xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 
78 #define FW_FILE_VERSION_V15				\
79 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
80 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
81 	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
82 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
83 
84 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90 
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT		(5*HZ)
93 
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96 		   "BCM57710/57711/57711E/"
97 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98 		   "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106 
107 int bnx2x_num_queues;
108 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
109 MODULE_PARM_DESC(num_queues,
110 		 " Set number of queues (default is as a number of CPUs)");
111 
112 static int disable_tpa;
113 module_param(disable_tpa, int, 0444);
114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
115 
116 static int int_mode;
117 module_param(int_mode, int, 0444);
118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
119 				"(1 INT#x; 2 MSI)");
120 
121 static int dropless_fc;
122 module_param(dropless_fc, int, 0444);
123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124 
125 static int mrrs = -1;
126 module_param(mrrs, int, 0444);
127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128 
129 static int debug;
130 module_param(debug, int, 0444);
131 MODULE_PARM_DESC(debug, " Default debug msglevel");
132 
133 static struct workqueue_struct *bnx2x_wq;
134 struct workqueue_struct *bnx2x_iov_wq;
135 
136 struct bnx2x_mac_vals {
137 	u32 xmac_addr;
138 	u32 xmac_val;
139 	u32 emac_addr;
140 	u32 emac_val;
141 	u32 umac_addr[2];
142 	u32 umac_val[2];
143 	u32 bmac_addr;
144 	u32 bmac_val[2];
145 };
146 
147 enum bnx2x_board_type {
148 	BCM57710 = 0,
149 	BCM57711,
150 	BCM57711E,
151 	BCM57712,
152 	BCM57712_MF,
153 	BCM57712_VF,
154 	BCM57800,
155 	BCM57800_MF,
156 	BCM57800_VF,
157 	BCM57810,
158 	BCM57810_MF,
159 	BCM57810_VF,
160 	BCM57840_4_10,
161 	BCM57840_2_20,
162 	BCM57840_MF,
163 	BCM57840_VF,
164 	BCM57811,
165 	BCM57811_MF,
166 	BCM57840_O,
167 	BCM57840_MFO,
168 	BCM57811_VF
169 };
170 
171 /* indexed by board_type, above */
172 static struct {
173 	char *name;
174 } board_info[] = {
175 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
176 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
177 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
178 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
179 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
180 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
181 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
182 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
183 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
184 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
185 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
186 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
187 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
188 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
189 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
191 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
192 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
193 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
194 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
195 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
196 };
197 
198 #ifndef PCI_DEVICE_ID_NX2_57710
199 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711
202 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57711E
205 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712
208 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_MF
211 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57712_VF
214 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800
217 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_MF
220 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57800_VF
223 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810
226 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57810_MF
229 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_O
232 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57810_VF
235 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
238 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
241 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
244 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_MF
247 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57840_VF
250 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811
253 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_MF
256 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
257 #endif
258 #ifndef PCI_DEVICE_ID_NX2_57811_VF
259 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
260 #endif
261 
262 static const struct pci_device_id bnx2x_pci_tbl[] = {
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
280 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
282 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
284 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
285 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
286 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
287 	{ 0 }
288 };
289 
290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291 
292 const u32 dmae_reg_go_c[] = {
293 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
294 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
295 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
296 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
297 };
298 
299 /* Global resources for unloading a previously loaded device */
300 #define BNX2X_PREV_WAIT_NEEDED 1
301 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
302 static LIST_HEAD(bnx2x_prev_list);
303 
304 /* Forward declaration */
305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308 
309 /****************************************************************************
310 * General service functions
311 ****************************************************************************/
312 
313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314 
315 static void __storm_memset_dma_mapping(struct bnx2x *bp,
316 				       u32 addr, dma_addr_t mapping)
317 {
318 	REG_WR(bp,  addr, U64_LO(mapping));
319 	REG_WR(bp,  addr + 4, U64_HI(mapping));
320 }
321 
322 static void storm_memset_spq_addr(struct bnx2x *bp,
323 				  dma_addr_t mapping, u16 abs_fid)
324 {
325 	u32 addr = XSEM_REG_FAST_MEMORY +
326 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327 
328 	__storm_memset_dma_mapping(bp, addr, mapping);
329 }
330 
331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
332 				  u16 pf_id)
333 {
334 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335 		pf_id);
336 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337 		pf_id);
338 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339 		pf_id);
340 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
341 		pf_id);
342 }
343 
344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
345 				 u8 enable)
346 {
347 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348 		enable);
349 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350 		enable);
351 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352 		enable);
353 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
354 		enable);
355 }
356 
357 static void storm_memset_eq_data(struct bnx2x *bp,
358 				 struct event_ring_data *eq_data,
359 				u16 pfid)
360 {
361 	size_t size = sizeof(struct event_ring_data);
362 
363 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364 
365 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
366 }
367 
368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
369 				 u16 pfid)
370 {
371 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
372 	REG_WR16(bp, addr, eq_prod);
373 }
374 
375 /* used only at init
376  * locking is done by mcp
377  */
378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379 {
380 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
382 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383 			       PCICFG_VENDOR_ID_OFFSET);
384 }
385 
386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
387 {
388 	u32 val;
389 
390 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
391 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
392 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
393 			       PCICFG_VENDOR_ID_OFFSET);
394 
395 	return val;
396 }
397 
398 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
399 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
400 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
401 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
402 #define DMAE_DP_DST_NONE	"dst_addr [none]"
403 
404 static void bnx2x_dp_dmae(struct bnx2x *bp,
405 			  struct dmae_command *dmae, int msglvl)
406 {
407 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
408 	int i;
409 
410 	switch (dmae->opcode & DMAE_COMMAND_DST) {
411 	case DMAE_CMD_DST_PCI:
412 		if (src_type == DMAE_CMD_SRC_PCI)
413 			DP(msglvl, "DMAE: opcode 0x%08x\n"
414 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
415 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
416 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
417 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
418 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
419 			   dmae->comp_val);
420 		else
421 			DP(msglvl, "DMAE: opcode 0x%08x\n"
422 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
423 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
424 			   dmae->opcode, dmae->src_addr_lo >> 2,
425 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
426 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
427 			   dmae->comp_val);
428 		break;
429 	case DMAE_CMD_DST_GRC:
430 		if (src_type == DMAE_CMD_SRC_PCI)
431 			DP(msglvl, "DMAE: opcode 0x%08x\n"
432 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
433 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
434 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
435 			   dmae->len, dmae->dst_addr_lo >> 2,
436 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
437 			   dmae->comp_val);
438 		else
439 			DP(msglvl, "DMAE: opcode 0x%08x\n"
440 			   "src [%08x], len [%d*4], dst [%08x]\n"
441 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
442 			   dmae->opcode, dmae->src_addr_lo >> 2,
443 			   dmae->len, dmae->dst_addr_lo >> 2,
444 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
445 			   dmae->comp_val);
446 		break;
447 	default:
448 		if (src_type == DMAE_CMD_SRC_PCI)
449 			DP(msglvl, "DMAE: opcode 0x%08x\n"
450 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
451 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
452 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
453 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
454 			   dmae->comp_val);
455 		else
456 			DP(msglvl, "DMAE: opcode 0x%08x\n"
457 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
458 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
459 			   dmae->opcode, dmae->src_addr_lo >> 2,
460 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
461 			   dmae->comp_val);
462 		break;
463 	}
464 
465 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
466 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
467 		   i, *(((u32 *)dmae) + i));
468 }
469 
470 /* copy command into DMAE command memory and set DMAE command go */
471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
472 {
473 	u32 cmd_offset;
474 	int i;
475 
476 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
477 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
478 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479 	}
480 	REG_WR(bp, dmae_reg_go_c[idx], 1);
481 }
482 
483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484 {
485 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
486 			   DMAE_CMD_C_ENABLE);
487 }
488 
489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490 {
491 	return opcode & ~DMAE_CMD_SRC_RESET;
492 }
493 
494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
495 			     bool with_comp, u8 comp_type)
496 {
497 	u32 opcode = 0;
498 
499 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
500 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
501 
502 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503 
504 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
505 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
506 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
507 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
508 
509 #ifdef __BIG_ENDIAN
510 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511 #else
512 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
513 #endif
514 	if (with_comp)
515 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
516 	return opcode;
517 }
518 
519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
520 				      struct dmae_command *dmae,
521 				      u8 src_type, u8 dst_type)
522 {
523 	memset(dmae, 0, sizeof(struct dmae_command));
524 
525 	/* set the opcode */
526 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
527 					 true, DMAE_COMP_PCI);
528 
529 	/* fill in the completion parameters */
530 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
531 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
532 	dmae->comp_val = DMAE_COMP_VAL;
533 }
534 
535 /* issue a dmae command over the init-channel and wait for completion */
536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
537 			       u32 *comp)
538 {
539 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
540 	int rc = 0;
541 
542 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543 
544 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
545 	 * as long as this code is called both from syscall context and
546 	 * from ndo_set_rx_mode() flow that may be called from BH.
547 	 */
548 
549 	spin_lock_bh(&bp->dmae_lock);
550 
551 	/* reset completion */
552 	*comp = 0;
553 
554 	/* post the command on the channel used for initializations */
555 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556 
557 	/* wait for completion */
558 	udelay(5);
559 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
560 
561 		if (!cnt ||
562 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
563 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
564 			BNX2X_ERR("DMAE timeout!\n");
565 			rc = DMAE_TIMEOUT;
566 			goto unlock;
567 		}
568 		cnt--;
569 		udelay(50);
570 	}
571 	if (*comp & DMAE_PCI_ERR_FLAG) {
572 		BNX2X_ERR("DMAE PCI error!\n");
573 		rc = DMAE_PCI_ERROR;
574 	}
575 
576 unlock:
577 
578 	spin_unlock_bh(&bp->dmae_lock);
579 
580 	return rc;
581 }
582 
583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
584 		      u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 
592 		if (CHIP_IS_E1(bp))
593 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594 		else
595 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
596 		return;
597 	}
598 
599 	/* set opcode and fixed command fields */
600 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601 
602 	/* fill in addresses and len */
603 	dmae.src_addr_lo = U64_LO(dma_addr);
604 	dmae.src_addr_hi = U64_HI(dma_addr);
605 	dmae.dst_addr_lo = dst_addr >> 2;
606 	dmae.dst_addr_hi = 0;
607 	dmae.len = len32;
608 
609 	/* issue the command and wait for completion */
610 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611 	if (rc) {
612 		BNX2X_ERR("DMAE returned failure %d\n", rc);
613 #ifdef BNX2X_STOP_ON_ERROR
614 		bnx2x_panic();
615 #endif
616 	}
617 }
618 
619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
620 {
621 	int rc;
622 	struct dmae_command dmae;
623 
624 	if (!bp->dmae_ready) {
625 		u32 *data = bnx2x_sp(bp, wb_data[0]);
626 		int i;
627 
628 		if (CHIP_IS_E1(bp))
629 			for (i = 0; i < len32; i++)
630 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631 		else
632 			for (i = 0; i < len32; i++)
633 				data[i] = REG_RD(bp, src_addr + i*4);
634 
635 		return;
636 	}
637 
638 	/* set opcode and fixed command fields */
639 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640 
641 	/* fill in addresses and len */
642 	dmae.src_addr_lo = src_addr >> 2;
643 	dmae.src_addr_hi = 0;
644 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
645 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
646 	dmae.len = len32;
647 
648 	/* issue the command and wait for completion */
649 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650 	if (rc) {
651 		BNX2X_ERR("DMAE returned failure %d\n", rc);
652 #ifdef BNX2X_STOP_ON_ERROR
653 		bnx2x_panic();
654 #endif
655 	}
656 }
657 
658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
659 				      u32 addr, u32 len)
660 {
661 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
662 	int offset = 0;
663 
664 	while (len > dmae_wr_max) {
665 		bnx2x_write_dmae(bp, phys_addr + offset,
666 				 addr + offset, dmae_wr_max);
667 		offset += dmae_wr_max * 4;
668 		len -= dmae_wr_max;
669 	}
670 
671 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
672 }
673 
674 enum storms {
675 	   XSTORM,
676 	   TSTORM,
677 	   CSTORM,
678 	   USTORM,
679 	   MAX_STORMS
680 };
681 
682 #define STORMS_NUM 4
683 #define REGS_IN_ENTRY 4
684 
685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
686 					      enum storms storm,
687 					      int entry)
688 {
689 	switch (storm) {
690 	case XSTORM:
691 		return XSTORM_ASSERT_LIST_OFFSET(entry);
692 	case TSTORM:
693 		return TSTORM_ASSERT_LIST_OFFSET(entry);
694 	case CSTORM:
695 		return CSTORM_ASSERT_LIST_OFFSET(entry);
696 	case USTORM:
697 		return USTORM_ASSERT_LIST_OFFSET(entry);
698 	case MAX_STORMS:
699 	default:
700 		BNX2X_ERR("unknown storm\n");
701 	}
702 	return -EINVAL;
703 }
704 
705 static int bnx2x_mc_assert(struct bnx2x *bp)
706 {
707 	char last_idx;
708 	int i, j, rc = 0;
709 	enum storms storm;
710 	u32 regs[REGS_IN_ENTRY];
711 	u32 bar_storm_intmem[STORMS_NUM] = {
712 		BAR_XSTRORM_INTMEM,
713 		BAR_TSTRORM_INTMEM,
714 		BAR_CSTRORM_INTMEM,
715 		BAR_USTRORM_INTMEM
716 	};
717 	u32 storm_assert_list_index[STORMS_NUM] = {
718 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
719 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
720 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
721 		USTORM_ASSERT_LIST_INDEX_OFFSET
722 	};
723 	char *storms_string[STORMS_NUM] = {
724 		"XSTORM",
725 		"TSTORM",
726 		"CSTORM",
727 		"USTORM"
728 	};
729 
730 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
731 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
732 				   storm_assert_list_index[storm]);
733 		if (last_idx)
734 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
735 				  storms_string[storm], last_idx);
736 
737 		/* print the asserts */
738 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
739 			/* read a single assert entry */
740 			for (j = 0; j < REGS_IN_ENTRY; j++)
741 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
742 					  bnx2x_get_assert_list_entry(bp,
743 								      storm,
744 								      i) +
745 					  sizeof(u32) * j);
746 
747 			/* log entry if it contains a valid assert */
748 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
749 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
750 					  storms_string[storm], i, regs[3],
751 					  regs[2], regs[1], regs[0]);
752 				rc++;
753 			} else {
754 				break;
755 			}
756 		}
757 	}
758 
759 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
760 		  CHIP_IS_E1(bp) ? "everest1" :
761 		  CHIP_IS_E1H(bp) ? "everest1h" :
762 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
763 		  bp->fw_major, bp->fw_minor, bp->fw_rev);
764 
765 	return rc;
766 }
767 
768 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
769 #define SCRATCH_BUFFER_SIZE(bp)	\
770 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771 
772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
773 {
774 	u32 addr, val;
775 	u32 mark, offset;
776 	__be32 data[9];
777 	int word;
778 	u32 trace_shmem_base;
779 	if (BP_NOMCP(bp)) {
780 		BNX2X_ERR("NO MCP - can not dump\n");
781 		return;
782 	}
783 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
784 		(bp->common.bc_ver & 0xff0000) >> 16,
785 		(bp->common.bc_ver & 0xff00) >> 8,
786 		(bp->common.bc_ver & 0xff));
787 
788 	if (pci_channel_offline(bp->pdev)) {
789 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
790 		return;
791 	}
792 
793 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
794 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
795 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796 
797 	if (BP_PATH(bp) == 0)
798 		trace_shmem_base = bp->common.shmem_base;
799 	else
800 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
801 
802 	/* sanity */
803 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
804 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
805 				SCRATCH_BUFFER_SIZE(bp)) {
806 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
807 			  trace_shmem_base);
808 		return;
809 	}
810 
811 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812 
813 	/* validate TRCB signature */
814 	mark = REG_RD(bp, addr);
815 	if (mark != MFW_TRACE_SIGNATURE) {
816 		BNX2X_ERR("Trace buffer signature is missing.");
817 		return ;
818 	}
819 
820 	/* read cyclic buffer pointer */
821 	addr += 4;
822 	mark = REG_RD(bp, addr);
823 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
824 	if (mark >= trace_shmem_base || mark < addr + 4) {
825 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
826 		return;
827 	}
828 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
829 
830 	printk("%s", lvl);
831 
832 	/* dump buffer after the mark */
833 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
834 		for (word = 0; word < 8; word++)
835 			data[word] = htonl(REG_RD(bp, offset + 4*word));
836 		data[8] = 0x0;
837 		pr_cont("%s", (char *)data);
838 	}
839 
840 	/* dump buffer before the mark */
841 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
842 		for (word = 0; word < 8; word++)
843 			data[word] = htonl(REG_RD(bp, offset + 4*word));
844 		data[8] = 0x0;
845 		pr_cont("%s", (char *)data);
846 	}
847 	printk("%s" "end of fw dump\n", lvl);
848 }
849 
850 static void bnx2x_fw_dump(struct bnx2x *bp)
851 {
852 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
853 }
854 
855 static void bnx2x_hc_int_disable(struct bnx2x *bp)
856 {
857 	int port = BP_PORT(bp);
858 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
859 	u32 val = REG_RD(bp, addr);
860 
861 	/* in E1 we must use only PCI configuration space to disable
862 	 * MSI/MSIX capability
863 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864 	 */
865 	if (CHIP_IS_E1(bp)) {
866 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
867 		 * Use mask register to prevent from HC sending interrupts
868 		 * after we exit the function
869 		 */
870 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871 
872 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
873 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
874 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875 	} else
876 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
877 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
878 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
879 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
880 
881 	DP(NETIF_MSG_IFDOWN,
882 	   "write %x to HC %d (addr 0x%x)\n",
883 	   val, port, addr);
884 
885 	REG_WR(bp, addr, val);
886 	if (REG_RD(bp, addr) != val)
887 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
888 }
889 
890 static void bnx2x_igu_int_disable(struct bnx2x *bp)
891 {
892 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893 
894 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
895 		 IGU_PF_CONF_INT_LINE_EN |
896 		 IGU_PF_CONF_ATTN_BIT_EN);
897 
898 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899 
900 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
901 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
902 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903 }
904 
905 static void bnx2x_int_disable(struct bnx2x *bp)
906 {
907 	if (bp->common.int_block == INT_BLOCK_HC)
908 		bnx2x_hc_int_disable(bp);
909 	else
910 		bnx2x_igu_int_disable(bp);
911 }
912 
913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
914 {
915 	int i;
916 	u16 j;
917 	struct hc_sp_status_block_data sp_sb_data;
918 	int func = BP_FUNC(bp);
919 #ifdef BNX2X_STOP_ON_ERROR
920 	u16 start = 0, end = 0;
921 	u8 cos;
922 #endif
923 	if (IS_PF(bp) && disable_int)
924 		bnx2x_int_disable(bp);
925 
926 	bp->stats_state = STATS_STATE_DISABLED;
927 	bp->eth_stats.unrecoverable_error++;
928 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929 
930 	BNX2X_ERR("begin crash dump -----------------\n");
931 
932 	/* Indices */
933 	/* Common */
934 	if (IS_PF(bp)) {
935 		struct host_sp_status_block *def_sb = bp->def_status_blk;
936 		int data_size, cstorm_offset;
937 
938 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
939 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
940 			  bp->spq_prod_idx, bp->stats_counter);
941 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
942 			  def_sb->atten_status_block.attn_bits,
943 			  def_sb->atten_status_block.attn_bits_ack,
944 			  def_sb->atten_status_block.status_block_id,
945 			  def_sb->atten_status_block.attn_bits_index);
946 		BNX2X_ERR("     def (");
947 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948 			pr_cont("0x%x%s",
949 				def_sb->sp_sb.index_values[i],
950 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
951 
952 		data_size = sizeof(struct hc_sp_status_block_data) /
953 			    sizeof(u32);
954 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
955 		for (i = 0; i < data_size; i++)
956 			*((u32 *)&sp_sb_data + i) =
957 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
958 					   i * sizeof(u32));
959 
960 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
961 			sp_sb_data.igu_sb_id,
962 			sp_sb_data.igu_seg_id,
963 			sp_sb_data.p_func.pf_id,
964 			sp_sb_data.p_func.vnic_id,
965 			sp_sb_data.p_func.vf_id,
966 			sp_sb_data.p_func.vf_valid,
967 			sp_sb_data.state);
968 	}
969 
970 	for_each_eth_queue(bp, i) {
971 		struct bnx2x_fastpath *fp = &bp->fp[i];
972 		int loop;
973 		struct hc_status_block_data_e2 sb_data_e2;
974 		struct hc_status_block_data_e1x sb_data_e1x;
975 		struct hc_status_block_sm  *hc_sm_p =
976 			CHIP_IS_E1x(bp) ?
977 			sb_data_e1x.common.state_machine :
978 			sb_data_e2.common.state_machine;
979 		struct hc_index_data *hc_index_p =
980 			CHIP_IS_E1x(bp) ?
981 			sb_data_e1x.index_data :
982 			sb_data_e2.index_data;
983 		u8 data_size, cos;
984 		u32 *sb_data_p;
985 		struct bnx2x_fp_txdata txdata;
986 
987 		if (!bp->fp)
988 			break;
989 
990 		if (!fp->rx_cons_sb)
991 			continue;
992 
993 		/* Rx */
994 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
995 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
996 			  fp->rx_comp_prod,
997 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
998 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
999 			  fp->rx_sge_prod, fp->last_max_sge,
1000 			  le16_to_cpu(fp->fp_hc_idx));
1001 
1002 		/* Tx */
1003 		for_each_cos_in_tx_queue(fp, cos)
1004 		{
1005 			if (!fp->txdata_ptr[cos])
1006 				break;
1007 
1008 			txdata = *fp->txdata_ptr[cos];
1009 
1010 			if (!txdata.tx_cons_sb)
1011 				continue;
1012 
1013 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1014 				  i, txdata.tx_pkt_prod,
1015 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016 				  txdata.tx_bd_cons,
1017 				  le16_to_cpu(*txdata.tx_cons_sb));
1018 		}
1019 
1020 		loop = CHIP_IS_E1x(bp) ?
1021 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022 
1023 		/* host sb data */
1024 
1025 		if (IS_FCOE_FP(fp))
1026 			continue;
1027 
1028 		BNX2X_ERR("     run indexes (");
1029 		for (j = 0; j < HC_SB_MAX_SM; j++)
1030 			pr_cont("0x%x%s",
1031 			       fp->sb_running_index[j],
1032 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033 
1034 		BNX2X_ERR("     indexes (");
1035 		for (j = 0; j < loop; j++)
1036 			pr_cont("0x%x%s",
1037 			       fp->sb_index_values[j],
1038 			       (j == loop - 1) ? ")" : " ");
1039 
1040 		/* VF cannot access FW refelection for status block */
1041 		if (IS_VF(bp))
1042 			continue;
1043 
1044 		/* fw sb data */
1045 		data_size = CHIP_IS_E1x(bp) ?
1046 			sizeof(struct hc_status_block_data_e1x) :
1047 			sizeof(struct hc_status_block_data_e2);
1048 		data_size /= sizeof(u32);
1049 		sb_data_p = CHIP_IS_E1x(bp) ?
1050 			(u32 *)&sb_data_e1x :
1051 			(u32 *)&sb_data_e2;
1052 		/* copy sb data in here */
1053 		for (j = 0; j < data_size; j++)
1054 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056 				j * sizeof(u32));
1057 
1058 		if (!CHIP_IS_E1x(bp)) {
1059 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1060 				sb_data_e2.common.p_func.pf_id,
1061 				sb_data_e2.common.p_func.vf_id,
1062 				sb_data_e2.common.p_func.vf_valid,
1063 				sb_data_e2.common.p_func.vnic_id,
1064 				sb_data_e2.common.same_igu_sb_1b,
1065 				sb_data_e2.common.state);
1066 		} else {
1067 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1068 				sb_data_e1x.common.p_func.pf_id,
1069 				sb_data_e1x.common.p_func.vf_id,
1070 				sb_data_e1x.common.p_func.vf_valid,
1071 				sb_data_e1x.common.p_func.vnic_id,
1072 				sb_data_e1x.common.same_igu_sb_1b,
1073 				sb_data_e1x.common.state);
1074 		}
1075 
1076 		/* SB_SMs data */
1077 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1078 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079 				j, hc_sm_p[j].__flags,
1080 				hc_sm_p[j].igu_sb_id,
1081 				hc_sm_p[j].igu_seg_id,
1082 				hc_sm_p[j].time_to_expire,
1083 				hc_sm_p[j].timer_value);
1084 		}
1085 
1086 		/* Indices data */
1087 		for (j = 0; j < loop; j++) {
1088 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089 			       hc_index_p[j].flags,
1090 			       hc_index_p[j].timeout);
1091 		}
1092 	}
1093 
1094 #ifdef BNX2X_STOP_ON_ERROR
1095 	if (IS_PF(bp)) {
1096 		/* event queue */
1097 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098 		for (i = 0; i < NUM_EQ_DESC; i++) {
1099 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100 
1101 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102 				  i, bp->eq_ring[i].message.opcode,
1103 				  bp->eq_ring[i].message.error);
1104 			BNX2X_ERR("data: %x %x %x\n",
1105 				  data[0], data[1], data[2]);
1106 		}
1107 	}
1108 
1109 	/* Rings */
1110 	/* Rx */
1111 	for_each_valid_rx_queue(bp, i) {
1112 		struct bnx2x_fastpath *fp = &bp->fp[i];
1113 
1114 		if (!bp->fp)
1115 			break;
1116 
1117 		if (!fp->rx_cons_sb)
1118 			continue;
1119 
1120 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122 		for (j = start; j != end; j = RX_BD(j + 1)) {
1123 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125 
1126 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1127 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128 		}
1129 
1130 		start = RX_SGE(fp->rx_sge_prod);
1131 		end = RX_SGE(fp->last_max_sge);
1132 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1133 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135 
1136 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1137 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138 		}
1139 
1140 		start = RCQ_BD(fp->rx_comp_cons - 10);
1141 		end = RCQ_BD(fp->rx_comp_cons + 503);
1142 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144 
1145 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147 		}
1148 	}
1149 
1150 	/* Tx */
1151 	for_each_valid_tx_queue(bp, i) {
1152 		struct bnx2x_fastpath *fp = &bp->fp[i];
1153 
1154 		if (!bp->fp)
1155 			break;
1156 
1157 		for_each_cos_in_tx_queue(fp, cos) {
1158 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159 
1160 			if (!fp->txdata_ptr[cos])
1161 				break;
1162 
1163 			if (!txdata->tx_cons_sb)
1164 				continue;
1165 
1166 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168 			for (j = start; j != end; j = TX_BD(j + 1)) {
1169 				struct sw_tx_bd *sw_bd =
1170 					&txdata->tx_buf_ring[j];
1171 
1172 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173 					  i, cos, j, sw_bd->skb,
1174 					  sw_bd->first_bd);
1175 			}
1176 
1177 			start = TX_BD(txdata->tx_bd_cons - 10);
1178 			end = TX_BD(txdata->tx_bd_cons + 254);
1179 			for (j = start; j != end; j = TX_BD(j + 1)) {
1180 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181 
1182 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183 					  i, cos, j, tx_bd[0], tx_bd[1],
1184 					  tx_bd[2], tx_bd[3]);
1185 			}
1186 		}
1187 	}
1188 #endif
1189 	if (IS_PF(bp)) {
1190 		int tmp_msg_en = bp->msg_enable;
1191 
1192 		bnx2x_fw_dump(bp);
1193 		bp->msg_enable |= NETIF_MSG_HW;
1194 		BNX2X_ERR("Idle check (1st round) ----------\n");
1195 		bnx2x_idle_chk(bp);
1196 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1197 		bnx2x_idle_chk(bp);
1198 		bp->msg_enable = tmp_msg_en;
1199 		bnx2x_mc_assert(bp);
1200 	}
1201 
1202 	BNX2X_ERR("end crash dump -----------------\n");
1203 }
1204 
1205 /*
1206  * FLR Support for E2
1207  *
1208  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209  * initialization.
1210  */
1211 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1212 #define FLR_WAIT_INTERVAL	50	/* usec */
1213 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214 
1215 struct pbf_pN_buf_regs {
1216 	int pN;
1217 	u32 init_crd;
1218 	u32 crd;
1219 	u32 crd_freed;
1220 };
1221 
1222 struct pbf_pN_cmd_regs {
1223 	int pN;
1224 	u32 lines_occup;
1225 	u32 lines_freed;
1226 };
1227 
1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229 				     struct pbf_pN_buf_regs *regs,
1230 				     u32 poll_count)
1231 {
1232 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233 	u32 cur_cnt = poll_count;
1234 
1235 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236 	crd = crd_start = REG_RD(bp, regs->crd);
1237 	init_crd = REG_RD(bp, regs->init_crd);
1238 
1239 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1241 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242 
1243 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244 	       (init_crd - crd_start))) {
1245 		if (cur_cnt--) {
1246 			udelay(FLR_WAIT_INTERVAL);
1247 			crd = REG_RD(bp, regs->crd);
1248 			crd_freed = REG_RD(bp, regs->crd_freed);
1249 		} else {
1250 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251 			   regs->pN);
1252 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1253 			   regs->pN, crd);
1254 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255 			   regs->pN, crd_freed);
1256 			break;
1257 		}
1258 	}
1259 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261 }
1262 
1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264 				     struct pbf_pN_cmd_regs *regs,
1265 				     u32 poll_count)
1266 {
1267 	u32 occup, to_free, freed, freed_start;
1268 	u32 cur_cnt = poll_count;
1269 
1270 	occup = to_free = REG_RD(bp, regs->lines_occup);
1271 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1272 
1273 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1274 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275 
1276 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277 		if (cur_cnt--) {
1278 			udelay(FLR_WAIT_INTERVAL);
1279 			occup = REG_RD(bp, regs->lines_occup);
1280 			freed = REG_RD(bp, regs->lines_freed);
1281 		} else {
1282 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283 			   regs->pN);
1284 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1285 			   regs->pN, occup);
1286 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287 			   regs->pN, freed);
1288 			break;
1289 		}
1290 	}
1291 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293 }
1294 
1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296 				    u32 expected, u32 poll_count)
1297 {
1298 	u32 cur_cnt = poll_count;
1299 	u32 val;
1300 
1301 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302 		udelay(FLR_WAIT_INTERVAL);
1303 
1304 	return val;
1305 }
1306 
1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308 				    char *msg, u32 poll_cnt)
1309 {
1310 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311 	if (val != 0) {
1312 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1313 		return 1;
1314 	}
1315 	return 0;
1316 }
1317 
1318 /* Common routines with VF FLR cleanup */
1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 {
1321 	/* adjust polling timeout */
1322 	if (CHIP_REV_IS_EMUL(bp))
1323 		return FLR_POLL_CNT * 2000;
1324 
1325 	if (CHIP_REV_IS_FPGA(bp))
1326 		return FLR_POLL_CNT * 120;
1327 
1328 	return FLR_POLL_CNT;
1329 }
1330 
1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 {
1333 	struct pbf_pN_cmd_regs cmd_regs[] = {
1334 		{0, (CHIP_IS_E3B0(bp)) ?
1335 			PBF_REG_TQ_OCCUPANCY_Q0 :
1336 			PBF_REG_P0_TQ_OCCUPANCY,
1337 		    (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1340 		{1, (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_TQ_OCCUPANCY_Q1 :
1342 			PBF_REG_P1_TQ_OCCUPANCY,
1343 		    (CHIP_IS_E3B0(bp)) ?
1344 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1346 		{4, (CHIP_IS_E3B0(bp)) ?
1347 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1348 			PBF_REG_P4_TQ_OCCUPANCY,
1349 		    (CHIP_IS_E3B0(bp)) ?
1350 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1352 	};
1353 
1354 	struct pbf_pN_buf_regs buf_regs[] = {
1355 		{0, (CHIP_IS_E3B0(bp)) ?
1356 			PBF_REG_INIT_CRD_Q0 :
1357 			PBF_REG_P0_INIT_CRD ,
1358 		    (CHIP_IS_E3B0(bp)) ?
1359 			PBF_REG_CREDIT_Q0 :
1360 			PBF_REG_P0_CREDIT,
1361 		    (CHIP_IS_E3B0(bp)) ?
1362 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364 		{1, (CHIP_IS_E3B0(bp)) ?
1365 			PBF_REG_INIT_CRD_Q1 :
1366 			PBF_REG_P1_INIT_CRD,
1367 		    (CHIP_IS_E3B0(bp)) ?
1368 			PBF_REG_CREDIT_Q1 :
1369 			PBF_REG_P1_CREDIT,
1370 		    (CHIP_IS_E3B0(bp)) ?
1371 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373 		{4, (CHIP_IS_E3B0(bp)) ?
1374 			PBF_REG_INIT_CRD_LB_Q :
1375 			PBF_REG_P4_INIT_CRD,
1376 		    (CHIP_IS_E3B0(bp)) ?
1377 			PBF_REG_CREDIT_LB_Q :
1378 			PBF_REG_P4_CREDIT,
1379 		    (CHIP_IS_E3B0(bp)) ?
1380 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382 	};
1383 
1384 	int i;
1385 
1386 	/* Verify the command queues are flushed P0, P1, P4 */
1387 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389 
1390 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1391 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393 }
1394 
1395 #define OP_GEN_PARAM(param) \
1396 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397 
1398 #define OP_GEN_TYPE(type) \
1399 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400 
1401 #define OP_GEN_AGG_VECT(index) \
1402 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403 
1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 {
1406 	u32 op_gen_command = 0;
1407 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1408 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409 
1410 	if (REG_RD(bp, comp_addr)) {
1411 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1412 		return 1;
1413 	}
1414 
1415 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1416 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1417 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1418 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1419 
1420 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1421 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1422 
1423 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1424 		BNX2X_ERR("FW final cleanup did not succeed\n");
1425 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1426 		   (REG_RD(bp, comp_addr)));
1427 		bnx2x_panic();
1428 		return 1;
1429 	}
1430 	/* Zero completion for next FLR */
1431 	REG_WR(bp, comp_addr, 0);
1432 
1433 	return 0;
1434 }
1435 
1436 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1437 {
1438 	u16 status;
1439 
1440 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1441 	return status & PCI_EXP_DEVSTA_TRPND;
1442 }
1443 
1444 /* PF FLR specific routines
1445 */
1446 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1447 {
1448 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1449 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1451 			"CFC PF usage counter timed out",
1452 			poll_cnt))
1453 		return 1;
1454 
1455 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1456 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457 			DORQ_REG_PF_USAGE_CNT,
1458 			"DQ PF usage counter timed out",
1459 			poll_cnt))
1460 		return 1;
1461 
1462 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1463 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1465 			"QM PF usage counter timed out",
1466 			poll_cnt))
1467 		return 1;
1468 
1469 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1470 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1471 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1472 			"Timers VNIC usage counter timed out",
1473 			poll_cnt))
1474 		return 1;
1475 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1476 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1477 			"Timers NUM_SCANS usage counter timed out",
1478 			poll_cnt))
1479 		return 1;
1480 
1481 	/* Wait DMAE PF usage counter to zero */
1482 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1483 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1484 			"DMAE command register timed out",
1485 			poll_cnt))
1486 		return 1;
1487 
1488 	return 0;
1489 }
1490 
1491 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1492 {
1493 	u32 val;
1494 
1495 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1496 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1497 
1498 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1499 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1500 
1501 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1502 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1503 
1504 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1505 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1506 
1507 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1508 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1509 
1510 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1511 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1512 
1513 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1514 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1515 
1516 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1517 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1518 	   val);
1519 }
1520 
1521 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1522 {
1523 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1524 
1525 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1526 
1527 	/* Re-enable PF target read access */
1528 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1529 
1530 	/* Poll HW usage counters */
1531 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1532 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1533 		return -EBUSY;
1534 
1535 	/* Zero the igu 'trailing edge' and 'leading edge' */
1536 
1537 	/* Send the FW cleanup command */
1538 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1539 		return -EBUSY;
1540 
1541 	/* ATC cleanup */
1542 
1543 	/* Verify TX hw is flushed */
1544 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1545 
1546 	/* Wait 100ms (not adjusted according to platform) */
1547 	msleep(100);
1548 
1549 	/* Verify no pending pci transactions */
1550 	if (bnx2x_is_pcie_pending(bp->pdev))
1551 		BNX2X_ERR("PCIE Transactions still pending\n");
1552 
1553 	/* Debug */
1554 	bnx2x_hw_enable_status(bp);
1555 
1556 	/*
1557 	 * Master enable - Due to WB DMAE writes performed before this
1558 	 * register is re-initialized as part of the regular function init
1559 	 */
1560 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1561 
1562 	return 0;
1563 }
1564 
1565 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1566 {
1567 	int port = BP_PORT(bp);
1568 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1569 	u32 val = REG_RD(bp, addr);
1570 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1571 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1572 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1573 
1574 	if (msix) {
1575 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1576 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1577 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1578 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1579 		if (single_msix)
1580 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1581 	} else if (msi) {
1582 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1583 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1584 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1585 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1586 	} else {
1587 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1588 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1589 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1590 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1591 
1592 		if (!CHIP_IS_E1(bp)) {
1593 			DP(NETIF_MSG_IFUP,
1594 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1595 
1596 			REG_WR(bp, addr, val);
1597 
1598 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1599 		}
1600 	}
1601 
1602 	if (CHIP_IS_E1(bp))
1603 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1604 
1605 	DP(NETIF_MSG_IFUP,
1606 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1607 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1608 
1609 	REG_WR(bp, addr, val);
1610 	/*
1611 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1612 	 */
1613 	barrier();
1614 
1615 	if (!CHIP_IS_E1(bp)) {
1616 		/* init leading/trailing edge */
1617 		if (IS_MF(bp)) {
1618 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1619 			if (bp->port.pmf)
1620 				/* enable nig and gpio3 attention */
1621 				val |= 0x1100;
1622 		} else
1623 			val = 0xffff;
1624 
1625 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1626 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1627 	}
1628 }
1629 
1630 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1631 {
1632 	u32 val;
1633 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1634 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1635 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1636 
1637 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1638 
1639 	if (msix) {
1640 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1641 			 IGU_PF_CONF_SINGLE_ISR_EN);
1642 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1643 			IGU_PF_CONF_ATTN_BIT_EN);
1644 
1645 		if (single_msix)
1646 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1647 	} else if (msi) {
1648 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1649 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1650 			IGU_PF_CONF_ATTN_BIT_EN |
1651 			IGU_PF_CONF_SINGLE_ISR_EN);
1652 	} else {
1653 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1654 		val |= (IGU_PF_CONF_INT_LINE_EN |
1655 			IGU_PF_CONF_ATTN_BIT_EN |
1656 			IGU_PF_CONF_SINGLE_ISR_EN);
1657 	}
1658 
1659 	/* Clean previous status - need to configure igu prior to ack*/
1660 	if ((!msix) || single_msix) {
1661 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1662 		bnx2x_ack_int(bp);
1663 	}
1664 
1665 	val |= IGU_PF_CONF_FUNC_EN;
1666 
1667 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1668 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1669 
1670 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1671 
1672 	if (val & IGU_PF_CONF_INT_LINE_EN)
1673 		pci_intx(bp->pdev, true);
1674 
1675 	barrier();
1676 
1677 	/* init leading/trailing edge */
1678 	if (IS_MF(bp)) {
1679 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1680 		if (bp->port.pmf)
1681 			/* enable nig and gpio3 attention */
1682 			val |= 0x1100;
1683 	} else
1684 		val = 0xffff;
1685 
1686 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1687 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1688 }
1689 
1690 void bnx2x_int_enable(struct bnx2x *bp)
1691 {
1692 	if (bp->common.int_block == INT_BLOCK_HC)
1693 		bnx2x_hc_int_enable(bp);
1694 	else
1695 		bnx2x_igu_int_enable(bp);
1696 }
1697 
1698 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1699 {
1700 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1701 	int i, offset;
1702 
1703 	if (disable_hw)
1704 		/* prevent the HW from sending interrupts */
1705 		bnx2x_int_disable(bp);
1706 
1707 	/* make sure all ISRs are done */
1708 	if (msix) {
1709 		synchronize_irq(bp->msix_table[0].vector);
1710 		offset = 1;
1711 		if (CNIC_SUPPORT(bp))
1712 			offset++;
1713 		for_each_eth_queue(bp, i)
1714 			synchronize_irq(bp->msix_table[offset++].vector);
1715 	} else
1716 		synchronize_irq(bp->pdev->irq);
1717 
1718 	/* make sure sp_task is not running */
1719 	cancel_delayed_work(&bp->sp_task);
1720 	cancel_delayed_work(&bp->period_task);
1721 	flush_workqueue(bnx2x_wq);
1722 }
1723 
1724 /* fast path */
1725 
1726 /*
1727  * General service functions
1728  */
1729 
1730 /* Return true if succeeded to acquire the lock */
1731 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1732 {
1733 	u32 lock_status;
1734 	u32 resource_bit = (1 << resource);
1735 	int func = BP_FUNC(bp);
1736 	u32 hw_lock_control_reg;
1737 
1738 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1739 	   "Trying to take a lock on resource %d\n", resource);
1740 
1741 	/* Validating that the resource is within range */
1742 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1743 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1745 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1746 		return false;
1747 	}
1748 
1749 	if (func <= 5)
1750 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1751 	else
1752 		hw_lock_control_reg =
1753 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1754 
1755 	/* Try to acquire the lock */
1756 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1757 	lock_status = REG_RD(bp, hw_lock_control_reg);
1758 	if (lock_status & resource_bit)
1759 		return true;
1760 
1761 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1762 	   "Failed to get a lock on resource %d\n", resource);
1763 	return false;
1764 }
1765 
1766 /**
1767  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1768  *
1769  * @bp:	driver handle
1770  *
1771  * Returns the recovery leader resource id according to the engine this function
1772  * belongs to. Currently only only 2 engines is supported.
1773  */
1774 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1775 {
1776 	if (BP_PATH(bp))
1777 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1778 	else
1779 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1780 }
1781 
1782 /**
1783  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1784  *
1785  * @bp: driver handle
1786  *
1787  * Tries to acquire a leader lock for current engine.
1788  */
1789 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1790 {
1791 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1792 }
1793 
1794 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1795 
1796 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1797 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1798 {
1799 	/* Set the interrupt occurred bit for the sp-task to recognize it
1800 	 * must ack the interrupt and transition according to the IGU
1801 	 * state machine.
1802 	 */
1803 	atomic_set(&bp->interrupt_occurred, 1);
1804 
1805 	/* The sp_task must execute only after this bit
1806 	 * is set, otherwise we will get out of sync and miss all
1807 	 * further interrupts. Hence, the barrier.
1808 	 */
1809 	smp_wmb();
1810 
1811 	/* schedule sp_task to workqueue */
1812 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1813 }
1814 
1815 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1816 {
1817 	struct bnx2x *bp = fp->bp;
1818 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1821 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1822 
1823 	DP(BNX2X_MSG_SP,
1824 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1825 	   fp->index, cid, command, bp->state,
1826 	   rr_cqe->ramrod_cqe.ramrod_type);
1827 
1828 	/* If cid is within VF range, replace the slowpath object with the
1829 	 * one corresponding to this VF
1830 	 */
1831 	if (cid >= BNX2X_FIRST_VF_CID  &&
1832 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1833 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1834 
1835 	switch (command) {
1836 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1837 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1838 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1839 		break;
1840 
1841 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1842 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1843 		drv_cmd = BNX2X_Q_CMD_SETUP;
1844 		break;
1845 
1846 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1847 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1848 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1849 		break;
1850 
1851 	case (RAMROD_CMD_ID_ETH_HALT):
1852 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1853 		drv_cmd = BNX2X_Q_CMD_HALT;
1854 		break;
1855 
1856 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1857 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1858 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1859 		break;
1860 
1861 	case (RAMROD_CMD_ID_ETH_EMPTY):
1862 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1863 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1864 		break;
1865 
1866 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1867 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1868 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1869 		break;
1870 
1871 	default:
1872 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1873 			  command, fp->index);
1874 		return;
1875 	}
1876 
1877 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1878 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1879 		/* q_obj->complete_cmd() failure means that this was
1880 		 * an unexpected completion.
1881 		 *
1882 		 * In this case we don't want to increase the bp->spq_left
1883 		 * because apparently we haven't sent this command the first
1884 		 * place.
1885 		 */
1886 #ifdef BNX2X_STOP_ON_ERROR
1887 		bnx2x_panic();
1888 #else
1889 		return;
1890 #endif
1891 
1892 	smp_mb__before_atomic();
1893 	atomic_inc(&bp->cq_spq_left);
1894 	/* push the change in bp->spq_left and towards the memory */
1895 	smp_mb__after_atomic();
1896 
1897 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1898 
1899 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1900 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1901 		/* if Q update ramrod is completed for last Q in AFEX vif set
1902 		 * flow, then ACK MCP at the end
1903 		 *
1904 		 * mark pending ACK to MCP bit.
1905 		 * prevent case that both bits are cleared.
1906 		 * At the end of load/unload driver checks that
1907 		 * sp_state is cleared, and this order prevents
1908 		 * races
1909 		 */
1910 		smp_mb__before_atomic();
1911 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1912 		wmb();
1913 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1914 		smp_mb__after_atomic();
1915 
1916 		/* schedule the sp task as mcp ack is required */
1917 		bnx2x_schedule_sp_task(bp);
1918 	}
1919 
1920 	return;
1921 }
1922 
1923 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1924 {
1925 	struct bnx2x *bp = netdev_priv(dev_instance);
1926 	u16 status = bnx2x_ack_int(bp);
1927 	u16 mask;
1928 	int i;
1929 	u8 cos;
1930 
1931 	/* Return here if interrupt is shared and it's not for us */
1932 	if (unlikely(status == 0)) {
1933 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1934 		return IRQ_NONE;
1935 	}
1936 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1937 
1938 #ifdef BNX2X_STOP_ON_ERROR
1939 	if (unlikely(bp->panic))
1940 		return IRQ_HANDLED;
1941 #endif
1942 
1943 	for_each_eth_queue(bp, i) {
1944 		struct bnx2x_fastpath *fp = &bp->fp[i];
1945 
1946 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1947 		if (status & mask) {
1948 			/* Handle Rx or Tx according to SB id */
1949 			for_each_cos_in_tx_queue(fp, cos)
1950 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1951 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1952 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1953 			status &= ~mask;
1954 		}
1955 	}
1956 
1957 	if (CNIC_SUPPORT(bp)) {
1958 		mask = 0x2;
1959 		if (status & (mask | 0x1)) {
1960 			struct cnic_ops *c_ops = NULL;
1961 
1962 			rcu_read_lock();
1963 			c_ops = rcu_dereference(bp->cnic_ops);
1964 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1965 				      CNIC_DRV_STATE_HANDLES_IRQ))
1966 				c_ops->cnic_handler(bp->cnic_data, NULL);
1967 			rcu_read_unlock();
1968 
1969 			status &= ~mask;
1970 		}
1971 	}
1972 
1973 	if (unlikely(status & 0x1)) {
1974 
1975 		/* schedule sp task to perform default status block work, ack
1976 		 * attentions and enable interrupts.
1977 		 */
1978 		bnx2x_schedule_sp_task(bp);
1979 
1980 		status &= ~0x1;
1981 		if (!status)
1982 			return IRQ_HANDLED;
1983 	}
1984 
1985 	if (unlikely(status))
1986 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1987 		   status);
1988 
1989 	return IRQ_HANDLED;
1990 }
1991 
1992 /* Link */
1993 
1994 /*
1995  * General service functions
1996  */
1997 
1998 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1999 {
2000 	u32 lock_status;
2001 	u32 resource_bit = (1 << resource);
2002 	int func = BP_FUNC(bp);
2003 	u32 hw_lock_control_reg;
2004 	int cnt;
2005 
2006 	/* Validating that the resource is within range */
2007 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2008 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2009 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2010 		return -EINVAL;
2011 	}
2012 
2013 	if (func <= 5) {
2014 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2015 	} else {
2016 		hw_lock_control_reg =
2017 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2018 	}
2019 
2020 	/* Validating that the resource is not already taken */
2021 	lock_status = REG_RD(bp, hw_lock_control_reg);
2022 	if (lock_status & resource_bit) {
2023 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2024 		   lock_status, resource_bit);
2025 		return -EEXIST;
2026 	}
2027 
2028 	/* Try for 5 second every 5ms */
2029 	for (cnt = 0; cnt < 1000; cnt++) {
2030 		/* Try to acquire the lock */
2031 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2032 		lock_status = REG_RD(bp, hw_lock_control_reg);
2033 		if (lock_status & resource_bit)
2034 			return 0;
2035 
2036 		usleep_range(5000, 10000);
2037 	}
2038 	BNX2X_ERR("Timeout\n");
2039 	return -EAGAIN;
2040 }
2041 
2042 int bnx2x_release_leader_lock(struct bnx2x *bp)
2043 {
2044 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2045 }
2046 
2047 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2048 {
2049 	u32 lock_status;
2050 	u32 resource_bit = (1 << resource);
2051 	int func = BP_FUNC(bp);
2052 	u32 hw_lock_control_reg;
2053 
2054 	/* Validating that the resource is within range */
2055 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2056 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2057 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2058 		return -EINVAL;
2059 	}
2060 
2061 	if (func <= 5) {
2062 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2063 	} else {
2064 		hw_lock_control_reg =
2065 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2066 	}
2067 
2068 	/* Validating that the resource is currently taken */
2069 	lock_status = REG_RD(bp, hw_lock_control_reg);
2070 	if (!(lock_status & resource_bit)) {
2071 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2072 			  lock_status, resource_bit);
2073 		return -EFAULT;
2074 	}
2075 
2076 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2077 	return 0;
2078 }
2079 
2080 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2081 {
2082 	/* The GPIO should be swapped if swap register is set and active */
2083 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2084 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2085 	int gpio_shift = gpio_num +
2086 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2087 	u32 gpio_mask = (1 << gpio_shift);
2088 	u32 gpio_reg;
2089 	int value;
2090 
2091 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2092 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2093 		return -EINVAL;
2094 	}
2095 
2096 	/* read GPIO value */
2097 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2098 
2099 	/* get the requested pin value */
2100 	if ((gpio_reg & gpio_mask) == gpio_mask)
2101 		value = 1;
2102 	else
2103 		value = 0;
2104 
2105 	return value;
2106 }
2107 
2108 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2109 {
2110 	/* The GPIO should be swapped if swap register is set and active */
2111 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2112 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2113 	int gpio_shift = gpio_num +
2114 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2115 	u32 gpio_mask = (1 << gpio_shift);
2116 	u32 gpio_reg;
2117 
2118 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2119 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2120 		return -EINVAL;
2121 	}
2122 
2123 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2124 	/* read GPIO and mask except the float bits */
2125 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2126 
2127 	switch (mode) {
2128 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2129 		DP(NETIF_MSG_LINK,
2130 		   "Set GPIO %d (shift %d) -> output low\n",
2131 		   gpio_num, gpio_shift);
2132 		/* clear FLOAT and set CLR */
2133 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2135 		break;
2136 
2137 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2138 		DP(NETIF_MSG_LINK,
2139 		   "Set GPIO %d (shift %d) -> output high\n",
2140 		   gpio_num, gpio_shift);
2141 		/* clear FLOAT and set SET */
2142 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2143 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2144 		break;
2145 
2146 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2147 		DP(NETIF_MSG_LINK,
2148 		   "Set GPIO %d (shift %d) -> input\n",
2149 		   gpio_num, gpio_shift);
2150 		/* set FLOAT */
2151 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2152 		break;
2153 
2154 	default:
2155 		break;
2156 	}
2157 
2158 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2159 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160 
2161 	return 0;
2162 }
2163 
2164 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2165 {
2166 	u32 gpio_reg = 0;
2167 	int rc = 0;
2168 
2169 	/* Any port swapping should be handled by caller. */
2170 
2171 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2172 	/* read GPIO and mask except the float bits */
2173 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2174 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2175 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2176 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2177 
2178 	switch (mode) {
2179 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2180 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2181 		/* set CLR */
2182 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2183 		break;
2184 
2185 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2186 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2187 		/* set SET */
2188 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2189 		break;
2190 
2191 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2192 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2193 		/* set FLOAT */
2194 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2195 		break;
2196 
2197 	default:
2198 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2199 		rc = -EINVAL;
2200 		break;
2201 	}
2202 
2203 	if (rc == 0)
2204 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2205 
2206 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2207 
2208 	return rc;
2209 }
2210 
2211 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2212 {
2213 	/* The GPIO should be swapped if swap register is set and active */
2214 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2215 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2216 	int gpio_shift = gpio_num +
2217 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2218 	u32 gpio_mask = (1 << gpio_shift);
2219 	u32 gpio_reg;
2220 
2221 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2222 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2223 		return -EINVAL;
2224 	}
2225 
2226 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2227 	/* read GPIO int */
2228 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2229 
2230 	switch (mode) {
2231 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2232 		DP(NETIF_MSG_LINK,
2233 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2234 		   gpio_num, gpio_shift);
2235 		/* clear SET and set CLR */
2236 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 		break;
2239 
2240 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2241 		DP(NETIF_MSG_LINK,
2242 		   "Set GPIO INT %d (shift %d) -> output high\n",
2243 		   gpio_num, gpio_shift);
2244 		/* clear CLR and set SET */
2245 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2246 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2247 		break;
2248 
2249 	default:
2250 		break;
2251 	}
2252 
2253 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2254 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2255 
2256 	return 0;
2257 }
2258 
2259 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2260 {
2261 	u32 spio_reg;
2262 
2263 	/* Only 2 SPIOs are configurable */
2264 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2265 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2266 		return -EINVAL;
2267 	}
2268 
2269 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2270 	/* read SPIO and mask except the float bits */
2271 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2272 
2273 	switch (mode) {
2274 	case MISC_SPIO_OUTPUT_LOW:
2275 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2276 		/* clear FLOAT and set CLR */
2277 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2278 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2279 		break;
2280 
2281 	case MISC_SPIO_OUTPUT_HIGH:
2282 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2283 		/* clear FLOAT and set SET */
2284 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2285 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2286 		break;
2287 
2288 	case MISC_SPIO_INPUT_HI_Z:
2289 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2290 		/* set FLOAT */
2291 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2292 		break;
2293 
2294 	default:
2295 		break;
2296 	}
2297 
2298 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2299 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2300 
2301 	return 0;
2302 }
2303 
2304 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2305 {
2306 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2307 
2308 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2309 					   ADVERTISED_Pause);
2310 	switch (bp->link_vars.ieee_fc &
2311 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2312 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2313 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2314 						  ADVERTISED_Pause);
2315 		break;
2316 
2317 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2318 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2319 		break;
2320 
2321 	default:
2322 		break;
2323 	}
2324 }
2325 
2326 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2327 {
2328 	/* Initialize link parameters structure variables
2329 	 * It is recommended to turn off RX FC for jumbo frames
2330 	 *  for better performance
2331 	 */
2332 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2333 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2334 	else
2335 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2336 }
2337 
2338 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2339 {
2340 	u32 pause_enabled = 0;
2341 
2342 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2343 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2344 			pause_enabled = 1;
2345 
2346 		REG_WR(bp, BAR_USTRORM_INTMEM +
2347 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2348 		       pause_enabled);
2349 	}
2350 
2351 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2352 	   pause_enabled ? "enabled" : "disabled");
2353 }
2354 
2355 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2356 {
2357 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2358 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2359 
2360 	if (!BP_NOMCP(bp)) {
2361 		bnx2x_set_requested_fc(bp);
2362 		bnx2x_acquire_phy_lock(bp);
2363 
2364 		if (load_mode == LOAD_DIAG) {
2365 			struct link_params *lp = &bp->link_params;
2366 			lp->loopback_mode = LOOPBACK_XGXS;
2367 			/* Prefer doing PHY loopback at highest speed */
2368 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2369 				if (lp->speed_cap_mask[cfx_idx] &
2370 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2371 					lp->req_line_speed[cfx_idx] =
2372 					SPEED_20000;
2373 				else if (lp->speed_cap_mask[cfx_idx] &
2374 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2375 						lp->req_line_speed[cfx_idx] =
2376 						SPEED_10000;
2377 				else
2378 					lp->req_line_speed[cfx_idx] =
2379 					SPEED_1000;
2380 			}
2381 		}
2382 
2383 		if (load_mode == LOAD_LOOPBACK_EXT) {
2384 			struct link_params *lp = &bp->link_params;
2385 			lp->loopback_mode = LOOPBACK_EXT;
2386 		}
2387 
2388 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2389 
2390 		bnx2x_release_phy_lock(bp);
2391 
2392 		bnx2x_init_dropless_fc(bp);
2393 
2394 		bnx2x_calc_fc_adv(bp);
2395 
2396 		if (bp->link_vars.link_up) {
2397 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2398 			bnx2x_link_report(bp);
2399 		}
2400 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2401 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2402 		return rc;
2403 	}
2404 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2405 	return -EINVAL;
2406 }
2407 
2408 void bnx2x_link_set(struct bnx2x *bp)
2409 {
2410 	if (!BP_NOMCP(bp)) {
2411 		bnx2x_acquire_phy_lock(bp);
2412 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2413 		bnx2x_release_phy_lock(bp);
2414 
2415 		bnx2x_init_dropless_fc(bp);
2416 
2417 		bnx2x_calc_fc_adv(bp);
2418 	} else
2419 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2420 }
2421 
2422 static void bnx2x__link_reset(struct bnx2x *bp)
2423 {
2424 	if (!BP_NOMCP(bp)) {
2425 		bnx2x_acquire_phy_lock(bp);
2426 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2427 		bnx2x_release_phy_lock(bp);
2428 	} else
2429 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2430 }
2431 
2432 void bnx2x_force_link_reset(struct bnx2x *bp)
2433 {
2434 	bnx2x_acquire_phy_lock(bp);
2435 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2436 	bnx2x_release_phy_lock(bp);
2437 }
2438 
2439 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2440 {
2441 	u8 rc = 0;
2442 
2443 	if (!BP_NOMCP(bp)) {
2444 		bnx2x_acquire_phy_lock(bp);
2445 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2446 				     is_serdes);
2447 		bnx2x_release_phy_lock(bp);
2448 	} else
2449 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2450 
2451 	return rc;
2452 }
2453 
2454 /* Calculates the sum of vn_min_rates.
2455    It's needed for further normalizing of the min_rates.
2456    Returns:
2457      sum of vn_min_rates.
2458        or
2459      0 - if all the min_rates are 0.
2460      In the later case fairness algorithm should be deactivated.
2461      If not all min_rates are zero then those that are zeroes will be set to 1.
2462  */
2463 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2464 				      struct cmng_init_input *input)
2465 {
2466 	int all_zero = 1;
2467 	int vn;
2468 
2469 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2470 		u32 vn_cfg = bp->mf_config[vn];
2471 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2472 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2473 
2474 		/* Skip hidden vns */
2475 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2476 			vn_min_rate = 0;
2477 		/* If min rate is zero - set it to 1 */
2478 		else if (!vn_min_rate)
2479 			vn_min_rate = DEF_MIN_RATE;
2480 		else
2481 			all_zero = 0;
2482 
2483 		input->vnic_min_rate[vn] = vn_min_rate;
2484 	}
2485 
2486 	/* if ETS or all min rates are zeros - disable fairness */
2487 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2488 		input->flags.cmng_enables &=
2489 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2490 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2491 	} else if (all_zero) {
2492 		input->flags.cmng_enables &=
2493 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2494 		DP(NETIF_MSG_IFUP,
2495 		   "All MIN values are zeroes fairness will be disabled\n");
2496 	} else
2497 		input->flags.cmng_enables |=
2498 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2499 }
2500 
2501 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2502 				    struct cmng_init_input *input)
2503 {
2504 	u16 vn_max_rate;
2505 	u32 vn_cfg = bp->mf_config[vn];
2506 
2507 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2508 		vn_max_rate = 0;
2509 	else {
2510 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2511 
2512 		if (IS_MF_PERCENT_BW(bp)) {
2513 			/* maxCfg in percents of linkspeed */
2514 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2515 		} else /* SD modes */
2516 			/* maxCfg is absolute in 100Mb units */
2517 			vn_max_rate = maxCfg * 100;
2518 	}
2519 
2520 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2521 
2522 	input->vnic_max_rate[vn] = vn_max_rate;
2523 }
2524 
2525 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2526 {
2527 	if (CHIP_REV_IS_SLOW(bp))
2528 		return CMNG_FNS_NONE;
2529 	if (IS_MF(bp))
2530 		return CMNG_FNS_MINMAX;
2531 
2532 	return CMNG_FNS_NONE;
2533 }
2534 
2535 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2536 {
2537 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2538 
2539 	if (BP_NOMCP(bp))
2540 		return; /* what should be the default value in this case */
2541 
2542 	/* For 2 port configuration the absolute function number formula
2543 	 * is:
2544 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2545 	 *
2546 	 *      and there are 4 functions per port
2547 	 *
2548 	 * For 4 port configuration it is
2549 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2550 	 *
2551 	 *      and there are 2 functions per port
2552 	 */
2553 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2554 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2555 
2556 		if (func >= E1H_FUNC_MAX)
2557 			break;
2558 
2559 		bp->mf_config[vn] =
2560 			MF_CFG_RD(bp, func_mf_config[func].config);
2561 	}
2562 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2563 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2564 		bp->flags |= MF_FUNC_DIS;
2565 	} else {
2566 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2567 		bp->flags &= ~MF_FUNC_DIS;
2568 	}
2569 }
2570 
2571 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2572 {
2573 	struct cmng_init_input input;
2574 	memset(&input, 0, sizeof(struct cmng_init_input));
2575 
2576 	input.port_rate = bp->link_vars.line_speed;
2577 
2578 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2579 		int vn;
2580 
2581 		/* read mf conf from shmem */
2582 		if (read_cfg)
2583 			bnx2x_read_mf_cfg(bp);
2584 
2585 		/* vn_weight_sum and enable fairness if not 0 */
2586 		bnx2x_calc_vn_min(bp, &input);
2587 
2588 		/* calculate and set min-max rate for each vn */
2589 		if (bp->port.pmf)
2590 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2591 				bnx2x_calc_vn_max(bp, vn, &input);
2592 
2593 		/* always enable rate shaping and fairness */
2594 		input.flags.cmng_enables |=
2595 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2596 
2597 		bnx2x_init_cmng(&input, &bp->cmng);
2598 		return;
2599 	}
2600 
2601 	/* rate shaping and fairness are disabled */
2602 	DP(NETIF_MSG_IFUP,
2603 	   "rate shaping and fairness are disabled\n");
2604 }
2605 
2606 static void storm_memset_cmng(struct bnx2x *bp,
2607 			      struct cmng_init *cmng,
2608 			      u8 port)
2609 {
2610 	int vn;
2611 	size_t size = sizeof(struct cmng_struct_per_port);
2612 
2613 	u32 addr = BAR_XSTRORM_INTMEM +
2614 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2615 
2616 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2617 
2618 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2619 		int func = func_by_vn(bp, vn);
2620 
2621 		addr = BAR_XSTRORM_INTMEM +
2622 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2623 		size = sizeof(struct rate_shaping_vars_per_vn);
2624 		__storm_memset_struct(bp, addr, size,
2625 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2626 
2627 		addr = BAR_XSTRORM_INTMEM +
2628 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2629 		size = sizeof(struct fairness_vars_per_vn);
2630 		__storm_memset_struct(bp, addr, size,
2631 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2632 	}
2633 }
2634 
2635 /* init cmng mode in HW according to local configuration */
2636 void bnx2x_set_local_cmng(struct bnx2x *bp)
2637 {
2638 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2639 
2640 	if (cmng_fns != CMNG_FNS_NONE) {
2641 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2642 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2643 	} else {
2644 		/* rate shaping and fairness are disabled */
2645 		DP(NETIF_MSG_IFUP,
2646 		   "single function mode without fairness\n");
2647 	}
2648 }
2649 
2650 /* This function is called upon link interrupt */
2651 static void bnx2x_link_attn(struct bnx2x *bp)
2652 {
2653 	/* Make sure that we are synced with the current statistics */
2654 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2655 
2656 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2657 
2658 	bnx2x_init_dropless_fc(bp);
2659 
2660 	if (bp->link_vars.link_up) {
2661 
2662 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2663 			struct host_port_stats *pstats;
2664 
2665 			pstats = bnx2x_sp(bp, port_stats);
2666 			/* reset old mac stats */
2667 			memset(&(pstats->mac_stx[0]), 0,
2668 			       sizeof(struct mac_stx));
2669 		}
2670 		if (bp->state == BNX2X_STATE_OPEN)
2671 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2672 	}
2673 
2674 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2675 		bnx2x_set_local_cmng(bp);
2676 
2677 	__bnx2x_link_report(bp);
2678 
2679 	if (IS_MF(bp))
2680 		bnx2x_link_sync_notify(bp);
2681 }
2682 
2683 void bnx2x__link_status_update(struct bnx2x *bp)
2684 {
2685 	if (bp->state != BNX2X_STATE_OPEN)
2686 		return;
2687 
2688 	/* read updated dcb configuration */
2689 	if (IS_PF(bp)) {
2690 		bnx2x_dcbx_pmf_update(bp);
2691 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2692 		if (bp->link_vars.link_up)
2693 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2694 		else
2695 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2696 			/* indicate link status */
2697 		bnx2x_link_report(bp);
2698 
2699 	} else { /* VF */
2700 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2701 					  SUPPORTED_10baseT_Full |
2702 					  SUPPORTED_100baseT_Half |
2703 					  SUPPORTED_100baseT_Full |
2704 					  SUPPORTED_1000baseT_Full |
2705 					  SUPPORTED_2500baseX_Full |
2706 					  SUPPORTED_10000baseT_Full |
2707 					  SUPPORTED_TP |
2708 					  SUPPORTED_FIBRE |
2709 					  SUPPORTED_Autoneg |
2710 					  SUPPORTED_Pause |
2711 					  SUPPORTED_Asym_Pause);
2712 		bp->port.advertising[0] = bp->port.supported[0];
2713 
2714 		bp->link_params.bp = bp;
2715 		bp->link_params.port = BP_PORT(bp);
2716 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2717 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2718 		bp->link_params.req_line_speed[0] = SPEED_10000;
2719 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2720 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2721 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2722 		bp->link_vars.line_speed = SPEED_10000;
2723 		bp->link_vars.link_status =
2724 			(LINK_STATUS_LINK_UP |
2725 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2726 		bp->link_vars.link_up = 1;
2727 		bp->link_vars.duplex = DUPLEX_FULL;
2728 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2729 		__bnx2x_link_report(bp);
2730 
2731 		bnx2x_sample_bulletin(bp);
2732 
2733 		/* if bulletin board did not have an update for link status
2734 		 * __bnx2x_link_report will report current status
2735 		 * but it will NOT duplicate report in case of already reported
2736 		 * during sampling bulletin board.
2737 		 */
2738 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2739 	}
2740 }
2741 
2742 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2743 				  u16 vlan_val, u8 allowed_prio)
2744 {
2745 	struct bnx2x_func_state_params func_params = {NULL};
2746 	struct bnx2x_func_afex_update_params *f_update_params =
2747 		&func_params.params.afex_update;
2748 
2749 	func_params.f_obj = &bp->func_obj;
2750 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2751 
2752 	/* no need to wait for RAMROD completion, so don't
2753 	 * set RAMROD_COMP_WAIT flag
2754 	 */
2755 
2756 	f_update_params->vif_id = vifid;
2757 	f_update_params->afex_default_vlan = vlan_val;
2758 	f_update_params->allowed_priorities = allowed_prio;
2759 
2760 	/* if ramrod can not be sent, response to MCP immediately */
2761 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2762 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2763 
2764 	return 0;
2765 }
2766 
2767 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2768 					  u16 vif_index, u8 func_bit_map)
2769 {
2770 	struct bnx2x_func_state_params func_params = {NULL};
2771 	struct bnx2x_func_afex_viflists_params *update_params =
2772 		&func_params.params.afex_viflists;
2773 	int rc;
2774 	u32 drv_msg_code;
2775 
2776 	/* validate only LIST_SET and LIST_GET are received from switch */
2777 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2778 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2779 			  cmd_type);
2780 
2781 	func_params.f_obj = &bp->func_obj;
2782 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2783 
2784 	/* set parameters according to cmd_type */
2785 	update_params->afex_vif_list_command = cmd_type;
2786 	update_params->vif_list_index = vif_index;
2787 	update_params->func_bit_map =
2788 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2789 	update_params->func_to_clear = 0;
2790 	drv_msg_code =
2791 		(cmd_type == VIF_LIST_RULE_GET) ?
2792 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2793 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2794 
2795 	/* if ramrod can not be sent, respond to MCP immediately for
2796 	 * SET and GET requests (other are not triggered from MCP)
2797 	 */
2798 	rc = bnx2x_func_state_change(bp, &func_params);
2799 	if (rc < 0)
2800 		bnx2x_fw_command(bp, drv_msg_code, 0);
2801 
2802 	return 0;
2803 }
2804 
2805 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2806 {
2807 	struct afex_stats afex_stats;
2808 	u32 func = BP_ABS_FUNC(bp);
2809 	u32 mf_config;
2810 	u16 vlan_val;
2811 	u32 vlan_prio;
2812 	u16 vif_id;
2813 	u8 allowed_prio;
2814 	u8 vlan_mode;
2815 	u32 addr_to_write, vifid, addrs, stats_type, i;
2816 
2817 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2818 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2819 		DP(BNX2X_MSG_MCP,
2820 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2821 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2822 	}
2823 
2824 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2825 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2827 		DP(BNX2X_MSG_MCP,
2828 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2829 		   vifid, addrs);
2830 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2831 					       addrs);
2832 	}
2833 
2834 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2835 		addr_to_write = SHMEM2_RD(bp,
2836 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2837 		stats_type = SHMEM2_RD(bp,
2838 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2839 
2840 		DP(BNX2X_MSG_MCP,
2841 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2842 		   addr_to_write);
2843 
2844 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2845 
2846 		/* write response to scratchpad, for MCP */
2847 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2848 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2849 			       *(((u32 *)(&afex_stats))+i));
2850 
2851 		/* send ack message to MCP */
2852 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2853 	}
2854 
2855 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2856 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2857 		bp->mf_config[BP_VN(bp)] = mf_config;
2858 		DP(BNX2X_MSG_MCP,
2859 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2860 		   mf_config);
2861 
2862 		/* if VIF_SET is "enabled" */
2863 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2864 			/* set rate limit directly to internal RAM */
2865 			struct cmng_init_input cmng_input;
2866 			struct rate_shaping_vars_per_vn m_rs_vn;
2867 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2868 			u32 addr = BAR_XSTRORM_INTMEM +
2869 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2870 
2871 			bp->mf_config[BP_VN(bp)] = mf_config;
2872 
2873 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2874 			m_rs_vn.vn_counter.rate =
2875 				cmng_input.vnic_max_rate[BP_VN(bp)];
2876 			m_rs_vn.vn_counter.quota =
2877 				(m_rs_vn.vn_counter.rate *
2878 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2879 
2880 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2881 
2882 			/* read relevant values from mf_cfg struct in shmem */
2883 			vif_id =
2884 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2885 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2886 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2887 			vlan_val =
2888 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2889 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2890 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2891 			vlan_prio = (mf_config &
2892 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2893 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2894 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2895 			vlan_mode =
2896 				(MF_CFG_RD(bp,
2897 					   func_mf_config[func].afex_config) &
2898 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2899 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2900 			allowed_prio =
2901 				(MF_CFG_RD(bp,
2902 					   func_mf_config[func].afex_config) &
2903 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2904 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2905 
2906 			/* send ramrod to FW, return in case of failure */
2907 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2908 						   allowed_prio))
2909 				return;
2910 
2911 			bp->afex_def_vlan_tag = vlan_val;
2912 			bp->afex_vlan_mode = vlan_mode;
2913 		} else {
2914 			/* notify link down because BP->flags is disabled */
2915 			bnx2x_link_report(bp);
2916 
2917 			/* send INVALID VIF ramrod to FW */
2918 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2919 
2920 			/* Reset the default afex VLAN */
2921 			bp->afex_def_vlan_tag = -1;
2922 		}
2923 	}
2924 }
2925 
2926 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2927 {
2928 	struct bnx2x_func_switch_update_params *switch_update_params;
2929 	struct bnx2x_func_state_params func_params;
2930 
2931 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2932 	switch_update_params = &func_params.params.switch_update;
2933 	func_params.f_obj = &bp->func_obj;
2934 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2935 
2936 	/* Prepare parameters for function state transitions */
2937 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2938 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2939 
2940 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2941 		int func = BP_ABS_FUNC(bp);
2942 		u32 val;
2943 
2944 		/* Re-learn the S-tag from shmem */
2945 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2946 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2947 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2948 			bp->mf_ov = val;
2949 		} else {
2950 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2951 			goto fail;
2952 		}
2953 
2954 		/* Configure new S-tag in LLH */
2955 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2956 		       bp->mf_ov);
2957 
2958 		/* Send Ramrod to update FW of change */
2959 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2960 			  &switch_update_params->changes);
2961 		switch_update_params->vlan = bp->mf_ov;
2962 
2963 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2964 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2965 				  bp->mf_ov);
2966 			goto fail;
2967 		} else {
2968 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2969 			   bp->mf_ov);
2970 		}
2971 	} else {
2972 		goto fail;
2973 	}
2974 
2975 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2976 	return;
2977 fail:
2978 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2979 }
2980 
2981 static void bnx2x_pmf_update(struct bnx2x *bp)
2982 {
2983 	int port = BP_PORT(bp);
2984 	u32 val;
2985 
2986 	bp->port.pmf = 1;
2987 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2988 
2989 	/*
2990 	 * We need the mb() to ensure the ordering between the writing to
2991 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2992 	 */
2993 	smp_mb();
2994 
2995 	/* queue a periodic task */
2996 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2997 
2998 	bnx2x_dcbx_pmf_update(bp);
2999 
3000 	/* enable nig attention */
3001 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3002 	if (bp->common.int_block == INT_BLOCK_HC) {
3003 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3004 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3005 	} else if (!CHIP_IS_E1x(bp)) {
3006 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3007 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3008 	}
3009 
3010 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3011 }
3012 
3013 /* end of Link */
3014 
3015 /* slow path */
3016 
3017 /*
3018  * General service functions
3019  */
3020 
3021 /* send the MCP a request, block until there is a reply */
3022 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3023 {
3024 	int mb_idx = BP_FW_MB_IDX(bp);
3025 	u32 seq;
3026 	u32 rc = 0;
3027 	u32 cnt = 1;
3028 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3029 
3030 	mutex_lock(&bp->fw_mb_mutex);
3031 	seq = ++bp->fw_seq;
3032 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3033 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3034 
3035 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3036 			(command | seq), param);
3037 
3038 	do {
3039 		/* let the FW do it's magic ... */
3040 		msleep(delay);
3041 
3042 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3043 
3044 		/* Give the FW up to 5 second (500*10ms) */
3045 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3046 
3047 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3048 	   cnt*delay, rc, seq);
3049 
3050 	/* is this a reply to our command? */
3051 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3052 		rc &= FW_MSG_CODE_MASK;
3053 	else {
3054 		/* FW BUG! */
3055 		BNX2X_ERR("FW failed to respond!\n");
3056 		bnx2x_fw_dump(bp);
3057 		rc = 0;
3058 	}
3059 	mutex_unlock(&bp->fw_mb_mutex);
3060 
3061 	return rc;
3062 }
3063 
3064 static void storm_memset_func_cfg(struct bnx2x *bp,
3065 				 struct tstorm_eth_function_common_config *tcfg,
3066 				 u16 abs_fid)
3067 {
3068 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3069 
3070 	u32 addr = BAR_TSTRORM_INTMEM +
3071 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3072 
3073 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3074 }
3075 
3076 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3077 {
3078 	if (CHIP_IS_E1x(bp)) {
3079 		struct tstorm_eth_function_common_config tcfg = {0};
3080 
3081 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3082 	}
3083 
3084 	/* Enable the function in the FW */
3085 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3086 	storm_memset_func_en(bp, p->func_id, 1);
3087 
3088 	/* spq */
3089 	if (p->spq_active) {
3090 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3091 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3092 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3093 	}
3094 }
3095 
3096 /**
3097  * bnx2x_get_common_flags - Return common flags
3098  *
3099  * @bp:		device handle
3100  * @fp:		queue handle
3101  * @zero_stats:	TRUE if statistics zeroing is needed
3102  *
3103  * Return the flags that are common for the Tx-only and not normal connections.
3104  */
3105 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3106 					    struct bnx2x_fastpath *fp,
3107 					    bool zero_stats)
3108 {
3109 	unsigned long flags = 0;
3110 
3111 	/* PF driver will always initialize the Queue to an ACTIVE state */
3112 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3113 
3114 	/* tx only connections collect statistics (on the same index as the
3115 	 * parent connection). The statistics are zeroed when the parent
3116 	 * connection is initialized.
3117 	 */
3118 
3119 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3120 	if (zero_stats)
3121 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3122 
3123 	if (bp->flags & TX_SWITCHING)
3124 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3125 
3126 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3127 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3128 
3129 #ifdef BNX2X_STOP_ON_ERROR
3130 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3131 #endif
3132 
3133 	return flags;
3134 }
3135 
3136 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3137 				       struct bnx2x_fastpath *fp,
3138 				       bool leading)
3139 {
3140 	unsigned long flags = 0;
3141 
3142 	/* calculate other queue flags */
3143 	if (IS_MF_SD(bp))
3144 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3145 
3146 	if (IS_FCOE_FP(fp)) {
3147 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3148 		/* For FCoE - force usage of default priority (for afex) */
3149 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3150 	}
3151 
3152 	if (fp->mode != TPA_MODE_DISABLED) {
3153 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3154 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3155 		if (fp->mode == TPA_MODE_GRO)
3156 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3157 	}
3158 
3159 	if (leading) {
3160 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3161 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3162 	}
3163 
3164 	/* Always set HW VLAN stripping */
3165 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3166 
3167 	/* configure silent vlan removal */
3168 	if (IS_MF_AFEX(bp))
3169 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3170 
3171 	return flags | bnx2x_get_common_flags(bp, fp, true);
3172 }
3173 
3174 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3175 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3176 	u8 cos)
3177 {
3178 	gen_init->stat_id = bnx2x_stats_id(fp);
3179 	gen_init->spcl_id = fp->cl_id;
3180 
3181 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3182 	if (IS_FCOE_FP(fp))
3183 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3184 	else
3185 		gen_init->mtu = bp->dev->mtu;
3186 
3187 	gen_init->cos = cos;
3188 
3189 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3190 }
3191 
3192 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3193 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3194 	struct bnx2x_rxq_setup_params *rxq_init)
3195 {
3196 	u8 max_sge = 0;
3197 	u16 sge_sz = 0;
3198 	u16 tpa_agg_size = 0;
3199 
3200 	if (fp->mode != TPA_MODE_DISABLED) {
3201 		pause->sge_th_lo = SGE_TH_LO(bp);
3202 		pause->sge_th_hi = SGE_TH_HI(bp);
3203 
3204 		/* validate SGE ring has enough to cross high threshold */
3205 		WARN_ON(bp->dropless_fc &&
3206 				pause->sge_th_hi + FW_PREFETCH_CNT >
3207 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3208 
3209 		tpa_agg_size = TPA_AGG_SIZE;
3210 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3211 			SGE_PAGE_SHIFT;
3212 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3213 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3214 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3215 	}
3216 
3217 	/* pause - not for e1 */
3218 	if (!CHIP_IS_E1(bp)) {
3219 		pause->bd_th_lo = BD_TH_LO(bp);
3220 		pause->bd_th_hi = BD_TH_HI(bp);
3221 
3222 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3223 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3224 		/*
3225 		 * validate that rings have enough entries to cross
3226 		 * high thresholds
3227 		 */
3228 		WARN_ON(bp->dropless_fc &&
3229 				pause->bd_th_hi + FW_PREFETCH_CNT >
3230 				bp->rx_ring_size);
3231 		WARN_ON(bp->dropless_fc &&
3232 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3233 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3234 
3235 		pause->pri_map = 1;
3236 	}
3237 
3238 	/* rxq setup */
3239 	rxq_init->dscr_map = fp->rx_desc_mapping;
3240 	rxq_init->sge_map = fp->rx_sge_mapping;
3241 	rxq_init->rcq_map = fp->rx_comp_mapping;
3242 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3243 
3244 	/* This should be a maximum number of data bytes that may be
3245 	 * placed on the BD (not including paddings).
3246 	 */
3247 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3248 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3249 
3250 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3251 	rxq_init->tpa_agg_sz = tpa_agg_size;
3252 	rxq_init->sge_buf_sz = sge_sz;
3253 	rxq_init->max_sges_pkt = max_sge;
3254 	rxq_init->rss_engine_id = BP_FUNC(bp);
3255 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3256 
3257 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3258 	 *
3259 	 * For PF Clients it should be the maximum available number.
3260 	 * VF driver(s) may want to define it to a smaller value.
3261 	 */
3262 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3263 
3264 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3265 	rxq_init->fw_sb_id = fp->fw_sb_id;
3266 
3267 	if (IS_FCOE_FP(fp))
3268 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3269 	else
3270 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3271 	/* configure silent vlan removal
3272 	 * if multi function mode is afex, then mask default vlan
3273 	 */
3274 	if (IS_MF_AFEX(bp)) {
3275 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3276 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3277 	}
3278 }
3279 
3280 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3281 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3282 	u8 cos)
3283 {
3284 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3285 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3286 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3287 	txq_init->fw_sb_id = fp->fw_sb_id;
3288 
3289 	/*
3290 	 * set the tss leading client id for TX classification ==
3291 	 * leading RSS client id
3292 	 */
3293 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3294 
3295 	if (IS_FCOE_FP(fp)) {
3296 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3297 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3298 	}
3299 }
3300 
3301 static void bnx2x_pf_init(struct bnx2x *bp)
3302 {
3303 	struct bnx2x_func_init_params func_init = {0};
3304 	struct event_ring_data eq_data = { {0} };
3305 
3306 	if (!CHIP_IS_E1x(bp)) {
3307 		/* reset IGU PF statistics: MSIX + ATTN */
3308 		/* PF */
3309 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3310 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3311 			   (CHIP_MODE_IS_4_PORT(bp) ?
3312 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3313 		/* ATTN */
3314 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3315 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3316 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3317 			   (CHIP_MODE_IS_4_PORT(bp) ?
3318 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3319 	}
3320 
3321 	func_init.spq_active = true;
3322 	func_init.pf_id = BP_FUNC(bp);
3323 	func_init.func_id = BP_FUNC(bp);
3324 	func_init.spq_map = bp->spq_mapping;
3325 	func_init.spq_prod = bp->spq_prod_idx;
3326 
3327 	bnx2x_func_init(bp, &func_init);
3328 
3329 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3330 
3331 	/*
3332 	 * Congestion management values depend on the link rate
3333 	 * There is no active link so initial link rate is set to 10 Gbps.
3334 	 * When the link comes up The congestion management values are
3335 	 * re-calculated according to the actual link rate.
3336 	 */
3337 	bp->link_vars.line_speed = SPEED_10000;
3338 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3339 
3340 	/* Only the PMF sets the HW */
3341 	if (bp->port.pmf)
3342 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3343 
3344 	/* init Event Queue - PCI bus guarantees correct endianity*/
3345 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3346 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3347 	eq_data.producer = bp->eq_prod;
3348 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3349 	eq_data.sb_id = DEF_SB_ID;
3350 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3351 }
3352 
3353 static void bnx2x_e1h_disable(struct bnx2x *bp)
3354 {
3355 	int port = BP_PORT(bp);
3356 
3357 	bnx2x_tx_disable(bp);
3358 
3359 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3360 }
3361 
3362 static void bnx2x_e1h_enable(struct bnx2x *bp)
3363 {
3364 	int port = BP_PORT(bp);
3365 
3366 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3367 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3368 
3369 	/* Tx queue should be only re-enabled */
3370 	netif_tx_wake_all_queues(bp->dev);
3371 
3372 	/*
3373 	 * Should not call netif_carrier_on since it will be called if the link
3374 	 * is up when checking for link state
3375 	 */
3376 }
3377 
3378 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3379 
3380 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3381 {
3382 	struct eth_stats_info *ether_stat =
3383 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3384 	struct bnx2x_vlan_mac_obj *mac_obj =
3385 		&bp->sp_objs->mac_obj;
3386 	int i;
3387 
3388 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3389 		ETH_STAT_INFO_VERSION_LEN);
3390 
3391 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3392 	 * mac_local field in ether_stat struct. The base address is offset by 2
3393 	 * bytes to account for the field being 8 bytes but a mac address is
3394 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3395 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3396 	 * allocated by the ether_stat struct, so the macs will land in their
3397 	 * proper positions.
3398 	 */
3399 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3400 		memset(ether_stat->mac_local + i, 0,
3401 		       sizeof(ether_stat->mac_local[0]));
3402 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3403 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3404 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3405 				ETH_ALEN);
3406 	ether_stat->mtu_size = bp->dev->mtu;
3407 	if (bp->dev->features & NETIF_F_RXCSUM)
3408 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3409 	if (bp->dev->features & NETIF_F_TSO)
3410 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3411 	ether_stat->feature_flags |= bp->common.boot_mode;
3412 
3413 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3414 
3415 	ether_stat->txq_size = bp->tx_ring_size;
3416 	ether_stat->rxq_size = bp->rx_ring_size;
3417 
3418 #ifdef CONFIG_BNX2X_SRIOV
3419 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3420 #endif
3421 }
3422 
3423 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3424 {
3425 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3426 	struct fcoe_stats_info *fcoe_stat =
3427 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3428 
3429 	if (!CNIC_LOADED(bp))
3430 		return;
3431 
3432 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3433 
3434 	fcoe_stat->qos_priority =
3435 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3436 
3437 	/* insert FCoE stats from ramrod response */
3438 	if (!NO_FCOE(bp)) {
3439 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3440 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3441 			tstorm_queue_statistics;
3442 
3443 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3444 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3445 			xstorm_queue_statistics;
3446 
3447 		struct fcoe_statistics_params *fw_fcoe_stat =
3448 			&bp->fw_stats_data->fcoe;
3449 
3450 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3451 			  fcoe_stat->rx_bytes_lo,
3452 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3453 
3454 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3456 			  fcoe_stat->rx_bytes_lo,
3457 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3458 
3459 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3460 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3461 			  fcoe_stat->rx_bytes_lo,
3462 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3463 
3464 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3465 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3466 			  fcoe_stat->rx_bytes_lo,
3467 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3468 
3469 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 			  fcoe_stat->rx_frames_lo,
3471 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3472 
3473 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474 			  fcoe_stat->rx_frames_lo,
3475 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3476 
3477 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3478 			  fcoe_stat->rx_frames_lo,
3479 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3480 
3481 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3482 			  fcoe_stat->rx_frames_lo,
3483 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3484 
3485 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3486 			  fcoe_stat->tx_bytes_lo,
3487 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3488 
3489 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3491 			  fcoe_stat->tx_bytes_lo,
3492 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3493 
3494 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3495 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3496 			  fcoe_stat->tx_bytes_lo,
3497 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3498 
3499 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3500 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3501 			  fcoe_stat->tx_bytes_lo,
3502 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3503 
3504 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 			  fcoe_stat->tx_frames_lo,
3506 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3507 
3508 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509 			  fcoe_stat->tx_frames_lo,
3510 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3511 
3512 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3513 			  fcoe_stat->tx_frames_lo,
3514 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3515 
3516 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3517 			  fcoe_stat->tx_frames_lo,
3518 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3519 	}
3520 
3521 	/* ask L5 driver to add data to the struct */
3522 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3523 }
3524 
3525 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3526 {
3527 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3528 	struct iscsi_stats_info *iscsi_stat =
3529 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3530 
3531 	if (!CNIC_LOADED(bp))
3532 		return;
3533 
3534 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3535 	       ETH_ALEN);
3536 
3537 	iscsi_stat->qos_priority =
3538 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3539 
3540 	/* ask L5 driver to add data to the struct */
3541 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3542 }
3543 
3544 /* called due to MCP event (on pmf):
3545  *	reread new bandwidth configuration
3546  *	configure FW
3547  *	notify others function about the change
3548  */
3549 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3550 {
3551 	/* Workaround for MFW bug.
3552 	 * MFW is not supposed to generate BW attention in
3553 	 * single function mode.
3554 	 */
3555 	if (!IS_MF(bp)) {
3556 		DP(BNX2X_MSG_MCP,
3557 		   "Ignoring MF BW config in single function mode\n");
3558 		return;
3559 	}
3560 
3561 	if (bp->link_vars.link_up) {
3562 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3563 		bnx2x_link_sync_notify(bp);
3564 	}
3565 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3566 }
3567 
3568 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3569 {
3570 	bnx2x_config_mf_bw(bp);
3571 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3572 }
3573 
3574 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3575 {
3576 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3577 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3578 }
3579 
3580 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3581 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3582 
3583 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3584 {
3585 	enum drv_info_opcode op_code;
3586 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3587 	bool release = false;
3588 	int wait;
3589 
3590 	/* if drv_info version supported by MFW doesn't match - send NACK */
3591 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3592 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593 		return;
3594 	}
3595 
3596 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3597 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3598 
3599 	/* Must prevent other flows from accessing drv_info_to_mcp */
3600 	mutex_lock(&bp->drv_info_mutex);
3601 
3602 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3603 	       sizeof(union drv_info_to_mcp));
3604 
3605 	switch (op_code) {
3606 	case ETH_STATS_OPCODE:
3607 		bnx2x_drv_info_ether_stat(bp);
3608 		break;
3609 	case FCOE_STATS_OPCODE:
3610 		bnx2x_drv_info_fcoe_stat(bp);
3611 		break;
3612 	case ISCSI_STATS_OPCODE:
3613 		bnx2x_drv_info_iscsi_stat(bp);
3614 		break;
3615 	default:
3616 		/* if op code isn't supported - send NACK */
3617 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3618 		goto out;
3619 	}
3620 
3621 	/* if we got drv_info attn from MFW then these fields are defined in
3622 	 * shmem2 for sure
3623 	 */
3624 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3625 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3626 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3627 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3628 
3629 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3630 
3631 	/* Since possible management wants both this and get_driver_version
3632 	 * need to wait until management notifies us it finished utilizing
3633 	 * the buffer.
3634 	 */
3635 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3636 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3637 	} else if (!bp->drv_info_mng_owner) {
3638 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3639 
3640 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3641 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3642 
3643 			/* Management is done; need to clear indication */
3644 			if (indication & bit) {
3645 				SHMEM2_WR(bp, mfw_drv_indication,
3646 					  indication & ~bit);
3647 				release = true;
3648 				break;
3649 			}
3650 
3651 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3652 		}
3653 	}
3654 	if (!release) {
3655 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3656 		bp->drv_info_mng_owner = true;
3657 	}
3658 
3659 out:
3660 	mutex_unlock(&bp->drv_info_mutex);
3661 }
3662 
3663 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3664 {
3665 	u8 vals[4];
3666 	int i = 0;
3667 
3668 	if (bnx2x_format) {
3669 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3670 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3671 		if (i > 0)
3672 			vals[0] -= '0';
3673 	} else {
3674 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3675 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3676 	}
3677 
3678 	while (i < 4)
3679 		vals[i++] = 0;
3680 
3681 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3682 }
3683 
3684 void bnx2x_update_mng_version(struct bnx2x *bp)
3685 {
3686 	u32 iscsiver = DRV_VER_NOT_LOADED;
3687 	u32 fcoever = DRV_VER_NOT_LOADED;
3688 	u32 ethver = DRV_VER_NOT_LOADED;
3689 	int idx = BP_FW_MB_IDX(bp);
3690 	u8 *version;
3691 
3692 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3693 		return;
3694 
3695 	mutex_lock(&bp->drv_info_mutex);
3696 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3697 	if (bp->drv_info_mng_owner)
3698 		goto out;
3699 
3700 	if (bp->state != BNX2X_STATE_OPEN)
3701 		goto out;
3702 
3703 	/* Parse ethernet driver version */
3704 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3705 	if (!CNIC_LOADED(bp))
3706 		goto out;
3707 
3708 	/* Try getting storage driver version via cnic */
3709 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3710 	       sizeof(union drv_info_to_mcp));
3711 	bnx2x_drv_info_iscsi_stat(bp);
3712 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3713 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3714 
3715 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3716 	       sizeof(union drv_info_to_mcp));
3717 	bnx2x_drv_info_fcoe_stat(bp);
3718 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3719 	fcoever = bnx2x_update_mng_version_utility(version, false);
3720 
3721 out:
3722 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3723 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3724 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3725 
3726 	mutex_unlock(&bp->drv_info_mutex);
3727 
3728 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3729 	   ethver, iscsiver, fcoever);
3730 }
3731 
3732 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3733 {
3734 	u32 drv_ver;
3735 	u32 valid_dump;
3736 
3737 	if (!SHMEM2_HAS(bp, drv_info))
3738 		return;
3739 
3740 	/* Update Driver load time, possibly broken in y2038 */
3741 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3742 
3743 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3744 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3745 
3746 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3747 
3748 	/* Check & notify On-Chip dump. */
3749 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3750 
3751 	if (valid_dump & FIRST_DUMP_VALID)
3752 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3753 
3754 	if (valid_dump & SECOND_DUMP_VALID)
3755 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3756 }
3757 
3758 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3759 {
3760 	u32 cmd_ok, cmd_fail;
3761 
3762 	/* sanity */
3763 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3764 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3765 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3766 		return;
3767 	}
3768 
3769 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3770 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3771 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3772 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3773 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3774 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3775 	}
3776 
3777 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3778 
3779 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3780 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3781 		/* This is the only place besides the function initialization
3782 		 * where the bp->flags can change so it is done without any
3783 		 * locks
3784 		 */
3785 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3786 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3787 			bp->flags |= MF_FUNC_DIS;
3788 
3789 			bnx2x_e1h_disable(bp);
3790 		} else {
3791 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3792 			bp->flags &= ~MF_FUNC_DIS;
3793 
3794 			bnx2x_e1h_enable(bp);
3795 		}
3796 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3797 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3798 	}
3799 
3800 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3801 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3802 		bnx2x_config_mf_bw(bp);
3803 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3804 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3805 	}
3806 
3807 	/* Report results to MCP */
3808 	if (event)
3809 		bnx2x_fw_command(bp, cmd_fail, 0);
3810 	else
3811 		bnx2x_fw_command(bp, cmd_ok, 0);
3812 }
3813 
3814 /* must be called under the spq lock */
3815 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3816 {
3817 	struct eth_spe *next_spe = bp->spq_prod_bd;
3818 
3819 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3820 		bp->spq_prod_bd = bp->spq;
3821 		bp->spq_prod_idx = 0;
3822 		DP(BNX2X_MSG_SP, "end of spq\n");
3823 	} else {
3824 		bp->spq_prod_bd++;
3825 		bp->spq_prod_idx++;
3826 	}
3827 	return next_spe;
3828 }
3829 
3830 /* must be called under the spq lock */
3831 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3832 {
3833 	int func = BP_FUNC(bp);
3834 
3835 	/*
3836 	 * Make sure that BD data is updated before writing the producer:
3837 	 * BD data is written to the memory, the producer is read from the
3838 	 * memory, thus we need a full memory barrier to ensure the ordering.
3839 	 */
3840 	mb();
3841 
3842 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3843 			 bp->spq_prod_idx);
3844 }
3845 
3846 /**
3847  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3848  *
3849  * @cmd:	command to check
3850  * @cmd_type:	command type
3851  */
3852 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3853 {
3854 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3855 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3856 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3857 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3858 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3859 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3860 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3861 		return true;
3862 	else
3863 		return false;
3864 }
3865 
3866 /**
3867  * bnx2x_sp_post - place a single command on an SP ring
3868  *
3869  * @bp:		driver handle
3870  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3871  * @cid:	SW CID the command is related to
3872  * @data_hi:	command private data address (high 32 bits)
3873  * @data_lo:	command private data address (low 32 bits)
3874  * @cmd_type:	command type (e.g. NONE, ETH)
3875  *
3876  * SP data is handled as if it's always an address pair, thus data fields are
3877  * not swapped to little endian in upper functions. Instead this function swaps
3878  * data as if it's two u32 fields.
3879  */
3880 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3881 		  u32 data_hi, u32 data_lo, int cmd_type)
3882 {
3883 	struct eth_spe *spe;
3884 	u16 type;
3885 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3886 
3887 #ifdef BNX2X_STOP_ON_ERROR
3888 	if (unlikely(bp->panic)) {
3889 		BNX2X_ERR("Can't post SP when there is panic\n");
3890 		return -EIO;
3891 	}
3892 #endif
3893 
3894 	spin_lock_bh(&bp->spq_lock);
3895 
3896 	if (common) {
3897 		if (!atomic_read(&bp->eq_spq_left)) {
3898 			BNX2X_ERR("BUG! EQ ring full!\n");
3899 			spin_unlock_bh(&bp->spq_lock);
3900 			bnx2x_panic();
3901 			return -EBUSY;
3902 		}
3903 	} else if (!atomic_read(&bp->cq_spq_left)) {
3904 			BNX2X_ERR("BUG! SPQ ring full!\n");
3905 			spin_unlock_bh(&bp->spq_lock);
3906 			bnx2x_panic();
3907 			return -EBUSY;
3908 	}
3909 
3910 	spe = bnx2x_sp_get_next(bp);
3911 
3912 	/* CID needs port number to be encoded int it */
3913 	spe->hdr.conn_and_cmd_data =
3914 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3915 				    HW_CID(bp, cid));
3916 
3917 	/* In some cases, type may already contain the func-id
3918 	 * mainly in SRIOV related use cases, so we add it here only
3919 	 * if it's not already set.
3920 	 */
3921 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3922 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3923 			SPE_HDR_CONN_TYPE;
3924 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3925 			 SPE_HDR_FUNCTION_ID);
3926 	} else {
3927 		type = cmd_type;
3928 	}
3929 
3930 	spe->hdr.type = cpu_to_le16(type);
3931 
3932 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3933 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3934 
3935 	/*
3936 	 * It's ok if the actual decrement is issued towards the memory
3937 	 * somewhere between the spin_lock and spin_unlock. Thus no
3938 	 * more explicit memory barrier is needed.
3939 	 */
3940 	if (common)
3941 		atomic_dec(&bp->eq_spq_left);
3942 	else
3943 		atomic_dec(&bp->cq_spq_left);
3944 
3945 	DP(BNX2X_MSG_SP,
3946 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3947 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3948 	   (u32)(U64_LO(bp->spq_mapping) +
3949 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3950 	   HW_CID(bp, cid), data_hi, data_lo, type,
3951 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3952 
3953 	bnx2x_sp_prod_update(bp);
3954 	spin_unlock_bh(&bp->spq_lock);
3955 	return 0;
3956 }
3957 
3958 /* acquire split MCP access lock register */
3959 static int bnx2x_acquire_alr(struct bnx2x *bp)
3960 {
3961 	u32 j, val;
3962 	int rc = 0;
3963 
3964 	might_sleep();
3965 	for (j = 0; j < 1000; j++) {
3966 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3967 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3968 		if (val & MCPR_ACCESS_LOCK_LOCK)
3969 			break;
3970 
3971 		usleep_range(5000, 10000);
3972 	}
3973 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3974 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3975 		rc = -EBUSY;
3976 	}
3977 
3978 	return rc;
3979 }
3980 
3981 /* release split MCP access lock register */
3982 static void bnx2x_release_alr(struct bnx2x *bp)
3983 {
3984 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3985 }
3986 
3987 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3988 #define BNX2X_DEF_SB_IDX	0x0002
3989 
3990 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3991 {
3992 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3993 	u16 rc = 0;
3994 
3995 	barrier(); /* status block is written to by the chip */
3996 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3997 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3998 		rc |= BNX2X_DEF_SB_ATT_IDX;
3999 	}
4000 
4001 	if (bp->def_idx != def_sb->sp_sb.running_index) {
4002 		bp->def_idx = def_sb->sp_sb.running_index;
4003 		rc |= BNX2X_DEF_SB_IDX;
4004 	}
4005 
4006 	/* Do not reorder: indices reading should complete before handling */
4007 	barrier();
4008 	return rc;
4009 }
4010 
4011 /*
4012  * slow path service functions
4013  */
4014 
4015 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4016 {
4017 	int port = BP_PORT(bp);
4018 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4019 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4020 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4021 				       NIG_REG_MASK_INTERRUPT_PORT0;
4022 	u32 aeu_mask;
4023 	u32 nig_mask = 0;
4024 	u32 reg_addr;
4025 
4026 	if (bp->attn_state & asserted)
4027 		BNX2X_ERR("IGU ERROR\n");
4028 
4029 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4030 	aeu_mask = REG_RD(bp, aeu_addr);
4031 
4032 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4033 	   aeu_mask, asserted);
4034 	aeu_mask &= ~(asserted & 0x3ff);
4035 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4036 
4037 	REG_WR(bp, aeu_addr, aeu_mask);
4038 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4039 
4040 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4041 	bp->attn_state |= asserted;
4042 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4043 
4044 	if (asserted & ATTN_HARD_WIRED_MASK) {
4045 		if (asserted & ATTN_NIG_FOR_FUNC) {
4046 
4047 			bnx2x_acquire_phy_lock(bp);
4048 
4049 			/* save nig interrupt mask */
4050 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4051 
4052 			/* If nig_mask is not set, no need to call the update
4053 			 * function.
4054 			 */
4055 			if (nig_mask) {
4056 				REG_WR(bp, nig_int_mask_addr, 0);
4057 
4058 				bnx2x_link_attn(bp);
4059 			}
4060 
4061 			/* handle unicore attn? */
4062 		}
4063 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4064 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4065 
4066 		if (asserted & GPIO_2_FUNC)
4067 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4068 
4069 		if (asserted & GPIO_3_FUNC)
4070 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4071 
4072 		if (asserted & GPIO_4_FUNC)
4073 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4074 
4075 		if (port == 0) {
4076 			if (asserted & ATTN_GENERAL_ATTN_1) {
4077 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4078 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4079 			}
4080 			if (asserted & ATTN_GENERAL_ATTN_2) {
4081 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4082 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4083 			}
4084 			if (asserted & ATTN_GENERAL_ATTN_3) {
4085 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4086 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4087 			}
4088 		} else {
4089 			if (asserted & ATTN_GENERAL_ATTN_4) {
4090 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4091 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4092 			}
4093 			if (asserted & ATTN_GENERAL_ATTN_5) {
4094 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4095 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4096 			}
4097 			if (asserted & ATTN_GENERAL_ATTN_6) {
4098 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4099 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4100 			}
4101 		}
4102 
4103 	} /* if hardwired */
4104 
4105 	if (bp->common.int_block == INT_BLOCK_HC)
4106 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4107 			    COMMAND_REG_ATTN_BITS_SET);
4108 	else
4109 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4110 
4111 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4112 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4113 	REG_WR(bp, reg_addr, asserted);
4114 
4115 	/* now set back the mask */
4116 	if (asserted & ATTN_NIG_FOR_FUNC) {
4117 		/* Verify that IGU ack through BAR was written before restoring
4118 		 * NIG mask. This loop should exit after 2-3 iterations max.
4119 		 */
4120 		if (bp->common.int_block != INT_BLOCK_HC) {
4121 			u32 cnt = 0, igu_acked;
4122 			do {
4123 				igu_acked = REG_RD(bp,
4124 						   IGU_REG_ATTENTION_ACK_BITS);
4125 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4126 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4127 			if (!igu_acked)
4128 				DP(NETIF_MSG_HW,
4129 				   "Failed to verify IGU ack on time\n");
4130 			barrier();
4131 		}
4132 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4133 		bnx2x_release_phy_lock(bp);
4134 	}
4135 }
4136 
4137 static void bnx2x_fan_failure(struct bnx2x *bp)
4138 {
4139 	int port = BP_PORT(bp);
4140 	u32 ext_phy_config;
4141 	/* mark the failure */
4142 	ext_phy_config =
4143 		SHMEM_RD(bp,
4144 			 dev_info.port_hw_config[port].external_phy_config);
4145 
4146 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4147 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4148 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4149 		 ext_phy_config);
4150 
4151 	/* log the failure */
4152 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4153 			    "Please contact OEM Support for assistance\n");
4154 
4155 	/* Schedule device reset (unload)
4156 	 * This is due to some boards consuming sufficient power when driver is
4157 	 * up to overheat if fan fails.
4158 	 */
4159 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4160 }
4161 
4162 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4163 {
4164 	int port = BP_PORT(bp);
4165 	int reg_offset;
4166 	u32 val;
4167 
4168 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4169 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4170 
4171 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4172 
4173 		val = REG_RD(bp, reg_offset);
4174 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4175 		REG_WR(bp, reg_offset, val);
4176 
4177 		BNX2X_ERR("SPIO5 hw attention\n");
4178 
4179 		/* Fan failure attention */
4180 		bnx2x_hw_reset_phy(&bp->link_params);
4181 		bnx2x_fan_failure(bp);
4182 	}
4183 
4184 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4185 		bnx2x_acquire_phy_lock(bp);
4186 		bnx2x_handle_module_detect_int(&bp->link_params);
4187 		bnx2x_release_phy_lock(bp);
4188 	}
4189 
4190 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4191 
4192 		val = REG_RD(bp, reg_offset);
4193 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4194 		REG_WR(bp, reg_offset, val);
4195 
4196 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4197 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4198 		bnx2x_panic();
4199 	}
4200 }
4201 
4202 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4203 {
4204 	u32 val;
4205 
4206 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4207 
4208 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4209 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4210 		/* DORQ discard attention */
4211 		if (val & 0x2)
4212 			BNX2X_ERR("FATAL error from DORQ\n");
4213 	}
4214 
4215 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4216 
4217 		int port = BP_PORT(bp);
4218 		int reg_offset;
4219 
4220 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4221 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4222 
4223 		val = REG_RD(bp, reg_offset);
4224 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4225 		REG_WR(bp, reg_offset, val);
4226 
4227 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4228 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4229 		bnx2x_panic();
4230 	}
4231 }
4232 
4233 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4234 {
4235 	u32 val;
4236 
4237 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4238 
4239 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4240 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4241 		/* CFC error attention */
4242 		if (val & 0x2)
4243 			BNX2X_ERR("FATAL error from CFC\n");
4244 	}
4245 
4246 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4247 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4248 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4249 		/* RQ_USDMDP_FIFO_OVERFLOW */
4250 		if (val & 0x18000)
4251 			BNX2X_ERR("FATAL error from PXP\n");
4252 
4253 		if (!CHIP_IS_E1x(bp)) {
4254 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4255 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4256 		}
4257 	}
4258 
4259 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4260 
4261 		int port = BP_PORT(bp);
4262 		int reg_offset;
4263 
4264 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4265 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4266 
4267 		val = REG_RD(bp, reg_offset);
4268 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4269 		REG_WR(bp, reg_offset, val);
4270 
4271 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4272 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4273 		bnx2x_panic();
4274 	}
4275 }
4276 
4277 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4278 {
4279 	u32 val;
4280 
4281 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4282 
4283 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4284 			int func = BP_FUNC(bp);
4285 
4286 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4287 			bnx2x_read_mf_cfg(bp);
4288 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4289 					func_mf_config[BP_ABS_FUNC(bp)].config);
4290 			val = SHMEM_RD(bp,
4291 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4292 
4293 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4294 				   DRV_STATUS_OEM_EVENT_MASK))
4295 				bnx2x_oem_event(bp,
4296 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4297 						DRV_STATUS_OEM_EVENT_MASK)));
4298 
4299 			if (val & DRV_STATUS_SET_MF_BW)
4300 				bnx2x_set_mf_bw(bp);
4301 
4302 			if (val & DRV_STATUS_DRV_INFO_REQ)
4303 				bnx2x_handle_drv_info_req(bp);
4304 
4305 			if (val & DRV_STATUS_VF_DISABLED)
4306 				bnx2x_schedule_iov_task(bp,
4307 							BNX2X_IOV_HANDLE_FLR);
4308 
4309 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4310 				bnx2x_pmf_update(bp);
4311 
4312 			if (bp->port.pmf &&
4313 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4314 				bp->dcbx_enabled > 0)
4315 				/* start dcbx state machine */
4316 				bnx2x_dcbx_set_params(bp,
4317 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4318 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4319 				bnx2x_handle_afex_cmd(bp,
4320 					val & DRV_STATUS_AFEX_EVENT_MASK);
4321 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4322 				bnx2x_handle_eee_event(bp);
4323 
4324 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4325 				bnx2x_schedule_sp_rtnl(bp,
4326 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4327 
4328 			if (bp->link_vars.periodic_flags &
4329 			    PERIODIC_FLAGS_LINK_EVENT) {
4330 				/*  sync with link */
4331 				bnx2x_acquire_phy_lock(bp);
4332 				bp->link_vars.periodic_flags &=
4333 					~PERIODIC_FLAGS_LINK_EVENT;
4334 				bnx2x_release_phy_lock(bp);
4335 				if (IS_MF(bp))
4336 					bnx2x_link_sync_notify(bp);
4337 				bnx2x_link_report(bp);
4338 			}
4339 			/* Always call it here: bnx2x_link_report() will
4340 			 * prevent the link indication duplication.
4341 			 */
4342 			bnx2x__link_status_update(bp);
4343 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4344 
4345 			BNX2X_ERR("MC assert!\n");
4346 			bnx2x_mc_assert(bp);
4347 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4348 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4349 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4350 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4351 			bnx2x_panic();
4352 
4353 		} else if (attn & BNX2X_MCP_ASSERT) {
4354 
4355 			BNX2X_ERR("MCP assert!\n");
4356 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4357 			bnx2x_fw_dump(bp);
4358 
4359 		} else
4360 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4361 	}
4362 
4363 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4364 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4365 		if (attn & BNX2X_GRC_TIMEOUT) {
4366 			val = CHIP_IS_E1(bp) ? 0 :
4367 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4368 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4369 		}
4370 		if (attn & BNX2X_GRC_RSV) {
4371 			val = CHIP_IS_E1(bp) ? 0 :
4372 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4373 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4374 		}
4375 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4376 	}
4377 }
4378 
4379 /*
4380  * Bits map:
4381  * 0-7   - Engine0 load counter.
4382  * 8-15  - Engine1 load counter.
4383  * 16    - Engine0 RESET_IN_PROGRESS bit.
4384  * 17    - Engine1 RESET_IN_PROGRESS bit.
4385  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4386  *         on the engine
4387  * 19    - Engine1 ONE_IS_LOADED.
4388  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4389  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4390  *         just the one belonging to its engine).
4391  *
4392  */
4393 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4394 
4395 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4396 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4397 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4398 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4399 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4400 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4401 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4402 
4403 /*
4404  * Set the GLOBAL_RESET bit.
4405  *
4406  * Should be run under rtnl lock
4407  */
4408 void bnx2x_set_reset_global(struct bnx2x *bp)
4409 {
4410 	u32 val;
4411 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4412 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4414 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4415 }
4416 
4417 /*
4418  * Clear the GLOBAL_RESET bit.
4419  *
4420  * Should be run under rtnl lock
4421  */
4422 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4423 {
4424 	u32 val;
4425 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4426 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4427 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4428 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429 }
4430 
4431 /*
4432  * Checks the GLOBAL_RESET bit.
4433  *
4434  * should be run under rtnl lock
4435  */
4436 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4437 {
4438 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439 
4440 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4441 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4442 }
4443 
4444 /*
4445  * Clear RESET_IN_PROGRESS bit for the current engine.
4446  *
4447  * Should be run under rtnl lock
4448  */
4449 static void bnx2x_set_reset_done(struct bnx2x *bp)
4450 {
4451 	u32 val;
4452 	u32 bit = BP_PATH(bp) ?
4453 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4454 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4456 
4457 	/* Clear the bit */
4458 	val &= ~bit;
4459 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4460 
4461 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4462 }
4463 
4464 /*
4465  * Set RESET_IN_PROGRESS for the current engine.
4466  *
4467  * should be run under rtnl lock
4468  */
4469 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4470 {
4471 	u32 val;
4472 	u32 bit = BP_PATH(bp) ?
4473 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4474 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4475 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4476 
4477 	/* Set the bit */
4478 	val |= bit;
4479 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482 
4483 /*
4484  * Checks the RESET_IN_PROGRESS bit for the given engine.
4485  * should be run under rtnl lock
4486  */
4487 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4488 {
4489 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490 	u32 bit = engine ?
4491 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4492 
4493 	/* return false if bit is set */
4494 	return (val & bit) ? false : true;
4495 }
4496 
4497 /*
4498  * set pf load for the current pf.
4499  *
4500  * should be run under rtnl lock
4501  */
4502 void bnx2x_set_pf_load(struct bnx2x *bp)
4503 {
4504 	u32 val1, val;
4505 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4506 			     BNX2X_PATH0_LOAD_CNT_MASK;
4507 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4508 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4509 
4510 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4511 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4512 
4513 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4514 
4515 	/* get the current counter value */
4516 	val1 = (val & mask) >> shift;
4517 
4518 	/* set bit of that PF */
4519 	val1 |= (1 << bp->pf_num);
4520 
4521 	/* clear the old value */
4522 	val &= ~mask;
4523 
4524 	/* set the new one */
4525 	val |= ((val1 << shift) & mask);
4526 
4527 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4528 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4529 }
4530 
4531 /**
4532  * bnx2x_clear_pf_load - clear pf load mark
4533  *
4534  * @bp:		driver handle
4535  *
4536  * Should be run under rtnl lock.
4537  * Decrements the load counter for the current engine. Returns
4538  * whether other functions are still loaded
4539  */
4540 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4541 {
4542 	u32 val1, val;
4543 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4544 			     BNX2X_PATH0_LOAD_CNT_MASK;
4545 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4546 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4547 
4548 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4549 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4550 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4551 
4552 	/* get the current counter value */
4553 	val1 = (val & mask) >> shift;
4554 
4555 	/* clear bit of that PF */
4556 	val1 &= ~(1 << bp->pf_num);
4557 
4558 	/* clear the old value */
4559 	val &= ~mask;
4560 
4561 	/* set the new one */
4562 	val |= ((val1 << shift) & mask);
4563 
4564 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4565 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4566 	return val1 != 0;
4567 }
4568 
4569 /*
4570  * Read the load status for the current engine.
4571  *
4572  * should be run under rtnl lock
4573  */
4574 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4575 {
4576 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4577 			     BNX2X_PATH0_LOAD_CNT_MASK);
4578 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4579 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4580 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4581 
4582 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4583 
4584 	val = (val & mask) >> shift;
4585 
4586 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4587 	   engine, val);
4588 
4589 	return val != 0;
4590 }
4591 
4592 static void _print_parity(struct bnx2x *bp, u32 reg)
4593 {
4594 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4595 }
4596 
4597 static void _print_next_block(int idx, const char *blk)
4598 {
4599 	pr_cont("%s%s", idx ? ", " : "", blk);
4600 }
4601 
4602 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4603 					    int *par_num, bool print)
4604 {
4605 	u32 cur_bit;
4606 	bool res;
4607 	int i;
4608 
4609 	res = false;
4610 
4611 	for (i = 0; sig; i++) {
4612 		cur_bit = (0x1UL << i);
4613 		if (sig & cur_bit) {
4614 			res |= true; /* Each bit is real error! */
4615 
4616 			if (print) {
4617 				switch (cur_bit) {
4618 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4619 					_print_next_block((*par_num)++, "BRB");
4620 					_print_parity(bp,
4621 						      BRB1_REG_BRB1_PRTY_STS);
4622 					break;
4623 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4624 					_print_next_block((*par_num)++,
4625 							  "PARSER");
4626 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4627 					break;
4628 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4629 					_print_next_block((*par_num)++, "TSDM");
4630 					_print_parity(bp,
4631 						      TSDM_REG_TSDM_PRTY_STS);
4632 					break;
4633 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4634 					_print_next_block((*par_num)++,
4635 							  "SEARCHER");
4636 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4637 					break;
4638 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4639 					_print_next_block((*par_num)++, "TCM");
4640 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4641 					break;
4642 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4643 					_print_next_block((*par_num)++,
4644 							  "TSEMI");
4645 					_print_parity(bp,
4646 						      TSEM_REG_TSEM_PRTY_STS_0);
4647 					_print_parity(bp,
4648 						      TSEM_REG_TSEM_PRTY_STS_1);
4649 					break;
4650 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4651 					_print_next_block((*par_num)++, "XPB");
4652 					_print_parity(bp, GRCBASE_XPB +
4653 							  PB_REG_PB_PRTY_STS);
4654 					break;
4655 				}
4656 			}
4657 
4658 			/* Clear the bit */
4659 			sig &= ~cur_bit;
4660 		}
4661 	}
4662 
4663 	return res;
4664 }
4665 
4666 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4667 					    int *par_num, bool *global,
4668 					    bool print)
4669 {
4670 	u32 cur_bit;
4671 	bool res;
4672 	int i;
4673 
4674 	res = false;
4675 
4676 	for (i = 0; sig; i++) {
4677 		cur_bit = (0x1UL << i);
4678 		if (sig & cur_bit) {
4679 			res |= true; /* Each bit is real error! */
4680 			switch (cur_bit) {
4681 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4682 				if (print) {
4683 					_print_next_block((*par_num)++, "PBF");
4684 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4685 				}
4686 				break;
4687 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4688 				if (print) {
4689 					_print_next_block((*par_num)++, "QM");
4690 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4691 				}
4692 				break;
4693 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4694 				if (print) {
4695 					_print_next_block((*par_num)++, "TM");
4696 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4697 				}
4698 				break;
4699 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4700 				if (print) {
4701 					_print_next_block((*par_num)++, "XSDM");
4702 					_print_parity(bp,
4703 						      XSDM_REG_XSDM_PRTY_STS);
4704 				}
4705 				break;
4706 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4707 				if (print) {
4708 					_print_next_block((*par_num)++, "XCM");
4709 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4710 				}
4711 				break;
4712 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4713 				if (print) {
4714 					_print_next_block((*par_num)++,
4715 							  "XSEMI");
4716 					_print_parity(bp,
4717 						      XSEM_REG_XSEM_PRTY_STS_0);
4718 					_print_parity(bp,
4719 						      XSEM_REG_XSEM_PRTY_STS_1);
4720 				}
4721 				break;
4722 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4723 				if (print) {
4724 					_print_next_block((*par_num)++,
4725 							  "DOORBELLQ");
4726 					_print_parity(bp,
4727 						      DORQ_REG_DORQ_PRTY_STS);
4728 				}
4729 				break;
4730 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4731 				if (print) {
4732 					_print_next_block((*par_num)++, "NIG");
4733 					if (CHIP_IS_E1x(bp)) {
4734 						_print_parity(bp,
4735 							NIG_REG_NIG_PRTY_STS);
4736 					} else {
4737 						_print_parity(bp,
4738 							NIG_REG_NIG_PRTY_STS_0);
4739 						_print_parity(bp,
4740 							NIG_REG_NIG_PRTY_STS_1);
4741 					}
4742 				}
4743 				break;
4744 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4745 				if (print)
4746 					_print_next_block((*par_num)++,
4747 							  "VAUX PCI CORE");
4748 				*global = true;
4749 				break;
4750 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4751 				if (print) {
4752 					_print_next_block((*par_num)++,
4753 							  "DEBUG");
4754 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4755 				}
4756 				break;
4757 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4758 				if (print) {
4759 					_print_next_block((*par_num)++, "USDM");
4760 					_print_parity(bp,
4761 						      USDM_REG_USDM_PRTY_STS);
4762 				}
4763 				break;
4764 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4765 				if (print) {
4766 					_print_next_block((*par_num)++, "UCM");
4767 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4768 				}
4769 				break;
4770 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4771 				if (print) {
4772 					_print_next_block((*par_num)++,
4773 							  "USEMI");
4774 					_print_parity(bp,
4775 						      USEM_REG_USEM_PRTY_STS_0);
4776 					_print_parity(bp,
4777 						      USEM_REG_USEM_PRTY_STS_1);
4778 				}
4779 				break;
4780 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4781 				if (print) {
4782 					_print_next_block((*par_num)++, "UPB");
4783 					_print_parity(bp, GRCBASE_UPB +
4784 							  PB_REG_PB_PRTY_STS);
4785 				}
4786 				break;
4787 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4788 				if (print) {
4789 					_print_next_block((*par_num)++, "CSDM");
4790 					_print_parity(bp,
4791 						      CSDM_REG_CSDM_PRTY_STS);
4792 				}
4793 				break;
4794 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4795 				if (print) {
4796 					_print_next_block((*par_num)++, "CCM");
4797 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4798 				}
4799 				break;
4800 			}
4801 
4802 			/* Clear the bit */
4803 			sig &= ~cur_bit;
4804 		}
4805 	}
4806 
4807 	return res;
4808 }
4809 
4810 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4811 					    int *par_num, bool print)
4812 {
4813 	u32 cur_bit;
4814 	bool res;
4815 	int i;
4816 
4817 	res = false;
4818 
4819 	for (i = 0; sig; i++) {
4820 		cur_bit = (0x1UL << i);
4821 		if (sig & cur_bit) {
4822 			res = true; /* Each bit is real error! */
4823 			if (print) {
4824 				switch (cur_bit) {
4825 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4826 					_print_next_block((*par_num)++,
4827 							  "CSEMI");
4828 					_print_parity(bp,
4829 						      CSEM_REG_CSEM_PRTY_STS_0);
4830 					_print_parity(bp,
4831 						      CSEM_REG_CSEM_PRTY_STS_1);
4832 					break;
4833 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4834 					_print_next_block((*par_num)++, "PXP");
4835 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4836 					_print_parity(bp,
4837 						      PXP2_REG_PXP2_PRTY_STS_0);
4838 					_print_parity(bp,
4839 						      PXP2_REG_PXP2_PRTY_STS_1);
4840 					break;
4841 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4842 					_print_next_block((*par_num)++,
4843 							  "PXPPCICLOCKCLIENT");
4844 					break;
4845 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4846 					_print_next_block((*par_num)++, "CFC");
4847 					_print_parity(bp,
4848 						      CFC_REG_CFC_PRTY_STS);
4849 					break;
4850 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4851 					_print_next_block((*par_num)++, "CDU");
4852 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4853 					break;
4854 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4855 					_print_next_block((*par_num)++, "DMAE");
4856 					_print_parity(bp,
4857 						      DMAE_REG_DMAE_PRTY_STS);
4858 					break;
4859 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4860 					_print_next_block((*par_num)++, "IGU");
4861 					if (CHIP_IS_E1x(bp))
4862 						_print_parity(bp,
4863 							HC_REG_HC_PRTY_STS);
4864 					else
4865 						_print_parity(bp,
4866 							IGU_REG_IGU_PRTY_STS);
4867 					break;
4868 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4869 					_print_next_block((*par_num)++, "MISC");
4870 					_print_parity(bp,
4871 						      MISC_REG_MISC_PRTY_STS);
4872 					break;
4873 				}
4874 			}
4875 
4876 			/* Clear the bit */
4877 			sig &= ~cur_bit;
4878 		}
4879 	}
4880 
4881 	return res;
4882 }
4883 
4884 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4885 					    int *par_num, bool *global,
4886 					    bool print)
4887 {
4888 	bool res = false;
4889 	u32 cur_bit;
4890 	int i;
4891 
4892 	for (i = 0; sig; i++) {
4893 		cur_bit = (0x1UL << i);
4894 		if (sig & cur_bit) {
4895 			switch (cur_bit) {
4896 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4897 				if (print)
4898 					_print_next_block((*par_num)++,
4899 							  "MCP ROM");
4900 				*global = true;
4901 				res = true;
4902 				break;
4903 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4904 				if (print)
4905 					_print_next_block((*par_num)++,
4906 							  "MCP UMP RX");
4907 				*global = true;
4908 				res = true;
4909 				break;
4910 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4911 				if (print)
4912 					_print_next_block((*par_num)++,
4913 							  "MCP UMP TX");
4914 				*global = true;
4915 				res = true;
4916 				break;
4917 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4918 				(*par_num)++;
4919 				/* clear latched SCPAD PATIRY from MCP */
4920 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4921 				       1UL << 10);
4922 				break;
4923 			}
4924 
4925 			/* Clear the bit */
4926 			sig &= ~cur_bit;
4927 		}
4928 	}
4929 
4930 	return res;
4931 }
4932 
4933 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4934 					    int *par_num, bool print)
4935 {
4936 	u32 cur_bit;
4937 	bool res;
4938 	int i;
4939 
4940 	res = false;
4941 
4942 	for (i = 0; sig; i++) {
4943 		cur_bit = (0x1UL << i);
4944 		if (sig & cur_bit) {
4945 			res = true; /* Each bit is real error! */
4946 			if (print) {
4947 				switch (cur_bit) {
4948 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4949 					_print_next_block((*par_num)++,
4950 							  "PGLUE_B");
4951 					_print_parity(bp,
4952 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4953 					break;
4954 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4955 					_print_next_block((*par_num)++, "ATC");
4956 					_print_parity(bp,
4957 						      ATC_REG_ATC_PRTY_STS);
4958 					break;
4959 				}
4960 			}
4961 			/* Clear the bit */
4962 			sig &= ~cur_bit;
4963 		}
4964 	}
4965 
4966 	return res;
4967 }
4968 
4969 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4970 			      u32 *sig)
4971 {
4972 	bool res = false;
4973 
4974 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4975 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4976 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4977 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4978 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4979 		int par_num = 0;
4980 
4981 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4982 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4983 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4984 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4985 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4986 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4987 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4988 		if (print) {
4989 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4990 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4991 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4992 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4993 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4994 				netdev_err(bp->dev,
4995 					   "Parity errors detected in blocks: ");
4996 			} else {
4997 				print = false;
4998 			}
4999 		}
5000 		res |= bnx2x_check_blocks_with_parity0(bp,
5001 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5002 		res |= bnx2x_check_blocks_with_parity1(bp,
5003 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5004 		res |= bnx2x_check_blocks_with_parity2(bp,
5005 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5006 		res |= bnx2x_check_blocks_with_parity3(bp,
5007 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5008 		res |= bnx2x_check_blocks_with_parity4(bp,
5009 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5010 
5011 		if (print)
5012 			pr_cont("\n");
5013 	}
5014 
5015 	return res;
5016 }
5017 
5018 /**
5019  * bnx2x_chk_parity_attn - checks for parity attentions.
5020  *
5021  * @bp:		driver handle
5022  * @global:	true if there was a global attention
5023  * @print:	show parity attention in syslog
5024  */
5025 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5026 {
5027 	struct attn_route attn = { {0} };
5028 	int port = BP_PORT(bp);
5029 
5030 	attn.sig[0] = REG_RD(bp,
5031 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5032 			     port*4);
5033 	attn.sig[1] = REG_RD(bp,
5034 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5035 			     port*4);
5036 	attn.sig[2] = REG_RD(bp,
5037 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5038 			     port*4);
5039 	attn.sig[3] = REG_RD(bp,
5040 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5041 			     port*4);
5042 	/* Since MCP attentions can't be disabled inside the block, we need to
5043 	 * read AEU registers to see whether they're currently disabled
5044 	 */
5045 	attn.sig[3] &= ((REG_RD(bp,
5046 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5047 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5048 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5049 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5050 
5051 	if (!CHIP_IS_E1x(bp))
5052 		attn.sig[4] = REG_RD(bp,
5053 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5054 				     port*4);
5055 
5056 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5057 }
5058 
5059 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5060 {
5061 	u32 val;
5062 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5063 
5064 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5065 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5066 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5067 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5068 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5069 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5070 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5071 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5072 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5073 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5074 		if (val &
5075 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5076 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5077 		if (val &
5078 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5079 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5080 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5081 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5082 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5083 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5084 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5085 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5086 	}
5087 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5088 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5089 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5090 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5091 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5092 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5093 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5094 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5095 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5096 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5097 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5098 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5099 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5100 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5101 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5102 	}
5103 
5104 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5105 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5106 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5107 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5108 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5109 	}
5110 }
5111 
5112 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5113 {
5114 	struct attn_route attn, *group_mask;
5115 	int port = BP_PORT(bp);
5116 	int index;
5117 	u32 reg_addr;
5118 	u32 val;
5119 	u32 aeu_mask;
5120 	bool global = false;
5121 
5122 	/* need to take HW lock because MCP or other port might also
5123 	   try to handle this event */
5124 	bnx2x_acquire_alr(bp);
5125 
5126 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5127 #ifndef BNX2X_STOP_ON_ERROR
5128 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5129 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5130 		/* Disable HW interrupts */
5131 		bnx2x_int_disable(bp);
5132 		/* In case of parity errors don't handle attentions so that
5133 		 * other function would "see" parity errors.
5134 		 */
5135 #else
5136 		bnx2x_panic();
5137 #endif
5138 		bnx2x_release_alr(bp);
5139 		return;
5140 	}
5141 
5142 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5143 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5144 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5145 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5146 	if (!CHIP_IS_E1x(bp))
5147 		attn.sig[4] =
5148 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5149 	else
5150 		attn.sig[4] = 0;
5151 
5152 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5153 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5154 
5155 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5156 		if (deasserted & (1 << index)) {
5157 			group_mask = &bp->attn_group[index];
5158 
5159 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5160 			   index,
5161 			   group_mask->sig[0], group_mask->sig[1],
5162 			   group_mask->sig[2], group_mask->sig[3],
5163 			   group_mask->sig[4]);
5164 
5165 			bnx2x_attn_int_deasserted4(bp,
5166 					attn.sig[4] & group_mask->sig[4]);
5167 			bnx2x_attn_int_deasserted3(bp,
5168 					attn.sig[3] & group_mask->sig[3]);
5169 			bnx2x_attn_int_deasserted1(bp,
5170 					attn.sig[1] & group_mask->sig[1]);
5171 			bnx2x_attn_int_deasserted2(bp,
5172 					attn.sig[2] & group_mask->sig[2]);
5173 			bnx2x_attn_int_deasserted0(bp,
5174 					attn.sig[0] & group_mask->sig[0]);
5175 		}
5176 	}
5177 
5178 	bnx2x_release_alr(bp);
5179 
5180 	if (bp->common.int_block == INT_BLOCK_HC)
5181 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5182 			    COMMAND_REG_ATTN_BITS_CLR);
5183 	else
5184 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5185 
5186 	val = ~deasserted;
5187 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5188 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5189 	REG_WR(bp, reg_addr, val);
5190 
5191 	if (~bp->attn_state & deasserted)
5192 		BNX2X_ERR("IGU ERROR\n");
5193 
5194 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5195 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5196 
5197 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5198 	aeu_mask = REG_RD(bp, reg_addr);
5199 
5200 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5201 	   aeu_mask, deasserted);
5202 	aeu_mask |= (deasserted & 0x3ff);
5203 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5204 
5205 	REG_WR(bp, reg_addr, aeu_mask);
5206 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5207 
5208 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5209 	bp->attn_state &= ~deasserted;
5210 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5211 }
5212 
5213 static void bnx2x_attn_int(struct bnx2x *bp)
5214 {
5215 	/* read local copy of bits */
5216 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217 								attn_bits);
5218 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5219 								attn_bits_ack);
5220 	u32 attn_state = bp->attn_state;
5221 
5222 	/* look for changed bits */
5223 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5224 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5225 
5226 	DP(NETIF_MSG_HW,
5227 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5228 	   attn_bits, attn_ack, asserted, deasserted);
5229 
5230 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5231 		BNX2X_ERR("BAD attention state\n");
5232 
5233 	/* handle bits that were raised */
5234 	if (asserted)
5235 		bnx2x_attn_int_asserted(bp, asserted);
5236 
5237 	if (deasserted)
5238 		bnx2x_attn_int_deasserted(bp, deasserted);
5239 }
5240 
5241 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5242 		      u16 index, u8 op, u8 update)
5243 {
5244 	u32 igu_addr = bp->igu_base_addr;
5245 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5246 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5247 			     igu_addr);
5248 }
5249 
5250 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5251 {
5252 	/* No memory barriers */
5253 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5254 }
5255 
5256 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5257 				      union event_ring_elem *elem)
5258 {
5259 	u8 err = elem->message.error;
5260 
5261 	if (!bp->cnic_eth_dev.starting_cid  ||
5262 	    (cid < bp->cnic_eth_dev.starting_cid &&
5263 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5264 		return 1;
5265 
5266 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5267 
5268 	if (unlikely(err)) {
5269 
5270 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5271 			  cid);
5272 		bnx2x_panic_dump(bp, false);
5273 	}
5274 	bnx2x_cnic_cfc_comp(bp, cid, err);
5275 	return 0;
5276 }
5277 
5278 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5279 {
5280 	struct bnx2x_mcast_ramrod_params rparam;
5281 	int rc;
5282 
5283 	memset(&rparam, 0, sizeof(rparam));
5284 
5285 	rparam.mcast_obj = &bp->mcast_obj;
5286 
5287 	netif_addr_lock_bh(bp->dev);
5288 
5289 	/* Clear pending state for the last command */
5290 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5291 
5292 	/* If there are pending mcast commands - send them */
5293 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5294 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5295 		if (rc < 0)
5296 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5297 				  rc);
5298 	}
5299 
5300 	netif_addr_unlock_bh(bp->dev);
5301 }
5302 
5303 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5304 					    union event_ring_elem *elem)
5305 {
5306 	unsigned long ramrod_flags = 0;
5307 	int rc = 0;
5308 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5309 	u32 cid = echo & BNX2X_SWCID_MASK;
5310 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5311 
5312 	/* Always push next commands out, don't wait here */
5313 	__set_bit(RAMROD_CONT, &ramrod_flags);
5314 
5315 	switch (echo >> BNX2X_SWCID_SHIFT) {
5316 	case BNX2X_FILTER_MAC_PENDING:
5317 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5318 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5319 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5320 		else
5321 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5322 
5323 		break;
5324 	case BNX2X_FILTER_VLAN_PENDING:
5325 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5326 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5327 		break;
5328 	case BNX2X_FILTER_MCAST_PENDING:
5329 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5330 		/* This is only relevant for 57710 where multicast MACs are
5331 		 * configured as unicast MACs using the same ramrod.
5332 		 */
5333 		bnx2x_handle_mcast_eqe(bp);
5334 		return;
5335 	default:
5336 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5337 		return;
5338 	}
5339 
5340 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5341 
5342 	if (rc < 0)
5343 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5344 	else if (rc > 0)
5345 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5346 }
5347 
5348 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5349 
5350 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5351 {
5352 	netif_addr_lock_bh(bp->dev);
5353 
5354 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5355 
5356 	/* Send rx_mode command again if was requested */
5357 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5358 		bnx2x_set_storm_rx_mode(bp);
5359 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5360 				    &bp->sp_state))
5361 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5362 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5363 				    &bp->sp_state))
5364 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5365 
5366 	netif_addr_unlock_bh(bp->dev);
5367 }
5368 
5369 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5370 					      union event_ring_elem *elem)
5371 {
5372 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5373 		DP(BNX2X_MSG_SP,
5374 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5375 		   elem->message.data.vif_list_event.func_bit_map);
5376 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5377 			elem->message.data.vif_list_event.func_bit_map);
5378 	} else if (elem->message.data.vif_list_event.echo ==
5379 		   VIF_LIST_RULE_SET) {
5380 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5381 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5382 	}
5383 }
5384 
5385 /* called with rtnl_lock */
5386 static void bnx2x_after_function_update(struct bnx2x *bp)
5387 {
5388 	int q, rc;
5389 	struct bnx2x_fastpath *fp;
5390 	struct bnx2x_queue_state_params queue_params = {NULL};
5391 	struct bnx2x_queue_update_params *q_update_params =
5392 		&queue_params.params.update;
5393 
5394 	/* Send Q update command with afex vlan removal values for all Qs */
5395 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5396 
5397 	/* set silent vlan removal values according to vlan mode */
5398 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5399 		  &q_update_params->update_flags);
5400 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5401 		  &q_update_params->update_flags);
5402 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5403 
5404 	/* in access mode mark mask and value are 0 to strip all vlans */
5405 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5406 		q_update_params->silent_removal_value = 0;
5407 		q_update_params->silent_removal_mask = 0;
5408 	} else {
5409 		q_update_params->silent_removal_value =
5410 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5411 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5412 	}
5413 
5414 	for_each_eth_queue(bp, q) {
5415 		/* Set the appropriate Queue object */
5416 		fp = &bp->fp[q];
5417 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418 
5419 		/* send the ramrod */
5420 		rc = bnx2x_queue_state_change(bp, &queue_params);
5421 		if (rc < 0)
5422 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5423 				  q);
5424 	}
5425 
5426 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5427 		fp = &bp->fp[FCOE_IDX(bp)];
5428 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5429 
5430 		/* clear pending completion bit */
5431 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5432 
5433 		/* mark latest Q bit */
5434 		smp_mb__before_atomic();
5435 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5436 		smp_mb__after_atomic();
5437 
5438 		/* send Q update ramrod for FCoE Q */
5439 		rc = bnx2x_queue_state_change(bp, &queue_params);
5440 		if (rc < 0)
5441 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5442 				  q);
5443 	} else {
5444 		/* If no FCoE ring - ACK MCP now */
5445 		bnx2x_link_report(bp);
5446 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5447 	}
5448 }
5449 
5450 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5451 	struct bnx2x *bp, u32 cid)
5452 {
5453 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5454 
5455 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5456 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5457 	else
5458 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5459 }
5460 
5461 static void bnx2x_eq_int(struct bnx2x *bp)
5462 {
5463 	u16 hw_cons, sw_cons, sw_prod;
5464 	union event_ring_elem *elem;
5465 	u8 echo;
5466 	u32 cid;
5467 	u8 opcode;
5468 	int rc, spqe_cnt = 0;
5469 	struct bnx2x_queue_sp_obj *q_obj;
5470 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5471 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5472 
5473 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5474 
5475 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5476 	 * when we get the next-page we need to adjust so the loop
5477 	 * condition below will be met. The next element is the size of a
5478 	 * regular element and hence incrementing by 1
5479 	 */
5480 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5481 		hw_cons++;
5482 
5483 	/* This function may never run in parallel with itself for a
5484 	 * specific bp, thus there is no need in "paired" read memory
5485 	 * barrier here.
5486 	 */
5487 	sw_cons = bp->eq_cons;
5488 	sw_prod = bp->eq_prod;
5489 
5490 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5491 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5492 
5493 	for (; sw_cons != hw_cons;
5494 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5495 
5496 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5497 
5498 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5499 		if (!rc) {
5500 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5501 			   rc);
5502 			goto next_spqe;
5503 		}
5504 
5505 		opcode = elem->message.opcode;
5506 
5507 		/* handle eq element */
5508 		switch (opcode) {
5509 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5510 			bnx2x_vf_mbx_schedule(bp,
5511 					      &elem->message.data.vf_pf_event);
5512 			continue;
5513 
5514 		case EVENT_RING_OPCODE_STAT_QUERY:
5515 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5516 			       "got statistics comp event %d\n",
5517 			       bp->stats_comp++);
5518 			/* nothing to do with stats comp */
5519 			goto next_spqe;
5520 
5521 		case EVENT_RING_OPCODE_CFC_DEL:
5522 			/* handle according to cid range */
5523 			/*
5524 			 * we may want to verify here that the bp state is
5525 			 * HALTING
5526 			 */
5527 
5528 			/* elem CID originates from FW; actually LE */
5529 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5530 
5531 			DP(BNX2X_MSG_SP,
5532 			   "got delete ramrod for MULTI[%d]\n", cid);
5533 
5534 			if (CNIC_LOADED(bp) &&
5535 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5536 				goto next_spqe;
5537 
5538 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5539 
5540 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5541 				break;
5542 
5543 			goto next_spqe;
5544 
5545 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5546 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5547 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5548 			if (f_obj->complete_cmd(bp, f_obj,
5549 						BNX2X_F_CMD_TX_STOP))
5550 				break;
5551 			goto next_spqe;
5552 
5553 		case EVENT_RING_OPCODE_START_TRAFFIC:
5554 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5555 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5556 			if (f_obj->complete_cmd(bp, f_obj,
5557 						BNX2X_F_CMD_TX_START))
5558 				break;
5559 			goto next_spqe;
5560 
5561 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5562 			echo = elem->message.data.function_update_event.echo;
5563 			if (echo == SWITCH_UPDATE) {
5564 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5565 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5566 				if (f_obj->complete_cmd(
5567 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5568 					break;
5569 
5570 			} else {
5571 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5572 
5573 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5574 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5575 				f_obj->complete_cmd(bp, f_obj,
5576 						    BNX2X_F_CMD_AFEX_UPDATE);
5577 
5578 				/* We will perform the Queues update from
5579 				 * sp_rtnl task as all Queue SP operations
5580 				 * should run under rtnl_lock.
5581 				 */
5582 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5583 			}
5584 
5585 			goto next_spqe;
5586 
5587 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5588 			f_obj->complete_cmd(bp, f_obj,
5589 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5590 			bnx2x_after_afex_vif_lists(bp, elem);
5591 			goto next_spqe;
5592 		case EVENT_RING_OPCODE_FUNCTION_START:
5593 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5594 			   "got FUNC_START ramrod\n");
5595 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5596 				break;
5597 
5598 			goto next_spqe;
5599 
5600 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5601 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5602 			   "got FUNC_STOP ramrod\n");
5603 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5604 				break;
5605 
5606 			goto next_spqe;
5607 
5608 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5609 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5610 			   "got set_timesync ramrod completion\n");
5611 			if (f_obj->complete_cmd(bp, f_obj,
5612 						BNX2X_F_CMD_SET_TIMESYNC))
5613 				break;
5614 			goto next_spqe;
5615 		}
5616 
5617 		switch (opcode | bp->state) {
5618 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619 		      BNX2X_STATE_OPEN):
5620 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5622 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5623 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5624 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5625 			   SW_CID(elem->message.data.eth_event.echo));
5626 			rss_raw->clear_pending(rss_raw);
5627 			break;
5628 
5629 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5630 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5631 		case (EVENT_RING_OPCODE_SET_MAC |
5632 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5633 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634 		      BNX2X_STATE_OPEN):
5635 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636 		      BNX2X_STATE_DIAG):
5637 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5638 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5639 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5640 			bnx2x_handle_classification_eqe(bp, elem);
5641 			break;
5642 
5643 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644 		      BNX2X_STATE_OPEN):
5645 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646 		      BNX2X_STATE_DIAG):
5647 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5648 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5649 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5650 			bnx2x_handle_mcast_eqe(bp);
5651 			break;
5652 
5653 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5654 		      BNX2X_STATE_OPEN):
5655 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5656 		      BNX2X_STATE_DIAG):
5657 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5658 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5659 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5660 			bnx2x_handle_rx_mode_eqe(bp);
5661 			break;
5662 		default:
5663 			/* unknown event log error and continue */
5664 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5665 				  elem->message.opcode, bp->state);
5666 		}
5667 next_spqe:
5668 		spqe_cnt++;
5669 	} /* for */
5670 
5671 	smp_mb__before_atomic();
5672 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5673 
5674 	bp->eq_cons = sw_cons;
5675 	bp->eq_prod = sw_prod;
5676 	/* Make sure that above mem writes were issued towards the memory */
5677 	smp_wmb();
5678 
5679 	/* update producer */
5680 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5681 }
5682 
5683 static void bnx2x_sp_task(struct work_struct *work)
5684 {
5685 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5686 
5687 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5688 
5689 	/* make sure the atomic interrupt_occurred has been written */
5690 	smp_rmb();
5691 	if (atomic_read(&bp->interrupt_occurred)) {
5692 
5693 		/* what work needs to be performed? */
5694 		u16 status = bnx2x_update_dsb_idx(bp);
5695 
5696 		DP(BNX2X_MSG_SP, "status %x\n", status);
5697 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5698 		atomic_set(&bp->interrupt_occurred, 0);
5699 
5700 		/* HW attentions */
5701 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5702 			bnx2x_attn_int(bp);
5703 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5704 		}
5705 
5706 		/* SP events: STAT_QUERY and others */
5707 		if (status & BNX2X_DEF_SB_IDX) {
5708 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5709 
5710 			if (FCOE_INIT(bp) &&
5711 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5712 				/* Prevent local bottom-halves from running as
5713 				 * we are going to change the local NAPI list.
5714 				 */
5715 				local_bh_disable();
5716 				napi_schedule(&bnx2x_fcoe(bp, napi));
5717 				local_bh_enable();
5718 			}
5719 
5720 			/* Handle EQ completions */
5721 			bnx2x_eq_int(bp);
5722 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5723 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5724 
5725 			status &= ~BNX2X_DEF_SB_IDX;
5726 		}
5727 
5728 		/* if status is non zero then perhaps something went wrong */
5729 		if (unlikely(status))
5730 			DP(BNX2X_MSG_SP,
5731 			   "got an unknown interrupt! (status 0x%x)\n", status);
5732 
5733 		/* ack status block only if something was actually handled */
5734 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5735 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5736 	}
5737 
5738 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5739 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5740 			       &bp->sp_state)) {
5741 		bnx2x_link_report(bp);
5742 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5743 	}
5744 }
5745 
5746 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5747 {
5748 	struct net_device *dev = dev_instance;
5749 	struct bnx2x *bp = netdev_priv(dev);
5750 
5751 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5752 		     IGU_INT_DISABLE, 0);
5753 
5754 #ifdef BNX2X_STOP_ON_ERROR
5755 	if (unlikely(bp->panic))
5756 		return IRQ_HANDLED;
5757 #endif
5758 
5759 	if (CNIC_LOADED(bp)) {
5760 		struct cnic_ops *c_ops;
5761 
5762 		rcu_read_lock();
5763 		c_ops = rcu_dereference(bp->cnic_ops);
5764 		if (c_ops)
5765 			c_ops->cnic_handler(bp->cnic_data, NULL);
5766 		rcu_read_unlock();
5767 	}
5768 
5769 	/* schedule sp task to perform default status block work, ack
5770 	 * attentions and enable interrupts.
5771 	 */
5772 	bnx2x_schedule_sp_task(bp);
5773 
5774 	return IRQ_HANDLED;
5775 }
5776 
5777 /* end of slow path */
5778 
5779 void bnx2x_drv_pulse(struct bnx2x *bp)
5780 {
5781 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5782 		 bp->fw_drv_pulse_wr_seq);
5783 }
5784 
5785 static void bnx2x_timer(struct timer_list *t)
5786 {
5787 	struct bnx2x *bp = from_timer(bp, t, timer);
5788 
5789 	if (!netif_running(bp->dev))
5790 		return;
5791 
5792 	if (IS_PF(bp) &&
5793 	    !BP_NOMCP(bp)) {
5794 		int mb_idx = BP_FW_MB_IDX(bp);
5795 		u16 drv_pulse;
5796 		u16 mcp_pulse;
5797 
5798 		++bp->fw_drv_pulse_wr_seq;
5799 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5800 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5801 		bnx2x_drv_pulse(bp);
5802 
5803 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5804 			     MCP_PULSE_SEQ_MASK);
5805 		/* The delta between driver pulse and mcp response
5806 		 * should not get too big. If the MFW is more than 5 pulses
5807 		 * behind, we should worry about it enough to generate an error
5808 		 * log.
5809 		 */
5810 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5811 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5812 				  drv_pulse, mcp_pulse);
5813 	}
5814 
5815 	if (bp->state == BNX2X_STATE_OPEN)
5816 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5817 
5818 	/* sample pf vf bulletin board for new posts from pf */
5819 	if (IS_VF(bp))
5820 		bnx2x_timer_sriov(bp);
5821 
5822 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5823 }
5824 
5825 /* end of Statistics */
5826 
5827 /* nic init */
5828 
5829 /*
5830  * nic init service functions
5831  */
5832 
5833 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5834 {
5835 	u32 i;
5836 	if (!(len%4) && !(addr%4))
5837 		for (i = 0; i < len; i += 4)
5838 			REG_WR(bp, addr + i, fill);
5839 	else
5840 		for (i = 0; i < len; i++)
5841 			REG_WR8(bp, addr + i, fill);
5842 }
5843 
5844 /* helper: writes FP SP data to FW - data_size in dwords */
5845 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5846 				int fw_sb_id,
5847 				u32 *sb_data_p,
5848 				u32 data_size)
5849 {
5850 	int index;
5851 	for (index = 0; index < data_size; index++)
5852 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5853 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5854 			sizeof(u32)*index,
5855 			*(sb_data_p + index));
5856 }
5857 
5858 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5859 {
5860 	u32 *sb_data_p;
5861 	u32 data_size = 0;
5862 	struct hc_status_block_data_e2 sb_data_e2;
5863 	struct hc_status_block_data_e1x sb_data_e1x;
5864 
5865 	/* disable the function first */
5866 	if (!CHIP_IS_E1x(bp)) {
5867 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5868 		sb_data_e2.common.state = SB_DISABLED;
5869 		sb_data_e2.common.p_func.vf_valid = false;
5870 		sb_data_p = (u32 *)&sb_data_e2;
5871 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5872 	} else {
5873 		memset(&sb_data_e1x, 0,
5874 		       sizeof(struct hc_status_block_data_e1x));
5875 		sb_data_e1x.common.state = SB_DISABLED;
5876 		sb_data_e1x.common.p_func.vf_valid = false;
5877 		sb_data_p = (u32 *)&sb_data_e1x;
5878 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5879 	}
5880 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5881 
5882 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5883 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5884 			CSTORM_STATUS_BLOCK_SIZE);
5885 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5886 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5887 			CSTORM_SYNC_BLOCK_SIZE);
5888 }
5889 
5890 /* helper:  writes SP SB data to FW */
5891 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5892 		struct hc_sp_status_block_data *sp_sb_data)
5893 {
5894 	int func = BP_FUNC(bp);
5895 	int i;
5896 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5897 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5898 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5899 			i*sizeof(u32),
5900 			*((u32 *)sp_sb_data + i));
5901 }
5902 
5903 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5904 {
5905 	int func = BP_FUNC(bp);
5906 	struct hc_sp_status_block_data sp_sb_data;
5907 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5908 
5909 	sp_sb_data.state = SB_DISABLED;
5910 	sp_sb_data.p_func.vf_valid = false;
5911 
5912 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5913 
5914 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5915 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5916 			CSTORM_SP_STATUS_BLOCK_SIZE);
5917 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5918 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5919 			CSTORM_SP_SYNC_BLOCK_SIZE);
5920 }
5921 
5922 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5923 					   int igu_sb_id, int igu_seg_id)
5924 {
5925 	hc_sm->igu_sb_id = igu_sb_id;
5926 	hc_sm->igu_seg_id = igu_seg_id;
5927 	hc_sm->timer_value = 0xFF;
5928 	hc_sm->time_to_expire = 0xFFFFFFFF;
5929 }
5930 
5931 /* allocates state machine ids. */
5932 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5933 {
5934 	/* zero out state machine indices */
5935 	/* rx indices */
5936 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5937 
5938 	/* tx indices */
5939 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5940 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5941 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5942 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5943 
5944 	/* map indices */
5945 	/* rx indices */
5946 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5947 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948 
5949 	/* tx indices */
5950 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5951 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5953 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5955 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5957 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5958 }
5959 
5960 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5961 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5962 {
5963 	int igu_seg_id;
5964 
5965 	struct hc_status_block_data_e2 sb_data_e2;
5966 	struct hc_status_block_data_e1x sb_data_e1x;
5967 	struct hc_status_block_sm  *hc_sm_p;
5968 	int data_size;
5969 	u32 *sb_data_p;
5970 
5971 	if (CHIP_INT_MODE_IS_BC(bp))
5972 		igu_seg_id = HC_SEG_ACCESS_NORM;
5973 	else
5974 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5975 
5976 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5977 
5978 	if (!CHIP_IS_E1x(bp)) {
5979 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5980 		sb_data_e2.common.state = SB_ENABLED;
5981 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5982 		sb_data_e2.common.p_func.vf_id = vfid;
5983 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5984 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5985 		sb_data_e2.common.same_igu_sb_1b = true;
5986 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5987 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5988 		hc_sm_p = sb_data_e2.common.state_machine;
5989 		sb_data_p = (u32 *)&sb_data_e2;
5990 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5991 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5992 	} else {
5993 		memset(&sb_data_e1x, 0,
5994 		       sizeof(struct hc_status_block_data_e1x));
5995 		sb_data_e1x.common.state = SB_ENABLED;
5996 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5997 		sb_data_e1x.common.p_func.vf_id = 0xff;
5998 		sb_data_e1x.common.p_func.vf_valid = false;
5999 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6000 		sb_data_e1x.common.same_igu_sb_1b = true;
6001 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6002 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6003 		hc_sm_p = sb_data_e1x.common.state_machine;
6004 		sb_data_p = (u32 *)&sb_data_e1x;
6005 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6006 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6007 	}
6008 
6009 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6010 				       igu_sb_id, igu_seg_id);
6011 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6012 				       igu_sb_id, igu_seg_id);
6013 
6014 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6015 
6016 	/* write indices to HW - PCI guarantees endianity of regpairs */
6017 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6018 }
6019 
6020 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6021 				     u16 tx_usec, u16 rx_usec)
6022 {
6023 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6024 				    false, rx_usec);
6025 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6026 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6027 				       tx_usec);
6028 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6029 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6030 				       tx_usec);
6031 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6032 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6033 				       tx_usec);
6034 }
6035 
6036 static void bnx2x_init_def_sb(struct bnx2x *bp)
6037 {
6038 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6039 	dma_addr_t mapping = bp->def_status_blk_mapping;
6040 	int igu_sp_sb_index;
6041 	int igu_seg_id;
6042 	int port = BP_PORT(bp);
6043 	int func = BP_FUNC(bp);
6044 	int reg_offset, reg_offset_en5;
6045 	u64 section;
6046 	int index;
6047 	struct hc_sp_status_block_data sp_sb_data;
6048 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6049 
6050 	if (CHIP_INT_MODE_IS_BC(bp)) {
6051 		igu_sp_sb_index = DEF_SB_IGU_ID;
6052 		igu_seg_id = HC_SEG_ACCESS_DEF;
6053 	} else {
6054 		igu_sp_sb_index = bp->igu_dsb_id;
6055 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6056 	}
6057 
6058 	/* ATTN */
6059 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6060 					    atten_status_block);
6061 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6062 
6063 	bp->attn_state = 0;
6064 
6065 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6066 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6067 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6068 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6069 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6070 		int sindex;
6071 		/* take care of sig[0]..sig[4] */
6072 		for (sindex = 0; sindex < 4; sindex++)
6073 			bp->attn_group[index].sig[sindex] =
6074 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6075 
6076 		if (!CHIP_IS_E1x(bp))
6077 			/*
6078 			 * enable5 is separate from the rest of the registers,
6079 			 * and therefore the address skip is 4
6080 			 * and not 16 between the different groups
6081 			 */
6082 			bp->attn_group[index].sig[4] = REG_RD(bp,
6083 					reg_offset_en5 + 0x4*index);
6084 		else
6085 			bp->attn_group[index].sig[4] = 0;
6086 	}
6087 
6088 	if (bp->common.int_block == INT_BLOCK_HC) {
6089 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6090 				     HC_REG_ATTN_MSG0_ADDR_L);
6091 
6092 		REG_WR(bp, reg_offset, U64_LO(section));
6093 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6094 	} else if (!CHIP_IS_E1x(bp)) {
6095 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6096 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6097 	}
6098 
6099 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6100 					    sp_sb);
6101 
6102 	bnx2x_zero_sp_sb(bp);
6103 
6104 	/* PCI guarantees endianity of regpairs */
6105 	sp_sb_data.state		= SB_ENABLED;
6106 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6107 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6108 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6109 	sp_sb_data.igu_seg_id		= igu_seg_id;
6110 	sp_sb_data.p_func.pf_id		= func;
6111 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6112 	sp_sb_data.p_func.vf_id		= 0xff;
6113 
6114 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6115 
6116 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6117 }
6118 
6119 void bnx2x_update_coalesce(struct bnx2x *bp)
6120 {
6121 	int i;
6122 
6123 	for_each_eth_queue(bp, i)
6124 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6125 					 bp->tx_ticks, bp->rx_ticks);
6126 }
6127 
6128 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6129 {
6130 	spin_lock_init(&bp->spq_lock);
6131 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6132 
6133 	bp->spq_prod_idx = 0;
6134 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6135 	bp->spq_prod_bd = bp->spq;
6136 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6137 }
6138 
6139 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6140 {
6141 	int i;
6142 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6143 		union event_ring_elem *elem =
6144 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6145 
6146 		elem->next_page.addr.hi =
6147 			cpu_to_le32(U64_HI(bp->eq_mapping +
6148 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6149 		elem->next_page.addr.lo =
6150 			cpu_to_le32(U64_LO(bp->eq_mapping +
6151 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6152 	}
6153 	bp->eq_cons = 0;
6154 	bp->eq_prod = NUM_EQ_DESC;
6155 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6156 	/* we want a warning message before it gets wrought... */
6157 	atomic_set(&bp->eq_spq_left,
6158 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6159 }
6160 
6161 /* called with netif_addr_lock_bh() */
6162 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6163 			       unsigned long rx_mode_flags,
6164 			       unsigned long rx_accept_flags,
6165 			       unsigned long tx_accept_flags,
6166 			       unsigned long ramrod_flags)
6167 {
6168 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6169 	int rc;
6170 
6171 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6172 
6173 	/* Prepare ramrod parameters */
6174 	ramrod_param.cid = 0;
6175 	ramrod_param.cl_id = cl_id;
6176 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6177 	ramrod_param.func_id = BP_FUNC(bp);
6178 
6179 	ramrod_param.pstate = &bp->sp_state;
6180 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6181 
6182 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6183 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6184 
6185 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6186 
6187 	ramrod_param.ramrod_flags = ramrod_flags;
6188 	ramrod_param.rx_mode_flags = rx_mode_flags;
6189 
6190 	ramrod_param.rx_accept_flags = rx_accept_flags;
6191 	ramrod_param.tx_accept_flags = tx_accept_flags;
6192 
6193 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6194 	if (rc < 0) {
6195 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6196 		return rc;
6197 	}
6198 
6199 	return 0;
6200 }
6201 
6202 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6203 				   unsigned long *rx_accept_flags,
6204 				   unsigned long *tx_accept_flags)
6205 {
6206 	/* Clear the flags first */
6207 	*rx_accept_flags = 0;
6208 	*tx_accept_flags = 0;
6209 
6210 	switch (rx_mode) {
6211 	case BNX2X_RX_MODE_NONE:
6212 		/*
6213 		 * 'drop all' supersedes any accept flags that may have been
6214 		 * passed to the function.
6215 		 */
6216 		break;
6217 	case BNX2X_RX_MODE_NORMAL:
6218 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6219 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6220 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6221 
6222 		/* internal switching mode */
6223 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6224 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6225 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6226 
6227 		if (bp->accept_any_vlan) {
6228 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6229 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6230 		}
6231 
6232 		break;
6233 	case BNX2X_RX_MODE_ALLMULTI:
6234 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237 
6238 		/* internal switching mode */
6239 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6240 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6241 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6242 
6243 		if (bp->accept_any_vlan) {
6244 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6245 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6246 		}
6247 
6248 		break;
6249 	case BNX2X_RX_MODE_PROMISC:
6250 		/* According to definition of SI mode, iface in promisc mode
6251 		 * should receive matched and unmatched (in resolution of port)
6252 		 * unicast packets.
6253 		 */
6254 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6255 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6256 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6257 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6258 
6259 		/* internal switching mode */
6260 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6261 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6262 
6263 		if (IS_MF_SI(bp))
6264 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6265 		else
6266 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6267 
6268 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6269 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6270 
6271 		break;
6272 	default:
6273 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6274 		return -EINVAL;
6275 	}
6276 
6277 	return 0;
6278 }
6279 
6280 /* called with netif_addr_lock_bh() */
6281 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6282 {
6283 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6284 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6285 	int rc;
6286 
6287 	if (!NO_FCOE(bp))
6288 		/* Configure rx_mode of FCoE Queue */
6289 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6290 
6291 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6292 				     &tx_accept_flags);
6293 	if (rc)
6294 		return rc;
6295 
6296 	__set_bit(RAMROD_RX, &ramrod_flags);
6297 	__set_bit(RAMROD_TX, &ramrod_flags);
6298 
6299 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6300 				   rx_accept_flags, tx_accept_flags,
6301 				   ramrod_flags);
6302 }
6303 
6304 static void bnx2x_init_internal_common(struct bnx2x *bp)
6305 {
6306 	int i;
6307 
6308 	/* Zero this manually as its initialization is
6309 	   currently missing in the initTool */
6310 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6311 		REG_WR(bp, BAR_USTRORM_INTMEM +
6312 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6313 	if (!CHIP_IS_E1x(bp)) {
6314 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6315 			CHIP_INT_MODE_IS_BC(bp) ?
6316 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6317 	}
6318 }
6319 
6320 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6321 {
6322 	switch (load_code) {
6323 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6324 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6325 		bnx2x_init_internal_common(bp);
6326 		fallthrough;
6327 
6328 	case FW_MSG_CODE_DRV_LOAD_PORT:
6329 		/* nothing to do */
6330 		fallthrough;
6331 
6332 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6333 		/* internal memory per function is
6334 		   initialized inside bnx2x_pf_init */
6335 		break;
6336 
6337 	default:
6338 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6339 		break;
6340 	}
6341 }
6342 
6343 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6344 {
6345 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6346 }
6347 
6348 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6349 {
6350 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6351 }
6352 
6353 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6354 {
6355 	if (CHIP_IS_E1x(fp->bp))
6356 		return BP_L_ID(fp->bp) + fp->index;
6357 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6358 		return bnx2x_fp_igu_sb_id(fp);
6359 }
6360 
6361 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6362 {
6363 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6364 	u8 cos;
6365 	unsigned long q_type = 0;
6366 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6367 	fp->rx_queue = fp_idx;
6368 	fp->cid = fp_idx;
6369 	fp->cl_id = bnx2x_fp_cl_id(fp);
6370 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6371 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6372 	/* qZone id equals to FW (per path) client id */
6373 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6374 
6375 	/* init shortcut */
6376 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6377 
6378 	/* Setup SB indices */
6379 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6380 
6381 	/* Configure Queue State object */
6382 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6383 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6384 
6385 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6386 
6387 	/* init tx data */
6388 	for_each_cos_in_tx_queue(fp, cos) {
6389 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6390 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6391 				  FP_COS_TO_TXQ(fp, cos, bp),
6392 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6393 		cids[cos] = fp->txdata_ptr[cos]->cid;
6394 	}
6395 
6396 	/* nothing more for vf to do here */
6397 	if (IS_VF(bp))
6398 		return;
6399 
6400 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6401 		      fp->fw_sb_id, fp->igu_sb_id);
6402 	bnx2x_update_fpsb_idx(fp);
6403 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6404 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6405 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6406 
6407 	/**
6408 	 * Configure classification DBs: Always enable Tx switching
6409 	 */
6410 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6411 
6412 	DP(NETIF_MSG_IFUP,
6413 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6414 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6415 	   fp->igu_sb_id);
6416 }
6417 
6418 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6419 {
6420 	int i;
6421 
6422 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6423 		struct eth_tx_next_bd *tx_next_bd =
6424 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6425 
6426 		tx_next_bd->addr_hi =
6427 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6428 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6429 		tx_next_bd->addr_lo =
6430 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6431 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6432 	}
6433 
6434 	*txdata->tx_cons_sb = cpu_to_le16(0);
6435 
6436 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6437 	txdata->tx_db.data.zero_fill1 = 0;
6438 	txdata->tx_db.data.prod = 0;
6439 
6440 	txdata->tx_pkt_prod = 0;
6441 	txdata->tx_pkt_cons = 0;
6442 	txdata->tx_bd_prod = 0;
6443 	txdata->tx_bd_cons = 0;
6444 	txdata->tx_pkt = 0;
6445 }
6446 
6447 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6448 {
6449 	int i;
6450 
6451 	for_each_tx_queue_cnic(bp, i)
6452 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6453 }
6454 
6455 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6456 {
6457 	int i;
6458 	u8 cos;
6459 
6460 	for_each_eth_queue(bp, i)
6461 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6462 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6463 }
6464 
6465 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6466 {
6467 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6468 	unsigned long q_type = 0;
6469 
6470 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6471 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6472 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6473 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6474 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6475 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6476 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6477 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6478 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6479 			  fp);
6480 
6481 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6482 
6483 	/* qZone id equals to FW (per path) client id */
6484 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6485 	/* init shortcut */
6486 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6487 		bnx2x_rx_ustorm_prods_offset(fp);
6488 
6489 	/* Configure Queue State object */
6490 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6491 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6492 
6493 	/* No multi-CoS for FCoE L2 client */
6494 	BUG_ON(fp->max_cos != 1);
6495 
6496 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6497 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6498 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6499 
6500 	DP(NETIF_MSG_IFUP,
6501 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6502 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6503 	   fp->igu_sb_id);
6504 }
6505 
6506 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6507 {
6508 	if (!NO_FCOE(bp))
6509 		bnx2x_init_fcoe_fp(bp);
6510 
6511 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6512 		      BNX2X_VF_ID_INVALID, false,
6513 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6514 
6515 	/* ensure status block indices were read */
6516 	rmb();
6517 	bnx2x_init_rx_rings_cnic(bp);
6518 	bnx2x_init_tx_rings_cnic(bp);
6519 
6520 	/* flush all */
6521 	mb();
6522 }
6523 
6524 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6525 {
6526 	int i;
6527 
6528 	/* Setup NIC internals and enable interrupts */
6529 	for_each_eth_queue(bp, i)
6530 		bnx2x_init_eth_fp(bp, i);
6531 
6532 	/* ensure status block indices were read */
6533 	rmb();
6534 	bnx2x_init_rx_rings(bp);
6535 	bnx2x_init_tx_rings(bp);
6536 
6537 	if (IS_PF(bp)) {
6538 		/* Initialize MOD_ABS interrupts */
6539 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6540 				       bp->common.shmem_base,
6541 				       bp->common.shmem2_base, BP_PORT(bp));
6542 
6543 		/* initialize the default status block and sp ring */
6544 		bnx2x_init_def_sb(bp);
6545 		bnx2x_update_dsb_idx(bp);
6546 		bnx2x_init_sp_ring(bp);
6547 	} else {
6548 		bnx2x_memset_stats(bp);
6549 	}
6550 }
6551 
6552 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6553 {
6554 	bnx2x_init_eq_ring(bp);
6555 	bnx2x_init_internal(bp, load_code);
6556 	bnx2x_pf_init(bp);
6557 	bnx2x_stats_init(bp);
6558 
6559 	/* flush all before enabling interrupts */
6560 	mb();
6561 
6562 	bnx2x_int_enable(bp);
6563 
6564 	/* Check for SPIO5 */
6565 	bnx2x_attn_int_deasserted0(bp,
6566 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6567 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6568 }
6569 
6570 /* gzip service functions */
6571 static int bnx2x_gunzip_init(struct bnx2x *bp)
6572 {
6573 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6574 					    &bp->gunzip_mapping, GFP_KERNEL);
6575 	if (bp->gunzip_buf  == NULL)
6576 		goto gunzip_nomem1;
6577 
6578 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6579 	if (bp->strm  == NULL)
6580 		goto gunzip_nomem2;
6581 
6582 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6583 	if (bp->strm->workspace == NULL)
6584 		goto gunzip_nomem3;
6585 
6586 	return 0;
6587 
6588 gunzip_nomem3:
6589 	kfree(bp->strm);
6590 	bp->strm = NULL;
6591 
6592 gunzip_nomem2:
6593 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6594 			  bp->gunzip_mapping);
6595 	bp->gunzip_buf = NULL;
6596 
6597 gunzip_nomem1:
6598 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6599 	return -ENOMEM;
6600 }
6601 
6602 static void bnx2x_gunzip_end(struct bnx2x *bp)
6603 {
6604 	if (bp->strm) {
6605 		vfree(bp->strm->workspace);
6606 		kfree(bp->strm);
6607 		bp->strm = NULL;
6608 	}
6609 
6610 	if (bp->gunzip_buf) {
6611 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6612 				  bp->gunzip_mapping);
6613 		bp->gunzip_buf = NULL;
6614 	}
6615 }
6616 
6617 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6618 {
6619 	int n, rc;
6620 
6621 	/* check gzip header */
6622 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6623 		BNX2X_ERR("Bad gzip header\n");
6624 		return -EINVAL;
6625 	}
6626 
6627 	n = 10;
6628 
6629 #define FNAME				0x8
6630 
6631 	if (zbuf[3] & FNAME)
6632 		while ((zbuf[n++] != 0) && (n < len));
6633 
6634 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6635 	bp->strm->avail_in = len - n;
6636 	bp->strm->next_out = bp->gunzip_buf;
6637 	bp->strm->avail_out = FW_BUF_SIZE;
6638 
6639 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6640 	if (rc != Z_OK)
6641 		return rc;
6642 
6643 	rc = zlib_inflate(bp->strm, Z_FINISH);
6644 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6645 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6646 			   bp->strm->msg);
6647 
6648 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6649 	if (bp->gunzip_outlen & 0x3)
6650 		netdev_err(bp->dev,
6651 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6652 				bp->gunzip_outlen);
6653 	bp->gunzip_outlen >>= 2;
6654 
6655 	zlib_inflateEnd(bp->strm);
6656 
6657 	if (rc == Z_STREAM_END)
6658 		return 0;
6659 
6660 	return rc;
6661 }
6662 
6663 /* nic load/unload */
6664 
6665 /*
6666  * General service functions
6667  */
6668 
6669 /* send a NIG loopback debug packet */
6670 static void bnx2x_lb_pckt(struct bnx2x *bp)
6671 {
6672 	u32 wb_write[3];
6673 
6674 	/* Ethernet source and destination addresses */
6675 	wb_write[0] = 0x55555555;
6676 	wb_write[1] = 0x55555555;
6677 	wb_write[2] = 0x20;		/* SOP */
6678 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6679 
6680 	/* NON-IP protocol */
6681 	wb_write[0] = 0x09000000;
6682 	wb_write[1] = 0x55555555;
6683 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6684 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6685 }
6686 
6687 /* some of the internal memories
6688  * are not directly readable from the driver
6689  * to test them we send debug packets
6690  */
6691 static int bnx2x_int_mem_test(struct bnx2x *bp)
6692 {
6693 	int factor;
6694 	int count, i;
6695 	u32 val = 0;
6696 
6697 	if (CHIP_REV_IS_FPGA(bp))
6698 		factor = 120;
6699 	else if (CHIP_REV_IS_EMUL(bp))
6700 		factor = 200;
6701 	else
6702 		factor = 1;
6703 
6704 	/* Disable inputs of parser neighbor blocks */
6705 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6706 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6707 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6708 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6709 
6710 	/*  Write 0 to parser credits for CFC search request */
6711 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6712 
6713 	/* send Ethernet packet */
6714 	bnx2x_lb_pckt(bp);
6715 
6716 	/* TODO do i reset NIG statistic? */
6717 	/* Wait until NIG register shows 1 packet of size 0x10 */
6718 	count = 1000 * factor;
6719 	while (count) {
6720 
6721 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6722 		val = *bnx2x_sp(bp, wb_data[0]);
6723 		if (val == 0x10)
6724 			break;
6725 
6726 		usleep_range(10000, 20000);
6727 		count--;
6728 	}
6729 	if (val != 0x10) {
6730 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6731 		return -1;
6732 	}
6733 
6734 	/* Wait until PRS register shows 1 packet */
6735 	count = 1000 * factor;
6736 	while (count) {
6737 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738 		if (val == 1)
6739 			break;
6740 
6741 		usleep_range(10000, 20000);
6742 		count--;
6743 	}
6744 	if (val != 0x1) {
6745 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6746 		return -2;
6747 	}
6748 
6749 	/* Reset and init BRB, PRS */
6750 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6751 	msleep(50);
6752 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6753 	msleep(50);
6754 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6755 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6756 
6757 	DP(NETIF_MSG_HW, "part2\n");
6758 
6759 	/* Disable inputs of parser neighbor blocks */
6760 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6761 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6762 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6763 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6764 
6765 	/* Write 0 to parser credits for CFC search request */
6766 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6767 
6768 	/* send 10 Ethernet packets */
6769 	for (i = 0; i < 10; i++)
6770 		bnx2x_lb_pckt(bp);
6771 
6772 	/* Wait until NIG register shows 10 + 1
6773 	   packets of size 11*0x10 = 0xb0 */
6774 	count = 1000 * factor;
6775 	while (count) {
6776 
6777 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6778 		val = *bnx2x_sp(bp, wb_data[0]);
6779 		if (val == 0xb0)
6780 			break;
6781 
6782 		usleep_range(10000, 20000);
6783 		count--;
6784 	}
6785 	if (val != 0xb0) {
6786 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6787 		return -3;
6788 	}
6789 
6790 	/* Wait until PRS register shows 2 packets */
6791 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792 	if (val != 2)
6793 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6794 
6795 	/* Write 1 to parser credits for CFC search request */
6796 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6797 
6798 	/* Wait until PRS register shows 3 packets */
6799 	msleep(10 * factor);
6800 	/* Wait until NIG register shows 1 packet of size 0x10 */
6801 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6802 	if (val != 3)
6803 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6804 
6805 	/* clear NIG EOP FIFO */
6806 	for (i = 0; i < 11; i++)
6807 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6808 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6809 	if (val != 1) {
6810 		BNX2X_ERR("clear of NIG failed\n");
6811 		return -4;
6812 	}
6813 
6814 	/* Reset and init BRB, PRS, NIG */
6815 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6816 	msleep(50);
6817 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6818 	msleep(50);
6819 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6820 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6821 	if (!CNIC_SUPPORT(bp))
6822 		/* set NIC mode */
6823 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6824 
6825 	/* Enable inputs of parser neighbor blocks */
6826 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6827 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6828 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6829 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6830 
6831 	DP(NETIF_MSG_HW, "done\n");
6832 
6833 	return 0; /* OK */
6834 }
6835 
6836 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6837 {
6838 	u32 val;
6839 
6840 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6841 	if (!CHIP_IS_E1x(bp))
6842 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6843 	else
6844 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6845 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6846 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6847 	/*
6848 	 * mask read length error interrupts in brb for parser
6849 	 * (parsing unit and 'checksum and crc' unit)
6850 	 * these errors are legal (PU reads fixed length and CAC can cause
6851 	 * read length error on truncated packets)
6852 	 */
6853 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6854 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6855 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6856 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6857 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6858 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6859 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6860 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6861 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6862 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6863 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6864 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6865 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6866 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6867 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6868 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6869 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6870 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6871 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6872 
6873 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6874 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6875 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6876 	if (!CHIP_IS_E1x(bp))
6877 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6878 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6879 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6880 
6881 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6882 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6883 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6884 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6885 
6886 	if (!CHIP_IS_E1x(bp))
6887 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6888 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6889 
6890 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6891 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6892 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6893 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6894 }
6895 
6896 static void bnx2x_reset_common(struct bnx2x *bp)
6897 {
6898 	u32 val = 0x1400;
6899 
6900 	/* reset_common */
6901 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6902 	       0xd3ffff7f);
6903 
6904 	if (CHIP_IS_E3(bp)) {
6905 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6906 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6907 	}
6908 
6909 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6910 }
6911 
6912 static void bnx2x_setup_dmae(struct bnx2x *bp)
6913 {
6914 	bp->dmae_ready = 0;
6915 	spin_lock_init(&bp->dmae_lock);
6916 }
6917 
6918 static void bnx2x_init_pxp(struct bnx2x *bp)
6919 {
6920 	u16 devctl;
6921 	int r_order, w_order;
6922 
6923 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6924 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6925 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6926 	if (bp->mrrs == -1)
6927 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6928 	else {
6929 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6930 		r_order = bp->mrrs;
6931 	}
6932 
6933 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6934 }
6935 
6936 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6937 {
6938 	int is_required;
6939 	u32 val;
6940 	int port;
6941 
6942 	if (BP_NOMCP(bp))
6943 		return;
6944 
6945 	is_required = 0;
6946 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6947 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6948 
6949 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6950 		is_required = 1;
6951 
6952 	/*
6953 	 * The fan failure mechanism is usually related to the PHY type since
6954 	 * the power consumption of the board is affected by the PHY. Currently,
6955 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6956 	 */
6957 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6958 		for (port = PORT_0; port < PORT_MAX; port++) {
6959 			is_required |=
6960 				bnx2x_fan_failure_det_req(
6961 					bp,
6962 					bp->common.shmem_base,
6963 					bp->common.shmem2_base,
6964 					port);
6965 		}
6966 
6967 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6968 
6969 	if (is_required == 0)
6970 		return;
6971 
6972 	/* Fan failure is indicated by SPIO 5 */
6973 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6974 
6975 	/* set to active low mode */
6976 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6977 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6978 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6979 
6980 	/* enable interrupt to signal the IGU */
6981 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6982 	val |= MISC_SPIO_SPIO5;
6983 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6984 }
6985 
6986 void bnx2x_pf_disable(struct bnx2x *bp)
6987 {
6988 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6989 	val &= ~IGU_PF_CONF_FUNC_EN;
6990 
6991 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6992 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6993 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6994 }
6995 
6996 static void bnx2x__common_init_phy(struct bnx2x *bp)
6997 {
6998 	u32 shmem_base[2], shmem2_base[2];
6999 	/* Avoid common init in case MFW supports LFA */
7000 	if (SHMEM2_RD(bp, size) >
7001 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7002 		return;
7003 	shmem_base[0] =  bp->common.shmem_base;
7004 	shmem2_base[0] = bp->common.shmem2_base;
7005 	if (!CHIP_IS_E1x(bp)) {
7006 		shmem_base[1] =
7007 			SHMEM2_RD(bp, other_shmem_base_addr);
7008 		shmem2_base[1] =
7009 			SHMEM2_RD(bp, other_shmem2_base_addr);
7010 	}
7011 	bnx2x_acquire_phy_lock(bp);
7012 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7013 			      bp->common.chip_id);
7014 	bnx2x_release_phy_lock(bp);
7015 }
7016 
7017 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7018 {
7019 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7020 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7021 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7022 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7023 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7024 
7025 	/* make sure this value is 0 */
7026 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7027 
7028 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7029 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7030 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7031 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7032 }
7033 
7034 static void bnx2x_set_endianity(struct bnx2x *bp)
7035 {
7036 #ifdef __BIG_ENDIAN
7037 	bnx2x_config_endianity(bp, 1);
7038 #else
7039 	bnx2x_config_endianity(bp, 0);
7040 #endif
7041 }
7042 
7043 static void bnx2x_reset_endianity(struct bnx2x *bp)
7044 {
7045 	bnx2x_config_endianity(bp, 0);
7046 }
7047 
7048 /**
7049  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7050  *
7051  * @bp:		driver handle
7052  */
7053 static int bnx2x_init_hw_common(struct bnx2x *bp)
7054 {
7055 	u32 val;
7056 
7057 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7058 
7059 	/*
7060 	 * take the RESET lock to protect undi_unload flow from accessing
7061 	 * registers while we're resetting the chip
7062 	 */
7063 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7064 
7065 	bnx2x_reset_common(bp);
7066 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7067 
7068 	val = 0xfffc;
7069 	if (CHIP_IS_E3(bp)) {
7070 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7071 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7072 	}
7073 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7074 
7075 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7076 
7077 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7078 
7079 	if (!CHIP_IS_E1x(bp)) {
7080 		u8 abs_func_id;
7081 
7082 		/**
7083 		 * 4-port mode or 2-port mode we need to turn of master-enable
7084 		 * for everyone, after that, turn it back on for self.
7085 		 * so, we disregard multi-function or not, and always disable
7086 		 * for all functions on the given path, this means 0,2,4,6 for
7087 		 * path 0 and 1,3,5,7 for path 1
7088 		 */
7089 		for (abs_func_id = BP_PATH(bp);
7090 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7091 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7092 				REG_WR(bp,
7093 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7094 				    1);
7095 				continue;
7096 			}
7097 
7098 			bnx2x_pretend_func(bp, abs_func_id);
7099 			/* clear pf enable */
7100 			bnx2x_pf_disable(bp);
7101 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7102 		}
7103 	}
7104 
7105 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7106 	if (CHIP_IS_E1(bp)) {
7107 		/* enable HW interrupt from PXP on USDM overflow
7108 		   bit 16 on INT_MASK_0 */
7109 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7110 	}
7111 
7112 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7113 	bnx2x_init_pxp(bp);
7114 	bnx2x_set_endianity(bp);
7115 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7116 
7117 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7118 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7119 
7120 	/* let the HW do it's magic ... */
7121 	msleep(100);
7122 	/* finish PXP init */
7123 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7124 	if (val != 1) {
7125 		BNX2X_ERR("PXP2 CFG failed\n");
7126 		return -EBUSY;
7127 	}
7128 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7129 	if (val != 1) {
7130 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7131 		return -EBUSY;
7132 	}
7133 
7134 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7135 	 * have entries with value "0" and valid bit on.
7136 	 * This needs to be done by the first PF that is loaded in a path
7137 	 * (i.e. common phase)
7138 	 */
7139 	if (!CHIP_IS_E1x(bp)) {
7140 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7141  * (i.e. vnic3) to start even if it is marked as "scan-off".
7142  * This occurs when a different function (func2,3) is being marked
7143  * as "scan-off". Real-life scenario for example: if a driver is being
7144  * load-unloaded while func6,7 are down. This will cause the timer to access
7145  * the ilt, translate to a logical address and send a request to read/write.
7146  * Since the ilt for the function that is down is not valid, this will cause
7147  * a translation error which is unrecoverable.
7148  * The Workaround is intended to make sure that when this happens nothing fatal
7149  * will occur. The workaround:
7150  *	1.  First PF driver which loads on a path will:
7151  *		a.  After taking the chip out of reset, by using pretend,
7152  *		    it will write "0" to the following registers of
7153  *		    the other vnics.
7154  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7155  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7156  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7157  *		    And for itself it will write '1' to
7158  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7159  *		    dmae-operations (writing to pram for example.)
7160  *		    note: can be done for only function 6,7 but cleaner this
7161  *			  way.
7162  *		b.  Write zero+valid to the entire ILT.
7163  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7164  *		    VNIC3 (of that port). The range allocated will be the
7165  *		    entire ILT. This is needed to prevent  ILT range error.
7166  *	2.  Any PF driver load flow:
7167  *		a.  ILT update with the physical addresses of the allocated
7168  *		    logical pages.
7169  *		b.  Wait 20msec. - note that this timeout is needed to make
7170  *		    sure there are no requests in one of the PXP internal
7171  *		    queues with "old" ILT addresses.
7172  *		c.  PF enable in the PGLC.
7173  *		d.  Clear the was_error of the PF in the PGLC. (could have
7174  *		    occurred while driver was down)
7175  *		e.  PF enable in the CFC (WEAK + STRONG)
7176  *		f.  Timers scan enable
7177  *	3.  PF driver unload flow:
7178  *		a.  Clear the Timers scan_en.
7179  *		b.  Polling for scan_on=0 for that PF.
7180  *		c.  Clear the PF enable bit in the PXP.
7181  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7182  *		e.  Write zero+valid to all ILT entries (The valid bit must
7183  *		    stay set)
7184  *		f.  If this is VNIC 3 of a port then also init
7185  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7186  *		    to the last entry in the ILT.
7187  *
7188  *	Notes:
7189  *	Currently the PF error in the PGLC is non recoverable.
7190  *	In the future the there will be a recovery routine for this error.
7191  *	Currently attention is masked.
7192  *	Having an MCP lock on the load/unload process does not guarantee that
7193  *	there is no Timer disable during Func6/7 enable. This is because the
7194  *	Timers scan is currently being cleared by the MCP on FLR.
7195  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7196  *	there is error before clearing it. But the flow above is simpler and
7197  *	more general.
7198  *	All ILT entries are written by zero+valid and not just PF6/7
7199  *	ILT entries since in the future the ILT entries allocation for
7200  *	PF-s might be dynamic.
7201  */
7202 		struct ilt_client_info ilt_cli;
7203 		struct bnx2x_ilt ilt;
7204 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7205 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7206 
7207 		/* initialize dummy TM client */
7208 		ilt_cli.start = 0;
7209 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7210 		ilt_cli.client_num = ILT_CLIENT_TM;
7211 
7212 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7213 		 * Step 2: set the timers first/last ilt entry to point
7214 		 * to the entire range to prevent ILT range error for 3rd/4th
7215 		 * vnic	(this code assumes existence of the vnic)
7216 		 *
7217 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7218 		 * with dummy TM client
7219 		 *
7220 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7221 		 * and his brother are split registers
7222 		 */
7223 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7224 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7225 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7226 
7227 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7228 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7229 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7230 	}
7231 
7232 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7233 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7234 
7235 	if (!CHIP_IS_E1x(bp)) {
7236 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7237 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7238 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7239 
7240 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7241 
7242 		/* let the HW do it's magic ... */
7243 		do {
7244 			msleep(200);
7245 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7246 		} while (factor-- && (val != 1));
7247 
7248 		if (val != 1) {
7249 			BNX2X_ERR("ATC_INIT failed\n");
7250 			return -EBUSY;
7251 		}
7252 	}
7253 
7254 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7255 
7256 	bnx2x_iov_init_dmae(bp);
7257 
7258 	/* clean the DMAE memory */
7259 	bp->dmae_ready = 1;
7260 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7261 
7262 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7263 
7264 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7265 
7266 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7267 
7268 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7269 
7270 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7271 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7272 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7273 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7274 
7275 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7276 
7277 	/* QM queues pointers table */
7278 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7279 
7280 	/* soft reset pulse */
7281 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7282 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7283 
7284 	if (CNIC_SUPPORT(bp))
7285 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7286 
7287 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7288 
7289 	if (!CHIP_REV_IS_SLOW(bp))
7290 		/* enable hw interrupt from doorbell Q */
7291 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7292 
7293 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7294 
7295 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7296 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7297 
7298 	if (!CHIP_IS_E1(bp))
7299 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7300 
7301 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7302 		if (IS_MF_AFEX(bp)) {
7303 			/* configure that VNTag and VLAN headers must be
7304 			 * received in afex mode
7305 			 */
7306 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7307 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7308 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7309 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7310 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7311 		} else {
7312 			/* Bit-map indicating which L2 hdrs may appear
7313 			 * after the basic Ethernet header
7314 			 */
7315 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7316 			       bp->path_has_ovlan ? 7 : 6);
7317 		}
7318 	}
7319 
7320 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7321 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7322 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7323 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7324 
7325 	if (!CHIP_IS_E1x(bp)) {
7326 		/* reset VFC memories */
7327 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7328 			   VFC_MEMORIES_RST_REG_CAM_RST |
7329 			   VFC_MEMORIES_RST_REG_RAM_RST);
7330 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7331 			   VFC_MEMORIES_RST_REG_CAM_RST |
7332 			   VFC_MEMORIES_RST_REG_RAM_RST);
7333 
7334 		msleep(20);
7335 	}
7336 
7337 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7338 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7339 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7340 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7341 
7342 	/* sync semi rtc */
7343 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7344 	       0x80000000);
7345 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7346 	       0x80000000);
7347 
7348 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7349 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7350 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7351 
7352 	if (!CHIP_IS_E1x(bp)) {
7353 		if (IS_MF_AFEX(bp)) {
7354 			/* configure that VNTag and VLAN headers must be
7355 			 * sent in afex mode
7356 			 */
7357 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7358 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7359 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7360 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7361 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7362 		} else {
7363 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7364 			       bp->path_has_ovlan ? 7 : 6);
7365 		}
7366 	}
7367 
7368 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7369 
7370 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7371 
7372 	if (CNIC_SUPPORT(bp)) {
7373 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7374 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7375 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7376 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7377 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7378 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7379 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7380 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7381 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7382 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7383 	}
7384 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7385 
7386 	if (sizeof(union cdu_context) != 1024)
7387 		/* we currently assume that a context is 1024 bytes */
7388 		dev_alert(&bp->pdev->dev,
7389 			  "please adjust the size of cdu_context(%ld)\n",
7390 			  (long)sizeof(union cdu_context));
7391 
7392 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7393 	val = (4 << 24) + (0 << 12) + 1024;
7394 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7395 
7396 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7397 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7398 	/* enable context validation interrupt from CFC */
7399 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7400 
7401 	/* set the thresholds to prevent CFC/CDU race */
7402 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7403 
7404 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7405 
7406 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7407 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7408 
7409 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7410 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7411 
7412 	/* Reset PCIE errors for debug */
7413 	REG_WR(bp, 0x2814, 0xffffffff);
7414 	REG_WR(bp, 0x3820, 0xffffffff);
7415 
7416 	if (!CHIP_IS_E1x(bp)) {
7417 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7418 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7419 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7420 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7421 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7422 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7423 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7424 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7425 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7426 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7427 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7428 	}
7429 
7430 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7431 	if (!CHIP_IS_E1(bp)) {
7432 		/* in E3 this done in per-port section */
7433 		if (!CHIP_IS_E3(bp))
7434 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7435 	}
7436 	if (CHIP_IS_E1H(bp))
7437 		/* not applicable for E2 (and above ...) */
7438 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7439 
7440 	if (CHIP_REV_IS_SLOW(bp))
7441 		msleep(200);
7442 
7443 	/* finish CFC init */
7444 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7445 	if (val != 1) {
7446 		BNX2X_ERR("CFC LL_INIT failed\n");
7447 		return -EBUSY;
7448 	}
7449 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7450 	if (val != 1) {
7451 		BNX2X_ERR("CFC AC_INIT failed\n");
7452 		return -EBUSY;
7453 	}
7454 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7455 	if (val != 1) {
7456 		BNX2X_ERR("CFC CAM_INIT failed\n");
7457 		return -EBUSY;
7458 	}
7459 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7460 
7461 	if (CHIP_IS_E1(bp)) {
7462 		/* read NIG statistic
7463 		   to see if this is our first up since powerup */
7464 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7465 		val = *bnx2x_sp(bp, wb_data[0]);
7466 
7467 		/* do internal memory self test */
7468 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7469 			BNX2X_ERR("internal mem self test failed\n");
7470 			return -EBUSY;
7471 		}
7472 	}
7473 
7474 	bnx2x_setup_fan_failure_detection(bp);
7475 
7476 	/* clear PXP2 attentions */
7477 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7478 
7479 	bnx2x_enable_blocks_attention(bp);
7480 	bnx2x_enable_blocks_parity(bp);
7481 
7482 	if (!BP_NOMCP(bp)) {
7483 		if (CHIP_IS_E1x(bp))
7484 			bnx2x__common_init_phy(bp);
7485 	} else
7486 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7487 
7488 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7489 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7490 
7491 	return 0;
7492 }
7493 
7494 /**
7495  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7496  *
7497  * @bp:		driver handle
7498  */
7499 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7500 {
7501 	int rc = bnx2x_init_hw_common(bp);
7502 
7503 	if (rc)
7504 		return rc;
7505 
7506 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7507 	if (!BP_NOMCP(bp))
7508 		bnx2x__common_init_phy(bp);
7509 
7510 	return 0;
7511 }
7512 
7513 static int bnx2x_init_hw_port(struct bnx2x *bp)
7514 {
7515 	int port = BP_PORT(bp);
7516 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7517 	u32 low, high;
7518 	u32 val, reg;
7519 
7520 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7521 
7522 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7523 
7524 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7525 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7526 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7527 
7528 	/* Timers bug workaround: disables the pf_master bit in pglue at
7529 	 * common phase, we need to enable it here before any dmae access are
7530 	 * attempted. Therefore we manually added the enable-master to the
7531 	 * port phase (it also happens in the function phase)
7532 	 */
7533 	if (!CHIP_IS_E1x(bp))
7534 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7535 
7536 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7537 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7538 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7539 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7540 
7541 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7542 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7543 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7544 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7545 
7546 	/* QM cid (connection) count */
7547 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7548 
7549 	if (CNIC_SUPPORT(bp)) {
7550 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7551 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7552 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7553 	}
7554 
7555 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7556 
7557 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7558 
7559 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7560 
7561 		if (IS_MF(bp))
7562 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7563 		else if (bp->dev->mtu > 4096) {
7564 			if (bp->flags & ONE_PORT_FLAG)
7565 				low = 160;
7566 			else {
7567 				val = bp->dev->mtu;
7568 				/* (24*1024 + val*4)/256 */
7569 				low = 96 + (val/64) +
7570 						((val % 64) ? 1 : 0);
7571 			}
7572 		} else
7573 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7574 		high = low + 56;	/* 14*1024/256 */
7575 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7576 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7577 	}
7578 
7579 	if (CHIP_MODE_IS_4_PORT(bp))
7580 		REG_WR(bp, (BP_PORT(bp) ?
7581 			    BRB1_REG_MAC_GUARANTIED_1 :
7582 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7583 
7584 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7585 	if (CHIP_IS_E3B0(bp)) {
7586 		if (IS_MF_AFEX(bp)) {
7587 			/* configure headers for AFEX mode */
7588 			REG_WR(bp, BP_PORT(bp) ?
7589 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7590 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7591 			REG_WR(bp, BP_PORT(bp) ?
7592 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7593 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7594 			REG_WR(bp, BP_PORT(bp) ?
7595 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7596 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7597 		} else {
7598 			/* Ovlan exists only if we are in multi-function +
7599 			 * switch-dependent mode, in switch-independent there
7600 			 * is no ovlan headers
7601 			 */
7602 			REG_WR(bp, BP_PORT(bp) ?
7603 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7604 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7605 			       (bp->path_has_ovlan ? 7 : 6));
7606 		}
7607 	}
7608 
7609 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7610 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7613 
7614 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7615 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7617 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7618 
7619 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7620 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7621 
7622 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7623 
7624 	if (CHIP_IS_E1x(bp)) {
7625 		/* configure PBF to work without PAUSE mtu 9000 */
7626 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7627 
7628 		/* update threshold */
7629 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7630 		/* update init credit */
7631 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7632 
7633 		/* probe changes */
7634 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7635 		udelay(50);
7636 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7637 	}
7638 
7639 	if (CNIC_SUPPORT(bp))
7640 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7641 
7642 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7643 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7644 
7645 	if (CHIP_IS_E1(bp)) {
7646 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7647 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7648 	}
7649 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7650 
7651 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7652 
7653 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7654 	/* init aeu_mask_attn_func_0/1:
7655 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7656 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7657 	 *             bits 4-7 are used for "per vn group attention" */
7658 	val = IS_MF(bp) ? 0xF7 : 0x7;
7659 	/* Enable DCBX attention for all but E1 */
7660 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7661 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7662 
7663 	/* SCPAD_PARITY should NOT trigger close the gates */
7664 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7665 	REG_WR(bp, reg,
7666 	       REG_RD(bp, reg) &
7667 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7668 
7669 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7670 	REG_WR(bp, reg,
7671 	       REG_RD(bp, reg) &
7672 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7673 
7674 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7675 
7676 	if (!CHIP_IS_E1x(bp)) {
7677 		/* Bit-map indicating which L2 hdrs may appear after the
7678 		 * basic Ethernet header
7679 		 */
7680 		if (IS_MF_AFEX(bp))
7681 			REG_WR(bp, BP_PORT(bp) ?
7682 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7683 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7684 		else
7685 			REG_WR(bp, BP_PORT(bp) ?
7686 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7687 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7688 			       IS_MF_SD(bp) ? 7 : 6);
7689 
7690 		if (CHIP_IS_E3(bp))
7691 			REG_WR(bp, BP_PORT(bp) ?
7692 				   NIG_REG_LLH1_MF_MODE :
7693 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7694 	}
7695 	if (!CHIP_IS_E3(bp))
7696 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7697 
7698 	if (!CHIP_IS_E1(bp)) {
7699 		/* 0x2 disable mf_ov, 0x1 enable */
7700 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7701 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7702 
7703 		if (!CHIP_IS_E1x(bp)) {
7704 			val = 0;
7705 			switch (bp->mf_mode) {
7706 			case MULTI_FUNCTION_SD:
7707 				val = 1;
7708 				break;
7709 			case MULTI_FUNCTION_SI:
7710 			case MULTI_FUNCTION_AFEX:
7711 				val = 2;
7712 				break;
7713 			}
7714 
7715 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7716 						  NIG_REG_LLH0_CLS_TYPE), val);
7717 		}
7718 		{
7719 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7720 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7721 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7722 		}
7723 	}
7724 
7725 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7726 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7727 	if (val & MISC_SPIO_SPIO5) {
7728 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7729 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7730 		val = REG_RD(bp, reg_addr);
7731 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7732 		REG_WR(bp, reg_addr, val);
7733 	}
7734 
7735 	if (CHIP_IS_E3B0(bp))
7736 		bp->flags |= PTP_SUPPORTED;
7737 
7738 	return 0;
7739 }
7740 
7741 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7742 {
7743 	int reg;
7744 	u32 wb_write[2];
7745 
7746 	if (CHIP_IS_E1(bp))
7747 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7748 	else
7749 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7750 
7751 	wb_write[0] = ONCHIP_ADDR1(addr);
7752 	wb_write[1] = ONCHIP_ADDR2(addr);
7753 	REG_WR_DMAE(bp, reg, wb_write, 2);
7754 }
7755 
7756 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7757 {
7758 	u32 data, ctl, cnt = 100;
7759 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7760 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7761 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7762 	u32 sb_bit =  1 << (idu_sb_id%32);
7763 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7764 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7765 
7766 	/* Not supported in BC mode */
7767 	if (CHIP_INT_MODE_IS_BC(bp))
7768 		return;
7769 
7770 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7771 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7772 		IGU_REGULAR_CLEANUP_SET				|
7773 		IGU_REGULAR_BCLEANUP;
7774 
7775 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7776 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7777 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7778 
7779 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7780 			 data, igu_addr_data);
7781 	REG_WR(bp, igu_addr_data, data);
7782 	barrier();
7783 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7784 			  ctl, igu_addr_ctl);
7785 	REG_WR(bp, igu_addr_ctl, ctl);
7786 	barrier();
7787 
7788 	/* wait for clean up to finish */
7789 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7790 		msleep(20);
7791 
7792 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7793 		DP(NETIF_MSG_HW,
7794 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7795 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7796 	}
7797 }
7798 
7799 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7800 {
7801 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7802 }
7803 
7804 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7805 {
7806 	u32 i, base = FUNC_ILT_BASE(func);
7807 	for (i = base; i < base + ILT_PER_FUNC; i++)
7808 		bnx2x_ilt_wr(bp, i, 0);
7809 }
7810 
7811 static void bnx2x_init_searcher(struct bnx2x *bp)
7812 {
7813 	int port = BP_PORT(bp);
7814 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7815 	/* T1 hash bits value determines the T1 number of entries */
7816 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7817 }
7818 
7819 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7820 {
7821 	int rc;
7822 	struct bnx2x_func_state_params func_params = {NULL};
7823 	struct bnx2x_func_switch_update_params *switch_update_params =
7824 		&func_params.params.switch_update;
7825 
7826 	/* Prepare parameters for function state transitions */
7827 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7828 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7829 
7830 	func_params.f_obj = &bp->func_obj;
7831 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7832 
7833 	/* Function parameters */
7834 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7835 		  &switch_update_params->changes);
7836 	if (suspend)
7837 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7838 			  &switch_update_params->changes);
7839 
7840 	rc = bnx2x_func_state_change(bp, &func_params);
7841 
7842 	return rc;
7843 }
7844 
7845 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7846 {
7847 	int rc, i, port = BP_PORT(bp);
7848 	int vlan_en = 0, mac_en[NUM_MACS];
7849 
7850 	/* Close input from network */
7851 	if (bp->mf_mode == SINGLE_FUNCTION) {
7852 		bnx2x_set_rx_filter(&bp->link_params, 0);
7853 	} else {
7854 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855 				   NIG_REG_LLH0_FUNC_EN);
7856 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7857 			  NIG_REG_LLH0_FUNC_EN, 0);
7858 		for (i = 0; i < NUM_MACS; i++) {
7859 			mac_en[i] = REG_RD(bp, port ?
7860 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7861 					      4 * i) :
7862 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7863 					      4 * i));
7864 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7865 					      4 * i) :
7866 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7867 		}
7868 	}
7869 
7870 	/* Close BMC to host */
7871 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7872 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7873 
7874 	/* Suspend Tx switching to the PF. Completion of this ramrod
7875 	 * further guarantees that all the packets of that PF / child
7876 	 * VFs in BRB were processed by the Parser, so it is safe to
7877 	 * change the NIC_MODE register.
7878 	 */
7879 	rc = bnx2x_func_switch_update(bp, 1);
7880 	if (rc) {
7881 		BNX2X_ERR("Can't suspend tx-switching!\n");
7882 		return rc;
7883 	}
7884 
7885 	/* Change NIC_MODE register */
7886 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7887 
7888 	/* Open input from network */
7889 	if (bp->mf_mode == SINGLE_FUNCTION) {
7890 		bnx2x_set_rx_filter(&bp->link_params, 1);
7891 	} else {
7892 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7893 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7894 		for (i = 0; i < NUM_MACS; i++) {
7895 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7896 					      4 * i) :
7897 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7898 				  mac_en[i]);
7899 		}
7900 	}
7901 
7902 	/* Enable BMC to host */
7903 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7904 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7905 
7906 	/* Resume Tx switching to the PF */
7907 	rc = bnx2x_func_switch_update(bp, 0);
7908 	if (rc) {
7909 		BNX2X_ERR("Can't resume tx-switching!\n");
7910 		return rc;
7911 	}
7912 
7913 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7914 	return 0;
7915 }
7916 
7917 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7918 {
7919 	int rc;
7920 
7921 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7922 
7923 	if (CONFIGURE_NIC_MODE(bp)) {
7924 		/* Configure searcher as part of function hw init */
7925 		bnx2x_init_searcher(bp);
7926 
7927 		/* Reset NIC mode */
7928 		rc = bnx2x_reset_nic_mode(bp);
7929 		if (rc)
7930 			BNX2X_ERR("Can't change NIC mode!\n");
7931 		return rc;
7932 	}
7933 
7934 	return 0;
7935 }
7936 
7937 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7938  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7939  * the addresses of the transaction, resulting in was-error bit set in the pci
7940  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7941  * to clear the interrupt which detected this from the pglueb and the was done
7942  * bit
7943  */
7944 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7945 {
7946 	if (!CHIP_IS_E1x(bp))
7947 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7948 		       1 << BP_ABS_FUNC(bp));
7949 }
7950 
7951 static int bnx2x_init_hw_func(struct bnx2x *bp)
7952 {
7953 	int port = BP_PORT(bp);
7954 	int func = BP_FUNC(bp);
7955 	int init_phase = PHASE_PF0 + func;
7956 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7957 	u16 cdu_ilt_start;
7958 	u32 addr, val;
7959 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7960 	int i, main_mem_width, rc;
7961 
7962 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7963 
7964 	/* FLR cleanup - hmmm */
7965 	if (!CHIP_IS_E1x(bp)) {
7966 		rc = bnx2x_pf_flr_clnup(bp);
7967 		if (rc) {
7968 			bnx2x_fw_dump(bp);
7969 			return rc;
7970 		}
7971 	}
7972 
7973 	/* set MSI reconfigure capability */
7974 	if (bp->common.int_block == INT_BLOCK_HC) {
7975 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7976 		val = REG_RD(bp, addr);
7977 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7978 		REG_WR(bp, addr, val);
7979 	}
7980 
7981 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7982 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7983 
7984 	ilt = BP_ILT(bp);
7985 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7986 
7987 	if (IS_SRIOV(bp))
7988 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7989 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7990 
7991 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7992 	 * those of the VFs, so start line should be reset
7993 	 */
7994 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7995 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7996 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7997 		ilt->lines[cdu_ilt_start + i].page_mapping =
7998 			bp->context[i].cxt_mapping;
7999 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8000 	}
8001 
8002 	bnx2x_ilt_init_op(bp, INITOP_SET);
8003 
8004 	if (!CONFIGURE_NIC_MODE(bp)) {
8005 		bnx2x_init_searcher(bp);
8006 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8007 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8008 	} else {
8009 		/* Set NIC mode */
8010 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8011 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8012 	}
8013 
8014 	if (!CHIP_IS_E1x(bp)) {
8015 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8016 
8017 		/* Turn on a single ISR mode in IGU if driver is going to use
8018 		 * INT#x or MSI
8019 		 */
8020 		if (!(bp->flags & USING_MSIX_FLAG))
8021 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8022 		/*
8023 		 * Timers workaround bug: function init part.
8024 		 * Need to wait 20msec after initializing ILT,
8025 		 * needed to make sure there are no requests in
8026 		 * one of the PXP internal queues with "old" ILT addresses
8027 		 */
8028 		msleep(20);
8029 		/*
8030 		 * Master enable - Due to WB DMAE writes performed before this
8031 		 * register is re-initialized as part of the regular function
8032 		 * init
8033 		 */
8034 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8035 		/* Enable the function in IGU */
8036 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8037 	}
8038 
8039 	bp->dmae_ready = 1;
8040 
8041 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8042 
8043 	bnx2x_clean_pglue_errors(bp);
8044 
8045 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8048 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8058 
8059 	if (!CHIP_IS_E1x(bp))
8060 		REG_WR(bp, QM_REG_PF_EN, 1);
8061 
8062 	if (!CHIP_IS_E1x(bp)) {
8063 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067 	}
8068 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8069 
8070 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8071 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8072 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8073 
8074 	bnx2x_iov_init_dq(bp);
8075 
8076 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8077 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8078 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8079 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8080 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8081 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8082 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8083 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8084 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8085 	if (!CHIP_IS_E1x(bp))
8086 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8087 
8088 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8089 
8090 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8091 
8092 	if (!CHIP_IS_E1x(bp))
8093 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8094 
8095 	if (IS_MF(bp)) {
8096 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8097 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8098 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8099 			       bp->mf_ov);
8100 		}
8101 	}
8102 
8103 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8104 
8105 	/* HC init per function */
8106 	if (bp->common.int_block == INT_BLOCK_HC) {
8107 		if (CHIP_IS_E1H(bp)) {
8108 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109 
8110 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8111 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8112 		}
8113 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8114 
8115 	} else {
8116 		int num_segs, sb_idx, prod_offset;
8117 
8118 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8119 
8120 		if (!CHIP_IS_E1x(bp)) {
8121 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8122 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8123 		}
8124 
8125 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8126 
8127 		if (!CHIP_IS_E1x(bp)) {
8128 			int dsb_idx = 0;
8129 			/**
8130 			 * Producer memory:
8131 			 * E2 mode: address 0-135 match to the mapping memory;
8132 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8133 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8134 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8135 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8136 			 * 144-147 reserved.
8137 			 *
8138 			 * E1.5 mode - In backward compatible mode;
8139 			 * for non default SB; each even line in the memory
8140 			 * holds the U producer and each odd line hold
8141 			 * the C producer. The first 128 producers are for
8142 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8143 			 * producers are for the DSB for each PF.
8144 			 * Each PF has five segments: (the order inside each
8145 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8146 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8147 			 * 144-147 attn prods;
8148 			 */
8149 			/* non-default-status-blocks */
8150 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8151 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8152 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8153 				prod_offset = (bp->igu_base_sb + sb_idx) *
8154 					num_segs;
8155 
8156 				for (i = 0; i < num_segs; i++) {
8157 					addr = IGU_REG_PROD_CONS_MEMORY +
8158 							(prod_offset + i) * 4;
8159 					REG_WR(bp, addr, 0);
8160 				}
8161 				/* send consumer update with value 0 */
8162 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8163 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8164 				bnx2x_igu_clear_sb(bp,
8165 						   bp->igu_base_sb + sb_idx);
8166 			}
8167 
8168 			/* default-status-blocks */
8169 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8170 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8171 
8172 			if (CHIP_MODE_IS_4_PORT(bp))
8173 				dsb_idx = BP_FUNC(bp);
8174 			else
8175 				dsb_idx = BP_VN(bp);
8176 
8177 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8178 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8179 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8180 
8181 			/*
8182 			 * igu prods come in chunks of E1HVN_MAX (4) -
8183 			 * does not matters what is the current chip mode
8184 			 */
8185 			for (i = 0; i < (num_segs * E1HVN_MAX);
8186 			     i += E1HVN_MAX) {
8187 				addr = IGU_REG_PROD_CONS_MEMORY +
8188 							(prod_offset + i)*4;
8189 				REG_WR(bp, addr, 0);
8190 			}
8191 			/* send consumer update with 0 */
8192 			if (CHIP_INT_MODE_IS_BC(bp)) {
8193 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8195 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8197 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8199 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8201 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8202 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8203 			} else {
8204 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8206 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8207 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8208 			}
8209 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8210 
8211 			/* !!! These should become driver const once
8212 			   rf-tool supports split-68 const */
8213 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8214 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8215 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8216 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8217 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8218 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8219 		}
8220 	}
8221 
8222 	/* Reset PCIE errors for debug */
8223 	REG_WR(bp, 0x2114, 0xffffffff);
8224 	REG_WR(bp, 0x2120, 0xffffffff);
8225 
8226 	if (CHIP_IS_E1x(bp)) {
8227 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8228 		main_mem_base = HC_REG_MAIN_MEMORY +
8229 				BP_PORT(bp) * (main_mem_size * 4);
8230 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8231 		main_mem_width = 8;
8232 
8233 		val = REG_RD(bp, main_mem_prty_clr);
8234 		if (val)
8235 			DP(NETIF_MSG_HW,
8236 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8237 			   val);
8238 
8239 		/* Clear "false" parity errors in MSI-X table */
8240 		for (i = main_mem_base;
8241 		     i < main_mem_base + main_mem_size * 4;
8242 		     i += main_mem_width) {
8243 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8244 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8245 					 i, main_mem_width / 4);
8246 		}
8247 		/* Clear HC parity attention */
8248 		REG_RD(bp, main_mem_prty_clr);
8249 	}
8250 
8251 #ifdef BNX2X_STOP_ON_ERROR
8252 	/* Enable STORMs SP logging */
8253 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8254 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8256 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8258 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8260 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8261 #endif
8262 
8263 	bnx2x_phy_probe(&bp->link_params);
8264 
8265 	return 0;
8266 }
8267 
8268 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8269 {
8270 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8271 
8272 	if (!CHIP_IS_E1x(bp))
8273 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8274 			       sizeof(struct host_hc_status_block_e2));
8275 	else
8276 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8277 			       sizeof(struct host_hc_status_block_e1x));
8278 
8279 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8280 }
8281 
8282 void bnx2x_free_mem(struct bnx2x *bp)
8283 {
8284 	int i;
8285 
8286 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8287 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8288 
8289 	if (IS_VF(bp))
8290 		return;
8291 
8292 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8293 		       sizeof(struct host_sp_status_block));
8294 
8295 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8296 		       sizeof(struct bnx2x_slowpath));
8297 
8298 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8299 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8300 			       bp->context[i].size);
8301 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8302 
8303 	BNX2X_FREE(bp->ilt->lines);
8304 
8305 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8306 
8307 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8308 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8309 
8310 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8311 
8312 	bnx2x_iov_free_mem(bp);
8313 }
8314 
8315 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8316 {
8317 	if (!CHIP_IS_E1x(bp)) {
8318 		/* size = the status block + ramrod buffers */
8319 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8320 						    sizeof(struct host_hc_status_block_e2));
8321 		if (!bp->cnic_sb.e2_sb)
8322 			goto alloc_mem_err;
8323 	} else {
8324 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8325 						     sizeof(struct host_hc_status_block_e1x));
8326 		if (!bp->cnic_sb.e1x_sb)
8327 			goto alloc_mem_err;
8328 	}
8329 
8330 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8331 		/* allocate searcher T2 table, as it wasn't allocated before */
8332 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8333 		if (!bp->t2)
8334 			goto alloc_mem_err;
8335 	}
8336 
8337 	/* write address to which L5 should insert its values */
8338 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8339 		&bp->slowpath->drv_info_to_mcp;
8340 
8341 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8342 		goto alloc_mem_err;
8343 
8344 	return 0;
8345 
8346 alloc_mem_err:
8347 	bnx2x_free_mem_cnic(bp);
8348 	BNX2X_ERR("Can't allocate memory\n");
8349 	return -ENOMEM;
8350 }
8351 
8352 int bnx2x_alloc_mem(struct bnx2x *bp)
8353 {
8354 	int i, allocated, context_size;
8355 
8356 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8357 		/* allocate searcher T2 table */
8358 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8359 		if (!bp->t2)
8360 			goto alloc_mem_err;
8361 	}
8362 
8363 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8364 					     sizeof(struct host_sp_status_block));
8365 	if (!bp->def_status_blk)
8366 		goto alloc_mem_err;
8367 
8368 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8369 				       sizeof(struct bnx2x_slowpath));
8370 	if (!bp->slowpath)
8371 		goto alloc_mem_err;
8372 
8373 	/* Allocate memory for CDU context:
8374 	 * This memory is allocated separately and not in the generic ILT
8375 	 * functions because CDU differs in few aspects:
8376 	 * 1. There are multiple entities allocating memory for context -
8377 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8378 	 * its own ILT lines.
8379 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8380 	 * for the other ILT clients), to be efficient we want to support
8381 	 * allocation of sub-page-size in the last entry.
8382 	 * 3. Context pointers are used by the driver to pass to FW / update
8383 	 * the context (for the other ILT clients the pointers are used just to
8384 	 * free the memory during unload).
8385 	 */
8386 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8387 
8388 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8389 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8390 					  (context_size - allocated));
8391 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8392 						      bp->context[i].size);
8393 		if (!bp->context[i].vcxt)
8394 			goto alloc_mem_err;
8395 		allocated += bp->context[i].size;
8396 	}
8397 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8398 				 GFP_KERNEL);
8399 	if (!bp->ilt->lines)
8400 		goto alloc_mem_err;
8401 
8402 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8403 		goto alloc_mem_err;
8404 
8405 	if (bnx2x_iov_alloc_mem(bp))
8406 		goto alloc_mem_err;
8407 
8408 	/* Slow path ring */
8409 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8410 	if (!bp->spq)
8411 		goto alloc_mem_err;
8412 
8413 	/* EQ */
8414 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8415 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8416 	if (!bp->eq_ring)
8417 		goto alloc_mem_err;
8418 
8419 	return 0;
8420 
8421 alloc_mem_err:
8422 	bnx2x_free_mem(bp);
8423 	BNX2X_ERR("Can't allocate memory\n");
8424 	return -ENOMEM;
8425 }
8426 
8427 /*
8428  * Init service functions
8429  */
8430 
8431 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8432 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8433 		      int mac_type, unsigned long *ramrod_flags)
8434 {
8435 	int rc;
8436 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8437 
8438 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8439 
8440 	/* Fill general parameters */
8441 	ramrod_param.vlan_mac_obj = obj;
8442 	ramrod_param.ramrod_flags = *ramrod_flags;
8443 
8444 	/* Fill a user request section if needed */
8445 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8446 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8447 
8448 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8449 
8450 		/* Set the command: ADD or DEL */
8451 		if (set)
8452 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8453 		else
8454 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8455 	}
8456 
8457 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8458 
8459 	if (rc == -EEXIST) {
8460 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8461 		/* do not treat adding same MAC as error */
8462 		rc = 0;
8463 	} else if (rc < 0)
8464 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8465 
8466 	return rc;
8467 }
8468 
8469 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8470 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8471 		       unsigned long *ramrod_flags)
8472 {
8473 	int rc;
8474 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8475 
8476 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8477 
8478 	/* Fill general parameters */
8479 	ramrod_param.vlan_mac_obj = obj;
8480 	ramrod_param.ramrod_flags = *ramrod_flags;
8481 
8482 	/* Fill a user request section if needed */
8483 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8484 		ramrod_param.user_req.u.vlan.vlan = vlan;
8485 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8486 		/* Set the command: ADD or DEL */
8487 		if (set)
8488 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8489 		else
8490 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8491 	}
8492 
8493 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8494 
8495 	if (rc == -EEXIST) {
8496 		/* Do not treat adding same vlan as error. */
8497 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8498 		rc = 0;
8499 	} else if (rc < 0) {
8500 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8501 	}
8502 
8503 	return rc;
8504 }
8505 
8506 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8507 {
8508 	struct bnx2x_vlan_entry *vlan;
8509 
8510 	/* Mark that hw forgot all entries */
8511 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8512 		vlan->hw = false;
8513 
8514 	bp->vlan_cnt = 0;
8515 }
8516 
8517 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8518 {
8519 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8520 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8521 	int rc;
8522 
8523 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8524 	__set_bit(BNX2X_VLAN, &vlan_flags);
8525 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8526 	if (rc)
8527 		return rc;
8528 
8529 	bnx2x_clear_vlan_info(bp);
8530 
8531 	return 0;
8532 }
8533 
8534 int bnx2x_del_all_macs(struct bnx2x *bp,
8535 		       struct bnx2x_vlan_mac_obj *mac_obj,
8536 		       int mac_type, bool wait_for_comp)
8537 {
8538 	int rc;
8539 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8540 
8541 	/* Wait for completion of requested */
8542 	if (wait_for_comp)
8543 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8544 
8545 	/* Set the mac type of addresses we want to clear */
8546 	__set_bit(mac_type, &vlan_mac_flags);
8547 
8548 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8549 	if (rc < 0)
8550 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8551 
8552 	return rc;
8553 }
8554 
8555 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8556 {
8557 	if (IS_PF(bp)) {
8558 		unsigned long ramrod_flags = 0;
8559 
8560 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8561 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8562 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8563 					 &bp->sp_objs->mac_obj, set,
8564 					 BNX2X_ETH_MAC, &ramrod_flags);
8565 	} else { /* vf */
8566 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8567 					     bp->fp->index, set);
8568 	}
8569 }
8570 
8571 int bnx2x_setup_leading(struct bnx2x *bp)
8572 {
8573 	if (IS_PF(bp))
8574 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8575 	else /* VF */
8576 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8577 }
8578 
8579 /**
8580  * bnx2x_set_int_mode - configure interrupt mode
8581  *
8582  * @bp:		driver handle
8583  *
8584  * In case of MSI-X it will also try to enable MSI-X.
8585  */
8586 int bnx2x_set_int_mode(struct bnx2x *bp)
8587 {
8588 	int rc = 0;
8589 
8590 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8591 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8592 		return -EINVAL;
8593 	}
8594 
8595 	switch (int_mode) {
8596 	case BNX2X_INT_MODE_MSIX:
8597 		/* attempt to enable msix */
8598 		rc = bnx2x_enable_msix(bp);
8599 
8600 		/* msix attained */
8601 		if (!rc)
8602 			return 0;
8603 
8604 		/* vfs use only msix */
8605 		if (rc && IS_VF(bp))
8606 			return rc;
8607 
8608 		/* failed to enable multiple MSI-X */
8609 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8610 			       bp->num_queues,
8611 			       1 + bp->num_cnic_queues);
8612 
8613 		fallthrough;
8614 	case BNX2X_INT_MODE_MSI:
8615 		bnx2x_enable_msi(bp);
8616 
8617 		fallthrough;
8618 	case BNX2X_INT_MODE_INTX:
8619 		bp->num_ethernet_queues = 1;
8620 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8621 		BNX2X_DEV_INFO("set number of queues to 1\n");
8622 		break;
8623 	default:
8624 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8625 		return -EINVAL;
8626 	}
8627 	return 0;
8628 }
8629 
8630 /* must be called prior to any HW initializations */
8631 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8632 {
8633 	if (IS_SRIOV(bp))
8634 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8635 	return L2_ILT_LINES(bp);
8636 }
8637 
8638 void bnx2x_ilt_set_info(struct bnx2x *bp)
8639 {
8640 	struct ilt_client_info *ilt_client;
8641 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8642 	u16 line = 0;
8643 
8644 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8645 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8646 
8647 	/* CDU */
8648 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8649 	ilt_client->client_num = ILT_CLIENT_CDU;
8650 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8651 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8652 	ilt_client->start = line;
8653 	line += bnx2x_cid_ilt_lines(bp);
8654 
8655 	if (CNIC_SUPPORT(bp))
8656 		line += CNIC_ILT_LINES;
8657 	ilt_client->end = line - 1;
8658 
8659 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8660 	   ilt_client->start,
8661 	   ilt_client->end,
8662 	   ilt_client->page_size,
8663 	   ilt_client->flags,
8664 	   ilog2(ilt_client->page_size >> 12));
8665 
8666 	/* QM */
8667 	if (QM_INIT(bp->qm_cid_count)) {
8668 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8669 		ilt_client->client_num = ILT_CLIENT_QM;
8670 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8671 		ilt_client->flags = 0;
8672 		ilt_client->start = line;
8673 
8674 		/* 4 bytes for each cid */
8675 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8676 							 QM_ILT_PAGE_SZ);
8677 
8678 		ilt_client->end = line - 1;
8679 
8680 		DP(NETIF_MSG_IFUP,
8681 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8682 		   ilt_client->start,
8683 		   ilt_client->end,
8684 		   ilt_client->page_size,
8685 		   ilt_client->flags,
8686 		   ilog2(ilt_client->page_size >> 12));
8687 	}
8688 
8689 	if (CNIC_SUPPORT(bp)) {
8690 		/* SRC */
8691 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8692 		ilt_client->client_num = ILT_CLIENT_SRC;
8693 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8694 		ilt_client->flags = 0;
8695 		ilt_client->start = line;
8696 		line += SRC_ILT_LINES;
8697 		ilt_client->end = line - 1;
8698 
8699 		DP(NETIF_MSG_IFUP,
8700 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8701 		   ilt_client->start,
8702 		   ilt_client->end,
8703 		   ilt_client->page_size,
8704 		   ilt_client->flags,
8705 		   ilog2(ilt_client->page_size >> 12));
8706 
8707 		/* TM */
8708 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8709 		ilt_client->client_num = ILT_CLIENT_TM;
8710 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8711 		ilt_client->flags = 0;
8712 		ilt_client->start = line;
8713 		line += TM_ILT_LINES;
8714 		ilt_client->end = line - 1;
8715 
8716 		DP(NETIF_MSG_IFUP,
8717 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8718 		   ilt_client->start,
8719 		   ilt_client->end,
8720 		   ilt_client->page_size,
8721 		   ilt_client->flags,
8722 		   ilog2(ilt_client->page_size >> 12));
8723 	}
8724 
8725 	BUG_ON(line > ILT_MAX_LINES);
8726 }
8727 
8728 /**
8729  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8730  *
8731  * @bp:			driver handle
8732  * @fp:			pointer to fastpath
8733  * @init_params:	pointer to parameters structure
8734  *
8735  * parameters configured:
8736  *      - HC configuration
8737  *      - Queue's CDU context
8738  */
8739 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8740 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8741 {
8742 	u8 cos;
8743 	int cxt_index, cxt_offset;
8744 
8745 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8746 	if (!IS_FCOE_FP(fp)) {
8747 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8748 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8749 
8750 		/* If HC is supported, enable host coalescing in the transition
8751 		 * to INIT state.
8752 		 */
8753 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8754 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8755 
8756 		/* HC rate */
8757 		init_params->rx.hc_rate = bp->rx_ticks ?
8758 			(1000000 / bp->rx_ticks) : 0;
8759 		init_params->tx.hc_rate = bp->tx_ticks ?
8760 			(1000000 / bp->tx_ticks) : 0;
8761 
8762 		/* FW SB ID */
8763 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8764 			fp->fw_sb_id;
8765 
8766 		/*
8767 		 * CQ index among the SB indices: FCoE clients uses the default
8768 		 * SB, therefore it's different.
8769 		 */
8770 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8771 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8772 	}
8773 
8774 	/* set maximum number of COSs supported by this queue */
8775 	init_params->max_cos = fp->max_cos;
8776 
8777 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8778 	    fp->index, init_params->max_cos);
8779 
8780 	/* set the context pointers queue object */
8781 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8782 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8783 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8784 				ILT_PAGE_CIDS);
8785 		init_params->cxts[cos] =
8786 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8787 	}
8788 }
8789 
8790 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8791 			struct bnx2x_queue_state_params *q_params,
8792 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8793 			int tx_index, bool leading)
8794 {
8795 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8796 
8797 	/* Set the command */
8798 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8799 
8800 	/* Set tx-only QUEUE flags: don't zero statistics */
8801 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8802 
8803 	/* choose the index of the cid to send the slow path on */
8804 	tx_only_params->cid_index = tx_index;
8805 
8806 	/* Set general TX_ONLY_SETUP parameters */
8807 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8808 
8809 	/* Set Tx TX_ONLY_SETUP parameters */
8810 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8811 
8812 	DP(NETIF_MSG_IFUP,
8813 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8814 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8815 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8816 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8817 
8818 	/* send the ramrod */
8819 	return bnx2x_queue_state_change(bp, q_params);
8820 }
8821 
8822 /**
8823  * bnx2x_setup_queue - setup queue
8824  *
8825  * @bp:		driver handle
8826  * @fp:		pointer to fastpath
8827  * @leading:	is leading
8828  *
8829  * This function performs 2 steps in a Queue state machine
8830  *      actually: 1) RESET->INIT 2) INIT->SETUP
8831  */
8832 
8833 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8834 		       bool leading)
8835 {
8836 	struct bnx2x_queue_state_params q_params = {NULL};
8837 	struct bnx2x_queue_setup_params *setup_params =
8838 						&q_params.params.setup;
8839 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8840 						&q_params.params.tx_only;
8841 	int rc;
8842 	u8 tx_index;
8843 
8844 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8845 
8846 	/* reset IGU state skip FCoE L2 queue */
8847 	if (!IS_FCOE_FP(fp))
8848 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8849 			     IGU_INT_ENABLE, 0);
8850 
8851 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8852 	/* We want to wait for completion in this context */
8853 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8854 
8855 	/* Prepare the INIT parameters */
8856 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8857 
8858 	/* Set the command */
8859 	q_params.cmd = BNX2X_Q_CMD_INIT;
8860 
8861 	/* Change the state to INIT */
8862 	rc = bnx2x_queue_state_change(bp, &q_params);
8863 	if (rc) {
8864 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8865 		return rc;
8866 	}
8867 
8868 	DP(NETIF_MSG_IFUP, "init complete\n");
8869 
8870 	/* Now move the Queue to the SETUP state... */
8871 	memset(setup_params, 0, sizeof(*setup_params));
8872 
8873 	/* Set QUEUE flags */
8874 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8875 
8876 	/* Set general SETUP parameters */
8877 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8878 				FIRST_TX_COS_INDEX);
8879 
8880 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8881 			    &setup_params->rxq_params);
8882 
8883 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8884 			   FIRST_TX_COS_INDEX);
8885 
8886 	/* Set the command */
8887 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8888 
8889 	if (IS_FCOE_FP(fp))
8890 		bp->fcoe_init = true;
8891 
8892 	/* Change the state to SETUP */
8893 	rc = bnx2x_queue_state_change(bp, &q_params);
8894 	if (rc) {
8895 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8896 		return rc;
8897 	}
8898 
8899 	/* loop through the relevant tx-only indices */
8900 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8901 	      tx_index < fp->max_cos;
8902 	      tx_index++) {
8903 
8904 		/* prepare and send tx-only ramrod*/
8905 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8906 					  tx_only_params, tx_index, leading);
8907 		if (rc) {
8908 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8909 				  fp->index, tx_index);
8910 			return rc;
8911 		}
8912 	}
8913 
8914 	return rc;
8915 }
8916 
8917 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8918 {
8919 	struct bnx2x_fastpath *fp = &bp->fp[index];
8920 	struct bnx2x_fp_txdata *txdata;
8921 	struct bnx2x_queue_state_params q_params = {NULL};
8922 	int rc, tx_index;
8923 
8924 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8925 
8926 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8927 	/* We want to wait for completion in this context */
8928 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8929 
8930 	/* close tx-only connections */
8931 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8932 	     tx_index < fp->max_cos;
8933 	     tx_index++){
8934 
8935 		/* ascertain this is a normal queue*/
8936 		txdata = fp->txdata_ptr[tx_index];
8937 
8938 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8939 							txdata->txq_index);
8940 
8941 		/* send halt terminate on tx-only connection */
8942 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8943 		memset(&q_params.params.terminate, 0,
8944 		       sizeof(q_params.params.terminate));
8945 		q_params.params.terminate.cid_index = tx_index;
8946 
8947 		rc = bnx2x_queue_state_change(bp, &q_params);
8948 		if (rc)
8949 			return rc;
8950 
8951 		/* send halt terminate on tx-only connection */
8952 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8953 		memset(&q_params.params.cfc_del, 0,
8954 		       sizeof(q_params.params.cfc_del));
8955 		q_params.params.cfc_del.cid_index = tx_index;
8956 		rc = bnx2x_queue_state_change(bp, &q_params);
8957 		if (rc)
8958 			return rc;
8959 	}
8960 	/* Stop the primary connection: */
8961 	/* ...halt the connection */
8962 	q_params.cmd = BNX2X_Q_CMD_HALT;
8963 	rc = bnx2x_queue_state_change(bp, &q_params);
8964 	if (rc)
8965 		return rc;
8966 
8967 	/* ...terminate the connection */
8968 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8969 	memset(&q_params.params.terminate, 0,
8970 	       sizeof(q_params.params.terminate));
8971 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8972 	rc = bnx2x_queue_state_change(bp, &q_params);
8973 	if (rc)
8974 		return rc;
8975 	/* ...delete cfc entry */
8976 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8977 	memset(&q_params.params.cfc_del, 0,
8978 	       sizeof(q_params.params.cfc_del));
8979 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8980 	return bnx2x_queue_state_change(bp, &q_params);
8981 }
8982 
8983 static void bnx2x_reset_func(struct bnx2x *bp)
8984 {
8985 	int port = BP_PORT(bp);
8986 	int func = BP_FUNC(bp);
8987 	int i;
8988 
8989 	/* Disable the function in the FW */
8990 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8991 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8992 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8993 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8994 
8995 	/* FP SBs */
8996 	for_each_eth_queue(bp, i) {
8997 		struct bnx2x_fastpath *fp = &bp->fp[i];
8998 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8999 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9000 			   SB_DISABLED);
9001 	}
9002 
9003 	if (CNIC_LOADED(bp))
9004 		/* CNIC SB */
9005 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9006 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9007 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9008 
9009 	/* SP SB */
9010 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9011 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9012 		SB_DISABLED);
9013 
9014 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9015 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9016 		       0);
9017 
9018 	/* Configure IGU */
9019 	if (bp->common.int_block == INT_BLOCK_HC) {
9020 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9021 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9022 	} else {
9023 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9024 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9025 	}
9026 
9027 	if (CNIC_LOADED(bp)) {
9028 		/* Disable Timer scan */
9029 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9030 		/*
9031 		 * Wait for at least 10ms and up to 2 second for the timers
9032 		 * scan to complete
9033 		 */
9034 		for (i = 0; i < 200; i++) {
9035 			usleep_range(10000, 20000);
9036 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9037 				break;
9038 		}
9039 	}
9040 	/* Clear ILT */
9041 	bnx2x_clear_func_ilt(bp, func);
9042 
9043 	/* Timers workaround bug for E2: if this is vnic-3,
9044 	 * we need to set the entire ilt range for this timers.
9045 	 */
9046 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9047 		struct ilt_client_info ilt_cli;
9048 		/* use dummy TM client */
9049 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9050 		ilt_cli.start = 0;
9051 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9052 		ilt_cli.client_num = ILT_CLIENT_TM;
9053 
9054 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9055 	}
9056 
9057 	/* this assumes that reset_port() called before reset_func()*/
9058 	if (!CHIP_IS_E1x(bp))
9059 		bnx2x_pf_disable(bp);
9060 
9061 	bp->dmae_ready = 0;
9062 }
9063 
9064 static void bnx2x_reset_port(struct bnx2x *bp)
9065 {
9066 	int port = BP_PORT(bp);
9067 	u32 val;
9068 
9069 	/* Reset physical Link */
9070 	bnx2x__link_reset(bp);
9071 
9072 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9073 
9074 	/* Do not rcv packets to BRB */
9075 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9076 	/* Do not direct rcv packets that are not for MCP to the BRB */
9077 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9078 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9079 
9080 	/* Configure AEU */
9081 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9082 
9083 	msleep(100);
9084 	/* Check for BRB port occupancy */
9085 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9086 	if (val)
9087 		DP(NETIF_MSG_IFDOWN,
9088 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9089 
9090 	/* TODO: Close Doorbell port? */
9091 }
9092 
9093 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9094 {
9095 	struct bnx2x_func_state_params func_params = {NULL};
9096 
9097 	/* Prepare parameters for function state transitions */
9098 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9099 
9100 	func_params.f_obj = &bp->func_obj;
9101 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9102 
9103 	func_params.params.hw_init.load_phase = load_code;
9104 
9105 	return bnx2x_func_state_change(bp, &func_params);
9106 }
9107 
9108 static int bnx2x_func_stop(struct bnx2x *bp)
9109 {
9110 	struct bnx2x_func_state_params func_params = {NULL};
9111 	int rc;
9112 
9113 	/* Prepare parameters for function state transitions */
9114 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9115 	func_params.f_obj = &bp->func_obj;
9116 	func_params.cmd = BNX2X_F_CMD_STOP;
9117 
9118 	/*
9119 	 * Try to stop the function the 'good way'. If fails (in case
9120 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9121 	 * not in a debug mode, perform a state transaction in order to
9122 	 * enable further HW_RESET transaction.
9123 	 */
9124 	rc = bnx2x_func_state_change(bp, &func_params);
9125 	if (rc) {
9126 #ifdef BNX2X_STOP_ON_ERROR
9127 		return rc;
9128 #else
9129 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9130 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9131 		return bnx2x_func_state_change(bp, &func_params);
9132 #endif
9133 	}
9134 
9135 	return 0;
9136 }
9137 
9138 /**
9139  * bnx2x_send_unload_req - request unload mode from the MCP.
9140  *
9141  * @bp:			driver handle
9142  * @unload_mode:	requested function's unload mode
9143  *
9144  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9145  */
9146 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9147 {
9148 	u32 reset_code = 0;
9149 	int port = BP_PORT(bp);
9150 
9151 	/* Select the UNLOAD request mode */
9152 	if (unload_mode == UNLOAD_NORMAL)
9153 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9154 
9155 	else if (bp->flags & NO_WOL_FLAG)
9156 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9157 
9158 	else if (bp->wol) {
9159 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9160 		const u8 *mac_addr = bp->dev->dev_addr;
9161 		struct pci_dev *pdev = bp->pdev;
9162 		u32 val;
9163 		u16 pmc;
9164 
9165 		/* The mac address is written to entries 1-4 to
9166 		 * preserve entry 0 which is used by the PMF
9167 		 */
9168 		u8 entry = (BP_VN(bp) + 1)*8;
9169 
9170 		val = (mac_addr[0] << 8) | mac_addr[1];
9171 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9172 
9173 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9174 		      (mac_addr[4] << 8) | mac_addr[5];
9175 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9176 
9177 		/* Enable the PME and clear the status */
9178 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9179 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9180 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9181 
9182 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9183 
9184 	} else
9185 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9186 
9187 	/* Send the request to the MCP */
9188 	if (!BP_NOMCP(bp))
9189 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9190 	else {
9191 		int path = BP_PATH(bp);
9192 
9193 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9194 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9195 		   bnx2x_load_count[path][2]);
9196 		bnx2x_load_count[path][0]--;
9197 		bnx2x_load_count[path][1 + port]--;
9198 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9199 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9200 		   bnx2x_load_count[path][2]);
9201 		if (bnx2x_load_count[path][0] == 0)
9202 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9203 		else if (bnx2x_load_count[path][1 + port] == 0)
9204 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9205 		else
9206 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9207 	}
9208 
9209 	return reset_code;
9210 }
9211 
9212 /**
9213  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9214  *
9215  * @bp:		driver handle
9216  * @keep_link:		true iff link should be kept up
9217  */
9218 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9219 {
9220 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9221 
9222 	/* Report UNLOAD_DONE to MCP */
9223 	if (!BP_NOMCP(bp))
9224 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9225 }
9226 
9227 static int bnx2x_func_wait_started(struct bnx2x *bp)
9228 {
9229 	int tout = 50;
9230 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9231 
9232 	if (!bp->port.pmf)
9233 		return 0;
9234 
9235 	/*
9236 	 * (assumption: No Attention from MCP at this stage)
9237 	 * PMF probably in the middle of TX disable/enable transaction
9238 	 * 1. Sync IRS for default SB
9239 	 * 2. Sync SP queue - this guarantees us that attention handling started
9240 	 * 3. Wait, that TX disable/enable transaction completes
9241 	 *
9242 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9243 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9244 	 * received completion for the transaction the state is TX_STOPPED.
9245 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9246 	 * transaction.
9247 	 */
9248 
9249 	/* make sure default SB ISR is done */
9250 	if (msix)
9251 		synchronize_irq(bp->msix_table[0].vector);
9252 	else
9253 		synchronize_irq(bp->pdev->irq);
9254 
9255 	flush_workqueue(bnx2x_wq);
9256 	flush_workqueue(bnx2x_iov_wq);
9257 
9258 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9259 				BNX2X_F_STATE_STARTED && tout--)
9260 		msleep(20);
9261 
9262 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9263 						BNX2X_F_STATE_STARTED) {
9264 #ifdef BNX2X_STOP_ON_ERROR
9265 		BNX2X_ERR("Wrong function state\n");
9266 		return -EBUSY;
9267 #else
9268 		/*
9269 		 * Failed to complete the transaction in a "good way"
9270 		 * Force both transactions with CLR bit
9271 		 */
9272 		struct bnx2x_func_state_params func_params = {NULL};
9273 
9274 		DP(NETIF_MSG_IFDOWN,
9275 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9276 
9277 		func_params.f_obj = &bp->func_obj;
9278 		__set_bit(RAMROD_DRV_CLR_ONLY,
9279 					&func_params.ramrod_flags);
9280 
9281 		/* STARTED-->TX_ST0PPED */
9282 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9283 		bnx2x_func_state_change(bp, &func_params);
9284 
9285 		/* TX_ST0PPED-->STARTED */
9286 		func_params.cmd = BNX2X_F_CMD_TX_START;
9287 		return bnx2x_func_state_change(bp, &func_params);
9288 #endif
9289 	}
9290 
9291 	return 0;
9292 }
9293 
9294 static void bnx2x_disable_ptp(struct bnx2x *bp)
9295 {
9296 	int port = BP_PORT(bp);
9297 
9298 	/* Disable sending PTP packets to host */
9299 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9300 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9301 
9302 	/* Reset PTP event detection rules */
9303 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9304 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9305 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9306 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9307 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9308 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9309 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9310 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9311 
9312 	/* Disable the PTP feature */
9313 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9314 	       NIG_REG_P0_PTP_EN, 0x0);
9315 }
9316 
9317 /* Called during unload, to stop PTP-related stuff */
9318 static void bnx2x_stop_ptp(struct bnx2x *bp)
9319 {
9320 	/* Cancel PTP work queue. Should be done after the Tx queues are
9321 	 * drained to prevent additional scheduling.
9322 	 */
9323 	cancel_work_sync(&bp->ptp_task);
9324 
9325 	if (bp->ptp_tx_skb) {
9326 		dev_kfree_skb_any(bp->ptp_tx_skb);
9327 		bp->ptp_tx_skb = NULL;
9328 	}
9329 
9330 	/* Disable PTP in HW */
9331 	bnx2x_disable_ptp(bp);
9332 
9333 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9334 }
9335 
9336 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9337 {
9338 	int port = BP_PORT(bp);
9339 	int i, rc = 0;
9340 	u8 cos;
9341 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9342 	u32 reset_code;
9343 
9344 	/* Wait until tx fastpath tasks complete */
9345 	for_each_tx_queue(bp, i) {
9346 		struct bnx2x_fastpath *fp = &bp->fp[i];
9347 
9348 		for_each_cos_in_tx_queue(fp, cos)
9349 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9350 #ifdef BNX2X_STOP_ON_ERROR
9351 		if (rc)
9352 			return;
9353 #endif
9354 	}
9355 
9356 	/* Give HW time to discard old tx messages */
9357 	usleep_range(1000, 2000);
9358 
9359 	/* Clean all ETH MACs */
9360 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9361 				false);
9362 	if (rc < 0)
9363 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9364 
9365 	/* Clean up UC list  */
9366 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9367 				true);
9368 	if (rc < 0)
9369 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9370 			  rc);
9371 
9372 	/* The whole *vlan_obj structure may be not initialized if VLAN
9373 	 * filtering offload is not supported by hardware. Currently this is
9374 	 * true for all hardware covered by CHIP_IS_E1x().
9375 	 */
9376 	if (!CHIP_IS_E1x(bp)) {
9377 		/* Remove all currently configured VLANs */
9378 		rc = bnx2x_del_all_vlans(bp);
9379 		if (rc < 0)
9380 			BNX2X_ERR("Failed to delete all VLANs\n");
9381 	}
9382 
9383 	/* Disable LLH */
9384 	if (!CHIP_IS_E1(bp))
9385 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9386 
9387 	/* Set "drop all" (stop Rx).
9388 	 * We need to take a netif_addr_lock() here in order to prevent
9389 	 * a race between the completion code and this code.
9390 	 */
9391 	netif_addr_lock_bh(bp->dev);
9392 	/* Schedule the rx_mode command */
9393 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9394 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9395 	else if (bp->slowpath)
9396 		bnx2x_set_storm_rx_mode(bp);
9397 
9398 	/* Cleanup multicast configuration */
9399 	rparam.mcast_obj = &bp->mcast_obj;
9400 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9401 	if (rc < 0)
9402 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9403 
9404 	netif_addr_unlock_bh(bp->dev);
9405 
9406 	bnx2x_iov_chip_cleanup(bp);
9407 
9408 	/*
9409 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9410 	 * this function should perform FUNC, PORT or COMMON HW
9411 	 * reset.
9412 	 */
9413 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9414 
9415 	/*
9416 	 * (assumption: No Attention from MCP at this stage)
9417 	 * PMF probably in the middle of TX disable/enable transaction
9418 	 */
9419 	rc = bnx2x_func_wait_started(bp);
9420 	if (rc) {
9421 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9422 #ifdef BNX2X_STOP_ON_ERROR
9423 		return;
9424 #endif
9425 	}
9426 
9427 	/* Close multi and leading connections
9428 	 * Completions for ramrods are collected in a synchronous way
9429 	 */
9430 	for_each_eth_queue(bp, i)
9431 		if (bnx2x_stop_queue(bp, i))
9432 #ifdef BNX2X_STOP_ON_ERROR
9433 			return;
9434 #else
9435 			goto unload_error;
9436 #endif
9437 
9438 	if (CNIC_LOADED(bp)) {
9439 		for_each_cnic_queue(bp, i)
9440 			if (bnx2x_stop_queue(bp, i))
9441 #ifdef BNX2X_STOP_ON_ERROR
9442 				return;
9443 #else
9444 				goto unload_error;
9445 #endif
9446 	}
9447 
9448 	/* If SP settings didn't get completed so far - something
9449 	 * very wrong has happen.
9450 	 */
9451 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9452 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9453 
9454 #ifndef BNX2X_STOP_ON_ERROR
9455 unload_error:
9456 #endif
9457 	rc = bnx2x_func_stop(bp);
9458 	if (rc) {
9459 		BNX2X_ERR("Function stop failed!\n");
9460 #ifdef BNX2X_STOP_ON_ERROR
9461 		return;
9462 #endif
9463 	}
9464 
9465 	/* stop_ptp should be after the Tx queues are drained to prevent
9466 	 * scheduling to the cancelled PTP work queue. It should also be after
9467 	 * function stop ramrod is sent, since as part of this ramrod FW access
9468 	 * PTP registers.
9469 	 */
9470 	if (bp->flags & PTP_SUPPORTED) {
9471 		bnx2x_stop_ptp(bp);
9472 		if (bp->ptp_clock) {
9473 			ptp_clock_unregister(bp->ptp_clock);
9474 			bp->ptp_clock = NULL;
9475 		}
9476 	}
9477 
9478 	/* Disable HW interrupts, NAPI */
9479 	bnx2x_netif_stop(bp, 1);
9480 	/* Delete all NAPI objects */
9481 	bnx2x_del_all_napi(bp);
9482 	if (CNIC_LOADED(bp))
9483 		bnx2x_del_all_napi_cnic(bp);
9484 
9485 	/* Release IRQs */
9486 	bnx2x_free_irq(bp);
9487 
9488 	/* Reset the chip, unless PCI function is offline. If we reach this
9489 	 * point following a PCI error handling, it means device is really
9490 	 * in a bad state and we're about to remove it, so reset the chip
9491 	 * is not a good idea.
9492 	 */
9493 	if (!pci_channel_offline(bp->pdev)) {
9494 		rc = bnx2x_reset_hw(bp, reset_code);
9495 		if (rc)
9496 			BNX2X_ERR("HW_RESET failed\n");
9497 	}
9498 
9499 	/* Report UNLOAD_DONE to MCP */
9500 	bnx2x_send_unload_done(bp, keep_link);
9501 }
9502 
9503 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9504 {
9505 	u32 val;
9506 
9507 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9508 
9509 	if (CHIP_IS_E1(bp)) {
9510 		int port = BP_PORT(bp);
9511 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9512 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9513 
9514 		val = REG_RD(bp, addr);
9515 		val &= ~(0x300);
9516 		REG_WR(bp, addr, val);
9517 	} else {
9518 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9519 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9520 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9521 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9522 	}
9523 }
9524 
9525 /* Close gates #2, #3 and #4: */
9526 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9527 {
9528 	u32 val;
9529 
9530 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9531 	if (!CHIP_IS_E1(bp)) {
9532 		/* #4 */
9533 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9534 		/* #2 */
9535 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9536 	}
9537 
9538 	/* #3 */
9539 	if (CHIP_IS_E1x(bp)) {
9540 		/* Prevent interrupts from HC on both ports */
9541 		val = REG_RD(bp, HC_REG_CONFIG_1);
9542 		REG_WR(bp, HC_REG_CONFIG_1,
9543 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9544 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9545 
9546 		val = REG_RD(bp, HC_REG_CONFIG_0);
9547 		REG_WR(bp, HC_REG_CONFIG_0,
9548 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9549 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9550 	} else {
9551 		/* Prevent incoming interrupts in IGU */
9552 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9553 
9554 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9555 		       (!close) ?
9556 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9557 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9558 	}
9559 
9560 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9561 		close ? "closing" : "opening");
9562 }
9563 
9564 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9565 
9566 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9567 {
9568 	/* Do some magic... */
9569 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9570 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9571 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9572 }
9573 
9574 /**
9575  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9576  *
9577  * @bp:		driver handle
9578  * @magic_val:	old value of the `magic' bit.
9579  */
9580 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9581 {
9582 	/* Restore the `magic' bit value... */
9583 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9584 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9585 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9586 }
9587 
9588 /**
9589  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9590  *
9591  * @bp:		driver handle
9592  * @magic_val:	old value of 'magic' bit.
9593  *
9594  * Takes care of CLP configurations.
9595  */
9596 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9597 {
9598 	u32 shmem;
9599 	u32 validity_offset;
9600 
9601 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9602 
9603 	/* Set `magic' bit in order to save MF config */
9604 	if (!CHIP_IS_E1(bp))
9605 		bnx2x_clp_reset_prep(bp, magic_val);
9606 
9607 	/* Get shmem offset */
9608 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9609 	validity_offset =
9610 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9611 
9612 	/* Clear validity map flags */
9613 	if (shmem > 0)
9614 		REG_WR(bp, shmem + validity_offset, 0);
9615 }
9616 
9617 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9618 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9619 
9620 /**
9621  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9622  *
9623  * @bp:	driver handle
9624  */
9625 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9626 {
9627 	/* special handling for emulation and FPGA,
9628 	   wait 10 times longer */
9629 	if (CHIP_REV_IS_SLOW(bp))
9630 		msleep(MCP_ONE_TIMEOUT*10);
9631 	else
9632 		msleep(MCP_ONE_TIMEOUT);
9633 }
9634 
9635 /*
9636  * initializes bp->common.shmem_base and waits for validity signature to appear
9637  */
9638 static int bnx2x_init_shmem(struct bnx2x *bp)
9639 {
9640 	int cnt = 0;
9641 	u32 val = 0;
9642 
9643 	do {
9644 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9645 
9646 		/* If we read all 0xFFs, means we are in PCI error state and
9647 		 * should bail out to avoid crashes on adapter's FW reads.
9648 		 */
9649 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9650 			bp->flags |= NO_MCP_FLAG;
9651 			return -ENODEV;
9652 		}
9653 
9654 		if (bp->common.shmem_base) {
9655 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9656 			if (val & SHR_MEM_VALIDITY_MB)
9657 				return 0;
9658 		}
9659 
9660 		bnx2x_mcp_wait_one(bp);
9661 
9662 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9663 
9664 	BNX2X_ERR("BAD MCP validity signature\n");
9665 
9666 	return -ENODEV;
9667 }
9668 
9669 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9670 {
9671 	int rc = bnx2x_init_shmem(bp);
9672 
9673 	/* Restore the `magic' bit value */
9674 	if (!CHIP_IS_E1(bp))
9675 		bnx2x_clp_reset_done(bp, magic_val);
9676 
9677 	return rc;
9678 }
9679 
9680 static void bnx2x_pxp_prep(struct bnx2x *bp)
9681 {
9682 	if (!CHIP_IS_E1(bp)) {
9683 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9684 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9685 	}
9686 }
9687 
9688 /*
9689  * Reset the whole chip except for:
9690  *      - PCIE core
9691  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9692  *              one reset bit)
9693  *      - IGU
9694  *      - MISC (including AEU)
9695  *      - GRC
9696  *      - RBCN, RBCP
9697  */
9698 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9699 {
9700 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9701 	u32 global_bits2, stay_reset2;
9702 
9703 	/*
9704 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9705 	 * (per chip) blocks.
9706 	 */
9707 	global_bits2 =
9708 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9709 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9710 
9711 	/* Don't reset the following blocks.
9712 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9713 	 *            reset, as in 4 port device they might still be owned
9714 	 *            by the MCP (there is only one leader per path).
9715 	 */
9716 	not_reset_mask1 =
9717 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9718 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9719 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9720 
9721 	not_reset_mask2 =
9722 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9723 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9724 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9725 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9726 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9727 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9728 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9729 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9730 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9731 		MISC_REGISTERS_RESET_REG_2_PGLC |
9732 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9733 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9734 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9735 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9736 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9737 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9738 
9739 	/*
9740 	 * Keep the following blocks in reset:
9741 	 *  - all xxMACs are handled by the bnx2x_link code.
9742 	 */
9743 	stay_reset2 =
9744 		MISC_REGISTERS_RESET_REG_2_XMAC |
9745 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9746 
9747 	/* Full reset masks according to the chip */
9748 	reset_mask1 = 0xffffffff;
9749 
9750 	if (CHIP_IS_E1(bp))
9751 		reset_mask2 = 0xffff;
9752 	else if (CHIP_IS_E1H(bp))
9753 		reset_mask2 = 0x1ffff;
9754 	else if (CHIP_IS_E2(bp))
9755 		reset_mask2 = 0xfffff;
9756 	else /* CHIP_IS_E3 */
9757 		reset_mask2 = 0x3ffffff;
9758 
9759 	/* Don't reset global blocks unless we need to */
9760 	if (!global)
9761 		reset_mask2 &= ~global_bits2;
9762 
9763 	/*
9764 	 * In case of attention in the QM, we need to reset PXP
9765 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9766 	 * because otherwise QM reset would release 'close the gates' shortly
9767 	 * before resetting the PXP, then the PSWRQ would send a write
9768 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9769 	 * read the payload data from PSWWR, but PSWWR would not
9770 	 * respond. The write queue in PGLUE would stuck, dmae commands
9771 	 * would not return. Therefore it's important to reset the second
9772 	 * reset register (containing the
9773 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9774 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9775 	 * bit).
9776 	 */
9777 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9778 	       reset_mask2 & (~not_reset_mask2));
9779 
9780 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9781 	       reset_mask1 & (~not_reset_mask1));
9782 
9783 	barrier();
9784 
9785 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9786 	       reset_mask2 & (~stay_reset2));
9787 
9788 	barrier();
9789 
9790 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9791 }
9792 
9793 /**
9794  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9795  * It should get cleared in no more than 1s.
9796  *
9797  * @bp:	driver handle
9798  *
9799  * It should get cleared in no more than 1s. Returns 0 if
9800  * pending writes bit gets cleared.
9801  */
9802 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9803 {
9804 	u32 cnt = 1000;
9805 	u32 pend_bits = 0;
9806 
9807 	do {
9808 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9809 
9810 		if (pend_bits == 0)
9811 			break;
9812 
9813 		usleep_range(1000, 2000);
9814 	} while (cnt-- > 0);
9815 
9816 	if (cnt <= 0) {
9817 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9818 			  pend_bits);
9819 		return -EBUSY;
9820 	}
9821 
9822 	return 0;
9823 }
9824 
9825 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9826 {
9827 	int cnt = 1000;
9828 	u32 val = 0;
9829 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9830 	u32 tags_63_32 = 0;
9831 
9832 	/* Empty the Tetris buffer, wait for 1s */
9833 	do {
9834 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9835 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9836 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9837 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9838 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9839 		if (CHIP_IS_E3(bp))
9840 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9841 
9842 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9843 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9844 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9845 		    (pgl_exp_rom2 == 0xffffffff) &&
9846 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9847 			break;
9848 		usleep_range(1000, 2000);
9849 	} while (cnt-- > 0);
9850 
9851 	if (cnt <= 0) {
9852 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9853 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9854 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9855 			  pgl_exp_rom2);
9856 		return -EAGAIN;
9857 	}
9858 
9859 	barrier();
9860 
9861 	/* Close gates #2, #3 and #4 */
9862 	bnx2x_set_234_gates(bp, true);
9863 
9864 	/* Poll for IGU VQs for 57712 and newer chips */
9865 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9866 		return -EAGAIN;
9867 
9868 	/* TBD: Indicate that "process kill" is in progress to MCP */
9869 
9870 	/* Clear "unprepared" bit */
9871 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9872 	barrier();
9873 
9874 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9875 	 * PSWHST, GRC and PSWRD Tetris buffer.
9876 	 */
9877 	usleep_range(1000, 2000);
9878 
9879 	/* Prepare to chip reset: */
9880 	/* MCP */
9881 	if (global)
9882 		bnx2x_reset_mcp_prep(bp, &val);
9883 
9884 	/* PXP */
9885 	bnx2x_pxp_prep(bp);
9886 	barrier();
9887 
9888 	/* reset the chip */
9889 	bnx2x_process_kill_chip_reset(bp, global);
9890 	barrier();
9891 
9892 	/* clear errors in PGB */
9893 	if (!CHIP_IS_E1x(bp))
9894 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9895 
9896 	/* Recover after reset: */
9897 	/* MCP */
9898 	if (global && bnx2x_reset_mcp_comp(bp, val))
9899 		return -EAGAIN;
9900 
9901 	/* TBD: Add resetting the NO_MCP mode DB here */
9902 
9903 	/* Open the gates #2, #3 and #4 */
9904 	bnx2x_set_234_gates(bp, false);
9905 
9906 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9907 	 * reset state, re-enable attentions. */
9908 
9909 	return 0;
9910 }
9911 
9912 static int bnx2x_leader_reset(struct bnx2x *bp)
9913 {
9914 	int rc = 0;
9915 	bool global = bnx2x_reset_is_global(bp);
9916 	u32 load_code;
9917 
9918 	/* if not going to reset MCP - load "fake" driver to reset HW while
9919 	 * driver is owner of the HW
9920 	 */
9921 	if (!global && !BP_NOMCP(bp)) {
9922 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9923 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9924 		if (!load_code) {
9925 			BNX2X_ERR("MCP response failure, aborting\n");
9926 			rc = -EAGAIN;
9927 			goto exit_leader_reset;
9928 		}
9929 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9930 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9931 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9932 			rc = -EAGAIN;
9933 			goto exit_leader_reset2;
9934 		}
9935 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9936 		if (!load_code) {
9937 			BNX2X_ERR("MCP response failure, aborting\n");
9938 			rc = -EAGAIN;
9939 			goto exit_leader_reset2;
9940 		}
9941 	}
9942 
9943 	/* Try to recover after the failure */
9944 	if (bnx2x_process_kill(bp, global)) {
9945 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9946 			  BP_PATH(bp));
9947 		rc = -EAGAIN;
9948 		goto exit_leader_reset2;
9949 	}
9950 
9951 	/*
9952 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9953 	 * state.
9954 	 */
9955 	bnx2x_set_reset_done(bp);
9956 	if (global)
9957 		bnx2x_clear_reset_global(bp);
9958 
9959 exit_leader_reset2:
9960 	/* unload "fake driver" if it was loaded */
9961 	if (!global && !BP_NOMCP(bp)) {
9962 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9963 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9964 	}
9965 exit_leader_reset:
9966 	bp->is_leader = 0;
9967 	bnx2x_release_leader_lock(bp);
9968 	smp_mb();
9969 	return rc;
9970 }
9971 
9972 static void bnx2x_recovery_failed(struct bnx2x *bp)
9973 {
9974 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9975 
9976 	/* Disconnect this device */
9977 	netif_device_detach(bp->dev);
9978 
9979 	/*
9980 	 * Block ifup for all function on this engine until "process kill"
9981 	 * or power cycle.
9982 	 */
9983 	bnx2x_set_reset_in_progress(bp);
9984 
9985 	/* Shut down the power */
9986 	bnx2x_set_power_state(bp, PCI_D3hot);
9987 
9988 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9989 
9990 	smp_mb();
9991 }
9992 
9993 /*
9994  * Assumption: runs under rtnl lock. This together with the fact
9995  * that it's called only from bnx2x_sp_rtnl() ensure that it
9996  * will never be called when netif_running(bp->dev) is false.
9997  */
9998 static void bnx2x_parity_recover(struct bnx2x *bp)
9999 {
10000 	u32 error_recovered, error_unrecovered;
10001 	bool is_parity, global = false;
10002 #ifdef CONFIG_BNX2X_SRIOV
10003 	int vf_idx;
10004 
10005 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10006 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10007 
10008 		if (vf)
10009 			vf->state = VF_LOST;
10010 	}
10011 #endif
10012 	DP(NETIF_MSG_HW, "Handling parity\n");
10013 	while (1) {
10014 		switch (bp->recovery_state) {
10015 		case BNX2X_RECOVERY_INIT:
10016 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10017 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10018 			WARN_ON(!is_parity);
10019 
10020 			/* Try to get a LEADER_LOCK HW lock */
10021 			if (bnx2x_trylock_leader_lock(bp)) {
10022 				bnx2x_set_reset_in_progress(bp);
10023 				/*
10024 				 * Check if there is a global attention and if
10025 				 * there was a global attention, set the global
10026 				 * reset bit.
10027 				 */
10028 
10029 				if (global)
10030 					bnx2x_set_reset_global(bp);
10031 
10032 				bp->is_leader = 1;
10033 			}
10034 
10035 			/* Stop the driver */
10036 			/* If interface has been removed - break */
10037 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10038 				return;
10039 
10040 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10041 
10042 			/* Ensure "is_leader", MCP command sequence and
10043 			 * "recovery_state" update values are seen on other
10044 			 * CPUs.
10045 			 */
10046 			smp_mb();
10047 			break;
10048 
10049 		case BNX2X_RECOVERY_WAIT:
10050 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10051 			if (bp->is_leader) {
10052 				int other_engine = BP_PATH(bp) ? 0 : 1;
10053 				bool other_load_status =
10054 					bnx2x_get_load_status(bp, other_engine);
10055 				bool load_status =
10056 					bnx2x_get_load_status(bp, BP_PATH(bp));
10057 				global = bnx2x_reset_is_global(bp);
10058 
10059 				/*
10060 				 * In case of a parity in a global block, let
10061 				 * the first leader that performs a
10062 				 * leader_reset() reset the global blocks in
10063 				 * order to clear global attentions. Otherwise
10064 				 * the gates will remain closed for that
10065 				 * engine.
10066 				 */
10067 				if (load_status ||
10068 				    (global && other_load_status)) {
10069 					/* Wait until all other functions get
10070 					 * down.
10071 					 */
10072 					schedule_delayed_work(&bp->sp_rtnl_task,
10073 								HZ/10);
10074 					return;
10075 				} else {
10076 					/* If all other functions got down -
10077 					 * try to bring the chip back to
10078 					 * normal. In any case it's an exit
10079 					 * point for a leader.
10080 					 */
10081 					if (bnx2x_leader_reset(bp)) {
10082 						bnx2x_recovery_failed(bp);
10083 						return;
10084 					}
10085 
10086 					/* If we are here, means that the
10087 					 * leader has succeeded and doesn't
10088 					 * want to be a leader any more. Try
10089 					 * to continue as a none-leader.
10090 					 */
10091 					break;
10092 				}
10093 			} else { /* non-leader */
10094 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10095 					/* Try to get a LEADER_LOCK HW lock as
10096 					 * long as a former leader may have
10097 					 * been unloaded by the user or
10098 					 * released a leadership by another
10099 					 * reason.
10100 					 */
10101 					if (bnx2x_trylock_leader_lock(bp)) {
10102 						/* I'm a leader now! Restart a
10103 						 * switch case.
10104 						 */
10105 						bp->is_leader = 1;
10106 						break;
10107 					}
10108 
10109 					schedule_delayed_work(&bp->sp_rtnl_task,
10110 								HZ/10);
10111 					return;
10112 
10113 				} else {
10114 					/*
10115 					 * If there was a global attention, wait
10116 					 * for it to be cleared.
10117 					 */
10118 					if (bnx2x_reset_is_global(bp)) {
10119 						schedule_delayed_work(
10120 							&bp->sp_rtnl_task,
10121 							HZ/10);
10122 						return;
10123 					}
10124 
10125 					error_recovered =
10126 					  bp->eth_stats.recoverable_error;
10127 					error_unrecovered =
10128 					  bp->eth_stats.unrecoverable_error;
10129 					bp->recovery_state =
10130 						BNX2X_RECOVERY_NIC_LOADING;
10131 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10132 						error_unrecovered++;
10133 						netdev_err(bp->dev,
10134 							   "Recovery failed. Power cycle needed\n");
10135 						/* Disconnect this device */
10136 						netif_device_detach(bp->dev);
10137 						/* Shut down the power */
10138 						bnx2x_set_power_state(
10139 							bp, PCI_D3hot);
10140 						smp_mb();
10141 					} else {
10142 						bp->recovery_state =
10143 							BNX2X_RECOVERY_DONE;
10144 						error_recovered++;
10145 						smp_mb();
10146 					}
10147 					bp->eth_stats.recoverable_error =
10148 						error_recovered;
10149 					bp->eth_stats.unrecoverable_error =
10150 						error_unrecovered;
10151 
10152 					return;
10153 				}
10154 			}
10155 		default:
10156 			return;
10157 		}
10158 	}
10159 }
10160 
10161 static int bnx2x_udp_port_update(struct bnx2x *bp)
10162 {
10163 	struct bnx2x_func_switch_update_params *switch_update_params;
10164 	struct bnx2x_func_state_params func_params = {NULL};
10165 	u16 vxlan_port = 0, geneve_port = 0;
10166 	int rc;
10167 
10168 	switch_update_params = &func_params.params.switch_update;
10169 
10170 	/* Prepare parameters for function state transitions */
10171 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10172 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10173 
10174 	func_params.f_obj = &bp->func_obj;
10175 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10176 
10177 	/* Function parameters */
10178 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10179 		  &switch_update_params->changes);
10180 
10181 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10182 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10183 		switch_update_params->geneve_dst_port = geneve_port;
10184 	}
10185 
10186 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10187 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10188 		switch_update_params->vxlan_dst_port = vxlan_port;
10189 	}
10190 
10191 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10192 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10193 		  &switch_update_params->changes);
10194 
10195 	rc = bnx2x_func_state_change(bp, &func_params);
10196 	if (rc)
10197 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10198 			  vxlan_port, geneve_port, rc);
10199 	else
10200 		DP(BNX2X_MSG_SP,
10201 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10202 		   vxlan_port, geneve_port);
10203 
10204 	return rc;
10205 }
10206 
10207 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10208 {
10209 	struct bnx2x *bp = netdev_priv(netdev);
10210 	struct udp_tunnel_info ti;
10211 
10212 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10213 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10214 
10215 	return bnx2x_udp_port_update(bp);
10216 }
10217 
10218 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10219 	.sync_table	= bnx2x_udp_tunnel_sync,
10220 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10221 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10222 	.tables		= {
10223 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10224 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10225 	},
10226 };
10227 
10228 static int bnx2x_close(struct net_device *dev);
10229 
10230 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10231  * scheduled on a general queue in order to prevent a dead lock.
10232  */
10233 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10234 {
10235 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10236 
10237 	rtnl_lock();
10238 
10239 	if (!netif_running(bp->dev)) {
10240 		rtnl_unlock();
10241 		return;
10242 	}
10243 
10244 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10245 #ifdef BNX2X_STOP_ON_ERROR
10246 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10247 			  "you will need to reboot when done\n");
10248 		goto sp_rtnl_not_reset;
10249 #endif
10250 		/*
10251 		 * Clear all pending SP commands as we are going to reset the
10252 		 * function anyway.
10253 		 */
10254 		bp->sp_rtnl_state = 0;
10255 		smp_mb();
10256 
10257 		bnx2x_parity_recover(bp);
10258 
10259 		rtnl_unlock();
10260 		return;
10261 	}
10262 
10263 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10264 #ifdef BNX2X_STOP_ON_ERROR
10265 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10266 			  "you will need to reboot when done\n");
10267 		goto sp_rtnl_not_reset;
10268 #endif
10269 
10270 		/*
10271 		 * Clear all pending SP commands as we are going to reset the
10272 		 * function anyway.
10273 		 */
10274 		bp->sp_rtnl_state = 0;
10275 		smp_mb();
10276 
10277 		/* Immediately indicate link as down */
10278 		bp->link_vars.link_up = 0;
10279 		bp->force_link_down = true;
10280 		netif_carrier_off(bp->dev);
10281 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10282 
10283 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10284 		/* When ret value shows failure of allocation failure,
10285 		 * the nic is rebooted again. If open still fails, a error
10286 		 * message to notify the user.
10287 		 */
10288 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10289 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10290 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10291 				BNX2X_ERR("Open the NIC fails again!\n");
10292 		}
10293 		rtnl_unlock();
10294 		return;
10295 	}
10296 #ifdef BNX2X_STOP_ON_ERROR
10297 sp_rtnl_not_reset:
10298 #endif
10299 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10300 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10301 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10302 		bnx2x_after_function_update(bp);
10303 	/*
10304 	 * in case of fan failure we need to reset id if the "stop on error"
10305 	 * debug flag is set, since we trying to prevent permanent overheating
10306 	 * damage
10307 	 */
10308 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10309 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10310 		netif_device_detach(bp->dev);
10311 		bnx2x_close(bp->dev);
10312 		rtnl_unlock();
10313 		return;
10314 	}
10315 
10316 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10317 		DP(BNX2X_MSG_SP,
10318 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10319 		bnx2x_vfpf_set_mcast(bp->dev);
10320 	}
10321 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10322 			       &bp->sp_rtnl_state)){
10323 		if (netif_carrier_ok(bp->dev)) {
10324 			bnx2x_tx_disable(bp);
10325 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10326 		}
10327 	}
10328 
10329 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10330 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10331 		bnx2x_set_rx_mode_inner(bp);
10332 	}
10333 
10334 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10335 			       &bp->sp_rtnl_state))
10336 		bnx2x_pf_set_vfs_vlan(bp);
10337 
10338 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10339 		bnx2x_dcbx_stop_hw_tx(bp);
10340 		bnx2x_dcbx_resume_hw_tx(bp);
10341 	}
10342 
10343 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10344 			       &bp->sp_rtnl_state))
10345 		bnx2x_update_mng_version(bp);
10346 
10347 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10348 		bnx2x_handle_update_svid_cmd(bp);
10349 
10350 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10351 	 * can be called from other contexts as well)
10352 	 */
10353 	rtnl_unlock();
10354 
10355 	/* enable SR-IOV if applicable */
10356 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10357 					       &bp->sp_rtnl_state)) {
10358 		bnx2x_disable_sriov(bp);
10359 		bnx2x_enable_sriov(bp);
10360 	}
10361 }
10362 
10363 static void bnx2x_period_task(struct work_struct *work)
10364 {
10365 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10366 
10367 	if (!netif_running(bp->dev))
10368 		goto period_task_exit;
10369 
10370 	if (CHIP_REV_IS_SLOW(bp)) {
10371 		BNX2X_ERR("period task called on emulation, ignoring\n");
10372 		goto period_task_exit;
10373 	}
10374 
10375 	bnx2x_acquire_phy_lock(bp);
10376 	/*
10377 	 * The barrier is needed to ensure the ordering between the writing to
10378 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10379 	 * the reading here.
10380 	 */
10381 	smp_mb();
10382 	if (bp->port.pmf) {
10383 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10384 
10385 		/* Re-queue task in 1 sec */
10386 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10387 	}
10388 
10389 	bnx2x_release_phy_lock(bp);
10390 period_task_exit:
10391 	return;
10392 }
10393 
10394 /*
10395  * Init service functions
10396  */
10397 
10398 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10399 {
10400 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10401 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10402 	return base + (BP_ABS_FUNC(bp)) * stride;
10403 }
10404 
10405 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10406 					 u8 port, u32 reset_reg,
10407 					 struct bnx2x_mac_vals *vals)
10408 {
10409 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10410 	u32 base_addr;
10411 
10412 	if (!(mask & reset_reg))
10413 		return false;
10414 
10415 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10416 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10417 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10418 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10419 	REG_WR(bp, vals->umac_addr[port], 0);
10420 
10421 	return true;
10422 }
10423 
10424 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10425 					struct bnx2x_mac_vals *vals)
10426 {
10427 	u32 val, base_addr, offset, mask, reset_reg;
10428 	bool mac_stopped = false;
10429 	u8 port = BP_PORT(bp);
10430 
10431 	/* reset addresses as they also mark which values were changed */
10432 	memset(vals, 0, sizeof(*vals));
10433 
10434 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10435 
10436 	if (!CHIP_IS_E3(bp)) {
10437 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10438 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10439 		if ((mask & reset_reg) && val) {
10440 			u32 wb_data[2];
10441 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10442 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10443 						: NIG_REG_INGRESS_BMAC0_MEM;
10444 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10445 						: BIGMAC_REGISTER_BMAC_CONTROL;
10446 
10447 			/*
10448 			 * use rd/wr since we cannot use dmae. This is safe
10449 			 * since MCP won't access the bus due to the request
10450 			 * to unload, and no function on the path can be
10451 			 * loaded at this time.
10452 			 */
10453 			wb_data[0] = REG_RD(bp, base_addr + offset);
10454 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10455 			vals->bmac_addr = base_addr + offset;
10456 			vals->bmac_val[0] = wb_data[0];
10457 			vals->bmac_val[1] = wb_data[1];
10458 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10459 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10460 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10461 		}
10462 		BNX2X_DEV_INFO("Disable emac Rx\n");
10463 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10464 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10465 		REG_WR(bp, vals->emac_addr, 0);
10466 		mac_stopped = true;
10467 	} else {
10468 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10469 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10470 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10471 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10472 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473 			       val & ~(1 << 1));
10474 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475 			       val | (1 << 1));
10476 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10477 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10478 			REG_WR(bp, vals->xmac_addr, 0);
10479 			mac_stopped = true;
10480 		}
10481 
10482 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10483 							    reset_reg, vals);
10484 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10485 							    reset_reg, vals);
10486 	}
10487 
10488 	if (mac_stopped)
10489 		msleep(20);
10490 }
10491 
10492 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10493 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10494 					0x1848 + ((f) << 4))
10495 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10496 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10497 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10498 
10499 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10500 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10501 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10502 
10503 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10504 {
10505 	/* UNDI marks its presence in DORQ -
10506 	 * it initializes CID offset for normal bell to 0x7
10507 	 */
10508 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10509 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10510 		return false;
10511 
10512 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10513 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10514 		return true;
10515 	}
10516 
10517 	return false;
10518 }
10519 
10520 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10521 {
10522 	u16 rcq, bd;
10523 	u32 addr, tmp_reg;
10524 
10525 	if (BP_FUNC(bp) < 2)
10526 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10527 	else
10528 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10529 
10530 	tmp_reg = REG_RD(bp, addr);
10531 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10532 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10533 
10534 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10535 	REG_WR(bp, addr, tmp_reg);
10536 
10537 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10538 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10539 }
10540 
10541 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10542 {
10543 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10544 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10545 	if (!rc) {
10546 		BNX2X_ERR("MCP response failure, aborting\n");
10547 		return -EBUSY;
10548 	}
10549 
10550 	return 0;
10551 }
10552 
10553 static struct bnx2x_prev_path_list *
10554 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10555 {
10556 	struct bnx2x_prev_path_list *tmp_list;
10557 
10558 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10559 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10560 		    bp->pdev->bus->number == tmp_list->bus &&
10561 		    BP_PATH(bp) == tmp_list->path)
10562 			return tmp_list;
10563 
10564 	return NULL;
10565 }
10566 
10567 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10568 {
10569 	struct bnx2x_prev_path_list *tmp_list;
10570 	int rc;
10571 
10572 	rc = down_interruptible(&bnx2x_prev_sem);
10573 	if (rc) {
10574 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10575 		return rc;
10576 	}
10577 
10578 	tmp_list = bnx2x_prev_path_get_entry(bp);
10579 	if (tmp_list) {
10580 		tmp_list->aer = 1;
10581 		rc = 0;
10582 	} else {
10583 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10584 			  BP_PATH(bp));
10585 	}
10586 
10587 	up(&bnx2x_prev_sem);
10588 
10589 	return rc;
10590 }
10591 
10592 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10593 {
10594 	struct bnx2x_prev_path_list *tmp_list;
10595 	bool rc = false;
10596 
10597 	if (down_trylock(&bnx2x_prev_sem))
10598 		return false;
10599 
10600 	tmp_list = bnx2x_prev_path_get_entry(bp);
10601 	if (tmp_list) {
10602 		if (tmp_list->aer) {
10603 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10604 			   BP_PATH(bp));
10605 		} else {
10606 			rc = true;
10607 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10608 				       BP_PATH(bp));
10609 		}
10610 	}
10611 
10612 	up(&bnx2x_prev_sem);
10613 
10614 	return rc;
10615 }
10616 
10617 bool bnx2x_port_after_undi(struct bnx2x *bp)
10618 {
10619 	struct bnx2x_prev_path_list *entry;
10620 	bool val;
10621 
10622 	down(&bnx2x_prev_sem);
10623 
10624 	entry = bnx2x_prev_path_get_entry(bp);
10625 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10626 
10627 	up(&bnx2x_prev_sem);
10628 
10629 	return val;
10630 }
10631 
10632 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10633 {
10634 	struct bnx2x_prev_path_list *tmp_list;
10635 	int rc;
10636 
10637 	rc = down_interruptible(&bnx2x_prev_sem);
10638 	if (rc) {
10639 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10640 		return rc;
10641 	}
10642 
10643 	/* Check whether the entry for this path already exists */
10644 	tmp_list = bnx2x_prev_path_get_entry(bp);
10645 	if (tmp_list) {
10646 		if (!tmp_list->aer) {
10647 			BNX2X_ERR("Re-Marking the path.\n");
10648 		} else {
10649 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10650 			   BP_PATH(bp));
10651 			tmp_list->aer = 0;
10652 		}
10653 		up(&bnx2x_prev_sem);
10654 		return 0;
10655 	}
10656 	up(&bnx2x_prev_sem);
10657 
10658 	/* Create an entry for this path and add it */
10659 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10660 	if (!tmp_list) {
10661 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10662 		return -ENOMEM;
10663 	}
10664 
10665 	tmp_list->bus = bp->pdev->bus->number;
10666 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10667 	tmp_list->path = BP_PATH(bp);
10668 	tmp_list->aer = 0;
10669 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10670 
10671 	rc = down_interruptible(&bnx2x_prev_sem);
10672 	if (rc) {
10673 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10674 		kfree(tmp_list);
10675 	} else {
10676 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10677 		   BP_PATH(bp));
10678 		list_add(&tmp_list->list, &bnx2x_prev_list);
10679 		up(&bnx2x_prev_sem);
10680 	}
10681 
10682 	return rc;
10683 }
10684 
10685 static int bnx2x_do_flr(struct bnx2x *bp)
10686 {
10687 	struct pci_dev *dev = bp->pdev;
10688 
10689 	if (CHIP_IS_E1x(bp)) {
10690 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10691 		return -EINVAL;
10692 	}
10693 
10694 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10695 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10696 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10697 			  bp->common.bc_ver);
10698 		return -EINVAL;
10699 	}
10700 
10701 	if (!pci_wait_for_pending_transaction(dev))
10702 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10703 
10704 	BNX2X_DEV_INFO("Initiating FLR\n");
10705 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10706 
10707 	return 0;
10708 }
10709 
10710 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10711 {
10712 	int rc;
10713 
10714 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10715 
10716 	/* Test if previous unload process was already finished for this path */
10717 	if (bnx2x_prev_is_path_marked(bp))
10718 		return bnx2x_prev_mcp_done(bp);
10719 
10720 	BNX2X_DEV_INFO("Path is unmarked\n");
10721 
10722 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10723 	if (bnx2x_prev_is_after_undi(bp))
10724 		goto out;
10725 
10726 	/* If function has FLR capabilities, and existing FW version matches
10727 	 * the one required, then FLR will be sufficient to clean any residue
10728 	 * left by previous driver
10729 	 */
10730 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10731 
10732 	if (!rc) {
10733 		/* fw version is good */
10734 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10735 		rc = bnx2x_do_flr(bp);
10736 	}
10737 
10738 	if (!rc) {
10739 		/* FLR was performed */
10740 		BNX2X_DEV_INFO("FLR successful\n");
10741 		return 0;
10742 	}
10743 
10744 	BNX2X_DEV_INFO("Could not FLR\n");
10745 
10746 out:
10747 	/* Close the MCP request, return failure*/
10748 	rc = bnx2x_prev_mcp_done(bp);
10749 	if (!rc)
10750 		rc = BNX2X_PREV_WAIT_NEEDED;
10751 
10752 	return rc;
10753 }
10754 
10755 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10756 {
10757 	u32 reset_reg, tmp_reg = 0, rc;
10758 	bool prev_undi = false;
10759 	struct bnx2x_mac_vals mac_vals;
10760 
10761 	/* It is possible a previous function received 'common' answer,
10762 	 * but hasn't loaded yet, therefore creating a scenario of
10763 	 * multiple functions receiving 'common' on the same path.
10764 	 */
10765 	BNX2X_DEV_INFO("Common unload Flow\n");
10766 
10767 	memset(&mac_vals, 0, sizeof(mac_vals));
10768 
10769 	if (bnx2x_prev_is_path_marked(bp))
10770 		return bnx2x_prev_mcp_done(bp);
10771 
10772 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10773 
10774 	/* Reset should be performed after BRB is emptied */
10775 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10776 		u32 timer_count = 1000;
10777 
10778 		/* Close the MAC Rx to prevent BRB from filling up */
10779 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10780 
10781 		/* close LLH filters for both ports towards the BRB */
10782 		bnx2x_set_rx_filter(&bp->link_params, 0);
10783 		bp->link_params.port ^= 1;
10784 		bnx2x_set_rx_filter(&bp->link_params, 0);
10785 		bp->link_params.port ^= 1;
10786 
10787 		/* Check if the UNDI driver was previously loaded */
10788 		if (bnx2x_prev_is_after_undi(bp)) {
10789 			prev_undi = true;
10790 			/* clear the UNDI indication */
10791 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10792 			/* clear possible idle check errors */
10793 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10794 		}
10795 		if (!CHIP_IS_E1x(bp))
10796 			/* block FW from writing to host */
10797 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10798 
10799 		/* wait until BRB is empty */
10800 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10801 		while (timer_count) {
10802 			u32 prev_brb = tmp_reg;
10803 
10804 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10805 			if (!tmp_reg)
10806 				break;
10807 
10808 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10809 
10810 			/* reset timer as long as BRB actually gets emptied */
10811 			if (prev_brb > tmp_reg)
10812 				timer_count = 1000;
10813 			else
10814 				timer_count--;
10815 
10816 			/* If UNDI resides in memory, manually increment it */
10817 			if (prev_undi)
10818 				bnx2x_prev_unload_undi_inc(bp, 1);
10819 
10820 			udelay(10);
10821 		}
10822 
10823 		if (!timer_count)
10824 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10825 	}
10826 
10827 	/* No packets are in the pipeline, path is ready for reset */
10828 	bnx2x_reset_common(bp);
10829 
10830 	if (mac_vals.xmac_addr)
10831 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10832 	if (mac_vals.umac_addr[0])
10833 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10834 	if (mac_vals.umac_addr[1])
10835 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10836 	if (mac_vals.emac_addr)
10837 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10838 	if (mac_vals.bmac_addr) {
10839 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10840 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10841 	}
10842 
10843 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10844 	if (rc) {
10845 		bnx2x_prev_mcp_done(bp);
10846 		return rc;
10847 	}
10848 
10849 	return bnx2x_prev_mcp_done(bp);
10850 }
10851 
10852 static int bnx2x_prev_unload(struct bnx2x *bp)
10853 {
10854 	int time_counter = 10;
10855 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10856 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10857 
10858 	/* clear hw from errors which may have resulted from an interrupted
10859 	 * dmae transaction.
10860 	 */
10861 	bnx2x_clean_pglue_errors(bp);
10862 
10863 	/* Release previously held locks */
10864 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10865 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10866 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10867 
10868 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10869 	if (hw_lock_val) {
10870 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10871 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10872 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10873 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10874 		}
10875 
10876 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10877 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10878 	} else
10879 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10880 
10881 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10882 		BNX2X_DEV_INFO("Release previously held alr\n");
10883 		bnx2x_release_alr(bp);
10884 	}
10885 
10886 	do {
10887 		int aer = 0;
10888 		/* Lock MCP using an unload request */
10889 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10890 		if (!fw) {
10891 			BNX2X_ERR("MCP response failure, aborting\n");
10892 			rc = -EBUSY;
10893 			break;
10894 		}
10895 
10896 		rc = down_interruptible(&bnx2x_prev_sem);
10897 		if (rc) {
10898 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10899 				  rc);
10900 		} else {
10901 			/* If Path is marked by EEH, ignore unload status */
10902 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10903 				 bnx2x_prev_path_get_entry(bp)->aer);
10904 			up(&bnx2x_prev_sem);
10905 		}
10906 
10907 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10908 			rc = bnx2x_prev_unload_common(bp);
10909 			break;
10910 		}
10911 
10912 		/* non-common reply from MCP might require looping */
10913 		rc = bnx2x_prev_unload_uncommon(bp);
10914 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10915 			break;
10916 
10917 		msleep(20);
10918 	} while (--time_counter);
10919 
10920 	if (!time_counter || rc) {
10921 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10922 		rc = -EPROBE_DEFER;
10923 	}
10924 
10925 	/* Mark function if its port was used to boot from SAN */
10926 	if (bnx2x_port_after_undi(bp))
10927 		bp->link_params.feature_config_flags |=
10928 			FEATURE_CONFIG_BOOT_FROM_SAN;
10929 
10930 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10931 
10932 	return rc;
10933 }
10934 
10935 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10936 {
10937 	u32 val, val2, val3, val4, id, boot_mode;
10938 	u16 pmc;
10939 
10940 	/* Get the chip revision id and number. */
10941 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10942 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10943 	id = ((val & 0xffff) << 16);
10944 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10945 	id |= ((val & 0xf) << 12);
10946 
10947 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10948 	 * the configuration space (so we need to reg_rd)
10949 	 */
10950 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10951 	id |= (((val >> 24) & 0xf) << 4);
10952 	val = REG_RD(bp, MISC_REG_BOND_ID);
10953 	id |= (val & 0xf);
10954 	bp->common.chip_id = id;
10955 
10956 	/* force 57811 according to MISC register */
10957 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10958 		if (CHIP_IS_57810(bp))
10959 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10960 				(bp->common.chip_id & 0x0000FFFF);
10961 		else if (CHIP_IS_57810_MF(bp))
10962 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10963 				(bp->common.chip_id & 0x0000FFFF);
10964 		bp->common.chip_id |= 0x1;
10965 	}
10966 
10967 	/* Set doorbell size */
10968 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10969 
10970 	if (!CHIP_IS_E1x(bp)) {
10971 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10972 		if ((val & 1) == 0)
10973 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10974 		else
10975 			val = (val >> 1) & 1;
10976 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10977 						       "2_PORT_MODE");
10978 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10979 						 CHIP_2_PORT_MODE;
10980 
10981 		if (CHIP_MODE_IS_4_PORT(bp))
10982 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10983 		else
10984 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10985 	} else {
10986 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10987 		bp->pfid = bp->pf_num;			/* 0..7 */
10988 	}
10989 
10990 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10991 
10992 	bp->link_params.chip_id = bp->common.chip_id;
10993 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10994 
10995 	val = (REG_RD(bp, 0x2874) & 0x55);
10996 	if ((bp->common.chip_id & 0x1) ||
10997 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10998 		bp->flags |= ONE_PORT_FLAG;
10999 		BNX2X_DEV_INFO("single port device\n");
11000 	}
11001 
11002 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11003 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11004 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11005 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11006 		       bp->common.flash_size, bp->common.flash_size);
11007 
11008 	bnx2x_init_shmem(bp);
11009 
11010 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11011 					MISC_REG_GENERIC_CR_1 :
11012 					MISC_REG_GENERIC_CR_0));
11013 
11014 	bp->link_params.shmem_base = bp->common.shmem_base;
11015 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11016 	if (SHMEM2_RD(bp, size) >
11017 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11018 		bp->link_params.lfa_base =
11019 		REG_RD(bp, bp->common.shmem2_base +
11020 		       (u32)offsetof(struct shmem2_region,
11021 				     lfa_host_addr[BP_PORT(bp)]));
11022 	else
11023 		bp->link_params.lfa_base = 0;
11024 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11025 		       bp->common.shmem_base, bp->common.shmem2_base);
11026 
11027 	if (!bp->common.shmem_base) {
11028 		BNX2X_DEV_INFO("MCP not active\n");
11029 		bp->flags |= NO_MCP_FLAG;
11030 		return;
11031 	}
11032 
11033 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11034 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11035 
11036 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11037 					SHARED_HW_CFG_LED_MODE_MASK) >>
11038 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11039 
11040 	bp->link_params.feature_config_flags = 0;
11041 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11042 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11043 		bp->link_params.feature_config_flags |=
11044 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11045 	else
11046 		bp->link_params.feature_config_flags &=
11047 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048 
11049 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11050 	bp->common.bc_ver = val;
11051 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11052 	if (val < BNX2X_BC_VER) {
11053 		/* for now only warn
11054 		 * later we might need to enforce this */
11055 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11056 			  BNX2X_BC_VER, val);
11057 	}
11058 	bp->link_params.feature_config_flags |=
11059 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11060 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11061 
11062 	bp->link_params.feature_config_flags |=
11063 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11064 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11065 	bp->link_params.feature_config_flags |=
11066 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11067 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11068 	bp->link_params.feature_config_flags |=
11069 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11070 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11071 
11072 	bp->link_params.feature_config_flags |=
11073 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11074 		FEATURE_CONFIG_MT_SUPPORT : 0;
11075 
11076 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11077 			BC_SUPPORTS_PFC_STATS : 0;
11078 
11079 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11080 			BC_SUPPORTS_FCOE_FEATURES : 0;
11081 
11082 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11083 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11084 
11085 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11086 			BC_SUPPORTS_RMMOD_CMD : 0;
11087 
11088 	boot_mode = SHMEM_RD(bp,
11089 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11090 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11091 	switch (boot_mode) {
11092 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11093 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11094 		break;
11095 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11096 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11097 		break;
11098 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11099 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11100 		break;
11101 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11102 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11103 		break;
11104 	}
11105 
11106 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11107 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11108 
11109 	BNX2X_DEV_INFO("%sWoL capable\n",
11110 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11111 
11112 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11113 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11114 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11115 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11116 
11117 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11118 		 val, val2, val3, val4);
11119 }
11120 
11121 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11122 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11123 
11124 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11125 {
11126 	int pfid = BP_FUNC(bp);
11127 	int igu_sb_id;
11128 	u32 val;
11129 	u8 fid, igu_sb_cnt = 0;
11130 
11131 	bp->igu_base_sb = 0xff;
11132 	if (CHIP_INT_MODE_IS_BC(bp)) {
11133 		int vn = BP_VN(bp);
11134 		igu_sb_cnt = bp->igu_sb_cnt;
11135 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11136 			FP_SB_MAX_E1x;
11137 
11138 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11139 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11140 
11141 		return 0;
11142 	}
11143 
11144 	/* IGU in normal mode - read CAM */
11145 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11146 	     igu_sb_id++) {
11147 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11148 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11149 			continue;
11150 		fid = IGU_FID(val);
11151 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11152 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11153 				continue;
11154 			if (IGU_VEC(val) == 0)
11155 				/* default status block */
11156 				bp->igu_dsb_id = igu_sb_id;
11157 			else {
11158 				if (bp->igu_base_sb == 0xff)
11159 					bp->igu_base_sb = igu_sb_id;
11160 				igu_sb_cnt++;
11161 			}
11162 		}
11163 	}
11164 
11165 #ifdef CONFIG_PCI_MSI
11166 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11167 	 * optional that number of CAM entries will not be equal to the value
11168 	 * advertised in PCI.
11169 	 * Driver should use the minimal value of both as the actual status
11170 	 * block count
11171 	 */
11172 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11173 #endif
11174 
11175 	if (igu_sb_cnt == 0) {
11176 		BNX2X_ERR("CAM configuration error\n");
11177 		return -EINVAL;
11178 	}
11179 
11180 	return 0;
11181 }
11182 
11183 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11184 {
11185 	int cfg_size = 0, idx, port = BP_PORT(bp);
11186 
11187 	/* Aggregation of supported attributes of all external phys */
11188 	bp->port.supported[0] = 0;
11189 	bp->port.supported[1] = 0;
11190 	switch (bp->link_params.num_phys) {
11191 	case 1:
11192 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11193 		cfg_size = 1;
11194 		break;
11195 	case 2:
11196 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11197 		cfg_size = 1;
11198 		break;
11199 	case 3:
11200 		if (bp->link_params.multi_phy_config &
11201 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11202 			bp->port.supported[1] =
11203 				bp->link_params.phy[EXT_PHY1].supported;
11204 			bp->port.supported[0] =
11205 				bp->link_params.phy[EXT_PHY2].supported;
11206 		} else {
11207 			bp->port.supported[0] =
11208 				bp->link_params.phy[EXT_PHY1].supported;
11209 			bp->port.supported[1] =
11210 				bp->link_params.phy[EXT_PHY2].supported;
11211 		}
11212 		cfg_size = 2;
11213 		break;
11214 	}
11215 
11216 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11217 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11218 			   SHMEM_RD(bp,
11219 			   dev_info.port_hw_config[port].external_phy_config),
11220 			   SHMEM_RD(bp,
11221 			   dev_info.port_hw_config[port].external_phy_config2));
11222 		return;
11223 	}
11224 
11225 	if (CHIP_IS_E3(bp))
11226 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11227 	else {
11228 		switch (switch_cfg) {
11229 		case SWITCH_CFG_1G:
11230 			bp->port.phy_addr = REG_RD(
11231 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11232 			break;
11233 		case SWITCH_CFG_10G:
11234 			bp->port.phy_addr = REG_RD(
11235 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11236 			break;
11237 		default:
11238 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11239 				  bp->port.link_config[0]);
11240 			return;
11241 		}
11242 	}
11243 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11244 	/* mask what we support according to speed_cap_mask per configuration */
11245 	for (idx = 0; idx < cfg_size; idx++) {
11246 		if (!(bp->link_params.speed_cap_mask[idx] &
11247 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11248 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11249 
11250 		if (!(bp->link_params.speed_cap_mask[idx] &
11251 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11252 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11253 
11254 		if (!(bp->link_params.speed_cap_mask[idx] &
11255 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11256 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11257 
11258 		if (!(bp->link_params.speed_cap_mask[idx] &
11259 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11260 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11261 
11262 		if (!(bp->link_params.speed_cap_mask[idx] &
11263 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11264 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11265 						     SUPPORTED_1000baseT_Full);
11266 
11267 		if (!(bp->link_params.speed_cap_mask[idx] &
11268 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11269 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11270 
11271 		if (!(bp->link_params.speed_cap_mask[idx] &
11272 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11273 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11274 
11275 		if (!(bp->link_params.speed_cap_mask[idx] &
11276 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11277 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11278 	}
11279 
11280 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11281 		       bp->port.supported[1]);
11282 }
11283 
11284 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11285 {
11286 	u32 link_config, idx, cfg_size = 0;
11287 	bp->port.advertising[0] = 0;
11288 	bp->port.advertising[1] = 0;
11289 	switch (bp->link_params.num_phys) {
11290 	case 1:
11291 	case 2:
11292 		cfg_size = 1;
11293 		break;
11294 	case 3:
11295 		cfg_size = 2;
11296 		break;
11297 	}
11298 	for (idx = 0; idx < cfg_size; idx++) {
11299 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11300 		link_config = bp->port.link_config[idx];
11301 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11302 		case PORT_FEATURE_LINK_SPEED_AUTO:
11303 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11304 				bp->link_params.req_line_speed[idx] =
11305 					SPEED_AUTO_NEG;
11306 				bp->port.advertising[idx] |=
11307 					bp->port.supported[idx];
11308 				if (bp->link_params.phy[EXT_PHY1].type ==
11309 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11310 					bp->port.advertising[idx] |=
11311 					(SUPPORTED_100baseT_Half |
11312 					 SUPPORTED_100baseT_Full);
11313 			} else {
11314 				/* force 10G, no AN */
11315 				bp->link_params.req_line_speed[idx] =
11316 					SPEED_10000;
11317 				bp->port.advertising[idx] |=
11318 					(ADVERTISED_10000baseT_Full |
11319 					 ADVERTISED_FIBRE);
11320 				continue;
11321 			}
11322 			break;
11323 
11324 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11325 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11326 				bp->link_params.req_line_speed[idx] =
11327 					SPEED_10;
11328 				bp->port.advertising[idx] |=
11329 					(ADVERTISED_10baseT_Full |
11330 					 ADVERTISED_TP);
11331 			} else {
11332 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11333 					    link_config,
11334 				    bp->link_params.speed_cap_mask[idx]);
11335 				return;
11336 			}
11337 			break;
11338 
11339 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11340 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11341 				bp->link_params.req_line_speed[idx] =
11342 					SPEED_10;
11343 				bp->link_params.req_duplex[idx] =
11344 					DUPLEX_HALF;
11345 				bp->port.advertising[idx] |=
11346 					(ADVERTISED_10baseT_Half |
11347 					 ADVERTISED_TP);
11348 			} else {
11349 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11350 					    link_config,
11351 					  bp->link_params.speed_cap_mask[idx]);
11352 				return;
11353 			}
11354 			break;
11355 
11356 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11357 			if (bp->port.supported[idx] &
11358 			    SUPPORTED_100baseT_Full) {
11359 				bp->link_params.req_line_speed[idx] =
11360 					SPEED_100;
11361 				bp->port.advertising[idx] |=
11362 					(ADVERTISED_100baseT_Full |
11363 					 ADVERTISED_TP);
11364 			} else {
11365 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11366 					    link_config,
11367 					  bp->link_params.speed_cap_mask[idx]);
11368 				return;
11369 			}
11370 			break;
11371 
11372 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11373 			if (bp->port.supported[idx] &
11374 			    SUPPORTED_100baseT_Half) {
11375 				bp->link_params.req_line_speed[idx] =
11376 								SPEED_100;
11377 				bp->link_params.req_duplex[idx] =
11378 								DUPLEX_HALF;
11379 				bp->port.advertising[idx] |=
11380 					(ADVERTISED_100baseT_Half |
11381 					 ADVERTISED_TP);
11382 			} else {
11383 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11384 				    link_config,
11385 				    bp->link_params.speed_cap_mask[idx]);
11386 				return;
11387 			}
11388 			break;
11389 
11390 		case PORT_FEATURE_LINK_SPEED_1G:
11391 			if (bp->port.supported[idx] &
11392 			    SUPPORTED_1000baseT_Full) {
11393 				bp->link_params.req_line_speed[idx] =
11394 					SPEED_1000;
11395 				bp->port.advertising[idx] |=
11396 					(ADVERTISED_1000baseT_Full |
11397 					 ADVERTISED_TP);
11398 			} else if (bp->port.supported[idx] &
11399 				   SUPPORTED_1000baseKX_Full) {
11400 				bp->link_params.req_line_speed[idx] =
11401 					SPEED_1000;
11402 				bp->port.advertising[idx] |=
11403 					ADVERTISED_1000baseKX_Full;
11404 			} else {
11405 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11406 				    link_config,
11407 				    bp->link_params.speed_cap_mask[idx]);
11408 				return;
11409 			}
11410 			break;
11411 
11412 		case PORT_FEATURE_LINK_SPEED_2_5G:
11413 			if (bp->port.supported[idx] &
11414 			    SUPPORTED_2500baseX_Full) {
11415 				bp->link_params.req_line_speed[idx] =
11416 					SPEED_2500;
11417 				bp->port.advertising[idx] |=
11418 					(ADVERTISED_2500baseX_Full |
11419 						ADVERTISED_TP);
11420 			} else {
11421 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11422 				    link_config,
11423 				    bp->link_params.speed_cap_mask[idx]);
11424 				return;
11425 			}
11426 			break;
11427 
11428 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11429 			if (bp->port.supported[idx] &
11430 			    SUPPORTED_10000baseT_Full) {
11431 				bp->link_params.req_line_speed[idx] =
11432 					SPEED_10000;
11433 				bp->port.advertising[idx] |=
11434 					(ADVERTISED_10000baseT_Full |
11435 						ADVERTISED_FIBRE);
11436 			} else if (bp->port.supported[idx] &
11437 				   SUPPORTED_10000baseKR_Full) {
11438 				bp->link_params.req_line_speed[idx] =
11439 					SPEED_10000;
11440 				bp->port.advertising[idx] |=
11441 					(ADVERTISED_10000baseKR_Full |
11442 						ADVERTISED_FIBRE);
11443 			} else {
11444 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11445 				    link_config,
11446 				    bp->link_params.speed_cap_mask[idx]);
11447 				return;
11448 			}
11449 			break;
11450 		case PORT_FEATURE_LINK_SPEED_20G:
11451 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11452 
11453 			break;
11454 		default:
11455 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11456 				  link_config);
11457 				bp->link_params.req_line_speed[idx] =
11458 							SPEED_AUTO_NEG;
11459 				bp->port.advertising[idx] =
11460 						bp->port.supported[idx];
11461 			break;
11462 		}
11463 
11464 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11465 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11466 		if (bp->link_params.req_flow_ctrl[idx] ==
11467 		    BNX2X_FLOW_CTRL_AUTO) {
11468 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11469 				bp->link_params.req_flow_ctrl[idx] =
11470 							BNX2X_FLOW_CTRL_NONE;
11471 			else
11472 				bnx2x_set_requested_fc(bp);
11473 		}
11474 
11475 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11476 			       bp->link_params.req_line_speed[idx],
11477 			       bp->link_params.req_duplex[idx],
11478 			       bp->link_params.req_flow_ctrl[idx],
11479 			       bp->port.advertising[idx]);
11480 	}
11481 }
11482 
11483 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11484 {
11485 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11486 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11487 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11488 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11489 }
11490 
11491 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11492 {
11493 	int port = BP_PORT(bp);
11494 	u32 config;
11495 	u32 ext_phy_type, ext_phy_config, eee_mode;
11496 
11497 	bp->link_params.bp = bp;
11498 	bp->link_params.port = port;
11499 
11500 	bp->link_params.lane_config =
11501 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11502 
11503 	bp->link_params.speed_cap_mask[0] =
11504 		SHMEM_RD(bp,
11505 			 dev_info.port_hw_config[port].speed_capability_mask) &
11506 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11507 	bp->link_params.speed_cap_mask[1] =
11508 		SHMEM_RD(bp,
11509 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11510 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11511 	bp->port.link_config[0] =
11512 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11513 
11514 	bp->port.link_config[1] =
11515 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11516 
11517 	bp->link_params.multi_phy_config =
11518 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11519 	/* If the device is capable of WoL, set the default state according
11520 	 * to the HW
11521 	 */
11522 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11523 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11524 		   (config & PORT_FEATURE_WOL_ENABLED));
11525 
11526 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11527 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11528 		bp->flags |= NO_ISCSI_FLAG;
11529 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11530 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11531 		bp->flags |= NO_FCOE_FLAG;
11532 
11533 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11534 		       bp->link_params.lane_config,
11535 		       bp->link_params.speed_cap_mask[0],
11536 		       bp->port.link_config[0]);
11537 
11538 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11539 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11540 	bnx2x_phy_probe(&bp->link_params);
11541 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11542 
11543 	bnx2x_link_settings_requested(bp);
11544 
11545 	/*
11546 	 * If connected directly, work with the internal PHY, otherwise, work
11547 	 * with the external PHY
11548 	 */
11549 	ext_phy_config =
11550 		SHMEM_RD(bp,
11551 			 dev_info.port_hw_config[port].external_phy_config);
11552 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11553 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11554 		bp->mdio.prtad = bp->port.phy_addr;
11555 
11556 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11557 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11558 		bp->mdio.prtad =
11559 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11560 
11561 	/* Configure link feature according to nvram value */
11562 	eee_mode = (((SHMEM_RD(bp, dev_info.
11563 		      port_feature_config[port].eee_power_mode)) &
11564 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11565 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11566 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11567 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11568 					   EEE_MODE_ENABLE_LPI |
11569 					   EEE_MODE_OUTPUT_TIME;
11570 	} else {
11571 		bp->link_params.eee_mode = 0;
11572 	}
11573 }
11574 
11575 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11576 {
11577 	u32 no_flags = NO_ISCSI_FLAG;
11578 	int port = BP_PORT(bp);
11579 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11580 				drv_lic_key[port].max_iscsi_conn);
11581 
11582 	if (!CNIC_SUPPORT(bp)) {
11583 		bp->flags |= no_flags;
11584 		return;
11585 	}
11586 
11587 	/* Get the number of maximum allowed iSCSI connections */
11588 	bp->cnic_eth_dev.max_iscsi_conn =
11589 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11590 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11591 
11592 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11593 		       bp->cnic_eth_dev.max_iscsi_conn);
11594 
11595 	/*
11596 	 * If maximum allowed number of connections is zero -
11597 	 * disable the feature.
11598 	 */
11599 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11600 		bp->flags |= no_flags;
11601 }
11602 
11603 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11604 {
11605 	/* Port info */
11606 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11607 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11608 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11609 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11610 
11611 	/* Node info */
11612 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11613 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11614 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11615 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11616 }
11617 
11618 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11619 {
11620 	u8 count = 0;
11621 
11622 	if (IS_MF(bp)) {
11623 		u8 fid;
11624 
11625 		/* iterate over absolute function ids for this path: */
11626 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11627 			if (IS_MF_SD(bp)) {
11628 				u32 cfg = MF_CFG_RD(bp,
11629 						    func_mf_config[fid].config);
11630 
11631 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11632 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11633 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11634 					count++;
11635 			} else {
11636 				u32 cfg = MF_CFG_RD(bp,
11637 						    func_ext_config[fid].
11638 								      func_cfg);
11639 
11640 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11641 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11642 					count++;
11643 			}
11644 		}
11645 	} else { /* SF */
11646 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11647 
11648 		for (port = 0; port < port_cnt; port++) {
11649 			u32 lic = SHMEM_RD(bp,
11650 					   drv_lic_key[port].max_fcoe_conn) ^
11651 				  FW_ENCODE_32BIT_PATTERN;
11652 			if (lic)
11653 				count++;
11654 		}
11655 	}
11656 
11657 	return count;
11658 }
11659 
11660 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11661 {
11662 	int port = BP_PORT(bp);
11663 	int func = BP_ABS_FUNC(bp);
11664 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11665 				drv_lic_key[port].max_fcoe_conn);
11666 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11667 
11668 	if (!CNIC_SUPPORT(bp)) {
11669 		bp->flags |= NO_FCOE_FLAG;
11670 		return;
11671 	}
11672 
11673 	/* Get the number of maximum allowed FCoE connections */
11674 	bp->cnic_eth_dev.max_fcoe_conn =
11675 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11676 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11677 
11678 	/* Calculate the number of maximum allowed FCoE tasks */
11679 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11680 
11681 	/* check if FCoE resources must be shared between different functions */
11682 	if (num_fcoe_func)
11683 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11684 
11685 	/* Read the WWN: */
11686 	if (!IS_MF(bp)) {
11687 		/* Port info */
11688 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11689 			SHMEM_RD(bp,
11690 				 dev_info.port_hw_config[port].
11691 				 fcoe_wwn_port_name_upper);
11692 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11693 			SHMEM_RD(bp,
11694 				 dev_info.port_hw_config[port].
11695 				 fcoe_wwn_port_name_lower);
11696 
11697 		/* Node info */
11698 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11699 			SHMEM_RD(bp,
11700 				 dev_info.port_hw_config[port].
11701 				 fcoe_wwn_node_name_upper);
11702 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11703 			SHMEM_RD(bp,
11704 				 dev_info.port_hw_config[port].
11705 				 fcoe_wwn_node_name_lower);
11706 	} else if (!IS_MF_SD(bp)) {
11707 		/* Read the WWN info only if the FCoE feature is enabled for
11708 		 * this function.
11709 		 */
11710 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11711 			bnx2x_get_ext_wwn_info(bp, func);
11712 	} else {
11713 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11714 			bnx2x_get_ext_wwn_info(bp, func);
11715 	}
11716 
11717 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11718 
11719 	/*
11720 	 * If maximum allowed number of connections is zero -
11721 	 * disable the feature.
11722 	 */
11723 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11724 		bp->flags |= NO_FCOE_FLAG;
11725 		eth_zero_addr(bp->fip_mac);
11726 	}
11727 }
11728 
11729 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11730 {
11731 	/*
11732 	 * iSCSI may be dynamically disabled but reading
11733 	 * info here we will decrease memory usage by driver
11734 	 * if the feature is disabled for good
11735 	 */
11736 	bnx2x_get_iscsi_info(bp);
11737 	bnx2x_get_fcoe_info(bp);
11738 }
11739 
11740 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11741 {
11742 	u32 val, val2;
11743 	int func = BP_ABS_FUNC(bp);
11744 	int port = BP_PORT(bp);
11745 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11746 	u8 *fip_mac = bp->fip_mac;
11747 
11748 	if (IS_MF(bp)) {
11749 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11750 		 * FCoE MAC then the appropriate feature should be disabled.
11751 		 * In non SD mode features configuration comes from struct
11752 		 * func_ext_config.
11753 		 */
11754 		if (!IS_MF_SD(bp)) {
11755 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11756 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11757 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11758 						 iscsi_mac_addr_upper);
11759 				val = MF_CFG_RD(bp, func_ext_config[func].
11760 						iscsi_mac_addr_lower);
11761 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11762 				BNX2X_DEV_INFO
11763 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11764 			} else {
11765 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11766 			}
11767 
11768 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11769 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11770 						 fcoe_mac_addr_upper);
11771 				val = MF_CFG_RD(bp, func_ext_config[func].
11772 						fcoe_mac_addr_lower);
11773 				bnx2x_set_mac_buf(fip_mac, val, val2);
11774 				BNX2X_DEV_INFO
11775 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11776 			} else {
11777 				bp->flags |= NO_FCOE_FLAG;
11778 			}
11779 
11780 			bp->mf_ext_config = cfg;
11781 
11782 		} else { /* SD MODE */
11783 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11784 				/* use primary mac as iscsi mac */
11785 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11786 
11787 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11788 				BNX2X_DEV_INFO
11789 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11790 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11791 				/* use primary mac as fip mac */
11792 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11793 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11794 				BNX2X_DEV_INFO
11795 					("Read FIP MAC: %pM\n", fip_mac);
11796 			}
11797 		}
11798 
11799 		/* If this is a storage-only interface, use SAN mac as
11800 		 * primary MAC. Notice that for SD this is already the case,
11801 		 * as the SAN mac was copied from the primary MAC.
11802 		 */
11803 		if (IS_MF_FCOE_AFEX(bp))
11804 			eth_hw_addr_set(bp->dev, fip_mac);
11805 	} else {
11806 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807 				iscsi_mac_upper);
11808 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809 			       iscsi_mac_lower);
11810 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11811 
11812 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813 				fcoe_fip_mac_upper);
11814 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11815 			       fcoe_fip_mac_lower);
11816 		bnx2x_set_mac_buf(fip_mac, val, val2);
11817 	}
11818 
11819 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11820 	if (!is_valid_ether_addr(iscsi_mac)) {
11821 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11822 		eth_zero_addr(iscsi_mac);
11823 	}
11824 
11825 	/* Disable FCoE if MAC configuration is invalid. */
11826 	if (!is_valid_ether_addr(fip_mac)) {
11827 		bp->flags |= NO_FCOE_FLAG;
11828 		eth_zero_addr(bp->fip_mac);
11829 	}
11830 }
11831 
11832 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11833 {
11834 	u32 val, val2;
11835 	int func = BP_ABS_FUNC(bp);
11836 	int port = BP_PORT(bp);
11837 	u8 addr[ETH_ALEN] = {};
11838 
11839 	/* Zero primary MAC configuration */
11840 	eth_hw_addr_set(bp->dev, addr);
11841 
11842 	if (BP_NOMCP(bp)) {
11843 		BNX2X_ERROR("warning: random MAC workaround active\n");
11844 		eth_hw_addr_random(bp->dev);
11845 	} else if (IS_MF(bp)) {
11846 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11850 			bnx2x_set_mac_buf(addr, val, val2);
11851 			eth_hw_addr_set(bp->dev, addr);
11852 		}
11853 
11854 		if (CNIC_SUPPORT(bp))
11855 			bnx2x_get_cnic_mac_hwinfo(bp);
11856 	} else {
11857 		/* in SF read MACs from port configuration */
11858 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11859 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11860 		bnx2x_set_mac_buf(addr, val, val2);
11861 		eth_hw_addr_set(bp->dev, addr);
11862 
11863 		if (CNIC_SUPPORT(bp))
11864 			bnx2x_get_cnic_mac_hwinfo(bp);
11865 	}
11866 
11867 	if (!BP_NOMCP(bp)) {
11868 		/* Read physical port identifier from shmem */
11869 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11870 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11871 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11872 		bp->flags |= HAS_PHYS_PORT_ID;
11873 	}
11874 
11875 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11876 
11877 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11878 		dev_err(&bp->pdev->dev,
11879 			"bad Ethernet MAC address configuration: %pM\n"
11880 			"change it manually before bringing up the appropriate network interface\n",
11881 			bp->dev->dev_addr);
11882 }
11883 
11884 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11885 {
11886 	int tmp;
11887 	u32 cfg;
11888 
11889 	if (IS_VF(bp))
11890 		return false;
11891 
11892 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11893 		/* Take function: tmp = func */
11894 		tmp = BP_ABS_FUNC(bp);
11895 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11896 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11897 	} else {
11898 		/* Take port: tmp = port */
11899 		tmp = BP_PORT(bp);
11900 		cfg = SHMEM_RD(bp,
11901 			       dev_info.port_hw_config[tmp].generic_features);
11902 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11903 	}
11904 	return cfg;
11905 }
11906 
11907 static void validate_set_si_mode(struct bnx2x *bp)
11908 {
11909 	u8 func = BP_ABS_FUNC(bp);
11910 	u32 val;
11911 
11912 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11913 
11914 	/* check for legal mac (upper bytes) */
11915 	if (val != 0xffff) {
11916 		bp->mf_mode = MULTI_FUNCTION_SI;
11917 		bp->mf_config[BP_VN(bp)] =
11918 			MF_CFG_RD(bp, func_mf_config[func].config);
11919 	} else
11920 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11921 }
11922 
11923 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11924 {
11925 	int /*abs*/func = BP_ABS_FUNC(bp);
11926 	int vn;
11927 	u32 val = 0, val2 = 0;
11928 	int rc = 0;
11929 
11930 	/* Validate that chip access is feasible */
11931 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11932 		dev_err(&bp->pdev->dev,
11933 			"Chip read returns all Fs. Preventing probe from continuing\n");
11934 		return -EINVAL;
11935 	}
11936 
11937 	bnx2x_get_common_hwinfo(bp);
11938 
11939 	/*
11940 	 * initialize IGU parameters
11941 	 */
11942 	if (CHIP_IS_E1x(bp)) {
11943 		bp->common.int_block = INT_BLOCK_HC;
11944 
11945 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11946 		bp->igu_base_sb = 0;
11947 	} else {
11948 		bp->common.int_block = INT_BLOCK_IGU;
11949 
11950 		/* do not allow device reset during IGU info processing */
11951 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11952 
11953 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11954 
11955 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11956 			int tout = 5000;
11957 
11958 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11959 
11960 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11961 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11962 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11963 
11964 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11965 				tout--;
11966 				usleep_range(1000, 2000);
11967 			}
11968 
11969 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11970 				dev_err(&bp->pdev->dev,
11971 					"FORCING Normal Mode failed!!!\n");
11972 				bnx2x_release_hw_lock(bp,
11973 						      HW_LOCK_RESOURCE_RESET);
11974 				return -EPERM;
11975 			}
11976 		}
11977 
11978 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11979 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11980 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11981 		} else
11982 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11983 
11984 		rc = bnx2x_get_igu_cam_info(bp);
11985 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11986 		if (rc)
11987 			return rc;
11988 	}
11989 
11990 	/*
11991 	 * set base FW non-default (fast path) status block id, this value is
11992 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11993 	 * determine the id used by the FW.
11994 	 */
11995 	if (CHIP_IS_E1x(bp))
11996 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11997 	else /*
11998 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11999 	      * the same queue are indicated on the same IGU SB). So we prefer
12000 	      * FW and IGU SBs to be the same value.
12001 	      */
12002 		bp->base_fw_ndsb = bp->igu_base_sb;
12003 
12004 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12005 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12006 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12007 
12008 	/*
12009 	 * Initialize MF configuration
12010 	 */
12011 	bp->mf_ov = 0;
12012 	bp->mf_mode = 0;
12013 	bp->mf_sub_mode = 0;
12014 	vn = BP_VN(bp);
12015 
12016 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12017 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12018 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12019 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12020 
12021 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12022 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12023 		else
12024 			bp->common.mf_cfg_base = bp->common.shmem_base +
12025 				offsetof(struct shmem_region, func_mb) +
12026 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12027 		/*
12028 		 * get mf configuration:
12029 		 * 1. Existence of MF configuration
12030 		 * 2. MAC address must be legal (check only upper bytes)
12031 		 *    for  Switch-Independent mode;
12032 		 *    OVLAN must be legal for Switch-Dependent mode
12033 		 * 3. SF_MODE configures specific MF mode
12034 		 */
12035 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12036 			/* get mf configuration */
12037 			val = SHMEM_RD(bp,
12038 				       dev_info.shared_feature_config.config);
12039 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12040 
12041 			switch (val) {
12042 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12043 				validate_set_si_mode(bp);
12044 				break;
12045 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12046 				if ((!CHIP_IS_E1x(bp)) &&
12047 				    (MF_CFG_RD(bp, func_mf_config[func].
12048 					       mac_upper) != 0xffff) &&
12049 				    (SHMEM2_HAS(bp,
12050 						afex_driver_support))) {
12051 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12052 					bp->mf_config[vn] = MF_CFG_RD(bp,
12053 						func_mf_config[func].config);
12054 				} else {
12055 					BNX2X_DEV_INFO("can not configure afex mode\n");
12056 				}
12057 				break;
12058 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12059 				/* get OV configuration */
12060 				val = MF_CFG_RD(bp,
12061 					func_mf_config[FUNC_0].e1hov_tag);
12062 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12063 
12064 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12065 					bp->mf_mode = MULTI_FUNCTION_SD;
12066 					bp->mf_config[vn] = MF_CFG_RD(bp,
12067 						func_mf_config[func].config);
12068 				} else
12069 					BNX2X_DEV_INFO("illegal OV for SD\n");
12070 				break;
12071 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12072 				bp->mf_mode = MULTI_FUNCTION_SD;
12073 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12074 				bp->mf_config[vn] =
12075 					MF_CFG_RD(bp,
12076 						  func_mf_config[func].config);
12077 
12078 				if (SHMEM2_HAS(bp, mtu_size)) {
12079 					int mtu_idx = BP_FW_MB_IDX(bp);
12080 					u16 mtu_size;
12081 					u32 mtu;
12082 
12083 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12084 					mtu_size = (u16)mtu;
12085 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12086 					   mtu_size, mtu);
12087 
12088 					/* if valid: update device mtu */
12089 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12090 					    (mtu_size <=
12091 					     ETH_MAX_JUMBO_PACKET_SIZE))
12092 						bp->dev->mtu = mtu_size;
12093 				}
12094 				break;
12095 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12096 				bp->mf_mode = MULTI_FUNCTION_SD;
12097 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12098 				bp->mf_config[vn] =
12099 					MF_CFG_RD(bp,
12100 						  func_mf_config[func].config);
12101 				break;
12102 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12103 				bp->mf_config[vn] = 0;
12104 				break;
12105 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12106 				val2 = SHMEM_RD(bp,
12107 					dev_info.shared_hw_config.config_3);
12108 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109 				switch (val2) {
12110 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12111 					validate_set_si_mode(bp);
12112 					bp->mf_sub_mode =
12113 							SUB_MF_MODE_NPAR1_DOT_5;
12114 					break;
12115 				default:
12116 					/* Unknown configuration */
12117 					bp->mf_config[vn] = 0;
12118 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12119 						       val);
12120 				}
12121 				break;
12122 			default:
12123 				/* Unknown configuration: reset mf_config */
12124 				bp->mf_config[vn] = 0;
12125 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12126 			}
12127 		}
12128 
12129 		BNX2X_DEV_INFO("%s function mode\n",
12130 			       IS_MF(bp) ? "multi" : "single");
12131 
12132 		switch (bp->mf_mode) {
12133 		case MULTI_FUNCTION_SD:
12134 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12135 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12136 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137 				bp->mf_ov = val;
12138 				bp->path_has_ovlan = true;
12139 
12140 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12141 					       func, bp->mf_ov, bp->mf_ov);
12142 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12143 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12144 				dev_err(&bp->pdev->dev,
12145 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146 					func);
12147 				bp->path_has_ovlan = true;
12148 			} else {
12149 				dev_err(&bp->pdev->dev,
12150 					"No valid MF OV for func %d, aborting\n",
12151 					func);
12152 				return -EPERM;
12153 			}
12154 			break;
12155 		case MULTI_FUNCTION_AFEX:
12156 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157 			break;
12158 		case MULTI_FUNCTION_SI:
12159 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12160 				       func);
12161 			break;
12162 		default:
12163 			if (vn) {
12164 				dev_err(&bp->pdev->dev,
12165 					"VN %d is in a single function mode, aborting\n",
12166 					vn);
12167 				return -EPERM;
12168 			}
12169 			break;
12170 		}
12171 
12172 		/* check if other port on the path needs ovlan:
12173 		 * Since MF configuration is shared between ports
12174 		 * Possible mixed modes are only
12175 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176 		 */
12177 		if (CHIP_MODE_IS_4_PORT(bp) &&
12178 		    !bp->path_has_ovlan &&
12179 		    !IS_MF(bp) &&
12180 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12181 			u8 other_port = !BP_PORT(bp);
12182 			u8 other_func = BP_PATH(bp) + 2*other_port;
12183 			val = MF_CFG_RD(bp,
12184 					func_mf_config[other_func].e1hov_tag);
12185 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12186 				bp->path_has_ovlan = true;
12187 		}
12188 	}
12189 
12190 	/* adjust igu_sb_cnt to MF for E1H */
12191 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12192 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12193 
12194 	/* port info */
12195 	bnx2x_get_port_hwinfo(bp);
12196 
12197 	/* Get MAC addresses */
12198 	bnx2x_get_mac_hwinfo(bp);
12199 
12200 	bnx2x_get_cnic_info(bp);
12201 
12202 	return rc;
12203 }
12204 
12205 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206 {
12207 	char str_id[VENDOR_ID_LEN + 1];
12208 	unsigned int vpd_len, kw_len;
12209 	u8 *vpd_data;
12210 	int rodi;
12211 
12212 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12213 
12214 	vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12215 	if (IS_ERR(vpd_data))
12216 		return;
12217 
12218 	rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12219 					    PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12220 	if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12221 		goto out_not_found;
12222 
12223 	/* vendor specific info */
12224 	snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12225 	if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12226 		rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12227 						    PCI_VPD_RO_KEYWORD_VENDOR0,
12228 						    &kw_len);
12229 		if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12230 			memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12231 			bp->fw_ver[kw_len] = ' ';
12232 		}
12233 	}
12234 out_not_found:
12235 	kfree(vpd_data);
12236 }
12237 
12238 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12239 {
12240 	u32 flags = 0;
12241 
12242 	if (CHIP_REV_IS_FPGA(bp))
12243 		SET_FLAGS(flags, MODE_FPGA);
12244 	else if (CHIP_REV_IS_EMUL(bp))
12245 		SET_FLAGS(flags, MODE_EMUL);
12246 	else
12247 		SET_FLAGS(flags, MODE_ASIC);
12248 
12249 	if (CHIP_MODE_IS_4_PORT(bp))
12250 		SET_FLAGS(flags, MODE_PORT4);
12251 	else
12252 		SET_FLAGS(flags, MODE_PORT2);
12253 
12254 	if (CHIP_IS_E2(bp))
12255 		SET_FLAGS(flags, MODE_E2);
12256 	else if (CHIP_IS_E3(bp)) {
12257 		SET_FLAGS(flags, MODE_E3);
12258 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12259 			SET_FLAGS(flags, MODE_E3_A0);
12260 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12261 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12262 	}
12263 
12264 	if (IS_MF(bp)) {
12265 		SET_FLAGS(flags, MODE_MF);
12266 		switch (bp->mf_mode) {
12267 		case MULTI_FUNCTION_SD:
12268 			SET_FLAGS(flags, MODE_MF_SD);
12269 			break;
12270 		case MULTI_FUNCTION_SI:
12271 			SET_FLAGS(flags, MODE_MF_SI);
12272 			break;
12273 		case MULTI_FUNCTION_AFEX:
12274 			SET_FLAGS(flags, MODE_MF_AFEX);
12275 			break;
12276 		}
12277 	} else
12278 		SET_FLAGS(flags, MODE_SF);
12279 
12280 #if defined(__LITTLE_ENDIAN)
12281 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12282 #else /*(__BIG_ENDIAN)*/
12283 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12284 #endif
12285 	INIT_MODE_FLAGS(bp) = flags;
12286 }
12287 
12288 static int bnx2x_init_bp(struct bnx2x *bp)
12289 {
12290 	int func;
12291 	int rc;
12292 
12293 	mutex_init(&bp->port.phy_mutex);
12294 	mutex_init(&bp->fw_mb_mutex);
12295 	mutex_init(&bp->drv_info_mutex);
12296 	sema_init(&bp->stats_lock, 1);
12297 	bp->drv_info_mng_owner = false;
12298 	INIT_LIST_HEAD(&bp->vlan_reg);
12299 
12300 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12301 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12302 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12303 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12304 	if (IS_PF(bp)) {
12305 		rc = bnx2x_get_hwinfo(bp);
12306 		if (rc)
12307 			return rc;
12308 	} else {
12309 		static const u8 zero_addr[ETH_ALEN] = {};
12310 
12311 		eth_hw_addr_set(bp->dev, zero_addr);
12312 	}
12313 
12314 	bnx2x_set_modes_bitmap(bp);
12315 
12316 	rc = bnx2x_alloc_mem_bp(bp);
12317 	if (rc)
12318 		return rc;
12319 
12320 	bnx2x_read_fwinfo(bp);
12321 
12322 	func = BP_FUNC(bp);
12323 
12324 	/* need to reset chip if undi was active */
12325 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12326 		/* init fw_seq */
12327 		bp->fw_seq =
12328 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12329 							DRV_MSG_SEQ_NUMBER_MASK;
12330 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12331 
12332 		rc = bnx2x_prev_unload(bp);
12333 		if (rc) {
12334 			bnx2x_free_mem_bp(bp);
12335 			return rc;
12336 		}
12337 	}
12338 
12339 	if (CHIP_REV_IS_FPGA(bp))
12340 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12341 
12342 	if (BP_NOMCP(bp) && (func == 0))
12343 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12344 
12345 	bp->disable_tpa = disable_tpa;
12346 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12347 	/* Reduce memory usage in kdump environment by disabling TPA */
12348 	bp->disable_tpa |= is_kdump_kernel();
12349 
12350 	/* Set TPA flags */
12351 	if (bp->disable_tpa) {
12352 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12353 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12354 	}
12355 
12356 	if (CHIP_IS_E1(bp))
12357 		bp->dropless_fc = false;
12358 	else
12359 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12360 
12361 	bp->mrrs = mrrs;
12362 
12363 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12364 	if (IS_VF(bp))
12365 		bp->rx_ring_size = MAX_RX_AVAIL;
12366 
12367 	/* make sure that the numbers are in the right granularity */
12368 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12369 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12370 
12371 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12372 
12373 	timer_setup(&bp->timer, bnx2x_timer, 0);
12374 	bp->timer.expires = jiffies + bp->current_interval;
12375 
12376 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12377 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12378 	    SHMEM2_HAS(bp, dcbx_en) &&
12379 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12380 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12381 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12382 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12383 		bnx2x_dcbx_init_params(bp);
12384 	} else {
12385 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12386 	}
12387 
12388 	if (CHIP_IS_E1x(bp))
12389 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12390 	else
12391 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12392 
12393 	/* multiple tx priority */
12394 	if (IS_VF(bp))
12395 		bp->max_cos = 1;
12396 	else if (CHIP_IS_E1x(bp))
12397 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12398 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12399 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12400 	else if (CHIP_IS_E3B0(bp))
12401 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12402 	else
12403 		BNX2X_ERR("unknown chip %x revision %x\n",
12404 			  CHIP_NUM(bp), CHIP_REV(bp));
12405 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12406 
12407 	/* We need at least one default status block for slow-path events,
12408 	 * second status block for the L2 queue, and a third status block for
12409 	 * CNIC if supported.
12410 	 */
12411 	if (IS_VF(bp))
12412 		bp->min_msix_vec_cnt = 1;
12413 	else if (CNIC_SUPPORT(bp))
12414 		bp->min_msix_vec_cnt = 3;
12415 	else /* PF w/o cnic */
12416 		bp->min_msix_vec_cnt = 2;
12417 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12418 
12419 	bp->dump_preset_idx = 1;
12420 
12421 	return rc;
12422 }
12423 
12424 /****************************************************************************
12425 * General service functions
12426 ****************************************************************************/
12427 
12428 /*
12429  * net_device service functions
12430  */
12431 
12432 /* called with rtnl_lock */
12433 static int bnx2x_open(struct net_device *dev)
12434 {
12435 	struct bnx2x *bp = netdev_priv(dev);
12436 	int rc;
12437 
12438 	bp->stats_init = true;
12439 
12440 	netif_carrier_off(dev);
12441 
12442 	bnx2x_set_power_state(bp, PCI_D0);
12443 
12444 	/* If parity had happen during the unload, then attentions
12445 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12446 	 * want the first function loaded on the current engine to
12447 	 * complete the recovery.
12448 	 * Parity recovery is only relevant for PF driver.
12449 	 */
12450 	if (IS_PF(bp)) {
12451 		int other_engine = BP_PATH(bp) ? 0 : 1;
12452 		bool other_load_status, load_status;
12453 		bool global = false;
12454 
12455 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12456 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12457 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12458 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12459 			do {
12460 				/* If there are attentions and they are in a
12461 				 * global blocks, set the GLOBAL_RESET bit
12462 				 * regardless whether it will be this function
12463 				 * that will complete the recovery or not.
12464 				 */
12465 				if (global)
12466 					bnx2x_set_reset_global(bp);
12467 
12468 				/* Only the first function on the current
12469 				 * engine should try to recover in open. In case
12470 				 * of attentions in global blocks only the first
12471 				 * in the chip should try to recover.
12472 				 */
12473 				if ((!load_status &&
12474 				     (!global || !other_load_status)) &&
12475 				      bnx2x_trylock_leader_lock(bp) &&
12476 				      !bnx2x_leader_reset(bp)) {
12477 					netdev_info(bp->dev,
12478 						    "Recovered in open\n");
12479 					break;
12480 				}
12481 
12482 				/* recovery has failed... */
12483 				bnx2x_set_power_state(bp, PCI_D3hot);
12484 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12485 
12486 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12487 					  "If you still see this message after a few retries then power cycle is required.\n");
12488 
12489 				return -EAGAIN;
12490 			} while (0);
12491 		}
12492 	}
12493 
12494 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12495 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12496 	if (rc)
12497 		return rc;
12498 
12499 	return 0;
12500 }
12501 
12502 /* called with rtnl_lock */
12503 static int bnx2x_close(struct net_device *dev)
12504 {
12505 	struct bnx2x *bp = netdev_priv(dev);
12506 
12507 	/* Unload the driver, release IRQs */
12508 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12509 
12510 	return 0;
12511 }
12512 
12513 struct bnx2x_mcast_list_elem_group
12514 {
12515 	struct list_head mcast_group_link;
12516 	struct bnx2x_mcast_list_elem mcast_elems[];
12517 };
12518 
12519 #define MCAST_ELEMS_PER_PG \
12520 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12521 	sizeof(struct bnx2x_mcast_list_elem))
12522 
12523 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12524 {
12525 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12526 
12527 	while (!list_empty(mcast_group_list)) {
12528 		current_mcast_group = list_first_entry(mcast_group_list,
12529 				      struct bnx2x_mcast_list_elem_group,
12530 				      mcast_group_link);
12531 		list_del(&current_mcast_group->mcast_group_link);
12532 		free_page((unsigned long)current_mcast_group);
12533 	}
12534 }
12535 
12536 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12537 				      struct bnx2x_mcast_ramrod_params *p,
12538 				      struct list_head *mcast_group_list)
12539 {
12540 	struct bnx2x_mcast_list_elem *mc_mac;
12541 	struct netdev_hw_addr *ha;
12542 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12543 	int mc_count = netdev_mc_count(bp->dev);
12544 	int offset = 0;
12545 
12546 	INIT_LIST_HEAD(&p->mcast_list);
12547 	netdev_for_each_mc_addr(ha, bp->dev) {
12548 		if (!offset) {
12549 			current_mcast_group =
12550 				(struct bnx2x_mcast_list_elem_group *)
12551 				__get_free_page(GFP_ATOMIC);
12552 			if (!current_mcast_group) {
12553 				bnx2x_free_mcast_macs_list(mcast_group_list);
12554 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12555 				return -ENOMEM;
12556 			}
12557 			list_add(&current_mcast_group->mcast_group_link,
12558 				 mcast_group_list);
12559 		}
12560 		mc_mac = &current_mcast_group->mcast_elems[offset];
12561 		mc_mac->mac = bnx2x_mc_addr(ha);
12562 		list_add_tail(&mc_mac->link, &p->mcast_list);
12563 		offset++;
12564 		if (offset == MCAST_ELEMS_PER_PG)
12565 			offset = 0;
12566 	}
12567 	p->mcast_list_len = mc_count;
12568 	return 0;
12569 }
12570 
12571 /**
12572  * bnx2x_set_uc_list - configure a new unicast MACs list.
12573  *
12574  * @bp: driver handle
12575  *
12576  * We will use zero (0) as a MAC type for these MACs.
12577  */
12578 static int bnx2x_set_uc_list(struct bnx2x *bp)
12579 {
12580 	int rc;
12581 	struct net_device *dev = bp->dev;
12582 	struct netdev_hw_addr *ha;
12583 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12584 	unsigned long ramrod_flags = 0;
12585 
12586 	/* First schedule a cleanup up of old configuration */
12587 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12588 	if (rc < 0) {
12589 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12590 		return rc;
12591 	}
12592 
12593 	netdev_for_each_uc_addr(ha, dev) {
12594 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12595 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12596 		if (rc == -EEXIST) {
12597 			DP(BNX2X_MSG_SP,
12598 			   "Failed to schedule ADD operations: %d\n", rc);
12599 			/* do not treat adding same MAC as error */
12600 			rc = 0;
12601 
12602 		} else if (rc < 0) {
12603 
12604 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12605 				  rc);
12606 			return rc;
12607 		}
12608 	}
12609 
12610 	/* Execute the pending commands */
12611 	__set_bit(RAMROD_CONT, &ramrod_flags);
12612 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12613 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12614 }
12615 
12616 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12617 {
12618 	LIST_HEAD(mcast_group_list);
12619 	struct net_device *dev = bp->dev;
12620 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12621 	int rc = 0;
12622 
12623 	rparam.mcast_obj = &bp->mcast_obj;
12624 
12625 	/* first, clear all configured multicast MACs */
12626 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12627 	if (rc < 0) {
12628 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12629 		return rc;
12630 	}
12631 
12632 	/* then, configure a new MACs list */
12633 	if (netdev_mc_count(dev)) {
12634 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12635 		if (rc)
12636 			return rc;
12637 
12638 		/* Now add the new MACs */
12639 		rc = bnx2x_config_mcast(bp, &rparam,
12640 					BNX2X_MCAST_CMD_ADD);
12641 		if (rc < 0)
12642 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12643 				  rc);
12644 
12645 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12646 	}
12647 
12648 	return rc;
12649 }
12650 
12651 static int bnx2x_set_mc_list(struct bnx2x *bp)
12652 {
12653 	LIST_HEAD(mcast_group_list);
12654 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12655 	struct net_device *dev = bp->dev;
12656 	int rc = 0;
12657 
12658 	/* On older adapters, we need to flush and re-add filters */
12659 	if (CHIP_IS_E1x(bp))
12660 		return bnx2x_set_mc_list_e1x(bp);
12661 
12662 	rparam.mcast_obj = &bp->mcast_obj;
12663 
12664 	if (netdev_mc_count(dev)) {
12665 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12666 		if (rc)
12667 			return rc;
12668 
12669 		/* Override the curently configured set of mc filters */
12670 		rc = bnx2x_config_mcast(bp, &rparam,
12671 					BNX2X_MCAST_CMD_SET);
12672 		if (rc < 0)
12673 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12674 				  rc);
12675 
12676 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12677 	} else {
12678 		/* If no mc addresses are required, flush the configuration */
12679 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12680 		if (rc < 0)
12681 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12682 				  rc);
12683 	}
12684 
12685 	return rc;
12686 }
12687 
12688 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12689 static void bnx2x_set_rx_mode(struct net_device *dev)
12690 {
12691 	struct bnx2x *bp = netdev_priv(dev);
12692 
12693 	if (bp->state != BNX2X_STATE_OPEN) {
12694 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12695 		return;
12696 	} else {
12697 		/* Schedule an SP task to handle rest of change */
12698 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12699 				       NETIF_MSG_IFUP);
12700 	}
12701 }
12702 
12703 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12704 {
12705 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12706 
12707 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12708 
12709 	netif_addr_lock_bh(bp->dev);
12710 
12711 	if (bp->dev->flags & IFF_PROMISC) {
12712 		rx_mode = BNX2X_RX_MODE_PROMISC;
12713 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12714 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12715 		    CHIP_IS_E1(bp))) {
12716 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12717 	} else {
12718 		if (IS_PF(bp)) {
12719 			/* some multicasts */
12720 			if (bnx2x_set_mc_list(bp) < 0)
12721 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12722 
12723 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12724 			netif_addr_unlock_bh(bp->dev);
12725 			if (bnx2x_set_uc_list(bp) < 0)
12726 				rx_mode = BNX2X_RX_MODE_PROMISC;
12727 			netif_addr_lock_bh(bp->dev);
12728 		} else {
12729 			/* configuring mcast to a vf involves sleeping (when we
12730 			 * wait for the pf's response).
12731 			 */
12732 			bnx2x_schedule_sp_rtnl(bp,
12733 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12734 		}
12735 	}
12736 
12737 	bp->rx_mode = rx_mode;
12738 	/* handle ISCSI SD mode */
12739 	if (IS_MF_ISCSI_ONLY(bp))
12740 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12741 
12742 	/* Schedule the rx_mode command */
12743 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12744 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12745 		netif_addr_unlock_bh(bp->dev);
12746 		return;
12747 	}
12748 
12749 	if (IS_PF(bp)) {
12750 		bnx2x_set_storm_rx_mode(bp);
12751 		netif_addr_unlock_bh(bp->dev);
12752 	} else {
12753 		/* VF will need to request the PF to make this change, and so
12754 		 * the VF needs to release the bottom-half lock prior to the
12755 		 * request (as it will likely require sleep on the VF side)
12756 		 */
12757 		netif_addr_unlock_bh(bp->dev);
12758 		bnx2x_vfpf_storm_rx_mode(bp);
12759 	}
12760 }
12761 
12762 /* called with rtnl_lock */
12763 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12764 			   int devad, u16 addr)
12765 {
12766 	struct bnx2x *bp = netdev_priv(netdev);
12767 	u16 value;
12768 	int rc;
12769 
12770 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12771 	   prtad, devad, addr);
12772 
12773 	/* The HW expects different devad if CL22 is used */
12774 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12775 
12776 	bnx2x_acquire_phy_lock(bp);
12777 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12778 	bnx2x_release_phy_lock(bp);
12779 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12780 
12781 	if (!rc)
12782 		rc = value;
12783 	return rc;
12784 }
12785 
12786 /* called with rtnl_lock */
12787 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12788 			    u16 addr, u16 value)
12789 {
12790 	struct bnx2x *bp = netdev_priv(netdev);
12791 	int rc;
12792 
12793 	DP(NETIF_MSG_LINK,
12794 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12795 	   prtad, devad, addr, value);
12796 
12797 	/* The HW expects different devad if CL22 is used */
12798 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12799 
12800 	bnx2x_acquire_phy_lock(bp);
12801 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12802 	bnx2x_release_phy_lock(bp);
12803 	return rc;
12804 }
12805 
12806 /* called with rtnl_lock */
12807 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12808 {
12809 	struct bnx2x *bp = netdev_priv(dev);
12810 	struct mii_ioctl_data *mdio = if_mii(ifr);
12811 
12812 	if (!netif_running(dev))
12813 		return -EAGAIN;
12814 
12815 	switch (cmd) {
12816 	case SIOCSHWTSTAMP:
12817 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12818 	default:
12819 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12820 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12821 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12822 	}
12823 }
12824 
12825 static int bnx2x_validate_addr(struct net_device *dev)
12826 {
12827 	struct bnx2x *bp = netdev_priv(dev);
12828 
12829 	/* query the bulletin board for mac address configured by the PF */
12830 	if (IS_VF(bp))
12831 		bnx2x_sample_bulletin(bp);
12832 
12833 	if (!is_valid_ether_addr(dev->dev_addr)) {
12834 		BNX2X_ERR("Non-valid Ethernet address\n");
12835 		return -EADDRNOTAVAIL;
12836 	}
12837 	return 0;
12838 }
12839 
12840 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12841 				  struct netdev_phys_item_id *ppid)
12842 {
12843 	struct bnx2x *bp = netdev_priv(netdev);
12844 
12845 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12846 		return -EOPNOTSUPP;
12847 
12848 	ppid->id_len = sizeof(bp->phys_port_id);
12849 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12850 
12851 	return 0;
12852 }
12853 
12854 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12855 					      struct net_device *dev,
12856 					      netdev_features_t features)
12857 {
12858 	/*
12859 	 * A skb with gso_size + header length > 9700 will cause a
12860 	 * firmware panic. Drop GSO support.
12861 	 *
12862 	 * Eventually the upper layer should not pass these packets down.
12863 	 *
12864 	 * For speed, if the gso_size is <= 9000, assume there will
12865 	 * not be 700 bytes of headers and pass it through. Only do a
12866 	 * full (slow) validation if the gso_size is > 9000.
12867 	 *
12868 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12869 	 * validation in that case.)
12870 	 */
12871 	if (unlikely(skb_is_gso(skb) &&
12872 		     (skb_shinfo(skb)->gso_size > 9000) &&
12873 		     !skb_gso_validate_mac_len(skb, 9700)))
12874 		features &= ~NETIF_F_GSO_MASK;
12875 
12876 	features = vlan_features_check(skb, features);
12877 	return vxlan_features_check(skb, features);
12878 }
12879 
12880 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12881 {
12882 	int rc;
12883 
12884 	if (IS_PF(bp)) {
12885 		unsigned long ramrod_flags = 0;
12886 
12887 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12888 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12889 					add, &ramrod_flags);
12890 	} else {
12891 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12892 	}
12893 
12894 	return rc;
12895 }
12896 
12897 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12898 {
12899 	struct bnx2x_vlan_entry *vlan;
12900 	int rc = 0;
12901 
12902 	/* Configure all non-configured entries */
12903 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12904 		if (vlan->hw)
12905 			continue;
12906 
12907 		if (bp->vlan_cnt >= bp->vlan_credit)
12908 			return -ENOBUFS;
12909 
12910 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12911 		if (rc) {
12912 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12913 			return rc;
12914 		}
12915 
12916 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12917 		vlan->hw = true;
12918 		bp->vlan_cnt++;
12919 	}
12920 
12921 	return 0;
12922 }
12923 
12924 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12925 {
12926 	bool need_accept_any_vlan;
12927 
12928 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12929 
12930 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12931 		bp->accept_any_vlan = need_accept_any_vlan;
12932 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12933 		   bp->accept_any_vlan ? "raised" : "cleared");
12934 		if (set_rx_mode) {
12935 			if (IS_PF(bp))
12936 				bnx2x_set_rx_mode_inner(bp);
12937 			else
12938 				bnx2x_vfpf_storm_rx_mode(bp);
12939 		}
12940 	}
12941 }
12942 
12943 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12944 {
12945 	/* Don't set rx mode here. Our caller will do it. */
12946 	bnx2x_vlan_configure(bp, false);
12947 
12948 	return 0;
12949 }
12950 
12951 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12952 {
12953 	struct bnx2x *bp = netdev_priv(dev);
12954 	struct bnx2x_vlan_entry *vlan;
12955 
12956 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12957 
12958 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12959 	if (!vlan)
12960 		return -ENOMEM;
12961 
12962 	vlan->vid = vid;
12963 	vlan->hw = false;
12964 	list_add_tail(&vlan->link, &bp->vlan_reg);
12965 
12966 	if (netif_running(dev))
12967 		bnx2x_vlan_configure(bp, true);
12968 
12969 	return 0;
12970 }
12971 
12972 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12973 {
12974 	struct bnx2x *bp = netdev_priv(dev);
12975 	struct bnx2x_vlan_entry *vlan;
12976 	bool found = false;
12977 	int rc = 0;
12978 
12979 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12980 
12981 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12982 		if (vlan->vid == vid) {
12983 			found = true;
12984 			break;
12985 		}
12986 
12987 	if (!found) {
12988 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12989 		return -EINVAL;
12990 	}
12991 
12992 	if (netif_running(dev) && vlan->hw) {
12993 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12994 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12995 		bp->vlan_cnt--;
12996 	}
12997 
12998 	list_del(&vlan->link);
12999 	kfree(vlan);
13000 
13001 	if (netif_running(dev))
13002 		bnx2x_vlan_configure(bp, true);
13003 
13004 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13005 
13006 	return rc;
13007 }
13008 
13009 static const struct net_device_ops bnx2x_netdev_ops = {
13010 	.ndo_open		= bnx2x_open,
13011 	.ndo_stop		= bnx2x_close,
13012 	.ndo_start_xmit		= bnx2x_start_xmit,
13013 	.ndo_select_queue	= bnx2x_select_queue,
13014 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13015 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13016 	.ndo_validate_addr	= bnx2x_validate_addr,
13017 	.ndo_eth_ioctl		= bnx2x_ioctl,
13018 	.ndo_change_mtu		= bnx2x_change_mtu,
13019 	.ndo_fix_features	= bnx2x_fix_features,
13020 	.ndo_set_features	= bnx2x_set_features,
13021 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13022 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13023 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13024 	.ndo_setup_tc		= __bnx2x_setup_tc,
13025 #ifdef CONFIG_BNX2X_SRIOV
13026 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13027 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13028 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13029 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13030 #endif
13031 #ifdef NETDEV_FCOE_WWNN
13032 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13033 #endif
13034 
13035 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13036 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13037 	.ndo_features_check	= bnx2x_features_check,
13038 };
13039 
13040 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13041 {
13042 	if (bp->flags & AER_ENABLED) {
13043 		pci_disable_pcie_error_reporting(bp->pdev);
13044 		bp->flags &= ~AER_ENABLED;
13045 	}
13046 }
13047 
13048 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13049 			  struct net_device *dev, unsigned long board_type)
13050 {
13051 	int rc;
13052 	u32 pci_cfg_dword;
13053 	bool chip_is_e1x = (board_type == BCM57710 ||
13054 			    board_type == BCM57711 ||
13055 			    board_type == BCM57711E);
13056 
13057 	SET_NETDEV_DEV(dev, &pdev->dev);
13058 
13059 	bp->dev = dev;
13060 	bp->pdev = pdev;
13061 
13062 	rc = pci_enable_device(pdev);
13063 	if (rc) {
13064 		dev_err(&bp->pdev->dev,
13065 			"Cannot enable PCI device, aborting\n");
13066 		goto err_out;
13067 	}
13068 
13069 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13070 		dev_err(&bp->pdev->dev,
13071 			"Cannot find PCI device base address, aborting\n");
13072 		rc = -ENODEV;
13073 		goto err_out_disable;
13074 	}
13075 
13076 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13077 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13078 		rc = -ENODEV;
13079 		goto err_out_disable;
13080 	}
13081 
13082 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13083 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13084 	    PCICFG_REVESION_ID_ERROR_VAL) {
13085 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13086 		rc = -ENODEV;
13087 		goto err_out_disable;
13088 	}
13089 
13090 	if (atomic_read(&pdev->enable_cnt) == 1) {
13091 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13092 		if (rc) {
13093 			dev_err(&bp->pdev->dev,
13094 				"Cannot obtain PCI resources, aborting\n");
13095 			goto err_out_disable;
13096 		}
13097 
13098 		pci_set_master(pdev);
13099 		pci_save_state(pdev);
13100 	}
13101 
13102 	if (IS_PF(bp)) {
13103 		if (!pdev->pm_cap) {
13104 			dev_err(&bp->pdev->dev,
13105 				"Cannot find power management capability, aborting\n");
13106 			rc = -EIO;
13107 			goto err_out_release;
13108 		}
13109 	}
13110 
13111 	if (!pci_is_pcie(pdev)) {
13112 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13113 		rc = -EIO;
13114 		goto err_out_release;
13115 	}
13116 
13117 	rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13118 	if (rc) {
13119 		dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13120 		goto err_out_release;
13121 	}
13122 
13123 	dev->mem_start = pci_resource_start(pdev, 0);
13124 	dev->base_addr = dev->mem_start;
13125 	dev->mem_end = pci_resource_end(pdev, 0);
13126 
13127 	dev->irq = pdev->irq;
13128 
13129 	bp->regview = pci_ioremap_bar(pdev, 0);
13130 	if (!bp->regview) {
13131 		dev_err(&bp->pdev->dev,
13132 			"Cannot map register space, aborting\n");
13133 		rc = -ENOMEM;
13134 		goto err_out_release;
13135 	}
13136 
13137 	/* In E1/E1H use pci device function given by kernel.
13138 	 * In E2/E3 read physical function from ME register since these chips
13139 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13140 	 * (depending on hypervisor).
13141 	 */
13142 	if (chip_is_e1x) {
13143 		bp->pf_num = PCI_FUNC(pdev->devfn);
13144 	} else {
13145 		/* chip is E2/3*/
13146 		pci_read_config_dword(bp->pdev,
13147 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13148 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13149 				  ME_REG_ABS_PF_NUM_SHIFT);
13150 	}
13151 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13152 
13153 	/* clean indirect addresses */
13154 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13155 			       PCICFG_VENDOR_ID_OFFSET);
13156 
13157 	/* Set PCIe reset type to fundamental for EEH recovery */
13158 	pdev->needs_freset = 1;
13159 
13160 	/* AER (Advanced Error reporting) configuration */
13161 	rc = pci_enable_pcie_error_reporting(pdev);
13162 	if (!rc)
13163 		bp->flags |= AER_ENABLED;
13164 	else
13165 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13166 
13167 	/*
13168 	 * Clean the following indirect addresses for all functions since it
13169 	 * is not used by the driver.
13170 	 */
13171 	if (IS_PF(bp)) {
13172 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13173 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13174 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13175 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13176 
13177 		if (chip_is_e1x) {
13178 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13179 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13180 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13181 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13182 		}
13183 
13184 		/* Enable internal target-read (in case we are probed after PF
13185 		 * FLR). Must be done prior to any BAR read access. Only for
13186 		 * 57712 and up
13187 		 */
13188 		if (!chip_is_e1x)
13189 			REG_WR(bp,
13190 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13191 	}
13192 
13193 	dev->watchdog_timeo = TX_TIMEOUT;
13194 
13195 	dev->netdev_ops = &bnx2x_netdev_ops;
13196 	bnx2x_set_ethtool_ops(bp, dev);
13197 
13198 	dev->priv_flags |= IFF_UNICAST_FLT;
13199 
13200 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13201 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13202 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13203 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13204 	if (!chip_is_e1x) {
13205 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13206 				    NETIF_F_GSO_IPXIP4 |
13207 				    NETIF_F_GSO_UDP_TUNNEL |
13208 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13209 				    NETIF_F_GSO_PARTIAL;
13210 
13211 		dev->hw_enc_features =
13212 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13213 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13214 			NETIF_F_GSO_IPXIP4 |
13215 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13216 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13217 			NETIF_F_GSO_PARTIAL;
13218 
13219 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13220 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13221 
13222 		if (IS_PF(bp))
13223 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13224 	}
13225 
13226 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13227 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13228 
13229 	if (IS_PF(bp)) {
13230 		if (chip_is_e1x)
13231 			bp->accept_any_vlan = true;
13232 		else
13233 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13234 	}
13235 	/* For VF we'll know whether to enable VLAN filtering after
13236 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13237 	 */
13238 
13239 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13240 	dev->features |= NETIF_F_HIGHDMA;
13241 	if (dev->features & NETIF_F_LRO)
13242 		dev->features &= ~NETIF_F_GRO_HW;
13243 
13244 	/* Add Loopback capability to the device */
13245 	dev->hw_features |= NETIF_F_LOOPBACK;
13246 
13247 #ifdef BCM_DCBNL
13248 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13249 #endif
13250 
13251 	/* MTU range, 46 - 9600 */
13252 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13253 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13254 
13255 	/* get_port_hwinfo() will set prtad and mmds properly */
13256 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13257 	bp->mdio.mmds = 0;
13258 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13259 	bp->mdio.dev = dev;
13260 	bp->mdio.mdio_read = bnx2x_mdio_read;
13261 	bp->mdio.mdio_write = bnx2x_mdio_write;
13262 
13263 	return 0;
13264 
13265 err_out_release:
13266 	if (atomic_read(&pdev->enable_cnt) == 1)
13267 		pci_release_regions(pdev);
13268 
13269 err_out_disable:
13270 	pci_disable_device(pdev);
13271 
13272 err_out:
13273 	return rc;
13274 }
13275 
13276 static int bnx2x_check_firmware(struct bnx2x *bp)
13277 {
13278 	const struct firmware *firmware = bp->firmware;
13279 	struct bnx2x_fw_file_hdr *fw_hdr;
13280 	struct bnx2x_fw_file_section *sections;
13281 	u32 offset, len, num_ops;
13282 	__be16 *ops_offsets;
13283 	int i;
13284 	const u8 *fw_ver;
13285 
13286 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13287 		BNX2X_ERR("Wrong FW size\n");
13288 		return -EINVAL;
13289 	}
13290 
13291 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13292 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13293 
13294 	/* Make sure none of the offsets and sizes make us read beyond
13295 	 * the end of the firmware data */
13296 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13297 		offset = be32_to_cpu(sections[i].offset);
13298 		len = be32_to_cpu(sections[i].len);
13299 		if (offset + len > firmware->size) {
13300 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13301 			return -EINVAL;
13302 		}
13303 	}
13304 
13305 	/* Likewise for the init_ops offsets */
13306 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13307 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13308 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13309 
13310 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13311 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13312 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13313 			return -EINVAL;
13314 		}
13315 	}
13316 
13317 	/* Check FW version */
13318 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13319 	fw_ver = firmware->data + offset;
13320 	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13321 	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13322 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13323 			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13324 			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13325 		return -EINVAL;
13326 	}
13327 
13328 	return 0;
13329 }
13330 
13331 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13332 {
13333 	const __be32 *source = (const __be32 *)_source;
13334 	u32 *target = (u32 *)_target;
13335 	u32 i;
13336 
13337 	for (i = 0; i < n/4; i++)
13338 		target[i] = be32_to_cpu(source[i]);
13339 }
13340 
13341 /*
13342    Ops array is stored in the following format:
13343    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13344  */
13345 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13346 {
13347 	const __be32 *source = (const __be32 *)_source;
13348 	struct raw_op *target = (struct raw_op *)_target;
13349 	u32 i, j, tmp;
13350 
13351 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13352 		tmp = be32_to_cpu(source[j]);
13353 		target[i].op = (tmp >> 24) & 0xff;
13354 		target[i].offset = tmp & 0xffffff;
13355 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13356 	}
13357 }
13358 
13359 /* IRO array is stored in the following format:
13360  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13361  */
13362 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13363 {
13364 	const __be32 *source = (const __be32 *)_source;
13365 	struct iro *target = (struct iro *)_target;
13366 	u32 i, j, tmp;
13367 
13368 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13369 		target[i].base = be32_to_cpu(source[j]);
13370 		j++;
13371 		tmp = be32_to_cpu(source[j]);
13372 		target[i].m1 = (tmp >> 16) & 0xffff;
13373 		target[i].m2 = tmp & 0xffff;
13374 		j++;
13375 		tmp = be32_to_cpu(source[j]);
13376 		target[i].m3 = (tmp >> 16) & 0xffff;
13377 		target[i].size = tmp & 0xffff;
13378 		j++;
13379 	}
13380 }
13381 
13382 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13383 {
13384 	const __be16 *source = (const __be16 *)_source;
13385 	u16 *target = (u16 *)_target;
13386 	u32 i;
13387 
13388 	for (i = 0; i < n/2; i++)
13389 		target[i] = be16_to_cpu(source[i]);
13390 }
13391 
13392 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13393 do {									\
13394 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13395 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13396 	if (!bp->arr)							\
13397 		goto lbl;						\
13398 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13399 	     (u8 *)bp->arr, len);					\
13400 } while (0)
13401 
13402 static int bnx2x_init_firmware(struct bnx2x *bp)
13403 {
13404 	const char *fw_file_name, *fw_file_name_v15;
13405 	struct bnx2x_fw_file_hdr *fw_hdr;
13406 	int rc;
13407 
13408 	if (bp->firmware)
13409 		return 0;
13410 
13411 	if (CHIP_IS_E1(bp)) {
13412 		fw_file_name = FW_FILE_NAME_E1;
13413 		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13414 	} else if (CHIP_IS_E1H(bp)) {
13415 		fw_file_name = FW_FILE_NAME_E1H;
13416 		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13417 	} else if (!CHIP_IS_E1x(bp)) {
13418 		fw_file_name = FW_FILE_NAME_E2;
13419 		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13420 	} else {
13421 		BNX2X_ERR("Unsupported chip revision\n");
13422 		return -EINVAL;
13423 	}
13424 
13425 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13426 
13427 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13428 	if (rc) {
13429 		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13430 
13431 		/* try to load prev version */
13432 		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13433 
13434 		if (rc)
13435 			goto request_firmware_exit;
13436 
13437 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13438 	} else {
13439 		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13440 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13441 	}
13442 
13443 	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13444 	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13445 	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13446 
13447 	rc = bnx2x_check_firmware(bp);
13448 	if (rc) {
13449 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13450 		goto request_firmware_exit;
13451 	}
13452 
13453 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13454 
13455 	/* Initialize the pointers to the init arrays */
13456 	/* Blob */
13457 	rc = -ENOMEM;
13458 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13459 
13460 	/* Opcodes */
13461 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13462 
13463 	/* Offsets */
13464 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13465 			    be16_to_cpu_n);
13466 
13467 	/* STORMs firmware */
13468 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13469 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13470 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13471 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13472 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13473 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13474 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13475 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13476 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13477 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13478 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13479 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13480 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13481 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13482 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13483 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13484 	/* IRO */
13485 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13486 
13487 	return 0;
13488 
13489 iro_alloc_err:
13490 	kfree(bp->init_ops_offsets);
13491 init_offsets_alloc_err:
13492 	kfree(bp->init_ops);
13493 init_ops_alloc_err:
13494 	kfree(bp->init_data);
13495 request_firmware_exit:
13496 	release_firmware(bp->firmware);
13497 	bp->firmware = NULL;
13498 
13499 	return rc;
13500 }
13501 
13502 static void bnx2x_release_firmware(struct bnx2x *bp)
13503 {
13504 	kfree(bp->init_ops_offsets);
13505 	kfree(bp->init_ops);
13506 	kfree(bp->init_data);
13507 	release_firmware(bp->firmware);
13508 	bp->firmware = NULL;
13509 }
13510 
13511 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13512 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13513 	.init_hw_cmn      = bnx2x_init_hw_common,
13514 	.init_hw_port     = bnx2x_init_hw_port,
13515 	.init_hw_func     = bnx2x_init_hw_func,
13516 
13517 	.reset_hw_cmn     = bnx2x_reset_common,
13518 	.reset_hw_port    = bnx2x_reset_port,
13519 	.reset_hw_func    = bnx2x_reset_func,
13520 
13521 	.gunzip_init      = bnx2x_gunzip_init,
13522 	.gunzip_end       = bnx2x_gunzip_end,
13523 
13524 	.init_fw          = bnx2x_init_firmware,
13525 	.release_fw       = bnx2x_release_firmware,
13526 };
13527 
13528 void bnx2x__init_func_obj(struct bnx2x *bp)
13529 {
13530 	/* Prepare DMAE related driver resources */
13531 	bnx2x_setup_dmae(bp);
13532 
13533 	bnx2x_init_func_obj(bp, &bp->func_obj,
13534 			    bnx2x_sp(bp, func_rdata),
13535 			    bnx2x_sp_mapping(bp, func_rdata),
13536 			    bnx2x_sp(bp, func_afex_rdata),
13537 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13538 			    &bnx2x_func_sp_drv);
13539 }
13540 
13541 /* must be called after sriov-enable */
13542 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13543 {
13544 	int cid_count = BNX2X_L2_MAX_CID(bp);
13545 
13546 	if (IS_SRIOV(bp))
13547 		cid_count += BNX2X_VF_CIDS;
13548 
13549 	if (CNIC_SUPPORT(bp))
13550 		cid_count += CNIC_CID_MAX;
13551 
13552 	return roundup(cid_count, QM_CID_ROUND);
13553 }
13554 
13555 /**
13556  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13557  * @pdev: pci device
13558  * @cnic_cnt: count
13559  *
13560  */
13561 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13562 {
13563 	int index;
13564 	u16 control = 0;
13565 
13566 	/*
13567 	 * If MSI-X is not supported - return number of SBs needed to support
13568 	 * one fast path queue: one FP queue + SB for CNIC
13569 	 */
13570 	if (!pdev->msix_cap) {
13571 		dev_info(&pdev->dev, "no msix capability found\n");
13572 		return 1 + cnic_cnt;
13573 	}
13574 	dev_info(&pdev->dev, "msix capability found\n");
13575 
13576 	/*
13577 	 * The value in the PCI configuration space is the index of the last
13578 	 * entry, namely one less than the actual size of the table, which is
13579 	 * exactly what we want to return from this function: number of all SBs
13580 	 * without the default SB.
13581 	 * For VFs there is no default SB, then we return (index+1).
13582 	 */
13583 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13584 
13585 	index = control & PCI_MSIX_FLAGS_QSIZE;
13586 
13587 	return index;
13588 }
13589 
13590 static int set_max_cos_est(int chip_id)
13591 {
13592 	switch (chip_id) {
13593 	case BCM57710:
13594 	case BCM57711:
13595 	case BCM57711E:
13596 		return BNX2X_MULTI_TX_COS_E1X;
13597 	case BCM57712:
13598 	case BCM57712_MF:
13599 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13600 	case BCM57800:
13601 	case BCM57800_MF:
13602 	case BCM57810:
13603 	case BCM57810_MF:
13604 	case BCM57840_4_10:
13605 	case BCM57840_2_20:
13606 	case BCM57840_O:
13607 	case BCM57840_MFO:
13608 	case BCM57840_MF:
13609 	case BCM57811:
13610 	case BCM57811_MF:
13611 		return BNX2X_MULTI_TX_COS_E3B0;
13612 	case BCM57712_VF:
13613 	case BCM57800_VF:
13614 	case BCM57810_VF:
13615 	case BCM57840_VF:
13616 	case BCM57811_VF:
13617 		return 1;
13618 	default:
13619 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13620 		return -ENODEV;
13621 	}
13622 }
13623 
13624 static int set_is_vf(int chip_id)
13625 {
13626 	switch (chip_id) {
13627 	case BCM57712_VF:
13628 	case BCM57800_VF:
13629 	case BCM57810_VF:
13630 	case BCM57840_VF:
13631 	case BCM57811_VF:
13632 		return true;
13633 	default:
13634 		return false;
13635 	}
13636 }
13637 
13638 /* nig_tsgen registers relative address */
13639 #define tsgen_ctrl 0x0
13640 #define tsgen_freecount 0x10
13641 #define tsgen_synctime_t0 0x20
13642 #define tsgen_offset_t0 0x28
13643 #define tsgen_drift_t0 0x30
13644 #define tsgen_synctime_t1 0x58
13645 #define tsgen_offset_t1 0x60
13646 #define tsgen_drift_t1 0x68
13647 
13648 /* FW workaround for setting drift */
13649 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13650 					  int best_val, int best_period)
13651 {
13652 	struct bnx2x_func_state_params func_params = {NULL};
13653 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13654 		&func_params.params.set_timesync;
13655 
13656 	/* Prepare parameters for function state transitions */
13657 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13658 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13659 
13660 	func_params.f_obj = &bp->func_obj;
13661 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13662 
13663 	/* Function parameters */
13664 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13665 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13666 	set_timesync_params->add_sub_drift_adjust_value =
13667 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13668 	set_timesync_params->drift_adjust_value = best_val;
13669 	set_timesync_params->drift_adjust_period = best_period;
13670 
13671 	return bnx2x_func_state_change(bp, &func_params);
13672 }
13673 
13674 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13675 {
13676 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13677 	int rc;
13678 	int drift_dir = 1;
13679 	int val, period, period1, period2, dif, dif1, dif2;
13680 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13681 
13682 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13683 
13684 	if (!netif_running(bp->dev)) {
13685 		DP(BNX2X_MSG_PTP,
13686 		   "PTP adjfreq called while the interface is down\n");
13687 		return -ENETDOWN;
13688 	}
13689 
13690 	if (ppb < 0) {
13691 		ppb = -ppb;
13692 		drift_dir = 0;
13693 	}
13694 
13695 	if (ppb == 0) {
13696 		best_val = 1;
13697 		best_period = 0x1FFFFFF;
13698 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13699 		best_val = 31;
13700 		best_period = 1;
13701 	} else {
13702 		/* Changed not to allow val = 8, 16, 24 as these values
13703 		 * are not supported in workaround.
13704 		 */
13705 		for (val = 0; val <= 31; val++) {
13706 			if ((val & 0x7) == 0)
13707 				continue;
13708 			period1 = val * 1000000 / ppb;
13709 			period2 = period1 + 1;
13710 			if (period1 != 0)
13711 				dif1 = ppb - (val * 1000000 / period1);
13712 			else
13713 				dif1 = BNX2X_MAX_PHC_DRIFT;
13714 			if (dif1 < 0)
13715 				dif1 = -dif1;
13716 			dif2 = ppb - (val * 1000000 / period2);
13717 			if (dif2 < 0)
13718 				dif2 = -dif2;
13719 			dif = (dif1 < dif2) ? dif1 : dif2;
13720 			period = (dif1 < dif2) ? period1 : period2;
13721 			if (dif < best_dif) {
13722 				best_dif = dif;
13723 				best_val = val;
13724 				best_period = period;
13725 			}
13726 		}
13727 	}
13728 
13729 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13730 					    best_period);
13731 	if (rc) {
13732 		BNX2X_ERR("Failed to set drift\n");
13733 		return -EFAULT;
13734 	}
13735 
13736 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13737 	   best_period);
13738 
13739 	return 0;
13740 }
13741 
13742 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13743 {
13744 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13745 
13746 	if (!netif_running(bp->dev)) {
13747 		DP(BNX2X_MSG_PTP,
13748 		   "PTP adjtime called while the interface is down\n");
13749 		return -ENETDOWN;
13750 	}
13751 
13752 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13753 
13754 	timecounter_adjtime(&bp->timecounter, delta);
13755 
13756 	return 0;
13757 }
13758 
13759 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13760 {
13761 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13762 	u64 ns;
13763 
13764 	if (!netif_running(bp->dev)) {
13765 		DP(BNX2X_MSG_PTP,
13766 		   "PTP gettime called while the interface is down\n");
13767 		return -ENETDOWN;
13768 	}
13769 
13770 	ns = timecounter_read(&bp->timecounter);
13771 
13772 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13773 
13774 	*ts = ns_to_timespec64(ns);
13775 
13776 	return 0;
13777 }
13778 
13779 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13780 			     const struct timespec64 *ts)
13781 {
13782 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783 	u64 ns;
13784 
13785 	if (!netif_running(bp->dev)) {
13786 		DP(BNX2X_MSG_PTP,
13787 		   "PTP settime called while the interface is down\n");
13788 		return -ENETDOWN;
13789 	}
13790 
13791 	ns = timespec64_to_ns(ts);
13792 
13793 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13794 
13795 	/* Re-init the timecounter */
13796 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13797 
13798 	return 0;
13799 }
13800 
13801 /* Enable (or disable) ancillary features of the phc subsystem */
13802 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13803 			    struct ptp_clock_request *rq, int on)
13804 {
13805 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13806 
13807 	BNX2X_ERR("PHC ancillary features are not supported\n");
13808 	return -ENOTSUPP;
13809 }
13810 
13811 void bnx2x_register_phc(struct bnx2x *bp)
13812 {
13813 	/* Fill the ptp_clock_info struct and register PTP clock*/
13814 	bp->ptp_clock_info.owner = THIS_MODULE;
13815 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13816 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13817 	bp->ptp_clock_info.n_alarm = 0;
13818 	bp->ptp_clock_info.n_ext_ts = 0;
13819 	bp->ptp_clock_info.n_per_out = 0;
13820 	bp->ptp_clock_info.pps = 0;
13821 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13822 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13823 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13824 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13825 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13826 
13827 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13828 	if (IS_ERR(bp->ptp_clock)) {
13829 		bp->ptp_clock = NULL;
13830 		BNX2X_ERR("PTP clock registration failed\n");
13831 	}
13832 }
13833 
13834 static int bnx2x_init_one(struct pci_dev *pdev,
13835 				    const struct pci_device_id *ent)
13836 {
13837 	struct net_device *dev = NULL;
13838 	struct bnx2x *bp;
13839 	int rc, max_non_def_sbs;
13840 	int rx_count, tx_count, rss_count, doorbell_size;
13841 	int max_cos_est;
13842 	bool is_vf;
13843 	int cnic_cnt;
13844 
13845 	/* Management FW 'remembers' living interfaces. Allow it some time
13846 	 * to forget previously living interfaces, allowing a proper re-load.
13847 	 */
13848 	if (is_kdump_kernel()) {
13849 		ktime_t now = ktime_get_boottime();
13850 		ktime_t fw_ready_time = ktime_set(5, 0);
13851 
13852 		if (ktime_before(now, fw_ready_time))
13853 			msleep(ktime_ms_delta(fw_ready_time, now));
13854 	}
13855 
13856 	/* An estimated maximum supported CoS number according to the chip
13857 	 * version.
13858 	 * We will try to roughly estimate the maximum number of CoSes this chip
13859 	 * may support in order to minimize the memory allocated for Tx
13860 	 * netdev_queue's. This number will be accurately calculated during the
13861 	 * initialization of bp->max_cos based on the chip versions AND chip
13862 	 * revision in the bnx2x_init_bp().
13863 	 */
13864 	max_cos_est = set_max_cos_est(ent->driver_data);
13865 	if (max_cos_est < 0)
13866 		return max_cos_est;
13867 	is_vf = set_is_vf(ent->driver_data);
13868 	cnic_cnt = is_vf ? 0 : 1;
13869 
13870 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13871 
13872 	/* add another SB for VF as it has no default SB */
13873 	max_non_def_sbs += is_vf ? 1 : 0;
13874 
13875 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13876 	rss_count = max_non_def_sbs - cnic_cnt;
13877 
13878 	if (rss_count < 1)
13879 		return -EINVAL;
13880 
13881 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13882 	rx_count = rss_count + cnic_cnt;
13883 
13884 	/* Maximum number of netdev Tx queues:
13885 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13886 	 */
13887 	tx_count = rss_count * max_cos_est + cnic_cnt;
13888 
13889 	/* dev zeroed in init_etherdev */
13890 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13891 	if (!dev)
13892 		return -ENOMEM;
13893 
13894 	bp = netdev_priv(dev);
13895 
13896 	bp->flags = 0;
13897 	if (is_vf)
13898 		bp->flags |= IS_VF_FLAG;
13899 
13900 	bp->igu_sb_cnt = max_non_def_sbs;
13901 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13902 	bp->msg_enable = debug;
13903 	bp->cnic_support = cnic_cnt;
13904 	bp->cnic_probe = bnx2x_cnic_probe;
13905 
13906 	pci_set_drvdata(pdev, dev);
13907 
13908 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13909 	if (rc < 0) {
13910 		free_netdev(dev);
13911 		return rc;
13912 	}
13913 
13914 	BNX2X_DEV_INFO("This is a %s function\n",
13915 		       IS_PF(bp) ? "physical" : "virtual");
13916 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13917 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13918 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13919 		       tx_count, rx_count);
13920 
13921 	rc = bnx2x_init_bp(bp);
13922 	if (rc)
13923 		goto init_one_exit;
13924 
13925 	/* Map doorbells here as we need the real value of bp->max_cos which
13926 	 * is initialized in bnx2x_init_bp() to determine the number of
13927 	 * l2 connections.
13928 	 */
13929 	if (IS_VF(bp)) {
13930 		bp->doorbells = bnx2x_vf_doorbells(bp);
13931 		rc = bnx2x_vf_pci_alloc(bp);
13932 		if (rc)
13933 			goto init_one_freemem;
13934 	} else {
13935 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13936 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13937 			dev_err(&bp->pdev->dev,
13938 				"Cannot map doorbells, bar size too small, aborting\n");
13939 			rc = -ENOMEM;
13940 			goto init_one_freemem;
13941 		}
13942 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13943 						doorbell_size);
13944 	}
13945 	if (!bp->doorbells) {
13946 		dev_err(&bp->pdev->dev,
13947 			"Cannot map doorbell space, aborting\n");
13948 		rc = -ENOMEM;
13949 		goto init_one_freemem;
13950 	}
13951 
13952 	if (IS_VF(bp)) {
13953 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13954 		if (rc)
13955 			goto init_one_freemem;
13956 
13957 #ifdef CONFIG_BNX2X_SRIOV
13958 		/* VF with OLD Hypervisor or old PF do not support filtering */
13959 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13960 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13961 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13962 		}
13963 #endif
13964 	}
13965 
13966 	/* Enable SRIOV if capability found in configuration space */
13967 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13968 	if (rc)
13969 		goto init_one_freemem;
13970 
13971 	/* calc qm_cid_count */
13972 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13973 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13974 
13975 	/* disable FCOE L2 queue for E1x*/
13976 	if (CHIP_IS_E1x(bp))
13977 		bp->flags |= NO_FCOE_FLAG;
13978 
13979 	/* Set bp->num_queues for MSI-X mode*/
13980 	bnx2x_set_num_queues(bp);
13981 
13982 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13983 	 * needed.
13984 	 */
13985 	rc = bnx2x_set_int_mode(bp);
13986 	if (rc) {
13987 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13988 		goto init_one_freemem;
13989 	}
13990 	BNX2X_DEV_INFO("set interrupts successfully\n");
13991 
13992 	/* register the net device */
13993 	rc = register_netdev(dev);
13994 	if (rc) {
13995 		dev_err(&pdev->dev, "Cannot register net device\n");
13996 		goto init_one_freemem;
13997 	}
13998 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13999 
14000 	if (!NO_FCOE(bp)) {
14001 		/* Add storage MAC address */
14002 		rtnl_lock();
14003 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14004 		rtnl_unlock();
14005 	}
14006 	BNX2X_DEV_INFO(
14007 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14008 	       board_info[ent->driver_data].name,
14009 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14010 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14011 	pcie_print_link_status(bp->pdev);
14012 
14013 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14014 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14015 
14016 	return 0;
14017 
14018 init_one_freemem:
14019 	bnx2x_free_mem_bp(bp);
14020 
14021 init_one_exit:
14022 	bnx2x_disable_pcie_error_reporting(bp);
14023 
14024 	if (bp->regview)
14025 		iounmap(bp->regview);
14026 
14027 	if (IS_PF(bp) && bp->doorbells)
14028 		iounmap(bp->doorbells);
14029 
14030 	free_netdev(dev);
14031 
14032 	if (atomic_read(&pdev->enable_cnt) == 1)
14033 		pci_release_regions(pdev);
14034 
14035 	pci_disable_device(pdev);
14036 
14037 	return rc;
14038 }
14039 
14040 static void __bnx2x_remove(struct pci_dev *pdev,
14041 			   struct net_device *dev,
14042 			   struct bnx2x *bp,
14043 			   bool remove_netdev)
14044 {
14045 	/* Delete storage MAC address */
14046 	if (!NO_FCOE(bp)) {
14047 		rtnl_lock();
14048 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14049 		rtnl_unlock();
14050 	}
14051 
14052 #ifdef BCM_DCBNL
14053 	/* Delete app tlvs from dcbnl */
14054 	bnx2x_dcbnl_update_applist(bp, true);
14055 #endif
14056 
14057 	if (IS_PF(bp) &&
14058 	    !BP_NOMCP(bp) &&
14059 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14060 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14061 
14062 	/* Close the interface - either directly or implicitly */
14063 	if (remove_netdev) {
14064 		unregister_netdev(dev);
14065 	} else {
14066 		rtnl_lock();
14067 		dev_close(dev);
14068 		rtnl_unlock();
14069 	}
14070 
14071 	bnx2x_iov_remove_one(bp);
14072 
14073 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14074 	if (IS_PF(bp)) {
14075 		bnx2x_set_power_state(bp, PCI_D0);
14076 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14077 
14078 		/* Set endianity registers to reset values in case next driver
14079 		 * boots in different endianty environment.
14080 		 */
14081 		bnx2x_reset_endianity(bp);
14082 	}
14083 
14084 	/* Disable MSI/MSI-X */
14085 	bnx2x_disable_msi(bp);
14086 
14087 	/* Power off */
14088 	if (IS_PF(bp))
14089 		bnx2x_set_power_state(bp, PCI_D3hot);
14090 
14091 	/* Make sure RESET task is not scheduled before continuing */
14092 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14093 
14094 	/* send message via vfpf channel to release the resources of this vf */
14095 	if (IS_VF(bp))
14096 		bnx2x_vfpf_release(bp);
14097 
14098 	/* Assumes no further PCIe PM changes will occur */
14099 	if (system_state == SYSTEM_POWER_OFF) {
14100 		pci_wake_from_d3(pdev, bp->wol);
14101 		pci_set_power_state(pdev, PCI_D3hot);
14102 	}
14103 
14104 	bnx2x_disable_pcie_error_reporting(bp);
14105 	if (remove_netdev) {
14106 		if (bp->regview)
14107 			iounmap(bp->regview);
14108 
14109 		/* For vfs, doorbells are part of the regview and were unmapped
14110 		 * along with it. FW is only loaded by PF.
14111 		 */
14112 		if (IS_PF(bp)) {
14113 			if (bp->doorbells)
14114 				iounmap(bp->doorbells);
14115 
14116 			bnx2x_release_firmware(bp);
14117 		} else {
14118 			bnx2x_vf_pci_dealloc(bp);
14119 		}
14120 		bnx2x_free_mem_bp(bp);
14121 
14122 		free_netdev(dev);
14123 
14124 		if (atomic_read(&pdev->enable_cnt) == 1)
14125 			pci_release_regions(pdev);
14126 
14127 		pci_disable_device(pdev);
14128 	}
14129 }
14130 
14131 static void bnx2x_remove_one(struct pci_dev *pdev)
14132 {
14133 	struct net_device *dev = pci_get_drvdata(pdev);
14134 	struct bnx2x *bp;
14135 
14136 	if (!dev) {
14137 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14138 		return;
14139 	}
14140 	bp = netdev_priv(dev);
14141 
14142 	__bnx2x_remove(pdev, dev, bp, true);
14143 }
14144 
14145 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14146 {
14147 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14148 
14149 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14150 
14151 	if (CNIC_LOADED(bp))
14152 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14153 
14154 	/* Stop Tx */
14155 	bnx2x_tx_disable(bp);
14156 	netdev_reset_tc(bp->dev);
14157 
14158 	del_timer_sync(&bp->timer);
14159 	cancel_delayed_work_sync(&bp->sp_task);
14160 	cancel_delayed_work_sync(&bp->period_task);
14161 
14162 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14163 		bp->stats_state = STATS_STATE_DISABLED;
14164 		up(&bp->stats_lock);
14165 	}
14166 
14167 	bnx2x_save_statistics(bp);
14168 
14169 	netif_carrier_off(bp->dev);
14170 
14171 	return 0;
14172 }
14173 
14174 /**
14175  * bnx2x_io_error_detected - called when PCI error is detected
14176  * @pdev: Pointer to PCI device
14177  * @state: The current pci connection state
14178  *
14179  * This function is called after a PCI bus error affecting
14180  * this device has been detected.
14181  */
14182 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14183 						pci_channel_state_t state)
14184 {
14185 	struct net_device *dev = pci_get_drvdata(pdev);
14186 	struct bnx2x *bp = netdev_priv(dev);
14187 
14188 	rtnl_lock();
14189 
14190 	BNX2X_ERR("IO error detected\n");
14191 
14192 	netif_device_detach(dev);
14193 
14194 	if (state == pci_channel_io_perm_failure) {
14195 		rtnl_unlock();
14196 		return PCI_ERS_RESULT_DISCONNECT;
14197 	}
14198 
14199 	if (netif_running(dev))
14200 		bnx2x_eeh_nic_unload(bp);
14201 
14202 	bnx2x_prev_path_mark_eeh(bp);
14203 
14204 	pci_disable_device(pdev);
14205 
14206 	rtnl_unlock();
14207 
14208 	/* Request a slot reset */
14209 	return PCI_ERS_RESULT_NEED_RESET;
14210 }
14211 
14212 /**
14213  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14214  * @pdev: Pointer to PCI device
14215  *
14216  * Restart the card from scratch, as if from a cold-boot.
14217  */
14218 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14219 {
14220 	struct net_device *dev = pci_get_drvdata(pdev);
14221 	struct bnx2x *bp = netdev_priv(dev);
14222 	int i;
14223 
14224 	rtnl_lock();
14225 	BNX2X_ERR("IO slot reset initializing...\n");
14226 	if (pci_enable_device(pdev)) {
14227 		dev_err(&pdev->dev,
14228 			"Cannot re-enable PCI device after reset\n");
14229 		rtnl_unlock();
14230 		return PCI_ERS_RESULT_DISCONNECT;
14231 	}
14232 
14233 	pci_set_master(pdev);
14234 	pci_restore_state(pdev);
14235 	pci_save_state(pdev);
14236 
14237 	if (netif_running(dev))
14238 		bnx2x_set_power_state(bp, PCI_D0);
14239 
14240 	if (netif_running(dev)) {
14241 		BNX2X_ERR("IO slot reset --> driver unload\n");
14242 
14243 		/* MCP should have been reset; Need to wait for validity */
14244 		if (bnx2x_init_shmem(bp)) {
14245 			rtnl_unlock();
14246 			return PCI_ERS_RESULT_DISCONNECT;
14247 		}
14248 
14249 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14250 			u32 v;
14251 
14252 			v = SHMEM2_RD(bp,
14253 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14254 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14255 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14256 		}
14257 		bnx2x_drain_tx_queues(bp);
14258 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14259 		bnx2x_netif_stop(bp, 1);
14260 		bnx2x_del_all_napi(bp);
14261 
14262 		if (CNIC_LOADED(bp))
14263 			bnx2x_del_all_napi_cnic(bp);
14264 
14265 		bnx2x_free_irq(bp);
14266 
14267 		/* Report UNLOAD_DONE to MCP */
14268 		bnx2x_send_unload_done(bp, true);
14269 
14270 		bp->sp_state = 0;
14271 		bp->port.pmf = 0;
14272 
14273 		bnx2x_prev_unload(bp);
14274 
14275 		/* We should have reseted the engine, so It's fair to
14276 		 * assume the FW will no longer write to the bnx2x driver.
14277 		 */
14278 		bnx2x_squeeze_objects(bp);
14279 		bnx2x_free_skbs(bp);
14280 		for_each_rx_queue(bp, i)
14281 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14282 		bnx2x_free_fp_mem(bp);
14283 		bnx2x_free_mem(bp);
14284 
14285 		bp->state = BNX2X_STATE_CLOSED;
14286 	}
14287 
14288 	rtnl_unlock();
14289 
14290 	return PCI_ERS_RESULT_RECOVERED;
14291 }
14292 
14293 /**
14294  * bnx2x_io_resume - called when traffic can start flowing again
14295  * @pdev: Pointer to PCI device
14296  *
14297  * This callback is called when the error recovery driver tells us that
14298  * its OK to resume normal operation.
14299  */
14300 static void bnx2x_io_resume(struct pci_dev *pdev)
14301 {
14302 	struct net_device *dev = pci_get_drvdata(pdev);
14303 	struct bnx2x *bp = netdev_priv(dev);
14304 
14305 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14306 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14307 		return;
14308 	}
14309 
14310 	rtnl_lock();
14311 
14312 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14313 							DRV_MSG_SEQ_NUMBER_MASK;
14314 
14315 	if (netif_running(dev))
14316 		bnx2x_nic_load(bp, LOAD_NORMAL);
14317 
14318 	netif_device_attach(dev);
14319 
14320 	rtnl_unlock();
14321 }
14322 
14323 static const struct pci_error_handlers bnx2x_err_handler = {
14324 	.error_detected = bnx2x_io_error_detected,
14325 	.slot_reset     = bnx2x_io_slot_reset,
14326 	.resume         = bnx2x_io_resume,
14327 };
14328 
14329 static void bnx2x_shutdown(struct pci_dev *pdev)
14330 {
14331 	struct net_device *dev = pci_get_drvdata(pdev);
14332 	struct bnx2x *bp;
14333 
14334 	if (!dev)
14335 		return;
14336 
14337 	bp = netdev_priv(dev);
14338 	if (!bp)
14339 		return;
14340 
14341 	rtnl_lock();
14342 	netif_device_detach(dev);
14343 	rtnl_unlock();
14344 
14345 	/* Don't remove the netdevice, as there are scenarios which will cause
14346 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14347 	 * rootfs is mounted from SAN.
14348 	 */
14349 	__bnx2x_remove(pdev, dev, bp, false);
14350 }
14351 
14352 static struct pci_driver bnx2x_pci_driver = {
14353 	.name        = DRV_MODULE_NAME,
14354 	.id_table    = bnx2x_pci_tbl,
14355 	.probe       = bnx2x_init_one,
14356 	.remove      = bnx2x_remove_one,
14357 	.driver.pm   = &bnx2x_pm_ops,
14358 	.err_handler = &bnx2x_err_handler,
14359 #ifdef CONFIG_BNX2X_SRIOV
14360 	.sriov_configure = bnx2x_sriov_configure,
14361 #endif
14362 	.shutdown    = bnx2x_shutdown,
14363 };
14364 
14365 static int __init bnx2x_init(void)
14366 {
14367 	int ret;
14368 
14369 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14370 	if (bnx2x_wq == NULL) {
14371 		pr_err("Cannot create workqueue\n");
14372 		return -ENOMEM;
14373 	}
14374 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14375 	if (!bnx2x_iov_wq) {
14376 		pr_err("Cannot create iov workqueue\n");
14377 		destroy_workqueue(bnx2x_wq);
14378 		return -ENOMEM;
14379 	}
14380 
14381 	ret = pci_register_driver(&bnx2x_pci_driver);
14382 	if (ret) {
14383 		pr_err("Cannot register driver\n");
14384 		destroy_workqueue(bnx2x_wq);
14385 		destroy_workqueue(bnx2x_iov_wq);
14386 	}
14387 	return ret;
14388 }
14389 
14390 static void __exit bnx2x_cleanup(void)
14391 {
14392 	struct list_head *pos, *q;
14393 
14394 	pci_unregister_driver(&bnx2x_pci_driver);
14395 
14396 	destroy_workqueue(bnx2x_wq);
14397 	destroy_workqueue(bnx2x_iov_wq);
14398 
14399 	/* Free globally allocated resources */
14400 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14401 		struct bnx2x_prev_path_list *tmp =
14402 			list_entry(pos, struct bnx2x_prev_path_list, list);
14403 		list_del(pos);
14404 		kfree(tmp);
14405 	}
14406 }
14407 
14408 void bnx2x_notify_link_changed(struct bnx2x *bp)
14409 {
14410 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14411 }
14412 
14413 module_init(bnx2x_init);
14414 module_exit(bnx2x_cleanup);
14415 
14416 /**
14417  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14418  * @bp:		driver handle
14419  *
14420  * This function will wait until the ramrod completion returns.
14421  * Return 0 if success, -ENODEV if ramrod doesn't return.
14422  */
14423 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14424 {
14425 	unsigned long ramrod_flags = 0;
14426 
14427 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14428 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14429 				 &bp->iscsi_l2_mac_obj, true,
14430 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14431 }
14432 
14433 /* count denotes the number of new completions we have seen */
14434 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14435 {
14436 	struct eth_spe *spe;
14437 	int cxt_index, cxt_offset;
14438 
14439 #ifdef BNX2X_STOP_ON_ERROR
14440 	if (unlikely(bp->panic))
14441 		return;
14442 #endif
14443 
14444 	spin_lock_bh(&bp->spq_lock);
14445 	BUG_ON(bp->cnic_spq_pending < count);
14446 	bp->cnic_spq_pending -= count;
14447 
14448 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14449 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14450 				& SPE_HDR_CONN_TYPE) >>
14451 				SPE_HDR_CONN_TYPE_SHIFT;
14452 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14453 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14454 
14455 		/* Set validation for iSCSI L2 client before sending SETUP
14456 		 *  ramrod
14457 		 */
14458 		if (type == ETH_CONNECTION_TYPE) {
14459 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14460 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14461 					ILT_PAGE_CIDS;
14462 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14463 					(cxt_index * ILT_PAGE_CIDS);
14464 				bnx2x_set_ctx_validation(bp,
14465 					&bp->context[cxt_index].
14466 							 vcxt[cxt_offset].eth,
14467 					BNX2X_ISCSI_ETH_CID(bp));
14468 			}
14469 		}
14470 
14471 		/*
14472 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14473 		 * and in the air. We also check that number of outstanding
14474 		 * COMMON ramrods is not more than the EQ and SPQ can
14475 		 * accommodate.
14476 		 */
14477 		if (type == ETH_CONNECTION_TYPE) {
14478 			if (!atomic_read(&bp->cq_spq_left))
14479 				break;
14480 			else
14481 				atomic_dec(&bp->cq_spq_left);
14482 		} else if (type == NONE_CONNECTION_TYPE) {
14483 			if (!atomic_read(&bp->eq_spq_left))
14484 				break;
14485 			else
14486 				atomic_dec(&bp->eq_spq_left);
14487 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14488 			   (type == FCOE_CONNECTION_TYPE)) {
14489 			if (bp->cnic_spq_pending >=
14490 			    bp->cnic_eth_dev.max_kwqe_pending)
14491 				break;
14492 			else
14493 				bp->cnic_spq_pending++;
14494 		} else {
14495 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14496 			bnx2x_panic();
14497 			break;
14498 		}
14499 
14500 		spe = bnx2x_sp_get_next(bp);
14501 		*spe = *bp->cnic_kwq_cons;
14502 
14503 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14504 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14505 
14506 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14507 			bp->cnic_kwq_cons = bp->cnic_kwq;
14508 		else
14509 			bp->cnic_kwq_cons++;
14510 	}
14511 	bnx2x_sp_prod_update(bp);
14512 	spin_unlock_bh(&bp->spq_lock);
14513 }
14514 
14515 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14516 			       struct kwqe_16 *kwqes[], u32 count)
14517 {
14518 	struct bnx2x *bp = netdev_priv(dev);
14519 	int i;
14520 
14521 #ifdef BNX2X_STOP_ON_ERROR
14522 	if (unlikely(bp->panic)) {
14523 		BNX2X_ERR("Can't post to SP queue while panic\n");
14524 		return -EIO;
14525 	}
14526 #endif
14527 
14528 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14529 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14530 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14531 		return -EAGAIN;
14532 	}
14533 
14534 	spin_lock_bh(&bp->spq_lock);
14535 
14536 	for (i = 0; i < count; i++) {
14537 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14538 
14539 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14540 			break;
14541 
14542 		*bp->cnic_kwq_prod = *spe;
14543 
14544 		bp->cnic_kwq_pending++;
14545 
14546 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14547 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14548 		   spe->data.update_data_addr.hi,
14549 		   spe->data.update_data_addr.lo,
14550 		   bp->cnic_kwq_pending);
14551 
14552 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14553 			bp->cnic_kwq_prod = bp->cnic_kwq;
14554 		else
14555 			bp->cnic_kwq_prod++;
14556 	}
14557 
14558 	spin_unlock_bh(&bp->spq_lock);
14559 
14560 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14561 		bnx2x_cnic_sp_post(bp, 0);
14562 
14563 	return i;
14564 }
14565 
14566 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14567 {
14568 	struct cnic_ops *c_ops;
14569 	int rc = 0;
14570 
14571 	mutex_lock(&bp->cnic_mutex);
14572 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14573 					  lockdep_is_held(&bp->cnic_mutex));
14574 	if (c_ops)
14575 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14576 	mutex_unlock(&bp->cnic_mutex);
14577 
14578 	return rc;
14579 }
14580 
14581 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14582 {
14583 	struct cnic_ops *c_ops;
14584 	int rc = 0;
14585 
14586 	rcu_read_lock();
14587 	c_ops = rcu_dereference(bp->cnic_ops);
14588 	if (c_ops)
14589 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14590 	rcu_read_unlock();
14591 
14592 	return rc;
14593 }
14594 
14595 /*
14596  * for commands that have no data
14597  */
14598 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14599 {
14600 	struct cnic_ctl_info ctl = {0};
14601 
14602 	ctl.cmd = cmd;
14603 
14604 	return bnx2x_cnic_ctl_send(bp, &ctl);
14605 }
14606 
14607 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14608 {
14609 	struct cnic_ctl_info ctl = {0};
14610 
14611 	/* first we tell CNIC and only then we count this as a completion */
14612 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14613 	ctl.data.comp.cid = cid;
14614 	ctl.data.comp.error = err;
14615 
14616 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14617 	bnx2x_cnic_sp_post(bp, 0);
14618 }
14619 
14620 /* Called with netif_addr_lock_bh() taken.
14621  * Sets an rx_mode config for an iSCSI ETH client.
14622  * Doesn't block.
14623  * Completion should be checked outside.
14624  */
14625 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14626 {
14627 	unsigned long accept_flags = 0, ramrod_flags = 0;
14628 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14629 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14630 
14631 	if (start) {
14632 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14633 		 * because it's the only way for UIO Queue to accept
14634 		 * multicasts (in non-promiscuous mode only one Queue per
14635 		 * function will receive multicast packets (leading in our
14636 		 * case).
14637 		 */
14638 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14639 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14640 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14641 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14642 
14643 		/* Clear STOP_PENDING bit if START is requested */
14644 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14645 
14646 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14647 	} else
14648 		/* Clear START_PENDING bit if STOP is requested */
14649 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14650 
14651 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14652 		set_bit(sched_state, &bp->sp_state);
14653 	else {
14654 		__set_bit(RAMROD_RX, &ramrod_flags);
14655 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14656 				    ramrod_flags);
14657 	}
14658 }
14659 
14660 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14661 {
14662 	struct bnx2x *bp = netdev_priv(dev);
14663 	int rc = 0;
14664 
14665 	switch (ctl->cmd) {
14666 	case DRV_CTL_CTXTBL_WR_CMD: {
14667 		u32 index = ctl->data.io.offset;
14668 		dma_addr_t addr = ctl->data.io.dma_addr;
14669 
14670 		bnx2x_ilt_wr(bp, index, addr);
14671 		break;
14672 	}
14673 
14674 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14675 		int count = ctl->data.credit.credit_count;
14676 
14677 		bnx2x_cnic_sp_post(bp, count);
14678 		break;
14679 	}
14680 
14681 	/* rtnl_lock is held.  */
14682 	case DRV_CTL_START_L2_CMD: {
14683 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14684 		unsigned long sp_bits = 0;
14685 
14686 		/* Configure the iSCSI classification object */
14687 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14688 				   cp->iscsi_l2_client_id,
14689 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14690 				   bnx2x_sp(bp, mac_rdata),
14691 				   bnx2x_sp_mapping(bp, mac_rdata),
14692 				   BNX2X_FILTER_MAC_PENDING,
14693 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14694 				   &bp->macs_pool);
14695 
14696 		/* Set iSCSI MAC address */
14697 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14698 		if (rc)
14699 			break;
14700 
14701 		barrier();
14702 
14703 		/* Start accepting on iSCSI L2 ring */
14704 
14705 		netif_addr_lock_bh(dev);
14706 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14707 		netif_addr_unlock_bh(dev);
14708 
14709 		/* bits to wait on */
14710 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14711 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14712 
14713 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14714 			BNX2X_ERR("rx_mode completion timed out!\n");
14715 
14716 		break;
14717 	}
14718 
14719 	/* rtnl_lock is held.  */
14720 	case DRV_CTL_STOP_L2_CMD: {
14721 		unsigned long sp_bits = 0;
14722 
14723 		/* Stop accepting on iSCSI L2 ring */
14724 		netif_addr_lock_bh(dev);
14725 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14726 		netif_addr_unlock_bh(dev);
14727 
14728 		/* bits to wait on */
14729 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14730 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14731 
14732 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14733 			BNX2X_ERR("rx_mode completion timed out!\n");
14734 
14735 		barrier();
14736 
14737 		/* Unset iSCSI L2 MAC */
14738 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14739 					BNX2X_ISCSI_ETH_MAC, true);
14740 		break;
14741 	}
14742 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14743 		int count = ctl->data.credit.credit_count;
14744 
14745 		smp_mb__before_atomic();
14746 		atomic_add(count, &bp->cq_spq_left);
14747 		smp_mb__after_atomic();
14748 		break;
14749 	}
14750 	case DRV_CTL_ULP_REGISTER_CMD: {
14751 		int ulp_type = ctl->data.register_data.ulp_type;
14752 
14753 		if (CHIP_IS_E3(bp)) {
14754 			int idx = BP_FW_MB_IDX(bp);
14755 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14756 			int path = BP_PATH(bp);
14757 			int port = BP_PORT(bp);
14758 			int i;
14759 			u32 scratch_offset;
14760 			u32 *host_addr;
14761 
14762 			/* first write capability to shmem2 */
14763 			if (ulp_type == CNIC_ULP_ISCSI)
14764 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14765 			else if (ulp_type == CNIC_ULP_FCOE)
14766 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14767 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14768 
14769 			if ((ulp_type != CNIC_ULP_FCOE) ||
14770 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14771 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14772 				break;
14773 
14774 			/* if reached here - should write fcoe capabilities */
14775 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14776 			if (!scratch_offset)
14777 				break;
14778 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14779 						   fcoe_features[path][port]);
14780 			host_addr = (u32 *) &(ctl->data.register_data.
14781 					      fcoe_features);
14782 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14783 			     i += 4)
14784 				REG_WR(bp, scratch_offset + i,
14785 				       *(host_addr + i/4));
14786 		}
14787 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14788 		break;
14789 	}
14790 
14791 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14792 		int ulp_type = ctl->data.ulp_type;
14793 
14794 		if (CHIP_IS_E3(bp)) {
14795 			int idx = BP_FW_MB_IDX(bp);
14796 			u32 cap;
14797 
14798 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14799 			if (ulp_type == CNIC_ULP_ISCSI)
14800 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14801 			else if (ulp_type == CNIC_ULP_FCOE)
14802 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14803 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14804 		}
14805 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14806 		break;
14807 	}
14808 
14809 	default:
14810 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14811 		rc = -EINVAL;
14812 	}
14813 
14814 	/* For storage-only interfaces, change driver state */
14815 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14816 		switch (ctl->drv_state) {
14817 		case DRV_NOP:
14818 			break;
14819 		case DRV_ACTIVE:
14820 			bnx2x_set_os_driver_state(bp,
14821 						  OS_DRIVER_STATE_ACTIVE);
14822 			break;
14823 		case DRV_INACTIVE:
14824 			bnx2x_set_os_driver_state(bp,
14825 						  OS_DRIVER_STATE_DISABLED);
14826 			break;
14827 		case DRV_UNLOADED:
14828 			bnx2x_set_os_driver_state(bp,
14829 						  OS_DRIVER_STATE_NOT_LOADED);
14830 			break;
14831 		default:
14832 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14833 		}
14834 	}
14835 
14836 	return rc;
14837 }
14838 
14839 static int bnx2x_get_fc_npiv(struct net_device *dev,
14840 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14841 {
14842 	struct bnx2x *bp = netdev_priv(dev);
14843 	struct bdn_fc_npiv_tbl *tbl = NULL;
14844 	u32 offset, entries;
14845 	int rc = -EINVAL;
14846 	int i;
14847 
14848 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14849 		goto out;
14850 
14851 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14852 
14853 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14854 	if (!tbl) {
14855 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14856 		goto out;
14857 	}
14858 
14859 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14860 	if (!offset) {
14861 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14862 		goto out;
14863 	}
14864 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14865 
14866 	/* Read the table contents from nvram */
14867 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14868 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14869 		goto out;
14870 	}
14871 
14872 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14873 	 * the number of entries back to cpu endianness.
14874 	 */
14875 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14876 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14877 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14878 
14879 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14880 		DP(BNX2X_MSG_MCP,
14881 		   "No FC-NPIV table [valid, simply not present]\n");
14882 		goto out;
14883 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14884 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14885 			  tbl->fc_npiv_cfg.num_of_npiv);
14886 		goto out;
14887 	} else {
14888 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14889 		   tbl->fc_npiv_cfg.num_of_npiv);
14890 	}
14891 
14892 	/* Copy the data into cnic-provided struct */
14893 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14894 	for (i = 0; i < cnic_tbl->count; i++) {
14895 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14896 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14897 	}
14898 
14899 	rc = 0;
14900 out:
14901 	kfree(tbl);
14902 	return rc;
14903 }
14904 
14905 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14906 {
14907 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14908 
14909 	if (bp->flags & USING_MSIX_FLAG) {
14910 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14911 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14912 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14913 	} else {
14914 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14915 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14916 	}
14917 	if (!CHIP_IS_E1x(bp))
14918 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14919 	else
14920 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14921 
14922 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14923 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14924 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14925 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14926 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14927 
14928 	cp->num_irq = 2;
14929 }
14930 
14931 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14932 {
14933 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14934 
14935 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14936 			     bnx2x_cid_ilt_lines(bp);
14937 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14938 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14939 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14940 
14941 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14942 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14943 	   cp->iscsi_l2_cid);
14944 
14945 	if (NO_ISCSI_OOO(bp))
14946 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14947 }
14948 
14949 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14950 			       void *data)
14951 {
14952 	struct bnx2x *bp = netdev_priv(dev);
14953 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14954 	int rc;
14955 
14956 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14957 
14958 	if (ops == NULL) {
14959 		BNX2X_ERR("NULL ops received\n");
14960 		return -EINVAL;
14961 	}
14962 
14963 	if (!CNIC_SUPPORT(bp)) {
14964 		BNX2X_ERR("Can't register CNIC when not supported\n");
14965 		return -EOPNOTSUPP;
14966 	}
14967 
14968 	if (!CNIC_LOADED(bp)) {
14969 		rc = bnx2x_load_cnic(bp);
14970 		if (rc) {
14971 			BNX2X_ERR("CNIC-related load failed\n");
14972 			return rc;
14973 		}
14974 	}
14975 
14976 	bp->cnic_enabled = true;
14977 
14978 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14979 	if (!bp->cnic_kwq)
14980 		return -ENOMEM;
14981 
14982 	bp->cnic_kwq_cons = bp->cnic_kwq;
14983 	bp->cnic_kwq_prod = bp->cnic_kwq;
14984 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14985 
14986 	bp->cnic_spq_pending = 0;
14987 	bp->cnic_kwq_pending = 0;
14988 
14989 	bp->cnic_data = data;
14990 
14991 	cp->num_irq = 0;
14992 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14993 	cp->iro_arr = bp->iro_arr;
14994 
14995 	bnx2x_setup_cnic_irq_info(bp);
14996 
14997 	rcu_assign_pointer(bp->cnic_ops, ops);
14998 
14999 	/* Schedule driver to read CNIC driver versions */
15000 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15001 
15002 	return 0;
15003 }
15004 
15005 static int bnx2x_unregister_cnic(struct net_device *dev)
15006 {
15007 	struct bnx2x *bp = netdev_priv(dev);
15008 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15009 
15010 	mutex_lock(&bp->cnic_mutex);
15011 	cp->drv_state = 0;
15012 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15013 	mutex_unlock(&bp->cnic_mutex);
15014 	synchronize_rcu();
15015 	bp->cnic_enabled = false;
15016 	kfree(bp->cnic_kwq);
15017 	bp->cnic_kwq = NULL;
15018 
15019 	return 0;
15020 }
15021 
15022 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15023 {
15024 	struct bnx2x *bp = netdev_priv(dev);
15025 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15026 
15027 	/* If both iSCSI and FCoE are disabled - return NULL in
15028 	 * order to indicate CNIC that it should not try to work
15029 	 * with this device.
15030 	 */
15031 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15032 		return NULL;
15033 
15034 	cp->drv_owner = THIS_MODULE;
15035 	cp->chip_id = CHIP_ID(bp);
15036 	cp->pdev = bp->pdev;
15037 	cp->io_base = bp->regview;
15038 	cp->io_base2 = bp->doorbells;
15039 	cp->max_kwqe_pending = 8;
15040 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15041 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15042 			     bnx2x_cid_ilt_lines(bp);
15043 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15044 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15045 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15046 	cp->drv_ctl = bnx2x_drv_ctl;
15047 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15048 	cp->drv_register_cnic = bnx2x_register_cnic;
15049 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15050 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15051 	cp->iscsi_l2_client_id =
15052 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15053 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15054 
15055 	if (NO_ISCSI_OOO(bp))
15056 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15057 
15058 	if (NO_ISCSI(bp))
15059 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15060 
15061 	if (NO_FCOE(bp))
15062 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15063 
15064 	BNX2X_DEV_INFO(
15065 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15066 	   cp->ctx_blk_size,
15067 	   cp->ctx_tbl_offset,
15068 	   cp->ctx_tbl_len,
15069 	   cp->starting_cid);
15070 	return cp;
15071 }
15072 
15073 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15074 {
15075 	struct bnx2x *bp = fp->bp;
15076 	u32 offset = BAR_USTRORM_INTMEM;
15077 
15078 	if (IS_VF(bp))
15079 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15080 	else if (!CHIP_IS_E1x(bp))
15081 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15082 	else
15083 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15084 
15085 	return offset;
15086 }
15087 
15088 /* called only on E1H or E2.
15089  * When pretending to be PF, the pretend value is the function number 0...7
15090  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15091  * combination
15092  */
15093 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15094 {
15095 	u32 pretend_reg;
15096 
15097 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15098 		return -1;
15099 
15100 	/* get my own pretend register */
15101 	pretend_reg = bnx2x_get_pretend_reg(bp);
15102 	REG_WR(bp, pretend_reg, pretend_func_val);
15103 	REG_RD(bp, pretend_reg);
15104 	return 0;
15105 }
15106 
15107 static void bnx2x_ptp_task(struct work_struct *work)
15108 {
15109 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15110 	int port = BP_PORT(bp);
15111 	u32 val_seq;
15112 	u64 timestamp, ns;
15113 	struct skb_shared_hwtstamps shhwtstamps;
15114 	bool bail = true;
15115 	int i;
15116 
15117 	/* FW may take a while to complete timestamping; try a bit and if it's
15118 	 * still not complete, may indicate an error state - bail out then.
15119 	 */
15120 	for (i = 0; i < 10; i++) {
15121 		/* Read Tx timestamp registers */
15122 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15123 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15124 		if (val_seq & 0x10000) {
15125 			bail = false;
15126 			break;
15127 		}
15128 		msleep(1 << i);
15129 	}
15130 
15131 	if (!bail) {
15132 		/* There is a valid timestamp value */
15133 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15134 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15135 		timestamp <<= 32;
15136 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15137 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15138 		/* Reset timestamp register to allow new timestamp */
15139 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15140 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15141 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15142 
15143 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15144 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15145 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15146 
15147 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15148 		   timestamp, ns);
15149 	} else {
15150 		DP(BNX2X_MSG_PTP,
15151 		   "Tx timestamp is not recorded (register read=%u)\n",
15152 		   val_seq);
15153 		bp->eth_stats.ptp_skip_tx_ts++;
15154 	}
15155 
15156 	dev_kfree_skb_any(bp->ptp_tx_skb);
15157 	bp->ptp_tx_skb = NULL;
15158 }
15159 
15160 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15161 {
15162 	int port = BP_PORT(bp);
15163 	u64 timestamp, ns;
15164 
15165 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15166 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15167 	timestamp <<= 32;
15168 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15169 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15170 
15171 	/* Reset timestamp register to allow new timestamp */
15172 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15173 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15174 
15175 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15176 
15177 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15178 
15179 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15180 	   timestamp, ns);
15181 }
15182 
15183 /* Read the PHC */
15184 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15185 {
15186 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15187 	int port = BP_PORT(bp);
15188 	u32 wb_data[2];
15189 	u64 phc_cycles;
15190 
15191 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15192 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15193 	phc_cycles = wb_data[1];
15194 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15195 
15196 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15197 
15198 	return phc_cycles;
15199 }
15200 
15201 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15202 {
15203 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15204 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15205 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15206 	bp->cyclecounter.shift = 0;
15207 	bp->cyclecounter.mult = 1;
15208 }
15209 
15210 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15211 {
15212 	struct bnx2x_func_state_params func_params = {NULL};
15213 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15214 		&func_params.params.set_timesync;
15215 
15216 	/* Prepare parameters for function state transitions */
15217 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15218 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15219 
15220 	func_params.f_obj = &bp->func_obj;
15221 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15222 
15223 	/* Function parameters */
15224 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15225 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15226 
15227 	return bnx2x_func_state_change(bp, &func_params);
15228 }
15229 
15230 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15231 {
15232 	struct bnx2x_queue_state_params q_params;
15233 	int rc, i;
15234 
15235 	/* send queue update ramrod to enable PTP packets */
15236 	memset(&q_params, 0, sizeof(q_params));
15237 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15238 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15239 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15240 		  &q_params.params.update.update_flags);
15241 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15242 		  &q_params.params.update.update_flags);
15243 
15244 	/* send the ramrod on all the queues of the PF */
15245 	for_each_eth_queue(bp, i) {
15246 		struct bnx2x_fastpath *fp = &bp->fp[i];
15247 
15248 		/* Set the appropriate Queue object */
15249 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15250 
15251 		/* Update the Queue state */
15252 		rc = bnx2x_queue_state_change(bp, &q_params);
15253 		if (rc) {
15254 			BNX2X_ERR("Failed to enable PTP packets\n");
15255 			return rc;
15256 		}
15257 	}
15258 
15259 	return 0;
15260 }
15261 
15262 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15263 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15264 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15265 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15266 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15267 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15268 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15269 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15270 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15271 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15272 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15273 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15274 
15275 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15276 {
15277 	int port = BP_PORT(bp);
15278 	u32 param, rule;
15279 	int rc;
15280 
15281 	if (!bp->hwtstamp_ioctl_called)
15282 		return 0;
15283 
15284 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15285 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15286 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15287 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15288 	switch (bp->tx_type) {
15289 	case HWTSTAMP_TX_ON:
15290 		bp->flags |= TX_TIMESTAMPING_EN;
15291 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15292 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15293 		break;
15294 	case HWTSTAMP_TX_ONESTEP_SYNC:
15295 	case HWTSTAMP_TX_ONESTEP_P2P:
15296 		BNX2X_ERR("One-step timestamping is not supported\n");
15297 		return -ERANGE;
15298 	}
15299 
15300 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15301 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15302 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15303 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15304 	switch (bp->rx_filter) {
15305 	case HWTSTAMP_FILTER_NONE:
15306 		break;
15307 	case HWTSTAMP_FILTER_ALL:
15308 	case HWTSTAMP_FILTER_SOME:
15309 	case HWTSTAMP_FILTER_NTP_ALL:
15310 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15311 		break;
15312 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15313 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15314 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15315 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15316 		/* Initialize PTP detection for UDP/IPv4 events */
15317 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15318 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15319 		break;
15320 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15321 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15322 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15323 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15324 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15325 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15326 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15327 		break;
15328 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15329 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15330 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15331 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15332 		/* Initialize PTP detection L2 events */
15333 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15334 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15335 
15336 		break;
15337 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15338 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15339 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15340 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15341 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15342 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15343 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15344 		break;
15345 	}
15346 
15347 	/* Indicate to FW that this PF expects recorded PTP packets */
15348 	rc = bnx2x_enable_ptp_packets(bp);
15349 	if (rc)
15350 		return rc;
15351 
15352 	/* Enable sending PTP packets to host */
15353 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15354 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15355 
15356 	return 0;
15357 }
15358 
15359 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15360 {
15361 	struct hwtstamp_config config;
15362 	int rc;
15363 
15364 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15365 
15366 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15367 		return -EFAULT;
15368 
15369 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15370 	   config.tx_type, config.rx_filter);
15371 
15372 	bp->hwtstamp_ioctl_called = true;
15373 	bp->tx_type = config.tx_type;
15374 	bp->rx_filter = config.rx_filter;
15375 
15376 	rc = bnx2x_configure_ptp_filters(bp);
15377 	if (rc)
15378 		return rc;
15379 
15380 	config.rx_filter = bp->rx_filter;
15381 
15382 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15383 		-EFAULT : 0;
15384 }
15385 
15386 /* Configures HW for PTP */
15387 static int bnx2x_configure_ptp(struct bnx2x *bp)
15388 {
15389 	int rc, port = BP_PORT(bp);
15390 	u32 wb_data[2];
15391 
15392 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15393 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15394 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15395 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15396 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15397 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15398 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15399 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15400 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15401 
15402 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15403 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15404 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15405 
15406 	/* Enable the PTP feature */
15407 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15408 	       NIG_REG_P0_PTP_EN, 0x3F);
15409 
15410 	/* Enable the free-running counter */
15411 	wb_data[0] = 0;
15412 	wb_data[1] = 0;
15413 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15414 
15415 	/* Reset drift register (offset register is not reset) */
15416 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15417 	if (rc) {
15418 		BNX2X_ERR("Failed to reset PHC drift register\n");
15419 		return -EFAULT;
15420 	}
15421 
15422 	/* Reset possibly old timestamps */
15423 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15424 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15425 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15426 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15427 
15428 	return 0;
15429 }
15430 
15431 /* Called during load, to initialize PTP-related stuff */
15432 void bnx2x_init_ptp(struct bnx2x *bp)
15433 {
15434 	int rc;
15435 
15436 	/* Configure PTP in HW */
15437 	rc = bnx2x_configure_ptp(bp);
15438 	if (rc) {
15439 		BNX2X_ERR("Stopping PTP initialization\n");
15440 		return;
15441 	}
15442 
15443 	/* Init work queue for Tx timestamping */
15444 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15445 
15446 	/* Init cyclecounter and timecounter. This is done only in the first
15447 	 * load. If done in every load, PTP application will fail when doing
15448 	 * unload / load (e.g. MTU change) while it is running.
15449 	 */
15450 	if (!bp->timecounter_init_done) {
15451 		bnx2x_init_cyclecounter(bp);
15452 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15453 				 ktime_to_ns(ktime_get_real()));
15454 		bp->timecounter_init_done = true;
15455 	}
15456 
15457 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15458 }
15459