1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 80 81 /* Time in jiffies before concluding the transmitter is hung */ 82 #define TX_TIMEOUT (5*HZ) 83 84 static char version[] = 85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver " 86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 87 88 MODULE_AUTHOR("Eliezer Tamir"); 89 MODULE_DESCRIPTION("QLogic " 90 "BCM57710/57711/57711E/" 91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 92 "57840/57840_MF Driver"); 93 MODULE_LICENSE("GPL"); 94 MODULE_VERSION(DRV_MODULE_VERSION); 95 MODULE_FIRMWARE(FW_FILE_NAME_E1); 96 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 97 MODULE_FIRMWARE(FW_FILE_NAME_E2); 98 99 int bnx2x_num_queues; 100 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 101 MODULE_PARM_DESC(num_queues, 102 " Set number of queues (default is as a number of CPUs)"); 103 104 static int disable_tpa; 105 module_param(disable_tpa, int, 0444); 106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 107 108 static int int_mode; 109 module_param(int_mode, int, 0444); 110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 111 "(1 INT#x; 2 MSI)"); 112 113 static int dropless_fc; 114 module_param(dropless_fc, int, 0444); 115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 116 117 static int mrrs = -1; 118 module_param(mrrs, int, 0444); 119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 120 121 static int debug; 122 module_param(debug, int, 0444); 123 MODULE_PARM_DESC(debug, " Default debug msglevel"); 124 125 static struct workqueue_struct *bnx2x_wq; 126 struct workqueue_struct *bnx2x_iov_wq; 127 128 struct bnx2x_mac_vals { 129 u32 xmac_addr; 130 u32 xmac_val; 131 u32 emac_addr; 132 u32 emac_val; 133 u32 umac_addr[2]; 134 u32 umac_val[2]; 135 u32 bmac_addr; 136 u32 bmac_val[2]; 137 }; 138 139 enum bnx2x_board_type { 140 BCM57710 = 0, 141 BCM57711, 142 BCM57711E, 143 BCM57712, 144 BCM57712_MF, 145 BCM57712_VF, 146 BCM57800, 147 BCM57800_MF, 148 BCM57800_VF, 149 BCM57810, 150 BCM57810_MF, 151 BCM57810_VF, 152 BCM57840_4_10, 153 BCM57840_2_20, 154 BCM57840_MF, 155 BCM57840_VF, 156 BCM57811, 157 BCM57811_MF, 158 BCM57840_O, 159 BCM57840_MFO, 160 BCM57811_VF 161 }; 162 163 /* indexed by board_type, above */ 164 static struct { 165 char *name; 166 } board_info[] = { 167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 188 }; 189 190 #ifndef PCI_DEVICE_ID_NX2_57710 191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 192 #endif 193 #ifndef PCI_DEVICE_ID_NX2_57711 194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 195 #endif 196 #ifndef PCI_DEVICE_ID_NX2_57711E 197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 198 #endif 199 #ifndef PCI_DEVICE_ID_NX2_57712 200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 201 #endif 202 #ifndef PCI_DEVICE_ID_NX2_57712_MF 203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 204 #endif 205 #ifndef PCI_DEVICE_ID_NX2_57712_VF 206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 207 #endif 208 #ifndef PCI_DEVICE_ID_NX2_57800 209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 210 #endif 211 #ifndef PCI_DEVICE_ID_NX2_57800_MF 212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 213 #endif 214 #ifndef PCI_DEVICE_ID_NX2_57800_VF 215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 216 #endif 217 #ifndef PCI_DEVICE_ID_NX2_57810 218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 219 #endif 220 #ifndef PCI_DEVICE_ID_NX2_57810_MF 221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 222 #endif 223 #ifndef PCI_DEVICE_ID_NX2_57840_O 224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 225 #endif 226 #ifndef PCI_DEVICE_ID_NX2_57810_VF 227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 228 #endif 229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 231 #endif 232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 234 #endif 235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 237 #endif 238 #ifndef PCI_DEVICE_ID_NX2_57840_MF 239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 240 #endif 241 #ifndef PCI_DEVICE_ID_NX2_57840_VF 242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 243 #endif 244 #ifndef PCI_DEVICE_ID_NX2_57811 245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 246 #endif 247 #ifndef PCI_DEVICE_ID_NX2_57811_MF 248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 249 #endif 250 #ifndef PCI_DEVICE_ID_NX2_57811_VF 251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 252 #endif 253 254 static const struct pci_device_id bnx2x_pci_tbl[] = { 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 279 { 0 } 280 }; 281 282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 283 284 /* Global resources for unloading a previously loaded device */ 285 #define BNX2X_PREV_WAIT_NEEDED 1 286 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 287 static LIST_HEAD(bnx2x_prev_list); 288 289 /* Forward declaration */ 290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 293 294 /**************************************************************************** 295 * General service functions 296 ****************************************************************************/ 297 298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 299 300 static void __storm_memset_dma_mapping(struct bnx2x *bp, 301 u32 addr, dma_addr_t mapping) 302 { 303 REG_WR(bp, addr, U64_LO(mapping)); 304 REG_WR(bp, addr + 4, U64_HI(mapping)); 305 } 306 307 static void storm_memset_spq_addr(struct bnx2x *bp, 308 dma_addr_t mapping, u16 abs_fid) 309 { 310 u32 addr = XSEM_REG_FAST_MEMORY + 311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 312 313 __storm_memset_dma_mapping(bp, addr, mapping); 314 } 315 316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 317 u16 pf_id) 318 { 319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 320 pf_id); 321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 322 pf_id); 323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 324 pf_id); 325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 326 pf_id); 327 } 328 329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 330 u8 enable) 331 { 332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 333 enable); 334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 335 enable); 336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 337 enable); 338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 339 enable); 340 } 341 342 static void storm_memset_eq_data(struct bnx2x *bp, 343 struct event_ring_data *eq_data, 344 u16 pfid) 345 { 346 size_t size = sizeof(struct event_ring_data); 347 348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 349 350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 351 } 352 353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 354 u16 pfid) 355 { 356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 357 REG_WR16(bp, addr, eq_prod); 358 } 359 360 /* used only at init 361 * locking is done by mcp 362 */ 363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 364 { 365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 368 PCICFG_VENDOR_ID_OFFSET); 369 } 370 371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 372 { 373 u32 val; 374 375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 378 PCICFG_VENDOR_ID_OFFSET); 379 380 return val; 381 } 382 383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 387 #define DMAE_DP_DST_NONE "dst_addr [none]" 388 389 static void bnx2x_dp_dmae(struct bnx2x *bp, 390 struct dmae_command *dmae, int msglvl) 391 { 392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 393 int i; 394 395 switch (dmae->opcode & DMAE_COMMAND_DST) { 396 case DMAE_CMD_DST_PCI: 397 if (src_type == DMAE_CMD_SRC_PCI) 398 DP(msglvl, "DMAE: opcode 0x%08x\n" 399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 400 "comp_addr [%x:%08x], comp_val 0x%08x\n", 401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 403 dmae->comp_addr_hi, dmae->comp_addr_lo, 404 dmae->comp_val); 405 else 406 DP(msglvl, "DMAE: opcode 0x%08x\n" 407 "src [%08x], len [%d*4], dst [%x:%08x]\n" 408 "comp_addr [%x:%08x], comp_val 0x%08x\n", 409 dmae->opcode, dmae->src_addr_lo >> 2, 410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 411 dmae->comp_addr_hi, dmae->comp_addr_lo, 412 dmae->comp_val); 413 break; 414 case DMAE_CMD_DST_GRC: 415 if (src_type == DMAE_CMD_SRC_PCI) 416 DP(msglvl, "DMAE: opcode 0x%08x\n" 417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 418 "comp_addr [%x:%08x], comp_val 0x%08x\n", 419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 420 dmae->len, dmae->dst_addr_lo >> 2, 421 dmae->comp_addr_hi, dmae->comp_addr_lo, 422 dmae->comp_val); 423 else 424 DP(msglvl, "DMAE: opcode 0x%08x\n" 425 "src [%08x], len [%d*4], dst [%08x]\n" 426 "comp_addr [%x:%08x], comp_val 0x%08x\n", 427 dmae->opcode, dmae->src_addr_lo >> 2, 428 dmae->len, dmae->dst_addr_lo >> 2, 429 dmae->comp_addr_hi, dmae->comp_addr_lo, 430 dmae->comp_val); 431 break; 432 default: 433 if (src_type == DMAE_CMD_SRC_PCI) 434 DP(msglvl, "DMAE: opcode 0x%08x\n" 435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 436 "comp_addr [%x:%08x] comp_val 0x%08x\n", 437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 439 dmae->comp_val); 440 else 441 DP(msglvl, "DMAE: opcode 0x%08x\n" 442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 443 "comp_addr [%x:%08x] comp_val 0x%08x\n", 444 dmae->opcode, dmae->src_addr_lo >> 2, 445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 446 dmae->comp_val); 447 break; 448 } 449 450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 452 i, *(((u32 *)dmae) + i)); 453 } 454 455 /* copy command into DMAE command memory and set DMAE command go */ 456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 457 { 458 u32 cmd_offset; 459 int i; 460 461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 464 } 465 REG_WR(bp, dmae_reg_go_c[idx], 1); 466 } 467 468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 469 { 470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 471 DMAE_CMD_C_ENABLE); 472 } 473 474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 475 { 476 return opcode & ~DMAE_CMD_SRC_RESET; 477 } 478 479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 480 bool with_comp, u8 comp_type) 481 { 482 u32 opcode = 0; 483 484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 485 (dst_type << DMAE_COMMAND_DST_SHIFT)); 486 487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 488 489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 493 494 #ifdef __BIG_ENDIAN 495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 496 #else 497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 498 #endif 499 if (with_comp) 500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 501 return opcode; 502 } 503 504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 505 struct dmae_command *dmae, 506 u8 src_type, u8 dst_type) 507 { 508 memset(dmae, 0, sizeof(struct dmae_command)); 509 510 /* set the opcode */ 511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 512 true, DMAE_COMP_PCI); 513 514 /* fill in the completion parameters */ 515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 517 dmae->comp_val = DMAE_COMP_VAL; 518 } 519 520 /* issue a dmae command over the init-channel and wait for completion */ 521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 522 u32 *comp) 523 { 524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 525 int rc = 0; 526 527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 528 529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 530 * as long as this code is called both from syscall context and 531 * from ndo_set_rx_mode() flow that may be called from BH. 532 */ 533 534 spin_lock_bh(&bp->dmae_lock); 535 536 /* reset completion */ 537 *comp = 0; 538 539 /* post the command on the channel used for initializations */ 540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 541 542 /* wait for completion */ 543 udelay(5); 544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 545 546 if (!cnt || 547 (bp->recovery_state != BNX2X_RECOVERY_DONE && 548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 549 BNX2X_ERR("DMAE timeout!\n"); 550 rc = DMAE_TIMEOUT; 551 goto unlock; 552 } 553 cnt--; 554 udelay(50); 555 } 556 if (*comp & DMAE_PCI_ERR_FLAG) { 557 BNX2X_ERR("DMAE PCI error!\n"); 558 rc = DMAE_PCI_ERROR; 559 } 560 561 unlock: 562 563 spin_unlock_bh(&bp->dmae_lock); 564 565 return rc; 566 } 567 568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 569 u32 len32) 570 { 571 int rc; 572 struct dmae_command dmae; 573 574 if (!bp->dmae_ready) { 575 u32 *data = bnx2x_sp(bp, wb_data[0]); 576 577 if (CHIP_IS_E1(bp)) 578 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 579 else 580 bnx2x_init_str_wr(bp, dst_addr, data, len32); 581 return; 582 } 583 584 /* set opcode and fixed command fields */ 585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 586 587 /* fill in addresses and len */ 588 dmae.src_addr_lo = U64_LO(dma_addr); 589 dmae.src_addr_hi = U64_HI(dma_addr); 590 dmae.dst_addr_lo = dst_addr >> 2; 591 dmae.dst_addr_hi = 0; 592 dmae.len = len32; 593 594 /* issue the command and wait for completion */ 595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 596 if (rc) { 597 BNX2X_ERR("DMAE returned failure %d\n", rc); 598 #ifdef BNX2X_STOP_ON_ERROR 599 bnx2x_panic(); 600 #endif 601 } 602 } 603 604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 605 { 606 int rc; 607 struct dmae_command dmae; 608 609 if (!bp->dmae_ready) { 610 u32 *data = bnx2x_sp(bp, wb_data[0]); 611 int i; 612 613 if (CHIP_IS_E1(bp)) 614 for (i = 0; i < len32; i++) 615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 616 else 617 for (i = 0; i < len32; i++) 618 data[i] = REG_RD(bp, src_addr + i*4); 619 620 return; 621 } 622 623 /* set opcode and fixed command fields */ 624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 625 626 /* fill in addresses and len */ 627 dmae.src_addr_lo = src_addr >> 2; 628 dmae.src_addr_hi = 0; 629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 631 dmae.len = len32; 632 633 /* issue the command and wait for completion */ 634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 635 if (rc) { 636 BNX2X_ERR("DMAE returned failure %d\n", rc); 637 #ifdef BNX2X_STOP_ON_ERROR 638 bnx2x_panic(); 639 #endif 640 } 641 } 642 643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 644 u32 addr, u32 len) 645 { 646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 647 int offset = 0; 648 649 while (len > dmae_wr_max) { 650 bnx2x_write_dmae(bp, phys_addr + offset, 651 addr + offset, dmae_wr_max); 652 offset += dmae_wr_max * 4; 653 len -= dmae_wr_max; 654 } 655 656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 657 } 658 659 enum storms { 660 XSTORM, 661 TSTORM, 662 CSTORM, 663 USTORM, 664 MAX_STORMS 665 }; 666 667 #define STORMS_NUM 4 668 #define REGS_IN_ENTRY 4 669 670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 671 enum storms storm, 672 int entry) 673 { 674 switch (storm) { 675 case XSTORM: 676 return XSTORM_ASSERT_LIST_OFFSET(entry); 677 case TSTORM: 678 return TSTORM_ASSERT_LIST_OFFSET(entry); 679 case CSTORM: 680 return CSTORM_ASSERT_LIST_OFFSET(entry); 681 case USTORM: 682 return USTORM_ASSERT_LIST_OFFSET(entry); 683 case MAX_STORMS: 684 default: 685 BNX2X_ERR("unknown storm\n"); 686 } 687 return -EINVAL; 688 } 689 690 static int bnx2x_mc_assert(struct bnx2x *bp) 691 { 692 char last_idx; 693 int i, j, rc = 0; 694 enum storms storm; 695 u32 regs[REGS_IN_ENTRY]; 696 u32 bar_storm_intmem[STORMS_NUM] = { 697 BAR_XSTRORM_INTMEM, 698 BAR_TSTRORM_INTMEM, 699 BAR_CSTRORM_INTMEM, 700 BAR_USTRORM_INTMEM 701 }; 702 u32 storm_assert_list_index[STORMS_NUM] = { 703 XSTORM_ASSERT_LIST_INDEX_OFFSET, 704 TSTORM_ASSERT_LIST_INDEX_OFFSET, 705 CSTORM_ASSERT_LIST_INDEX_OFFSET, 706 USTORM_ASSERT_LIST_INDEX_OFFSET 707 }; 708 char *storms_string[STORMS_NUM] = { 709 "XSTORM", 710 "TSTORM", 711 "CSTORM", 712 "USTORM" 713 }; 714 715 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 717 storm_assert_list_index[storm]); 718 if (last_idx) 719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 720 storms_string[storm], last_idx); 721 722 /* print the asserts */ 723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 724 /* read a single assert entry */ 725 for (j = 0; j < REGS_IN_ENTRY; j++) 726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 727 bnx2x_get_assert_list_entry(bp, 728 storm, 729 i) + 730 sizeof(u32) * j); 731 732 /* log entry if it contains a valid assert */ 733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 735 storms_string[storm], i, regs[3], 736 regs[2], regs[1], regs[0]); 737 rc++; 738 } else { 739 break; 740 } 741 } 742 } 743 744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 745 CHIP_IS_E1(bp) ? "everest1" : 746 CHIP_IS_E1H(bp) ? "everest1h" : 747 CHIP_IS_E2(bp) ? "everest2" : "everest3", 748 BCM_5710_FW_MAJOR_VERSION, 749 BCM_5710_FW_MINOR_VERSION, 750 BCM_5710_FW_REVISION_VERSION); 751 752 return rc; 753 } 754 755 #define MCPR_TRACE_BUFFER_SIZE (0x800) 756 #define SCRATCH_BUFFER_SIZE(bp) \ 757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 758 759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 760 { 761 u32 addr, val; 762 u32 mark, offset; 763 __be32 data[9]; 764 int word; 765 u32 trace_shmem_base; 766 if (BP_NOMCP(bp)) { 767 BNX2X_ERR("NO MCP - can not dump\n"); 768 return; 769 } 770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 771 (bp->common.bc_ver & 0xff0000) >> 16, 772 (bp->common.bc_ver & 0xff00) >> 8, 773 (bp->common.bc_ver & 0xff)); 774 775 if (pci_channel_offline(bp->pdev)) { 776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 777 return; 778 } 779 780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 783 784 if (BP_PATH(bp) == 0) 785 trace_shmem_base = bp->common.shmem_base; 786 else 787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 788 789 /* sanity */ 790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 792 SCRATCH_BUFFER_SIZE(bp)) { 793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 794 trace_shmem_base); 795 return; 796 } 797 798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 799 800 /* validate TRCB signature */ 801 mark = REG_RD(bp, addr); 802 if (mark != MFW_TRACE_SIGNATURE) { 803 BNX2X_ERR("Trace buffer signature is missing."); 804 return ; 805 } 806 807 /* read cyclic buffer pointer */ 808 addr += 4; 809 mark = REG_RD(bp, addr); 810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 811 if (mark >= trace_shmem_base || mark < addr + 4) { 812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 813 return; 814 } 815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 816 817 printk("%s", lvl); 818 819 /* dump buffer after the mark */ 820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 821 for (word = 0; word < 8; word++) 822 data[word] = htonl(REG_RD(bp, offset + 4*word)); 823 data[8] = 0x0; 824 pr_cont("%s", (char *)data); 825 } 826 827 /* dump buffer before the mark */ 828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 829 for (word = 0; word < 8; word++) 830 data[word] = htonl(REG_RD(bp, offset + 4*word)); 831 data[8] = 0x0; 832 pr_cont("%s", (char *)data); 833 } 834 printk("%s" "end of fw dump\n", lvl); 835 } 836 837 static void bnx2x_fw_dump(struct bnx2x *bp) 838 { 839 bnx2x_fw_dump_lvl(bp, KERN_ERR); 840 } 841 842 static void bnx2x_hc_int_disable(struct bnx2x *bp) 843 { 844 int port = BP_PORT(bp); 845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 846 u32 val = REG_RD(bp, addr); 847 848 /* in E1 we must use only PCI configuration space to disable 849 * MSI/MSIX capability 850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 851 */ 852 if (CHIP_IS_E1(bp)) { 853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 854 * Use mask register to prevent from HC sending interrupts 855 * after we exit the function 856 */ 857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 858 859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 860 HC_CONFIG_0_REG_INT_LINE_EN_0 | 861 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 862 } else 863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 865 HC_CONFIG_0_REG_INT_LINE_EN_0 | 866 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 867 868 DP(NETIF_MSG_IFDOWN, 869 "write %x to HC %d (addr 0x%x)\n", 870 val, port, addr); 871 872 /* flush all outstanding writes */ 873 mmiowb(); 874 875 REG_WR(bp, addr, val); 876 if (REG_RD(bp, addr) != val) 877 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 878 } 879 880 static void bnx2x_igu_int_disable(struct bnx2x *bp) 881 { 882 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 883 884 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 885 IGU_PF_CONF_INT_LINE_EN | 886 IGU_PF_CONF_ATTN_BIT_EN); 887 888 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 889 890 /* flush all outstanding writes */ 891 mmiowb(); 892 893 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 894 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 895 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 896 } 897 898 static void bnx2x_int_disable(struct bnx2x *bp) 899 { 900 if (bp->common.int_block == INT_BLOCK_HC) 901 bnx2x_hc_int_disable(bp); 902 else 903 bnx2x_igu_int_disable(bp); 904 } 905 906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 907 { 908 int i; 909 u16 j; 910 struct hc_sp_status_block_data sp_sb_data; 911 int func = BP_FUNC(bp); 912 #ifdef BNX2X_STOP_ON_ERROR 913 u16 start = 0, end = 0; 914 u8 cos; 915 #endif 916 if (IS_PF(bp) && disable_int) 917 bnx2x_int_disable(bp); 918 919 bp->stats_state = STATS_STATE_DISABLED; 920 bp->eth_stats.unrecoverable_error++; 921 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 922 923 BNX2X_ERR("begin crash dump -----------------\n"); 924 925 /* Indices */ 926 /* Common */ 927 if (IS_PF(bp)) { 928 struct host_sp_status_block *def_sb = bp->def_status_blk; 929 int data_size, cstorm_offset; 930 931 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 932 bp->def_idx, bp->def_att_idx, bp->attn_state, 933 bp->spq_prod_idx, bp->stats_counter); 934 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 935 def_sb->atten_status_block.attn_bits, 936 def_sb->atten_status_block.attn_bits_ack, 937 def_sb->atten_status_block.status_block_id, 938 def_sb->atten_status_block.attn_bits_index); 939 BNX2X_ERR(" def ("); 940 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 941 pr_cont("0x%x%s", 942 def_sb->sp_sb.index_values[i], 943 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 944 945 data_size = sizeof(struct hc_sp_status_block_data) / 946 sizeof(u32); 947 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 948 for (i = 0; i < data_size; i++) 949 *((u32 *)&sp_sb_data + i) = 950 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 951 i * sizeof(u32)); 952 953 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 954 sp_sb_data.igu_sb_id, 955 sp_sb_data.igu_seg_id, 956 sp_sb_data.p_func.pf_id, 957 sp_sb_data.p_func.vnic_id, 958 sp_sb_data.p_func.vf_id, 959 sp_sb_data.p_func.vf_valid, 960 sp_sb_data.state); 961 } 962 963 for_each_eth_queue(bp, i) { 964 struct bnx2x_fastpath *fp = &bp->fp[i]; 965 int loop; 966 struct hc_status_block_data_e2 sb_data_e2; 967 struct hc_status_block_data_e1x sb_data_e1x; 968 struct hc_status_block_sm *hc_sm_p = 969 CHIP_IS_E1x(bp) ? 970 sb_data_e1x.common.state_machine : 971 sb_data_e2.common.state_machine; 972 struct hc_index_data *hc_index_p = 973 CHIP_IS_E1x(bp) ? 974 sb_data_e1x.index_data : 975 sb_data_e2.index_data; 976 u8 data_size, cos; 977 u32 *sb_data_p; 978 struct bnx2x_fp_txdata txdata; 979 980 if (!bp->fp) 981 break; 982 983 if (!fp->rx_cons_sb) 984 continue; 985 986 /* Rx */ 987 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 988 i, fp->rx_bd_prod, fp->rx_bd_cons, 989 fp->rx_comp_prod, 990 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 991 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 992 fp->rx_sge_prod, fp->last_max_sge, 993 le16_to_cpu(fp->fp_hc_idx)); 994 995 /* Tx */ 996 for_each_cos_in_tx_queue(fp, cos) 997 { 998 if (!fp->txdata_ptr[cos]) 999 break; 1000 1001 txdata = *fp->txdata_ptr[cos]; 1002 1003 if (!txdata.tx_cons_sb) 1004 continue; 1005 1006 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1007 i, txdata.tx_pkt_prod, 1008 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1009 txdata.tx_bd_cons, 1010 le16_to_cpu(*txdata.tx_cons_sb)); 1011 } 1012 1013 loop = CHIP_IS_E1x(bp) ? 1014 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1015 1016 /* host sb data */ 1017 1018 if (IS_FCOE_FP(fp)) 1019 continue; 1020 1021 BNX2X_ERR(" run indexes ("); 1022 for (j = 0; j < HC_SB_MAX_SM; j++) 1023 pr_cont("0x%x%s", 1024 fp->sb_running_index[j], 1025 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1026 1027 BNX2X_ERR(" indexes ("); 1028 for (j = 0; j < loop; j++) 1029 pr_cont("0x%x%s", 1030 fp->sb_index_values[j], 1031 (j == loop - 1) ? ")" : " "); 1032 1033 /* VF cannot access FW refelection for status block */ 1034 if (IS_VF(bp)) 1035 continue; 1036 1037 /* fw sb data */ 1038 data_size = CHIP_IS_E1x(bp) ? 1039 sizeof(struct hc_status_block_data_e1x) : 1040 sizeof(struct hc_status_block_data_e2); 1041 data_size /= sizeof(u32); 1042 sb_data_p = CHIP_IS_E1x(bp) ? 1043 (u32 *)&sb_data_e1x : 1044 (u32 *)&sb_data_e2; 1045 /* copy sb data in here */ 1046 for (j = 0; j < data_size; j++) 1047 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1048 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1049 j * sizeof(u32)); 1050 1051 if (!CHIP_IS_E1x(bp)) { 1052 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1053 sb_data_e2.common.p_func.pf_id, 1054 sb_data_e2.common.p_func.vf_id, 1055 sb_data_e2.common.p_func.vf_valid, 1056 sb_data_e2.common.p_func.vnic_id, 1057 sb_data_e2.common.same_igu_sb_1b, 1058 sb_data_e2.common.state); 1059 } else { 1060 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1061 sb_data_e1x.common.p_func.pf_id, 1062 sb_data_e1x.common.p_func.vf_id, 1063 sb_data_e1x.common.p_func.vf_valid, 1064 sb_data_e1x.common.p_func.vnic_id, 1065 sb_data_e1x.common.same_igu_sb_1b, 1066 sb_data_e1x.common.state); 1067 } 1068 1069 /* SB_SMs data */ 1070 for (j = 0; j < HC_SB_MAX_SM; j++) { 1071 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1072 j, hc_sm_p[j].__flags, 1073 hc_sm_p[j].igu_sb_id, 1074 hc_sm_p[j].igu_seg_id, 1075 hc_sm_p[j].time_to_expire, 1076 hc_sm_p[j].timer_value); 1077 } 1078 1079 /* Indices data */ 1080 for (j = 0; j < loop; j++) { 1081 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1082 hc_index_p[j].flags, 1083 hc_index_p[j].timeout); 1084 } 1085 } 1086 1087 #ifdef BNX2X_STOP_ON_ERROR 1088 if (IS_PF(bp)) { 1089 /* event queue */ 1090 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1091 for (i = 0; i < NUM_EQ_DESC; i++) { 1092 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1093 1094 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1095 i, bp->eq_ring[i].message.opcode, 1096 bp->eq_ring[i].message.error); 1097 BNX2X_ERR("data: %x %x %x\n", 1098 data[0], data[1], data[2]); 1099 } 1100 } 1101 1102 /* Rings */ 1103 /* Rx */ 1104 for_each_valid_rx_queue(bp, i) { 1105 struct bnx2x_fastpath *fp = &bp->fp[i]; 1106 1107 if (!bp->fp) 1108 break; 1109 1110 if (!fp->rx_cons_sb) 1111 continue; 1112 1113 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1114 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1115 for (j = start; j != end; j = RX_BD(j + 1)) { 1116 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1117 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1118 1119 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1120 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1121 } 1122 1123 start = RX_SGE(fp->rx_sge_prod); 1124 end = RX_SGE(fp->last_max_sge); 1125 for (j = start; j != end; j = RX_SGE(j + 1)) { 1126 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1127 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1128 1129 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1130 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1131 } 1132 1133 start = RCQ_BD(fp->rx_comp_cons - 10); 1134 end = RCQ_BD(fp->rx_comp_cons + 503); 1135 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1136 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1137 1138 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1139 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1140 } 1141 } 1142 1143 /* Tx */ 1144 for_each_valid_tx_queue(bp, i) { 1145 struct bnx2x_fastpath *fp = &bp->fp[i]; 1146 1147 if (!bp->fp) 1148 break; 1149 1150 for_each_cos_in_tx_queue(fp, cos) { 1151 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1152 1153 if (!fp->txdata_ptr[cos]) 1154 break; 1155 1156 if (!txdata->tx_cons_sb) 1157 continue; 1158 1159 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1160 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1161 for (j = start; j != end; j = TX_BD(j + 1)) { 1162 struct sw_tx_bd *sw_bd = 1163 &txdata->tx_buf_ring[j]; 1164 1165 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1166 i, cos, j, sw_bd->skb, 1167 sw_bd->first_bd); 1168 } 1169 1170 start = TX_BD(txdata->tx_bd_cons - 10); 1171 end = TX_BD(txdata->tx_bd_cons + 254); 1172 for (j = start; j != end; j = TX_BD(j + 1)) { 1173 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1174 1175 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1176 i, cos, j, tx_bd[0], tx_bd[1], 1177 tx_bd[2], tx_bd[3]); 1178 } 1179 } 1180 } 1181 #endif 1182 if (IS_PF(bp)) { 1183 bnx2x_fw_dump(bp); 1184 bnx2x_mc_assert(bp); 1185 } 1186 BNX2X_ERR("end crash dump -----------------\n"); 1187 } 1188 1189 /* 1190 * FLR Support for E2 1191 * 1192 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1193 * initialization. 1194 */ 1195 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1196 #define FLR_WAIT_INTERVAL 50 /* usec */ 1197 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1198 1199 struct pbf_pN_buf_regs { 1200 int pN; 1201 u32 init_crd; 1202 u32 crd; 1203 u32 crd_freed; 1204 }; 1205 1206 struct pbf_pN_cmd_regs { 1207 int pN; 1208 u32 lines_occup; 1209 u32 lines_freed; 1210 }; 1211 1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1213 struct pbf_pN_buf_regs *regs, 1214 u32 poll_count) 1215 { 1216 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1217 u32 cur_cnt = poll_count; 1218 1219 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1220 crd = crd_start = REG_RD(bp, regs->crd); 1221 init_crd = REG_RD(bp, regs->init_crd); 1222 1223 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1224 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1225 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1226 1227 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1228 (init_crd - crd_start))) { 1229 if (cur_cnt--) { 1230 udelay(FLR_WAIT_INTERVAL); 1231 crd = REG_RD(bp, regs->crd); 1232 crd_freed = REG_RD(bp, regs->crd_freed); 1233 } else { 1234 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1235 regs->pN); 1236 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1237 regs->pN, crd); 1238 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1239 regs->pN, crd_freed); 1240 break; 1241 } 1242 } 1243 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1244 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1245 } 1246 1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1248 struct pbf_pN_cmd_regs *regs, 1249 u32 poll_count) 1250 { 1251 u32 occup, to_free, freed, freed_start; 1252 u32 cur_cnt = poll_count; 1253 1254 occup = to_free = REG_RD(bp, regs->lines_occup); 1255 freed = freed_start = REG_RD(bp, regs->lines_freed); 1256 1257 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1258 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1259 1260 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1261 if (cur_cnt--) { 1262 udelay(FLR_WAIT_INTERVAL); 1263 occup = REG_RD(bp, regs->lines_occup); 1264 freed = REG_RD(bp, regs->lines_freed); 1265 } else { 1266 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1267 regs->pN); 1268 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1269 regs->pN, occup); 1270 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1271 regs->pN, freed); 1272 break; 1273 } 1274 } 1275 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1276 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1277 } 1278 1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1280 u32 expected, u32 poll_count) 1281 { 1282 u32 cur_cnt = poll_count; 1283 u32 val; 1284 1285 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1286 udelay(FLR_WAIT_INTERVAL); 1287 1288 return val; 1289 } 1290 1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1292 char *msg, u32 poll_cnt) 1293 { 1294 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1295 if (val != 0) { 1296 BNX2X_ERR("%s usage count=%d\n", msg, val); 1297 return 1; 1298 } 1299 return 0; 1300 } 1301 1302 /* Common routines with VF FLR cleanup */ 1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1304 { 1305 /* adjust polling timeout */ 1306 if (CHIP_REV_IS_EMUL(bp)) 1307 return FLR_POLL_CNT * 2000; 1308 1309 if (CHIP_REV_IS_FPGA(bp)) 1310 return FLR_POLL_CNT * 120; 1311 1312 return FLR_POLL_CNT; 1313 } 1314 1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1316 { 1317 struct pbf_pN_cmd_regs cmd_regs[] = { 1318 {0, (CHIP_IS_E3B0(bp)) ? 1319 PBF_REG_TQ_OCCUPANCY_Q0 : 1320 PBF_REG_P0_TQ_OCCUPANCY, 1321 (CHIP_IS_E3B0(bp)) ? 1322 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1323 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1324 {1, (CHIP_IS_E3B0(bp)) ? 1325 PBF_REG_TQ_OCCUPANCY_Q1 : 1326 PBF_REG_P1_TQ_OCCUPANCY, 1327 (CHIP_IS_E3B0(bp)) ? 1328 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1329 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1330 {4, (CHIP_IS_E3B0(bp)) ? 1331 PBF_REG_TQ_OCCUPANCY_LB_Q : 1332 PBF_REG_P4_TQ_OCCUPANCY, 1333 (CHIP_IS_E3B0(bp)) ? 1334 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1335 PBF_REG_P4_TQ_LINES_FREED_CNT} 1336 }; 1337 1338 struct pbf_pN_buf_regs buf_regs[] = { 1339 {0, (CHIP_IS_E3B0(bp)) ? 1340 PBF_REG_INIT_CRD_Q0 : 1341 PBF_REG_P0_INIT_CRD , 1342 (CHIP_IS_E3B0(bp)) ? 1343 PBF_REG_CREDIT_Q0 : 1344 PBF_REG_P0_CREDIT, 1345 (CHIP_IS_E3B0(bp)) ? 1346 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1347 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1348 {1, (CHIP_IS_E3B0(bp)) ? 1349 PBF_REG_INIT_CRD_Q1 : 1350 PBF_REG_P1_INIT_CRD, 1351 (CHIP_IS_E3B0(bp)) ? 1352 PBF_REG_CREDIT_Q1 : 1353 PBF_REG_P1_CREDIT, 1354 (CHIP_IS_E3B0(bp)) ? 1355 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1356 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1357 {4, (CHIP_IS_E3B0(bp)) ? 1358 PBF_REG_INIT_CRD_LB_Q : 1359 PBF_REG_P4_INIT_CRD, 1360 (CHIP_IS_E3B0(bp)) ? 1361 PBF_REG_CREDIT_LB_Q : 1362 PBF_REG_P4_CREDIT, 1363 (CHIP_IS_E3B0(bp)) ? 1364 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1365 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1366 }; 1367 1368 int i; 1369 1370 /* Verify the command queues are flushed P0, P1, P4 */ 1371 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1372 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1373 1374 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1375 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1376 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1377 } 1378 1379 #define OP_GEN_PARAM(param) \ 1380 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1381 1382 #define OP_GEN_TYPE(type) \ 1383 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1384 1385 #define OP_GEN_AGG_VECT(index) \ 1386 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1387 1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1389 { 1390 u32 op_gen_command = 0; 1391 u32 comp_addr = BAR_CSTRORM_INTMEM + 1392 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1393 int ret = 0; 1394 1395 if (REG_RD(bp, comp_addr)) { 1396 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1397 return 1; 1398 } 1399 1400 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1401 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1402 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1403 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1404 1405 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1406 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1407 1408 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1409 BNX2X_ERR("FW final cleanup did not succeed\n"); 1410 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1411 (REG_RD(bp, comp_addr))); 1412 bnx2x_panic(); 1413 return 1; 1414 } 1415 /* Zero completion for next FLR */ 1416 REG_WR(bp, comp_addr, 0); 1417 1418 return ret; 1419 } 1420 1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1422 { 1423 u16 status; 1424 1425 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1426 return status & PCI_EXP_DEVSTA_TRPND; 1427 } 1428 1429 /* PF FLR specific routines 1430 */ 1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1432 { 1433 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1434 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1435 CFC_REG_NUM_LCIDS_INSIDE_PF, 1436 "CFC PF usage counter timed out", 1437 poll_cnt)) 1438 return 1; 1439 1440 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1441 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1442 DORQ_REG_PF_USAGE_CNT, 1443 "DQ PF usage counter timed out", 1444 poll_cnt)) 1445 return 1; 1446 1447 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1448 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1449 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1450 "QM PF usage counter timed out", 1451 poll_cnt)) 1452 return 1; 1453 1454 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1455 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1456 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1457 "Timers VNIC usage counter timed out", 1458 poll_cnt)) 1459 return 1; 1460 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1461 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1462 "Timers NUM_SCANS usage counter timed out", 1463 poll_cnt)) 1464 return 1; 1465 1466 /* Wait DMAE PF usage counter to zero */ 1467 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1468 dmae_reg_go_c[INIT_DMAE_C(bp)], 1469 "DMAE command register timed out", 1470 poll_cnt)) 1471 return 1; 1472 1473 return 0; 1474 } 1475 1476 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1477 { 1478 u32 val; 1479 1480 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1481 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1482 1483 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1484 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1485 1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1488 1489 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1490 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1491 1492 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1493 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1494 1495 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1497 1498 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1499 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1500 1501 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1502 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1503 val); 1504 } 1505 1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1507 { 1508 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1509 1510 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1511 1512 /* Re-enable PF target read access */ 1513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1514 1515 /* Poll HW usage counters */ 1516 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1517 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1518 return -EBUSY; 1519 1520 /* Zero the igu 'trailing edge' and 'leading edge' */ 1521 1522 /* Send the FW cleanup command */ 1523 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1524 return -EBUSY; 1525 1526 /* ATC cleanup */ 1527 1528 /* Verify TX hw is flushed */ 1529 bnx2x_tx_hw_flushed(bp, poll_cnt); 1530 1531 /* Wait 100ms (not adjusted according to platform) */ 1532 msleep(100); 1533 1534 /* Verify no pending pci transactions */ 1535 if (bnx2x_is_pcie_pending(bp->pdev)) 1536 BNX2X_ERR("PCIE Transactions still pending\n"); 1537 1538 /* Debug */ 1539 bnx2x_hw_enable_status(bp); 1540 1541 /* 1542 * Master enable - Due to WB DMAE writes performed before this 1543 * register is re-initialized as part of the regular function init 1544 */ 1545 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1546 1547 return 0; 1548 } 1549 1550 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1551 { 1552 int port = BP_PORT(bp); 1553 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1554 u32 val = REG_RD(bp, addr); 1555 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1556 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1557 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1558 1559 if (msix) { 1560 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1561 HC_CONFIG_0_REG_INT_LINE_EN_0); 1562 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1563 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1564 if (single_msix) 1565 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1566 } else if (msi) { 1567 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1570 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1571 } else { 1572 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1573 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1574 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1576 1577 if (!CHIP_IS_E1(bp)) { 1578 DP(NETIF_MSG_IFUP, 1579 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1580 1581 REG_WR(bp, addr, val); 1582 1583 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1584 } 1585 } 1586 1587 if (CHIP_IS_E1(bp)) 1588 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1589 1590 DP(NETIF_MSG_IFUP, 1591 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1592 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1593 1594 REG_WR(bp, addr, val); 1595 /* 1596 * Ensure that HC_CONFIG is written before leading/trailing edge config 1597 */ 1598 mmiowb(); 1599 barrier(); 1600 1601 if (!CHIP_IS_E1(bp)) { 1602 /* init leading/trailing edge */ 1603 if (IS_MF(bp)) { 1604 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1605 if (bp->port.pmf) 1606 /* enable nig and gpio3 attention */ 1607 val |= 0x1100; 1608 } else 1609 val = 0xffff; 1610 1611 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1612 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1613 } 1614 1615 /* Make sure that interrupts are indeed enabled from here on */ 1616 mmiowb(); 1617 } 1618 1619 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1620 { 1621 u32 val; 1622 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1623 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1624 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1625 1626 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1627 1628 if (msix) { 1629 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1630 IGU_PF_CONF_SINGLE_ISR_EN); 1631 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1632 IGU_PF_CONF_ATTN_BIT_EN); 1633 1634 if (single_msix) 1635 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1636 } else if (msi) { 1637 val &= ~IGU_PF_CONF_INT_LINE_EN; 1638 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1639 IGU_PF_CONF_ATTN_BIT_EN | 1640 IGU_PF_CONF_SINGLE_ISR_EN); 1641 } else { 1642 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1643 val |= (IGU_PF_CONF_INT_LINE_EN | 1644 IGU_PF_CONF_ATTN_BIT_EN | 1645 IGU_PF_CONF_SINGLE_ISR_EN); 1646 } 1647 1648 /* Clean previous status - need to configure igu prior to ack*/ 1649 if ((!msix) || single_msix) { 1650 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1651 bnx2x_ack_int(bp); 1652 } 1653 1654 val |= IGU_PF_CONF_FUNC_EN; 1655 1656 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1657 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1658 1659 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1660 1661 if (val & IGU_PF_CONF_INT_LINE_EN) 1662 pci_intx(bp->pdev, true); 1663 1664 barrier(); 1665 1666 /* init leading/trailing edge */ 1667 if (IS_MF(bp)) { 1668 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1669 if (bp->port.pmf) 1670 /* enable nig and gpio3 attention */ 1671 val |= 0x1100; 1672 } else 1673 val = 0xffff; 1674 1675 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1676 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1677 1678 /* Make sure that interrupts are indeed enabled from here on */ 1679 mmiowb(); 1680 } 1681 1682 void bnx2x_int_enable(struct bnx2x *bp) 1683 { 1684 if (bp->common.int_block == INT_BLOCK_HC) 1685 bnx2x_hc_int_enable(bp); 1686 else 1687 bnx2x_igu_int_enable(bp); 1688 } 1689 1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1691 { 1692 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1693 int i, offset; 1694 1695 if (disable_hw) 1696 /* prevent the HW from sending interrupts */ 1697 bnx2x_int_disable(bp); 1698 1699 /* make sure all ISRs are done */ 1700 if (msix) { 1701 synchronize_irq(bp->msix_table[0].vector); 1702 offset = 1; 1703 if (CNIC_SUPPORT(bp)) 1704 offset++; 1705 for_each_eth_queue(bp, i) 1706 synchronize_irq(bp->msix_table[offset++].vector); 1707 } else 1708 synchronize_irq(bp->pdev->irq); 1709 1710 /* make sure sp_task is not running */ 1711 cancel_delayed_work(&bp->sp_task); 1712 cancel_delayed_work(&bp->period_task); 1713 flush_workqueue(bnx2x_wq); 1714 } 1715 1716 /* fast path */ 1717 1718 /* 1719 * General service functions 1720 */ 1721 1722 /* Return true if succeeded to acquire the lock */ 1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1724 { 1725 u32 lock_status; 1726 u32 resource_bit = (1 << resource); 1727 int func = BP_FUNC(bp); 1728 u32 hw_lock_control_reg; 1729 1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1731 "Trying to take a lock on resource %d\n", resource); 1732 1733 /* Validating that the resource is within range */ 1734 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1735 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1736 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1737 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1738 return false; 1739 } 1740 1741 if (func <= 5) 1742 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1743 else 1744 hw_lock_control_reg = 1745 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1746 1747 /* Try to acquire the lock */ 1748 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1749 lock_status = REG_RD(bp, hw_lock_control_reg); 1750 if (lock_status & resource_bit) 1751 return true; 1752 1753 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1754 "Failed to get a lock on resource %d\n", resource); 1755 return false; 1756 } 1757 1758 /** 1759 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1760 * 1761 * @bp: driver handle 1762 * 1763 * Returns the recovery leader resource id according to the engine this function 1764 * belongs to. Currently only only 2 engines is supported. 1765 */ 1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1767 { 1768 if (BP_PATH(bp)) 1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1770 else 1771 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1772 } 1773 1774 /** 1775 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1776 * 1777 * @bp: driver handle 1778 * 1779 * Tries to acquire a leader lock for current engine. 1780 */ 1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1782 { 1783 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1784 } 1785 1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1787 1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1790 { 1791 /* Set the interrupt occurred bit for the sp-task to recognize it 1792 * must ack the interrupt and transition according to the IGU 1793 * state machine. 1794 */ 1795 atomic_set(&bp->interrupt_occurred, 1); 1796 1797 /* The sp_task must execute only after this bit 1798 * is set, otherwise we will get out of sync and miss all 1799 * further interrupts. Hence, the barrier. 1800 */ 1801 smp_wmb(); 1802 1803 /* schedule sp_task to workqueue */ 1804 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1805 } 1806 1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1808 { 1809 struct bnx2x *bp = fp->bp; 1810 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1811 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1812 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1813 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1814 1815 DP(BNX2X_MSG_SP, 1816 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1817 fp->index, cid, command, bp->state, 1818 rr_cqe->ramrod_cqe.ramrod_type); 1819 1820 /* If cid is within VF range, replace the slowpath object with the 1821 * one corresponding to this VF 1822 */ 1823 if (cid >= BNX2X_FIRST_VF_CID && 1824 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1825 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1826 1827 switch (command) { 1828 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1829 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1830 drv_cmd = BNX2X_Q_CMD_UPDATE; 1831 break; 1832 1833 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1834 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1835 drv_cmd = BNX2X_Q_CMD_SETUP; 1836 break; 1837 1838 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1839 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1840 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1841 break; 1842 1843 case (RAMROD_CMD_ID_ETH_HALT): 1844 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1845 drv_cmd = BNX2X_Q_CMD_HALT; 1846 break; 1847 1848 case (RAMROD_CMD_ID_ETH_TERMINATE): 1849 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1850 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1851 break; 1852 1853 case (RAMROD_CMD_ID_ETH_EMPTY): 1854 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1855 drv_cmd = BNX2X_Q_CMD_EMPTY; 1856 break; 1857 1858 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1859 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1860 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1861 break; 1862 1863 default: 1864 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1865 command, fp->index); 1866 return; 1867 } 1868 1869 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1870 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1871 /* q_obj->complete_cmd() failure means that this was 1872 * an unexpected completion. 1873 * 1874 * In this case we don't want to increase the bp->spq_left 1875 * because apparently we haven't sent this command the first 1876 * place. 1877 */ 1878 #ifdef BNX2X_STOP_ON_ERROR 1879 bnx2x_panic(); 1880 #else 1881 return; 1882 #endif 1883 1884 smp_mb__before_atomic(); 1885 atomic_inc(&bp->cq_spq_left); 1886 /* push the change in bp->spq_left and towards the memory */ 1887 smp_mb__after_atomic(); 1888 1889 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1890 1891 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1892 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1893 /* if Q update ramrod is completed for last Q in AFEX vif set 1894 * flow, then ACK MCP at the end 1895 * 1896 * mark pending ACK to MCP bit. 1897 * prevent case that both bits are cleared. 1898 * At the end of load/unload driver checks that 1899 * sp_state is cleared, and this order prevents 1900 * races 1901 */ 1902 smp_mb__before_atomic(); 1903 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1904 wmb(); 1905 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1906 smp_mb__after_atomic(); 1907 1908 /* schedule the sp task as mcp ack is required */ 1909 bnx2x_schedule_sp_task(bp); 1910 } 1911 1912 return; 1913 } 1914 1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1916 { 1917 struct bnx2x *bp = netdev_priv(dev_instance); 1918 u16 status = bnx2x_ack_int(bp); 1919 u16 mask; 1920 int i; 1921 u8 cos; 1922 1923 /* Return here if interrupt is shared and it's not for us */ 1924 if (unlikely(status == 0)) { 1925 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1926 return IRQ_NONE; 1927 } 1928 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1929 1930 #ifdef BNX2X_STOP_ON_ERROR 1931 if (unlikely(bp->panic)) 1932 return IRQ_HANDLED; 1933 #endif 1934 1935 for_each_eth_queue(bp, i) { 1936 struct bnx2x_fastpath *fp = &bp->fp[i]; 1937 1938 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1939 if (status & mask) { 1940 /* Handle Rx or Tx according to SB id */ 1941 for_each_cos_in_tx_queue(fp, cos) 1942 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1943 prefetch(&fp->sb_running_index[SM_RX_ID]); 1944 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1945 status &= ~mask; 1946 } 1947 } 1948 1949 if (CNIC_SUPPORT(bp)) { 1950 mask = 0x2; 1951 if (status & (mask | 0x1)) { 1952 struct cnic_ops *c_ops = NULL; 1953 1954 rcu_read_lock(); 1955 c_ops = rcu_dereference(bp->cnic_ops); 1956 if (c_ops && (bp->cnic_eth_dev.drv_state & 1957 CNIC_DRV_STATE_HANDLES_IRQ)) 1958 c_ops->cnic_handler(bp->cnic_data, NULL); 1959 rcu_read_unlock(); 1960 1961 status &= ~mask; 1962 } 1963 } 1964 1965 if (unlikely(status & 0x1)) { 1966 1967 /* schedule sp task to perform default status block work, ack 1968 * attentions and enable interrupts. 1969 */ 1970 bnx2x_schedule_sp_task(bp); 1971 1972 status &= ~0x1; 1973 if (!status) 1974 return IRQ_HANDLED; 1975 } 1976 1977 if (unlikely(status)) 1978 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1979 status); 1980 1981 return IRQ_HANDLED; 1982 } 1983 1984 /* Link */ 1985 1986 /* 1987 * General service functions 1988 */ 1989 1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1991 { 1992 u32 lock_status; 1993 u32 resource_bit = (1 << resource); 1994 int func = BP_FUNC(bp); 1995 u32 hw_lock_control_reg; 1996 int cnt; 1997 1998 /* Validating that the resource is within range */ 1999 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2000 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2001 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2002 return -EINVAL; 2003 } 2004 2005 if (func <= 5) { 2006 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2007 } else { 2008 hw_lock_control_reg = 2009 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2010 } 2011 2012 /* Validating that the resource is not already taken */ 2013 lock_status = REG_RD(bp, hw_lock_control_reg); 2014 if (lock_status & resource_bit) { 2015 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2016 lock_status, resource_bit); 2017 return -EEXIST; 2018 } 2019 2020 /* Try for 5 second every 5ms */ 2021 for (cnt = 0; cnt < 1000; cnt++) { 2022 /* Try to acquire the lock */ 2023 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2024 lock_status = REG_RD(bp, hw_lock_control_reg); 2025 if (lock_status & resource_bit) 2026 return 0; 2027 2028 usleep_range(5000, 10000); 2029 } 2030 BNX2X_ERR("Timeout\n"); 2031 return -EAGAIN; 2032 } 2033 2034 int bnx2x_release_leader_lock(struct bnx2x *bp) 2035 { 2036 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2037 } 2038 2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2040 { 2041 u32 lock_status; 2042 u32 resource_bit = (1 << resource); 2043 int func = BP_FUNC(bp); 2044 u32 hw_lock_control_reg; 2045 2046 /* Validating that the resource is within range */ 2047 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2048 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2049 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2050 return -EINVAL; 2051 } 2052 2053 if (func <= 5) { 2054 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2055 } else { 2056 hw_lock_control_reg = 2057 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2058 } 2059 2060 /* Validating that the resource is currently taken */ 2061 lock_status = REG_RD(bp, hw_lock_control_reg); 2062 if (!(lock_status & resource_bit)) { 2063 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2064 lock_status, resource_bit); 2065 return -EFAULT; 2066 } 2067 2068 REG_WR(bp, hw_lock_control_reg, resource_bit); 2069 return 0; 2070 } 2071 2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2073 { 2074 /* The GPIO should be swapped if swap register is set and active */ 2075 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2076 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2077 int gpio_shift = gpio_num + 2078 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2079 u32 gpio_mask = (1 << gpio_shift); 2080 u32 gpio_reg; 2081 int value; 2082 2083 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2084 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2085 return -EINVAL; 2086 } 2087 2088 /* read GPIO value */ 2089 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2090 2091 /* get the requested pin value */ 2092 if ((gpio_reg & gpio_mask) == gpio_mask) 2093 value = 1; 2094 else 2095 value = 0; 2096 2097 return value; 2098 } 2099 2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2101 { 2102 /* The GPIO should be swapped if swap register is set and active */ 2103 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2104 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2105 int gpio_shift = gpio_num + 2106 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2107 u32 gpio_mask = (1 << gpio_shift); 2108 u32 gpio_reg; 2109 2110 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2111 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2112 return -EINVAL; 2113 } 2114 2115 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2116 /* read GPIO and mask except the float bits */ 2117 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2118 2119 switch (mode) { 2120 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2121 DP(NETIF_MSG_LINK, 2122 "Set GPIO %d (shift %d) -> output low\n", 2123 gpio_num, gpio_shift); 2124 /* clear FLOAT and set CLR */ 2125 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2126 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2127 break; 2128 2129 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2130 DP(NETIF_MSG_LINK, 2131 "Set GPIO %d (shift %d) -> output high\n", 2132 gpio_num, gpio_shift); 2133 /* clear FLOAT and set SET */ 2134 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2135 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2136 break; 2137 2138 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2139 DP(NETIF_MSG_LINK, 2140 "Set GPIO %d (shift %d) -> input\n", 2141 gpio_num, gpio_shift); 2142 /* set FLOAT */ 2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2144 break; 2145 2146 default: 2147 break; 2148 } 2149 2150 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2151 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2152 2153 return 0; 2154 } 2155 2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2157 { 2158 u32 gpio_reg = 0; 2159 int rc = 0; 2160 2161 /* Any port swapping should be handled by caller. */ 2162 2163 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2164 /* read GPIO and mask except the float bits */ 2165 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2167 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2168 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2169 2170 switch (mode) { 2171 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2172 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2173 /* set CLR */ 2174 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2175 break; 2176 2177 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2178 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2179 /* set SET */ 2180 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2181 break; 2182 2183 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2184 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2185 /* set FLOAT */ 2186 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2187 break; 2188 2189 default: 2190 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2191 rc = -EINVAL; 2192 break; 2193 } 2194 2195 if (rc == 0) 2196 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2197 2198 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2199 2200 return rc; 2201 } 2202 2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2204 { 2205 /* The GPIO should be swapped if swap register is set and active */ 2206 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2207 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2208 int gpio_shift = gpio_num + 2209 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2210 u32 gpio_mask = (1 << gpio_shift); 2211 u32 gpio_reg; 2212 2213 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2214 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2215 return -EINVAL; 2216 } 2217 2218 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2219 /* read GPIO int */ 2220 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2221 2222 switch (mode) { 2223 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2224 DP(NETIF_MSG_LINK, 2225 "Clear GPIO INT %d (shift %d) -> output low\n", 2226 gpio_num, gpio_shift); 2227 /* clear SET and set CLR */ 2228 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2229 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2230 break; 2231 2232 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2233 DP(NETIF_MSG_LINK, 2234 "Set GPIO INT %d (shift %d) -> output high\n", 2235 gpio_num, gpio_shift); 2236 /* clear CLR and set SET */ 2237 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2238 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2239 break; 2240 2241 default: 2242 break; 2243 } 2244 2245 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2247 2248 return 0; 2249 } 2250 2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2252 { 2253 u32 spio_reg; 2254 2255 /* Only 2 SPIOs are configurable */ 2256 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2257 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2258 return -EINVAL; 2259 } 2260 2261 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2262 /* read SPIO and mask except the float bits */ 2263 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2264 2265 switch (mode) { 2266 case MISC_SPIO_OUTPUT_LOW: 2267 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2268 /* clear FLOAT and set CLR */ 2269 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2270 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2271 break; 2272 2273 case MISC_SPIO_OUTPUT_HIGH: 2274 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2275 /* clear FLOAT and set SET */ 2276 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2277 spio_reg |= (spio << MISC_SPIO_SET_POS); 2278 break; 2279 2280 case MISC_SPIO_INPUT_HI_Z: 2281 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2282 /* set FLOAT */ 2283 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2284 break; 2285 2286 default: 2287 break; 2288 } 2289 2290 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2291 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2292 2293 return 0; 2294 } 2295 2296 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2297 { 2298 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2299 2300 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2301 ADVERTISED_Pause); 2302 switch (bp->link_vars.ieee_fc & 2303 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2304 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2305 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2306 ADVERTISED_Pause); 2307 break; 2308 2309 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2310 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2311 break; 2312 2313 default: 2314 break; 2315 } 2316 } 2317 2318 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2319 { 2320 /* Initialize link parameters structure variables 2321 * It is recommended to turn off RX FC for jumbo frames 2322 * for better performance 2323 */ 2324 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2326 else 2327 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2328 } 2329 2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2331 { 2332 u32 pause_enabled = 0; 2333 2334 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2335 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2336 pause_enabled = 1; 2337 2338 REG_WR(bp, BAR_USTRORM_INTMEM + 2339 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2340 pause_enabled); 2341 } 2342 2343 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2344 pause_enabled ? "enabled" : "disabled"); 2345 } 2346 2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2348 { 2349 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2350 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2351 2352 if (!BP_NOMCP(bp)) { 2353 bnx2x_set_requested_fc(bp); 2354 bnx2x_acquire_phy_lock(bp); 2355 2356 if (load_mode == LOAD_DIAG) { 2357 struct link_params *lp = &bp->link_params; 2358 lp->loopback_mode = LOOPBACK_XGXS; 2359 /* Prefer doing PHY loopback at highest speed */ 2360 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2361 if (lp->speed_cap_mask[cfx_idx] & 2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2363 lp->req_line_speed[cfx_idx] = 2364 SPEED_20000; 2365 else if (lp->speed_cap_mask[cfx_idx] & 2366 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2367 lp->req_line_speed[cfx_idx] = 2368 SPEED_10000; 2369 else 2370 lp->req_line_speed[cfx_idx] = 2371 SPEED_1000; 2372 } 2373 } 2374 2375 if (load_mode == LOAD_LOOPBACK_EXT) { 2376 struct link_params *lp = &bp->link_params; 2377 lp->loopback_mode = LOOPBACK_EXT; 2378 } 2379 2380 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2381 2382 bnx2x_release_phy_lock(bp); 2383 2384 bnx2x_init_dropless_fc(bp); 2385 2386 bnx2x_calc_fc_adv(bp); 2387 2388 if (bp->link_vars.link_up) { 2389 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2390 bnx2x_link_report(bp); 2391 } 2392 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2393 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2394 return rc; 2395 } 2396 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2397 return -EINVAL; 2398 } 2399 2400 void bnx2x_link_set(struct bnx2x *bp) 2401 { 2402 if (!BP_NOMCP(bp)) { 2403 bnx2x_acquire_phy_lock(bp); 2404 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2405 bnx2x_release_phy_lock(bp); 2406 2407 bnx2x_init_dropless_fc(bp); 2408 2409 bnx2x_calc_fc_adv(bp); 2410 } else 2411 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2412 } 2413 2414 static void bnx2x__link_reset(struct bnx2x *bp) 2415 { 2416 if (!BP_NOMCP(bp)) { 2417 bnx2x_acquire_phy_lock(bp); 2418 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2419 bnx2x_release_phy_lock(bp); 2420 } else 2421 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2422 } 2423 2424 void bnx2x_force_link_reset(struct bnx2x *bp) 2425 { 2426 bnx2x_acquire_phy_lock(bp); 2427 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2428 bnx2x_release_phy_lock(bp); 2429 } 2430 2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2432 { 2433 u8 rc = 0; 2434 2435 if (!BP_NOMCP(bp)) { 2436 bnx2x_acquire_phy_lock(bp); 2437 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2438 is_serdes); 2439 bnx2x_release_phy_lock(bp); 2440 } else 2441 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2442 2443 return rc; 2444 } 2445 2446 /* Calculates the sum of vn_min_rates. 2447 It's needed for further normalizing of the min_rates. 2448 Returns: 2449 sum of vn_min_rates. 2450 or 2451 0 - if all the min_rates are 0. 2452 In the later case fairness algorithm should be deactivated. 2453 If not all min_rates are zero then those that are zeroes will be set to 1. 2454 */ 2455 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2456 struct cmng_init_input *input) 2457 { 2458 int all_zero = 1; 2459 int vn; 2460 2461 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2462 u32 vn_cfg = bp->mf_config[vn]; 2463 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2464 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2465 2466 /* Skip hidden vns */ 2467 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2468 vn_min_rate = 0; 2469 /* If min rate is zero - set it to 1 */ 2470 else if (!vn_min_rate) 2471 vn_min_rate = DEF_MIN_RATE; 2472 else 2473 all_zero = 0; 2474 2475 input->vnic_min_rate[vn] = vn_min_rate; 2476 } 2477 2478 /* if ETS or all min rates are zeros - disable fairness */ 2479 if (BNX2X_IS_ETS_ENABLED(bp)) { 2480 input->flags.cmng_enables &= 2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2482 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2483 } else if (all_zero) { 2484 input->flags.cmng_enables &= 2485 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2486 DP(NETIF_MSG_IFUP, 2487 "All MIN values are zeroes fairness will be disabled\n"); 2488 } else 2489 input->flags.cmng_enables |= 2490 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2491 } 2492 2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2494 struct cmng_init_input *input) 2495 { 2496 u16 vn_max_rate; 2497 u32 vn_cfg = bp->mf_config[vn]; 2498 2499 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2500 vn_max_rate = 0; 2501 else { 2502 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2503 2504 if (IS_MF_PERCENT_BW(bp)) { 2505 /* maxCfg in percents of linkspeed */ 2506 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2507 } else /* SD modes */ 2508 /* maxCfg is absolute in 100Mb units */ 2509 vn_max_rate = maxCfg * 100; 2510 } 2511 2512 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2513 2514 input->vnic_max_rate[vn] = vn_max_rate; 2515 } 2516 2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2518 { 2519 if (CHIP_REV_IS_SLOW(bp)) 2520 return CMNG_FNS_NONE; 2521 if (IS_MF(bp)) 2522 return CMNG_FNS_MINMAX; 2523 2524 return CMNG_FNS_NONE; 2525 } 2526 2527 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2528 { 2529 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2530 2531 if (BP_NOMCP(bp)) 2532 return; /* what should be the default value in this case */ 2533 2534 /* For 2 port configuration the absolute function number formula 2535 * is: 2536 * abs_func = 2 * vn + BP_PORT + BP_PATH 2537 * 2538 * and there are 4 functions per port 2539 * 2540 * For 4 port configuration it is 2541 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2542 * 2543 * and there are 2 functions per port 2544 */ 2545 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2546 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2547 2548 if (func >= E1H_FUNC_MAX) 2549 break; 2550 2551 bp->mf_config[vn] = 2552 MF_CFG_RD(bp, func_mf_config[func].config); 2553 } 2554 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2555 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2556 bp->flags |= MF_FUNC_DIS; 2557 } else { 2558 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2559 bp->flags &= ~MF_FUNC_DIS; 2560 } 2561 } 2562 2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2564 { 2565 struct cmng_init_input input; 2566 memset(&input, 0, sizeof(struct cmng_init_input)); 2567 2568 input.port_rate = bp->link_vars.line_speed; 2569 2570 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2571 int vn; 2572 2573 /* read mf conf from shmem */ 2574 if (read_cfg) 2575 bnx2x_read_mf_cfg(bp); 2576 2577 /* vn_weight_sum and enable fairness if not 0 */ 2578 bnx2x_calc_vn_min(bp, &input); 2579 2580 /* calculate and set min-max rate for each vn */ 2581 if (bp->port.pmf) 2582 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2583 bnx2x_calc_vn_max(bp, vn, &input); 2584 2585 /* always enable rate shaping and fairness */ 2586 input.flags.cmng_enables |= 2587 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2588 2589 bnx2x_init_cmng(&input, &bp->cmng); 2590 return; 2591 } 2592 2593 /* rate shaping and fairness are disabled */ 2594 DP(NETIF_MSG_IFUP, 2595 "rate shaping and fairness are disabled\n"); 2596 } 2597 2598 static void storm_memset_cmng(struct bnx2x *bp, 2599 struct cmng_init *cmng, 2600 u8 port) 2601 { 2602 int vn; 2603 size_t size = sizeof(struct cmng_struct_per_port); 2604 2605 u32 addr = BAR_XSTRORM_INTMEM + 2606 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2607 2608 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2609 2610 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2611 int func = func_by_vn(bp, vn); 2612 2613 addr = BAR_XSTRORM_INTMEM + 2614 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2615 size = sizeof(struct rate_shaping_vars_per_vn); 2616 __storm_memset_struct(bp, addr, size, 2617 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2618 2619 addr = BAR_XSTRORM_INTMEM + 2620 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2621 size = sizeof(struct fairness_vars_per_vn); 2622 __storm_memset_struct(bp, addr, size, 2623 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2624 } 2625 } 2626 2627 /* init cmng mode in HW according to local configuration */ 2628 void bnx2x_set_local_cmng(struct bnx2x *bp) 2629 { 2630 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2631 2632 if (cmng_fns != CMNG_FNS_NONE) { 2633 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2634 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2635 } else { 2636 /* rate shaping and fairness are disabled */ 2637 DP(NETIF_MSG_IFUP, 2638 "single function mode without fairness\n"); 2639 } 2640 } 2641 2642 /* This function is called upon link interrupt */ 2643 static void bnx2x_link_attn(struct bnx2x *bp) 2644 { 2645 /* Make sure that we are synced with the current statistics */ 2646 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2647 2648 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2649 2650 bnx2x_init_dropless_fc(bp); 2651 2652 if (bp->link_vars.link_up) { 2653 2654 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2655 struct host_port_stats *pstats; 2656 2657 pstats = bnx2x_sp(bp, port_stats); 2658 /* reset old mac stats */ 2659 memset(&(pstats->mac_stx[0]), 0, 2660 sizeof(struct mac_stx)); 2661 } 2662 if (bp->state == BNX2X_STATE_OPEN) 2663 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2664 } 2665 2666 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2667 bnx2x_set_local_cmng(bp); 2668 2669 __bnx2x_link_report(bp); 2670 2671 if (IS_MF(bp)) 2672 bnx2x_link_sync_notify(bp); 2673 } 2674 2675 void bnx2x__link_status_update(struct bnx2x *bp) 2676 { 2677 if (bp->state != BNX2X_STATE_OPEN) 2678 return; 2679 2680 /* read updated dcb configuration */ 2681 if (IS_PF(bp)) { 2682 bnx2x_dcbx_pmf_update(bp); 2683 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2684 if (bp->link_vars.link_up) 2685 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2686 else 2687 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2688 /* indicate link status */ 2689 bnx2x_link_report(bp); 2690 2691 } else { /* VF */ 2692 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2693 SUPPORTED_10baseT_Full | 2694 SUPPORTED_100baseT_Half | 2695 SUPPORTED_100baseT_Full | 2696 SUPPORTED_1000baseT_Full | 2697 SUPPORTED_2500baseX_Full | 2698 SUPPORTED_10000baseT_Full | 2699 SUPPORTED_TP | 2700 SUPPORTED_FIBRE | 2701 SUPPORTED_Autoneg | 2702 SUPPORTED_Pause | 2703 SUPPORTED_Asym_Pause); 2704 bp->port.advertising[0] = bp->port.supported[0]; 2705 2706 bp->link_params.bp = bp; 2707 bp->link_params.port = BP_PORT(bp); 2708 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2709 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2710 bp->link_params.req_line_speed[0] = SPEED_10000; 2711 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2712 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2713 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2714 bp->link_vars.line_speed = SPEED_10000; 2715 bp->link_vars.link_status = 2716 (LINK_STATUS_LINK_UP | 2717 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2718 bp->link_vars.link_up = 1; 2719 bp->link_vars.duplex = DUPLEX_FULL; 2720 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2721 __bnx2x_link_report(bp); 2722 2723 bnx2x_sample_bulletin(bp); 2724 2725 /* if bulletin board did not have an update for link status 2726 * __bnx2x_link_report will report current status 2727 * but it will NOT duplicate report in case of already reported 2728 * during sampling bulletin board. 2729 */ 2730 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2731 } 2732 } 2733 2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2735 u16 vlan_val, u8 allowed_prio) 2736 { 2737 struct bnx2x_func_state_params func_params = {NULL}; 2738 struct bnx2x_func_afex_update_params *f_update_params = 2739 &func_params.params.afex_update; 2740 2741 func_params.f_obj = &bp->func_obj; 2742 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2743 2744 /* no need to wait for RAMROD completion, so don't 2745 * set RAMROD_COMP_WAIT flag 2746 */ 2747 2748 f_update_params->vif_id = vifid; 2749 f_update_params->afex_default_vlan = vlan_val; 2750 f_update_params->allowed_priorities = allowed_prio; 2751 2752 /* if ramrod can not be sent, response to MCP immediately */ 2753 if (bnx2x_func_state_change(bp, &func_params) < 0) 2754 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2755 2756 return 0; 2757 } 2758 2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2760 u16 vif_index, u8 func_bit_map) 2761 { 2762 struct bnx2x_func_state_params func_params = {NULL}; 2763 struct bnx2x_func_afex_viflists_params *update_params = 2764 &func_params.params.afex_viflists; 2765 int rc; 2766 u32 drv_msg_code; 2767 2768 /* validate only LIST_SET and LIST_GET are received from switch */ 2769 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2770 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2771 cmd_type); 2772 2773 func_params.f_obj = &bp->func_obj; 2774 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2775 2776 /* set parameters according to cmd_type */ 2777 update_params->afex_vif_list_command = cmd_type; 2778 update_params->vif_list_index = vif_index; 2779 update_params->func_bit_map = 2780 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2781 update_params->func_to_clear = 0; 2782 drv_msg_code = 2783 (cmd_type == VIF_LIST_RULE_GET) ? 2784 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2785 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2786 2787 /* if ramrod can not be sent, respond to MCP immediately for 2788 * SET and GET requests (other are not triggered from MCP) 2789 */ 2790 rc = bnx2x_func_state_change(bp, &func_params); 2791 if (rc < 0) 2792 bnx2x_fw_command(bp, drv_msg_code, 0); 2793 2794 return 0; 2795 } 2796 2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2798 { 2799 struct afex_stats afex_stats; 2800 u32 func = BP_ABS_FUNC(bp); 2801 u32 mf_config; 2802 u16 vlan_val; 2803 u32 vlan_prio; 2804 u16 vif_id; 2805 u8 allowed_prio; 2806 u8 vlan_mode; 2807 u32 addr_to_write, vifid, addrs, stats_type, i; 2808 2809 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2810 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2811 DP(BNX2X_MSG_MCP, 2812 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2813 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2814 } 2815 2816 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2817 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2818 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2819 DP(BNX2X_MSG_MCP, 2820 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2821 vifid, addrs); 2822 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2823 addrs); 2824 } 2825 2826 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2827 addr_to_write = SHMEM2_RD(bp, 2828 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2829 stats_type = SHMEM2_RD(bp, 2830 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2831 2832 DP(BNX2X_MSG_MCP, 2833 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2834 addr_to_write); 2835 2836 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2837 2838 /* write response to scratchpad, for MCP */ 2839 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2840 REG_WR(bp, addr_to_write + i*sizeof(u32), 2841 *(((u32 *)(&afex_stats))+i)); 2842 2843 /* send ack message to MCP */ 2844 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2845 } 2846 2847 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2848 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2849 bp->mf_config[BP_VN(bp)] = mf_config; 2850 DP(BNX2X_MSG_MCP, 2851 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2852 mf_config); 2853 2854 /* if VIF_SET is "enabled" */ 2855 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2856 /* set rate limit directly to internal RAM */ 2857 struct cmng_init_input cmng_input; 2858 struct rate_shaping_vars_per_vn m_rs_vn; 2859 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2860 u32 addr = BAR_XSTRORM_INTMEM + 2861 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2862 2863 bp->mf_config[BP_VN(bp)] = mf_config; 2864 2865 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2866 m_rs_vn.vn_counter.rate = 2867 cmng_input.vnic_max_rate[BP_VN(bp)]; 2868 m_rs_vn.vn_counter.quota = 2869 (m_rs_vn.vn_counter.rate * 2870 RS_PERIODIC_TIMEOUT_USEC) / 8; 2871 2872 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2873 2874 /* read relevant values from mf_cfg struct in shmem */ 2875 vif_id = 2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2877 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2878 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2879 vlan_val = 2880 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2881 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2882 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2883 vlan_prio = (mf_config & 2884 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2885 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2886 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2887 vlan_mode = 2888 (MF_CFG_RD(bp, 2889 func_mf_config[func].afex_config) & 2890 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2891 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2892 allowed_prio = 2893 (MF_CFG_RD(bp, 2894 func_mf_config[func].afex_config) & 2895 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2896 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2897 2898 /* send ramrod to FW, return in case of failure */ 2899 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2900 allowed_prio)) 2901 return; 2902 2903 bp->afex_def_vlan_tag = vlan_val; 2904 bp->afex_vlan_mode = vlan_mode; 2905 } else { 2906 /* notify link down because BP->flags is disabled */ 2907 bnx2x_link_report(bp); 2908 2909 /* send INVALID VIF ramrod to FW */ 2910 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2911 2912 /* Reset the default afex VLAN */ 2913 bp->afex_def_vlan_tag = -1; 2914 } 2915 } 2916 } 2917 2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2919 { 2920 struct bnx2x_func_switch_update_params *switch_update_params; 2921 struct bnx2x_func_state_params func_params; 2922 2923 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2924 switch_update_params = &func_params.params.switch_update; 2925 func_params.f_obj = &bp->func_obj; 2926 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2927 2928 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2929 int func = BP_ABS_FUNC(bp); 2930 u32 val; 2931 2932 /* Re-learn the S-tag from shmem */ 2933 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2934 FUNC_MF_CFG_E1HOV_TAG_MASK; 2935 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2936 bp->mf_ov = val; 2937 } else { 2938 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2939 goto fail; 2940 } 2941 2942 /* Configure new S-tag in LLH */ 2943 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2944 bp->mf_ov); 2945 2946 /* Send Ramrod to update FW of change */ 2947 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2948 &switch_update_params->changes); 2949 switch_update_params->vlan = bp->mf_ov; 2950 2951 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2952 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2953 bp->mf_ov); 2954 goto fail; 2955 } else { 2956 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2957 bp->mf_ov); 2958 } 2959 } else { 2960 goto fail; 2961 } 2962 2963 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2964 return; 2965 fail: 2966 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2967 } 2968 2969 static void bnx2x_pmf_update(struct bnx2x *bp) 2970 { 2971 int port = BP_PORT(bp); 2972 u32 val; 2973 2974 bp->port.pmf = 1; 2975 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2976 2977 /* 2978 * We need the mb() to ensure the ordering between the writing to 2979 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2980 */ 2981 smp_mb(); 2982 2983 /* queue a periodic task */ 2984 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2985 2986 bnx2x_dcbx_pmf_update(bp); 2987 2988 /* enable nig attention */ 2989 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2990 if (bp->common.int_block == INT_BLOCK_HC) { 2991 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2992 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2993 } else if (!CHIP_IS_E1x(bp)) { 2994 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2995 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2996 } 2997 2998 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2999 } 3000 3001 /* end of Link */ 3002 3003 /* slow path */ 3004 3005 /* 3006 * General service functions 3007 */ 3008 3009 /* send the MCP a request, block until there is a reply */ 3010 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3011 { 3012 int mb_idx = BP_FW_MB_IDX(bp); 3013 u32 seq; 3014 u32 rc = 0; 3015 u32 cnt = 1; 3016 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3017 3018 mutex_lock(&bp->fw_mb_mutex); 3019 seq = ++bp->fw_seq; 3020 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3021 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3022 3023 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3024 (command | seq), param); 3025 3026 do { 3027 /* let the FW do it's magic ... */ 3028 msleep(delay); 3029 3030 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3031 3032 /* Give the FW up to 5 second (500*10ms) */ 3033 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3034 3035 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3036 cnt*delay, rc, seq); 3037 3038 /* is this a reply to our command? */ 3039 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3040 rc &= FW_MSG_CODE_MASK; 3041 else { 3042 /* FW BUG! */ 3043 BNX2X_ERR("FW failed to respond!\n"); 3044 bnx2x_fw_dump(bp); 3045 rc = 0; 3046 } 3047 mutex_unlock(&bp->fw_mb_mutex); 3048 3049 return rc; 3050 } 3051 3052 static void storm_memset_func_cfg(struct bnx2x *bp, 3053 struct tstorm_eth_function_common_config *tcfg, 3054 u16 abs_fid) 3055 { 3056 size_t size = sizeof(struct tstorm_eth_function_common_config); 3057 3058 u32 addr = BAR_TSTRORM_INTMEM + 3059 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3060 3061 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3062 } 3063 3064 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3065 { 3066 if (CHIP_IS_E1x(bp)) { 3067 struct tstorm_eth_function_common_config tcfg = {0}; 3068 3069 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3070 } 3071 3072 /* Enable the function in the FW */ 3073 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3074 storm_memset_func_en(bp, p->func_id, 1); 3075 3076 /* spq */ 3077 if (p->spq_active) { 3078 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3079 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3080 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3081 } 3082 } 3083 3084 /** 3085 * bnx2x_get_common_flags - Return common flags 3086 * 3087 * @bp device handle 3088 * @fp queue handle 3089 * @zero_stats TRUE if statistics zeroing is needed 3090 * 3091 * Return the flags that are common for the Tx-only and not normal connections. 3092 */ 3093 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3094 struct bnx2x_fastpath *fp, 3095 bool zero_stats) 3096 { 3097 unsigned long flags = 0; 3098 3099 /* PF driver will always initialize the Queue to an ACTIVE state */ 3100 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3101 3102 /* tx only connections collect statistics (on the same index as the 3103 * parent connection). The statistics are zeroed when the parent 3104 * connection is initialized. 3105 */ 3106 3107 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3108 if (zero_stats) 3109 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3110 3111 if (bp->flags & TX_SWITCHING) 3112 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3113 3114 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3115 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3116 3117 #ifdef BNX2X_STOP_ON_ERROR 3118 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3119 #endif 3120 3121 return flags; 3122 } 3123 3124 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3125 struct bnx2x_fastpath *fp, 3126 bool leading) 3127 { 3128 unsigned long flags = 0; 3129 3130 /* calculate other queue flags */ 3131 if (IS_MF_SD(bp)) 3132 __set_bit(BNX2X_Q_FLG_OV, &flags); 3133 3134 if (IS_FCOE_FP(fp)) { 3135 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3136 /* For FCoE - force usage of default priority (for afex) */ 3137 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3138 } 3139 3140 if (fp->mode != TPA_MODE_DISABLED) { 3141 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3142 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3143 if (fp->mode == TPA_MODE_GRO) 3144 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3145 } 3146 3147 if (leading) { 3148 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3149 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3150 } 3151 3152 /* Always set HW VLAN stripping */ 3153 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3154 3155 /* configure silent vlan removal */ 3156 if (IS_MF_AFEX(bp)) 3157 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3158 3159 return flags | bnx2x_get_common_flags(bp, fp, true); 3160 } 3161 3162 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3163 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3164 u8 cos) 3165 { 3166 gen_init->stat_id = bnx2x_stats_id(fp); 3167 gen_init->spcl_id = fp->cl_id; 3168 3169 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3170 if (IS_FCOE_FP(fp)) 3171 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3172 else 3173 gen_init->mtu = bp->dev->mtu; 3174 3175 gen_init->cos = cos; 3176 3177 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3178 } 3179 3180 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3181 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3182 struct bnx2x_rxq_setup_params *rxq_init) 3183 { 3184 u8 max_sge = 0; 3185 u16 sge_sz = 0; 3186 u16 tpa_agg_size = 0; 3187 3188 if (fp->mode != TPA_MODE_DISABLED) { 3189 pause->sge_th_lo = SGE_TH_LO(bp); 3190 pause->sge_th_hi = SGE_TH_HI(bp); 3191 3192 /* validate SGE ring has enough to cross high threshold */ 3193 WARN_ON(bp->dropless_fc && 3194 pause->sge_th_hi + FW_PREFETCH_CNT > 3195 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3196 3197 tpa_agg_size = TPA_AGG_SIZE; 3198 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3199 SGE_PAGE_SHIFT; 3200 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3201 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3202 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3203 } 3204 3205 /* pause - not for e1 */ 3206 if (!CHIP_IS_E1(bp)) { 3207 pause->bd_th_lo = BD_TH_LO(bp); 3208 pause->bd_th_hi = BD_TH_HI(bp); 3209 3210 pause->rcq_th_lo = RCQ_TH_LO(bp); 3211 pause->rcq_th_hi = RCQ_TH_HI(bp); 3212 /* 3213 * validate that rings have enough entries to cross 3214 * high thresholds 3215 */ 3216 WARN_ON(bp->dropless_fc && 3217 pause->bd_th_hi + FW_PREFETCH_CNT > 3218 bp->rx_ring_size); 3219 WARN_ON(bp->dropless_fc && 3220 pause->rcq_th_hi + FW_PREFETCH_CNT > 3221 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3222 3223 pause->pri_map = 1; 3224 } 3225 3226 /* rxq setup */ 3227 rxq_init->dscr_map = fp->rx_desc_mapping; 3228 rxq_init->sge_map = fp->rx_sge_mapping; 3229 rxq_init->rcq_map = fp->rx_comp_mapping; 3230 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3231 3232 /* This should be a maximum number of data bytes that may be 3233 * placed on the BD (not including paddings). 3234 */ 3235 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3236 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3237 3238 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3239 rxq_init->tpa_agg_sz = tpa_agg_size; 3240 rxq_init->sge_buf_sz = sge_sz; 3241 rxq_init->max_sges_pkt = max_sge; 3242 rxq_init->rss_engine_id = BP_FUNC(bp); 3243 rxq_init->mcast_engine_id = BP_FUNC(bp); 3244 3245 /* Maximum number or simultaneous TPA aggregation for this Queue. 3246 * 3247 * For PF Clients it should be the maximum available number. 3248 * VF driver(s) may want to define it to a smaller value. 3249 */ 3250 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3251 3252 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3253 rxq_init->fw_sb_id = fp->fw_sb_id; 3254 3255 if (IS_FCOE_FP(fp)) 3256 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3257 else 3258 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3259 /* configure silent vlan removal 3260 * if multi function mode is afex, then mask default vlan 3261 */ 3262 if (IS_MF_AFEX(bp)) { 3263 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3264 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3265 } 3266 } 3267 3268 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3269 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3270 u8 cos) 3271 { 3272 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3273 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3274 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3275 txq_init->fw_sb_id = fp->fw_sb_id; 3276 3277 /* 3278 * set the tss leading client id for TX classification == 3279 * leading RSS client id 3280 */ 3281 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3282 3283 if (IS_FCOE_FP(fp)) { 3284 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3285 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3286 } 3287 } 3288 3289 static void bnx2x_pf_init(struct bnx2x *bp) 3290 { 3291 struct bnx2x_func_init_params func_init = {0}; 3292 struct event_ring_data eq_data = { {0} }; 3293 3294 if (!CHIP_IS_E1x(bp)) { 3295 /* reset IGU PF statistics: MSIX + ATTN */ 3296 /* PF */ 3297 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3298 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3299 (CHIP_MODE_IS_4_PORT(bp) ? 3300 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3301 /* ATTN */ 3302 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3303 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3304 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3305 (CHIP_MODE_IS_4_PORT(bp) ? 3306 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3307 } 3308 3309 func_init.spq_active = true; 3310 func_init.pf_id = BP_FUNC(bp); 3311 func_init.func_id = BP_FUNC(bp); 3312 func_init.spq_map = bp->spq_mapping; 3313 func_init.spq_prod = bp->spq_prod_idx; 3314 3315 bnx2x_func_init(bp, &func_init); 3316 3317 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3318 3319 /* 3320 * Congestion management values depend on the link rate 3321 * There is no active link so initial link rate is set to 10 Gbps. 3322 * When the link comes up The congestion management values are 3323 * re-calculated according to the actual link rate. 3324 */ 3325 bp->link_vars.line_speed = SPEED_10000; 3326 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3327 3328 /* Only the PMF sets the HW */ 3329 if (bp->port.pmf) 3330 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3331 3332 /* init Event Queue - PCI bus guarantees correct endianity*/ 3333 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3334 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3335 eq_data.producer = bp->eq_prod; 3336 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3337 eq_data.sb_id = DEF_SB_ID; 3338 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3339 } 3340 3341 static void bnx2x_e1h_disable(struct bnx2x *bp) 3342 { 3343 int port = BP_PORT(bp); 3344 3345 bnx2x_tx_disable(bp); 3346 3347 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3348 } 3349 3350 static void bnx2x_e1h_enable(struct bnx2x *bp) 3351 { 3352 int port = BP_PORT(bp); 3353 3354 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3355 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3356 3357 /* Tx queue should be only re-enabled */ 3358 netif_tx_wake_all_queues(bp->dev); 3359 3360 /* 3361 * Should not call netif_carrier_on since it will be called if the link 3362 * is up when checking for link state 3363 */ 3364 } 3365 3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3367 3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3369 { 3370 struct eth_stats_info *ether_stat = 3371 &bp->slowpath->drv_info_to_mcp.ether_stat; 3372 struct bnx2x_vlan_mac_obj *mac_obj = 3373 &bp->sp_objs->mac_obj; 3374 int i; 3375 3376 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3377 ETH_STAT_INFO_VERSION_LEN); 3378 3379 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3380 * mac_local field in ether_stat struct. The base address is offset by 2 3381 * bytes to account for the field being 8 bytes but a mac address is 3382 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3383 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3384 * allocated by the ether_stat struct, so the macs will land in their 3385 * proper positions. 3386 */ 3387 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3388 memset(ether_stat->mac_local + i, 0, 3389 sizeof(ether_stat->mac_local[0])); 3390 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3391 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3392 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3393 ETH_ALEN); 3394 ether_stat->mtu_size = bp->dev->mtu; 3395 if (bp->dev->features & NETIF_F_RXCSUM) 3396 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3397 if (bp->dev->features & NETIF_F_TSO) 3398 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3399 ether_stat->feature_flags |= bp->common.boot_mode; 3400 3401 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3402 3403 ether_stat->txq_size = bp->tx_ring_size; 3404 ether_stat->rxq_size = bp->rx_ring_size; 3405 3406 #ifdef CONFIG_BNX2X_SRIOV 3407 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3408 #endif 3409 } 3410 3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3412 { 3413 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3414 struct fcoe_stats_info *fcoe_stat = 3415 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3416 3417 if (!CNIC_LOADED(bp)) 3418 return; 3419 3420 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3421 3422 fcoe_stat->qos_priority = 3423 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3424 3425 /* insert FCoE stats from ramrod response */ 3426 if (!NO_FCOE(bp)) { 3427 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3428 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3429 tstorm_queue_statistics; 3430 3431 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3432 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3433 xstorm_queue_statistics; 3434 3435 struct fcoe_statistics_params *fw_fcoe_stat = 3436 &bp->fw_stats_data->fcoe; 3437 3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3439 fcoe_stat->rx_bytes_lo, 3440 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3441 3442 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3443 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3444 fcoe_stat->rx_bytes_lo, 3445 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3446 3447 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3448 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3449 fcoe_stat->rx_bytes_lo, 3450 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3451 3452 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3453 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3454 fcoe_stat->rx_bytes_lo, 3455 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3456 3457 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3458 fcoe_stat->rx_frames_lo, 3459 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3460 3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3462 fcoe_stat->rx_frames_lo, 3463 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3464 3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3466 fcoe_stat->rx_frames_lo, 3467 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3468 3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3470 fcoe_stat->rx_frames_lo, 3471 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3472 3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3474 fcoe_stat->tx_bytes_lo, 3475 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3476 3477 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3478 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3479 fcoe_stat->tx_bytes_lo, 3480 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3481 3482 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3483 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3484 fcoe_stat->tx_bytes_lo, 3485 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3486 3487 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3488 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3489 fcoe_stat->tx_bytes_lo, 3490 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3491 3492 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3493 fcoe_stat->tx_frames_lo, 3494 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3495 3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3497 fcoe_stat->tx_frames_lo, 3498 fcoe_q_xstorm_stats->ucast_pkts_sent); 3499 3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3501 fcoe_stat->tx_frames_lo, 3502 fcoe_q_xstorm_stats->bcast_pkts_sent); 3503 3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3505 fcoe_stat->tx_frames_lo, 3506 fcoe_q_xstorm_stats->mcast_pkts_sent); 3507 } 3508 3509 /* ask L5 driver to add data to the struct */ 3510 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3511 } 3512 3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3514 { 3515 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3516 struct iscsi_stats_info *iscsi_stat = 3517 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3518 3519 if (!CNIC_LOADED(bp)) 3520 return; 3521 3522 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3523 ETH_ALEN); 3524 3525 iscsi_stat->qos_priority = 3526 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3527 3528 /* ask L5 driver to add data to the struct */ 3529 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3530 } 3531 3532 /* called due to MCP event (on pmf): 3533 * reread new bandwidth configuration 3534 * configure FW 3535 * notify others function about the change 3536 */ 3537 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3538 { 3539 if (bp->link_vars.link_up) { 3540 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3541 bnx2x_link_sync_notify(bp); 3542 } 3543 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3544 } 3545 3546 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3547 { 3548 bnx2x_config_mf_bw(bp); 3549 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3550 } 3551 3552 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3553 { 3554 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3555 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3556 } 3557 3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3560 3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3562 { 3563 enum drv_info_opcode op_code; 3564 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3565 bool release = false; 3566 int wait; 3567 3568 /* if drv_info version supported by MFW doesn't match - send NACK */ 3569 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3570 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3571 return; 3572 } 3573 3574 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3575 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3576 3577 /* Must prevent other flows from accessing drv_info_to_mcp */ 3578 mutex_lock(&bp->drv_info_mutex); 3579 3580 memset(&bp->slowpath->drv_info_to_mcp, 0, 3581 sizeof(union drv_info_to_mcp)); 3582 3583 switch (op_code) { 3584 case ETH_STATS_OPCODE: 3585 bnx2x_drv_info_ether_stat(bp); 3586 break; 3587 case FCOE_STATS_OPCODE: 3588 bnx2x_drv_info_fcoe_stat(bp); 3589 break; 3590 case ISCSI_STATS_OPCODE: 3591 bnx2x_drv_info_iscsi_stat(bp); 3592 break; 3593 default: 3594 /* if op code isn't supported - send NACK */ 3595 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3596 goto out; 3597 } 3598 3599 /* if we got drv_info attn from MFW then these fields are defined in 3600 * shmem2 for sure 3601 */ 3602 SHMEM2_WR(bp, drv_info_host_addr_lo, 3603 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3604 SHMEM2_WR(bp, drv_info_host_addr_hi, 3605 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3606 3607 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3608 3609 /* Since possible management wants both this and get_driver_version 3610 * need to wait until management notifies us it finished utilizing 3611 * the buffer. 3612 */ 3613 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3614 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3615 } else if (!bp->drv_info_mng_owner) { 3616 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3617 3618 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3619 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3620 3621 /* Management is done; need to clear indication */ 3622 if (indication & bit) { 3623 SHMEM2_WR(bp, mfw_drv_indication, 3624 indication & ~bit); 3625 release = true; 3626 break; 3627 } 3628 3629 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3630 } 3631 } 3632 if (!release) { 3633 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3634 bp->drv_info_mng_owner = true; 3635 } 3636 3637 out: 3638 mutex_unlock(&bp->drv_info_mutex); 3639 } 3640 3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3642 { 3643 u8 vals[4]; 3644 int i = 0; 3645 3646 if (bnx2x_format) { 3647 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3648 &vals[0], &vals[1], &vals[2], &vals[3]); 3649 if (i > 0) 3650 vals[0] -= '0'; 3651 } else { 3652 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3653 &vals[0], &vals[1], &vals[2], &vals[3]); 3654 } 3655 3656 while (i < 4) 3657 vals[i++] = 0; 3658 3659 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3660 } 3661 3662 void bnx2x_update_mng_version(struct bnx2x *bp) 3663 { 3664 u32 iscsiver = DRV_VER_NOT_LOADED; 3665 u32 fcoever = DRV_VER_NOT_LOADED; 3666 u32 ethver = DRV_VER_NOT_LOADED; 3667 int idx = BP_FW_MB_IDX(bp); 3668 u8 *version; 3669 3670 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3671 return; 3672 3673 mutex_lock(&bp->drv_info_mutex); 3674 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3675 if (bp->drv_info_mng_owner) 3676 goto out; 3677 3678 if (bp->state != BNX2X_STATE_OPEN) 3679 goto out; 3680 3681 /* Parse ethernet driver version */ 3682 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3683 if (!CNIC_LOADED(bp)) 3684 goto out; 3685 3686 /* Try getting storage driver version via cnic */ 3687 memset(&bp->slowpath->drv_info_to_mcp, 0, 3688 sizeof(union drv_info_to_mcp)); 3689 bnx2x_drv_info_iscsi_stat(bp); 3690 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3691 iscsiver = bnx2x_update_mng_version_utility(version, false); 3692 3693 memset(&bp->slowpath->drv_info_to_mcp, 0, 3694 sizeof(union drv_info_to_mcp)); 3695 bnx2x_drv_info_fcoe_stat(bp); 3696 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3697 fcoever = bnx2x_update_mng_version_utility(version, false); 3698 3699 out: 3700 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3701 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3702 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3703 3704 mutex_unlock(&bp->drv_info_mutex); 3705 3706 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3707 ethver, iscsiver, fcoever); 3708 } 3709 3710 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3711 { 3712 u32 drv_ver; 3713 u32 valid_dump; 3714 3715 if (!SHMEM2_HAS(bp, drv_info)) 3716 return; 3717 3718 /* Update Driver load time, possibly broken in y2038 */ 3719 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3720 3721 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3722 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3723 3724 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3725 3726 /* Check & notify On-Chip dump. */ 3727 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3728 3729 if (valid_dump & FIRST_DUMP_VALID) 3730 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3731 3732 if (valid_dump & SECOND_DUMP_VALID) 3733 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3734 } 3735 3736 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3737 { 3738 u32 cmd_ok, cmd_fail; 3739 3740 /* sanity */ 3741 if (event & DRV_STATUS_DCC_EVENT_MASK && 3742 event & DRV_STATUS_OEM_EVENT_MASK) { 3743 BNX2X_ERR("Received simultaneous events %08x\n", event); 3744 return; 3745 } 3746 3747 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3748 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3749 cmd_ok = DRV_MSG_CODE_DCC_OK; 3750 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3751 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3752 cmd_ok = DRV_MSG_CODE_OEM_OK; 3753 } 3754 3755 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3756 3757 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3758 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3759 /* This is the only place besides the function initialization 3760 * where the bp->flags can change so it is done without any 3761 * locks 3762 */ 3763 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3764 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3765 bp->flags |= MF_FUNC_DIS; 3766 3767 bnx2x_e1h_disable(bp); 3768 } else { 3769 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3770 bp->flags &= ~MF_FUNC_DIS; 3771 3772 bnx2x_e1h_enable(bp); 3773 } 3774 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3775 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3776 } 3777 3778 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3779 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3780 bnx2x_config_mf_bw(bp); 3781 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3782 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3783 } 3784 3785 /* Report results to MCP */ 3786 if (event) 3787 bnx2x_fw_command(bp, cmd_fail, 0); 3788 else 3789 bnx2x_fw_command(bp, cmd_ok, 0); 3790 } 3791 3792 /* must be called under the spq lock */ 3793 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3794 { 3795 struct eth_spe *next_spe = bp->spq_prod_bd; 3796 3797 if (bp->spq_prod_bd == bp->spq_last_bd) { 3798 bp->spq_prod_bd = bp->spq; 3799 bp->spq_prod_idx = 0; 3800 DP(BNX2X_MSG_SP, "end of spq\n"); 3801 } else { 3802 bp->spq_prod_bd++; 3803 bp->spq_prod_idx++; 3804 } 3805 return next_spe; 3806 } 3807 3808 /* must be called under the spq lock */ 3809 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3810 { 3811 int func = BP_FUNC(bp); 3812 3813 /* 3814 * Make sure that BD data is updated before writing the producer: 3815 * BD data is written to the memory, the producer is read from the 3816 * memory, thus we need a full memory barrier to ensure the ordering. 3817 */ 3818 mb(); 3819 3820 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3821 bp->spq_prod_idx); 3822 mmiowb(); 3823 } 3824 3825 /** 3826 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3827 * 3828 * @cmd: command to check 3829 * @cmd_type: command type 3830 */ 3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3832 { 3833 if ((cmd_type == NONE_CONNECTION_TYPE) || 3834 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3835 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3836 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3837 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3838 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3839 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3840 return true; 3841 else 3842 return false; 3843 } 3844 3845 /** 3846 * bnx2x_sp_post - place a single command on an SP ring 3847 * 3848 * @bp: driver handle 3849 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3850 * @cid: SW CID the command is related to 3851 * @data_hi: command private data address (high 32 bits) 3852 * @data_lo: command private data address (low 32 bits) 3853 * @cmd_type: command type (e.g. NONE, ETH) 3854 * 3855 * SP data is handled as if it's always an address pair, thus data fields are 3856 * not swapped to little endian in upper functions. Instead this function swaps 3857 * data as if it's two u32 fields. 3858 */ 3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3860 u32 data_hi, u32 data_lo, int cmd_type) 3861 { 3862 struct eth_spe *spe; 3863 u16 type; 3864 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3865 3866 #ifdef BNX2X_STOP_ON_ERROR 3867 if (unlikely(bp->panic)) { 3868 BNX2X_ERR("Can't post SP when there is panic\n"); 3869 return -EIO; 3870 } 3871 #endif 3872 3873 spin_lock_bh(&bp->spq_lock); 3874 3875 if (common) { 3876 if (!atomic_read(&bp->eq_spq_left)) { 3877 BNX2X_ERR("BUG! EQ ring full!\n"); 3878 spin_unlock_bh(&bp->spq_lock); 3879 bnx2x_panic(); 3880 return -EBUSY; 3881 } 3882 } else if (!atomic_read(&bp->cq_spq_left)) { 3883 BNX2X_ERR("BUG! SPQ ring full!\n"); 3884 spin_unlock_bh(&bp->spq_lock); 3885 bnx2x_panic(); 3886 return -EBUSY; 3887 } 3888 3889 spe = bnx2x_sp_get_next(bp); 3890 3891 /* CID needs port number to be encoded int it */ 3892 spe->hdr.conn_and_cmd_data = 3893 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3894 HW_CID(bp, cid)); 3895 3896 /* In some cases, type may already contain the func-id 3897 * mainly in SRIOV related use cases, so we add it here only 3898 * if it's not already set. 3899 */ 3900 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3901 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3902 SPE_HDR_CONN_TYPE; 3903 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3904 SPE_HDR_FUNCTION_ID); 3905 } else { 3906 type = cmd_type; 3907 } 3908 3909 spe->hdr.type = cpu_to_le16(type); 3910 3911 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3912 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3913 3914 /* 3915 * It's ok if the actual decrement is issued towards the memory 3916 * somewhere between the spin_lock and spin_unlock. Thus no 3917 * more explicit memory barrier is needed. 3918 */ 3919 if (common) 3920 atomic_dec(&bp->eq_spq_left); 3921 else 3922 atomic_dec(&bp->cq_spq_left); 3923 3924 DP(BNX2X_MSG_SP, 3925 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3926 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3927 (u32)(U64_LO(bp->spq_mapping) + 3928 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3929 HW_CID(bp, cid), data_hi, data_lo, type, 3930 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3931 3932 bnx2x_sp_prod_update(bp); 3933 spin_unlock_bh(&bp->spq_lock); 3934 return 0; 3935 } 3936 3937 /* acquire split MCP access lock register */ 3938 static int bnx2x_acquire_alr(struct bnx2x *bp) 3939 { 3940 u32 j, val; 3941 int rc = 0; 3942 3943 might_sleep(); 3944 for (j = 0; j < 1000; j++) { 3945 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3946 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3947 if (val & MCPR_ACCESS_LOCK_LOCK) 3948 break; 3949 3950 usleep_range(5000, 10000); 3951 } 3952 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3953 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3954 rc = -EBUSY; 3955 } 3956 3957 return rc; 3958 } 3959 3960 /* release split MCP access lock register */ 3961 static void bnx2x_release_alr(struct bnx2x *bp) 3962 { 3963 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3964 } 3965 3966 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3967 #define BNX2X_DEF_SB_IDX 0x0002 3968 3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3970 { 3971 struct host_sp_status_block *def_sb = bp->def_status_blk; 3972 u16 rc = 0; 3973 3974 barrier(); /* status block is written to by the chip */ 3975 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3976 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3977 rc |= BNX2X_DEF_SB_ATT_IDX; 3978 } 3979 3980 if (bp->def_idx != def_sb->sp_sb.running_index) { 3981 bp->def_idx = def_sb->sp_sb.running_index; 3982 rc |= BNX2X_DEF_SB_IDX; 3983 } 3984 3985 /* Do not reorder: indices reading should complete before handling */ 3986 barrier(); 3987 return rc; 3988 } 3989 3990 /* 3991 * slow path service functions 3992 */ 3993 3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3995 { 3996 int port = BP_PORT(bp); 3997 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3998 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3999 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 4000 NIG_REG_MASK_INTERRUPT_PORT0; 4001 u32 aeu_mask; 4002 u32 nig_mask = 0; 4003 u32 reg_addr; 4004 4005 if (bp->attn_state & asserted) 4006 BNX2X_ERR("IGU ERROR\n"); 4007 4008 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4009 aeu_mask = REG_RD(bp, aeu_addr); 4010 4011 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4012 aeu_mask, asserted); 4013 aeu_mask &= ~(asserted & 0x3ff); 4014 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4015 4016 REG_WR(bp, aeu_addr, aeu_mask); 4017 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4018 4019 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4020 bp->attn_state |= asserted; 4021 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4022 4023 if (asserted & ATTN_HARD_WIRED_MASK) { 4024 if (asserted & ATTN_NIG_FOR_FUNC) { 4025 4026 bnx2x_acquire_phy_lock(bp); 4027 4028 /* save nig interrupt mask */ 4029 nig_mask = REG_RD(bp, nig_int_mask_addr); 4030 4031 /* If nig_mask is not set, no need to call the update 4032 * function. 4033 */ 4034 if (nig_mask) { 4035 REG_WR(bp, nig_int_mask_addr, 0); 4036 4037 bnx2x_link_attn(bp); 4038 } 4039 4040 /* handle unicore attn? */ 4041 } 4042 if (asserted & ATTN_SW_TIMER_4_FUNC) 4043 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4044 4045 if (asserted & GPIO_2_FUNC) 4046 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4047 4048 if (asserted & GPIO_3_FUNC) 4049 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4050 4051 if (asserted & GPIO_4_FUNC) 4052 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4053 4054 if (port == 0) { 4055 if (asserted & ATTN_GENERAL_ATTN_1) { 4056 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4057 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4058 } 4059 if (asserted & ATTN_GENERAL_ATTN_2) { 4060 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4061 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4062 } 4063 if (asserted & ATTN_GENERAL_ATTN_3) { 4064 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4065 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4066 } 4067 } else { 4068 if (asserted & ATTN_GENERAL_ATTN_4) { 4069 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4070 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4071 } 4072 if (asserted & ATTN_GENERAL_ATTN_5) { 4073 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4074 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4075 } 4076 if (asserted & ATTN_GENERAL_ATTN_6) { 4077 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4078 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4079 } 4080 } 4081 4082 } /* if hardwired */ 4083 4084 if (bp->common.int_block == INT_BLOCK_HC) 4085 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4086 COMMAND_REG_ATTN_BITS_SET); 4087 else 4088 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4089 4090 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4091 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4092 REG_WR(bp, reg_addr, asserted); 4093 4094 /* now set back the mask */ 4095 if (asserted & ATTN_NIG_FOR_FUNC) { 4096 /* Verify that IGU ack through BAR was written before restoring 4097 * NIG mask. This loop should exit after 2-3 iterations max. 4098 */ 4099 if (bp->common.int_block != INT_BLOCK_HC) { 4100 u32 cnt = 0, igu_acked; 4101 do { 4102 igu_acked = REG_RD(bp, 4103 IGU_REG_ATTENTION_ACK_BITS); 4104 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4105 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4106 if (!igu_acked) 4107 DP(NETIF_MSG_HW, 4108 "Failed to verify IGU ack on time\n"); 4109 barrier(); 4110 } 4111 REG_WR(bp, nig_int_mask_addr, nig_mask); 4112 bnx2x_release_phy_lock(bp); 4113 } 4114 } 4115 4116 static void bnx2x_fan_failure(struct bnx2x *bp) 4117 { 4118 int port = BP_PORT(bp); 4119 u32 ext_phy_config; 4120 /* mark the failure */ 4121 ext_phy_config = 4122 SHMEM_RD(bp, 4123 dev_info.port_hw_config[port].external_phy_config); 4124 4125 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4126 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4127 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4128 ext_phy_config); 4129 4130 /* log the failure */ 4131 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4132 "Please contact OEM Support for assistance\n"); 4133 4134 /* Schedule device reset (unload) 4135 * This is due to some boards consuming sufficient power when driver is 4136 * up to overheat if fan fails. 4137 */ 4138 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4139 } 4140 4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4142 { 4143 int port = BP_PORT(bp); 4144 int reg_offset; 4145 u32 val; 4146 4147 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4148 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4149 4150 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4151 4152 val = REG_RD(bp, reg_offset); 4153 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4154 REG_WR(bp, reg_offset, val); 4155 4156 BNX2X_ERR("SPIO5 hw attention\n"); 4157 4158 /* Fan failure attention */ 4159 bnx2x_hw_reset_phy(&bp->link_params); 4160 bnx2x_fan_failure(bp); 4161 } 4162 4163 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4164 bnx2x_acquire_phy_lock(bp); 4165 bnx2x_handle_module_detect_int(&bp->link_params); 4166 bnx2x_release_phy_lock(bp); 4167 } 4168 4169 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4170 4171 val = REG_RD(bp, reg_offset); 4172 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4173 REG_WR(bp, reg_offset, val); 4174 4175 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4176 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4177 bnx2x_panic(); 4178 } 4179 } 4180 4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4182 { 4183 u32 val; 4184 4185 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4186 4187 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4188 BNX2X_ERR("DB hw attention 0x%x\n", val); 4189 /* DORQ discard attention */ 4190 if (val & 0x2) 4191 BNX2X_ERR("FATAL error from DORQ\n"); 4192 } 4193 4194 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4195 4196 int port = BP_PORT(bp); 4197 int reg_offset; 4198 4199 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4200 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4201 4202 val = REG_RD(bp, reg_offset); 4203 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4204 REG_WR(bp, reg_offset, val); 4205 4206 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4207 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4208 bnx2x_panic(); 4209 } 4210 } 4211 4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4213 { 4214 u32 val; 4215 4216 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4217 4218 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4219 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4220 /* CFC error attention */ 4221 if (val & 0x2) 4222 BNX2X_ERR("FATAL error from CFC\n"); 4223 } 4224 4225 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4226 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4227 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4228 /* RQ_USDMDP_FIFO_OVERFLOW */ 4229 if (val & 0x18000) 4230 BNX2X_ERR("FATAL error from PXP\n"); 4231 4232 if (!CHIP_IS_E1x(bp)) { 4233 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4234 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4235 } 4236 } 4237 4238 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4239 4240 int port = BP_PORT(bp); 4241 int reg_offset; 4242 4243 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4244 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4245 4246 val = REG_RD(bp, reg_offset); 4247 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4248 REG_WR(bp, reg_offset, val); 4249 4250 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4251 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4252 bnx2x_panic(); 4253 } 4254 } 4255 4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4257 { 4258 u32 val; 4259 4260 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4261 4262 if (attn & BNX2X_PMF_LINK_ASSERT) { 4263 int func = BP_FUNC(bp); 4264 4265 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4266 bnx2x_read_mf_cfg(bp); 4267 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4268 func_mf_config[BP_ABS_FUNC(bp)].config); 4269 val = SHMEM_RD(bp, 4270 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4271 4272 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4273 DRV_STATUS_OEM_EVENT_MASK)) 4274 bnx2x_oem_event(bp, 4275 (val & (DRV_STATUS_DCC_EVENT_MASK | 4276 DRV_STATUS_OEM_EVENT_MASK))); 4277 4278 if (val & DRV_STATUS_SET_MF_BW) 4279 bnx2x_set_mf_bw(bp); 4280 4281 if (val & DRV_STATUS_DRV_INFO_REQ) 4282 bnx2x_handle_drv_info_req(bp); 4283 4284 if (val & DRV_STATUS_VF_DISABLED) 4285 bnx2x_schedule_iov_task(bp, 4286 BNX2X_IOV_HANDLE_FLR); 4287 4288 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4289 bnx2x_pmf_update(bp); 4290 4291 if (bp->port.pmf && 4292 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4293 bp->dcbx_enabled > 0) 4294 /* start dcbx state machine */ 4295 bnx2x_dcbx_set_params(bp, 4296 BNX2X_DCBX_STATE_NEG_RECEIVED); 4297 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4298 bnx2x_handle_afex_cmd(bp, 4299 val & DRV_STATUS_AFEX_EVENT_MASK); 4300 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4301 bnx2x_handle_eee_event(bp); 4302 4303 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4304 bnx2x_handle_update_svid_cmd(bp); 4305 4306 if (bp->link_vars.periodic_flags & 4307 PERIODIC_FLAGS_LINK_EVENT) { 4308 /* sync with link */ 4309 bnx2x_acquire_phy_lock(bp); 4310 bp->link_vars.periodic_flags &= 4311 ~PERIODIC_FLAGS_LINK_EVENT; 4312 bnx2x_release_phy_lock(bp); 4313 if (IS_MF(bp)) 4314 bnx2x_link_sync_notify(bp); 4315 bnx2x_link_report(bp); 4316 } 4317 /* Always call it here: bnx2x_link_report() will 4318 * prevent the link indication duplication. 4319 */ 4320 bnx2x__link_status_update(bp); 4321 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4322 4323 BNX2X_ERR("MC assert!\n"); 4324 bnx2x_mc_assert(bp); 4325 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4326 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4327 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4328 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4329 bnx2x_panic(); 4330 4331 } else if (attn & BNX2X_MCP_ASSERT) { 4332 4333 BNX2X_ERR("MCP assert!\n"); 4334 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4335 bnx2x_fw_dump(bp); 4336 4337 } else 4338 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4339 } 4340 4341 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4342 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4343 if (attn & BNX2X_GRC_TIMEOUT) { 4344 val = CHIP_IS_E1(bp) ? 0 : 4345 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4346 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4347 } 4348 if (attn & BNX2X_GRC_RSV) { 4349 val = CHIP_IS_E1(bp) ? 0 : 4350 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4351 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4352 } 4353 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4354 } 4355 } 4356 4357 /* 4358 * Bits map: 4359 * 0-7 - Engine0 load counter. 4360 * 8-15 - Engine1 load counter. 4361 * 16 - Engine0 RESET_IN_PROGRESS bit. 4362 * 17 - Engine1 RESET_IN_PROGRESS bit. 4363 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4364 * on the engine 4365 * 19 - Engine1 ONE_IS_LOADED. 4366 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4367 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4368 * just the one belonging to its engine). 4369 * 4370 */ 4371 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4372 4373 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4374 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4375 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4376 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4377 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4378 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4379 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4380 4381 /* 4382 * Set the GLOBAL_RESET bit. 4383 * 4384 * Should be run under rtnl lock 4385 */ 4386 void bnx2x_set_reset_global(struct bnx2x *bp) 4387 { 4388 u32 val; 4389 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4390 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4391 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4392 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4393 } 4394 4395 /* 4396 * Clear the GLOBAL_RESET bit. 4397 * 4398 * Should be run under rtnl lock 4399 */ 4400 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4401 { 4402 u32 val; 4403 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4404 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4405 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4406 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4407 } 4408 4409 /* 4410 * Checks the GLOBAL_RESET bit. 4411 * 4412 * should be run under rtnl lock 4413 */ 4414 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4415 { 4416 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4417 4418 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4419 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4420 } 4421 4422 /* 4423 * Clear RESET_IN_PROGRESS bit for the current engine. 4424 * 4425 * Should be run under rtnl lock 4426 */ 4427 static void bnx2x_set_reset_done(struct bnx2x *bp) 4428 { 4429 u32 val; 4430 u32 bit = BP_PATH(bp) ? 4431 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4432 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4433 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4434 4435 /* Clear the bit */ 4436 val &= ~bit; 4437 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4438 4439 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4440 } 4441 4442 /* 4443 * Set RESET_IN_PROGRESS for the current engine. 4444 * 4445 * should be run under rtnl lock 4446 */ 4447 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4448 { 4449 u32 val; 4450 u32 bit = BP_PATH(bp) ? 4451 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4452 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4453 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4454 4455 /* Set the bit */ 4456 val |= bit; 4457 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4458 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4459 } 4460 4461 /* 4462 * Checks the RESET_IN_PROGRESS bit for the given engine. 4463 * should be run under rtnl lock 4464 */ 4465 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4466 { 4467 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4468 u32 bit = engine ? 4469 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4470 4471 /* return false if bit is set */ 4472 return (val & bit) ? false : true; 4473 } 4474 4475 /* 4476 * set pf load for the current pf. 4477 * 4478 * should be run under rtnl lock 4479 */ 4480 void bnx2x_set_pf_load(struct bnx2x *bp) 4481 { 4482 u32 val1, val; 4483 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4484 BNX2X_PATH0_LOAD_CNT_MASK; 4485 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4486 BNX2X_PATH0_LOAD_CNT_SHIFT; 4487 4488 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4489 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4490 4491 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4492 4493 /* get the current counter value */ 4494 val1 = (val & mask) >> shift; 4495 4496 /* set bit of that PF */ 4497 val1 |= (1 << bp->pf_num); 4498 4499 /* clear the old value */ 4500 val &= ~mask; 4501 4502 /* set the new one */ 4503 val |= ((val1 << shift) & mask); 4504 4505 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4506 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4507 } 4508 4509 /** 4510 * bnx2x_clear_pf_load - clear pf load mark 4511 * 4512 * @bp: driver handle 4513 * 4514 * Should be run under rtnl lock. 4515 * Decrements the load counter for the current engine. Returns 4516 * whether other functions are still loaded 4517 */ 4518 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4519 { 4520 u32 val1, val; 4521 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4522 BNX2X_PATH0_LOAD_CNT_MASK; 4523 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4524 BNX2X_PATH0_LOAD_CNT_SHIFT; 4525 4526 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4527 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4528 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4529 4530 /* get the current counter value */ 4531 val1 = (val & mask) >> shift; 4532 4533 /* clear bit of that PF */ 4534 val1 &= ~(1 << bp->pf_num); 4535 4536 /* clear the old value */ 4537 val &= ~mask; 4538 4539 /* set the new one */ 4540 val |= ((val1 << shift) & mask); 4541 4542 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4543 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4544 return val1 != 0; 4545 } 4546 4547 /* 4548 * Read the load status for the current engine. 4549 * 4550 * should be run under rtnl lock 4551 */ 4552 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4553 { 4554 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4555 BNX2X_PATH0_LOAD_CNT_MASK); 4556 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4557 BNX2X_PATH0_LOAD_CNT_SHIFT); 4558 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4559 4560 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4561 4562 val = (val & mask) >> shift; 4563 4564 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4565 engine, val); 4566 4567 return val != 0; 4568 } 4569 4570 static void _print_parity(struct bnx2x *bp, u32 reg) 4571 { 4572 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4573 } 4574 4575 static void _print_next_block(int idx, const char *blk) 4576 { 4577 pr_cont("%s%s", idx ? ", " : "", blk); 4578 } 4579 4580 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4581 int *par_num, bool print) 4582 { 4583 u32 cur_bit; 4584 bool res; 4585 int i; 4586 4587 res = false; 4588 4589 for (i = 0; sig; i++) { 4590 cur_bit = (0x1UL << i); 4591 if (sig & cur_bit) { 4592 res |= true; /* Each bit is real error! */ 4593 4594 if (print) { 4595 switch (cur_bit) { 4596 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4597 _print_next_block((*par_num)++, "BRB"); 4598 _print_parity(bp, 4599 BRB1_REG_BRB1_PRTY_STS); 4600 break; 4601 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4602 _print_next_block((*par_num)++, 4603 "PARSER"); 4604 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4605 break; 4606 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4607 _print_next_block((*par_num)++, "TSDM"); 4608 _print_parity(bp, 4609 TSDM_REG_TSDM_PRTY_STS); 4610 break; 4611 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4612 _print_next_block((*par_num)++, 4613 "SEARCHER"); 4614 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4615 break; 4616 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4617 _print_next_block((*par_num)++, "TCM"); 4618 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4619 break; 4620 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4621 _print_next_block((*par_num)++, 4622 "TSEMI"); 4623 _print_parity(bp, 4624 TSEM_REG_TSEM_PRTY_STS_0); 4625 _print_parity(bp, 4626 TSEM_REG_TSEM_PRTY_STS_1); 4627 break; 4628 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4629 _print_next_block((*par_num)++, "XPB"); 4630 _print_parity(bp, GRCBASE_XPB + 4631 PB_REG_PB_PRTY_STS); 4632 break; 4633 } 4634 } 4635 4636 /* Clear the bit */ 4637 sig &= ~cur_bit; 4638 } 4639 } 4640 4641 return res; 4642 } 4643 4644 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4645 int *par_num, bool *global, 4646 bool print) 4647 { 4648 u32 cur_bit; 4649 bool res; 4650 int i; 4651 4652 res = false; 4653 4654 for (i = 0; sig; i++) { 4655 cur_bit = (0x1UL << i); 4656 if (sig & cur_bit) { 4657 res |= true; /* Each bit is real error! */ 4658 switch (cur_bit) { 4659 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4660 if (print) { 4661 _print_next_block((*par_num)++, "PBF"); 4662 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4663 } 4664 break; 4665 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4666 if (print) { 4667 _print_next_block((*par_num)++, "QM"); 4668 _print_parity(bp, QM_REG_QM_PRTY_STS); 4669 } 4670 break; 4671 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4672 if (print) { 4673 _print_next_block((*par_num)++, "TM"); 4674 _print_parity(bp, TM_REG_TM_PRTY_STS); 4675 } 4676 break; 4677 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4678 if (print) { 4679 _print_next_block((*par_num)++, "XSDM"); 4680 _print_parity(bp, 4681 XSDM_REG_XSDM_PRTY_STS); 4682 } 4683 break; 4684 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4685 if (print) { 4686 _print_next_block((*par_num)++, "XCM"); 4687 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4688 } 4689 break; 4690 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4691 if (print) { 4692 _print_next_block((*par_num)++, 4693 "XSEMI"); 4694 _print_parity(bp, 4695 XSEM_REG_XSEM_PRTY_STS_0); 4696 _print_parity(bp, 4697 XSEM_REG_XSEM_PRTY_STS_1); 4698 } 4699 break; 4700 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4701 if (print) { 4702 _print_next_block((*par_num)++, 4703 "DOORBELLQ"); 4704 _print_parity(bp, 4705 DORQ_REG_DORQ_PRTY_STS); 4706 } 4707 break; 4708 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4709 if (print) { 4710 _print_next_block((*par_num)++, "NIG"); 4711 if (CHIP_IS_E1x(bp)) { 4712 _print_parity(bp, 4713 NIG_REG_NIG_PRTY_STS); 4714 } else { 4715 _print_parity(bp, 4716 NIG_REG_NIG_PRTY_STS_0); 4717 _print_parity(bp, 4718 NIG_REG_NIG_PRTY_STS_1); 4719 } 4720 } 4721 break; 4722 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4723 if (print) 4724 _print_next_block((*par_num)++, 4725 "VAUX PCI CORE"); 4726 *global = true; 4727 break; 4728 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4729 if (print) { 4730 _print_next_block((*par_num)++, 4731 "DEBUG"); 4732 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4733 } 4734 break; 4735 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4736 if (print) { 4737 _print_next_block((*par_num)++, "USDM"); 4738 _print_parity(bp, 4739 USDM_REG_USDM_PRTY_STS); 4740 } 4741 break; 4742 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4743 if (print) { 4744 _print_next_block((*par_num)++, "UCM"); 4745 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4746 } 4747 break; 4748 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4749 if (print) { 4750 _print_next_block((*par_num)++, 4751 "USEMI"); 4752 _print_parity(bp, 4753 USEM_REG_USEM_PRTY_STS_0); 4754 _print_parity(bp, 4755 USEM_REG_USEM_PRTY_STS_1); 4756 } 4757 break; 4758 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4759 if (print) { 4760 _print_next_block((*par_num)++, "UPB"); 4761 _print_parity(bp, GRCBASE_UPB + 4762 PB_REG_PB_PRTY_STS); 4763 } 4764 break; 4765 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4766 if (print) { 4767 _print_next_block((*par_num)++, "CSDM"); 4768 _print_parity(bp, 4769 CSDM_REG_CSDM_PRTY_STS); 4770 } 4771 break; 4772 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4773 if (print) { 4774 _print_next_block((*par_num)++, "CCM"); 4775 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4776 } 4777 break; 4778 } 4779 4780 /* Clear the bit */ 4781 sig &= ~cur_bit; 4782 } 4783 } 4784 4785 return res; 4786 } 4787 4788 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4789 int *par_num, bool print) 4790 { 4791 u32 cur_bit; 4792 bool res; 4793 int i; 4794 4795 res = false; 4796 4797 for (i = 0; sig; i++) { 4798 cur_bit = (0x1UL << i); 4799 if (sig & cur_bit) { 4800 res = true; /* Each bit is real error! */ 4801 if (print) { 4802 switch (cur_bit) { 4803 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4804 _print_next_block((*par_num)++, 4805 "CSEMI"); 4806 _print_parity(bp, 4807 CSEM_REG_CSEM_PRTY_STS_0); 4808 _print_parity(bp, 4809 CSEM_REG_CSEM_PRTY_STS_1); 4810 break; 4811 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4812 _print_next_block((*par_num)++, "PXP"); 4813 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4814 _print_parity(bp, 4815 PXP2_REG_PXP2_PRTY_STS_0); 4816 _print_parity(bp, 4817 PXP2_REG_PXP2_PRTY_STS_1); 4818 break; 4819 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4820 _print_next_block((*par_num)++, 4821 "PXPPCICLOCKCLIENT"); 4822 break; 4823 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4824 _print_next_block((*par_num)++, "CFC"); 4825 _print_parity(bp, 4826 CFC_REG_CFC_PRTY_STS); 4827 break; 4828 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4829 _print_next_block((*par_num)++, "CDU"); 4830 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4831 break; 4832 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4833 _print_next_block((*par_num)++, "DMAE"); 4834 _print_parity(bp, 4835 DMAE_REG_DMAE_PRTY_STS); 4836 break; 4837 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4838 _print_next_block((*par_num)++, "IGU"); 4839 if (CHIP_IS_E1x(bp)) 4840 _print_parity(bp, 4841 HC_REG_HC_PRTY_STS); 4842 else 4843 _print_parity(bp, 4844 IGU_REG_IGU_PRTY_STS); 4845 break; 4846 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4847 _print_next_block((*par_num)++, "MISC"); 4848 _print_parity(bp, 4849 MISC_REG_MISC_PRTY_STS); 4850 break; 4851 } 4852 } 4853 4854 /* Clear the bit */ 4855 sig &= ~cur_bit; 4856 } 4857 } 4858 4859 return res; 4860 } 4861 4862 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4863 int *par_num, bool *global, 4864 bool print) 4865 { 4866 bool res = false; 4867 u32 cur_bit; 4868 int i; 4869 4870 for (i = 0; sig; i++) { 4871 cur_bit = (0x1UL << i); 4872 if (sig & cur_bit) { 4873 switch (cur_bit) { 4874 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4875 if (print) 4876 _print_next_block((*par_num)++, 4877 "MCP ROM"); 4878 *global = true; 4879 res = true; 4880 break; 4881 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4882 if (print) 4883 _print_next_block((*par_num)++, 4884 "MCP UMP RX"); 4885 *global = true; 4886 res = true; 4887 break; 4888 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4889 if (print) 4890 _print_next_block((*par_num)++, 4891 "MCP UMP TX"); 4892 *global = true; 4893 res = true; 4894 break; 4895 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4896 (*par_num)++; 4897 /* clear latched SCPAD PATIRY from MCP */ 4898 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4899 1UL << 10); 4900 break; 4901 } 4902 4903 /* Clear the bit */ 4904 sig &= ~cur_bit; 4905 } 4906 } 4907 4908 return res; 4909 } 4910 4911 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4912 int *par_num, bool print) 4913 { 4914 u32 cur_bit; 4915 bool res; 4916 int i; 4917 4918 res = false; 4919 4920 for (i = 0; sig; i++) { 4921 cur_bit = (0x1UL << i); 4922 if (sig & cur_bit) { 4923 res = true; /* Each bit is real error! */ 4924 if (print) { 4925 switch (cur_bit) { 4926 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4927 _print_next_block((*par_num)++, 4928 "PGLUE_B"); 4929 _print_parity(bp, 4930 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4931 break; 4932 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4933 _print_next_block((*par_num)++, "ATC"); 4934 _print_parity(bp, 4935 ATC_REG_ATC_PRTY_STS); 4936 break; 4937 } 4938 } 4939 /* Clear the bit */ 4940 sig &= ~cur_bit; 4941 } 4942 } 4943 4944 return res; 4945 } 4946 4947 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4948 u32 *sig) 4949 { 4950 bool res = false; 4951 4952 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4953 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4954 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4955 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4956 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4957 int par_num = 0; 4958 4959 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4960 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4961 sig[0] & HW_PRTY_ASSERT_SET_0, 4962 sig[1] & HW_PRTY_ASSERT_SET_1, 4963 sig[2] & HW_PRTY_ASSERT_SET_2, 4964 sig[3] & HW_PRTY_ASSERT_SET_3, 4965 sig[4] & HW_PRTY_ASSERT_SET_4); 4966 if (print) { 4967 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4968 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4969 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4970 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4971 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4972 netdev_err(bp->dev, 4973 "Parity errors detected in blocks: "); 4974 } else { 4975 print = false; 4976 } 4977 } 4978 res |= bnx2x_check_blocks_with_parity0(bp, 4979 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4980 res |= bnx2x_check_blocks_with_parity1(bp, 4981 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4982 res |= bnx2x_check_blocks_with_parity2(bp, 4983 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4984 res |= bnx2x_check_blocks_with_parity3(bp, 4985 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4986 res |= bnx2x_check_blocks_with_parity4(bp, 4987 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4988 4989 if (print) 4990 pr_cont("\n"); 4991 } 4992 4993 return res; 4994 } 4995 4996 /** 4997 * bnx2x_chk_parity_attn - checks for parity attentions. 4998 * 4999 * @bp: driver handle 5000 * @global: true if there was a global attention 5001 * @print: show parity attention in syslog 5002 */ 5003 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5004 { 5005 struct attn_route attn = { {0} }; 5006 int port = BP_PORT(bp); 5007 5008 attn.sig[0] = REG_RD(bp, 5009 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5010 port*4); 5011 attn.sig[1] = REG_RD(bp, 5012 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5013 port*4); 5014 attn.sig[2] = REG_RD(bp, 5015 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5016 port*4); 5017 attn.sig[3] = REG_RD(bp, 5018 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5019 port*4); 5020 /* Since MCP attentions can't be disabled inside the block, we need to 5021 * read AEU registers to see whether they're currently disabled 5022 */ 5023 attn.sig[3] &= ((REG_RD(bp, 5024 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5025 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5026 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5027 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5028 5029 if (!CHIP_IS_E1x(bp)) 5030 attn.sig[4] = REG_RD(bp, 5031 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5032 port*4); 5033 5034 return bnx2x_parity_attn(bp, global, print, attn.sig); 5035 } 5036 5037 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5038 { 5039 u32 val; 5040 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5041 5042 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5043 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5044 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5045 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5046 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5047 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5048 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5049 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5050 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5051 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5052 if (val & 5053 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5054 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5055 if (val & 5056 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5062 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5063 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5064 } 5065 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5066 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5067 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5068 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5069 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5070 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5071 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5072 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5073 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5074 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5075 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5076 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5077 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5078 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5079 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5080 } 5081 5082 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5083 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5084 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5085 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5086 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5087 } 5088 } 5089 5090 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5091 { 5092 struct attn_route attn, *group_mask; 5093 int port = BP_PORT(bp); 5094 int index; 5095 u32 reg_addr; 5096 u32 val; 5097 u32 aeu_mask; 5098 bool global = false; 5099 5100 /* need to take HW lock because MCP or other port might also 5101 try to handle this event */ 5102 bnx2x_acquire_alr(bp); 5103 5104 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5105 #ifndef BNX2X_STOP_ON_ERROR 5106 bp->recovery_state = BNX2X_RECOVERY_INIT; 5107 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5108 /* Disable HW interrupts */ 5109 bnx2x_int_disable(bp); 5110 /* In case of parity errors don't handle attentions so that 5111 * other function would "see" parity errors. 5112 */ 5113 #else 5114 bnx2x_panic(); 5115 #endif 5116 bnx2x_release_alr(bp); 5117 return; 5118 } 5119 5120 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5121 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5122 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5123 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5124 if (!CHIP_IS_E1x(bp)) 5125 attn.sig[4] = 5126 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5127 else 5128 attn.sig[4] = 0; 5129 5130 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5131 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5132 5133 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5134 if (deasserted & (1 << index)) { 5135 group_mask = &bp->attn_group[index]; 5136 5137 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5138 index, 5139 group_mask->sig[0], group_mask->sig[1], 5140 group_mask->sig[2], group_mask->sig[3], 5141 group_mask->sig[4]); 5142 5143 bnx2x_attn_int_deasserted4(bp, 5144 attn.sig[4] & group_mask->sig[4]); 5145 bnx2x_attn_int_deasserted3(bp, 5146 attn.sig[3] & group_mask->sig[3]); 5147 bnx2x_attn_int_deasserted1(bp, 5148 attn.sig[1] & group_mask->sig[1]); 5149 bnx2x_attn_int_deasserted2(bp, 5150 attn.sig[2] & group_mask->sig[2]); 5151 bnx2x_attn_int_deasserted0(bp, 5152 attn.sig[0] & group_mask->sig[0]); 5153 } 5154 } 5155 5156 bnx2x_release_alr(bp); 5157 5158 if (bp->common.int_block == INT_BLOCK_HC) 5159 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5160 COMMAND_REG_ATTN_BITS_CLR); 5161 else 5162 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5163 5164 val = ~deasserted; 5165 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5166 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5167 REG_WR(bp, reg_addr, val); 5168 5169 if (~bp->attn_state & deasserted) 5170 BNX2X_ERR("IGU ERROR\n"); 5171 5172 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5173 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5174 5175 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5176 aeu_mask = REG_RD(bp, reg_addr); 5177 5178 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5179 aeu_mask, deasserted); 5180 aeu_mask |= (deasserted & 0x3ff); 5181 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5182 5183 REG_WR(bp, reg_addr, aeu_mask); 5184 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5185 5186 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5187 bp->attn_state &= ~deasserted; 5188 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5189 } 5190 5191 static void bnx2x_attn_int(struct bnx2x *bp) 5192 { 5193 /* read local copy of bits */ 5194 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5195 attn_bits); 5196 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5197 attn_bits_ack); 5198 u32 attn_state = bp->attn_state; 5199 5200 /* look for changed bits */ 5201 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5202 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5203 5204 DP(NETIF_MSG_HW, 5205 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5206 attn_bits, attn_ack, asserted, deasserted); 5207 5208 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5209 BNX2X_ERR("BAD attention state\n"); 5210 5211 /* handle bits that were raised */ 5212 if (asserted) 5213 bnx2x_attn_int_asserted(bp, asserted); 5214 5215 if (deasserted) 5216 bnx2x_attn_int_deasserted(bp, deasserted); 5217 } 5218 5219 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5220 u16 index, u8 op, u8 update) 5221 { 5222 u32 igu_addr = bp->igu_base_addr; 5223 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5224 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5225 igu_addr); 5226 } 5227 5228 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5229 { 5230 /* No memory barriers */ 5231 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5232 mmiowb(); /* keep prod updates ordered */ 5233 } 5234 5235 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5236 union event_ring_elem *elem) 5237 { 5238 u8 err = elem->message.error; 5239 5240 if (!bp->cnic_eth_dev.starting_cid || 5241 (cid < bp->cnic_eth_dev.starting_cid && 5242 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5243 return 1; 5244 5245 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5246 5247 if (unlikely(err)) { 5248 5249 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5250 cid); 5251 bnx2x_panic_dump(bp, false); 5252 } 5253 bnx2x_cnic_cfc_comp(bp, cid, err); 5254 return 0; 5255 } 5256 5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5258 { 5259 struct bnx2x_mcast_ramrod_params rparam; 5260 int rc; 5261 5262 memset(&rparam, 0, sizeof(rparam)); 5263 5264 rparam.mcast_obj = &bp->mcast_obj; 5265 5266 netif_addr_lock_bh(bp->dev); 5267 5268 /* Clear pending state for the last command */ 5269 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5270 5271 /* If there are pending mcast commands - send them */ 5272 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5273 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5274 if (rc < 0) 5275 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5276 rc); 5277 } 5278 5279 netif_addr_unlock_bh(bp->dev); 5280 } 5281 5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5283 union event_ring_elem *elem) 5284 { 5285 unsigned long ramrod_flags = 0; 5286 int rc = 0; 5287 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5288 u32 cid = echo & BNX2X_SWCID_MASK; 5289 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5290 5291 /* Always push next commands out, don't wait here */ 5292 __set_bit(RAMROD_CONT, &ramrod_flags); 5293 5294 switch (echo >> BNX2X_SWCID_SHIFT) { 5295 case BNX2X_FILTER_MAC_PENDING: 5296 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5297 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5298 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5299 else 5300 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5301 5302 break; 5303 case BNX2X_FILTER_VLAN_PENDING: 5304 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5305 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5306 break; 5307 case BNX2X_FILTER_MCAST_PENDING: 5308 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5309 /* This is only relevant for 57710 where multicast MACs are 5310 * configured as unicast MACs using the same ramrod. 5311 */ 5312 bnx2x_handle_mcast_eqe(bp); 5313 return; 5314 default: 5315 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5316 return; 5317 } 5318 5319 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5320 5321 if (rc < 0) 5322 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5323 else if (rc > 0) 5324 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5325 } 5326 5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5328 5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5330 { 5331 netif_addr_lock_bh(bp->dev); 5332 5333 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5334 5335 /* Send rx_mode command again if was requested */ 5336 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5337 bnx2x_set_storm_rx_mode(bp); 5338 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5339 &bp->sp_state)) 5340 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5341 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5342 &bp->sp_state)) 5343 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5344 5345 netif_addr_unlock_bh(bp->dev); 5346 } 5347 5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5349 union event_ring_elem *elem) 5350 { 5351 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5352 DP(BNX2X_MSG_SP, 5353 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5354 elem->message.data.vif_list_event.func_bit_map); 5355 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5356 elem->message.data.vif_list_event.func_bit_map); 5357 } else if (elem->message.data.vif_list_event.echo == 5358 VIF_LIST_RULE_SET) { 5359 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5360 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5361 } 5362 } 5363 5364 /* called with rtnl_lock */ 5365 static void bnx2x_after_function_update(struct bnx2x *bp) 5366 { 5367 int q, rc; 5368 struct bnx2x_fastpath *fp; 5369 struct bnx2x_queue_state_params queue_params = {NULL}; 5370 struct bnx2x_queue_update_params *q_update_params = 5371 &queue_params.params.update; 5372 5373 /* Send Q update command with afex vlan removal values for all Qs */ 5374 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5375 5376 /* set silent vlan removal values according to vlan mode */ 5377 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5378 &q_update_params->update_flags); 5379 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5380 &q_update_params->update_flags); 5381 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5382 5383 /* in access mode mark mask and value are 0 to strip all vlans */ 5384 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5385 q_update_params->silent_removal_value = 0; 5386 q_update_params->silent_removal_mask = 0; 5387 } else { 5388 q_update_params->silent_removal_value = 5389 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5390 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5391 } 5392 5393 for_each_eth_queue(bp, q) { 5394 /* Set the appropriate Queue object */ 5395 fp = &bp->fp[q]; 5396 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5397 5398 /* send the ramrod */ 5399 rc = bnx2x_queue_state_change(bp, &queue_params); 5400 if (rc < 0) 5401 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5402 q); 5403 } 5404 5405 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5406 fp = &bp->fp[FCOE_IDX(bp)]; 5407 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5408 5409 /* clear pending completion bit */ 5410 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5411 5412 /* mark latest Q bit */ 5413 smp_mb__before_atomic(); 5414 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5415 smp_mb__after_atomic(); 5416 5417 /* send Q update ramrod for FCoE Q */ 5418 rc = bnx2x_queue_state_change(bp, &queue_params); 5419 if (rc < 0) 5420 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5421 q); 5422 } else { 5423 /* If no FCoE ring - ACK MCP now */ 5424 bnx2x_link_report(bp); 5425 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5426 } 5427 } 5428 5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5430 struct bnx2x *bp, u32 cid) 5431 { 5432 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5433 5434 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5435 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5436 else 5437 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5438 } 5439 5440 static void bnx2x_eq_int(struct bnx2x *bp) 5441 { 5442 u16 hw_cons, sw_cons, sw_prod; 5443 union event_ring_elem *elem; 5444 u8 echo; 5445 u32 cid; 5446 u8 opcode; 5447 int rc, spqe_cnt = 0; 5448 struct bnx2x_queue_sp_obj *q_obj; 5449 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5450 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5451 5452 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5453 5454 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5455 * when we get the next-page we need to adjust so the loop 5456 * condition below will be met. The next element is the size of a 5457 * regular element and hence incrementing by 1 5458 */ 5459 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5460 hw_cons++; 5461 5462 /* This function may never run in parallel with itself for a 5463 * specific bp, thus there is no need in "paired" read memory 5464 * barrier here. 5465 */ 5466 sw_cons = bp->eq_cons; 5467 sw_prod = bp->eq_prod; 5468 5469 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5470 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5471 5472 for (; sw_cons != hw_cons; 5473 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5474 5475 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5476 5477 rc = bnx2x_iov_eq_sp_event(bp, elem); 5478 if (!rc) { 5479 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5480 rc); 5481 goto next_spqe; 5482 } 5483 5484 opcode = elem->message.opcode; 5485 5486 /* handle eq element */ 5487 switch (opcode) { 5488 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5489 bnx2x_vf_mbx_schedule(bp, 5490 &elem->message.data.vf_pf_event); 5491 continue; 5492 5493 case EVENT_RING_OPCODE_STAT_QUERY: 5494 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5495 "got statistics comp event %d\n", 5496 bp->stats_comp++); 5497 /* nothing to do with stats comp */ 5498 goto next_spqe; 5499 5500 case EVENT_RING_OPCODE_CFC_DEL: 5501 /* handle according to cid range */ 5502 /* 5503 * we may want to verify here that the bp state is 5504 * HALTING 5505 */ 5506 5507 /* elem CID originates from FW; actually LE */ 5508 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5509 5510 DP(BNX2X_MSG_SP, 5511 "got delete ramrod for MULTI[%d]\n", cid); 5512 5513 if (CNIC_LOADED(bp) && 5514 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5515 goto next_spqe; 5516 5517 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5518 5519 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5520 break; 5521 5522 goto next_spqe; 5523 5524 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5525 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5526 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5527 if (f_obj->complete_cmd(bp, f_obj, 5528 BNX2X_F_CMD_TX_STOP)) 5529 break; 5530 goto next_spqe; 5531 5532 case EVENT_RING_OPCODE_START_TRAFFIC: 5533 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5534 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5535 if (f_obj->complete_cmd(bp, f_obj, 5536 BNX2X_F_CMD_TX_START)) 5537 break; 5538 goto next_spqe; 5539 5540 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5541 echo = elem->message.data.function_update_event.echo; 5542 if (echo == SWITCH_UPDATE) { 5543 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5544 "got FUNC_SWITCH_UPDATE ramrod\n"); 5545 if (f_obj->complete_cmd( 5546 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5547 break; 5548 5549 } else { 5550 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5551 5552 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5553 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5554 f_obj->complete_cmd(bp, f_obj, 5555 BNX2X_F_CMD_AFEX_UPDATE); 5556 5557 /* We will perform the Queues update from 5558 * sp_rtnl task as all Queue SP operations 5559 * should run under rtnl_lock. 5560 */ 5561 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5562 } 5563 5564 goto next_spqe; 5565 5566 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5567 f_obj->complete_cmd(bp, f_obj, 5568 BNX2X_F_CMD_AFEX_VIFLISTS); 5569 bnx2x_after_afex_vif_lists(bp, elem); 5570 goto next_spqe; 5571 case EVENT_RING_OPCODE_FUNCTION_START: 5572 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5573 "got FUNC_START ramrod\n"); 5574 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5575 break; 5576 5577 goto next_spqe; 5578 5579 case EVENT_RING_OPCODE_FUNCTION_STOP: 5580 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5581 "got FUNC_STOP ramrod\n"); 5582 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5583 break; 5584 5585 goto next_spqe; 5586 5587 case EVENT_RING_OPCODE_SET_TIMESYNC: 5588 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5589 "got set_timesync ramrod completion\n"); 5590 if (f_obj->complete_cmd(bp, f_obj, 5591 BNX2X_F_CMD_SET_TIMESYNC)) 5592 break; 5593 goto next_spqe; 5594 } 5595 5596 switch (opcode | bp->state) { 5597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5598 BNX2X_STATE_OPEN): 5599 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5600 BNX2X_STATE_OPENING_WAIT4_PORT): 5601 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5602 BNX2X_STATE_CLOSING_WAIT4_HALT): 5603 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5604 SW_CID(elem->message.data.eth_event.echo)); 5605 rss_raw->clear_pending(rss_raw); 5606 break; 5607 5608 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5609 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5610 case (EVENT_RING_OPCODE_SET_MAC | 5611 BNX2X_STATE_CLOSING_WAIT4_HALT): 5612 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5613 BNX2X_STATE_OPEN): 5614 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5615 BNX2X_STATE_DIAG): 5616 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5617 BNX2X_STATE_CLOSING_WAIT4_HALT): 5618 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5619 bnx2x_handle_classification_eqe(bp, elem); 5620 break; 5621 5622 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5623 BNX2X_STATE_OPEN): 5624 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5625 BNX2X_STATE_DIAG): 5626 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5627 BNX2X_STATE_CLOSING_WAIT4_HALT): 5628 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5629 bnx2x_handle_mcast_eqe(bp); 5630 break; 5631 5632 case (EVENT_RING_OPCODE_FILTERS_RULES | 5633 BNX2X_STATE_OPEN): 5634 case (EVENT_RING_OPCODE_FILTERS_RULES | 5635 BNX2X_STATE_DIAG): 5636 case (EVENT_RING_OPCODE_FILTERS_RULES | 5637 BNX2X_STATE_CLOSING_WAIT4_HALT): 5638 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5639 bnx2x_handle_rx_mode_eqe(bp); 5640 break; 5641 default: 5642 /* unknown event log error and continue */ 5643 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5644 elem->message.opcode, bp->state); 5645 } 5646 next_spqe: 5647 spqe_cnt++; 5648 } /* for */ 5649 5650 smp_mb__before_atomic(); 5651 atomic_add(spqe_cnt, &bp->eq_spq_left); 5652 5653 bp->eq_cons = sw_cons; 5654 bp->eq_prod = sw_prod; 5655 /* Make sure that above mem writes were issued towards the memory */ 5656 smp_wmb(); 5657 5658 /* update producer */ 5659 bnx2x_update_eq_prod(bp, bp->eq_prod); 5660 } 5661 5662 static void bnx2x_sp_task(struct work_struct *work) 5663 { 5664 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5665 5666 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5667 5668 /* make sure the atomic interrupt_occurred has been written */ 5669 smp_rmb(); 5670 if (atomic_read(&bp->interrupt_occurred)) { 5671 5672 /* what work needs to be performed? */ 5673 u16 status = bnx2x_update_dsb_idx(bp); 5674 5675 DP(BNX2X_MSG_SP, "status %x\n", status); 5676 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5677 atomic_set(&bp->interrupt_occurred, 0); 5678 5679 /* HW attentions */ 5680 if (status & BNX2X_DEF_SB_ATT_IDX) { 5681 bnx2x_attn_int(bp); 5682 status &= ~BNX2X_DEF_SB_ATT_IDX; 5683 } 5684 5685 /* SP events: STAT_QUERY and others */ 5686 if (status & BNX2X_DEF_SB_IDX) { 5687 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5688 5689 if (FCOE_INIT(bp) && 5690 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5691 /* Prevent local bottom-halves from running as 5692 * we are going to change the local NAPI list. 5693 */ 5694 local_bh_disable(); 5695 napi_schedule(&bnx2x_fcoe(bp, napi)); 5696 local_bh_enable(); 5697 } 5698 5699 /* Handle EQ completions */ 5700 bnx2x_eq_int(bp); 5701 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5702 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5703 5704 status &= ~BNX2X_DEF_SB_IDX; 5705 } 5706 5707 /* if status is non zero then perhaps something went wrong */ 5708 if (unlikely(status)) 5709 DP(BNX2X_MSG_SP, 5710 "got an unknown interrupt! (status 0x%x)\n", status); 5711 5712 /* ack status block only if something was actually handled */ 5713 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5714 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5715 } 5716 5717 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5718 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5719 &bp->sp_state)) { 5720 bnx2x_link_report(bp); 5721 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5722 } 5723 } 5724 5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5726 { 5727 struct net_device *dev = dev_instance; 5728 struct bnx2x *bp = netdev_priv(dev); 5729 5730 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5731 IGU_INT_DISABLE, 0); 5732 5733 #ifdef BNX2X_STOP_ON_ERROR 5734 if (unlikely(bp->panic)) 5735 return IRQ_HANDLED; 5736 #endif 5737 5738 if (CNIC_LOADED(bp)) { 5739 struct cnic_ops *c_ops; 5740 5741 rcu_read_lock(); 5742 c_ops = rcu_dereference(bp->cnic_ops); 5743 if (c_ops) 5744 c_ops->cnic_handler(bp->cnic_data, NULL); 5745 rcu_read_unlock(); 5746 } 5747 5748 /* schedule sp task to perform default status block work, ack 5749 * attentions and enable interrupts. 5750 */ 5751 bnx2x_schedule_sp_task(bp); 5752 5753 return IRQ_HANDLED; 5754 } 5755 5756 /* end of slow path */ 5757 5758 void bnx2x_drv_pulse(struct bnx2x *bp) 5759 { 5760 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5761 bp->fw_drv_pulse_wr_seq); 5762 } 5763 5764 static void bnx2x_timer(struct timer_list *t) 5765 { 5766 struct bnx2x *bp = from_timer(bp, t, timer); 5767 5768 if (!netif_running(bp->dev)) 5769 return; 5770 5771 if (IS_PF(bp) && 5772 !BP_NOMCP(bp)) { 5773 int mb_idx = BP_FW_MB_IDX(bp); 5774 u16 drv_pulse; 5775 u16 mcp_pulse; 5776 5777 ++bp->fw_drv_pulse_wr_seq; 5778 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5779 drv_pulse = bp->fw_drv_pulse_wr_seq; 5780 bnx2x_drv_pulse(bp); 5781 5782 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5783 MCP_PULSE_SEQ_MASK); 5784 /* The delta between driver pulse and mcp response 5785 * should not get too big. If the MFW is more than 5 pulses 5786 * behind, we should worry about it enough to generate an error 5787 * log. 5788 */ 5789 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5790 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5791 drv_pulse, mcp_pulse); 5792 } 5793 5794 if (bp->state == BNX2X_STATE_OPEN) 5795 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5796 5797 /* sample pf vf bulletin board for new posts from pf */ 5798 if (IS_VF(bp)) 5799 bnx2x_timer_sriov(bp); 5800 5801 mod_timer(&bp->timer, jiffies + bp->current_interval); 5802 } 5803 5804 /* end of Statistics */ 5805 5806 /* nic init */ 5807 5808 /* 5809 * nic init service functions 5810 */ 5811 5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5813 { 5814 u32 i; 5815 if (!(len%4) && !(addr%4)) 5816 for (i = 0; i < len; i += 4) 5817 REG_WR(bp, addr + i, fill); 5818 else 5819 for (i = 0; i < len; i++) 5820 REG_WR8(bp, addr + i, fill); 5821 } 5822 5823 /* helper: writes FP SP data to FW - data_size in dwords */ 5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5825 int fw_sb_id, 5826 u32 *sb_data_p, 5827 u32 data_size) 5828 { 5829 int index; 5830 for (index = 0; index < data_size; index++) 5831 REG_WR(bp, BAR_CSTRORM_INTMEM + 5832 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5833 sizeof(u32)*index, 5834 *(sb_data_p + index)); 5835 } 5836 5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5838 { 5839 u32 *sb_data_p; 5840 u32 data_size = 0; 5841 struct hc_status_block_data_e2 sb_data_e2; 5842 struct hc_status_block_data_e1x sb_data_e1x; 5843 5844 /* disable the function first */ 5845 if (!CHIP_IS_E1x(bp)) { 5846 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5847 sb_data_e2.common.state = SB_DISABLED; 5848 sb_data_e2.common.p_func.vf_valid = false; 5849 sb_data_p = (u32 *)&sb_data_e2; 5850 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5851 } else { 5852 memset(&sb_data_e1x, 0, 5853 sizeof(struct hc_status_block_data_e1x)); 5854 sb_data_e1x.common.state = SB_DISABLED; 5855 sb_data_e1x.common.p_func.vf_valid = false; 5856 sb_data_p = (u32 *)&sb_data_e1x; 5857 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5858 } 5859 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5860 5861 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5862 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5863 CSTORM_STATUS_BLOCK_SIZE); 5864 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5865 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5866 CSTORM_SYNC_BLOCK_SIZE); 5867 } 5868 5869 /* helper: writes SP SB data to FW */ 5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5871 struct hc_sp_status_block_data *sp_sb_data) 5872 { 5873 int func = BP_FUNC(bp); 5874 int i; 5875 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5876 REG_WR(bp, BAR_CSTRORM_INTMEM + 5877 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5878 i*sizeof(u32), 5879 *((u32 *)sp_sb_data + i)); 5880 } 5881 5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5883 { 5884 int func = BP_FUNC(bp); 5885 struct hc_sp_status_block_data sp_sb_data; 5886 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5887 5888 sp_sb_data.state = SB_DISABLED; 5889 sp_sb_data.p_func.vf_valid = false; 5890 5891 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5892 5893 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5894 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5895 CSTORM_SP_STATUS_BLOCK_SIZE); 5896 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5897 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5898 CSTORM_SP_SYNC_BLOCK_SIZE); 5899 } 5900 5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5902 int igu_sb_id, int igu_seg_id) 5903 { 5904 hc_sm->igu_sb_id = igu_sb_id; 5905 hc_sm->igu_seg_id = igu_seg_id; 5906 hc_sm->timer_value = 0xFF; 5907 hc_sm->time_to_expire = 0xFFFFFFFF; 5908 } 5909 5910 /* allocates state machine ids. */ 5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5912 { 5913 /* zero out state machine indices */ 5914 /* rx indices */ 5915 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5916 5917 /* tx indices */ 5918 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5919 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5920 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5921 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5922 5923 /* map indices */ 5924 /* rx indices */ 5925 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5926 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5927 5928 /* tx indices */ 5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5930 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5932 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5933 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5934 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5936 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5937 } 5938 5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5940 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5941 { 5942 int igu_seg_id; 5943 5944 struct hc_status_block_data_e2 sb_data_e2; 5945 struct hc_status_block_data_e1x sb_data_e1x; 5946 struct hc_status_block_sm *hc_sm_p; 5947 int data_size; 5948 u32 *sb_data_p; 5949 5950 if (CHIP_INT_MODE_IS_BC(bp)) 5951 igu_seg_id = HC_SEG_ACCESS_NORM; 5952 else 5953 igu_seg_id = IGU_SEG_ACCESS_NORM; 5954 5955 bnx2x_zero_fp_sb(bp, fw_sb_id); 5956 5957 if (!CHIP_IS_E1x(bp)) { 5958 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5959 sb_data_e2.common.state = SB_ENABLED; 5960 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5961 sb_data_e2.common.p_func.vf_id = vfid; 5962 sb_data_e2.common.p_func.vf_valid = vf_valid; 5963 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5964 sb_data_e2.common.same_igu_sb_1b = true; 5965 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5966 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5967 hc_sm_p = sb_data_e2.common.state_machine; 5968 sb_data_p = (u32 *)&sb_data_e2; 5969 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5970 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5971 } else { 5972 memset(&sb_data_e1x, 0, 5973 sizeof(struct hc_status_block_data_e1x)); 5974 sb_data_e1x.common.state = SB_ENABLED; 5975 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5976 sb_data_e1x.common.p_func.vf_id = 0xff; 5977 sb_data_e1x.common.p_func.vf_valid = false; 5978 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5979 sb_data_e1x.common.same_igu_sb_1b = true; 5980 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5981 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5982 hc_sm_p = sb_data_e1x.common.state_machine; 5983 sb_data_p = (u32 *)&sb_data_e1x; 5984 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5985 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5986 } 5987 5988 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5989 igu_sb_id, igu_seg_id); 5990 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5991 igu_sb_id, igu_seg_id); 5992 5993 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5994 5995 /* write indices to HW - PCI guarantees endianity of regpairs */ 5996 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5997 } 5998 5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6000 u16 tx_usec, u16 rx_usec) 6001 { 6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6003 false, rx_usec); 6004 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6005 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6006 tx_usec); 6007 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6008 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6009 tx_usec); 6010 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6011 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6012 tx_usec); 6013 } 6014 6015 static void bnx2x_init_def_sb(struct bnx2x *bp) 6016 { 6017 struct host_sp_status_block *def_sb = bp->def_status_blk; 6018 dma_addr_t mapping = bp->def_status_blk_mapping; 6019 int igu_sp_sb_index; 6020 int igu_seg_id; 6021 int port = BP_PORT(bp); 6022 int func = BP_FUNC(bp); 6023 int reg_offset, reg_offset_en5; 6024 u64 section; 6025 int index; 6026 struct hc_sp_status_block_data sp_sb_data; 6027 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6028 6029 if (CHIP_INT_MODE_IS_BC(bp)) { 6030 igu_sp_sb_index = DEF_SB_IGU_ID; 6031 igu_seg_id = HC_SEG_ACCESS_DEF; 6032 } else { 6033 igu_sp_sb_index = bp->igu_dsb_id; 6034 igu_seg_id = IGU_SEG_ACCESS_DEF; 6035 } 6036 6037 /* ATTN */ 6038 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6039 atten_status_block); 6040 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6041 6042 bp->attn_state = 0; 6043 6044 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6045 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6046 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6047 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6048 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6049 int sindex; 6050 /* take care of sig[0]..sig[4] */ 6051 for (sindex = 0; sindex < 4; sindex++) 6052 bp->attn_group[index].sig[sindex] = 6053 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6054 6055 if (!CHIP_IS_E1x(bp)) 6056 /* 6057 * enable5 is separate from the rest of the registers, 6058 * and therefore the address skip is 4 6059 * and not 16 between the different groups 6060 */ 6061 bp->attn_group[index].sig[4] = REG_RD(bp, 6062 reg_offset_en5 + 0x4*index); 6063 else 6064 bp->attn_group[index].sig[4] = 0; 6065 } 6066 6067 if (bp->common.int_block == INT_BLOCK_HC) { 6068 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6069 HC_REG_ATTN_MSG0_ADDR_L); 6070 6071 REG_WR(bp, reg_offset, U64_LO(section)); 6072 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6073 } else if (!CHIP_IS_E1x(bp)) { 6074 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6075 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6076 } 6077 6078 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6079 sp_sb); 6080 6081 bnx2x_zero_sp_sb(bp); 6082 6083 /* PCI guarantees endianity of regpairs */ 6084 sp_sb_data.state = SB_ENABLED; 6085 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6086 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6087 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6088 sp_sb_data.igu_seg_id = igu_seg_id; 6089 sp_sb_data.p_func.pf_id = func; 6090 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6091 sp_sb_data.p_func.vf_id = 0xff; 6092 6093 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6094 6095 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6096 } 6097 6098 void bnx2x_update_coalesce(struct bnx2x *bp) 6099 { 6100 int i; 6101 6102 for_each_eth_queue(bp, i) 6103 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6104 bp->tx_ticks, bp->rx_ticks); 6105 } 6106 6107 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6108 { 6109 spin_lock_init(&bp->spq_lock); 6110 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6111 6112 bp->spq_prod_idx = 0; 6113 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6114 bp->spq_prod_bd = bp->spq; 6115 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6116 } 6117 6118 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6119 { 6120 int i; 6121 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6122 union event_ring_elem *elem = 6123 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6124 6125 elem->next_page.addr.hi = 6126 cpu_to_le32(U64_HI(bp->eq_mapping + 6127 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6128 elem->next_page.addr.lo = 6129 cpu_to_le32(U64_LO(bp->eq_mapping + 6130 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6131 } 6132 bp->eq_cons = 0; 6133 bp->eq_prod = NUM_EQ_DESC; 6134 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6135 /* we want a warning message before it gets wrought... */ 6136 atomic_set(&bp->eq_spq_left, 6137 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6138 } 6139 6140 /* called with netif_addr_lock_bh() */ 6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6142 unsigned long rx_mode_flags, 6143 unsigned long rx_accept_flags, 6144 unsigned long tx_accept_flags, 6145 unsigned long ramrod_flags) 6146 { 6147 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6148 int rc; 6149 6150 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6151 6152 /* Prepare ramrod parameters */ 6153 ramrod_param.cid = 0; 6154 ramrod_param.cl_id = cl_id; 6155 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6156 ramrod_param.func_id = BP_FUNC(bp); 6157 6158 ramrod_param.pstate = &bp->sp_state; 6159 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6160 6161 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6162 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6163 6164 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6165 6166 ramrod_param.ramrod_flags = ramrod_flags; 6167 ramrod_param.rx_mode_flags = rx_mode_flags; 6168 6169 ramrod_param.rx_accept_flags = rx_accept_flags; 6170 ramrod_param.tx_accept_flags = tx_accept_flags; 6171 6172 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6173 if (rc < 0) { 6174 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6175 return rc; 6176 } 6177 6178 return 0; 6179 } 6180 6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6182 unsigned long *rx_accept_flags, 6183 unsigned long *tx_accept_flags) 6184 { 6185 /* Clear the flags first */ 6186 *rx_accept_flags = 0; 6187 *tx_accept_flags = 0; 6188 6189 switch (rx_mode) { 6190 case BNX2X_RX_MODE_NONE: 6191 /* 6192 * 'drop all' supersedes any accept flags that may have been 6193 * passed to the function. 6194 */ 6195 break; 6196 case BNX2X_RX_MODE_NORMAL: 6197 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6198 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6199 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6200 6201 /* internal switching mode */ 6202 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6203 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6204 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6205 6206 if (bp->accept_any_vlan) { 6207 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6208 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6209 } 6210 6211 break; 6212 case BNX2X_RX_MODE_ALLMULTI: 6213 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6215 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6216 6217 /* internal switching mode */ 6218 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6220 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6221 6222 if (bp->accept_any_vlan) { 6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6224 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6225 } 6226 6227 break; 6228 case BNX2X_RX_MODE_PROMISC: 6229 /* According to definition of SI mode, iface in promisc mode 6230 * should receive matched and unmatched (in resolution of port) 6231 * unicast packets. 6232 */ 6233 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6237 6238 /* internal switching mode */ 6239 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6240 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6241 6242 if (IS_MF_SI(bp)) 6243 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6244 else 6245 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6246 6247 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6248 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6249 6250 break; 6251 default: 6252 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6253 return -EINVAL; 6254 } 6255 6256 return 0; 6257 } 6258 6259 /* called with netif_addr_lock_bh() */ 6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6261 { 6262 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6263 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6264 int rc; 6265 6266 if (!NO_FCOE(bp)) 6267 /* Configure rx_mode of FCoE Queue */ 6268 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6269 6270 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6271 &tx_accept_flags); 6272 if (rc) 6273 return rc; 6274 6275 __set_bit(RAMROD_RX, &ramrod_flags); 6276 __set_bit(RAMROD_TX, &ramrod_flags); 6277 6278 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6279 rx_accept_flags, tx_accept_flags, 6280 ramrod_flags); 6281 } 6282 6283 static void bnx2x_init_internal_common(struct bnx2x *bp) 6284 { 6285 int i; 6286 6287 /* Zero this manually as its initialization is 6288 currently missing in the initTool */ 6289 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6290 REG_WR(bp, BAR_USTRORM_INTMEM + 6291 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6292 if (!CHIP_IS_E1x(bp)) { 6293 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6294 CHIP_INT_MODE_IS_BC(bp) ? 6295 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6296 } 6297 } 6298 6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6300 { 6301 switch (load_code) { 6302 case FW_MSG_CODE_DRV_LOAD_COMMON: 6303 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6304 bnx2x_init_internal_common(bp); 6305 /* no break */ 6306 6307 case FW_MSG_CODE_DRV_LOAD_PORT: 6308 /* nothing to do */ 6309 /* no break */ 6310 6311 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6312 /* internal memory per function is 6313 initialized inside bnx2x_pf_init */ 6314 break; 6315 6316 default: 6317 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6318 break; 6319 } 6320 } 6321 6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6323 { 6324 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6325 } 6326 6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6328 { 6329 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6330 } 6331 6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6333 { 6334 if (CHIP_IS_E1x(fp->bp)) 6335 return BP_L_ID(fp->bp) + fp->index; 6336 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6337 return bnx2x_fp_igu_sb_id(fp); 6338 } 6339 6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6341 { 6342 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6343 u8 cos; 6344 unsigned long q_type = 0; 6345 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6346 fp->rx_queue = fp_idx; 6347 fp->cid = fp_idx; 6348 fp->cl_id = bnx2x_fp_cl_id(fp); 6349 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6350 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6351 /* qZone id equals to FW (per path) client id */ 6352 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6353 6354 /* init shortcut */ 6355 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6356 6357 /* Setup SB indices */ 6358 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6359 6360 /* Configure Queue State object */ 6361 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6362 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6363 6364 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6365 6366 /* init tx data */ 6367 for_each_cos_in_tx_queue(fp, cos) { 6368 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6369 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6370 FP_COS_TO_TXQ(fp, cos, bp), 6371 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6372 cids[cos] = fp->txdata_ptr[cos]->cid; 6373 } 6374 6375 /* nothing more for vf to do here */ 6376 if (IS_VF(bp)) 6377 return; 6378 6379 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6380 fp->fw_sb_id, fp->igu_sb_id); 6381 bnx2x_update_fpsb_idx(fp); 6382 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6383 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6384 bnx2x_sp_mapping(bp, q_rdata), q_type); 6385 6386 /** 6387 * Configure classification DBs: Always enable Tx switching 6388 */ 6389 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6390 6391 DP(NETIF_MSG_IFUP, 6392 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6393 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6394 fp->igu_sb_id); 6395 } 6396 6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6398 { 6399 int i; 6400 6401 for (i = 1; i <= NUM_TX_RINGS; i++) { 6402 struct eth_tx_next_bd *tx_next_bd = 6403 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6404 6405 tx_next_bd->addr_hi = 6406 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6407 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6408 tx_next_bd->addr_lo = 6409 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6410 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6411 } 6412 6413 *txdata->tx_cons_sb = cpu_to_le16(0); 6414 6415 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6416 txdata->tx_db.data.zero_fill1 = 0; 6417 txdata->tx_db.data.prod = 0; 6418 6419 txdata->tx_pkt_prod = 0; 6420 txdata->tx_pkt_cons = 0; 6421 txdata->tx_bd_prod = 0; 6422 txdata->tx_bd_cons = 0; 6423 txdata->tx_pkt = 0; 6424 } 6425 6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6427 { 6428 int i; 6429 6430 for_each_tx_queue_cnic(bp, i) 6431 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6432 } 6433 6434 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6435 { 6436 int i; 6437 u8 cos; 6438 6439 for_each_eth_queue(bp, i) 6440 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6441 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6442 } 6443 6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6445 { 6446 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6447 unsigned long q_type = 0; 6448 6449 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6450 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6451 BNX2X_FCOE_ETH_CL_ID_IDX); 6452 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6453 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6454 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6455 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6456 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6457 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6458 fp); 6459 6460 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6461 6462 /* qZone id equals to FW (per path) client id */ 6463 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6464 /* init shortcut */ 6465 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6466 bnx2x_rx_ustorm_prods_offset(fp); 6467 6468 /* Configure Queue State object */ 6469 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6470 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6471 6472 /* No multi-CoS for FCoE L2 client */ 6473 BUG_ON(fp->max_cos != 1); 6474 6475 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6476 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6477 bnx2x_sp_mapping(bp, q_rdata), q_type); 6478 6479 DP(NETIF_MSG_IFUP, 6480 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6481 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6482 fp->igu_sb_id); 6483 } 6484 6485 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6486 { 6487 if (!NO_FCOE(bp)) 6488 bnx2x_init_fcoe_fp(bp); 6489 6490 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6491 BNX2X_VF_ID_INVALID, false, 6492 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6493 6494 /* ensure status block indices were read */ 6495 rmb(); 6496 bnx2x_init_rx_rings_cnic(bp); 6497 bnx2x_init_tx_rings_cnic(bp); 6498 6499 /* flush all */ 6500 mb(); 6501 mmiowb(); 6502 } 6503 6504 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6505 { 6506 int i; 6507 6508 /* Setup NIC internals and enable interrupts */ 6509 for_each_eth_queue(bp, i) 6510 bnx2x_init_eth_fp(bp, i); 6511 6512 /* ensure status block indices were read */ 6513 rmb(); 6514 bnx2x_init_rx_rings(bp); 6515 bnx2x_init_tx_rings(bp); 6516 6517 if (IS_PF(bp)) { 6518 /* Initialize MOD_ABS interrupts */ 6519 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6520 bp->common.shmem_base, 6521 bp->common.shmem2_base, BP_PORT(bp)); 6522 6523 /* initialize the default status block and sp ring */ 6524 bnx2x_init_def_sb(bp); 6525 bnx2x_update_dsb_idx(bp); 6526 bnx2x_init_sp_ring(bp); 6527 } else { 6528 bnx2x_memset_stats(bp); 6529 } 6530 } 6531 6532 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6533 { 6534 bnx2x_init_eq_ring(bp); 6535 bnx2x_init_internal(bp, load_code); 6536 bnx2x_pf_init(bp); 6537 bnx2x_stats_init(bp); 6538 6539 /* flush all before enabling interrupts */ 6540 mb(); 6541 mmiowb(); 6542 6543 bnx2x_int_enable(bp); 6544 6545 /* Check for SPIO5 */ 6546 bnx2x_attn_int_deasserted0(bp, 6547 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6548 AEU_INPUTS_ATTN_BITS_SPIO5); 6549 } 6550 6551 /* gzip service functions */ 6552 static int bnx2x_gunzip_init(struct bnx2x *bp) 6553 { 6554 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6555 &bp->gunzip_mapping, GFP_KERNEL); 6556 if (bp->gunzip_buf == NULL) 6557 goto gunzip_nomem1; 6558 6559 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6560 if (bp->strm == NULL) 6561 goto gunzip_nomem2; 6562 6563 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6564 if (bp->strm->workspace == NULL) 6565 goto gunzip_nomem3; 6566 6567 return 0; 6568 6569 gunzip_nomem3: 6570 kfree(bp->strm); 6571 bp->strm = NULL; 6572 6573 gunzip_nomem2: 6574 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6575 bp->gunzip_mapping); 6576 bp->gunzip_buf = NULL; 6577 6578 gunzip_nomem1: 6579 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6580 return -ENOMEM; 6581 } 6582 6583 static void bnx2x_gunzip_end(struct bnx2x *bp) 6584 { 6585 if (bp->strm) { 6586 vfree(bp->strm->workspace); 6587 kfree(bp->strm); 6588 bp->strm = NULL; 6589 } 6590 6591 if (bp->gunzip_buf) { 6592 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6593 bp->gunzip_mapping); 6594 bp->gunzip_buf = NULL; 6595 } 6596 } 6597 6598 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6599 { 6600 int n, rc; 6601 6602 /* check gzip header */ 6603 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6604 BNX2X_ERR("Bad gzip header\n"); 6605 return -EINVAL; 6606 } 6607 6608 n = 10; 6609 6610 #define FNAME 0x8 6611 6612 if (zbuf[3] & FNAME) 6613 while ((zbuf[n++] != 0) && (n < len)); 6614 6615 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6616 bp->strm->avail_in = len - n; 6617 bp->strm->next_out = bp->gunzip_buf; 6618 bp->strm->avail_out = FW_BUF_SIZE; 6619 6620 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6621 if (rc != Z_OK) 6622 return rc; 6623 6624 rc = zlib_inflate(bp->strm, Z_FINISH); 6625 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6626 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6627 bp->strm->msg); 6628 6629 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6630 if (bp->gunzip_outlen & 0x3) 6631 netdev_err(bp->dev, 6632 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6633 bp->gunzip_outlen); 6634 bp->gunzip_outlen >>= 2; 6635 6636 zlib_inflateEnd(bp->strm); 6637 6638 if (rc == Z_STREAM_END) 6639 return 0; 6640 6641 return rc; 6642 } 6643 6644 /* nic load/unload */ 6645 6646 /* 6647 * General service functions 6648 */ 6649 6650 /* send a NIG loopback debug packet */ 6651 static void bnx2x_lb_pckt(struct bnx2x *bp) 6652 { 6653 u32 wb_write[3]; 6654 6655 /* Ethernet source and destination addresses */ 6656 wb_write[0] = 0x55555555; 6657 wb_write[1] = 0x55555555; 6658 wb_write[2] = 0x20; /* SOP */ 6659 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6660 6661 /* NON-IP protocol */ 6662 wb_write[0] = 0x09000000; 6663 wb_write[1] = 0x55555555; 6664 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6665 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6666 } 6667 6668 /* some of the internal memories 6669 * are not directly readable from the driver 6670 * to test them we send debug packets 6671 */ 6672 static int bnx2x_int_mem_test(struct bnx2x *bp) 6673 { 6674 int factor; 6675 int count, i; 6676 u32 val = 0; 6677 6678 if (CHIP_REV_IS_FPGA(bp)) 6679 factor = 120; 6680 else if (CHIP_REV_IS_EMUL(bp)) 6681 factor = 200; 6682 else 6683 factor = 1; 6684 6685 /* Disable inputs of parser neighbor blocks */ 6686 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6687 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6688 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6689 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6690 6691 /* Write 0 to parser credits for CFC search request */ 6692 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6693 6694 /* send Ethernet packet */ 6695 bnx2x_lb_pckt(bp); 6696 6697 /* TODO do i reset NIG statistic? */ 6698 /* Wait until NIG register shows 1 packet of size 0x10 */ 6699 count = 1000 * factor; 6700 while (count) { 6701 6702 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6703 val = *bnx2x_sp(bp, wb_data[0]); 6704 if (val == 0x10) 6705 break; 6706 6707 usleep_range(10000, 20000); 6708 count--; 6709 } 6710 if (val != 0x10) { 6711 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6712 return -1; 6713 } 6714 6715 /* Wait until PRS register shows 1 packet */ 6716 count = 1000 * factor; 6717 while (count) { 6718 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6719 if (val == 1) 6720 break; 6721 6722 usleep_range(10000, 20000); 6723 count--; 6724 } 6725 if (val != 0x1) { 6726 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6727 return -2; 6728 } 6729 6730 /* Reset and init BRB, PRS */ 6731 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6732 msleep(50); 6733 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6734 msleep(50); 6735 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6736 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6737 6738 DP(NETIF_MSG_HW, "part2\n"); 6739 6740 /* Disable inputs of parser neighbor blocks */ 6741 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6742 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6743 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6744 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6745 6746 /* Write 0 to parser credits for CFC search request */ 6747 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6748 6749 /* send 10 Ethernet packets */ 6750 for (i = 0; i < 10; i++) 6751 bnx2x_lb_pckt(bp); 6752 6753 /* Wait until NIG register shows 10 + 1 6754 packets of size 11*0x10 = 0xb0 */ 6755 count = 1000 * factor; 6756 while (count) { 6757 6758 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6759 val = *bnx2x_sp(bp, wb_data[0]); 6760 if (val == 0xb0) 6761 break; 6762 6763 usleep_range(10000, 20000); 6764 count--; 6765 } 6766 if (val != 0xb0) { 6767 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6768 return -3; 6769 } 6770 6771 /* Wait until PRS register shows 2 packets */ 6772 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6773 if (val != 2) 6774 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6775 6776 /* Write 1 to parser credits for CFC search request */ 6777 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6778 6779 /* Wait until PRS register shows 3 packets */ 6780 msleep(10 * factor); 6781 /* Wait until NIG register shows 1 packet of size 0x10 */ 6782 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6783 if (val != 3) 6784 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6785 6786 /* clear NIG EOP FIFO */ 6787 for (i = 0; i < 11; i++) 6788 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6789 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6790 if (val != 1) { 6791 BNX2X_ERR("clear of NIG failed\n"); 6792 return -4; 6793 } 6794 6795 /* Reset and init BRB, PRS, NIG */ 6796 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6797 msleep(50); 6798 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6799 msleep(50); 6800 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6801 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6802 if (!CNIC_SUPPORT(bp)) 6803 /* set NIC mode */ 6804 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6805 6806 /* Enable inputs of parser neighbor blocks */ 6807 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6808 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6809 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6810 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6811 6812 DP(NETIF_MSG_HW, "done\n"); 6813 6814 return 0; /* OK */ 6815 } 6816 6817 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6818 { 6819 u32 val; 6820 6821 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6822 if (!CHIP_IS_E1x(bp)) 6823 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6824 else 6825 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6826 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6827 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6828 /* 6829 * mask read length error interrupts in brb for parser 6830 * (parsing unit and 'checksum and crc' unit) 6831 * these errors are legal (PU reads fixed length and CAC can cause 6832 * read length error on truncated packets) 6833 */ 6834 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6835 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6836 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6837 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6838 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6839 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6840 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6841 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6842 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6843 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6844 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6845 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6846 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6847 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6848 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6849 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6850 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6851 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6852 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6853 6854 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6855 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6856 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6857 if (!CHIP_IS_E1x(bp)) 6858 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6859 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6860 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6861 6862 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6863 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6864 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6865 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6866 6867 if (!CHIP_IS_E1x(bp)) 6868 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6869 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6870 6871 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6872 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6873 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6874 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6875 } 6876 6877 static void bnx2x_reset_common(struct bnx2x *bp) 6878 { 6879 u32 val = 0x1400; 6880 6881 /* reset_common */ 6882 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6883 0xd3ffff7f); 6884 6885 if (CHIP_IS_E3(bp)) { 6886 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6887 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6888 } 6889 6890 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6891 } 6892 6893 static void bnx2x_setup_dmae(struct bnx2x *bp) 6894 { 6895 bp->dmae_ready = 0; 6896 spin_lock_init(&bp->dmae_lock); 6897 } 6898 6899 static void bnx2x_init_pxp(struct bnx2x *bp) 6900 { 6901 u16 devctl; 6902 int r_order, w_order; 6903 6904 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6905 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6906 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6907 if (bp->mrrs == -1) 6908 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6909 else { 6910 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6911 r_order = bp->mrrs; 6912 } 6913 6914 bnx2x_init_pxp_arb(bp, r_order, w_order); 6915 } 6916 6917 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6918 { 6919 int is_required; 6920 u32 val; 6921 int port; 6922 6923 if (BP_NOMCP(bp)) 6924 return; 6925 6926 is_required = 0; 6927 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6928 SHARED_HW_CFG_FAN_FAILURE_MASK; 6929 6930 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6931 is_required = 1; 6932 6933 /* 6934 * The fan failure mechanism is usually related to the PHY type since 6935 * the power consumption of the board is affected by the PHY. Currently, 6936 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6937 */ 6938 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6939 for (port = PORT_0; port < PORT_MAX; port++) { 6940 is_required |= 6941 bnx2x_fan_failure_det_req( 6942 bp, 6943 bp->common.shmem_base, 6944 bp->common.shmem2_base, 6945 port); 6946 } 6947 6948 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6949 6950 if (is_required == 0) 6951 return; 6952 6953 /* Fan failure is indicated by SPIO 5 */ 6954 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6955 6956 /* set to active low mode */ 6957 val = REG_RD(bp, MISC_REG_SPIO_INT); 6958 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6959 REG_WR(bp, MISC_REG_SPIO_INT, val); 6960 6961 /* enable interrupt to signal the IGU */ 6962 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6963 val |= MISC_SPIO_SPIO5; 6964 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6965 } 6966 6967 void bnx2x_pf_disable(struct bnx2x *bp) 6968 { 6969 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6970 val &= ~IGU_PF_CONF_FUNC_EN; 6971 6972 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6973 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6974 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6975 } 6976 6977 static void bnx2x__common_init_phy(struct bnx2x *bp) 6978 { 6979 u32 shmem_base[2], shmem2_base[2]; 6980 /* Avoid common init in case MFW supports LFA */ 6981 if (SHMEM2_RD(bp, size) > 6982 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6983 return; 6984 shmem_base[0] = bp->common.shmem_base; 6985 shmem2_base[0] = bp->common.shmem2_base; 6986 if (!CHIP_IS_E1x(bp)) { 6987 shmem_base[1] = 6988 SHMEM2_RD(bp, other_shmem_base_addr); 6989 shmem2_base[1] = 6990 SHMEM2_RD(bp, other_shmem2_base_addr); 6991 } 6992 bnx2x_acquire_phy_lock(bp); 6993 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6994 bp->common.chip_id); 6995 bnx2x_release_phy_lock(bp); 6996 } 6997 6998 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 6999 { 7000 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 7001 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7002 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7003 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7004 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7005 7006 /* make sure this value is 0 */ 7007 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7008 7009 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7010 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7011 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7012 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7013 } 7014 7015 static void bnx2x_set_endianity(struct bnx2x *bp) 7016 { 7017 #ifdef __BIG_ENDIAN 7018 bnx2x_config_endianity(bp, 1); 7019 #else 7020 bnx2x_config_endianity(bp, 0); 7021 #endif 7022 } 7023 7024 static void bnx2x_reset_endianity(struct bnx2x *bp) 7025 { 7026 bnx2x_config_endianity(bp, 0); 7027 } 7028 7029 /** 7030 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7031 * 7032 * @bp: driver handle 7033 */ 7034 static int bnx2x_init_hw_common(struct bnx2x *bp) 7035 { 7036 u32 val; 7037 7038 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7039 7040 /* 7041 * take the RESET lock to protect undi_unload flow from accessing 7042 * registers while we're resetting the chip 7043 */ 7044 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7045 7046 bnx2x_reset_common(bp); 7047 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7048 7049 val = 0xfffc; 7050 if (CHIP_IS_E3(bp)) { 7051 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7052 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7053 } 7054 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7055 7056 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7057 7058 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7059 7060 if (!CHIP_IS_E1x(bp)) { 7061 u8 abs_func_id; 7062 7063 /** 7064 * 4-port mode or 2-port mode we need to turn of master-enable 7065 * for everyone, after that, turn it back on for self. 7066 * so, we disregard multi-function or not, and always disable 7067 * for all functions on the given path, this means 0,2,4,6 for 7068 * path 0 and 1,3,5,7 for path 1 7069 */ 7070 for (abs_func_id = BP_PATH(bp); 7071 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7072 if (abs_func_id == BP_ABS_FUNC(bp)) { 7073 REG_WR(bp, 7074 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7075 1); 7076 continue; 7077 } 7078 7079 bnx2x_pretend_func(bp, abs_func_id); 7080 /* clear pf enable */ 7081 bnx2x_pf_disable(bp); 7082 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7083 } 7084 } 7085 7086 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7087 if (CHIP_IS_E1(bp)) { 7088 /* enable HW interrupt from PXP on USDM overflow 7089 bit 16 on INT_MASK_0 */ 7090 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7091 } 7092 7093 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7094 bnx2x_init_pxp(bp); 7095 bnx2x_set_endianity(bp); 7096 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7097 7098 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7099 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7100 7101 /* let the HW do it's magic ... */ 7102 msleep(100); 7103 /* finish PXP init */ 7104 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7105 if (val != 1) { 7106 BNX2X_ERR("PXP2 CFG failed\n"); 7107 return -EBUSY; 7108 } 7109 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7110 if (val != 1) { 7111 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7112 return -EBUSY; 7113 } 7114 7115 /* Timers bug workaround E2 only. We need to set the entire ILT to 7116 * have entries with value "0" and valid bit on. 7117 * This needs to be done by the first PF that is loaded in a path 7118 * (i.e. common phase) 7119 */ 7120 if (!CHIP_IS_E1x(bp)) { 7121 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7122 * (i.e. vnic3) to start even if it is marked as "scan-off". 7123 * This occurs when a different function (func2,3) is being marked 7124 * as "scan-off". Real-life scenario for example: if a driver is being 7125 * load-unloaded while func6,7 are down. This will cause the timer to access 7126 * the ilt, translate to a logical address and send a request to read/write. 7127 * Since the ilt for the function that is down is not valid, this will cause 7128 * a translation error which is unrecoverable. 7129 * The Workaround is intended to make sure that when this happens nothing fatal 7130 * will occur. The workaround: 7131 * 1. First PF driver which loads on a path will: 7132 * a. After taking the chip out of reset, by using pretend, 7133 * it will write "0" to the following registers of 7134 * the other vnics. 7135 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7136 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7137 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7138 * And for itself it will write '1' to 7139 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7140 * dmae-operations (writing to pram for example.) 7141 * note: can be done for only function 6,7 but cleaner this 7142 * way. 7143 * b. Write zero+valid to the entire ILT. 7144 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7145 * VNIC3 (of that port). The range allocated will be the 7146 * entire ILT. This is needed to prevent ILT range error. 7147 * 2. Any PF driver load flow: 7148 * a. ILT update with the physical addresses of the allocated 7149 * logical pages. 7150 * b. Wait 20msec. - note that this timeout is needed to make 7151 * sure there are no requests in one of the PXP internal 7152 * queues with "old" ILT addresses. 7153 * c. PF enable in the PGLC. 7154 * d. Clear the was_error of the PF in the PGLC. (could have 7155 * occurred while driver was down) 7156 * e. PF enable in the CFC (WEAK + STRONG) 7157 * f. Timers scan enable 7158 * 3. PF driver unload flow: 7159 * a. Clear the Timers scan_en. 7160 * b. Polling for scan_on=0 for that PF. 7161 * c. Clear the PF enable bit in the PXP. 7162 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7163 * e. Write zero+valid to all ILT entries (The valid bit must 7164 * stay set) 7165 * f. If this is VNIC 3 of a port then also init 7166 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7167 * to the last entry in the ILT. 7168 * 7169 * Notes: 7170 * Currently the PF error in the PGLC is non recoverable. 7171 * In the future the there will be a recovery routine for this error. 7172 * Currently attention is masked. 7173 * Having an MCP lock on the load/unload process does not guarantee that 7174 * there is no Timer disable during Func6/7 enable. This is because the 7175 * Timers scan is currently being cleared by the MCP on FLR. 7176 * Step 2.d can be done only for PF6/7 and the driver can also check if 7177 * there is error before clearing it. But the flow above is simpler and 7178 * more general. 7179 * All ILT entries are written by zero+valid and not just PF6/7 7180 * ILT entries since in the future the ILT entries allocation for 7181 * PF-s might be dynamic. 7182 */ 7183 struct ilt_client_info ilt_cli; 7184 struct bnx2x_ilt ilt; 7185 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7186 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7187 7188 /* initialize dummy TM client */ 7189 ilt_cli.start = 0; 7190 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7191 ilt_cli.client_num = ILT_CLIENT_TM; 7192 7193 /* Step 1: set zeroes to all ilt page entries with valid bit on 7194 * Step 2: set the timers first/last ilt entry to point 7195 * to the entire range to prevent ILT range error for 3rd/4th 7196 * vnic (this code assumes existence of the vnic) 7197 * 7198 * both steps performed by call to bnx2x_ilt_client_init_op() 7199 * with dummy TM client 7200 * 7201 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7202 * and his brother are split registers 7203 */ 7204 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7205 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7206 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7207 7208 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7209 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7210 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7211 } 7212 7213 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7214 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7215 7216 if (!CHIP_IS_E1x(bp)) { 7217 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7218 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7219 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7220 7221 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7222 7223 /* let the HW do it's magic ... */ 7224 do { 7225 msleep(200); 7226 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7227 } while (factor-- && (val != 1)); 7228 7229 if (val != 1) { 7230 BNX2X_ERR("ATC_INIT failed\n"); 7231 return -EBUSY; 7232 } 7233 } 7234 7235 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7236 7237 bnx2x_iov_init_dmae(bp); 7238 7239 /* clean the DMAE memory */ 7240 bp->dmae_ready = 1; 7241 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7242 7243 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7244 7245 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7246 7247 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7248 7249 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7250 7251 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7252 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7253 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7254 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7255 7256 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7257 7258 /* QM queues pointers table */ 7259 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7260 7261 /* soft reset pulse */ 7262 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7263 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7264 7265 if (CNIC_SUPPORT(bp)) 7266 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7267 7268 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7269 7270 if (!CHIP_REV_IS_SLOW(bp)) 7271 /* enable hw interrupt from doorbell Q */ 7272 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7273 7274 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7275 7276 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7277 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7278 7279 if (!CHIP_IS_E1(bp)) 7280 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7281 7282 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7283 if (IS_MF_AFEX(bp)) { 7284 /* configure that VNTag and VLAN headers must be 7285 * received in afex mode 7286 */ 7287 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7288 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7289 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7290 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7291 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7292 } else { 7293 /* Bit-map indicating which L2 hdrs may appear 7294 * after the basic Ethernet header 7295 */ 7296 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7297 bp->path_has_ovlan ? 7 : 6); 7298 } 7299 } 7300 7301 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7302 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7303 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7304 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7305 7306 if (!CHIP_IS_E1x(bp)) { 7307 /* reset VFC memories */ 7308 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7309 VFC_MEMORIES_RST_REG_CAM_RST | 7310 VFC_MEMORIES_RST_REG_RAM_RST); 7311 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7312 VFC_MEMORIES_RST_REG_CAM_RST | 7313 VFC_MEMORIES_RST_REG_RAM_RST); 7314 7315 msleep(20); 7316 } 7317 7318 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7319 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7320 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7321 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7322 7323 /* sync semi rtc */ 7324 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7325 0x80000000); 7326 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7327 0x80000000); 7328 7329 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7330 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7331 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7332 7333 if (!CHIP_IS_E1x(bp)) { 7334 if (IS_MF_AFEX(bp)) { 7335 /* configure that VNTag and VLAN headers must be 7336 * sent in afex mode 7337 */ 7338 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7339 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7340 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7341 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7342 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7343 } else { 7344 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7345 bp->path_has_ovlan ? 7 : 6); 7346 } 7347 } 7348 7349 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7350 7351 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7352 7353 if (CNIC_SUPPORT(bp)) { 7354 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7355 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7356 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7357 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7358 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7359 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7360 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7361 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7362 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7363 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7364 } 7365 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7366 7367 if (sizeof(union cdu_context) != 1024) 7368 /* we currently assume that a context is 1024 bytes */ 7369 dev_alert(&bp->pdev->dev, 7370 "please adjust the size of cdu_context(%ld)\n", 7371 (long)sizeof(union cdu_context)); 7372 7373 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7374 val = (4 << 24) + (0 << 12) + 1024; 7375 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7376 7377 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7378 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7379 /* enable context validation interrupt from CFC */ 7380 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7381 7382 /* set the thresholds to prevent CFC/CDU race */ 7383 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7384 7385 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7386 7387 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7388 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7389 7390 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7391 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7392 7393 /* Reset PCIE errors for debug */ 7394 REG_WR(bp, 0x2814, 0xffffffff); 7395 REG_WR(bp, 0x3820, 0xffffffff); 7396 7397 if (!CHIP_IS_E1x(bp)) { 7398 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7399 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7400 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7401 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7402 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7403 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7404 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7405 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7406 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7407 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7408 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7409 } 7410 7411 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7412 if (!CHIP_IS_E1(bp)) { 7413 /* in E3 this done in per-port section */ 7414 if (!CHIP_IS_E3(bp)) 7415 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7416 } 7417 if (CHIP_IS_E1H(bp)) 7418 /* not applicable for E2 (and above ...) */ 7419 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7420 7421 if (CHIP_REV_IS_SLOW(bp)) 7422 msleep(200); 7423 7424 /* finish CFC init */ 7425 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7426 if (val != 1) { 7427 BNX2X_ERR("CFC LL_INIT failed\n"); 7428 return -EBUSY; 7429 } 7430 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7431 if (val != 1) { 7432 BNX2X_ERR("CFC AC_INIT failed\n"); 7433 return -EBUSY; 7434 } 7435 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7436 if (val != 1) { 7437 BNX2X_ERR("CFC CAM_INIT failed\n"); 7438 return -EBUSY; 7439 } 7440 REG_WR(bp, CFC_REG_DEBUG0, 0); 7441 7442 if (CHIP_IS_E1(bp)) { 7443 /* read NIG statistic 7444 to see if this is our first up since powerup */ 7445 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7446 val = *bnx2x_sp(bp, wb_data[0]); 7447 7448 /* do internal memory self test */ 7449 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7450 BNX2X_ERR("internal mem self test failed\n"); 7451 return -EBUSY; 7452 } 7453 } 7454 7455 bnx2x_setup_fan_failure_detection(bp); 7456 7457 /* clear PXP2 attentions */ 7458 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7459 7460 bnx2x_enable_blocks_attention(bp); 7461 bnx2x_enable_blocks_parity(bp); 7462 7463 if (!BP_NOMCP(bp)) { 7464 if (CHIP_IS_E1x(bp)) 7465 bnx2x__common_init_phy(bp); 7466 } else 7467 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7468 7469 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7470 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7471 7472 return 0; 7473 } 7474 7475 /** 7476 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7477 * 7478 * @bp: driver handle 7479 */ 7480 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7481 { 7482 int rc = bnx2x_init_hw_common(bp); 7483 7484 if (rc) 7485 return rc; 7486 7487 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7488 if (!BP_NOMCP(bp)) 7489 bnx2x__common_init_phy(bp); 7490 7491 return 0; 7492 } 7493 7494 static int bnx2x_init_hw_port(struct bnx2x *bp) 7495 { 7496 int port = BP_PORT(bp); 7497 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7498 u32 low, high; 7499 u32 val, reg; 7500 7501 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7502 7503 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7504 7505 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7506 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7507 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7508 7509 /* Timers bug workaround: disables the pf_master bit in pglue at 7510 * common phase, we need to enable it here before any dmae access are 7511 * attempted. Therefore we manually added the enable-master to the 7512 * port phase (it also happens in the function phase) 7513 */ 7514 if (!CHIP_IS_E1x(bp)) 7515 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7516 7517 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7518 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7519 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7520 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7521 7522 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7523 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7524 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7525 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7526 7527 /* QM cid (connection) count */ 7528 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7529 7530 if (CNIC_SUPPORT(bp)) { 7531 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7532 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7533 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7534 } 7535 7536 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7537 7538 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7539 7540 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7541 7542 if (IS_MF(bp)) 7543 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7544 else if (bp->dev->mtu > 4096) { 7545 if (bp->flags & ONE_PORT_FLAG) 7546 low = 160; 7547 else { 7548 val = bp->dev->mtu; 7549 /* (24*1024 + val*4)/256 */ 7550 low = 96 + (val/64) + 7551 ((val % 64) ? 1 : 0); 7552 } 7553 } else 7554 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7555 high = low + 56; /* 14*1024/256 */ 7556 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7557 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7558 } 7559 7560 if (CHIP_MODE_IS_4_PORT(bp)) 7561 REG_WR(bp, (BP_PORT(bp) ? 7562 BRB1_REG_MAC_GUARANTIED_1 : 7563 BRB1_REG_MAC_GUARANTIED_0), 40); 7564 7565 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7566 if (CHIP_IS_E3B0(bp)) { 7567 if (IS_MF_AFEX(bp)) { 7568 /* configure headers for AFEX mode */ 7569 REG_WR(bp, BP_PORT(bp) ? 7570 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7571 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7572 REG_WR(bp, BP_PORT(bp) ? 7573 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7574 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7575 REG_WR(bp, BP_PORT(bp) ? 7576 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7577 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7578 } else { 7579 /* Ovlan exists only if we are in multi-function + 7580 * switch-dependent mode, in switch-independent there 7581 * is no ovlan headers 7582 */ 7583 REG_WR(bp, BP_PORT(bp) ? 7584 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7585 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7586 (bp->path_has_ovlan ? 7 : 6)); 7587 } 7588 } 7589 7590 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7591 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7592 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7593 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7594 7595 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7596 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7597 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7598 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7599 7600 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7601 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7602 7603 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7604 7605 if (CHIP_IS_E1x(bp)) { 7606 /* configure PBF to work without PAUSE mtu 9000 */ 7607 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7608 7609 /* update threshold */ 7610 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7611 /* update init credit */ 7612 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7613 7614 /* probe changes */ 7615 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7616 udelay(50); 7617 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7618 } 7619 7620 if (CNIC_SUPPORT(bp)) 7621 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7622 7623 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7624 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7625 7626 if (CHIP_IS_E1(bp)) { 7627 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7628 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7629 } 7630 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7631 7632 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7633 7634 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7635 /* init aeu_mask_attn_func_0/1: 7636 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7637 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7638 * bits 4-7 are used for "per vn group attention" */ 7639 val = IS_MF(bp) ? 0xF7 : 0x7; 7640 /* Enable DCBX attention for all but E1 */ 7641 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7642 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7643 7644 /* SCPAD_PARITY should NOT trigger close the gates */ 7645 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7646 REG_WR(bp, reg, 7647 REG_RD(bp, reg) & 7648 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7649 7650 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7651 REG_WR(bp, reg, 7652 REG_RD(bp, reg) & 7653 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7654 7655 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7656 7657 if (!CHIP_IS_E1x(bp)) { 7658 /* Bit-map indicating which L2 hdrs may appear after the 7659 * basic Ethernet header 7660 */ 7661 if (IS_MF_AFEX(bp)) 7662 REG_WR(bp, BP_PORT(bp) ? 7663 NIG_REG_P1_HDRS_AFTER_BASIC : 7664 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7665 else 7666 REG_WR(bp, BP_PORT(bp) ? 7667 NIG_REG_P1_HDRS_AFTER_BASIC : 7668 NIG_REG_P0_HDRS_AFTER_BASIC, 7669 IS_MF_SD(bp) ? 7 : 6); 7670 7671 if (CHIP_IS_E3(bp)) 7672 REG_WR(bp, BP_PORT(bp) ? 7673 NIG_REG_LLH1_MF_MODE : 7674 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7675 } 7676 if (!CHIP_IS_E3(bp)) 7677 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7678 7679 if (!CHIP_IS_E1(bp)) { 7680 /* 0x2 disable mf_ov, 0x1 enable */ 7681 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7682 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7683 7684 if (!CHIP_IS_E1x(bp)) { 7685 val = 0; 7686 switch (bp->mf_mode) { 7687 case MULTI_FUNCTION_SD: 7688 val = 1; 7689 break; 7690 case MULTI_FUNCTION_SI: 7691 case MULTI_FUNCTION_AFEX: 7692 val = 2; 7693 break; 7694 } 7695 7696 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7697 NIG_REG_LLH0_CLS_TYPE), val); 7698 } 7699 { 7700 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7701 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7702 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7703 } 7704 } 7705 7706 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7707 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7708 if (val & MISC_SPIO_SPIO5) { 7709 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7710 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7711 val = REG_RD(bp, reg_addr); 7712 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7713 REG_WR(bp, reg_addr, val); 7714 } 7715 7716 return 0; 7717 } 7718 7719 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7720 { 7721 int reg; 7722 u32 wb_write[2]; 7723 7724 if (CHIP_IS_E1(bp)) 7725 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7726 else 7727 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7728 7729 wb_write[0] = ONCHIP_ADDR1(addr); 7730 wb_write[1] = ONCHIP_ADDR2(addr); 7731 REG_WR_DMAE(bp, reg, wb_write, 2); 7732 } 7733 7734 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7735 { 7736 u32 data, ctl, cnt = 100; 7737 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7738 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7739 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7740 u32 sb_bit = 1 << (idu_sb_id%32); 7741 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7742 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7743 7744 /* Not supported in BC mode */ 7745 if (CHIP_INT_MODE_IS_BC(bp)) 7746 return; 7747 7748 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7749 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7750 IGU_REGULAR_CLEANUP_SET | 7751 IGU_REGULAR_BCLEANUP; 7752 7753 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7754 func_encode << IGU_CTRL_REG_FID_SHIFT | 7755 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7756 7757 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7758 data, igu_addr_data); 7759 REG_WR(bp, igu_addr_data, data); 7760 mmiowb(); 7761 barrier(); 7762 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7763 ctl, igu_addr_ctl); 7764 REG_WR(bp, igu_addr_ctl, ctl); 7765 mmiowb(); 7766 barrier(); 7767 7768 /* wait for clean up to finish */ 7769 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7770 msleep(20); 7771 7772 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7773 DP(NETIF_MSG_HW, 7774 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7775 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7776 } 7777 } 7778 7779 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7780 { 7781 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7782 } 7783 7784 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7785 { 7786 u32 i, base = FUNC_ILT_BASE(func); 7787 for (i = base; i < base + ILT_PER_FUNC; i++) 7788 bnx2x_ilt_wr(bp, i, 0); 7789 } 7790 7791 static void bnx2x_init_searcher(struct bnx2x *bp) 7792 { 7793 int port = BP_PORT(bp); 7794 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7795 /* T1 hash bits value determines the T1 number of entries */ 7796 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7797 } 7798 7799 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7800 { 7801 int rc; 7802 struct bnx2x_func_state_params func_params = {NULL}; 7803 struct bnx2x_func_switch_update_params *switch_update_params = 7804 &func_params.params.switch_update; 7805 7806 /* Prepare parameters for function state transitions */ 7807 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7808 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7809 7810 func_params.f_obj = &bp->func_obj; 7811 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7812 7813 /* Function parameters */ 7814 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7815 &switch_update_params->changes); 7816 if (suspend) 7817 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7818 &switch_update_params->changes); 7819 7820 rc = bnx2x_func_state_change(bp, &func_params); 7821 7822 return rc; 7823 } 7824 7825 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7826 { 7827 int rc, i, port = BP_PORT(bp); 7828 int vlan_en = 0, mac_en[NUM_MACS]; 7829 7830 /* Close input from network */ 7831 if (bp->mf_mode == SINGLE_FUNCTION) { 7832 bnx2x_set_rx_filter(&bp->link_params, 0); 7833 } else { 7834 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7835 NIG_REG_LLH0_FUNC_EN); 7836 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7837 NIG_REG_LLH0_FUNC_EN, 0); 7838 for (i = 0; i < NUM_MACS; i++) { 7839 mac_en[i] = REG_RD(bp, port ? 7840 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7841 4 * i) : 7842 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7843 4 * i)); 7844 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7845 4 * i) : 7846 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7847 } 7848 } 7849 7850 /* Close BMC to host */ 7851 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7852 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7853 7854 /* Suspend Tx switching to the PF. Completion of this ramrod 7855 * further guarantees that all the packets of that PF / child 7856 * VFs in BRB were processed by the Parser, so it is safe to 7857 * change the NIC_MODE register. 7858 */ 7859 rc = bnx2x_func_switch_update(bp, 1); 7860 if (rc) { 7861 BNX2X_ERR("Can't suspend tx-switching!\n"); 7862 return rc; 7863 } 7864 7865 /* Change NIC_MODE register */ 7866 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7867 7868 /* Open input from network */ 7869 if (bp->mf_mode == SINGLE_FUNCTION) { 7870 bnx2x_set_rx_filter(&bp->link_params, 1); 7871 } else { 7872 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7873 NIG_REG_LLH0_FUNC_EN, vlan_en); 7874 for (i = 0; i < NUM_MACS; i++) { 7875 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7876 4 * i) : 7877 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7878 mac_en[i]); 7879 } 7880 } 7881 7882 /* Enable BMC to host */ 7883 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7884 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7885 7886 /* Resume Tx switching to the PF */ 7887 rc = bnx2x_func_switch_update(bp, 0); 7888 if (rc) { 7889 BNX2X_ERR("Can't resume tx-switching!\n"); 7890 return rc; 7891 } 7892 7893 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7894 return 0; 7895 } 7896 7897 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7898 { 7899 int rc; 7900 7901 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7902 7903 if (CONFIGURE_NIC_MODE(bp)) { 7904 /* Configure searcher as part of function hw init */ 7905 bnx2x_init_searcher(bp); 7906 7907 /* Reset NIC mode */ 7908 rc = bnx2x_reset_nic_mode(bp); 7909 if (rc) 7910 BNX2X_ERR("Can't change NIC mode!\n"); 7911 return rc; 7912 } 7913 7914 return 0; 7915 } 7916 7917 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7918 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7919 * the addresses of the transaction, resulting in was-error bit set in the pci 7920 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7921 * to clear the interrupt which detected this from the pglueb and the was done 7922 * bit 7923 */ 7924 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7925 { 7926 if (!CHIP_IS_E1x(bp)) 7927 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7928 1 << BP_ABS_FUNC(bp)); 7929 } 7930 7931 static int bnx2x_init_hw_func(struct bnx2x *bp) 7932 { 7933 int port = BP_PORT(bp); 7934 int func = BP_FUNC(bp); 7935 int init_phase = PHASE_PF0 + func; 7936 struct bnx2x_ilt *ilt = BP_ILT(bp); 7937 u16 cdu_ilt_start; 7938 u32 addr, val; 7939 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7940 int i, main_mem_width, rc; 7941 7942 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7943 7944 /* FLR cleanup - hmmm */ 7945 if (!CHIP_IS_E1x(bp)) { 7946 rc = bnx2x_pf_flr_clnup(bp); 7947 if (rc) { 7948 bnx2x_fw_dump(bp); 7949 return rc; 7950 } 7951 } 7952 7953 /* set MSI reconfigure capability */ 7954 if (bp->common.int_block == INT_BLOCK_HC) { 7955 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7956 val = REG_RD(bp, addr); 7957 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7958 REG_WR(bp, addr, val); 7959 } 7960 7961 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7962 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7963 7964 ilt = BP_ILT(bp); 7965 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7966 7967 if (IS_SRIOV(bp)) 7968 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7969 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7970 7971 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7972 * those of the VFs, so start line should be reset 7973 */ 7974 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7975 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7976 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7977 ilt->lines[cdu_ilt_start + i].page_mapping = 7978 bp->context[i].cxt_mapping; 7979 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7980 } 7981 7982 bnx2x_ilt_init_op(bp, INITOP_SET); 7983 7984 if (!CONFIGURE_NIC_MODE(bp)) { 7985 bnx2x_init_searcher(bp); 7986 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7987 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7988 } else { 7989 /* Set NIC mode */ 7990 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7991 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7992 } 7993 7994 if (!CHIP_IS_E1x(bp)) { 7995 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7996 7997 /* Turn on a single ISR mode in IGU if driver is going to use 7998 * INT#x or MSI 7999 */ 8000 if (!(bp->flags & USING_MSIX_FLAG)) 8001 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8002 /* 8003 * Timers workaround bug: function init part. 8004 * Need to wait 20msec after initializing ILT, 8005 * needed to make sure there are no requests in 8006 * one of the PXP internal queues with "old" ILT addresses 8007 */ 8008 msleep(20); 8009 /* 8010 * Master enable - Due to WB DMAE writes performed before this 8011 * register is re-initialized as part of the regular function 8012 * init 8013 */ 8014 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8015 /* Enable the function in IGU */ 8016 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8017 } 8018 8019 bp->dmae_ready = 1; 8020 8021 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8022 8023 bnx2x_clean_pglue_errors(bp); 8024 8025 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8026 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8027 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8028 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8029 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8030 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8031 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8032 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8033 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8034 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8035 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8036 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8037 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8038 8039 if (!CHIP_IS_E1x(bp)) 8040 REG_WR(bp, QM_REG_PF_EN, 1); 8041 8042 if (!CHIP_IS_E1x(bp)) { 8043 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8044 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8045 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8046 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8047 } 8048 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8049 8050 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8051 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8052 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8053 8054 bnx2x_iov_init_dq(bp); 8055 8056 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8057 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8058 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8059 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8060 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8061 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8062 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8063 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8064 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8065 if (!CHIP_IS_E1x(bp)) 8066 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8067 8068 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8069 8070 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8071 8072 if (!CHIP_IS_E1x(bp)) 8073 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8074 8075 if (IS_MF(bp)) { 8076 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8077 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8078 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8079 bp->mf_ov); 8080 } 8081 } 8082 8083 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8084 8085 /* HC init per function */ 8086 if (bp->common.int_block == INT_BLOCK_HC) { 8087 if (CHIP_IS_E1H(bp)) { 8088 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8089 8090 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8091 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8092 } 8093 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8094 8095 } else { 8096 int num_segs, sb_idx, prod_offset; 8097 8098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8099 8100 if (!CHIP_IS_E1x(bp)) { 8101 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8102 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8103 } 8104 8105 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8106 8107 if (!CHIP_IS_E1x(bp)) { 8108 int dsb_idx = 0; 8109 /** 8110 * Producer memory: 8111 * E2 mode: address 0-135 match to the mapping memory; 8112 * 136 - PF0 default prod; 137 - PF1 default prod; 8113 * 138 - PF2 default prod; 139 - PF3 default prod; 8114 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8115 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8116 * 144-147 reserved. 8117 * 8118 * E1.5 mode - In backward compatible mode; 8119 * for non default SB; each even line in the memory 8120 * holds the U producer and each odd line hold 8121 * the C producer. The first 128 producers are for 8122 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8123 * producers are for the DSB for each PF. 8124 * Each PF has five segments: (the order inside each 8125 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8126 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8127 * 144-147 attn prods; 8128 */ 8129 /* non-default-status-blocks */ 8130 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8131 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8132 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8133 prod_offset = (bp->igu_base_sb + sb_idx) * 8134 num_segs; 8135 8136 for (i = 0; i < num_segs; i++) { 8137 addr = IGU_REG_PROD_CONS_MEMORY + 8138 (prod_offset + i) * 4; 8139 REG_WR(bp, addr, 0); 8140 } 8141 /* send consumer update with value 0 */ 8142 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8143 USTORM_ID, 0, IGU_INT_NOP, 1); 8144 bnx2x_igu_clear_sb(bp, 8145 bp->igu_base_sb + sb_idx); 8146 } 8147 8148 /* default-status-blocks */ 8149 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8150 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8151 8152 if (CHIP_MODE_IS_4_PORT(bp)) 8153 dsb_idx = BP_FUNC(bp); 8154 else 8155 dsb_idx = BP_VN(bp); 8156 8157 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8158 IGU_BC_BASE_DSB_PROD + dsb_idx : 8159 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8160 8161 /* 8162 * igu prods come in chunks of E1HVN_MAX (4) - 8163 * does not matters what is the current chip mode 8164 */ 8165 for (i = 0; i < (num_segs * E1HVN_MAX); 8166 i += E1HVN_MAX) { 8167 addr = IGU_REG_PROD_CONS_MEMORY + 8168 (prod_offset + i)*4; 8169 REG_WR(bp, addr, 0); 8170 } 8171 /* send consumer update with 0 */ 8172 if (CHIP_INT_MODE_IS_BC(bp)) { 8173 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8174 USTORM_ID, 0, IGU_INT_NOP, 1); 8175 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8176 CSTORM_ID, 0, IGU_INT_NOP, 1); 8177 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8178 XSTORM_ID, 0, IGU_INT_NOP, 1); 8179 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8180 TSTORM_ID, 0, IGU_INT_NOP, 1); 8181 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8182 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8183 } else { 8184 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8185 USTORM_ID, 0, IGU_INT_NOP, 1); 8186 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8187 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8188 } 8189 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8190 8191 /* !!! These should become driver const once 8192 rf-tool supports split-68 const */ 8193 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8194 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8195 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8196 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8197 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8198 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8199 } 8200 } 8201 8202 /* Reset PCIE errors for debug */ 8203 REG_WR(bp, 0x2114, 0xffffffff); 8204 REG_WR(bp, 0x2120, 0xffffffff); 8205 8206 if (CHIP_IS_E1x(bp)) { 8207 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8208 main_mem_base = HC_REG_MAIN_MEMORY + 8209 BP_PORT(bp) * (main_mem_size * 4); 8210 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8211 main_mem_width = 8; 8212 8213 val = REG_RD(bp, main_mem_prty_clr); 8214 if (val) 8215 DP(NETIF_MSG_HW, 8216 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8217 val); 8218 8219 /* Clear "false" parity errors in MSI-X table */ 8220 for (i = main_mem_base; 8221 i < main_mem_base + main_mem_size * 4; 8222 i += main_mem_width) { 8223 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8224 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8225 i, main_mem_width / 4); 8226 } 8227 /* Clear HC parity attention */ 8228 REG_RD(bp, main_mem_prty_clr); 8229 } 8230 8231 #ifdef BNX2X_STOP_ON_ERROR 8232 /* Enable STORMs SP logging */ 8233 REG_WR8(bp, BAR_USTRORM_INTMEM + 8234 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8235 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8236 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8237 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8238 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8239 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8240 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8241 #endif 8242 8243 bnx2x_phy_probe(&bp->link_params); 8244 8245 return 0; 8246 } 8247 8248 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8249 { 8250 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8251 8252 if (!CHIP_IS_E1x(bp)) 8253 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8254 sizeof(struct host_hc_status_block_e2)); 8255 else 8256 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8257 sizeof(struct host_hc_status_block_e1x)); 8258 8259 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8260 } 8261 8262 void bnx2x_free_mem(struct bnx2x *bp) 8263 { 8264 int i; 8265 8266 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8267 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8268 8269 if (IS_VF(bp)) 8270 return; 8271 8272 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8273 sizeof(struct host_sp_status_block)); 8274 8275 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8276 sizeof(struct bnx2x_slowpath)); 8277 8278 for (i = 0; i < L2_ILT_LINES(bp); i++) 8279 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8280 bp->context[i].size); 8281 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8282 8283 BNX2X_FREE(bp->ilt->lines); 8284 8285 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8286 8287 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8288 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8289 8290 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8291 8292 bnx2x_iov_free_mem(bp); 8293 } 8294 8295 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8296 { 8297 if (!CHIP_IS_E1x(bp)) { 8298 /* size = the status block + ramrod buffers */ 8299 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8300 sizeof(struct host_hc_status_block_e2)); 8301 if (!bp->cnic_sb.e2_sb) 8302 goto alloc_mem_err; 8303 } else { 8304 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8305 sizeof(struct host_hc_status_block_e1x)); 8306 if (!bp->cnic_sb.e1x_sb) 8307 goto alloc_mem_err; 8308 } 8309 8310 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8311 /* allocate searcher T2 table, as it wasn't allocated before */ 8312 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8313 if (!bp->t2) 8314 goto alloc_mem_err; 8315 } 8316 8317 /* write address to which L5 should insert its values */ 8318 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8319 &bp->slowpath->drv_info_to_mcp; 8320 8321 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8322 goto alloc_mem_err; 8323 8324 return 0; 8325 8326 alloc_mem_err: 8327 bnx2x_free_mem_cnic(bp); 8328 BNX2X_ERR("Can't allocate memory\n"); 8329 return -ENOMEM; 8330 } 8331 8332 int bnx2x_alloc_mem(struct bnx2x *bp) 8333 { 8334 int i, allocated, context_size; 8335 8336 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8337 /* allocate searcher T2 table */ 8338 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8339 if (!bp->t2) 8340 goto alloc_mem_err; 8341 } 8342 8343 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8344 sizeof(struct host_sp_status_block)); 8345 if (!bp->def_status_blk) 8346 goto alloc_mem_err; 8347 8348 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8349 sizeof(struct bnx2x_slowpath)); 8350 if (!bp->slowpath) 8351 goto alloc_mem_err; 8352 8353 /* Allocate memory for CDU context: 8354 * This memory is allocated separately and not in the generic ILT 8355 * functions because CDU differs in few aspects: 8356 * 1. There are multiple entities allocating memory for context - 8357 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8358 * its own ILT lines. 8359 * 2. Since CDU page-size is not a single 4KB page (which is the case 8360 * for the other ILT clients), to be efficient we want to support 8361 * allocation of sub-page-size in the last entry. 8362 * 3. Context pointers are used by the driver to pass to FW / update 8363 * the context (for the other ILT clients the pointers are used just to 8364 * free the memory during unload). 8365 */ 8366 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8367 8368 for (i = 0, allocated = 0; allocated < context_size; i++) { 8369 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8370 (context_size - allocated)); 8371 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8372 bp->context[i].size); 8373 if (!bp->context[i].vcxt) 8374 goto alloc_mem_err; 8375 allocated += bp->context[i].size; 8376 } 8377 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8378 GFP_KERNEL); 8379 if (!bp->ilt->lines) 8380 goto alloc_mem_err; 8381 8382 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8383 goto alloc_mem_err; 8384 8385 if (bnx2x_iov_alloc_mem(bp)) 8386 goto alloc_mem_err; 8387 8388 /* Slow path ring */ 8389 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8390 if (!bp->spq) 8391 goto alloc_mem_err; 8392 8393 /* EQ */ 8394 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8395 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8396 if (!bp->eq_ring) 8397 goto alloc_mem_err; 8398 8399 return 0; 8400 8401 alloc_mem_err: 8402 bnx2x_free_mem(bp); 8403 BNX2X_ERR("Can't allocate memory\n"); 8404 return -ENOMEM; 8405 } 8406 8407 /* 8408 * Init service functions 8409 */ 8410 8411 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8412 struct bnx2x_vlan_mac_obj *obj, bool set, 8413 int mac_type, unsigned long *ramrod_flags) 8414 { 8415 int rc; 8416 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8417 8418 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8419 8420 /* Fill general parameters */ 8421 ramrod_param.vlan_mac_obj = obj; 8422 ramrod_param.ramrod_flags = *ramrod_flags; 8423 8424 /* Fill a user request section if needed */ 8425 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8426 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8427 8428 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8429 8430 /* Set the command: ADD or DEL */ 8431 if (set) 8432 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8433 else 8434 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8435 } 8436 8437 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8438 8439 if (rc == -EEXIST) { 8440 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8441 /* do not treat adding same MAC as error */ 8442 rc = 0; 8443 } else if (rc < 0) 8444 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8445 8446 return rc; 8447 } 8448 8449 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8450 struct bnx2x_vlan_mac_obj *obj, bool set, 8451 unsigned long *ramrod_flags) 8452 { 8453 int rc; 8454 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8455 8456 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8457 8458 /* Fill general parameters */ 8459 ramrod_param.vlan_mac_obj = obj; 8460 ramrod_param.ramrod_flags = *ramrod_flags; 8461 8462 /* Fill a user request section if needed */ 8463 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8464 ramrod_param.user_req.u.vlan.vlan = vlan; 8465 /* Set the command: ADD or DEL */ 8466 if (set) 8467 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8468 else 8469 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8470 } 8471 8472 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8473 8474 if (rc == -EEXIST) { 8475 /* Do not treat adding same vlan as error. */ 8476 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8477 rc = 0; 8478 } else if (rc < 0) { 8479 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8480 } 8481 8482 return rc; 8483 } 8484 8485 int bnx2x_del_all_macs(struct bnx2x *bp, 8486 struct bnx2x_vlan_mac_obj *mac_obj, 8487 int mac_type, bool wait_for_comp) 8488 { 8489 int rc; 8490 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8491 8492 /* Wait for completion of requested */ 8493 if (wait_for_comp) 8494 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8495 8496 /* Set the mac type of addresses we want to clear */ 8497 __set_bit(mac_type, &vlan_mac_flags); 8498 8499 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8500 if (rc < 0) 8501 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8502 8503 return rc; 8504 } 8505 8506 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8507 { 8508 if (IS_PF(bp)) { 8509 unsigned long ramrod_flags = 0; 8510 8511 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8512 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8513 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8514 &bp->sp_objs->mac_obj, set, 8515 BNX2X_ETH_MAC, &ramrod_flags); 8516 } else { /* vf */ 8517 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8518 bp->fp->index, set); 8519 } 8520 } 8521 8522 int bnx2x_setup_leading(struct bnx2x *bp) 8523 { 8524 if (IS_PF(bp)) 8525 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8526 else /* VF */ 8527 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8528 } 8529 8530 /** 8531 * bnx2x_set_int_mode - configure interrupt mode 8532 * 8533 * @bp: driver handle 8534 * 8535 * In case of MSI-X it will also try to enable MSI-X. 8536 */ 8537 int bnx2x_set_int_mode(struct bnx2x *bp) 8538 { 8539 int rc = 0; 8540 8541 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8542 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8543 return -EINVAL; 8544 } 8545 8546 switch (int_mode) { 8547 case BNX2X_INT_MODE_MSIX: 8548 /* attempt to enable msix */ 8549 rc = bnx2x_enable_msix(bp); 8550 8551 /* msix attained */ 8552 if (!rc) 8553 return 0; 8554 8555 /* vfs use only msix */ 8556 if (rc && IS_VF(bp)) 8557 return rc; 8558 8559 /* failed to enable multiple MSI-X */ 8560 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8561 bp->num_queues, 8562 1 + bp->num_cnic_queues); 8563 8564 /* fall through */ 8565 case BNX2X_INT_MODE_MSI: 8566 bnx2x_enable_msi(bp); 8567 8568 /* fall through */ 8569 case BNX2X_INT_MODE_INTX: 8570 bp->num_ethernet_queues = 1; 8571 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8572 BNX2X_DEV_INFO("set number of queues to 1\n"); 8573 break; 8574 default: 8575 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8576 return -EINVAL; 8577 } 8578 return 0; 8579 } 8580 8581 /* must be called prior to any HW initializations */ 8582 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8583 { 8584 if (IS_SRIOV(bp)) 8585 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8586 return L2_ILT_LINES(bp); 8587 } 8588 8589 void bnx2x_ilt_set_info(struct bnx2x *bp) 8590 { 8591 struct ilt_client_info *ilt_client; 8592 struct bnx2x_ilt *ilt = BP_ILT(bp); 8593 u16 line = 0; 8594 8595 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8596 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8597 8598 /* CDU */ 8599 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8600 ilt_client->client_num = ILT_CLIENT_CDU; 8601 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8602 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8603 ilt_client->start = line; 8604 line += bnx2x_cid_ilt_lines(bp); 8605 8606 if (CNIC_SUPPORT(bp)) 8607 line += CNIC_ILT_LINES; 8608 ilt_client->end = line - 1; 8609 8610 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8611 ilt_client->start, 8612 ilt_client->end, 8613 ilt_client->page_size, 8614 ilt_client->flags, 8615 ilog2(ilt_client->page_size >> 12)); 8616 8617 /* QM */ 8618 if (QM_INIT(bp->qm_cid_count)) { 8619 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8620 ilt_client->client_num = ILT_CLIENT_QM; 8621 ilt_client->page_size = QM_ILT_PAGE_SZ; 8622 ilt_client->flags = 0; 8623 ilt_client->start = line; 8624 8625 /* 4 bytes for each cid */ 8626 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8627 QM_ILT_PAGE_SZ); 8628 8629 ilt_client->end = line - 1; 8630 8631 DP(NETIF_MSG_IFUP, 8632 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8633 ilt_client->start, 8634 ilt_client->end, 8635 ilt_client->page_size, 8636 ilt_client->flags, 8637 ilog2(ilt_client->page_size >> 12)); 8638 } 8639 8640 if (CNIC_SUPPORT(bp)) { 8641 /* SRC */ 8642 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8643 ilt_client->client_num = ILT_CLIENT_SRC; 8644 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8645 ilt_client->flags = 0; 8646 ilt_client->start = line; 8647 line += SRC_ILT_LINES; 8648 ilt_client->end = line - 1; 8649 8650 DP(NETIF_MSG_IFUP, 8651 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8652 ilt_client->start, 8653 ilt_client->end, 8654 ilt_client->page_size, 8655 ilt_client->flags, 8656 ilog2(ilt_client->page_size >> 12)); 8657 8658 /* TM */ 8659 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8660 ilt_client->client_num = ILT_CLIENT_TM; 8661 ilt_client->page_size = TM_ILT_PAGE_SZ; 8662 ilt_client->flags = 0; 8663 ilt_client->start = line; 8664 line += TM_ILT_LINES; 8665 ilt_client->end = line - 1; 8666 8667 DP(NETIF_MSG_IFUP, 8668 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8669 ilt_client->start, 8670 ilt_client->end, 8671 ilt_client->page_size, 8672 ilt_client->flags, 8673 ilog2(ilt_client->page_size >> 12)); 8674 } 8675 8676 BUG_ON(line > ILT_MAX_LINES); 8677 } 8678 8679 /** 8680 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8681 * 8682 * @bp: driver handle 8683 * @fp: pointer to fastpath 8684 * @init_params: pointer to parameters structure 8685 * 8686 * parameters configured: 8687 * - HC configuration 8688 * - Queue's CDU context 8689 */ 8690 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8691 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8692 { 8693 u8 cos; 8694 int cxt_index, cxt_offset; 8695 8696 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8697 if (!IS_FCOE_FP(fp)) { 8698 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8699 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8700 8701 /* If HC is supported, enable host coalescing in the transition 8702 * to INIT state. 8703 */ 8704 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8705 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8706 8707 /* HC rate */ 8708 init_params->rx.hc_rate = bp->rx_ticks ? 8709 (1000000 / bp->rx_ticks) : 0; 8710 init_params->tx.hc_rate = bp->tx_ticks ? 8711 (1000000 / bp->tx_ticks) : 0; 8712 8713 /* FW SB ID */ 8714 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8715 fp->fw_sb_id; 8716 8717 /* 8718 * CQ index among the SB indices: FCoE clients uses the default 8719 * SB, therefore it's different. 8720 */ 8721 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8722 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8723 } 8724 8725 /* set maximum number of COSs supported by this queue */ 8726 init_params->max_cos = fp->max_cos; 8727 8728 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8729 fp->index, init_params->max_cos); 8730 8731 /* set the context pointers queue object */ 8732 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8733 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8734 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8735 ILT_PAGE_CIDS); 8736 init_params->cxts[cos] = 8737 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8738 } 8739 } 8740 8741 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8742 struct bnx2x_queue_state_params *q_params, 8743 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8744 int tx_index, bool leading) 8745 { 8746 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8747 8748 /* Set the command */ 8749 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8750 8751 /* Set tx-only QUEUE flags: don't zero statistics */ 8752 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8753 8754 /* choose the index of the cid to send the slow path on */ 8755 tx_only_params->cid_index = tx_index; 8756 8757 /* Set general TX_ONLY_SETUP parameters */ 8758 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8759 8760 /* Set Tx TX_ONLY_SETUP parameters */ 8761 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8762 8763 DP(NETIF_MSG_IFUP, 8764 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8765 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8766 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8767 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8768 8769 /* send the ramrod */ 8770 return bnx2x_queue_state_change(bp, q_params); 8771 } 8772 8773 /** 8774 * bnx2x_setup_queue - setup queue 8775 * 8776 * @bp: driver handle 8777 * @fp: pointer to fastpath 8778 * @leading: is leading 8779 * 8780 * This function performs 2 steps in a Queue state machine 8781 * actually: 1) RESET->INIT 2) INIT->SETUP 8782 */ 8783 8784 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8785 bool leading) 8786 { 8787 struct bnx2x_queue_state_params q_params = {NULL}; 8788 struct bnx2x_queue_setup_params *setup_params = 8789 &q_params.params.setup; 8790 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8791 &q_params.params.tx_only; 8792 int rc; 8793 u8 tx_index; 8794 8795 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8796 8797 /* reset IGU state skip FCoE L2 queue */ 8798 if (!IS_FCOE_FP(fp)) 8799 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8800 IGU_INT_ENABLE, 0); 8801 8802 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8803 /* We want to wait for completion in this context */ 8804 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8805 8806 /* Prepare the INIT parameters */ 8807 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8808 8809 /* Set the command */ 8810 q_params.cmd = BNX2X_Q_CMD_INIT; 8811 8812 /* Change the state to INIT */ 8813 rc = bnx2x_queue_state_change(bp, &q_params); 8814 if (rc) { 8815 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8816 return rc; 8817 } 8818 8819 DP(NETIF_MSG_IFUP, "init complete\n"); 8820 8821 /* Now move the Queue to the SETUP state... */ 8822 memset(setup_params, 0, sizeof(*setup_params)); 8823 8824 /* Set QUEUE flags */ 8825 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8826 8827 /* Set general SETUP parameters */ 8828 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8829 FIRST_TX_COS_INDEX); 8830 8831 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8832 &setup_params->rxq_params); 8833 8834 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8835 FIRST_TX_COS_INDEX); 8836 8837 /* Set the command */ 8838 q_params.cmd = BNX2X_Q_CMD_SETUP; 8839 8840 if (IS_FCOE_FP(fp)) 8841 bp->fcoe_init = true; 8842 8843 /* Change the state to SETUP */ 8844 rc = bnx2x_queue_state_change(bp, &q_params); 8845 if (rc) { 8846 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8847 return rc; 8848 } 8849 8850 /* loop through the relevant tx-only indices */ 8851 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8852 tx_index < fp->max_cos; 8853 tx_index++) { 8854 8855 /* prepare and send tx-only ramrod*/ 8856 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8857 tx_only_params, tx_index, leading); 8858 if (rc) { 8859 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8860 fp->index, tx_index); 8861 return rc; 8862 } 8863 } 8864 8865 return rc; 8866 } 8867 8868 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8869 { 8870 struct bnx2x_fastpath *fp = &bp->fp[index]; 8871 struct bnx2x_fp_txdata *txdata; 8872 struct bnx2x_queue_state_params q_params = {NULL}; 8873 int rc, tx_index; 8874 8875 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8876 8877 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8878 /* We want to wait for completion in this context */ 8879 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8880 8881 /* close tx-only connections */ 8882 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8883 tx_index < fp->max_cos; 8884 tx_index++){ 8885 8886 /* ascertain this is a normal queue*/ 8887 txdata = fp->txdata_ptr[tx_index]; 8888 8889 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8890 txdata->txq_index); 8891 8892 /* send halt terminate on tx-only connection */ 8893 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8894 memset(&q_params.params.terminate, 0, 8895 sizeof(q_params.params.terminate)); 8896 q_params.params.terminate.cid_index = tx_index; 8897 8898 rc = bnx2x_queue_state_change(bp, &q_params); 8899 if (rc) 8900 return rc; 8901 8902 /* send halt terminate on tx-only connection */ 8903 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8904 memset(&q_params.params.cfc_del, 0, 8905 sizeof(q_params.params.cfc_del)); 8906 q_params.params.cfc_del.cid_index = tx_index; 8907 rc = bnx2x_queue_state_change(bp, &q_params); 8908 if (rc) 8909 return rc; 8910 } 8911 /* Stop the primary connection: */ 8912 /* ...halt the connection */ 8913 q_params.cmd = BNX2X_Q_CMD_HALT; 8914 rc = bnx2x_queue_state_change(bp, &q_params); 8915 if (rc) 8916 return rc; 8917 8918 /* ...terminate the connection */ 8919 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8920 memset(&q_params.params.terminate, 0, 8921 sizeof(q_params.params.terminate)); 8922 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8923 rc = bnx2x_queue_state_change(bp, &q_params); 8924 if (rc) 8925 return rc; 8926 /* ...delete cfc entry */ 8927 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8928 memset(&q_params.params.cfc_del, 0, 8929 sizeof(q_params.params.cfc_del)); 8930 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8931 return bnx2x_queue_state_change(bp, &q_params); 8932 } 8933 8934 static void bnx2x_reset_func(struct bnx2x *bp) 8935 { 8936 int port = BP_PORT(bp); 8937 int func = BP_FUNC(bp); 8938 int i; 8939 8940 /* Disable the function in the FW */ 8941 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8942 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8943 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8944 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8945 8946 /* FP SBs */ 8947 for_each_eth_queue(bp, i) { 8948 struct bnx2x_fastpath *fp = &bp->fp[i]; 8949 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8950 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8951 SB_DISABLED); 8952 } 8953 8954 if (CNIC_LOADED(bp)) 8955 /* CNIC SB */ 8956 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8957 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8958 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8959 8960 /* SP SB */ 8961 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8962 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8963 SB_DISABLED); 8964 8965 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8966 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8967 0); 8968 8969 /* Configure IGU */ 8970 if (bp->common.int_block == INT_BLOCK_HC) { 8971 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8972 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8973 } else { 8974 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8975 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8976 } 8977 8978 if (CNIC_LOADED(bp)) { 8979 /* Disable Timer scan */ 8980 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8981 /* 8982 * Wait for at least 10ms and up to 2 second for the timers 8983 * scan to complete 8984 */ 8985 for (i = 0; i < 200; i++) { 8986 usleep_range(10000, 20000); 8987 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8988 break; 8989 } 8990 } 8991 /* Clear ILT */ 8992 bnx2x_clear_func_ilt(bp, func); 8993 8994 /* Timers workaround bug for E2: if this is vnic-3, 8995 * we need to set the entire ilt range for this timers. 8996 */ 8997 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8998 struct ilt_client_info ilt_cli; 8999 /* use dummy TM client */ 9000 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9001 ilt_cli.start = 0; 9002 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9003 ilt_cli.client_num = ILT_CLIENT_TM; 9004 9005 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9006 } 9007 9008 /* this assumes that reset_port() called before reset_func()*/ 9009 if (!CHIP_IS_E1x(bp)) 9010 bnx2x_pf_disable(bp); 9011 9012 bp->dmae_ready = 0; 9013 } 9014 9015 static void bnx2x_reset_port(struct bnx2x *bp) 9016 { 9017 int port = BP_PORT(bp); 9018 u32 val; 9019 9020 /* Reset physical Link */ 9021 bnx2x__link_reset(bp); 9022 9023 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9024 9025 /* Do not rcv packets to BRB */ 9026 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9027 /* Do not direct rcv packets that are not for MCP to the BRB */ 9028 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9029 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9030 9031 /* Configure AEU */ 9032 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9033 9034 msleep(100); 9035 /* Check for BRB port occupancy */ 9036 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9037 if (val) 9038 DP(NETIF_MSG_IFDOWN, 9039 "BRB1 is not empty %d blocks are occupied\n", val); 9040 9041 /* TODO: Close Doorbell port? */ 9042 } 9043 9044 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9045 { 9046 struct bnx2x_func_state_params func_params = {NULL}; 9047 9048 /* Prepare parameters for function state transitions */ 9049 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9050 9051 func_params.f_obj = &bp->func_obj; 9052 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9053 9054 func_params.params.hw_init.load_phase = load_code; 9055 9056 return bnx2x_func_state_change(bp, &func_params); 9057 } 9058 9059 static int bnx2x_func_stop(struct bnx2x *bp) 9060 { 9061 struct bnx2x_func_state_params func_params = {NULL}; 9062 int rc; 9063 9064 /* Prepare parameters for function state transitions */ 9065 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9066 func_params.f_obj = &bp->func_obj; 9067 func_params.cmd = BNX2X_F_CMD_STOP; 9068 9069 /* 9070 * Try to stop the function the 'good way'. If fails (in case 9071 * of a parity error during bnx2x_chip_cleanup()) and we are 9072 * not in a debug mode, perform a state transaction in order to 9073 * enable further HW_RESET transaction. 9074 */ 9075 rc = bnx2x_func_state_change(bp, &func_params); 9076 if (rc) { 9077 #ifdef BNX2X_STOP_ON_ERROR 9078 return rc; 9079 #else 9080 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9081 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9082 return bnx2x_func_state_change(bp, &func_params); 9083 #endif 9084 } 9085 9086 return 0; 9087 } 9088 9089 /** 9090 * bnx2x_send_unload_req - request unload mode from the MCP. 9091 * 9092 * @bp: driver handle 9093 * @unload_mode: requested function's unload mode 9094 * 9095 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9096 */ 9097 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9098 { 9099 u32 reset_code = 0; 9100 int port = BP_PORT(bp); 9101 9102 /* Select the UNLOAD request mode */ 9103 if (unload_mode == UNLOAD_NORMAL) 9104 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9105 9106 else if (bp->flags & NO_WOL_FLAG) 9107 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9108 9109 else if (bp->wol) { 9110 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9111 u8 *mac_addr = bp->dev->dev_addr; 9112 struct pci_dev *pdev = bp->pdev; 9113 u32 val; 9114 u16 pmc; 9115 9116 /* The mac address is written to entries 1-4 to 9117 * preserve entry 0 which is used by the PMF 9118 */ 9119 u8 entry = (BP_VN(bp) + 1)*8; 9120 9121 val = (mac_addr[0] << 8) | mac_addr[1]; 9122 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9123 9124 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9125 (mac_addr[4] << 8) | mac_addr[5]; 9126 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9127 9128 /* Enable the PME and clear the status */ 9129 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9130 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9131 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9132 9133 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9134 9135 } else 9136 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9137 9138 /* Send the request to the MCP */ 9139 if (!BP_NOMCP(bp)) 9140 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9141 else { 9142 int path = BP_PATH(bp); 9143 9144 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9145 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9146 bnx2x_load_count[path][2]); 9147 bnx2x_load_count[path][0]--; 9148 bnx2x_load_count[path][1 + port]--; 9149 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9150 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9151 bnx2x_load_count[path][2]); 9152 if (bnx2x_load_count[path][0] == 0) 9153 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9154 else if (bnx2x_load_count[path][1 + port] == 0) 9155 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9156 else 9157 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9158 } 9159 9160 return reset_code; 9161 } 9162 9163 /** 9164 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9165 * 9166 * @bp: driver handle 9167 * @keep_link: true iff link should be kept up 9168 */ 9169 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9170 { 9171 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9172 9173 /* Report UNLOAD_DONE to MCP */ 9174 if (!BP_NOMCP(bp)) 9175 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9176 } 9177 9178 static int bnx2x_func_wait_started(struct bnx2x *bp) 9179 { 9180 int tout = 50; 9181 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9182 9183 if (!bp->port.pmf) 9184 return 0; 9185 9186 /* 9187 * (assumption: No Attention from MCP at this stage) 9188 * PMF probably in the middle of TX disable/enable transaction 9189 * 1. Sync IRS for default SB 9190 * 2. Sync SP queue - this guarantees us that attention handling started 9191 * 3. Wait, that TX disable/enable transaction completes 9192 * 9193 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9194 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9195 * received completion for the transaction the state is TX_STOPPED. 9196 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9197 * transaction. 9198 */ 9199 9200 /* make sure default SB ISR is done */ 9201 if (msix) 9202 synchronize_irq(bp->msix_table[0].vector); 9203 else 9204 synchronize_irq(bp->pdev->irq); 9205 9206 flush_workqueue(bnx2x_wq); 9207 flush_workqueue(bnx2x_iov_wq); 9208 9209 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9210 BNX2X_F_STATE_STARTED && tout--) 9211 msleep(20); 9212 9213 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9214 BNX2X_F_STATE_STARTED) { 9215 #ifdef BNX2X_STOP_ON_ERROR 9216 BNX2X_ERR("Wrong function state\n"); 9217 return -EBUSY; 9218 #else 9219 /* 9220 * Failed to complete the transaction in a "good way" 9221 * Force both transactions with CLR bit 9222 */ 9223 struct bnx2x_func_state_params func_params = {NULL}; 9224 9225 DP(NETIF_MSG_IFDOWN, 9226 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9227 9228 func_params.f_obj = &bp->func_obj; 9229 __set_bit(RAMROD_DRV_CLR_ONLY, 9230 &func_params.ramrod_flags); 9231 9232 /* STARTED-->TX_ST0PPED */ 9233 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9234 bnx2x_func_state_change(bp, &func_params); 9235 9236 /* TX_ST0PPED-->STARTED */ 9237 func_params.cmd = BNX2X_F_CMD_TX_START; 9238 return bnx2x_func_state_change(bp, &func_params); 9239 #endif 9240 } 9241 9242 return 0; 9243 } 9244 9245 static void bnx2x_disable_ptp(struct bnx2x *bp) 9246 { 9247 int port = BP_PORT(bp); 9248 9249 /* Disable sending PTP packets to host */ 9250 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9251 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9252 9253 /* Reset PTP event detection rules */ 9254 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9255 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9256 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9257 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9258 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9259 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9260 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9261 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9262 9263 /* Disable the PTP feature */ 9264 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9265 NIG_REG_P0_PTP_EN, 0x0); 9266 } 9267 9268 /* Called during unload, to stop PTP-related stuff */ 9269 static void bnx2x_stop_ptp(struct bnx2x *bp) 9270 { 9271 /* Cancel PTP work queue. Should be done after the Tx queues are 9272 * drained to prevent additional scheduling. 9273 */ 9274 cancel_work_sync(&bp->ptp_task); 9275 9276 if (bp->ptp_tx_skb) { 9277 dev_kfree_skb_any(bp->ptp_tx_skb); 9278 bp->ptp_tx_skb = NULL; 9279 } 9280 9281 /* Disable PTP in HW */ 9282 bnx2x_disable_ptp(bp); 9283 9284 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9285 } 9286 9287 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9288 { 9289 int port = BP_PORT(bp); 9290 int i, rc = 0; 9291 u8 cos; 9292 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9293 u32 reset_code; 9294 9295 /* Wait until tx fastpath tasks complete */ 9296 for_each_tx_queue(bp, i) { 9297 struct bnx2x_fastpath *fp = &bp->fp[i]; 9298 9299 for_each_cos_in_tx_queue(fp, cos) 9300 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9301 #ifdef BNX2X_STOP_ON_ERROR 9302 if (rc) 9303 return; 9304 #endif 9305 } 9306 9307 /* Give HW time to discard old tx messages */ 9308 usleep_range(1000, 2000); 9309 9310 /* Clean all ETH MACs */ 9311 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9312 false); 9313 if (rc < 0) 9314 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9315 9316 /* Clean up UC list */ 9317 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9318 true); 9319 if (rc < 0) 9320 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9321 rc); 9322 9323 /* Disable LLH */ 9324 if (!CHIP_IS_E1(bp)) 9325 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9326 9327 /* Set "drop all" (stop Rx). 9328 * We need to take a netif_addr_lock() here in order to prevent 9329 * a race between the completion code and this code. 9330 */ 9331 netif_addr_lock_bh(bp->dev); 9332 /* Schedule the rx_mode command */ 9333 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9334 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9335 else if (bp->slowpath) 9336 bnx2x_set_storm_rx_mode(bp); 9337 9338 /* Cleanup multicast configuration */ 9339 rparam.mcast_obj = &bp->mcast_obj; 9340 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9341 if (rc < 0) 9342 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9343 9344 netif_addr_unlock_bh(bp->dev); 9345 9346 bnx2x_iov_chip_cleanup(bp); 9347 9348 /* 9349 * Send the UNLOAD_REQUEST to the MCP. This will return if 9350 * this function should perform FUNC, PORT or COMMON HW 9351 * reset. 9352 */ 9353 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9354 9355 /* 9356 * (assumption: No Attention from MCP at this stage) 9357 * PMF probably in the middle of TX disable/enable transaction 9358 */ 9359 rc = bnx2x_func_wait_started(bp); 9360 if (rc) { 9361 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9362 #ifdef BNX2X_STOP_ON_ERROR 9363 return; 9364 #endif 9365 } 9366 9367 /* Close multi and leading connections 9368 * Completions for ramrods are collected in a synchronous way 9369 */ 9370 for_each_eth_queue(bp, i) 9371 if (bnx2x_stop_queue(bp, i)) 9372 #ifdef BNX2X_STOP_ON_ERROR 9373 return; 9374 #else 9375 goto unload_error; 9376 #endif 9377 9378 if (CNIC_LOADED(bp)) { 9379 for_each_cnic_queue(bp, i) 9380 if (bnx2x_stop_queue(bp, i)) 9381 #ifdef BNX2X_STOP_ON_ERROR 9382 return; 9383 #else 9384 goto unload_error; 9385 #endif 9386 } 9387 9388 /* If SP settings didn't get completed so far - something 9389 * very wrong has happen. 9390 */ 9391 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9392 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9393 9394 #ifndef BNX2X_STOP_ON_ERROR 9395 unload_error: 9396 #endif 9397 rc = bnx2x_func_stop(bp); 9398 if (rc) { 9399 BNX2X_ERR("Function stop failed!\n"); 9400 #ifdef BNX2X_STOP_ON_ERROR 9401 return; 9402 #endif 9403 } 9404 9405 /* stop_ptp should be after the Tx queues are drained to prevent 9406 * scheduling to the cancelled PTP work queue. It should also be after 9407 * function stop ramrod is sent, since as part of this ramrod FW access 9408 * PTP registers. 9409 */ 9410 if (bp->flags & PTP_SUPPORTED) 9411 bnx2x_stop_ptp(bp); 9412 9413 /* Disable HW interrupts, NAPI */ 9414 bnx2x_netif_stop(bp, 1); 9415 /* Delete all NAPI objects */ 9416 bnx2x_del_all_napi(bp); 9417 if (CNIC_LOADED(bp)) 9418 bnx2x_del_all_napi_cnic(bp); 9419 9420 /* Release IRQs */ 9421 bnx2x_free_irq(bp); 9422 9423 /* Reset the chip, unless PCI function is offline. If we reach this 9424 * point following a PCI error handling, it means device is really 9425 * in a bad state and we're about to remove it, so reset the chip 9426 * is not a good idea. 9427 */ 9428 if (!pci_channel_offline(bp->pdev)) { 9429 rc = bnx2x_reset_hw(bp, reset_code); 9430 if (rc) 9431 BNX2X_ERR("HW_RESET failed\n"); 9432 } 9433 9434 /* Report UNLOAD_DONE to MCP */ 9435 bnx2x_send_unload_done(bp, keep_link); 9436 } 9437 9438 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9439 { 9440 u32 val; 9441 9442 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9443 9444 if (CHIP_IS_E1(bp)) { 9445 int port = BP_PORT(bp); 9446 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9447 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9448 9449 val = REG_RD(bp, addr); 9450 val &= ~(0x300); 9451 REG_WR(bp, addr, val); 9452 } else { 9453 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9454 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9455 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9456 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9457 } 9458 } 9459 9460 /* Close gates #2, #3 and #4: */ 9461 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9462 { 9463 u32 val; 9464 9465 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9466 if (!CHIP_IS_E1(bp)) { 9467 /* #4 */ 9468 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9469 /* #2 */ 9470 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9471 } 9472 9473 /* #3 */ 9474 if (CHIP_IS_E1x(bp)) { 9475 /* Prevent interrupts from HC on both ports */ 9476 val = REG_RD(bp, HC_REG_CONFIG_1); 9477 REG_WR(bp, HC_REG_CONFIG_1, 9478 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9479 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9480 9481 val = REG_RD(bp, HC_REG_CONFIG_0); 9482 REG_WR(bp, HC_REG_CONFIG_0, 9483 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9484 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9485 } else { 9486 /* Prevent incoming interrupts in IGU */ 9487 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9488 9489 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9490 (!close) ? 9491 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9492 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9493 } 9494 9495 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9496 close ? "closing" : "opening"); 9497 mmiowb(); 9498 } 9499 9500 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9501 9502 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9503 { 9504 /* Do some magic... */ 9505 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9506 *magic_val = val & SHARED_MF_CLP_MAGIC; 9507 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9508 } 9509 9510 /** 9511 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9512 * 9513 * @bp: driver handle 9514 * @magic_val: old value of the `magic' bit. 9515 */ 9516 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9517 { 9518 /* Restore the `magic' bit value... */ 9519 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9520 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9521 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9522 } 9523 9524 /** 9525 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9526 * 9527 * @bp: driver handle 9528 * @magic_val: old value of 'magic' bit. 9529 * 9530 * Takes care of CLP configurations. 9531 */ 9532 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9533 { 9534 u32 shmem; 9535 u32 validity_offset; 9536 9537 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9538 9539 /* Set `magic' bit in order to save MF config */ 9540 if (!CHIP_IS_E1(bp)) 9541 bnx2x_clp_reset_prep(bp, magic_val); 9542 9543 /* Get shmem offset */ 9544 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9545 validity_offset = 9546 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9547 9548 /* Clear validity map flags */ 9549 if (shmem > 0) 9550 REG_WR(bp, shmem + validity_offset, 0); 9551 } 9552 9553 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9554 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9555 9556 /** 9557 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9558 * 9559 * @bp: driver handle 9560 */ 9561 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9562 { 9563 /* special handling for emulation and FPGA, 9564 wait 10 times longer */ 9565 if (CHIP_REV_IS_SLOW(bp)) 9566 msleep(MCP_ONE_TIMEOUT*10); 9567 else 9568 msleep(MCP_ONE_TIMEOUT); 9569 } 9570 9571 /* 9572 * initializes bp->common.shmem_base and waits for validity signature to appear 9573 */ 9574 static int bnx2x_init_shmem(struct bnx2x *bp) 9575 { 9576 int cnt = 0; 9577 u32 val = 0; 9578 9579 do { 9580 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9581 9582 /* If we read all 0xFFs, means we are in PCI error state and 9583 * should bail out to avoid crashes on adapter's FW reads. 9584 */ 9585 if (bp->common.shmem_base == 0xFFFFFFFF) { 9586 bp->flags |= NO_MCP_FLAG; 9587 return -ENODEV; 9588 } 9589 9590 if (bp->common.shmem_base) { 9591 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9592 if (val & SHR_MEM_VALIDITY_MB) 9593 return 0; 9594 } 9595 9596 bnx2x_mcp_wait_one(bp); 9597 9598 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9599 9600 BNX2X_ERR("BAD MCP validity signature\n"); 9601 9602 return -ENODEV; 9603 } 9604 9605 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9606 { 9607 int rc = bnx2x_init_shmem(bp); 9608 9609 /* Restore the `magic' bit value */ 9610 if (!CHIP_IS_E1(bp)) 9611 bnx2x_clp_reset_done(bp, magic_val); 9612 9613 return rc; 9614 } 9615 9616 static void bnx2x_pxp_prep(struct bnx2x *bp) 9617 { 9618 if (!CHIP_IS_E1(bp)) { 9619 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9620 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9621 mmiowb(); 9622 } 9623 } 9624 9625 /* 9626 * Reset the whole chip except for: 9627 * - PCIE core 9628 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9629 * one reset bit) 9630 * - IGU 9631 * - MISC (including AEU) 9632 * - GRC 9633 * - RBCN, RBCP 9634 */ 9635 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9636 { 9637 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9638 u32 global_bits2, stay_reset2; 9639 9640 /* 9641 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9642 * (per chip) blocks. 9643 */ 9644 global_bits2 = 9645 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9646 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9647 9648 /* Don't reset the following blocks. 9649 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9650 * reset, as in 4 port device they might still be owned 9651 * by the MCP (there is only one leader per path). 9652 */ 9653 not_reset_mask1 = 9654 MISC_REGISTERS_RESET_REG_1_RST_HC | 9655 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9656 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9657 9658 not_reset_mask2 = 9659 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9660 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9661 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9662 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9663 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9664 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9665 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9666 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9667 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9668 MISC_REGISTERS_RESET_REG_2_PGLC | 9669 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9670 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9671 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9672 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9673 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9674 MISC_REGISTERS_RESET_REG_2_UMAC1; 9675 9676 /* 9677 * Keep the following blocks in reset: 9678 * - all xxMACs are handled by the bnx2x_link code. 9679 */ 9680 stay_reset2 = 9681 MISC_REGISTERS_RESET_REG_2_XMAC | 9682 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9683 9684 /* Full reset masks according to the chip */ 9685 reset_mask1 = 0xffffffff; 9686 9687 if (CHIP_IS_E1(bp)) 9688 reset_mask2 = 0xffff; 9689 else if (CHIP_IS_E1H(bp)) 9690 reset_mask2 = 0x1ffff; 9691 else if (CHIP_IS_E2(bp)) 9692 reset_mask2 = 0xfffff; 9693 else /* CHIP_IS_E3 */ 9694 reset_mask2 = 0x3ffffff; 9695 9696 /* Don't reset global blocks unless we need to */ 9697 if (!global) 9698 reset_mask2 &= ~global_bits2; 9699 9700 /* 9701 * In case of attention in the QM, we need to reset PXP 9702 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9703 * because otherwise QM reset would release 'close the gates' shortly 9704 * before resetting the PXP, then the PSWRQ would send a write 9705 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9706 * read the payload data from PSWWR, but PSWWR would not 9707 * respond. The write queue in PGLUE would stuck, dmae commands 9708 * would not return. Therefore it's important to reset the second 9709 * reset register (containing the 9710 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9711 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9712 * bit). 9713 */ 9714 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9715 reset_mask2 & (~not_reset_mask2)); 9716 9717 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9718 reset_mask1 & (~not_reset_mask1)); 9719 9720 barrier(); 9721 mmiowb(); 9722 9723 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9724 reset_mask2 & (~stay_reset2)); 9725 9726 barrier(); 9727 mmiowb(); 9728 9729 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9730 mmiowb(); 9731 } 9732 9733 /** 9734 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9735 * It should get cleared in no more than 1s. 9736 * 9737 * @bp: driver handle 9738 * 9739 * It should get cleared in no more than 1s. Returns 0 if 9740 * pending writes bit gets cleared. 9741 */ 9742 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9743 { 9744 u32 cnt = 1000; 9745 u32 pend_bits = 0; 9746 9747 do { 9748 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9749 9750 if (pend_bits == 0) 9751 break; 9752 9753 usleep_range(1000, 2000); 9754 } while (cnt-- > 0); 9755 9756 if (cnt <= 0) { 9757 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9758 pend_bits); 9759 return -EBUSY; 9760 } 9761 9762 return 0; 9763 } 9764 9765 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9766 { 9767 int cnt = 1000; 9768 u32 val = 0; 9769 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9770 u32 tags_63_32 = 0; 9771 9772 /* Empty the Tetris buffer, wait for 1s */ 9773 do { 9774 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9775 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9776 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9777 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9778 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9779 if (CHIP_IS_E3(bp)) 9780 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9781 9782 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9783 ((port_is_idle_0 & 0x1) == 0x1) && 9784 ((port_is_idle_1 & 0x1) == 0x1) && 9785 (pgl_exp_rom2 == 0xffffffff) && 9786 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9787 break; 9788 usleep_range(1000, 2000); 9789 } while (cnt-- > 0); 9790 9791 if (cnt <= 0) { 9792 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9793 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9794 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9795 pgl_exp_rom2); 9796 return -EAGAIN; 9797 } 9798 9799 barrier(); 9800 9801 /* Close gates #2, #3 and #4 */ 9802 bnx2x_set_234_gates(bp, true); 9803 9804 /* Poll for IGU VQs for 57712 and newer chips */ 9805 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9806 return -EAGAIN; 9807 9808 /* TBD: Indicate that "process kill" is in progress to MCP */ 9809 9810 /* Clear "unprepared" bit */ 9811 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9812 barrier(); 9813 9814 /* Make sure all is written to the chip before the reset */ 9815 mmiowb(); 9816 9817 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9818 * PSWHST, GRC and PSWRD Tetris buffer. 9819 */ 9820 usleep_range(1000, 2000); 9821 9822 /* Prepare to chip reset: */ 9823 /* MCP */ 9824 if (global) 9825 bnx2x_reset_mcp_prep(bp, &val); 9826 9827 /* PXP */ 9828 bnx2x_pxp_prep(bp); 9829 barrier(); 9830 9831 /* reset the chip */ 9832 bnx2x_process_kill_chip_reset(bp, global); 9833 barrier(); 9834 9835 /* clear errors in PGB */ 9836 if (!CHIP_IS_E1x(bp)) 9837 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9838 9839 /* Recover after reset: */ 9840 /* MCP */ 9841 if (global && bnx2x_reset_mcp_comp(bp, val)) 9842 return -EAGAIN; 9843 9844 /* TBD: Add resetting the NO_MCP mode DB here */ 9845 9846 /* Open the gates #2, #3 and #4 */ 9847 bnx2x_set_234_gates(bp, false); 9848 9849 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9850 * reset state, re-enable attentions. */ 9851 9852 return 0; 9853 } 9854 9855 static int bnx2x_leader_reset(struct bnx2x *bp) 9856 { 9857 int rc = 0; 9858 bool global = bnx2x_reset_is_global(bp); 9859 u32 load_code; 9860 9861 /* if not going to reset MCP - load "fake" driver to reset HW while 9862 * driver is owner of the HW 9863 */ 9864 if (!global && !BP_NOMCP(bp)) { 9865 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9866 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9867 if (!load_code) { 9868 BNX2X_ERR("MCP response failure, aborting\n"); 9869 rc = -EAGAIN; 9870 goto exit_leader_reset; 9871 } 9872 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9873 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9874 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9875 rc = -EAGAIN; 9876 goto exit_leader_reset2; 9877 } 9878 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9879 if (!load_code) { 9880 BNX2X_ERR("MCP response failure, aborting\n"); 9881 rc = -EAGAIN; 9882 goto exit_leader_reset2; 9883 } 9884 } 9885 9886 /* Try to recover after the failure */ 9887 if (bnx2x_process_kill(bp, global)) { 9888 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9889 BP_PATH(bp)); 9890 rc = -EAGAIN; 9891 goto exit_leader_reset2; 9892 } 9893 9894 /* 9895 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9896 * state. 9897 */ 9898 bnx2x_set_reset_done(bp); 9899 if (global) 9900 bnx2x_clear_reset_global(bp); 9901 9902 exit_leader_reset2: 9903 /* unload "fake driver" if it was loaded */ 9904 if (!global && !BP_NOMCP(bp)) { 9905 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9906 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9907 } 9908 exit_leader_reset: 9909 bp->is_leader = 0; 9910 bnx2x_release_leader_lock(bp); 9911 smp_mb(); 9912 return rc; 9913 } 9914 9915 static void bnx2x_recovery_failed(struct bnx2x *bp) 9916 { 9917 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9918 9919 /* Disconnect this device */ 9920 netif_device_detach(bp->dev); 9921 9922 /* 9923 * Block ifup for all function on this engine until "process kill" 9924 * or power cycle. 9925 */ 9926 bnx2x_set_reset_in_progress(bp); 9927 9928 /* Shut down the power */ 9929 bnx2x_set_power_state(bp, PCI_D3hot); 9930 9931 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9932 9933 smp_mb(); 9934 } 9935 9936 /* 9937 * Assumption: runs under rtnl lock. This together with the fact 9938 * that it's called only from bnx2x_sp_rtnl() ensure that it 9939 * will never be called when netif_running(bp->dev) is false. 9940 */ 9941 static void bnx2x_parity_recover(struct bnx2x *bp) 9942 { 9943 bool global = false; 9944 u32 error_recovered, error_unrecovered; 9945 bool is_parity; 9946 9947 DP(NETIF_MSG_HW, "Handling parity\n"); 9948 while (1) { 9949 switch (bp->recovery_state) { 9950 case BNX2X_RECOVERY_INIT: 9951 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9952 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9953 WARN_ON(!is_parity); 9954 9955 /* Try to get a LEADER_LOCK HW lock */ 9956 if (bnx2x_trylock_leader_lock(bp)) { 9957 bnx2x_set_reset_in_progress(bp); 9958 /* 9959 * Check if there is a global attention and if 9960 * there was a global attention, set the global 9961 * reset bit. 9962 */ 9963 9964 if (global) 9965 bnx2x_set_reset_global(bp); 9966 9967 bp->is_leader = 1; 9968 } 9969 9970 /* Stop the driver */ 9971 /* If interface has been removed - break */ 9972 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9973 return; 9974 9975 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9976 9977 /* Ensure "is_leader", MCP command sequence and 9978 * "recovery_state" update values are seen on other 9979 * CPUs. 9980 */ 9981 smp_mb(); 9982 break; 9983 9984 case BNX2X_RECOVERY_WAIT: 9985 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9986 if (bp->is_leader) { 9987 int other_engine = BP_PATH(bp) ? 0 : 1; 9988 bool other_load_status = 9989 bnx2x_get_load_status(bp, other_engine); 9990 bool load_status = 9991 bnx2x_get_load_status(bp, BP_PATH(bp)); 9992 global = bnx2x_reset_is_global(bp); 9993 9994 /* 9995 * In case of a parity in a global block, let 9996 * the first leader that performs a 9997 * leader_reset() reset the global blocks in 9998 * order to clear global attentions. Otherwise 9999 * the gates will remain closed for that 10000 * engine. 10001 */ 10002 if (load_status || 10003 (global && other_load_status)) { 10004 /* Wait until all other functions get 10005 * down. 10006 */ 10007 schedule_delayed_work(&bp->sp_rtnl_task, 10008 HZ/10); 10009 return; 10010 } else { 10011 /* If all other functions got down - 10012 * try to bring the chip back to 10013 * normal. In any case it's an exit 10014 * point for a leader. 10015 */ 10016 if (bnx2x_leader_reset(bp)) { 10017 bnx2x_recovery_failed(bp); 10018 return; 10019 } 10020 10021 /* If we are here, means that the 10022 * leader has succeeded and doesn't 10023 * want to be a leader any more. Try 10024 * to continue as a none-leader. 10025 */ 10026 break; 10027 } 10028 } else { /* non-leader */ 10029 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10030 /* Try to get a LEADER_LOCK HW lock as 10031 * long as a former leader may have 10032 * been unloaded by the user or 10033 * released a leadership by another 10034 * reason. 10035 */ 10036 if (bnx2x_trylock_leader_lock(bp)) { 10037 /* I'm a leader now! Restart a 10038 * switch case. 10039 */ 10040 bp->is_leader = 1; 10041 break; 10042 } 10043 10044 schedule_delayed_work(&bp->sp_rtnl_task, 10045 HZ/10); 10046 return; 10047 10048 } else { 10049 /* 10050 * If there was a global attention, wait 10051 * for it to be cleared. 10052 */ 10053 if (bnx2x_reset_is_global(bp)) { 10054 schedule_delayed_work( 10055 &bp->sp_rtnl_task, 10056 HZ/10); 10057 return; 10058 } 10059 10060 error_recovered = 10061 bp->eth_stats.recoverable_error; 10062 error_unrecovered = 10063 bp->eth_stats.unrecoverable_error; 10064 bp->recovery_state = 10065 BNX2X_RECOVERY_NIC_LOADING; 10066 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10067 error_unrecovered++; 10068 netdev_err(bp->dev, 10069 "Recovery failed. Power cycle needed\n"); 10070 /* Disconnect this device */ 10071 netif_device_detach(bp->dev); 10072 /* Shut down the power */ 10073 bnx2x_set_power_state( 10074 bp, PCI_D3hot); 10075 smp_mb(); 10076 } else { 10077 bp->recovery_state = 10078 BNX2X_RECOVERY_DONE; 10079 error_recovered++; 10080 smp_mb(); 10081 } 10082 bp->eth_stats.recoverable_error = 10083 error_recovered; 10084 bp->eth_stats.unrecoverable_error = 10085 error_unrecovered; 10086 10087 return; 10088 } 10089 } 10090 default: 10091 return; 10092 } 10093 } 10094 } 10095 10096 static int bnx2x_udp_port_update(struct bnx2x *bp) 10097 { 10098 struct bnx2x_func_switch_update_params *switch_update_params; 10099 struct bnx2x_func_state_params func_params = {NULL}; 10100 struct bnx2x_udp_tunnel *udp_tunnel; 10101 u16 vxlan_port = 0, geneve_port = 0; 10102 int rc; 10103 10104 switch_update_params = &func_params.params.switch_update; 10105 10106 /* Prepare parameters for function state transitions */ 10107 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10108 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10109 10110 func_params.f_obj = &bp->func_obj; 10111 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10112 10113 /* Function parameters */ 10114 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10115 &switch_update_params->changes); 10116 10117 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) { 10118 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10119 geneve_port = udp_tunnel->dst_port; 10120 switch_update_params->geneve_dst_port = geneve_port; 10121 } 10122 10123 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) { 10124 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10125 vxlan_port = udp_tunnel->dst_port; 10126 switch_update_params->vxlan_dst_port = vxlan_port; 10127 } 10128 10129 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10130 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10131 &switch_update_params->changes); 10132 10133 rc = bnx2x_func_state_change(bp, &func_params); 10134 if (rc) 10135 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10136 vxlan_port, geneve_port, rc); 10137 else 10138 DP(BNX2X_MSG_SP, 10139 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10140 vxlan_port, geneve_port); 10141 10142 return rc; 10143 } 10144 10145 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port, 10146 enum bnx2x_udp_port_type type) 10147 { 10148 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10149 10150 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp)) 10151 return; 10152 10153 if (udp_port->count && udp_port->dst_port == port) { 10154 udp_port->count++; 10155 return; 10156 } 10157 10158 if (udp_port->count) { 10159 DP(BNX2X_MSG_SP, 10160 "UDP tunnel [%d] - destination port limit reached\n", 10161 type); 10162 return; 10163 } 10164 10165 udp_port->dst_port = port; 10166 udp_port->count = 1; 10167 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10168 } 10169 10170 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port, 10171 enum bnx2x_udp_port_type type) 10172 { 10173 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10174 10175 if (!IS_PF(bp) || CHIP_IS_E1x(bp)) 10176 return; 10177 10178 if (!udp_port->count || udp_port->dst_port != port) { 10179 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n", 10180 type); 10181 return; 10182 } 10183 10184 /* Remove reference, and make certain it's no longer in use */ 10185 udp_port->count--; 10186 if (udp_port->count) 10187 return; 10188 udp_port->dst_port = 0; 10189 10190 if (netif_running(bp->dev)) 10191 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10192 else 10193 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n", 10194 type, port); 10195 } 10196 10197 static void bnx2x_udp_tunnel_add(struct net_device *netdev, 10198 struct udp_tunnel_info *ti) 10199 { 10200 struct bnx2x *bp = netdev_priv(netdev); 10201 u16 t_port = ntohs(ti->port); 10202 10203 switch (ti->type) { 10204 case UDP_TUNNEL_TYPE_VXLAN: 10205 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10206 break; 10207 case UDP_TUNNEL_TYPE_GENEVE: 10208 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10209 break; 10210 default: 10211 break; 10212 } 10213 } 10214 10215 static void bnx2x_udp_tunnel_del(struct net_device *netdev, 10216 struct udp_tunnel_info *ti) 10217 { 10218 struct bnx2x *bp = netdev_priv(netdev); 10219 u16 t_port = ntohs(ti->port); 10220 10221 switch (ti->type) { 10222 case UDP_TUNNEL_TYPE_VXLAN: 10223 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10224 break; 10225 case UDP_TUNNEL_TYPE_GENEVE: 10226 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10227 break; 10228 default: 10229 break; 10230 } 10231 } 10232 10233 static int bnx2x_close(struct net_device *dev); 10234 10235 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10236 * scheduled on a general queue in order to prevent a dead lock. 10237 */ 10238 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10239 { 10240 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10241 10242 rtnl_lock(); 10243 10244 if (!netif_running(bp->dev)) { 10245 rtnl_unlock(); 10246 return; 10247 } 10248 10249 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10250 #ifdef BNX2X_STOP_ON_ERROR 10251 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10252 "you will need to reboot when done\n"); 10253 goto sp_rtnl_not_reset; 10254 #endif 10255 /* 10256 * Clear all pending SP commands as we are going to reset the 10257 * function anyway. 10258 */ 10259 bp->sp_rtnl_state = 0; 10260 smp_mb(); 10261 10262 bnx2x_parity_recover(bp); 10263 10264 rtnl_unlock(); 10265 return; 10266 } 10267 10268 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10269 #ifdef BNX2X_STOP_ON_ERROR 10270 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10271 "you will need to reboot when done\n"); 10272 goto sp_rtnl_not_reset; 10273 #endif 10274 10275 /* 10276 * Clear all pending SP commands as we are going to reset the 10277 * function anyway. 10278 */ 10279 bp->sp_rtnl_state = 0; 10280 smp_mb(); 10281 10282 /* Immediately indicate link as down */ 10283 bp->link_vars.link_up = 0; 10284 bp->force_link_down = true; 10285 netif_carrier_off(bp->dev); 10286 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10287 10288 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10289 /* When ret value shows failure of allocation failure, 10290 * the nic is rebooted again. If open still fails, a error 10291 * message to notify the user. 10292 */ 10293 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10294 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10295 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10296 BNX2X_ERR("Open the NIC fails again!\n"); 10297 } 10298 rtnl_unlock(); 10299 return; 10300 } 10301 #ifdef BNX2X_STOP_ON_ERROR 10302 sp_rtnl_not_reset: 10303 #endif 10304 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10305 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10306 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10307 bnx2x_after_function_update(bp); 10308 /* 10309 * in case of fan failure we need to reset id if the "stop on error" 10310 * debug flag is set, since we trying to prevent permanent overheating 10311 * damage 10312 */ 10313 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10314 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10315 netif_device_detach(bp->dev); 10316 bnx2x_close(bp->dev); 10317 rtnl_unlock(); 10318 return; 10319 } 10320 10321 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10322 DP(BNX2X_MSG_SP, 10323 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10324 bnx2x_vfpf_set_mcast(bp->dev); 10325 } 10326 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10327 &bp->sp_rtnl_state)){ 10328 if (netif_carrier_ok(bp->dev)) { 10329 bnx2x_tx_disable(bp); 10330 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10331 } 10332 } 10333 10334 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10335 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10336 bnx2x_set_rx_mode_inner(bp); 10337 } 10338 10339 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10340 &bp->sp_rtnl_state)) 10341 bnx2x_pf_set_vfs_vlan(bp); 10342 10343 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10344 bnx2x_dcbx_stop_hw_tx(bp); 10345 bnx2x_dcbx_resume_hw_tx(bp); 10346 } 10347 10348 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10349 &bp->sp_rtnl_state)) 10350 bnx2x_update_mng_version(bp); 10351 10352 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT, 10353 &bp->sp_rtnl_state)) { 10354 if (bnx2x_udp_port_update(bp)) { 10355 /* On error, forget configuration */ 10356 memset(bp->udp_tunnel_ports, 0, 10357 sizeof(struct bnx2x_udp_tunnel) * 10358 BNX2X_UDP_PORT_MAX); 10359 } else { 10360 /* Since we don't store additional port information, 10361 * if no ports are configured for any feature ask for 10362 * information about currently configured ports. 10363 */ 10364 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count && 10365 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) 10366 udp_tunnel_get_rx_info(bp->dev); 10367 } 10368 } 10369 10370 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10371 * can be called from other contexts as well) 10372 */ 10373 rtnl_unlock(); 10374 10375 /* enable SR-IOV if applicable */ 10376 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10377 &bp->sp_rtnl_state)) { 10378 bnx2x_disable_sriov(bp); 10379 bnx2x_enable_sriov(bp); 10380 } 10381 } 10382 10383 static void bnx2x_period_task(struct work_struct *work) 10384 { 10385 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10386 10387 if (!netif_running(bp->dev)) 10388 goto period_task_exit; 10389 10390 if (CHIP_REV_IS_SLOW(bp)) { 10391 BNX2X_ERR("period task called on emulation, ignoring\n"); 10392 goto period_task_exit; 10393 } 10394 10395 bnx2x_acquire_phy_lock(bp); 10396 /* 10397 * The barrier is needed to ensure the ordering between the writing to 10398 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10399 * the reading here. 10400 */ 10401 smp_mb(); 10402 if (bp->port.pmf) { 10403 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10404 10405 /* Re-queue task in 1 sec */ 10406 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10407 } 10408 10409 bnx2x_release_phy_lock(bp); 10410 period_task_exit: 10411 return; 10412 } 10413 10414 /* 10415 * Init service functions 10416 */ 10417 10418 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10419 { 10420 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10421 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10422 return base + (BP_ABS_FUNC(bp)) * stride; 10423 } 10424 10425 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10426 u8 port, u32 reset_reg, 10427 struct bnx2x_mac_vals *vals) 10428 { 10429 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10430 u32 base_addr; 10431 10432 if (!(mask & reset_reg)) 10433 return false; 10434 10435 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10436 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10437 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10438 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10439 REG_WR(bp, vals->umac_addr[port], 0); 10440 10441 return true; 10442 } 10443 10444 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10445 struct bnx2x_mac_vals *vals) 10446 { 10447 u32 val, base_addr, offset, mask, reset_reg; 10448 bool mac_stopped = false; 10449 u8 port = BP_PORT(bp); 10450 10451 /* reset addresses as they also mark which values were changed */ 10452 memset(vals, 0, sizeof(*vals)); 10453 10454 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10455 10456 if (!CHIP_IS_E3(bp)) { 10457 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10458 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10459 if ((mask & reset_reg) && val) { 10460 u32 wb_data[2]; 10461 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10462 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10463 : NIG_REG_INGRESS_BMAC0_MEM; 10464 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10465 : BIGMAC_REGISTER_BMAC_CONTROL; 10466 10467 /* 10468 * use rd/wr since we cannot use dmae. This is safe 10469 * since MCP won't access the bus due to the request 10470 * to unload, and no function on the path can be 10471 * loaded at this time. 10472 */ 10473 wb_data[0] = REG_RD(bp, base_addr + offset); 10474 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10475 vals->bmac_addr = base_addr + offset; 10476 vals->bmac_val[0] = wb_data[0]; 10477 vals->bmac_val[1] = wb_data[1]; 10478 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10479 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10480 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10481 } 10482 BNX2X_DEV_INFO("Disable emac Rx\n"); 10483 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10484 vals->emac_val = REG_RD(bp, vals->emac_addr); 10485 REG_WR(bp, vals->emac_addr, 0); 10486 mac_stopped = true; 10487 } else { 10488 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10489 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10490 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10491 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10492 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10493 val & ~(1 << 1)); 10494 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10495 val | (1 << 1)); 10496 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10497 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10498 REG_WR(bp, vals->xmac_addr, 0); 10499 mac_stopped = true; 10500 } 10501 10502 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10503 reset_reg, vals); 10504 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10505 reset_reg, vals); 10506 } 10507 10508 if (mac_stopped) 10509 msleep(20); 10510 } 10511 10512 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10513 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10514 0x1848 + ((f) << 4)) 10515 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10516 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10517 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10518 10519 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10520 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10521 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10522 10523 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10524 { 10525 /* UNDI marks its presence in DORQ - 10526 * it initializes CID offset for normal bell to 0x7 10527 */ 10528 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10529 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10530 return false; 10531 10532 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10533 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10534 return true; 10535 } 10536 10537 return false; 10538 } 10539 10540 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10541 { 10542 u16 rcq, bd; 10543 u32 addr, tmp_reg; 10544 10545 if (BP_FUNC(bp) < 2) 10546 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10547 else 10548 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10549 10550 tmp_reg = REG_RD(bp, addr); 10551 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10552 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10553 10554 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10555 REG_WR(bp, addr, tmp_reg); 10556 10557 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10558 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10559 } 10560 10561 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10562 { 10563 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10564 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10565 if (!rc) { 10566 BNX2X_ERR("MCP response failure, aborting\n"); 10567 return -EBUSY; 10568 } 10569 10570 return 0; 10571 } 10572 10573 static struct bnx2x_prev_path_list * 10574 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10575 { 10576 struct bnx2x_prev_path_list *tmp_list; 10577 10578 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10579 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10580 bp->pdev->bus->number == tmp_list->bus && 10581 BP_PATH(bp) == tmp_list->path) 10582 return tmp_list; 10583 10584 return NULL; 10585 } 10586 10587 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10588 { 10589 struct bnx2x_prev_path_list *tmp_list; 10590 int rc; 10591 10592 rc = down_interruptible(&bnx2x_prev_sem); 10593 if (rc) { 10594 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10595 return rc; 10596 } 10597 10598 tmp_list = bnx2x_prev_path_get_entry(bp); 10599 if (tmp_list) { 10600 tmp_list->aer = 1; 10601 rc = 0; 10602 } else { 10603 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10604 BP_PATH(bp)); 10605 } 10606 10607 up(&bnx2x_prev_sem); 10608 10609 return rc; 10610 } 10611 10612 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10613 { 10614 struct bnx2x_prev_path_list *tmp_list; 10615 bool rc = false; 10616 10617 if (down_trylock(&bnx2x_prev_sem)) 10618 return false; 10619 10620 tmp_list = bnx2x_prev_path_get_entry(bp); 10621 if (tmp_list) { 10622 if (tmp_list->aer) { 10623 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10624 BP_PATH(bp)); 10625 } else { 10626 rc = true; 10627 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10628 BP_PATH(bp)); 10629 } 10630 } 10631 10632 up(&bnx2x_prev_sem); 10633 10634 return rc; 10635 } 10636 10637 bool bnx2x_port_after_undi(struct bnx2x *bp) 10638 { 10639 struct bnx2x_prev_path_list *entry; 10640 bool val; 10641 10642 down(&bnx2x_prev_sem); 10643 10644 entry = bnx2x_prev_path_get_entry(bp); 10645 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10646 10647 up(&bnx2x_prev_sem); 10648 10649 return val; 10650 } 10651 10652 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10653 { 10654 struct bnx2x_prev_path_list *tmp_list; 10655 int rc; 10656 10657 rc = down_interruptible(&bnx2x_prev_sem); 10658 if (rc) { 10659 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10660 return rc; 10661 } 10662 10663 /* Check whether the entry for this path already exists */ 10664 tmp_list = bnx2x_prev_path_get_entry(bp); 10665 if (tmp_list) { 10666 if (!tmp_list->aer) { 10667 BNX2X_ERR("Re-Marking the path.\n"); 10668 } else { 10669 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10670 BP_PATH(bp)); 10671 tmp_list->aer = 0; 10672 } 10673 up(&bnx2x_prev_sem); 10674 return 0; 10675 } 10676 up(&bnx2x_prev_sem); 10677 10678 /* Create an entry for this path and add it */ 10679 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10680 if (!tmp_list) { 10681 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10682 return -ENOMEM; 10683 } 10684 10685 tmp_list->bus = bp->pdev->bus->number; 10686 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10687 tmp_list->path = BP_PATH(bp); 10688 tmp_list->aer = 0; 10689 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10690 10691 rc = down_interruptible(&bnx2x_prev_sem); 10692 if (rc) { 10693 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10694 kfree(tmp_list); 10695 } else { 10696 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10697 BP_PATH(bp)); 10698 list_add(&tmp_list->list, &bnx2x_prev_list); 10699 up(&bnx2x_prev_sem); 10700 } 10701 10702 return rc; 10703 } 10704 10705 static int bnx2x_do_flr(struct bnx2x *bp) 10706 { 10707 struct pci_dev *dev = bp->pdev; 10708 10709 if (CHIP_IS_E1x(bp)) { 10710 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10711 return -EINVAL; 10712 } 10713 10714 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10715 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10716 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10717 bp->common.bc_ver); 10718 return -EINVAL; 10719 } 10720 10721 if (!pci_wait_for_pending_transaction(dev)) 10722 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10723 10724 BNX2X_DEV_INFO("Initiating FLR\n"); 10725 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10726 10727 return 0; 10728 } 10729 10730 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10731 { 10732 int rc; 10733 10734 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10735 10736 /* Test if previous unload process was already finished for this path */ 10737 if (bnx2x_prev_is_path_marked(bp)) 10738 return bnx2x_prev_mcp_done(bp); 10739 10740 BNX2X_DEV_INFO("Path is unmarked\n"); 10741 10742 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10743 if (bnx2x_prev_is_after_undi(bp)) 10744 goto out; 10745 10746 /* If function has FLR capabilities, and existing FW version matches 10747 * the one required, then FLR will be sufficient to clean any residue 10748 * left by previous driver 10749 */ 10750 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10751 10752 if (!rc) { 10753 /* fw version is good */ 10754 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10755 rc = bnx2x_do_flr(bp); 10756 } 10757 10758 if (!rc) { 10759 /* FLR was performed */ 10760 BNX2X_DEV_INFO("FLR successful\n"); 10761 return 0; 10762 } 10763 10764 BNX2X_DEV_INFO("Could not FLR\n"); 10765 10766 out: 10767 /* Close the MCP request, return failure*/ 10768 rc = bnx2x_prev_mcp_done(bp); 10769 if (!rc) 10770 rc = BNX2X_PREV_WAIT_NEEDED; 10771 10772 return rc; 10773 } 10774 10775 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10776 { 10777 u32 reset_reg, tmp_reg = 0, rc; 10778 bool prev_undi = false; 10779 struct bnx2x_mac_vals mac_vals; 10780 10781 /* It is possible a previous function received 'common' answer, 10782 * but hasn't loaded yet, therefore creating a scenario of 10783 * multiple functions receiving 'common' on the same path. 10784 */ 10785 BNX2X_DEV_INFO("Common unload Flow\n"); 10786 10787 memset(&mac_vals, 0, sizeof(mac_vals)); 10788 10789 if (bnx2x_prev_is_path_marked(bp)) 10790 return bnx2x_prev_mcp_done(bp); 10791 10792 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10793 10794 /* Reset should be performed after BRB is emptied */ 10795 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10796 u32 timer_count = 1000; 10797 10798 /* Close the MAC Rx to prevent BRB from filling up */ 10799 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10800 10801 /* close LLH filters for both ports towards the BRB */ 10802 bnx2x_set_rx_filter(&bp->link_params, 0); 10803 bp->link_params.port ^= 1; 10804 bnx2x_set_rx_filter(&bp->link_params, 0); 10805 bp->link_params.port ^= 1; 10806 10807 /* Check if the UNDI driver was previously loaded */ 10808 if (bnx2x_prev_is_after_undi(bp)) { 10809 prev_undi = true; 10810 /* clear the UNDI indication */ 10811 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10812 /* clear possible idle check errors */ 10813 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10814 } 10815 if (!CHIP_IS_E1x(bp)) 10816 /* block FW from writing to host */ 10817 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10818 10819 /* wait until BRB is empty */ 10820 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10821 while (timer_count) { 10822 u32 prev_brb = tmp_reg; 10823 10824 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10825 if (!tmp_reg) 10826 break; 10827 10828 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10829 10830 /* reset timer as long as BRB actually gets emptied */ 10831 if (prev_brb > tmp_reg) 10832 timer_count = 1000; 10833 else 10834 timer_count--; 10835 10836 /* If UNDI resides in memory, manually increment it */ 10837 if (prev_undi) 10838 bnx2x_prev_unload_undi_inc(bp, 1); 10839 10840 udelay(10); 10841 } 10842 10843 if (!timer_count) 10844 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10845 } 10846 10847 /* No packets are in the pipeline, path is ready for reset */ 10848 bnx2x_reset_common(bp); 10849 10850 if (mac_vals.xmac_addr) 10851 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10852 if (mac_vals.umac_addr[0]) 10853 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10854 if (mac_vals.umac_addr[1]) 10855 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10856 if (mac_vals.emac_addr) 10857 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10858 if (mac_vals.bmac_addr) { 10859 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10860 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10861 } 10862 10863 rc = bnx2x_prev_mark_path(bp, prev_undi); 10864 if (rc) { 10865 bnx2x_prev_mcp_done(bp); 10866 return rc; 10867 } 10868 10869 return bnx2x_prev_mcp_done(bp); 10870 } 10871 10872 static int bnx2x_prev_unload(struct bnx2x *bp) 10873 { 10874 int time_counter = 10; 10875 u32 rc, fw, hw_lock_reg, hw_lock_val; 10876 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10877 10878 /* clear hw from errors which may have resulted from an interrupted 10879 * dmae transaction. 10880 */ 10881 bnx2x_clean_pglue_errors(bp); 10882 10883 /* Release previously held locks */ 10884 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10885 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10886 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10887 10888 hw_lock_val = REG_RD(bp, hw_lock_reg); 10889 if (hw_lock_val) { 10890 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10891 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10892 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10893 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10894 } 10895 10896 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10897 REG_WR(bp, hw_lock_reg, 0xffffffff); 10898 } else 10899 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10900 10901 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10902 BNX2X_DEV_INFO("Release previously held alr\n"); 10903 bnx2x_release_alr(bp); 10904 } 10905 10906 do { 10907 int aer = 0; 10908 /* Lock MCP using an unload request */ 10909 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10910 if (!fw) { 10911 BNX2X_ERR("MCP response failure, aborting\n"); 10912 rc = -EBUSY; 10913 break; 10914 } 10915 10916 rc = down_interruptible(&bnx2x_prev_sem); 10917 if (rc) { 10918 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10919 rc); 10920 } else { 10921 /* If Path is marked by EEH, ignore unload status */ 10922 aer = !!(bnx2x_prev_path_get_entry(bp) && 10923 bnx2x_prev_path_get_entry(bp)->aer); 10924 up(&bnx2x_prev_sem); 10925 } 10926 10927 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10928 rc = bnx2x_prev_unload_common(bp); 10929 break; 10930 } 10931 10932 /* non-common reply from MCP might require looping */ 10933 rc = bnx2x_prev_unload_uncommon(bp); 10934 if (rc != BNX2X_PREV_WAIT_NEEDED) 10935 break; 10936 10937 msleep(20); 10938 } while (--time_counter); 10939 10940 if (!time_counter || rc) { 10941 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10942 rc = -EPROBE_DEFER; 10943 } 10944 10945 /* Mark function if its port was used to boot from SAN */ 10946 if (bnx2x_port_after_undi(bp)) 10947 bp->link_params.feature_config_flags |= 10948 FEATURE_CONFIG_BOOT_FROM_SAN; 10949 10950 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10951 10952 return rc; 10953 } 10954 10955 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10956 { 10957 u32 val, val2, val3, val4, id, boot_mode; 10958 u16 pmc; 10959 10960 /* Get the chip revision id and number. */ 10961 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10962 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10963 id = ((val & 0xffff) << 16); 10964 val = REG_RD(bp, MISC_REG_CHIP_REV); 10965 id |= ((val & 0xf) << 12); 10966 10967 /* Metal is read from PCI regs, but we can't access >=0x400 from 10968 * the configuration space (so we need to reg_rd) 10969 */ 10970 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10971 id |= (((val >> 24) & 0xf) << 4); 10972 val = REG_RD(bp, MISC_REG_BOND_ID); 10973 id |= (val & 0xf); 10974 bp->common.chip_id = id; 10975 10976 /* force 57811 according to MISC register */ 10977 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10978 if (CHIP_IS_57810(bp)) 10979 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10980 (bp->common.chip_id & 0x0000FFFF); 10981 else if (CHIP_IS_57810_MF(bp)) 10982 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10983 (bp->common.chip_id & 0x0000FFFF); 10984 bp->common.chip_id |= 0x1; 10985 } 10986 10987 /* Set doorbell size */ 10988 bp->db_size = (1 << BNX2X_DB_SHIFT); 10989 10990 if (!CHIP_IS_E1x(bp)) { 10991 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10992 if ((val & 1) == 0) 10993 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10994 else 10995 val = (val >> 1) & 1; 10996 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10997 "2_PORT_MODE"); 10998 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10999 CHIP_2_PORT_MODE; 11000 11001 if (CHIP_MODE_IS_4_PORT(bp)) 11002 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 11003 else 11004 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 11005 } else { 11006 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 11007 bp->pfid = bp->pf_num; /* 0..7 */ 11008 } 11009 11010 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 11011 11012 bp->link_params.chip_id = bp->common.chip_id; 11013 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 11014 11015 val = (REG_RD(bp, 0x2874) & 0x55); 11016 if ((bp->common.chip_id & 0x1) || 11017 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 11018 bp->flags |= ONE_PORT_FLAG; 11019 BNX2X_DEV_INFO("single port device\n"); 11020 } 11021 11022 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 11023 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 11024 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 11025 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 11026 bp->common.flash_size, bp->common.flash_size); 11027 11028 bnx2x_init_shmem(bp); 11029 11030 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11031 MISC_REG_GENERIC_CR_1 : 11032 MISC_REG_GENERIC_CR_0)); 11033 11034 bp->link_params.shmem_base = bp->common.shmem_base; 11035 bp->link_params.shmem2_base = bp->common.shmem2_base; 11036 if (SHMEM2_RD(bp, size) > 11037 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11038 bp->link_params.lfa_base = 11039 REG_RD(bp, bp->common.shmem2_base + 11040 (u32)offsetof(struct shmem2_region, 11041 lfa_host_addr[BP_PORT(bp)])); 11042 else 11043 bp->link_params.lfa_base = 0; 11044 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11045 bp->common.shmem_base, bp->common.shmem2_base); 11046 11047 if (!bp->common.shmem_base) { 11048 BNX2X_DEV_INFO("MCP not active\n"); 11049 bp->flags |= NO_MCP_FLAG; 11050 return; 11051 } 11052 11053 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11054 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11055 11056 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11057 SHARED_HW_CFG_LED_MODE_MASK) >> 11058 SHARED_HW_CFG_LED_MODE_SHIFT); 11059 11060 bp->link_params.feature_config_flags = 0; 11061 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11062 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11063 bp->link_params.feature_config_flags |= 11064 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11065 else 11066 bp->link_params.feature_config_flags &= 11067 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11068 11069 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11070 bp->common.bc_ver = val; 11071 BNX2X_DEV_INFO("bc_ver %X\n", val); 11072 if (val < BNX2X_BC_VER) { 11073 /* for now only warn 11074 * later we might need to enforce this */ 11075 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11076 BNX2X_BC_VER, val); 11077 } 11078 bp->link_params.feature_config_flags |= 11079 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11080 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11081 11082 bp->link_params.feature_config_flags |= 11083 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11084 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11085 bp->link_params.feature_config_flags |= 11086 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11087 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11088 bp->link_params.feature_config_flags |= 11089 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11090 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11091 11092 bp->link_params.feature_config_flags |= 11093 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11094 FEATURE_CONFIG_MT_SUPPORT : 0; 11095 11096 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11097 BC_SUPPORTS_PFC_STATS : 0; 11098 11099 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11100 BC_SUPPORTS_FCOE_FEATURES : 0; 11101 11102 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11103 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11104 11105 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11106 BC_SUPPORTS_RMMOD_CMD : 0; 11107 11108 boot_mode = SHMEM_RD(bp, 11109 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11110 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11111 switch (boot_mode) { 11112 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11113 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11114 break; 11115 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11116 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11117 break; 11118 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11119 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11120 break; 11121 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11122 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11123 break; 11124 } 11125 11126 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11127 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11128 11129 BNX2X_DEV_INFO("%sWoL capable\n", 11130 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11131 11132 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11133 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11134 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11135 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11136 11137 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11138 val, val2, val3, val4); 11139 } 11140 11141 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11142 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11143 11144 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11145 { 11146 int pfid = BP_FUNC(bp); 11147 int igu_sb_id; 11148 u32 val; 11149 u8 fid, igu_sb_cnt = 0; 11150 11151 bp->igu_base_sb = 0xff; 11152 if (CHIP_INT_MODE_IS_BC(bp)) { 11153 int vn = BP_VN(bp); 11154 igu_sb_cnt = bp->igu_sb_cnt; 11155 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11156 FP_SB_MAX_E1x; 11157 11158 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11159 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11160 11161 return 0; 11162 } 11163 11164 /* IGU in normal mode - read CAM */ 11165 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11166 igu_sb_id++) { 11167 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11168 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11169 continue; 11170 fid = IGU_FID(val); 11171 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11172 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11173 continue; 11174 if (IGU_VEC(val) == 0) 11175 /* default status block */ 11176 bp->igu_dsb_id = igu_sb_id; 11177 else { 11178 if (bp->igu_base_sb == 0xff) 11179 bp->igu_base_sb = igu_sb_id; 11180 igu_sb_cnt++; 11181 } 11182 } 11183 } 11184 11185 #ifdef CONFIG_PCI_MSI 11186 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11187 * optional that number of CAM entries will not be equal to the value 11188 * advertised in PCI. 11189 * Driver should use the minimal value of both as the actual status 11190 * block count 11191 */ 11192 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11193 #endif 11194 11195 if (igu_sb_cnt == 0) { 11196 BNX2X_ERR("CAM configuration error\n"); 11197 return -EINVAL; 11198 } 11199 11200 return 0; 11201 } 11202 11203 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11204 { 11205 int cfg_size = 0, idx, port = BP_PORT(bp); 11206 11207 /* Aggregation of supported attributes of all external phys */ 11208 bp->port.supported[0] = 0; 11209 bp->port.supported[1] = 0; 11210 switch (bp->link_params.num_phys) { 11211 case 1: 11212 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11213 cfg_size = 1; 11214 break; 11215 case 2: 11216 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11217 cfg_size = 1; 11218 break; 11219 case 3: 11220 if (bp->link_params.multi_phy_config & 11221 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11222 bp->port.supported[1] = 11223 bp->link_params.phy[EXT_PHY1].supported; 11224 bp->port.supported[0] = 11225 bp->link_params.phy[EXT_PHY2].supported; 11226 } else { 11227 bp->port.supported[0] = 11228 bp->link_params.phy[EXT_PHY1].supported; 11229 bp->port.supported[1] = 11230 bp->link_params.phy[EXT_PHY2].supported; 11231 } 11232 cfg_size = 2; 11233 break; 11234 } 11235 11236 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11237 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11238 SHMEM_RD(bp, 11239 dev_info.port_hw_config[port].external_phy_config), 11240 SHMEM_RD(bp, 11241 dev_info.port_hw_config[port].external_phy_config2)); 11242 return; 11243 } 11244 11245 if (CHIP_IS_E3(bp)) 11246 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11247 else { 11248 switch (switch_cfg) { 11249 case SWITCH_CFG_1G: 11250 bp->port.phy_addr = REG_RD( 11251 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11252 break; 11253 case SWITCH_CFG_10G: 11254 bp->port.phy_addr = REG_RD( 11255 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11256 break; 11257 default: 11258 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11259 bp->port.link_config[0]); 11260 return; 11261 } 11262 } 11263 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11264 /* mask what we support according to speed_cap_mask per configuration */ 11265 for (idx = 0; idx < cfg_size; idx++) { 11266 if (!(bp->link_params.speed_cap_mask[idx] & 11267 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11268 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11269 11270 if (!(bp->link_params.speed_cap_mask[idx] & 11271 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11272 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11273 11274 if (!(bp->link_params.speed_cap_mask[idx] & 11275 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11276 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11277 11278 if (!(bp->link_params.speed_cap_mask[idx] & 11279 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11280 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11281 11282 if (!(bp->link_params.speed_cap_mask[idx] & 11283 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11284 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11285 SUPPORTED_1000baseT_Full); 11286 11287 if (!(bp->link_params.speed_cap_mask[idx] & 11288 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11289 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11290 11291 if (!(bp->link_params.speed_cap_mask[idx] & 11292 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11293 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11294 11295 if (!(bp->link_params.speed_cap_mask[idx] & 11296 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11297 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11298 } 11299 11300 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11301 bp->port.supported[1]); 11302 } 11303 11304 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11305 { 11306 u32 link_config, idx, cfg_size = 0; 11307 bp->port.advertising[0] = 0; 11308 bp->port.advertising[1] = 0; 11309 switch (bp->link_params.num_phys) { 11310 case 1: 11311 case 2: 11312 cfg_size = 1; 11313 break; 11314 case 3: 11315 cfg_size = 2; 11316 break; 11317 } 11318 for (idx = 0; idx < cfg_size; idx++) { 11319 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11320 link_config = bp->port.link_config[idx]; 11321 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11322 case PORT_FEATURE_LINK_SPEED_AUTO: 11323 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11324 bp->link_params.req_line_speed[idx] = 11325 SPEED_AUTO_NEG; 11326 bp->port.advertising[idx] |= 11327 bp->port.supported[idx]; 11328 if (bp->link_params.phy[EXT_PHY1].type == 11329 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11330 bp->port.advertising[idx] |= 11331 (SUPPORTED_100baseT_Half | 11332 SUPPORTED_100baseT_Full); 11333 } else { 11334 /* force 10G, no AN */ 11335 bp->link_params.req_line_speed[idx] = 11336 SPEED_10000; 11337 bp->port.advertising[idx] |= 11338 (ADVERTISED_10000baseT_Full | 11339 ADVERTISED_FIBRE); 11340 continue; 11341 } 11342 break; 11343 11344 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11345 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11346 bp->link_params.req_line_speed[idx] = 11347 SPEED_10; 11348 bp->port.advertising[idx] |= 11349 (ADVERTISED_10baseT_Full | 11350 ADVERTISED_TP); 11351 } else { 11352 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11353 link_config, 11354 bp->link_params.speed_cap_mask[idx]); 11355 return; 11356 } 11357 break; 11358 11359 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11360 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11361 bp->link_params.req_line_speed[idx] = 11362 SPEED_10; 11363 bp->link_params.req_duplex[idx] = 11364 DUPLEX_HALF; 11365 bp->port.advertising[idx] |= 11366 (ADVERTISED_10baseT_Half | 11367 ADVERTISED_TP); 11368 } else { 11369 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11370 link_config, 11371 bp->link_params.speed_cap_mask[idx]); 11372 return; 11373 } 11374 break; 11375 11376 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11377 if (bp->port.supported[idx] & 11378 SUPPORTED_100baseT_Full) { 11379 bp->link_params.req_line_speed[idx] = 11380 SPEED_100; 11381 bp->port.advertising[idx] |= 11382 (ADVERTISED_100baseT_Full | 11383 ADVERTISED_TP); 11384 } else { 11385 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11386 link_config, 11387 bp->link_params.speed_cap_mask[idx]); 11388 return; 11389 } 11390 break; 11391 11392 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11393 if (bp->port.supported[idx] & 11394 SUPPORTED_100baseT_Half) { 11395 bp->link_params.req_line_speed[idx] = 11396 SPEED_100; 11397 bp->link_params.req_duplex[idx] = 11398 DUPLEX_HALF; 11399 bp->port.advertising[idx] |= 11400 (ADVERTISED_100baseT_Half | 11401 ADVERTISED_TP); 11402 } else { 11403 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11404 link_config, 11405 bp->link_params.speed_cap_mask[idx]); 11406 return; 11407 } 11408 break; 11409 11410 case PORT_FEATURE_LINK_SPEED_1G: 11411 if (bp->port.supported[idx] & 11412 SUPPORTED_1000baseT_Full) { 11413 bp->link_params.req_line_speed[idx] = 11414 SPEED_1000; 11415 bp->port.advertising[idx] |= 11416 (ADVERTISED_1000baseT_Full | 11417 ADVERTISED_TP); 11418 } else if (bp->port.supported[idx] & 11419 SUPPORTED_1000baseKX_Full) { 11420 bp->link_params.req_line_speed[idx] = 11421 SPEED_1000; 11422 bp->port.advertising[idx] |= 11423 ADVERTISED_1000baseKX_Full; 11424 } else { 11425 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11426 link_config, 11427 bp->link_params.speed_cap_mask[idx]); 11428 return; 11429 } 11430 break; 11431 11432 case PORT_FEATURE_LINK_SPEED_2_5G: 11433 if (bp->port.supported[idx] & 11434 SUPPORTED_2500baseX_Full) { 11435 bp->link_params.req_line_speed[idx] = 11436 SPEED_2500; 11437 bp->port.advertising[idx] |= 11438 (ADVERTISED_2500baseX_Full | 11439 ADVERTISED_TP); 11440 } else { 11441 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11442 link_config, 11443 bp->link_params.speed_cap_mask[idx]); 11444 return; 11445 } 11446 break; 11447 11448 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11449 if (bp->port.supported[idx] & 11450 SUPPORTED_10000baseT_Full) { 11451 bp->link_params.req_line_speed[idx] = 11452 SPEED_10000; 11453 bp->port.advertising[idx] |= 11454 (ADVERTISED_10000baseT_Full | 11455 ADVERTISED_FIBRE); 11456 } else if (bp->port.supported[idx] & 11457 SUPPORTED_10000baseKR_Full) { 11458 bp->link_params.req_line_speed[idx] = 11459 SPEED_10000; 11460 bp->port.advertising[idx] |= 11461 (ADVERTISED_10000baseKR_Full | 11462 ADVERTISED_FIBRE); 11463 } else { 11464 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11465 link_config, 11466 bp->link_params.speed_cap_mask[idx]); 11467 return; 11468 } 11469 break; 11470 case PORT_FEATURE_LINK_SPEED_20G: 11471 bp->link_params.req_line_speed[idx] = SPEED_20000; 11472 11473 break; 11474 default: 11475 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11476 link_config); 11477 bp->link_params.req_line_speed[idx] = 11478 SPEED_AUTO_NEG; 11479 bp->port.advertising[idx] = 11480 bp->port.supported[idx]; 11481 break; 11482 } 11483 11484 bp->link_params.req_flow_ctrl[idx] = (link_config & 11485 PORT_FEATURE_FLOW_CONTROL_MASK); 11486 if (bp->link_params.req_flow_ctrl[idx] == 11487 BNX2X_FLOW_CTRL_AUTO) { 11488 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11489 bp->link_params.req_flow_ctrl[idx] = 11490 BNX2X_FLOW_CTRL_NONE; 11491 else 11492 bnx2x_set_requested_fc(bp); 11493 } 11494 11495 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11496 bp->link_params.req_line_speed[idx], 11497 bp->link_params.req_duplex[idx], 11498 bp->link_params.req_flow_ctrl[idx], 11499 bp->port.advertising[idx]); 11500 } 11501 } 11502 11503 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11504 { 11505 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11506 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11507 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11508 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11509 } 11510 11511 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11512 { 11513 int port = BP_PORT(bp); 11514 u32 config; 11515 u32 ext_phy_type, ext_phy_config, eee_mode; 11516 11517 bp->link_params.bp = bp; 11518 bp->link_params.port = port; 11519 11520 bp->link_params.lane_config = 11521 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11522 11523 bp->link_params.speed_cap_mask[0] = 11524 SHMEM_RD(bp, 11525 dev_info.port_hw_config[port].speed_capability_mask) & 11526 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11527 bp->link_params.speed_cap_mask[1] = 11528 SHMEM_RD(bp, 11529 dev_info.port_hw_config[port].speed_capability_mask2) & 11530 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11531 bp->port.link_config[0] = 11532 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11533 11534 bp->port.link_config[1] = 11535 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11536 11537 bp->link_params.multi_phy_config = 11538 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11539 /* If the device is capable of WoL, set the default state according 11540 * to the HW 11541 */ 11542 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11543 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11544 (config & PORT_FEATURE_WOL_ENABLED)); 11545 11546 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11547 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11548 bp->flags |= NO_ISCSI_FLAG; 11549 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11550 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11551 bp->flags |= NO_FCOE_FLAG; 11552 11553 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11554 bp->link_params.lane_config, 11555 bp->link_params.speed_cap_mask[0], 11556 bp->port.link_config[0]); 11557 11558 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11559 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11560 bnx2x_phy_probe(&bp->link_params); 11561 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11562 11563 bnx2x_link_settings_requested(bp); 11564 11565 /* 11566 * If connected directly, work with the internal PHY, otherwise, work 11567 * with the external PHY 11568 */ 11569 ext_phy_config = 11570 SHMEM_RD(bp, 11571 dev_info.port_hw_config[port].external_phy_config); 11572 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11573 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11574 bp->mdio.prtad = bp->port.phy_addr; 11575 11576 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11577 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11578 bp->mdio.prtad = 11579 XGXS_EXT_PHY_ADDR(ext_phy_config); 11580 11581 /* Configure link feature according to nvram value */ 11582 eee_mode = (((SHMEM_RD(bp, dev_info. 11583 port_feature_config[port].eee_power_mode)) & 11584 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11585 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11586 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11587 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11588 EEE_MODE_ENABLE_LPI | 11589 EEE_MODE_OUTPUT_TIME; 11590 } else { 11591 bp->link_params.eee_mode = 0; 11592 } 11593 } 11594 11595 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11596 { 11597 u32 no_flags = NO_ISCSI_FLAG; 11598 int port = BP_PORT(bp); 11599 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11600 drv_lic_key[port].max_iscsi_conn); 11601 11602 if (!CNIC_SUPPORT(bp)) { 11603 bp->flags |= no_flags; 11604 return; 11605 } 11606 11607 /* Get the number of maximum allowed iSCSI connections */ 11608 bp->cnic_eth_dev.max_iscsi_conn = 11609 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11610 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11611 11612 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11613 bp->cnic_eth_dev.max_iscsi_conn); 11614 11615 /* 11616 * If maximum allowed number of connections is zero - 11617 * disable the feature. 11618 */ 11619 if (!bp->cnic_eth_dev.max_iscsi_conn) 11620 bp->flags |= no_flags; 11621 } 11622 11623 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11624 { 11625 /* Port info */ 11626 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11627 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11628 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11629 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11630 11631 /* Node info */ 11632 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11633 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11634 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11635 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11636 } 11637 11638 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11639 { 11640 u8 count = 0; 11641 11642 if (IS_MF(bp)) { 11643 u8 fid; 11644 11645 /* iterate over absolute function ids for this path: */ 11646 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11647 if (IS_MF_SD(bp)) { 11648 u32 cfg = MF_CFG_RD(bp, 11649 func_mf_config[fid].config); 11650 11651 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11652 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11653 FUNC_MF_CFG_PROTOCOL_FCOE)) 11654 count++; 11655 } else { 11656 u32 cfg = MF_CFG_RD(bp, 11657 func_ext_config[fid]. 11658 func_cfg); 11659 11660 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11661 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11662 count++; 11663 } 11664 } 11665 } else { /* SF */ 11666 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11667 11668 for (port = 0; port < port_cnt; port++) { 11669 u32 lic = SHMEM_RD(bp, 11670 drv_lic_key[port].max_fcoe_conn) ^ 11671 FW_ENCODE_32BIT_PATTERN; 11672 if (lic) 11673 count++; 11674 } 11675 } 11676 11677 return count; 11678 } 11679 11680 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11681 { 11682 int port = BP_PORT(bp); 11683 int func = BP_ABS_FUNC(bp); 11684 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11685 drv_lic_key[port].max_fcoe_conn); 11686 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11687 11688 if (!CNIC_SUPPORT(bp)) { 11689 bp->flags |= NO_FCOE_FLAG; 11690 return; 11691 } 11692 11693 /* Get the number of maximum allowed FCoE connections */ 11694 bp->cnic_eth_dev.max_fcoe_conn = 11695 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11696 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11697 11698 /* Calculate the number of maximum allowed FCoE tasks */ 11699 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11700 11701 /* check if FCoE resources must be shared between different functions */ 11702 if (num_fcoe_func) 11703 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11704 11705 /* Read the WWN: */ 11706 if (!IS_MF(bp)) { 11707 /* Port info */ 11708 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11709 SHMEM_RD(bp, 11710 dev_info.port_hw_config[port]. 11711 fcoe_wwn_port_name_upper); 11712 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11713 SHMEM_RD(bp, 11714 dev_info.port_hw_config[port]. 11715 fcoe_wwn_port_name_lower); 11716 11717 /* Node info */ 11718 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11719 SHMEM_RD(bp, 11720 dev_info.port_hw_config[port]. 11721 fcoe_wwn_node_name_upper); 11722 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11723 SHMEM_RD(bp, 11724 dev_info.port_hw_config[port]. 11725 fcoe_wwn_node_name_lower); 11726 } else if (!IS_MF_SD(bp)) { 11727 /* Read the WWN info only if the FCoE feature is enabled for 11728 * this function. 11729 */ 11730 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11731 bnx2x_get_ext_wwn_info(bp, func); 11732 } else { 11733 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11734 bnx2x_get_ext_wwn_info(bp, func); 11735 } 11736 11737 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11738 11739 /* 11740 * If maximum allowed number of connections is zero - 11741 * disable the feature. 11742 */ 11743 if (!bp->cnic_eth_dev.max_fcoe_conn) 11744 bp->flags |= NO_FCOE_FLAG; 11745 } 11746 11747 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11748 { 11749 /* 11750 * iSCSI may be dynamically disabled but reading 11751 * info here we will decrease memory usage by driver 11752 * if the feature is disabled for good 11753 */ 11754 bnx2x_get_iscsi_info(bp); 11755 bnx2x_get_fcoe_info(bp); 11756 } 11757 11758 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11759 { 11760 u32 val, val2; 11761 int func = BP_ABS_FUNC(bp); 11762 int port = BP_PORT(bp); 11763 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11764 u8 *fip_mac = bp->fip_mac; 11765 11766 if (IS_MF(bp)) { 11767 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11768 * FCoE MAC then the appropriate feature should be disabled. 11769 * In non SD mode features configuration comes from struct 11770 * func_ext_config. 11771 */ 11772 if (!IS_MF_SD(bp)) { 11773 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11774 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11775 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11776 iscsi_mac_addr_upper); 11777 val = MF_CFG_RD(bp, func_ext_config[func]. 11778 iscsi_mac_addr_lower); 11779 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11780 BNX2X_DEV_INFO 11781 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11782 } else { 11783 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11784 } 11785 11786 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11787 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11788 fcoe_mac_addr_upper); 11789 val = MF_CFG_RD(bp, func_ext_config[func]. 11790 fcoe_mac_addr_lower); 11791 bnx2x_set_mac_buf(fip_mac, val, val2); 11792 BNX2X_DEV_INFO 11793 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11794 } else { 11795 bp->flags |= NO_FCOE_FLAG; 11796 } 11797 11798 bp->mf_ext_config = cfg; 11799 11800 } else { /* SD MODE */ 11801 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11802 /* use primary mac as iscsi mac */ 11803 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11804 11805 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11806 BNX2X_DEV_INFO 11807 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11808 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11809 /* use primary mac as fip mac */ 11810 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11811 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11812 BNX2X_DEV_INFO 11813 ("Read FIP MAC: %pM\n", fip_mac); 11814 } 11815 } 11816 11817 /* If this is a storage-only interface, use SAN mac as 11818 * primary MAC. Notice that for SD this is already the case, 11819 * as the SAN mac was copied from the primary MAC. 11820 */ 11821 if (IS_MF_FCOE_AFEX(bp)) 11822 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11823 } else { 11824 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11825 iscsi_mac_upper); 11826 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11827 iscsi_mac_lower); 11828 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11829 11830 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11831 fcoe_fip_mac_upper); 11832 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11833 fcoe_fip_mac_lower); 11834 bnx2x_set_mac_buf(fip_mac, val, val2); 11835 } 11836 11837 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11838 if (!is_valid_ether_addr(iscsi_mac)) { 11839 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11840 eth_zero_addr(iscsi_mac); 11841 } 11842 11843 /* Disable FCoE if MAC configuration is invalid. */ 11844 if (!is_valid_ether_addr(fip_mac)) { 11845 bp->flags |= NO_FCOE_FLAG; 11846 eth_zero_addr(bp->fip_mac); 11847 } 11848 } 11849 11850 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11851 { 11852 u32 val, val2; 11853 int func = BP_ABS_FUNC(bp); 11854 int port = BP_PORT(bp); 11855 11856 /* Zero primary MAC configuration */ 11857 eth_zero_addr(bp->dev->dev_addr); 11858 11859 if (BP_NOMCP(bp)) { 11860 BNX2X_ERROR("warning: random MAC workaround active\n"); 11861 eth_hw_addr_random(bp->dev); 11862 } else if (IS_MF(bp)) { 11863 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11864 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11865 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11866 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11867 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11868 11869 if (CNIC_SUPPORT(bp)) 11870 bnx2x_get_cnic_mac_hwinfo(bp); 11871 } else { 11872 /* in SF read MACs from port configuration */ 11873 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11874 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11875 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11876 11877 if (CNIC_SUPPORT(bp)) 11878 bnx2x_get_cnic_mac_hwinfo(bp); 11879 } 11880 11881 if (!BP_NOMCP(bp)) { 11882 /* Read physical port identifier from shmem */ 11883 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11884 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11885 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11886 bp->flags |= HAS_PHYS_PORT_ID; 11887 } 11888 11889 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11890 11891 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11892 dev_err(&bp->pdev->dev, 11893 "bad Ethernet MAC address configuration: %pM\n" 11894 "change it manually before bringing up the appropriate network interface\n", 11895 bp->dev->dev_addr); 11896 } 11897 11898 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11899 { 11900 int tmp; 11901 u32 cfg; 11902 11903 if (IS_VF(bp)) 11904 return false; 11905 11906 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11907 /* Take function: tmp = func */ 11908 tmp = BP_ABS_FUNC(bp); 11909 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11910 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11911 } else { 11912 /* Take port: tmp = port */ 11913 tmp = BP_PORT(bp); 11914 cfg = SHMEM_RD(bp, 11915 dev_info.port_hw_config[tmp].generic_features); 11916 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11917 } 11918 return cfg; 11919 } 11920 11921 static void validate_set_si_mode(struct bnx2x *bp) 11922 { 11923 u8 func = BP_ABS_FUNC(bp); 11924 u32 val; 11925 11926 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11927 11928 /* check for legal mac (upper bytes) */ 11929 if (val != 0xffff) { 11930 bp->mf_mode = MULTI_FUNCTION_SI; 11931 bp->mf_config[BP_VN(bp)] = 11932 MF_CFG_RD(bp, func_mf_config[func].config); 11933 } else 11934 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11935 } 11936 11937 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11938 { 11939 int /*abs*/func = BP_ABS_FUNC(bp); 11940 int vn, mfw_vn; 11941 u32 val = 0, val2 = 0; 11942 int rc = 0; 11943 11944 /* Validate that chip access is feasible */ 11945 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11946 dev_err(&bp->pdev->dev, 11947 "Chip read returns all Fs. Preventing probe from continuing\n"); 11948 return -EINVAL; 11949 } 11950 11951 bnx2x_get_common_hwinfo(bp); 11952 11953 /* 11954 * initialize IGU parameters 11955 */ 11956 if (CHIP_IS_E1x(bp)) { 11957 bp->common.int_block = INT_BLOCK_HC; 11958 11959 bp->igu_dsb_id = DEF_SB_IGU_ID; 11960 bp->igu_base_sb = 0; 11961 } else { 11962 bp->common.int_block = INT_BLOCK_IGU; 11963 11964 /* do not allow device reset during IGU info processing */ 11965 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11966 11967 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11968 11969 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11970 int tout = 5000; 11971 11972 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11973 11974 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11975 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11976 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11977 11978 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11979 tout--; 11980 usleep_range(1000, 2000); 11981 } 11982 11983 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11984 dev_err(&bp->pdev->dev, 11985 "FORCING Normal Mode failed!!!\n"); 11986 bnx2x_release_hw_lock(bp, 11987 HW_LOCK_RESOURCE_RESET); 11988 return -EPERM; 11989 } 11990 } 11991 11992 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11993 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11994 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11995 } else 11996 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11997 11998 rc = bnx2x_get_igu_cam_info(bp); 11999 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12000 if (rc) 12001 return rc; 12002 } 12003 12004 /* 12005 * set base FW non-default (fast path) status block id, this value is 12006 * used to initialize the fw_sb_id saved on the fp/queue structure to 12007 * determine the id used by the FW. 12008 */ 12009 if (CHIP_IS_E1x(bp)) 12010 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 12011 else /* 12012 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 12013 * the same queue are indicated on the same IGU SB). So we prefer 12014 * FW and IGU SBs to be the same value. 12015 */ 12016 bp->base_fw_ndsb = bp->igu_base_sb; 12017 12018 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 12019 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 12020 bp->igu_sb_cnt, bp->base_fw_ndsb); 12021 12022 /* 12023 * Initialize MF configuration 12024 */ 12025 12026 bp->mf_ov = 0; 12027 bp->mf_mode = 0; 12028 bp->mf_sub_mode = 0; 12029 vn = BP_VN(bp); 12030 mfw_vn = BP_FW_MB_IDX(bp); 12031 12032 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12033 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12034 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12035 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12036 12037 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12038 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12039 else 12040 bp->common.mf_cfg_base = bp->common.shmem_base + 12041 offsetof(struct shmem_region, func_mb) + 12042 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12043 /* 12044 * get mf configuration: 12045 * 1. Existence of MF configuration 12046 * 2. MAC address must be legal (check only upper bytes) 12047 * for Switch-Independent mode; 12048 * OVLAN must be legal for Switch-Dependent mode 12049 * 3. SF_MODE configures specific MF mode 12050 */ 12051 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12052 /* get mf configuration */ 12053 val = SHMEM_RD(bp, 12054 dev_info.shared_feature_config.config); 12055 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12056 12057 switch (val) { 12058 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12059 validate_set_si_mode(bp); 12060 break; 12061 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12062 if ((!CHIP_IS_E1x(bp)) && 12063 (MF_CFG_RD(bp, func_mf_config[func]. 12064 mac_upper) != 0xffff) && 12065 (SHMEM2_HAS(bp, 12066 afex_driver_support))) { 12067 bp->mf_mode = MULTI_FUNCTION_AFEX; 12068 bp->mf_config[vn] = MF_CFG_RD(bp, 12069 func_mf_config[func].config); 12070 } else { 12071 BNX2X_DEV_INFO("can not configure afex mode\n"); 12072 } 12073 break; 12074 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12075 /* get OV configuration */ 12076 val = MF_CFG_RD(bp, 12077 func_mf_config[FUNC_0].e1hov_tag); 12078 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12079 12080 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12081 bp->mf_mode = MULTI_FUNCTION_SD; 12082 bp->mf_config[vn] = MF_CFG_RD(bp, 12083 func_mf_config[func].config); 12084 } else 12085 BNX2X_DEV_INFO("illegal OV for SD\n"); 12086 break; 12087 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12088 bp->mf_mode = MULTI_FUNCTION_SD; 12089 bp->mf_sub_mode = SUB_MF_MODE_BD; 12090 bp->mf_config[vn] = 12091 MF_CFG_RD(bp, 12092 func_mf_config[func].config); 12093 12094 if (SHMEM2_HAS(bp, mtu_size)) { 12095 int mtu_idx = BP_FW_MB_IDX(bp); 12096 u16 mtu_size; 12097 u32 mtu; 12098 12099 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12100 mtu_size = (u16)mtu; 12101 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12102 mtu_size, mtu); 12103 12104 /* if valid: update device mtu */ 12105 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12106 (mtu_size <= 12107 ETH_MAX_JUMBO_PACKET_SIZE)) 12108 bp->dev->mtu = mtu_size; 12109 } 12110 break; 12111 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12112 bp->mf_mode = MULTI_FUNCTION_SD; 12113 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12114 bp->mf_config[vn] = 12115 MF_CFG_RD(bp, 12116 func_mf_config[func].config); 12117 break; 12118 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12119 bp->mf_config[vn] = 0; 12120 break; 12121 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12122 val2 = SHMEM_RD(bp, 12123 dev_info.shared_hw_config.config_3); 12124 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12125 switch (val2) { 12126 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12127 validate_set_si_mode(bp); 12128 bp->mf_sub_mode = 12129 SUB_MF_MODE_NPAR1_DOT_5; 12130 break; 12131 default: 12132 /* Unknown configuration */ 12133 bp->mf_config[vn] = 0; 12134 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12135 val); 12136 } 12137 break; 12138 default: 12139 /* Unknown configuration: reset mf_config */ 12140 bp->mf_config[vn] = 0; 12141 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12142 } 12143 } 12144 12145 BNX2X_DEV_INFO("%s function mode\n", 12146 IS_MF(bp) ? "multi" : "single"); 12147 12148 switch (bp->mf_mode) { 12149 case MULTI_FUNCTION_SD: 12150 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12151 FUNC_MF_CFG_E1HOV_TAG_MASK; 12152 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12153 bp->mf_ov = val; 12154 bp->path_has_ovlan = true; 12155 12156 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12157 func, bp->mf_ov, bp->mf_ov); 12158 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12159 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12160 dev_err(&bp->pdev->dev, 12161 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12162 func); 12163 bp->path_has_ovlan = true; 12164 } else { 12165 dev_err(&bp->pdev->dev, 12166 "No valid MF OV for func %d, aborting\n", 12167 func); 12168 return -EPERM; 12169 } 12170 break; 12171 case MULTI_FUNCTION_AFEX: 12172 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12173 break; 12174 case MULTI_FUNCTION_SI: 12175 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12176 func); 12177 break; 12178 default: 12179 if (vn) { 12180 dev_err(&bp->pdev->dev, 12181 "VN %d is in a single function mode, aborting\n", 12182 vn); 12183 return -EPERM; 12184 } 12185 break; 12186 } 12187 12188 /* check if other port on the path needs ovlan: 12189 * Since MF configuration is shared between ports 12190 * Possible mixed modes are only 12191 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12192 */ 12193 if (CHIP_MODE_IS_4_PORT(bp) && 12194 !bp->path_has_ovlan && 12195 !IS_MF(bp) && 12196 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12197 u8 other_port = !BP_PORT(bp); 12198 u8 other_func = BP_PATH(bp) + 2*other_port; 12199 val = MF_CFG_RD(bp, 12200 func_mf_config[other_func].e1hov_tag); 12201 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12202 bp->path_has_ovlan = true; 12203 } 12204 } 12205 12206 /* adjust igu_sb_cnt to MF for E1H */ 12207 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12208 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12209 12210 /* port info */ 12211 bnx2x_get_port_hwinfo(bp); 12212 12213 /* Get MAC addresses */ 12214 bnx2x_get_mac_hwinfo(bp); 12215 12216 bnx2x_get_cnic_info(bp); 12217 12218 return rc; 12219 } 12220 12221 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12222 { 12223 int cnt, i, block_end, rodi; 12224 char vpd_start[BNX2X_VPD_LEN+1]; 12225 char str_id_reg[VENDOR_ID_LEN+1]; 12226 char str_id_cap[VENDOR_ID_LEN+1]; 12227 char *vpd_data; 12228 char *vpd_extended_data = NULL; 12229 u8 len; 12230 12231 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12232 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12233 12234 if (cnt < BNX2X_VPD_LEN) 12235 goto out_not_found; 12236 12237 /* VPD RO tag should be first tag after identifier string, hence 12238 * we should be able to find it in first BNX2X_VPD_LEN chars 12239 */ 12240 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12241 PCI_VPD_LRDT_RO_DATA); 12242 if (i < 0) 12243 goto out_not_found; 12244 12245 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12246 pci_vpd_lrdt_size(&vpd_start[i]); 12247 12248 i += PCI_VPD_LRDT_TAG_SIZE; 12249 12250 if (block_end > BNX2X_VPD_LEN) { 12251 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12252 if (vpd_extended_data == NULL) 12253 goto out_not_found; 12254 12255 /* read rest of vpd image into vpd_extended_data */ 12256 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12257 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12258 block_end - BNX2X_VPD_LEN, 12259 vpd_extended_data + BNX2X_VPD_LEN); 12260 if (cnt < (block_end - BNX2X_VPD_LEN)) 12261 goto out_not_found; 12262 vpd_data = vpd_extended_data; 12263 } else 12264 vpd_data = vpd_start; 12265 12266 /* now vpd_data holds full vpd content in both cases */ 12267 12268 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12269 PCI_VPD_RO_KEYWORD_MFR_ID); 12270 if (rodi < 0) 12271 goto out_not_found; 12272 12273 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12274 12275 if (len != VENDOR_ID_LEN) 12276 goto out_not_found; 12277 12278 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12279 12280 /* vendor specific info */ 12281 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12282 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12283 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12284 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12285 12286 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12287 PCI_VPD_RO_KEYWORD_VENDOR0); 12288 if (rodi >= 0) { 12289 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12290 12291 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12292 12293 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12294 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12295 bp->fw_ver[len] = ' '; 12296 } 12297 } 12298 kfree(vpd_extended_data); 12299 return; 12300 } 12301 out_not_found: 12302 kfree(vpd_extended_data); 12303 return; 12304 } 12305 12306 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12307 { 12308 u32 flags = 0; 12309 12310 if (CHIP_REV_IS_FPGA(bp)) 12311 SET_FLAGS(flags, MODE_FPGA); 12312 else if (CHIP_REV_IS_EMUL(bp)) 12313 SET_FLAGS(flags, MODE_EMUL); 12314 else 12315 SET_FLAGS(flags, MODE_ASIC); 12316 12317 if (CHIP_MODE_IS_4_PORT(bp)) 12318 SET_FLAGS(flags, MODE_PORT4); 12319 else 12320 SET_FLAGS(flags, MODE_PORT2); 12321 12322 if (CHIP_IS_E2(bp)) 12323 SET_FLAGS(flags, MODE_E2); 12324 else if (CHIP_IS_E3(bp)) { 12325 SET_FLAGS(flags, MODE_E3); 12326 if (CHIP_REV(bp) == CHIP_REV_Ax) 12327 SET_FLAGS(flags, MODE_E3_A0); 12328 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12329 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12330 } 12331 12332 if (IS_MF(bp)) { 12333 SET_FLAGS(flags, MODE_MF); 12334 switch (bp->mf_mode) { 12335 case MULTI_FUNCTION_SD: 12336 SET_FLAGS(flags, MODE_MF_SD); 12337 break; 12338 case MULTI_FUNCTION_SI: 12339 SET_FLAGS(flags, MODE_MF_SI); 12340 break; 12341 case MULTI_FUNCTION_AFEX: 12342 SET_FLAGS(flags, MODE_MF_AFEX); 12343 break; 12344 } 12345 } else 12346 SET_FLAGS(flags, MODE_SF); 12347 12348 #if defined(__LITTLE_ENDIAN) 12349 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12350 #else /*(__BIG_ENDIAN)*/ 12351 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12352 #endif 12353 INIT_MODE_FLAGS(bp) = flags; 12354 } 12355 12356 static int bnx2x_init_bp(struct bnx2x *bp) 12357 { 12358 int func; 12359 int rc; 12360 12361 mutex_init(&bp->port.phy_mutex); 12362 mutex_init(&bp->fw_mb_mutex); 12363 mutex_init(&bp->drv_info_mutex); 12364 sema_init(&bp->stats_lock, 1); 12365 bp->drv_info_mng_owner = false; 12366 INIT_LIST_HEAD(&bp->vlan_reg); 12367 12368 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12369 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12370 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12371 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12372 if (IS_PF(bp)) { 12373 rc = bnx2x_get_hwinfo(bp); 12374 if (rc) 12375 return rc; 12376 } else { 12377 eth_zero_addr(bp->dev->dev_addr); 12378 } 12379 12380 bnx2x_set_modes_bitmap(bp); 12381 12382 rc = bnx2x_alloc_mem_bp(bp); 12383 if (rc) 12384 return rc; 12385 12386 bnx2x_read_fwinfo(bp); 12387 12388 func = BP_FUNC(bp); 12389 12390 /* need to reset chip if undi was active */ 12391 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12392 /* init fw_seq */ 12393 bp->fw_seq = 12394 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12395 DRV_MSG_SEQ_NUMBER_MASK; 12396 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12397 12398 rc = bnx2x_prev_unload(bp); 12399 if (rc) { 12400 bnx2x_free_mem_bp(bp); 12401 return rc; 12402 } 12403 } 12404 12405 if (CHIP_REV_IS_FPGA(bp)) 12406 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12407 12408 if (BP_NOMCP(bp) && (func == 0)) 12409 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12410 12411 bp->disable_tpa = disable_tpa; 12412 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12413 /* Reduce memory usage in kdump environment by disabling TPA */ 12414 bp->disable_tpa |= is_kdump_kernel(); 12415 12416 /* Set TPA flags */ 12417 if (bp->disable_tpa) { 12418 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12419 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12420 } 12421 12422 if (CHIP_IS_E1(bp)) 12423 bp->dropless_fc = 0; 12424 else 12425 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12426 12427 bp->mrrs = mrrs; 12428 12429 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12430 if (IS_VF(bp)) 12431 bp->rx_ring_size = MAX_RX_AVAIL; 12432 12433 /* make sure that the numbers are in the right granularity */ 12434 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12435 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12436 12437 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12438 12439 timer_setup(&bp->timer, bnx2x_timer, 0); 12440 bp->timer.expires = jiffies + bp->current_interval; 12441 12442 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12443 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12444 SHMEM2_HAS(bp, dcbx_en) && 12445 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12446 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12447 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12448 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12449 bnx2x_dcbx_init_params(bp); 12450 } else { 12451 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12452 } 12453 12454 if (CHIP_IS_E1x(bp)) 12455 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12456 else 12457 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12458 12459 /* multiple tx priority */ 12460 if (IS_VF(bp)) 12461 bp->max_cos = 1; 12462 else if (CHIP_IS_E1x(bp)) 12463 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12464 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12465 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12466 else if (CHIP_IS_E3B0(bp)) 12467 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12468 else 12469 BNX2X_ERR("unknown chip %x revision %x\n", 12470 CHIP_NUM(bp), CHIP_REV(bp)); 12471 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12472 12473 /* We need at least one default status block for slow-path events, 12474 * second status block for the L2 queue, and a third status block for 12475 * CNIC if supported. 12476 */ 12477 if (IS_VF(bp)) 12478 bp->min_msix_vec_cnt = 1; 12479 else if (CNIC_SUPPORT(bp)) 12480 bp->min_msix_vec_cnt = 3; 12481 else /* PF w/o cnic */ 12482 bp->min_msix_vec_cnt = 2; 12483 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12484 12485 bp->dump_preset_idx = 1; 12486 12487 if (CHIP_IS_E3B0(bp)) 12488 bp->flags |= PTP_SUPPORTED; 12489 12490 return rc; 12491 } 12492 12493 /**************************************************************************** 12494 * General service functions 12495 ****************************************************************************/ 12496 12497 /* 12498 * net_device service functions 12499 */ 12500 12501 /* called with rtnl_lock */ 12502 static int bnx2x_open(struct net_device *dev) 12503 { 12504 struct bnx2x *bp = netdev_priv(dev); 12505 int rc; 12506 12507 bp->stats_init = true; 12508 12509 netif_carrier_off(dev); 12510 12511 bnx2x_set_power_state(bp, PCI_D0); 12512 12513 /* If parity had happen during the unload, then attentions 12514 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12515 * want the first function loaded on the current engine to 12516 * complete the recovery. 12517 * Parity recovery is only relevant for PF driver. 12518 */ 12519 if (IS_PF(bp)) { 12520 int other_engine = BP_PATH(bp) ? 0 : 1; 12521 bool other_load_status, load_status; 12522 bool global = false; 12523 12524 other_load_status = bnx2x_get_load_status(bp, other_engine); 12525 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12526 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12527 bnx2x_chk_parity_attn(bp, &global, true)) { 12528 do { 12529 /* If there are attentions and they are in a 12530 * global blocks, set the GLOBAL_RESET bit 12531 * regardless whether it will be this function 12532 * that will complete the recovery or not. 12533 */ 12534 if (global) 12535 bnx2x_set_reset_global(bp); 12536 12537 /* Only the first function on the current 12538 * engine should try to recover in open. In case 12539 * of attentions in global blocks only the first 12540 * in the chip should try to recover. 12541 */ 12542 if ((!load_status && 12543 (!global || !other_load_status)) && 12544 bnx2x_trylock_leader_lock(bp) && 12545 !bnx2x_leader_reset(bp)) { 12546 netdev_info(bp->dev, 12547 "Recovered in open\n"); 12548 break; 12549 } 12550 12551 /* recovery has failed... */ 12552 bnx2x_set_power_state(bp, PCI_D3hot); 12553 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12554 12555 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12556 "If you still see this message after a few retries then power cycle is required.\n"); 12557 12558 return -EAGAIN; 12559 } while (0); 12560 } 12561 } 12562 12563 bp->recovery_state = BNX2X_RECOVERY_DONE; 12564 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12565 if (rc) 12566 return rc; 12567 12568 if (IS_PF(bp)) 12569 udp_tunnel_get_rx_info(dev); 12570 12571 return 0; 12572 } 12573 12574 /* called with rtnl_lock */ 12575 static int bnx2x_close(struct net_device *dev) 12576 { 12577 struct bnx2x *bp = netdev_priv(dev); 12578 12579 /* Unload the driver, release IRQs */ 12580 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12581 12582 return 0; 12583 } 12584 12585 struct bnx2x_mcast_list_elem_group 12586 { 12587 struct list_head mcast_group_link; 12588 struct bnx2x_mcast_list_elem mcast_elems[]; 12589 }; 12590 12591 #define MCAST_ELEMS_PER_PG \ 12592 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12593 sizeof(struct bnx2x_mcast_list_elem)) 12594 12595 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12596 { 12597 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12598 12599 while (!list_empty(mcast_group_list)) { 12600 current_mcast_group = list_first_entry(mcast_group_list, 12601 struct bnx2x_mcast_list_elem_group, 12602 mcast_group_link); 12603 list_del(¤t_mcast_group->mcast_group_link); 12604 free_page((unsigned long)current_mcast_group); 12605 } 12606 } 12607 12608 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12609 struct bnx2x_mcast_ramrod_params *p, 12610 struct list_head *mcast_group_list) 12611 { 12612 struct bnx2x_mcast_list_elem *mc_mac; 12613 struct netdev_hw_addr *ha; 12614 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12615 int mc_count = netdev_mc_count(bp->dev); 12616 int offset = 0; 12617 12618 INIT_LIST_HEAD(&p->mcast_list); 12619 netdev_for_each_mc_addr(ha, bp->dev) { 12620 if (!offset) { 12621 current_mcast_group = 12622 (struct bnx2x_mcast_list_elem_group *) 12623 __get_free_page(GFP_ATOMIC); 12624 if (!current_mcast_group) { 12625 bnx2x_free_mcast_macs_list(mcast_group_list); 12626 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12627 return -ENOMEM; 12628 } 12629 list_add(¤t_mcast_group->mcast_group_link, 12630 mcast_group_list); 12631 } 12632 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12633 mc_mac->mac = bnx2x_mc_addr(ha); 12634 list_add_tail(&mc_mac->link, &p->mcast_list); 12635 offset++; 12636 if (offset == MCAST_ELEMS_PER_PG) 12637 offset = 0; 12638 } 12639 p->mcast_list_len = mc_count; 12640 return 0; 12641 } 12642 12643 /** 12644 * bnx2x_set_uc_list - configure a new unicast MACs list. 12645 * 12646 * @bp: driver handle 12647 * 12648 * We will use zero (0) as a MAC type for these MACs. 12649 */ 12650 static int bnx2x_set_uc_list(struct bnx2x *bp) 12651 { 12652 int rc; 12653 struct net_device *dev = bp->dev; 12654 struct netdev_hw_addr *ha; 12655 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12656 unsigned long ramrod_flags = 0; 12657 12658 /* First schedule a cleanup up of old configuration */ 12659 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12660 if (rc < 0) { 12661 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12662 return rc; 12663 } 12664 12665 netdev_for_each_uc_addr(ha, dev) { 12666 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12667 BNX2X_UC_LIST_MAC, &ramrod_flags); 12668 if (rc == -EEXIST) { 12669 DP(BNX2X_MSG_SP, 12670 "Failed to schedule ADD operations: %d\n", rc); 12671 /* do not treat adding same MAC as error */ 12672 rc = 0; 12673 12674 } else if (rc < 0) { 12675 12676 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12677 rc); 12678 return rc; 12679 } 12680 } 12681 12682 /* Execute the pending commands */ 12683 __set_bit(RAMROD_CONT, &ramrod_flags); 12684 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12685 BNX2X_UC_LIST_MAC, &ramrod_flags); 12686 } 12687 12688 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12689 { 12690 LIST_HEAD(mcast_group_list); 12691 struct net_device *dev = bp->dev; 12692 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12693 int rc = 0; 12694 12695 rparam.mcast_obj = &bp->mcast_obj; 12696 12697 /* first, clear all configured multicast MACs */ 12698 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12699 if (rc < 0) { 12700 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12701 return rc; 12702 } 12703 12704 /* then, configure a new MACs list */ 12705 if (netdev_mc_count(dev)) { 12706 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12707 if (rc) 12708 return rc; 12709 12710 /* Now add the new MACs */ 12711 rc = bnx2x_config_mcast(bp, &rparam, 12712 BNX2X_MCAST_CMD_ADD); 12713 if (rc < 0) 12714 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12715 rc); 12716 12717 bnx2x_free_mcast_macs_list(&mcast_group_list); 12718 } 12719 12720 return rc; 12721 } 12722 12723 static int bnx2x_set_mc_list(struct bnx2x *bp) 12724 { 12725 LIST_HEAD(mcast_group_list); 12726 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12727 struct net_device *dev = bp->dev; 12728 int rc = 0; 12729 12730 /* On older adapters, we need to flush and re-add filters */ 12731 if (CHIP_IS_E1x(bp)) 12732 return bnx2x_set_mc_list_e1x(bp); 12733 12734 rparam.mcast_obj = &bp->mcast_obj; 12735 12736 if (netdev_mc_count(dev)) { 12737 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12738 if (rc) 12739 return rc; 12740 12741 /* Override the curently configured set of mc filters */ 12742 rc = bnx2x_config_mcast(bp, &rparam, 12743 BNX2X_MCAST_CMD_SET); 12744 if (rc < 0) 12745 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12746 rc); 12747 12748 bnx2x_free_mcast_macs_list(&mcast_group_list); 12749 } else { 12750 /* If no mc addresses are required, flush the configuration */ 12751 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12752 if (rc < 0) 12753 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12754 rc); 12755 } 12756 12757 return rc; 12758 } 12759 12760 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12761 static void bnx2x_set_rx_mode(struct net_device *dev) 12762 { 12763 struct bnx2x *bp = netdev_priv(dev); 12764 12765 if (bp->state != BNX2X_STATE_OPEN) { 12766 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12767 return; 12768 } else { 12769 /* Schedule an SP task to handle rest of change */ 12770 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12771 NETIF_MSG_IFUP); 12772 } 12773 } 12774 12775 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12776 { 12777 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12778 12779 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12780 12781 netif_addr_lock_bh(bp->dev); 12782 12783 if (bp->dev->flags & IFF_PROMISC) { 12784 rx_mode = BNX2X_RX_MODE_PROMISC; 12785 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12786 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12787 CHIP_IS_E1(bp))) { 12788 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12789 } else { 12790 if (IS_PF(bp)) { 12791 /* some multicasts */ 12792 if (bnx2x_set_mc_list(bp) < 0) 12793 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12794 12795 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12796 netif_addr_unlock_bh(bp->dev); 12797 if (bnx2x_set_uc_list(bp) < 0) 12798 rx_mode = BNX2X_RX_MODE_PROMISC; 12799 netif_addr_lock_bh(bp->dev); 12800 } else { 12801 /* configuring mcast to a vf involves sleeping (when we 12802 * wait for the pf's response). 12803 */ 12804 bnx2x_schedule_sp_rtnl(bp, 12805 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12806 } 12807 } 12808 12809 bp->rx_mode = rx_mode; 12810 /* handle ISCSI SD mode */ 12811 if (IS_MF_ISCSI_ONLY(bp)) 12812 bp->rx_mode = BNX2X_RX_MODE_NONE; 12813 12814 /* Schedule the rx_mode command */ 12815 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12816 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12817 netif_addr_unlock_bh(bp->dev); 12818 return; 12819 } 12820 12821 if (IS_PF(bp)) { 12822 bnx2x_set_storm_rx_mode(bp); 12823 netif_addr_unlock_bh(bp->dev); 12824 } else { 12825 /* VF will need to request the PF to make this change, and so 12826 * the VF needs to release the bottom-half lock prior to the 12827 * request (as it will likely require sleep on the VF side) 12828 */ 12829 netif_addr_unlock_bh(bp->dev); 12830 bnx2x_vfpf_storm_rx_mode(bp); 12831 } 12832 } 12833 12834 /* called with rtnl_lock */ 12835 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12836 int devad, u16 addr) 12837 { 12838 struct bnx2x *bp = netdev_priv(netdev); 12839 u16 value; 12840 int rc; 12841 12842 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12843 prtad, devad, addr); 12844 12845 /* The HW expects different devad if CL22 is used */ 12846 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12847 12848 bnx2x_acquire_phy_lock(bp); 12849 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12850 bnx2x_release_phy_lock(bp); 12851 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12852 12853 if (!rc) 12854 rc = value; 12855 return rc; 12856 } 12857 12858 /* called with rtnl_lock */ 12859 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12860 u16 addr, u16 value) 12861 { 12862 struct bnx2x *bp = netdev_priv(netdev); 12863 int rc; 12864 12865 DP(NETIF_MSG_LINK, 12866 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12867 prtad, devad, addr, value); 12868 12869 /* The HW expects different devad if CL22 is used */ 12870 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12871 12872 bnx2x_acquire_phy_lock(bp); 12873 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12874 bnx2x_release_phy_lock(bp); 12875 return rc; 12876 } 12877 12878 /* called with rtnl_lock */ 12879 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12880 { 12881 struct bnx2x *bp = netdev_priv(dev); 12882 struct mii_ioctl_data *mdio = if_mii(ifr); 12883 12884 if (!netif_running(dev)) 12885 return -EAGAIN; 12886 12887 switch (cmd) { 12888 case SIOCSHWTSTAMP: 12889 return bnx2x_hwtstamp_ioctl(bp, ifr); 12890 default: 12891 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12892 mdio->phy_id, mdio->reg_num, mdio->val_in); 12893 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12894 } 12895 } 12896 12897 #ifdef CONFIG_NET_POLL_CONTROLLER 12898 static void poll_bnx2x(struct net_device *dev) 12899 { 12900 struct bnx2x *bp = netdev_priv(dev); 12901 int i; 12902 12903 for_each_eth_queue(bp, i) { 12904 struct bnx2x_fastpath *fp = &bp->fp[i]; 12905 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 12906 } 12907 } 12908 #endif 12909 12910 static int bnx2x_validate_addr(struct net_device *dev) 12911 { 12912 struct bnx2x *bp = netdev_priv(dev); 12913 12914 /* query the bulletin board for mac address configured by the PF */ 12915 if (IS_VF(bp)) 12916 bnx2x_sample_bulletin(bp); 12917 12918 if (!is_valid_ether_addr(dev->dev_addr)) { 12919 BNX2X_ERR("Non-valid Ethernet address\n"); 12920 return -EADDRNOTAVAIL; 12921 } 12922 return 0; 12923 } 12924 12925 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12926 struct netdev_phys_item_id *ppid) 12927 { 12928 struct bnx2x *bp = netdev_priv(netdev); 12929 12930 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12931 return -EOPNOTSUPP; 12932 12933 ppid->id_len = sizeof(bp->phys_port_id); 12934 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12935 12936 return 0; 12937 } 12938 12939 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12940 struct net_device *dev, 12941 netdev_features_t features) 12942 { 12943 /* 12944 * A skb with gso_size + header length > 9700 will cause a 12945 * firmware panic. Drop GSO support. 12946 * 12947 * Eventually the upper layer should not pass these packets down. 12948 * 12949 * For speed, if the gso_size is <= 9000, assume there will 12950 * not be 700 bytes of headers and pass it through. Only do a 12951 * full (slow) validation if the gso_size is > 9000. 12952 * 12953 * (Due to the way SKB_BY_FRAGS works this will also do a full 12954 * validation in that case.) 12955 */ 12956 if (unlikely(skb_is_gso(skb) && 12957 (skb_shinfo(skb)->gso_size > 9000) && 12958 !skb_gso_validate_mac_len(skb, 9700))) 12959 features &= ~NETIF_F_GSO_MASK; 12960 12961 features = vlan_features_check(skb, features); 12962 return vxlan_features_check(skb, features); 12963 } 12964 12965 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12966 { 12967 int rc; 12968 12969 if (IS_PF(bp)) { 12970 unsigned long ramrod_flags = 0; 12971 12972 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12973 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 12974 add, &ramrod_flags); 12975 } else { 12976 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 12977 } 12978 12979 return rc; 12980 } 12981 12982 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 12983 { 12984 struct bnx2x_vlan_entry *vlan; 12985 int rc = 0; 12986 12987 /* Configure all non-configured entries */ 12988 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12989 if (vlan->hw) 12990 continue; 12991 12992 if (bp->vlan_cnt >= bp->vlan_credit) 12993 return -ENOBUFS; 12994 12995 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12996 if (rc) { 12997 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 12998 return rc; 12999 } 13000 13001 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 13002 vlan->hw = true; 13003 bp->vlan_cnt++; 13004 } 13005 13006 return 0; 13007 } 13008 13009 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 13010 { 13011 bool need_accept_any_vlan; 13012 13013 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 13014 13015 if (bp->accept_any_vlan != need_accept_any_vlan) { 13016 bp->accept_any_vlan = need_accept_any_vlan; 13017 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 13018 bp->accept_any_vlan ? "raised" : "cleared"); 13019 if (set_rx_mode) { 13020 if (IS_PF(bp)) 13021 bnx2x_set_rx_mode_inner(bp); 13022 else 13023 bnx2x_vfpf_storm_rx_mode(bp); 13024 } 13025 } 13026 } 13027 13028 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 13029 { 13030 struct bnx2x_vlan_entry *vlan; 13031 13032 /* The hw forgot all entries after reload */ 13033 list_for_each_entry(vlan, &bp->vlan_reg, link) 13034 vlan->hw = false; 13035 bp->vlan_cnt = 0; 13036 13037 /* Don't set rx mode here. Our caller will do it. */ 13038 bnx2x_vlan_configure(bp, false); 13039 13040 return 0; 13041 } 13042 13043 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 13044 { 13045 struct bnx2x *bp = netdev_priv(dev); 13046 struct bnx2x_vlan_entry *vlan; 13047 13048 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 13049 13050 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 13051 if (!vlan) 13052 return -ENOMEM; 13053 13054 vlan->vid = vid; 13055 vlan->hw = false; 13056 list_add_tail(&vlan->link, &bp->vlan_reg); 13057 13058 if (netif_running(dev)) 13059 bnx2x_vlan_configure(bp, true); 13060 13061 return 0; 13062 } 13063 13064 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 13065 { 13066 struct bnx2x *bp = netdev_priv(dev); 13067 struct bnx2x_vlan_entry *vlan; 13068 bool found = false; 13069 int rc = 0; 13070 13071 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 13072 13073 list_for_each_entry(vlan, &bp->vlan_reg, link) 13074 if (vlan->vid == vid) { 13075 found = true; 13076 break; 13077 } 13078 13079 if (!found) { 13080 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 13081 return -EINVAL; 13082 } 13083 13084 if (netif_running(dev) && vlan->hw) { 13085 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13086 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13087 bp->vlan_cnt--; 13088 } 13089 13090 list_del(&vlan->link); 13091 kfree(vlan); 13092 13093 if (netif_running(dev)) 13094 bnx2x_vlan_configure(bp, true); 13095 13096 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13097 13098 return rc; 13099 } 13100 13101 static const struct net_device_ops bnx2x_netdev_ops = { 13102 .ndo_open = bnx2x_open, 13103 .ndo_stop = bnx2x_close, 13104 .ndo_start_xmit = bnx2x_start_xmit, 13105 .ndo_select_queue = bnx2x_select_queue, 13106 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13107 .ndo_set_mac_address = bnx2x_change_mac_addr, 13108 .ndo_validate_addr = bnx2x_validate_addr, 13109 .ndo_do_ioctl = bnx2x_ioctl, 13110 .ndo_change_mtu = bnx2x_change_mtu, 13111 .ndo_fix_features = bnx2x_fix_features, 13112 .ndo_set_features = bnx2x_set_features, 13113 .ndo_tx_timeout = bnx2x_tx_timeout, 13114 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13115 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13116 #ifdef CONFIG_NET_POLL_CONTROLLER 13117 .ndo_poll_controller = poll_bnx2x, 13118 #endif 13119 .ndo_setup_tc = __bnx2x_setup_tc, 13120 #ifdef CONFIG_BNX2X_SRIOV 13121 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13122 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13123 .ndo_get_vf_config = bnx2x_get_vf_config, 13124 #endif 13125 #ifdef NETDEV_FCOE_WWNN 13126 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13127 #endif 13128 13129 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13130 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13131 .ndo_features_check = bnx2x_features_check, 13132 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add, 13133 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del, 13134 }; 13135 13136 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13137 { 13138 struct device *dev = &bp->pdev->dev; 13139 13140 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13141 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13142 dev_err(dev, "System does not support DMA, aborting\n"); 13143 return -EIO; 13144 } 13145 13146 return 0; 13147 } 13148 13149 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13150 { 13151 if (bp->flags & AER_ENABLED) { 13152 pci_disable_pcie_error_reporting(bp->pdev); 13153 bp->flags &= ~AER_ENABLED; 13154 } 13155 } 13156 13157 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13158 struct net_device *dev, unsigned long board_type) 13159 { 13160 int rc; 13161 u32 pci_cfg_dword; 13162 bool chip_is_e1x = (board_type == BCM57710 || 13163 board_type == BCM57711 || 13164 board_type == BCM57711E); 13165 13166 SET_NETDEV_DEV(dev, &pdev->dev); 13167 13168 bp->dev = dev; 13169 bp->pdev = pdev; 13170 13171 rc = pci_enable_device(pdev); 13172 if (rc) { 13173 dev_err(&bp->pdev->dev, 13174 "Cannot enable PCI device, aborting\n"); 13175 goto err_out; 13176 } 13177 13178 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13179 dev_err(&bp->pdev->dev, 13180 "Cannot find PCI device base address, aborting\n"); 13181 rc = -ENODEV; 13182 goto err_out_disable; 13183 } 13184 13185 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13186 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13187 rc = -ENODEV; 13188 goto err_out_disable; 13189 } 13190 13191 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13192 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13193 PCICFG_REVESION_ID_ERROR_VAL) { 13194 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13195 rc = -ENODEV; 13196 goto err_out_disable; 13197 } 13198 13199 if (atomic_read(&pdev->enable_cnt) == 1) { 13200 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13201 if (rc) { 13202 dev_err(&bp->pdev->dev, 13203 "Cannot obtain PCI resources, aborting\n"); 13204 goto err_out_disable; 13205 } 13206 13207 pci_set_master(pdev); 13208 pci_save_state(pdev); 13209 } 13210 13211 if (IS_PF(bp)) { 13212 if (!pdev->pm_cap) { 13213 dev_err(&bp->pdev->dev, 13214 "Cannot find power management capability, aborting\n"); 13215 rc = -EIO; 13216 goto err_out_release; 13217 } 13218 } 13219 13220 if (!pci_is_pcie(pdev)) { 13221 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13222 rc = -EIO; 13223 goto err_out_release; 13224 } 13225 13226 rc = bnx2x_set_coherency_mask(bp); 13227 if (rc) 13228 goto err_out_release; 13229 13230 dev->mem_start = pci_resource_start(pdev, 0); 13231 dev->base_addr = dev->mem_start; 13232 dev->mem_end = pci_resource_end(pdev, 0); 13233 13234 dev->irq = pdev->irq; 13235 13236 bp->regview = pci_ioremap_bar(pdev, 0); 13237 if (!bp->regview) { 13238 dev_err(&bp->pdev->dev, 13239 "Cannot map register space, aborting\n"); 13240 rc = -ENOMEM; 13241 goto err_out_release; 13242 } 13243 13244 /* In E1/E1H use pci device function given by kernel. 13245 * In E2/E3 read physical function from ME register since these chips 13246 * support Physical Device Assignment where kernel BDF maybe arbitrary 13247 * (depending on hypervisor). 13248 */ 13249 if (chip_is_e1x) { 13250 bp->pf_num = PCI_FUNC(pdev->devfn); 13251 } else { 13252 /* chip is E2/3*/ 13253 pci_read_config_dword(bp->pdev, 13254 PCICFG_ME_REGISTER, &pci_cfg_dword); 13255 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13256 ME_REG_ABS_PF_NUM_SHIFT); 13257 } 13258 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13259 13260 /* clean indirect addresses */ 13261 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13262 PCICFG_VENDOR_ID_OFFSET); 13263 13264 /* Set PCIe reset type to fundamental for EEH recovery */ 13265 pdev->needs_freset = 1; 13266 13267 /* AER (Advanced Error reporting) configuration */ 13268 rc = pci_enable_pcie_error_reporting(pdev); 13269 if (!rc) 13270 bp->flags |= AER_ENABLED; 13271 else 13272 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13273 13274 /* 13275 * Clean the following indirect addresses for all functions since it 13276 * is not used by the driver. 13277 */ 13278 if (IS_PF(bp)) { 13279 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13280 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13281 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13282 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13283 13284 if (chip_is_e1x) { 13285 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13286 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13287 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13288 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13289 } 13290 13291 /* Enable internal target-read (in case we are probed after PF 13292 * FLR). Must be done prior to any BAR read access. Only for 13293 * 57712 and up 13294 */ 13295 if (!chip_is_e1x) 13296 REG_WR(bp, 13297 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13298 } 13299 13300 dev->watchdog_timeo = TX_TIMEOUT; 13301 13302 dev->netdev_ops = &bnx2x_netdev_ops; 13303 bnx2x_set_ethtool_ops(bp, dev); 13304 13305 dev->priv_flags |= IFF_UNICAST_FLT; 13306 13307 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13308 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13309 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13310 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13311 if (!chip_is_e1x) { 13312 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13313 NETIF_F_GSO_IPXIP4 | 13314 NETIF_F_GSO_UDP_TUNNEL | 13315 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13316 NETIF_F_GSO_PARTIAL; 13317 13318 dev->hw_enc_features = 13319 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13320 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13321 NETIF_F_GSO_IPXIP4 | 13322 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13323 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13324 NETIF_F_GSO_PARTIAL; 13325 13326 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13327 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13328 } 13329 13330 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13331 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13332 13333 if (IS_PF(bp)) { 13334 if (chip_is_e1x) 13335 bp->accept_any_vlan = true; 13336 else 13337 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13338 } 13339 /* For VF we'll know whether to enable VLAN filtering after 13340 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13341 */ 13342 13343 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13344 dev->features |= NETIF_F_HIGHDMA; 13345 if (dev->features & NETIF_F_LRO) 13346 dev->features &= ~NETIF_F_GRO_HW; 13347 13348 /* Add Loopback capability to the device */ 13349 dev->hw_features |= NETIF_F_LOOPBACK; 13350 13351 #ifdef BCM_DCBNL 13352 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13353 #endif 13354 13355 /* MTU range, 46 - 9600 */ 13356 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13357 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13358 13359 /* get_port_hwinfo() will set prtad and mmds properly */ 13360 bp->mdio.prtad = MDIO_PRTAD_NONE; 13361 bp->mdio.mmds = 0; 13362 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13363 bp->mdio.dev = dev; 13364 bp->mdio.mdio_read = bnx2x_mdio_read; 13365 bp->mdio.mdio_write = bnx2x_mdio_write; 13366 13367 return 0; 13368 13369 err_out_release: 13370 if (atomic_read(&pdev->enable_cnt) == 1) 13371 pci_release_regions(pdev); 13372 13373 err_out_disable: 13374 pci_disable_device(pdev); 13375 13376 err_out: 13377 return rc; 13378 } 13379 13380 static int bnx2x_check_firmware(struct bnx2x *bp) 13381 { 13382 const struct firmware *firmware = bp->firmware; 13383 struct bnx2x_fw_file_hdr *fw_hdr; 13384 struct bnx2x_fw_file_section *sections; 13385 u32 offset, len, num_ops; 13386 __be16 *ops_offsets; 13387 int i; 13388 const u8 *fw_ver; 13389 13390 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13391 BNX2X_ERR("Wrong FW size\n"); 13392 return -EINVAL; 13393 } 13394 13395 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13396 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13397 13398 /* Make sure none of the offsets and sizes make us read beyond 13399 * the end of the firmware data */ 13400 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13401 offset = be32_to_cpu(sections[i].offset); 13402 len = be32_to_cpu(sections[i].len); 13403 if (offset + len > firmware->size) { 13404 BNX2X_ERR("Section %d length is out of bounds\n", i); 13405 return -EINVAL; 13406 } 13407 } 13408 13409 /* Likewise for the init_ops offsets */ 13410 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13411 ops_offsets = (__force __be16 *)(firmware->data + offset); 13412 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13413 13414 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13415 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13416 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13417 return -EINVAL; 13418 } 13419 } 13420 13421 /* Check FW version */ 13422 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13423 fw_ver = firmware->data + offset; 13424 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13425 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13426 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13427 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13428 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13429 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13430 BCM_5710_FW_MAJOR_VERSION, 13431 BCM_5710_FW_MINOR_VERSION, 13432 BCM_5710_FW_REVISION_VERSION, 13433 BCM_5710_FW_ENGINEERING_VERSION); 13434 return -EINVAL; 13435 } 13436 13437 return 0; 13438 } 13439 13440 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13441 { 13442 const __be32 *source = (const __be32 *)_source; 13443 u32 *target = (u32 *)_target; 13444 u32 i; 13445 13446 for (i = 0; i < n/4; i++) 13447 target[i] = be32_to_cpu(source[i]); 13448 } 13449 13450 /* 13451 Ops array is stored in the following format: 13452 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13453 */ 13454 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13455 { 13456 const __be32 *source = (const __be32 *)_source; 13457 struct raw_op *target = (struct raw_op *)_target; 13458 u32 i, j, tmp; 13459 13460 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13461 tmp = be32_to_cpu(source[j]); 13462 target[i].op = (tmp >> 24) & 0xff; 13463 target[i].offset = tmp & 0xffffff; 13464 target[i].raw_data = be32_to_cpu(source[j + 1]); 13465 } 13466 } 13467 13468 /* IRO array is stored in the following format: 13469 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13470 */ 13471 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13472 { 13473 const __be32 *source = (const __be32 *)_source; 13474 struct iro *target = (struct iro *)_target; 13475 u32 i, j, tmp; 13476 13477 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13478 target[i].base = be32_to_cpu(source[j]); 13479 j++; 13480 tmp = be32_to_cpu(source[j]); 13481 target[i].m1 = (tmp >> 16) & 0xffff; 13482 target[i].m2 = tmp & 0xffff; 13483 j++; 13484 tmp = be32_to_cpu(source[j]); 13485 target[i].m3 = (tmp >> 16) & 0xffff; 13486 target[i].size = tmp & 0xffff; 13487 j++; 13488 } 13489 } 13490 13491 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13492 { 13493 const __be16 *source = (const __be16 *)_source; 13494 u16 *target = (u16 *)_target; 13495 u32 i; 13496 13497 for (i = 0; i < n/2; i++) 13498 target[i] = be16_to_cpu(source[i]); 13499 } 13500 13501 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13502 do { \ 13503 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13504 bp->arr = kmalloc(len, GFP_KERNEL); \ 13505 if (!bp->arr) \ 13506 goto lbl; \ 13507 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13508 (u8 *)bp->arr, len); \ 13509 } while (0) 13510 13511 static int bnx2x_init_firmware(struct bnx2x *bp) 13512 { 13513 const char *fw_file_name; 13514 struct bnx2x_fw_file_hdr *fw_hdr; 13515 int rc; 13516 13517 if (bp->firmware) 13518 return 0; 13519 13520 if (CHIP_IS_E1(bp)) 13521 fw_file_name = FW_FILE_NAME_E1; 13522 else if (CHIP_IS_E1H(bp)) 13523 fw_file_name = FW_FILE_NAME_E1H; 13524 else if (!CHIP_IS_E1x(bp)) 13525 fw_file_name = FW_FILE_NAME_E2; 13526 else { 13527 BNX2X_ERR("Unsupported chip revision\n"); 13528 return -EINVAL; 13529 } 13530 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13531 13532 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13533 if (rc) { 13534 BNX2X_ERR("Can't load firmware file %s\n", 13535 fw_file_name); 13536 goto request_firmware_exit; 13537 } 13538 13539 rc = bnx2x_check_firmware(bp); 13540 if (rc) { 13541 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13542 goto request_firmware_exit; 13543 } 13544 13545 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13546 13547 /* Initialize the pointers to the init arrays */ 13548 /* Blob */ 13549 rc = -ENOMEM; 13550 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13551 13552 /* Opcodes */ 13553 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13554 13555 /* Offsets */ 13556 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13557 be16_to_cpu_n); 13558 13559 /* STORMs firmware */ 13560 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13561 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13562 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13563 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13564 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13565 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13566 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13567 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13568 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13569 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13570 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13571 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13572 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13573 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13574 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13575 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13576 /* IRO */ 13577 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13578 13579 return 0; 13580 13581 iro_alloc_err: 13582 kfree(bp->init_ops_offsets); 13583 init_offsets_alloc_err: 13584 kfree(bp->init_ops); 13585 init_ops_alloc_err: 13586 kfree(bp->init_data); 13587 request_firmware_exit: 13588 release_firmware(bp->firmware); 13589 bp->firmware = NULL; 13590 13591 return rc; 13592 } 13593 13594 static void bnx2x_release_firmware(struct bnx2x *bp) 13595 { 13596 kfree(bp->init_ops_offsets); 13597 kfree(bp->init_ops); 13598 kfree(bp->init_data); 13599 release_firmware(bp->firmware); 13600 bp->firmware = NULL; 13601 } 13602 13603 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13604 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13605 .init_hw_cmn = bnx2x_init_hw_common, 13606 .init_hw_port = bnx2x_init_hw_port, 13607 .init_hw_func = bnx2x_init_hw_func, 13608 13609 .reset_hw_cmn = bnx2x_reset_common, 13610 .reset_hw_port = bnx2x_reset_port, 13611 .reset_hw_func = bnx2x_reset_func, 13612 13613 .gunzip_init = bnx2x_gunzip_init, 13614 .gunzip_end = bnx2x_gunzip_end, 13615 13616 .init_fw = bnx2x_init_firmware, 13617 .release_fw = bnx2x_release_firmware, 13618 }; 13619 13620 void bnx2x__init_func_obj(struct bnx2x *bp) 13621 { 13622 /* Prepare DMAE related driver resources */ 13623 bnx2x_setup_dmae(bp); 13624 13625 bnx2x_init_func_obj(bp, &bp->func_obj, 13626 bnx2x_sp(bp, func_rdata), 13627 bnx2x_sp_mapping(bp, func_rdata), 13628 bnx2x_sp(bp, func_afex_rdata), 13629 bnx2x_sp_mapping(bp, func_afex_rdata), 13630 &bnx2x_func_sp_drv); 13631 } 13632 13633 /* must be called after sriov-enable */ 13634 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13635 { 13636 int cid_count = BNX2X_L2_MAX_CID(bp); 13637 13638 if (IS_SRIOV(bp)) 13639 cid_count += BNX2X_VF_CIDS; 13640 13641 if (CNIC_SUPPORT(bp)) 13642 cid_count += CNIC_CID_MAX; 13643 13644 return roundup(cid_count, QM_CID_ROUND); 13645 } 13646 13647 /** 13648 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13649 * 13650 * @dev: pci device 13651 * 13652 */ 13653 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13654 { 13655 int index; 13656 u16 control = 0; 13657 13658 /* 13659 * If MSI-X is not supported - return number of SBs needed to support 13660 * one fast path queue: one FP queue + SB for CNIC 13661 */ 13662 if (!pdev->msix_cap) { 13663 dev_info(&pdev->dev, "no msix capability found\n"); 13664 return 1 + cnic_cnt; 13665 } 13666 dev_info(&pdev->dev, "msix capability found\n"); 13667 13668 /* 13669 * The value in the PCI configuration space is the index of the last 13670 * entry, namely one less than the actual size of the table, which is 13671 * exactly what we want to return from this function: number of all SBs 13672 * without the default SB. 13673 * For VFs there is no default SB, then we return (index+1). 13674 */ 13675 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13676 13677 index = control & PCI_MSIX_FLAGS_QSIZE; 13678 13679 return index; 13680 } 13681 13682 static int set_max_cos_est(int chip_id) 13683 { 13684 switch (chip_id) { 13685 case BCM57710: 13686 case BCM57711: 13687 case BCM57711E: 13688 return BNX2X_MULTI_TX_COS_E1X; 13689 case BCM57712: 13690 case BCM57712_MF: 13691 return BNX2X_MULTI_TX_COS_E2_E3A0; 13692 case BCM57800: 13693 case BCM57800_MF: 13694 case BCM57810: 13695 case BCM57810_MF: 13696 case BCM57840_4_10: 13697 case BCM57840_2_20: 13698 case BCM57840_O: 13699 case BCM57840_MFO: 13700 case BCM57840_MF: 13701 case BCM57811: 13702 case BCM57811_MF: 13703 return BNX2X_MULTI_TX_COS_E3B0; 13704 case BCM57712_VF: 13705 case BCM57800_VF: 13706 case BCM57810_VF: 13707 case BCM57840_VF: 13708 case BCM57811_VF: 13709 return 1; 13710 default: 13711 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13712 return -ENODEV; 13713 } 13714 } 13715 13716 static int set_is_vf(int chip_id) 13717 { 13718 switch (chip_id) { 13719 case BCM57712_VF: 13720 case BCM57800_VF: 13721 case BCM57810_VF: 13722 case BCM57840_VF: 13723 case BCM57811_VF: 13724 return true; 13725 default: 13726 return false; 13727 } 13728 } 13729 13730 /* nig_tsgen registers relative address */ 13731 #define tsgen_ctrl 0x0 13732 #define tsgen_freecount 0x10 13733 #define tsgen_synctime_t0 0x20 13734 #define tsgen_offset_t0 0x28 13735 #define tsgen_drift_t0 0x30 13736 #define tsgen_synctime_t1 0x58 13737 #define tsgen_offset_t1 0x60 13738 #define tsgen_drift_t1 0x68 13739 13740 /* FW workaround for setting drift */ 13741 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13742 int best_val, int best_period) 13743 { 13744 struct bnx2x_func_state_params func_params = {NULL}; 13745 struct bnx2x_func_set_timesync_params *set_timesync_params = 13746 &func_params.params.set_timesync; 13747 13748 /* Prepare parameters for function state transitions */ 13749 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13750 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13751 13752 func_params.f_obj = &bp->func_obj; 13753 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13754 13755 /* Function parameters */ 13756 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13757 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13758 set_timesync_params->add_sub_drift_adjust_value = 13759 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13760 set_timesync_params->drift_adjust_value = best_val; 13761 set_timesync_params->drift_adjust_period = best_period; 13762 13763 return bnx2x_func_state_change(bp, &func_params); 13764 } 13765 13766 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13767 { 13768 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13769 int rc; 13770 int drift_dir = 1; 13771 int val, period, period1, period2, dif, dif1, dif2; 13772 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13773 13774 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13775 13776 if (!netif_running(bp->dev)) { 13777 DP(BNX2X_MSG_PTP, 13778 "PTP adjfreq called while the interface is down\n"); 13779 return -ENETDOWN; 13780 } 13781 13782 if (ppb < 0) { 13783 ppb = -ppb; 13784 drift_dir = 0; 13785 } 13786 13787 if (ppb == 0) { 13788 best_val = 1; 13789 best_period = 0x1FFFFFF; 13790 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13791 best_val = 31; 13792 best_period = 1; 13793 } else { 13794 /* Changed not to allow val = 8, 16, 24 as these values 13795 * are not supported in workaround. 13796 */ 13797 for (val = 0; val <= 31; val++) { 13798 if ((val & 0x7) == 0) 13799 continue; 13800 period1 = val * 1000000 / ppb; 13801 period2 = period1 + 1; 13802 if (period1 != 0) 13803 dif1 = ppb - (val * 1000000 / period1); 13804 else 13805 dif1 = BNX2X_MAX_PHC_DRIFT; 13806 if (dif1 < 0) 13807 dif1 = -dif1; 13808 dif2 = ppb - (val * 1000000 / period2); 13809 if (dif2 < 0) 13810 dif2 = -dif2; 13811 dif = (dif1 < dif2) ? dif1 : dif2; 13812 period = (dif1 < dif2) ? period1 : period2; 13813 if (dif < best_dif) { 13814 best_dif = dif; 13815 best_val = val; 13816 best_period = period; 13817 } 13818 } 13819 } 13820 13821 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13822 best_period); 13823 if (rc) { 13824 BNX2X_ERR("Failed to set drift\n"); 13825 return -EFAULT; 13826 } 13827 13828 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13829 best_period); 13830 13831 return 0; 13832 } 13833 13834 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13835 { 13836 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13837 13838 if (!netif_running(bp->dev)) { 13839 DP(BNX2X_MSG_PTP, 13840 "PTP adjtime called while the interface is down\n"); 13841 return -ENETDOWN; 13842 } 13843 13844 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13845 13846 timecounter_adjtime(&bp->timecounter, delta); 13847 13848 return 0; 13849 } 13850 13851 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13852 { 13853 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13854 u64 ns; 13855 13856 if (!netif_running(bp->dev)) { 13857 DP(BNX2X_MSG_PTP, 13858 "PTP gettime called while the interface is down\n"); 13859 return -ENETDOWN; 13860 } 13861 13862 ns = timecounter_read(&bp->timecounter); 13863 13864 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13865 13866 *ts = ns_to_timespec64(ns); 13867 13868 return 0; 13869 } 13870 13871 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13872 const struct timespec64 *ts) 13873 { 13874 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13875 u64 ns; 13876 13877 if (!netif_running(bp->dev)) { 13878 DP(BNX2X_MSG_PTP, 13879 "PTP settime called while the interface is down\n"); 13880 return -ENETDOWN; 13881 } 13882 13883 ns = timespec64_to_ns(ts); 13884 13885 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13886 13887 /* Re-init the timecounter */ 13888 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13889 13890 return 0; 13891 } 13892 13893 /* Enable (or disable) ancillary features of the phc subsystem */ 13894 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13895 struct ptp_clock_request *rq, int on) 13896 { 13897 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13898 13899 BNX2X_ERR("PHC ancillary features are not supported\n"); 13900 return -ENOTSUPP; 13901 } 13902 13903 static void bnx2x_register_phc(struct bnx2x *bp) 13904 { 13905 /* Fill the ptp_clock_info struct and register PTP clock*/ 13906 bp->ptp_clock_info.owner = THIS_MODULE; 13907 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13908 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13909 bp->ptp_clock_info.n_alarm = 0; 13910 bp->ptp_clock_info.n_ext_ts = 0; 13911 bp->ptp_clock_info.n_per_out = 0; 13912 bp->ptp_clock_info.pps = 0; 13913 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13914 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13915 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13916 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13917 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13918 13919 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13920 if (IS_ERR(bp->ptp_clock)) { 13921 bp->ptp_clock = NULL; 13922 BNX2X_ERR("PTP clock registration failed\n"); 13923 } 13924 } 13925 13926 static int bnx2x_init_one(struct pci_dev *pdev, 13927 const struct pci_device_id *ent) 13928 { 13929 struct net_device *dev = NULL; 13930 struct bnx2x *bp; 13931 int rc, max_non_def_sbs; 13932 int rx_count, tx_count, rss_count, doorbell_size; 13933 int max_cos_est; 13934 bool is_vf; 13935 int cnic_cnt; 13936 13937 /* Management FW 'remembers' living interfaces. Allow it some time 13938 * to forget previously living interfaces, allowing a proper re-load. 13939 */ 13940 if (is_kdump_kernel()) { 13941 ktime_t now = ktime_get_boottime(); 13942 ktime_t fw_ready_time = ktime_set(5, 0); 13943 13944 if (ktime_before(now, fw_ready_time)) 13945 msleep(ktime_ms_delta(fw_ready_time, now)); 13946 } 13947 13948 /* An estimated maximum supported CoS number according to the chip 13949 * version. 13950 * We will try to roughly estimate the maximum number of CoSes this chip 13951 * may support in order to minimize the memory allocated for Tx 13952 * netdev_queue's. This number will be accurately calculated during the 13953 * initialization of bp->max_cos based on the chip versions AND chip 13954 * revision in the bnx2x_init_bp(). 13955 */ 13956 max_cos_est = set_max_cos_est(ent->driver_data); 13957 if (max_cos_est < 0) 13958 return max_cos_est; 13959 is_vf = set_is_vf(ent->driver_data); 13960 cnic_cnt = is_vf ? 0 : 1; 13961 13962 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13963 13964 /* add another SB for VF as it has no default SB */ 13965 max_non_def_sbs += is_vf ? 1 : 0; 13966 13967 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13968 rss_count = max_non_def_sbs - cnic_cnt; 13969 13970 if (rss_count < 1) 13971 return -EINVAL; 13972 13973 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13974 rx_count = rss_count + cnic_cnt; 13975 13976 /* Maximum number of netdev Tx queues: 13977 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13978 */ 13979 tx_count = rss_count * max_cos_est + cnic_cnt; 13980 13981 /* dev zeroed in init_etherdev */ 13982 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13983 if (!dev) 13984 return -ENOMEM; 13985 13986 bp = netdev_priv(dev); 13987 13988 bp->flags = 0; 13989 if (is_vf) 13990 bp->flags |= IS_VF_FLAG; 13991 13992 bp->igu_sb_cnt = max_non_def_sbs; 13993 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13994 bp->msg_enable = debug; 13995 bp->cnic_support = cnic_cnt; 13996 bp->cnic_probe = bnx2x_cnic_probe; 13997 13998 pci_set_drvdata(pdev, dev); 13999 14000 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 14001 if (rc < 0) { 14002 free_netdev(dev); 14003 return rc; 14004 } 14005 14006 BNX2X_DEV_INFO("This is a %s function\n", 14007 IS_PF(bp) ? "physical" : "virtual"); 14008 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 14009 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 14010 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 14011 tx_count, rx_count); 14012 14013 rc = bnx2x_init_bp(bp); 14014 if (rc) 14015 goto init_one_exit; 14016 14017 /* Map doorbells here as we need the real value of bp->max_cos which 14018 * is initialized in bnx2x_init_bp() to determine the number of 14019 * l2 connections. 14020 */ 14021 if (IS_VF(bp)) { 14022 bp->doorbells = bnx2x_vf_doorbells(bp); 14023 rc = bnx2x_vf_pci_alloc(bp); 14024 if (rc) 14025 goto init_one_freemem; 14026 } else { 14027 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 14028 if (doorbell_size > pci_resource_len(pdev, 2)) { 14029 dev_err(&bp->pdev->dev, 14030 "Cannot map doorbells, bar size too small, aborting\n"); 14031 rc = -ENOMEM; 14032 goto init_one_freemem; 14033 } 14034 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 14035 doorbell_size); 14036 } 14037 if (!bp->doorbells) { 14038 dev_err(&bp->pdev->dev, 14039 "Cannot map doorbell space, aborting\n"); 14040 rc = -ENOMEM; 14041 goto init_one_freemem; 14042 } 14043 14044 if (IS_VF(bp)) { 14045 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 14046 if (rc) 14047 goto init_one_freemem; 14048 14049 #ifdef CONFIG_BNX2X_SRIOV 14050 /* VF with OLD Hypervisor or old PF do not support filtering */ 14051 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 14052 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14053 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14054 } 14055 #endif 14056 } 14057 14058 /* Enable SRIOV if capability found in configuration space */ 14059 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 14060 if (rc) 14061 goto init_one_freemem; 14062 14063 /* calc qm_cid_count */ 14064 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 14065 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 14066 14067 /* disable FCOE L2 queue for E1x*/ 14068 if (CHIP_IS_E1x(bp)) 14069 bp->flags |= NO_FCOE_FLAG; 14070 14071 /* Set bp->num_queues for MSI-X mode*/ 14072 bnx2x_set_num_queues(bp); 14073 14074 /* Configure interrupt mode: try to enable MSI-X/MSI if 14075 * needed. 14076 */ 14077 rc = bnx2x_set_int_mode(bp); 14078 if (rc) { 14079 dev_err(&pdev->dev, "Cannot set interrupts\n"); 14080 goto init_one_freemem; 14081 } 14082 BNX2X_DEV_INFO("set interrupts successfully\n"); 14083 14084 /* register the net device */ 14085 rc = register_netdev(dev); 14086 if (rc) { 14087 dev_err(&pdev->dev, "Cannot register net device\n"); 14088 goto init_one_freemem; 14089 } 14090 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14091 14092 if (!NO_FCOE(bp)) { 14093 /* Add storage MAC address */ 14094 rtnl_lock(); 14095 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14096 rtnl_unlock(); 14097 } 14098 BNX2X_DEV_INFO( 14099 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14100 board_info[ent->driver_data].name, 14101 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14102 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14103 pcie_print_link_status(bp->pdev); 14104 14105 bnx2x_register_phc(bp); 14106 14107 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14108 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14109 14110 return 0; 14111 14112 init_one_freemem: 14113 bnx2x_free_mem_bp(bp); 14114 14115 init_one_exit: 14116 bnx2x_disable_pcie_error_reporting(bp); 14117 14118 if (bp->regview) 14119 iounmap(bp->regview); 14120 14121 if (IS_PF(bp) && bp->doorbells) 14122 iounmap(bp->doorbells); 14123 14124 free_netdev(dev); 14125 14126 if (atomic_read(&pdev->enable_cnt) == 1) 14127 pci_release_regions(pdev); 14128 14129 pci_disable_device(pdev); 14130 14131 return rc; 14132 } 14133 14134 static void __bnx2x_remove(struct pci_dev *pdev, 14135 struct net_device *dev, 14136 struct bnx2x *bp, 14137 bool remove_netdev) 14138 { 14139 if (bp->ptp_clock) { 14140 ptp_clock_unregister(bp->ptp_clock); 14141 bp->ptp_clock = NULL; 14142 } 14143 14144 /* Delete storage MAC address */ 14145 if (!NO_FCOE(bp)) { 14146 rtnl_lock(); 14147 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14148 rtnl_unlock(); 14149 } 14150 14151 #ifdef BCM_DCBNL 14152 /* Delete app tlvs from dcbnl */ 14153 bnx2x_dcbnl_update_applist(bp, true); 14154 #endif 14155 14156 if (IS_PF(bp) && 14157 !BP_NOMCP(bp) && 14158 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14159 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14160 14161 /* Close the interface - either directly or implicitly */ 14162 if (remove_netdev) { 14163 unregister_netdev(dev); 14164 } else { 14165 rtnl_lock(); 14166 dev_close(dev); 14167 rtnl_unlock(); 14168 } 14169 14170 bnx2x_iov_remove_one(bp); 14171 14172 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14173 if (IS_PF(bp)) { 14174 bnx2x_set_power_state(bp, PCI_D0); 14175 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14176 14177 /* Set endianity registers to reset values in case next driver 14178 * boots in different endianty environment. 14179 */ 14180 bnx2x_reset_endianity(bp); 14181 } 14182 14183 /* Disable MSI/MSI-X */ 14184 bnx2x_disable_msi(bp); 14185 14186 /* Power off */ 14187 if (IS_PF(bp)) 14188 bnx2x_set_power_state(bp, PCI_D3hot); 14189 14190 /* Make sure RESET task is not scheduled before continuing */ 14191 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14192 14193 /* send message via vfpf channel to release the resources of this vf */ 14194 if (IS_VF(bp)) 14195 bnx2x_vfpf_release(bp); 14196 14197 /* Assumes no further PCIe PM changes will occur */ 14198 if (system_state == SYSTEM_POWER_OFF) { 14199 pci_wake_from_d3(pdev, bp->wol); 14200 pci_set_power_state(pdev, PCI_D3hot); 14201 } 14202 14203 bnx2x_disable_pcie_error_reporting(bp); 14204 if (remove_netdev) { 14205 if (bp->regview) 14206 iounmap(bp->regview); 14207 14208 /* For vfs, doorbells are part of the regview and were unmapped 14209 * along with it. FW is only loaded by PF. 14210 */ 14211 if (IS_PF(bp)) { 14212 if (bp->doorbells) 14213 iounmap(bp->doorbells); 14214 14215 bnx2x_release_firmware(bp); 14216 } else { 14217 bnx2x_vf_pci_dealloc(bp); 14218 } 14219 bnx2x_free_mem_bp(bp); 14220 14221 free_netdev(dev); 14222 14223 if (atomic_read(&pdev->enable_cnt) == 1) 14224 pci_release_regions(pdev); 14225 14226 pci_disable_device(pdev); 14227 } 14228 } 14229 14230 static void bnx2x_remove_one(struct pci_dev *pdev) 14231 { 14232 struct net_device *dev = pci_get_drvdata(pdev); 14233 struct bnx2x *bp; 14234 14235 if (!dev) { 14236 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14237 return; 14238 } 14239 bp = netdev_priv(dev); 14240 14241 __bnx2x_remove(pdev, dev, bp, true); 14242 } 14243 14244 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14245 { 14246 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14247 14248 bp->rx_mode = BNX2X_RX_MODE_NONE; 14249 14250 if (CNIC_LOADED(bp)) 14251 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14252 14253 /* Stop Tx */ 14254 bnx2x_tx_disable(bp); 14255 /* Delete all NAPI objects */ 14256 bnx2x_del_all_napi(bp); 14257 if (CNIC_LOADED(bp)) 14258 bnx2x_del_all_napi_cnic(bp); 14259 netdev_reset_tc(bp->dev); 14260 14261 del_timer_sync(&bp->timer); 14262 cancel_delayed_work_sync(&bp->sp_task); 14263 cancel_delayed_work_sync(&bp->period_task); 14264 14265 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14266 bp->stats_state = STATS_STATE_DISABLED; 14267 up(&bp->stats_lock); 14268 } 14269 14270 bnx2x_save_statistics(bp); 14271 14272 netif_carrier_off(bp->dev); 14273 14274 return 0; 14275 } 14276 14277 /** 14278 * bnx2x_io_error_detected - called when PCI error is detected 14279 * @pdev: Pointer to PCI device 14280 * @state: The current pci connection state 14281 * 14282 * This function is called after a PCI bus error affecting 14283 * this device has been detected. 14284 */ 14285 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14286 pci_channel_state_t state) 14287 { 14288 struct net_device *dev = pci_get_drvdata(pdev); 14289 struct bnx2x *bp = netdev_priv(dev); 14290 14291 rtnl_lock(); 14292 14293 BNX2X_ERR("IO error detected\n"); 14294 14295 netif_device_detach(dev); 14296 14297 if (state == pci_channel_io_perm_failure) { 14298 rtnl_unlock(); 14299 return PCI_ERS_RESULT_DISCONNECT; 14300 } 14301 14302 if (netif_running(dev)) 14303 bnx2x_eeh_nic_unload(bp); 14304 14305 bnx2x_prev_path_mark_eeh(bp); 14306 14307 pci_disable_device(pdev); 14308 14309 rtnl_unlock(); 14310 14311 /* Request a slot reset */ 14312 return PCI_ERS_RESULT_NEED_RESET; 14313 } 14314 14315 /** 14316 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14317 * @pdev: Pointer to PCI device 14318 * 14319 * Restart the card from scratch, as if from a cold-boot. 14320 */ 14321 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14322 { 14323 struct net_device *dev = pci_get_drvdata(pdev); 14324 struct bnx2x *bp = netdev_priv(dev); 14325 int i; 14326 14327 rtnl_lock(); 14328 BNX2X_ERR("IO slot reset initializing...\n"); 14329 if (pci_enable_device(pdev)) { 14330 dev_err(&pdev->dev, 14331 "Cannot re-enable PCI device after reset\n"); 14332 rtnl_unlock(); 14333 return PCI_ERS_RESULT_DISCONNECT; 14334 } 14335 14336 pci_set_master(pdev); 14337 pci_restore_state(pdev); 14338 pci_save_state(pdev); 14339 14340 if (netif_running(dev)) 14341 bnx2x_set_power_state(bp, PCI_D0); 14342 14343 if (netif_running(dev)) { 14344 BNX2X_ERR("IO slot reset --> driver unload\n"); 14345 14346 /* MCP should have been reset; Need to wait for validity */ 14347 if (bnx2x_init_shmem(bp)) { 14348 rtnl_unlock(); 14349 return PCI_ERS_RESULT_DISCONNECT; 14350 } 14351 14352 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14353 u32 v; 14354 14355 v = SHMEM2_RD(bp, 14356 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14357 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14358 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14359 } 14360 bnx2x_drain_tx_queues(bp); 14361 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14362 bnx2x_netif_stop(bp, 1); 14363 bnx2x_free_irq(bp); 14364 14365 /* Report UNLOAD_DONE to MCP */ 14366 bnx2x_send_unload_done(bp, true); 14367 14368 bp->sp_state = 0; 14369 bp->port.pmf = 0; 14370 14371 bnx2x_prev_unload(bp); 14372 14373 /* We should have reseted the engine, so It's fair to 14374 * assume the FW will no longer write to the bnx2x driver. 14375 */ 14376 bnx2x_squeeze_objects(bp); 14377 bnx2x_free_skbs(bp); 14378 for_each_rx_queue(bp, i) 14379 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14380 bnx2x_free_fp_mem(bp); 14381 bnx2x_free_mem(bp); 14382 14383 bp->state = BNX2X_STATE_CLOSED; 14384 } 14385 14386 rtnl_unlock(); 14387 14388 /* If AER, perform cleanup of the PCIe registers */ 14389 if (bp->flags & AER_ENABLED) { 14390 if (pci_cleanup_aer_uncorrect_error_status(pdev)) 14391 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n"); 14392 else 14393 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n"); 14394 } 14395 14396 return PCI_ERS_RESULT_RECOVERED; 14397 } 14398 14399 /** 14400 * bnx2x_io_resume - called when traffic can start flowing again 14401 * @pdev: Pointer to PCI device 14402 * 14403 * This callback is called when the error recovery driver tells us that 14404 * its OK to resume normal operation. 14405 */ 14406 static void bnx2x_io_resume(struct pci_dev *pdev) 14407 { 14408 struct net_device *dev = pci_get_drvdata(pdev); 14409 struct bnx2x *bp = netdev_priv(dev); 14410 14411 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14412 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14413 return; 14414 } 14415 14416 rtnl_lock(); 14417 14418 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14419 DRV_MSG_SEQ_NUMBER_MASK; 14420 14421 if (netif_running(dev)) 14422 bnx2x_nic_load(bp, LOAD_NORMAL); 14423 14424 netif_device_attach(dev); 14425 14426 rtnl_unlock(); 14427 } 14428 14429 static const struct pci_error_handlers bnx2x_err_handler = { 14430 .error_detected = bnx2x_io_error_detected, 14431 .slot_reset = bnx2x_io_slot_reset, 14432 .resume = bnx2x_io_resume, 14433 }; 14434 14435 static void bnx2x_shutdown(struct pci_dev *pdev) 14436 { 14437 struct net_device *dev = pci_get_drvdata(pdev); 14438 struct bnx2x *bp; 14439 14440 if (!dev) 14441 return; 14442 14443 bp = netdev_priv(dev); 14444 if (!bp) 14445 return; 14446 14447 rtnl_lock(); 14448 netif_device_detach(dev); 14449 rtnl_unlock(); 14450 14451 /* Don't remove the netdevice, as there are scenarios which will cause 14452 * the kernel to hang, e.g., when trying to remove bnx2i while the 14453 * rootfs is mounted from SAN. 14454 */ 14455 __bnx2x_remove(pdev, dev, bp, false); 14456 } 14457 14458 static struct pci_driver bnx2x_pci_driver = { 14459 .name = DRV_MODULE_NAME, 14460 .id_table = bnx2x_pci_tbl, 14461 .probe = bnx2x_init_one, 14462 .remove = bnx2x_remove_one, 14463 .suspend = bnx2x_suspend, 14464 .resume = bnx2x_resume, 14465 .err_handler = &bnx2x_err_handler, 14466 #ifdef CONFIG_BNX2X_SRIOV 14467 .sriov_configure = bnx2x_sriov_configure, 14468 #endif 14469 .shutdown = bnx2x_shutdown, 14470 }; 14471 14472 static int __init bnx2x_init(void) 14473 { 14474 int ret; 14475 14476 pr_info("%s", version); 14477 14478 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14479 if (bnx2x_wq == NULL) { 14480 pr_err("Cannot create workqueue\n"); 14481 return -ENOMEM; 14482 } 14483 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14484 if (!bnx2x_iov_wq) { 14485 pr_err("Cannot create iov workqueue\n"); 14486 destroy_workqueue(bnx2x_wq); 14487 return -ENOMEM; 14488 } 14489 14490 ret = pci_register_driver(&bnx2x_pci_driver); 14491 if (ret) { 14492 pr_err("Cannot register driver\n"); 14493 destroy_workqueue(bnx2x_wq); 14494 destroy_workqueue(bnx2x_iov_wq); 14495 } 14496 return ret; 14497 } 14498 14499 static void __exit bnx2x_cleanup(void) 14500 { 14501 struct list_head *pos, *q; 14502 14503 pci_unregister_driver(&bnx2x_pci_driver); 14504 14505 destroy_workqueue(bnx2x_wq); 14506 destroy_workqueue(bnx2x_iov_wq); 14507 14508 /* Free globally allocated resources */ 14509 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14510 struct bnx2x_prev_path_list *tmp = 14511 list_entry(pos, struct bnx2x_prev_path_list, list); 14512 list_del(pos); 14513 kfree(tmp); 14514 } 14515 } 14516 14517 void bnx2x_notify_link_changed(struct bnx2x *bp) 14518 { 14519 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14520 } 14521 14522 module_init(bnx2x_init); 14523 module_exit(bnx2x_cleanup); 14524 14525 /** 14526 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14527 * 14528 * @bp: driver handle 14529 * @set: set or clear the CAM entry 14530 * 14531 * This function will wait until the ramrod completion returns. 14532 * Return 0 if success, -ENODEV if ramrod doesn't return. 14533 */ 14534 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14535 { 14536 unsigned long ramrod_flags = 0; 14537 14538 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14539 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14540 &bp->iscsi_l2_mac_obj, true, 14541 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14542 } 14543 14544 /* count denotes the number of new completions we have seen */ 14545 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14546 { 14547 struct eth_spe *spe; 14548 int cxt_index, cxt_offset; 14549 14550 #ifdef BNX2X_STOP_ON_ERROR 14551 if (unlikely(bp->panic)) 14552 return; 14553 #endif 14554 14555 spin_lock_bh(&bp->spq_lock); 14556 BUG_ON(bp->cnic_spq_pending < count); 14557 bp->cnic_spq_pending -= count; 14558 14559 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14560 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14561 & SPE_HDR_CONN_TYPE) >> 14562 SPE_HDR_CONN_TYPE_SHIFT; 14563 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14564 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14565 14566 /* Set validation for iSCSI L2 client before sending SETUP 14567 * ramrod 14568 */ 14569 if (type == ETH_CONNECTION_TYPE) { 14570 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14571 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14572 ILT_PAGE_CIDS; 14573 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14574 (cxt_index * ILT_PAGE_CIDS); 14575 bnx2x_set_ctx_validation(bp, 14576 &bp->context[cxt_index]. 14577 vcxt[cxt_offset].eth, 14578 BNX2X_ISCSI_ETH_CID(bp)); 14579 } 14580 } 14581 14582 /* 14583 * There may be not more than 8 L2, not more than 8 L5 SPEs 14584 * and in the air. We also check that number of outstanding 14585 * COMMON ramrods is not more than the EQ and SPQ can 14586 * accommodate. 14587 */ 14588 if (type == ETH_CONNECTION_TYPE) { 14589 if (!atomic_read(&bp->cq_spq_left)) 14590 break; 14591 else 14592 atomic_dec(&bp->cq_spq_left); 14593 } else if (type == NONE_CONNECTION_TYPE) { 14594 if (!atomic_read(&bp->eq_spq_left)) 14595 break; 14596 else 14597 atomic_dec(&bp->eq_spq_left); 14598 } else if ((type == ISCSI_CONNECTION_TYPE) || 14599 (type == FCOE_CONNECTION_TYPE)) { 14600 if (bp->cnic_spq_pending >= 14601 bp->cnic_eth_dev.max_kwqe_pending) 14602 break; 14603 else 14604 bp->cnic_spq_pending++; 14605 } else { 14606 BNX2X_ERR("Unknown SPE type: %d\n", type); 14607 bnx2x_panic(); 14608 break; 14609 } 14610 14611 spe = bnx2x_sp_get_next(bp); 14612 *spe = *bp->cnic_kwq_cons; 14613 14614 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14615 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14616 14617 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14618 bp->cnic_kwq_cons = bp->cnic_kwq; 14619 else 14620 bp->cnic_kwq_cons++; 14621 } 14622 bnx2x_sp_prod_update(bp); 14623 spin_unlock_bh(&bp->spq_lock); 14624 } 14625 14626 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14627 struct kwqe_16 *kwqes[], u32 count) 14628 { 14629 struct bnx2x *bp = netdev_priv(dev); 14630 int i; 14631 14632 #ifdef BNX2X_STOP_ON_ERROR 14633 if (unlikely(bp->panic)) { 14634 BNX2X_ERR("Can't post to SP queue while panic\n"); 14635 return -EIO; 14636 } 14637 #endif 14638 14639 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14640 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14641 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14642 return -EAGAIN; 14643 } 14644 14645 spin_lock_bh(&bp->spq_lock); 14646 14647 for (i = 0; i < count; i++) { 14648 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14649 14650 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14651 break; 14652 14653 *bp->cnic_kwq_prod = *spe; 14654 14655 bp->cnic_kwq_pending++; 14656 14657 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14658 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14659 spe->data.update_data_addr.hi, 14660 spe->data.update_data_addr.lo, 14661 bp->cnic_kwq_pending); 14662 14663 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14664 bp->cnic_kwq_prod = bp->cnic_kwq; 14665 else 14666 bp->cnic_kwq_prod++; 14667 } 14668 14669 spin_unlock_bh(&bp->spq_lock); 14670 14671 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14672 bnx2x_cnic_sp_post(bp, 0); 14673 14674 return i; 14675 } 14676 14677 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14678 { 14679 struct cnic_ops *c_ops; 14680 int rc = 0; 14681 14682 mutex_lock(&bp->cnic_mutex); 14683 c_ops = rcu_dereference_protected(bp->cnic_ops, 14684 lockdep_is_held(&bp->cnic_mutex)); 14685 if (c_ops) 14686 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14687 mutex_unlock(&bp->cnic_mutex); 14688 14689 return rc; 14690 } 14691 14692 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14693 { 14694 struct cnic_ops *c_ops; 14695 int rc = 0; 14696 14697 rcu_read_lock(); 14698 c_ops = rcu_dereference(bp->cnic_ops); 14699 if (c_ops) 14700 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14701 rcu_read_unlock(); 14702 14703 return rc; 14704 } 14705 14706 /* 14707 * for commands that have no data 14708 */ 14709 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14710 { 14711 struct cnic_ctl_info ctl = {0}; 14712 14713 ctl.cmd = cmd; 14714 14715 return bnx2x_cnic_ctl_send(bp, &ctl); 14716 } 14717 14718 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14719 { 14720 struct cnic_ctl_info ctl = {0}; 14721 14722 /* first we tell CNIC and only then we count this as a completion */ 14723 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14724 ctl.data.comp.cid = cid; 14725 ctl.data.comp.error = err; 14726 14727 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14728 bnx2x_cnic_sp_post(bp, 0); 14729 } 14730 14731 /* Called with netif_addr_lock_bh() taken. 14732 * Sets an rx_mode config for an iSCSI ETH client. 14733 * Doesn't block. 14734 * Completion should be checked outside. 14735 */ 14736 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14737 { 14738 unsigned long accept_flags = 0, ramrod_flags = 0; 14739 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14740 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14741 14742 if (start) { 14743 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14744 * because it's the only way for UIO Queue to accept 14745 * multicasts (in non-promiscuous mode only one Queue per 14746 * function will receive multicast packets (leading in our 14747 * case). 14748 */ 14749 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14750 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14751 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14752 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14753 14754 /* Clear STOP_PENDING bit if START is requested */ 14755 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14756 14757 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14758 } else 14759 /* Clear START_PENDING bit if STOP is requested */ 14760 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14761 14762 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14763 set_bit(sched_state, &bp->sp_state); 14764 else { 14765 __set_bit(RAMROD_RX, &ramrod_flags); 14766 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14767 ramrod_flags); 14768 } 14769 } 14770 14771 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14772 { 14773 struct bnx2x *bp = netdev_priv(dev); 14774 int rc = 0; 14775 14776 switch (ctl->cmd) { 14777 case DRV_CTL_CTXTBL_WR_CMD: { 14778 u32 index = ctl->data.io.offset; 14779 dma_addr_t addr = ctl->data.io.dma_addr; 14780 14781 bnx2x_ilt_wr(bp, index, addr); 14782 break; 14783 } 14784 14785 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14786 int count = ctl->data.credit.credit_count; 14787 14788 bnx2x_cnic_sp_post(bp, count); 14789 break; 14790 } 14791 14792 /* rtnl_lock is held. */ 14793 case DRV_CTL_START_L2_CMD: { 14794 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14795 unsigned long sp_bits = 0; 14796 14797 /* Configure the iSCSI classification object */ 14798 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14799 cp->iscsi_l2_client_id, 14800 cp->iscsi_l2_cid, BP_FUNC(bp), 14801 bnx2x_sp(bp, mac_rdata), 14802 bnx2x_sp_mapping(bp, mac_rdata), 14803 BNX2X_FILTER_MAC_PENDING, 14804 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14805 &bp->macs_pool); 14806 14807 /* Set iSCSI MAC address */ 14808 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14809 if (rc) 14810 break; 14811 14812 mmiowb(); 14813 barrier(); 14814 14815 /* Start accepting on iSCSI L2 ring */ 14816 14817 netif_addr_lock_bh(dev); 14818 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14819 netif_addr_unlock_bh(dev); 14820 14821 /* bits to wait on */ 14822 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14823 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14824 14825 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14826 BNX2X_ERR("rx_mode completion timed out!\n"); 14827 14828 break; 14829 } 14830 14831 /* rtnl_lock is held. */ 14832 case DRV_CTL_STOP_L2_CMD: { 14833 unsigned long sp_bits = 0; 14834 14835 /* Stop accepting on iSCSI L2 ring */ 14836 netif_addr_lock_bh(dev); 14837 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14838 netif_addr_unlock_bh(dev); 14839 14840 /* bits to wait on */ 14841 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14842 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14843 14844 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14845 BNX2X_ERR("rx_mode completion timed out!\n"); 14846 14847 mmiowb(); 14848 barrier(); 14849 14850 /* Unset iSCSI L2 MAC */ 14851 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14852 BNX2X_ISCSI_ETH_MAC, true); 14853 break; 14854 } 14855 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14856 int count = ctl->data.credit.credit_count; 14857 14858 smp_mb__before_atomic(); 14859 atomic_add(count, &bp->cq_spq_left); 14860 smp_mb__after_atomic(); 14861 break; 14862 } 14863 case DRV_CTL_ULP_REGISTER_CMD: { 14864 int ulp_type = ctl->data.register_data.ulp_type; 14865 14866 if (CHIP_IS_E3(bp)) { 14867 int idx = BP_FW_MB_IDX(bp); 14868 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14869 int path = BP_PATH(bp); 14870 int port = BP_PORT(bp); 14871 int i; 14872 u32 scratch_offset; 14873 u32 *host_addr; 14874 14875 /* first write capability to shmem2 */ 14876 if (ulp_type == CNIC_ULP_ISCSI) 14877 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14878 else if (ulp_type == CNIC_ULP_FCOE) 14879 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14880 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14881 14882 if ((ulp_type != CNIC_ULP_FCOE) || 14883 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14884 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14885 break; 14886 14887 /* if reached here - should write fcoe capabilities */ 14888 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14889 if (!scratch_offset) 14890 break; 14891 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14892 fcoe_features[path][port]); 14893 host_addr = (u32 *) &(ctl->data.register_data. 14894 fcoe_features); 14895 for (i = 0; i < sizeof(struct fcoe_capabilities); 14896 i += 4) 14897 REG_WR(bp, scratch_offset + i, 14898 *(host_addr + i/4)); 14899 } 14900 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14901 break; 14902 } 14903 14904 case DRV_CTL_ULP_UNREGISTER_CMD: { 14905 int ulp_type = ctl->data.ulp_type; 14906 14907 if (CHIP_IS_E3(bp)) { 14908 int idx = BP_FW_MB_IDX(bp); 14909 u32 cap; 14910 14911 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14912 if (ulp_type == CNIC_ULP_ISCSI) 14913 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14914 else if (ulp_type == CNIC_ULP_FCOE) 14915 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14916 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14917 } 14918 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14919 break; 14920 } 14921 14922 default: 14923 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14924 rc = -EINVAL; 14925 } 14926 14927 /* For storage-only interfaces, change driver state */ 14928 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14929 switch (ctl->drv_state) { 14930 case DRV_NOP: 14931 break; 14932 case DRV_ACTIVE: 14933 bnx2x_set_os_driver_state(bp, 14934 OS_DRIVER_STATE_ACTIVE); 14935 break; 14936 case DRV_INACTIVE: 14937 bnx2x_set_os_driver_state(bp, 14938 OS_DRIVER_STATE_DISABLED); 14939 break; 14940 case DRV_UNLOADED: 14941 bnx2x_set_os_driver_state(bp, 14942 OS_DRIVER_STATE_NOT_LOADED); 14943 break; 14944 default: 14945 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14946 } 14947 } 14948 14949 return rc; 14950 } 14951 14952 static int bnx2x_get_fc_npiv(struct net_device *dev, 14953 struct cnic_fc_npiv_tbl *cnic_tbl) 14954 { 14955 struct bnx2x *bp = netdev_priv(dev); 14956 struct bdn_fc_npiv_tbl *tbl = NULL; 14957 u32 offset, entries; 14958 int rc = -EINVAL; 14959 int i; 14960 14961 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14962 goto out; 14963 14964 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14965 14966 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14967 if (!tbl) { 14968 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14969 goto out; 14970 } 14971 14972 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14973 if (!offset) { 14974 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14975 goto out; 14976 } 14977 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14978 14979 /* Read the table contents from nvram */ 14980 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14981 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14982 goto out; 14983 } 14984 14985 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14986 * the number of entries back to cpu endianness. 14987 */ 14988 entries = tbl->fc_npiv_cfg.num_of_npiv; 14989 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14990 tbl->fc_npiv_cfg.num_of_npiv = entries; 14991 14992 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14993 DP(BNX2X_MSG_MCP, 14994 "No FC-NPIV table [valid, simply not present]\n"); 14995 goto out; 14996 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14997 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14998 tbl->fc_npiv_cfg.num_of_npiv); 14999 goto out; 15000 } else { 15001 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 15002 tbl->fc_npiv_cfg.num_of_npiv); 15003 } 15004 15005 /* Copy the data into cnic-provided struct */ 15006 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 15007 for (i = 0; i < cnic_tbl->count; i++) { 15008 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 15009 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 15010 } 15011 15012 rc = 0; 15013 out: 15014 kfree(tbl); 15015 return rc; 15016 } 15017 15018 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 15019 { 15020 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15021 15022 if (bp->flags & USING_MSIX_FLAG) { 15023 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 15024 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 15025 cp->irq_arr[0].vector = bp->msix_table[1].vector; 15026 } else { 15027 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 15028 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 15029 } 15030 if (!CHIP_IS_E1x(bp)) 15031 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 15032 else 15033 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 15034 15035 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 15036 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 15037 cp->irq_arr[1].status_blk = bp->def_status_blk; 15038 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 15039 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 15040 15041 cp->num_irq = 2; 15042 } 15043 15044 void bnx2x_setup_cnic_info(struct bnx2x *bp) 15045 { 15046 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15047 15048 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15049 bnx2x_cid_ilt_lines(bp); 15050 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15051 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15052 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15053 15054 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 15055 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 15056 cp->iscsi_l2_cid); 15057 15058 if (NO_ISCSI_OOO(bp)) 15059 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15060 } 15061 15062 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 15063 void *data) 15064 { 15065 struct bnx2x *bp = netdev_priv(dev); 15066 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15067 int rc; 15068 15069 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 15070 15071 if (ops == NULL) { 15072 BNX2X_ERR("NULL ops received\n"); 15073 return -EINVAL; 15074 } 15075 15076 if (!CNIC_SUPPORT(bp)) { 15077 BNX2X_ERR("Can't register CNIC when not supported\n"); 15078 return -EOPNOTSUPP; 15079 } 15080 15081 if (!CNIC_LOADED(bp)) { 15082 rc = bnx2x_load_cnic(bp); 15083 if (rc) { 15084 BNX2X_ERR("CNIC-related load failed\n"); 15085 return rc; 15086 } 15087 } 15088 15089 bp->cnic_enabled = true; 15090 15091 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 15092 if (!bp->cnic_kwq) 15093 return -ENOMEM; 15094 15095 bp->cnic_kwq_cons = bp->cnic_kwq; 15096 bp->cnic_kwq_prod = bp->cnic_kwq; 15097 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 15098 15099 bp->cnic_spq_pending = 0; 15100 bp->cnic_kwq_pending = 0; 15101 15102 bp->cnic_data = data; 15103 15104 cp->num_irq = 0; 15105 cp->drv_state |= CNIC_DRV_STATE_REGD; 15106 cp->iro_arr = bp->iro_arr; 15107 15108 bnx2x_setup_cnic_irq_info(bp); 15109 15110 rcu_assign_pointer(bp->cnic_ops, ops); 15111 15112 /* Schedule driver to read CNIC driver versions */ 15113 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15114 15115 return 0; 15116 } 15117 15118 static int bnx2x_unregister_cnic(struct net_device *dev) 15119 { 15120 struct bnx2x *bp = netdev_priv(dev); 15121 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15122 15123 mutex_lock(&bp->cnic_mutex); 15124 cp->drv_state = 0; 15125 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15126 mutex_unlock(&bp->cnic_mutex); 15127 synchronize_rcu(); 15128 bp->cnic_enabled = false; 15129 kfree(bp->cnic_kwq); 15130 bp->cnic_kwq = NULL; 15131 15132 return 0; 15133 } 15134 15135 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15136 { 15137 struct bnx2x *bp = netdev_priv(dev); 15138 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15139 15140 /* If both iSCSI and FCoE are disabled - return NULL in 15141 * order to indicate CNIC that it should not try to work 15142 * with this device. 15143 */ 15144 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15145 return NULL; 15146 15147 cp->drv_owner = THIS_MODULE; 15148 cp->chip_id = CHIP_ID(bp); 15149 cp->pdev = bp->pdev; 15150 cp->io_base = bp->regview; 15151 cp->io_base2 = bp->doorbells; 15152 cp->max_kwqe_pending = 8; 15153 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15154 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15155 bnx2x_cid_ilt_lines(bp); 15156 cp->ctx_tbl_len = CNIC_ILT_LINES; 15157 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15158 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15159 cp->drv_ctl = bnx2x_drv_ctl; 15160 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15161 cp->drv_register_cnic = bnx2x_register_cnic; 15162 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15163 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15164 cp->iscsi_l2_client_id = 15165 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15166 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15167 15168 if (NO_ISCSI_OOO(bp)) 15169 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15170 15171 if (NO_ISCSI(bp)) 15172 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15173 15174 if (NO_FCOE(bp)) 15175 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15176 15177 BNX2X_DEV_INFO( 15178 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15179 cp->ctx_blk_size, 15180 cp->ctx_tbl_offset, 15181 cp->ctx_tbl_len, 15182 cp->starting_cid); 15183 return cp; 15184 } 15185 15186 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15187 { 15188 struct bnx2x *bp = fp->bp; 15189 u32 offset = BAR_USTRORM_INTMEM; 15190 15191 if (IS_VF(bp)) 15192 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15193 else if (!CHIP_IS_E1x(bp)) 15194 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15195 else 15196 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15197 15198 return offset; 15199 } 15200 15201 /* called only on E1H or E2. 15202 * When pretending to be PF, the pretend value is the function number 0...7 15203 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15204 * combination 15205 */ 15206 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15207 { 15208 u32 pretend_reg; 15209 15210 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15211 return -1; 15212 15213 /* get my own pretend register */ 15214 pretend_reg = bnx2x_get_pretend_reg(bp); 15215 REG_WR(bp, pretend_reg, pretend_func_val); 15216 REG_RD(bp, pretend_reg); 15217 return 0; 15218 } 15219 15220 static void bnx2x_ptp_task(struct work_struct *work) 15221 { 15222 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15223 int port = BP_PORT(bp); 15224 u32 val_seq; 15225 u64 timestamp, ns; 15226 struct skb_shared_hwtstamps shhwtstamps; 15227 15228 /* Read Tx timestamp registers */ 15229 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15230 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15231 if (val_seq & 0x10000) { 15232 /* There is a valid timestamp value */ 15233 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15234 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15235 timestamp <<= 32; 15236 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15237 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15238 /* Reset timestamp register to allow new timestamp */ 15239 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15240 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15241 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15242 15243 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15244 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15245 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15246 dev_kfree_skb_any(bp->ptp_tx_skb); 15247 bp->ptp_tx_skb = NULL; 15248 15249 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15250 timestamp, ns); 15251 } else { 15252 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n"); 15253 /* Reschedule to keep checking for a valid timestamp value */ 15254 schedule_work(&bp->ptp_task); 15255 } 15256 } 15257 15258 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15259 { 15260 int port = BP_PORT(bp); 15261 u64 timestamp, ns; 15262 15263 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15264 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15265 timestamp <<= 32; 15266 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15267 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15268 15269 /* Reset timestamp register to allow new timestamp */ 15270 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15271 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15272 15273 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15274 15275 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15276 15277 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15278 timestamp, ns); 15279 } 15280 15281 /* Read the PHC */ 15282 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15283 { 15284 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15285 int port = BP_PORT(bp); 15286 u32 wb_data[2]; 15287 u64 phc_cycles; 15288 15289 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15290 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15291 phc_cycles = wb_data[1]; 15292 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15293 15294 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15295 15296 return phc_cycles; 15297 } 15298 15299 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15300 { 15301 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15302 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15303 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15304 bp->cyclecounter.shift = 0; 15305 bp->cyclecounter.mult = 1; 15306 } 15307 15308 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15309 { 15310 struct bnx2x_func_state_params func_params = {NULL}; 15311 struct bnx2x_func_set_timesync_params *set_timesync_params = 15312 &func_params.params.set_timesync; 15313 15314 /* Prepare parameters for function state transitions */ 15315 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15316 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15317 15318 func_params.f_obj = &bp->func_obj; 15319 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15320 15321 /* Function parameters */ 15322 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15323 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15324 15325 return bnx2x_func_state_change(bp, &func_params); 15326 } 15327 15328 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15329 { 15330 struct bnx2x_queue_state_params q_params; 15331 int rc, i; 15332 15333 /* send queue update ramrod to enable PTP packets */ 15334 memset(&q_params, 0, sizeof(q_params)); 15335 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15336 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15337 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15338 &q_params.params.update.update_flags); 15339 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15340 &q_params.params.update.update_flags); 15341 15342 /* send the ramrod on all the queues of the PF */ 15343 for_each_eth_queue(bp, i) { 15344 struct bnx2x_fastpath *fp = &bp->fp[i]; 15345 15346 /* Set the appropriate Queue object */ 15347 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15348 15349 /* Update the Queue state */ 15350 rc = bnx2x_queue_state_change(bp, &q_params); 15351 if (rc) { 15352 BNX2X_ERR("Failed to enable PTP packets\n"); 15353 return rc; 15354 } 15355 } 15356 15357 return 0; 15358 } 15359 15360 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15361 { 15362 int port = BP_PORT(bp); 15363 int rc; 15364 15365 if (!bp->hwtstamp_ioctl_called) 15366 return 0; 15367 15368 switch (bp->tx_type) { 15369 case HWTSTAMP_TX_ON: 15370 bp->flags |= TX_TIMESTAMPING_EN; 15371 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15372 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA); 15373 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15374 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE); 15375 break; 15376 case HWTSTAMP_TX_ONESTEP_SYNC: 15377 BNX2X_ERR("One-step timestamping is not supported\n"); 15378 return -ERANGE; 15379 } 15380 15381 switch (bp->rx_filter) { 15382 case HWTSTAMP_FILTER_NONE: 15383 break; 15384 case HWTSTAMP_FILTER_ALL: 15385 case HWTSTAMP_FILTER_SOME: 15386 case HWTSTAMP_FILTER_NTP_ALL: 15387 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15388 break; 15389 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15390 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15391 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15392 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15393 /* Initialize PTP detection for UDP/IPv4 events */ 15394 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15395 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE); 15396 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15397 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE); 15398 break; 15399 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15400 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15401 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15402 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15403 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15404 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15405 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA); 15406 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15407 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE); 15408 break; 15409 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15410 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15411 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15412 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15413 /* Initialize PTP detection L2 events */ 15414 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15415 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF); 15416 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15417 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF); 15418 15419 break; 15420 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15421 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15422 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15423 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15424 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15425 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15426 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA); 15427 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15428 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE); 15429 break; 15430 } 15431 15432 /* Indicate to FW that this PF expects recorded PTP packets */ 15433 rc = bnx2x_enable_ptp_packets(bp); 15434 if (rc) 15435 return rc; 15436 15437 /* Enable sending PTP packets to host */ 15438 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15439 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15440 15441 return 0; 15442 } 15443 15444 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15445 { 15446 struct hwtstamp_config config; 15447 int rc; 15448 15449 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15450 15451 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15452 return -EFAULT; 15453 15454 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15455 config.tx_type, config.rx_filter); 15456 15457 if (config.flags) { 15458 BNX2X_ERR("config.flags is reserved for future use\n"); 15459 return -EINVAL; 15460 } 15461 15462 bp->hwtstamp_ioctl_called = 1; 15463 bp->tx_type = config.tx_type; 15464 bp->rx_filter = config.rx_filter; 15465 15466 rc = bnx2x_configure_ptp_filters(bp); 15467 if (rc) 15468 return rc; 15469 15470 config.rx_filter = bp->rx_filter; 15471 15472 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15473 -EFAULT : 0; 15474 } 15475 15476 /* Configures HW for PTP */ 15477 static int bnx2x_configure_ptp(struct bnx2x *bp) 15478 { 15479 int rc, port = BP_PORT(bp); 15480 u32 wb_data[2]; 15481 15482 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15483 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15484 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15485 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15486 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15487 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15488 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15489 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15490 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15491 15492 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15493 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15494 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15495 15496 /* Enable the PTP feature */ 15497 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15498 NIG_REG_P0_PTP_EN, 0x3F); 15499 15500 /* Enable the free-running counter */ 15501 wb_data[0] = 0; 15502 wb_data[1] = 0; 15503 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15504 15505 /* Reset drift register (offset register is not reset) */ 15506 rc = bnx2x_send_reset_timesync_ramrod(bp); 15507 if (rc) { 15508 BNX2X_ERR("Failed to reset PHC drift register\n"); 15509 return -EFAULT; 15510 } 15511 15512 /* Reset possibly old timestamps */ 15513 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15514 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15515 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15516 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15517 15518 return 0; 15519 } 15520 15521 /* Called during load, to initialize PTP-related stuff */ 15522 void bnx2x_init_ptp(struct bnx2x *bp) 15523 { 15524 int rc; 15525 15526 /* Configure PTP in HW */ 15527 rc = bnx2x_configure_ptp(bp); 15528 if (rc) { 15529 BNX2X_ERR("Stopping PTP initialization\n"); 15530 return; 15531 } 15532 15533 /* Init work queue for Tx timestamping */ 15534 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15535 15536 /* Init cyclecounter and timecounter. This is done only in the first 15537 * load. If done in every load, PTP application will fail when doing 15538 * unload / load (e.g. MTU change) while it is running. 15539 */ 15540 if (!bp->timecounter_init_done) { 15541 bnx2x_init_cyclecounter(bp); 15542 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15543 ktime_to_ns(ktime_get_real())); 15544 bp->timecounter_init_done = 1; 15545 } 15546 15547 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15548 } 15549