		rc = bnx2x_pf_flr_clnup(bp);
7947 		if (rc) {
7948 			bnx2x_fw_dump(bp);
7949 			return rc;
7950 		}
7951 	}
7952 
7953 	/* set MSI reconfigure capability */
7954 	if (bp->common.int_block == INT_BLOCK_HC) {
7955 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7956 		val = REG_RD(bp, addr);
7957 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7958 		REG_WR(bp, addr, val);
7959 	}
7960 
7961 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7962 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7963 
7964 	ilt = BP_ILT(bp);
7965 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7966 
7967 	if (IS_SRIOV(bp))
7968 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7969 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7970 
7971 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7972 	 * those of the VFs, so start line should be reset
7973 	 */
7974 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7975 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7976 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7977 		ilt->lines[cdu_ilt_start + i].page_mapping =
7978 			bp->context[i].cxt_mapping;
7979 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7980 	}
7981 
7982 	bnx2x_ilt_init_op(bp, INITOP_SET);
7983 
7984 	if (!CONFIGURE_NIC_MODE(bp)) {
7985 		bnx2x_init_searcher(bp);
7986 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7987 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7988 	} else {
7989 		/* Set NIC mode */
7990 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7991 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7992 	}
7993 
7994 	if (!CHIP_IS_E1x(bp)) {
7995 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7996 
7997 		/* Turn on a single ISR mode in IGU if driver is going to use
7998 		 * INT#x or MSI
7999 		 */
8000 		if (!(bp->flags & USING_MSIX_FLAG))
8001 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8002 		/*
8003 		 * Timers workaround bug: function init part.
8004 		 * Need to wait 20msec after initializing ILT,
8005 		 * needed to make sure there are no requests in
8006 		 * one of the PXP internal queues with "old" ILT addresses
8007 		 */
8008 		msleep(20);
8009 		/*
8010 		 * Master enable - Due to WB DMAE writes performed before this
8011 		 * register is re-initialized as part of the regular function
8012 		 * init
8013 		 */
8014 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8015 		/* Enable the function in IGU */
8016 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8017 	}
8018 
8019 	bp->dmae_ready = 1;
8020 
8021 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8022 
8023 	bnx2x_clean_pglue_errors(bp);
8024 
8025 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8026 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8027 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8028 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8029 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8030 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8031 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8032 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8033 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8034 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8035 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8036 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8037 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8038 
8039 	if (!CHIP_IS_E1x(bp))
8040 		REG_WR(bp, QM_REG_PF_EN, 1);
8041 
8042 	if (!CHIP_IS_E1x(bp)) {
8043 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8047 	}
8048 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8049 
8050 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8052 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8053 
8054 	bnx2x_iov_init_dq(bp);
8055 
8056 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8059 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8060 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8061 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8062 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8063 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8064 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8065 	if (!CHIP_IS_E1x(bp))
8066 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8067 
8068 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8069 
8070 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8071 
8072 	if (!CHIP_IS_E1x(bp))
8073 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8074 
8075 	if (IS_MF(bp)) {
8076 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8077 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8078 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8079 			       bp->mf_ov);
8080 		}
8081 	}
8082 
8083 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8084 
8085 	/* HC init per function */
8086 	if (bp->common.int_block == INT_BLOCK_HC) {
8087 		if (CHIP_IS_E1H(bp)) {
8088 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8089 
8090 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8091 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8092 		}
8093 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8094 
8095 	} else {
8096 		int num_segs, sb_idx, prod_offset;
8097 
8098 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099 
8100 		if (!CHIP_IS_E1x(bp)) {
8101 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8102 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8103 		}
8104 
8105 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8106 
8107 		if (!CHIP_IS_E1x(bp)) {
8108 			int dsb_idx = 0;
8109 			/**
8110 			 * Producer memory:
8111 			 * E2 mode: address 0-135 match to the mapping memory;
8112 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8113 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8114 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8115 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8116 			 * 144-147 reserved.
8117 			 *
8118 			 * E1.5 mode - In backward compatible mode;
8119 			 * for non default SB; each even line in the memory
8120 			 * holds the U producer and each odd line hold
8121 			 * the C producer. The first 128 producers are for
8122 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8123 			 * producers are for the DSB for each PF.
8124 			 * Each PF has five segments: (the order inside each
8125 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8126 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8127 			 * 144-147 attn prods;
8128 			 */
8129 			/* non-default-status-blocks */
8130 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8131 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8132 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8133 				prod_offset = (bp->igu_base_sb + sb_idx) *
8134 					num_segs;
8135 
8136 				for (i = 0; i < num_segs; i++) {
8137 					addr = IGU_REG_PROD_CONS_MEMORY +
8138 							(prod_offset + i) * 4;
8139 					REG_WR(bp, addr, 0);
8140 				}
8141 				/* send consumer update with value 0 */
8142 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8143 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8144 				bnx2x_igu_clear_sb(bp,
8145 						   bp->igu_base_sb + sb_idx);
8146 			}
8147 
8148 			/* default-status-blocks */
8149 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8151 
8152 			if (CHIP_MODE_IS_4_PORT(bp))
8153 				dsb_idx = BP_FUNC(bp);
8154 			else
8155 				dsb_idx = BP_VN(bp);
8156 
8157 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8158 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8159 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8160 
8161 			/*
8162 			 * igu prods come in chunks of E1HVN_MAX (4) -
8163 			 * does not matters what is the current chip mode
8164 			 */
8165 			for (i = 0; i < (num_segs * E1HVN_MAX);
8166 			     i += E1HVN_MAX) {
8167 				addr = IGU_REG_PROD_CONS_MEMORY +
8168 							(prod_offset + i)*4;
8169 				REG_WR(bp, addr, 0);
8170 			}
8171 			/* send consumer update with 0 */
8172 			if (CHIP_INT_MODE_IS_BC(bp)) {
8173 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8175 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8177 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8179 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8181 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183 			} else {
8184 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8186 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8188 			}
8189 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8190 
8191 			/* !!! These should become driver const once
8192 			   rf-tool supports split-68 const */
8193 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8194 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8195 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8196 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8197 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8198 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8199 		}
8200 	}
8201 
8202 	/* Reset PCIE errors for debug */
8203 	REG_WR(bp, 0x2114, 0xffffffff);
8204 	REG_WR(bp, 0x2120, 0xffffffff);
8205 
8206 	if (CHIP_IS_E1x(bp)) {
8207 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8208 		main_mem_base = HC_REG_MAIN_MEMORY +
8209 				BP_PORT(bp) * (main_mem_size * 4);
8210 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8211 		main_mem_width = 8;
8212 
8213 		val = REG_RD(bp, main_mem_prty_clr);
8214 		if (val)
8215 			DP(NETIF_MSG_HW,
8216 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8217 			   val);
8218 
8219 		/* Clear "false" parity errors in MSI-X table */
8220 		for (i = main_mem_base;
8221 		     i < main_mem_base + main_mem_size * 4;
8222 		     i += main_mem_width) {
8223 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8224 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8225 					 i, main_mem_width / 4);
8226 		}
8227 		/* Clear HC parity attention */
8228 		REG_RD(bp, main_mem_prty_clr);
8229 	}
8230 
8231 #ifdef BNX2X_STOP_ON_ERROR
8232 	/* Enable STORMs SP logging */
8233 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8234 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8236 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8238 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8240 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8241 #endif
8242 
8243 	bnx2x_phy_probe(&bp->link_params);
8244 
8245 	return 0;
8246 }
8247 
8248 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8249 {
8250 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8251 
8252 	if (!CHIP_IS_E1x(bp))
8253 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8254 			       sizeof(struct host_hc_status_block_e2));
8255 	else
8256 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8257 			       sizeof(struct host_hc_status_block_e1x));
8258 
8259 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8260 }
8261 
8262 void bnx2x_free_mem(struct bnx2x *bp)
8263 {
8264 	int i;
8265 
8266 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8267 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8268 
8269 	if (IS_VF(bp))
8270 		return;
8271 
8272 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8273 		       sizeof(struct host_sp_status_block));
8274 
8275 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8276 		       sizeof(struct bnx2x_slowpath));
8277 
8278 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8279 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8280 			       bp->context[i].size);
8281 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8282 
8283 	BNX2X_FREE(bp->ilt->lines);
8284 
8285 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8286 
8287 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8288 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8289 
8290 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8291 
8292 	bnx2x_iov_free_mem(bp);
8293 }
8294 
8295 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8296 {
8297 	if (!CHIP_IS_E1x(bp)) {
8298 		/* size = the status block + ramrod buffers */
8299 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300 						    sizeof(struct host_hc_status_block_e2));
8301 		if (!bp->cnic_sb.e2_sb)
8302 			goto alloc_mem_err;
8303 	} else {
8304 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8305 						     sizeof(struct host_hc_status_block_e1x));
8306 		if (!bp->cnic_sb.e1x_sb)
8307 			goto alloc_mem_err;
8308 	}
8309 
8310 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8311 		/* allocate searcher T2 table, as it wasn't allocated before */
8312 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8313 		if (!bp->t2)
8314 			goto alloc_mem_err;
8315 	}
8316 
8317 	/* write address to which L5 should insert its values */
8318 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8319 		&bp->slowpath->drv_info_to_mcp;
8320 
8321 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8322 		goto alloc_mem_err;
8323 
8324 	return 0;
8325 
8326 alloc_mem_err:
8327 	bnx2x_free_mem_cnic(bp);
8328 	BNX2X_ERR("Can't allocate memory\n");
8329 	return -ENOMEM;
8330 }
8331 
8332 int bnx2x_alloc_mem(struct bnx2x *bp)
8333 {
8334 	int i, allocated, context_size;
8335 
8336 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8337 		/* allocate searcher T2 table */
8338 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8339 		if (!bp->t2)
8340 			goto alloc_mem_err;
8341 	}
8342 
8343 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8344 					     sizeof(struct host_sp_status_block));
8345 	if (!bp->def_status_blk)
8346 		goto alloc_mem_err;
8347 
8348 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8349 				       sizeof(struct bnx2x_slowpath));
8350 	if (!bp->slowpath)
8351 		goto alloc_mem_err;
8352 
8353 	/* Allocate memory for CDU context:
8354 	 * This memory is allocated separately and not in the generic ILT
8355 	 * functions because CDU differs in few aspects:
8356 	 * 1. There are multiple entities allocating memory for context -
8357 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8358 	 * its own ILT lines.
8359 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8360 	 * for the other ILT clients), to be efficient we want to support
8361 	 * allocation of sub-page-size in the last entry.
8362 	 * 3. Context pointers are used by the driver to pass to FW / update
8363 	 * the context (for the other ILT clients the pointers are used just to
8364 	 * free the memory during unload).
8365 	 */
8366 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8367 
8368 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8369 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8370 					  (context_size - allocated));
8371 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8372 						      bp->context[i].size);
8373 		if (!bp->context[i].vcxt)
8374 			goto alloc_mem_err;
8375 		allocated += bp->context[i].size;
8376 	}
8377 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8378 				 GFP_KERNEL);
8379 	if (!bp->ilt->lines)
8380 		goto alloc_mem_err;
8381 
8382 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8383 		goto alloc_mem_err;
8384 
8385 	if (bnx2x_iov_alloc_mem(bp))
8386 		goto alloc_mem_err;
8387 
8388 	/* Slow path ring */
8389 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8390 	if (!bp->spq)
8391 		goto alloc_mem_err;
8392 
8393 	/* EQ */
8394 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8395 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8396 	if (!bp->eq_ring)
8397 		goto alloc_mem_err;
8398 
8399 	return 0;
8400 
8401 alloc_mem_err:
8402 	bnx2x_free_mem(bp);
8403 	BNX2X_ERR("Can't allocate memory\n");
8404 	return -ENOMEM;
8405 }
8406 
8407 /*
8408  * Init service functions
8409  */
8410 
8411 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8412 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8413 		      int mac_type, unsigned long *ramrod_flags)
8414 {
8415 	int rc;
8416 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8417 
8418 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8419 
8420 	/* Fill general parameters */
8421 	ramrod_param.vlan_mac_obj = obj;
8422 	ramrod_param.ramrod_flags = *ramrod_flags;
8423 
8424 	/* Fill a user request section if needed */
8425 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8426 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8427 
8428 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8429 
8430 		/* Set the command: ADD or DEL */
8431 		if (set)
8432 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8433 		else
8434 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8435 	}
8436 
8437 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8438 
8439 	if (rc == -EEXIST) {
8440 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8441 		/* do not treat adding same MAC as error */
8442 		rc = 0;
8443 	} else if (rc < 0)
8444 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8445 
8446 	return rc;
8447 }
8448 
8449 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8450 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8451 		       unsigned long *ramrod_flags)
8452 {
8453 	int rc;
8454 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8455 
8456 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8457 
8458 	/* Fill general parameters */
8459 	ramrod_param.vlan_mac_obj = obj;
8460 	ramrod_param.ramrod_flags = *ramrod_flags;
8461 
8462 	/* Fill a user request section if needed */
8463 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8464 		ramrod_param.user_req.u.vlan.vlan = vlan;
8465 		/* Set the command: ADD or DEL */
8466 		if (set)
8467 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468 		else
8469 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470 	}
8471 
8472 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473 
8474 	if (rc == -EEXIST) {
8475 		/* Do not treat adding same vlan as error. */
8476 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477 		rc = 0;
8478 	} else if (rc < 0) {
8479 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480 	}
8481 
8482 	return rc;
8483 }
8484 
8485 int bnx2x_del_all_macs(struct bnx2x *bp,
8486 		       struct bnx2x_vlan_mac_obj *mac_obj,
8487 		       int mac_type, bool wait_for_comp)
8488 {
8489 	int rc;
8490 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8491 
8492 	/* Wait for completion of requested */
8493 	if (wait_for_comp)
8494 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8495 
8496 	/* Set the mac type of addresses we want to clear */
8497 	__set_bit(mac_type, &vlan_mac_flags);
8498 
8499 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8500 	if (rc < 0)
8501 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8502 
8503 	return rc;
8504 }
8505 
8506 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8507 {
8508 	if (IS_PF(bp)) {
8509 		unsigned long ramrod_flags = 0;
8510 
8511 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8512 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8513 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8514 					 &bp->sp_objs->mac_obj, set,
8515 					 BNX2X_ETH_MAC, &ramrod_flags);
8516 	} else { /* vf */
8517 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8518 					     bp->fp->index, set);
8519 	}
8520 }
8521 
8522 int bnx2x_setup_leading(struct bnx2x *bp)
8523 {
8524 	if (IS_PF(bp))
8525 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8526 	else /* VF */
8527 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8528 }
8529 
8530 /**
8531  * bnx2x_set_int_mode - configure interrupt mode
8532  *
8533  * @bp:		driver handle
8534  *
8535  * In case of MSI-X it will also try to enable MSI-X.
8536  */
8537 int bnx2x_set_int_mode(struct bnx2x *bp)
8538 {
8539 	int rc = 0;
8540 
8541 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8542 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8543 		return -EINVAL;
8544 	}
8545 
8546 	switch (int_mode) {
8547 	case BNX2X_INT_MODE_MSIX:
8548 		/* attempt to enable msix */
8549 		rc = bnx2x_enable_msix(bp);
8550 
8551 		/* msix attained */
8552 		if (!rc)
8553 			return 0;
8554 
8555 		/* vfs use only msix */
8556 		if (rc && IS_VF(bp))
8557 			return rc;
8558 
8559 		/* failed to enable multiple MSI-X */
8560 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8561 			       bp->num_queues,
8562 			       1 + bp->num_cnic_queues);
8563 
8564 		/* fall through */
8565 	case BNX2X_INT_MODE_MSI:
8566 		bnx2x_enable_msi(bp);
8567 
8568 		/* fall through */
8569 	case BNX2X_INT_MODE_INTX:
8570 		bp->num_ethernet_queues = 1;
8571 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8572 		BNX2X_DEV_INFO("set number of queues to 1\n");
8573 		break;
8574 	default:
8575 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8576 		return -EINVAL;
8577 	}
8578 	return 0;
8579 }
8580 
8581 /* must be called prior to any HW initializations */
8582 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8583 {
8584 	if (IS_SRIOV(bp))
8585 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8586 	return L2_ILT_LINES(bp);
8587 }
8588 
8589 void bnx2x_ilt_set_info(struct bnx2x *bp)
8590 {
8591 	struct ilt_client_info *ilt_client;
8592 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8593 	u16 line = 0;
8594 
8595 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8596 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8597 
8598 	/* CDU */
8599 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8600 	ilt_client->client_num = ILT_CLIENT_CDU;
8601 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8602 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8603 	ilt_client->start = line;
8604 	line += bnx2x_cid_ilt_lines(bp);
8605 
8606 	if (CNIC_SUPPORT(bp))
8607 		line += CNIC_ILT_LINES;
8608 	ilt_client->end = line - 1;
8609 
8610 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8611 	   ilt_client->start,
8612 	   ilt_client->end,
8613 	   ilt_client->page_size,
8614 	   ilt_client->flags,
8615 	   ilog2(ilt_client->page_size >> 12));
8616 
8617 	/* QM */
8618 	if (QM_INIT(bp->qm_cid_count)) {
8619 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8620 		ilt_client->client_num = ILT_CLIENT_QM;
8621 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8622 		ilt_client->flags = 0;
8623 		ilt_client->start = line;
8624 
8625 		/* 4 bytes for each cid */
8626 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8627 							 QM_ILT_PAGE_SZ);
8628 
8629 		ilt_client->end = line - 1;
8630 
8631 		DP(NETIF_MSG_IFUP,
8632 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8633 		   ilt_client->start,
8634 		   ilt_client->end,
8635 		   ilt_client->page_size,
8636 		   ilt_client->flags,
8637 		   ilog2(ilt_client->page_size >> 12));
8638 	}
8639 
8640 	if (CNIC_SUPPORT(bp)) {
8641 		/* SRC */
8642 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8643 		ilt_client->client_num = ILT_CLIENT_SRC;
8644 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8645 		ilt_client->flags = 0;
8646 		ilt_client->start = line;
8647 		line += SRC_ILT_LINES;
8648 		ilt_client->end = line - 1;
8649 
8650 		DP(NETIF_MSG_IFUP,
8651 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8652 		   ilt_client->start,
8653 		   ilt_client->end,
8654 		   ilt_client->page_size,
8655 		   ilt_client->flags,
8656 		   ilog2(ilt_client->page_size >> 12));
8657 
8658 		/* TM */
8659 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8660 		ilt_client->client_num = ILT_CLIENT_TM;
8661 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8662 		ilt_client->flags = 0;
8663 		ilt_client->start = line;
8664 		line += TM_ILT_LINES;
8665 		ilt_client->end = line - 1;
8666 
8667 		DP(NETIF_MSG_IFUP,
8668 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8669 		   ilt_client->start,
8670 		   ilt_client->end,
8671 		   ilt_client->page_size,
8672 		   ilt_client->flags,
8673 		   ilog2(ilt_client->page_size >> 12));
8674 	}
8675 
8676 	BUG_ON(line > ILT_MAX_LINES);
8677 }
8678 
8679 /**
8680  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8681  *
8682  * @bp:			driver handle
8683  * @fp:			pointer to fastpath
8684  * @init_params:	pointer to parameters structure
8685  *
8686  * parameters configured:
8687  *      - HC configuration
8688  *      - Queue's CDU context
8689  */
8690 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8691 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8692 {
8693 	u8 cos;
8694 	int cxt_index, cxt_offset;
8695 
8696 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8697 	if (!IS_FCOE_FP(fp)) {
8698 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8699 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8700 
8701 		/* If HC is supported, enable host coalescing in the transition
8702 		 * to INIT state.
8703 		 */
8704 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8705 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8706 
8707 		/* HC rate */
8708 		init_params->rx.hc_rate = bp->rx_ticks ?
8709 			(1000000 / bp->rx_ticks) : 0;
8710 		init_params->tx.hc_rate = bp->tx_ticks ?
8711 			(1000000 / bp->tx_ticks) : 0;
8712 
8713 		/* FW SB ID */
8714 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8715 			fp->fw_sb_id;
8716 
8717 		/*
8718 		 * CQ index among the SB indices: FCoE clients uses the default
8719 		 * SB, therefore it's different.
8720 		 */
8721 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8722 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8723 	}
8724 
8725 	/* set maximum number of COSs supported by this queue */
8726 	init_params->max_cos = fp->max_cos;
8727 
8728 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8729 	    fp->index, init_params->max_cos);
8730 
8731 	/* set the context pointers queue object */
8732 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8733 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8734 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8735 				ILT_PAGE_CIDS);
8736 		init_params->cxts[cos] =
8737 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8738 	}
8739 }
8740 
8741 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8742 			struct bnx2x_queue_state_params *q_params,
8743 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8744 			int tx_index, bool leading)
8745 {
8746 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8747 
8748 	/* Set the command */
8749 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8750 
8751 	/* Set tx-only QUEUE flags: don't zero statistics */
8752 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8753 
8754 	/* choose the index of the cid to send the slow path on */
8755 	tx_only_params->cid_index = tx_index;
8756 
8757 	/* Set general TX_ONLY_SETUP parameters */
8758 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8759 
8760 	/* Set Tx TX_ONLY_SETUP parameters */
8761 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8762 
8763 	DP(NETIF_MSG_IFUP,
8764 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8765 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8766 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8767 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8768 
8769 	/* send the ramrod */
8770 	return bnx2x_queue_state_change(bp, q_params);
8771 }
8772 
8773 /**
8774  * bnx2x_setup_queue - setup queue
8775  *
8776  * @bp:		driver handle
8777  * @fp:		pointer to fastpath
8778  * @leading:	is leading
8779  *
8780  * This function performs 2 steps in a Queue state machine
8781  *      actually: 1) RESET->INIT 2) INIT->SETUP
8782  */
8783 
8784 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8785 		       bool leading)
8786 {
8787 	struct bnx2x_queue_state_params q_params = {NULL};
8788 	struct bnx2x_queue_setup_params *setup_params =
8789 						&q_params.params.setup;
8790 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8791 						&q_params.params.tx_only;
8792 	int rc;
8793 	u8 tx_index;
8794 
8795 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8796 
8797 	/* reset IGU state skip FCoE L2 queue */
8798 	if (!IS_FCOE_FP(fp))
8799 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8800 			     IGU_INT_ENABLE, 0);
8801 
8802 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8803 	/* We want to wait for completion in this context */
8804 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8805 
8806 	/* Prepare the INIT parameters */
8807 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8808 
8809 	/* Set the command */
8810 	q_params.cmd = BNX2X_Q_CMD_INIT;
8811 
8812 	/* Change the state to INIT */
8813 	rc = bnx2x_queue_state_change(bp, &q_params);
8814 	if (rc) {
8815 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8816 		return rc;
8817 	}
8818 
8819 	DP(NETIF_MSG_IFUP, "init complete\n");
8820 
8821 	/* Now move the Queue to the SETUP state... */
8822 	memset(setup_params, 0, sizeof(*setup_params));
8823 
8824 	/* Set QUEUE flags */
8825 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8826 
8827 	/* Set general SETUP parameters */
8828 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8829 				FIRST_TX_COS_INDEX);
8830 
8831 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8832 			    &setup_params->rxq_params);
8833 
8834 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8835 			   FIRST_TX_COS_INDEX);
8836 
8837 	/* Set the command */
8838 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8839 
8840 	if (IS_FCOE_FP(fp))
8841 		bp->fcoe_init = true;
8842 
8843 	/* Change the state to SETUP */
8844 	rc = bnx2x_queue_state_change(bp, &q_params);
8845 	if (rc) {
8846 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8847 		return rc;
8848 	}
8849 
8850 	/* loop through the relevant tx-only indices */
8851 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8852 	      tx_index < fp->max_cos;
8853 	      tx_index++) {
8854 
8855 		/* prepare and send tx-only ramrod*/
8856 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8857 					  tx_only_params, tx_index, leading);
8858 		if (rc) {
8859 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8860 				  fp->index, tx_index);
8861 			return rc;
8862 		}
8863 	}
8864 
8865 	return rc;
8866 }
8867 
8868 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8869 {
8870 	struct bnx2x_fastpath *fp = &bp->fp[index];
8871 	struct bnx2x_fp_txdata *txdata;
8872 	struct bnx2x_queue_state_params q_params = {NULL};
8873 	int rc, tx_index;
8874 
8875 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8876 
8877 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8878 	/* We want to wait for completion in this context */
8879 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8880 
8881 	/* close tx-only connections */
8882 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8883 	     tx_index < fp->max_cos;
8884 	     tx_index++){
8885 
8886 		/* ascertain this is a normal queue*/
8887 		txdata = fp->txdata_ptr[tx_index];
8888 
8889 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8890 							txdata->txq_index);
8891 
8892 		/* send halt terminate on tx-only connection */
8893 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8894 		memset(&q_params.params.terminate, 0,
8895 		       sizeof(q_params.params.terminate));
8896 		q_params.params.terminate.cid_index = tx_index;
8897 
8898 		rc = bnx2x_queue_state_change(bp, &q_params);
8899 		if (rc)
8900 			return rc;
8901 
8902 		/* send halt terminate on tx-only connection */
8903 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8904 		memset(&q_params.params.cfc_del, 0,
8905 		       sizeof(q_params.params.cfc_del));
8906 		q_params.params.cfc_del.cid_index = tx_index;
8907 		rc = bnx2x_queue_state_change(bp, &q_params);
8908 		if (rc)
8909 			return rc;
8910 	}
8911 	/* Stop the primary connection: */
8912 	/* ...halt the connection */
8913 	q_params.cmd = BNX2X_Q_CMD_HALT;
8914 	rc = bnx2x_queue_state_change(bp, &q_params);
8915 	if (rc)
8916 		return rc;
8917 
8918 	/* ...terminate the connection */
8919 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8920 	memset(&q_params.params.terminate, 0,
8921 	       sizeof(q_params.params.terminate));
8922 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8923 	rc = bnx2x_queue_state_change(bp, &q_params);
8924 	if (rc)
8925 		return rc;
8926 	/* ...delete cfc entry */
8927 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8928 	memset(&q_params.params.cfc_del, 0,
8929 	       sizeof(q_params.params.cfc_del));
8930 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8931 	return bnx2x_queue_state_change(bp, &q_params);
8932 }
8933 
8934 static void bnx2x_reset_func(struct bnx2x *bp)
8935 {
8936 	int port = BP_PORT(bp);
8937 	int func = BP_FUNC(bp);
8938 	int i;
8939 
8940 	/* Disable the function in the FW */
8941 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8942 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8943 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8944 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8945 
8946 	/* FP SBs */
8947 	for_each_eth_queue(bp, i) {
8948 		struct bnx2x_fastpath *fp = &bp->fp[i];
8949 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8950 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8951 			   SB_DISABLED);
8952 	}
8953 
8954 	if (CNIC_LOADED(bp))
8955 		/* CNIC SB */
8956 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8958 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8959 
8960 	/* SP SB */
8961 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8962 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8963 		SB_DISABLED);
8964 
8965 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8966 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8967 		       0);
8968 
8969 	/* Configure IGU */
8970 	if (bp->common.int_block == INT_BLOCK_HC) {
8971 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8972 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8973 	} else {
8974 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8975 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8976 	}
8977 
8978 	if (CNIC_LOADED(bp)) {
8979 		/* Disable Timer scan */
8980 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8981 		/*
8982 		 * Wait for at least 10ms and up to 2 second for the timers
8983 		 * scan to complete
8984 		 */
8985 		for (i = 0; i < 200; i++) {
8986 			usleep_range(10000, 20000);
8987 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8988 				break;
8989 		}
8990 	}
8991 	/* Clear ILT */
8992 	bnx2x_clear_func_ilt(bp, func);
8993 
8994 	/* Timers workaround bug for E2: if this is vnic-3,
8995 	 * we need to set the entire ilt range for this timers.
8996 	 */
8997 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8998 		struct ilt_client_info ilt_cli;
8999 		/* use dummy TM client */
9000 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9001 		ilt_cli.start = 0;
9002 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9003 		ilt_cli.client_num = ILT_CLIENT_TM;
9004 
9005 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9006 	}
9007 
9008 	/* this assumes that reset_port() called before reset_func()*/
9009 	if (!CHIP_IS_E1x(bp))
9010 		bnx2x_pf_disable(bp);
9011 
9012 	bp->dmae_ready = 0;
9013 }
9014 
9015 static void bnx2x_reset_port(struct bnx2x *bp)
9016 {
9017 	int port = BP_PORT(bp);
9018 	u32 val;
9019 
9020 	/* Reset physical Link */
9021 	bnx2x__link_reset(bp);
9022 
9023 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9024 
9025 	/* Do not rcv packets to BRB */
9026 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9027 	/* Do not direct rcv packets that are not for MCP to the BRB */
9028 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9029 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9030 
9031 	/* Configure AEU */
9032 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9033 
9034 	msleep(100);
9035 	/* Check for BRB port occupancy */
9036 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9037 	if (val)
9038 		DP(NETIF_MSG_IFDOWN,
9039 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9040 
9041 	/* TODO: Close Doorbell port? */
9042 }
9043 
9044 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9045 {
9046 	struct bnx2x_func_state_params func_params = {NULL};
9047 
9048 	/* Prepare parameters for function state transitions */
9049 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9050 
9051 	func_params.f_obj = &bp->func_obj;
9052 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9053 
9054 	func_params.params.hw_init.load_phase = load_code;
9055 
9056 	return bnx2x_func_state_change(bp, &func_params);
9057 }
9058 
9059 static int bnx2x_func_stop(struct bnx2x *bp)
9060 {
9061 	struct bnx2x_func_state_params func_params = {NULL};
9062 	int rc;
9063 
9064 	/* Prepare parameters for function state transitions */
9065 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9066 	func_params.f_obj = &bp->func_obj;
9067 	func_params.cmd = BNX2X_F_CMD_STOP;
9068 
9069 	/*
9070 	 * Try to stop the function the 'good way'. If fails (in case
9071 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9072 	 * not in a debug mode, perform a state transaction in order to
9073 	 * enable further HW_RESET transaction.
9074 	 */
9075 	rc = bnx2x_func_state_change(bp, &func_params);
9076 	if (rc) {
9077 #ifdef BNX2X_STOP_ON_ERROR
9078 		return rc;
9079 #else
9080 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9081 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9082 		return bnx2x_func_state_change(bp, &func_params);
9083 #endif
9084 	}
9085 
9086 	return 0;
9087 }
9088 
9089 /**
9090  * bnx2x_send_unload_req - request unload mode from the MCP.
9091  *
9092  * @bp:			driver handle
9093  * @unload_mode:	requested function's unload mode
9094  *
9095  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9096  */
9097 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9098 {
9099 	u32 reset_code = 0;
9100 	int port = BP_PORT(bp);
9101 
9102 	/* Select the UNLOAD request mode */
9103 	if (unload_mode == UNLOAD_NORMAL)
9104 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9105 
9106 	else if (bp->flags & NO_WOL_FLAG)
9107 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9108 
9109 	else if (bp->wol) {
9110 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9111 		u8 *mac_addr = bp->dev->dev_addr;
9112 		struct pci_dev *pdev = bp->pdev;
9113 		u32 val;
9114 		u16 pmc;
9115 
9116 		/* The mac address is written to entries 1-4 to
9117 		 * preserve entry 0 which is used by the PMF
9118 		 */
9119 		u8 entry = (BP_VN(bp) + 1)*8;
9120 
9121 		val = (mac_addr[0] << 8) | mac_addr[1];
9122 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9123 
9124 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9125 		      (mac_addr[4] << 8) | mac_addr[5];
9126 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9127 
9128 		/* Enable the PME and clear the status */
9129 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9130 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9131 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9132 
9133 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9134 
9135 	} else
9136 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9137 
9138 	/* Send the request to the MCP */
9139 	if (!BP_NOMCP(bp))
9140 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9141 	else {
9142 		int path = BP_PATH(bp);
9143 
9144 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9145 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146 		   bnx2x_load_count[path][2]);
9147 		bnx2x_load_count[path][0]--;
9148 		bnx2x_load_count[path][1 + port]--;
9149 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9150 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9151 		   bnx2x_load_count[path][2]);
9152 		if (bnx2x_load_count[path][0] == 0)
9153 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9154 		else if (bnx2x_load_count[path][1 + port] == 0)
9155 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9156 		else
9157 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9158 	}
9159 
9160 	return reset_code;
9161 }
9162 
9163 /**
9164  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9165  *
9166  * @bp:		driver handle
9167  * @keep_link:		true iff link should be kept up
9168  */
9169 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9170 {
9171 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9172 
9173 	/* Report UNLOAD_DONE to MCP */
9174 	if (!BP_NOMCP(bp))
9175 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9176 }
9177 
9178 static int bnx2x_func_wait_started(struct bnx2x *bp)
9179 {
9180 	int tout = 50;
9181 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9182 
9183 	if (!bp->port.pmf)
9184 		return 0;
9185 
9186 	/*
9187 	 * (assumption: No Attention from MCP at this stage)
9188 	 * PMF probably in the middle of TX disable/enable transaction
9189 	 * 1. Sync IRS for default SB
9190 	 * 2. Sync SP queue - this guarantees us that attention handling started
9191 	 * 3. Wait, that TX disable/enable transaction completes
9192 	 *
9193 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9194 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9195 	 * received completion for the transaction the state is TX_STOPPED.
9196 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9197 	 * transaction.
9198 	 */
9199 
9200 	/* make sure default SB ISR is done */
9201 	if (msix)
9202 		synchronize_irq(bp->msix_table[0].vector);
9203 	else
9204 		synchronize_irq(bp->pdev->irq);
9205 
9206 	flush_workqueue(bnx2x_wq);
9207 	flush_workqueue(bnx2x_iov_wq);
9208 
9209 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9210 				BNX2X_F_STATE_STARTED && tout--)
9211 		msleep(20);
9212 
9213 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9214 						BNX2X_F_STATE_STARTED) {
9215 #ifdef BNX2X_STOP_ON_ERROR
9216 		BNX2X_ERR("Wrong function state\n");
9217 		return -EBUSY;
9218 #else
9219 		/*
9220 		 * Failed to complete the transaction in a "good way"
9221 		 * Force both transactions with CLR bit
9222 		 */
9223 		struct bnx2x_func_state_params func_params = {NULL};
9224 
9225 		DP(NETIF_MSG_IFDOWN,
9226 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9227 
9228 		func_params.f_obj = &bp->func_obj;
9229 		__set_bit(RAMROD_DRV_CLR_ONLY,
9230 					&func_params.ramrod_flags);
9231 
9232 		/* STARTED-->TX_ST0PPED */
9233 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9234 		bnx2x_func_state_change(bp, &func_params);
9235 
9236 		/* TX_ST0PPED-->STARTED */
9237 		func_params.cmd = BNX2X_F_CMD_TX_START;
9238 		return bnx2x_func_state_change(bp, &func_params);
9239 #endif
9240 	}
9241 
9242 	return 0;
9243 }
9244 
9245 static void bnx2x_disable_ptp(struct bnx2x *bp)
9246 {
9247 	int port = BP_PORT(bp);
9248 
9249 	/* Disable sending PTP packets to host */
9250 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9251 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9252 
9253 	/* Reset PTP event detection rules */
9254 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9255 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9256 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9257 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9258 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9259 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9260 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9261 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9262 
9263 	/* Disable the PTP feature */
9264 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9265 	       NIG_REG_P0_PTP_EN, 0x0);
9266 }
9267 
9268 /* Called during unload, to stop PTP-related stuff */
9269 static void bnx2x_stop_ptp(struct bnx2x *bp)
9270 {
9271 	/* Cancel PTP work queue. Should be done after the Tx queues are
9272 	 * drained to prevent additional scheduling.
9273 	 */
9274 	cancel_work_sync(&bp->ptp_task);
9275 
9276 	if (bp->ptp_tx_skb) {
9277 		dev_kfree_skb_any(bp->ptp_tx_skb);
9278 		bp->ptp_tx_skb = NULL;
9279 	}
9280 
9281 	/* Disable PTP in HW */
9282 	bnx2x_disable_ptp(bp);
9283 
9284 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9285 }
9286 
9287 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9288 {
9289 	int port = BP_PORT(bp);
9290 	int i, rc = 0;
9291 	u8 cos;
9292 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9293 	u32 reset_code;
9294 
9295 	/* Wait until tx fastpath tasks complete */
9296 	for_each_tx_queue(bp, i) {
9297 		struct bnx2x_fastpath *fp = &bp->fp[i];
9298 
9299 		for_each_cos_in_tx_queue(fp, cos)
9300 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9301 #ifdef BNX2X_STOP_ON_ERROR
9302 		if (rc)
9303 			return;
9304 #endif
9305 	}
9306 
9307 	/* Give HW time to discard old tx messages */
9308 	usleep_range(1000, 2000);
9309 
9310 	/* Clean all ETH MACs */
9311 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9312 				false);
9313 	if (rc < 0)
9314 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9315 
9316 	/* Clean up UC list  */
9317 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9318 				true);
9319 	if (rc < 0)
9320 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9321 			  rc);
9322 
9323 	/* Disable LLH */
9324 	if (!CHIP_IS_E1(bp))
9325 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9326 
9327 	/* Set "drop all" (stop Rx).
9328 	 * We need to take a netif_addr_lock() here in order to prevent
9329 	 * a race between the completion code and this code.
9330 	 */
9331 	netif_addr_lock_bh(bp->dev);
9332 	/* Schedule the rx_mode command */
9333 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9334 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9335 	else if (bp->slowpath)
9336 		bnx2x_set_storm_rx_mode(bp);
9337 
9338 	/* Cleanup multicast configuration */
9339 	rparam.mcast_obj = &bp->mcast_obj;
9340 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9341 	if (rc < 0)
9342 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9343 
9344 	netif_addr_unlock_bh(bp->dev);
9345 
9346 	bnx2x_iov_chip_cleanup(bp);
9347 
9348 	/*
9349 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9350 	 * this function should perform FUNC, PORT or COMMON HW
9351 	 * reset.
9352 	 */
9353 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9354 
9355 	/*
9356 	 * (assumption: No Attention from MCP at this stage)
9357 	 * PMF probably in the middle of TX disable/enable transaction
9358 	 */
9359 	rc = bnx2x_func_wait_started(bp);
9360 	if (rc) {
9361 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9362 #ifdef BNX2X_STOP_ON_ERROR
9363 		return;
9364 #endif
9365 	}
9366 
9367 	/* Close multi and leading connections
9368 	 * Completions for ramrods are collected in a synchronous way
9369 	 */
9370 	for_each_eth_queue(bp, i)
9371 		if (bnx2x_stop_queue(bp, i))
9372 #ifdef BNX2X_STOP_ON_ERROR
9373 			return;
9374 #else
9375 			goto unload_error;
9376 #endif
9377 
9378 	if (CNIC_LOADED(bp)) {
9379 		for_each_cnic_queue(bp, i)
9380 			if (bnx2x_stop_queue(bp, i))
9381 #ifdef BNX2X_STOP_ON_ERROR
9382 				return;
9383 #else
9384 				goto unload_error;
9385 #endif
9386 	}
9387 
9388 	/* If SP settings didn't get completed so far - something
9389 	 * very wrong has happen.
9390 	 */
9391 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9392 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9393 
9394 #ifndef BNX2X_STOP_ON_ERROR
9395 unload_error:
9396 #endif
9397 	rc = bnx2x_func_stop(bp);
9398 	if (rc) {
9399 		BNX2X_ERR("Function stop failed!\n");
9400 #ifdef BNX2X_STOP_ON_ERROR
9401 		return;
9402 #endif
9403 	}
9404 
9405 	/* stop_ptp should be after the Tx queues are drained to prevent
9406 	 * scheduling to the cancelled PTP work queue. It should also be after
9407 	 * function stop ramrod is sent, since as part of this ramrod FW access
9408 	 * PTP registers.
9409 	 */
9410 	if (bp->flags & PTP_SUPPORTED)
9411 		bnx2x_stop_ptp(bp);
9412 
9413 	/* Disable HW interrupts, NAPI */
9414 	bnx2x_netif_stop(bp, 1);
9415 	/* Delete all NAPI objects */
9416 	bnx2x_del_all_napi(bp);
9417 	if (CNIC_LOADED(bp))
9418 		bnx2x_del_all_napi_cnic(bp);
9419 
9420 	/* Release IRQs */
9421 	bnx2x_free_irq(bp);
9422 
9423 	/* Reset the chip, unless PCI function is offline. If we reach this
9424 	 * point following a PCI error handling, it means device is really
9425 	 * in a bad state and we're about to remove it, so reset the chip
9426 	 * is not a good idea.
9427 	 */
9428 	if (!pci_channel_offline(bp->pdev)) {
9429 		rc = bnx2x_reset_hw(bp, reset_code);
9430 		if (rc)
9431 			BNX2X_ERR("HW_RESET failed\n");
9432 	}
9433 
9434 	/* Report UNLOAD_DONE to MCP */
9435 	bnx2x_send_unload_done(bp, keep_link);
9436 }
9437 
9438 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9439 {
9440 	u32 val;
9441 
9442 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9443 
9444 	if (CHIP_IS_E1(bp)) {
9445 		int port = BP_PORT(bp);
9446 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9447 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9448 
9449 		val = REG_RD(bp, addr);
9450 		val &= ~(0x300);
9451 		REG_WR(bp, addr, val);
9452 	} else {
9453 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9454 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9455 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9456 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9457 	}
9458 }
9459 
9460 /* Close gates #2, #3 and #4: */
9461 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9462 {
9463 	u32 val;
9464 
9465 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9466 	if (!CHIP_IS_E1(bp)) {
9467 		/* #4 */
9468 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9469 		/* #2 */
9470 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9471 	}
9472 
9473 	/* #3 */
9474 	if (CHIP_IS_E1x(bp)) {
9475 		/* Prevent interrupts from HC on both ports */
9476 		val = REG_RD(bp, HC_REG_CONFIG_1);
9477 		REG_WR(bp, HC_REG_CONFIG_1,
9478 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9479 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9480 
9481 		val = REG_RD(bp, HC_REG_CONFIG_0);
9482 		REG_WR(bp, HC_REG_CONFIG_0,
9483 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9484 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9485 	} else {
9486 		/* Prevent incoming interrupts in IGU */
9487 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9488 
9489 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9490 		       (!close) ?
9491 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9492 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9493 	}
9494 
9495 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9496 		close ? "closing" : "opening");
9497 	mmiowb();
9498 }
9499 
9500 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9501 
9502 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9503 {
9504 	/* Do some magic... */
9505 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9506 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9507 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9508 }
9509 
9510 /**
9511  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9512  *
9513  * @bp:		driver handle
9514  * @magic_val:	old value of the `magic' bit.
9515  */
9516 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9517 {
9518 	/* Restore the `magic' bit value... */
9519 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9520 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9521 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9522 }
9523 
9524 /**
9525  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9526  *
9527  * @bp:		driver handle
9528  * @magic_val:	old value of 'magic' bit.
9529  *
9530  * Takes care of CLP configurations.
9531  */
9532 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9533 {
9534 	u32 shmem;
9535 	u32 validity_offset;
9536 
9537 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9538 
9539 	/* Set `magic' bit in order to save MF config */
9540 	if (!CHIP_IS_E1(bp))
9541 		bnx2x_clp_reset_prep(bp, magic_val);
9542 
9543 	/* Get shmem offset */
9544 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9545 	validity_offset =
9546 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9547 
9548 	/* Clear validity map flags */
9549 	if (shmem > 0)
9550 		REG_WR(bp, shmem + validity_offset, 0);
9551 }
9552 
9553 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9554 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9555 
9556 /**
9557  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9558  *
9559  * @bp:	driver handle
9560  */
9561 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9562 {
9563 	/* special handling for emulation and FPGA,
9564 	   wait 10 times longer */
9565 	if (CHIP_REV_IS_SLOW(bp))
9566 		msleep(MCP_ONE_TIMEOUT*10);
9567 	else
9568 		msleep(MCP_ONE_TIMEOUT);
9569 }
9570 
9571 /*
9572  * initializes bp->common.shmem_base and waits for validity signature to appear
9573  */
9574 static int bnx2x_init_shmem(struct bnx2x *bp)
9575 {
9576 	int cnt = 0;
9577 	u32 val = 0;
9578 
9579 	do {
9580 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9581 
9582 		/* If we read all 0xFFs, means we are in PCI error state and
9583 		 * should bail out to avoid crashes on adapter's FW reads.
9584 		 */
9585 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9586 			bp->flags |= NO_MCP_FLAG;
9587 			return -ENODEV;
9588 		}
9589 
9590 		if (bp->common.shmem_base) {
9591 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9592 			if (val & SHR_MEM_VALIDITY_MB)
9593 				return 0;
9594 		}
9595 
9596 		bnx2x_mcp_wait_one(bp);
9597 
9598 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9599 
9600 	BNX2X_ERR("BAD MCP validity signature\n");
9601 
9602 	return -ENODEV;
9603 }
9604 
9605 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9606 {
9607 	int rc = bnx2x_init_shmem(bp);
9608 
9609 	/* Restore the `magic' bit value */
9610 	if (!CHIP_IS_E1(bp))
9611 		bnx2x_clp_reset_done(bp, magic_val);
9612 
9613 	return rc;
9614 }
9615 
9616 static void bnx2x_pxp_prep(struct bnx2x *bp)
9617 {
9618 	if (!CHIP_IS_E1(bp)) {
9619 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9620 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9621 		mmiowb();
9622 	}
9623 }
9624 
9625 /*
9626  * Reset the whole chip except for:
9627  *      - PCIE core
9628  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9629  *              one reset bit)
9630  *      - IGU
9631  *      - MISC (including AEU)
9632  *      - GRC
9633  *      - RBCN, RBCP
9634  */
9635 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9636 {
9637 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9638 	u32 global_bits2, stay_reset2;
9639 
9640 	/*
9641 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9642 	 * (per chip) blocks.
9643 	 */
9644 	global_bits2 =
9645 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9646 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9647 
9648 	/* Don't reset the following blocks.
9649 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9650 	 *            reset, as in 4 port device they might still be owned
9651 	 *            by the MCP (there is only one leader per path).
9652 	 */
9653 	not_reset_mask1 =
9654 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9655 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9656 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9657 
9658 	not_reset_mask2 =
9659 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9660 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9661 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9662 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9663 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9664 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9665 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9666 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9667 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9668 		MISC_REGISTERS_RESET_REG_2_PGLC |
9669 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9670 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9671 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9672 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9673 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9674 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9675 
9676 	/*
9677 	 * Keep the following blocks in reset:
9678 	 *  - all xxMACs are handled by the bnx2x_link code.
9679 	 */
9680 	stay_reset2 =
9681 		MISC_REGISTERS_RESET_REG_2_XMAC |
9682 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9683 
9684 	/* Full reset masks according to the chip */
9685 	reset_mask1 = 0xffffffff;
9686 
9687 	if (CHIP_IS_E1(bp))
9688 		reset_mask2 = 0xffff;
9689 	else if (CHIP_IS_E1H(bp))
9690 		reset_mask2 = 0x1ffff;
9691 	else if (CHIP_IS_E2(bp))
9692 		reset_mask2 = 0xfffff;
9693 	else /* CHIP_IS_E3 */
9694 		reset_mask2 = 0x3ffffff;
9695 
9696 	/* Don't reset global blocks unless we need to */
9697 	if (!global)
9698 		reset_mask2 &= ~global_bits2;
9699 
9700 	/*
9701 	 * In case of attention in the QM, we need to reset PXP
9702 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9703 	 * because otherwise QM reset would release 'close the gates' shortly
9704 	 * before resetting the PXP, then the PSWRQ would send a write
9705 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9706 	 * read the payload data from PSWWR, but PSWWR would not
9707 	 * respond. The write queue in PGLUE would stuck, dmae commands
9708 	 * would not return. Therefore it's important to reset the second
9709 	 * reset register (containing the
9710 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9711 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9712 	 * bit).
9713 	 */
9714 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9715 	       reset_mask2 & (~not_reset_mask2));
9716 
9717 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9718 	       reset_mask1 & (~not_reset_mask1));
9719 
9720 	barrier();
9721 	mmiowb();
9722 
9723 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9724 	       reset_mask2 & (~stay_reset2));
9725 
9726 	barrier();
9727 	mmiowb();
9728 
9729 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9730 	mmiowb();
9731 }
9732 
9733 /**
9734  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9735  * It should get cleared in no more than 1s.
9736  *
9737  * @bp:	driver handle
9738  *
9739  * It should get cleared in no more than 1s. Returns 0 if
9740  * pending writes bit gets cleared.
9741  */
9742 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9743 {
9744 	u32 cnt = 1000;
9745 	u32 pend_bits = 0;
9746 
9747 	do {
9748 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9749 
9750 		if (pend_bits == 0)
9751 			break;
9752 
9753 		usleep_range(1000, 2000);
9754 	} while (cnt-- > 0);
9755 
9756 	if (cnt <= 0) {
9757 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9758 			  pend_bits);
9759 		return -EBUSY;
9760 	}
9761 
9762 	return 0;
9763 }
9764 
9765 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9766 {
9767 	int cnt = 1000;
9768 	u32 val = 0;
9769 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9770 	u32 tags_63_32 = 0;
9771 
9772 	/* Empty the Tetris buffer, wait for 1s */
9773 	do {
9774 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9775 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9776 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9777 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9778 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9779 		if (CHIP_IS_E3(bp))
9780 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9781 
9782 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9783 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9784 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9785 		    (pgl_exp_rom2 == 0xffffffff) &&
9786 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9787 			break;
9788 		usleep_range(1000, 2000);
9789 	} while (cnt-- > 0);
9790 
9791 	if (cnt <= 0) {
9792 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9793 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9794 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9795 			  pgl_exp_rom2);
9796 		return -EAGAIN;
9797 	}
9798 
9799 	barrier();
9800 
9801 	/* Close gates #2, #3 and #4 */
9802 	bnx2x_set_234_gates(bp, true);
9803 
9804 	/* Poll for IGU VQs for 57712 and newer chips */
9805 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9806 		return -EAGAIN;
9807 
9808 	/* TBD: Indicate that "process kill" is in progress to MCP */
9809 
9810 	/* Clear "unprepared" bit */
9811 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9812 	barrier();
9813 
9814 	/* Make sure all is written to the chip before the reset */
9815 	mmiowb();
9816 
9817 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9818 	 * PSWHST, GRC and PSWRD Tetris buffer.
9819 	 */
9820 	usleep_range(1000, 2000);
9821 
9822 	/* Prepare to chip reset: */
9823 	/* MCP */
9824 	if (global)
9825 		bnx2x_reset_mcp_prep(bp, &val);
9826 
9827 	/* PXP */
9828 	bnx2x_pxp_prep(bp);
9829 	barrier();
9830 
9831 	/* reset the chip */
9832 	bnx2x_process_kill_chip_reset(bp, global);
9833 	barrier();
9834 
9835 	/* clear errors in PGB */
9836 	if (!CHIP_IS_E1x(bp))
9837 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9838 
9839 	/* Recover after reset: */
9840 	/* MCP */
9841 	if (global && bnx2x_reset_mcp_comp(bp, val))
9842 		return -EAGAIN;
9843 
9844 	/* TBD: Add resetting the NO_MCP mode DB here */
9845 
9846 	/* Open the gates #2, #3 and #4 */
9847 	bnx2x_set_234_gates(bp, false);
9848 
9849 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9850 	 * reset state, re-enable attentions. */
9851 
9852 	return 0;
9853 }
9854 
9855 static int bnx2x_leader_reset(struct bnx2x *bp)
9856 {
9857 	int rc = 0;
9858 	bool global = bnx2x_reset_is_global(bp);
9859 	u32 load_code;
9860 
9861 	/* if not going to reset MCP - load "fake" driver to reset HW while
9862 	 * driver is owner of the HW
9863 	 */
9864 	if (!global && !BP_NOMCP(bp)) {
9865 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9866 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9867 		if (!load_code) {
9868 			BNX2X_ERR("MCP response failure, aborting\n");
9869 			rc = -EAGAIN;
9870 			goto exit_leader_reset;
9871 		}
9872 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9873 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9874 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9875 			rc = -EAGAIN;
9876 			goto exit_leader_reset2;
9877 		}
9878 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9879 		if (!load_code) {
9880 			BNX2X_ERR("MCP response failure, aborting\n");
9881 			rc = -EAGAIN;
9882 			goto exit_leader_reset2;
9883 		}
9884 	}
9885 
9886 	/* Try to recover after the failure */
9887 	if (bnx2x_process_kill(bp, global)) {
9888 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9889 			  BP_PATH(bp));
9890 		rc = -EAGAIN;
9891 		goto exit_leader_reset2;
9892 	}
9893 
9894 	/*
9895 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9896 	 * state.
9897 	 */
9898 	bnx2x_set_reset_done(bp);
9899 	if (global)
9900 		bnx2x_clear_reset_global(bp);
9901 
9902 exit_leader_reset2:
9903 	/* unload "fake driver" if it was loaded */
9904 	if (!global && !BP_NOMCP(bp)) {
9905 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9906 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9907 	}
9908 exit_leader_reset:
9909 	bp->is_leader = 0;
9910 	bnx2x_release_leader_lock(bp);
9911 	smp_mb();
9912 	return rc;
9913 }
9914 
9915 static void bnx2x_recovery_failed(struct bnx2x *bp)
9916 {
9917 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9918 
9919 	/* Disconnect this device */
9920 	netif_device_detach(bp->dev);
9921 
9922 	/*
9923 	 * Block ifup for all function on this engine until "process kill"
9924 	 * or power cycle.
9925 	 */
9926 	bnx2x_set_reset_in_progress(bp);
9927 
9928 	/* Shut down the power */
9929 	bnx2x_set_power_state(bp, PCI_D3hot);
9930 
9931 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9932 
9933 	smp_mb();
9934 }
9935 
9936 /*
9937  * Assumption: runs under rtnl lock. This together with the fact
9938  * that it's called only from bnx2x_sp_rtnl() ensure that it
9939  * will never be called when netif_running(bp->dev) is false.
9940  */
9941 static void bnx2x_parity_recover(struct bnx2x *bp)
9942 {
9943 	bool global = false;
9944 	u32 error_recovered, error_unrecovered;
9945 	bool is_parity;
9946 
9947 	DP(NETIF_MSG_HW, "Handling parity\n");
9948 	while (1) {
9949 		switch (bp->recovery_state) {
9950 		case BNX2X_RECOVERY_INIT:
9951 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9952 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9953 			WARN_ON(!is_parity);
9954 
9955 			/* Try to get a LEADER_LOCK HW lock */
9956 			if (bnx2x_trylock_leader_lock(bp)) {
9957 				bnx2x_set_reset_in_progress(bp);
9958 				/*
9959 				 * Check if there is a global attention and if
9960 				 * there was a global attention, set the global
9961 				 * reset bit.
9962 				 */
9963 
9964 				if (global)
9965 					bnx2x_set_reset_global(bp);
9966 
9967 				bp->is_leader = 1;
9968 			}
9969 
9970 			/* Stop the driver */
9971 			/* If interface has been removed - break */
9972 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9973 				return;
9974 
9975 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9976 
9977 			/* Ensure "is_leader", MCP command sequence and
9978 			 * "recovery_state" update values are seen on other
9979 			 * CPUs.
9980 			 */
9981 			smp_mb();
9982 			break;
9983 
9984 		case BNX2X_RECOVERY_WAIT:
9985 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9986 			if (bp->is_leader) {
9987 				int other_engine = BP_PATH(bp) ? 0 : 1;
9988 				bool other_load_status =
9989 					bnx2x_get_load_status(bp, other_engine);
9990 				bool load_status =
9991 					bnx2x_get_load_status(bp, BP_PATH(bp));
9992 				global = bnx2x_reset_is_global(bp);
9993 
9994 				/*
9995 				 * In case of a parity in a global block, let
9996 				 * the first leader that performs a
9997 				 * leader_reset() reset the global blocks in
9998 				 * order to clear global attentions. Otherwise
9999 				 * the gates will remain closed for that
10000 				 * engine.
10001 				 */
10002 				if (load_status ||
10003 				    (global && other_load_status)) {
10004 					/* Wait until all other functions get
10005 					 * down.
10006 					 */
10007 					schedule_delayed_work(&bp->sp_rtnl_task,
10008 								HZ/10);
10009 					return;
10010 				} else {
10011 					/* If all other functions got down -
10012 					 * try to bring the chip back to
10013 					 * normal. In any case it's an exit
10014 					 * point for a leader.
10015 					 */
10016 					if (bnx2x_leader_reset(bp)) {
10017 						bnx2x_recovery_failed(bp);
10018 						return;
10019 					}
10020 
10021 					/* If we are here, means that the
10022 					 * leader has succeeded and doesn't
10023 					 * want to be a leader any more. Try
10024 					 * to continue as a none-leader.
10025 					 */
10026 					break;
10027 				}
10028 			} else { /* non-leader */
10029 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10030 					/* Try to get a LEADER_LOCK HW lock as
10031 					 * long as a former leader may have
10032 					 * been unloaded by the user or
10033 					 * released a leadership by another
10034 					 * reason.
10035 					 */
10036 					if (bnx2x_trylock_leader_lock(bp)) {
10037 						/* I'm a leader now! Restart a
10038 						 * switch case.
10039 						 */
10040 						bp->is_leader = 1;
10041 						break;
10042 					}
10043 
10044 					schedule_delayed_work(&bp->sp_rtnl_task,
10045 								HZ/10);
10046 					return;
10047 
10048 				} else {
10049 					/*
10050 					 * If there was a global attention, wait
10051 					 * for it to be cleared.
10052 					 */
10053 					if (bnx2x_reset_is_global(bp)) {
10054 						schedule_delayed_work(
10055 							&bp->sp_rtnl_task,
10056 							HZ/10);
10057 						return;
10058 					}
10059 
10060 					error_recovered =
10061 					  bp->eth_stats.recoverable_error;
10062 					error_unrecovered =
10063 					  bp->eth_stats.unrecoverable_error;
10064 					bp->recovery_state =
10065 						BNX2X_RECOVERY_NIC_LOADING;
10066 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10067 						error_unrecovered++;
10068 						netdev_err(bp->dev,
10069 							   "Recovery failed. Power cycle needed\n");
10070 						/* Disconnect this device */
10071 						netif_device_detach(bp->dev);
10072 						/* Shut down the power */
10073 						bnx2x_set_power_state(
10074 							bp, PCI_D3hot);
10075 						smp_mb();
10076 					} else {
10077 						bp->recovery_state =
10078 							BNX2X_RECOVERY_DONE;
10079 						error_recovered++;
10080 						smp_mb();
10081 					}
10082 					bp->eth_stats.recoverable_error =
10083 						error_recovered;
10084 					bp->eth_stats.unrecoverable_error =
10085 						error_unrecovered;
10086 
10087 					return;
10088 				}
10089 			}
10090 		default:
10091 			return;
10092 		}
10093 	}
10094 }
10095 
10096 static int bnx2x_udp_port_update(struct bnx2x *bp)
10097 {
10098 	struct bnx2x_func_switch_update_params *switch_update_params;
10099 	struct bnx2x_func_state_params func_params = {NULL};
10100 	struct bnx2x_udp_tunnel *udp_tunnel;
10101 	u16 vxlan_port = 0, geneve_port = 0;
10102 	int rc;
10103 
10104 	switch_update_params = &func_params.params.switch_update;
10105 
10106 	/* Prepare parameters for function state transitions */
10107 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10108 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10109 
10110 	func_params.f_obj = &bp->func_obj;
10111 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10112 
10113 	/* Function parameters */
10114 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10115 		  &switch_update_params->changes);
10116 
10117 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10118 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10119 		geneve_port = udp_tunnel->dst_port;
10120 		switch_update_params->geneve_dst_port = geneve_port;
10121 	}
10122 
10123 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10124 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10125 		vxlan_port = udp_tunnel->dst_port;
10126 		switch_update_params->vxlan_dst_port = vxlan_port;
10127 	}
10128 
10129 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10130 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10131 		  &switch_update_params->changes);
10132 
10133 	rc = bnx2x_func_state_change(bp, &func_params);
10134 	if (rc)
10135 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10136 			  vxlan_port, geneve_port, rc);
10137 	else
10138 		DP(BNX2X_MSG_SP,
10139 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10140 		   vxlan_port, geneve_port);
10141 
10142 	return rc;
10143 }
10144 
10145 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10146 				 enum bnx2x_udp_port_type type)
10147 {
10148 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10149 
10150 	if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10151 		return;
10152 
10153 	if (udp_port->count && udp_port->dst_port == port) {
10154 		udp_port->count++;
10155 		return;
10156 	}
10157 
10158 	if (udp_port->count) {
10159 		DP(BNX2X_MSG_SP,
10160 		   "UDP tunnel [%d] -  destination port limit reached\n",
10161 		   type);
10162 		return;
10163 	}
10164 
10165 	udp_port->dst_port = port;
10166 	udp_port->count = 1;
10167 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10168 }
10169 
10170 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10171 				 enum bnx2x_udp_port_type type)
10172 {
10173 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10174 
10175 	if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10176 		return;
10177 
10178 	if (!udp_port->count || udp_port->dst_port != port) {
10179 		DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10180 		   type);
10181 		return;
10182 	}
10183 
10184 	/* Remove reference, and make certain it's no longer in use */
10185 	udp_port->count--;
10186 	if (udp_port->count)
10187 		return;
10188 	udp_port->dst_port = 0;
10189 
10190 	if (netif_running(bp->dev))
10191 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10192 	else
10193 		DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10194 		   type, port);
10195 }
10196 
10197 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10198 				 struct udp_tunnel_info *ti)
10199 {
10200 	struct bnx2x *bp = netdev_priv(netdev);
10201 	u16 t_port = ntohs(ti->port);
10202 
10203 	switch (ti->type) {
10204 	case UDP_TUNNEL_TYPE_VXLAN:
10205 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10206 		break;
10207 	case UDP_TUNNEL_TYPE_GENEVE:
10208 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10209 		break;
10210 	default:
10211 		break;
10212 	}
10213 }
10214 
10215 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10216 				 struct udp_tunnel_info *ti)
10217 {
10218 	struct bnx2x *bp = netdev_priv(netdev);
10219 	u16 t_port = ntohs(ti->port);
10220 
10221 	switch (ti->type) {
10222 	case UDP_TUNNEL_TYPE_VXLAN:
10223 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10224 		break;
10225 	case UDP_TUNNEL_TYPE_GENEVE:
10226 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10227 		break;
10228 	default:
10229 		break;
10230 	}
10231 }
10232 
10233 static int bnx2x_close(struct net_device *dev);
10234 
10235 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10236  * scheduled on a general queue in order to prevent a dead lock.
10237  */
10238 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10239 {
10240 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10241 
10242 	rtnl_lock();
10243 
10244 	if (!netif_running(bp->dev)) {
10245 		rtnl_unlock();
10246 		return;
10247 	}
10248 
10249 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10250 #ifdef BNX2X_STOP_ON_ERROR
10251 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10252 			  "you will need to reboot when done\n");
10253 		goto sp_rtnl_not_reset;
10254 #endif
10255 		/*
10256 		 * Clear all pending SP commands as we are going to reset the
10257 		 * function anyway.
10258 		 */
10259 		bp->sp_rtnl_state = 0;
10260 		smp_mb();
10261 
10262 		bnx2x_parity_recover(bp);
10263 
10264 		rtnl_unlock();
10265 		return;
10266 	}
10267 
10268 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10269 #ifdef BNX2X_STOP_ON_ERROR
10270 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10271 			  "you will need to reboot when done\n");
10272 		goto sp_rtnl_not_reset;
10273 #endif
10274 
10275 		/*
10276 		 * Clear all pending SP commands as we are going to reset the
10277 		 * function anyway.
10278 		 */
10279 		bp->sp_rtnl_state = 0;
10280 		smp_mb();
10281 
10282 		/* Immediately indicate link as down */
10283 		bp->link_vars.link_up = 0;
10284 		bp->force_link_down = true;
10285 		netif_carrier_off(bp->dev);
10286 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10287 
10288 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10289 		/* When ret value shows failure of allocation failure,
10290 		 * the nic is rebooted again. If open still fails, a error
10291 		 * message to notify the user.
10292 		 */
10293 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10294 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10295 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10296 				BNX2X_ERR("Open the NIC fails again!\n");
10297 		}
10298 		rtnl_unlock();
10299 		return;
10300 	}
10301 #ifdef BNX2X_STOP_ON_ERROR
10302 sp_rtnl_not_reset:
10303 #endif
10304 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10305 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10306 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10307 		bnx2x_after_function_update(bp);
10308 	/*
10309 	 * in case of fan failure we need to reset id if the "stop on error"
10310 	 * debug flag is set, since we trying to prevent permanent overheating
10311 	 * damage
10312 	 */
10313 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10314 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10315 		netif_device_detach(bp->dev);
10316 		bnx2x_close(bp->dev);
10317 		rtnl_unlock();
10318 		return;
10319 	}
10320 
10321 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10322 		DP(BNX2X_MSG_SP,
10323 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10324 		bnx2x_vfpf_set_mcast(bp->dev);
10325 	}
10326 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10327 			       &bp->sp_rtnl_state)){
10328 		if (netif_carrier_ok(bp->dev)) {
10329 			bnx2x_tx_disable(bp);
10330 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10331 		}
10332 	}
10333 
10334 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10335 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10336 		bnx2x_set_rx_mode_inner(bp);
10337 	}
10338 
10339 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10340 			       &bp->sp_rtnl_state))
10341 		bnx2x_pf_set_vfs_vlan(bp);
10342 
10343 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10344 		bnx2x_dcbx_stop_hw_tx(bp);
10345 		bnx2x_dcbx_resume_hw_tx(bp);
10346 	}
10347 
10348 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10349 			       &bp->sp_rtnl_state))
10350 		bnx2x_update_mng_version(bp);
10351 
10352 	if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10353 			       &bp->sp_rtnl_state)) {
10354 		if (bnx2x_udp_port_update(bp)) {
10355 			/* On error, forget configuration */
10356 			memset(bp->udp_tunnel_ports, 0,
10357 			       sizeof(struct bnx2x_udp_tunnel) *
10358 			       BNX2X_UDP_PORT_MAX);
10359 		} else {
10360 			/* Since we don't store additional port information,
10361 			 * if no ports are configured for any feature ask for
10362 			 * information about currently configured ports.
10363 			 */
10364 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10365 			    !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10366 				udp_tunnel_get_rx_info(bp->dev);
10367 		}
10368 	}
10369 
10370 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10371 	 * can be called from other contexts as well)
10372 	 */
10373 	rtnl_unlock();
10374 
10375 	/* enable SR-IOV if applicable */
10376 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10377 					       &bp->sp_rtnl_state)) {
10378 		bnx2x_disable_sriov(bp);
10379 		bnx2x_enable_sriov(bp);
10380 	}
10381 }
10382 
10383 static void bnx2x_period_task(struct work_struct *work)
10384 {
10385 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10386 
10387 	if (!netif_running(bp->dev))
10388 		goto period_task_exit;
10389 
10390 	if (CHIP_REV_IS_SLOW(bp)) {
10391 		BNX2X_ERR("period task called on emulation, ignoring\n");
10392 		goto period_task_exit;
10393 	}
10394 
10395 	bnx2x_acquire_phy_lock(bp);
10396 	/*
10397 	 * The barrier is needed to ensure the ordering between the writing to
10398 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10399 	 * the reading here.
10400 	 */
10401 	smp_mb();
10402 	if (bp->port.pmf) {
10403 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10404 
10405 		/* Re-queue task in 1 sec */
10406 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10407 	}
10408 
10409 	bnx2x_release_phy_lock(bp);
10410 period_task_exit:
10411 	return;
10412 }
10413 
10414 /*
10415  * Init service functions
10416  */
10417 
10418 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10419 {
10420 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10421 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10422 	return base + (BP_ABS_FUNC(bp)) * stride;
10423 }
10424 
10425 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10426 					 u8 port, u32 reset_reg,
10427 					 struct bnx2x_mac_vals *vals)
10428 {
10429 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10430 	u32 base_addr;
10431 
10432 	if (!(mask & reset_reg))
10433 		return false;
10434 
10435 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10436 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10437 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10438 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10439 	REG_WR(bp, vals->umac_addr[port], 0);
10440 
10441 	return true;
10442 }
10443 
10444 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10445 					struct bnx2x_mac_vals *vals)
10446 {
10447 	u32 val, base_addr, offset, mask, reset_reg;
10448 	bool mac_stopped = false;
10449 	u8 port = BP_PORT(bp);
10450 
10451 	/* reset addresses as they also mark which values were changed */
10452 	memset(vals, 0, sizeof(*vals));
10453 
10454 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10455 
10456 	if (!CHIP_IS_E3(bp)) {
10457 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10458 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10459 		if ((mask & reset_reg) && val) {
10460 			u32 wb_data[2];
10461 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10462 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10463 						: NIG_REG_INGRESS_BMAC0_MEM;
10464 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10465 						: BIGMAC_REGISTER_BMAC_CONTROL;
10466 
10467 			/*
10468 			 * use rd/wr since we cannot use dmae. This is safe
10469 			 * since MCP won't access the bus due to the request
10470 			 * to unload, and no function on the path can be
10471 			 * loaded at this time.
10472 			 */
10473 			wb_data[0] = REG_RD(bp, base_addr + offset);
10474 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10475 			vals->bmac_addr = base_addr + offset;
10476 			vals->bmac_val[0] = wb_data[0];
10477 			vals->bmac_val[1] = wb_data[1];
10478 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10479 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10480 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10481 		}
10482 		BNX2X_DEV_INFO("Disable emac Rx\n");
10483 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10484 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10485 		REG_WR(bp, vals->emac_addr, 0);
10486 		mac_stopped = true;
10487 	} else {
10488 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10489 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10490 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10491 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10492 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10493 			       val & ~(1 << 1));
10494 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10495 			       val | (1 << 1));
10496 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10497 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10498 			REG_WR(bp, vals->xmac_addr, 0);
10499 			mac_stopped = true;
10500 		}
10501 
10502 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10503 							    reset_reg, vals);
10504 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10505 							    reset_reg, vals);
10506 	}
10507 
10508 	if (mac_stopped)
10509 		msleep(20);
10510 }
10511 
10512 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10513 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10514 					0x1848 + ((f) << 4))
10515 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10516 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10517 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10518 
10519 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10520 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10521 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10522 
10523 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10524 {
10525 	/* UNDI marks its presence in DORQ -
10526 	 * it initializes CID offset for normal bell to 0x7
10527 	 */
10528 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10529 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10530 		return false;
10531 
10532 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10533 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10534 		return true;
10535 	}
10536 
10537 	return false;
10538 }
10539 
10540 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10541 {
10542 	u16 rcq, bd;
10543 	u32 addr, tmp_reg;
10544 
10545 	if (BP_FUNC(bp) < 2)
10546 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10547 	else
10548 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10549 
10550 	tmp_reg = REG_RD(bp, addr);
10551 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10552 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10553 
10554 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10555 	REG_WR(bp, addr, tmp_reg);
10556 
10557 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10558 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10559 }
10560 
10561 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10562 {
10563 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10564 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10565 	if (!rc) {
10566 		BNX2X_ERR("MCP response failure, aborting\n");
10567 		return -EBUSY;
10568 	}
10569 
10570 	return 0;
10571 }
10572 
10573 static struct bnx2x_prev_path_list *
10574 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10575 {
10576 	struct bnx2x_prev_path_list *tmp_list;
10577 
10578 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10579 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10580 		    bp->pdev->bus->number == tmp_list->bus &&
10581 		    BP_PATH(bp) == tmp_list->path)
10582 			return tmp_list;
10583 
10584 	return NULL;
10585 }
10586 
10587 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10588 {
10589 	struct bnx2x_prev_path_list *tmp_list;
10590 	int rc;
10591 
10592 	rc = down_interruptible(&bnx2x_prev_sem);
10593 	if (rc) {
10594 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10595 		return rc;
10596 	}
10597 
10598 	tmp_list = bnx2x_prev_path_get_entry(bp);
10599 	if (tmp_list) {
10600 		tmp_list->aer = 1;
10601 		rc = 0;
10602 	} else {
10603 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10604 			  BP_PATH(bp));
10605 	}
10606 
10607 	up(&bnx2x_prev_sem);
10608 
10609 	return rc;
10610 }
10611 
10612 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10613 {
10614 	struct bnx2x_prev_path_list *tmp_list;
10615 	bool rc = false;
10616 
10617 	if (down_trylock(&bnx2x_prev_sem))
10618 		return false;
10619 
10620 	tmp_list = bnx2x_prev_path_get_entry(bp);
10621 	if (tmp_list) {
10622 		if (tmp_list->aer) {
10623 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10624 			   BP_PATH(bp));
10625 		} else {
10626 			rc = true;
10627 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10628 				       BP_PATH(bp));
10629 		}
10630 	}
10631 
10632 	up(&bnx2x_prev_sem);
10633 
10634 	return rc;
10635 }
10636 
10637 bool bnx2x_port_after_undi(struct bnx2x *bp)
10638 {
10639 	struct bnx2x_prev_path_list *entry;
10640 	bool val;
10641 
10642 	down(&bnx2x_prev_sem);
10643 
10644 	entry = bnx2x_prev_path_get_entry(bp);
10645 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10646 
10647 	up(&bnx2x_prev_sem);
10648 
10649 	return val;
10650 }
10651 
10652 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10653 {
10654 	struct bnx2x_prev_path_list *tmp_list;
10655 	int rc;
10656 
10657 	rc = down_interruptible(&bnx2x_prev_sem);
10658 	if (rc) {
10659 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10660 		return rc;
10661 	}
10662 
10663 	/* Check whether the entry for this path already exists */
10664 	tmp_list = bnx2x_prev_path_get_entry(bp);
10665 	if (tmp_list) {
10666 		if (!tmp_list->aer) {
10667 			BNX2X_ERR("Re-Marking the path.\n");
10668 		} else {
10669 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10670 			   BP_PATH(bp));
10671 			tmp_list->aer = 0;
10672 		}
10673 		up(&bnx2x_prev_sem);
10674 		return 0;
10675 	}
10676 	up(&bnx2x_prev_sem);
10677 
10678 	/* Create an entry for this path and add it */
10679 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10680 	if (!tmp_list) {
10681 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10682 		return -ENOMEM;
10683 	}
10684 
10685 	tmp_list->bus = bp->pdev->bus->number;
10686 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10687 	tmp_list->path = BP_PATH(bp);
10688 	tmp_list->aer = 0;
10689 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10690 
10691 	rc = down_interruptible(&bnx2x_prev_sem);
10692 	if (rc) {
10693 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10694 		kfree(tmp_list);
10695 	} else {
10696 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10697 		   BP_PATH(bp));
10698 		list_add(&tmp_list->list, &bnx2x_prev_list);
10699 		up(&bnx2x_prev_sem);
10700 	}
10701 
10702 	return rc;
10703 }
10704 
10705 static int bnx2x_do_flr(struct bnx2x *bp)
10706 {
10707 	struct pci_dev *dev = bp->pdev;
10708 
10709 	if (CHIP_IS_E1x(bp)) {
10710 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10711 		return -EINVAL;
10712 	}
10713 
10714 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10715 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10716 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10717 			  bp->common.bc_ver);
10718 		return -EINVAL;
10719 	}
10720 
10721 	if (!pci_wait_for_pending_transaction(dev))
10722 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10723 
10724 	BNX2X_DEV_INFO("Initiating FLR\n");
10725 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10726 
10727 	return 0;
10728 }
10729 
10730 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10731 {
10732 	int rc;
10733 
10734 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10735 
10736 	/* Test if previous unload process was already finished for this path */
10737 	if (bnx2x_prev_is_path_marked(bp))
10738 		return bnx2x_prev_mcp_done(bp);
10739 
10740 	BNX2X_DEV_INFO("Path is unmarked\n");
10741 
10742 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10743 	if (bnx2x_prev_is_after_undi(bp))
10744 		goto out;
10745 
10746 	/* If function has FLR capabilities, and existing FW version matches
10747 	 * the one required, then FLR will be sufficient to clean any residue
10748 	 * left by previous driver
10749 	 */
10750 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10751 
10752 	if (!rc) {
10753 		/* fw version is good */
10754 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10755 		rc = bnx2x_do_flr(bp);
10756 	}
10757 
10758 	if (!rc) {
10759 		/* FLR was performed */
10760 		BNX2X_DEV_INFO("FLR successful\n");
10761 		return 0;
10762 	}
10763 
10764 	BNX2X_DEV_INFO("Could not FLR\n");
10765 
10766 out:
10767 	/* Close the MCP request, return failure*/
10768 	rc = bnx2x_prev_mcp_done(bp);
10769 	if (!rc)
10770 		rc = BNX2X_PREV_WAIT_NEEDED;
10771 
10772 	return rc;
10773 }
10774 
10775 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10776 {
10777 	u32 reset_reg, tmp_reg = 0, rc;
10778 	bool prev_undi = false;
10779 	struct bnx2x_mac_vals mac_vals;
10780 
10781 	/* It is possible a previous function received 'common' answer,
10782 	 * but hasn't loaded yet, therefore creating a scenario of
10783 	 * multiple functions receiving 'common' on the same path.
10784 	 */
10785 	BNX2X_DEV_INFO("Common unload Flow\n");
10786 
10787 	memset(&mac_vals, 0, sizeof(mac_vals));
10788 
10789 	if (bnx2x_prev_is_path_marked(bp))
10790 		return bnx2x_prev_mcp_done(bp);
10791 
10792 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10793 
10794 	/* Reset should be performed after BRB is emptied */
10795 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10796 		u32 timer_count = 1000;
10797 
10798 		/* Close the MAC Rx to prevent BRB from filling up */
10799 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10800 
10801 		/* close LLH filters for both ports towards the BRB */
10802 		bnx2x_set_rx_filter(&bp->link_params, 0);
10803 		bp->link_params.port ^= 1;
10804 		bnx2x_set_rx_filter(&bp->link_params, 0);
10805 		bp->link_params.port ^= 1;
10806 
10807 		/* Check if the UNDI driver was previously loaded */
10808 		if (bnx2x_prev_is_after_undi(bp)) {
10809 			prev_undi = true;
10810 			/* clear the UNDI indication */
10811 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10812 			/* clear possible idle check errors */
10813 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10814 		}
10815 		if (!CHIP_IS_E1x(bp))
10816 			/* block FW from writing to host */
10817 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10818 
10819 		/* wait until BRB is empty */
10820 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10821 		while (timer_count) {
10822 			u32 prev_brb = tmp_reg;
10823 
10824 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10825 			if (!tmp_reg)
10826 				break;
10827 
10828 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10829 
10830 			/* reset timer as long as BRB actually gets emptied */
10831 			if (prev_brb > tmp_reg)
10832 				timer_count = 1000;
10833 			else
10834 				timer_count--;
10835 
10836 			/* If UNDI resides in memory, manually increment it */
10837 			if (prev_undi)
10838 				bnx2x_prev_unload_undi_inc(bp, 1);
10839 
10840 			udelay(10);
10841 		}
10842 
10843 		if (!timer_count)
10844 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10845 	}
10846 
10847 	/* No packets are in the pipeline, path is ready for reset */
10848 	bnx2x_reset_common(bp);
10849 
10850 	if (mac_vals.xmac_addr)
10851 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10852 	if (mac_vals.umac_addr[0])
10853 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10854 	if (mac_vals.umac_addr[1])
10855 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10856 	if (mac_vals.emac_addr)
10857 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10858 	if (mac_vals.bmac_addr) {
10859 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10860 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10861 	}
10862 
10863 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10864 	if (rc) {
10865 		bnx2x_prev_mcp_done(bp);
10866 		return rc;
10867 	}
10868 
10869 	return bnx2x_prev_mcp_done(bp);
10870 }
10871 
10872 static int bnx2x_prev_unload(struct bnx2x *bp)
10873 {
10874 	int time_counter = 10;
10875 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10876 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10877 
10878 	/* clear hw from errors which may have resulted from an interrupted
10879 	 * dmae transaction.
10880 	 */
10881 	bnx2x_clean_pglue_errors(bp);
10882 
10883 	/* Release previously held locks */
10884 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10885 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10886 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10887 
10888 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10889 	if (hw_lock_val) {
10890 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10891 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10892 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10893 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10894 		}
10895 
10896 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10897 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10898 	} else
10899 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10900 
10901 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10902 		BNX2X_DEV_INFO("Release previously held alr\n");
10903 		bnx2x_release_alr(bp);
10904 	}
10905 
10906 	do {
10907 		int aer = 0;
10908 		/* Lock MCP using an unload request */
10909 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10910 		if (!fw) {
10911 			BNX2X_ERR("MCP response failure, aborting\n");
10912 			rc = -EBUSY;
10913 			break;
10914 		}
10915 
10916 		rc = down_interruptible(&bnx2x_prev_sem);
10917 		if (rc) {
10918 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10919 				  rc);
10920 		} else {
10921 			/* If Path is marked by EEH, ignore unload status */
10922 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10923 				 bnx2x_prev_path_get_entry(bp)->aer);
10924 			up(&bnx2x_prev_sem);
10925 		}
10926 
10927 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10928 			rc = bnx2x_prev_unload_common(bp);
10929 			break;
10930 		}
10931 
10932 		/* non-common reply from MCP might require looping */
10933 		rc = bnx2x_prev_unload_uncommon(bp);
10934 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10935 			break;
10936 
10937 		msleep(20);
10938 	} while (--time_counter);
10939 
10940 	if (!time_counter || rc) {
10941 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10942 		rc = -EPROBE_DEFER;
10943 	}
10944 
10945 	/* Mark function if its port was used to boot from SAN */
10946 	if (bnx2x_port_after_undi(bp))
10947 		bp->link_params.feature_config_flags |=
10948 			FEATURE_CONFIG_BOOT_FROM_SAN;
10949 
10950 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10951 
10952 	return rc;
10953 }
10954 
10955 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10956 {
10957 	u32 val, val2, val3, val4, id, boot_mode;
10958 	u16 pmc;
10959 
10960 	/* Get the chip revision id and number. */
10961 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10962 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10963 	id = ((val & 0xffff) << 16);
10964 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10965 	id |= ((val & 0xf) << 12);
10966 
10967 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10968 	 * the configuration space (so we need to reg_rd)
10969 	 */
10970 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10971 	id |= (((val >> 24) & 0xf) << 4);
10972 	val = REG_RD(bp, MISC_REG_BOND_ID);
10973 	id |= (val & 0xf);
10974 	bp->common.chip_id = id;
10975 
10976 	/* force 57811 according to MISC register */
10977 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10978 		if (CHIP_IS_57810(bp))
10979 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10980 				(bp->common.chip_id & 0x0000FFFF);
10981 		else if (CHIP_IS_57810_MF(bp))
10982 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10983 				(bp->common.chip_id & 0x0000FFFF);
10984 		bp->common.chip_id |= 0x1;
10985 	}
10986 
10987 	/* Set doorbell size */
10988 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10989 
10990 	if (!CHIP_IS_E1x(bp)) {
10991 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10992 		if ((val & 1) == 0)
10993 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10994 		else
10995 			val = (val >> 1) & 1;
10996 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10997 						       "2_PORT_MODE");
10998 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10999 						 CHIP_2_PORT_MODE;
11000 
11001 		if (CHIP_MODE_IS_4_PORT(bp))
11002 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
11003 		else
11004 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
11005 	} else {
11006 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11007 		bp->pfid = bp->pf_num;			/* 0..7 */
11008 	}
11009 
11010 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11011 
11012 	bp->link_params.chip_id = bp->common.chip_id;
11013 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11014 
11015 	val = (REG_RD(bp, 0x2874) & 0x55);
11016 	if ((bp->common.chip_id & 0x1) ||
11017 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11018 		bp->flags |= ONE_PORT_FLAG;
11019 		BNX2X_DEV_INFO("single port device\n");
11020 	}
11021 
11022 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11023 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11024 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11025 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11026 		       bp->common.flash_size, bp->common.flash_size);
11027 
11028 	bnx2x_init_shmem(bp);
11029 
11030 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11031 					MISC_REG_GENERIC_CR_1 :
11032 					MISC_REG_GENERIC_CR_0));
11033 
11034 	bp->link_params.shmem_base = bp->common.shmem_base;
11035 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11036 	if (SHMEM2_RD(bp, size) >
11037 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11038 		bp->link_params.lfa_base =
11039 		REG_RD(bp, bp->common.shmem2_base +
11040 		       (u32)offsetof(struct shmem2_region,
11041 				     lfa_host_addr[BP_PORT(bp)]));
11042 	else
11043 		bp->link_params.lfa_base = 0;
11044 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11045 		       bp->common.shmem_base, bp->common.shmem2_base);
11046 
11047 	if (!bp->common.shmem_base) {
11048 		BNX2X_DEV_INFO("MCP not active\n");
11049 		bp->flags |= NO_MCP_FLAG;
11050 		return;
11051 	}
11052 
11053 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11054 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11055 
11056 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11057 					SHARED_HW_CFG_LED_MODE_MASK) >>
11058 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11059 
11060 	bp->link_params.feature_config_flags = 0;
11061 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11062 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11063 		bp->link_params.feature_config_flags |=
11064 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11065 	else
11066 		bp->link_params.feature_config_flags &=
11067 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11068 
11069 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11070 	bp->common.bc_ver = val;
11071 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11072 	if (val < BNX2X_BC_VER) {
11073 		/* for now only warn
11074 		 * later we might need to enforce this */
11075 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11076 			  BNX2X_BC_VER, val);
11077 	}
11078 	bp->link_params.feature_config_flags |=
11079 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11080 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11081 
11082 	bp->link_params.feature_config_flags |=
11083 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11084 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11085 	bp->link_params.feature_config_flags |=
11086 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11087 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11088 	bp->link_params.feature_config_flags |=
11089 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11090 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11091 
11092 	bp->link_params.feature_config_flags |=
11093 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11094 		FEATURE_CONFIG_MT_SUPPORT : 0;
11095 
11096 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11097 			BC_SUPPORTS_PFC_STATS : 0;
11098 
11099 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11100 			BC_SUPPORTS_FCOE_FEATURES : 0;
11101 
11102 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11103 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11104 
11105 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11106 			BC_SUPPORTS_RMMOD_CMD : 0;
11107 
11108 	boot_mode = SHMEM_RD(bp,
11109 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11110 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11111 	switch (boot_mode) {
11112 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11113 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11114 		break;
11115 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11116 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11117 		break;
11118 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11119 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11120 		break;
11121 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11122 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11123 		break;
11124 	}
11125 
11126 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11127 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11128 
11129 	BNX2X_DEV_INFO("%sWoL capable\n",
11130 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11131 
11132 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11133 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11134 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11135 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11136 
11137 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11138 		 val, val2, val3, val4);
11139 }
11140 
11141 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11142 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11143 
11144 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11145 {
11146 	int pfid = BP_FUNC(bp);
11147 	int igu_sb_id;
11148 	u32 val;
11149 	u8 fid, igu_sb_cnt = 0;
11150 
11151 	bp->igu_base_sb = 0xff;
11152 	if (CHIP_INT_MODE_IS_BC(bp)) {
11153 		int vn = BP_VN(bp);
11154 		igu_sb_cnt = bp->igu_sb_cnt;
11155 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11156 			FP_SB_MAX_E1x;
11157 
11158 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11159 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11160 
11161 		return 0;
11162 	}
11163 
11164 	/* IGU in normal mode - read CAM */
11165 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11166 	     igu_sb_id++) {
11167 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11168 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11169 			continue;
11170 		fid = IGU_FID(val);
11171 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11172 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11173 				continue;
11174 			if (IGU_VEC(val) == 0)
11175 				/* default status block */
11176 				bp->igu_dsb_id = igu_sb_id;
11177 			else {
11178 				if (bp->igu_base_sb == 0xff)
11179 					bp->igu_base_sb = igu_sb_id;
11180 				igu_sb_cnt++;
11181 			}
11182 		}
11183 	}
11184 
11185 #ifdef CONFIG_PCI_MSI
11186 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11187 	 * optional that number of CAM entries will not be equal to the value
11188 	 * advertised in PCI.
11189 	 * Driver should use the minimal value of both as the actual status
11190 	 * block count
11191 	 */
11192 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11193 #endif
11194 
11195 	if (igu_sb_cnt == 0) {
11196 		BNX2X_ERR("CAM configuration error\n");
11197 		return -EINVAL;
11198 	}
11199 
11200 	return 0;
11201 }
11202 
11203 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11204 {
11205 	int cfg_size = 0, idx, port = BP_PORT(bp);
11206 
11207 	/* Aggregation of supported attributes of all external phys */
11208 	bp->port.supported[0] = 0;
11209 	bp->port.supported[1] = 0;
11210 	switch (bp->link_params.num_phys) {
11211 	case 1:
11212 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11213 		cfg_size = 1;
11214 		break;
11215 	case 2:
11216 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11217 		cfg_size = 1;
11218 		break;
11219 	case 3:
11220 		if (bp->link_params.multi_phy_config &
11221 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11222 			bp->port.supported[1] =
11223 				bp->link_params.phy[EXT_PHY1].supported;
11224 			bp->port.supported[0] =
11225 				bp->link_params.phy[EXT_PHY2].supported;
11226 		} else {
11227 			bp->port.supported[0] =
11228 				bp->link_params.phy[EXT_PHY1].supported;
11229 			bp->port.supported[1] =
11230 				bp->link_params.phy[EXT_PHY2].supported;
11231 		}
11232 		cfg_size = 2;
11233 		break;
11234 	}
11235 
11236 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11237 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11238 			   SHMEM_RD(bp,
11239 			   dev_info.port_hw_config[port].external_phy_config),
11240 			   SHMEM_RD(bp,
11241 			   dev_info.port_hw_config[port].external_phy_config2));
11242 			return;
11243 	}
11244 
11245 	if (CHIP_IS_E3(bp))
11246 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11247 	else {
11248 		switch (switch_cfg) {
11249 		case SWITCH_CFG_1G:
11250 			bp->port.phy_addr = REG_RD(
11251 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11252 			break;
11253 		case SWITCH_CFG_10G:
11254 			bp->port.phy_addr = REG_RD(
11255 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11256 			break;
11257 		default:
11258 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11259 				  bp->port.link_config[0]);
11260 			return;
11261 		}
11262 	}
11263 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11264 	/* mask what we support according to speed_cap_mask per configuration */
11265 	for (idx = 0; idx < cfg_size; idx++) {
11266 		if (!(bp->link_params.speed_cap_mask[idx] &
11267 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11268 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11269 
11270 		if (!(bp->link_params.speed_cap_mask[idx] &
11271 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11272 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11273 
11274 		if (!(bp->link_params.speed_cap_mask[idx] &
11275 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11276 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11277 
11278 		if (!(bp->link_params.speed_cap_mask[idx] &
11279 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11280 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11281 
11282 		if (!(bp->link_params.speed_cap_mask[idx] &
11283 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11284 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11285 						     SUPPORTED_1000baseT_Full);
11286 
11287 		if (!(bp->link_params.speed_cap_mask[idx] &
11288 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11289 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11290 
11291 		if (!(bp->link_params.speed_cap_mask[idx] &
11292 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11293 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11294 
11295 		if (!(bp->link_params.speed_cap_mask[idx] &
11296 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11297 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11298 	}
11299 
11300 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11301 		       bp->port.supported[1]);
11302 }
11303 
11304 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11305 {
11306 	u32 link_config, idx, cfg_size = 0;
11307 	bp->port.advertising[0] = 0;
11308 	bp->port.advertising[1] = 0;
11309 	switch (bp->link_params.num_phys) {
11310 	case 1:
11311 	case 2:
11312 		cfg_size = 1;
11313 		break;
11314 	case 3:
11315 		cfg_size = 2;
11316 		break;
11317 	}
11318 	for (idx = 0; idx < cfg_size; idx++) {
11319 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11320 		link_config = bp->port.link_config[idx];
11321 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11322 		case PORT_FEATURE_LINK_SPEED_AUTO:
11323 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11324 				bp->link_params.req_line_speed[idx] =
11325 					SPEED_AUTO_NEG;
11326 				bp->port.advertising[idx] |=
11327 					bp->port.supported[idx];
11328 				if (bp->link_params.phy[EXT_PHY1].type ==
11329 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11330 					bp->port.advertising[idx] |=
11331 					(SUPPORTED_100baseT_Half |
11332 					 SUPPORTED_100baseT_Full);
11333 			} else {
11334 				/* force 10G, no AN */
11335 				bp->link_params.req_line_speed[idx] =
11336 					SPEED_10000;
11337 				bp->port.advertising[idx] |=
11338 					(ADVERTISED_10000baseT_Full |
11339 					 ADVERTISED_FIBRE);
11340 				continue;
11341 			}
11342 			break;
11343 
11344 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11345 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11346 				bp->link_params.req_line_speed[idx] =
11347 					SPEED_10;
11348 				bp->port.advertising[idx] |=
11349 					(ADVERTISED_10baseT_Full |
11350 					 ADVERTISED_TP);
11351 			} else {
11352 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11353 					    link_config,
11354 				    bp->link_params.speed_cap_mask[idx]);
11355 				return;
11356 			}
11357 			break;
11358 
11359 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11360 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11361 				bp->link_params.req_line_speed[idx] =
11362 					SPEED_10;
11363 				bp->link_params.req_duplex[idx] =
11364 					DUPLEX_HALF;
11365 				bp->port.advertising[idx] |=
11366 					(ADVERTISED_10baseT_Half |
11367 					 ADVERTISED_TP);
11368 			} else {
11369 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11370 					    link_config,
11371 					  bp->link_params.speed_cap_mask[idx]);
11372 				return;
11373 			}
11374 			break;
11375 
11376 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11377 			if (bp->port.supported[idx] &
11378 			    SUPPORTED_100baseT_Full) {
11379 				bp->link_params.req_line_speed[idx] =
11380 					SPEED_100;
11381 				bp->port.advertising[idx] |=
11382 					(ADVERTISED_100baseT_Full |
11383 					 ADVERTISED_TP);
11384 			} else {
11385 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11386 					    link_config,
11387 					  bp->link_params.speed_cap_mask[idx]);
11388 				return;
11389 			}
11390 			break;
11391 
11392 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11393 			if (bp->port.supported[idx] &
11394 			    SUPPORTED_100baseT_Half) {
11395 				bp->link_params.req_line_speed[idx] =
11396 								SPEED_100;
11397 				bp->link_params.req_duplex[idx] =
11398 								DUPLEX_HALF;
11399 				bp->port.advertising[idx] |=
11400 					(ADVERTISED_100baseT_Half |
11401 					 ADVERTISED_TP);
11402 			} else {
11403 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11404 				    link_config,
11405 				    bp->link_params.speed_cap_mask[idx]);
11406 				return;
11407 			}
11408 			break;
11409 
11410 		case PORT_FEATURE_LINK_SPEED_1G:
11411 			if (bp->port.supported[idx] &
11412 			    SUPPORTED_1000baseT_Full) {
11413 				bp->link_params.req_line_speed[idx] =
11414 					SPEED_1000;
11415 				bp->port.advertising[idx] |=
11416 					(ADVERTISED_1000baseT_Full |
11417 					 ADVERTISED_TP);
11418 			} else if (bp->port.supported[idx] &
11419 				   SUPPORTED_1000baseKX_Full) {
11420 				bp->link_params.req_line_speed[idx] =
11421 					SPEED_1000;
11422 				bp->port.advertising[idx] |=
11423 					ADVERTISED_1000baseKX_Full;
11424 			} else {
11425 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11426 				    link_config,
11427 				    bp->link_params.speed_cap_mask[idx]);
11428 				return;
11429 			}
11430 			break;
11431 
11432 		case PORT_FEATURE_LINK_SPEED_2_5G:
11433 			if (bp->port.supported[idx] &
11434 			    SUPPORTED_2500baseX_Full) {
11435 				bp->link_params.req_line_speed[idx] =
11436 					SPEED_2500;
11437 				bp->port.advertising[idx] |=
11438 					(ADVERTISED_2500baseX_Full |
11439 						ADVERTISED_TP);
11440 			} else {
11441 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11442 				    link_config,
11443 				    bp->link_params.speed_cap_mask[idx]);
11444 				return;
11445 			}
11446 			break;
11447 
11448 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11449 			if (bp->port.supported[idx] &
11450 			    SUPPORTED_10000baseT_Full) {
11451 				bp->link_params.req_line_speed[idx] =
11452 					SPEED_10000;
11453 				bp->port.advertising[idx] |=
11454 					(ADVERTISED_10000baseT_Full |
11455 						ADVERTISED_FIBRE);
11456 			} else if (bp->port.supported[idx] &
11457 				   SUPPORTED_10000baseKR_Full) {
11458 				bp->link_params.req_line_speed[idx] =
11459 					SPEED_10000;
11460 				bp->port.advertising[idx] |=
11461 					(ADVERTISED_10000baseKR_Full |
11462 						ADVERTISED_FIBRE);
11463 			} else {
11464 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11465 				    link_config,
11466 				    bp->link_params.speed_cap_mask[idx]);
11467 				return;
11468 			}
11469 			break;
11470 		case PORT_FEATURE_LINK_SPEED_20G:
11471 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11472 
11473 			break;
11474 		default:
11475 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11476 				  link_config);
11477 				bp->link_params.req_line_speed[idx] =
11478 							SPEED_AUTO_NEG;
11479 				bp->port.advertising[idx] =
11480 						bp->port.supported[idx];
11481 			break;
11482 		}
11483 
11484 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11485 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11486 		if (bp->link_params.req_flow_ctrl[idx] ==
11487 		    BNX2X_FLOW_CTRL_AUTO) {
11488 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11489 				bp->link_params.req_flow_ctrl[idx] =
11490 							BNX2X_FLOW_CTRL_NONE;
11491 			else
11492 				bnx2x_set_requested_fc(bp);
11493 		}
11494 
11495 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11496 			       bp->link_params.req_line_speed[idx],
11497 			       bp->link_params.req_duplex[idx],
11498 			       bp->link_params.req_flow_ctrl[idx],
11499 			       bp->port.advertising[idx]);
11500 	}
11501 }
11502 
11503 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11504 {
11505 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11506 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11507 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11508 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11509 }
11510 
11511 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11512 {
11513 	int port = BP_PORT(bp);
11514 	u32 config;
11515 	u32 ext_phy_type, ext_phy_config, eee_mode;
11516 
11517 	bp->link_params.bp = bp;
11518 	bp->link_params.port = port;
11519 
11520 	bp->link_params.lane_config =
11521 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11522 
11523 	bp->link_params.speed_cap_mask[0] =
11524 		SHMEM_RD(bp,
11525 			 dev_info.port_hw_config[port].speed_capability_mask) &
11526 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11527 	bp->link_params.speed_cap_mask[1] =
11528 		SHMEM_RD(bp,
11529 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11530 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11531 	bp->port.link_config[0] =
11532 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11533 
11534 	bp->port.link_config[1] =
11535 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11536 
11537 	bp->link_params.multi_phy_config =
11538 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11539 	/* If the device is capable of WoL, set the default state according
11540 	 * to the HW
11541 	 */
11542 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11543 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11544 		   (config & PORT_FEATURE_WOL_ENABLED));
11545 
11546 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11547 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11548 		bp->flags |= NO_ISCSI_FLAG;
11549 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11550 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11551 		bp->flags |= NO_FCOE_FLAG;
11552 
11553 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11554 		       bp->link_params.lane_config,
11555 		       bp->link_params.speed_cap_mask[0],
11556 		       bp->port.link_config[0]);
11557 
11558 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11559 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11560 	bnx2x_phy_probe(&bp->link_params);
11561 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11562 
11563 	bnx2x_link_settings_requested(bp);
11564 
11565 	/*
11566 	 * If connected directly, work with the internal PHY, otherwise, work
11567 	 * with the external PHY
11568 	 */
11569 	ext_phy_config =
11570 		SHMEM_RD(bp,
11571 			 dev_info.port_hw_config[port].external_phy_config);
11572 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11573 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11574 		bp->mdio.prtad = bp->port.phy_addr;
11575 
11576 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11577 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11578 		bp->mdio.prtad =
11579 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11580 
11581 	/* Configure link feature according to nvram value */
11582 	eee_mode = (((SHMEM_RD(bp, dev_info.
11583 		      port_feature_config[port].eee_power_mode)) &
11584 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11585 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11586 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11587 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11588 					   EEE_MODE_ENABLE_LPI |
11589 					   EEE_MODE_OUTPUT_TIME;
11590 	} else {
11591 		bp->link_params.eee_mode = 0;
11592 	}
11593 }
11594 
11595 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11596 {
11597 	u32 no_flags = NO_ISCSI_FLAG;
11598 	int port = BP_PORT(bp);
11599 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11600 				drv_lic_key[port].max_iscsi_conn);
11601 
11602 	if (!CNIC_SUPPORT(bp)) {
11603 		bp->flags |= no_flags;
11604 		return;
11605 	}
11606 
11607 	/* Get the number of maximum allowed iSCSI connections */
11608 	bp->cnic_eth_dev.max_iscsi_conn =
11609 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11610 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11611 
11612 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11613 		       bp->cnic_eth_dev.max_iscsi_conn);
11614 
11615 	/*
11616 	 * If maximum allowed number of connections is zero -
11617 	 * disable the feature.
11618 	 */
11619 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11620 		bp->flags |= no_flags;
11621 }
11622 
11623 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11624 {
11625 	/* Port info */
11626 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11627 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11628 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11629 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11630 
11631 	/* Node info */
11632 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11633 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11634 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11635 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11636 }
11637 
11638 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11639 {
11640 	u8 count = 0;
11641 
11642 	if (IS_MF(bp)) {
11643 		u8 fid;
11644 
11645 		/* iterate over absolute function ids for this path: */
11646 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11647 			if (IS_MF_SD(bp)) {
11648 				u32 cfg = MF_CFG_RD(bp,
11649 						    func_mf_config[fid].config);
11650 
11651 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11652 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11653 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11654 					count++;
11655 			} else {
11656 				u32 cfg = MF_CFG_RD(bp,
11657 						    func_ext_config[fid].
11658 								      func_cfg);
11659 
11660 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11661 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11662 					count++;
11663 			}
11664 		}
11665 	} else { /* SF */
11666 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11667 
11668 		for (port = 0; port < port_cnt; port++) {
11669 			u32 lic = SHMEM_RD(bp,
11670 					   drv_lic_key[port].max_fcoe_conn) ^
11671 				  FW_ENCODE_32BIT_PATTERN;
11672 			if (lic)
11673 				count++;
11674 		}
11675 	}
11676 
11677 	return count;
11678 }
11679 
11680 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11681 {
11682 	int port = BP_PORT(bp);
11683 	int func = BP_ABS_FUNC(bp);
11684 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11685 				drv_lic_key[port].max_fcoe_conn);
11686 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11687 
11688 	if (!CNIC_SUPPORT(bp)) {
11689 		bp->flags |= NO_FCOE_FLAG;
11690 		return;
11691 	}
11692 
11693 	/* Get the number of maximum allowed FCoE connections */
11694 	bp->cnic_eth_dev.max_fcoe_conn =
11695 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11696 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11697 
11698 	/* Calculate the number of maximum allowed FCoE tasks */
11699 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11700 
11701 	/* check if FCoE resources must be shared between different functions */
11702 	if (num_fcoe_func)
11703 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11704 
11705 	/* Read the WWN: */
11706 	if (!IS_MF(bp)) {
11707 		/* Port info */
11708 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11709 			SHMEM_RD(bp,
11710 				 dev_info.port_hw_config[port].
11711 				 fcoe_wwn_port_name_upper);
11712 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11713 			SHMEM_RD(bp,
11714 				 dev_info.port_hw_config[port].
11715 				 fcoe_wwn_port_name_lower);
11716 
11717 		/* Node info */
11718 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11719 			SHMEM_RD(bp,
11720 				 dev_info.port_hw_config[port].
11721 				 fcoe_wwn_node_name_upper);
11722 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11723 			SHMEM_RD(bp,
11724 				 dev_info.port_hw_config[port].
11725 				 fcoe_wwn_node_name_lower);
11726 	} else if (!IS_MF_SD(bp)) {
11727 		/* Read the WWN info only if the FCoE feature is enabled for
11728 		 * this function.
11729 		 */
11730 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11731 			bnx2x_get_ext_wwn_info(bp, func);
11732 	} else {
11733 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11734 			bnx2x_get_ext_wwn_info(bp, func);
11735 	}
11736 
11737 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11738 
11739 	/*
11740 	 * If maximum allowed number of connections is zero -
11741 	 * disable the feature.
11742 	 */
11743 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11744 		bp->flags |= NO_FCOE_FLAG;
11745 }
11746 
11747 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11748 {
11749 	/*
11750 	 * iSCSI may be dynamically disabled but reading
11751 	 * info here we will decrease memory usage by driver
11752 	 * if the feature is disabled for good
11753 	 */
11754 	bnx2x_get_iscsi_info(bp);
11755 	bnx2x_get_fcoe_info(bp);
11756 }
11757 
11758 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11759 {
11760 	u32 val, val2;
11761 	int func = BP_ABS_FUNC(bp);
11762 	int port = BP_PORT(bp);
11763 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11764 	u8 *fip_mac = bp->fip_mac;
11765 
11766 	if (IS_MF(bp)) {
11767 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11768 		 * FCoE MAC then the appropriate feature should be disabled.
11769 		 * In non SD mode features configuration comes from struct
11770 		 * func_ext_config.
11771 		 */
11772 		if (!IS_MF_SD(bp)) {
11773 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11774 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11775 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11776 						 iscsi_mac_addr_upper);
11777 				val = MF_CFG_RD(bp, func_ext_config[func].
11778 						iscsi_mac_addr_lower);
11779 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11780 				BNX2X_DEV_INFO
11781 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11782 			} else {
11783 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11784 			}
11785 
11786 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11787 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11788 						 fcoe_mac_addr_upper);
11789 				val = MF_CFG_RD(bp, func_ext_config[func].
11790 						fcoe_mac_addr_lower);
11791 				bnx2x_set_mac_buf(fip_mac, val, val2);
11792 				BNX2X_DEV_INFO
11793 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11794 			} else {
11795 				bp->flags |= NO_FCOE_FLAG;
11796 			}
11797 
11798 			bp->mf_ext_config = cfg;
11799 
11800 		} else { /* SD MODE */
11801 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11802 				/* use primary mac as iscsi mac */
11803 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11804 
11805 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11806 				BNX2X_DEV_INFO
11807 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11808 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11809 				/* use primary mac as fip mac */
11810 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11811 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11812 				BNX2X_DEV_INFO
11813 					("Read FIP MAC: %pM\n", fip_mac);
11814 			}
11815 		}
11816 
11817 		/* If this is a storage-only interface, use SAN mac as
11818 		 * primary MAC. Notice that for SD this is already the case,
11819 		 * as the SAN mac was copied from the primary MAC.
11820 		 */
11821 		if (IS_MF_FCOE_AFEX(bp))
11822 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11823 	} else {
11824 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11825 				iscsi_mac_upper);
11826 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11827 			       iscsi_mac_lower);
11828 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11829 
11830 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11831 				fcoe_fip_mac_upper);
11832 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11833 			       fcoe_fip_mac_lower);
11834 		bnx2x_set_mac_buf(fip_mac, val, val2);
11835 	}
11836 
11837 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11838 	if (!is_valid_ether_addr(iscsi_mac)) {
11839 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11840 		eth_zero_addr(iscsi_mac);
11841 	}
11842 
11843 	/* Disable FCoE if MAC configuration is invalid. */
11844 	if (!is_valid_ether_addr(fip_mac)) {
11845 		bp->flags |= NO_FCOE_FLAG;
11846 		eth_zero_addr(bp->fip_mac);
11847 	}
11848 }
11849 
11850 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11851 {
11852 	u32 val, val2;
11853 	int func = BP_ABS_FUNC(bp);
11854 	int port = BP_PORT(bp);
11855 
11856 	/* Zero primary MAC configuration */
11857 	eth_zero_addr(bp->dev->dev_addr);
11858 
11859 	if (BP_NOMCP(bp)) {
11860 		BNX2X_ERROR("warning: random MAC workaround active\n");
11861 		eth_hw_addr_random(bp->dev);
11862 	} else if (IS_MF(bp)) {
11863 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11864 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11865 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11866 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11867 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11868 
11869 		if (CNIC_SUPPORT(bp))
11870 			bnx2x_get_cnic_mac_hwinfo(bp);
11871 	} else {
11872 		/* in SF read MACs from port configuration */
11873 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11874 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11875 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11876 
11877 		if (CNIC_SUPPORT(bp))
11878 			bnx2x_get_cnic_mac_hwinfo(bp);
11879 	}
11880 
11881 	if (!BP_NOMCP(bp)) {
11882 		/* Read physical port identifier from shmem */
11883 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11884 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11885 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11886 		bp->flags |= HAS_PHYS_PORT_ID;
11887 	}
11888 
11889 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11890 
11891 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11892 		dev_err(&bp->pdev->dev,
11893 			"bad Ethernet MAC address configuration: %pM\n"
11894 			"change it manually before bringing up the appropriate network interface\n",
11895 			bp->dev->dev_addr);
11896 }
11897 
11898 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11899 {
11900 	int tmp;
11901 	u32 cfg;
11902 
11903 	if (IS_VF(bp))
11904 		return false;
11905 
11906 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11907 		/* Take function: tmp = func */
11908 		tmp = BP_ABS_FUNC(bp);
11909 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11910 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11911 	} else {
11912 		/* Take port: tmp = port */
11913 		tmp = BP_PORT(bp);
11914 		cfg = SHMEM_RD(bp,
11915 			       dev_info.port_hw_config[tmp].generic_features);
11916 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11917 	}
11918 	return cfg;
11919 }
11920 
11921 static void validate_set_si_mode(struct bnx2x *bp)
11922 {
11923 	u8 func = BP_ABS_FUNC(bp);
11924 	u32 val;
11925 
11926 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11927 
11928 	/* check for legal mac (upper bytes) */
11929 	if (val != 0xffff) {
11930 		bp->mf_mode = MULTI_FUNCTION_SI;
11931 		bp->mf_config[BP_VN(bp)] =
11932 			MF_CFG_RD(bp, func_mf_config[func].config);
11933 	} else
11934 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11935 }
11936 
11937 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11938 {
11939 	int /*abs*/func = BP_ABS_FUNC(bp);
11940 	int vn, mfw_vn;
11941 	u32 val = 0, val2 = 0;
11942 	int rc = 0;
11943 
11944 	/* Validate that chip access is feasible */
11945 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11946 		dev_err(&bp->pdev->dev,
11947 			"Chip read returns all Fs. Preventing probe from continuing\n");
11948 		return -EINVAL;
11949 	}
11950 
11951 	bnx2x_get_common_hwinfo(bp);
11952 
11953 	/*
11954 	 * initialize IGU parameters
11955 	 */
11956 	if (CHIP_IS_E1x(bp)) {
11957 		bp->common.int_block = INT_BLOCK_HC;
11958 
11959 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11960 		bp->igu_base_sb = 0;
11961 	} else {
11962 		bp->common.int_block = INT_BLOCK_IGU;
11963 
11964 		/* do not allow device reset during IGU info processing */
11965 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11966 
11967 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11968 
11969 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11970 			int tout = 5000;
11971 
11972 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11973 
11974 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11975 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11976 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11977 
11978 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11979 				tout--;
11980 				usleep_range(1000, 2000);
11981 			}
11982 
11983 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11984 				dev_err(&bp->pdev->dev,
11985 					"FORCING Normal Mode failed!!!\n");
11986 				bnx2x_release_hw_lock(bp,
11987 						      HW_LOCK_RESOURCE_RESET);
11988 				return -EPERM;
11989 			}
11990 		}
11991 
11992 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11993 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11994 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11995 		} else
11996 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11997 
11998 		rc = bnx2x_get_igu_cam_info(bp);
11999 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12000 		if (rc)
12001 			return rc;
12002 	}
12003 
12004 	/*
12005 	 * set base FW non-default (fast path) status block id, this value is
12006 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
12007 	 * determine the id used by the FW.
12008 	 */
12009 	if (CHIP_IS_E1x(bp))
12010 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12011 	else /*
12012 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12013 	      * the same queue are indicated on the same IGU SB). So we prefer
12014 	      * FW and IGU SBs to be the same value.
12015 	      */
12016 		bp->base_fw_ndsb = bp->igu_base_sb;
12017 
12018 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12019 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12020 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12021 
12022 	/*
12023 	 * Initialize MF configuration
12024 	 */
12025 
12026 	bp->mf_ov = 0;
12027 	bp->mf_mode = 0;
12028 	bp->mf_sub_mode = 0;
12029 	vn = BP_VN(bp);
12030 	mfw_vn = BP_FW_MB_IDX(bp);
12031 
12032 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12033 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12034 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12035 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12036 
12037 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12038 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12039 		else
12040 			bp->common.mf_cfg_base = bp->common.shmem_base +
12041 				offsetof(struct shmem_region, func_mb) +
12042 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12043 		/*
12044 		 * get mf configuration:
12045 		 * 1. Existence of MF configuration
12046 		 * 2. MAC address must be legal (check only upper bytes)
12047 		 *    for  Switch-Independent mode;
12048 		 *    OVLAN must be legal for Switch-Dependent mode
12049 		 * 3. SF_MODE configures specific MF mode
12050 		 */
12051 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12052 			/* get mf configuration */
12053 			val = SHMEM_RD(bp,
12054 				       dev_info.shared_feature_config.config);
12055 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12056 
12057 			switch (val) {
12058 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12059 				validate_set_si_mode(bp);
12060 				break;
12061 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12062 				if ((!CHIP_IS_E1x(bp)) &&
12063 				    (MF_CFG_RD(bp, func_mf_config[func].
12064 					       mac_upper) != 0xffff) &&
12065 				    (SHMEM2_HAS(bp,
12066 						afex_driver_support))) {
12067 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12068 					bp->mf_config[vn] = MF_CFG_RD(bp,
12069 						func_mf_config[func].config);
12070 				} else {
12071 					BNX2X_DEV_INFO("can not configure afex mode\n");
12072 				}
12073 				break;
12074 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12075 				/* get OV configuration */
12076 				val = MF_CFG_RD(bp,
12077 					func_mf_config[FUNC_0].e1hov_tag);
12078 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12079 
12080 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12081 					bp->mf_mode = MULTI_FUNCTION_SD;
12082 					bp->mf_config[vn] = MF_CFG_RD(bp,
12083 						func_mf_config[func].config);
12084 				} else
12085 					BNX2X_DEV_INFO("illegal OV for SD\n");
12086 				break;
12087 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12088 				bp->mf_mode = MULTI_FUNCTION_SD;
12089 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12090 				bp->mf_config[vn] =
12091 					MF_CFG_RD(bp,
12092 						  func_mf_config[func].config);
12093 
12094 				if (SHMEM2_HAS(bp, mtu_size)) {
12095 					int mtu_idx = BP_FW_MB_IDX(bp);
12096 					u16 mtu_size;
12097 					u32 mtu;
12098 
12099 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12100 					mtu_size = (u16)mtu;
12101 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12102 					   mtu_size, mtu);
12103 
12104 					/* if valid: update device mtu */
12105 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12106 					    (mtu_size <=
12107 					     ETH_MAX_JUMBO_PACKET_SIZE))
12108 						bp->dev->mtu = mtu_size;
12109 				}
12110 				break;
12111 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12112 				bp->mf_mode = MULTI_FUNCTION_SD;
12113 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12114 				bp->mf_config[vn] =
12115 					MF_CFG_RD(bp,
12116 						  func_mf_config[func].config);
12117 				break;
12118 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12119 				bp->mf_config[vn] = 0;
12120 				break;
12121 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12122 				val2 = SHMEM_RD(bp,
12123 					dev_info.shared_hw_config.config_3);
12124 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12125 				switch (val2) {
12126 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12127 					validate_set_si_mode(bp);
12128 					bp->mf_sub_mode =
12129 							SUB_MF_MODE_NPAR1_DOT_5;
12130 					break;
12131 				default:
12132 					/* Unknown configuration */
12133 					bp->mf_config[vn] = 0;
12134 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12135 						       val);
12136 				}
12137 				break;
12138 			default:
12139 				/* Unknown configuration: reset mf_config */
12140 				bp->mf_config[vn] = 0;
12141 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12142 			}
12143 		}
12144 
12145 		BNX2X_DEV_INFO("%s function mode\n",
12146 			       IS_MF(bp) ? "multi" : "single");
12147 
12148 		switch (bp->mf_mode) {
12149 		case MULTI_FUNCTION_SD:
12150 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12151 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12152 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12153 				bp->mf_ov = val;
12154 				bp->path_has_ovlan = true;
12155 
12156 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12157 					       func, bp->mf_ov, bp->mf_ov);
12158 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12159 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12160 				dev_err(&bp->pdev->dev,
12161 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12162 					func);
12163 				bp->path_has_ovlan = true;
12164 			} else {
12165 				dev_err(&bp->pdev->dev,
12166 					"No valid MF OV for func %d, aborting\n",
12167 					func);
12168 				return -EPERM;
12169 			}
12170 			break;
12171 		case MULTI_FUNCTION_AFEX:
12172 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12173 			break;
12174 		case MULTI_FUNCTION_SI:
12175 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12176 				       func);
12177 			break;
12178 		default:
12179 			if (vn) {
12180 				dev_err(&bp->pdev->dev,
12181 					"VN %d is in a single function mode, aborting\n",
12182 					vn);
12183 				return -EPERM;
12184 			}
12185 			break;
12186 		}
12187 
12188 		/* check if other port on the path needs ovlan:
12189 		 * Since MF configuration is shared between ports
12190 		 * Possible mixed modes are only
12191 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12192 		 */
12193 		if (CHIP_MODE_IS_4_PORT(bp) &&
12194 		    !bp->path_has_ovlan &&
12195 		    !IS_MF(bp) &&
12196 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12197 			u8 other_port = !BP_PORT(bp);
12198 			u8 other_func = BP_PATH(bp) + 2*other_port;
12199 			val = MF_CFG_RD(bp,
12200 					func_mf_config[other_func].e1hov_tag);
12201 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12202 				bp->path_has_ovlan = true;
12203 		}
12204 	}
12205 
12206 	/* adjust igu_sb_cnt to MF for E1H */
12207 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12208 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12209 
12210 	/* port info */
12211 	bnx2x_get_port_hwinfo(bp);
12212 
12213 	/* Get MAC addresses */
12214 	bnx2x_get_mac_hwinfo(bp);
12215 
12216 	bnx2x_get_cnic_info(bp);
12217 
12218 	return rc;
12219 }
12220 
12221 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12222 {
12223 	int cnt, i, block_end, rodi;
12224 	char vpd_start[BNX2X_VPD_LEN+1];
12225 	char str_id_reg[VENDOR_ID_LEN+1];
12226 	char str_id_cap[VENDOR_ID_LEN+1];
12227 	char *vpd_data;
12228 	char *vpd_extended_data = NULL;
12229 	u8 len;
12230 
12231 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12232 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12233 
12234 	if (cnt < BNX2X_VPD_LEN)
12235 		goto out_not_found;
12236 
12237 	/* VPD RO tag should be first tag after identifier string, hence
12238 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12239 	 */
12240 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12241 			     PCI_VPD_LRDT_RO_DATA);
12242 	if (i < 0)
12243 		goto out_not_found;
12244 
12245 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12246 		    pci_vpd_lrdt_size(&vpd_start[i]);
12247 
12248 	i += PCI_VPD_LRDT_TAG_SIZE;
12249 
12250 	if (block_end > BNX2X_VPD_LEN) {
12251 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12252 		if (vpd_extended_data  == NULL)
12253 			goto out_not_found;
12254 
12255 		/* read rest of vpd image into vpd_extended_data */
12256 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12257 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12258 				   block_end - BNX2X_VPD_LEN,
12259 				   vpd_extended_data + BNX2X_VPD_LEN);
12260 		if (cnt < (block_end - BNX2X_VPD_LEN))
12261 			goto out_not_found;
12262 		vpd_data = vpd_extended_data;
12263 	} else
12264 		vpd_data = vpd_start;
12265 
12266 	/* now vpd_data holds full vpd content in both cases */
12267 
12268 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12269 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12270 	if (rodi < 0)
12271 		goto out_not_found;
12272 
12273 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12274 
12275 	if (len != VENDOR_ID_LEN)
12276 		goto out_not_found;
12277 
12278 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12279 
12280 	/* vendor specific info */
12281 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12282 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12283 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12284 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12285 
12286 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12287 						PCI_VPD_RO_KEYWORD_VENDOR0);
12288 		if (rodi >= 0) {
12289 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12290 
12291 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12292 
12293 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12294 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12295 				bp->fw_ver[len] = ' ';
12296 			}
12297 		}
12298 		kfree(vpd_extended_data);
12299 		return;
12300 	}
12301 out_not_found:
12302 	kfree(vpd_extended_data);
12303 	return;
12304 }
12305 
12306 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12307 {
12308 	u32 flags = 0;
12309 
12310 	if (CHIP_REV_IS_FPGA(bp))
12311 		SET_FLAGS(flags, MODE_FPGA);
12312 	else if (CHIP_REV_IS_EMUL(bp))
12313 		SET_FLAGS(flags, MODE_EMUL);
12314 	else
12315 		SET_FLAGS(flags, MODE_ASIC);
12316 
12317 	if (CHIP_MODE_IS_4_PORT(bp))
12318 		SET_FLAGS(flags, MODE_PORT4);
12319 	else
12320 		SET_FLAGS(flags, MODE_PORT2);
12321 
12322 	if (CHIP_IS_E2(bp))
12323 		SET_FLAGS(flags, MODE_E2);
12324 	else if (CHIP_IS_E3(bp)) {
12325 		SET_FLAGS(flags, MODE_E3);
12326 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12327 			SET_FLAGS(flags, MODE_E3_A0);
12328 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12329 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12330 	}
12331 
12332 	if (IS_MF(bp)) {
12333 		SET_FLAGS(flags, MODE_MF);
12334 		switch (bp->mf_mode) {
12335 		case MULTI_FUNCTION_SD:
12336 			SET_FLAGS(flags, MODE_MF_SD);
12337 			break;
12338 		case MULTI_FUNCTION_SI:
12339 			SET_FLAGS(flags, MODE_MF_SI);
12340 			break;
12341 		case MULTI_FUNCTION_AFEX:
12342 			SET_FLAGS(flags, MODE_MF_AFEX);
12343 			break;
12344 		}
12345 	} else
12346 		SET_FLAGS(flags, MODE_SF);
12347 
12348 #if defined(__LITTLE_ENDIAN)
12349 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12350 #else /*(__BIG_ENDIAN)*/
12351 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12352 #endif
12353 	INIT_MODE_FLAGS(bp) = flags;
12354 }
12355 
12356 static int bnx2x_init_bp(struct bnx2x *bp)
12357 {
12358 	int func;
12359 	int rc;
12360 
12361 	mutex_init(&bp->port.phy_mutex);
12362 	mutex_init(&bp->fw_mb_mutex);
12363 	mutex_init(&bp->drv_info_mutex);
12364 	sema_init(&bp->stats_lock, 1);
12365 	bp->drv_info_mng_owner = false;
12366 	INIT_LIST_HEAD(&bp->vlan_reg);
12367 
12368 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12369 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12370 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12371 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12372 	if (IS_PF(bp)) {
12373 		rc = bnx2x_get_hwinfo(bp);
12374 		if (rc)
12375 			return rc;
12376 	} else {
12377 		eth_zero_addr(bp->dev->dev_addr);
12378 	}
12379 
12380 	bnx2x_set_modes_bitmap(bp);
12381 
12382 	rc = bnx2x_alloc_mem_bp(bp);
12383 	if (rc)
12384 		return rc;
12385 
12386 	bnx2x_read_fwinfo(bp);
12387 
12388 	func = BP_FUNC(bp);
12389 
12390 	/* need to reset chip if undi was active */
12391 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12392 		/* init fw_seq */
12393 		bp->fw_seq =
12394 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12395 							DRV_MSG_SEQ_NUMBER_MASK;
12396 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12397 
12398 		rc = bnx2x_prev_unload(bp);
12399 		if (rc) {
12400 			bnx2x_free_mem_bp(bp);
12401 			return rc;
12402 		}
12403 	}
12404 
12405 	if (CHIP_REV_IS_FPGA(bp))
12406 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12407 
12408 	if (BP_NOMCP(bp) && (func == 0))
12409 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12410 
12411 	bp->disable_tpa = disable_tpa;
12412 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12413 	/* Reduce memory usage in kdump environment by disabling TPA */
12414 	bp->disable_tpa |= is_kdump_kernel();
12415 
12416 	/* Set TPA flags */
12417 	if (bp->disable_tpa) {
12418 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12419 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12420 	}
12421 
12422 	if (CHIP_IS_E1(bp))
12423 		bp->dropless_fc = 0;
12424 	else
12425 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12426 
12427 	bp->mrrs = mrrs;
12428 
12429 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12430 	if (IS_VF(bp))
12431 		bp->rx_ring_size = MAX_RX_AVAIL;
12432 
12433 	/* make sure that the numbers are in the right granularity */
12434 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12435 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12436 
12437 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12438 
12439 	timer_setup(&bp->timer, bnx2x_timer, 0);
12440 	bp->timer.expires = jiffies + bp->current_interval;
12441 
12442 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12443 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12444 	    SHMEM2_HAS(bp, dcbx_en) &&
12445 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12446 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12447 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12448 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12449 		bnx2x_dcbx_init_params(bp);
12450 	} else {
12451 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12452 	}
12453 
12454 	if (CHIP_IS_E1x(bp))
12455 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12456 	else
12457 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12458 
12459 	/* multiple tx priority */
12460 	if (IS_VF(bp))
12461 		bp->max_cos = 1;
12462 	else if (CHIP_IS_E1x(bp))
12463 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12464 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12465 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12466 	else if (CHIP_IS_E3B0(bp))
12467 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12468 	else
12469 		BNX2X_ERR("unknown chip %x revision %x\n",
12470 			  CHIP_NUM(bp), CHIP_REV(bp));
12471 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12472 
12473 	/* We need at least one default status block for slow-path events,
12474 	 * second status block for the L2 queue, and a third status block for
12475 	 * CNIC if supported.
12476 	 */
12477 	if (IS_VF(bp))
12478 		bp->min_msix_vec_cnt = 1;
12479 	else if (CNIC_SUPPORT(bp))
12480 		bp->min_msix_vec_cnt = 3;
12481 	else /* PF w/o cnic */
12482 		bp->min_msix_vec_cnt = 2;
12483 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12484 
12485 	bp->dump_preset_idx = 1;
12486 
12487 	if (CHIP_IS_E3B0(bp))
12488 		bp->flags |= PTP_SUPPORTED;
12489 
12490 	return rc;
12491 }
12492 
12493 /****************************************************************************
12494 * General service functions
12495 ****************************************************************************/
12496 
12497 /*
12498  * net_device service functions
12499  */
12500 
12501 /* called with rtnl_lock */
12502 static int bnx2x_open(struct net_device *dev)
12503 {
12504 	struct bnx2x *bp = netdev_priv(dev);
12505 	int rc;
12506 
12507 	bp->stats_init = true;
12508 
12509 	netif_carrier_off(dev);
12510 
12511 	bnx2x_set_power_state(bp, PCI_D0);
12512 
12513 	/* If parity had happen during the unload, then attentions
12514 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12515 	 * want the first function loaded on the current engine to
12516 	 * complete the recovery.
12517 	 * Parity recovery is only relevant for PF driver.
12518 	 */
12519 	if (IS_PF(bp)) {
12520 		int other_engine = BP_PATH(bp) ? 0 : 1;
12521 		bool other_load_status, load_status;
12522 		bool global = false;
12523 
12524 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12525 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12526 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12527 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12528 			do {
12529 				/* If there are attentions and they are in a
12530 				 * global blocks, set the GLOBAL_RESET bit
12531 				 * regardless whether it will be this function
12532 				 * that will complete the recovery or not.
12533 				 */
12534 				if (global)
12535 					bnx2x_set_reset_global(bp);
12536 
12537 				/* Only the first function on the current
12538 				 * engine should try to recover in open. In case
12539 				 * of attentions in global blocks only the first
12540 				 * in the chip should try to recover.
12541 				 */
12542 				if ((!load_status &&
12543 				     (!global || !other_load_status)) &&
12544 				      bnx2x_trylock_leader_lock(bp) &&
12545 				      !bnx2x_leader_reset(bp)) {
12546 					netdev_info(bp->dev,
12547 						    "Recovered in open\n");
12548 					break;
12549 				}
12550 
12551 				/* recovery has failed... */
12552 				bnx2x_set_power_state(bp, PCI_D3hot);
12553 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12554 
12555 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12556 					  "If you still see this message after a few retries then power cycle is required.\n");
12557 
12558 				return -EAGAIN;
12559 			} while (0);
12560 		}
12561 	}
12562 
12563 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12564 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12565 	if (rc)
12566 		return rc;
12567 
12568 	if (IS_PF(bp))
12569 		udp_tunnel_get_rx_info(dev);
12570 
12571 	return 0;
12572 }
12573 
12574 /* called with rtnl_lock */
12575 static int bnx2x_close(struct net_device *dev)
12576 {
12577 	struct bnx2x *bp = netdev_priv(dev);
12578 
12579 	/* Unload the driver, release IRQs */
12580 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12581 
12582 	return 0;
12583 }
12584 
12585 struct bnx2x_mcast_list_elem_group
12586 {
12587 	struct list_head mcast_group_link;
12588 	struct bnx2x_mcast_list_elem mcast_elems[];
12589 };
12590 
12591 #define MCAST_ELEMS_PER_PG \
12592 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12593 	sizeof(struct bnx2x_mcast_list_elem))
12594 
12595 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12596 {
12597 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12598 
12599 	while (!list_empty(mcast_group_list)) {
12600 		current_mcast_group = list_first_entry(mcast_group_list,
12601 				      struct bnx2x_mcast_list_elem_group,
12602 				      mcast_group_link);
12603 		list_del(&current_mcast_group->mcast_group_link);
12604 		free_page((unsigned long)current_mcast_group);
12605 	}
12606 }
12607 
12608 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12609 				      struct bnx2x_mcast_ramrod_params *p,
12610 				      struct list_head *mcast_group_list)
12611 {
12612 	struct bnx2x_mcast_list_elem *mc_mac;
12613 	struct netdev_hw_addr *ha;
12614 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12615 	int mc_count = netdev_mc_count(bp->dev);
12616 	int offset = 0;
12617 
12618 	INIT_LIST_HEAD(&p->mcast_list);
12619 	netdev_for_each_mc_addr(ha, bp->dev) {
12620 		if (!offset) {
12621 			current_mcast_group =
12622 				(struct bnx2x_mcast_list_elem_group *)
12623 				__get_free_page(GFP_ATOMIC);
12624 			if (!current_mcast_group) {
12625 				bnx2x_free_mcast_macs_list(mcast_group_list);
12626 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12627 				return -ENOMEM;
12628 			}
12629 			list_add(&current_mcast_group->mcast_group_link,
12630 				 mcast_group_list);
12631 		}
12632 		mc_mac = &current_mcast_group->mcast_elems[offset];
12633 		mc_mac->mac = bnx2x_mc_addr(ha);
12634 		list_add_tail(&mc_mac->link, &p->mcast_list);
12635 		offset++;
12636 		if (offset == MCAST_ELEMS_PER_PG)
12637 			offset = 0;
12638 	}
12639 	p->mcast_list_len = mc_count;
12640 	return 0;
12641 }
12642 
12643 /**
12644  * bnx2x_set_uc_list - configure a new unicast MACs list.
12645  *
12646  * @bp: driver handle
12647  *
12648  * We will use zero (0) as a MAC type for these MACs.
12649  */
12650 static int bnx2x_set_uc_list(struct bnx2x *bp)
12651 {
12652 	int rc;
12653 	struct net_device *dev = bp->dev;
12654 	struct netdev_hw_addr *ha;
12655 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12656 	unsigned long ramrod_flags = 0;
12657 
12658 	/* First schedule a cleanup up of old configuration */
12659 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12660 	if (rc < 0) {
12661 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12662 		return rc;
12663 	}
12664 
12665 	netdev_for_each_uc_addr(ha, dev) {
12666 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12667 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12668 		if (rc == -EEXIST) {
12669 			DP(BNX2X_MSG_SP,
12670 			   "Failed to schedule ADD operations: %d\n", rc);
12671 			/* do not treat adding same MAC as error */
12672 			rc = 0;
12673 
12674 		} else if (rc < 0) {
12675 
12676 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12677 				  rc);
12678 			return rc;
12679 		}
12680 	}
12681 
12682 	/* Execute the pending commands */
12683 	__set_bit(RAMROD_CONT, &ramrod_flags);
12684 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12685 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12686 }
12687 
12688 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12689 {
12690 	LIST_HEAD(mcast_group_list);
12691 	struct net_device *dev = bp->dev;
12692 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12693 	int rc = 0;
12694 
12695 	rparam.mcast_obj = &bp->mcast_obj;
12696 
12697 	/* first, clear all configured multicast MACs */
12698 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12699 	if (rc < 0) {
12700 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12701 		return rc;
12702 	}
12703 
12704 	/* then, configure a new MACs list */
12705 	if (netdev_mc_count(dev)) {
12706 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12707 		if (rc)
12708 			return rc;
12709 
12710 		/* Now add the new MACs */
12711 		rc = bnx2x_config_mcast(bp, &rparam,
12712 					BNX2X_MCAST_CMD_ADD);
12713 		if (rc < 0)
12714 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12715 				  rc);
12716 
12717 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12718 	}
12719 
12720 	return rc;
12721 }
12722 
12723 static int bnx2x_set_mc_list(struct bnx2x *bp)
12724 {
12725 	LIST_HEAD(mcast_group_list);
12726 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12727 	struct net_device *dev = bp->dev;
12728 	int rc = 0;
12729 
12730 	/* On older adapters, we need to flush and re-add filters */
12731 	if (CHIP_IS_E1x(bp))
12732 		return bnx2x_set_mc_list_e1x(bp);
12733 
12734 	rparam.mcast_obj = &bp->mcast_obj;
12735 
12736 	if (netdev_mc_count(dev)) {
12737 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12738 		if (rc)
12739 			return rc;
12740 
12741 		/* Override the curently configured set of mc filters */
12742 		rc = bnx2x_config_mcast(bp, &rparam,
12743 					BNX2X_MCAST_CMD_SET);
12744 		if (rc < 0)
12745 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12746 				  rc);
12747 
12748 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12749 	} else {
12750 		/* If no mc addresses are required, flush the configuration */
12751 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12752 		if (rc < 0)
12753 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12754 				  rc);
12755 	}
12756 
12757 	return rc;
12758 }
12759 
12760 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12761 static void bnx2x_set_rx_mode(struct net_device *dev)
12762 {
12763 	struct bnx2x *bp = netdev_priv(dev);
12764 
12765 	if (bp->state != BNX2X_STATE_OPEN) {
12766 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12767 		return;
12768 	} else {
12769 		/* Schedule an SP task to handle rest of change */
12770 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12771 				       NETIF_MSG_IFUP);
12772 	}
12773 }
12774 
12775 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12776 {
12777 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12778 
12779 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12780 
12781 	netif_addr_lock_bh(bp->dev);
12782 
12783 	if (bp->dev->flags & IFF_PROMISC) {
12784 		rx_mode = BNX2X_RX_MODE_PROMISC;
12785 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12786 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12787 		    CHIP_IS_E1(bp))) {
12788 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12789 	} else {
12790 		if (IS_PF(bp)) {
12791 			/* some multicasts */
12792 			if (bnx2x_set_mc_list(bp) < 0)
12793 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12794 
12795 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12796 			netif_addr_unlock_bh(bp->dev);
12797 			if (bnx2x_set_uc_list(bp) < 0)
12798 				rx_mode = BNX2X_RX_MODE_PROMISC;
12799 			netif_addr_lock_bh(bp->dev);
12800 		} else {
12801 			/* configuring mcast to a vf involves sleeping (when we
12802 			 * wait for the pf's response).
12803 			 */
12804 			bnx2x_schedule_sp_rtnl(bp,
12805 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12806 		}
12807 	}
12808 
12809 	bp->rx_mode = rx_mode;
12810 	/* handle ISCSI SD mode */
12811 	if (IS_MF_ISCSI_ONLY(bp))
12812 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12813 
12814 	/* Schedule the rx_mode command */
12815 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12816 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12817 		netif_addr_unlock_bh(bp->dev);
12818 		return;
12819 	}
12820 
12821 	if (IS_PF(bp)) {
12822 		bnx2x_set_storm_rx_mode(bp);
12823 		netif_addr_unlock_bh(bp->dev);
12824 	} else {
12825 		/* VF will need to request the PF to make this change, and so
12826 		 * the VF needs to release the bottom-half lock prior to the
12827 		 * request (as it will likely require sleep on the VF side)
12828 		 */
12829 		netif_addr_unlock_bh(bp->dev);
12830 		bnx2x_vfpf_storm_rx_mode(bp);
12831 	}
12832 }
12833 
12834 /* called with rtnl_lock */
12835 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12836 			   int devad, u16 addr)
12837 {
12838 	struct bnx2x *bp = netdev_priv(netdev);
12839 	u16 value;
12840 	int rc;
12841 
12842 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12843 	   prtad, devad, addr);
12844 
12845 	/* The HW expects different devad if CL22 is used */
12846 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12847 
12848 	bnx2x_acquire_phy_lock(bp);
12849 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12850 	bnx2x_release_phy_lock(bp);
12851 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12852 
12853 	if (!rc)
12854 		rc = value;
12855 	return rc;
12856 }
12857 
12858 /* called with rtnl_lock */
12859 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12860 			    u16 addr, u16 value)
12861 {
12862 	struct bnx2x *bp = netdev_priv(netdev);
12863 	int rc;
12864 
12865 	DP(NETIF_MSG_LINK,
12866 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12867 	   prtad, devad, addr, value);
12868 
12869 	/* The HW expects different devad if CL22 is used */
12870 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12871 
12872 	bnx2x_acquire_phy_lock(bp);
12873 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12874 	bnx2x_release_phy_lock(bp);
12875 	return rc;
12876 }
12877 
12878 /* called with rtnl_lock */
12879 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12880 {
12881 	struct bnx2x *bp = netdev_priv(dev);
12882 	struct mii_ioctl_data *mdio = if_mii(ifr);
12883 
12884 	if (!netif_running(dev))
12885 		return -EAGAIN;
12886 
12887 	switch (cmd) {
12888 	case SIOCSHWTSTAMP:
12889 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12890 	default:
12891 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12892 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12893 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12894 	}
12895 }
12896 
12897 #ifdef CONFIG_NET_POLL_CONTROLLER
12898 static void poll_bnx2x(struct net_device *dev)
12899 {
12900 	struct bnx2x *bp = netdev_priv(dev);
12901 	int i;
12902 
12903 	for_each_eth_queue(bp, i) {
12904 		struct bnx2x_fastpath *fp = &bp->fp[i];
12905 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12906 	}
12907 }
12908 #endif
12909 
12910 static int bnx2x_validate_addr(struct net_device *dev)
12911 {
12912 	struct bnx2x *bp = netdev_priv(dev);
12913 
12914 	/* query the bulletin board for mac address configured by the PF */
12915 	if (IS_VF(bp))
12916 		bnx2x_sample_bulletin(bp);
12917 
12918 	if (!is_valid_ether_addr(dev->dev_addr)) {
12919 		BNX2X_ERR("Non-valid Ethernet address\n");
12920 		return -EADDRNOTAVAIL;
12921 	}
12922 	return 0;
12923 }
12924 
12925 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12926 				  struct netdev_phys_item_id *ppid)
12927 {
12928 	struct bnx2x *bp = netdev_priv(netdev);
12929 
12930 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12931 		return -EOPNOTSUPP;
12932 
12933 	ppid->id_len = sizeof(bp->phys_port_id);
12934 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12935 
12936 	return 0;
12937 }
12938 
12939 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12940 					      struct net_device *dev,
12941 					      netdev_features_t features)
12942 {
12943 	/*
12944 	 * A skb with gso_size + header length > 9700 will cause a
12945 	 * firmware panic. Drop GSO support.
12946 	 *
12947 	 * Eventually the upper layer should not pass these packets down.
12948 	 *
12949 	 * For speed, if the gso_size is <= 9000, assume there will
12950 	 * not be 700 bytes of headers and pass it through. Only do a
12951 	 * full (slow) validation if the gso_size is > 9000.
12952 	 *
12953 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12954 	 * validation in that case.)
12955 	 */
12956 	if (unlikely(skb_is_gso(skb) &&
12957 		     (skb_shinfo(skb)->gso_size > 9000) &&
12958 		     !skb_gso_validate_mac_len(skb, 9700)))
12959 		features &= ~NETIF_F_GSO_MASK;
12960 
12961 	features = vlan_features_check(skb, features);
12962 	return vxlan_features_check(skb, features);
12963 }
12964 
12965 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12966 {
12967 	int rc;
12968 
12969 	if (IS_PF(bp)) {
12970 		unsigned long ramrod_flags = 0;
12971 
12972 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12973 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12974 					add, &ramrod_flags);
12975 	} else {
12976 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12977 	}
12978 
12979 	return rc;
12980 }
12981 
12982 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12983 {
12984 	struct bnx2x_vlan_entry *vlan;
12985 	int rc = 0;
12986 
12987 	/* Configure all non-configured entries */
12988 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12989 		if (vlan->hw)
12990 			continue;
12991 
12992 		if (bp->vlan_cnt >= bp->vlan_credit)
12993 			return -ENOBUFS;
12994 
12995 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12996 		if (rc) {
12997 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12998 			return rc;
12999 		}
13000 
13001 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13002 		vlan->hw = true;
13003 		bp->vlan_cnt++;
13004 	}
13005 
13006 	return 0;
13007 }
13008 
13009 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13010 {
13011 	bool need_accept_any_vlan;
13012 
13013 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13014 
13015 	if (bp->accept_any_vlan != need_accept_any_vlan) {
13016 		bp->accept_any_vlan = need_accept_any_vlan;
13017 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13018 		   bp->accept_any_vlan ? "raised" : "cleared");
13019 		if (set_rx_mode) {
13020 			if (IS_PF(bp))
13021 				bnx2x_set_rx_mode_inner(bp);
13022 			else
13023 				bnx2x_vfpf_storm_rx_mode(bp);
13024 		}
13025 	}
13026 }
13027 
13028 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13029 {
13030 	struct bnx2x_vlan_entry *vlan;
13031 
13032 	/* The hw forgot all entries after reload */
13033 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13034 		vlan->hw = false;
13035 	bp->vlan_cnt = 0;
13036 
13037 	/* Don't set rx mode here. Our caller will do it. */
13038 	bnx2x_vlan_configure(bp, false);
13039 
13040 	return 0;
13041 }
13042 
13043 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13044 {
13045 	struct bnx2x *bp = netdev_priv(dev);
13046 	struct bnx2x_vlan_entry *vlan;
13047 
13048 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13049 
13050 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13051 	if (!vlan)
13052 		return -ENOMEM;
13053 
13054 	vlan->vid = vid;
13055 	vlan->hw = false;
13056 	list_add_tail(&vlan->link, &bp->vlan_reg);
13057 
13058 	if (netif_running(dev))
13059 		bnx2x_vlan_configure(bp, true);
13060 
13061 	return 0;
13062 }
13063 
13064 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13065 {
13066 	struct bnx2x *bp = netdev_priv(dev);
13067 	struct bnx2x_vlan_entry *vlan;
13068 	bool found = false;
13069 	int rc = 0;
13070 
13071 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13072 
13073 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13074 		if (vlan->vid == vid) {
13075 			found = true;
13076 			break;
13077 		}
13078 
13079 	if (!found) {
13080 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13081 		return -EINVAL;
13082 	}
13083 
13084 	if (netif_running(dev) && vlan->hw) {
13085 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13086 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13087 		bp->vlan_cnt--;
13088 	}
13089 
13090 	list_del(&vlan->link);
13091 	kfree(vlan);
13092 
13093 	if (netif_running(dev))
13094 		bnx2x_vlan_configure(bp, true);
13095 
13096 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13097 
13098 	return rc;
13099 }
13100 
13101 static const struct net_device_ops bnx2x_netdev_ops = {
13102 	.ndo_open		= bnx2x_open,
13103 	.ndo_stop		= bnx2x_close,
13104 	.ndo_start_xmit		= bnx2x_start_xmit,
13105 	.ndo_select_queue	= bnx2x_select_queue,
13106 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13107 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13108 	.ndo_validate_addr	= bnx2x_validate_addr,
13109 	.ndo_do_ioctl		= bnx2x_ioctl,
13110 	.ndo_change_mtu		= bnx2x_change_mtu,
13111 	.ndo_fix_features	= bnx2x_fix_features,
13112 	.ndo_set_features	= bnx2x_set_features,
13113 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13114 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13115 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13116 #ifdef CONFIG_NET_POLL_CONTROLLER
13117 	.ndo_poll_controller	= poll_bnx2x,
13118 #endif
13119 	.ndo_setup_tc		= __bnx2x_setup_tc,
13120 #ifdef CONFIG_BNX2X_SRIOV
13121 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13122 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13123 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13124 #endif
13125 #ifdef NETDEV_FCOE_WWNN
13126 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13127 #endif
13128 
13129 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13130 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13131 	.ndo_features_check	= bnx2x_features_check,
13132 	.ndo_udp_tunnel_add	= bnx2x_udp_tunnel_add,
13133 	.ndo_udp_tunnel_del	= bnx2x_udp_tunnel_del,
13134 };
13135 
13136 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13137 {
13138 	struct device *dev = &bp->pdev->dev;
13139 
13140 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13141 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13142 		dev_err(dev, "System does not support DMA, aborting\n");
13143 		return -EIO;
13144 	}
13145 
13146 	return 0;
13147 }
13148 
13149 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13150 {
13151 	if (bp->flags & AER_ENABLED) {
13152 		pci_disable_pcie_error_reporting(bp->pdev);
13153 		bp->flags &= ~AER_ENABLED;
13154 	}
13155 }
13156 
13157 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13158 			  struct net_device *dev, unsigned long board_type)
13159 {
13160 	int rc;
13161 	u32 pci_cfg_dword;
13162 	bool chip_is_e1x = (board_type == BCM57710 ||
13163 			    board_type == BCM57711 ||
13164 			    board_type == BCM57711E);
13165 
13166 	SET_NETDEV_DEV(dev, &pdev->dev);
13167 
13168 	bp->dev = dev;
13169 	bp->pdev = pdev;
13170 
13171 	rc = pci_enable_device(pdev);
13172 	if (rc) {
13173 		dev_err(&bp->pdev->dev,
13174 			"Cannot enable PCI device, aborting\n");
13175 		goto err_out;
13176 	}
13177 
13178 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13179 		dev_err(&bp->pdev->dev,
13180 			"Cannot find PCI device base address, aborting\n");
13181 		rc = -ENODEV;
13182 		goto err_out_disable;
13183 	}
13184 
13185 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13186 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13187 		rc = -ENODEV;
13188 		goto err_out_disable;
13189 	}
13190 
13191 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13192 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13193 	    PCICFG_REVESION_ID_ERROR_VAL) {
13194 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13195 		rc = -ENODEV;
13196 		goto err_out_disable;
13197 	}
13198 
13199 	if (atomic_read(&pdev->enable_cnt) == 1) {
13200 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13201 		if (rc) {
13202 			dev_err(&bp->pdev->dev,
13203 				"Cannot obtain PCI resources, aborting\n");
13204 			goto err_out_disable;
13205 		}
13206 
13207 		pci_set_master(pdev);
13208 		pci_save_state(pdev);
13209 	}
13210 
13211 	if (IS_PF(bp)) {
13212 		if (!pdev->pm_cap) {
13213 			dev_err(&bp->pdev->dev,
13214 				"Cannot find power management capability, aborting\n");
13215 			rc = -EIO;
13216 			goto err_out_release;
13217 		}
13218 	}
13219 
13220 	if (!pci_is_pcie(pdev)) {
13221 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13222 		rc = -EIO;
13223 		goto err_out_release;
13224 	}
13225 
13226 	rc = bnx2x_set_coherency_mask(bp);
13227 	if (rc)
13228 		goto err_out_release;
13229 
13230 	dev->mem_start = pci_resource_start(pdev, 0);
13231 	dev->base_addr = dev->mem_start;
13232 	dev->mem_end = pci_resource_end(pdev, 0);
13233 
13234 	dev->irq = pdev->irq;
13235 
13236 	bp->regview = pci_ioremap_bar(pdev, 0);
13237 	if (!bp->regview) {
13238 		dev_err(&bp->pdev->dev,
13239 			"Cannot map register space, aborting\n");
13240 		rc = -ENOMEM;
13241 		goto err_out_release;
13242 	}
13243 
13244 	/* In E1/E1H use pci device function given by kernel.
13245 	 * In E2/E3 read physical function from ME register since these chips
13246 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13247 	 * (depending on hypervisor).
13248 	 */
13249 	if (chip_is_e1x) {
13250 		bp->pf_num = PCI_FUNC(pdev->devfn);
13251 	} else {
13252 		/* chip is E2/3*/
13253 		pci_read_config_dword(bp->pdev,
13254 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13255 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13256 				  ME_REG_ABS_PF_NUM_SHIFT);
13257 	}
13258 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13259 
13260 	/* clean indirect addresses */
13261 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13262 			       PCICFG_VENDOR_ID_OFFSET);
13263 
13264 	/* Set PCIe reset type to fundamental for EEH recovery */
13265 	pdev->needs_freset = 1;
13266 
13267 	/* AER (Advanced Error reporting) configuration */
13268 	rc = pci_enable_pcie_error_reporting(pdev);
13269 	if (!rc)
13270 		bp->flags |= AER_ENABLED;
13271 	else
13272 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13273 
13274 	/*
13275 	 * Clean the following indirect addresses for all functions since it
13276 	 * is not used by the driver.
13277 	 */
13278 	if (IS_PF(bp)) {
13279 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13280 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13281 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13282 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13283 
13284 		if (chip_is_e1x) {
13285 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13286 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13287 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13288 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13289 		}
13290 
13291 		/* Enable internal target-read (in case we are probed after PF
13292 		 * FLR). Must be done prior to any BAR read access. Only for
13293 		 * 57712 and up
13294 		 */
13295 		if (!chip_is_e1x)
13296 			REG_WR(bp,
13297 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13298 	}
13299 
13300 	dev->watchdog_timeo = TX_TIMEOUT;
13301 
13302 	dev->netdev_ops = &bnx2x_netdev_ops;
13303 	bnx2x_set_ethtool_ops(bp, dev);
13304 
13305 	dev->priv_flags |= IFF_UNICAST_FLT;
13306 
13307 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13308 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13309 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13310 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13311 	if (!chip_is_e1x) {
13312 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13313 				    NETIF_F_GSO_IPXIP4 |
13314 				    NETIF_F_GSO_UDP_TUNNEL |
13315 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13316 				    NETIF_F_GSO_PARTIAL;
13317 
13318 		dev->hw_enc_features =
13319 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13320 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13321 			NETIF_F_GSO_IPXIP4 |
13322 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13323 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13324 			NETIF_F_GSO_PARTIAL;
13325 
13326 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13327 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13328 	}
13329 
13330 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13331 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13332 
13333 	if (IS_PF(bp)) {
13334 		if (chip_is_e1x)
13335 			bp->accept_any_vlan = true;
13336 		else
13337 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13338 	}
13339 	/* For VF we'll know whether to enable VLAN filtering after
13340 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13341 	 */
13342 
13343 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13344 	dev->features |= NETIF_F_HIGHDMA;
13345 	if (dev->features & NETIF_F_LRO)
13346 		dev->features &= ~NETIF_F_GRO_HW;
13347 
13348 	/* Add Loopback capability to the device */
13349 	dev->hw_features |= NETIF_F_LOOPBACK;
13350 
13351 #ifdef BCM_DCBNL
13352 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13353 #endif
13354 
13355 	/* MTU range, 46 - 9600 */
13356 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13357 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13358 
13359 	/* get_port_hwinfo() will set prtad and mmds properly */
13360 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13361 	bp->mdio.mmds = 0;
13362 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13363 	bp->mdio.dev = dev;
13364 	bp->mdio.mdio_read = bnx2x_mdio_read;
13365 	bp->mdio.mdio_write = bnx2x_mdio_write;
13366 
13367 	return 0;
13368 
13369 err_out_release:
13370 	if (atomic_read(&pdev->enable_cnt) == 1)
13371 		pci_release_regions(pdev);
13372 
13373 err_out_disable:
13374 	pci_disable_device(pdev);
13375 
13376 err_out:
13377 	return rc;
13378 }
13379 
13380 static int bnx2x_check_firmware(struct bnx2x *bp)
13381 {
13382 	const struct firmware *firmware = bp->firmware;
13383 	struct bnx2x_fw_file_hdr *fw_hdr;
13384 	struct bnx2x_fw_file_section *sections;
13385 	u32 offset, len, num_ops;
13386 	__be16 *ops_offsets;
13387 	int i;
13388 	const u8 *fw_ver;
13389 
13390 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13391 		BNX2X_ERR("Wrong FW size\n");
13392 		return -EINVAL;
13393 	}
13394 
13395 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13396 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13397 
13398 	/* Make sure none of the offsets and sizes make us read beyond
13399 	 * the end of the firmware data */
13400 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13401 		offset = be32_to_cpu(sections[i].offset);
13402 		len = be32_to_cpu(sections[i].len);
13403 		if (offset + len > firmware->size) {
13404 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13405 			return -EINVAL;
13406 		}
13407 	}
13408 
13409 	/* Likewise for the init_ops offsets */
13410 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13411 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13412 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13413 
13414 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13415 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13416 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13417 			return -EINVAL;
13418 		}
13419 	}
13420 
13421 	/* Check FW version */
13422 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13423 	fw_ver = firmware->data + offset;
13424 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13425 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13426 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13427 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13428 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13429 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13430 		       BCM_5710_FW_MAJOR_VERSION,
13431 		       BCM_5710_FW_MINOR_VERSION,
13432 		       BCM_5710_FW_REVISION_VERSION,
13433 		       BCM_5710_FW_ENGINEERING_VERSION);
13434 		return -EINVAL;
13435 	}
13436 
13437 	return 0;
13438 }
13439 
13440 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13441 {
13442 	const __be32 *source = (const __be32 *)_source;
13443 	u32 *target = (u32 *)_target;
13444 	u32 i;
13445 
13446 	for (i = 0; i < n/4; i++)
13447 		target[i] = be32_to_cpu(source[i]);
13448 }
13449 
13450 /*
13451    Ops array is stored in the following format:
13452    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13453  */
13454 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13455 {
13456 	const __be32 *source = (const __be32 *)_source;
13457 	struct raw_op *target = (struct raw_op *)_target;
13458 	u32 i, j, tmp;
13459 
13460 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13461 		tmp = be32_to_cpu(source[j]);
13462 		target[i].op = (tmp >> 24) & 0xff;
13463 		target[i].offset = tmp & 0xffffff;
13464 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13465 	}
13466 }
13467 
13468 /* IRO array is stored in the following format:
13469  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13470  */
13471 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13472 {
13473 	const __be32 *source = (const __be32 *)_source;
13474 	struct iro *target = (struct iro *)_target;
13475 	u32 i, j, tmp;
13476 
13477 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13478 		target[i].base = be32_to_cpu(source[j]);
13479 		j++;
13480 		tmp = be32_to_cpu(source[j]);
13481 		target[i].m1 = (tmp >> 16) & 0xffff;
13482 		target[i].m2 = tmp & 0xffff;
13483 		j++;
13484 		tmp = be32_to_cpu(source[j]);
13485 		target[i].m3 = (tmp >> 16) & 0xffff;
13486 		target[i].size = tmp & 0xffff;
13487 		j++;
13488 	}
13489 }
13490 
13491 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13492 {
13493 	const __be16 *source = (const __be16 *)_source;
13494 	u16 *target = (u16 *)_target;
13495 	u32 i;
13496 
13497 	for (i = 0; i < n/2; i++)
13498 		target[i] = be16_to_cpu(source[i]);
13499 }
13500 
13501 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13502 do {									\
13503 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13504 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13505 	if (!bp->arr)							\
13506 		goto lbl;						\
13507 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13508 	     (u8 *)bp->arr, len);					\
13509 } while (0)
13510 
13511 static int bnx2x_init_firmware(struct bnx2x *bp)
13512 {
13513 	const char *fw_file_name;
13514 	struct bnx2x_fw_file_hdr *fw_hdr;
13515 	int rc;
13516 
13517 	if (bp->firmware)
13518 		return 0;
13519 
13520 	if (CHIP_IS_E1(bp))
13521 		fw_file_name = FW_FILE_NAME_E1;
13522 	else if (CHIP_IS_E1H(bp))
13523 		fw_file_name = FW_FILE_NAME_E1H;
13524 	else if (!CHIP_IS_E1x(bp))
13525 		fw_file_name = FW_FILE_NAME_E2;
13526 	else {
13527 		BNX2X_ERR("Unsupported chip revision\n");
13528 		return -EINVAL;
13529 	}
13530 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13531 
13532 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13533 	if (rc) {
13534 		BNX2X_ERR("Can't load firmware file %s\n",
13535 			  fw_file_name);
13536 		goto request_firmware_exit;
13537 	}
13538 
13539 	rc = bnx2x_check_firmware(bp);
13540 	if (rc) {
13541 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13542 		goto request_firmware_exit;
13543 	}
13544 
13545 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13546 
13547 	/* Initialize the pointers to the init arrays */
13548 	/* Blob */
13549 	rc = -ENOMEM;
13550 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13551 
13552 	/* Opcodes */
13553 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13554 
13555 	/* Offsets */
13556 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13557 			    be16_to_cpu_n);
13558 
13559 	/* STORMs firmware */
13560 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13561 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13562 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13563 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13564 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13565 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13566 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13567 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13568 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13569 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13570 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13571 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13572 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13573 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13574 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13575 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13576 	/* IRO */
13577 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13578 
13579 	return 0;
13580 
13581 iro_alloc_err:
13582 	kfree(bp->init_ops_offsets);
13583 init_offsets_alloc_err:
13584 	kfree(bp->init_ops);
13585 init_ops_alloc_err:
13586 	kfree(bp->init_data);
13587 request_firmware_exit:
13588 	release_firmware(bp->firmware);
13589 	bp->firmware = NULL;
13590 
13591 	return rc;
13592 }
13593 
13594 static void bnx2x_release_firmware(struct bnx2x *bp)
13595 {
13596 	kfree(bp->init_ops_offsets);
13597 	kfree(bp->init_ops);
13598 	kfree(bp->init_data);
13599 	release_firmware(bp->firmware);
13600 	bp->firmware = NULL;
13601 }
13602 
13603 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13604 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13605 	.init_hw_cmn      = bnx2x_init_hw_common,
13606 	.init_hw_port     = bnx2x_init_hw_port,
13607 	.init_hw_func     = bnx2x_init_hw_func,
13608 
13609 	.reset_hw_cmn     = bnx2x_reset_common,
13610 	.reset_hw_port    = bnx2x_reset_port,
13611 	.reset_hw_func    = bnx2x_reset_func,
13612 
13613 	.gunzip_init      = bnx2x_gunzip_init,
13614 	.gunzip_end       = bnx2x_gunzip_end,
13615 
13616 	.init_fw          = bnx2x_init_firmware,
13617 	.release_fw       = bnx2x_release_firmware,
13618 };
13619 
13620 void bnx2x__init_func_obj(struct bnx2x *bp)
13621 {
13622 	/* Prepare DMAE related driver resources */
13623 	bnx2x_setup_dmae(bp);
13624 
13625 	bnx2x_init_func_obj(bp, &bp->func_obj,
13626 			    bnx2x_sp(bp, func_rdata),
13627 			    bnx2x_sp_mapping(bp, func_rdata),
13628 			    bnx2x_sp(bp, func_afex_rdata),
13629 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13630 			    &bnx2x_func_sp_drv);
13631 }
13632 
13633 /* must be called after sriov-enable */
13634 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13635 {
13636 	int cid_count = BNX2X_L2_MAX_CID(bp);
13637 
13638 	if (IS_SRIOV(bp))
13639 		cid_count += BNX2X_VF_CIDS;
13640 
13641 	if (CNIC_SUPPORT(bp))
13642 		cid_count += CNIC_CID_MAX;
13643 
13644 	return roundup(cid_count, QM_CID_ROUND);
13645 }
13646 
13647 /**
13648  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13649  *
13650  * @dev:	pci device
13651  *
13652  */
13653 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13654 {
13655 	int index;
13656 	u16 control = 0;
13657 
13658 	/*
13659 	 * If MSI-X is not supported - return number of SBs needed to support
13660 	 * one fast path queue: one FP queue + SB for CNIC
13661 	 */
13662 	if (!pdev->msix_cap) {
13663 		dev_info(&pdev->dev, "no msix capability found\n");
13664 		return 1 + cnic_cnt;
13665 	}
13666 	dev_info(&pdev->dev, "msix capability found\n");
13667 
13668 	/*
13669 	 * The value in the PCI configuration space is the index of the last
13670 	 * entry, namely one less than the actual size of the table, which is
13671 	 * exactly what we want to return from this function: number of all SBs
13672 	 * without the default SB.
13673 	 * For VFs there is no default SB, then we return (index+1).
13674 	 */
13675 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13676 
13677 	index = control & PCI_MSIX_FLAGS_QSIZE;
13678 
13679 	return index;
13680 }
13681 
13682 static int set_max_cos_est(int chip_id)
13683 {
13684 	switch (chip_id) {
13685 	case BCM57710:
13686 	case BCM57711:
13687 	case BCM57711E:
13688 		return BNX2X_MULTI_TX_COS_E1X;
13689 	case BCM57712:
13690 	case BCM57712_MF:
13691 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13692 	case BCM57800:
13693 	case BCM57800_MF:
13694 	case BCM57810:
13695 	case BCM57810_MF:
13696 	case BCM57840_4_10:
13697 	case BCM57840_2_20:
13698 	case BCM57840_O:
13699 	case BCM57840_MFO:
13700 	case BCM57840_MF:
13701 	case BCM57811:
13702 	case BCM57811_MF:
13703 		return BNX2X_MULTI_TX_COS_E3B0;
13704 	case BCM57712_VF:
13705 	case BCM57800_VF:
13706 	case BCM57810_VF:
13707 	case BCM57840_VF:
13708 	case BCM57811_VF:
13709 		return 1;
13710 	default:
13711 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13712 		return -ENODEV;
13713 	}
13714 }
13715 
13716 static int set_is_vf(int chip_id)
13717 {
13718 	switch (chip_id) {
13719 	case BCM57712_VF:
13720 	case BCM57800_VF:
13721 	case BCM57810_VF:
13722 	case BCM57840_VF:
13723 	case BCM57811_VF:
13724 		return true;
13725 	default:
13726 		return false;
13727 	}
13728 }
13729 
13730 /* nig_tsgen registers relative address */
13731 #define tsgen_ctrl 0x0
13732 #define tsgen_freecount 0x10
13733 #define tsgen_synctime_t0 0x20
13734 #define tsgen_offset_t0 0x28
13735 #define tsgen_drift_t0 0x30
13736 #define tsgen_synctime_t1 0x58
13737 #define tsgen_offset_t1 0x60
13738 #define tsgen_drift_t1 0x68
13739 
13740 /* FW workaround for setting drift */
13741 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13742 					  int best_val, int best_period)
13743 {
13744 	struct bnx2x_func_state_params func_params = {NULL};
13745 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13746 		&func_params.params.set_timesync;
13747 
13748 	/* Prepare parameters for function state transitions */
13749 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13750 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13751 
13752 	func_params.f_obj = &bp->func_obj;
13753 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13754 
13755 	/* Function parameters */
13756 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13757 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13758 	set_timesync_params->add_sub_drift_adjust_value =
13759 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13760 	set_timesync_params->drift_adjust_value = best_val;
13761 	set_timesync_params->drift_adjust_period = best_period;
13762 
13763 	return bnx2x_func_state_change(bp, &func_params);
13764 }
13765 
13766 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13767 {
13768 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13769 	int rc;
13770 	int drift_dir = 1;
13771 	int val, period, period1, period2, dif, dif1, dif2;
13772 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13773 
13774 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13775 
13776 	if (!netif_running(bp->dev)) {
13777 		DP(BNX2X_MSG_PTP,
13778 		   "PTP adjfreq called while the interface is down\n");
13779 		return -ENETDOWN;
13780 	}
13781 
13782 	if (ppb < 0) {
13783 		ppb = -ppb;
13784 		drift_dir = 0;
13785 	}
13786 
13787 	if (ppb == 0) {
13788 		best_val = 1;
13789 		best_period = 0x1FFFFFF;
13790 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13791 		best_val = 31;
13792 		best_period = 1;
13793 	} else {
13794 		/* Changed not to allow val = 8, 16, 24 as these values
13795 		 * are not supported in workaround.
13796 		 */
13797 		for (val = 0; val <= 31; val++) {
13798 			if ((val & 0x7) == 0)
13799 				continue;
13800 			period1 = val * 1000000 / ppb;
13801 			period2 = period1 + 1;
13802 			if (period1 != 0)
13803 				dif1 = ppb - (val * 1000000 / period1);
13804 			else
13805 				dif1 = BNX2X_MAX_PHC_DRIFT;
13806 			if (dif1 < 0)
13807 				dif1 = -dif1;
13808 			dif2 = ppb - (val * 1000000 / period2);
13809 			if (dif2 < 0)
13810 				dif2 = -dif2;
13811 			dif = (dif1 < dif2) ? dif1 : dif2;
13812 			period = (dif1 < dif2) ? period1 : period2;
13813 			if (dif < best_dif) {
13814 				best_dif = dif;
13815 				best_val = val;
13816 				best_period = period;
13817 			}
13818 		}
13819 	}
13820 
13821 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13822 					    best_period);
13823 	if (rc) {
13824 		BNX2X_ERR("Failed to set drift\n");
13825 		return -EFAULT;
13826 	}
13827 
13828 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13829 	   best_period);
13830 
13831 	return 0;
13832 }
13833 
13834 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13835 {
13836 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13837 
13838 	if (!netif_running(bp->dev)) {
13839 		DP(BNX2X_MSG_PTP,
13840 		   "PTP adjtime called while the interface is down\n");
13841 		return -ENETDOWN;
13842 	}
13843 
13844 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13845 
13846 	timecounter_adjtime(&bp->timecounter, delta);
13847 
13848 	return 0;
13849 }
13850 
13851 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13852 {
13853 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13854 	u64 ns;
13855 
13856 	if (!netif_running(bp->dev)) {
13857 		DP(BNX2X_MSG_PTP,
13858 		   "PTP gettime called while the interface is down\n");
13859 		return -ENETDOWN;
13860 	}
13861 
13862 	ns = timecounter_read(&bp->timecounter);
13863 
13864 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13865 
13866 	*ts = ns_to_timespec64(ns);
13867 
13868 	return 0;
13869 }
13870 
13871 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13872 			     const struct timespec64 *ts)
13873 {
13874 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13875 	u64 ns;
13876 
13877 	if (!netif_running(bp->dev)) {
13878 		DP(BNX2X_MSG_PTP,
13879 		   "PTP settime called while the interface is down\n");
13880 		return -ENETDOWN;
13881 	}
13882 
13883 	ns = timespec64_to_ns(ts);
13884 
13885 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13886 
13887 	/* Re-init the timecounter */
13888 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13889 
13890 	return 0;
13891 }
13892 
13893 /* Enable (or disable) ancillary features of the phc subsystem */
13894 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13895 			    struct ptp_clock_request *rq, int on)
13896 {
13897 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13898 
13899 	BNX2X_ERR("PHC ancillary features are not supported\n");
13900 	return -ENOTSUPP;
13901 }
13902 
13903 static void bnx2x_register_phc(struct bnx2x *bp)
13904 {
13905 	/* Fill the ptp_clock_info struct and register PTP clock*/
13906 	bp->ptp_clock_info.owner = THIS_MODULE;
13907 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13908 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13909 	bp->ptp_clock_info.n_alarm = 0;
13910 	bp->ptp_clock_info.n_ext_ts = 0;
13911 	bp->ptp_clock_info.n_per_out = 0;
13912 	bp->ptp_clock_info.pps = 0;
13913 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13914 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13915 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13916 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13917 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13918 
13919 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13920 	if (IS_ERR(bp->ptp_clock)) {
13921 		bp->ptp_clock = NULL;
13922 		BNX2X_ERR("PTP clock registration failed\n");
13923 	}
13924 }
13925 
13926 static int bnx2x_init_one(struct pci_dev *pdev,
13927 				    const struct pci_device_id *ent)
13928 {
13929 	struct net_device *dev = NULL;
13930 	struct bnx2x *bp;
13931 	int rc, max_non_def_sbs;
13932 	int rx_count, tx_count, rss_count, doorbell_size;
13933 	int max_cos_est;
13934 	bool is_vf;
13935 	int cnic_cnt;
13936 
13937 	/* Management FW 'remembers' living interfaces. Allow it some time
13938 	 * to forget previously living interfaces, allowing a proper re-load.
13939 	 */
13940 	if (is_kdump_kernel()) {
13941 		ktime_t now = ktime_get_boottime();
13942 		ktime_t fw_ready_time = ktime_set(5, 0);
13943 
13944 		if (ktime_before(now, fw_ready_time))
13945 			msleep(ktime_ms_delta(fw_ready_time, now));
13946 	}
13947 
13948 	/* An estimated maximum supported CoS number according to the chip
13949 	 * version.
13950 	 * We will try to roughly estimate the maximum number of CoSes this chip
13951 	 * may support in order to minimize the memory allocated for Tx
13952 	 * netdev_queue's. This number will be accurately calculated during the
13953 	 * initialization of bp->max_cos based on the chip versions AND chip
13954 	 * revision in the bnx2x_init_bp().
13955 	 */
13956 	max_cos_est = set_max_cos_est(ent->driver_data);
13957 	if (max_cos_est < 0)
13958 		return max_cos_est;
13959 	is_vf = set_is_vf(ent->driver_data);
13960 	cnic_cnt = is_vf ? 0 : 1;
13961 
13962 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13963 
13964 	/* add another SB for VF as it has no default SB */
13965 	max_non_def_sbs += is_vf ? 1 : 0;
13966 
13967 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13968 	rss_count = max_non_def_sbs - cnic_cnt;
13969 
13970 	if (rss_count < 1)
13971 		return -EINVAL;
13972 
13973 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13974 	rx_count = rss_count + cnic_cnt;
13975 
13976 	/* Maximum number of netdev Tx queues:
13977 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13978 	 */
13979 	tx_count = rss_count * max_cos_est + cnic_cnt;
13980 
13981 	/* dev zeroed in init_etherdev */
13982 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13983 	if (!dev)
13984 		return -ENOMEM;
13985 
13986 	bp = netdev_priv(dev);
13987 
13988 	bp->flags = 0;
13989 	if (is_vf)
13990 		bp->flags |= IS_VF_FLAG;
13991 
13992 	bp->igu_sb_cnt = max_non_def_sbs;
13993 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13994 	bp->msg_enable = debug;
13995 	bp->cnic_support = cnic_cnt;
13996 	bp->cnic_probe = bnx2x_cnic_probe;
13997 
13998 	pci_set_drvdata(pdev, dev);
13999 
14000 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14001 	if (rc < 0) {
14002 		free_netdev(dev);
14003 		return rc;
14004 	}
14005 
14006 	BNX2X_DEV_INFO("This is a %s function\n",
14007 		       IS_PF(bp) ? "physical" : "virtual");
14008 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14009 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14010 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14011 		       tx_count, rx_count);
14012 
14013 	rc = bnx2x_init_bp(bp);
14014 	if (rc)
14015 		goto init_one_exit;
14016 
14017 	/* Map doorbells here as we need the real value of bp->max_cos which
14018 	 * is initialized in bnx2x_init_bp() to determine the number of
14019 	 * l2 connections.
14020 	 */
14021 	if (IS_VF(bp)) {
14022 		bp->doorbells = bnx2x_vf_doorbells(bp);
14023 		rc = bnx2x_vf_pci_alloc(bp);
14024 		if (rc)
14025 			goto init_one_freemem;
14026 	} else {
14027 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14028 		if (doorbell_size > pci_resource_len(pdev, 2)) {
14029 			dev_err(&bp->pdev->dev,
14030 				"Cannot map doorbells, bar size too small, aborting\n");
14031 			rc = -ENOMEM;
14032 			goto init_one_freemem;
14033 		}
14034 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14035 						doorbell_size);
14036 	}
14037 	if (!bp->doorbells) {
14038 		dev_err(&bp->pdev->dev,
14039 			"Cannot map doorbell space, aborting\n");
14040 		rc = -ENOMEM;
14041 		goto init_one_freemem;
14042 	}
14043 
14044 	if (IS_VF(bp)) {
14045 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14046 		if (rc)
14047 			goto init_one_freemem;
14048 
14049 #ifdef CONFIG_BNX2X_SRIOV
14050 		/* VF with OLD Hypervisor or old PF do not support filtering */
14051 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14052 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14053 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14054 		}
14055 #endif
14056 	}
14057 
14058 	/* Enable SRIOV if capability found in configuration space */
14059 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14060 	if (rc)
14061 		goto init_one_freemem;
14062 
14063 	/* calc qm_cid_count */
14064 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14065 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14066 
14067 	/* disable FCOE L2 queue for E1x*/
14068 	if (CHIP_IS_E1x(bp))
14069 		bp->flags |= NO_FCOE_FLAG;
14070 
14071 	/* Set bp->num_queues for MSI-X mode*/
14072 	bnx2x_set_num_queues(bp);
14073 
14074 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14075 	 * needed.
14076 	 */
14077 	rc = bnx2x_set_int_mode(bp);
14078 	if (rc) {
14079 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14080 		goto init_one_freemem;
14081 	}
14082 	BNX2X_DEV_INFO("set interrupts successfully\n");
14083 
14084 	/* register the net device */
14085 	rc = register_netdev(dev);
14086 	if (rc) {
14087 		dev_err(&pdev->dev, "Cannot register net device\n");
14088 		goto init_one_freemem;
14089 	}
14090 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14091 
14092 	if (!NO_FCOE(bp)) {
14093 		/* Add storage MAC address */
14094 		rtnl_lock();
14095 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14096 		rtnl_unlock();
14097 	}
14098 	BNX2X_DEV_INFO(
14099 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14100 	       board_info[ent->driver_data].name,
14101 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14102 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14103 	pcie_print_link_status(bp->pdev);
14104 
14105 	bnx2x_register_phc(bp);
14106 
14107 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14108 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14109 
14110 	return 0;
14111 
14112 init_one_freemem:
14113 	bnx2x_free_mem_bp(bp);
14114 
14115 init_one_exit:
14116 	bnx2x_disable_pcie_error_reporting(bp);
14117 
14118 	if (bp->regview)
14119 		iounmap(bp->regview);
14120 
14121 	if (IS_PF(bp) && bp->doorbells)
14122 		iounmap(bp->doorbells);
14123 
14124 	free_netdev(dev);
14125 
14126 	if (atomic_read(&pdev->enable_cnt) == 1)
14127 		pci_release_regions(pdev);
14128 
14129 	pci_disable_device(pdev);
14130 
14131 	return rc;
14132 }
14133 
14134 static void __bnx2x_remove(struct pci_dev *pdev,
14135 			   struct net_device *dev,
14136 			   struct bnx2x *bp,
14137 			   bool remove_netdev)
14138 {
14139 	if (bp->ptp_clock) {
14140 		ptp_clock_unregister(bp->ptp_clock);
14141 		bp->ptp_clock = NULL;
14142 	}
14143 
14144 	/* Delete storage MAC address */
14145 	if (!NO_FCOE(bp)) {
14146 		rtnl_lock();
14147 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14148 		rtnl_unlock();
14149 	}
14150 
14151 #ifdef BCM_DCBNL
14152 	/* Delete app tlvs from dcbnl */
14153 	bnx2x_dcbnl_update_applist(bp, true);
14154 #endif
14155 
14156 	if (IS_PF(bp) &&
14157 	    !BP_NOMCP(bp) &&
14158 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14159 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14160 
14161 	/* Close the interface - either directly or implicitly */
14162 	if (remove_netdev) {
14163 		unregister_netdev(dev);
14164 	} else {
14165 		rtnl_lock();
14166 		dev_close(dev);
14167 		rtnl_unlock();
14168 	}
14169 
14170 	bnx2x_iov_remove_one(bp);
14171 
14172 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14173 	if (IS_PF(bp)) {
14174 		bnx2x_set_power_state(bp, PCI_D0);
14175 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14176 
14177 		/* Set endianity registers to reset values in case next driver
14178 		 * boots in different endianty environment.
14179 		 */
14180 		bnx2x_reset_endianity(bp);
14181 	}
14182 
14183 	/* Disable MSI/MSI-X */
14184 	bnx2x_disable_msi(bp);
14185 
14186 	/* Power off */
14187 	if (IS_PF(bp))
14188 		bnx2x_set_power_state(bp, PCI_D3hot);
14189 
14190 	/* Make sure RESET task is not scheduled before continuing */
14191 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14192 
14193 	/* send message via vfpf channel to release the resources of this vf */
14194 	if (IS_VF(bp))
14195 		bnx2x_vfpf_release(bp);
14196 
14197 	/* Assumes no further PCIe PM changes will occur */
14198 	if (system_state == SYSTEM_POWER_OFF) {
14199 		pci_wake_from_d3(pdev, bp->wol);
14200 		pci_set_power_state(pdev, PCI_D3hot);
14201 	}
14202 
14203 	bnx2x_disable_pcie_error_reporting(bp);
14204 	if (remove_netdev) {
14205 		if (bp->regview)
14206 			iounmap(bp->regview);
14207 
14208 		/* For vfs, doorbells are part of the regview and were unmapped
14209 		 * along with it. FW is only loaded by PF.
14210 		 */
14211 		if (IS_PF(bp)) {
14212 			if (bp->doorbells)
14213 				iounmap(bp->doorbells);
14214 
14215 			bnx2x_release_firmware(bp);
14216 		} else {
14217 			bnx2x_vf_pci_dealloc(bp);
14218 		}
14219 		bnx2x_free_mem_bp(bp);
14220 
14221 		free_netdev(dev);
14222 
14223 		if (atomic_read(&pdev->enable_cnt) == 1)
14224 			pci_release_regions(pdev);
14225 
14226 		pci_disable_device(pdev);
14227 	}
14228 }
14229 
14230 static void bnx2x_remove_one(struct pci_dev *pdev)
14231 {
14232 	struct net_device *dev = pci_get_drvdata(pdev);
14233 	struct bnx2x *bp;
14234 
14235 	if (!dev) {
14236 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14237 		return;
14238 	}
14239 	bp = netdev_priv(dev);
14240 
14241 	__bnx2x_remove(pdev, dev, bp, true);
14242 }
14243 
14244 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14245 {
14246 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14247 
14248 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14249 
14250 	if (CNIC_LOADED(bp))
14251 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14252 
14253 	/* Stop Tx */
14254 	bnx2x_tx_disable(bp);
14255 	/* Delete all NAPI objects */
14256 	bnx2x_del_all_napi(bp);
14257 	if (CNIC_LOADED(bp))
14258 		bnx2x_del_all_napi_cnic(bp);
14259 	netdev_reset_tc(bp->dev);
14260 
14261 	del_timer_sync(&bp->timer);
14262 	cancel_delayed_work_sync(&bp->sp_task);
14263 	cancel_delayed_work_sync(&bp->period_task);
14264 
14265 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14266 		bp->stats_state = STATS_STATE_DISABLED;
14267 		up(&bp->stats_lock);
14268 	}
14269 
14270 	bnx2x_save_statistics(bp);
14271 
14272 	netif_carrier_off(bp->dev);
14273 
14274 	return 0;
14275 }
14276 
14277 /**
14278  * bnx2x_io_error_detected - called when PCI error is detected
14279  * @pdev: Pointer to PCI device
14280  * @state: The current pci connection state
14281  *
14282  * This function is called after a PCI bus error affecting
14283  * this device has been detected.
14284  */
14285 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14286 						pci_channel_state_t state)
14287 {
14288 	struct net_device *dev = pci_get_drvdata(pdev);
14289 	struct bnx2x *bp = netdev_priv(dev);
14290 
14291 	rtnl_lock();
14292 
14293 	BNX2X_ERR("IO error detected\n");
14294 
14295 	netif_device_detach(dev);
14296 
14297 	if (state == pci_channel_io_perm_failure) {
14298 		rtnl_unlock();
14299 		return PCI_ERS_RESULT_DISCONNECT;
14300 	}
14301 
14302 	if (netif_running(dev))
14303 		bnx2x_eeh_nic_unload(bp);
14304 
14305 	bnx2x_prev_path_mark_eeh(bp);
14306 
14307 	pci_disable_device(pdev);
14308 
14309 	rtnl_unlock();
14310 
14311 	/* Request a slot reset */
14312 	return PCI_ERS_RESULT_NEED_RESET;
14313 }
14314 
14315 /**
14316  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14317  * @pdev: Pointer to PCI device
14318  *
14319  * Restart the card from scratch, as if from a cold-boot.
14320  */
14321 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14322 {
14323 	struct net_device *dev = pci_get_drvdata(pdev);
14324 	struct bnx2x *bp = netdev_priv(dev);
14325 	int i;
14326 
14327 	rtnl_lock();
14328 	BNX2X_ERR("IO slot reset initializing...\n");
14329 	if (pci_enable_device(pdev)) {
14330 		dev_err(&pdev->dev,
14331 			"Cannot re-enable PCI device after reset\n");
14332 		rtnl_unlock();
14333 		return PCI_ERS_RESULT_DISCONNECT;
14334 	}
14335 
14336 	pci_set_master(pdev);
14337 	pci_restore_state(pdev);
14338 	pci_save_state(pdev);
14339 
14340 	if (netif_running(dev))
14341 		bnx2x_set_power_state(bp, PCI_D0);
14342 
14343 	if (netif_running(dev)) {
14344 		BNX2X_ERR("IO slot reset --> driver unload\n");
14345 
14346 		/* MCP should have been reset; Need to wait for validity */
14347 		if (bnx2x_init_shmem(bp)) {
14348 			rtnl_unlock();
14349 			return PCI_ERS_RESULT_DISCONNECT;
14350 		}
14351 
14352 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14353 			u32 v;
14354 
14355 			v = SHMEM2_RD(bp,
14356 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14357 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14358 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14359 		}
14360 		bnx2x_drain_tx_queues(bp);
14361 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14362 		bnx2x_netif_stop(bp, 1);
14363 		bnx2x_free_irq(bp);
14364 
14365 		/* Report UNLOAD_DONE to MCP */
14366 		bnx2x_send_unload_done(bp, true);
14367 
14368 		bp->sp_state = 0;
14369 		bp->port.pmf = 0;
14370 
14371 		bnx2x_prev_unload(bp);
14372 
14373 		/* We should have reseted the engine, so It's fair to
14374 		 * assume the FW will no longer write to the bnx2x driver.
14375 		 */
14376 		bnx2x_squeeze_objects(bp);
14377 		bnx2x_free_skbs(bp);
14378 		for_each_rx_queue(bp, i)
14379 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14380 		bnx2x_free_fp_mem(bp);
14381 		bnx2x_free_mem(bp);
14382 
14383 		bp->state = BNX2X_STATE_CLOSED;
14384 	}
14385 
14386 	rtnl_unlock();
14387 
14388 	/* If AER, perform cleanup of the PCIe registers */
14389 	if (bp->flags & AER_ENABLED) {
14390 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
14391 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14392 		else
14393 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14394 	}
14395 
14396 	return PCI_ERS_RESULT_RECOVERED;
14397 }
14398 
14399 /**
14400  * bnx2x_io_resume - called when traffic can start flowing again
14401  * @pdev: Pointer to PCI device
14402  *
14403  * This callback is called when the error recovery driver tells us that
14404  * its OK to resume normal operation.
14405  */
14406 static void bnx2x_io_resume(struct pci_dev *pdev)
14407 {
14408 	struct net_device *dev = pci_get_drvdata(pdev);
14409 	struct bnx2x *bp = netdev_priv(dev);
14410 
14411 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14412 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14413 		return;
14414 	}
14415 
14416 	rtnl_lock();
14417 
14418 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14419 							DRV_MSG_SEQ_NUMBER_MASK;
14420 
14421 	if (netif_running(dev))
14422 		bnx2x_nic_load(bp, LOAD_NORMAL);
14423 
14424 	netif_device_attach(dev);
14425 
14426 	rtnl_unlock();
14427 }
14428 
14429 static const struct pci_error_handlers bnx2x_err_handler = {
14430 	.error_detected = bnx2x_io_error_detected,
14431 	.slot_reset     = bnx2x_io_slot_reset,
14432 	.resume         = bnx2x_io_resume,
14433 };
14434 
14435 static void bnx2x_shutdown(struct pci_dev *pdev)
14436 {
14437 	struct net_device *dev = pci_get_drvdata(pdev);
14438 	struct bnx2x *bp;
14439 
14440 	if (!dev)
14441 		return;
14442 
14443 	bp = netdev_priv(dev);
14444 	if (!bp)
14445 		return;
14446 
14447 	rtnl_lock();
14448 	netif_device_detach(dev);
14449 	rtnl_unlock();
14450 
14451 	/* Don't remove the netdevice, as there are scenarios which will cause
14452 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14453 	 * rootfs is mounted from SAN.
14454 	 */
14455 	__bnx2x_remove(pdev, dev, bp, false);
14456 }
14457 
14458 static struct pci_driver bnx2x_pci_driver = {
14459 	.name        = DRV_MODULE_NAME,
14460 	.id_table    = bnx2x_pci_tbl,
14461 	.probe       = bnx2x_init_one,
14462 	.remove      = bnx2x_remove_one,
14463 	.suspend     = bnx2x_suspend,
14464 	.resume      = bnx2x_resume,
14465 	.err_handler = &bnx2x_err_handler,
14466 #ifdef CONFIG_BNX2X_SRIOV
14467 	.sriov_configure = bnx2x_sriov_configure,
14468 #endif
14469 	.shutdown    = bnx2x_shutdown,
14470 };
14471 
14472 static int __init bnx2x_init(void)
14473 {
14474 	int ret;
14475 
14476 	pr_info("%s", version);
14477 
14478 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14479 	if (bnx2x_wq == NULL) {
14480 		pr_err("Cannot create workqueue\n");
14481 		return -ENOMEM;
14482 	}
14483 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14484 	if (!bnx2x_iov_wq) {
14485 		pr_err("Cannot create iov workqueue\n");
14486 		destroy_workqueue(bnx2x_wq);
14487 		return -ENOMEM;
14488 	}
14489 
14490 	ret = pci_register_driver(&bnx2x_pci_driver);
14491 	if (ret) {
14492 		pr_err("Cannot register driver\n");
14493 		destroy_workqueue(bnx2x_wq);
14494 		destroy_workqueue(bnx2x_iov_wq);
14495 	}
14496 	return ret;
14497 }
14498 
14499 static void __exit bnx2x_cleanup(void)
14500 {
14501 	struct list_head *pos, *q;
14502 
14503 	pci_unregister_driver(&bnx2x_pci_driver);
14504 
14505 	destroy_workqueue(bnx2x_wq);
14506 	destroy_workqueue(bnx2x_iov_wq);
14507 
14508 	/* Free globally allocated resources */
14509 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14510 		struct bnx2x_prev_path_list *tmp =
14511 			list_entry(pos, struct bnx2x_prev_path_list, list);
14512 		list_del(pos);
14513 		kfree(tmp);
14514 	}
14515 }
14516 
14517 void bnx2x_notify_link_changed(struct bnx2x *bp)
14518 {
14519 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14520 }
14521 
14522 module_init(bnx2x_init);
14523 module_exit(bnx2x_cleanup);
14524 
14525 /**
14526  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14527  *
14528  * @bp:		driver handle
14529  * @set:	set or clear the CAM entry
14530  *
14531  * This function will wait until the ramrod completion returns.
14532  * Return 0 if success, -ENODEV if ramrod doesn't return.
14533  */
14534 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14535 {
14536 	unsigned long ramrod_flags = 0;
14537 
14538 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14539 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14540 				 &bp->iscsi_l2_mac_obj, true,
14541 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14542 }
14543 
14544 /* count denotes the number of new completions we have seen */
14545 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14546 {
14547 	struct eth_spe *spe;
14548 	int cxt_index, cxt_offset;
14549 
14550 #ifdef BNX2X_STOP_ON_ERROR
14551 	if (unlikely(bp->panic))
14552 		return;
14553 #endif
14554 
14555 	spin_lock_bh(&bp->spq_lock);
14556 	BUG_ON(bp->cnic_spq_pending < count);
14557 	bp->cnic_spq_pending -= count;
14558 
14559 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14560 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14561 				& SPE_HDR_CONN_TYPE) >>
14562 				SPE_HDR_CONN_TYPE_SHIFT;
14563 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14564 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14565 
14566 		/* Set validation for iSCSI L2 client before sending SETUP
14567 		 *  ramrod
14568 		 */
14569 		if (type == ETH_CONNECTION_TYPE) {
14570 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14571 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14572 					ILT_PAGE_CIDS;
14573 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14574 					(cxt_index * ILT_PAGE_CIDS);
14575 				bnx2x_set_ctx_validation(bp,
14576 					&bp->context[cxt_index].
14577 							 vcxt[cxt_offset].eth,
14578 					BNX2X_ISCSI_ETH_CID(bp));
14579 			}
14580 		}
14581 
14582 		/*
14583 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14584 		 * and in the air. We also check that number of outstanding
14585 		 * COMMON ramrods is not more than the EQ and SPQ can
14586 		 * accommodate.
14587 		 */
14588 		if (type == ETH_CONNECTION_TYPE) {
14589 			if (!atomic_read(&bp->cq_spq_left))
14590 				break;
14591 			else
14592 				atomic_dec(&bp->cq_spq_left);
14593 		} else if (type == NONE_CONNECTION_TYPE) {
14594 			if (!atomic_read(&bp->eq_spq_left))
14595 				break;
14596 			else
14597 				atomic_dec(&bp->eq_spq_left);
14598 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14599 			   (type == FCOE_CONNECTION_TYPE)) {
14600 			if (bp->cnic_spq_pending >=
14601 			    bp->cnic_eth_dev.max_kwqe_pending)
14602 				break;
14603 			else
14604 				bp->cnic_spq_pending++;
14605 		} else {
14606 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14607 			bnx2x_panic();
14608 			break;
14609 		}
14610 
14611 		spe = bnx2x_sp_get_next(bp);
14612 		*spe = *bp->cnic_kwq_cons;
14613 
14614 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14615 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14616 
14617 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14618 			bp->cnic_kwq_cons = bp->cnic_kwq;
14619 		else
14620 			bp->cnic_kwq_cons++;
14621 	}
14622 	bnx2x_sp_prod_update(bp);
14623 	spin_unlock_bh(&bp->spq_lock);
14624 }
14625 
14626 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14627 			       struct kwqe_16 *kwqes[], u32 count)
14628 {
14629 	struct bnx2x *bp = netdev_priv(dev);
14630 	int i;
14631 
14632 #ifdef BNX2X_STOP_ON_ERROR
14633 	if (unlikely(bp->panic)) {
14634 		BNX2X_ERR("Can't post to SP queue while panic\n");
14635 		return -EIO;
14636 	}
14637 #endif
14638 
14639 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14640 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14641 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14642 		return -EAGAIN;
14643 	}
14644 
14645 	spin_lock_bh(&bp->spq_lock);
14646 
14647 	for (i = 0; i < count; i++) {
14648 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14649 
14650 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14651 			break;
14652 
14653 		*bp->cnic_kwq_prod = *spe;
14654 
14655 		bp->cnic_kwq_pending++;
14656 
14657 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14658 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14659 		   spe->data.update_data_addr.hi,
14660 		   spe->data.update_data_addr.lo,
14661 		   bp->cnic_kwq_pending);
14662 
14663 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14664 			bp->cnic_kwq_prod = bp->cnic_kwq;
14665 		else
14666 			bp->cnic_kwq_prod++;
14667 	}
14668 
14669 	spin_unlock_bh(&bp->spq_lock);
14670 
14671 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14672 		bnx2x_cnic_sp_post(bp, 0);
14673 
14674 	return i;
14675 }
14676 
14677 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14678 {
14679 	struct cnic_ops *c_ops;
14680 	int rc = 0;
14681 
14682 	mutex_lock(&bp->cnic_mutex);
14683 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14684 					  lockdep_is_held(&bp->cnic_mutex));
14685 	if (c_ops)
14686 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14687 	mutex_unlock(&bp->cnic_mutex);
14688 
14689 	return rc;
14690 }
14691 
14692 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14693 {
14694 	struct cnic_ops *c_ops;
14695 	int rc = 0;
14696 
14697 	rcu_read_lock();
14698 	c_ops = rcu_dereference(bp->cnic_ops);
14699 	if (c_ops)
14700 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14701 	rcu_read_unlock();
14702 
14703 	return rc;
14704 }
14705 
14706 /*
14707  * for commands that have no data
14708  */
14709 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14710 {
14711 	struct cnic_ctl_info ctl = {0};
14712 
14713 	ctl.cmd = cmd;
14714 
14715 	return bnx2x_cnic_ctl_send(bp, &ctl);
14716 }
14717 
14718 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14719 {
14720 	struct cnic_ctl_info ctl = {0};
14721 
14722 	/* first we tell CNIC and only then we count this as a completion */
14723 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14724 	ctl.data.comp.cid = cid;
14725 	ctl.data.comp.error = err;
14726 
14727 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14728 	bnx2x_cnic_sp_post(bp, 0);
14729 }
14730 
14731 /* Called with netif_addr_lock_bh() taken.
14732  * Sets an rx_mode config for an iSCSI ETH client.
14733  * Doesn't block.
14734  * Completion should be checked outside.
14735  */
14736 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14737 {
14738 	unsigned long accept_flags = 0, ramrod_flags = 0;
14739 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14740 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14741 
14742 	if (start) {
14743 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14744 		 * because it's the only way for UIO Queue to accept
14745 		 * multicasts (in non-promiscuous mode only one Queue per
14746 		 * function will receive multicast packets (leading in our
14747 		 * case).
14748 		 */
14749 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14750 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14751 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14752 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14753 
14754 		/* Clear STOP_PENDING bit if START is requested */
14755 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14756 
14757 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14758 	} else
14759 		/* Clear START_PENDING bit if STOP is requested */
14760 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14761 
14762 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14763 		set_bit(sched_state, &bp->sp_state);
14764 	else {
14765 		__set_bit(RAMROD_RX, &ramrod_flags);
14766 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14767 				    ramrod_flags);
14768 	}
14769 }
14770 
14771 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14772 {
14773 	struct bnx2x *bp = netdev_priv(dev);
14774 	int rc = 0;
14775 
14776 	switch (ctl->cmd) {
14777 	case DRV_CTL_CTXTBL_WR_CMD: {
14778 		u32 index = ctl->data.io.offset;
14779 		dma_addr_t addr = ctl->data.io.dma_addr;
14780 
14781 		bnx2x_ilt_wr(bp, index, addr);
14782 		break;
14783 	}
14784 
14785 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14786 		int count = ctl->data.credit.credit_count;
14787 
14788 		bnx2x_cnic_sp_post(bp, count);
14789 		break;
14790 	}
14791 
14792 	/* rtnl_lock is held.  */
14793 	case DRV_CTL_START_L2_CMD: {
14794 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14795 		unsigned long sp_bits = 0;
14796 
14797 		/* Configure the iSCSI classification object */
14798 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14799 				   cp->iscsi_l2_client_id,
14800 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14801 				   bnx2x_sp(bp, mac_rdata),
14802 				   bnx2x_sp_mapping(bp, mac_rdata),
14803 				   BNX2X_FILTER_MAC_PENDING,
14804 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14805 				   &bp->macs_pool);
14806 
14807 		/* Set iSCSI MAC address */
14808 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14809 		if (rc)
14810 			break;
14811 
14812 		mmiowb();
14813 		barrier();
14814 
14815 		/* Start accepting on iSCSI L2 ring */
14816 
14817 		netif_addr_lock_bh(dev);
14818 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14819 		netif_addr_unlock_bh(dev);
14820 
14821 		/* bits to wait on */
14822 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14823 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14824 
14825 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14826 			BNX2X_ERR("rx_mode completion timed out!\n");
14827 
14828 		break;
14829 	}
14830 
14831 	/* rtnl_lock is held.  */
14832 	case DRV_CTL_STOP_L2_CMD: {
14833 		unsigned long sp_bits = 0;
14834 
14835 		/* Stop accepting on iSCSI L2 ring */
14836 		netif_addr_lock_bh(dev);
14837 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14838 		netif_addr_unlock_bh(dev);
14839 
14840 		/* bits to wait on */
14841 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14842 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14843 
14844 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14845 			BNX2X_ERR("rx_mode completion timed out!\n");
14846 
14847 		mmiowb();
14848 		barrier();
14849 
14850 		/* Unset iSCSI L2 MAC */
14851 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14852 					BNX2X_ISCSI_ETH_MAC, true);
14853 		break;
14854 	}
14855 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14856 		int count = ctl->data.credit.credit_count;
14857 
14858 		smp_mb__before_atomic();
14859 		atomic_add(count, &bp->cq_spq_left);
14860 		smp_mb__after_atomic();
14861 		break;
14862 	}
14863 	case DRV_CTL_ULP_REGISTER_CMD: {
14864 		int ulp_type = ctl->data.register_data.ulp_type;
14865 
14866 		if (CHIP_IS_E3(bp)) {
14867 			int idx = BP_FW_MB_IDX(bp);
14868 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14869 			int path = BP_PATH(bp);
14870 			int port = BP_PORT(bp);
14871 			int i;
14872 			u32 scratch_offset;
14873 			u32 *host_addr;
14874 
14875 			/* first write capability to shmem2 */
14876 			if (ulp_type == CNIC_ULP_ISCSI)
14877 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14878 			else if (ulp_type == CNIC_ULP_FCOE)
14879 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14880 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14881 
14882 			if ((ulp_type != CNIC_ULP_FCOE) ||
14883 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14884 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14885 				break;
14886 
14887 			/* if reached here - should write fcoe capabilities */
14888 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14889 			if (!scratch_offset)
14890 				break;
14891 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14892 						   fcoe_features[path][port]);
14893 			host_addr = (u32 *) &(ctl->data.register_data.
14894 					      fcoe_features);
14895 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14896 			     i += 4)
14897 				REG_WR(bp, scratch_offset + i,
14898 				       *(host_addr + i/4));
14899 		}
14900 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14901 		break;
14902 	}
14903 
14904 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14905 		int ulp_type = ctl->data.ulp_type;
14906 
14907 		if (CHIP_IS_E3(bp)) {
14908 			int idx = BP_FW_MB_IDX(bp);
14909 			u32 cap;
14910 
14911 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14912 			if (ulp_type == CNIC_ULP_ISCSI)
14913 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14914 			else if (ulp_type == CNIC_ULP_FCOE)
14915 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14916 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14917 		}
14918 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14919 		break;
14920 	}
14921 
14922 	default:
14923 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14924 		rc = -EINVAL;
14925 	}
14926 
14927 	/* For storage-only interfaces, change driver state */
14928 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14929 		switch (ctl->drv_state) {
14930 		case DRV_NOP:
14931 			break;
14932 		case DRV_ACTIVE:
14933 			bnx2x_set_os_driver_state(bp,
14934 						  OS_DRIVER_STATE_ACTIVE);
14935 			break;
14936 		case DRV_INACTIVE:
14937 			bnx2x_set_os_driver_state(bp,
14938 						  OS_DRIVER_STATE_DISABLED);
14939 			break;
14940 		case DRV_UNLOADED:
14941 			bnx2x_set_os_driver_state(bp,
14942 						  OS_DRIVER_STATE_NOT_LOADED);
14943 			break;
14944 		default:
14945 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14946 		}
14947 	}
14948 
14949 	return rc;
14950 }
14951 
14952 static int bnx2x_get_fc_npiv(struct net_device *dev,
14953 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14954 {
14955 	struct bnx2x *bp = netdev_priv(dev);
14956 	struct bdn_fc_npiv_tbl *tbl = NULL;
14957 	u32 offset, entries;
14958 	int rc = -EINVAL;
14959 	int i;
14960 
14961 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14962 		goto out;
14963 
14964 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14965 
14966 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14967 	if (!tbl) {
14968 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14969 		goto out;
14970 	}
14971 
14972 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14973 	if (!offset) {
14974 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14975 		goto out;
14976 	}
14977 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14978 
14979 	/* Read the table contents from nvram */
14980 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14981 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14982 		goto out;
14983 	}
14984 
14985 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14986 	 * the number of entries back to cpu endianness.
14987 	 */
14988 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14989 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14990 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14991 
14992 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14993 		DP(BNX2X_MSG_MCP,
14994 		   "No FC-NPIV table [valid, simply not present]\n");
14995 		goto out;
14996 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14997 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14998 			  tbl->fc_npiv_cfg.num_of_npiv);
14999 		goto out;
15000 	} else {
15001 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
15002 		   tbl->fc_npiv_cfg.num_of_npiv);
15003 	}
15004 
15005 	/* Copy the data into cnic-provided struct */
15006 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
15007 	for (i = 0; i < cnic_tbl->count; i++) {
15008 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
15009 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15010 	}
15011 
15012 	rc = 0;
15013 out:
15014 	kfree(tbl);
15015 	return rc;
15016 }
15017 
15018 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15019 {
15020 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15021 
15022 	if (bp->flags & USING_MSIX_FLAG) {
15023 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15024 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15025 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
15026 	} else {
15027 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15028 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15029 	}
15030 	if (!CHIP_IS_E1x(bp))
15031 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15032 	else
15033 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15034 
15035 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15036 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15037 	cp->irq_arr[1].status_blk = bp->def_status_blk;
15038 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15039 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15040 
15041 	cp->num_irq = 2;
15042 }
15043 
15044 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15045 {
15046 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15047 
15048 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15049 			     bnx2x_cid_ilt_lines(bp);
15050 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15051 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15052 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15053 
15054 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15055 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15056 	   cp->iscsi_l2_cid);
15057 
15058 	if (NO_ISCSI_OOO(bp))
15059 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15060 }
15061 
15062 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15063 			       void *data)
15064 {
15065 	struct bnx2x *bp = netdev_priv(dev);
15066 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15067 	int rc;
15068 
15069 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15070 
15071 	if (ops == NULL) {
15072 		BNX2X_ERR("NULL ops received\n");
15073 		return -EINVAL;
15074 	}
15075 
15076 	if (!CNIC_SUPPORT(bp)) {
15077 		BNX2X_ERR("Can't register CNIC when not supported\n");
15078 		return -EOPNOTSUPP;
15079 	}
15080 
15081 	if (!CNIC_LOADED(bp)) {
15082 		rc = bnx2x_load_cnic(bp);
15083 		if (rc) {
15084 			BNX2X_ERR("CNIC-related load failed\n");
15085 			return rc;
15086 		}
15087 	}
15088 
15089 	bp->cnic_enabled = true;
15090 
15091 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15092 	if (!bp->cnic_kwq)
15093 		return -ENOMEM;
15094 
15095 	bp->cnic_kwq_cons = bp->cnic_kwq;
15096 	bp->cnic_kwq_prod = bp->cnic_kwq;
15097 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15098 
15099 	bp->cnic_spq_pending = 0;
15100 	bp->cnic_kwq_pending = 0;
15101 
15102 	bp->cnic_data = data;
15103 
15104 	cp->num_irq = 0;
15105 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15106 	cp->iro_arr = bp->iro_arr;
15107 
15108 	bnx2x_setup_cnic_irq_info(bp);
15109 
15110 	rcu_assign_pointer(bp->cnic_ops, ops);
15111 
15112 	/* Schedule driver to read CNIC driver versions */
15113 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15114 
15115 	return 0;
15116 }
15117 
15118 static int bnx2x_unregister_cnic(struct net_device *dev)
15119 {
15120 	struct bnx2x *bp = netdev_priv(dev);
15121 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15122 
15123 	mutex_lock(&bp->cnic_mutex);
15124 	cp->drv_state = 0;
15125 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15126 	mutex_unlock(&bp->cnic_mutex);
15127 	synchronize_rcu();
15128 	bp->cnic_enabled = false;
15129 	kfree(bp->cnic_kwq);
15130 	bp->cnic_kwq = NULL;
15131 
15132 	return 0;
15133 }
15134 
15135 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15136 {
15137 	struct bnx2x *bp = netdev_priv(dev);
15138 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15139 
15140 	/* If both iSCSI and FCoE are disabled - return NULL in
15141 	 * order to indicate CNIC that it should not try to work
15142 	 * with this device.
15143 	 */
15144 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15145 		return NULL;
15146 
15147 	cp->drv_owner = THIS_MODULE;
15148 	cp->chip_id = CHIP_ID(bp);
15149 	cp->pdev = bp->pdev;
15150 	cp->io_base = bp->regview;
15151 	cp->io_base2 = bp->doorbells;
15152 	cp->max_kwqe_pending = 8;
15153 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15154 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15155 			     bnx2x_cid_ilt_lines(bp);
15156 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15157 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15158 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15159 	cp->drv_ctl = bnx2x_drv_ctl;
15160 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15161 	cp->drv_register_cnic = bnx2x_register_cnic;
15162 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15163 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15164 	cp->iscsi_l2_client_id =
15165 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15166 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15167 
15168 	if (NO_ISCSI_OOO(bp))
15169 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15170 
15171 	if (NO_ISCSI(bp))
15172 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15173 
15174 	if (NO_FCOE(bp))
15175 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15176 
15177 	BNX2X_DEV_INFO(
15178 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15179 	   cp->ctx_blk_size,
15180 	   cp->ctx_tbl_offset,
15181 	   cp->ctx_tbl_len,
15182 	   cp->starting_cid);
15183 	return cp;
15184 }
15185 
15186 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15187 {
15188 	struct bnx2x *bp = fp->bp;
15189 	u32 offset = BAR_USTRORM_INTMEM;
15190 
15191 	if (IS_VF(bp))
15192 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15193 	else if (!CHIP_IS_E1x(bp))
15194 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15195 	else
15196 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15197 
15198 	return offset;
15199 }
15200 
15201 /* called only on E1H or E2.
15202  * When pretending to be PF, the pretend value is the function number 0...7
15203  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15204  * combination
15205  */
15206 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15207 {
15208 	u32 pretend_reg;
15209 
15210 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15211 		return -1;
15212 
15213 	/* get my own pretend register */
15214 	pretend_reg = bnx2x_get_pretend_reg(bp);
15215 	REG_WR(bp, pretend_reg, pretend_func_val);
15216 	REG_RD(bp, pretend_reg);
15217 	return 0;
15218 }
15219 
15220 static void bnx2x_ptp_task(struct work_struct *work)
15221 {
15222 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15223 	int port = BP_PORT(bp);
15224 	u32 val_seq;
15225 	u64 timestamp, ns;
15226 	struct skb_shared_hwtstamps shhwtstamps;
15227 
15228 	/* Read Tx timestamp registers */
15229 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15230 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15231 	if (val_seq & 0x10000) {
15232 		/* There is a valid timestamp value */
15233 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15234 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15235 		timestamp <<= 32;
15236 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15237 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15238 		/* Reset timestamp register to allow new timestamp */
15239 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15240 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15241 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15242 
15243 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15244 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15245 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15246 		dev_kfree_skb_any(bp->ptp_tx_skb);
15247 		bp->ptp_tx_skb = NULL;
15248 
15249 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15250 		   timestamp, ns);
15251 	} else {
15252 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15253 		/* Reschedule to keep checking for a valid timestamp value */
15254 		schedule_work(&bp->ptp_task);
15255 	}
15256 }
15257 
15258 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15259 {
15260 	int port = BP_PORT(bp);
15261 	u64 timestamp, ns;
15262 
15263 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15264 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15265 	timestamp <<= 32;
15266 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15267 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15268 
15269 	/* Reset timestamp register to allow new timestamp */
15270 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15271 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15272 
15273 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15274 
15275 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15276 
15277 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15278 	   timestamp, ns);
15279 }
15280 
15281 /* Read the PHC */
15282 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15283 {
15284 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15285 	int port = BP_PORT(bp);
15286 	u32 wb_data[2];
15287 	u64 phc_cycles;
15288 
15289 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15290 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15291 	phc_cycles = wb_data[1];
15292 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15293 
15294 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15295 
15296 	return phc_cycles;
15297 }
15298 
15299 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15300 {
15301 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15302 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15303 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15304 	bp->cyclecounter.shift = 0;
15305 	bp->cyclecounter.mult = 1;
15306 }
15307 
15308 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15309 {
15310 	struct bnx2x_func_state_params func_params = {NULL};
15311 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15312 		&func_params.params.set_timesync;
15313 
15314 	/* Prepare parameters for function state transitions */
15315 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15316 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15317 
15318 	func_params.f_obj = &bp->func_obj;
15319 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15320 
15321 	/* Function parameters */
15322 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15323 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15324 
15325 	return bnx2x_func_state_change(bp, &func_params);
15326 }
15327 
15328 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15329 {
15330 	struct bnx2x_queue_state_params q_params;
15331 	int rc, i;
15332 
15333 	/* send queue update ramrod to enable PTP packets */
15334 	memset(&q_params, 0, sizeof(q_params));
15335 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15336 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15337 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15338 		  &q_params.params.update.update_flags);
15339 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15340 		  &q_params.params.update.update_flags);
15341 
15342 	/* send the ramrod on all the queues of the PF */
15343 	for_each_eth_queue(bp, i) {
15344 		struct bnx2x_fastpath *fp = &bp->fp[i];
15345 
15346 		/* Set the appropriate Queue object */
15347 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15348 
15349 		/* Update the Queue state */
15350 		rc = bnx2x_queue_state_change(bp, &q_params);
15351 		if (rc) {
15352 			BNX2X_ERR("Failed to enable PTP packets\n");
15353 			return rc;
15354 		}
15355 	}
15356 
15357 	return 0;
15358 }
15359 
15360 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15361 {
15362 	int port = BP_PORT(bp);
15363 	int rc;
15364 
15365 	if (!bp->hwtstamp_ioctl_called)
15366 		return 0;
15367 
15368 	switch (bp->tx_type) {
15369 	case HWTSTAMP_TX_ON:
15370 		bp->flags |= TX_TIMESTAMPING_EN;
15371 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15372 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15373 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15374 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15375 		break;
15376 	case HWTSTAMP_TX_ONESTEP_SYNC:
15377 		BNX2X_ERR("One-step timestamping is not supported\n");
15378 		return -ERANGE;
15379 	}
15380 
15381 	switch (bp->rx_filter) {
15382 	case HWTSTAMP_FILTER_NONE:
15383 		break;
15384 	case HWTSTAMP_FILTER_ALL:
15385 	case HWTSTAMP_FILTER_SOME:
15386 	case HWTSTAMP_FILTER_NTP_ALL:
15387 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15388 		break;
15389 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15390 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15391 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15392 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15393 		/* Initialize PTP detection for UDP/IPv4 events */
15394 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15395 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15396 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15397 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15398 		break;
15399 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15400 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15401 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15402 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15403 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15404 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15405 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15406 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15407 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15408 		break;
15409 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15410 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15411 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15412 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15413 		/* Initialize PTP detection L2 events */
15414 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15415 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15416 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15417 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15418 
15419 		break;
15420 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15421 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15422 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15423 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15424 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15425 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15426 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15427 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15428 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15429 		break;
15430 	}
15431 
15432 	/* Indicate to FW that this PF expects recorded PTP packets */
15433 	rc = bnx2x_enable_ptp_packets(bp);
15434 	if (rc)
15435 		return rc;
15436 
15437 	/* Enable sending PTP packets to host */
15438 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15439 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15440 
15441 	return 0;
15442 }
15443 
15444 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15445 {
15446 	struct hwtstamp_config config;
15447 	int rc;
15448 
15449 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15450 
15451 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15452 		return -EFAULT;
15453 
15454 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15455 	   config.tx_type, config.rx_filter);
15456 
15457 	if (config.flags) {
15458 		BNX2X_ERR("config.flags is reserved for future use\n");
15459 		return -EINVAL;
15460 	}
15461 
15462 	bp->hwtstamp_ioctl_called = 1;
15463 	bp->tx_type = config.tx_type;
15464 	bp->rx_filter = config.rx_filter;
15465 
15466 	rc = bnx2x_configure_ptp_filters(bp);
15467 	if (rc)
15468 		return rc;
15469 
15470 	config.rx_filter = bp->rx_filter;
15471 
15472 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15473 		-EFAULT : 0;
15474 }
15475 
15476 /* Configures HW for PTP */
15477 static int bnx2x_configure_ptp(struct bnx2x *bp)
15478 {
15479 	int rc, port = BP_PORT(bp);
15480 	u32 wb_data[2];
15481 
15482 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15483 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15484 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15485 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15486 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15487 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15488 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15489 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15490 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15491 
15492 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15493 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15494 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15495 
15496 	/* Enable the PTP feature */
15497 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15498 	       NIG_REG_P0_PTP_EN, 0x3F);
15499 
15500 	/* Enable the free-running counter */
15501 	wb_data[0] = 0;
15502 	wb_data[1] = 0;
15503 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15504 
15505 	/* Reset drift register (offset register is not reset) */
15506 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15507 	if (rc) {
15508 		BNX2X_ERR("Failed to reset PHC drift register\n");
15509 		return -EFAULT;
15510 	}
15511 
15512 	/* Reset possibly old timestamps */
15513 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15514 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15515 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15516 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15517 
15518 	return 0;
15519 }
15520 
15521 /* Called during load, to initialize PTP-related stuff */
15522 void bnx2x_init_ptp(struct bnx2x *bp)
15523 {
15524 	int rc;
15525 
15526 	/* Configure PTP in HW */
15527 	rc = bnx2x_configure_ptp(bp);
15528 	if (rc) {
15529 		BNX2X_ERR("Stopping PTP initialization\n");
15530 		return;
15531 	}
15532 
15533 	/* Init work queue for Tx timestamping */
15534 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15535 
15536 	/* Init cyclecounter and timecounter. This is done only in the first
15537 	 * load. If done in every load, PTP application will fail when doing
15538 	 * unload / load (e.g. MTU change) while it is running.
15539 	 */
15540 	if (!bp->timecounter_init_done) {
15541 		bnx2x_init_cyclecounter(bp);
15542 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15543 				 ktime_to_ns(ktime_get_real()));
15544 		bp->timecounter_init_done = 1;
15545 	}
15546 
15547 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15548 }
15549