xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
507 			       u32 *comp)
508 {
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 #ifdef BNX2X_STOP_ON_ERROR
581 		bnx2x_panic();
582 #endif
583 	}
584 }
585 
586 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
587 {
588 	int rc;
589 	struct dmae_command dmae;
590 
591 	if (!bp->dmae_ready) {
592 		u32 *data = bnx2x_sp(bp, wb_data[0]);
593 		int i;
594 
595 		if (CHIP_IS_E1(bp))
596 			for (i = 0; i < len32; i++)
597 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
598 		else
599 			for (i = 0; i < len32; i++)
600 				data[i] = REG_RD(bp, src_addr + i*4);
601 
602 		return;
603 	}
604 
605 	/* set opcode and fixed command fields */
606 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
607 
608 	/* fill in addresses and len */
609 	dmae.src_addr_lo = src_addr >> 2;
610 	dmae.src_addr_hi = 0;
611 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
612 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
613 	dmae.len = len32;
614 
615 	/* issue the command and wait for completion */
616 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
617 	if (rc) {
618 		BNX2X_ERR("DMAE returned failure %d\n", rc);
619 #ifdef BNX2X_STOP_ON_ERROR
620 		bnx2x_panic();
621 #endif
622 	}
623 }
624 
625 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
626 				      u32 addr, u32 len)
627 {
628 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
629 	int offset = 0;
630 
631 	while (len > dmae_wr_max) {
632 		bnx2x_write_dmae(bp, phys_addr + offset,
633 				 addr + offset, dmae_wr_max);
634 		offset += dmae_wr_max * 4;
635 		len -= dmae_wr_max;
636 	}
637 
638 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
639 }
640 
641 static int bnx2x_mc_assert(struct bnx2x *bp)
642 {
643 	char last_idx;
644 	int i, rc = 0;
645 	u32 row0, row1, row2, row3;
646 
647 	/* XSTORM */
648 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
649 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
650 	if (last_idx)
651 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
652 
653 	/* print the asserts */
654 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
655 
656 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i));
658 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
660 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
661 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
662 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
663 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
664 
665 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
666 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
667 				  i, row3, row2, row1, row0);
668 			rc++;
669 		} else {
670 			break;
671 		}
672 	}
673 
674 	/* TSTORM */
675 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
676 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
677 	if (last_idx)
678 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
679 
680 	/* print the asserts */
681 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
682 
683 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i));
685 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
687 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
688 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
689 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
690 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
691 
692 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
693 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
694 				  i, row3, row2, row1, row0);
695 			rc++;
696 		} else {
697 			break;
698 		}
699 	}
700 
701 	/* CSTORM */
702 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
703 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
704 	if (last_idx)
705 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
706 
707 	/* print the asserts */
708 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
709 
710 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i));
712 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
714 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
715 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
716 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
717 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
718 
719 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
720 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
721 				  i, row3, row2, row1, row0);
722 			rc++;
723 		} else {
724 			break;
725 		}
726 	}
727 
728 	/* USTORM */
729 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
730 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
731 	if (last_idx)
732 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
733 
734 	/* print the asserts */
735 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
736 
737 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i));
739 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
741 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
742 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
743 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
744 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
745 
746 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
747 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
748 				  i, row3, row2, row1, row0);
749 			rc++;
750 		} else {
751 			break;
752 		}
753 	}
754 
755 	return rc;
756 }
757 
758 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
759 #define SCRATCH_BUFFER_SIZE(bp)	\
760 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
761 
762 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
763 {
764 	u32 addr, val;
765 	u32 mark, offset;
766 	__be32 data[9];
767 	int word;
768 	u32 trace_shmem_base;
769 	if (BP_NOMCP(bp)) {
770 		BNX2X_ERR("NO MCP - can not dump\n");
771 		return;
772 	}
773 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
774 		(bp->common.bc_ver & 0xff0000) >> 16,
775 		(bp->common.bc_ver & 0xff00) >> 8,
776 		(bp->common.bc_ver & 0xff));
777 
778 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
779 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
780 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
781 
782 	if (BP_PATH(bp) == 0)
783 		trace_shmem_base = bp->common.shmem_base;
784 	else
785 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
786 
787 	/* sanity */
788 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
789 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
790 				SCRATCH_BUFFER_SIZE(bp)) {
791 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
792 			  trace_shmem_base);
793 		return;
794 	}
795 
796 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
797 
798 	/* validate TRCB signature */
799 	mark = REG_RD(bp, addr);
800 	if (mark != MFW_TRACE_SIGNATURE) {
801 		BNX2X_ERR("Trace buffer signature is missing.");
802 		return ;
803 	}
804 
805 	/* read cyclic buffer pointer */
806 	addr += 4;
807 	mark = REG_RD(bp, addr);
808 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
809 	if (mark >= trace_shmem_base || mark < addr + 4) {
810 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
811 		return;
812 	}
813 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
814 
815 	printk("%s", lvl);
816 
817 	/* dump buffer after the mark */
818 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
819 		for (word = 0; word < 8; word++)
820 			data[word] = htonl(REG_RD(bp, offset + 4*word));
821 		data[8] = 0x0;
822 		pr_cont("%s", (char *)data);
823 	}
824 
825 	/* dump buffer before the mark */
826 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
827 		for (word = 0; word < 8; word++)
828 			data[word] = htonl(REG_RD(bp, offset + 4*word));
829 		data[8] = 0x0;
830 		pr_cont("%s", (char *)data);
831 	}
832 	printk("%s" "end of fw dump\n", lvl);
833 }
834 
835 static void bnx2x_fw_dump(struct bnx2x *bp)
836 {
837 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
838 }
839 
840 static void bnx2x_hc_int_disable(struct bnx2x *bp)
841 {
842 	int port = BP_PORT(bp);
843 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
844 	u32 val = REG_RD(bp, addr);
845 
846 	/* in E1 we must use only PCI configuration space to disable
847 	 * MSI/MSIX capability
848 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
849 	 */
850 	if (CHIP_IS_E1(bp)) {
851 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
852 		 * Use mask register to prevent from HC sending interrupts
853 		 * after we exit the function
854 		 */
855 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
856 
857 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
858 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
859 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
860 	} else
861 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
863 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
864 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
865 
866 	DP(NETIF_MSG_IFDOWN,
867 	   "write %x to HC %d (addr 0x%x)\n",
868 	   val, port, addr);
869 
870 	/* flush all outstanding writes */
871 	mmiowb();
872 
873 	REG_WR(bp, addr, val);
874 	if (REG_RD(bp, addr) != val)
875 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
876 }
877 
878 static void bnx2x_igu_int_disable(struct bnx2x *bp)
879 {
880 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
881 
882 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
883 		 IGU_PF_CONF_INT_LINE_EN |
884 		 IGU_PF_CONF_ATTN_BIT_EN);
885 
886 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
887 
888 	/* flush all outstanding writes */
889 	mmiowb();
890 
891 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
892 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
893 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
894 }
895 
896 static void bnx2x_int_disable(struct bnx2x *bp)
897 {
898 	if (bp->common.int_block == INT_BLOCK_HC)
899 		bnx2x_hc_int_disable(bp);
900 	else
901 		bnx2x_igu_int_disable(bp);
902 }
903 
904 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
905 {
906 	int i;
907 	u16 j;
908 	struct hc_sp_status_block_data sp_sb_data;
909 	int func = BP_FUNC(bp);
910 #ifdef BNX2X_STOP_ON_ERROR
911 	u16 start = 0, end = 0;
912 	u8 cos;
913 #endif
914 	if (disable_int)
915 		bnx2x_int_disable(bp);
916 
917 	bp->stats_state = STATS_STATE_DISABLED;
918 	bp->eth_stats.unrecoverable_error++;
919 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
920 
921 	BNX2X_ERR("begin crash dump -----------------\n");
922 
923 	/* Indices */
924 	/* Common */
925 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
926 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
927 		  bp->spq_prod_idx, bp->stats_counter);
928 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
929 		  bp->def_status_blk->atten_status_block.attn_bits,
930 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
931 		  bp->def_status_blk->atten_status_block.status_block_id,
932 		  bp->def_status_blk->atten_status_block.attn_bits_index);
933 	BNX2X_ERR("     def (");
934 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
935 		pr_cont("0x%x%s",
936 			bp->def_status_blk->sp_sb.index_values[i],
937 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
938 
939 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
940 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
941 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
942 			i*sizeof(u32));
943 
944 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
945 	       sp_sb_data.igu_sb_id,
946 	       sp_sb_data.igu_seg_id,
947 	       sp_sb_data.p_func.pf_id,
948 	       sp_sb_data.p_func.vnic_id,
949 	       sp_sb_data.p_func.vf_id,
950 	       sp_sb_data.p_func.vf_valid,
951 	       sp_sb_data.state);
952 
953 	for_each_eth_queue(bp, i) {
954 		struct bnx2x_fastpath *fp = &bp->fp[i];
955 		int loop;
956 		struct hc_status_block_data_e2 sb_data_e2;
957 		struct hc_status_block_data_e1x sb_data_e1x;
958 		struct hc_status_block_sm  *hc_sm_p =
959 			CHIP_IS_E1x(bp) ?
960 			sb_data_e1x.common.state_machine :
961 			sb_data_e2.common.state_machine;
962 		struct hc_index_data *hc_index_p =
963 			CHIP_IS_E1x(bp) ?
964 			sb_data_e1x.index_data :
965 			sb_data_e2.index_data;
966 		u8 data_size, cos;
967 		u32 *sb_data_p;
968 		struct bnx2x_fp_txdata txdata;
969 
970 		/* Rx */
971 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
972 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
973 			  fp->rx_comp_prod,
974 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
975 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
976 			  fp->rx_sge_prod, fp->last_max_sge,
977 			  le16_to_cpu(fp->fp_hc_idx));
978 
979 		/* Tx */
980 		for_each_cos_in_tx_queue(fp, cos)
981 		{
982 			txdata = *fp->txdata_ptr[cos];
983 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
984 				  i, txdata.tx_pkt_prod,
985 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
986 				  txdata.tx_bd_cons,
987 				  le16_to_cpu(*txdata.tx_cons_sb));
988 		}
989 
990 		loop = CHIP_IS_E1x(bp) ?
991 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
992 
993 		/* host sb data */
994 
995 		if (IS_FCOE_FP(fp))
996 			continue;
997 
998 		BNX2X_ERR("     run indexes (");
999 		for (j = 0; j < HC_SB_MAX_SM; j++)
1000 			pr_cont("0x%x%s",
1001 			       fp->sb_running_index[j],
1002 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1003 
1004 		BNX2X_ERR("     indexes (");
1005 		for (j = 0; j < loop; j++)
1006 			pr_cont("0x%x%s",
1007 			       fp->sb_index_values[j],
1008 			       (j == loop - 1) ? ")" : " ");
1009 		/* fw sb data */
1010 		data_size = CHIP_IS_E1x(bp) ?
1011 			sizeof(struct hc_status_block_data_e1x) :
1012 			sizeof(struct hc_status_block_data_e2);
1013 		data_size /= sizeof(u32);
1014 		sb_data_p = CHIP_IS_E1x(bp) ?
1015 			(u32 *)&sb_data_e1x :
1016 			(u32 *)&sb_data_e2;
1017 		/* copy sb data in here */
1018 		for (j = 0; j < data_size; j++)
1019 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1020 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1021 				j * sizeof(u32));
1022 
1023 		if (!CHIP_IS_E1x(bp)) {
1024 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1025 				sb_data_e2.common.p_func.pf_id,
1026 				sb_data_e2.common.p_func.vf_id,
1027 				sb_data_e2.common.p_func.vf_valid,
1028 				sb_data_e2.common.p_func.vnic_id,
1029 				sb_data_e2.common.same_igu_sb_1b,
1030 				sb_data_e2.common.state);
1031 		} else {
1032 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1033 				sb_data_e1x.common.p_func.pf_id,
1034 				sb_data_e1x.common.p_func.vf_id,
1035 				sb_data_e1x.common.p_func.vf_valid,
1036 				sb_data_e1x.common.p_func.vnic_id,
1037 				sb_data_e1x.common.same_igu_sb_1b,
1038 				sb_data_e1x.common.state);
1039 		}
1040 
1041 		/* SB_SMs data */
1042 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1043 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1044 				j, hc_sm_p[j].__flags,
1045 				hc_sm_p[j].igu_sb_id,
1046 				hc_sm_p[j].igu_seg_id,
1047 				hc_sm_p[j].time_to_expire,
1048 				hc_sm_p[j].timer_value);
1049 		}
1050 
1051 		/* Indices data */
1052 		for (j = 0; j < loop; j++) {
1053 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1054 			       hc_index_p[j].flags,
1055 			       hc_index_p[j].timeout);
1056 		}
1057 	}
1058 
1059 #ifdef BNX2X_STOP_ON_ERROR
1060 
1061 	/* event queue */
1062 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1063 	for (i = 0; i < NUM_EQ_DESC; i++) {
1064 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1065 
1066 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1067 			  i, bp->eq_ring[i].message.opcode,
1068 			  bp->eq_ring[i].message.error);
1069 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1070 	}
1071 
1072 	/* Rings */
1073 	/* Rx */
1074 	for_each_valid_rx_queue(bp, i) {
1075 		struct bnx2x_fastpath *fp = &bp->fp[i];
1076 
1077 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1078 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1079 		for (j = start; j != end; j = RX_BD(j + 1)) {
1080 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1081 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1082 
1083 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1084 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1085 		}
1086 
1087 		start = RX_SGE(fp->rx_sge_prod);
1088 		end = RX_SGE(fp->last_max_sge);
1089 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1090 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1091 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1092 
1093 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1094 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1095 		}
1096 
1097 		start = RCQ_BD(fp->rx_comp_cons - 10);
1098 		end = RCQ_BD(fp->rx_comp_cons + 503);
1099 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1100 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1101 
1102 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1103 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1104 		}
1105 	}
1106 
1107 	/* Tx */
1108 	for_each_valid_tx_queue(bp, i) {
1109 		struct bnx2x_fastpath *fp = &bp->fp[i];
1110 		for_each_cos_in_tx_queue(fp, cos) {
1111 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1112 
1113 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1114 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1115 			for (j = start; j != end; j = TX_BD(j + 1)) {
1116 				struct sw_tx_bd *sw_bd =
1117 					&txdata->tx_buf_ring[j];
1118 
1119 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1120 					  i, cos, j, sw_bd->skb,
1121 					  sw_bd->first_bd);
1122 			}
1123 
1124 			start = TX_BD(txdata->tx_bd_cons - 10);
1125 			end = TX_BD(txdata->tx_bd_cons + 254);
1126 			for (j = start; j != end; j = TX_BD(j + 1)) {
1127 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1128 
1129 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1130 					  i, cos, j, tx_bd[0], tx_bd[1],
1131 					  tx_bd[2], tx_bd[3]);
1132 			}
1133 		}
1134 	}
1135 #endif
1136 	bnx2x_fw_dump(bp);
1137 	bnx2x_mc_assert(bp);
1138 	BNX2X_ERR("end crash dump -----------------\n");
1139 }
1140 
1141 /*
1142  * FLR Support for E2
1143  *
1144  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1145  * initialization.
1146  */
1147 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1148 #define FLR_WAIT_INTERVAL	50	/* usec */
1149 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1150 
1151 struct pbf_pN_buf_regs {
1152 	int pN;
1153 	u32 init_crd;
1154 	u32 crd;
1155 	u32 crd_freed;
1156 };
1157 
1158 struct pbf_pN_cmd_regs {
1159 	int pN;
1160 	u32 lines_occup;
1161 	u32 lines_freed;
1162 };
1163 
1164 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1165 				     struct pbf_pN_buf_regs *regs,
1166 				     u32 poll_count)
1167 {
1168 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1169 	u32 cur_cnt = poll_count;
1170 
1171 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1172 	crd = crd_start = REG_RD(bp, regs->crd);
1173 	init_crd = REG_RD(bp, regs->init_crd);
1174 
1175 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1176 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1177 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1178 
1179 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1180 	       (init_crd - crd_start))) {
1181 		if (cur_cnt--) {
1182 			udelay(FLR_WAIT_INTERVAL);
1183 			crd = REG_RD(bp, regs->crd);
1184 			crd_freed = REG_RD(bp, regs->crd_freed);
1185 		} else {
1186 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1187 			   regs->pN);
1188 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1189 			   regs->pN, crd);
1190 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1191 			   regs->pN, crd_freed);
1192 			break;
1193 		}
1194 	}
1195 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1196 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1197 }
1198 
1199 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1200 				     struct pbf_pN_cmd_regs *regs,
1201 				     u32 poll_count)
1202 {
1203 	u32 occup, to_free, freed, freed_start;
1204 	u32 cur_cnt = poll_count;
1205 
1206 	occup = to_free = REG_RD(bp, regs->lines_occup);
1207 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1208 
1209 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1210 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1211 
1212 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1213 		if (cur_cnt--) {
1214 			udelay(FLR_WAIT_INTERVAL);
1215 			occup = REG_RD(bp, regs->lines_occup);
1216 			freed = REG_RD(bp, regs->lines_freed);
1217 		} else {
1218 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1219 			   regs->pN);
1220 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1221 			   regs->pN, occup);
1222 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1223 			   regs->pN, freed);
1224 			break;
1225 		}
1226 	}
1227 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1228 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1229 }
1230 
1231 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1232 				    u32 expected, u32 poll_count)
1233 {
1234 	u32 cur_cnt = poll_count;
1235 	u32 val;
1236 
1237 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1238 		udelay(FLR_WAIT_INTERVAL);
1239 
1240 	return val;
1241 }
1242 
1243 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1244 				    char *msg, u32 poll_cnt)
1245 {
1246 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1247 	if (val != 0) {
1248 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1249 		return 1;
1250 	}
1251 	return 0;
1252 }
1253 
1254 /* Common routines with VF FLR cleanup */
1255 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1256 {
1257 	/* adjust polling timeout */
1258 	if (CHIP_REV_IS_EMUL(bp))
1259 		return FLR_POLL_CNT * 2000;
1260 
1261 	if (CHIP_REV_IS_FPGA(bp))
1262 		return FLR_POLL_CNT * 120;
1263 
1264 	return FLR_POLL_CNT;
1265 }
1266 
1267 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1268 {
1269 	struct pbf_pN_cmd_regs cmd_regs[] = {
1270 		{0, (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_TQ_OCCUPANCY_Q0 :
1272 			PBF_REG_P0_TQ_OCCUPANCY,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1275 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1276 		{1, (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_TQ_OCCUPANCY_Q1 :
1278 			PBF_REG_P1_TQ_OCCUPANCY,
1279 		    (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1281 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1282 		{4, (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1284 			PBF_REG_P4_TQ_OCCUPANCY,
1285 		    (CHIP_IS_E3B0(bp)) ?
1286 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1287 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1288 	};
1289 
1290 	struct pbf_pN_buf_regs buf_regs[] = {
1291 		{0, (CHIP_IS_E3B0(bp)) ?
1292 			PBF_REG_INIT_CRD_Q0 :
1293 			PBF_REG_P0_INIT_CRD ,
1294 		    (CHIP_IS_E3B0(bp)) ?
1295 			PBF_REG_CREDIT_Q0 :
1296 			PBF_REG_P0_CREDIT,
1297 		    (CHIP_IS_E3B0(bp)) ?
1298 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1299 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1300 		{1, (CHIP_IS_E3B0(bp)) ?
1301 			PBF_REG_INIT_CRD_Q1 :
1302 			PBF_REG_P1_INIT_CRD,
1303 		    (CHIP_IS_E3B0(bp)) ?
1304 			PBF_REG_CREDIT_Q1 :
1305 			PBF_REG_P1_CREDIT,
1306 		    (CHIP_IS_E3B0(bp)) ?
1307 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1308 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1309 		{4, (CHIP_IS_E3B0(bp)) ?
1310 			PBF_REG_INIT_CRD_LB_Q :
1311 			PBF_REG_P4_INIT_CRD,
1312 		    (CHIP_IS_E3B0(bp)) ?
1313 			PBF_REG_CREDIT_LB_Q :
1314 			PBF_REG_P4_CREDIT,
1315 		    (CHIP_IS_E3B0(bp)) ?
1316 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1317 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1318 	};
1319 
1320 	int i;
1321 
1322 	/* Verify the command queues are flushed P0, P1, P4 */
1323 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1324 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1325 
1326 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1327 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1328 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1329 }
1330 
1331 #define OP_GEN_PARAM(param) \
1332 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1333 
1334 #define OP_GEN_TYPE(type) \
1335 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1336 
1337 #define OP_GEN_AGG_VECT(index) \
1338 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1339 
1340 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1341 {
1342 	u32 op_gen_command = 0;
1343 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1344 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1345 	int ret = 0;
1346 
1347 	if (REG_RD(bp, comp_addr)) {
1348 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1349 		return 1;
1350 	}
1351 
1352 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1353 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1354 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1355 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1356 
1357 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1358 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1359 
1360 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1361 		BNX2X_ERR("FW final cleanup did not succeed\n");
1362 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1363 		   (REG_RD(bp, comp_addr)));
1364 		bnx2x_panic();
1365 		return 1;
1366 	}
1367 	/* Zero completion for next FLR */
1368 	REG_WR(bp, comp_addr, 0);
1369 
1370 	return ret;
1371 }
1372 
1373 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1374 {
1375 	u16 status;
1376 
1377 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1378 	return status & PCI_EXP_DEVSTA_TRPND;
1379 }
1380 
1381 /* PF FLR specific routines
1382 */
1383 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1384 {
1385 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1388 			"CFC PF usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 
1392 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1393 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394 			DORQ_REG_PF_USAGE_CNT,
1395 			"DQ PF usage counter timed out",
1396 			poll_cnt))
1397 		return 1;
1398 
1399 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1400 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1402 			"QM PF usage counter timed out",
1403 			poll_cnt))
1404 		return 1;
1405 
1406 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1407 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1409 			"Timers VNIC usage counter timed out",
1410 			poll_cnt))
1411 		return 1;
1412 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1413 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1414 			"Timers NUM_SCANS usage counter timed out",
1415 			poll_cnt))
1416 		return 1;
1417 
1418 	/* Wait DMAE PF usage counter to zero */
1419 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1421 			"DMAE command register timed out",
1422 			poll_cnt))
1423 		return 1;
1424 
1425 	return 0;
1426 }
1427 
1428 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1429 {
1430 	u32 val;
1431 
1432 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1433 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1434 
1435 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1436 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1437 
1438 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1439 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1440 
1441 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1442 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1443 
1444 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1445 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1446 
1447 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1448 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1449 
1450 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1451 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1452 
1453 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1454 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1455 	   val);
1456 }
1457 
1458 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1459 {
1460 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1461 
1462 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1463 
1464 	/* Re-enable PF target read access */
1465 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1466 
1467 	/* Poll HW usage counters */
1468 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1469 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1470 		return -EBUSY;
1471 
1472 	/* Zero the igu 'trailing edge' and 'leading edge' */
1473 
1474 	/* Send the FW cleanup command */
1475 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1476 		return -EBUSY;
1477 
1478 	/* ATC cleanup */
1479 
1480 	/* Verify TX hw is flushed */
1481 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1482 
1483 	/* Wait 100ms (not adjusted according to platform) */
1484 	msleep(100);
1485 
1486 	/* Verify no pending pci transactions */
1487 	if (bnx2x_is_pcie_pending(bp->pdev))
1488 		BNX2X_ERR("PCIE Transactions still pending\n");
1489 
1490 	/* Debug */
1491 	bnx2x_hw_enable_status(bp);
1492 
1493 	/*
1494 	 * Master enable - Due to WB DMAE writes performed before this
1495 	 * register is re-initialized as part of the regular function init
1496 	 */
1497 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1498 
1499 	return 0;
1500 }
1501 
1502 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1503 {
1504 	int port = BP_PORT(bp);
1505 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1506 	u32 val = REG_RD(bp, addr);
1507 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1508 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1509 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1510 
1511 	if (msix) {
1512 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1514 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1515 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1516 		if (single_msix)
1517 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1518 	} else if (msi) {
1519 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1520 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1521 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523 	} else {
1524 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1525 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1526 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1527 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1528 
1529 		if (!CHIP_IS_E1(bp)) {
1530 			DP(NETIF_MSG_IFUP,
1531 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1532 
1533 			REG_WR(bp, addr, val);
1534 
1535 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1536 		}
1537 	}
1538 
1539 	if (CHIP_IS_E1(bp))
1540 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1541 
1542 	DP(NETIF_MSG_IFUP,
1543 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1544 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1545 
1546 	REG_WR(bp, addr, val);
1547 	/*
1548 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1549 	 */
1550 	mmiowb();
1551 	barrier();
1552 
1553 	if (!CHIP_IS_E1(bp)) {
1554 		/* init leading/trailing edge */
1555 		if (IS_MF(bp)) {
1556 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1557 			if (bp->port.pmf)
1558 				/* enable nig and gpio3 attention */
1559 				val |= 0x1100;
1560 		} else
1561 			val = 0xffff;
1562 
1563 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1564 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1565 	}
1566 
1567 	/* Make sure that interrupts are indeed enabled from here on */
1568 	mmiowb();
1569 }
1570 
1571 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1572 {
1573 	u32 val;
1574 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1575 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1576 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1577 
1578 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1579 
1580 	if (msix) {
1581 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1582 			 IGU_PF_CONF_SINGLE_ISR_EN);
1583 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1584 			IGU_PF_CONF_ATTN_BIT_EN);
1585 
1586 		if (single_msix)
1587 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1588 	} else if (msi) {
1589 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1590 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591 			IGU_PF_CONF_ATTN_BIT_EN |
1592 			IGU_PF_CONF_SINGLE_ISR_EN);
1593 	} else {
1594 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1595 		val |= (IGU_PF_CONF_INT_LINE_EN |
1596 			IGU_PF_CONF_ATTN_BIT_EN |
1597 			IGU_PF_CONF_SINGLE_ISR_EN);
1598 	}
1599 
1600 	/* Clean previous status - need to configure igu prior to ack*/
1601 	if ((!msix) || single_msix) {
1602 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1603 		bnx2x_ack_int(bp);
1604 	}
1605 
1606 	val |= IGU_PF_CONF_FUNC_EN;
1607 
1608 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1609 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1610 
1611 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1612 
1613 	if (val & IGU_PF_CONF_INT_LINE_EN)
1614 		pci_intx(bp->pdev, true);
1615 
1616 	barrier();
1617 
1618 	/* init leading/trailing edge */
1619 	if (IS_MF(bp)) {
1620 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1621 		if (bp->port.pmf)
1622 			/* enable nig and gpio3 attention */
1623 			val |= 0x1100;
1624 	} else
1625 		val = 0xffff;
1626 
1627 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1628 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1629 
1630 	/* Make sure that interrupts are indeed enabled from here on */
1631 	mmiowb();
1632 }
1633 
1634 void bnx2x_int_enable(struct bnx2x *bp)
1635 {
1636 	if (bp->common.int_block == INT_BLOCK_HC)
1637 		bnx2x_hc_int_enable(bp);
1638 	else
1639 		bnx2x_igu_int_enable(bp);
1640 }
1641 
1642 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1643 {
1644 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1645 	int i, offset;
1646 
1647 	if (disable_hw)
1648 		/* prevent the HW from sending interrupts */
1649 		bnx2x_int_disable(bp);
1650 
1651 	/* make sure all ISRs are done */
1652 	if (msix) {
1653 		synchronize_irq(bp->msix_table[0].vector);
1654 		offset = 1;
1655 		if (CNIC_SUPPORT(bp))
1656 			offset++;
1657 		for_each_eth_queue(bp, i)
1658 			synchronize_irq(bp->msix_table[offset++].vector);
1659 	} else
1660 		synchronize_irq(bp->pdev->irq);
1661 
1662 	/* make sure sp_task is not running */
1663 	cancel_delayed_work(&bp->sp_task);
1664 	cancel_delayed_work(&bp->period_task);
1665 	flush_workqueue(bnx2x_wq);
1666 }
1667 
1668 /* fast path */
1669 
1670 /*
1671  * General service functions
1672  */
1673 
1674 /* Return true if succeeded to acquire the lock */
1675 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1676 {
1677 	u32 lock_status;
1678 	u32 resource_bit = (1 << resource);
1679 	int func = BP_FUNC(bp);
1680 	u32 hw_lock_control_reg;
1681 
1682 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1683 	   "Trying to take a lock on resource %d\n", resource);
1684 
1685 	/* Validating that the resource is within range */
1686 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1687 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1688 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1689 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1690 		return false;
1691 	}
1692 
1693 	if (func <= 5)
1694 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1695 	else
1696 		hw_lock_control_reg =
1697 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1698 
1699 	/* Try to acquire the lock */
1700 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1701 	lock_status = REG_RD(bp, hw_lock_control_reg);
1702 	if (lock_status & resource_bit)
1703 		return true;
1704 
1705 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1706 	   "Failed to get a lock on resource %d\n", resource);
1707 	return false;
1708 }
1709 
1710 /**
1711  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1712  *
1713  * @bp:	driver handle
1714  *
1715  * Returns the recovery leader resource id according to the engine this function
1716  * belongs to. Currently only only 2 engines is supported.
1717  */
1718 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1719 {
1720 	if (BP_PATH(bp))
1721 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1722 	else
1723 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1724 }
1725 
1726 /**
1727  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1728  *
1729  * @bp: driver handle
1730  *
1731  * Tries to acquire a leader lock for current engine.
1732  */
1733 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1734 {
1735 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1736 }
1737 
1738 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1739 
1740 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1741 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1742 {
1743 	/* Set the interrupt occurred bit for the sp-task to recognize it
1744 	 * must ack the interrupt and transition according to the IGU
1745 	 * state machine.
1746 	 */
1747 	atomic_set(&bp->interrupt_occurred, 1);
1748 
1749 	/* The sp_task must execute only after this bit
1750 	 * is set, otherwise we will get out of sync and miss all
1751 	 * further interrupts. Hence, the barrier.
1752 	 */
1753 	smp_wmb();
1754 
1755 	/* schedule sp_task to workqueue */
1756 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1757 }
1758 
1759 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1760 {
1761 	struct bnx2x *bp = fp->bp;
1762 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1763 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1764 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1765 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1766 
1767 	DP(BNX2X_MSG_SP,
1768 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1769 	   fp->index, cid, command, bp->state,
1770 	   rr_cqe->ramrod_cqe.ramrod_type);
1771 
1772 	/* If cid is within VF range, replace the slowpath object with the
1773 	 * one corresponding to this VF
1774 	 */
1775 	if (cid >= BNX2X_FIRST_VF_CID  &&
1776 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1777 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1778 
1779 	switch (command) {
1780 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1781 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1782 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1783 		break;
1784 
1785 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1786 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1787 		drv_cmd = BNX2X_Q_CMD_SETUP;
1788 		break;
1789 
1790 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1791 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1792 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1793 		break;
1794 
1795 	case (RAMROD_CMD_ID_ETH_HALT):
1796 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1797 		drv_cmd = BNX2X_Q_CMD_HALT;
1798 		break;
1799 
1800 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1801 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1802 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1803 		break;
1804 
1805 	case (RAMROD_CMD_ID_ETH_EMPTY):
1806 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1807 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1808 		break;
1809 
1810 	default:
1811 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1812 			  command, fp->index);
1813 		return;
1814 	}
1815 
1816 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1817 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1818 		/* q_obj->complete_cmd() failure means that this was
1819 		 * an unexpected completion.
1820 		 *
1821 		 * In this case we don't want to increase the bp->spq_left
1822 		 * because apparently we haven't sent this command the first
1823 		 * place.
1824 		 */
1825 #ifdef BNX2X_STOP_ON_ERROR
1826 		bnx2x_panic();
1827 #else
1828 		return;
1829 #endif
1830 	/* SRIOV: reschedule any 'in_progress' operations */
1831 	bnx2x_iov_sp_event(bp, cid, true);
1832 
1833 	smp_mb__before_atomic_inc();
1834 	atomic_inc(&bp->cq_spq_left);
1835 	/* push the change in bp->spq_left and towards the memory */
1836 	smp_mb__after_atomic_inc();
1837 
1838 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1839 
1840 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1841 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1842 		/* if Q update ramrod is completed for last Q in AFEX vif set
1843 		 * flow, then ACK MCP at the end
1844 		 *
1845 		 * mark pending ACK to MCP bit.
1846 		 * prevent case that both bits are cleared.
1847 		 * At the end of load/unload driver checks that
1848 		 * sp_state is cleared, and this order prevents
1849 		 * races
1850 		 */
1851 		smp_mb__before_clear_bit();
1852 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1853 		wmb();
1854 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1855 		smp_mb__after_clear_bit();
1856 
1857 		/* schedule the sp task as mcp ack is required */
1858 		bnx2x_schedule_sp_task(bp);
1859 	}
1860 
1861 	return;
1862 }
1863 
1864 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1865 {
1866 	struct bnx2x *bp = netdev_priv(dev_instance);
1867 	u16 status = bnx2x_ack_int(bp);
1868 	u16 mask;
1869 	int i;
1870 	u8 cos;
1871 
1872 	/* Return here if interrupt is shared and it's not for us */
1873 	if (unlikely(status == 0)) {
1874 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1875 		return IRQ_NONE;
1876 	}
1877 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1878 
1879 #ifdef BNX2X_STOP_ON_ERROR
1880 	if (unlikely(bp->panic))
1881 		return IRQ_HANDLED;
1882 #endif
1883 
1884 	for_each_eth_queue(bp, i) {
1885 		struct bnx2x_fastpath *fp = &bp->fp[i];
1886 
1887 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1888 		if (status & mask) {
1889 			/* Handle Rx or Tx according to SB id */
1890 			for_each_cos_in_tx_queue(fp, cos)
1891 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1892 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1893 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1894 			status &= ~mask;
1895 		}
1896 	}
1897 
1898 	if (CNIC_SUPPORT(bp)) {
1899 		mask = 0x2;
1900 		if (status & (mask | 0x1)) {
1901 			struct cnic_ops *c_ops = NULL;
1902 
1903 			rcu_read_lock();
1904 			c_ops = rcu_dereference(bp->cnic_ops);
1905 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1906 				      CNIC_DRV_STATE_HANDLES_IRQ))
1907 				c_ops->cnic_handler(bp->cnic_data, NULL);
1908 			rcu_read_unlock();
1909 
1910 			status &= ~mask;
1911 		}
1912 	}
1913 
1914 	if (unlikely(status & 0x1)) {
1915 
1916 		/* schedule sp task to perform default status block work, ack
1917 		 * attentions and enable interrupts.
1918 		 */
1919 		bnx2x_schedule_sp_task(bp);
1920 
1921 		status &= ~0x1;
1922 		if (!status)
1923 			return IRQ_HANDLED;
1924 	}
1925 
1926 	if (unlikely(status))
1927 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1928 		   status);
1929 
1930 	return IRQ_HANDLED;
1931 }
1932 
1933 /* Link */
1934 
1935 /*
1936  * General service functions
1937  */
1938 
1939 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1940 {
1941 	u32 lock_status;
1942 	u32 resource_bit = (1 << resource);
1943 	int func = BP_FUNC(bp);
1944 	u32 hw_lock_control_reg;
1945 	int cnt;
1946 
1947 	/* Validating that the resource is within range */
1948 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1949 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1950 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (func <= 5) {
1955 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1956 	} else {
1957 		hw_lock_control_reg =
1958 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1959 	}
1960 
1961 	/* Validating that the resource is not already taken */
1962 	lock_status = REG_RD(bp, hw_lock_control_reg);
1963 	if (lock_status & resource_bit) {
1964 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1965 		   lock_status, resource_bit);
1966 		return -EEXIST;
1967 	}
1968 
1969 	/* Try for 5 second every 5ms */
1970 	for (cnt = 0; cnt < 1000; cnt++) {
1971 		/* Try to acquire the lock */
1972 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1973 		lock_status = REG_RD(bp, hw_lock_control_reg);
1974 		if (lock_status & resource_bit)
1975 			return 0;
1976 
1977 		usleep_range(5000, 10000);
1978 	}
1979 	BNX2X_ERR("Timeout\n");
1980 	return -EAGAIN;
1981 }
1982 
1983 int bnx2x_release_leader_lock(struct bnx2x *bp)
1984 {
1985 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1986 }
1987 
1988 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1989 {
1990 	u32 lock_status;
1991 	u32 resource_bit = (1 << resource);
1992 	int func = BP_FUNC(bp);
1993 	u32 hw_lock_control_reg;
1994 
1995 	/* Validating that the resource is within range */
1996 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1997 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1998 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1999 		return -EINVAL;
2000 	}
2001 
2002 	if (func <= 5) {
2003 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2004 	} else {
2005 		hw_lock_control_reg =
2006 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2007 	}
2008 
2009 	/* Validating that the resource is currently taken */
2010 	lock_status = REG_RD(bp, hw_lock_control_reg);
2011 	if (!(lock_status & resource_bit)) {
2012 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2013 			  lock_status, resource_bit);
2014 		return -EFAULT;
2015 	}
2016 
2017 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2018 	return 0;
2019 }
2020 
2021 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2022 {
2023 	/* The GPIO should be swapped if swap register is set and active */
2024 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2025 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2026 	int gpio_shift = gpio_num +
2027 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2028 	u32 gpio_mask = (1 << gpio_shift);
2029 	u32 gpio_reg;
2030 	int value;
2031 
2032 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2033 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2034 		return -EINVAL;
2035 	}
2036 
2037 	/* read GPIO value */
2038 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2039 
2040 	/* get the requested pin value */
2041 	if ((gpio_reg & gpio_mask) == gpio_mask)
2042 		value = 1;
2043 	else
2044 		value = 0;
2045 
2046 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2047 
2048 	return value;
2049 }
2050 
2051 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2052 {
2053 	/* The GPIO should be swapped if swap register is set and active */
2054 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2055 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2056 	int gpio_shift = gpio_num +
2057 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2058 	u32 gpio_mask = (1 << gpio_shift);
2059 	u32 gpio_reg;
2060 
2061 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2062 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2063 		return -EINVAL;
2064 	}
2065 
2066 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2067 	/* read GPIO and mask except the float bits */
2068 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2069 
2070 	switch (mode) {
2071 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2072 		DP(NETIF_MSG_LINK,
2073 		   "Set GPIO %d (shift %d) -> output low\n",
2074 		   gpio_num, gpio_shift);
2075 		/* clear FLOAT and set CLR */
2076 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2077 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2078 		break;
2079 
2080 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2081 		DP(NETIF_MSG_LINK,
2082 		   "Set GPIO %d (shift %d) -> output high\n",
2083 		   gpio_num, gpio_shift);
2084 		/* clear FLOAT and set SET */
2085 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2086 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2087 		break;
2088 
2089 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2090 		DP(NETIF_MSG_LINK,
2091 		   "Set GPIO %d (shift %d) -> input\n",
2092 		   gpio_num, gpio_shift);
2093 		/* set FLOAT */
2094 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2095 		break;
2096 
2097 	default:
2098 		break;
2099 	}
2100 
2101 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2102 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2103 
2104 	return 0;
2105 }
2106 
2107 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2108 {
2109 	u32 gpio_reg = 0;
2110 	int rc = 0;
2111 
2112 	/* Any port swapping should be handled by caller. */
2113 
2114 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2115 	/* read GPIO and mask except the float bits */
2116 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2117 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2118 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2119 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2120 
2121 	switch (mode) {
2122 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2123 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2124 		/* set CLR */
2125 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2126 		break;
2127 
2128 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2129 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2130 		/* set SET */
2131 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2132 		break;
2133 
2134 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2135 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2136 		/* set FLOAT */
2137 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2138 		break;
2139 
2140 	default:
2141 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2142 		rc = -EINVAL;
2143 		break;
2144 	}
2145 
2146 	if (rc == 0)
2147 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2148 
2149 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150 
2151 	return rc;
2152 }
2153 
2154 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2155 {
2156 	/* The GPIO should be swapped if swap register is set and active */
2157 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2158 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2159 	int gpio_shift = gpio_num +
2160 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2161 	u32 gpio_mask = (1 << gpio_shift);
2162 	u32 gpio_reg;
2163 
2164 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2165 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2166 		return -EINVAL;
2167 	}
2168 
2169 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2170 	/* read GPIO int */
2171 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2172 
2173 	switch (mode) {
2174 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2175 		DP(NETIF_MSG_LINK,
2176 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2177 		   gpio_num, gpio_shift);
2178 		/* clear SET and set CLR */
2179 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2180 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2181 		break;
2182 
2183 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2184 		DP(NETIF_MSG_LINK,
2185 		   "Set GPIO INT %d (shift %d) -> output high\n",
2186 		   gpio_num, gpio_shift);
2187 		/* clear CLR and set SET */
2188 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2189 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2190 		break;
2191 
2192 	default:
2193 		break;
2194 	}
2195 
2196 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2197 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198 
2199 	return 0;
2200 }
2201 
2202 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2203 {
2204 	u32 spio_reg;
2205 
2206 	/* Only 2 SPIOs are configurable */
2207 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2208 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2209 		return -EINVAL;
2210 	}
2211 
2212 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2213 	/* read SPIO and mask except the float bits */
2214 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2215 
2216 	switch (mode) {
2217 	case MISC_SPIO_OUTPUT_LOW:
2218 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2219 		/* clear FLOAT and set CLR */
2220 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2221 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2222 		break;
2223 
2224 	case MISC_SPIO_OUTPUT_HIGH:
2225 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2226 		/* clear FLOAT and set SET */
2227 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2229 		break;
2230 
2231 	case MISC_SPIO_INPUT_HI_Z:
2232 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2233 		/* set FLOAT */
2234 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2235 		break;
2236 
2237 	default:
2238 		break;
2239 	}
2240 
2241 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2242 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2243 
2244 	return 0;
2245 }
2246 
2247 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2248 {
2249 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2250 	switch (bp->link_vars.ieee_fc &
2251 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2252 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2253 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2254 						   ADVERTISED_Pause);
2255 		break;
2256 
2257 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2258 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2259 						  ADVERTISED_Pause);
2260 		break;
2261 
2262 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2263 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2264 		break;
2265 
2266 	default:
2267 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2268 						   ADVERTISED_Pause);
2269 		break;
2270 	}
2271 }
2272 
2273 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2274 {
2275 	/* Initialize link parameters structure variables
2276 	 * It is recommended to turn off RX FC for jumbo frames
2277 	 *  for better performance
2278 	 */
2279 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2280 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2281 	else
2282 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2283 }
2284 
2285 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2286 {
2287 	u32 pause_enabled = 0;
2288 
2289 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2290 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2291 			pause_enabled = 1;
2292 
2293 		REG_WR(bp, BAR_USTRORM_INTMEM +
2294 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2295 		       pause_enabled);
2296 	}
2297 
2298 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2299 	   pause_enabled ? "enabled" : "disabled");
2300 }
2301 
2302 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2303 {
2304 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2305 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2306 
2307 	if (!BP_NOMCP(bp)) {
2308 		bnx2x_set_requested_fc(bp);
2309 		bnx2x_acquire_phy_lock(bp);
2310 
2311 		if (load_mode == LOAD_DIAG) {
2312 			struct link_params *lp = &bp->link_params;
2313 			lp->loopback_mode = LOOPBACK_XGXS;
2314 			/* do PHY loopback at 10G speed, if possible */
2315 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2316 				if (lp->speed_cap_mask[cfx_idx] &
2317 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2318 					lp->req_line_speed[cfx_idx] =
2319 					SPEED_10000;
2320 				else
2321 					lp->req_line_speed[cfx_idx] =
2322 					SPEED_1000;
2323 			}
2324 		}
2325 
2326 		if (load_mode == LOAD_LOOPBACK_EXT) {
2327 			struct link_params *lp = &bp->link_params;
2328 			lp->loopback_mode = LOOPBACK_EXT;
2329 		}
2330 
2331 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2332 
2333 		bnx2x_release_phy_lock(bp);
2334 
2335 		bnx2x_init_dropless_fc(bp);
2336 
2337 		bnx2x_calc_fc_adv(bp);
2338 
2339 		if (bp->link_vars.link_up) {
2340 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2341 			bnx2x_link_report(bp);
2342 		}
2343 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2344 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2345 		return rc;
2346 	}
2347 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2348 	return -EINVAL;
2349 }
2350 
2351 void bnx2x_link_set(struct bnx2x *bp)
2352 {
2353 	if (!BP_NOMCP(bp)) {
2354 		bnx2x_acquire_phy_lock(bp);
2355 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2356 		bnx2x_release_phy_lock(bp);
2357 
2358 		bnx2x_init_dropless_fc(bp);
2359 
2360 		bnx2x_calc_fc_adv(bp);
2361 	} else
2362 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2363 }
2364 
2365 static void bnx2x__link_reset(struct bnx2x *bp)
2366 {
2367 	if (!BP_NOMCP(bp)) {
2368 		bnx2x_acquire_phy_lock(bp);
2369 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2370 		bnx2x_release_phy_lock(bp);
2371 	} else
2372 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2373 }
2374 
2375 void bnx2x_force_link_reset(struct bnx2x *bp)
2376 {
2377 	bnx2x_acquire_phy_lock(bp);
2378 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2379 	bnx2x_release_phy_lock(bp);
2380 }
2381 
2382 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2383 {
2384 	u8 rc = 0;
2385 
2386 	if (!BP_NOMCP(bp)) {
2387 		bnx2x_acquire_phy_lock(bp);
2388 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2389 				     is_serdes);
2390 		bnx2x_release_phy_lock(bp);
2391 	} else
2392 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2393 
2394 	return rc;
2395 }
2396 
2397 /* Calculates the sum of vn_min_rates.
2398    It's needed for further normalizing of the min_rates.
2399    Returns:
2400      sum of vn_min_rates.
2401        or
2402      0 - if all the min_rates are 0.
2403      In the later case fairness algorithm should be deactivated.
2404      If not all min_rates are zero then those that are zeroes will be set to 1.
2405  */
2406 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2407 				      struct cmng_init_input *input)
2408 {
2409 	int all_zero = 1;
2410 	int vn;
2411 
2412 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2413 		u32 vn_cfg = bp->mf_config[vn];
2414 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2415 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2416 
2417 		/* Skip hidden vns */
2418 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2419 			vn_min_rate = 0;
2420 		/* If min rate is zero - set it to 1 */
2421 		else if (!vn_min_rate)
2422 			vn_min_rate = DEF_MIN_RATE;
2423 		else
2424 			all_zero = 0;
2425 
2426 		input->vnic_min_rate[vn] = vn_min_rate;
2427 	}
2428 
2429 	/* if ETS or all min rates are zeros - disable fairness */
2430 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2431 		input->flags.cmng_enables &=
2432 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2433 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2434 	} else if (all_zero) {
2435 		input->flags.cmng_enables &=
2436 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2437 		DP(NETIF_MSG_IFUP,
2438 		   "All MIN values are zeroes fairness will be disabled\n");
2439 	} else
2440 		input->flags.cmng_enables |=
2441 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2442 }
2443 
2444 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2445 				    struct cmng_init_input *input)
2446 {
2447 	u16 vn_max_rate;
2448 	u32 vn_cfg = bp->mf_config[vn];
2449 
2450 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2451 		vn_max_rate = 0;
2452 	else {
2453 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2454 
2455 		if (IS_MF_SI(bp)) {
2456 			/* maxCfg in percents of linkspeed */
2457 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2458 		} else /* SD modes */
2459 			/* maxCfg is absolute in 100Mb units */
2460 			vn_max_rate = maxCfg * 100;
2461 	}
2462 
2463 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2464 
2465 	input->vnic_max_rate[vn] = vn_max_rate;
2466 }
2467 
2468 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2469 {
2470 	if (CHIP_REV_IS_SLOW(bp))
2471 		return CMNG_FNS_NONE;
2472 	if (IS_MF(bp))
2473 		return CMNG_FNS_MINMAX;
2474 
2475 	return CMNG_FNS_NONE;
2476 }
2477 
2478 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2479 {
2480 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2481 
2482 	if (BP_NOMCP(bp))
2483 		return; /* what should be the default value in this case */
2484 
2485 	/* For 2 port configuration the absolute function number formula
2486 	 * is:
2487 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2488 	 *
2489 	 *      and there are 4 functions per port
2490 	 *
2491 	 * For 4 port configuration it is
2492 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2493 	 *
2494 	 *      and there are 2 functions per port
2495 	 */
2496 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2497 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2498 
2499 		if (func >= E1H_FUNC_MAX)
2500 			break;
2501 
2502 		bp->mf_config[vn] =
2503 			MF_CFG_RD(bp, func_mf_config[func].config);
2504 	}
2505 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2506 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2507 		bp->flags |= MF_FUNC_DIS;
2508 	} else {
2509 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2510 		bp->flags &= ~MF_FUNC_DIS;
2511 	}
2512 }
2513 
2514 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2515 {
2516 	struct cmng_init_input input;
2517 	memset(&input, 0, sizeof(struct cmng_init_input));
2518 
2519 	input.port_rate = bp->link_vars.line_speed;
2520 
2521 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2522 		int vn;
2523 
2524 		/* read mf conf from shmem */
2525 		if (read_cfg)
2526 			bnx2x_read_mf_cfg(bp);
2527 
2528 		/* vn_weight_sum and enable fairness if not 0 */
2529 		bnx2x_calc_vn_min(bp, &input);
2530 
2531 		/* calculate and set min-max rate for each vn */
2532 		if (bp->port.pmf)
2533 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2534 				bnx2x_calc_vn_max(bp, vn, &input);
2535 
2536 		/* always enable rate shaping and fairness */
2537 		input.flags.cmng_enables |=
2538 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2539 
2540 		bnx2x_init_cmng(&input, &bp->cmng);
2541 		return;
2542 	}
2543 
2544 	/* rate shaping and fairness are disabled */
2545 	DP(NETIF_MSG_IFUP,
2546 	   "rate shaping and fairness are disabled\n");
2547 }
2548 
2549 static void storm_memset_cmng(struct bnx2x *bp,
2550 			      struct cmng_init *cmng,
2551 			      u8 port)
2552 {
2553 	int vn;
2554 	size_t size = sizeof(struct cmng_struct_per_port);
2555 
2556 	u32 addr = BAR_XSTRORM_INTMEM +
2557 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2558 
2559 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2560 
2561 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2562 		int func = func_by_vn(bp, vn);
2563 
2564 		addr = BAR_XSTRORM_INTMEM +
2565 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2566 		size = sizeof(struct rate_shaping_vars_per_vn);
2567 		__storm_memset_struct(bp, addr, size,
2568 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2569 
2570 		addr = BAR_XSTRORM_INTMEM +
2571 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2572 		size = sizeof(struct fairness_vars_per_vn);
2573 		__storm_memset_struct(bp, addr, size,
2574 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2575 	}
2576 }
2577 
2578 /* init cmng mode in HW according to local configuration */
2579 void bnx2x_set_local_cmng(struct bnx2x *bp)
2580 {
2581 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2582 
2583 	if (cmng_fns != CMNG_FNS_NONE) {
2584 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2585 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2586 	} else {
2587 		/* rate shaping and fairness are disabled */
2588 		DP(NETIF_MSG_IFUP,
2589 		   "single function mode without fairness\n");
2590 	}
2591 }
2592 
2593 /* This function is called upon link interrupt */
2594 static void bnx2x_link_attn(struct bnx2x *bp)
2595 {
2596 	/* Make sure that we are synced with the current statistics */
2597 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2598 
2599 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2600 
2601 	bnx2x_init_dropless_fc(bp);
2602 
2603 	if (bp->link_vars.link_up) {
2604 
2605 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2606 			struct host_port_stats *pstats;
2607 
2608 			pstats = bnx2x_sp(bp, port_stats);
2609 			/* reset old mac stats */
2610 			memset(&(pstats->mac_stx[0]), 0,
2611 			       sizeof(struct mac_stx));
2612 		}
2613 		if (bp->state == BNX2X_STATE_OPEN)
2614 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2615 	}
2616 
2617 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2618 		bnx2x_set_local_cmng(bp);
2619 
2620 	__bnx2x_link_report(bp);
2621 
2622 	if (IS_MF(bp))
2623 		bnx2x_link_sync_notify(bp);
2624 }
2625 
2626 void bnx2x__link_status_update(struct bnx2x *bp)
2627 {
2628 	if (bp->state != BNX2X_STATE_OPEN)
2629 		return;
2630 
2631 	/* read updated dcb configuration */
2632 	if (IS_PF(bp)) {
2633 		bnx2x_dcbx_pmf_update(bp);
2634 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2635 		if (bp->link_vars.link_up)
2636 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2637 		else
2638 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2639 			/* indicate link status */
2640 		bnx2x_link_report(bp);
2641 
2642 	} else { /* VF */
2643 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2644 					  SUPPORTED_10baseT_Full |
2645 					  SUPPORTED_100baseT_Half |
2646 					  SUPPORTED_100baseT_Full |
2647 					  SUPPORTED_1000baseT_Full |
2648 					  SUPPORTED_2500baseX_Full |
2649 					  SUPPORTED_10000baseT_Full |
2650 					  SUPPORTED_TP |
2651 					  SUPPORTED_FIBRE |
2652 					  SUPPORTED_Autoneg |
2653 					  SUPPORTED_Pause |
2654 					  SUPPORTED_Asym_Pause);
2655 		bp->port.advertising[0] = bp->port.supported[0];
2656 
2657 		bp->link_params.bp = bp;
2658 		bp->link_params.port = BP_PORT(bp);
2659 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2660 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2661 		bp->link_params.req_line_speed[0] = SPEED_10000;
2662 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2663 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2664 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2665 		bp->link_vars.line_speed = SPEED_10000;
2666 		bp->link_vars.link_status =
2667 			(LINK_STATUS_LINK_UP |
2668 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2669 		bp->link_vars.link_up = 1;
2670 		bp->link_vars.duplex = DUPLEX_FULL;
2671 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2672 		__bnx2x_link_report(bp);
2673 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2674 	}
2675 }
2676 
2677 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2678 				  u16 vlan_val, u8 allowed_prio)
2679 {
2680 	struct bnx2x_func_state_params func_params = {NULL};
2681 	struct bnx2x_func_afex_update_params *f_update_params =
2682 		&func_params.params.afex_update;
2683 
2684 	func_params.f_obj = &bp->func_obj;
2685 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2686 
2687 	/* no need to wait for RAMROD completion, so don't
2688 	 * set RAMROD_COMP_WAIT flag
2689 	 */
2690 
2691 	f_update_params->vif_id = vifid;
2692 	f_update_params->afex_default_vlan = vlan_val;
2693 	f_update_params->allowed_priorities = allowed_prio;
2694 
2695 	/* if ramrod can not be sent, response to MCP immediately */
2696 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2697 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2698 
2699 	return 0;
2700 }
2701 
2702 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2703 					  u16 vif_index, u8 func_bit_map)
2704 {
2705 	struct bnx2x_func_state_params func_params = {NULL};
2706 	struct bnx2x_func_afex_viflists_params *update_params =
2707 		&func_params.params.afex_viflists;
2708 	int rc;
2709 	u32 drv_msg_code;
2710 
2711 	/* validate only LIST_SET and LIST_GET are received from switch */
2712 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2713 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2714 			  cmd_type);
2715 
2716 	func_params.f_obj = &bp->func_obj;
2717 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2718 
2719 	/* set parameters according to cmd_type */
2720 	update_params->afex_vif_list_command = cmd_type;
2721 	update_params->vif_list_index = vif_index;
2722 	update_params->func_bit_map =
2723 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2724 	update_params->func_to_clear = 0;
2725 	drv_msg_code =
2726 		(cmd_type == VIF_LIST_RULE_GET) ?
2727 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2728 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2729 
2730 	/* if ramrod can not be sent, respond to MCP immediately for
2731 	 * SET and GET requests (other are not triggered from MCP)
2732 	 */
2733 	rc = bnx2x_func_state_change(bp, &func_params);
2734 	if (rc < 0)
2735 		bnx2x_fw_command(bp, drv_msg_code, 0);
2736 
2737 	return 0;
2738 }
2739 
2740 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2741 {
2742 	struct afex_stats afex_stats;
2743 	u32 func = BP_ABS_FUNC(bp);
2744 	u32 mf_config;
2745 	u16 vlan_val;
2746 	u32 vlan_prio;
2747 	u16 vif_id;
2748 	u8 allowed_prio;
2749 	u8 vlan_mode;
2750 	u32 addr_to_write, vifid, addrs, stats_type, i;
2751 
2752 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2753 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2754 		DP(BNX2X_MSG_MCP,
2755 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2756 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2757 	}
2758 
2759 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2760 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2762 		DP(BNX2X_MSG_MCP,
2763 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2764 		   vifid, addrs);
2765 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2766 					       addrs);
2767 	}
2768 
2769 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2770 		addr_to_write = SHMEM2_RD(bp,
2771 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2772 		stats_type = SHMEM2_RD(bp,
2773 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2774 
2775 		DP(BNX2X_MSG_MCP,
2776 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2777 		   addr_to_write);
2778 
2779 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2780 
2781 		/* write response to scratchpad, for MCP */
2782 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2783 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2784 			       *(((u32 *)(&afex_stats))+i));
2785 
2786 		/* send ack message to MCP */
2787 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2788 	}
2789 
2790 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2791 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2792 		bp->mf_config[BP_VN(bp)] = mf_config;
2793 		DP(BNX2X_MSG_MCP,
2794 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2795 		   mf_config);
2796 
2797 		/* if VIF_SET is "enabled" */
2798 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2799 			/* set rate limit directly to internal RAM */
2800 			struct cmng_init_input cmng_input;
2801 			struct rate_shaping_vars_per_vn m_rs_vn;
2802 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2803 			u32 addr = BAR_XSTRORM_INTMEM +
2804 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2805 
2806 			bp->mf_config[BP_VN(bp)] = mf_config;
2807 
2808 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2809 			m_rs_vn.vn_counter.rate =
2810 				cmng_input.vnic_max_rate[BP_VN(bp)];
2811 			m_rs_vn.vn_counter.quota =
2812 				(m_rs_vn.vn_counter.rate *
2813 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2814 
2815 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2816 
2817 			/* read relevant values from mf_cfg struct in shmem */
2818 			vif_id =
2819 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2820 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2821 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2822 			vlan_val =
2823 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2824 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2825 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2826 			vlan_prio = (mf_config &
2827 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2828 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2829 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2830 			vlan_mode =
2831 				(MF_CFG_RD(bp,
2832 					   func_mf_config[func].afex_config) &
2833 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2834 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2835 			allowed_prio =
2836 				(MF_CFG_RD(bp,
2837 					   func_mf_config[func].afex_config) &
2838 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2839 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2840 
2841 			/* send ramrod to FW, return in case of failure */
2842 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2843 						   allowed_prio))
2844 				return;
2845 
2846 			bp->afex_def_vlan_tag = vlan_val;
2847 			bp->afex_vlan_mode = vlan_mode;
2848 		} else {
2849 			/* notify link down because BP->flags is disabled */
2850 			bnx2x_link_report(bp);
2851 
2852 			/* send INVALID VIF ramrod to FW */
2853 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2854 
2855 			/* Reset the default afex VLAN */
2856 			bp->afex_def_vlan_tag = -1;
2857 		}
2858 	}
2859 }
2860 
2861 static void bnx2x_pmf_update(struct bnx2x *bp)
2862 {
2863 	int port = BP_PORT(bp);
2864 	u32 val;
2865 
2866 	bp->port.pmf = 1;
2867 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2868 
2869 	/*
2870 	 * We need the mb() to ensure the ordering between the writing to
2871 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2872 	 */
2873 	smp_mb();
2874 
2875 	/* queue a periodic task */
2876 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2877 
2878 	bnx2x_dcbx_pmf_update(bp);
2879 
2880 	/* enable nig attention */
2881 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2882 	if (bp->common.int_block == INT_BLOCK_HC) {
2883 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2884 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2885 	} else if (!CHIP_IS_E1x(bp)) {
2886 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2887 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2888 	}
2889 
2890 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2891 }
2892 
2893 /* end of Link */
2894 
2895 /* slow path */
2896 
2897 /*
2898  * General service functions
2899  */
2900 
2901 /* send the MCP a request, block until there is a reply */
2902 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2903 {
2904 	int mb_idx = BP_FW_MB_IDX(bp);
2905 	u32 seq;
2906 	u32 rc = 0;
2907 	u32 cnt = 1;
2908 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2909 
2910 	mutex_lock(&bp->fw_mb_mutex);
2911 	seq = ++bp->fw_seq;
2912 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2913 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2914 
2915 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2916 			(command | seq), param);
2917 
2918 	do {
2919 		/* let the FW do it's magic ... */
2920 		msleep(delay);
2921 
2922 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2923 
2924 		/* Give the FW up to 5 second (500*10ms) */
2925 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2926 
2927 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2928 	   cnt*delay, rc, seq);
2929 
2930 	/* is this a reply to our command? */
2931 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2932 		rc &= FW_MSG_CODE_MASK;
2933 	else {
2934 		/* FW BUG! */
2935 		BNX2X_ERR("FW failed to respond!\n");
2936 		bnx2x_fw_dump(bp);
2937 		rc = 0;
2938 	}
2939 	mutex_unlock(&bp->fw_mb_mutex);
2940 
2941 	return rc;
2942 }
2943 
2944 static void storm_memset_func_cfg(struct bnx2x *bp,
2945 				 struct tstorm_eth_function_common_config *tcfg,
2946 				 u16 abs_fid)
2947 {
2948 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2949 
2950 	u32 addr = BAR_TSTRORM_INTMEM +
2951 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2952 
2953 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2954 }
2955 
2956 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2957 {
2958 	if (CHIP_IS_E1x(bp)) {
2959 		struct tstorm_eth_function_common_config tcfg = {0};
2960 
2961 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2962 	}
2963 
2964 	/* Enable the function in the FW */
2965 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2966 	storm_memset_func_en(bp, p->func_id, 1);
2967 
2968 	/* spq */
2969 	if (p->func_flgs & FUNC_FLG_SPQ) {
2970 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2971 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2972 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2973 	}
2974 }
2975 
2976 /**
2977  * bnx2x_get_common_flags - Return common flags
2978  *
2979  * @bp		device handle
2980  * @fp		queue handle
2981  * @zero_stats	TRUE if statistics zeroing is needed
2982  *
2983  * Return the flags that are common for the Tx-only and not normal connections.
2984  */
2985 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2986 					    struct bnx2x_fastpath *fp,
2987 					    bool zero_stats)
2988 {
2989 	unsigned long flags = 0;
2990 
2991 	/* PF driver will always initialize the Queue to an ACTIVE state */
2992 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2993 
2994 	/* tx only connections collect statistics (on the same index as the
2995 	 * parent connection). The statistics are zeroed when the parent
2996 	 * connection is initialized.
2997 	 */
2998 
2999 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3000 	if (zero_stats)
3001 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3002 
3003 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3004 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3005 
3006 #ifdef BNX2X_STOP_ON_ERROR
3007 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3008 #endif
3009 
3010 	return flags;
3011 }
3012 
3013 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3014 				       struct bnx2x_fastpath *fp,
3015 				       bool leading)
3016 {
3017 	unsigned long flags = 0;
3018 
3019 	/* calculate other queue flags */
3020 	if (IS_MF_SD(bp))
3021 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3022 
3023 	if (IS_FCOE_FP(fp)) {
3024 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3025 		/* For FCoE - force usage of default priority (for afex) */
3026 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3027 	}
3028 
3029 	if (!fp->disable_tpa) {
3030 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3031 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3032 		if (fp->mode == TPA_MODE_GRO)
3033 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3034 	}
3035 
3036 	if (leading) {
3037 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3038 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3039 	}
3040 
3041 	/* Always set HW VLAN stripping */
3042 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3043 
3044 	/* configure silent vlan removal */
3045 	if (IS_MF_AFEX(bp))
3046 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3047 
3048 	return flags | bnx2x_get_common_flags(bp, fp, true);
3049 }
3050 
3051 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3052 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3053 	u8 cos)
3054 {
3055 	gen_init->stat_id = bnx2x_stats_id(fp);
3056 	gen_init->spcl_id = fp->cl_id;
3057 
3058 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3059 	if (IS_FCOE_FP(fp))
3060 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3061 	else
3062 		gen_init->mtu = bp->dev->mtu;
3063 
3064 	gen_init->cos = cos;
3065 }
3066 
3067 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3068 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3069 	struct bnx2x_rxq_setup_params *rxq_init)
3070 {
3071 	u8 max_sge = 0;
3072 	u16 sge_sz = 0;
3073 	u16 tpa_agg_size = 0;
3074 
3075 	if (!fp->disable_tpa) {
3076 		pause->sge_th_lo = SGE_TH_LO(bp);
3077 		pause->sge_th_hi = SGE_TH_HI(bp);
3078 
3079 		/* validate SGE ring has enough to cross high threshold */
3080 		WARN_ON(bp->dropless_fc &&
3081 				pause->sge_th_hi + FW_PREFETCH_CNT >
3082 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3083 
3084 		tpa_agg_size = TPA_AGG_SIZE;
3085 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3086 			SGE_PAGE_SHIFT;
3087 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3088 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3089 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3090 	}
3091 
3092 	/* pause - not for e1 */
3093 	if (!CHIP_IS_E1(bp)) {
3094 		pause->bd_th_lo = BD_TH_LO(bp);
3095 		pause->bd_th_hi = BD_TH_HI(bp);
3096 
3097 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3098 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3099 		/*
3100 		 * validate that rings have enough entries to cross
3101 		 * high thresholds
3102 		 */
3103 		WARN_ON(bp->dropless_fc &&
3104 				pause->bd_th_hi + FW_PREFETCH_CNT >
3105 				bp->rx_ring_size);
3106 		WARN_ON(bp->dropless_fc &&
3107 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3108 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3109 
3110 		pause->pri_map = 1;
3111 	}
3112 
3113 	/* rxq setup */
3114 	rxq_init->dscr_map = fp->rx_desc_mapping;
3115 	rxq_init->sge_map = fp->rx_sge_mapping;
3116 	rxq_init->rcq_map = fp->rx_comp_mapping;
3117 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3118 
3119 	/* This should be a maximum number of data bytes that may be
3120 	 * placed on the BD (not including paddings).
3121 	 */
3122 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3123 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3124 
3125 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3126 	rxq_init->tpa_agg_sz = tpa_agg_size;
3127 	rxq_init->sge_buf_sz = sge_sz;
3128 	rxq_init->max_sges_pkt = max_sge;
3129 	rxq_init->rss_engine_id = BP_FUNC(bp);
3130 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3131 
3132 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3133 	 *
3134 	 * For PF Clients it should be the maximum available number.
3135 	 * VF driver(s) may want to define it to a smaller value.
3136 	 */
3137 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3138 
3139 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3140 	rxq_init->fw_sb_id = fp->fw_sb_id;
3141 
3142 	if (IS_FCOE_FP(fp))
3143 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3144 	else
3145 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3146 	/* configure silent vlan removal
3147 	 * if multi function mode is afex, then mask default vlan
3148 	 */
3149 	if (IS_MF_AFEX(bp)) {
3150 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3151 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3152 	}
3153 }
3154 
3155 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3156 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3157 	u8 cos)
3158 {
3159 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3160 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3161 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3162 	txq_init->fw_sb_id = fp->fw_sb_id;
3163 
3164 	/*
3165 	 * set the tss leading client id for TX classification ==
3166 	 * leading RSS client id
3167 	 */
3168 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3169 
3170 	if (IS_FCOE_FP(fp)) {
3171 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3172 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3173 	}
3174 }
3175 
3176 static void bnx2x_pf_init(struct bnx2x *bp)
3177 {
3178 	struct bnx2x_func_init_params func_init = {0};
3179 	struct event_ring_data eq_data = { {0} };
3180 	u16 flags;
3181 
3182 	if (!CHIP_IS_E1x(bp)) {
3183 		/* reset IGU PF statistics: MSIX + ATTN */
3184 		/* PF */
3185 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3186 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3187 			   (CHIP_MODE_IS_4_PORT(bp) ?
3188 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3189 		/* ATTN */
3190 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3191 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3192 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3193 			   (CHIP_MODE_IS_4_PORT(bp) ?
3194 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3195 	}
3196 
3197 	/* function setup flags */
3198 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3199 
3200 	/* This flag is relevant for E1x only.
3201 	 * E2 doesn't have a TPA configuration in a function level.
3202 	 */
3203 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3204 
3205 	func_init.func_flgs = flags;
3206 	func_init.pf_id = BP_FUNC(bp);
3207 	func_init.func_id = BP_FUNC(bp);
3208 	func_init.spq_map = bp->spq_mapping;
3209 	func_init.spq_prod = bp->spq_prod_idx;
3210 
3211 	bnx2x_func_init(bp, &func_init);
3212 
3213 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3214 
3215 	/*
3216 	 * Congestion management values depend on the link rate
3217 	 * There is no active link so initial link rate is set to 10 Gbps.
3218 	 * When the link comes up The congestion management values are
3219 	 * re-calculated according to the actual link rate.
3220 	 */
3221 	bp->link_vars.line_speed = SPEED_10000;
3222 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3223 
3224 	/* Only the PMF sets the HW */
3225 	if (bp->port.pmf)
3226 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3227 
3228 	/* init Event Queue - PCI bus guarantees correct endianity*/
3229 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3230 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3231 	eq_data.producer = bp->eq_prod;
3232 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3233 	eq_data.sb_id = DEF_SB_ID;
3234 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3235 }
3236 
3237 static void bnx2x_e1h_disable(struct bnx2x *bp)
3238 {
3239 	int port = BP_PORT(bp);
3240 
3241 	bnx2x_tx_disable(bp);
3242 
3243 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3244 }
3245 
3246 static void bnx2x_e1h_enable(struct bnx2x *bp)
3247 {
3248 	int port = BP_PORT(bp);
3249 
3250 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3251 
3252 	/* Tx queue should be only re-enabled */
3253 	netif_tx_wake_all_queues(bp->dev);
3254 
3255 	/*
3256 	 * Should not call netif_carrier_on since it will be called if the link
3257 	 * is up when checking for link state
3258 	 */
3259 }
3260 
3261 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3262 
3263 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3264 {
3265 	struct eth_stats_info *ether_stat =
3266 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3267 	struct bnx2x_vlan_mac_obj *mac_obj =
3268 		&bp->sp_objs->mac_obj;
3269 	int i;
3270 
3271 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3272 		ETH_STAT_INFO_VERSION_LEN);
3273 
3274 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3275 	 * mac_local field in ether_stat struct. The base address is offset by 2
3276 	 * bytes to account for the field being 8 bytes but a mac address is
3277 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3278 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3279 	 * allocated by the ether_stat struct, so the macs will land in their
3280 	 * proper positions.
3281 	 */
3282 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3283 		memset(ether_stat->mac_local + i, 0,
3284 		       sizeof(ether_stat->mac_local[0]));
3285 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3286 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3287 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3288 				ETH_ALEN);
3289 	ether_stat->mtu_size = bp->dev->mtu;
3290 	if (bp->dev->features & NETIF_F_RXCSUM)
3291 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3292 	if (bp->dev->features & NETIF_F_TSO)
3293 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3294 	ether_stat->feature_flags |= bp->common.boot_mode;
3295 
3296 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3297 
3298 	ether_stat->txq_size = bp->tx_ring_size;
3299 	ether_stat->rxq_size = bp->rx_ring_size;
3300 }
3301 
3302 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3303 {
3304 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3305 	struct fcoe_stats_info *fcoe_stat =
3306 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3307 
3308 	if (!CNIC_LOADED(bp))
3309 		return;
3310 
3311 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3312 
3313 	fcoe_stat->qos_priority =
3314 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3315 
3316 	/* insert FCoE stats from ramrod response */
3317 	if (!NO_FCOE(bp)) {
3318 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3319 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3320 			tstorm_queue_statistics;
3321 
3322 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3323 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3324 			xstorm_queue_statistics;
3325 
3326 		struct fcoe_statistics_params *fw_fcoe_stat =
3327 			&bp->fw_stats_data->fcoe;
3328 
3329 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3330 			  fcoe_stat->rx_bytes_lo,
3331 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3332 
3333 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3334 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3335 			  fcoe_stat->rx_bytes_lo,
3336 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3337 
3338 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3339 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3340 			  fcoe_stat->rx_bytes_lo,
3341 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3342 
3343 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3344 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3345 			  fcoe_stat->rx_bytes_lo,
3346 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3347 
3348 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3349 			  fcoe_stat->rx_frames_lo,
3350 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3351 
3352 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3353 			  fcoe_stat->rx_frames_lo,
3354 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3355 
3356 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3357 			  fcoe_stat->rx_frames_lo,
3358 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3359 
3360 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3361 			  fcoe_stat->rx_frames_lo,
3362 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3363 
3364 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3365 			  fcoe_stat->tx_bytes_lo,
3366 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3367 
3368 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3369 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3370 			  fcoe_stat->tx_bytes_lo,
3371 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3372 
3373 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3374 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3375 			  fcoe_stat->tx_bytes_lo,
3376 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3377 
3378 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3379 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3380 			  fcoe_stat->tx_bytes_lo,
3381 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3382 
3383 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3384 			  fcoe_stat->tx_frames_lo,
3385 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3386 
3387 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3388 			  fcoe_stat->tx_frames_lo,
3389 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3390 
3391 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3392 			  fcoe_stat->tx_frames_lo,
3393 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3394 
3395 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3396 			  fcoe_stat->tx_frames_lo,
3397 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3398 	}
3399 
3400 	/* ask L5 driver to add data to the struct */
3401 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3402 }
3403 
3404 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3405 {
3406 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3407 	struct iscsi_stats_info *iscsi_stat =
3408 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3409 
3410 	if (!CNIC_LOADED(bp))
3411 		return;
3412 
3413 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3414 	       ETH_ALEN);
3415 
3416 	iscsi_stat->qos_priority =
3417 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3418 
3419 	/* ask L5 driver to add data to the struct */
3420 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3421 }
3422 
3423 /* called due to MCP event (on pmf):
3424  *	reread new bandwidth configuration
3425  *	configure FW
3426  *	notify others function about the change
3427  */
3428 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3429 {
3430 	if (bp->link_vars.link_up) {
3431 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3432 		bnx2x_link_sync_notify(bp);
3433 	}
3434 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3435 }
3436 
3437 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3438 {
3439 	bnx2x_config_mf_bw(bp);
3440 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3441 }
3442 
3443 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3444 {
3445 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3446 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3447 }
3448 
3449 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3450 {
3451 	enum drv_info_opcode op_code;
3452 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3453 
3454 	/* if drv_info version supported by MFW doesn't match - send NACK */
3455 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3456 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3457 		return;
3458 	}
3459 
3460 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3461 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3462 
3463 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3464 	       sizeof(union drv_info_to_mcp));
3465 
3466 	switch (op_code) {
3467 	case ETH_STATS_OPCODE:
3468 		bnx2x_drv_info_ether_stat(bp);
3469 		break;
3470 	case FCOE_STATS_OPCODE:
3471 		bnx2x_drv_info_fcoe_stat(bp);
3472 		break;
3473 	case ISCSI_STATS_OPCODE:
3474 		bnx2x_drv_info_iscsi_stat(bp);
3475 		break;
3476 	default:
3477 		/* if op code isn't supported - send NACK */
3478 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3479 		return;
3480 	}
3481 
3482 	/* if we got drv_info attn from MFW then these fields are defined in
3483 	 * shmem2 for sure
3484 	 */
3485 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3486 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3487 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3488 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3489 
3490 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3491 }
3492 
3493 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3494 {
3495 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3496 
3497 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3498 
3499 		/*
3500 		 * This is the only place besides the function initialization
3501 		 * where the bp->flags can change so it is done without any
3502 		 * locks
3503 		 */
3504 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3505 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3506 			bp->flags |= MF_FUNC_DIS;
3507 
3508 			bnx2x_e1h_disable(bp);
3509 		} else {
3510 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3511 			bp->flags &= ~MF_FUNC_DIS;
3512 
3513 			bnx2x_e1h_enable(bp);
3514 		}
3515 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3516 	}
3517 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3518 		bnx2x_config_mf_bw(bp);
3519 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3520 	}
3521 
3522 	/* Report results to MCP */
3523 	if (dcc_event)
3524 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3525 	else
3526 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3527 }
3528 
3529 /* must be called under the spq lock */
3530 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3531 {
3532 	struct eth_spe *next_spe = bp->spq_prod_bd;
3533 
3534 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3535 		bp->spq_prod_bd = bp->spq;
3536 		bp->spq_prod_idx = 0;
3537 		DP(BNX2X_MSG_SP, "end of spq\n");
3538 	} else {
3539 		bp->spq_prod_bd++;
3540 		bp->spq_prod_idx++;
3541 	}
3542 	return next_spe;
3543 }
3544 
3545 /* must be called under the spq lock */
3546 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3547 {
3548 	int func = BP_FUNC(bp);
3549 
3550 	/*
3551 	 * Make sure that BD data is updated before writing the producer:
3552 	 * BD data is written to the memory, the producer is read from the
3553 	 * memory, thus we need a full memory barrier to ensure the ordering.
3554 	 */
3555 	mb();
3556 
3557 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3558 		 bp->spq_prod_idx);
3559 	mmiowb();
3560 }
3561 
3562 /**
3563  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3564  *
3565  * @cmd:	command to check
3566  * @cmd_type:	command type
3567  */
3568 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3569 {
3570 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3571 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3572 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3573 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3574 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3575 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3576 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3577 		return true;
3578 	else
3579 		return false;
3580 }
3581 
3582 /**
3583  * bnx2x_sp_post - place a single command on an SP ring
3584  *
3585  * @bp:		driver handle
3586  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3587  * @cid:	SW CID the command is related to
3588  * @data_hi:	command private data address (high 32 bits)
3589  * @data_lo:	command private data address (low 32 bits)
3590  * @cmd_type:	command type (e.g. NONE, ETH)
3591  *
3592  * SP data is handled as if it's always an address pair, thus data fields are
3593  * not swapped to little endian in upper functions. Instead this function swaps
3594  * data as if it's two u32 fields.
3595  */
3596 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3597 		  u32 data_hi, u32 data_lo, int cmd_type)
3598 {
3599 	struct eth_spe *spe;
3600 	u16 type;
3601 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3602 
3603 #ifdef BNX2X_STOP_ON_ERROR
3604 	if (unlikely(bp->panic)) {
3605 		BNX2X_ERR("Can't post SP when there is panic\n");
3606 		return -EIO;
3607 	}
3608 #endif
3609 
3610 	spin_lock_bh(&bp->spq_lock);
3611 
3612 	if (common) {
3613 		if (!atomic_read(&bp->eq_spq_left)) {
3614 			BNX2X_ERR("BUG! EQ ring full!\n");
3615 			spin_unlock_bh(&bp->spq_lock);
3616 			bnx2x_panic();
3617 			return -EBUSY;
3618 		}
3619 	} else if (!atomic_read(&bp->cq_spq_left)) {
3620 			BNX2X_ERR("BUG! SPQ ring full!\n");
3621 			spin_unlock_bh(&bp->spq_lock);
3622 			bnx2x_panic();
3623 			return -EBUSY;
3624 	}
3625 
3626 	spe = bnx2x_sp_get_next(bp);
3627 
3628 	/* CID needs port number to be encoded int it */
3629 	spe->hdr.conn_and_cmd_data =
3630 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3631 				    HW_CID(bp, cid));
3632 
3633 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3634 
3635 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3636 		 SPE_HDR_FUNCTION_ID);
3637 
3638 	spe->hdr.type = cpu_to_le16(type);
3639 
3640 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3641 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3642 
3643 	/*
3644 	 * It's ok if the actual decrement is issued towards the memory
3645 	 * somewhere between the spin_lock and spin_unlock. Thus no
3646 	 * more explicit memory barrier is needed.
3647 	 */
3648 	if (common)
3649 		atomic_dec(&bp->eq_spq_left);
3650 	else
3651 		atomic_dec(&bp->cq_spq_left);
3652 
3653 	DP(BNX2X_MSG_SP,
3654 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3655 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3656 	   (u32)(U64_LO(bp->spq_mapping) +
3657 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3658 	   HW_CID(bp, cid), data_hi, data_lo, type,
3659 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3660 
3661 	bnx2x_sp_prod_update(bp);
3662 	spin_unlock_bh(&bp->spq_lock);
3663 	return 0;
3664 }
3665 
3666 /* acquire split MCP access lock register */
3667 static int bnx2x_acquire_alr(struct bnx2x *bp)
3668 {
3669 	u32 j, val;
3670 	int rc = 0;
3671 
3672 	might_sleep();
3673 	for (j = 0; j < 1000; j++) {
3674 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3675 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3676 		if (val & MCPR_ACCESS_LOCK_LOCK)
3677 			break;
3678 
3679 		usleep_range(5000, 10000);
3680 	}
3681 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3682 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3683 		rc = -EBUSY;
3684 	}
3685 
3686 	return rc;
3687 }
3688 
3689 /* release split MCP access lock register */
3690 static void bnx2x_release_alr(struct bnx2x *bp)
3691 {
3692 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3693 }
3694 
3695 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3696 #define BNX2X_DEF_SB_IDX	0x0002
3697 
3698 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3699 {
3700 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3701 	u16 rc = 0;
3702 
3703 	barrier(); /* status block is written to by the chip */
3704 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3705 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3706 		rc |= BNX2X_DEF_SB_ATT_IDX;
3707 	}
3708 
3709 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3710 		bp->def_idx = def_sb->sp_sb.running_index;
3711 		rc |= BNX2X_DEF_SB_IDX;
3712 	}
3713 
3714 	/* Do not reorder: indices reading should complete before handling */
3715 	barrier();
3716 	return rc;
3717 }
3718 
3719 /*
3720  * slow path service functions
3721  */
3722 
3723 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3724 {
3725 	int port = BP_PORT(bp);
3726 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3727 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3728 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3729 				       NIG_REG_MASK_INTERRUPT_PORT0;
3730 	u32 aeu_mask;
3731 	u32 nig_mask = 0;
3732 	u32 reg_addr;
3733 
3734 	if (bp->attn_state & asserted)
3735 		BNX2X_ERR("IGU ERROR\n");
3736 
3737 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3738 	aeu_mask = REG_RD(bp, aeu_addr);
3739 
3740 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3741 	   aeu_mask, asserted);
3742 	aeu_mask &= ~(asserted & 0x3ff);
3743 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3744 
3745 	REG_WR(bp, aeu_addr, aeu_mask);
3746 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3747 
3748 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3749 	bp->attn_state |= asserted;
3750 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3751 
3752 	if (asserted & ATTN_HARD_WIRED_MASK) {
3753 		if (asserted & ATTN_NIG_FOR_FUNC) {
3754 
3755 			bnx2x_acquire_phy_lock(bp);
3756 
3757 			/* save nig interrupt mask */
3758 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3759 
3760 			/* If nig_mask is not set, no need to call the update
3761 			 * function.
3762 			 */
3763 			if (nig_mask) {
3764 				REG_WR(bp, nig_int_mask_addr, 0);
3765 
3766 				bnx2x_link_attn(bp);
3767 			}
3768 
3769 			/* handle unicore attn? */
3770 		}
3771 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3772 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3773 
3774 		if (asserted & GPIO_2_FUNC)
3775 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3776 
3777 		if (asserted & GPIO_3_FUNC)
3778 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3779 
3780 		if (asserted & GPIO_4_FUNC)
3781 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3782 
3783 		if (port == 0) {
3784 			if (asserted & ATTN_GENERAL_ATTN_1) {
3785 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3786 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3787 			}
3788 			if (asserted & ATTN_GENERAL_ATTN_2) {
3789 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3790 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3791 			}
3792 			if (asserted & ATTN_GENERAL_ATTN_3) {
3793 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3794 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3795 			}
3796 		} else {
3797 			if (asserted & ATTN_GENERAL_ATTN_4) {
3798 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3799 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3800 			}
3801 			if (asserted & ATTN_GENERAL_ATTN_5) {
3802 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3803 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3804 			}
3805 			if (asserted & ATTN_GENERAL_ATTN_6) {
3806 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3807 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3808 			}
3809 		}
3810 
3811 	} /* if hardwired */
3812 
3813 	if (bp->common.int_block == INT_BLOCK_HC)
3814 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3815 			    COMMAND_REG_ATTN_BITS_SET);
3816 	else
3817 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3818 
3819 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3820 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3821 	REG_WR(bp, reg_addr, asserted);
3822 
3823 	/* now set back the mask */
3824 	if (asserted & ATTN_NIG_FOR_FUNC) {
3825 		/* Verify that IGU ack through BAR was written before restoring
3826 		 * NIG mask. This loop should exit after 2-3 iterations max.
3827 		 */
3828 		if (bp->common.int_block != INT_BLOCK_HC) {
3829 			u32 cnt = 0, igu_acked;
3830 			do {
3831 				igu_acked = REG_RD(bp,
3832 						   IGU_REG_ATTENTION_ACK_BITS);
3833 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3834 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3835 			if (!igu_acked)
3836 				DP(NETIF_MSG_HW,
3837 				   "Failed to verify IGU ack on time\n");
3838 			barrier();
3839 		}
3840 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3841 		bnx2x_release_phy_lock(bp);
3842 	}
3843 }
3844 
3845 static void bnx2x_fan_failure(struct bnx2x *bp)
3846 {
3847 	int port = BP_PORT(bp);
3848 	u32 ext_phy_config;
3849 	/* mark the failure */
3850 	ext_phy_config =
3851 		SHMEM_RD(bp,
3852 			 dev_info.port_hw_config[port].external_phy_config);
3853 
3854 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3855 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3856 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3857 		 ext_phy_config);
3858 
3859 	/* log the failure */
3860 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3861 			    "Please contact OEM Support for assistance\n");
3862 
3863 	/* Schedule device reset (unload)
3864 	 * This is due to some boards consuming sufficient power when driver is
3865 	 * up to overheat if fan fails.
3866 	 */
3867 	smp_mb__before_clear_bit();
3868 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3869 	smp_mb__after_clear_bit();
3870 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3871 }
3872 
3873 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3874 {
3875 	int port = BP_PORT(bp);
3876 	int reg_offset;
3877 	u32 val;
3878 
3879 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3880 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3881 
3882 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3883 
3884 		val = REG_RD(bp, reg_offset);
3885 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3886 		REG_WR(bp, reg_offset, val);
3887 
3888 		BNX2X_ERR("SPIO5 hw attention\n");
3889 
3890 		/* Fan failure attention */
3891 		bnx2x_hw_reset_phy(&bp->link_params);
3892 		bnx2x_fan_failure(bp);
3893 	}
3894 
3895 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3896 		bnx2x_acquire_phy_lock(bp);
3897 		bnx2x_handle_module_detect_int(&bp->link_params);
3898 		bnx2x_release_phy_lock(bp);
3899 	}
3900 
3901 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3902 
3903 		val = REG_RD(bp, reg_offset);
3904 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3905 		REG_WR(bp, reg_offset, val);
3906 
3907 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3908 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3909 		bnx2x_panic();
3910 	}
3911 }
3912 
3913 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3914 {
3915 	u32 val;
3916 
3917 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3918 
3919 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3920 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3921 		/* DORQ discard attention */
3922 		if (val & 0x2)
3923 			BNX2X_ERR("FATAL error from DORQ\n");
3924 	}
3925 
3926 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3927 
3928 		int port = BP_PORT(bp);
3929 		int reg_offset;
3930 
3931 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3932 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3933 
3934 		val = REG_RD(bp, reg_offset);
3935 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3936 		REG_WR(bp, reg_offset, val);
3937 
3938 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3939 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3940 		bnx2x_panic();
3941 	}
3942 }
3943 
3944 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3945 {
3946 	u32 val;
3947 
3948 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3949 
3950 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3951 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3952 		/* CFC error attention */
3953 		if (val & 0x2)
3954 			BNX2X_ERR("FATAL error from CFC\n");
3955 	}
3956 
3957 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3958 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3959 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3960 		/* RQ_USDMDP_FIFO_OVERFLOW */
3961 		if (val & 0x18000)
3962 			BNX2X_ERR("FATAL error from PXP\n");
3963 
3964 		if (!CHIP_IS_E1x(bp)) {
3965 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3966 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3967 		}
3968 	}
3969 
3970 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3971 
3972 		int port = BP_PORT(bp);
3973 		int reg_offset;
3974 
3975 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3976 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3977 
3978 		val = REG_RD(bp, reg_offset);
3979 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3980 		REG_WR(bp, reg_offset, val);
3981 
3982 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3983 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3984 		bnx2x_panic();
3985 	}
3986 }
3987 
3988 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3989 {
3990 	u32 val;
3991 
3992 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3993 
3994 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3995 			int func = BP_FUNC(bp);
3996 
3997 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3998 			bnx2x_read_mf_cfg(bp);
3999 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4000 					func_mf_config[BP_ABS_FUNC(bp)].config);
4001 			val = SHMEM_RD(bp,
4002 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4003 			if (val & DRV_STATUS_DCC_EVENT_MASK)
4004 				bnx2x_dcc_event(bp,
4005 					    (val & DRV_STATUS_DCC_EVENT_MASK));
4006 
4007 			if (val & DRV_STATUS_SET_MF_BW)
4008 				bnx2x_set_mf_bw(bp);
4009 
4010 			if (val & DRV_STATUS_DRV_INFO_REQ)
4011 				bnx2x_handle_drv_info_req(bp);
4012 
4013 			if (val & DRV_STATUS_VF_DISABLED)
4014 				bnx2x_vf_handle_flr_event(bp);
4015 
4016 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4017 				bnx2x_pmf_update(bp);
4018 
4019 			if (bp->port.pmf &&
4020 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4021 				bp->dcbx_enabled > 0)
4022 				/* start dcbx state machine */
4023 				bnx2x_dcbx_set_params(bp,
4024 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4025 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4026 				bnx2x_handle_afex_cmd(bp,
4027 					val & DRV_STATUS_AFEX_EVENT_MASK);
4028 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4029 				bnx2x_handle_eee_event(bp);
4030 			if (bp->link_vars.periodic_flags &
4031 			    PERIODIC_FLAGS_LINK_EVENT) {
4032 				/*  sync with link */
4033 				bnx2x_acquire_phy_lock(bp);
4034 				bp->link_vars.periodic_flags &=
4035 					~PERIODIC_FLAGS_LINK_EVENT;
4036 				bnx2x_release_phy_lock(bp);
4037 				if (IS_MF(bp))
4038 					bnx2x_link_sync_notify(bp);
4039 				bnx2x_link_report(bp);
4040 			}
4041 			/* Always call it here: bnx2x_link_report() will
4042 			 * prevent the link indication duplication.
4043 			 */
4044 			bnx2x__link_status_update(bp);
4045 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4046 
4047 			BNX2X_ERR("MC assert!\n");
4048 			bnx2x_mc_assert(bp);
4049 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4050 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4051 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4052 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4053 			bnx2x_panic();
4054 
4055 		} else if (attn & BNX2X_MCP_ASSERT) {
4056 
4057 			BNX2X_ERR("MCP assert!\n");
4058 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4059 			bnx2x_fw_dump(bp);
4060 
4061 		} else
4062 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4063 	}
4064 
4065 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4066 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4067 		if (attn & BNX2X_GRC_TIMEOUT) {
4068 			val = CHIP_IS_E1(bp) ? 0 :
4069 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4070 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4071 		}
4072 		if (attn & BNX2X_GRC_RSV) {
4073 			val = CHIP_IS_E1(bp) ? 0 :
4074 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4075 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4076 		}
4077 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4078 	}
4079 }
4080 
4081 /*
4082  * Bits map:
4083  * 0-7   - Engine0 load counter.
4084  * 8-15  - Engine1 load counter.
4085  * 16    - Engine0 RESET_IN_PROGRESS bit.
4086  * 17    - Engine1 RESET_IN_PROGRESS bit.
4087  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4088  *         on the engine
4089  * 19    - Engine1 ONE_IS_LOADED.
4090  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4091  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4092  *         just the one belonging to its engine).
4093  *
4094  */
4095 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4096 
4097 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4098 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4099 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4100 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4101 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4102 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4103 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4104 
4105 /*
4106  * Set the GLOBAL_RESET bit.
4107  *
4108  * Should be run under rtnl lock
4109  */
4110 void bnx2x_set_reset_global(struct bnx2x *bp)
4111 {
4112 	u32 val;
4113 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4114 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4115 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4116 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4117 }
4118 
4119 /*
4120  * Clear the GLOBAL_RESET bit.
4121  *
4122  * Should be run under rtnl lock
4123  */
4124 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4125 {
4126 	u32 val;
4127 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4129 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4130 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131 }
4132 
4133 /*
4134  * Checks the GLOBAL_RESET bit.
4135  *
4136  * should be run under rtnl lock
4137  */
4138 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4139 {
4140 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4141 
4142 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4143 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4144 }
4145 
4146 /*
4147  * Clear RESET_IN_PROGRESS bit for the current engine.
4148  *
4149  * Should be run under rtnl lock
4150  */
4151 static void bnx2x_set_reset_done(struct bnx2x *bp)
4152 {
4153 	u32 val;
4154 	u32 bit = BP_PATH(bp) ?
4155 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4156 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4157 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4158 
4159 	/* Clear the bit */
4160 	val &= ~bit;
4161 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4162 
4163 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4164 }
4165 
4166 /*
4167  * Set RESET_IN_PROGRESS for the current engine.
4168  *
4169  * should be run under rtnl lock
4170  */
4171 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4172 {
4173 	u32 val;
4174 	u32 bit = BP_PATH(bp) ?
4175 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4176 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4177 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4178 
4179 	/* Set the bit */
4180 	val |= bit;
4181 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4182 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4183 }
4184 
4185 /*
4186  * Checks the RESET_IN_PROGRESS bit for the given engine.
4187  * should be run under rtnl lock
4188  */
4189 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4190 {
4191 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4192 	u32 bit = engine ?
4193 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4194 
4195 	/* return false if bit is set */
4196 	return (val & bit) ? false : true;
4197 }
4198 
4199 /*
4200  * set pf load for the current pf.
4201  *
4202  * should be run under rtnl lock
4203  */
4204 void bnx2x_set_pf_load(struct bnx2x *bp)
4205 {
4206 	u32 val1, val;
4207 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4208 			     BNX2X_PATH0_LOAD_CNT_MASK;
4209 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4210 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4211 
4212 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4213 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4214 
4215 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4216 
4217 	/* get the current counter value */
4218 	val1 = (val & mask) >> shift;
4219 
4220 	/* set bit of that PF */
4221 	val1 |= (1 << bp->pf_num);
4222 
4223 	/* clear the old value */
4224 	val &= ~mask;
4225 
4226 	/* set the new one */
4227 	val |= ((val1 << shift) & mask);
4228 
4229 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4230 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4231 }
4232 
4233 /**
4234  * bnx2x_clear_pf_load - clear pf load mark
4235  *
4236  * @bp:		driver handle
4237  *
4238  * Should be run under rtnl lock.
4239  * Decrements the load counter for the current engine. Returns
4240  * whether other functions are still loaded
4241  */
4242 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4243 {
4244 	u32 val1, val;
4245 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4246 			     BNX2X_PATH0_LOAD_CNT_MASK;
4247 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4248 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4249 
4250 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4251 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4252 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4253 
4254 	/* get the current counter value */
4255 	val1 = (val & mask) >> shift;
4256 
4257 	/* clear bit of that PF */
4258 	val1 &= ~(1 << bp->pf_num);
4259 
4260 	/* clear the old value */
4261 	val &= ~mask;
4262 
4263 	/* set the new one */
4264 	val |= ((val1 << shift) & mask);
4265 
4266 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4267 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4268 	return val1 != 0;
4269 }
4270 
4271 /*
4272  * Read the load status for the current engine.
4273  *
4274  * should be run under rtnl lock
4275  */
4276 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4277 {
4278 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4279 			     BNX2X_PATH0_LOAD_CNT_MASK);
4280 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4281 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4282 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4283 
4284 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4285 
4286 	val = (val & mask) >> shift;
4287 
4288 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4289 	   engine, val);
4290 
4291 	return val != 0;
4292 }
4293 
4294 static void _print_parity(struct bnx2x *bp, u32 reg)
4295 {
4296 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4297 }
4298 
4299 static void _print_next_block(int idx, const char *blk)
4300 {
4301 	pr_cont("%s%s", idx ? ", " : "", blk);
4302 }
4303 
4304 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4305 					    int *par_num, bool print)
4306 {
4307 	u32 cur_bit;
4308 	bool res;
4309 	int i;
4310 
4311 	res = false;
4312 
4313 	for (i = 0; sig; i++) {
4314 		cur_bit = (0x1UL << i);
4315 		if (sig & cur_bit) {
4316 			res |= true; /* Each bit is real error! */
4317 
4318 			if (print) {
4319 				switch (cur_bit) {
4320 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4321 					_print_next_block((*par_num)++, "BRB");
4322 					_print_parity(bp,
4323 						      BRB1_REG_BRB1_PRTY_STS);
4324 					break;
4325 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4326 					_print_next_block((*par_num)++,
4327 							  "PARSER");
4328 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4329 					break;
4330 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4331 					_print_next_block((*par_num)++, "TSDM");
4332 					_print_parity(bp,
4333 						      TSDM_REG_TSDM_PRTY_STS);
4334 					break;
4335 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4336 					_print_next_block((*par_num)++,
4337 							  "SEARCHER");
4338 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4339 					break;
4340 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4341 					_print_next_block((*par_num)++, "TCM");
4342 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4343 					break;
4344 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4345 					_print_next_block((*par_num)++,
4346 							  "TSEMI");
4347 					_print_parity(bp,
4348 						      TSEM_REG_TSEM_PRTY_STS_0);
4349 					_print_parity(bp,
4350 						      TSEM_REG_TSEM_PRTY_STS_1);
4351 					break;
4352 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4353 					_print_next_block((*par_num)++, "XPB");
4354 					_print_parity(bp, GRCBASE_XPB +
4355 							  PB_REG_PB_PRTY_STS);
4356 					break;
4357 				}
4358 			}
4359 
4360 			/* Clear the bit */
4361 			sig &= ~cur_bit;
4362 		}
4363 	}
4364 
4365 	return res;
4366 }
4367 
4368 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4369 					    int *par_num, bool *global,
4370 					    bool print)
4371 {
4372 	u32 cur_bit;
4373 	bool res;
4374 	int i;
4375 
4376 	res = false;
4377 
4378 	for (i = 0; sig; i++) {
4379 		cur_bit = (0x1UL << i);
4380 		if (sig & cur_bit) {
4381 			res |= true; /* Each bit is real error! */
4382 			switch (cur_bit) {
4383 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4384 				if (print) {
4385 					_print_next_block((*par_num)++, "PBF");
4386 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4387 				}
4388 				break;
4389 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4390 				if (print) {
4391 					_print_next_block((*par_num)++, "QM");
4392 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4393 				}
4394 				break;
4395 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4396 				if (print) {
4397 					_print_next_block((*par_num)++, "TM");
4398 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4399 				}
4400 				break;
4401 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4402 				if (print) {
4403 					_print_next_block((*par_num)++, "XSDM");
4404 					_print_parity(bp,
4405 						      XSDM_REG_XSDM_PRTY_STS);
4406 				}
4407 				break;
4408 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4409 				if (print) {
4410 					_print_next_block((*par_num)++, "XCM");
4411 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4412 				}
4413 				break;
4414 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4415 				if (print) {
4416 					_print_next_block((*par_num)++,
4417 							  "XSEMI");
4418 					_print_parity(bp,
4419 						      XSEM_REG_XSEM_PRTY_STS_0);
4420 					_print_parity(bp,
4421 						      XSEM_REG_XSEM_PRTY_STS_1);
4422 				}
4423 				break;
4424 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4425 				if (print) {
4426 					_print_next_block((*par_num)++,
4427 							  "DOORBELLQ");
4428 					_print_parity(bp,
4429 						      DORQ_REG_DORQ_PRTY_STS);
4430 				}
4431 				break;
4432 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4433 				if (print) {
4434 					_print_next_block((*par_num)++, "NIG");
4435 					if (CHIP_IS_E1x(bp)) {
4436 						_print_parity(bp,
4437 							NIG_REG_NIG_PRTY_STS);
4438 					} else {
4439 						_print_parity(bp,
4440 							NIG_REG_NIG_PRTY_STS_0);
4441 						_print_parity(bp,
4442 							NIG_REG_NIG_PRTY_STS_1);
4443 					}
4444 				}
4445 				break;
4446 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4447 				if (print)
4448 					_print_next_block((*par_num)++,
4449 							  "VAUX PCI CORE");
4450 				*global = true;
4451 				break;
4452 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4453 				if (print) {
4454 					_print_next_block((*par_num)++,
4455 							  "DEBUG");
4456 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4457 				}
4458 				break;
4459 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4460 				if (print) {
4461 					_print_next_block((*par_num)++, "USDM");
4462 					_print_parity(bp,
4463 						      USDM_REG_USDM_PRTY_STS);
4464 				}
4465 				break;
4466 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4467 				if (print) {
4468 					_print_next_block((*par_num)++, "UCM");
4469 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4470 				}
4471 				break;
4472 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4473 				if (print) {
4474 					_print_next_block((*par_num)++,
4475 							  "USEMI");
4476 					_print_parity(bp,
4477 						      USEM_REG_USEM_PRTY_STS_0);
4478 					_print_parity(bp,
4479 						      USEM_REG_USEM_PRTY_STS_1);
4480 				}
4481 				break;
4482 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4483 				if (print) {
4484 					_print_next_block((*par_num)++, "UPB");
4485 					_print_parity(bp, GRCBASE_UPB +
4486 							  PB_REG_PB_PRTY_STS);
4487 				}
4488 				break;
4489 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4490 				if (print) {
4491 					_print_next_block((*par_num)++, "CSDM");
4492 					_print_parity(bp,
4493 						      CSDM_REG_CSDM_PRTY_STS);
4494 				}
4495 				break;
4496 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4497 				if (print) {
4498 					_print_next_block((*par_num)++, "CCM");
4499 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4500 				}
4501 				break;
4502 			}
4503 
4504 			/* Clear the bit */
4505 			sig &= ~cur_bit;
4506 		}
4507 	}
4508 
4509 	return res;
4510 }
4511 
4512 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4513 					    int *par_num, bool print)
4514 {
4515 	u32 cur_bit;
4516 	bool res;
4517 	int i;
4518 
4519 	res = false;
4520 
4521 	for (i = 0; sig; i++) {
4522 		cur_bit = (0x1UL << i);
4523 		if (sig & cur_bit) {
4524 			res |= true; /* Each bit is real error! */
4525 			if (print) {
4526 				switch (cur_bit) {
4527 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4528 					_print_next_block((*par_num)++,
4529 							  "CSEMI");
4530 					_print_parity(bp,
4531 						      CSEM_REG_CSEM_PRTY_STS_0);
4532 					_print_parity(bp,
4533 						      CSEM_REG_CSEM_PRTY_STS_1);
4534 					break;
4535 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4536 					_print_next_block((*par_num)++, "PXP");
4537 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4538 					_print_parity(bp,
4539 						      PXP2_REG_PXP2_PRTY_STS_0);
4540 					_print_parity(bp,
4541 						      PXP2_REG_PXP2_PRTY_STS_1);
4542 					break;
4543 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4544 					_print_next_block((*par_num)++,
4545 							  "PXPPCICLOCKCLIENT");
4546 					break;
4547 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4548 					_print_next_block((*par_num)++, "CFC");
4549 					_print_parity(bp,
4550 						      CFC_REG_CFC_PRTY_STS);
4551 					break;
4552 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4553 					_print_next_block((*par_num)++, "CDU");
4554 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4555 					break;
4556 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4557 					_print_next_block((*par_num)++, "DMAE");
4558 					_print_parity(bp,
4559 						      DMAE_REG_DMAE_PRTY_STS);
4560 					break;
4561 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4562 					_print_next_block((*par_num)++, "IGU");
4563 					if (CHIP_IS_E1x(bp))
4564 						_print_parity(bp,
4565 							HC_REG_HC_PRTY_STS);
4566 					else
4567 						_print_parity(bp,
4568 							IGU_REG_IGU_PRTY_STS);
4569 					break;
4570 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4571 					_print_next_block((*par_num)++, "MISC");
4572 					_print_parity(bp,
4573 						      MISC_REG_MISC_PRTY_STS);
4574 					break;
4575 				}
4576 			}
4577 
4578 			/* Clear the bit */
4579 			sig &= ~cur_bit;
4580 		}
4581 	}
4582 
4583 	return res;
4584 }
4585 
4586 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4587 					    int *par_num, bool *global,
4588 					    bool print)
4589 {
4590 	bool res = false;
4591 	u32 cur_bit;
4592 	int i;
4593 
4594 	for (i = 0; sig; i++) {
4595 		cur_bit = (0x1UL << i);
4596 		if (sig & cur_bit) {
4597 			switch (cur_bit) {
4598 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4599 				if (print)
4600 					_print_next_block((*par_num)++,
4601 							  "MCP ROM");
4602 				*global = true;
4603 				res |= true;
4604 				break;
4605 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4606 				if (print)
4607 					_print_next_block((*par_num)++,
4608 							  "MCP UMP RX");
4609 				*global = true;
4610 				res |= true;
4611 				break;
4612 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4613 				if (print)
4614 					_print_next_block((*par_num)++,
4615 							  "MCP UMP TX");
4616 				*global = true;
4617 				res |= true;
4618 				break;
4619 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4620 				if (print)
4621 					_print_next_block((*par_num)++,
4622 							  "MCP SCPAD");
4623 				/* clear latched SCPAD PATIRY from MCP */
4624 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4625 				       1UL << 10);
4626 				break;
4627 			}
4628 
4629 			/* Clear the bit */
4630 			sig &= ~cur_bit;
4631 		}
4632 	}
4633 
4634 	return res;
4635 }
4636 
4637 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4638 					    int *par_num, bool print)
4639 {
4640 	u32 cur_bit;
4641 	bool res;
4642 	int i;
4643 
4644 	res = false;
4645 
4646 	for (i = 0; sig; i++) {
4647 		cur_bit = (0x1UL << i);
4648 		if (sig & cur_bit) {
4649 			res |= true; /* Each bit is real error! */
4650 			if (print) {
4651 				switch (cur_bit) {
4652 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4653 					_print_next_block((*par_num)++,
4654 							  "PGLUE_B");
4655 					_print_parity(bp,
4656 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4657 					break;
4658 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4659 					_print_next_block((*par_num)++, "ATC");
4660 					_print_parity(bp,
4661 						      ATC_REG_ATC_PRTY_STS);
4662 					break;
4663 				}
4664 			}
4665 			/* Clear the bit */
4666 			sig &= ~cur_bit;
4667 		}
4668 	}
4669 
4670 	return res;
4671 }
4672 
4673 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4674 			      u32 *sig)
4675 {
4676 	bool res = false;
4677 
4678 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4679 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4680 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4681 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4682 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4683 		int par_num = 0;
4684 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4685 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4686 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4687 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4688 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4689 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4690 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4691 		if (print)
4692 			netdev_err(bp->dev,
4693 				   "Parity errors detected in blocks: ");
4694 		res |= bnx2x_check_blocks_with_parity0(bp,
4695 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4696 		res |= bnx2x_check_blocks_with_parity1(bp,
4697 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4698 		res |= bnx2x_check_blocks_with_parity2(bp,
4699 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4700 		res |= bnx2x_check_blocks_with_parity3(bp,
4701 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4702 		res |= bnx2x_check_blocks_with_parity4(bp,
4703 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4704 
4705 		if (print)
4706 			pr_cont("\n");
4707 	}
4708 
4709 	return res;
4710 }
4711 
4712 /**
4713  * bnx2x_chk_parity_attn - checks for parity attentions.
4714  *
4715  * @bp:		driver handle
4716  * @global:	true if there was a global attention
4717  * @print:	show parity attention in syslog
4718  */
4719 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4720 {
4721 	struct attn_route attn = { {0} };
4722 	int port = BP_PORT(bp);
4723 
4724 	attn.sig[0] = REG_RD(bp,
4725 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4726 			     port*4);
4727 	attn.sig[1] = REG_RD(bp,
4728 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4729 			     port*4);
4730 	attn.sig[2] = REG_RD(bp,
4731 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4732 			     port*4);
4733 	attn.sig[3] = REG_RD(bp,
4734 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4735 			     port*4);
4736 	/* Since MCP attentions can't be disabled inside the block, we need to
4737 	 * read AEU registers to see whether they're currently disabled
4738 	 */
4739 	attn.sig[3] &= ((REG_RD(bp,
4740 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4741 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4742 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4743 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4744 
4745 	if (!CHIP_IS_E1x(bp))
4746 		attn.sig[4] = REG_RD(bp,
4747 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4748 				     port*4);
4749 
4750 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4751 }
4752 
4753 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4754 {
4755 	u32 val;
4756 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4757 
4758 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4759 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4760 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4761 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4762 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4763 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4764 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4765 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4766 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4767 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4768 		if (val &
4769 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4770 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4771 		if (val &
4772 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4773 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4774 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4775 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4776 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4777 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4778 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4779 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4780 	}
4781 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4782 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4783 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4784 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4785 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4786 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4787 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4788 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4789 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4790 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4791 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4792 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4793 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4794 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4795 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4796 	}
4797 
4798 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4799 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4800 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4801 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4802 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4803 	}
4804 }
4805 
4806 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4807 {
4808 	struct attn_route attn, *group_mask;
4809 	int port = BP_PORT(bp);
4810 	int index;
4811 	u32 reg_addr;
4812 	u32 val;
4813 	u32 aeu_mask;
4814 	bool global = false;
4815 
4816 	/* need to take HW lock because MCP or other port might also
4817 	   try to handle this event */
4818 	bnx2x_acquire_alr(bp);
4819 
4820 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4821 #ifndef BNX2X_STOP_ON_ERROR
4822 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4823 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4824 		/* Disable HW interrupts */
4825 		bnx2x_int_disable(bp);
4826 		/* In case of parity errors don't handle attentions so that
4827 		 * other function would "see" parity errors.
4828 		 */
4829 #else
4830 		bnx2x_panic();
4831 #endif
4832 		bnx2x_release_alr(bp);
4833 		return;
4834 	}
4835 
4836 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4837 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4838 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4839 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4840 	if (!CHIP_IS_E1x(bp))
4841 		attn.sig[4] =
4842 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4843 	else
4844 		attn.sig[4] = 0;
4845 
4846 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4847 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4848 
4849 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4850 		if (deasserted & (1 << index)) {
4851 			group_mask = &bp->attn_group[index];
4852 
4853 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4854 			   index,
4855 			   group_mask->sig[0], group_mask->sig[1],
4856 			   group_mask->sig[2], group_mask->sig[3],
4857 			   group_mask->sig[4]);
4858 
4859 			bnx2x_attn_int_deasserted4(bp,
4860 					attn.sig[4] & group_mask->sig[4]);
4861 			bnx2x_attn_int_deasserted3(bp,
4862 					attn.sig[3] & group_mask->sig[3]);
4863 			bnx2x_attn_int_deasserted1(bp,
4864 					attn.sig[1] & group_mask->sig[1]);
4865 			bnx2x_attn_int_deasserted2(bp,
4866 					attn.sig[2] & group_mask->sig[2]);
4867 			bnx2x_attn_int_deasserted0(bp,
4868 					attn.sig[0] & group_mask->sig[0]);
4869 		}
4870 	}
4871 
4872 	bnx2x_release_alr(bp);
4873 
4874 	if (bp->common.int_block == INT_BLOCK_HC)
4875 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4876 			    COMMAND_REG_ATTN_BITS_CLR);
4877 	else
4878 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4879 
4880 	val = ~deasserted;
4881 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4882 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4883 	REG_WR(bp, reg_addr, val);
4884 
4885 	if (~bp->attn_state & deasserted)
4886 		BNX2X_ERR("IGU ERROR\n");
4887 
4888 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4889 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4890 
4891 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4892 	aeu_mask = REG_RD(bp, reg_addr);
4893 
4894 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4895 	   aeu_mask, deasserted);
4896 	aeu_mask |= (deasserted & 0x3ff);
4897 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4898 
4899 	REG_WR(bp, reg_addr, aeu_mask);
4900 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4901 
4902 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4903 	bp->attn_state &= ~deasserted;
4904 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4905 }
4906 
4907 static void bnx2x_attn_int(struct bnx2x *bp)
4908 {
4909 	/* read local copy of bits */
4910 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4911 								attn_bits);
4912 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4913 								attn_bits_ack);
4914 	u32 attn_state = bp->attn_state;
4915 
4916 	/* look for changed bits */
4917 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4918 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4919 
4920 	DP(NETIF_MSG_HW,
4921 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4922 	   attn_bits, attn_ack, asserted, deasserted);
4923 
4924 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4925 		BNX2X_ERR("BAD attention state\n");
4926 
4927 	/* handle bits that were raised */
4928 	if (asserted)
4929 		bnx2x_attn_int_asserted(bp, asserted);
4930 
4931 	if (deasserted)
4932 		bnx2x_attn_int_deasserted(bp, deasserted);
4933 }
4934 
4935 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4936 		      u16 index, u8 op, u8 update)
4937 {
4938 	u32 igu_addr = bp->igu_base_addr;
4939 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4940 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4941 			     igu_addr);
4942 }
4943 
4944 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4945 {
4946 	/* No memory barriers */
4947 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4948 	mmiowb(); /* keep prod updates ordered */
4949 }
4950 
4951 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4952 				      union event_ring_elem *elem)
4953 {
4954 	u8 err = elem->message.error;
4955 
4956 	if (!bp->cnic_eth_dev.starting_cid  ||
4957 	    (cid < bp->cnic_eth_dev.starting_cid &&
4958 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4959 		return 1;
4960 
4961 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4962 
4963 	if (unlikely(err)) {
4964 
4965 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4966 			  cid);
4967 		bnx2x_panic_dump(bp, false);
4968 	}
4969 	bnx2x_cnic_cfc_comp(bp, cid, err);
4970 	return 0;
4971 }
4972 
4973 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4974 {
4975 	struct bnx2x_mcast_ramrod_params rparam;
4976 	int rc;
4977 
4978 	memset(&rparam, 0, sizeof(rparam));
4979 
4980 	rparam.mcast_obj = &bp->mcast_obj;
4981 
4982 	netif_addr_lock_bh(bp->dev);
4983 
4984 	/* Clear pending state for the last command */
4985 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4986 
4987 	/* If there are pending mcast commands - send them */
4988 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4989 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4990 		if (rc < 0)
4991 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4992 				  rc);
4993 	}
4994 
4995 	netif_addr_unlock_bh(bp->dev);
4996 }
4997 
4998 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4999 					    union event_ring_elem *elem)
5000 {
5001 	unsigned long ramrod_flags = 0;
5002 	int rc = 0;
5003 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5004 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5005 
5006 	/* Always push next commands out, don't wait here */
5007 	__set_bit(RAMROD_CONT, &ramrod_flags);
5008 
5009 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5010 			    >> BNX2X_SWCID_SHIFT) {
5011 	case BNX2X_FILTER_MAC_PENDING:
5012 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5013 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5014 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5015 		else
5016 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5017 
5018 		break;
5019 	case BNX2X_FILTER_MCAST_PENDING:
5020 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5021 		/* This is only relevant for 57710 where multicast MACs are
5022 		 * configured as unicast MACs using the same ramrod.
5023 		 */
5024 		bnx2x_handle_mcast_eqe(bp);
5025 		return;
5026 	default:
5027 		BNX2X_ERR("Unsupported classification command: %d\n",
5028 			  elem->message.data.eth_event.echo);
5029 		return;
5030 	}
5031 
5032 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5033 
5034 	if (rc < 0)
5035 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5036 	else if (rc > 0)
5037 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5038 }
5039 
5040 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5041 
5042 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5043 {
5044 	netif_addr_lock_bh(bp->dev);
5045 
5046 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5047 
5048 	/* Send rx_mode command again if was requested */
5049 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5050 		bnx2x_set_storm_rx_mode(bp);
5051 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5052 				    &bp->sp_state))
5053 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5054 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5055 				    &bp->sp_state))
5056 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5057 
5058 	netif_addr_unlock_bh(bp->dev);
5059 }
5060 
5061 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5062 					      union event_ring_elem *elem)
5063 {
5064 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5065 		DP(BNX2X_MSG_SP,
5066 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5067 		   elem->message.data.vif_list_event.func_bit_map);
5068 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5069 			elem->message.data.vif_list_event.func_bit_map);
5070 	} else if (elem->message.data.vif_list_event.echo ==
5071 		   VIF_LIST_RULE_SET) {
5072 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5073 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5074 	}
5075 }
5076 
5077 /* called with rtnl_lock */
5078 static void bnx2x_after_function_update(struct bnx2x *bp)
5079 {
5080 	int q, rc;
5081 	struct bnx2x_fastpath *fp;
5082 	struct bnx2x_queue_state_params queue_params = {NULL};
5083 	struct bnx2x_queue_update_params *q_update_params =
5084 		&queue_params.params.update;
5085 
5086 	/* Send Q update command with afex vlan removal values for all Qs */
5087 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5088 
5089 	/* set silent vlan removal values according to vlan mode */
5090 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5091 		  &q_update_params->update_flags);
5092 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5093 		  &q_update_params->update_flags);
5094 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5095 
5096 	/* in access mode mark mask and value are 0 to strip all vlans */
5097 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5098 		q_update_params->silent_removal_value = 0;
5099 		q_update_params->silent_removal_mask = 0;
5100 	} else {
5101 		q_update_params->silent_removal_value =
5102 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5103 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5104 	}
5105 
5106 	for_each_eth_queue(bp, q) {
5107 		/* Set the appropriate Queue object */
5108 		fp = &bp->fp[q];
5109 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5110 
5111 		/* send the ramrod */
5112 		rc = bnx2x_queue_state_change(bp, &queue_params);
5113 		if (rc < 0)
5114 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5115 				  q);
5116 	}
5117 
5118 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5119 		fp = &bp->fp[FCOE_IDX(bp)];
5120 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5121 
5122 		/* clear pending completion bit */
5123 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5124 
5125 		/* mark latest Q bit */
5126 		smp_mb__before_clear_bit();
5127 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5128 		smp_mb__after_clear_bit();
5129 
5130 		/* send Q update ramrod for FCoE Q */
5131 		rc = bnx2x_queue_state_change(bp, &queue_params);
5132 		if (rc < 0)
5133 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5134 				  q);
5135 	} else {
5136 		/* If no FCoE ring - ACK MCP now */
5137 		bnx2x_link_report(bp);
5138 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5139 	}
5140 }
5141 
5142 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5143 	struct bnx2x *bp, u32 cid)
5144 {
5145 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5146 
5147 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5148 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5149 	else
5150 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5151 }
5152 
5153 static void bnx2x_eq_int(struct bnx2x *bp)
5154 {
5155 	u16 hw_cons, sw_cons, sw_prod;
5156 	union event_ring_elem *elem;
5157 	u8 echo;
5158 	u32 cid;
5159 	u8 opcode;
5160 	int rc, spqe_cnt = 0;
5161 	struct bnx2x_queue_sp_obj *q_obj;
5162 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5163 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5164 
5165 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5166 
5167 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5168 	 * when we get the next-page we need to adjust so the loop
5169 	 * condition below will be met. The next element is the size of a
5170 	 * regular element and hence incrementing by 1
5171 	 */
5172 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5173 		hw_cons++;
5174 
5175 	/* This function may never run in parallel with itself for a
5176 	 * specific bp, thus there is no need in "paired" read memory
5177 	 * barrier here.
5178 	 */
5179 	sw_cons = bp->eq_cons;
5180 	sw_prod = bp->eq_prod;
5181 
5182 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5183 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5184 
5185 	for (; sw_cons != hw_cons;
5186 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5187 
5188 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5189 
5190 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5191 		if (!rc) {
5192 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5193 			   rc);
5194 			goto next_spqe;
5195 		}
5196 
5197 		/* elem CID originates from FW; actually LE */
5198 		cid = SW_CID((__force __le32)
5199 			     elem->message.data.cfc_del_event.cid);
5200 		opcode = elem->message.opcode;
5201 
5202 		/* handle eq element */
5203 		switch (opcode) {
5204 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5205 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5206 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5207 			continue;
5208 
5209 		case EVENT_RING_OPCODE_STAT_QUERY:
5210 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5211 			   "got statistics comp event %d\n",
5212 			   bp->stats_comp++);
5213 			/* nothing to do with stats comp */
5214 			goto next_spqe;
5215 
5216 		case EVENT_RING_OPCODE_CFC_DEL:
5217 			/* handle according to cid range */
5218 			/*
5219 			 * we may want to verify here that the bp state is
5220 			 * HALTING
5221 			 */
5222 			DP(BNX2X_MSG_SP,
5223 			   "got delete ramrod for MULTI[%d]\n", cid);
5224 
5225 			if (CNIC_LOADED(bp) &&
5226 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5227 				goto next_spqe;
5228 
5229 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5230 
5231 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5232 				break;
5233 
5234 			goto next_spqe;
5235 
5236 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5237 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5238 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5239 			if (f_obj->complete_cmd(bp, f_obj,
5240 						BNX2X_F_CMD_TX_STOP))
5241 				break;
5242 			goto next_spqe;
5243 
5244 		case EVENT_RING_OPCODE_START_TRAFFIC:
5245 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5246 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5247 			if (f_obj->complete_cmd(bp, f_obj,
5248 						BNX2X_F_CMD_TX_START))
5249 				break;
5250 			goto next_spqe;
5251 
5252 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5253 			echo = elem->message.data.function_update_event.echo;
5254 			if (echo == SWITCH_UPDATE) {
5255 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5256 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5257 				if (f_obj->complete_cmd(
5258 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5259 					break;
5260 
5261 			} else {
5262 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5263 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5264 				f_obj->complete_cmd(bp, f_obj,
5265 						    BNX2X_F_CMD_AFEX_UPDATE);
5266 
5267 				/* We will perform the Queues update from
5268 				 * sp_rtnl task as all Queue SP operations
5269 				 * should run under rtnl_lock.
5270 				 */
5271 				smp_mb__before_clear_bit();
5272 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5273 					&bp->sp_rtnl_state);
5274 				smp_mb__after_clear_bit();
5275 
5276 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5277 			}
5278 
5279 			goto next_spqe;
5280 
5281 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5282 			f_obj->complete_cmd(bp, f_obj,
5283 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5284 			bnx2x_after_afex_vif_lists(bp, elem);
5285 			goto next_spqe;
5286 		case EVENT_RING_OPCODE_FUNCTION_START:
5287 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5288 			   "got FUNC_START ramrod\n");
5289 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5290 				break;
5291 
5292 			goto next_spqe;
5293 
5294 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5295 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5296 			   "got FUNC_STOP ramrod\n");
5297 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5298 				break;
5299 
5300 			goto next_spqe;
5301 		}
5302 
5303 		switch (opcode | bp->state) {
5304 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5305 		      BNX2X_STATE_OPEN):
5306 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5307 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5308 			cid = elem->message.data.eth_event.echo &
5309 				BNX2X_SWCID_MASK;
5310 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5311 			   cid);
5312 			rss_raw->clear_pending(rss_raw);
5313 			break;
5314 
5315 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5316 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5317 		case (EVENT_RING_OPCODE_SET_MAC |
5318 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5319 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5320 		      BNX2X_STATE_OPEN):
5321 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5322 		      BNX2X_STATE_DIAG):
5323 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5324 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5325 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5326 			bnx2x_handle_classification_eqe(bp, elem);
5327 			break;
5328 
5329 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5330 		      BNX2X_STATE_OPEN):
5331 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5332 		      BNX2X_STATE_DIAG):
5333 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5334 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5335 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5336 			bnx2x_handle_mcast_eqe(bp);
5337 			break;
5338 
5339 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5340 		      BNX2X_STATE_OPEN):
5341 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5342 		      BNX2X_STATE_DIAG):
5343 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5344 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5345 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5346 			bnx2x_handle_rx_mode_eqe(bp);
5347 			break;
5348 		default:
5349 			/* unknown event log error and continue */
5350 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5351 				  elem->message.opcode, bp->state);
5352 		}
5353 next_spqe:
5354 		spqe_cnt++;
5355 	} /* for */
5356 
5357 	smp_mb__before_atomic_inc();
5358 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5359 
5360 	bp->eq_cons = sw_cons;
5361 	bp->eq_prod = sw_prod;
5362 	/* Make sure that above mem writes were issued towards the memory */
5363 	smp_wmb();
5364 
5365 	/* update producer */
5366 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5367 }
5368 
5369 static void bnx2x_sp_task(struct work_struct *work)
5370 {
5371 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5372 
5373 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5374 
5375 	/* make sure the atomic interrupt_occurred has been written */
5376 	smp_rmb();
5377 	if (atomic_read(&bp->interrupt_occurred)) {
5378 
5379 		/* what work needs to be performed? */
5380 		u16 status = bnx2x_update_dsb_idx(bp);
5381 
5382 		DP(BNX2X_MSG_SP, "status %x\n", status);
5383 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5384 		atomic_set(&bp->interrupt_occurred, 0);
5385 
5386 		/* HW attentions */
5387 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5388 			bnx2x_attn_int(bp);
5389 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5390 		}
5391 
5392 		/* SP events: STAT_QUERY and others */
5393 		if (status & BNX2X_DEF_SB_IDX) {
5394 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5395 
5396 		if (FCOE_INIT(bp) &&
5397 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5398 				/* Prevent local bottom-halves from running as
5399 				 * we are going to change the local NAPI list.
5400 				 */
5401 				local_bh_disable();
5402 				napi_schedule(&bnx2x_fcoe(bp, napi));
5403 				local_bh_enable();
5404 			}
5405 
5406 			/* Handle EQ completions */
5407 			bnx2x_eq_int(bp);
5408 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5409 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5410 
5411 			status &= ~BNX2X_DEF_SB_IDX;
5412 		}
5413 
5414 		/* if status is non zero then perhaps something went wrong */
5415 		if (unlikely(status))
5416 			DP(BNX2X_MSG_SP,
5417 			   "got an unknown interrupt! (status 0x%x)\n", status);
5418 
5419 		/* ack status block only if something was actually handled */
5420 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5421 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5422 	}
5423 
5424 	/* must be called after the EQ processing (since eq leads to sriov
5425 	 * ramrod completion flows).
5426 	 * This flow may have been scheduled by the arrival of a ramrod
5427 	 * completion, or by the sriov code rescheduling itself.
5428 	 */
5429 	bnx2x_iov_sp_task(bp);
5430 
5431 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5432 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5433 			       &bp->sp_state)) {
5434 		bnx2x_link_report(bp);
5435 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5436 	}
5437 }
5438 
5439 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5440 {
5441 	struct net_device *dev = dev_instance;
5442 	struct bnx2x *bp = netdev_priv(dev);
5443 
5444 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5445 		     IGU_INT_DISABLE, 0);
5446 
5447 #ifdef BNX2X_STOP_ON_ERROR
5448 	if (unlikely(bp->panic))
5449 		return IRQ_HANDLED;
5450 #endif
5451 
5452 	if (CNIC_LOADED(bp)) {
5453 		struct cnic_ops *c_ops;
5454 
5455 		rcu_read_lock();
5456 		c_ops = rcu_dereference(bp->cnic_ops);
5457 		if (c_ops)
5458 			c_ops->cnic_handler(bp->cnic_data, NULL);
5459 		rcu_read_unlock();
5460 	}
5461 
5462 	/* schedule sp task to perform default status block work, ack
5463 	 * attentions and enable interrupts.
5464 	 */
5465 	bnx2x_schedule_sp_task(bp);
5466 
5467 	return IRQ_HANDLED;
5468 }
5469 
5470 /* end of slow path */
5471 
5472 void bnx2x_drv_pulse(struct bnx2x *bp)
5473 {
5474 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5475 		 bp->fw_drv_pulse_wr_seq);
5476 }
5477 
5478 static void bnx2x_timer(unsigned long data)
5479 {
5480 	struct bnx2x *bp = (struct bnx2x *) data;
5481 
5482 	if (!netif_running(bp->dev))
5483 		return;
5484 
5485 	if (IS_PF(bp) &&
5486 	    !BP_NOMCP(bp)) {
5487 		int mb_idx = BP_FW_MB_IDX(bp);
5488 		u16 drv_pulse;
5489 		u16 mcp_pulse;
5490 
5491 		++bp->fw_drv_pulse_wr_seq;
5492 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5493 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5494 		bnx2x_drv_pulse(bp);
5495 
5496 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5497 			     MCP_PULSE_SEQ_MASK);
5498 		/* The delta between driver pulse and mcp response
5499 		 * should not get too big. If the MFW is more than 5 pulses
5500 		 * behind, we should worry about it enough to generate an error
5501 		 * log.
5502 		 */
5503 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5504 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5505 				  drv_pulse, mcp_pulse);
5506 	}
5507 
5508 	if (bp->state == BNX2X_STATE_OPEN)
5509 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5510 
5511 	/* sample pf vf bulletin board for new posts from pf */
5512 	if (IS_VF(bp))
5513 		bnx2x_timer_sriov(bp);
5514 
5515 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5516 }
5517 
5518 /* end of Statistics */
5519 
5520 /* nic init */
5521 
5522 /*
5523  * nic init service functions
5524  */
5525 
5526 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5527 {
5528 	u32 i;
5529 	if (!(len%4) && !(addr%4))
5530 		for (i = 0; i < len; i += 4)
5531 			REG_WR(bp, addr + i, fill);
5532 	else
5533 		for (i = 0; i < len; i++)
5534 			REG_WR8(bp, addr + i, fill);
5535 }
5536 
5537 /* helper: writes FP SP data to FW - data_size in dwords */
5538 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5539 				int fw_sb_id,
5540 				u32 *sb_data_p,
5541 				u32 data_size)
5542 {
5543 	int index;
5544 	for (index = 0; index < data_size; index++)
5545 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5546 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5547 			sizeof(u32)*index,
5548 			*(sb_data_p + index));
5549 }
5550 
5551 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5552 {
5553 	u32 *sb_data_p;
5554 	u32 data_size = 0;
5555 	struct hc_status_block_data_e2 sb_data_e2;
5556 	struct hc_status_block_data_e1x sb_data_e1x;
5557 
5558 	/* disable the function first */
5559 	if (!CHIP_IS_E1x(bp)) {
5560 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5561 		sb_data_e2.common.state = SB_DISABLED;
5562 		sb_data_e2.common.p_func.vf_valid = false;
5563 		sb_data_p = (u32 *)&sb_data_e2;
5564 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5565 	} else {
5566 		memset(&sb_data_e1x, 0,
5567 		       sizeof(struct hc_status_block_data_e1x));
5568 		sb_data_e1x.common.state = SB_DISABLED;
5569 		sb_data_e1x.common.p_func.vf_valid = false;
5570 		sb_data_p = (u32 *)&sb_data_e1x;
5571 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5572 	}
5573 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5574 
5575 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5576 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5577 			CSTORM_STATUS_BLOCK_SIZE);
5578 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5579 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5580 			CSTORM_SYNC_BLOCK_SIZE);
5581 }
5582 
5583 /* helper:  writes SP SB data to FW */
5584 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5585 		struct hc_sp_status_block_data *sp_sb_data)
5586 {
5587 	int func = BP_FUNC(bp);
5588 	int i;
5589 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5590 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5591 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5592 			i*sizeof(u32),
5593 			*((u32 *)sp_sb_data + i));
5594 }
5595 
5596 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5597 {
5598 	int func = BP_FUNC(bp);
5599 	struct hc_sp_status_block_data sp_sb_data;
5600 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5601 
5602 	sp_sb_data.state = SB_DISABLED;
5603 	sp_sb_data.p_func.vf_valid = false;
5604 
5605 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5606 
5607 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5608 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5609 			CSTORM_SP_STATUS_BLOCK_SIZE);
5610 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5611 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5612 			CSTORM_SP_SYNC_BLOCK_SIZE);
5613 }
5614 
5615 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5616 					   int igu_sb_id, int igu_seg_id)
5617 {
5618 	hc_sm->igu_sb_id = igu_sb_id;
5619 	hc_sm->igu_seg_id = igu_seg_id;
5620 	hc_sm->timer_value = 0xFF;
5621 	hc_sm->time_to_expire = 0xFFFFFFFF;
5622 }
5623 
5624 /* allocates state machine ids. */
5625 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5626 {
5627 	/* zero out state machine indices */
5628 	/* rx indices */
5629 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5630 
5631 	/* tx indices */
5632 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5633 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5634 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5635 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5636 
5637 	/* map indices */
5638 	/* rx indices */
5639 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5640 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5641 
5642 	/* tx indices */
5643 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5644 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5645 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5646 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5647 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5648 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5649 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5650 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5651 }
5652 
5653 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5654 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5655 {
5656 	int igu_seg_id;
5657 
5658 	struct hc_status_block_data_e2 sb_data_e2;
5659 	struct hc_status_block_data_e1x sb_data_e1x;
5660 	struct hc_status_block_sm  *hc_sm_p;
5661 	int data_size;
5662 	u32 *sb_data_p;
5663 
5664 	if (CHIP_INT_MODE_IS_BC(bp))
5665 		igu_seg_id = HC_SEG_ACCESS_NORM;
5666 	else
5667 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5668 
5669 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5670 
5671 	if (!CHIP_IS_E1x(bp)) {
5672 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5673 		sb_data_e2.common.state = SB_ENABLED;
5674 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5675 		sb_data_e2.common.p_func.vf_id = vfid;
5676 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5677 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5678 		sb_data_e2.common.same_igu_sb_1b = true;
5679 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5680 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5681 		hc_sm_p = sb_data_e2.common.state_machine;
5682 		sb_data_p = (u32 *)&sb_data_e2;
5683 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5684 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5685 	} else {
5686 		memset(&sb_data_e1x, 0,
5687 		       sizeof(struct hc_status_block_data_e1x));
5688 		sb_data_e1x.common.state = SB_ENABLED;
5689 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5690 		sb_data_e1x.common.p_func.vf_id = 0xff;
5691 		sb_data_e1x.common.p_func.vf_valid = false;
5692 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5693 		sb_data_e1x.common.same_igu_sb_1b = true;
5694 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5695 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5696 		hc_sm_p = sb_data_e1x.common.state_machine;
5697 		sb_data_p = (u32 *)&sb_data_e1x;
5698 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5699 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5700 	}
5701 
5702 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5703 				       igu_sb_id, igu_seg_id);
5704 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5705 				       igu_sb_id, igu_seg_id);
5706 
5707 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5708 
5709 	/* write indices to HW - PCI guarantees endianity of regpairs */
5710 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5711 }
5712 
5713 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5714 				     u16 tx_usec, u16 rx_usec)
5715 {
5716 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5717 				    false, rx_usec);
5718 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5719 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5720 				       tx_usec);
5721 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5722 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5723 				       tx_usec);
5724 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5725 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5726 				       tx_usec);
5727 }
5728 
5729 static void bnx2x_init_def_sb(struct bnx2x *bp)
5730 {
5731 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5732 	dma_addr_t mapping = bp->def_status_blk_mapping;
5733 	int igu_sp_sb_index;
5734 	int igu_seg_id;
5735 	int port = BP_PORT(bp);
5736 	int func = BP_FUNC(bp);
5737 	int reg_offset, reg_offset_en5;
5738 	u64 section;
5739 	int index;
5740 	struct hc_sp_status_block_data sp_sb_data;
5741 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5742 
5743 	if (CHIP_INT_MODE_IS_BC(bp)) {
5744 		igu_sp_sb_index = DEF_SB_IGU_ID;
5745 		igu_seg_id = HC_SEG_ACCESS_DEF;
5746 	} else {
5747 		igu_sp_sb_index = bp->igu_dsb_id;
5748 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5749 	}
5750 
5751 	/* ATTN */
5752 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5753 					    atten_status_block);
5754 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5755 
5756 	bp->attn_state = 0;
5757 
5758 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5759 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5760 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5761 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5762 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5763 		int sindex;
5764 		/* take care of sig[0]..sig[4] */
5765 		for (sindex = 0; sindex < 4; sindex++)
5766 			bp->attn_group[index].sig[sindex] =
5767 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5768 
5769 		if (!CHIP_IS_E1x(bp))
5770 			/*
5771 			 * enable5 is separate from the rest of the registers,
5772 			 * and therefore the address skip is 4
5773 			 * and not 16 between the different groups
5774 			 */
5775 			bp->attn_group[index].sig[4] = REG_RD(bp,
5776 					reg_offset_en5 + 0x4*index);
5777 		else
5778 			bp->attn_group[index].sig[4] = 0;
5779 	}
5780 
5781 	if (bp->common.int_block == INT_BLOCK_HC) {
5782 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5783 				     HC_REG_ATTN_MSG0_ADDR_L);
5784 
5785 		REG_WR(bp, reg_offset, U64_LO(section));
5786 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5787 	} else if (!CHIP_IS_E1x(bp)) {
5788 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5789 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5790 	}
5791 
5792 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5793 					    sp_sb);
5794 
5795 	bnx2x_zero_sp_sb(bp);
5796 
5797 	/* PCI guarantees endianity of regpairs */
5798 	sp_sb_data.state		= SB_ENABLED;
5799 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5800 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5801 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5802 	sp_sb_data.igu_seg_id		= igu_seg_id;
5803 	sp_sb_data.p_func.pf_id		= func;
5804 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5805 	sp_sb_data.p_func.vf_id		= 0xff;
5806 
5807 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5808 
5809 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5810 }
5811 
5812 void bnx2x_update_coalesce(struct bnx2x *bp)
5813 {
5814 	int i;
5815 
5816 	for_each_eth_queue(bp, i)
5817 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5818 					 bp->tx_ticks, bp->rx_ticks);
5819 }
5820 
5821 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5822 {
5823 	spin_lock_init(&bp->spq_lock);
5824 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5825 
5826 	bp->spq_prod_idx = 0;
5827 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5828 	bp->spq_prod_bd = bp->spq;
5829 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5830 }
5831 
5832 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5833 {
5834 	int i;
5835 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5836 		union event_ring_elem *elem =
5837 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5838 
5839 		elem->next_page.addr.hi =
5840 			cpu_to_le32(U64_HI(bp->eq_mapping +
5841 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5842 		elem->next_page.addr.lo =
5843 			cpu_to_le32(U64_LO(bp->eq_mapping +
5844 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5845 	}
5846 	bp->eq_cons = 0;
5847 	bp->eq_prod = NUM_EQ_DESC;
5848 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5849 	/* we want a warning message before it gets wrought... */
5850 	atomic_set(&bp->eq_spq_left,
5851 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5852 }
5853 
5854 /* called with netif_addr_lock_bh() */
5855 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5856 			unsigned long rx_mode_flags,
5857 			unsigned long rx_accept_flags,
5858 			unsigned long tx_accept_flags,
5859 			unsigned long ramrod_flags)
5860 {
5861 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5862 	int rc;
5863 
5864 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5865 
5866 	/* Prepare ramrod parameters */
5867 	ramrod_param.cid = 0;
5868 	ramrod_param.cl_id = cl_id;
5869 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5870 	ramrod_param.func_id = BP_FUNC(bp);
5871 
5872 	ramrod_param.pstate = &bp->sp_state;
5873 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5874 
5875 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5876 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5877 
5878 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5879 
5880 	ramrod_param.ramrod_flags = ramrod_flags;
5881 	ramrod_param.rx_mode_flags = rx_mode_flags;
5882 
5883 	ramrod_param.rx_accept_flags = rx_accept_flags;
5884 	ramrod_param.tx_accept_flags = tx_accept_flags;
5885 
5886 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5887 	if (rc < 0) {
5888 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5889 		return rc;
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5896 				   unsigned long *rx_accept_flags,
5897 				   unsigned long *tx_accept_flags)
5898 {
5899 	/* Clear the flags first */
5900 	*rx_accept_flags = 0;
5901 	*tx_accept_flags = 0;
5902 
5903 	switch (rx_mode) {
5904 	case BNX2X_RX_MODE_NONE:
5905 		/*
5906 		 * 'drop all' supersedes any accept flags that may have been
5907 		 * passed to the function.
5908 		 */
5909 		break;
5910 	case BNX2X_RX_MODE_NORMAL:
5911 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5912 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5913 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5914 
5915 		/* internal switching mode */
5916 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5917 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5918 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5919 
5920 		break;
5921 	case BNX2X_RX_MODE_ALLMULTI:
5922 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5923 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5924 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5925 
5926 		/* internal switching mode */
5927 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5928 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5929 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5930 
5931 		break;
5932 	case BNX2X_RX_MODE_PROMISC:
5933 		/* According to definition of SI mode, iface in promisc mode
5934 		 * should receive matched and unmatched (in resolution of port)
5935 		 * unicast packets.
5936 		 */
5937 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5938 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5939 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5940 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5941 
5942 		/* internal switching mode */
5943 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5944 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5945 
5946 		if (IS_MF_SI(bp))
5947 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5948 		else
5949 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5950 
5951 		break;
5952 	default:
5953 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5954 		return -EINVAL;
5955 	}
5956 
5957 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5958 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5959 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5960 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5961 	}
5962 
5963 	return 0;
5964 }
5965 
5966 /* called with netif_addr_lock_bh() */
5967 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5968 {
5969 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5970 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5971 	int rc;
5972 
5973 	if (!NO_FCOE(bp))
5974 		/* Configure rx_mode of FCoE Queue */
5975 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5976 
5977 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5978 				     &tx_accept_flags);
5979 	if (rc)
5980 		return rc;
5981 
5982 	__set_bit(RAMROD_RX, &ramrod_flags);
5983 	__set_bit(RAMROD_TX, &ramrod_flags);
5984 
5985 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5986 				   rx_accept_flags, tx_accept_flags,
5987 				   ramrod_flags);
5988 }
5989 
5990 static void bnx2x_init_internal_common(struct bnx2x *bp)
5991 {
5992 	int i;
5993 
5994 	if (IS_MF_SI(bp))
5995 		/*
5996 		 * In switch independent mode, the TSTORM needs to accept
5997 		 * packets that failed classification, since approximate match
5998 		 * mac addresses aren't written to NIG LLH
5999 		 */
6000 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6001 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6002 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6003 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
6004 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6005 
6006 	/* Zero this manually as its initialization is
6007 	   currently missing in the initTool */
6008 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6009 		REG_WR(bp, BAR_USTRORM_INTMEM +
6010 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6011 	if (!CHIP_IS_E1x(bp)) {
6012 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6013 			CHIP_INT_MODE_IS_BC(bp) ?
6014 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6015 	}
6016 }
6017 
6018 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6019 {
6020 	switch (load_code) {
6021 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6022 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6023 		bnx2x_init_internal_common(bp);
6024 		/* no break */
6025 
6026 	case FW_MSG_CODE_DRV_LOAD_PORT:
6027 		/* nothing to do */
6028 		/* no break */
6029 
6030 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6031 		/* internal memory per function is
6032 		   initialized inside bnx2x_pf_init */
6033 		break;
6034 
6035 	default:
6036 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6037 		break;
6038 	}
6039 }
6040 
6041 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6042 {
6043 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6044 }
6045 
6046 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6047 {
6048 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6049 }
6050 
6051 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6052 {
6053 	if (CHIP_IS_E1x(fp->bp))
6054 		return BP_L_ID(fp->bp) + fp->index;
6055 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6056 		return bnx2x_fp_igu_sb_id(fp);
6057 }
6058 
6059 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6060 {
6061 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6062 	u8 cos;
6063 	unsigned long q_type = 0;
6064 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6065 	fp->rx_queue = fp_idx;
6066 	fp->cid = fp_idx;
6067 	fp->cl_id = bnx2x_fp_cl_id(fp);
6068 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6069 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6070 	/* qZone id equals to FW (per path) client id */
6071 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6072 
6073 	/* init shortcut */
6074 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6075 
6076 	/* Setup SB indices */
6077 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6078 
6079 	/* Configure Queue State object */
6080 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6081 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6082 
6083 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6084 
6085 	/* init tx data */
6086 	for_each_cos_in_tx_queue(fp, cos) {
6087 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6088 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6089 				  FP_COS_TO_TXQ(fp, cos, bp),
6090 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6091 		cids[cos] = fp->txdata_ptr[cos]->cid;
6092 	}
6093 
6094 	/* nothing more for vf to do here */
6095 	if (IS_VF(bp))
6096 		return;
6097 
6098 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6099 		      fp->fw_sb_id, fp->igu_sb_id);
6100 	bnx2x_update_fpsb_idx(fp);
6101 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6102 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6103 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6104 
6105 	/**
6106 	 * Configure classification DBs: Always enable Tx switching
6107 	 */
6108 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6109 
6110 	DP(NETIF_MSG_IFUP,
6111 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6112 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6113 	   fp->igu_sb_id);
6114 }
6115 
6116 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6117 {
6118 	int i;
6119 
6120 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6121 		struct eth_tx_next_bd *tx_next_bd =
6122 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6123 
6124 		tx_next_bd->addr_hi =
6125 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6126 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6127 		tx_next_bd->addr_lo =
6128 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6129 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6130 	}
6131 
6132 	*txdata->tx_cons_sb = cpu_to_le16(0);
6133 
6134 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6135 	txdata->tx_db.data.zero_fill1 = 0;
6136 	txdata->tx_db.data.prod = 0;
6137 
6138 	txdata->tx_pkt_prod = 0;
6139 	txdata->tx_pkt_cons = 0;
6140 	txdata->tx_bd_prod = 0;
6141 	txdata->tx_bd_cons = 0;
6142 	txdata->tx_pkt = 0;
6143 }
6144 
6145 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6146 {
6147 	int i;
6148 
6149 	for_each_tx_queue_cnic(bp, i)
6150 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6151 }
6152 
6153 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6154 {
6155 	int i;
6156 	u8 cos;
6157 
6158 	for_each_eth_queue(bp, i)
6159 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6160 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6161 }
6162 
6163 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6164 {
6165 	if (!NO_FCOE(bp))
6166 		bnx2x_init_fcoe_fp(bp);
6167 
6168 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6169 		      BNX2X_VF_ID_INVALID, false,
6170 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6171 
6172 	/* ensure status block indices were read */
6173 	rmb();
6174 	bnx2x_init_rx_rings_cnic(bp);
6175 	bnx2x_init_tx_rings_cnic(bp);
6176 
6177 	/* flush all */
6178 	mb();
6179 	mmiowb();
6180 }
6181 
6182 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6183 {
6184 	int i;
6185 
6186 	/* Setup NIC internals and enable interrupts */
6187 	for_each_eth_queue(bp, i)
6188 		bnx2x_init_eth_fp(bp, i);
6189 
6190 	/* ensure status block indices were read */
6191 	rmb();
6192 	bnx2x_init_rx_rings(bp);
6193 	bnx2x_init_tx_rings(bp);
6194 
6195 	if (IS_PF(bp)) {
6196 		/* Initialize MOD_ABS interrupts */
6197 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6198 				       bp->common.shmem_base,
6199 				       bp->common.shmem2_base, BP_PORT(bp));
6200 
6201 		/* initialize the default status block and sp ring */
6202 		bnx2x_init_def_sb(bp);
6203 		bnx2x_update_dsb_idx(bp);
6204 		bnx2x_init_sp_ring(bp);
6205 	} else {
6206 		bnx2x_memset_stats(bp);
6207 	}
6208 }
6209 
6210 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6211 {
6212 	bnx2x_init_eq_ring(bp);
6213 	bnx2x_init_internal(bp, load_code);
6214 	bnx2x_pf_init(bp);
6215 	bnx2x_stats_init(bp);
6216 
6217 	/* flush all before enabling interrupts */
6218 	mb();
6219 	mmiowb();
6220 
6221 	bnx2x_int_enable(bp);
6222 
6223 	/* Check for SPIO5 */
6224 	bnx2x_attn_int_deasserted0(bp,
6225 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6226 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6227 }
6228 
6229 /* gzip service functions */
6230 static int bnx2x_gunzip_init(struct bnx2x *bp)
6231 {
6232 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6233 					    &bp->gunzip_mapping, GFP_KERNEL);
6234 	if (bp->gunzip_buf  == NULL)
6235 		goto gunzip_nomem1;
6236 
6237 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6238 	if (bp->strm  == NULL)
6239 		goto gunzip_nomem2;
6240 
6241 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6242 	if (bp->strm->workspace == NULL)
6243 		goto gunzip_nomem3;
6244 
6245 	return 0;
6246 
6247 gunzip_nomem3:
6248 	kfree(bp->strm);
6249 	bp->strm = NULL;
6250 
6251 gunzip_nomem2:
6252 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6253 			  bp->gunzip_mapping);
6254 	bp->gunzip_buf = NULL;
6255 
6256 gunzip_nomem1:
6257 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6258 	return -ENOMEM;
6259 }
6260 
6261 static void bnx2x_gunzip_end(struct bnx2x *bp)
6262 {
6263 	if (bp->strm) {
6264 		vfree(bp->strm->workspace);
6265 		kfree(bp->strm);
6266 		bp->strm = NULL;
6267 	}
6268 
6269 	if (bp->gunzip_buf) {
6270 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6271 				  bp->gunzip_mapping);
6272 		bp->gunzip_buf = NULL;
6273 	}
6274 }
6275 
6276 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6277 {
6278 	int n, rc;
6279 
6280 	/* check gzip header */
6281 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6282 		BNX2X_ERR("Bad gzip header\n");
6283 		return -EINVAL;
6284 	}
6285 
6286 	n = 10;
6287 
6288 #define FNAME				0x8
6289 
6290 	if (zbuf[3] & FNAME)
6291 		while ((zbuf[n++] != 0) && (n < len));
6292 
6293 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6294 	bp->strm->avail_in = len - n;
6295 	bp->strm->next_out = bp->gunzip_buf;
6296 	bp->strm->avail_out = FW_BUF_SIZE;
6297 
6298 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6299 	if (rc != Z_OK)
6300 		return rc;
6301 
6302 	rc = zlib_inflate(bp->strm, Z_FINISH);
6303 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6304 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6305 			   bp->strm->msg);
6306 
6307 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6308 	if (bp->gunzip_outlen & 0x3)
6309 		netdev_err(bp->dev,
6310 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6311 				bp->gunzip_outlen);
6312 	bp->gunzip_outlen >>= 2;
6313 
6314 	zlib_inflateEnd(bp->strm);
6315 
6316 	if (rc == Z_STREAM_END)
6317 		return 0;
6318 
6319 	return rc;
6320 }
6321 
6322 /* nic load/unload */
6323 
6324 /*
6325  * General service functions
6326  */
6327 
6328 /* send a NIG loopback debug packet */
6329 static void bnx2x_lb_pckt(struct bnx2x *bp)
6330 {
6331 	u32 wb_write[3];
6332 
6333 	/* Ethernet source and destination addresses */
6334 	wb_write[0] = 0x55555555;
6335 	wb_write[1] = 0x55555555;
6336 	wb_write[2] = 0x20;		/* SOP */
6337 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6338 
6339 	/* NON-IP protocol */
6340 	wb_write[0] = 0x09000000;
6341 	wb_write[1] = 0x55555555;
6342 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6343 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6344 }
6345 
6346 /* some of the internal memories
6347  * are not directly readable from the driver
6348  * to test them we send debug packets
6349  */
6350 static int bnx2x_int_mem_test(struct bnx2x *bp)
6351 {
6352 	int factor;
6353 	int count, i;
6354 	u32 val = 0;
6355 
6356 	if (CHIP_REV_IS_FPGA(bp))
6357 		factor = 120;
6358 	else if (CHIP_REV_IS_EMUL(bp))
6359 		factor = 200;
6360 	else
6361 		factor = 1;
6362 
6363 	/* Disable inputs of parser neighbor blocks */
6364 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6365 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6366 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6367 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6368 
6369 	/*  Write 0 to parser credits for CFC search request */
6370 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6371 
6372 	/* send Ethernet packet */
6373 	bnx2x_lb_pckt(bp);
6374 
6375 	/* TODO do i reset NIG statistic? */
6376 	/* Wait until NIG register shows 1 packet of size 0x10 */
6377 	count = 1000 * factor;
6378 	while (count) {
6379 
6380 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6381 		val = *bnx2x_sp(bp, wb_data[0]);
6382 		if (val == 0x10)
6383 			break;
6384 
6385 		usleep_range(10000, 20000);
6386 		count--;
6387 	}
6388 	if (val != 0x10) {
6389 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6390 		return -1;
6391 	}
6392 
6393 	/* Wait until PRS register shows 1 packet */
6394 	count = 1000 * factor;
6395 	while (count) {
6396 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6397 		if (val == 1)
6398 			break;
6399 
6400 		usleep_range(10000, 20000);
6401 		count--;
6402 	}
6403 	if (val != 0x1) {
6404 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6405 		return -2;
6406 	}
6407 
6408 	/* Reset and init BRB, PRS */
6409 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6410 	msleep(50);
6411 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6412 	msleep(50);
6413 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6414 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6415 
6416 	DP(NETIF_MSG_HW, "part2\n");
6417 
6418 	/* Disable inputs of parser neighbor blocks */
6419 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6420 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6421 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6422 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6423 
6424 	/* Write 0 to parser credits for CFC search request */
6425 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6426 
6427 	/* send 10 Ethernet packets */
6428 	for (i = 0; i < 10; i++)
6429 		bnx2x_lb_pckt(bp);
6430 
6431 	/* Wait until NIG register shows 10 + 1
6432 	   packets of size 11*0x10 = 0xb0 */
6433 	count = 1000 * factor;
6434 	while (count) {
6435 
6436 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6437 		val = *bnx2x_sp(bp, wb_data[0]);
6438 		if (val == 0xb0)
6439 			break;
6440 
6441 		usleep_range(10000, 20000);
6442 		count--;
6443 	}
6444 	if (val != 0xb0) {
6445 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6446 		return -3;
6447 	}
6448 
6449 	/* Wait until PRS register shows 2 packets */
6450 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6451 	if (val != 2)
6452 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6453 
6454 	/* Write 1 to parser credits for CFC search request */
6455 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6456 
6457 	/* Wait until PRS register shows 3 packets */
6458 	msleep(10 * factor);
6459 	/* Wait until NIG register shows 1 packet of size 0x10 */
6460 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6461 	if (val != 3)
6462 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6463 
6464 	/* clear NIG EOP FIFO */
6465 	for (i = 0; i < 11; i++)
6466 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6467 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6468 	if (val != 1) {
6469 		BNX2X_ERR("clear of NIG failed\n");
6470 		return -4;
6471 	}
6472 
6473 	/* Reset and init BRB, PRS, NIG */
6474 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6475 	msleep(50);
6476 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6477 	msleep(50);
6478 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6479 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6480 	if (!CNIC_SUPPORT(bp))
6481 		/* set NIC mode */
6482 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6483 
6484 	/* Enable inputs of parser neighbor blocks */
6485 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6486 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6487 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6488 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6489 
6490 	DP(NETIF_MSG_HW, "done\n");
6491 
6492 	return 0; /* OK */
6493 }
6494 
6495 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6496 {
6497 	u32 val;
6498 
6499 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6500 	if (!CHIP_IS_E1x(bp))
6501 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6502 	else
6503 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6504 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6505 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6506 	/*
6507 	 * mask read length error interrupts in brb for parser
6508 	 * (parsing unit and 'checksum and crc' unit)
6509 	 * these errors are legal (PU reads fixed length and CAC can cause
6510 	 * read length error on truncated packets)
6511 	 */
6512 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6513 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6514 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6515 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6516 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6517 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6518 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6519 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6520 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6521 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6522 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6523 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6524 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6525 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6526 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6527 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6528 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6529 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6530 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6531 
6532 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6533 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6534 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6535 	if (!CHIP_IS_E1x(bp))
6536 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6537 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6538 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6539 
6540 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6541 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6542 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6543 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6544 
6545 	if (!CHIP_IS_E1x(bp))
6546 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6547 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6548 
6549 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6550 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6551 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6552 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6553 }
6554 
6555 static void bnx2x_reset_common(struct bnx2x *bp)
6556 {
6557 	u32 val = 0x1400;
6558 
6559 	/* reset_common */
6560 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6561 	       0xd3ffff7f);
6562 
6563 	if (CHIP_IS_E3(bp)) {
6564 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6565 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6566 	}
6567 
6568 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6569 }
6570 
6571 static void bnx2x_setup_dmae(struct bnx2x *bp)
6572 {
6573 	bp->dmae_ready = 0;
6574 	spin_lock_init(&bp->dmae_lock);
6575 }
6576 
6577 static void bnx2x_init_pxp(struct bnx2x *bp)
6578 {
6579 	u16 devctl;
6580 	int r_order, w_order;
6581 
6582 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6583 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6584 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6585 	if (bp->mrrs == -1)
6586 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6587 	else {
6588 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6589 		r_order = bp->mrrs;
6590 	}
6591 
6592 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6593 }
6594 
6595 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6596 {
6597 	int is_required;
6598 	u32 val;
6599 	int port;
6600 
6601 	if (BP_NOMCP(bp))
6602 		return;
6603 
6604 	is_required = 0;
6605 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6606 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6607 
6608 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6609 		is_required = 1;
6610 
6611 	/*
6612 	 * The fan failure mechanism is usually related to the PHY type since
6613 	 * the power consumption of the board is affected by the PHY. Currently,
6614 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6615 	 */
6616 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6617 		for (port = PORT_0; port < PORT_MAX; port++) {
6618 			is_required |=
6619 				bnx2x_fan_failure_det_req(
6620 					bp,
6621 					bp->common.shmem_base,
6622 					bp->common.shmem2_base,
6623 					port);
6624 		}
6625 
6626 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6627 
6628 	if (is_required == 0)
6629 		return;
6630 
6631 	/* Fan failure is indicated by SPIO 5 */
6632 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6633 
6634 	/* set to active low mode */
6635 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6636 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6637 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6638 
6639 	/* enable interrupt to signal the IGU */
6640 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6641 	val |= MISC_SPIO_SPIO5;
6642 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6643 }
6644 
6645 void bnx2x_pf_disable(struct bnx2x *bp)
6646 {
6647 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6648 	val &= ~IGU_PF_CONF_FUNC_EN;
6649 
6650 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6651 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6652 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6653 }
6654 
6655 static void bnx2x__common_init_phy(struct bnx2x *bp)
6656 {
6657 	u32 shmem_base[2], shmem2_base[2];
6658 	/* Avoid common init in case MFW supports LFA */
6659 	if (SHMEM2_RD(bp, size) >
6660 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6661 		return;
6662 	shmem_base[0] =  bp->common.shmem_base;
6663 	shmem2_base[0] = bp->common.shmem2_base;
6664 	if (!CHIP_IS_E1x(bp)) {
6665 		shmem_base[1] =
6666 			SHMEM2_RD(bp, other_shmem_base_addr);
6667 		shmem2_base[1] =
6668 			SHMEM2_RD(bp, other_shmem2_base_addr);
6669 	}
6670 	bnx2x_acquire_phy_lock(bp);
6671 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6672 			      bp->common.chip_id);
6673 	bnx2x_release_phy_lock(bp);
6674 }
6675 
6676 /**
6677  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6678  *
6679  * @bp:		driver handle
6680  */
6681 static int bnx2x_init_hw_common(struct bnx2x *bp)
6682 {
6683 	u32 val;
6684 
6685 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6686 
6687 	/*
6688 	 * take the RESET lock to protect undi_unload flow from accessing
6689 	 * registers while we're resetting the chip
6690 	 */
6691 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6692 
6693 	bnx2x_reset_common(bp);
6694 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6695 
6696 	val = 0xfffc;
6697 	if (CHIP_IS_E3(bp)) {
6698 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6699 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6700 	}
6701 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6702 
6703 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6704 
6705 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6706 
6707 	if (!CHIP_IS_E1x(bp)) {
6708 		u8 abs_func_id;
6709 
6710 		/**
6711 		 * 4-port mode or 2-port mode we need to turn of master-enable
6712 		 * for everyone, after that, turn it back on for self.
6713 		 * so, we disregard multi-function or not, and always disable
6714 		 * for all functions on the given path, this means 0,2,4,6 for
6715 		 * path 0 and 1,3,5,7 for path 1
6716 		 */
6717 		for (abs_func_id = BP_PATH(bp);
6718 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6719 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6720 				REG_WR(bp,
6721 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6722 				    1);
6723 				continue;
6724 			}
6725 
6726 			bnx2x_pretend_func(bp, abs_func_id);
6727 			/* clear pf enable */
6728 			bnx2x_pf_disable(bp);
6729 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6730 		}
6731 	}
6732 
6733 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6734 	if (CHIP_IS_E1(bp)) {
6735 		/* enable HW interrupt from PXP on USDM overflow
6736 		   bit 16 on INT_MASK_0 */
6737 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6738 	}
6739 
6740 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6741 	bnx2x_init_pxp(bp);
6742 
6743 #ifdef __BIG_ENDIAN
6744 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6745 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6746 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6747 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6748 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6749 	/* make sure this value is 0 */
6750 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6751 
6752 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6753 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6754 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6755 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6756 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6757 #endif
6758 
6759 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6760 
6761 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6762 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6763 
6764 	/* let the HW do it's magic ... */
6765 	msleep(100);
6766 	/* finish PXP init */
6767 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6768 	if (val != 1) {
6769 		BNX2X_ERR("PXP2 CFG failed\n");
6770 		return -EBUSY;
6771 	}
6772 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6773 	if (val != 1) {
6774 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6775 		return -EBUSY;
6776 	}
6777 
6778 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6779 	 * have entries with value "0" and valid bit on.
6780 	 * This needs to be done by the first PF that is loaded in a path
6781 	 * (i.e. common phase)
6782 	 */
6783 	if (!CHIP_IS_E1x(bp)) {
6784 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6785  * (i.e. vnic3) to start even if it is marked as "scan-off".
6786  * This occurs when a different function (func2,3) is being marked
6787  * as "scan-off". Real-life scenario for example: if a driver is being
6788  * load-unloaded while func6,7 are down. This will cause the timer to access
6789  * the ilt, translate to a logical address and send a request to read/write.
6790  * Since the ilt for the function that is down is not valid, this will cause
6791  * a translation error which is unrecoverable.
6792  * The Workaround is intended to make sure that when this happens nothing fatal
6793  * will occur. The workaround:
6794  *	1.  First PF driver which loads on a path will:
6795  *		a.  After taking the chip out of reset, by using pretend,
6796  *		    it will write "0" to the following registers of
6797  *		    the other vnics.
6798  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6799  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6800  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6801  *		    And for itself it will write '1' to
6802  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6803  *		    dmae-operations (writing to pram for example.)
6804  *		    note: can be done for only function 6,7 but cleaner this
6805  *			  way.
6806  *		b.  Write zero+valid to the entire ILT.
6807  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6808  *		    VNIC3 (of that port). The range allocated will be the
6809  *		    entire ILT. This is needed to prevent  ILT range error.
6810  *	2.  Any PF driver load flow:
6811  *		a.  ILT update with the physical addresses of the allocated
6812  *		    logical pages.
6813  *		b.  Wait 20msec. - note that this timeout is needed to make
6814  *		    sure there are no requests in one of the PXP internal
6815  *		    queues with "old" ILT addresses.
6816  *		c.  PF enable in the PGLC.
6817  *		d.  Clear the was_error of the PF in the PGLC. (could have
6818  *		    occurred while driver was down)
6819  *		e.  PF enable in the CFC (WEAK + STRONG)
6820  *		f.  Timers scan enable
6821  *	3.  PF driver unload flow:
6822  *		a.  Clear the Timers scan_en.
6823  *		b.  Polling for scan_on=0 for that PF.
6824  *		c.  Clear the PF enable bit in the PXP.
6825  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6826  *		e.  Write zero+valid to all ILT entries (The valid bit must
6827  *		    stay set)
6828  *		f.  If this is VNIC 3 of a port then also init
6829  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6830  *		    to the last entry in the ILT.
6831  *
6832  *	Notes:
6833  *	Currently the PF error in the PGLC is non recoverable.
6834  *	In the future the there will be a recovery routine for this error.
6835  *	Currently attention is masked.
6836  *	Having an MCP lock on the load/unload process does not guarantee that
6837  *	there is no Timer disable during Func6/7 enable. This is because the
6838  *	Timers scan is currently being cleared by the MCP on FLR.
6839  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6840  *	there is error before clearing it. But the flow above is simpler and
6841  *	more general.
6842  *	All ILT entries are written by zero+valid and not just PF6/7
6843  *	ILT entries since in the future the ILT entries allocation for
6844  *	PF-s might be dynamic.
6845  */
6846 		struct ilt_client_info ilt_cli;
6847 		struct bnx2x_ilt ilt;
6848 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6849 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6850 
6851 		/* initialize dummy TM client */
6852 		ilt_cli.start = 0;
6853 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6854 		ilt_cli.client_num = ILT_CLIENT_TM;
6855 
6856 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6857 		 * Step 2: set the timers first/last ilt entry to point
6858 		 * to the entire range to prevent ILT range error for 3rd/4th
6859 		 * vnic	(this code assumes existence of the vnic)
6860 		 *
6861 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6862 		 * with dummy TM client
6863 		 *
6864 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6865 		 * and his brother are split registers
6866 		 */
6867 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6868 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6869 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6870 
6871 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6872 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6873 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6874 	}
6875 
6876 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6877 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6878 
6879 	if (!CHIP_IS_E1x(bp)) {
6880 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6881 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6882 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6883 
6884 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6885 
6886 		/* let the HW do it's magic ... */
6887 		do {
6888 			msleep(200);
6889 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6890 		} while (factor-- && (val != 1));
6891 
6892 		if (val != 1) {
6893 			BNX2X_ERR("ATC_INIT failed\n");
6894 			return -EBUSY;
6895 		}
6896 	}
6897 
6898 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6899 
6900 	bnx2x_iov_init_dmae(bp);
6901 
6902 	/* clean the DMAE memory */
6903 	bp->dmae_ready = 1;
6904 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6905 
6906 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6907 
6908 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6909 
6910 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6911 
6912 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6913 
6914 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6915 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6916 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6917 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6918 
6919 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6920 
6921 	/* QM queues pointers table */
6922 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6923 
6924 	/* soft reset pulse */
6925 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6926 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6927 
6928 	if (CNIC_SUPPORT(bp))
6929 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6930 
6931 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6932 
6933 	if (!CHIP_REV_IS_SLOW(bp))
6934 		/* enable hw interrupt from doorbell Q */
6935 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6936 
6937 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6938 
6939 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6940 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6941 
6942 	if (!CHIP_IS_E1(bp))
6943 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6944 
6945 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6946 		if (IS_MF_AFEX(bp)) {
6947 			/* configure that VNTag and VLAN headers must be
6948 			 * received in afex mode
6949 			 */
6950 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6951 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6952 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6953 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6954 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6955 		} else {
6956 			/* Bit-map indicating which L2 hdrs may appear
6957 			 * after the basic Ethernet header
6958 			 */
6959 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6960 			       bp->path_has_ovlan ? 7 : 6);
6961 		}
6962 	}
6963 
6964 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6965 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6966 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6967 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6968 
6969 	if (!CHIP_IS_E1x(bp)) {
6970 		/* reset VFC memories */
6971 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6972 			   VFC_MEMORIES_RST_REG_CAM_RST |
6973 			   VFC_MEMORIES_RST_REG_RAM_RST);
6974 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6975 			   VFC_MEMORIES_RST_REG_CAM_RST |
6976 			   VFC_MEMORIES_RST_REG_RAM_RST);
6977 
6978 		msleep(20);
6979 	}
6980 
6981 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6982 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6983 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6984 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6985 
6986 	/* sync semi rtc */
6987 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6988 	       0x80000000);
6989 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6990 	       0x80000000);
6991 
6992 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6993 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6994 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6995 
6996 	if (!CHIP_IS_E1x(bp)) {
6997 		if (IS_MF_AFEX(bp)) {
6998 			/* configure that VNTag and VLAN headers must be
6999 			 * sent in afex mode
7000 			 */
7001 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7002 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7003 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7004 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7005 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7006 		} else {
7007 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7008 			       bp->path_has_ovlan ? 7 : 6);
7009 		}
7010 	}
7011 
7012 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7013 
7014 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7015 
7016 	if (CNIC_SUPPORT(bp)) {
7017 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7018 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7019 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7020 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7021 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7022 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7023 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7024 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7025 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7026 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7027 	}
7028 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7029 
7030 	if (sizeof(union cdu_context) != 1024)
7031 		/* we currently assume that a context is 1024 bytes */
7032 		dev_alert(&bp->pdev->dev,
7033 			  "please adjust the size of cdu_context(%ld)\n",
7034 			  (long)sizeof(union cdu_context));
7035 
7036 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7037 	val = (4 << 24) + (0 << 12) + 1024;
7038 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7039 
7040 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7041 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7042 	/* enable context validation interrupt from CFC */
7043 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7044 
7045 	/* set the thresholds to prevent CFC/CDU race */
7046 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7047 
7048 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7049 
7050 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7051 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7052 
7053 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7054 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7055 
7056 	/* Reset PCIE errors for debug */
7057 	REG_WR(bp, 0x2814, 0xffffffff);
7058 	REG_WR(bp, 0x3820, 0xffffffff);
7059 
7060 	if (!CHIP_IS_E1x(bp)) {
7061 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7062 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7063 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7064 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7065 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7066 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7067 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7068 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7069 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7070 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7071 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7072 	}
7073 
7074 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7075 	if (!CHIP_IS_E1(bp)) {
7076 		/* in E3 this done in per-port section */
7077 		if (!CHIP_IS_E3(bp))
7078 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7079 	}
7080 	if (CHIP_IS_E1H(bp))
7081 		/* not applicable for E2 (and above ...) */
7082 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7083 
7084 	if (CHIP_REV_IS_SLOW(bp))
7085 		msleep(200);
7086 
7087 	/* finish CFC init */
7088 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7089 	if (val != 1) {
7090 		BNX2X_ERR("CFC LL_INIT failed\n");
7091 		return -EBUSY;
7092 	}
7093 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7094 	if (val != 1) {
7095 		BNX2X_ERR("CFC AC_INIT failed\n");
7096 		return -EBUSY;
7097 	}
7098 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7099 	if (val != 1) {
7100 		BNX2X_ERR("CFC CAM_INIT failed\n");
7101 		return -EBUSY;
7102 	}
7103 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7104 
7105 	if (CHIP_IS_E1(bp)) {
7106 		/* read NIG statistic
7107 		   to see if this is our first up since powerup */
7108 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7109 		val = *bnx2x_sp(bp, wb_data[0]);
7110 
7111 		/* do internal memory self test */
7112 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7113 			BNX2X_ERR("internal mem self test failed\n");
7114 			return -EBUSY;
7115 		}
7116 	}
7117 
7118 	bnx2x_setup_fan_failure_detection(bp);
7119 
7120 	/* clear PXP2 attentions */
7121 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7122 
7123 	bnx2x_enable_blocks_attention(bp);
7124 	bnx2x_enable_blocks_parity(bp);
7125 
7126 	if (!BP_NOMCP(bp)) {
7127 		if (CHIP_IS_E1x(bp))
7128 			bnx2x__common_init_phy(bp);
7129 	} else
7130 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7131 
7132 	return 0;
7133 }
7134 
7135 /**
7136  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7137  *
7138  * @bp:		driver handle
7139  */
7140 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7141 {
7142 	int rc = bnx2x_init_hw_common(bp);
7143 
7144 	if (rc)
7145 		return rc;
7146 
7147 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7148 	if (!BP_NOMCP(bp))
7149 		bnx2x__common_init_phy(bp);
7150 
7151 	return 0;
7152 }
7153 
7154 static int bnx2x_init_hw_port(struct bnx2x *bp)
7155 {
7156 	int port = BP_PORT(bp);
7157 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7158 	u32 low, high;
7159 	u32 val, reg;
7160 
7161 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7162 
7163 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7164 
7165 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7166 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7167 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7168 
7169 	/* Timers bug workaround: disables the pf_master bit in pglue at
7170 	 * common phase, we need to enable it here before any dmae access are
7171 	 * attempted. Therefore we manually added the enable-master to the
7172 	 * port phase (it also happens in the function phase)
7173 	 */
7174 	if (!CHIP_IS_E1x(bp))
7175 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7176 
7177 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7178 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7179 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7180 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7181 
7182 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7183 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7184 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7185 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7186 
7187 	/* QM cid (connection) count */
7188 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7189 
7190 	if (CNIC_SUPPORT(bp)) {
7191 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7192 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7193 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7194 	}
7195 
7196 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7197 
7198 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7199 
7200 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7201 
7202 		if (IS_MF(bp))
7203 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7204 		else if (bp->dev->mtu > 4096) {
7205 			if (bp->flags & ONE_PORT_FLAG)
7206 				low = 160;
7207 			else {
7208 				val = bp->dev->mtu;
7209 				/* (24*1024 + val*4)/256 */
7210 				low = 96 + (val/64) +
7211 						((val % 64) ? 1 : 0);
7212 			}
7213 		} else
7214 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7215 		high = low + 56;	/* 14*1024/256 */
7216 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7217 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7218 	}
7219 
7220 	if (CHIP_MODE_IS_4_PORT(bp))
7221 		REG_WR(bp, (BP_PORT(bp) ?
7222 			    BRB1_REG_MAC_GUARANTIED_1 :
7223 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7224 
7225 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7226 	if (CHIP_IS_E3B0(bp)) {
7227 		if (IS_MF_AFEX(bp)) {
7228 			/* configure headers for AFEX mode */
7229 			REG_WR(bp, BP_PORT(bp) ?
7230 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7231 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7232 			REG_WR(bp, BP_PORT(bp) ?
7233 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7234 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7235 			REG_WR(bp, BP_PORT(bp) ?
7236 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7237 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7238 		} else {
7239 			/* Ovlan exists only if we are in multi-function +
7240 			 * switch-dependent mode, in switch-independent there
7241 			 * is no ovlan headers
7242 			 */
7243 			REG_WR(bp, BP_PORT(bp) ?
7244 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7245 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7246 			       (bp->path_has_ovlan ? 7 : 6));
7247 		}
7248 	}
7249 
7250 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7251 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7252 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7253 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7254 
7255 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7256 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7257 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7258 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7259 
7260 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7261 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7262 
7263 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7264 
7265 	if (CHIP_IS_E1x(bp)) {
7266 		/* configure PBF to work without PAUSE mtu 9000 */
7267 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7268 
7269 		/* update threshold */
7270 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7271 		/* update init credit */
7272 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7273 
7274 		/* probe changes */
7275 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7276 		udelay(50);
7277 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7278 	}
7279 
7280 	if (CNIC_SUPPORT(bp))
7281 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7282 
7283 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7284 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7285 
7286 	if (CHIP_IS_E1(bp)) {
7287 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7288 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7289 	}
7290 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7291 
7292 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7293 
7294 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7295 	/* init aeu_mask_attn_func_0/1:
7296 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7297 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7298 	 *             bits 4-7 are used for "per vn group attention" */
7299 	val = IS_MF(bp) ? 0xF7 : 0x7;
7300 	/* Enable DCBX attention for all but E1 */
7301 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7302 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7303 
7304 	/* SCPAD_PARITY should NOT trigger close the gates */
7305 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7306 	REG_WR(bp, reg,
7307 	       REG_RD(bp, reg) &
7308 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7309 
7310 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7311 	REG_WR(bp, reg,
7312 	       REG_RD(bp, reg) &
7313 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7314 
7315 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7316 
7317 	if (!CHIP_IS_E1x(bp)) {
7318 		/* Bit-map indicating which L2 hdrs may appear after the
7319 		 * basic Ethernet header
7320 		 */
7321 		if (IS_MF_AFEX(bp))
7322 			REG_WR(bp, BP_PORT(bp) ?
7323 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7324 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7325 		else
7326 			REG_WR(bp, BP_PORT(bp) ?
7327 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7328 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7329 			       IS_MF_SD(bp) ? 7 : 6);
7330 
7331 		if (CHIP_IS_E3(bp))
7332 			REG_WR(bp, BP_PORT(bp) ?
7333 				   NIG_REG_LLH1_MF_MODE :
7334 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7335 	}
7336 	if (!CHIP_IS_E3(bp))
7337 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7338 
7339 	if (!CHIP_IS_E1(bp)) {
7340 		/* 0x2 disable mf_ov, 0x1 enable */
7341 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7342 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7343 
7344 		if (!CHIP_IS_E1x(bp)) {
7345 			val = 0;
7346 			switch (bp->mf_mode) {
7347 			case MULTI_FUNCTION_SD:
7348 				val = 1;
7349 				break;
7350 			case MULTI_FUNCTION_SI:
7351 			case MULTI_FUNCTION_AFEX:
7352 				val = 2;
7353 				break;
7354 			}
7355 
7356 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7357 						  NIG_REG_LLH0_CLS_TYPE), val);
7358 		}
7359 		{
7360 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7361 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7362 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7363 		}
7364 	}
7365 
7366 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7367 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7368 	if (val & MISC_SPIO_SPIO5) {
7369 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7370 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7371 		val = REG_RD(bp, reg_addr);
7372 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7373 		REG_WR(bp, reg_addr, val);
7374 	}
7375 
7376 	return 0;
7377 }
7378 
7379 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7380 {
7381 	int reg;
7382 	u32 wb_write[2];
7383 
7384 	if (CHIP_IS_E1(bp))
7385 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7386 	else
7387 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7388 
7389 	wb_write[0] = ONCHIP_ADDR1(addr);
7390 	wb_write[1] = ONCHIP_ADDR2(addr);
7391 	REG_WR_DMAE(bp, reg, wb_write, 2);
7392 }
7393 
7394 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7395 {
7396 	u32 data, ctl, cnt = 100;
7397 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7398 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7399 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7400 	u32 sb_bit =  1 << (idu_sb_id%32);
7401 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7402 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7403 
7404 	/* Not supported in BC mode */
7405 	if (CHIP_INT_MODE_IS_BC(bp))
7406 		return;
7407 
7408 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7409 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7410 		IGU_REGULAR_CLEANUP_SET				|
7411 		IGU_REGULAR_BCLEANUP;
7412 
7413 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7414 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7415 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7416 
7417 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7418 			 data, igu_addr_data);
7419 	REG_WR(bp, igu_addr_data, data);
7420 	mmiowb();
7421 	barrier();
7422 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7423 			  ctl, igu_addr_ctl);
7424 	REG_WR(bp, igu_addr_ctl, ctl);
7425 	mmiowb();
7426 	barrier();
7427 
7428 	/* wait for clean up to finish */
7429 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7430 		msleep(20);
7431 
7432 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7433 		DP(NETIF_MSG_HW,
7434 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7435 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7436 	}
7437 }
7438 
7439 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7440 {
7441 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7442 }
7443 
7444 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7445 {
7446 	u32 i, base = FUNC_ILT_BASE(func);
7447 	for (i = base; i < base + ILT_PER_FUNC; i++)
7448 		bnx2x_ilt_wr(bp, i, 0);
7449 }
7450 
7451 static void bnx2x_init_searcher(struct bnx2x *bp)
7452 {
7453 	int port = BP_PORT(bp);
7454 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7455 	/* T1 hash bits value determines the T1 number of entries */
7456 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7457 }
7458 
7459 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7460 {
7461 	int rc;
7462 	struct bnx2x_func_state_params func_params = {NULL};
7463 	struct bnx2x_func_switch_update_params *switch_update_params =
7464 		&func_params.params.switch_update;
7465 
7466 	/* Prepare parameters for function state transitions */
7467 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7468 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7469 
7470 	func_params.f_obj = &bp->func_obj;
7471 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7472 
7473 	/* Function parameters */
7474 	switch_update_params->suspend = suspend;
7475 
7476 	rc = bnx2x_func_state_change(bp, &func_params);
7477 
7478 	return rc;
7479 }
7480 
7481 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7482 {
7483 	int rc, i, port = BP_PORT(bp);
7484 	int vlan_en = 0, mac_en[NUM_MACS];
7485 
7486 	/* Close input from network */
7487 	if (bp->mf_mode == SINGLE_FUNCTION) {
7488 		bnx2x_set_rx_filter(&bp->link_params, 0);
7489 	} else {
7490 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7491 				   NIG_REG_LLH0_FUNC_EN);
7492 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7493 			  NIG_REG_LLH0_FUNC_EN, 0);
7494 		for (i = 0; i < NUM_MACS; i++) {
7495 			mac_en[i] = REG_RD(bp, port ?
7496 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7497 					      4 * i) :
7498 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7499 					      4 * i));
7500 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7501 					      4 * i) :
7502 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7503 		}
7504 	}
7505 
7506 	/* Close BMC to host */
7507 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7508 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7509 
7510 	/* Suspend Tx switching to the PF. Completion of this ramrod
7511 	 * further guarantees that all the packets of that PF / child
7512 	 * VFs in BRB were processed by the Parser, so it is safe to
7513 	 * change the NIC_MODE register.
7514 	 */
7515 	rc = bnx2x_func_switch_update(bp, 1);
7516 	if (rc) {
7517 		BNX2X_ERR("Can't suspend tx-switching!\n");
7518 		return rc;
7519 	}
7520 
7521 	/* Change NIC_MODE register */
7522 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7523 
7524 	/* Open input from network */
7525 	if (bp->mf_mode == SINGLE_FUNCTION) {
7526 		bnx2x_set_rx_filter(&bp->link_params, 1);
7527 	} else {
7528 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7529 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7530 		for (i = 0; i < NUM_MACS; i++) {
7531 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7532 					      4 * i) :
7533 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7534 				  mac_en[i]);
7535 		}
7536 	}
7537 
7538 	/* Enable BMC to host */
7539 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7540 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7541 
7542 	/* Resume Tx switching to the PF */
7543 	rc = bnx2x_func_switch_update(bp, 0);
7544 	if (rc) {
7545 		BNX2X_ERR("Can't resume tx-switching!\n");
7546 		return rc;
7547 	}
7548 
7549 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7550 	return 0;
7551 }
7552 
7553 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7554 {
7555 	int rc;
7556 
7557 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7558 
7559 	if (CONFIGURE_NIC_MODE(bp)) {
7560 		/* Configure searcher as part of function hw init */
7561 		bnx2x_init_searcher(bp);
7562 
7563 		/* Reset NIC mode */
7564 		rc = bnx2x_reset_nic_mode(bp);
7565 		if (rc)
7566 			BNX2X_ERR("Can't change NIC mode!\n");
7567 		return rc;
7568 	}
7569 
7570 	return 0;
7571 }
7572 
7573 static int bnx2x_init_hw_func(struct bnx2x *bp)
7574 {
7575 	int port = BP_PORT(bp);
7576 	int func = BP_FUNC(bp);
7577 	int init_phase = PHASE_PF0 + func;
7578 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7579 	u16 cdu_ilt_start;
7580 	u32 addr, val;
7581 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7582 	int i, main_mem_width, rc;
7583 
7584 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7585 
7586 	/* FLR cleanup - hmmm */
7587 	if (!CHIP_IS_E1x(bp)) {
7588 		rc = bnx2x_pf_flr_clnup(bp);
7589 		if (rc) {
7590 			bnx2x_fw_dump(bp);
7591 			return rc;
7592 		}
7593 	}
7594 
7595 	/* set MSI reconfigure capability */
7596 	if (bp->common.int_block == INT_BLOCK_HC) {
7597 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7598 		val = REG_RD(bp, addr);
7599 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7600 		REG_WR(bp, addr, val);
7601 	}
7602 
7603 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7604 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7605 
7606 	ilt = BP_ILT(bp);
7607 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7608 
7609 	if (IS_SRIOV(bp))
7610 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7611 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7612 
7613 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7614 	 * those of the VFs, so start line should be reset
7615 	 */
7616 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7617 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7618 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7619 		ilt->lines[cdu_ilt_start + i].page_mapping =
7620 			bp->context[i].cxt_mapping;
7621 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7622 	}
7623 
7624 	bnx2x_ilt_init_op(bp, INITOP_SET);
7625 
7626 	if (!CONFIGURE_NIC_MODE(bp)) {
7627 		bnx2x_init_searcher(bp);
7628 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7629 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7630 	} else {
7631 		/* Set NIC mode */
7632 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7633 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7634 	}
7635 
7636 	if (!CHIP_IS_E1x(bp)) {
7637 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7638 
7639 		/* Turn on a single ISR mode in IGU if driver is going to use
7640 		 * INT#x or MSI
7641 		 */
7642 		if (!(bp->flags & USING_MSIX_FLAG))
7643 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7644 		/*
7645 		 * Timers workaround bug: function init part.
7646 		 * Need to wait 20msec after initializing ILT,
7647 		 * needed to make sure there are no requests in
7648 		 * one of the PXP internal queues with "old" ILT addresses
7649 		 */
7650 		msleep(20);
7651 		/*
7652 		 * Master enable - Due to WB DMAE writes performed before this
7653 		 * register is re-initialized as part of the regular function
7654 		 * init
7655 		 */
7656 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7657 		/* Enable the function in IGU */
7658 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7659 	}
7660 
7661 	bp->dmae_ready = 1;
7662 
7663 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7664 
7665 	if (!CHIP_IS_E1x(bp))
7666 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7667 
7668 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7669 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7670 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7671 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7672 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7673 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7674 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7675 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7676 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7677 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7678 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7679 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7680 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7681 
7682 	if (!CHIP_IS_E1x(bp))
7683 		REG_WR(bp, QM_REG_PF_EN, 1);
7684 
7685 	if (!CHIP_IS_E1x(bp)) {
7686 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7687 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7688 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7689 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7690 	}
7691 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7692 
7693 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7694 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7695 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7696 
7697 	bnx2x_iov_init_dq(bp);
7698 
7699 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7700 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7701 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7702 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7703 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7704 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7705 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7706 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7707 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7708 	if (!CHIP_IS_E1x(bp))
7709 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7710 
7711 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7712 
7713 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7714 
7715 	if (!CHIP_IS_E1x(bp))
7716 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7717 
7718 	if (IS_MF(bp)) {
7719 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7720 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7721 	}
7722 
7723 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7724 
7725 	/* HC init per function */
7726 	if (bp->common.int_block == INT_BLOCK_HC) {
7727 		if (CHIP_IS_E1H(bp)) {
7728 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7729 
7730 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7731 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7732 		}
7733 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7734 
7735 	} else {
7736 		int num_segs, sb_idx, prod_offset;
7737 
7738 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7739 
7740 		if (!CHIP_IS_E1x(bp)) {
7741 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7742 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7743 		}
7744 
7745 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7746 
7747 		if (!CHIP_IS_E1x(bp)) {
7748 			int dsb_idx = 0;
7749 			/**
7750 			 * Producer memory:
7751 			 * E2 mode: address 0-135 match to the mapping memory;
7752 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7753 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7754 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7755 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7756 			 * 144-147 reserved.
7757 			 *
7758 			 * E1.5 mode - In backward compatible mode;
7759 			 * for non default SB; each even line in the memory
7760 			 * holds the U producer and each odd line hold
7761 			 * the C producer. The first 128 producers are for
7762 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7763 			 * producers are for the DSB for each PF.
7764 			 * Each PF has five segments: (the order inside each
7765 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7766 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7767 			 * 144-147 attn prods;
7768 			 */
7769 			/* non-default-status-blocks */
7770 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7771 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7772 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7773 				prod_offset = (bp->igu_base_sb + sb_idx) *
7774 					num_segs;
7775 
7776 				for (i = 0; i < num_segs; i++) {
7777 					addr = IGU_REG_PROD_CONS_MEMORY +
7778 							(prod_offset + i) * 4;
7779 					REG_WR(bp, addr, 0);
7780 				}
7781 				/* send consumer update with value 0 */
7782 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7783 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7784 				bnx2x_igu_clear_sb(bp,
7785 						   bp->igu_base_sb + sb_idx);
7786 			}
7787 
7788 			/* default-status-blocks */
7789 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7790 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7791 
7792 			if (CHIP_MODE_IS_4_PORT(bp))
7793 				dsb_idx = BP_FUNC(bp);
7794 			else
7795 				dsb_idx = BP_VN(bp);
7796 
7797 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7798 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7799 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7800 
7801 			/*
7802 			 * igu prods come in chunks of E1HVN_MAX (4) -
7803 			 * does not matters what is the current chip mode
7804 			 */
7805 			for (i = 0; i < (num_segs * E1HVN_MAX);
7806 			     i += E1HVN_MAX) {
7807 				addr = IGU_REG_PROD_CONS_MEMORY +
7808 							(prod_offset + i)*4;
7809 				REG_WR(bp, addr, 0);
7810 			}
7811 			/* send consumer update with 0 */
7812 			if (CHIP_INT_MODE_IS_BC(bp)) {
7813 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7814 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7815 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7816 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7817 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7818 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7819 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7820 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7821 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7822 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7823 			} else {
7824 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7825 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7826 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7827 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7828 			}
7829 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7830 
7831 			/* !!! These should become driver const once
7832 			   rf-tool supports split-68 const */
7833 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7834 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7835 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7836 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7837 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7838 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7839 		}
7840 	}
7841 
7842 	/* Reset PCIE errors for debug */
7843 	REG_WR(bp, 0x2114, 0xffffffff);
7844 	REG_WR(bp, 0x2120, 0xffffffff);
7845 
7846 	if (CHIP_IS_E1x(bp)) {
7847 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7848 		main_mem_base = HC_REG_MAIN_MEMORY +
7849 				BP_PORT(bp) * (main_mem_size * 4);
7850 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7851 		main_mem_width = 8;
7852 
7853 		val = REG_RD(bp, main_mem_prty_clr);
7854 		if (val)
7855 			DP(NETIF_MSG_HW,
7856 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7857 			   val);
7858 
7859 		/* Clear "false" parity errors in MSI-X table */
7860 		for (i = main_mem_base;
7861 		     i < main_mem_base + main_mem_size * 4;
7862 		     i += main_mem_width) {
7863 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7864 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7865 					 i, main_mem_width / 4);
7866 		}
7867 		/* Clear HC parity attention */
7868 		REG_RD(bp, main_mem_prty_clr);
7869 	}
7870 
7871 #ifdef BNX2X_STOP_ON_ERROR
7872 	/* Enable STORMs SP logging */
7873 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7874 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7875 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7876 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7877 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7878 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7879 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7880 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7881 #endif
7882 
7883 	bnx2x_phy_probe(&bp->link_params);
7884 
7885 	return 0;
7886 }
7887 
7888 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7889 {
7890 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7891 
7892 	if (!CHIP_IS_E1x(bp))
7893 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7894 			       sizeof(struct host_hc_status_block_e2));
7895 	else
7896 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7897 			       sizeof(struct host_hc_status_block_e1x));
7898 
7899 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7900 }
7901 
7902 void bnx2x_free_mem(struct bnx2x *bp)
7903 {
7904 	int i;
7905 
7906 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7907 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7908 
7909 	if (IS_VF(bp))
7910 		return;
7911 
7912 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7913 		       sizeof(struct host_sp_status_block));
7914 
7915 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7916 		       sizeof(struct bnx2x_slowpath));
7917 
7918 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7919 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7920 			       bp->context[i].size);
7921 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7922 
7923 	BNX2X_FREE(bp->ilt->lines);
7924 
7925 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7926 
7927 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7928 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7929 
7930 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7931 
7932 	bnx2x_iov_free_mem(bp);
7933 }
7934 
7935 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7936 {
7937 	if (!CHIP_IS_E1x(bp))
7938 		/* size = the status block + ramrod buffers */
7939 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7940 				sizeof(struct host_hc_status_block_e2));
7941 	else
7942 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7943 				&bp->cnic_sb_mapping,
7944 				sizeof(struct
7945 				       host_hc_status_block_e1x));
7946 
7947 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7948 		/* allocate searcher T2 table, as it wasn't allocated before */
7949 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7950 
7951 	/* write address to which L5 should insert its values */
7952 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7953 		&bp->slowpath->drv_info_to_mcp;
7954 
7955 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7956 		goto alloc_mem_err;
7957 
7958 	return 0;
7959 
7960 alloc_mem_err:
7961 	bnx2x_free_mem_cnic(bp);
7962 	BNX2X_ERR("Can't allocate memory\n");
7963 	return -ENOMEM;
7964 }
7965 
7966 int bnx2x_alloc_mem(struct bnx2x *bp)
7967 {
7968 	int i, allocated, context_size;
7969 
7970 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7971 		/* allocate searcher T2 table */
7972 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7973 
7974 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7975 			sizeof(struct host_sp_status_block));
7976 
7977 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7978 			sizeof(struct bnx2x_slowpath));
7979 
7980 	/* Allocate memory for CDU context:
7981 	 * This memory is allocated separately and not in the generic ILT
7982 	 * functions because CDU differs in few aspects:
7983 	 * 1. There are multiple entities allocating memory for context -
7984 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7985 	 * its own ILT lines.
7986 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7987 	 * for the other ILT clients), to be efficient we want to support
7988 	 * allocation of sub-page-size in the last entry.
7989 	 * 3. Context pointers are used by the driver to pass to FW / update
7990 	 * the context (for the other ILT clients the pointers are used just to
7991 	 * free the memory during unload).
7992 	 */
7993 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7994 
7995 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7996 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7997 					  (context_size - allocated));
7998 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7999 				&bp->context[i].cxt_mapping,
8000 				bp->context[i].size);
8001 		allocated += bp->context[i].size;
8002 	}
8003 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8004 
8005 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8006 		goto alloc_mem_err;
8007 
8008 	if (bnx2x_iov_alloc_mem(bp))
8009 		goto alloc_mem_err;
8010 
8011 	/* Slow path ring */
8012 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8013 
8014 	/* EQ */
8015 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8016 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
8017 
8018 	return 0;
8019 
8020 alloc_mem_err:
8021 	bnx2x_free_mem(bp);
8022 	BNX2X_ERR("Can't allocate memory\n");
8023 	return -ENOMEM;
8024 }
8025 
8026 /*
8027  * Init service functions
8028  */
8029 
8030 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8031 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8032 		      int mac_type, unsigned long *ramrod_flags)
8033 {
8034 	int rc;
8035 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8036 
8037 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8038 
8039 	/* Fill general parameters */
8040 	ramrod_param.vlan_mac_obj = obj;
8041 	ramrod_param.ramrod_flags = *ramrod_flags;
8042 
8043 	/* Fill a user request section if needed */
8044 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8045 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8046 
8047 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8048 
8049 		/* Set the command: ADD or DEL */
8050 		if (set)
8051 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8052 		else
8053 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8054 	}
8055 
8056 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8057 
8058 	if (rc == -EEXIST) {
8059 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8060 		/* do not treat adding same MAC as error */
8061 		rc = 0;
8062 	} else if (rc < 0)
8063 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8064 
8065 	return rc;
8066 }
8067 
8068 int bnx2x_del_all_macs(struct bnx2x *bp,
8069 		       struct bnx2x_vlan_mac_obj *mac_obj,
8070 		       int mac_type, bool wait_for_comp)
8071 {
8072 	int rc;
8073 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8074 
8075 	/* Wait for completion of requested */
8076 	if (wait_for_comp)
8077 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8078 
8079 	/* Set the mac type of addresses we want to clear */
8080 	__set_bit(mac_type, &vlan_mac_flags);
8081 
8082 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8083 	if (rc < 0)
8084 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8085 
8086 	return rc;
8087 }
8088 
8089 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8090 {
8091 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8092 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8093 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8094 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8095 		return 0;
8096 	}
8097 
8098 	if (IS_PF(bp)) {
8099 		unsigned long ramrod_flags = 0;
8100 
8101 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8102 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8103 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8104 					 &bp->sp_objs->mac_obj, set,
8105 					 BNX2X_ETH_MAC, &ramrod_flags);
8106 	} else { /* vf */
8107 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8108 					     bp->fp->index, true);
8109 	}
8110 }
8111 
8112 int bnx2x_setup_leading(struct bnx2x *bp)
8113 {
8114 	if (IS_PF(bp))
8115 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8116 	else /* VF */
8117 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8118 }
8119 
8120 /**
8121  * bnx2x_set_int_mode - configure interrupt mode
8122  *
8123  * @bp:		driver handle
8124  *
8125  * In case of MSI-X it will also try to enable MSI-X.
8126  */
8127 int bnx2x_set_int_mode(struct bnx2x *bp)
8128 {
8129 	int rc = 0;
8130 
8131 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8132 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8133 		return -EINVAL;
8134 	}
8135 
8136 	switch (int_mode) {
8137 	case BNX2X_INT_MODE_MSIX:
8138 		/* attempt to enable msix */
8139 		rc = bnx2x_enable_msix(bp);
8140 
8141 		/* msix attained */
8142 		if (!rc)
8143 			return 0;
8144 
8145 		/* vfs use only msix */
8146 		if (rc && IS_VF(bp))
8147 			return rc;
8148 
8149 		/* failed to enable multiple MSI-X */
8150 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8151 			       bp->num_queues,
8152 			       1 + bp->num_cnic_queues);
8153 
8154 		/* falling through... */
8155 	case BNX2X_INT_MODE_MSI:
8156 		bnx2x_enable_msi(bp);
8157 
8158 		/* falling through... */
8159 	case BNX2X_INT_MODE_INTX:
8160 		bp->num_ethernet_queues = 1;
8161 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8162 		BNX2X_DEV_INFO("set number of queues to 1\n");
8163 		break;
8164 	default:
8165 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8166 		return -EINVAL;
8167 	}
8168 	return 0;
8169 }
8170 
8171 /* must be called prior to any HW initializations */
8172 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8173 {
8174 	if (IS_SRIOV(bp))
8175 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8176 	return L2_ILT_LINES(bp);
8177 }
8178 
8179 void bnx2x_ilt_set_info(struct bnx2x *bp)
8180 {
8181 	struct ilt_client_info *ilt_client;
8182 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8183 	u16 line = 0;
8184 
8185 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8186 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8187 
8188 	/* CDU */
8189 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8190 	ilt_client->client_num = ILT_CLIENT_CDU;
8191 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8192 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8193 	ilt_client->start = line;
8194 	line += bnx2x_cid_ilt_lines(bp);
8195 
8196 	if (CNIC_SUPPORT(bp))
8197 		line += CNIC_ILT_LINES;
8198 	ilt_client->end = line - 1;
8199 
8200 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8201 	   ilt_client->start,
8202 	   ilt_client->end,
8203 	   ilt_client->page_size,
8204 	   ilt_client->flags,
8205 	   ilog2(ilt_client->page_size >> 12));
8206 
8207 	/* QM */
8208 	if (QM_INIT(bp->qm_cid_count)) {
8209 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8210 		ilt_client->client_num = ILT_CLIENT_QM;
8211 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8212 		ilt_client->flags = 0;
8213 		ilt_client->start = line;
8214 
8215 		/* 4 bytes for each cid */
8216 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8217 							 QM_ILT_PAGE_SZ);
8218 
8219 		ilt_client->end = line - 1;
8220 
8221 		DP(NETIF_MSG_IFUP,
8222 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8223 		   ilt_client->start,
8224 		   ilt_client->end,
8225 		   ilt_client->page_size,
8226 		   ilt_client->flags,
8227 		   ilog2(ilt_client->page_size >> 12));
8228 	}
8229 
8230 	if (CNIC_SUPPORT(bp)) {
8231 		/* SRC */
8232 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8233 		ilt_client->client_num = ILT_CLIENT_SRC;
8234 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8235 		ilt_client->flags = 0;
8236 		ilt_client->start = line;
8237 		line += SRC_ILT_LINES;
8238 		ilt_client->end = line - 1;
8239 
8240 		DP(NETIF_MSG_IFUP,
8241 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8242 		   ilt_client->start,
8243 		   ilt_client->end,
8244 		   ilt_client->page_size,
8245 		   ilt_client->flags,
8246 		   ilog2(ilt_client->page_size >> 12));
8247 
8248 		/* TM */
8249 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8250 		ilt_client->client_num = ILT_CLIENT_TM;
8251 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8252 		ilt_client->flags = 0;
8253 		ilt_client->start = line;
8254 		line += TM_ILT_LINES;
8255 		ilt_client->end = line - 1;
8256 
8257 		DP(NETIF_MSG_IFUP,
8258 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8259 		   ilt_client->start,
8260 		   ilt_client->end,
8261 		   ilt_client->page_size,
8262 		   ilt_client->flags,
8263 		   ilog2(ilt_client->page_size >> 12));
8264 	}
8265 
8266 	BUG_ON(line > ILT_MAX_LINES);
8267 }
8268 
8269 /**
8270  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8271  *
8272  * @bp:			driver handle
8273  * @fp:			pointer to fastpath
8274  * @init_params:	pointer to parameters structure
8275  *
8276  * parameters configured:
8277  *      - HC configuration
8278  *      - Queue's CDU context
8279  */
8280 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8281 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8282 {
8283 	u8 cos;
8284 	int cxt_index, cxt_offset;
8285 
8286 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8287 	if (!IS_FCOE_FP(fp)) {
8288 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8289 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8290 
8291 		/* If HC is supported, enable host coalescing in the transition
8292 		 * to INIT state.
8293 		 */
8294 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8295 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8296 
8297 		/* HC rate */
8298 		init_params->rx.hc_rate = bp->rx_ticks ?
8299 			(1000000 / bp->rx_ticks) : 0;
8300 		init_params->tx.hc_rate = bp->tx_ticks ?
8301 			(1000000 / bp->tx_ticks) : 0;
8302 
8303 		/* FW SB ID */
8304 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8305 			fp->fw_sb_id;
8306 
8307 		/*
8308 		 * CQ index among the SB indices: FCoE clients uses the default
8309 		 * SB, therefore it's different.
8310 		 */
8311 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8312 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8313 	}
8314 
8315 	/* set maximum number of COSs supported by this queue */
8316 	init_params->max_cos = fp->max_cos;
8317 
8318 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8319 	    fp->index, init_params->max_cos);
8320 
8321 	/* set the context pointers queue object */
8322 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8323 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8324 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8325 				ILT_PAGE_CIDS);
8326 		init_params->cxts[cos] =
8327 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8328 	}
8329 }
8330 
8331 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8332 			struct bnx2x_queue_state_params *q_params,
8333 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8334 			int tx_index, bool leading)
8335 {
8336 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8337 
8338 	/* Set the command */
8339 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8340 
8341 	/* Set tx-only QUEUE flags: don't zero statistics */
8342 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8343 
8344 	/* choose the index of the cid to send the slow path on */
8345 	tx_only_params->cid_index = tx_index;
8346 
8347 	/* Set general TX_ONLY_SETUP parameters */
8348 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8349 
8350 	/* Set Tx TX_ONLY_SETUP parameters */
8351 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8352 
8353 	DP(NETIF_MSG_IFUP,
8354 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8355 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8356 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8357 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8358 
8359 	/* send the ramrod */
8360 	return bnx2x_queue_state_change(bp, q_params);
8361 }
8362 
8363 /**
8364  * bnx2x_setup_queue - setup queue
8365  *
8366  * @bp:		driver handle
8367  * @fp:		pointer to fastpath
8368  * @leading:	is leading
8369  *
8370  * This function performs 2 steps in a Queue state machine
8371  *      actually: 1) RESET->INIT 2) INIT->SETUP
8372  */
8373 
8374 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8375 		       bool leading)
8376 {
8377 	struct bnx2x_queue_state_params q_params = {NULL};
8378 	struct bnx2x_queue_setup_params *setup_params =
8379 						&q_params.params.setup;
8380 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8381 						&q_params.params.tx_only;
8382 	int rc;
8383 	u8 tx_index;
8384 
8385 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8386 
8387 	/* reset IGU state skip FCoE L2 queue */
8388 	if (!IS_FCOE_FP(fp))
8389 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8390 			     IGU_INT_ENABLE, 0);
8391 
8392 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8393 	/* We want to wait for completion in this context */
8394 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8395 
8396 	/* Prepare the INIT parameters */
8397 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8398 
8399 	/* Set the command */
8400 	q_params.cmd = BNX2X_Q_CMD_INIT;
8401 
8402 	/* Change the state to INIT */
8403 	rc = bnx2x_queue_state_change(bp, &q_params);
8404 	if (rc) {
8405 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8406 		return rc;
8407 	}
8408 
8409 	DP(NETIF_MSG_IFUP, "init complete\n");
8410 
8411 	/* Now move the Queue to the SETUP state... */
8412 	memset(setup_params, 0, sizeof(*setup_params));
8413 
8414 	/* Set QUEUE flags */
8415 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8416 
8417 	/* Set general SETUP parameters */
8418 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8419 				FIRST_TX_COS_INDEX);
8420 
8421 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8422 			    &setup_params->rxq_params);
8423 
8424 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8425 			   FIRST_TX_COS_INDEX);
8426 
8427 	/* Set the command */
8428 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8429 
8430 	if (IS_FCOE_FP(fp))
8431 		bp->fcoe_init = true;
8432 
8433 	/* Change the state to SETUP */
8434 	rc = bnx2x_queue_state_change(bp, &q_params);
8435 	if (rc) {
8436 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8437 		return rc;
8438 	}
8439 
8440 	/* loop through the relevant tx-only indices */
8441 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8442 	      tx_index < fp->max_cos;
8443 	      tx_index++) {
8444 
8445 		/* prepare and send tx-only ramrod*/
8446 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8447 					  tx_only_params, tx_index, leading);
8448 		if (rc) {
8449 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8450 				  fp->index, tx_index);
8451 			return rc;
8452 		}
8453 	}
8454 
8455 	return rc;
8456 }
8457 
8458 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8459 {
8460 	struct bnx2x_fastpath *fp = &bp->fp[index];
8461 	struct bnx2x_fp_txdata *txdata;
8462 	struct bnx2x_queue_state_params q_params = {NULL};
8463 	int rc, tx_index;
8464 
8465 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8466 
8467 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8468 	/* We want to wait for completion in this context */
8469 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8470 
8471 	/* close tx-only connections */
8472 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8473 	     tx_index < fp->max_cos;
8474 	     tx_index++){
8475 
8476 		/* ascertain this is a normal queue*/
8477 		txdata = fp->txdata_ptr[tx_index];
8478 
8479 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8480 							txdata->txq_index);
8481 
8482 		/* send halt terminate on tx-only connection */
8483 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8484 		memset(&q_params.params.terminate, 0,
8485 		       sizeof(q_params.params.terminate));
8486 		q_params.params.terminate.cid_index = tx_index;
8487 
8488 		rc = bnx2x_queue_state_change(bp, &q_params);
8489 		if (rc)
8490 			return rc;
8491 
8492 		/* send halt terminate on tx-only connection */
8493 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8494 		memset(&q_params.params.cfc_del, 0,
8495 		       sizeof(q_params.params.cfc_del));
8496 		q_params.params.cfc_del.cid_index = tx_index;
8497 		rc = bnx2x_queue_state_change(bp, &q_params);
8498 		if (rc)
8499 			return rc;
8500 	}
8501 	/* Stop the primary connection: */
8502 	/* ...halt the connection */
8503 	q_params.cmd = BNX2X_Q_CMD_HALT;
8504 	rc = bnx2x_queue_state_change(bp, &q_params);
8505 	if (rc)
8506 		return rc;
8507 
8508 	/* ...terminate the connection */
8509 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8510 	memset(&q_params.params.terminate, 0,
8511 	       sizeof(q_params.params.terminate));
8512 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8513 	rc = bnx2x_queue_state_change(bp, &q_params);
8514 	if (rc)
8515 		return rc;
8516 	/* ...delete cfc entry */
8517 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8518 	memset(&q_params.params.cfc_del, 0,
8519 	       sizeof(q_params.params.cfc_del));
8520 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8521 	return bnx2x_queue_state_change(bp, &q_params);
8522 }
8523 
8524 static void bnx2x_reset_func(struct bnx2x *bp)
8525 {
8526 	int port = BP_PORT(bp);
8527 	int func = BP_FUNC(bp);
8528 	int i;
8529 
8530 	/* Disable the function in the FW */
8531 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8532 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8533 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8534 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8535 
8536 	/* FP SBs */
8537 	for_each_eth_queue(bp, i) {
8538 		struct bnx2x_fastpath *fp = &bp->fp[i];
8539 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8540 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8541 			   SB_DISABLED);
8542 	}
8543 
8544 	if (CNIC_LOADED(bp))
8545 		/* CNIC SB */
8546 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8547 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8548 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8549 
8550 	/* SP SB */
8551 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8552 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8553 		SB_DISABLED);
8554 
8555 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8556 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8557 		       0);
8558 
8559 	/* Configure IGU */
8560 	if (bp->common.int_block == INT_BLOCK_HC) {
8561 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8562 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8563 	} else {
8564 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8565 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8566 	}
8567 
8568 	if (CNIC_LOADED(bp)) {
8569 		/* Disable Timer scan */
8570 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8571 		/*
8572 		 * Wait for at least 10ms and up to 2 second for the timers
8573 		 * scan to complete
8574 		 */
8575 		for (i = 0; i < 200; i++) {
8576 			usleep_range(10000, 20000);
8577 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8578 				break;
8579 		}
8580 	}
8581 	/* Clear ILT */
8582 	bnx2x_clear_func_ilt(bp, func);
8583 
8584 	/* Timers workaround bug for E2: if this is vnic-3,
8585 	 * we need to set the entire ilt range for this timers.
8586 	 */
8587 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8588 		struct ilt_client_info ilt_cli;
8589 		/* use dummy TM client */
8590 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8591 		ilt_cli.start = 0;
8592 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8593 		ilt_cli.client_num = ILT_CLIENT_TM;
8594 
8595 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8596 	}
8597 
8598 	/* this assumes that reset_port() called before reset_func()*/
8599 	if (!CHIP_IS_E1x(bp))
8600 		bnx2x_pf_disable(bp);
8601 
8602 	bp->dmae_ready = 0;
8603 }
8604 
8605 static void bnx2x_reset_port(struct bnx2x *bp)
8606 {
8607 	int port = BP_PORT(bp);
8608 	u32 val;
8609 
8610 	/* Reset physical Link */
8611 	bnx2x__link_reset(bp);
8612 
8613 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8614 
8615 	/* Do not rcv packets to BRB */
8616 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8617 	/* Do not direct rcv packets that are not for MCP to the BRB */
8618 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8619 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8620 
8621 	/* Configure AEU */
8622 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8623 
8624 	msleep(100);
8625 	/* Check for BRB port occupancy */
8626 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8627 	if (val)
8628 		DP(NETIF_MSG_IFDOWN,
8629 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8630 
8631 	/* TODO: Close Doorbell port? */
8632 }
8633 
8634 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8635 {
8636 	struct bnx2x_func_state_params func_params = {NULL};
8637 
8638 	/* Prepare parameters for function state transitions */
8639 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8640 
8641 	func_params.f_obj = &bp->func_obj;
8642 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8643 
8644 	func_params.params.hw_init.load_phase = load_code;
8645 
8646 	return bnx2x_func_state_change(bp, &func_params);
8647 }
8648 
8649 static int bnx2x_func_stop(struct bnx2x *bp)
8650 {
8651 	struct bnx2x_func_state_params func_params = {NULL};
8652 	int rc;
8653 
8654 	/* Prepare parameters for function state transitions */
8655 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8656 	func_params.f_obj = &bp->func_obj;
8657 	func_params.cmd = BNX2X_F_CMD_STOP;
8658 
8659 	/*
8660 	 * Try to stop the function the 'good way'. If fails (in case
8661 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8662 	 * not in a debug mode, perform a state transaction in order to
8663 	 * enable further HW_RESET transaction.
8664 	 */
8665 	rc = bnx2x_func_state_change(bp, &func_params);
8666 	if (rc) {
8667 #ifdef BNX2X_STOP_ON_ERROR
8668 		return rc;
8669 #else
8670 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8671 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8672 		return bnx2x_func_state_change(bp, &func_params);
8673 #endif
8674 	}
8675 
8676 	return 0;
8677 }
8678 
8679 /**
8680  * bnx2x_send_unload_req - request unload mode from the MCP.
8681  *
8682  * @bp:			driver handle
8683  * @unload_mode:	requested function's unload mode
8684  *
8685  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8686  */
8687 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8688 {
8689 	u32 reset_code = 0;
8690 	int port = BP_PORT(bp);
8691 
8692 	/* Select the UNLOAD request mode */
8693 	if (unload_mode == UNLOAD_NORMAL)
8694 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8695 
8696 	else if (bp->flags & NO_WOL_FLAG)
8697 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8698 
8699 	else if (bp->wol) {
8700 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8701 		u8 *mac_addr = bp->dev->dev_addr;
8702 		struct pci_dev *pdev = bp->pdev;
8703 		u32 val;
8704 		u16 pmc;
8705 
8706 		/* The mac address is written to entries 1-4 to
8707 		 * preserve entry 0 which is used by the PMF
8708 		 */
8709 		u8 entry = (BP_VN(bp) + 1)*8;
8710 
8711 		val = (mac_addr[0] << 8) | mac_addr[1];
8712 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8713 
8714 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8715 		      (mac_addr[4] << 8) | mac_addr[5];
8716 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8717 
8718 		/* Enable the PME and clear the status */
8719 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8720 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8721 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8722 
8723 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8724 
8725 	} else
8726 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8727 
8728 	/* Send the request to the MCP */
8729 	if (!BP_NOMCP(bp))
8730 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8731 	else {
8732 		int path = BP_PATH(bp);
8733 
8734 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8735 		   path, load_count[path][0], load_count[path][1],
8736 		   load_count[path][2]);
8737 		load_count[path][0]--;
8738 		load_count[path][1 + port]--;
8739 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8740 		   path, load_count[path][0], load_count[path][1],
8741 		   load_count[path][2]);
8742 		if (load_count[path][0] == 0)
8743 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8744 		else if (load_count[path][1 + port] == 0)
8745 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8746 		else
8747 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8748 	}
8749 
8750 	return reset_code;
8751 }
8752 
8753 /**
8754  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8755  *
8756  * @bp:		driver handle
8757  * @keep_link:		true iff link should be kept up
8758  */
8759 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8760 {
8761 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8762 
8763 	/* Report UNLOAD_DONE to MCP */
8764 	if (!BP_NOMCP(bp))
8765 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8766 }
8767 
8768 static int bnx2x_func_wait_started(struct bnx2x *bp)
8769 {
8770 	int tout = 50;
8771 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8772 
8773 	if (!bp->port.pmf)
8774 		return 0;
8775 
8776 	/*
8777 	 * (assumption: No Attention from MCP at this stage)
8778 	 * PMF probably in the middle of TX disable/enable transaction
8779 	 * 1. Sync IRS for default SB
8780 	 * 2. Sync SP queue - this guarantees us that attention handling started
8781 	 * 3. Wait, that TX disable/enable transaction completes
8782 	 *
8783 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8784 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8785 	 * received completion for the transaction the state is TX_STOPPED.
8786 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8787 	 * transaction.
8788 	 */
8789 
8790 	/* make sure default SB ISR is done */
8791 	if (msix)
8792 		synchronize_irq(bp->msix_table[0].vector);
8793 	else
8794 		synchronize_irq(bp->pdev->irq);
8795 
8796 	flush_workqueue(bnx2x_wq);
8797 
8798 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8799 				BNX2X_F_STATE_STARTED && tout--)
8800 		msleep(20);
8801 
8802 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8803 						BNX2X_F_STATE_STARTED) {
8804 #ifdef BNX2X_STOP_ON_ERROR
8805 		BNX2X_ERR("Wrong function state\n");
8806 		return -EBUSY;
8807 #else
8808 		/*
8809 		 * Failed to complete the transaction in a "good way"
8810 		 * Force both transactions with CLR bit
8811 		 */
8812 		struct bnx2x_func_state_params func_params = {NULL};
8813 
8814 		DP(NETIF_MSG_IFDOWN,
8815 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8816 
8817 		func_params.f_obj = &bp->func_obj;
8818 		__set_bit(RAMROD_DRV_CLR_ONLY,
8819 					&func_params.ramrod_flags);
8820 
8821 		/* STARTED-->TX_ST0PPED */
8822 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8823 		bnx2x_func_state_change(bp, &func_params);
8824 
8825 		/* TX_ST0PPED-->STARTED */
8826 		func_params.cmd = BNX2X_F_CMD_TX_START;
8827 		return bnx2x_func_state_change(bp, &func_params);
8828 #endif
8829 	}
8830 
8831 	return 0;
8832 }
8833 
8834 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8835 {
8836 	int port = BP_PORT(bp);
8837 	int i, rc = 0;
8838 	u8 cos;
8839 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8840 	u32 reset_code;
8841 
8842 	/* Wait until tx fastpath tasks complete */
8843 	for_each_tx_queue(bp, i) {
8844 		struct bnx2x_fastpath *fp = &bp->fp[i];
8845 
8846 		for_each_cos_in_tx_queue(fp, cos)
8847 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8848 #ifdef BNX2X_STOP_ON_ERROR
8849 		if (rc)
8850 			return;
8851 #endif
8852 	}
8853 
8854 	/* Give HW time to discard old tx messages */
8855 	usleep_range(1000, 2000);
8856 
8857 	/* Clean all ETH MACs */
8858 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8859 				false);
8860 	if (rc < 0)
8861 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8862 
8863 	/* Clean up UC list  */
8864 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8865 				true);
8866 	if (rc < 0)
8867 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8868 			  rc);
8869 
8870 	/* Disable LLH */
8871 	if (!CHIP_IS_E1(bp))
8872 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8873 
8874 	/* Set "drop all" (stop Rx).
8875 	 * We need to take a netif_addr_lock() here in order to prevent
8876 	 * a race between the completion code and this code.
8877 	 */
8878 	netif_addr_lock_bh(bp->dev);
8879 	/* Schedule the rx_mode command */
8880 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8881 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8882 	else
8883 		bnx2x_set_storm_rx_mode(bp);
8884 
8885 	/* Cleanup multicast configuration */
8886 	rparam.mcast_obj = &bp->mcast_obj;
8887 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8888 	if (rc < 0)
8889 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8890 
8891 	netif_addr_unlock_bh(bp->dev);
8892 
8893 	bnx2x_iov_chip_cleanup(bp);
8894 
8895 	/*
8896 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8897 	 * this function should perform FUNC, PORT or COMMON HW
8898 	 * reset.
8899 	 */
8900 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8901 
8902 	/*
8903 	 * (assumption: No Attention from MCP at this stage)
8904 	 * PMF probably in the middle of TX disable/enable transaction
8905 	 */
8906 	rc = bnx2x_func_wait_started(bp);
8907 	if (rc) {
8908 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8909 #ifdef BNX2X_STOP_ON_ERROR
8910 		return;
8911 #endif
8912 	}
8913 
8914 	/* Close multi and leading connections
8915 	 * Completions for ramrods are collected in a synchronous way
8916 	 */
8917 	for_each_eth_queue(bp, i)
8918 		if (bnx2x_stop_queue(bp, i))
8919 #ifdef BNX2X_STOP_ON_ERROR
8920 			return;
8921 #else
8922 			goto unload_error;
8923 #endif
8924 
8925 	if (CNIC_LOADED(bp)) {
8926 		for_each_cnic_queue(bp, i)
8927 			if (bnx2x_stop_queue(bp, i))
8928 #ifdef BNX2X_STOP_ON_ERROR
8929 				return;
8930 #else
8931 				goto unload_error;
8932 #endif
8933 	}
8934 
8935 	/* If SP settings didn't get completed so far - something
8936 	 * very wrong has happen.
8937 	 */
8938 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8939 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8940 
8941 #ifndef BNX2X_STOP_ON_ERROR
8942 unload_error:
8943 #endif
8944 	rc = bnx2x_func_stop(bp);
8945 	if (rc) {
8946 		BNX2X_ERR("Function stop failed!\n");
8947 #ifdef BNX2X_STOP_ON_ERROR
8948 		return;
8949 #endif
8950 	}
8951 
8952 	/* Disable HW interrupts, NAPI */
8953 	bnx2x_netif_stop(bp, 1);
8954 	/* Delete all NAPI objects */
8955 	bnx2x_del_all_napi(bp);
8956 	if (CNIC_LOADED(bp))
8957 		bnx2x_del_all_napi_cnic(bp);
8958 
8959 	/* Release IRQs */
8960 	bnx2x_free_irq(bp);
8961 
8962 	/* Reset the chip */
8963 	rc = bnx2x_reset_hw(bp, reset_code);
8964 	if (rc)
8965 		BNX2X_ERR("HW_RESET failed\n");
8966 
8967 	/* Report UNLOAD_DONE to MCP */
8968 	bnx2x_send_unload_done(bp, keep_link);
8969 }
8970 
8971 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8972 {
8973 	u32 val;
8974 
8975 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8976 
8977 	if (CHIP_IS_E1(bp)) {
8978 		int port = BP_PORT(bp);
8979 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8980 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8981 
8982 		val = REG_RD(bp, addr);
8983 		val &= ~(0x300);
8984 		REG_WR(bp, addr, val);
8985 	} else {
8986 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8987 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8988 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8989 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8990 	}
8991 }
8992 
8993 /* Close gates #2, #3 and #4: */
8994 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8995 {
8996 	u32 val;
8997 
8998 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8999 	if (!CHIP_IS_E1(bp)) {
9000 		/* #4 */
9001 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9002 		/* #2 */
9003 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9004 	}
9005 
9006 	/* #3 */
9007 	if (CHIP_IS_E1x(bp)) {
9008 		/* Prevent interrupts from HC on both ports */
9009 		val = REG_RD(bp, HC_REG_CONFIG_1);
9010 		REG_WR(bp, HC_REG_CONFIG_1,
9011 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9012 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9013 
9014 		val = REG_RD(bp, HC_REG_CONFIG_0);
9015 		REG_WR(bp, HC_REG_CONFIG_0,
9016 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9017 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9018 	} else {
9019 		/* Prevent incoming interrupts in IGU */
9020 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9021 
9022 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9023 		       (!close) ?
9024 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9025 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9026 	}
9027 
9028 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9029 		close ? "closing" : "opening");
9030 	mmiowb();
9031 }
9032 
9033 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9034 
9035 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9036 {
9037 	/* Do some magic... */
9038 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9039 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9040 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9041 }
9042 
9043 /**
9044  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9045  *
9046  * @bp:		driver handle
9047  * @magic_val:	old value of the `magic' bit.
9048  */
9049 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9050 {
9051 	/* Restore the `magic' bit value... */
9052 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9053 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9054 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9055 }
9056 
9057 /**
9058  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9059  *
9060  * @bp:		driver handle
9061  * @magic_val:	old value of 'magic' bit.
9062  *
9063  * Takes care of CLP configurations.
9064  */
9065 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9066 {
9067 	u32 shmem;
9068 	u32 validity_offset;
9069 
9070 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9071 
9072 	/* Set `magic' bit in order to save MF config */
9073 	if (!CHIP_IS_E1(bp))
9074 		bnx2x_clp_reset_prep(bp, magic_val);
9075 
9076 	/* Get shmem offset */
9077 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9078 	validity_offset =
9079 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9080 
9081 	/* Clear validity map flags */
9082 	if (shmem > 0)
9083 		REG_WR(bp, shmem + validity_offset, 0);
9084 }
9085 
9086 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9087 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9088 
9089 /**
9090  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9091  *
9092  * @bp:	driver handle
9093  */
9094 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9095 {
9096 	/* special handling for emulation and FPGA,
9097 	   wait 10 times longer */
9098 	if (CHIP_REV_IS_SLOW(bp))
9099 		msleep(MCP_ONE_TIMEOUT*10);
9100 	else
9101 		msleep(MCP_ONE_TIMEOUT);
9102 }
9103 
9104 /*
9105  * initializes bp->common.shmem_base and waits for validity signature to appear
9106  */
9107 static int bnx2x_init_shmem(struct bnx2x *bp)
9108 {
9109 	int cnt = 0;
9110 	u32 val = 0;
9111 
9112 	do {
9113 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9114 		if (bp->common.shmem_base) {
9115 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9116 			if (val & SHR_MEM_VALIDITY_MB)
9117 				return 0;
9118 		}
9119 
9120 		bnx2x_mcp_wait_one(bp);
9121 
9122 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9123 
9124 	BNX2X_ERR("BAD MCP validity signature\n");
9125 
9126 	return -ENODEV;
9127 }
9128 
9129 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9130 {
9131 	int rc = bnx2x_init_shmem(bp);
9132 
9133 	/* Restore the `magic' bit value */
9134 	if (!CHIP_IS_E1(bp))
9135 		bnx2x_clp_reset_done(bp, magic_val);
9136 
9137 	return rc;
9138 }
9139 
9140 static void bnx2x_pxp_prep(struct bnx2x *bp)
9141 {
9142 	if (!CHIP_IS_E1(bp)) {
9143 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9144 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9145 		mmiowb();
9146 	}
9147 }
9148 
9149 /*
9150  * Reset the whole chip except for:
9151  *      - PCIE core
9152  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9153  *              one reset bit)
9154  *      - IGU
9155  *      - MISC (including AEU)
9156  *      - GRC
9157  *      - RBCN, RBCP
9158  */
9159 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9160 {
9161 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9162 	u32 global_bits2, stay_reset2;
9163 
9164 	/*
9165 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9166 	 * (per chip) blocks.
9167 	 */
9168 	global_bits2 =
9169 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9170 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9171 
9172 	/* Don't reset the following blocks.
9173 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9174 	 *            reset, as in 4 port device they might still be owned
9175 	 *            by the MCP (there is only one leader per path).
9176 	 */
9177 	not_reset_mask1 =
9178 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9179 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9180 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9181 
9182 	not_reset_mask2 =
9183 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9184 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9185 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9186 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9187 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9188 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9189 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9190 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9191 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9192 		MISC_REGISTERS_RESET_REG_2_PGLC |
9193 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9194 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9195 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9196 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9197 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9198 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9199 
9200 	/*
9201 	 * Keep the following blocks in reset:
9202 	 *  - all xxMACs are handled by the bnx2x_link code.
9203 	 */
9204 	stay_reset2 =
9205 		MISC_REGISTERS_RESET_REG_2_XMAC |
9206 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9207 
9208 	/* Full reset masks according to the chip */
9209 	reset_mask1 = 0xffffffff;
9210 
9211 	if (CHIP_IS_E1(bp))
9212 		reset_mask2 = 0xffff;
9213 	else if (CHIP_IS_E1H(bp))
9214 		reset_mask2 = 0x1ffff;
9215 	else if (CHIP_IS_E2(bp))
9216 		reset_mask2 = 0xfffff;
9217 	else /* CHIP_IS_E3 */
9218 		reset_mask2 = 0x3ffffff;
9219 
9220 	/* Don't reset global blocks unless we need to */
9221 	if (!global)
9222 		reset_mask2 &= ~global_bits2;
9223 
9224 	/*
9225 	 * In case of attention in the QM, we need to reset PXP
9226 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9227 	 * because otherwise QM reset would release 'close the gates' shortly
9228 	 * before resetting the PXP, then the PSWRQ would send a write
9229 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9230 	 * read the payload data from PSWWR, but PSWWR would not
9231 	 * respond. The write queue in PGLUE would stuck, dmae commands
9232 	 * would not return. Therefore it's important to reset the second
9233 	 * reset register (containing the
9234 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9235 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9236 	 * bit).
9237 	 */
9238 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9239 	       reset_mask2 & (~not_reset_mask2));
9240 
9241 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9242 	       reset_mask1 & (~not_reset_mask1));
9243 
9244 	barrier();
9245 	mmiowb();
9246 
9247 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9248 	       reset_mask2 & (~stay_reset2));
9249 
9250 	barrier();
9251 	mmiowb();
9252 
9253 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9254 	mmiowb();
9255 }
9256 
9257 /**
9258  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9259  * It should get cleared in no more than 1s.
9260  *
9261  * @bp:	driver handle
9262  *
9263  * It should get cleared in no more than 1s. Returns 0 if
9264  * pending writes bit gets cleared.
9265  */
9266 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9267 {
9268 	u32 cnt = 1000;
9269 	u32 pend_bits = 0;
9270 
9271 	do {
9272 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9273 
9274 		if (pend_bits == 0)
9275 			break;
9276 
9277 		usleep_range(1000, 2000);
9278 	} while (cnt-- > 0);
9279 
9280 	if (cnt <= 0) {
9281 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9282 			  pend_bits);
9283 		return -EBUSY;
9284 	}
9285 
9286 	return 0;
9287 }
9288 
9289 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9290 {
9291 	int cnt = 1000;
9292 	u32 val = 0;
9293 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9294 	u32 tags_63_32 = 0;
9295 
9296 	/* Empty the Tetris buffer, wait for 1s */
9297 	do {
9298 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9299 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9300 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9301 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9302 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9303 		if (CHIP_IS_E3(bp))
9304 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9305 
9306 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9307 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9308 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9309 		    (pgl_exp_rom2 == 0xffffffff) &&
9310 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9311 			break;
9312 		usleep_range(1000, 2000);
9313 	} while (cnt-- > 0);
9314 
9315 	if (cnt <= 0) {
9316 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9317 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9318 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9319 			  pgl_exp_rom2);
9320 		return -EAGAIN;
9321 	}
9322 
9323 	barrier();
9324 
9325 	/* Close gates #2, #3 and #4 */
9326 	bnx2x_set_234_gates(bp, true);
9327 
9328 	/* Poll for IGU VQs for 57712 and newer chips */
9329 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9330 		return -EAGAIN;
9331 
9332 	/* TBD: Indicate that "process kill" is in progress to MCP */
9333 
9334 	/* Clear "unprepared" bit */
9335 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9336 	barrier();
9337 
9338 	/* Make sure all is written to the chip before the reset */
9339 	mmiowb();
9340 
9341 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9342 	 * PSWHST, GRC and PSWRD Tetris buffer.
9343 	 */
9344 	usleep_range(1000, 2000);
9345 
9346 	/* Prepare to chip reset: */
9347 	/* MCP */
9348 	if (global)
9349 		bnx2x_reset_mcp_prep(bp, &val);
9350 
9351 	/* PXP */
9352 	bnx2x_pxp_prep(bp);
9353 	barrier();
9354 
9355 	/* reset the chip */
9356 	bnx2x_process_kill_chip_reset(bp, global);
9357 	barrier();
9358 
9359 	/* clear errors in PGB */
9360 	if (!CHIP_IS_E1x(bp))
9361 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9362 
9363 	/* Recover after reset: */
9364 	/* MCP */
9365 	if (global && bnx2x_reset_mcp_comp(bp, val))
9366 		return -EAGAIN;
9367 
9368 	/* TBD: Add resetting the NO_MCP mode DB here */
9369 
9370 	/* Open the gates #2, #3 and #4 */
9371 	bnx2x_set_234_gates(bp, false);
9372 
9373 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9374 	 * reset state, re-enable attentions. */
9375 
9376 	return 0;
9377 }
9378 
9379 static int bnx2x_leader_reset(struct bnx2x *bp)
9380 {
9381 	int rc = 0;
9382 	bool global = bnx2x_reset_is_global(bp);
9383 	u32 load_code;
9384 
9385 	/* if not going to reset MCP - load "fake" driver to reset HW while
9386 	 * driver is owner of the HW
9387 	 */
9388 	if (!global && !BP_NOMCP(bp)) {
9389 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9390 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9391 		if (!load_code) {
9392 			BNX2X_ERR("MCP response failure, aborting\n");
9393 			rc = -EAGAIN;
9394 			goto exit_leader_reset;
9395 		}
9396 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9397 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9398 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9399 			rc = -EAGAIN;
9400 			goto exit_leader_reset2;
9401 		}
9402 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9403 		if (!load_code) {
9404 			BNX2X_ERR("MCP response failure, aborting\n");
9405 			rc = -EAGAIN;
9406 			goto exit_leader_reset2;
9407 		}
9408 	}
9409 
9410 	/* Try to recover after the failure */
9411 	if (bnx2x_process_kill(bp, global)) {
9412 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9413 			  BP_PATH(bp));
9414 		rc = -EAGAIN;
9415 		goto exit_leader_reset2;
9416 	}
9417 
9418 	/*
9419 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9420 	 * state.
9421 	 */
9422 	bnx2x_set_reset_done(bp);
9423 	if (global)
9424 		bnx2x_clear_reset_global(bp);
9425 
9426 exit_leader_reset2:
9427 	/* unload "fake driver" if it was loaded */
9428 	if (!global && !BP_NOMCP(bp)) {
9429 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9430 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9431 	}
9432 exit_leader_reset:
9433 	bp->is_leader = 0;
9434 	bnx2x_release_leader_lock(bp);
9435 	smp_mb();
9436 	return rc;
9437 }
9438 
9439 static void bnx2x_recovery_failed(struct bnx2x *bp)
9440 {
9441 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9442 
9443 	/* Disconnect this device */
9444 	netif_device_detach(bp->dev);
9445 
9446 	/*
9447 	 * Block ifup for all function on this engine until "process kill"
9448 	 * or power cycle.
9449 	 */
9450 	bnx2x_set_reset_in_progress(bp);
9451 
9452 	/* Shut down the power */
9453 	bnx2x_set_power_state(bp, PCI_D3hot);
9454 
9455 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9456 
9457 	smp_mb();
9458 }
9459 
9460 /*
9461  * Assumption: runs under rtnl lock. This together with the fact
9462  * that it's called only from bnx2x_sp_rtnl() ensure that it
9463  * will never be called when netif_running(bp->dev) is false.
9464  */
9465 static void bnx2x_parity_recover(struct bnx2x *bp)
9466 {
9467 	bool global = false;
9468 	u32 error_recovered, error_unrecovered;
9469 	bool is_parity;
9470 
9471 	DP(NETIF_MSG_HW, "Handling parity\n");
9472 	while (1) {
9473 		switch (bp->recovery_state) {
9474 		case BNX2X_RECOVERY_INIT:
9475 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9476 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9477 			WARN_ON(!is_parity);
9478 
9479 			/* Try to get a LEADER_LOCK HW lock */
9480 			if (bnx2x_trylock_leader_lock(bp)) {
9481 				bnx2x_set_reset_in_progress(bp);
9482 				/*
9483 				 * Check if there is a global attention and if
9484 				 * there was a global attention, set the global
9485 				 * reset bit.
9486 				 */
9487 
9488 				if (global)
9489 					bnx2x_set_reset_global(bp);
9490 
9491 				bp->is_leader = 1;
9492 			}
9493 
9494 			/* Stop the driver */
9495 			/* If interface has been removed - break */
9496 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9497 				return;
9498 
9499 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9500 
9501 			/* Ensure "is_leader", MCP command sequence and
9502 			 * "recovery_state" update values are seen on other
9503 			 * CPUs.
9504 			 */
9505 			smp_mb();
9506 			break;
9507 
9508 		case BNX2X_RECOVERY_WAIT:
9509 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9510 			if (bp->is_leader) {
9511 				int other_engine = BP_PATH(bp) ? 0 : 1;
9512 				bool other_load_status =
9513 					bnx2x_get_load_status(bp, other_engine);
9514 				bool load_status =
9515 					bnx2x_get_load_status(bp, BP_PATH(bp));
9516 				global = bnx2x_reset_is_global(bp);
9517 
9518 				/*
9519 				 * In case of a parity in a global block, let
9520 				 * the first leader that performs a
9521 				 * leader_reset() reset the global blocks in
9522 				 * order to clear global attentions. Otherwise
9523 				 * the gates will remain closed for that
9524 				 * engine.
9525 				 */
9526 				if (load_status ||
9527 				    (global && other_load_status)) {
9528 					/* Wait until all other functions get
9529 					 * down.
9530 					 */
9531 					schedule_delayed_work(&bp->sp_rtnl_task,
9532 								HZ/10);
9533 					return;
9534 				} else {
9535 					/* If all other functions got down -
9536 					 * try to bring the chip back to
9537 					 * normal. In any case it's an exit
9538 					 * point for a leader.
9539 					 */
9540 					if (bnx2x_leader_reset(bp)) {
9541 						bnx2x_recovery_failed(bp);
9542 						return;
9543 					}
9544 
9545 					/* If we are here, means that the
9546 					 * leader has succeeded and doesn't
9547 					 * want to be a leader any more. Try
9548 					 * to continue as a none-leader.
9549 					 */
9550 					break;
9551 				}
9552 			} else { /* non-leader */
9553 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9554 					/* Try to get a LEADER_LOCK HW lock as
9555 					 * long as a former leader may have
9556 					 * been unloaded by the user or
9557 					 * released a leadership by another
9558 					 * reason.
9559 					 */
9560 					if (bnx2x_trylock_leader_lock(bp)) {
9561 						/* I'm a leader now! Restart a
9562 						 * switch case.
9563 						 */
9564 						bp->is_leader = 1;
9565 						break;
9566 					}
9567 
9568 					schedule_delayed_work(&bp->sp_rtnl_task,
9569 								HZ/10);
9570 					return;
9571 
9572 				} else {
9573 					/*
9574 					 * If there was a global attention, wait
9575 					 * for it to be cleared.
9576 					 */
9577 					if (bnx2x_reset_is_global(bp)) {
9578 						schedule_delayed_work(
9579 							&bp->sp_rtnl_task,
9580 							HZ/10);
9581 						return;
9582 					}
9583 
9584 					error_recovered =
9585 					  bp->eth_stats.recoverable_error;
9586 					error_unrecovered =
9587 					  bp->eth_stats.unrecoverable_error;
9588 					bp->recovery_state =
9589 						BNX2X_RECOVERY_NIC_LOADING;
9590 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9591 						error_unrecovered++;
9592 						netdev_err(bp->dev,
9593 							   "Recovery failed. Power cycle needed\n");
9594 						/* Disconnect this device */
9595 						netif_device_detach(bp->dev);
9596 						/* Shut down the power */
9597 						bnx2x_set_power_state(
9598 							bp, PCI_D3hot);
9599 						smp_mb();
9600 					} else {
9601 						bp->recovery_state =
9602 							BNX2X_RECOVERY_DONE;
9603 						error_recovered++;
9604 						smp_mb();
9605 					}
9606 					bp->eth_stats.recoverable_error =
9607 						error_recovered;
9608 					bp->eth_stats.unrecoverable_error =
9609 						error_unrecovered;
9610 
9611 					return;
9612 				}
9613 			}
9614 		default:
9615 			return;
9616 		}
9617 	}
9618 }
9619 
9620 static int bnx2x_close(struct net_device *dev);
9621 
9622 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9623  * scheduled on a general queue in order to prevent a dead lock.
9624  */
9625 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9626 {
9627 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9628 
9629 	rtnl_lock();
9630 
9631 	if (!netif_running(bp->dev)) {
9632 		rtnl_unlock();
9633 		return;
9634 	}
9635 
9636 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9637 #ifdef BNX2X_STOP_ON_ERROR
9638 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9639 			  "you will need to reboot when done\n");
9640 		goto sp_rtnl_not_reset;
9641 #endif
9642 		/*
9643 		 * Clear all pending SP commands as we are going to reset the
9644 		 * function anyway.
9645 		 */
9646 		bp->sp_rtnl_state = 0;
9647 		smp_mb();
9648 
9649 		bnx2x_parity_recover(bp);
9650 
9651 		rtnl_unlock();
9652 		return;
9653 	}
9654 
9655 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9656 #ifdef BNX2X_STOP_ON_ERROR
9657 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9658 			  "you will need to reboot when done\n");
9659 		goto sp_rtnl_not_reset;
9660 #endif
9661 
9662 		/*
9663 		 * Clear all pending SP commands as we are going to reset the
9664 		 * function anyway.
9665 		 */
9666 		bp->sp_rtnl_state = 0;
9667 		smp_mb();
9668 
9669 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9670 		bnx2x_nic_load(bp, LOAD_NORMAL);
9671 
9672 		rtnl_unlock();
9673 		return;
9674 	}
9675 #ifdef BNX2X_STOP_ON_ERROR
9676 sp_rtnl_not_reset:
9677 #endif
9678 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9679 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9680 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9681 		bnx2x_after_function_update(bp);
9682 	/*
9683 	 * in case of fan failure we need to reset id if the "stop on error"
9684 	 * debug flag is set, since we trying to prevent permanent overheating
9685 	 * damage
9686 	 */
9687 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9688 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9689 		netif_device_detach(bp->dev);
9690 		bnx2x_close(bp->dev);
9691 		rtnl_unlock();
9692 		return;
9693 	}
9694 
9695 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9696 		DP(BNX2X_MSG_SP,
9697 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9698 		bnx2x_vfpf_set_mcast(bp->dev);
9699 	}
9700 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9701 			       &bp->sp_rtnl_state)){
9702 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9703 			bnx2x_tx_disable(bp);
9704 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9705 		}
9706 	}
9707 
9708 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9709 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9710 		bnx2x_set_rx_mode_inner(bp);
9711 	}
9712 
9713 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9714 			       &bp->sp_rtnl_state))
9715 		bnx2x_pf_set_vfs_vlan(bp);
9716 
9717 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9718 		bnx2x_dcbx_stop_hw_tx(bp);
9719 		bnx2x_dcbx_resume_hw_tx(bp);
9720 	}
9721 
9722 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9723 	 * can be called from other contexts as well)
9724 	 */
9725 	rtnl_unlock();
9726 
9727 	/* enable SR-IOV if applicable */
9728 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9729 					       &bp->sp_rtnl_state)) {
9730 		bnx2x_disable_sriov(bp);
9731 		bnx2x_enable_sriov(bp);
9732 	}
9733 }
9734 
9735 static void bnx2x_period_task(struct work_struct *work)
9736 {
9737 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9738 
9739 	if (!netif_running(bp->dev))
9740 		goto period_task_exit;
9741 
9742 	if (CHIP_REV_IS_SLOW(bp)) {
9743 		BNX2X_ERR("period task called on emulation, ignoring\n");
9744 		goto period_task_exit;
9745 	}
9746 
9747 	bnx2x_acquire_phy_lock(bp);
9748 	/*
9749 	 * The barrier is needed to ensure the ordering between the writing to
9750 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9751 	 * the reading here.
9752 	 */
9753 	smp_mb();
9754 	if (bp->port.pmf) {
9755 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9756 
9757 		/* Re-queue task in 1 sec */
9758 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9759 	}
9760 
9761 	bnx2x_release_phy_lock(bp);
9762 period_task_exit:
9763 	return;
9764 }
9765 
9766 /*
9767  * Init service functions
9768  */
9769 
9770 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9771 {
9772 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9773 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9774 	return base + (BP_ABS_FUNC(bp)) * stride;
9775 }
9776 
9777 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9778 					struct bnx2x_mac_vals *vals)
9779 {
9780 	u32 val, base_addr, offset, mask, reset_reg;
9781 	bool mac_stopped = false;
9782 	u8 port = BP_PORT(bp);
9783 
9784 	/* reset addresses as they also mark which values were changed */
9785 	vals->bmac_addr = 0;
9786 	vals->umac_addr = 0;
9787 	vals->xmac_addr = 0;
9788 	vals->emac_addr = 0;
9789 
9790 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9791 
9792 	if (!CHIP_IS_E3(bp)) {
9793 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9794 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9795 		if ((mask & reset_reg) && val) {
9796 			u32 wb_data[2];
9797 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9798 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9799 						: NIG_REG_INGRESS_BMAC0_MEM;
9800 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9801 						: BIGMAC_REGISTER_BMAC_CONTROL;
9802 
9803 			/*
9804 			 * use rd/wr since we cannot use dmae. This is safe
9805 			 * since MCP won't access the bus due to the request
9806 			 * to unload, and no function on the path can be
9807 			 * loaded at this time.
9808 			 */
9809 			wb_data[0] = REG_RD(bp, base_addr + offset);
9810 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9811 			vals->bmac_addr = base_addr + offset;
9812 			vals->bmac_val[0] = wb_data[0];
9813 			vals->bmac_val[1] = wb_data[1];
9814 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9815 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9816 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9817 		}
9818 		BNX2X_DEV_INFO("Disable emac Rx\n");
9819 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9820 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9821 		REG_WR(bp, vals->emac_addr, 0);
9822 		mac_stopped = true;
9823 	} else {
9824 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9825 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9826 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9827 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9828 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9829 			       val & ~(1 << 1));
9830 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9831 			       val | (1 << 1));
9832 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9833 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9834 			REG_WR(bp, vals->xmac_addr, 0);
9835 			mac_stopped = true;
9836 		}
9837 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9838 		if (mask & reset_reg) {
9839 			BNX2X_DEV_INFO("Disable umac Rx\n");
9840 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9841 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9842 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9843 			REG_WR(bp, vals->umac_addr, 0);
9844 			mac_stopped = true;
9845 		}
9846 	}
9847 
9848 	if (mac_stopped)
9849 		msleep(20);
9850 }
9851 
9852 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9853 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9854 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9855 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9856 
9857 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9858 {
9859 	u16 rcq, bd;
9860 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9861 
9862 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9863 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9864 
9865 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9866 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9867 
9868 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9869 		       port, bd, rcq);
9870 }
9871 
9872 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9873 {
9874 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9875 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9876 	if (!rc) {
9877 		BNX2X_ERR("MCP response failure, aborting\n");
9878 		return -EBUSY;
9879 	}
9880 
9881 	return 0;
9882 }
9883 
9884 static struct bnx2x_prev_path_list *
9885 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9886 {
9887 	struct bnx2x_prev_path_list *tmp_list;
9888 
9889 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9890 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9891 		    bp->pdev->bus->number == tmp_list->bus &&
9892 		    BP_PATH(bp) == tmp_list->path)
9893 			return tmp_list;
9894 
9895 	return NULL;
9896 }
9897 
9898 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9899 {
9900 	struct bnx2x_prev_path_list *tmp_list;
9901 	int rc;
9902 
9903 	rc = down_interruptible(&bnx2x_prev_sem);
9904 	if (rc) {
9905 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9906 		return rc;
9907 	}
9908 
9909 	tmp_list = bnx2x_prev_path_get_entry(bp);
9910 	if (tmp_list) {
9911 		tmp_list->aer = 1;
9912 		rc = 0;
9913 	} else {
9914 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9915 			  BP_PATH(bp));
9916 	}
9917 
9918 	up(&bnx2x_prev_sem);
9919 
9920 	return rc;
9921 }
9922 
9923 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9924 {
9925 	struct bnx2x_prev_path_list *tmp_list;
9926 	bool rc = false;
9927 
9928 	if (down_trylock(&bnx2x_prev_sem))
9929 		return false;
9930 
9931 	tmp_list = bnx2x_prev_path_get_entry(bp);
9932 	if (tmp_list) {
9933 		if (tmp_list->aer) {
9934 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9935 			   BP_PATH(bp));
9936 		} else {
9937 			rc = true;
9938 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9939 				       BP_PATH(bp));
9940 		}
9941 	}
9942 
9943 	up(&bnx2x_prev_sem);
9944 
9945 	return rc;
9946 }
9947 
9948 bool bnx2x_port_after_undi(struct bnx2x *bp)
9949 {
9950 	struct bnx2x_prev_path_list *entry;
9951 	bool val;
9952 
9953 	down(&bnx2x_prev_sem);
9954 
9955 	entry = bnx2x_prev_path_get_entry(bp);
9956 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9957 
9958 	up(&bnx2x_prev_sem);
9959 
9960 	return val;
9961 }
9962 
9963 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9964 {
9965 	struct bnx2x_prev_path_list *tmp_list;
9966 	int rc;
9967 
9968 	rc = down_interruptible(&bnx2x_prev_sem);
9969 	if (rc) {
9970 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9971 		return rc;
9972 	}
9973 
9974 	/* Check whether the entry for this path already exists */
9975 	tmp_list = bnx2x_prev_path_get_entry(bp);
9976 	if (tmp_list) {
9977 		if (!tmp_list->aer) {
9978 			BNX2X_ERR("Re-Marking the path.\n");
9979 		} else {
9980 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9981 			   BP_PATH(bp));
9982 			tmp_list->aer = 0;
9983 		}
9984 		up(&bnx2x_prev_sem);
9985 		return 0;
9986 	}
9987 	up(&bnx2x_prev_sem);
9988 
9989 	/* Create an entry for this path and add it */
9990 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9991 	if (!tmp_list) {
9992 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9993 		return -ENOMEM;
9994 	}
9995 
9996 	tmp_list->bus = bp->pdev->bus->number;
9997 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9998 	tmp_list->path = BP_PATH(bp);
9999 	tmp_list->aer = 0;
10000 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10001 
10002 	rc = down_interruptible(&bnx2x_prev_sem);
10003 	if (rc) {
10004 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10005 		kfree(tmp_list);
10006 	} else {
10007 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10008 		   BP_PATH(bp));
10009 		list_add(&tmp_list->list, &bnx2x_prev_list);
10010 		up(&bnx2x_prev_sem);
10011 	}
10012 
10013 	return rc;
10014 }
10015 
10016 static int bnx2x_do_flr(struct bnx2x *bp)
10017 {
10018 	struct pci_dev *dev = bp->pdev;
10019 
10020 	if (CHIP_IS_E1x(bp)) {
10021 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10022 		return -EINVAL;
10023 	}
10024 
10025 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10026 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10027 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10028 			  bp->common.bc_ver);
10029 		return -EINVAL;
10030 	}
10031 
10032 	if (!pci_wait_for_pending_transaction(dev))
10033 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10034 
10035 	BNX2X_DEV_INFO("Initiating FLR\n");
10036 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10037 
10038 	return 0;
10039 }
10040 
10041 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10042 {
10043 	int rc;
10044 
10045 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10046 
10047 	/* Test if previous unload process was already finished for this path */
10048 	if (bnx2x_prev_is_path_marked(bp))
10049 		return bnx2x_prev_mcp_done(bp);
10050 
10051 	BNX2X_DEV_INFO("Path is unmarked\n");
10052 
10053 	/* If function has FLR capabilities, and existing FW version matches
10054 	 * the one required, then FLR will be sufficient to clean any residue
10055 	 * left by previous driver
10056 	 */
10057 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10058 
10059 	if (!rc) {
10060 		/* fw version is good */
10061 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10062 		rc = bnx2x_do_flr(bp);
10063 	}
10064 
10065 	if (!rc) {
10066 		/* FLR was performed */
10067 		BNX2X_DEV_INFO("FLR successful\n");
10068 		return 0;
10069 	}
10070 
10071 	BNX2X_DEV_INFO("Could not FLR\n");
10072 
10073 	/* Close the MCP request, return failure*/
10074 	rc = bnx2x_prev_mcp_done(bp);
10075 	if (!rc)
10076 		rc = BNX2X_PREV_WAIT_NEEDED;
10077 
10078 	return rc;
10079 }
10080 
10081 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10082 {
10083 	u32 reset_reg, tmp_reg = 0, rc;
10084 	bool prev_undi = false;
10085 	struct bnx2x_mac_vals mac_vals;
10086 
10087 	/* It is possible a previous function received 'common' answer,
10088 	 * but hasn't loaded yet, therefore creating a scenario of
10089 	 * multiple functions receiving 'common' on the same path.
10090 	 */
10091 	BNX2X_DEV_INFO("Common unload Flow\n");
10092 
10093 	memset(&mac_vals, 0, sizeof(mac_vals));
10094 
10095 	if (bnx2x_prev_is_path_marked(bp))
10096 		return bnx2x_prev_mcp_done(bp);
10097 
10098 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10099 
10100 	/* Reset should be performed after BRB is emptied */
10101 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10102 		u32 timer_count = 1000;
10103 
10104 		/* Close the MAC Rx to prevent BRB from filling up */
10105 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10106 
10107 		/* close LLH filters towards the BRB */
10108 		bnx2x_set_rx_filter(&bp->link_params, 0);
10109 
10110 		/* Check if the UNDI driver was previously loaded
10111 		 * UNDI driver initializes CID offset for normal bell to 0x7
10112 		 */
10113 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10114 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10115 			if (tmp_reg == 0x7) {
10116 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10117 				prev_undi = true;
10118 				/* clear the UNDI indication */
10119 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10120 				/* clear possible idle check errors */
10121 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10122 			}
10123 		}
10124 		if (!CHIP_IS_E1x(bp))
10125 			/* block FW from writing to host */
10126 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10127 
10128 		/* wait until BRB is empty */
10129 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10130 		while (timer_count) {
10131 			u32 prev_brb = tmp_reg;
10132 
10133 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10134 			if (!tmp_reg)
10135 				break;
10136 
10137 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10138 
10139 			/* reset timer as long as BRB actually gets emptied */
10140 			if (prev_brb > tmp_reg)
10141 				timer_count = 1000;
10142 			else
10143 				timer_count--;
10144 
10145 			/* If UNDI resides in memory, manually increment it */
10146 			if (prev_undi)
10147 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10148 
10149 			udelay(10);
10150 		}
10151 
10152 		if (!timer_count)
10153 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10154 	}
10155 
10156 	/* No packets are in the pipeline, path is ready for reset */
10157 	bnx2x_reset_common(bp);
10158 
10159 	if (mac_vals.xmac_addr)
10160 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10161 	if (mac_vals.umac_addr)
10162 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10163 	if (mac_vals.emac_addr)
10164 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10165 	if (mac_vals.bmac_addr) {
10166 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10167 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10168 	}
10169 
10170 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10171 	if (rc) {
10172 		bnx2x_prev_mcp_done(bp);
10173 		return rc;
10174 	}
10175 
10176 	return bnx2x_prev_mcp_done(bp);
10177 }
10178 
10179 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10180  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10181  * the addresses of the transaction, resulting in was-error bit set in the pci
10182  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10183  * to clear the interrupt which detected this from the pglueb and the was done
10184  * bit
10185  */
10186 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10187 {
10188 	if (!CHIP_IS_E1x(bp)) {
10189 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10190 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10191 			DP(BNX2X_MSG_SP,
10192 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10193 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10194 			       1 << BP_FUNC(bp));
10195 		}
10196 	}
10197 }
10198 
10199 static int bnx2x_prev_unload(struct bnx2x *bp)
10200 {
10201 	int time_counter = 10;
10202 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10203 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10204 
10205 	/* clear hw from errors which may have resulted from an interrupted
10206 	 * dmae transaction.
10207 	 */
10208 	bnx2x_prev_interrupted_dmae(bp);
10209 
10210 	/* Release previously held locks */
10211 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10212 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10213 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10214 
10215 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10216 	if (hw_lock_val) {
10217 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10218 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10219 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10220 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10221 		}
10222 
10223 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10224 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10225 	} else
10226 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10227 
10228 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10229 		BNX2X_DEV_INFO("Release previously held alr\n");
10230 		bnx2x_release_alr(bp);
10231 	}
10232 
10233 	do {
10234 		int aer = 0;
10235 		/* Lock MCP using an unload request */
10236 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10237 		if (!fw) {
10238 			BNX2X_ERR("MCP response failure, aborting\n");
10239 			rc = -EBUSY;
10240 			break;
10241 		}
10242 
10243 		rc = down_interruptible(&bnx2x_prev_sem);
10244 		if (rc) {
10245 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10246 				  rc);
10247 		} else {
10248 			/* If Path is marked by EEH, ignore unload status */
10249 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10250 				 bnx2x_prev_path_get_entry(bp)->aer);
10251 			up(&bnx2x_prev_sem);
10252 		}
10253 
10254 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10255 			rc = bnx2x_prev_unload_common(bp);
10256 			break;
10257 		}
10258 
10259 		/* non-common reply from MCP might require looping */
10260 		rc = bnx2x_prev_unload_uncommon(bp);
10261 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10262 			break;
10263 
10264 		msleep(20);
10265 	} while (--time_counter);
10266 
10267 	if (!time_counter || rc) {
10268 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10269 		rc = -EBUSY;
10270 	}
10271 
10272 	/* Mark function if its port was used to boot from SAN */
10273 	if (bnx2x_port_after_undi(bp))
10274 		bp->link_params.feature_config_flags |=
10275 			FEATURE_CONFIG_BOOT_FROM_SAN;
10276 
10277 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10278 
10279 	return rc;
10280 }
10281 
10282 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10283 {
10284 	u32 val, val2, val3, val4, id, boot_mode;
10285 	u16 pmc;
10286 
10287 	/* Get the chip revision id and number. */
10288 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10289 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10290 	id = ((val & 0xffff) << 16);
10291 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10292 	id |= ((val & 0xf) << 12);
10293 
10294 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10295 	 * the configuration space (so we need to reg_rd)
10296 	 */
10297 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10298 	id |= (((val >> 24) & 0xf) << 4);
10299 	val = REG_RD(bp, MISC_REG_BOND_ID);
10300 	id |= (val & 0xf);
10301 	bp->common.chip_id = id;
10302 
10303 	/* force 57811 according to MISC register */
10304 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10305 		if (CHIP_IS_57810(bp))
10306 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10307 				(bp->common.chip_id & 0x0000FFFF);
10308 		else if (CHIP_IS_57810_MF(bp))
10309 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10310 				(bp->common.chip_id & 0x0000FFFF);
10311 		bp->common.chip_id |= 0x1;
10312 	}
10313 
10314 	/* Set doorbell size */
10315 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10316 
10317 	if (!CHIP_IS_E1x(bp)) {
10318 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10319 		if ((val & 1) == 0)
10320 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10321 		else
10322 			val = (val >> 1) & 1;
10323 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10324 						       "2_PORT_MODE");
10325 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10326 						 CHIP_2_PORT_MODE;
10327 
10328 		if (CHIP_MODE_IS_4_PORT(bp))
10329 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10330 		else
10331 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10332 	} else {
10333 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10334 		bp->pfid = bp->pf_num;			/* 0..7 */
10335 	}
10336 
10337 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10338 
10339 	bp->link_params.chip_id = bp->common.chip_id;
10340 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10341 
10342 	val = (REG_RD(bp, 0x2874) & 0x55);
10343 	if ((bp->common.chip_id & 0x1) ||
10344 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10345 		bp->flags |= ONE_PORT_FLAG;
10346 		BNX2X_DEV_INFO("single port device\n");
10347 	}
10348 
10349 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10350 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10351 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10352 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10353 		       bp->common.flash_size, bp->common.flash_size);
10354 
10355 	bnx2x_init_shmem(bp);
10356 
10357 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10358 					MISC_REG_GENERIC_CR_1 :
10359 					MISC_REG_GENERIC_CR_0));
10360 
10361 	bp->link_params.shmem_base = bp->common.shmem_base;
10362 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10363 	if (SHMEM2_RD(bp, size) >
10364 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10365 		bp->link_params.lfa_base =
10366 		REG_RD(bp, bp->common.shmem2_base +
10367 		       (u32)offsetof(struct shmem2_region,
10368 				     lfa_host_addr[BP_PORT(bp)]));
10369 	else
10370 		bp->link_params.lfa_base = 0;
10371 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10372 		       bp->common.shmem_base, bp->common.shmem2_base);
10373 
10374 	if (!bp->common.shmem_base) {
10375 		BNX2X_DEV_INFO("MCP not active\n");
10376 		bp->flags |= NO_MCP_FLAG;
10377 		return;
10378 	}
10379 
10380 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10381 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10382 
10383 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10384 					SHARED_HW_CFG_LED_MODE_MASK) >>
10385 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10386 
10387 	bp->link_params.feature_config_flags = 0;
10388 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10389 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10390 		bp->link_params.feature_config_flags |=
10391 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10392 	else
10393 		bp->link_params.feature_config_flags &=
10394 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10395 
10396 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10397 	bp->common.bc_ver = val;
10398 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10399 	if (val < BNX2X_BC_VER) {
10400 		/* for now only warn
10401 		 * later we might need to enforce this */
10402 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10403 			  BNX2X_BC_VER, val);
10404 	}
10405 	bp->link_params.feature_config_flags |=
10406 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10407 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10408 
10409 	bp->link_params.feature_config_flags |=
10410 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10411 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10412 	bp->link_params.feature_config_flags |=
10413 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10414 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10415 	bp->link_params.feature_config_flags |=
10416 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10417 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10418 
10419 	bp->link_params.feature_config_flags |=
10420 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10421 		FEATURE_CONFIG_MT_SUPPORT : 0;
10422 
10423 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10424 			BC_SUPPORTS_PFC_STATS : 0;
10425 
10426 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10427 			BC_SUPPORTS_FCOE_FEATURES : 0;
10428 
10429 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10430 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10431 
10432 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10433 			BC_SUPPORTS_RMMOD_CMD : 0;
10434 
10435 	boot_mode = SHMEM_RD(bp,
10436 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10437 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10438 	switch (boot_mode) {
10439 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10440 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10441 		break;
10442 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10443 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10444 		break;
10445 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10446 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10447 		break;
10448 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10449 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10450 		break;
10451 	}
10452 
10453 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10454 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10455 
10456 	BNX2X_DEV_INFO("%sWoL capable\n",
10457 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10458 
10459 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10460 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10461 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10462 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10463 
10464 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10465 		 val, val2, val3, val4);
10466 }
10467 
10468 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10469 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10470 
10471 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10472 {
10473 	int pfid = BP_FUNC(bp);
10474 	int igu_sb_id;
10475 	u32 val;
10476 	u8 fid, igu_sb_cnt = 0;
10477 
10478 	bp->igu_base_sb = 0xff;
10479 	if (CHIP_INT_MODE_IS_BC(bp)) {
10480 		int vn = BP_VN(bp);
10481 		igu_sb_cnt = bp->igu_sb_cnt;
10482 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10483 			FP_SB_MAX_E1x;
10484 
10485 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10486 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10487 
10488 		return 0;
10489 	}
10490 
10491 	/* IGU in normal mode - read CAM */
10492 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10493 	     igu_sb_id++) {
10494 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10495 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10496 			continue;
10497 		fid = IGU_FID(val);
10498 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10499 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10500 				continue;
10501 			if (IGU_VEC(val) == 0)
10502 				/* default status block */
10503 				bp->igu_dsb_id = igu_sb_id;
10504 			else {
10505 				if (bp->igu_base_sb == 0xff)
10506 					bp->igu_base_sb = igu_sb_id;
10507 				igu_sb_cnt++;
10508 			}
10509 		}
10510 	}
10511 
10512 #ifdef CONFIG_PCI_MSI
10513 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10514 	 * optional that number of CAM entries will not be equal to the value
10515 	 * advertised in PCI.
10516 	 * Driver should use the minimal value of both as the actual status
10517 	 * block count
10518 	 */
10519 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10520 #endif
10521 
10522 	if (igu_sb_cnt == 0) {
10523 		BNX2X_ERR("CAM configuration error\n");
10524 		return -EINVAL;
10525 	}
10526 
10527 	return 0;
10528 }
10529 
10530 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10531 {
10532 	int cfg_size = 0, idx, port = BP_PORT(bp);
10533 
10534 	/* Aggregation of supported attributes of all external phys */
10535 	bp->port.supported[0] = 0;
10536 	bp->port.supported[1] = 0;
10537 	switch (bp->link_params.num_phys) {
10538 	case 1:
10539 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10540 		cfg_size = 1;
10541 		break;
10542 	case 2:
10543 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10544 		cfg_size = 1;
10545 		break;
10546 	case 3:
10547 		if (bp->link_params.multi_phy_config &
10548 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10549 			bp->port.supported[1] =
10550 				bp->link_params.phy[EXT_PHY1].supported;
10551 			bp->port.supported[0] =
10552 				bp->link_params.phy[EXT_PHY2].supported;
10553 		} else {
10554 			bp->port.supported[0] =
10555 				bp->link_params.phy[EXT_PHY1].supported;
10556 			bp->port.supported[1] =
10557 				bp->link_params.phy[EXT_PHY2].supported;
10558 		}
10559 		cfg_size = 2;
10560 		break;
10561 	}
10562 
10563 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10564 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10565 			   SHMEM_RD(bp,
10566 			   dev_info.port_hw_config[port].external_phy_config),
10567 			   SHMEM_RD(bp,
10568 			   dev_info.port_hw_config[port].external_phy_config2));
10569 			return;
10570 	}
10571 
10572 	if (CHIP_IS_E3(bp))
10573 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10574 	else {
10575 		switch (switch_cfg) {
10576 		case SWITCH_CFG_1G:
10577 			bp->port.phy_addr = REG_RD(
10578 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10579 			break;
10580 		case SWITCH_CFG_10G:
10581 			bp->port.phy_addr = REG_RD(
10582 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10583 			break;
10584 		default:
10585 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10586 				  bp->port.link_config[0]);
10587 			return;
10588 		}
10589 	}
10590 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10591 	/* mask what we support according to speed_cap_mask per configuration */
10592 	for (idx = 0; idx < cfg_size; idx++) {
10593 		if (!(bp->link_params.speed_cap_mask[idx] &
10594 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10595 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10596 
10597 		if (!(bp->link_params.speed_cap_mask[idx] &
10598 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10599 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10600 
10601 		if (!(bp->link_params.speed_cap_mask[idx] &
10602 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10603 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10604 
10605 		if (!(bp->link_params.speed_cap_mask[idx] &
10606 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10607 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10608 
10609 		if (!(bp->link_params.speed_cap_mask[idx] &
10610 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10611 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10612 						     SUPPORTED_1000baseT_Full);
10613 
10614 		if (!(bp->link_params.speed_cap_mask[idx] &
10615 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10616 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10617 
10618 		if (!(bp->link_params.speed_cap_mask[idx] &
10619 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10620 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10621 
10622 		if (!(bp->link_params.speed_cap_mask[idx] &
10623 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10624 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10625 	}
10626 
10627 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10628 		       bp->port.supported[1]);
10629 }
10630 
10631 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10632 {
10633 	u32 link_config, idx, cfg_size = 0;
10634 	bp->port.advertising[0] = 0;
10635 	bp->port.advertising[1] = 0;
10636 	switch (bp->link_params.num_phys) {
10637 	case 1:
10638 	case 2:
10639 		cfg_size = 1;
10640 		break;
10641 	case 3:
10642 		cfg_size = 2;
10643 		break;
10644 	}
10645 	for (idx = 0; idx < cfg_size; idx++) {
10646 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10647 		link_config = bp->port.link_config[idx];
10648 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10649 		case PORT_FEATURE_LINK_SPEED_AUTO:
10650 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10651 				bp->link_params.req_line_speed[idx] =
10652 					SPEED_AUTO_NEG;
10653 				bp->port.advertising[idx] |=
10654 					bp->port.supported[idx];
10655 				if (bp->link_params.phy[EXT_PHY1].type ==
10656 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10657 					bp->port.advertising[idx] |=
10658 					(SUPPORTED_100baseT_Half |
10659 					 SUPPORTED_100baseT_Full);
10660 			} else {
10661 				/* force 10G, no AN */
10662 				bp->link_params.req_line_speed[idx] =
10663 					SPEED_10000;
10664 				bp->port.advertising[idx] |=
10665 					(ADVERTISED_10000baseT_Full |
10666 					 ADVERTISED_FIBRE);
10667 				continue;
10668 			}
10669 			break;
10670 
10671 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10672 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10673 				bp->link_params.req_line_speed[idx] =
10674 					SPEED_10;
10675 				bp->port.advertising[idx] |=
10676 					(ADVERTISED_10baseT_Full |
10677 					 ADVERTISED_TP);
10678 			} else {
10679 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10680 					    link_config,
10681 				    bp->link_params.speed_cap_mask[idx]);
10682 				return;
10683 			}
10684 			break;
10685 
10686 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10687 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10688 				bp->link_params.req_line_speed[idx] =
10689 					SPEED_10;
10690 				bp->link_params.req_duplex[idx] =
10691 					DUPLEX_HALF;
10692 				bp->port.advertising[idx] |=
10693 					(ADVERTISED_10baseT_Half |
10694 					 ADVERTISED_TP);
10695 			} else {
10696 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10697 					    link_config,
10698 					  bp->link_params.speed_cap_mask[idx]);
10699 				return;
10700 			}
10701 			break;
10702 
10703 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10704 			if (bp->port.supported[idx] &
10705 			    SUPPORTED_100baseT_Full) {
10706 				bp->link_params.req_line_speed[idx] =
10707 					SPEED_100;
10708 				bp->port.advertising[idx] |=
10709 					(ADVERTISED_100baseT_Full |
10710 					 ADVERTISED_TP);
10711 			} else {
10712 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10713 					    link_config,
10714 					  bp->link_params.speed_cap_mask[idx]);
10715 				return;
10716 			}
10717 			break;
10718 
10719 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10720 			if (bp->port.supported[idx] &
10721 			    SUPPORTED_100baseT_Half) {
10722 				bp->link_params.req_line_speed[idx] =
10723 								SPEED_100;
10724 				bp->link_params.req_duplex[idx] =
10725 								DUPLEX_HALF;
10726 				bp->port.advertising[idx] |=
10727 					(ADVERTISED_100baseT_Half |
10728 					 ADVERTISED_TP);
10729 			} else {
10730 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10731 				    link_config,
10732 				    bp->link_params.speed_cap_mask[idx]);
10733 				return;
10734 			}
10735 			break;
10736 
10737 		case PORT_FEATURE_LINK_SPEED_1G:
10738 			if (bp->port.supported[idx] &
10739 			    SUPPORTED_1000baseT_Full) {
10740 				bp->link_params.req_line_speed[idx] =
10741 					SPEED_1000;
10742 				bp->port.advertising[idx] |=
10743 					(ADVERTISED_1000baseT_Full |
10744 					 ADVERTISED_TP);
10745 			} else {
10746 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10747 				    link_config,
10748 				    bp->link_params.speed_cap_mask[idx]);
10749 				return;
10750 			}
10751 			break;
10752 
10753 		case PORT_FEATURE_LINK_SPEED_2_5G:
10754 			if (bp->port.supported[idx] &
10755 			    SUPPORTED_2500baseX_Full) {
10756 				bp->link_params.req_line_speed[idx] =
10757 					SPEED_2500;
10758 				bp->port.advertising[idx] |=
10759 					(ADVERTISED_2500baseX_Full |
10760 						ADVERTISED_TP);
10761 			} else {
10762 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10763 				    link_config,
10764 				    bp->link_params.speed_cap_mask[idx]);
10765 				return;
10766 			}
10767 			break;
10768 
10769 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10770 			if (bp->port.supported[idx] &
10771 			    SUPPORTED_10000baseT_Full) {
10772 				bp->link_params.req_line_speed[idx] =
10773 					SPEED_10000;
10774 				bp->port.advertising[idx] |=
10775 					(ADVERTISED_10000baseT_Full |
10776 						ADVERTISED_FIBRE);
10777 			} else {
10778 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10779 				    link_config,
10780 				    bp->link_params.speed_cap_mask[idx]);
10781 				return;
10782 			}
10783 			break;
10784 		case PORT_FEATURE_LINK_SPEED_20G:
10785 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10786 
10787 			break;
10788 		default:
10789 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10790 				  link_config);
10791 				bp->link_params.req_line_speed[idx] =
10792 							SPEED_AUTO_NEG;
10793 				bp->port.advertising[idx] =
10794 						bp->port.supported[idx];
10795 			break;
10796 		}
10797 
10798 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10799 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10800 		if (bp->link_params.req_flow_ctrl[idx] ==
10801 		    BNX2X_FLOW_CTRL_AUTO) {
10802 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10803 				bp->link_params.req_flow_ctrl[idx] =
10804 							BNX2X_FLOW_CTRL_NONE;
10805 			else
10806 				bnx2x_set_requested_fc(bp);
10807 		}
10808 
10809 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10810 			       bp->link_params.req_line_speed[idx],
10811 			       bp->link_params.req_duplex[idx],
10812 			       bp->link_params.req_flow_ctrl[idx],
10813 			       bp->port.advertising[idx]);
10814 	}
10815 }
10816 
10817 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10818 {
10819 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10820 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10821 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10822 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10823 }
10824 
10825 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10826 {
10827 	int port = BP_PORT(bp);
10828 	u32 config;
10829 	u32 ext_phy_type, ext_phy_config, eee_mode;
10830 
10831 	bp->link_params.bp = bp;
10832 	bp->link_params.port = port;
10833 
10834 	bp->link_params.lane_config =
10835 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10836 
10837 	bp->link_params.speed_cap_mask[0] =
10838 		SHMEM_RD(bp,
10839 			 dev_info.port_hw_config[port].speed_capability_mask) &
10840 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10841 	bp->link_params.speed_cap_mask[1] =
10842 		SHMEM_RD(bp,
10843 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10844 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10845 	bp->port.link_config[0] =
10846 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10847 
10848 	bp->port.link_config[1] =
10849 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10850 
10851 	bp->link_params.multi_phy_config =
10852 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10853 	/* If the device is capable of WoL, set the default state according
10854 	 * to the HW
10855 	 */
10856 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10857 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10858 		   (config & PORT_FEATURE_WOL_ENABLED));
10859 
10860 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10861 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10862 		bp->flags |= NO_ISCSI_FLAG;
10863 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10864 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10865 		bp->flags |= NO_FCOE_FLAG;
10866 
10867 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10868 		       bp->link_params.lane_config,
10869 		       bp->link_params.speed_cap_mask[0],
10870 		       bp->port.link_config[0]);
10871 
10872 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10873 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10874 	bnx2x_phy_probe(&bp->link_params);
10875 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10876 
10877 	bnx2x_link_settings_requested(bp);
10878 
10879 	/*
10880 	 * If connected directly, work with the internal PHY, otherwise, work
10881 	 * with the external PHY
10882 	 */
10883 	ext_phy_config =
10884 		SHMEM_RD(bp,
10885 			 dev_info.port_hw_config[port].external_phy_config);
10886 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10887 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10888 		bp->mdio.prtad = bp->port.phy_addr;
10889 
10890 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10891 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10892 		bp->mdio.prtad =
10893 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10894 
10895 	/* Configure link feature according to nvram value */
10896 	eee_mode = (((SHMEM_RD(bp, dev_info.
10897 		      port_feature_config[port].eee_power_mode)) &
10898 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10899 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10900 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10901 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10902 					   EEE_MODE_ENABLE_LPI |
10903 					   EEE_MODE_OUTPUT_TIME;
10904 	} else {
10905 		bp->link_params.eee_mode = 0;
10906 	}
10907 }
10908 
10909 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10910 {
10911 	u32 no_flags = NO_ISCSI_FLAG;
10912 	int port = BP_PORT(bp);
10913 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10914 				drv_lic_key[port].max_iscsi_conn);
10915 
10916 	if (!CNIC_SUPPORT(bp)) {
10917 		bp->flags |= no_flags;
10918 		return;
10919 	}
10920 
10921 	/* Get the number of maximum allowed iSCSI connections */
10922 	bp->cnic_eth_dev.max_iscsi_conn =
10923 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10924 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10925 
10926 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10927 		       bp->cnic_eth_dev.max_iscsi_conn);
10928 
10929 	/*
10930 	 * If maximum allowed number of connections is zero -
10931 	 * disable the feature.
10932 	 */
10933 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10934 		bp->flags |= no_flags;
10935 }
10936 
10937 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10938 {
10939 	/* Port info */
10940 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10941 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10942 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10943 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10944 
10945 	/* Node info */
10946 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10947 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10948 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10949 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10950 }
10951 
10952 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10953 {
10954 	u8 count = 0;
10955 
10956 	if (IS_MF(bp)) {
10957 		u8 fid;
10958 
10959 		/* iterate over absolute function ids for this path: */
10960 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10961 			if (IS_MF_SD(bp)) {
10962 				u32 cfg = MF_CFG_RD(bp,
10963 						    func_mf_config[fid].config);
10964 
10965 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10966 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10967 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10968 					count++;
10969 			} else {
10970 				u32 cfg = MF_CFG_RD(bp,
10971 						    func_ext_config[fid].
10972 								      func_cfg);
10973 
10974 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10975 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10976 					count++;
10977 			}
10978 		}
10979 	} else { /* SF */
10980 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10981 
10982 		for (port = 0; port < port_cnt; port++) {
10983 			u32 lic = SHMEM_RD(bp,
10984 					   drv_lic_key[port].max_fcoe_conn) ^
10985 				  FW_ENCODE_32BIT_PATTERN;
10986 			if (lic)
10987 				count++;
10988 		}
10989 	}
10990 
10991 	return count;
10992 }
10993 
10994 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10995 {
10996 	int port = BP_PORT(bp);
10997 	int func = BP_ABS_FUNC(bp);
10998 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10999 				drv_lic_key[port].max_fcoe_conn);
11000 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11001 
11002 	if (!CNIC_SUPPORT(bp)) {
11003 		bp->flags |= NO_FCOE_FLAG;
11004 		return;
11005 	}
11006 
11007 	/* Get the number of maximum allowed FCoE connections */
11008 	bp->cnic_eth_dev.max_fcoe_conn =
11009 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11010 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11011 
11012 	/* Calculate the number of maximum allowed FCoE tasks */
11013 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11014 
11015 	/* check if FCoE resources must be shared between different functions */
11016 	if (num_fcoe_func)
11017 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11018 
11019 	/* Read the WWN: */
11020 	if (!IS_MF(bp)) {
11021 		/* Port info */
11022 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11023 			SHMEM_RD(bp,
11024 				 dev_info.port_hw_config[port].
11025 				 fcoe_wwn_port_name_upper);
11026 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11027 			SHMEM_RD(bp,
11028 				 dev_info.port_hw_config[port].
11029 				 fcoe_wwn_port_name_lower);
11030 
11031 		/* Node info */
11032 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11033 			SHMEM_RD(bp,
11034 				 dev_info.port_hw_config[port].
11035 				 fcoe_wwn_node_name_upper);
11036 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11037 			SHMEM_RD(bp,
11038 				 dev_info.port_hw_config[port].
11039 				 fcoe_wwn_node_name_lower);
11040 	} else if (!IS_MF_SD(bp)) {
11041 		/*
11042 		 * Read the WWN info only if the FCoE feature is enabled for
11043 		 * this function.
11044 		 */
11045 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11046 			bnx2x_get_ext_wwn_info(bp, func);
11047 
11048 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11049 		bnx2x_get_ext_wwn_info(bp, func);
11050 	}
11051 
11052 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11053 
11054 	/*
11055 	 * If maximum allowed number of connections is zero -
11056 	 * disable the feature.
11057 	 */
11058 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11059 		bp->flags |= NO_FCOE_FLAG;
11060 }
11061 
11062 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11063 {
11064 	/*
11065 	 * iSCSI may be dynamically disabled but reading
11066 	 * info here we will decrease memory usage by driver
11067 	 * if the feature is disabled for good
11068 	 */
11069 	bnx2x_get_iscsi_info(bp);
11070 	bnx2x_get_fcoe_info(bp);
11071 }
11072 
11073 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11074 {
11075 	u32 val, val2;
11076 	int func = BP_ABS_FUNC(bp);
11077 	int port = BP_PORT(bp);
11078 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11079 	u8 *fip_mac = bp->fip_mac;
11080 
11081 	if (IS_MF(bp)) {
11082 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11083 		 * FCoE MAC then the appropriate feature should be disabled.
11084 		 * In non SD mode features configuration comes from struct
11085 		 * func_ext_config.
11086 		 */
11087 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11088 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11089 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11090 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11091 						 iscsi_mac_addr_upper);
11092 				val = MF_CFG_RD(bp, func_ext_config[func].
11093 						iscsi_mac_addr_lower);
11094 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11095 				BNX2X_DEV_INFO
11096 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11097 			} else {
11098 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11099 			}
11100 
11101 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11102 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11103 						 fcoe_mac_addr_upper);
11104 				val = MF_CFG_RD(bp, func_ext_config[func].
11105 						fcoe_mac_addr_lower);
11106 				bnx2x_set_mac_buf(fip_mac, val, val2);
11107 				BNX2X_DEV_INFO
11108 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11109 			} else {
11110 				bp->flags |= NO_FCOE_FLAG;
11111 			}
11112 
11113 			bp->mf_ext_config = cfg;
11114 
11115 		} else { /* SD MODE */
11116 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11117 				/* use primary mac as iscsi mac */
11118 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11119 
11120 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11121 				BNX2X_DEV_INFO
11122 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11123 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11124 				/* use primary mac as fip mac */
11125 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11126 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11127 				BNX2X_DEV_INFO
11128 					("Read FIP MAC: %pM\n", fip_mac);
11129 			}
11130 		}
11131 
11132 		/* If this is a storage-only interface, use SAN mac as
11133 		 * primary MAC. Notice that for SD this is already the case,
11134 		 * as the SAN mac was copied from the primary MAC.
11135 		 */
11136 		if (IS_MF_FCOE_AFEX(bp))
11137 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11138 	} else {
11139 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11140 				iscsi_mac_upper);
11141 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11142 			       iscsi_mac_lower);
11143 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11144 
11145 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11146 				fcoe_fip_mac_upper);
11147 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11148 			       fcoe_fip_mac_lower);
11149 		bnx2x_set_mac_buf(fip_mac, val, val2);
11150 	}
11151 
11152 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11153 	if (!is_valid_ether_addr(iscsi_mac)) {
11154 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11155 		memset(iscsi_mac, 0, ETH_ALEN);
11156 	}
11157 
11158 	/* Disable FCoE if MAC configuration is invalid. */
11159 	if (!is_valid_ether_addr(fip_mac)) {
11160 		bp->flags |= NO_FCOE_FLAG;
11161 		memset(bp->fip_mac, 0, ETH_ALEN);
11162 	}
11163 }
11164 
11165 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11166 {
11167 	u32 val, val2;
11168 	int func = BP_ABS_FUNC(bp);
11169 	int port = BP_PORT(bp);
11170 
11171 	/* Zero primary MAC configuration */
11172 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11173 
11174 	if (BP_NOMCP(bp)) {
11175 		BNX2X_ERROR("warning: random MAC workaround active\n");
11176 		eth_hw_addr_random(bp->dev);
11177 	} else if (IS_MF(bp)) {
11178 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11179 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11180 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11181 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11182 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11183 
11184 		if (CNIC_SUPPORT(bp))
11185 			bnx2x_get_cnic_mac_hwinfo(bp);
11186 	} else {
11187 		/* in SF read MACs from port configuration */
11188 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11189 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11190 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11191 
11192 		if (CNIC_SUPPORT(bp))
11193 			bnx2x_get_cnic_mac_hwinfo(bp);
11194 	}
11195 
11196 	if (!BP_NOMCP(bp)) {
11197 		/* Read physical port identifier from shmem */
11198 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11199 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11200 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11201 		bp->flags |= HAS_PHYS_PORT_ID;
11202 	}
11203 
11204 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11205 
11206 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11207 		dev_err(&bp->pdev->dev,
11208 			"bad Ethernet MAC address configuration: %pM\n"
11209 			"change it manually before bringing up the appropriate network interface\n",
11210 			bp->dev->dev_addr);
11211 }
11212 
11213 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11214 {
11215 	int tmp;
11216 	u32 cfg;
11217 
11218 	if (IS_VF(bp))
11219 		return 0;
11220 
11221 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11222 		/* Take function: tmp = func */
11223 		tmp = BP_ABS_FUNC(bp);
11224 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11225 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11226 	} else {
11227 		/* Take port: tmp = port */
11228 		tmp = BP_PORT(bp);
11229 		cfg = SHMEM_RD(bp,
11230 			       dev_info.port_hw_config[tmp].generic_features);
11231 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11232 	}
11233 	return cfg;
11234 }
11235 
11236 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11237 {
11238 	int /*abs*/func = BP_ABS_FUNC(bp);
11239 	int vn;
11240 	u32 val = 0;
11241 	int rc = 0;
11242 
11243 	bnx2x_get_common_hwinfo(bp);
11244 
11245 	/*
11246 	 * initialize IGU parameters
11247 	 */
11248 	if (CHIP_IS_E1x(bp)) {
11249 		bp->common.int_block = INT_BLOCK_HC;
11250 
11251 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11252 		bp->igu_base_sb = 0;
11253 	} else {
11254 		bp->common.int_block = INT_BLOCK_IGU;
11255 
11256 		/* do not allow device reset during IGU info processing */
11257 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11258 
11259 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11260 
11261 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11262 			int tout = 5000;
11263 
11264 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11265 
11266 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11267 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11268 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11269 
11270 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11271 				tout--;
11272 				usleep_range(1000, 2000);
11273 			}
11274 
11275 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11276 				dev_err(&bp->pdev->dev,
11277 					"FORCING Normal Mode failed!!!\n");
11278 				bnx2x_release_hw_lock(bp,
11279 						      HW_LOCK_RESOURCE_RESET);
11280 				return -EPERM;
11281 			}
11282 		}
11283 
11284 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11285 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11286 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11287 		} else
11288 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11289 
11290 		rc = bnx2x_get_igu_cam_info(bp);
11291 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11292 		if (rc)
11293 			return rc;
11294 	}
11295 
11296 	/*
11297 	 * set base FW non-default (fast path) status block id, this value is
11298 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11299 	 * determine the id used by the FW.
11300 	 */
11301 	if (CHIP_IS_E1x(bp))
11302 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11303 	else /*
11304 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11305 	      * the same queue are indicated on the same IGU SB). So we prefer
11306 	      * FW and IGU SBs to be the same value.
11307 	      */
11308 		bp->base_fw_ndsb = bp->igu_base_sb;
11309 
11310 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11311 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11312 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11313 
11314 	/*
11315 	 * Initialize MF configuration
11316 	 */
11317 
11318 	bp->mf_ov = 0;
11319 	bp->mf_mode = 0;
11320 	vn = BP_VN(bp);
11321 
11322 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11323 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11324 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11325 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11326 
11327 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11328 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11329 		else
11330 			bp->common.mf_cfg_base = bp->common.shmem_base +
11331 				offsetof(struct shmem_region, func_mb) +
11332 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11333 		/*
11334 		 * get mf configuration:
11335 		 * 1. Existence of MF configuration
11336 		 * 2. MAC address must be legal (check only upper bytes)
11337 		 *    for  Switch-Independent mode;
11338 		 *    OVLAN must be legal for Switch-Dependent mode
11339 		 * 3. SF_MODE configures specific MF mode
11340 		 */
11341 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11342 			/* get mf configuration */
11343 			val = SHMEM_RD(bp,
11344 				       dev_info.shared_feature_config.config);
11345 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11346 
11347 			switch (val) {
11348 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11349 				val = MF_CFG_RD(bp, func_mf_config[func].
11350 						mac_upper);
11351 				/* check for legal mac (upper bytes)*/
11352 				if (val != 0xffff) {
11353 					bp->mf_mode = MULTI_FUNCTION_SI;
11354 					bp->mf_config[vn] = MF_CFG_RD(bp,
11355 						   func_mf_config[func].config);
11356 				} else
11357 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11358 				break;
11359 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11360 				if ((!CHIP_IS_E1x(bp)) &&
11361 				    (MF_CFG_RD(bp, func_mf_config[func].
11362 					       mac_upper) != 0xffff) &&
11363 				    (SHMEM2_HAS(bp,
11364 						afex_driver_support))) {
11365 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11366 					bp->mf_config[vn] = MF_CFG_RD(bp,
11367 						func_mf_config[func].config);
11368 				} else {
11369 					BNX2X_DEV_INFO("can not configure afex mode\n");
11370 				}
11371 				break;
11372 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11373 				/* get OV configuration */
11374 				val = MF_CFG_RD(bp,
11375 					func_mf_config[FUNC_0].e1hov_tag);
11376 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11377 
11378 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11379 					bp->mf_mode = MULTI_FUNCTION_SD;
11380 					bp->mf_config[vn] = MF_CFG_RD(bp,
11381 						func_mf_config[func].config);
11382 				} else
11383 					BNX2X_DEV_INFO("illegal OV for SD\n");
11384 				break;
11385 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11386 				bp->mf_config[vn] = 0;
11387 				break;
11388 			default:
11389 				/* Unknown configuration: reset mf_config */
11390 				bp->mf_config[vn] = 0;
11391 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11392 			}
11393 		}
11394 
11395 		BNX2X_DEV_INFO("%s function mode\n",
11396 			       IS_MF(bp) ? "multi" : "single");
11397 
11398 		switch (bp->mf_mode) {
11399 		case MULTI_FUNCTION_SD:
11400 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11401 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11402 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11403 				bp->mf_ov = val;
11404 				bp->path_has_ovlan = true;
11405 
11406 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11407 					       func, bp->mf_ov, bp->mf_ov);
11408 			} else {
11409 				dev_err(&bp->pdev->dev,
11410 					"No valid MF OV for func %d, aborting\n",
11411 					func);
11412 				return -EPERM;
11413 			}
11414 			break;
11415 		case MULTI_FUNCTION_AFEX:
11416 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11417 			break;
11418 		case MULTI_FUNCTION_SI:
11419 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11420 				       func);
11421 			break;
11422 		default:
11423 			if (vn) {
11424 				dev_err(&bp->pdev->dev,
11425 					"VN %d is in a single function mode, aborting\n",
11426 					vn);
11427 				return -EPERM;
11428 			}
11429 			break;
11430 		}
11431 
11432 		/* check if other port on the path needs ovlan:
11433 		 * Since MF configuration is shared between ports
11434 		 * Possible mixed modes are only
11435 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11436 		 */
11437 		if (CHIP_MODE_IS_4_PORT(bp) &&
11438 		    !bp->path_has_ovlan &&
11439 		    !IS_MF(bp) &&
11440 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11441 			u8 other_port = !BP_PORT(bp);
11442 			u8 other_func = BP_PATH(bp) + 2*other_port;
11443 			val = MF_CFG_RD(bp,
11444 					func_mf_config[other_func].e1hov_tag);
11445 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11446 				bp->path_has_ovlan = true;
11447 		}
11448 	}
11449 
11450 	/* adjust igu_sb_cnt to MF for E1x */
11451 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11452 		bp->igu_sb_cnt /= E1HVN_MAX;
11453 
11454 	/* port info */
11455 	bnx2x_get_port_hwinfo(bp);
11456 
11457 	/* Get MAC addresses */
11458 	bnx2x_get_mac_hwinfo(bp);
11459 
11460 	bnx2x_get_cnic_info(bp);
11461 
11462 	return rc;
11463 }
11464 
11465 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11466 {
11467 	int cnt, i, block_end, rodi;
11468 	char vpd_start[BNX2X_VPD_LEN+1];
11469 	char str_id_reg[VENDOR_ID_LEN+1];
11470 	char str_id_cap[VENDOR_ID_LEN+1];
11471 	char *vpd_data;
11472 	char *vpd_extended_data = NULL;
11473 	u8 len;
11474 
11475 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11476 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11477 
11478 	if (cnt < BNX2X_VPD_LEN)
11479 		goto out_not_found;
11480 
11481 	/* VPD RO tag should be first tag after identifier string, hence
11482 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11483 	 */
11484 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11485 			     PCI_VPD_LRDT_RO_DATA);
11486 	if (i < 0)
11487 		goto out_not_found;
11488 
11489 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11490 		    pci_vpd_lrdt_size(&vpd_start[i]);
11491 
11492 	i += PCI_VPD_LRDT_TAG_SIZE;
11493 
11494 	if (block_end > BNX2X_VPD_LEN) {
11495 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11496 		if (vpd_extended_data  == NULL)
11497 			goto out_not_found;
11498 
11499 		/* read rest of vpd image into vpd_extended_data */
11500 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11501 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11502 				   block_end - BNX2X_VPD_LEN,
11503 				   vpd_extended_data + BNX2X_VPD_LEN);
11504 		if (cnt < (block_end - BNX2X_VPD_LEN))
11505 			goto out_not_found;
11506 		vpd_data = vpd_extended_data;
11507 	} else
11508 		vpd_data = vpd_start;
11509 
11510 	/* now vpd_data holds full vpd content in both cases */
11511 
11512 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11513 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11514 	if (rodi < 0)
11515 		goto out_not_found;
11516 
11517 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11518 
11519 	if (len != VENDOR_ID_LEN)
11520 		goto out_not_found;
11521 
11522 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11523 
11524 	/* vendor specific info */
11525 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11526 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11527 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11528 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11529 
11530 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11531 						PCI_VPD_RO_KEYWORD_VENDOR0);
11532 		if (rodi >= 0) {
11533 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11534 
11535 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11536 
11537 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11538 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11539 				bp->fw_ver[len] = ' ';
11540 			}
11541 		}
11542 		kfree(vpd_extended_data);
11543 		return;
11544 	}
11545 out_not_found:
11546 	kfree(vpd_extended_data);
11547 	return;
11548 }
11549 
11550 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11551 {
11552 	u32 flags = 0;
11553 
11554 	if (CHIP_REV_IS_FPGA(bp))
11555 		SET_FLAGS(flags, MODE_FPGA);
11556 	else if (CHIP_REV_IS_EMUL(bp))
11557 		SET_FLAGS(flags, MODE_EMUL);
11558 	else
11559 		SET_FLAGS(flags, MODE_ASIC);
11560 
11561 	if (CHIP_MODE_IS_4_PORT(bp))
11562 		SET_FLAGS(flags, MODE_PORT4);
11563 	else
11564 		SET_FLAGS(flags, MODE_PORT2);
11565 
11566 	if (CHIP_IS_E2(bp))
11567 		SET_FLAGS(flags, MODE_E2);
11568 	else if (CHIP_IS_E3(bp)) {
11569 		SET_FLAGS(flags, MODE_E3);
11570 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11571 			SET_FLAGS(flags, MODE_E3_A0);
11572 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11573 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11574 	}
11575 
11576 	if (IS_MF(bp)) {
11577 		SET_FLAGS(flags, MODE_MF);
11578 		switch (bp->mf_mode) {
11579 		case MULTI_FUNCTION_SD:
11580 			SET_FLAGS(flags, MODE_MF_SD);
11581 			break;
11582 		case MULTI_FUNCTION_SI:
11583 			SET_FLAGS(flags, MODE_MF_SI);
11584 			break;
11585 		case MULTI_FUNCTION_AFEX:
11586 			SET_FLAGS(flags, MODE_MF_AFEX);
11587 			break;
11588 		}
11589 	} else
11590 		SET_FLAGS(flags, MODE_SF);
11591 
11592 #if defined(__LITTLE_ENDIAN)
11593 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11594 #else /*(__BIG_ENDIAN)*/
11595 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11596 #endif
11597 	INIT_MODE_FLAGS(bp) = flags;
11598 }
11599 
11600 static int bnx2x_init_bp(struct bnx2x *bp)
11601 {
11602 	int func;
11603 	int rc;
11604 
11605 	mutex_init(&bp->port.phy_mutex);
11606 	mutex_init(&bp->fw_mb_mutex);
11607 	spin_lock_init(&bp->stats_lock);
11608 	sema_init(&bp->stats_sema, 1);
11609 
11610 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11611 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11612 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11613 	if (IS_PF(bp)) {
11614 		rc = bnx2x_get_hwinfo(bp);
11615 		if (rc)
11616 			return rc;
11617 	} else {
11618 		eth_zero_addr(bp->dev->dev_addr);
11619 	}
11620 
11621 	bnx2x_set_modes_bitmap(bp);
11622 
11623 	rc = bnx2x_alloc_mem_bp(bp);
11624 	if (rc)
11625 		return rc;
11626 
11627 	bnx2x_read_fwinfo(bp);
11628 
11629 	func = BP_FUNC(bp);
11630 
11631 	/* need to reset chip if undi was active */
11632 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11633 		/* init fw_seq */
11634 		bp->fw_seq =
11635 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11636 							DRV_MSG_SEQ_NUMBER_MASK;
11637 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11638 
11639 		bnx2x_prev_unload(bp);
11640 	}
11641 
11642 	if (CHIP_REV_IS_FPGA(bp))
11643 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11644 
11645 	if (BP_NOMCP(bp) && (func == 0))
11646 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11647 
11648 	bp->disable_tpa = disable_tpa;
11649 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11650 
11651 	/* Set TPA flags */
11652 	if (bp->disable_tpa) {
11653 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11654 		bp->dev->features &= ~NETIF_F_LRO;
11655 	} else {
11656 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11657 		bp->dev->features |= NETIF_F_LRO;
11658 	}
11659 
11660 	if (CHIP_IS_E1(bp))
11661 		bp->dropless_fc = 0;
11662 	else
11663 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11664 
11665 	bp->mrrs = mrrs;
11666 
11667 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11668 	if (IS_VF(bp))
11669 		bp->rx_ring_size = MAX_RX_AVAIL;
11670 
11671 	/* make sure that the numbers are in the right granularity */
11672 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11673 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11674 
11675 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11676 
11677 	init_timer(&bp->timer);
11678 	bp->timer.expires = jiffies + bp->current_interval;
11679 	bp->timer.data = (unsigned long) bp;
11680 	bp->timer.function = bnx2x_timer;
11681 
11682 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11683 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11684 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11685 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11686 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11687 		bnx2x_dcbx_init_params(bp);
11688 	} else {
11689 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11690 	}
11691 
11692 	if (CHIP_IS_E1x(bp))
11693 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11694 	else
11695 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11696 
11697 	/* multiple tx priority */
11698 	if (IS_VF(bp))
11699 		bp->max_cos = 1;
11700 	else if (CHIP_IS_E1x(bp))
11701 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11702 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11703 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11704 	else if (CHIP_IS_E3B0(bp))
11705 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11706 	else
11707 		BNX2X_ERR("unknown chip %x revision %x\n",
11708 			  CHIP_NUM(bp), CHIP_REV(bp));
11709 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11710 
11711 	/* We need at least one default status block for slow-path events,
11712 	 * second status block for the L2 queue, and a third status block for
11713 	 * CNIC if supported.
11714 	 */
11715 	if (IS_VF(bp))
11716 		bp->min_msix_vec_cnt = 1;
11717 	else if (CNIC_SUPPORT(bp))
11718 		bp->min_msix_vec_cnt = 3;
11719 	else /* PF w/o cnic */
11720 		bp->min_msix_vec_cnt = 2;
11721 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11722 
11723 	bp->dump_preset_idx = 1;
11724 
11725 	return rc;
11726 }
11727 
11728 /****************************************************************************
11729 * General service functions
11730 ****************************************************************************/
11731 
11732 /*
11733  * net_device service functions
11734  */
11735 
11736 /* called with rtnl_lock */
11737 static int bnx2x_open(struct net_device *dev)
11738 {
11739 	struct bnx2x *bp = netdev_priv(dev);
11740 	int rc;
11741 
11742 	bp->stats_init = true;
11743 
11744 	netif_carrier_off(dev);
11745 
11746 	bnx2x_set_power_state(bp, PCI_D0);
11747 
11748 	/* If parity had happen during the unload, then attentions
11749 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11750 	 * want the first function loaded on the current engine to
11751 	 * complete the recovery.
11752 	 * Parity recovery is only relevant for PF driver.
11753 	 */
11754 	if (IS_PF(bp)) {
11755 		int other_engine = BP_PATH(bp) ? 0 : 1;
11756 		bool other_load_status, load_status;
11757 		bool global = false;
11758 
11759 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11760 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11761 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11762 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11763 			do {
11764 				/* If there are attentions and they are in a
11765 				 * global blocks, set the GLOBAL_RESET bit
11766 				 * regardless whether it will be this function
11767 				 * that will complete the recovery or not.
11768 				 */
11769 				if (global)
11770 					bnx2x_set_reset_global(bp);
11771 
11772 				/* Only the first function on the current
11773 				 * engine should try to recover in open. In case
11774 				 * of attentions in global blocks only the first
11775 				 * in the chip should try to recover.
11776 				 */
11777 				if ((!load_status &&
11778 				     (!global || !other_load_status)) &&
11779 				      bnx2x_trylock_leader_lock(bp) &&
11780 				      !bnx2x_leader_reset(bp)) {
11781 					netdev_info(bp->dev,
11782 						    "Recovered in open\n");
11783 					break;
11784 				}
11785 
11786 				/* recovery has failed... */
11787 				bnx2x_set_power_state(bp, PCI_D3hot);
11788 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11789 
11790 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11791 					  "If you still see this message after a few retries then power cycle is required.\n");
11792 
11793 				return -EAGAIN;
11794 			} while (0);
11795 		}
11796 	}
11797 
11798 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11799 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11800 	if (rc)
11801 		return rc;
11802 	return 0;
11803 }
11804 
11805 /* called with rtnl_lock */
11806 static int bnx2x_close(struct net_device *dev)
11807 {
11808 	struct bnx2x *bp = netdev_priv(dev);
11809 
11810 	/* Unload the driver, release IRQs */
11811 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11812 
11813 	return 0;
11814 }
11815 
11816 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11817 				      struct bnx2x_mcast_ramrod_params *p)
11818 {
11819 	int mc_count = netdev_mc_count(bp->dev);
11820 	struct bnx2x_mcast_list_elem *mc_mac =
11821 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11822 	struct netdev_hw_addr *ha;
11823 
11824 	if (!mc_mac)
11825 		return -ENOMEM;
11826 
11827 	INIT_LIST_HEAD(&p->mcast_list);
11828 
11829 	netdev_for_each_mc_addr(ha, bp->dev) {
11830 		mc_mac->mac = bnx2x_mc_addr(ha);
11831 		list_add_tail(&mc_mac->link, &p->mcast_list);
11832 		mc_mac++;
11833 	}
11834 
11835 	p->mcast_list_len = mc_count;
11836 
11837 	return 0;
11838 }
11839 
11840 static void bnx2x_free_mcast_macs_list(
11841 	struct bnx2x_mcast_ramrod_params *p)
11842 {
11843 	struct bnx2x_mcast_list_elem *mc_mac =
11844 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11845 				 link);
11846 
11847 	WARN_ON(!mc_mac);
11848 	kfree(mc_mac);
11849 }
11850 
11851 /**
11852  * bnx2x_set_uc_list - configure a new unicast MACs list.
11853  *
11854  * @bp: driver handle
11855  *
11856  * We will use zero (0) as a MAC type for these MACs.
11857  */
11858 static int bnx2x_set_uc_list(struct bnx2x *bp)
11859 {
11860 	int rc;
11861 	struct net_device *dev = bp->dev;
11862 	struct netdev_hw_addr *ha;
11863 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11864 	unsigned long ramrod_flags = 0;
11865 
11866 	/* First schedule a cleanup up of old configuration */
11867 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11868 	if (rc < 0) {
11869 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11870 		return rc;
11871 	}
11872 
11873 	netdev_for_each_uc_addr(ha, dev) {
11874 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11875 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11876 		if (rc == -EEXIST) {
11877 			DP(BNX2X_MSG_SP,
11878 			   "Failed to schedule ADD operations: %d\n", rc);
11879 			/* do not treat adding same MAC as error */
11880 			rc = 0;
11881 
11882 		} else if (rc < 0) {
11883 
11884 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11885 				  rc);
11886 			return rc;
11887 		}
11888 	}
11889 
11890 	/* Execute the pending commands */
11891 	__set_bit(RAMROD_CONT, &ramrod_flags);
11892 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11893 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11894 }
11895 
11896 static int bnx2x_set_mc_list(struct bnx2x *bp)
11897 {
11898 	struct net_device *dev = bp->dev;
11899 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11900 	int rc = 0;
11901 
11902 	rparam.mcast_obj = &bp->mcast_obj;
11903 
11904 	/* first, clear all configured multicast MACs */
11905 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11906 	if (rc < 0) {
11907 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11908 		return rc;
11909 	}
11910 
11911 	/* then, configure a new MACs list */
11912 	if (netdev_mc_count(dev)) {
11913 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11914 		if (rc) {
11915 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11916 				  rc);
11917 			return rc;
11918 		}
11919 
11920 		/* Now add the new MACs */
11921 		rc = bnx2x_config_mcast(bp, &rparam,
11922 					BNX2X_MCAST_CMD_ADD);
11923 		if (rc < 0)
11924 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11925 				  rc);
11926 
11927 		bnx2x_free_mcast_macs_list(&rparam);
11928 	}
11929 
11930 	return rc;
11931 }
11932 
11933 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11934 void bnx2x_set_rx_mode(struct net_device *dev)
11935 {
11936 	struct bnx2x *bp = netdev_priv(dev);
11937 
11938 	if (bp->state != BNX2X_STATE_OPEN) {
11939 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11940 		return;
11941 	} else {
11942 		/* Schedule an SP task to handle rest of change */
11943 		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11944 		smp_mb__before_clear_bit();
11945 		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11946 		smp_mb__after_clear_bit();
11947 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11948 	}
11949 }
11950 
11951 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11952 {
11953 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11954 
11955 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11956 
11957 	netif_addr_lock_bh(bp->dev);
11958 
11959 	if (bp->dev->flags & IFF_PROMISC) {
11960 		rx_mode = BNX2X_RX_MODE_PROMISC;
11961 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
11962 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11963 		    CHIP_IS_E1(bp))) {
11964 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11965 	} else {
11966 		if (IS_PF(bp)) {
11967 			/* some multicasts */
11968 			if (bnx2x_set_mc_list(bp) < 0)
11969 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11970 
11971 			/* release bh lock, as bnx2x_set_uc_list might sleep */
11972 			netif_addr_unlock_bh(bp->dev);
11973 			if (bnx2x_set_uc_list(bp) < 0)
11974 				rx_mode = BNX2X_RX_MODE_PROMISC;
11975 			netif_addr_lock_bh(bp->dev);
11976 		} else {
11977 			/* configuring mcast to a vf involves sleeping (when we
11978 			 * wait for the pf's response).
11979 			 */
11980 			smp_mb__before_clear_bit();
11981 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11982 				&bp->sp_rtnl_state);
11983 			smp_mb__after_clear_bit();
11984 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11985 		}
11986 	}
11987 
11988 	bp->rx_mode = rx_mode;
11989 	/* handle ISCSI SD mode */
11990 	if (IS_MF_ISCSI_SD(bp))
11991 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11992 
11993 	/* Schedule the rx_mode command */
11994 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11995 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11996 		netif_addr_unlock_bh(bp->dev);
11997 		return;
11998 	}
11999 
12000 	if (IS_PF(bp)) {
12001 		bnx2x_set_storm_rx_mode(bp);
12002 		netif_addr_unlock_bh(bp->dev);
12003 	} else {
12004 		/* VF will need to request the PF to make this change, and so
12005 		 * the VF needs to release the bottom-half lock prior to the
12006 		 * request (as it will likely require sleep on the VF side)
12007 		 */
12008 		netif_addr_unlock_bh(bp->dev);
12009 		bnx2x_vfpf_storm_rx_mode(bp);
12010 	}
12011 }
12012 
12013 /* called with rtnl_lock */
12014 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12015 			   int devad, u16 addr)
12016 {
12017 	struct bnx2x *bp = netdev_priv(netdev);
12018 	u16 value;
12019 	int rc;
12020 
12021 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12022 	   prtad, devad, addr);
12023 
12024 	/* The HW expects different devad if CL22 is used */
12025 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12026 
12027 	bnx2x_acquire_phy_lock(bp);
12028 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12029 	bnx2x_release_phy_lock(bp);
12030 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12031 
12032 	if (!rc)
12033 		rc = value;
12034 	return rc;
12035 }
12036 
12037 /* called with rtnl_lock */
12038 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12039 			    u16 addr, u16 value)
12040 {
12041 	struct bnx2x *bp = netdev_priv(netdev);
12042 	int rc;
12043 
12044 	DP(NETIF_MSG_LINK,
12045 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12046 	   prtad, devad, addr, value);
12047 
12048 	/* The HW expects different devad if CL22 is used */
12049 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12050 
12051 	bnx2x_acquire_phy_lock(bp);
12052 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12053 	bnx2x_release_phy_lock(bp);
12054 	return rc;
12055 }
12056 
12057 /* called with rtnl_lock */
12058 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12059 {
12060 	struct bnx2x *bp = netdev_priv(dev);
12061 	struct mii_ioctl_data *mdio = if_mii(ifr);
12062 
12063 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12064 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12065 
12066 	if (!netif_running(dev))
12067 		return -EAGAIN;
12068 
12069 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12070 }
12071 
12072 #ifdef CONFIG_NET_POLL_CONTROLLER
12073 static void poll_bnx2x(struct net_device *dev)
12074 {
12075 	struct bnx2x *bp = netdev_priv(dev);
12076 	int i;
12077 
12078 	for_each_eth_queue(bp, i) {
12079 		struct bnx2x_fastpath *fp = &bp->fp[i];
12080 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12081 	}
12082 }
12083 #endif
12084 
12085 static int bnx2x_validate_addr(struct net_device *dev)
12086 {
12087 	struct bnx2x *bp = netdev_priv(dev);
12088 
12089 	/* query the bulletin board for mac address configured by the PF */
12090 	if (IS_VF(bp))
12091 		bnx2x_sample_bulletin(bp);
12092 
12093 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12094 		BNX2X_ERR("Non-valid Ethernet address\n");
12095 		return -EADDRNOTAVAIL;
12096 	}
12097 	return 0;
12098 }
12099 
12100 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12101 				  struct netdev_phys_port_id *ppid)
12102 {
12103 	struct bnx2x *bp = netdev_priv(netdev);
12104 
12105 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12106 		return -EOPNOTSUPP;
12107 
12108 	ppid->id_len = sizeof(bp->phys_port_id);
12109 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12110 
12111 	return 0;
12112 }
12113 
12114 static const struct net_device_ops bnx2x_netdev_ops = {
12115 	.ndo_open		= bnx2x_open,
12116 	.ndo_stop		= bnx2x_close,
12117 	.ndo_start_xmit		= bnx2x_start_xmit,
12118 	.ndo_select_queue	= bnx2x_select_queue,
12119 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12120 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12121 	.ndo_validate_addr	= bnx2x_validate_addr,
12122 	.ndo_do_ioctl		= bnx2x_ioctl,
12123 	.ndo_change_mtu		= bnx2x_change_mtu,
12124 	.ndo_fix_features	= bnx2x_fix_features,
12125 	.ndo_set_features	= bnx2x_set_features,
12126 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12127 #ifdef CONFIG_NET_POLL_CONTROLLER
12128 	.ndo_poll_controller	= poll_bnx2x,
12129 #endif
12130 	.ndo_setup_tc		= bnx2x_setup_tc,
12131 #ifdef CONFIG_BNX2X_SRIOV
12132 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12133 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12134 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12135 #endif
12136 #ifdef NETDEV_FCOE_WWNN
12137 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12138 #endif
12139 
12140 #ifdef CONFIG_NET_RX_BUSY_POLL
12141 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12142 #endif
12143 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12144 };
12145 
12146 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12147 {
12148 	struct device *dev = &bp->pdev->dev;
12149 
12150 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12151 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12152 		dev_err(dev, "System does not support DMA, aborting\n");
12153 		return -EIO;
12154 	}
12155 
12156 	return 0;
12157 }
12158 
12159 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12160 			  struct net_device *dev, unsigned long board_type)
12161 {
12162 	int rc;
12163 	u32 pci_cfg_dword;
12164 	bool chip_is_e1x = (board_type == BCM57710 ||
12165 			    board_type == BCM57711 ||
12166 			    board_type == BCM57711E);
12167 
12168 	SET_NETDEV_DEV(dev, &pdev->dev);
12169 
12170 	bp->dev = dev;
12171 	bp->pdev = pdev;
12172 
12173 	rc = pci_enable_device(pdev);
12174 	if (rc) {
12175 		dev_err(&bp->pdev->dev,
12176 			"Cannot enable PCI device, aborting\n");
12177 		goto err_out;
12178 	}
12179 
12180 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12181 		dev_err(&bp->pdev->dev,
12182 			"Cannot find PCI device base address, aborting\n");
12183 		rc = -ENODEV;
12184 		goto err_out_disable;
12185 	}
12186 
12187 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12188 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12189 		rc = -ENODEV;
12190 		goto err_out_disable;
12191 	}
12192 
12193 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12194 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12195 	    PCICFG_REVESION_ID_ERROR_VAL) {
12196 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12197 		rc = -ENODEV;
12198 		goto err_out_disable;
12199 	}
12200 
12201 	if (atomic_read(&pdev->enable_cnt) == 1) {
12202 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12203 		if (rc) {
12204 			dev_err(&bp->pdev->dev,
12205 				"Cannot obtain PCI resources, aborting\n");
12206 			goto err_out_disable;
12207 		}
12208 
12209 		pci_set_master(pdev);
12210 		pci_save_state(pdev);
12211 	}
12212 
12213 	if (IS_PF(bp)) {
12214 		if (!pdev->pm_cap) {
12215 			dev_err(&bp->pdev->dev,
12216 				"Cannot find power management capability, aborting\n");
12217 			rc = -EIO;
12218 			goto err_out_release;
12219 		}
12220 	}
12221 
12222 	if (!pci_is_pcie(pdev)) {
12223 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12224 		rc = -EIO;
12225 		goto err_out_release;
12226 	}
12227 
12228 	rc = bnx2x_set_coherency_mask(bp);
12229 	if (rc)
12230 		goto err_out_release;
12231 
12232 	dev->mem_start = pci_resource_start(pdev, 0);
12233 	dev->base_addr = dev->mem_start;
12234 	dev->mem_end = pci_resource_end(pdev, 0);
12235 
12236 	dev->irq = pdev->irq;
12237 
12238 	bp->regview = pci_ioremap_bar(pdev, 0);
12239 	if (!bp->regview) {
12240 		dev_err(&bp->pdev->dev,
12241 			"Cannot map register space, aborting\n");
12242 		rc = -ENOMEM;
12243 		goto err_out_release;
12244 	}
12245 
12246 	/* In E1/E1H use pci device function given by kernel.
12247 	 * In E2/E3 read physical function from ME register since these chips
12248 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12249 	 * (depending on hypervisor).
12250 	 */
12251 	if (chip_is_e1x) {
12252 		bp->pf_num = PCI_FUNC(pdev->devfn);
12253 	} else {
12254 		/* chip is E2/3*/
12255 		pci_read_config_dword(bp->pdev,
12256 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12257 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12258 				  ME_REG_ABS_PF_NUM_SHIFT);
12259 	}
12260 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12261 
12262 	/* clean indirect addresses */
12263 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12264 			       PCICFG_VENDOR_ID_OFFSET);
12265 	/*
12266 	 * Clean the following indirect addresses for all functions since it
12267 	 * is not used by the driver.
12268 	 */
12269 	if (IS_PF(bp)) {
12270 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12271 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12272 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12273 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12274 
12275 		if (chip_is_e1x) {
12276 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12277 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12278 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12279 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12280 		}
12281 
12282 		/* Enable internal target-read (in case we are probed after PF
12283 		 * FLR). Must be done prior to any BAR read access. Only for
12284 		 * 57712 and up
12285 		 */
12286 		if (!chip_is_e1x)
12287 			REG_WR(bp,
12288 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12289 	}
12290 
12291 	dev->watchdog_timeo = TX_TIMEOUT;
12292 
12293 	dev->netdev_ops = &bnx2x_netdev_ops;
12294 	bnx2x_set_ethtool_ops(bp, dev);
12295 
12296 	dev->priv_flags |= IFF_UNICAST_FLT;
12297 
12298 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12299 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12300 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12301 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12302 	if (!CHIP_IS_E1x(bp)) {
12303 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12304 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12305 		dev->hw_enc_features =
12306 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12307 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12308 			NETIF_F_GSO_IPIP |
12309 			NETIF_F_GSO_SIT |
12310 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12311 	}
12312 
12313 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12314 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12315 
12316 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12317 	dev->features |= NETIF_F_HIGHDMA;
12318 
12319 	/* Add Loopback capability to the device */
12320 	dev->hw_features |= NETIF_F_LOOPBACK;
12321 
12322 #ifdef BCM_DCBNL
12323 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12324 #endif
12325 
12326 	/* get_port_hwinfo() will set prtad and mmds properly */
12327 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12328 	bp->mdio.mmds = 0;
12329 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12330 	bp->mdio.dev = dev;
12331 	bp->mdio.mdio_read = bnx2x_mdio_read;
12332 	bp->mdio.mdio_write = bnx2x_mdio_write;
12333 
12334 	return 0;
12335 
12336 err_out_release:
12337 	if (atomic_read(&pdev->enable_cnt) == 1)
12338 		pci_release_regions(pdev);
12339 
12340 err_out_disable:
12341 	pci_disable_device(pdev);
12342 
12343 err_out:
12344 	return rc;
12345 }
12346 
12347 static int bnx2x_check_firmware(struct bnx2x *bp)
12348 {
12349 	const struct firmware *firmware = bp->firmware;
12350 	struct bnx2x_fw_file_hdr *fw_hdr;
12351 	struct bnx2x_fw_file_section *sections;
12352 	u32 offset, len, num_ops;
12353 	__be16 *ops_offsets;
12354 	int i;
12355 	const u8 *fw_ver;
12356 
12357 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12358 		BNX2X_ERR("Wrong FW size\n");
12359 		return -EINVAL;
12360 	}
12361 
12362 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12363 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12364 
12365 	/* Make sure none of the offsets and sizes make us read beyond
12366 	 * the end of the firmware data */
12367 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12368 		offset = be32_to_cpu(sections[i].offset);
12369 		len = be32_to_cpu(sections[i].len);
12370 		if (offset + len > firmware->size) {
12371 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12372 			return -EINVAL;
12373 		}
12374 	}
12375 
12376 	/* Likewise for the init_ops offsets */
12377 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12378 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12379 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12380 
12381 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12382 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12383 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12384 			return -EINVAL;
12385 		}
12386 	}
12387 
12388 	/* Check FW version */
12389 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12390 	fw_ver = firmware->data + offset;
12391 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12392 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12393 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12394 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12395 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12396 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12397 		       BCM_5710_FW_MAJOR_VERSION,
12398 		       BCM_5710_FW_MINOR_VERSION,
12399 		       BCM_5710_FW_REVISION_VERSION,
12400 		       BCM_5710_FW_ENGINEERING_VERSION);
12401 		return -EINVAL;
12402 	}
12403 
12404 	return 0;
12405 }
12406 
12407 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12408 {
12409 	const __be32 *source = (const __be32 *)_source;
12410 	u32 *target = (u32 *)_target;
12411 	u32 i;
12412 
12413 	for (i = 0; i < n/4; i++)
12414 		target[i] = be32_to_cpu(source[i]);
12415 }
12416 
12417 /*
12418    Ops array is stored in the following format:
12419    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12420  */
12421 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12422 {
12423 	const __be32 *source = (const __be32 *)_source;
12424 	struct raw_op *target = (struct raw_op *)_target;
12425 	u32 i, j, tmp;
12426 
12427 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12428 		tmp = be32_to_cpu(source[j]);
12429 		target[i].op = (tmp >> 24) & 0xff;
12430 		target[i].offset = tmp & 0xffffff;
12431 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12432 	}
12433 }
12434 
12435 /* IRO array is stored in the following format:
12436  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12437  */
12438 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12439 {
12440 	const __be32 *source = (const __be32 *)_source;
12441 	struct iro *target = (struct iro *)_target;
12442 	u32 i, j, tmp;
12443 
12444 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12445 		target[i].base = be32_to_cpu(source[j]);
12446 		j++;
12447 		tmp = be32_to_cpu(source[j]);
12448 		target[i].m1 = (tmp >> 16) & 0xffff;
12449 		target[i].m2 = tmp & 0xffff;
12450 		j++;
12451 		tmp = be32_to_cpu(source[j]);
12452 		target[i].m3 = (tmp >> 16) & 0xffff;
12453 		target[i].size = tmp & 0xffff;
12454 		j++;
12455 	}
12456 }
12457 
12458 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12459 {
12460 	const __be16 *source = (const __be16 *)_source;
12461 	u16 *target = (u16 *)_target;
12462 	u32 i;
12463 
12464 	for (i = 0; i < n/2; i++)
12465 		target[i] = be16_to_cpu(source[i]);
12466 }
12467 
12468 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12469 do {									\
12470 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12471 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12472 	if (!bp->arr)							\
12473 		goto lbl;						\
12474 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12475 	     (u8 *)bp->arr, len);					\
12476 } while (0)
12477 
12478 static int bnx2x_init_firmware(struct bnx2x *bp)
12479 {
12480 	const char *fw_file_name;
12481 	struct bnx2x_fw_file_hdr *fw_hdr;
12482 	int rc;
12483 
12484 	if (bp->firmware)
12485 		return 0;
12486 
12487 	if (CHIP_IS_E1(bp))
12488 		fw_file_name = FW_FILE_NAME_E1;
12489 	else if (CHIP_IS_E1H(bp))
12490 		fw_file_name = FW_FILE_NAME_E1H;
12491 	else if (!CHIP_IS_E1x(bp))
12492 		fw_file_name = FW_FILE_NAME_E2;
12493 	else {
12494 		BNX2X_ERR("Unsupported chip revision\n");
12495 		return -EINVAL;
12496 	}
12497 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12498 
12499 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12500 	if (rc) {
12501 		BNX2X_ERR("Can't load firmware file %s\n",
12502 			  fw_file_name);
12503 		goto request_firmware_exit;
12504 	}
12505 
12506 	rc = bnx2x_check_firmware(bp);
12507 	if (rc) {
12508 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12509 		goto request_firmware_exit;
12510 	}
12511 
12512 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12513 
12514 	/* Initialize the pointers to the init arrays */
12515 	/* Blob */
12516 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12517 
12518 	/* Opcodes */
12519 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12520 
12521 	/* Offsets */
12522 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12523 			    be16_to_cpu_n);
12524 
12525 	/* STORMs firmware */
12526 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12527 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12528 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12529 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12530 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12531 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12532 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12533 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12534 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12535 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12536 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12537 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12538 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12539 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12540 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12541 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12542 	/* IRO */
12543 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12544 
12545 	return 0;
12546 
12547 iro_alloc_err:
12548 	kfree(bp->init_ops_offsets);
12549 init_offsets_alloc_err:
12550 	kfree(bp->init_ops);
12551 init_ops_alloc_err:
12552 	kfree(bp->init_data);
12553 request_firmware_exit:
12554 	release_firmware(bp->firmware);
12555 	bp->firmware = NULL;
12556 
12557 	return rc;
12558 }
12559 
12560 static void bnx2x_release_firmware(struct bnx2x *bp)
12561 {
12562 	kfree(bp->init_ops_offsets);
12563 	kfree(bp->init_ops);
12564 	kfree(bp->init_data);
12565 	release_firmware(bp->firmware);
12566 	bp->firmware = NULL;
12567 }
12568 
12569 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12570 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12571 	.init_hw_cmn      = bnx2x_init_hw_common,
12572 	.init_hw_port     = bnx2x_init_hw_port,
12573 	.init_hw_func     = bnx2x_init_hw_func,
12574 
12575 	.reset_hw_cmn     = bnx2x_reset_common,
12576 	.reset_hw_port    = bnx2x_reset_port,
12577 	.reset_hw_func    = bnx2x_reset_func,
12578 
12579 	.gunzip_init      = bnx2x_gunzip_init,
12580 	.gunzip_end       = bnx2x_gunzip_end,
12581 
12582 	.init_fw          = bnx2x_init_firmware,
12583 	.release_fw       = bnx2x_release_firmware,
12584 };
12585 
12586 void bnx2x__init_func_obj(struct bnx2x *bp)
12587 {
12588 	/* Prepare DMAE related driver resources */
12589 	bnx2x_setup_dmae(bp);
12590 
12591 	bnx2x_init_func_obj(bp, &bp->func_obj,
12592 			    bnx2x_sp(bp, func_rdata),
12593 			    bnx2x_sp_mapping(bp, func_rdata),
12594 			    bnx2x_sp(bp, func_afex_rdata),
12595 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12596 			    &bnx2x_func_sp_drv);
12597 }
12598 
12599 /* must be called after sriov-enable */
12600 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12601 {
12602 	int cid_count = BNX2X_L2_MAX_CID(bp);
12603 
12604 	if (IS_SRIOV(bp))
12605 		cid_count += BNX2X_VF_CIDS;
12606 
12607 	if (CNIC_SUPPORT(bp))
12608 		cid_count += CNIC_CID_MAX;
12609 
12610 	return roundup(cid_count, QM_CID_ROUND);
12611 }
12612 
12613 /**
12614  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12615  *
12616  * @dev:	pci device
12617  *
12618  */
12619 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12620 {
12621 	int index;
12622 	u16 control = 0;
12623 
12624 	/*
12625 	 * If MSI-X is not supported - return number of SBs needed to support
12626 	 * one fast path queue: one FP queue + SB for CNIC
12627 	 */
12628 	if (!pdev->msix_cap) {
12629 		dev_info(&pdev->dev, "no msix capability found\n");
12630 		return 1 + cnic_cnt;
12631 	}
12632 	dev_info(&pdev->dev, "msix capability found\n");
12633 
12634 	/*
12635 	 * The value in the PCI configuration space is the index of the last
12636 	 * entry, namely one less than the actual size of the table, which is
12637 	 * exactly what we want to return from this function: number of all SBs
12638 	 * without the default SB.
12639 	 * For VFs there is no default SB, then we return (index+1).
12640 	 */
12641 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12642 
12643 	index = control & PCI_MSIX_FLAGS_QSIZE;
12644 
12645 	return index;
12646 }
12647 
12648 static int set_max_cos_est(int chip_id)
12649 {
12650 	switch (chip_id) {
12651 	case BCM57710:
12652 	case BCM57711:
12653 	case BCM57711E:
12654 		return BNX2X_MULTI_TX_COS_E1X;
12655 	case BCM57712:
12656 	case BCM57712_MF:
12657 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12658 	case BCM57800:
12659 	case BCM57800_MF:
12660 	case BCM57810:
12661 	case BCM57810_MF:
12662 	case BCM57840_4_10:
12663 	case BCM57840_2_20:
12664 	case BCM57840_O:
12665 	case BCM57840_MFO:
12666 	case BCM57840_MF:
12667 	case BCM57811:
12668 	case BCM57811_MF:
12669 		return BNX2X_MULTI_TX_COS_E3B0;
12670 	case BCM57712_VF:
12671 	case BCM57800_VF:
12672 	case BCM57810_VF:
12673 	case BCM57840_VF:
12674 	case BCM57811_VF:
12675 		return 1;
12676 	default:
12677 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12678 		return -ENODEV;
12679 	}
12680 }
12681 
12682 static int set_is_vf(int chip_id)
12683 {
12684 	switch (chip_id) {
12685 	case BCM57712_VF:
12686 	case BCM57800_VF:
12687 	case BCM57810_VF:
12688 	case BCM57840_VF:
12689 	case BCM57811_VF:
12690 		return true;
12691 	default:
12692 		return false;
12693 	}
12694 }
12695 
12696 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12697 
12698 static int bnx2x_init_one(struct pci_dev *pdev,
12699 				    const struct pci_device_id *ent)
12700 {
12701 	struct net_device *dev = NULL;
12702 	struct bnx2x *bp;
12703 	enum pcie_link_width pcie_width;
12704 	enum pci_bus_speed pcie_speed;
12705 	int rc, max_non_def_sbs;
12706 	int rx_count, tx_count, rss_count, doorbell_size;
12707 	int max_cos_est;
12708 	bool is_vf;
12709 	int cnic_cnt;
12710 
12711 	/* An estimated maximum supported CoS number according to the chip
12712 	 * version.
12713 	 * We will try to roughly estimate the maximum number of CoSes this chip
12714 	 * may support in order to minimize the memory allocated for Tx
12715 	 * netdev_queue's. This number will be accurately calculated during the
12716 	 * initialization of bp->max_cos based on the chip versions AND chip
12717 	 * revision in the bnx2x_init_bp().
12718 	 */
12719 	max_cos_est = set_max_cos_est(ent->driver_data);
12720 	if (max_cos_est < 0)
12721 		return max_cos_est;
12722 	is_vf = set_is_vf(ent->driver_data);
12723 	cnic_cnt = is_vf ? 0 : 1;
12724 
12725 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12726 
12727 	/* add another SB for VF as it has no default SB */
12728 	max_non_def_sbs += is_vf ? 1 : 0;
12729 
12730 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12731 	rss_count = max_non_def_sbs - cnic_cnt;
12732 
12733 	if (rss_count < 1)
12734 		return -EINVAL;
12735 
12736 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12737 	rx_count = rss_count + cnic_cnt;
12738 
12739 	/* Maximum number of netdev Tx queues:
12740 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12741 	 */
12742 	tx_count = rss_count * max_cos_est + cnic_cnt;
12743 
12744 	/* dev zeroed in init_etherdev */
12745 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12746 	if (!dev)
12747 		return -ENOMEM;
12748 
12749 	bp = netdev_priv(dev);
12750 
12751 	bp->flags = 0;
12752 	if (is_vf)
12753 		bp->flags |= IS_VF_FLAG;
12754 
12755 	bp->igu_sb_cnt = max_non_def_sbs;
12756 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12757 	bp->msg_enable = debug;
12758 	bp->cnic_support = cnic_cnt;
12759 	bp->cnic_probe = bnx2x_cnic_probe;
12760 
12761 	pci_set_drvdata(pdev, dev);
12762 
12763 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12764 	if (rc < 0) {
12765 		free_netdev(dev);
12766 		return rc;
12767 	}
12768 
12769 	BNX2X_DEV_INFO("This is a %s function\n",
12770 		       IS_PF(bp) ? "physical" : "virtual");
12771 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12772 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12773 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12774 		       tx_count, rx_count);
12775 
12776 	rc = bnx2x_init_bp(bp);
12777 	if (rc)
12778 		goto init_one_exit;
12779 
12780 	/* Map doorbells here as we need the real value of bp->max_cos which
12781 	 * is initialized in bnx2x_init_bp() to determine the number of
12782 	 * l2 connections.
12783 	 */
12784 	if (IS_VF(bp)) {
12785 		bp->doorbells = bnx2x_vf_doorbells(bp);
12786 		rc = bnx2x_vf_pci_alloc(bp);
12787 		if (rc)
12788 			goto init_one_exit;
12789 	} else {
12790 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12791 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12792 			dev_err(&bp->pdev->dev,
12793 				"Cannot map doorbells, bar size too small, aborting\n");
12794 			rc = -ENOMEM;
12795 			goto init_one_exit;
12796 		}
12797 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12798 						doorbell_size);
12799 	}
12800 	if (!bp->doorbells) {
12801 		dev_err(&bp->pdev->dev,
12802 			"Cannot map doorbell space, aborting\n");
12803 		rc = -ENOMEM;
12804 		goto init_one_exit;
12805 	}
12806 
12807 	if (IS_VF(bp)) {
12808 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12809 		if (rc)
12810 			goto init_one_exit;
12811 	}
12812 
12813 	/* Enable SRIOV if capability found in configuration space */
12814 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12815 	if (rc)
12816 		goto init_one_exit;
12817 
12818 	/* calc qm_cid_count */
12819 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12820 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12821 
12822 	/* disable FCOE L2 queue for E1x*/
12823 	if (CHIP_IS_E1x(bp))
12824 		bp->flags |= NO_FCOE_FLAG;
12825 
12826 	/* Set bp->num_queues for MSI-X mode*/
12827 	bnx2x_set_num_queues(bp);
12828 
12829 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12830 	 * needed.
12831 	 */
12832 	rc = bnx2x_set_int_mode(bp);
12833 	if (rc) {
12834 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12835 		goto init_one_exit;
12836 	}
12837 	BNX2X_DEV_INFO("set interrupts successfully\n");
12838 
12839 	/* register the net device */
12840 	rc = register_netdev(dev);
12841 	if (rc) {
12842 		dev_err(&pdev->dev, "Cannot register net device\n");
12843 		goto init_one_exit;
12844 	}
12845 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12846 
12847 	if (!NO_FCOE(bp)) {
12848 		/* Add storage MAC address */
12849 		rtnl_lock();
12850 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12851 		rtnl_unlock();
12852 	}
12853 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12854 	    pcie_speed == PCI_SPEED_UNKNOWN ||
12855 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12856 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12857 	else
12858 		BNX2X_DEV_INFO(
12859 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12860 		       board_info[ent->driver_data].name,
12861 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12862 		       pcie_width,
12863 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
12864 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
12865 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
12866 		       "Unknown",
12867 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12868 
12869 	return 0;
12870 
12871 init_one_exit:
12872 	if (bp->regview)
12873 		iounmap(bp->regview);
12874 
12875 	if (IS_PF(bp) && bp->doorbells)
12876 		iounmap(bp->doorbells);
12877 
12878 	free_netdev(dev);
12879 
12880 	if (atomic_read(&pdev->enable_cnt) == 1)
12881 		pci_release_regions(pdev);
12882 
12883 	pci_disable_device(pdev);
12884 
12885 	return rc;
12886 }
12887 
12888 static void __bnx2x_remove(struct pci_dev *pdev,
12889 			   struct net_device *dev,
12890 			   struct bnx2x *bp,
12891 			   bool remove_netdev)
12892 {
12893 	/* Delete storage MAC address */
12894 	if (!NO_FCOE(bp)) {
12895 		rtnl_lock();
12896 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12897 		rtnl_unlock();
12898 	}
12899 
12900 #ifdef BCM_DCBNL
12901 	/* Delete app tlvs from dcbnl */
12902 	bnx2x_dcbnl_update_applist(bp, true);
12903 #endif
12904 
12905 	if (IS_PF(bp) &&
12906 	    !BP_NOMCP(bp) &&
12907 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12908 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12909 
12910 	/* Close the interface - either directly or implicitly */
12911 	if (remove_netdev) {
12912 		unregister_netdev(dev);
12913 	} else {
12914 		rtnl_lock();
12915 		dev_close(dev);
12916 		rtnl_unlock();
12917 	}
12918 
12919 	bnx2x_iov_remove_one(bp);
12920 
12921 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12922 	if (IS_PF(bp))
12923 		bnx2x_set_power_state(bp, PCI_D0);
12924 
12925 	/* Disable MSI/MSI-X */
12926 	bnx2x_disable_msi(bp);
12927 
12928 	/* Power off */
12929 	if (IS_PF(bp))
12930 		bnx2x_set_power_state(bp, PCI_D3hot);
12931 
12932 	/* Make sure RESET task is not scheduled before continuing */
12933 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12934 
12935 	/* send message via vfpf channel to release the resources of this vf */
12936 	if (IS_VF(bp))
12937 		bnx2x_vfpf_release(bp);
12938 
12939 	/* Assumes no further PCIe PM changes will occur */
12940 	if (system_state == SYSTEM_POWER_OFF) {
12941 		pci_wake_from_d3(pdev, bp->wol);
12942 		pci_set_power_state(pdev, PCI_D3hot);
12943 	}
12944 
12945 	if (bp->regview)
12946 		iounmap(bp->regview);
12947 
12948 	/* for vf doorbells are part of the regview and were unmapped along with
12949 	 * it. FW is only loaded by PF.
12950 	 */
12951 	if (IS_PF(bp)) {
12952 		if (bp->doorbells)
12953 			iounmap(bp->doorbells);
12954 
12955 		bnx2x_release_firmware(bp);
12956 	}
12957 	bnx2x_free_mem_bp(bp);
12958 
12959 	if (remove_netdev)
12960 		free_netdev(dev);
12961 
12962 	if (atomic_read(&pdev->enable_cnt) == 1)
12963 		pci_release_regions(pdev);
12964 
12965 	pci_disable_device(pdev);
12966 }
12967 
12968 static void bnx2x_remove_one(struct pci_dev *pdev)
12969 {
12970 	struct net_device *dev = pci_get_drvdata(pdev);
12971 	struct bnx2x *bp;
12972 
12973 	if (!dev) {
12974 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12975 		return;
12976 	}
12977 	bp = netdev_priv(dev);
12978 
12979 	__bnx2x_remove(pdev, dev, bp, true);
12980 }
12981 
12982 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12983 {
12984 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12985 
12986 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12987 
12988 	if (CNIC_LOADED(bp))
12989 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12990 
12991 	/* Stop Tx */
12992 	bnx2x_tx_disable(bp);
12993 	/* Delete all NAPI objects */
12994 	bnx2x_del_all_napi(bp);
12995 	if (CNIC_LOADED(bp))
12996 		bnx2x_del_all_napi_cnic(bp);
12997 	netdev_reset_tc(bp->dev);
12998 
12999 	del_timer_sync(&bp->timer);
13000 	cancel_delayed_work(&bp->sp_task);
13001 	cancel_delayed_work(&bp->period_task);
13002 
13003 	spin_lock_bh(&bp->stats_lock);
13004 	bp->stats_state = STATS_STATE_DISABLED;
13005 	spin_unlock_bh(&bp->stats_lock);
13006 
13007 	bnx2x_save_statistics(bp);
13008 
13009 	netif_carrier_off(bp->dev);
13010 
13011 	return 0;
13012 }
13013 
13014 /**
13015  * bnx2x_io_error_detected - called when PCI error is detected
13016  * @pdev: Pointer to PCI device
13017  * @state: The current pci connection state
13018  *
13019  * This function is called after a PCI bus error affecting
13020  * this device has been detected.
13021  */
13022 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13023 						pci_channel_state_t state)
13024 {
13025 	struct net_device *dev = pci_get_drvdata(pdev);
13026 	struct bnx2x *bp = netdev_priv(dev);
13027 
13028 	rtnl_lock();
13029 
13030 	BNX2X_ERR("IO error detected\n");
13031 
13032 	netif_device_detach(dev);
13033 
13034 	if (state == pci_channel_io_perm_failure) {
13035 		rtnl_unlock();
13036 		return PCI_ERS_RESULT_DISCONNECT;
13037 	}
13038 
13039 	if (netif_running(dev))
13040 		bnx2x_eeh_nic_unload(bp);
13041 
13042 	bnx2x_prev_path_mark_eeh(bp);
13043 
13044 	pci_disable_device(pdev);
13045 
13046 	rtnl_unlock();
13047 
13048 	/* Request a slot reset */
13049 	return PCI_ERS_RESULT_NEED_RESET;
13050 }
13051 
13052 /**
13053  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13054  * @pdev: Pointer to PCI device
13055  *
13056  * Restart the card from scratch, as if from a cold-boot.
13057  */
13058 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13059 {
13060 	struct net_device *dev = pci_get_drvdata(pdev);
13061 	struct bnx2x *bp = netdev_priv(dev);
13062 	int i;
13063 
13064 	rtnl_lock();
13065 	BNX2X_ERR("IO slot reset initializing...\n");
13066 	if (pci_enable_device(pdev)) {
13067 		dev_err(&pdev->dev,
13068 			"Cannot re-enable PCI device after reset\n");
13069 		rtnl_unlock();
13070 		return PCI_ERS_RESULT_DISCONNECT;
13071 	}
13072 
13073 	pci_set_master(pdev);
13074 	pci_restore_state(pdev);
13075 	pci_save_state(pdev);
13076 
13077 	if (netif_running(dev))
13078 		bnx2x_set_power_state(bp, PCI_D0);
13079 
13080 	if (netif_running(dev)) {
13081 		BNX2X_ERR("IO slot reset --> driver unload\n");
13082 
13083 		/* MCP should have been reset; Need to wait for validity */
13084 		bnx2x_init_shmem(bp);
13085 
13086 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13087 			u32 v;
13088 
13089 			v = SHMEM2_RD(bp,
13090 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13091 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13092 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13093 		}
13094 		bnx2x_drain_tx_queues(bp);
13095 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13096 		bnx2x_netif_stop(bp, 1);
13097 		bnx2x_free_irq(bp);
13098 
13099 		/* Report UNLOAD_DONE to MCP */
13100 		bnx2x_send_unload_done(bp, true);
13101 
13102 		bp->sp_state = 0;
13103 		bp->port.pmf = 0;
13104 
13105 		bnx2x_prev_unload(bp);
13106 
13107 		/* We should have reseted the engine, so It's fair to
13108 		 * assume the FW will no longer write to the bnx2x driver.
13109 		 */
13110 		bnx2x_squeeze_objects(bp);
13111 		bnx2x_free_skbs(bp);
13112 		for_each_rx_queue(bp, i)
13113 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13114 		bnx2x_free_fp_mem(bp);
13115 		bnx2x_free_mem(bp);
13116 
13117 		bp->state = BNX2X_STATE_CLOSED;
13118 	}
13119 
13120 	rtnl_unlock();
13121 
13122 	return PCI_ERS_RESULT_RECOVERED;
13123 }
13124 
13125 /**
13126  * bnx2x_io_resume - called when traffic can start flowing again
13127  * @pdev: Pointer to PCI device
13128  *
13129  * This callback is called when the error recovery driver tells us that
13130  * its OK to resume normal operation.
13131  */
13132 static void bnx2x_io_resume(struct pci_dev *pdev)
13133 {
13134 	struct net_device *dev = pci_get_drvdata(pdev);
13135 	struct bnx2x *bp = netdev_priv(dev);
13136 
13137 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13138 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13139 		return;
13140 	}
13141 
13142 	rtnl_lock();
13143 
13144 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13145 							DRV_MSG_SEQ_NUMBER_MASK;
13146 
13147 	if (netif_running(dev))
13148 		bnx2x_nic_load(bp, LOAD_NORMAL);
13149 
13150 	netif_device_attach(dev);
13151 
13152 	rtnl_unlock();
13153 }
13154 
13155 static const struct pci_error_handlers bnx2x_err_handler = {
13156 	.error_detected = bnx2x_io_error_detected,
13157 	.slot_reset     = bnx2x_io_slot_reset,
13158 	.resume         = bnx2x_io_resume,
13159 };
13160 
13161 static void bnx2x_shutdown(struct pci_dev *pdev)
13162 {
13163 	struct net_device *dev = pci_get_drvdata(pdev);
13164 	struct bnx2x *bp;
13165 
13166 	if (!dev)
13167 		return;
13168 
13169 	bp = netdev_priv(dev);
13170 	if (!bp)
13171 		return;
13172 
13173 	rtnl_lock();
13174 	netif_device_detach(dev);
13175 	rtnl_unlock();
13176 
13177 	/* Don't remove the netdevice, as there are scenarios which will cause
13178 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13179 	 * rootfs is mounted from SAN.
13180 	 */
13181 	__bnx2x_remove(pdev, dev, bp, false);
13182 }
13183 
13184 static struct pci_driver bnx2x_pci_driver = {
13185 	.name        = DRV_MODULE_NAME,
13186 	.id_table    = bnx2x_pci_tbl,
13187 	.probe       = bnx2x_init_one,
13188 	.remove      = bnx2x_remove_one,
13189 	.suspend     = bnx2x_suspend,
13190 	.resume      = bnx2x_resume,
13191 	.err_handler = &bnx2x_err_handler,
13192 #ifdef CONFIG_BNX2X_SRIOV
13193 	.sriov_configure = bnx2x_sriov_configure,
13194 #endif
13195 	.shutdown    = bnx2x_shutdown,
13196 };
13197 
13198 static int __init bnx2x_init(void)
13199 {
13200 	int ret;
13201 
13202 	pr_info("%s", version);
13203 
13204 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13205 	if (bnx2x_wq == NULL) {
13206 		pr_err("Cannot create workqueue\n");
13207 		return -ENOMEM;
13208 	}
13209 
13210 	ret = pci_register_driver(&bnx2x_pci_driver);
13211 	if (ret) {
13212 		pr_err("Cannot register driver\n");
13213 		destroy_workqueue(bnx2x_wq);
13214 	}
13215 	return ret;
13216 }
13217 
13218 static void __exit bnx2x_cleanup(void)
13219 {
13220 	struct list_head *pos, *q;
13221 
13222 	pci_unregister_driver(&bnx2x_pci_driver);
13223 
13224 	destroy_workqueue(bnx2x_wq);
13225 
13226 	/* Free globally allocated resources */
13227 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13228 		struct bnx2x_prev_path_list *tmp =
13229 			list_entry(pos, struct bnx2x_prev_path_list, list);
13230 		list_del(pos);
13231 		kfree(tmp);
13232 	}
13233 }
13234 
13235 void bnx2x_notify_link_changed(struct bnx2x *bp)
13236 {
13237 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13238 }
13239 
13240 module_init(bnx2x_init);
13241 module_exit(bnx2x_cleanup);
13242 
13243 /**
13244  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13245  *
13246  * @bp:		driver handle
13247  * @set:	set or clear the CAM entry
13248  *
13249  * This function will wait until the ramrod completion returns.
13250  * Return 0 if success, -ENODEV if ramrod doesn't return.
13251  */
13252 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13253 {
13254 	unsigned long ramrod_flags = 0;
13255 
13256 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13257 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13258 				 &bp->iscsi_l2_mac_obj, true,
13259 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13260 }
13261 
13262 /* count denotes the number of new completions we have seen */
13263 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13264 {
13265 	struct eth_spe *spe;
13266 	int cxt_index, cxt_offset;
13267 
13268 #ifdef BNX2X_STOP_ON_ERROR
13269 	if (unlikely(bp->panic))
13270 		return;
13271 #endif
13272 
13273 	spin_lock_bh(&bp->spq_lock);
13274 	BUG_ON(bp->cnic_spq_pending < count);
13275 	bp->cnic_spq_pending -= count;
13276 
13277 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13278 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13279 				& SPE_HDR_CONN_TYPE) >>
13280 				SPE_HDR_CONN_TYPE_SHIFT;
13281 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13282 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13283 
13284 		/* Set validation for iSCSI L2 client before sending SETUP
13285 		 *  ramrod
13286 		 */
13287 		if (type == ETH_CONNECTION_TYPE) {
13288 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13289 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13290 					ILT_PAGE_CIDS;
13291 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13292 					(cxt_index * ILT_PAGE_CIDS);
13293 				bnx2x_set_ctx_validation(bp,
13294 					&bp->context[cxt_index].
13295 							 vcxt[cxt_offset].eth,
13296 					BNX2X_ISCSI_ETH_CID(bp));
13297 			}
13298 		}
13299 
13300 		/*
13301 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13302 		 * and in the air. We also check that number of outstanding
13303 		 * COMMON ramrods is not more than the EQ and SPQ can
13304 		 * accommodate.
13305 		 */
13306 		if (type == ETH_CONNECTION_TYPE) {
13307 			if (!atomic_read(&bp->cq_spq_left))
13308 				break;
13309 			else
13310 				atomic_dec(&bp->cq_spq_left);
13311 		} else if (type == NONE_CONNECTION_TYPE) {
13312 			if (!atomic_read(&bp->eq_spq_left))
13313 				break;
13314 			else
13315 				atomic_dec(&bp->eq_spq_left);
13316 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13317 			   (type == FCOE_CONNECTION_TYPE)) {
13318 			if (bp->cnic_spq_pending >=
13319 			    bp->cnic_eth_dev.max_kwqe_pending)
13320 				break;
13321 			else
13322 				bp->cnic_spq_pending++;
13323 		} else {
13324 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13325 			bnx2x_panic();
13326 			break;
13327 		}
13328 
13329 		spe = bnx2x_sp_get_next(bp);
13330 		*spe = *bp->cnic_kwq_cons;
13331 
13332 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13333 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13334 
13335 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13336 			bp->cnic_kwq_cons = bp->cnic_kwq;
13337 		else
13338 			bp->cnic_kwq_cons++;
13339 	}
13340 	bnx2x_sp_prod_update(bp);
13341 	spin_unlock_bh(&bp->spq_lock);
13342 }
13343 
13344 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13345 			       struct kwqe_16 *kwqes[], u32 count)
13346 {
13347 	struct bnx2x *bp = netdev_priv(dev);
13348 	int i;
13349 
13350 #ifdef BNX2X_STOP_ON_ERROR
13351 	if (unlikely(bp->panic)) {
13352 		BNX2X_ERR("Can't post to SP queue while panic\n");
13353 		return -EIO;
13354 	}
13355 #endif
13356 
13357 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13358 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13359 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13360 		return -EAGAIN;
13361 	}
13362 
13363 	spin_lock_bh(&bp->spq_lock);
13364 
13365 	for (i = 0; i < count; i++) {
13366 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13367 
13368 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13369 			break;
13370 
13371 		*bp->cnic_kwq_prod = *spe;
13372 
13373 		bp->cnic_kwq_pending++;
13374 
13375 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13376 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13377 		   spe->data.update_data_addr.hi,
13378 		   spe->data.update_data_addr.lo,
13379 		   bp->cnic_kwq_pending);
13380 
13381 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13382 			bp->cnic_kwq_prod = bp->cnic_kwq;
13383 		else
13384 			bp->cnic_kwq_prod++;
13385 	}
13386 
13387 	spin_unlock_bh(&bp->spq_lock);
13388 
13389 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13390 		bnx2x_cnic_sp_post(bp, 0);
13391 
13392 	return i;
13393 }
13394 
13395 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13396 {
13397 	struct cnic_ops *c_ops;
13398 	int rc = 0;
13399 
13400 	mutex_lock(&bp->cnic_mutex);
13401 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13402 					  lockdep_is_held(&bp->cnic_mutex));
13403 	if (c_ops)
13404 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13405 	mutex_unlock(&bp->cnic_mutex);
13406 
13407 	return rc;
13408 }
13409 
13410 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13411 {
13412 	struct cnic_ops *c_ops;
13413 	int rc = 0;
13414 
13415 	rcu_read_lock();
13416 	c_ops = rcu_dereference(bp->cnic_ops);
13417 	if (c_ops)
13418 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13419 	rcu_read_unlock();
13420 
13421 	return rc;
13422 }
13423 
13424 /*
13425  * for commands that have no data
13426  */
13427 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13428 {
13429 	struct cnic_ctl_info ctl = {0};
13430 
13431 	ctl.cmd = cmd;
13432 
13433 	return bnx2x_cnic_ctl_send(bp, &ctl);
13434 }
13435 
13436 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13437 {
13438 	struct cnic_ctl_info ctl = {0};
13439 
13440 	/* first we tell CNIC and only then we count this as a completion */
13441 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13442 	ctl.data.comp.cid = cid;
13443 	ctl.data.comp.error = err;
13444 
13445 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13446 	bnx2x_cnic_sp_post(bp, 0);
13447 }
13448 
13449 /* Called with netif_addr_lock_bh() taken.
13450  * Sets an rx_mode config for an iSCSI ETH client.
13451  * Doesn't block.
13452  * Completion should be checked outside.
13453  */
13454 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13455 {
13456 	unsigned long accept_flags = 0, ramrod_flags = 0;
13457 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13458 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13459 
13460 	if (start) {
13461 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13462 		 * because it's the only way for UIO Queue to accept
13463 		 * multicasts (in non-promiscuous mode only one Queue per
13464 		 * function will receive multicast packets (leading in our
13465 		 * case).
13466 		 */
13467 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13468 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13469 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13470 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13471 
13472 		/* Clear STOP_PENDING bit if START is requested */
13473 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13474 
13475 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13476 	} else
13477 		/* Clear START_PENDING bit if STOP is requested */
13478 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13479 
13480 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13481 		set_bit(sched_state, &bp->sp_state);
13482 	else {
13483 		__set_bit(RAMROD_RX, &ramrod_flags);
13484 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13485 				    ramrod_flags);
13486 	}
13487 }
13488 
13489 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13490 {
13491 	struct bnx2x *bp = netdev_priv(dev);
13492 	int rc = 0;
13493 
13494 	switch (ctl->cmd) {
13495 	case DRV_CTL_CTXTBL_WR_CMD: {
13496 		u32 index = ctl->data.io.offset;
13497 		dma_addr_t addr = ctl->data.io.dma_addr;
13498 
13499 		bnx2x_ilt_wr(bp, index, addr);
13500 		break;
13501 	}
13502 
13503 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13504 		int count = ctl->data.credit.credit_count;
13505 
13506 		bnx2x_cnic_sp_post(bp, count);
13507 		break;
13508 	}
13509 
13510 	/* rtnl_lock is held.  */
13511 	case DRV_CTL_START_L2_CMD: {
13512 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13513 		unsigned long sp_bits = 0;
13514 
13515 		/* Configure the iSCSI classification object */
13516 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13517 				   cp->iscsi_l2_client_id,
13518 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13519 				   bnx2x_sp(bp, mac_rdata),
13520 				   bnx2x_sp_mapping(bp, mac_rdata),
13521 				   BNX2X_FILTER_MAC_PENDING,
13522 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13523 				   &bp->macs_pool);
13524 
13525 		/* Set iSCSI MAC address */
13526 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13527 		if (rc)
13528 			break;
13529 
13530 		mmiowb();
13531 		barrier();
13532 
13533 		/* Start accepting on iSCSI L2 ring */
13534 
13535 		netif_addr_lock_bh(dev);
13536 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13537 		netif_addr_unlock_bh(dev);
13538 
13539 		/* bits to wait on */
13540 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13541 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13542 
13543 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13544 			BNX2X_ERR("rx_mode completion timed out!\n");
13545 
13546 		break;
13547 	}
13548 
13549 	/* rtnl_lock is held.  */
13550 	case DRV_CTL_STOP_L2_CMD: {
13551 		unsigned long sp_bits = 0;
13552 
13553 		/* Stop accepting on iSCSI L2 ring */
13554 		netif_addr_lock_bh(dev);
13555 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13556 		netif_addr_unlock_bh(dev);
13557 
13558 		/* bits to wait on */
13559 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13560 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13561 
13562 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13563 			BNX2X_ERR("rx_mode completion timed out!\n");
13564 
13565 		mmiowb();
13566 		barrier();
13567 
13568 		/* Unset iSCSI L2 MAC */
13569 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13570 					BNX2X_ISCSI_ETH_MAC, true);
13571 		break;
13572 	}
13573 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13574 		int count = ctl->data.credit.credit_count;
13575 
13576 		smp_mb__before_atomic_inc();
13577 		atomic_add(count, &bp->cq_spq_left);
13578 		smp_mb__after_atomic_inc();
13579 		break;
13580 	}
13581 	case DRV_CTL_ULP_REGISTER_CMD: {
13582 		int ulp_type = ctl->data.register_data.ulp_type;
13583 
13584 		if (CHIP_IS_E3(bp)) {
13585 			int idx = BP_FW_MB_IDX(bp);
13586 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13587 			int path = BP_PATH(bp);
13588 			int port = BP_PORT(bp);
13589 			int i;
13590 			u32 scratch_offset;
13591 			u32 *host_addr;
13592 
13593 			/* first write capability to shmem2 */
13594 			if (ulp_type == CNIC_ULP_ISCSI)
13595 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13596 			else if (ulp_type == CNIC_ULP_FCOE)
13597 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13598 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13599 
13600 			if ((ulp_type != CNIC_ULP_FCOE) ||
13601 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13602 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13603 				break;
13604 
13605 			/* if reached here - should write fcoe capabilities */
13606 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13607 			if (!scratch_offset)
13608 				break;
13609 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13610 						   fcoe_features[path][port]);
13611 			host_addr = (u32 *) &(ctl->data.register_data.
13612 					      fcoe_features);
13613 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13614 			     i += 4)
13615 				REG_WR(bp, scratch_offset + i,
13616 				       *(host_addr + i/4));
13617 		}
13618 		break;
13619 	}
13620 
13621 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13622 		int ulp_type = ctl->data.ulp_type;
13623 
13624 		if (CHIP_IS_E3(bp)) {
13625 			int idx = BP_FW_MB_IDX(bp);
13626 			u32 cap;
13627 
13628 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13629 			if (ulp_type == CNIC_ULP_ISCSI)
13630 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13631 			else if (ulp_type == CNIC_ULP_FCOE)
13632 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13633 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13634 		}
13635 		break;
13636 	}
13637 
13638 	default:
13639 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13640 		rc = -EINVAL;
13641 	}
13642 
13643 	return rc;
13644 }
13645 
13646 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13647 {
13648 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13649 
13650 	if (bp->flags & USING_MSIX_FLAG) {
13651 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13652 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13653 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13654 	} else {
13655 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13656 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13657 	}
13658 	if (!CHIP_IS_E1x(bp))
13659 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13660 	else
13661 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13662 
13663 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13664 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13665 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13666 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13667 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13668 
13669 	cp->num_irq = 2;
13670 }
13671 
13672 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13673 {
13674 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13675 
13676 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13677 			     bnx2x_cid_ilt_lines(bp);
13678 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13679 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13680 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13681 
13682 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13683 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13684 	   cp->iscsi_l2_cid);
13685 
13686 	if (NO_ISCSI_OOO(bp))
13687 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13688 }
13689 
13690 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13691 			       void *data)
13692 {
13693 	struct bnx2x *bp = netdev_priv(dev);
13694 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13695 	int rc;
13696 
13697 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13698 
13699 	if (ops == NULL) {
13700 		BNX2X_ERR("NULL ops received\n");
13701 		return -EINVAL;
13702 	}
13703 
13704 	if (!CNIC_SUPPORT(bp)) {
13705 		BNX2X_ERR("Can't register CNIC when not supported\n");
13706 		return -EOPNOTSUPP;
13707 	}
13708 
13709 	if (!CNIC_LOADED(bp)) {
13710 		rc = bnx2x_load_cnic(bp);
13711 		if (rc) {
13712 			BNX2X_ERR("CNIC-related load failed\n");
13713 			return rc;
13714 		}
13715 	}
13716 
13717 	bp->cnic_enabled = true;
13718 
13719 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13720 	if (!bp->cnic_kwq)
13721 		return -ENOMEM;
13722 
13723 	bp->cnic_kwq_cons = bp->cnic_kwq;
13724 	bp->cnic_kwq_prod = bp->cnic_kwq;
13725 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13726 
13727 	bp->cnic_spq_pending = 0;
13728 	bp->cnic_kwq_pending = 0;
13729 
13730 	bp->cnic_data = data;
13731 
13732 	cp->num_irq = 0;
13733 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13734 	cp->iro_arr = bp->iro_arr;
13735 
13736 	bnx2x_setup_cnic_irq_info(bp);
13737 
13738 	rcu_assign_pointer(bp->cnic_ops, ops);
13739 
13740 	return 0;
13741 }
13742 
13743 static int bnx2x_unregister_cnic(struct net_device *dev)
13744 {
13745 	struct bnx2x *bp = netdev_priv(dev);
13746 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13747 
13748 	mutex_lock(&bp->cnic_mutex);
13749 	cp->drv_state = 0;
13750 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13751 	mutex_unlock(&bp->cnic_mutex);
13752 	synchronize_rcu();
13753 	bp->cnic_enabled = false;
13754 	kfree(bp->cnic_kwq);
13755 	bp->cnic_kwq = NULL;
13756 
13757 	return 0;
13758 }
13759 
13760 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13761 {
13762 	struct bnx2x *bp = netdev_priv(dev);
13763 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13764 
13765 	/* If both iSCSI and FCoE are disabled - return NULL in
13766 	 * order to indicate CNIC that it should not try to work
13767 	 * with this device.
13768 	 */
13769 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13770 		return NULL;
13771 
13772 	cp->drv_owner = THIS_MODULE;
13773 	cp->chip_id = CHIP_ID(bp);
13774 	cp->pdev = bp->pdev;
13775 	cp->io_base = bp->regview;
13776 	cp->io_base2 = bp->doorbells;
13777 	cp->max_kwqe_pending = 8;
13778 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13779 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13780 			     bnx2x_cid_ilt_lines(bp);
13781 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13782 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13783 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13784 	cp->drv_ctl = bnx2x_drv_ctl;
13785 	cp->drv_register_cnic = bnx2x_register_cnic;
13786 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13787 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13788 	cp->iscsi_l2_client_id =
13789 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13790 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13791 
13792 	if (NO_ISCSI_OOO(bp))
13793 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13794 
13795 	if (NO_ISCSI(bp))
13796 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13797 
13798 	if (NO_FCOE(bp))
13799 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13800 
13801 	BNX2X_DEV_INFO(
13802 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13803 	   cp->ctx_blk_size,
13804 	   cp->ctx_tbl_offset,
13805 	   cp->ctx_tbl_len,
13806 	   cp->starting_cid);
13807 	return cp;
13808 }
13809 
13810 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13811 {
13812 	struct bnx2x *bp = fp->bp;
13813 	u32 offset = BAR_USTRORM_INTMEM;
13814 
13815 	if (IS_VF(bp))
13816 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13817 	else if (!CHIP_IS_E1x(bp))
13818 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13819 	else
13820 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13821 
13822 	return offset;
13823 }
13824 
13825 /* called only on E1H or E2.
13826  * When pretending to be PF, the pretend value is the function number 0...7
13827  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13828  * combination
13829  */
13830 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13831 {
13832 	u32 pretend_reg;
13833 
13834 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13835 		return -1;
13836 
13837 	/* get my own pretend register */
13838 	pretend_reg = bnx2x_get_pretend_reg(bp);
13839 	REG_WR(bp, pretend_reg, pretend_func_val);
13840 	REG_RD(bp, pretend_reg);
13841 	return 0;
13842 }
13843