xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2011 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT		(5*HZ)
79 
80 static char version[] __devinitdata =
81 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 			     "(0 Disable; 1 Enable (default))");
99 
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 				" (default is as a number of CPUs)");
104 
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108 
109 #define INT_MODE_INTx			1
110 #define INT_MODE_MSI			2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 				"(1 INT#x; 2 MSI)");
115 
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119 
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
123 
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127 
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131 
132 
133 
134 struct workqueue_struct *bnx2x_wq;
135 
136 enum bnx2x_board_type {
137 	BCM57710 = 0,
138 	BCM57711,
139 	BCM57711E,
140 	BCM57712,
141 	BCM57712_MF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57810,
145 	BCM57810_MF,
146 	BCM57840,
147 	BCM57840_MF
148 };
149 
150 /* indexed by board_type, above */
151 static struct {
152 	char *name;
153 } board_info[] __devinitdata = {
154 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 						"Ethernet Multi Function"}
166 };
167 
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 	{ 0 }
214 };
215 
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217 
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
221 
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 				       u32 addr, dma_addr_t mapping)
224 {
225 	REG_WR(bp,  addr, U64_LO(mapping));
226 	REG_WR(bp,  addr + 4, U64_HI(mapping));
227 }
228 
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 					 dma_addr_t mapping, u16 abs_fid)
231 {
232 	u32 addr = XSEM_REG_FAST_MEMORY +
233 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234 
235 	__storm_memset_dma_mapping(bp, addr, mapping);
236 }
237 
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 					 u16 pf_id)
240 {
241 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 		pf_id);
243 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 		pf_id);
245 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 		pf_id);
247 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 		pf_id);
249 }
250 
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 					u8 enable)
253 {
254 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 		enable);
256 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 		enable);
258 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 		enable);
260 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 		enable);
262 }
263 
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 				struct event_ring_data *eq_data,
266 				u16 pfid)
267 {
268 	size_t size = sizeof(struct event_ring_data);
269 
270 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271 
272 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273 }
274 
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 					u16 pfid)
277 {
278 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 	REG_WR16(bp, addr, eq_prod);
280 }
281 
282 /* used only at init
283  * locking is done by mcp
284  */
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286 {
287 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 			       PCICFG_VENDOR_ID_OFFSET);
291 }
292 
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294 {
295 	u32 val;
296 
297 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 			       PCICFG_VENDOR_ID_OFFSET);
301 
302 	return val;
303 }
304 
305 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE	"dst_addr [none]"
310 
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 			  int msglvl)
313 {
314 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315 
316 	switch (dmae->opcode & DMAE_COMMAND_DST) {
317 	case DMAE_CMD_DST_PCI:
318 		if (src_type == DMAE_CMD_SRC_PCI)
319 			DP(msglvl, "DMAE: opcode 0x%08x\n"
320 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
325 			   dmae->comp_val);
326 		else
327 			DP(msglvl, "DMAE: opcode 0x%08x\n"
328 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 			   dmae->opcode, dmae->src_addr_lo >> 2,
331 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
333 			   dmae->comp_val);
334 		break;
335 	case DMAE_CMD_DST_GRC:
336 		if (src_type == DMAE_CMD_SRC_PCI)
337 			DP(msglvl, "DMAE: opcode 0x%08x\n"
338 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 			   dmae->len, dmae->dst_addr_lo >> 2,
342 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
343 			   dmae->comp_val);
344 		else
345 			DP(msglvl, "DMAE: opcode 0x%08x\n"
346 			   "src [%08x], len [%d*4], dst [%08x]\n"
347 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 			   dmae->opcode, dmae->src_addr_lo >> 2,
349 			   dmae->len, dmae->dst_addr_lo >> 2,
350 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
351 			   dmae->comp_val);
352 		break;
353 	default:
354 		if (src_type == DMAE_CMD_SRC_PCI)
355 			DP(msglvl, "DMAE: opcode 0x%08x\n"
356 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
357 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
358 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 			   dmae->comp_val);
361 		else
362 			DP(msglvl, "DMAE: opcode 0x%08x\n"
363 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
364 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
365 			   dmae->opcode, dmae->src_addr_lo >> 2,
366 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 			   dmae->comp_val);
368 		break;
369 	}
370 
371 }
372 
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375 {
376 	u32 cmd_offset;
377 	int i;
378 
379 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382 
383 		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385 	}
386 	REG_WR(bp, dmae_reg_go_c[idx], 1);
387 }
388 
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390 {
391 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 			   DMAE_CMD_C_ENABLE);
393 }
394 
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396 {
397 	return opcode & ~DMAE_CMD_SRC_RESET;
398 }
399 
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 			     bool with_comp, u8 comp_type)
402 {
403 	u32 opcode = 0;
404 
405 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
407 
408 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409 
410 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414 
415 #ifdef __BIG_ENDIAN
416 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 	if (with_comp)
421 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 	return opcode;
423 }
424 
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 				      struct dmae_command *dmae,
427 				      u8 src_type, u8 dst_type)
428 {
429 	memset(dmae, 0, sizeof(struct dmae_command));
430 
431 	/* set the opcode */
432 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 					 true, DMAE_COMP_PCI);
434 
435 	/* fill in the completion parameters */
436 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 	dmae->comp_val = DMAE_COMP_VAL;
439 }
440 
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 				      struct dmae_command *dmae)
444 {
445 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 	int rc = 0;
448 
449 	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452 
453 	/*
454 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 	 * as long as this code is called both from syscall context and
456 	 * from ndo_set_rx_mode() flow that may be called from BH.
457 	 */
458 	spin_lock_bh(&bp->dmae_lock);
459 
460 	/* reset completion */
461 	*wb_comp = 0;
462 
463 	/* post the command on the channel used for initializations */
464 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465 
466 	/* wait for completion */
467 	udelay(5);
468 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470 
471 		if (!cnt) {
472 			BNX2X_ERR("DMAE timeout!\n");
473 			rc = DMAE_TIMEOUT;
474 			goto unlock;
475 		}
476 		cnt--;
477 		udelay(50);
478 	}
479 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480 		BNX2X_ERR("DMAE PCI error!\n");
481 		rc = DMAE_PCI_ERROR;
482 	}
483 
484 	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485 	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486 	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487 
488 unlock:
489 	spin_unlock_bh(&bp->dmae_lock);
490 	return rc;
491 }
492 
493 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494 		      u32 len32)
495 {
496 	struct dmae_command dmae;
497 
498 	if (!bp->dmae_ready) {
499 		u32 *data = bnx2x_sp(bp, wb_data[0]);
500 
501 		DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
502 		   "  using indirect\n", dst_addr, len32);
503 		bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504 		return;
505 	}
506 
507 	/* set opcode and fixed command fields */
508 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
509 
510 	/* fill in addresses and len */
511 	dmae.src_addr_lo = U64_LO(dma_addr);
512 	dmae.src_addr_hi = U64_HI(dma_addr);
513 	dmae.dst_addr_lo = dst_addr >> 2;
514 	dmae.dst_addr_hi = 0;
515 	dmae.len = len32;
516 
517 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
518 
519 	/* issue the command and wait for completion */
520 	bnx2x_issue_dmae_with_comp(bp, &dmae);
521 }
522 
523 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
524 {
525 	struct dmae_command dmae;
526 
527 	if (!bp->dmae_ready) {
528 		u32 *data = bnx2x_sp(bp, wb_data[0]);
529 		int i;
530 
531 		DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
532 		   "  using indirect\n", src_addr, len32);
533 		for (i = 0; i < len32; i++)
534 			data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535 		return;
536 	}
537 
538 	/* set opcode and fixed command fields */
539 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
540 
541 	/* fill in addresses and len */
542 	dmae.src_addr_lo = src_addr >> 2;
543 	dmae.src_addr_hi = 0;
544 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546 	dmae.len = len32;
547 
548 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
549 
550 	/* issue the command and wait for completion */
551 	bnx2x_issue_dmae_with_comp(bp, &dmae);
552 }
553 
554 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555 				      u32 addr, u32 len)
556 {
557 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558 	int offset = 0;
559 
560 	while (len > dmae_wr_max) {
561 		bnx2x_write_dmae(bp, phys_addr + offset,
562 				 addr + offset, dmae_wr_max);
563 		offset += dmae_wr_max * 4;
564 		len -= dmae_wr_max;
565 	}
566 
567 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
568 }
569 
570 /* used only for slowpath so not inlined */
571 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
572 {
573 	u32 wb_write[2];
574 
575 	wb_write[0] = val_hi;
576 	wb_write[1] = val_lo;
577 	REG_WR_DMAE(bp, reg, wb_write, 2);
578 }
579 
580 #ifdef USE_WB_RD
581 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
582 {
583 	u32 wb_data[2];
584 
585 	REG_RD_DMAE(bp, reg, wb_data, 2);
586 
587 	return HILO_U64(wb_data[0], wb_data[1]);
588 }
589 #endif
590 
591 static int bnx2x_mc_assert(struct bnx2x *bp)
592 {
593 	char last_idx;
594 	int i, rc = 0;
595 	u32 row0, row1, row2, row3;
596 
597 	/* XSTORM */
598 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
600 	if (last_idx)
601 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602 
603 	/* print the asserts */
604 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605 
606 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607 			      XSTORM_ASSERT_LIST_OFFSET(i));
608 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
614 
615 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617 				  " 0x%08x 0x%08x 0x%08x\n",
618 				  i, row3, row2, row1, row0);
619 			rc++;
620 		} else {
621 			break;
622 		}
623 	}
624 
625 	/* TSTORM */
626 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
628 	if (last_idx)
629 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630 
631 	/* print the asserts */
632 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633 
634 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 			      TSTORM_ASSERT_LIST_OFFSET(i));
636 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
642 
643 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645 				  " 0x%08x 0x%08x 0x%08x\n",
646 				  i, row3, row2, row1, row0);
647 			rc++;
648 		} else {
649 			break;
650 		}
651 	}
652 
653 	/* CSTORM */
654 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
656 	if (last_idx)
657 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
658 
659 	/* print the asserts */
660 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
661 
662 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663 			      CSTORM_ASSERT_LIST_OFFSET(i));
664 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
670 
671 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673 				  " 0x%08x 0x%08x 0x%08x\n",
674 				  i, row3, row2, row1, row0);
675 			rc++;
676 		} else {
677 			break;
678 		}
679 	}
680 
681 	/* USTORM */
682 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
684 	if (last_idx)
685 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686 
687 	/* print the asserts */
688 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689 
690 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691 			      USTORM_ASSERT_LIST_OFFSET(i));
692 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
694 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
696 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
698 
699 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701 				  " 0x%08x 0x%08x 0x%08x\n",
702 				  i, row3, row2, row1, row0);
703 			rc++;
704 		} else {
705 			break;
706 		}
707 	}
708 
709 	return rc;
710 }
711 
712 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
713 {
714 	u32 addr, val;
715 	u32 mark, offset;
716 	__be32 data[9];
717 	int word;
718 	u32 trace_shmem_base;
719 	if (BP_NOMCP(bp)) {
720 		BNX2X_ERR("NO MCP - can not dump\n");
721 		return;
722 	}
723 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724 		(bp->common.bc_ver & 0xff0000) >> 16,
725 		(bp->common.bc_ver & 0xff00) >> 8,
726 		(bp->common.bc_ver & 0xff));
727 
728 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730 		printk("%s" "MCP PC at 0x%x\n", lvl, val);
731 
732 	if (BP_PATH(bp) == 0)
733 		trace_shmem_base = bp->common.shmem_base;
734 	else
735 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736 	addr = trace_shmem_base - 0x0800 + 4;
737 	mark = REG_RD(bp, addr);
738 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
740 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
741 
742 	printk("%s", lvl);
743 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744 		for (word = 0; word < 8; word++)
745 			data[word] = htonl(REG_RD(bp, offset + 4*word));
746 		data[8] = 0x0;
747 		pr_cont("%s", (char *)data);
748 	}
749 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750 		for (word = 0; word < 8; word++)
751 			data[word] = htonl(REG_RD(bp, offset + 4*word));
752 		data[8] = 0x0;
753 		pr_cont("%s", (char *)data);
754 	}
755 	printk("%s" "end of fw dump\n", lvl);
756 }
757 
758 static inline void bnx2x_fw_dump(struct bnx2x *bp)
759 {
760 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
761 }
762 
763 void bnx2x_panic_dump(struct bnx2x *bp)
764 {
765 	int i;
766 	u16 j;
767 	struct hc_sp_status_block_data sp_sb_data;
768 	int func = BP_FUNC(bp);
769 #ifdef BNX2X_STOP_ON_ERROR
770 	u16 start = 0, end = 0;
771 	u8 cos;
772 #endif
773 
774 	bp->stats_state = STATS_STATE_DISABLED;
775 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
776 
777 	BNX2X_ERR("begin crash dump -----------------\n");
778 
779 	/* Indices */
780 	/* Common */
781 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
782 		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
784 		  bp->spq_prod_idx, bp->stats_counter);
785 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
786 		  bp->def_status_blk->atten_status_block.attn_bits,
787 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
788 		  bp->def_status_blk->atten_status_block.status_block_id,
789 		  bp->def_status_blk->atten_status_block.attn_bits_index);
790 	BNX2X_ERR("     def (");
791 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792 		pr_cont("0x%x%s",
793 			bp->def_status_blk->sp_sb.index_values[i],
794 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
795 
796 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799 			i*sizeof(u32));
800 
801 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
802 	       sp_sb_data.igu_sb_id,
803 	       sp_sb_data.igu_seg_id,
804 	       sp_sb_data.p_func.pf_id,
805 	       sp_sb_data.p_func.vnic_id,
806 	       sp_sb_data.p_func.vf_id,
807 	       sp_sb_data.p_func.vf_valid,
808 	       sp_sb_data.state);
809 
810 
811 	for_each_eth_queue(bp, i) {
812 		struct bnx2x_fastpath *fp = &bp->fp[i];
813 		int loop;
814 		struct hc_status_block_data_e2 sb_data_e2;
815 		struct hc_status_block_data_e1x sb_data_e1x;
816 		struct hc_status_block_sm  *hc_sm_p =
817 			CHIP_IS_E1x(bp) ?
818 			sb_data_e1x.common.state_machine :
819 			sb_data_e2.common.state_machine;
820 		struct hc_index_data *hc_index_p =
821 			CHIP_IS_E1x(bp) ?
822 			sb_data_e1x.index_data :
823 			sb_data_e2.index_data;
824 		u8 data_size, cos;
825 		u32 *sb_data_p;
826 		struct bnx2x_fp_txdata txdata;
827 
828 		/* Rx */
829 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
830 			  "  rx_comp_prod(0x%x)"
831 			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
832 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
833 			  fp->rx_comp_prod,
834 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
836 			  "  fp_hc_idx(0x%x)\n",
837 			  fp->rx_sge_prod, fp->last_max_sge,
838 			  le16_to_cpu(fp->fp_hc_idx));
839 
840 		/* Tx */
841 		for_each_cos_in_tx_queue(fp, cos)
842 		{
843 			txdata = fp->txdata[cos];
844 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
845 				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
846 				  "  *tx_cons_sb(0x%x)\n",
847 				  i, txdata.tx_pkt_prod,
848 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
849 				  txdata.tx_bd_cons,
850 				  le16_to_cpu(*txdata.tx_cons_sb));
851 		}
852 
853 		loop = CHIP_IS_E1x(bp) ?
854 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
855 
856 		/* host sb data */
857 
858 #ifdef BCM_CNIC
859 		if (IS_FCOE_FP(fp))
860 			continue;
861 #endif
862 		BNX2X_ERR("     run indexes (");
863 		for (j = 0; j < HC_SB_MAX_SM; j++)
864 			pr_cont("0x%x%s",
865 			       fp->sb_running_index[j],
866 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
867 
868 		BNX2X_ERR("     indexes (");
869 		for (j = 0; j < loop; j++)
870 			pr_cont("0x%x%s",
871 			       fp->sb_index_values[j],
872 			       (j == loop - 1) ? ")" : " ");
873 		/* fw sb data */
874 		data_size = CHIP_IS_E1x(bp) ?
875 			sizeof(struct hc_status_block_data_e1x) :
876 			sizeof(struct hc_status_block_data_e2);
877 		data_size /= sizeof(u32);
878 		sb_data_p = CHIP_IS_E1x(bp) ?
879 			(u32 *)&sb_data_e1x :
880 			(u32 *)&sb_data_e2;
881 		/* copy sb data in here */
882 		for (j = 0; j < data_size; j++)
883 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885 				j * sizeof(u32));
886 
887 		if (!CHIP_IS_E1x(bp)) {
888 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
889 				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
890 				"state(0x%x)\n",
891 				sb_data_e2.common.p_func.pf_id,
892 				sb_data_e2.common.p_func.vf_id,
893 				sb_data_e2.common.p_func.vf_valid,
894 				sb_data_e2.common.p_func.vnic_id,
895 				sb_data_e2.common.same_igu_sb_1b,
896 				sb_data_e2.common.state);
897 		} else {
898 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
899 				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
900 				"state(0x%x)\n",
901 				sb_data_e1x.common.p_func.pf_id,
902 				sb_data_e1x.common.p_func.vf_id,
903 				sb_data_e1x.common.p_func.vf_valid,
904 				sb_data_e1x.common.p_func.vnic_id,
905 				sb_data_e1x.common.same_igu_sb_1b,
906 				sb_data_e1x.common.state);
907 		}
908 
909 		/* SB_SMs data */
910 		for (j = 0; j < HC_SB_MAX_SM; j++) {
911 			pr_cont("SM[%d] __flags (0x%x) "
912 			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
913 			       "time_to_expire (0x%x) "
914 			       "timer_value(0x%x)\n", j,
915 			       hc_sm_p[j].__flags,
916 			       hc_sm_p[j].igu_sb_id,
917 			       hc_sm_p[j].igu_seg_id,
918 			       hc_sm_p[j].time_to_expire,
919 			       hc_sm_p[j].timer_value);
920 		}
921 
922 		/* Indecies data */
923 		for (j = 0; j < loop; j++) {
924 			pr_cont("INDEX[%d] flags (0x%x) "
925 					 "timeout (0x%x)\n", j,
926 			       hc_index_p[j].flags,
927 			       hc_index_p[j].timeout);
928 		}
929 	}
930 
931 #ifdef BNX2X_STOP_ON_ERROR
932 	/* Rings */
933 	/* Rx */
934 	for_each_rx_queue(bp, i) {
935 		struct bnx2x_fastpath *fp = &bp->fp[i];
936 
937 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939 		for (j = start; j != end; j = RX_BD(j + 1)) {
940 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
942 
943 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
944 				  i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
945 		}
946 
947 		start = RX_SGE(fp->rx_sge_prod);
948 		end = RX_SGE(fp->last_max_sge);
949 		for (j = start; j != end; j = RX_SGE(j + 1)) {
950 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
952 
953 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
954 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
955 		}
956 
957 		start = RCQ_BD(fp->rx_comp_cons - 10);
958 		end = RCQ_BD(fp->rx_comp_cons + 503);
959 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
960 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
961 
962 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
964 		}
965 	}
966 
967 	/* Tx */
968 	for_each_tx_queue(bp, i) {
969 		struct bnx2x_fastpath *fp = &bp->fp[i];
970 		for_each_cos_in_tx_queue(fp, cos) {
971 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
972 
973 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975 			for (j = start; j != end; j = TX_BD(j + 1)) {
976 				struct sw_tx_bd *sw_bd =
977 					&txdata->tx_buf_ring[j];
978 
979 				BNX2X_ERR("fp%d: txdata %d, "
980 					  "packet[%x]=[%p,%x]\n",
981 					  i, cos, j, sw_bd->skb,
982 					  sw_bd->first_bd);
983 			}
984 
985 			start = TX_BD(txdata->tx_bd_cons - 10);
986 			end = TX_BD(txdata->tx_bd_cons + 254);
987 			for (j = start; j != end; j = TX_BD(j + 1)) {
988 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
989 
990 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991 					  "[%x:%x:%x:%x]\n",
992 					  i, cos, j, tx_bd[0], tx_bd[1],
993 					  tx_bd[2], tx_bd[3]);
994 			}
995 		}
996 	}
997 #endif
998 	bnx2x_fw_dump(bp);
999 	bnx2x_mc_assert(bp);
1000 	BNX2X_ERR("end crash dump -----------------\n");
1001 }
1002 
1003 /*
1004  * FLR Support for E2
1005  *
1006  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007  * initialization.
1008  */
1009 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1010 #define FLR_WAIT_INTERAVAL	50	/* usec */
1011 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1012 
1013 struct pbf_pN_buf_regs {
1014 	int pN;
1015 	u32 init_crd;
1016 	u32 crd;
1017 	u32 crd_freed;
1018 };
1019 
1020 struct pbf_pN_cmd_regs {
1021 	int pN;
1022 	u32 lines_occup;
1023 	u32 lines_freed;
1024 };
1025 
1026 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027 				     struct pbf_pN_buf_regs *regs,
1028 				     u32 poll_count)
1029 {
1030 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031 	u32 cur_cnt = poll_count;
1032 
1033 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034 	crd = crd_start = REG_RD(bp, regs->crd);
1035 	init_crd = REG_RD(bp, regs->init_crd);
1036 
1037 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1039 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1040 
1041 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042 	       (init_crd - crd_start))) {
1043 		if (cur_cnt--) {
1044 			udelay(FLR_WAIT_INTERAVAL);
1045 			crd = REG_RD(bp, regs->crd);
1046 			crd_freed = REG_RD(bp, regs->crd_freed);
1047 		} else {
1048 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049 			   regs->pN);
1050 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1051 			   regs->pN, crd);
1052 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053 			   regs->pN, crd_freed);
1054 			break;
1055 		}
1056 	}
1057 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058 	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1059 }
1060 
1061 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062 				     struct pbf_pN_cmd_regs *regs,
1063 				     u32 poll_count)
1064 {
1065 	u32 occup, to_free, freed, freed_start;
1066 	u32 cur_cnt = poll_count;
1067 
1068 	occup = to_free = REG_RD(bp, regs->lines_occup);
1069 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1070 
1071 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1072 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1073 
1074 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075 		if (cur_cnt--) {
1076 			udelay(FLR_WAIT_INTERAVAL);
1077 			occup = REG_RD(bp, regs->lines_occup);
1078 			freed = REG_RD(bp, regs->lines_freed);
1079 		} else {
1080 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081 			   regs->pN);
1082 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1083 			   regs->pN, occup);
1084 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085 			   regs->pN, freed);
1086 			break;
1087 		}
1088 	}
1089 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090 	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1091 }
1092 
1093 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094 				     u32 expected, u32 poll_count)
1095 {
1096 	u32 cur_cnt = poll_count;
1097 	u32 val;
1098 
1099 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100 		udelay(FLR_WAIT_INTERAVAL);
1101 
1102 	return val;
1103 }
1104 
1105 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106 						  char *msg, u32 poll_cnt)
1107 {
1108 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109 	if (val != 0) {
1110 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1111 		return 1;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1117 {
1118 	/* adjust polling timeout */
1119 	if (CHIP_REV_IS_EMUL(bp))
1120 		return FLR_POLL_CNT * 2000;
1121 
1122 	if (CHIP_REV_IS_FPGA(bp))
1123 		return FLR_POLL_CNT * 120;
1124 
1125 	return FLR_POLL_CNT;
1126 }
1127 
1128 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1129 {
1130 	struct pbf_pN_cmd_regs cmd_regs[] = {
1131 		{0, (CHIP_IS_E3B0(bp)) ?
1132 			PBF_REG_TQ_OCCUPANCY_Q0 :
1133 			PBF_REG_P0_TQ_OCCUPANCY,
1134 		    (CHIP_IS_E3B0(bp)) ?
1135 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1137 		{1, (CHIP_IS_E3B0(bp)) ?
1138 			PBF_REG_TQ_OCCUPANCY_Q1 :
1139 			PBF_REG_P1_TQ_OCCUPANCY,
1140 		    (CHIP_IS_E3B0(bp)) ?
1141 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1143 		{4, (CHIP_IS_E3B0(bp)) ?
1144 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1145 			PBF_REG_P4_TQ_OCCUPANCY,
1146 		    (CHIP_IS_E3B0(bp)) ?
1147 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1149 	};
1150 
1151 	struct pbf_pN_buf_regs buf_regs[] = {
1152 		{0, (CHIP_IS_E3B0(bp)) ?
1153 			PBF_REG_INIT_CRD_Q0 :
1154 			PBF_REG_P0_INIT_CRD ,
1155 		    (CHIP_IS_E3B0(bp)) ?
1156 			PBF_REG_CREDIT_Q0 :
1157 			PBF_REG_P0_CREDIT,
1158 		    (CHIP_IS_E3B0(bp)) ?
1159 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161 		{1, (CHIP_IS_E3B0(bp)) ?
1162 			PBF_REG_INIT_CRD_Q1 :
1163 			PBF_REG_P1_INIT_CRD,
1164 		    (CHIP_IS_E3B0(bp)) ?
1165 			PBF_REG_CREDIT_Q1 :
1166 			PBF_REG_P1_CREDIT,
1167 		    (CHIP_IS_E3B0(bp)) ?
1168 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170 		{4, (CHIP_IS_E3B0(bp)) ?
1171 			PBF_REG_INIT_CRD_LB_Q :
1172 			PBF_REG_P4_INIT_CRD,
1173 		    (CHIP_IS_E3B0(bp)) ?
1174 			PBF_REG_CREDIT_LB_Q :
1175 			PBF_REG_P4_CREDIT,
1176 		    (CHIP_IS_E3B0(bp)) ?
1177 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1179 	};
1180 
1181 	int i;
1182 
1183 	/* Verify the command queues are flushed P0, P1, P4 */
1184 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1186 
1187 
1188 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1189 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1191 }
1192 
1193 #define OP_GEN_PARAM(param) \
1194 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1195 
1196 #define OP_GEN_TYPE(type) \
1197 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1198 
1199 #define OP_GEN_AGG_VECT(index) \
1200 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1201 
1202 
1203 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204 					 u32 poll_cnt)
1205 {
1206 	struct sdm_op_gen op_gen = {0};
1207 
1208 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1209 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210 	int ret = 0;
1211 
1212 	if (REG_RD(bp, comp_addr)) {
1213 		BNX2X_ERR("Cleanup complete is not 0\n");
1214 		return 1;
1215 	}
1216 
1217 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1221 
1222 	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1224 
1225 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226 		BNX2X_ERR("FW final cleanup did not succeed\n");
1227 		ret = 1;
1228 	}
1229 	/* Zero completion for nxt FLR */
1230 	REG_WR(bp, comp_addr, 0);
1231 
1232 	return ret;
1233 }
1234 
1235 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1236 {
1237 	int pos;
1238 	u16 status;
1239 
1240 	pos = pci_pcie_cap(dev);
1241 	if (!pos)
1242 		return false;
1243 
1244 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245 	return status & PCI_EXP_DEVSTA_TRPND;
1246 }
1247 
1248 /* PF FLR specific routines
1249 */
1250 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1251 {
1252 
1253 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1256 			"CFC PF usage counter timed out",
1257 			poll_cnt))
1258 		return 1;
1259 
1260 
1261 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263 			DORQ_REG_PF_USAGE_CNT,
1264 			"DQ PF usage counter timed out",
1265 			poll_cnt))
1266 		return 1;
1267 
1268 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271 			"QM PF usage counter timed out",
1272 			poll_cnt))
1273 		return 1;
1274 
1275 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278 			"Timers VNIC usage counter timed out",
1279 			poll_cnt))
1280 		return 1;
1281 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283 			"Timers NUM_SCANS usage counter timed out",
1284 			poll_cnt))
1285 		return 1;
1286 
1287 	/* Wait DMAE PF usage counter to zero */
1288 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1290 			"DMAE dommand register timed out",
1291 			poll_cnt))
1292 		return 1;
1293 
1294 	return 0;
1295 }
1296 
1297 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1298 {
1299 	u32 val;
1300 
1301 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1303 
1304 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1306 
1307 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1309 
1310 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1312 
1313 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1315 
1316 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1318 
1319 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1321 
1322 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324 	   val);
1325 }
1326 
1327 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1328 {
1329 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1330 
1331 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1332 
1333 	/* Re-enable PF target read access */
1334 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1335 
1336 	/* Poll HW usage counters */
1337 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338 		return -EBUSY;
1339 
1340 	/* Zero the igu 'trailing edge' and 'leading edge' */
1341 
1342 	/* Send the FW cleanup command */
1343 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344 		return -EBUSY;
1345 
1346 	/* ATC cleanup */
1347 
1348 	/* Verify TX hw is flushed */
1349 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1350 
1351 	/* Wait 100ms (not adjusted according to platform) */
1352 	msleep(100);
1353 
1354 	/* Verify no pending pci transactions */
1355 	if (bnx2x_is_pcie_pending(bp->pdev))
1356 		BNX2X_ERR("PCIE Transactions still pending\n");
1357 
1358 	/* Debug */
1359 	bnx2x_hw_enable_status(bp);
1360 
1361 	/*
1362 	 * Master enable - Due to WB DMAE writes performed before this
1363 	 * register is re-initialized as part of the regular function init
1364 	 */
1365 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1366 
1367 	return 0;
1368 }
1369 
1370 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1371 {
1372 	int port = BP_PORT(bp);
1373 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374 	u32 val = REG_RD(bp, addr);
1375 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1377 
1378 	if (msix) {
1379 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383 	} else if (msi) {
1384 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388 	} else {
1389 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393 
1394 		if (!CHIP_IS_E1(bp)) {
1395 			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396 			   val, port, addr);
1397 
1398 			REG_WR(bp, addr, val);
1399 
1400 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1401 		}
1402 	}
1403 
1404 	if (CHIP_IS_E1(bp))
1405 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1406 
1407 	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1408 	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1409 
1410 	REG_WR(bp, addr, val);
1411 	/*
1412 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413 	 */
1414 	mmiowb();
1415 	barrier();
1416 
1417 	if (!CHIP_IS_E1(bp)) {
1418 		/* init leading/trailing edge */
1419 		if (IS_MF(bp)) {
1420 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1421 			if (bp->port.pmf)
1422 				/* enable nig and gpio3 attention */
1423 				val |= 0x1100;
1424 		} else
1425 			val = 0xffff;
1426 
1427 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1429 	}
1430 
1431 	/* Make sure that interrupts are indeed enabled from here on */
1432 	mmiowb();
1433 }
1434 
1435 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1436 {
1437 	u32 val;
1438 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1440 
1441 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1442 
1443 	if (msix) {
1444 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445 			 IGU_PF_CONF_SINGLE_ISR_EN);
1446 		val |= (IGU_PF_CONF_FUNC_EN |
1447 			IGU_PF_CONF_MSI_MSIX_EN |
1448 			IGU_PF_CONF_ATTN_BIT_EN);
1449 	} else if (msi) {
1450 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1451 		val |= (IGU_PF_CONF_FUNC_EN |
1452 			IGU_PF_CONF_MSI_MSIX_EN |
1453 			IGU_PF_CONF_ATTN_BIT_EN |
1454 			IGU_PF_CONF_SINGLE_ISR_EN);
1455 	} else {
1456 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457 		val |= (IGU_PF_CONF_FUNC_EN |
1458 			IGU_PF_CONF_INT_LINE_EN |
1459 			IGU_PF_CONF_ATTN_BIT_EN |
1460 			IGU_PF_CONF_SINGLE_ISR_EN);
1461 	}
1462 
1463 	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1464 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1465 
1466 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467 
1468 	barrier();
1469 
1470 	/* init leading/trailing edge */
1471 	if (IS_MF(bp)) {
1472 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1473 		if (bp->port.pmf)
1474 			/* enable nig and gpio3 attention */
1475 			val |= 0x1100;
1476 	} else
1477 		val = 0xffff;
1478 
1479 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1481 
1482 	/* Make sure that interrupts are indeed enabled from here on */
1483 	mmiowb();
1484 }
1485 
1486 void bnx2x_int_enable(struct bnx2x *bp)
1487 {
1488 	if (bp->common.int_block == INT_BLOCK_HC)
1489 		bnx2x_hc_int_enable(bp);
1490 	else
1491 		bnx2x_igu_int_enable(bp);
1492 }
1493 
1494 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1495 {
1496 	int port = BP_PORT(bp);
1497 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498 	u32 val = REG_RD(bp, addr);
1499 
1500 	/*
1501 	 * in E1 we must use only PCI configuration space to disable
1502 	 * MSI/MSIX capablility
1503 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1504 	 */
1505 	if (CHIP_IS_E1(bp)) {
1506 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507 		 *  Use mask register to prevent from HC sending interrupts
1508 		 *  after we exit the function
1509 		 */
1510 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1511 
1512 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515 	} else
1516 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1520 
1521 	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522 	   val, port, addr);
1523 
1524 	/* flush all outstanding writes */
1525 	mmiowb();
1526 
1527 	REG_WR(bp, addr, val);
1528 	if (REG_RD(bp, addr) != val)
1529 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1530 }
1531 
1532 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1533 {
1534 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1535 
1536 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537 		 IGU_PF_CONF_INT_LINE_EN |
1538 		 IGU_PF_CONF_ATTN_BIT_EN);
1539 
1540 	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1541 
1542 	/* flush all outstanding writes */
1543 	mmiowb();
1544 
1545 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1548 }
1549 
1550 void bnx2x_int_disable(struct bnx2x *bp)
1551 {
1552 	if (bp->common.int_block == INT_BLOCK_HC)
1553 		bnx2x_hc_int_disable(bp);
1554 	else
1555 		bnx2x_igu_int_disable(bp);
1556 }
1557 
1558 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1559 {
1560 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561 	int i, offset;
1562 
1563 	if (disable_hw)
1564 		/* prevent the HW from sending interrupts */
1565 		bnx2x_int_disable(bp);
1566 
1567 	/* make sure all ISRs are done */
1568 	if (msix) {
1569 		synchronize_irq(bp->msix_table[0].vector);
1570 		offset = 1;
1571 #ifdef BCM_CNIC
1572 		offset++;
1573 #endif
1574 		for_each_eth_queue(bp, i)
1575 			synchronize_irq(bp->msix_table[offset++].vector);
1576 	} else
1577 		synchronize_irq(bp->pdev->irq);
1578 
1579 	/* make sure sp_task is not running */
1580 	cancel_delayed_work(&bp->sp_task);
1581 	cancel_delayed_work(&bp->period_task);
1582 	flush_workqueue(bnx2x_wq);
1583 }
1584 
1585 /* fast path */
1586 
1587 /*
1588  * General service functions
1589  */
1590 
1591 /* Return true if succeeded to acquire the lock */
1592 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1593 {
1594 	u32 lock_status;
1595 	u32 resource_bit = (1 << resource);
1596 	int func = BP_FUNC(bp);
1597 	u32 hw_lock_control_reg;
1598 
1599 	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1600 
1601 	/* Validating that the resource is within range */
1602 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603 		DP(NETIF_MSG_HW,
1604 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606 		return false;
1607 	}
1608 
1609 	if (func <= 5)
1610 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611 	else
1612 		hw_lock_control_reg =
1613 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1614 
1615 	/* Try to acquire the lock */
1616 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617 	lock_status = REG_RD(bp, hw_lock_control_reg);
1618 	if (lock_status & resource_bit)
1619 		return true;
1620 
1621 	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622 	return false;
1623 }
1624 
1625 /**
1626  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1627  *
1628  * @bp:	driver handle
1629  *
1630  * Returns the recovery leader resource id according to the engine this function
1631  * belongs to. Currently only only 2 engines is supported.
1632  */
1633 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1634 {
1635 	if (BP_PATH(bp))
1636 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637 	else
1638 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1639 }
1640 
1641 /**
1642  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1643  *
1644  * @bp: driver handle
1645  *
1646  * Tries to aquire a leader lock for cuurent engine.
1647  */
1648 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1649 {
1650 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1651 }
1652 
1653 #ifdef BCM_CNIC
1654 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655 #endif
1656 
1657 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1658 {
1659 	struct bnx2x *bp = fp->bp;
1660 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1664 
1665 	DP(BNX2X_MSG_SP,
1666 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1667 	   fp->index, cid, command, bp->state,
1668 	   rr_cqe->ramrod_cqe.ramrod_type);
1669 
1670 	switch (command) {
1671 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1674 		break;
1675 
1676 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678 		drv_cmd = BNX2X_Q_CMD_SETUP;
1679 		break;
1680 
1681 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682 		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684 		break;
1685 
1686 	case (RAMROD_CMD_ID_ETH_HALT):
1687 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688 		drv_cmd = BNX2X_Q_CMD_HALT;
1689 		break;
1690 
1691 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1692 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694 		break;
1695 
1696 	case (RAMROD_CMD_ID_ETH_EMPTY):
1697 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1699 		break;
1700 
1701 	default:
1702 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703 			  command, fp->index);
1704 		return;
1705 	}
1706 
1707 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709 		/* q_obj->complete_cmd() failure means that this was
1710 		 * an unexpected completion.
1711 		 *
1712 		 * In this case we don't want to increase the bp->spq_left
1713 		 * because apparently we haven't sent this command the first
1714 		 * place.
1715 		 */
1716 #ifdef BNX2X_STOP_ON_ERROR
1717 		bnx2x_panic();
1718 #else
1719 		return;
1720 #endif
1721 
1722 	smp_mb__before_atomic_inc();
1723 	atomic_inc(&bp->cq_spq_left);
1724 	/* push the change in bp->spq_left and towards the memory */
1725 	smp_mb__after_atomic_inc();
1726 
1727 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1728 
1729 	return;
1730 }
1731 
1732 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1734 {
1735 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1736 
1737 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738 				 start);
1739 }
1740 
1741 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1742 {
1743 	struct bnx2x *bp = netdev_priv(dev_instance);
1744 	u16 status = bnx2x_ack_int(bp);
1745 	u16 mask;
1746 	int i;
1747 	u8 cos;
1748 
1749 	/* Return here if interrupt is shared and it's not for us */
1750 	if (unlikely(status == 0)) {
1751 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752 		return IRQ_NONE;
1753 	}
1754 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1755 
1756 #ifdef BNX2X_STOP_ON_ERROR
1757 	if (unlikely(bp->panic))
1758 		return IRQ_HANDLED;
1759 #endif
1760 
1761 	for_each_eth_queue(bp, i) {
1762 		struct bnx2x_fastpath *fp = &bp->fp[i];
1763 
1764 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1765 		if (status & mask) {
1766 			/* Handle Rx or Tx according to SB id */
1767 			prefetch(fp->rx_cons_sb);
1768 			for_each_cos_in_tx_queue(fp, cos)
1769 				prefetch(fp->txdata[cos].tx_cons_sb);
1770 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1771 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772 			status &= ~mask;
1773 		}
1774 	}
1775 
1776 #ifdef BCM_CNIC
1777 	mask = 0x2;
1778 	if (status & (mask | 0x1)) {
1779 		struct cnic_ops *c_ops = NULL;
1780 
1781 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782 			rcu_read_lock();
1783 			c_ops = rcu_dereference(bp->cnic_ops);
1784 			if (c_ops)
1785 				c_ops->cnic_handler(bp->cnic_data, NULL);
1786 			rcu_read_unlock();
1787 		}
1788 
1789 		status &= ~mask;
1790 	}
1791 #endif
1792 
1793 	if (unlikely(status & 0x1)) {
1794 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795 
1796 		status &= ~0x1;
1797 		if (!status)
1798 			return IRQ_HANDLED;
1799 	}
1800 
1801 	if (unlikely(status))
1802 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803 		   status);
1804 
1805 	return IRQ_HANDLED;
1806 }
1807 
1808 /* Link */
1809 
1810 /*
1811  * General service functions
1812  */
1813 
1814 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1815 {
1816 	u32 lock_status;
1817 	u32 resource_bit = (1 << resource);
1818 	int func = BP_FUNC(bp);
1819 	u32 hw_lock_control_reg;
1820 	int cnt;
1821 
1822 	/* Validating that the resource is within range */
1823 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824 		DP(NETIF_MSG_HW,
1825 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827 		return -EINVAL;
1828 	}
1829 
1830 	if (func <= 5) {
1831 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832 	} else {
1833 		hw_lock_control_reg =
1834 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1835 	}
1836 
1837 	/* Validating that the resource is not already taken */
1838 	lock_status = REG_RD(bp, hw_lock_control_reg);
1839 	if (lock_status & resource_bit) {
1840 		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1841 		   lock_status, resource_bit);
1842 		return -EEXIST;
1843 	}
1844 
1845 	/* Try for 5 second every 5ms */
1846 	for (cnt = 0; cnt < 1000; cnt++) {
1847 		/* Try to acquire the lock */
1848 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849 		lock_status = REG_RD(bp, hw_lock_control_reg);
1850 		if (lock_status & resource_bit)
1851 			return 0;
1852 
1853 		msleep(5);
1854 	}
1855 	DP(NETIF_MSG_HW, "Timeout\n");
1856 	return -EAGAIN;
1857 }
1858 
1859 int bnx2x_release_leader_lock(struct bnx2x *bp)
1860 {
1861 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1862 }
1863 
1864 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1865 {
1866 	u32 lock_status;
1867 	u32 resource_bit = (1 << resource);
1868 	int func = BP_FUNC(bp);
1869 	u32 hw_lock_control_reg;
1870 
1871 	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1872 
1873 	/* Validating that the resource is within range */
1874 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875 		DP(NETIF_MSG_HW,
1876 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878 		return -EINVAL;
1879 	}
1880 
1881 	if (func <= 5) {
1882 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883 	} else {
1884 		hw_lock_control_reg =
1885 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1886 	}
1887 
1888 	/* Validating that the resource is currently taken */
1889 	lock_status = REG_RD(bp, hw_lock_control_reg);
1890 	if (!(lock_status & resource_bit)) {
1891 		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1892 		   lock_status, resource_bit);
1893 		return -EFAULT;
1894 	}
1895 
1896 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1897 	return 0;
1898 }
1899 
1900 
1901 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1902 {
1903 	/* The GPIO should be swapped if swap register is set and active */
1904 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906 	int gpio_shift = gpio_num +
1907 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908 	u32 gpio_mask = (1 << gpio_shift);
1909 	u32 gpio_reg;
1910 	int value;
1911 
1912 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914 		return -EINVAL;
1915 	}
1916 
1917 	/* read GPIO value */
1918 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1919 
1920 	/* get the requested pin value */
1921 	if ((gpio_reg & gpio_mask) == gpio_mask)
1922 		value = 1;
1923 	else
1924 		value = 0;
1925 
1926 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1927 
1928 	return value;
1929 }
1930 
1931 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1932 {
1933 	/* The GPIO should be swapped if swap register is set and active */
1934 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936 	int gpio_shift = gpio_num +
1937 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938 	u32 gpio_mask = (1 << gpio_shift);
1939 	u32 gpio_reg;
1940 
1941 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943 		return -EINVAL;
1944 	}
1945 
1946 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947 	/* read GPIO and mask except the float bits */
1948 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1949 
1950 	switch (mode) {
1951 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953 		   gpio_num, gpio_shift);
1954 		/* clear FLOAT and set CLR */
1955 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957 		break;
1958 
1959 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961 		   gpio_num, gpio_shift);
1962 		/* clear FLOAT and set SET */
1963 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965 		break;
1966 
1967 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969 		   gpio_num, gpio_shift);
1970 		/* set FLOAT */
1971 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 		break;
1973 
1974 	default:
1975 		break;
1976 	}
1977 
1978 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1980 
1981 	return 0;
1982 }
1983 
1984 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1985 {
1986 	u32 gpio_reg = 0;
1987 	int rc = 0;
1988 
1989 	/* Any port swapping should be handled by caller. */
1990 
1991 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992 	/* read GPIO and mask except the float bits */
1993 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1997 
1998 	switch (mode) {
1999 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001 		/* set CLR */
2002 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003 		break;
2004 
2005 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007 		/* set SET */
2008 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009 		break;
2010 
2011 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013 		/* set FLOAT */
2014 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015 		break;
2016 
2017 	default:
2018 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019 		rc = -EINVAL;
2020 		break;
2021 	}
2022 
2023 	if (rc == 0)
2024 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2025 
2026 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2027 
2028 	return rc;
2029 }
2030 
2031 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032 {
2033 	/* The GPIO should be swapped if swap register is set and active */
2034 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 	int gpio_shift = gpio_num +
2037 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 	u32 gpio_mask = (1 << gpio_shift);
2039 	u32 gpio_reg;
2040 
2041 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 		return -EINVAL;
2044 	}
2045 
2046 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 	/* read GPIO int */
2048 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2049 
2050 	switch (mode) {
2051 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052 		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053 				   "output low\n", gpio_num, gpio_shift);
2054 		/* clear SET and set CLR */
2055 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057 		break;
2058 
2059 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060 		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061 				   "output high\n", gpio_num, gpio_shift);
2062 		/* clear CLR and set SET */
2063 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065 		break;
2066 
2067 	default:
2068 		break;
2069 	}
2070 
2071 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2073 
2074 	return 0;
2075 }
2076 
2077 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2078 {
2079 	u32 spio_mask = (1 << spio_num);
2080 	u32 spio_reg;
2081 
2082 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2084 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085 		return -EINVAL;
2086 	}
2087 
2088 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089 	/* read SPIO and mask except the float bits */
2090 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2091 
2092 	switch (mode) {
2093 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094 		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095 		/* clear FLOAT and set CLR */
2096 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098 		break;
2099 
2100 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101 		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102 		/* clear FLOAT and set SET */
2103 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105 		break;
2106 
2107 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108 		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109 		/* set FLOAT */
2110 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111 		break;
2112 
2113 	default:
2114 		break;
2115 	}
2116 
2117 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2119 
2120 	return 0;
2121 }
2122 
2123 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2124 {
2125 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126 	switch (bp->link_vars.ieee_fc &
2127 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130 						   ADVERTISED_Pause);
2131 		break;
2132 
2133 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135 						  ADVERTISED_Pause);
2136 		break;
2137 
2138 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140 		break;
2141 
2142 	default:
2143 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144 						   ADVERTISED_Pause);
2145 		break;
2146 	}
2147 }
2148 
2149 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2150 {
2151 	if (!BP_NOMCP(bp)) {
2152 		u8 rc;
2153 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2155 		/*
2156 		 * Initialize link parameters structure variables
2157 		 * It is recommended to turn off RX FC for jumbo frames
2158 		 * for better performance
2159 		 */
2160 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162 		else
2163 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2164 
2165 		bnx2x_acquire_phy_lock(bp);
2166 
2167 		if (load_mode == LOAD_DIAG) {
2168 			struct link_params *lp = &bp->link_params;
2169 			lp->loopback_mode = LOOPBACK_XGXS;
2170 			/* do PHY loopback at 10G speed, if possible */
2171 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172 				if (lp->speed_cap_mask[cfx_idx] &
2173 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174 					lp->req_line_speed[cfx_idx] =
2175 					SPEED_10000;
2176 				else
2177 					lp->req_line_speed[cfx_idx] =
2178 					SPEED_1000;
2179 			}
2180 		}
2181 
2182 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2183 
2184 		bnx2x_release_phy_lock(bp);
2185 
2186 		bnx2x_calc_fc_adv(bp);
2187 
2188 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190 			bnx2x_link_report(bp);
2191 		} else
2192 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194 		return rc;
2195 	}
2196 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197 	return -EINVAL;
2198 }
2199 
2200 void bnx2x_link_set(struct bnx2x *bp)
2201 {
2202 	if (!BP_NOMCP(bp)) {
2203 		bnx2x_acquire_phy_lock(bp);
2204 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206 		bnx2x_release_phy_lock(bp);
2207 
2208 		bnx2x_calc_fc_adv(bp);
2209 	} else
2210 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2211 }
2212 
2213 static void bnx2x__link_reset(struct bnx2x *bp)
2214 {
2215 	if (!BP_NOMCP(bp)) {
2216 		bnx2x_acquire_phy_lock(bp);
2217 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218 		bnx2x_release_phy_lock(bp);
2219 	} else
2220 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2221 }
2222 
2223 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2224 {
2225 	u8 rc = 0;
2226 
2227 	if (!BP_NOMCP(bp)) {
2228 		bnx2x_acquire_phy_lock(bp);
2229 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230 				     is_serdes);
2231 		bnx2x_release_phy_lock(bp);
2232 	} else
2233 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2234 
2235 	return rc;
2236 }
2237 
2238 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2239 {
2240 	u32 r_param = bp->link_vars.line_speed / 8;
2241 	u32 fair_periodic_timeout_usec;
2242 	u32 t_fair;
2243 
2244 	memset(&(bp->cmng.rs_vars), 0,
2245 	       sizeof(struct rate_shaping_vars_per_port));
2246 	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2247 
2248 	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249 	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2250 
2251 	/* this is the threshold below which no timer arming will occur
2252 	   1.25 coefficient is for the threshold to be a little bigger
2253 	   than the real time, to compensate for timer in-accuracy */
2254 	bp->cmng.rs_vars.rs_threshold =
2255 				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2256 
2257 	/* resolution of fairness timer */
2258 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259 	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2260 	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2261 
2262 	/* this is the threshold below which we won't arm the timer anymore */
2263 	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2264 
2265 	/* we multiply by 1e3/8 to get bytes/msec.
2266 	   We don't want the credits to pass a credit
2267 	   of the t_fair*FAIR_MEM (algorithm resolution) */
2268 	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269 	/* since each tick is 4 usec */
2270 	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2271 }
2272 
2273 /* Calculates the sum of vn_min_rates.
2274    It's needed for further normalizing of the min_rates.
2275    Returns:
2276      sum of vn_min_rates.
2277        or
2278      0 - if all the min_rates are 0.
2279      In the later case fainess algorithm should be deactivated.
2280      If not all min_rates are zero then those that are zeroes will be set to 1.
2281  */
2282 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2283 {
2284 	int all_zero = 1;
2285 	int vn;
2286 
2287 	bp->vn_weight_sum = 0;
2288 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2289 		u32 vn_cfg = bp->mf_config[vn];
2290 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2292 
2293 		/* Skip hidden vns */
2294 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295 			continue;
2296 
2297 		/* If min rate is zero - set it to 1 */
2298 		if (!vn_min_rate)
2299 			vn_min_rate = DEF_MIN_RATE;
2300 		else
2301 			all_zero = 0;
2302 
2303 		bp->vn_weight_sum += vn_min_rate;
2304 	}
2305 
2306 	/* if ETS or all min rates are zeros - disable fairness */
2307 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2308 		bp->cmng.flags.cmng_enables &=
2309 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311 	} else if (all_zero) {
2312 		bp->cmng.flags.cmng_enables &=
2313 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314 		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315 		   "  fairness will be disabled\n");
2316 	} else
2317 		bp->cmng.flags.cmng_enables |=
2318 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2319 }
2320 
2321 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2322 {
2323 	struct rate_shaping_vars_per_vn m_rs_vn;
2324 	struct fairness_vars_per_vn m_fair_vn;
2325 	u32 vn_cfg = bp->mf_config[vn];
2326 	int func = func_by_vn(bp, vn);
2327 	u16 vn_min_rate, vn_max_rate;
2328 	int i;
2329 
2330 	/* If function is hidden - set min and max to zeroes */
2331 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2332 		vn_min_rate = 0;
2333 		vn_max_rate = 0;
2334 
2335 	} else {
2336 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2337 
2338 		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2339 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2340 		/* If fairness is enabled (not all min rates are zeroes) and
2341 		   if current min rate is zero - set it to 1.
2342 		   This is a requirement of the algorithm. */
2343 		if (bp->vn_weight_sum && (vn_min_rate == 0))
2344 			vn_min_rate = DEF_MIN_RATE;
2345 
2346 		if (IS_MF_SI(bp))
2347 			/* maxCfg in percents of linkspeed */
2348 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2349 		else
2350 			/* maxCfg is absolute in 100Mb units */
2351 			vn_max_rate = maxCfg * 100;
2352 	}
2353 
2354 	DP(NETIF_MSG_IFUP,
2355 	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2356 	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2357 
2358 	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2359 	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2360 
2361 	/* global vn counter - maximal Mbps for this vn */
2362 	m_rs_vn.vn_counter.rate = vn_max_rate;
2363 
2364 	/* quota - number of bytes transmitted in this period */
2365 	m_rs_vn.vn_counter.quota =
2366 				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2367 
2368 	if (bp->vn_weight_sum) {
2369 		/* credit for each period of the fairness algorithm:
2370 		   number of bytes in T_FAIR (the vn share the port rate).
2371 		   vn_weight_sum should not be larger than 10000, thus
2372 		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2373 		   than zero */
2374 		m_fair_vn.vn_credit_delta =
2375 			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2376 						   (8 * bp->vn_weight_sum))),
2377 			      (bp->cmng.fair_vars.fair_threshold +
2378 							MIN_ABOVE_THRESH));
2379 		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2380 		   m_fair_vn.vn_credit_delta);
2381 	}
2382 
2383 	/* Store it to internal memory */
2384 	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2385 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2386 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2387 		       ((u32 *)(&m_rs_vn))[i]);
2388 
2389 	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2390 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2391 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2392 		       ((u32 *)(&m_fair_vn))[i]);
2393 }
2394 
2395 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2396 {
2397 	if (CHIP_REV_IS_SLOW(bp))
2398 		return CMNG_FNS_NONE;
2399 	if (IS_MF(bp))
2400 		return CMNG_FNS_MINMAX;
2401 
2402 	return CMNG_FNS_NONE;
2403 }
2404 
2405 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2406 {
2407 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2408 
2409 	if (BP_NOMCP(bp))
2410 		return; /* what should be the default bvalue in this case */
2411 
2412 	/* For 2 port configuration the absolute function number formula
2413 	 * is:
2414 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2415 	 *
2416 	 *      and there are 4 functions per port
2417 	 *
2418 	 * For 4 port configuration it is
2419 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2420 	 *
2421 	 *      and there are 2 functions per port
2422 	 */
2423 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2424 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2425 
2426 		if (func >= E1H_FUNC_MAX)
2427 			break;
2428 
2429 		bp->mf_config[vn] =
2430 			MF_CFG_RD(bp, func_mf_config[func].config);
2431 	}
2432 }
2433 
2434 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2435 {
2436 
2437 	if (cmng_type == CMNG_FNS_MINMAX) {
2438 		int vn;
2439 
2440 		/* clear cmng_enables */
2441 		bp->cmng.flags.cmng_enables = 0;
2442 
2443 		/* read mf conf from shmem */
2444 		if (read_cfg)
2445 			bnx2x_read_mf_cfg(bp);
2446 
2447 		/* Init rate shaping and fairness contexts */
2448 		bnx2x_init_port_minmax(bp);
2449 
2450 		/* vn_weight_sum and enable fairness if not 0 */
2451 		bnx2x_calc_vn_weight_sum(bp);
2452 
2453 		/* calculate and set min-max rate for each vn */
2454 		if (bp->port.pmf)
2455 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2456 				bnx2x_init_vn_minmax(bp, vn);
2457 
2458 		/* always enable rate shaping and fairness */
2459 		bp->cmng.flags.cmng_enables |=
2460 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2461 		if (!bp->vn_weight_sum)
2462 			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2463 				   "  fairness will be disabled\n");
2464 		return;
2465 	}
2466 
2467 	/* rate shaping and fairness are disabled */
2468 	DP(NETIF_MSG_IFUP,
2469 	   "rate shaping and fairness are disabled\n");
2470 }
2471 
2472 /* This function is called upon link interrupt */
2473 static void bnx2x_link_attn(struct bnx2x *bp)
2474 {
2475 	/* Make sure that we are synced with the current statistics */
2476 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2477 
2478 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2479 
2480 	if (bp->link_vars.link_up) {
2481 
2482 		/* dropless flow control */
2483 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2484 			int port = BP_PORT(bp);
2485 			u32 pause_enabled = 0;
2486 
2487 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2488 				pause_enabled = 1;
2489 
2490 			REG_WR(bp, BAR_USTRORM_INTMEM +
2491 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2492 			       pause_enabled);
2493 		}
2494 
2495 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2496 			struct host_port_stats *pstats;
2497 
2498 			pstats = bnx2x_sp(bp, port_stats);
2499 			/* reset old mac stats */
2500 			memset(&(pstats->mac_stx[0]), 0,
2501 			       sizeof(struct mac_stx));
2502 		}
2503 		if (bp->state == BNX2X_STATE_OPEN)
2504 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2505 	}
2506 
2507 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2508 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2509 
2510 		if (cmng_fns != CMNG_FNS_NONE) {
2511 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2512 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2513 		} else
2514 			/* rate shaping and fairness are disabled */
2515 			DP(NETIF_MSG_IFUP,
2516 			   "single function mode without fairness\n");
2517 	}
2518 
2519 	__bnx2x_link_report(bp);
2520 
2521 	if (IS_MF(bp))
2522 		bnx2x_link_sync_notify(bp);
2523 }
2524 
2525 void bnx2x__link_status_update(struct bnx2x *bp)
2526 {
2527 	if (bp->state != BNX2X_STATE_OPEN)
2528 		return;
2529 
2530 	/* read updated dcb configuration */
2531 	bnx2x_dcbx_pmf_update(bp);
2532 
2533 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2534 
2535 	if (bp->link_vars.link_up)
2536 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2537 	else
2538 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2539 
2540 	/* indicate link status */
2541 	bnx2x_link_report(bp);
2542 }
2543 
2544 static void bnx2x_pmf_update(struct bnx2x *bp)
2545 {
2546 	int port = BP_PORT(bp);
2547 	u32 val;
2548 
2549 	bp->port.pmf = 1;
2550 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2551 
2552 	/*
2553 	 * We need the mb() to ensure the ordering between the writing to
2554 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2555 	 */
2556 	smp_mb();
2557 
2558 	/* queue a periodic task */
2559 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2560 
2561 	bnx2x_dcbx_pmf_update(bp);
2562 
2563 	/* enable nig attention */
2564 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2565 	if (bp->common.int_block == INT_BLOCK_HC) {
2566 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2567 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2568 	} else if (!CHIP_IS_E1x(bp)) {
2569 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2570 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2571 	}
2572 
2573 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2574 }
2575 
2576 /* end of Link */
2577 
2578 /* slow path */
2579 
2580 /*
2581  * General service functions
2582  */
2583 
2584 /* send the MCP a request, block until there is a reply */
2585 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2586 {
2587 	int mb_idx = BP_FW_MB_IDX(bp);
2588 	u32 seq;
2589 	u32 rc = 0;
2590 	u32 cnt = 1;
2591 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2592 
2593 	mutex_lock(&bp->fw_mb_mutex);
2594 	seq = ++bp->fw_seq;
2595 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2596 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2597 
2598 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2599 			(command | seq), param);
2600 
2601 	do {
2602 		/* let the FW do it's magic ... */
2603 		msleep(delay);
2604 
2605 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2606 
2607 		/* Give the FW up to 5 second (500*10ms) */
2608 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2609 
2610 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2611 	   cnt*delay, rc, seq);
2612 
2613 	/* is this a reply to our command? */
2614 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2615 		rc &= FW_MSG_CODE_MASK;
2616 	else {
2617 		/* FW BUG! */
2618 		BNX2X_ERR("FW failed to respond!\n");
2619 		bnx2x_fw_dump(bp);
2620 		rc = 0;
2621 	}
2622 	mutex_unlock(&bp->fw_mb_mutex);
2623 
2624 	return rc;
2625 }
2626 
2627 
2628 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2629 {
2630 	if (CHIP_IS_E1x(bp)) {
2631 		struct tstorm_eth_function_common_config tcfg = {0};
2632 
2633 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2634 	}
2635 
2636 	/* Enable the function in the FW */
2637 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2638 	storm_memset_func_en(bp, p->func_id, 1);
2639 
2640 	/* spq */
2641 	if (p->func_flgs & FUNC_FLG_SPQ) {
2642 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2643 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2644 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2645 	}
2646 }
2647 
2648 /**
2649  * bnx2x_get_tx_only_flags - Return common flags
2650  *
2651  * @bp		device handle
2652  * @fp		queue handle
2653  * @zero_stats	TRUE if statistics zeroing is needed
2654  *
2655  * Return the flags that are common for the Tx-only and not normal connections.
2656  */
2657 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2658 						   struct bnx2x_fastpath *fp,
2659 						   bool zero_stats)
2660 {
2661 	unsigned long flags = 0;
2662 
2663 	/* PF driver will always initialize the Queue to an ACTIVE state */
2664 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2665 
2666 	/* tx only connections collect statistics (on the same index as the
2667 	 *  parent connection). The statistics are zeroed when the parent
2668 	 *  connection is initialized.
2669 	 */
2670 
2671 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2672 	if (zero_stats)
2673 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2674 
2675 
2676 	return flags;
2677 }
2678 
2679 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2680 					      struct bnx2x_fastpath *fp,
2681 					      bool leading)
2682 {
2683 	unsigned long flags = 0;
2684 
2685 	/* calculate other queue flags */
2686 	if (IS_MF_SD(bp))
2687 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2688 
2689 	if (IS_FCOE_FP(fp))
2690 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2691 
2692 	if (!fp->disable_tpa) {
2693 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2694 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2695 	}
2696 
2697 	if (leading) {
2698 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2699 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2700 	}
2701 
2702 	/* Always set HW VLAN stripping */
2703 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2704 
2705 
2706 	return flags | bnx2x_get_common_flags(bp, fp, true);
2707 }
2708 
2709 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2710 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2711 	u8 cos)
2712 {
2713 	gen_init->stat_id = bnx2x_stats_id(fp);
2714 	gen_init->spcl_id = fp->cl_id;
2715 
2716 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2717 	if (IS_FCOE_FP(fp))
2718 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2719 	else
2720 		gen_init->mtu = bp->dev->mtu;
2721 
2722 	gen_init->cos = cos;
2723 }
2724 
2725 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2726 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2727 	struct bnx2x_rxq_setup_params *rxq_init)
2728 {
2729 	u8 max_sge = 0;
2730 	u16 sge_sz = 0;
2731 	u16 tpa_agg_size = 0;
2732 
2733 	if (!fp->disable_tpa) {
2734 		pause->sge_th_lo = SGE_TH_LO(bp);
2735 		pause->sge_th_hi = SGE_TH_HI(bp);
2736 
2737 		/* validate SGE ring has enough to cross high threshold */
2738 		WARN_ON(bp->dropless_fc &&
2739 				pause->sge_th_hi + FW_PREFETCH_CNT >
2740 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2741 
2742 		tpa_agg_size = min_t(u32,
2743 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2744 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2745 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2746 			SGE_PAGE_SHIFT;
2747 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2748 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2749 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2750 				    0xffff);
2751 	}
2752 
2753 	/* pause - not for e1 */
2754 	if (!CHIP_IS_E1(bp)) {
2755 		pause->bd_th_lo = BD_TH_LO(bp);
2756 		pause->bd_th_hi = BD_TH_HI(bp);
2757 
2758 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2759 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2760 		/*
2761 		 * validate that rings have enough entries to cross
2762 		 * high thresholds
2763 		 */
2764 		WARN_ON(bp->dropless_fc &&
2765 				pause->bd_th_hi + FW_PREFETCH_CNT >
2766 				bp->rx_ring_size);
2767 		WARN_ON(bp->dropless_fc &&
2768 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2769 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2770 
2771 		pause->pri_map = 1;
2772 	}
2773 
2774 	/* rxq setup */
2775 	rxq_init->dscr_map = fp->rx_desc_mapping;
2776 	rxq_init->sge_map = fp->rx_sge_mapping;
2777 	rxq_init->rcq_map = fp->rx_comp_mapping;
2778 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2779 
2780 	/* This should be a maximum number of data bytes that may be
2781 	 * placed on the BD (not including paddings).
2782 	 */
2783 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2784 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2785 
2786 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2787 	rxq_init->tpa_agg_sz = tpa_agg_size;
2788 	rxq_init->sge_buf_sz = sge_sz;
2789 	rxq_init->max_sges_pkt = max_sge;
2790 	rxq_init->rss_engine_id = BP_FUNC(bp);
2791 
2792 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2793 	 *
2794 	 * For PF Clients it should be the maximum avaliable number.
2795 	 * VF driver(s) may want to define it to a smaller value.
2796 	 */
2797 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2798 
2799 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2800 	rxq_init->fw_sb_id = fp->fw_sb_id;
2801 
2802 	if (IS_FCOE_FP(fp))
2803 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2804 	else
2805 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2806 }
2807 
2808 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2809 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2810 	u8 cos)
2811 {
2812 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2813 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2814 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2815 	txq_init->fw_sb_id = fp->fw_sb_id;
2816 
2817 	/*
2818 	 * set the tss leading client id for TX classfication ==
2819 	 * leading RSS client id
2820 	 */
2821 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2822 
2823 	if (IS_FCOE_FP(fp)) {
2824 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2825 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2826 	}
2827 }
2828 
2829 static void bnx2x_pf_init(struct bnx2x *bp)
2830 {
2831 	struct bnx2x_func_init_params func_init = {0};
2832 	struct event_ring_data eq_data = { {0} };
2833 	u16 flags;
2834 
2835 	if (!CHIP_IS_E1x(bp)) {
2836 		/* reset IGU PF statistics: MSIX + ATTN */
2837 		/* PF */
2838 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2839 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2840 			   (CHIP_MODE_IS_4_PORT(bp) ?
2841 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2842 		/* ATTN */
2843 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2844 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2845 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2846 			   (CHIP_MODE_IS_4_PORT(bp) ?
2847 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2848 	}
2849 
2850 	/* function setup flags */
2851 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2852 
2853 	/* This flag is relevant for E1x only.
2854 	 * E2 doesn't have a TPA configuration in a function level.
2855 	 */
2856 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2857 
2858 	func_init.func_flgs = flags;
2859 	func_init.pf_id = BP_FUNC(bp);
2860 	func_init.func_id = BP_FUNC(bp);
2861 	func_init.spq_map = bp->spq_mapping;
2862 	func_init.spq_prod = bp->spq_prod_idx;
2863 
2864 	bnx2x_func_init(bp, &func_init);
2865 
2866 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2867 
2868 	/*
2869 	 * Congestion management values depend on the link rate
2870 	 * There is no active link so initial link rate is set to 10 Gbps.
2871 	 * When the link comes up The congestion management values are
2872 	 * re-calculated according to the actual link rate.
2873 	 */
2874 	bp->link_vars.line_speed = SPEED_10000;
2875 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2876 
2877 	/* Only the PMF sets the HW */
2878 	if (bp->port.pmf)
2879 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2880 
2881 	/* init Event Queue */
2882 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2883 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2884 	eq_data.producer = bp->eq_prod;
2885 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2886 	eq_data.sb_id = DEF_SB_ID;
2887 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2888 }
2889 
2890 
2891 static void bnx2x_e1h_disable(struct bnx2x *bp)
2892 {
2893 	int port = BP_PORT(bp);
2894 
2895 	bnx2x_tx_disable(bp);
2896 
2897 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2898 }
2899 
2900 static void bnx2x_e1h_enable(struct bnx2x *bp)
2901 {
2902 	int port = BP_PORT(bp);
2903 
2904 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2905 
2906 	/* Tx queue should be only reenabled */
2907 	netif_tx_wake_all_queues(bp->dev);
2908 
2909 	/*
2910 	 * Should not call netif_carrier_on since it will be called if the link
2911 	 * is up when checking for link state
2912 	 */
2913 }
2914 
2915 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2916 
2917 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2918 {
2919 	struct eth_stats_info *ether_stat =
2920 		&bp->slowpath->drv_info_to_mcp.ether_stat;
2921 
2922 	/* leave last char as NULL */
2923 	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2924 	       ETH_STAT_INFO_VERSION_LEN - 1);
2925 
2926 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2927 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2928 					 ether_stat->mac_local);
2929 
2930 	ether_stat->mtu_size = bp->dev->mtu;
2931 
2932 	if (bp->dev->features & NETIF_F_RXCSUM)
2933 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2934 	if (bp->dev->features & NETIF_F_TSO)
2935 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2936 	ether_stat->feature_flags |= bp->common.boot_mode;
2937 
2938 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2939 
2940 	ether_stat->txq_size = bp->tx_ring_size;
2941 	ether_stat->rxq_size = bp->rx_ring_size;
2942 }
2943 
2944 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2945 {
2946 #ifdef BCM_CNIC
2947 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2948 	struct fcoe_stats_info *fcoe_stat =
2949 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2950 
2951 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2952 
2953 	fcoe_stat->qos_priority =
2954 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2955 
2956 	/* insert FCoE stats from ramrod response */
2957 	if (!NO_FCOE(bp)) {
2958 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2959 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2960 			tstorm_queue_statistics;
2961 
2962 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2963 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2964 			xstorm_queue_statistics;
2965 
2966 		struct fcoe_statistics_params *fw_fcoe_stat =
2967 			&bp->fw_stats_data->fcoe;
2968 
2969 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2970 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2971 
2972 		ADD_64(fcoe_stat->rx_bytes_hi,
2973 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2974 		       fcoe_stat->rx_bytes_lo,
2975 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2976 
2977 		ADD_64(fcoe_stat->rx_bytes_hi,
2978 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2979 		       fcoe_stat->rx_bytes_lo,
2980 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2981 
2982 		ADD_64(fcoe_stat->rx_bytes_hi,
2983 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2984 		       fcoe_stat->rx_bytes_lo,
2985 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2986 
2987 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2988 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2989 
2990 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2991 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
2992 
2993 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2994 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
2995 
2996 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2997 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
2998 
2999 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3000 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3001 
3002 		ADD_64(fcoe_stat->tx_bytes_hi,
3003 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3004 		       fcoe_stat->tx_bytes_lo,
3005 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3006 
3007 		ADD_64(fcoe_stat->tx_bytes_hi,
3008 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3009 		       fcoe_stat->tx_bytes_lo,
3010 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3011 
3012 		ADD_64(fcoe_stat->tx_bytes_hi,
3013 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3014 		       fcoe_stat->tx_bytes_lo,
3015 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3016 
3017 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3018 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3019 
3020 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3021 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3022 
3023 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3024 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3025 
3026 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3027 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3028 	}
3029 
3030 	/* ask L5 driver to add data to the struct */
3031 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3032 #endif
3033 }
3034 
3035 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3036 {
3037 #ifdef BCM_CNIC
3038 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3039 	struct iscsi_stats_info *iscsi_stat =
3040 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3041 
3042 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3043 
3044 	iscsi_stat->qos_priority =
3045 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3046 
3047 	/* ask L5 driver to add data to the struct */
3048 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3049 #endif
3050 }
3051 
3052 /* called due to MCP event (on pmf):
3053  *	reread new bandwidth configuration
3054  *	configure FW
3055  *	notify others function about the change
3056  */
3057 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3058 {
3059 	if (bp->link_vars.link_up) {
3060 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3061 		bnx2x_link_sync_notify(bp);
3062 	}
3063 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3064 }
3065 
3066 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3067 {
3068 	bnx2x_config_mf_bw(bp);
3069 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3070 }
3071 
3072 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3073 {
3074 	enum drv_info_opcode op_code;
3075 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3076 
3077 	/* if drv_info version supported by MFW doesn't match - send NACK */
3078 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3079 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3080 		return;
3081 	}
3082 
3083 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3084 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3085 
3086 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3087 	       sizeof(union drv_info_to_mcp));
3088 
3089 	switch (op_code) {
3090 	case ETH_STATS_OPCODE:
3091 		bnx2x_drv_info_ether_stat(bp);
3092 		break;
3093 	case FCOE_STATS_OPCODE:
3094 		bnx2x_drv_info_fcoe_stat(bp);
3095 		break;
3096 	case ISCSI_STATS_OPCODE:
3097 		bnx2x_drv_info_iscsi_stat(bp);
3098 		break;
3099 	default:
3100 		/* if op code isn't supported - send NACK */
3101 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3102 		return;
3103 	}
3104 
3105 	/* if we got drv_info attn from MFW then these fields are defined in
3106 	 * shmem2 for sure
3107 	 */
3108 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3109 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3110 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3111 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3112 
3113 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3114 }
3115 
3116 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3117 {
3118 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3119 
3120 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3121 
3122 		/*
3123 		 * This is the only place besides the function initialization
3124 		 * where the bp->flags can change so it is done without any
3125 		 * locks
3126 		 */
3127 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3128 			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3129 			bp->flags |= MF_FUNC_DIS;
3130 
3131 			bnx2x_e1h_disable(bp);
3132 		} else {
3133 			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3134 			bp->flags &= ~MF_FUNC_DIS;
3135 
3136 			bnx2x_e1h_enable(bp);
3137 		}
3138 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3139 	}
3140 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3141 		bnx2x_config_mf_bw(bp);
3142 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3143 	}
3144 
3145 	/* Report results to MCP */
3146 	if (dcc_event)
3147 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3148 	else
3149 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3150 }
3151 
3152 /* must be called under the spq lock */
3153 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3154 {
3155 	struct eth_spe *next_spe = bp->spq_prod_bd;
3156 
3157 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3158 		bp->spq_prod_bd = bp->spq;
3159 		bp->spq_prod_idx = 0;
3160 		DP(NETIF_MSG_TIMER, "end of spq\n");
3161 	} else {
3162 		bp->spq_prod_bd++;
3163 		bp->spq_prod_idx++;
3164 	}
3165 	return next_spe;
3166 }
3167 
3168 /* must be called under the spq lock */
3169 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3170 {
3171 	int func = BP_FUNC(bp);
3172 
3173 	/*
3174 	 * Make sure that BD data is updated before writing the producer:
3175 	 * BD data is written to the memory, the producer is read from the
3176 	 * memory, thus we need a full memory barrier to ensure the ordering.
3177 	 */
3178 	mb();
3179 
3180 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3181 		 bp->spq_prod_idx);
3182 	mmiowb();
3183 }
3184 
3185 /**
3186  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3187  *
3188  * @cmd:	command to check
3189  * @cmd_type:	command type
3190  */
3191 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3192 {
3193 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3194 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3195 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3196 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3197 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3198 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3199 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3200 		return true;
3201 	else
3202 		return false;
3203 
3204 }
3205 
3206 
3207 /**
3208  * bnx2x_sp_post - place a single command on an SP ring
3209  *
3210  * @bp:		driver handle
3211  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3212  * @cid:	SW CID the command is related to
3213  * @data_hi:	command private data address (high 32 bits)
3214  * @data_lo:	command private data address (low 32 bits)
3215  * @cmd_type:	command type (e.g. NONE, ETH)
3216  *
3217  * SP data is handled as if it's always an address pair, thus data fields are
3218  * not swapped to little endian in upper functions. Instead this function swaps
3219  * data as if it's two u32 fields.
3220  */
3221 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3222 		  u32 data_hi, u32 data_lo, int cmd_type)
3223 {
3224 	struct eth_spe *spe;
3225 	u16 type;
3226 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3227 
3228 #ifdef BNX2X_STOP_ON_ERROR
3229 	if (unlikely(bp->panic))
3230 		return -EIO;
3231 #endif
3232 
3233 	spin_lock_bh(&bp->spq_lock);
3234 
3235 	if (common) {
3236 		if (!atomic_read(&bp->eq_spq_left)) {
3237 			BNX2X_ERR("BUG! EQ ring full!\n");
3238 			spin_unlock_bh(&bp->spq_lock);
3239 			bnx2x_panic();
3240 			return -EBUSY;
3241 		}
3242 	} else if (!atomic_read(&bp->cq_spq_left)) {
3243 			BNX2X_ERR("BUG! SPQ ring full!\n");
3244 			spin_unlock_bh(&bp->spq_lock);
3245 			bnx2x_panic();
3246 			return -EBUSY;
3247 	}
3248 
3249 	spe = bnx2x_sp_get_next(bp);
3250 
3251 	/* CID needs port number to be encoded int it */
3252 	spe->hdr.conn_and_cmd_data =
3253 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3254 				    HW_CID(bp, cid));
3255 
3256 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3257 
3258 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3259 		 SPE_HDR_FUNCTION_ID);
3260 
3261 	spe->hdr.type = cpu_to_le16(type);
3262 
3263 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3264 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3265 
3266 	/*
3267 	 * It's ok if the actual decrement is issued towards the memory
3268 	 * somewhere between the spin_lock and spin_unlock. Thus no
3269 	 * more explict memory barrier is needed.
3270 	 */
3271 	if (common)
3272 		atomic_dec(&bp->eq_spq_left);
3273 	else
3274 		atomic_dec(&bp->cq_spq_left);
3275 
3276 
3277 	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3278 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3279 	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3280 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3281 	   (u32)(U64_LO(bp->spq_mapping) +
3282 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3283 	   HW_CID(bp, cid), data_hi, data_lo, type,
3284 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3285 
3286 	bnx2x_sp_prod_update(bp);
3287 	spin_unlock_bh(&bp->spq_lock);
3288 	return 0;
3289 }
3290 
3291 /* acquire split MCP access lock register */
3292 static int bnx2x_acquire_alr(struct bnx2x *bp)
3293 {
3294 	u32 j, val;
3295 	int rc = 0;
3296 
3297 	might_sleep();
3298 	for (j = 0; j < 1000; j++) {
3299 		val = (1UL << 31);
3300 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3301 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3302 		if (val & (1L << 31))
3303 			break;
3304 
3305 		msleep(5);
3306 	}
3307 	if (!(val & (1L << 31))) {
3308 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3309 		rc = -EBUSY;
3310 	}
3311 
3312 	return rc;
3313 }
3314 
3315 /* release split MCP access lock register */
3316 static void bnx2x_release_alr(struct bnx2x *bp)
3317 {
3318 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3319 }
3320 
3321 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3322 #define BNX2X_DEF_SB_IDX	0x0002
3323 
3324 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3325 {
3326 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3327 	u16 rc = 0;
3328 
3329 	barrier(); /* status block is written to by the chip */
3330 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3331 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3332 		rc |= BNX2X_DEF_SB_ATT_IDX;
3333 	}
3334 
3335 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3336 		bp->def_idx = def_sb->sp_sb.running_index;
3337 		rc |= BNX2X_DEF_SB_IDX;
3338 	}
3339 
3340 	/* Do not reorder: indecies reading should complete before handling */
3341 	barrier();
3342 	return rc;
3343 }
3344 
3345 /*
3346  * slow path service functions
3347  */
3348 
3349 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3350 {
3351 	int port = BP_PORT(bp);
3352 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3353 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3354 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3355 				       NIG_REG_MASK_INTERRUPT_PORT0;
3356 	u32 aeu_mask;
3357 	u32 nig_mask = 0;
3358 	u32 reg_addr;
3359 
3360 	if (bp->attn_state & asserted)
3361 		BNX2X_ERR("IGU ERROR\n");
3362 
3363 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3364 	aeu_mask = REG_RD(bp, aeu_addr);
3365 
3366 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3367 	   aeu_mask, asserted);
3368 	aeu_mask &= ~(asserted & 0x3ff);
3369 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3370 
3371 	REG_WR(bp, aeu_addr, aeu_mask);
3372 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3373 
3374 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3375 	bp->attn_state |= asserted;
3376 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3377 
3378 	if (asserted & ATTN_HARD_WIRED_MASK) {
3379 		if (asserted & ATTN_NIG_FOR_FUNC) {
3380 
3381 			bnx2x_acquire_phy_lock(bp);
3382 
3383 			/* save nig interrupt mask */
3384 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3385 
3386 			/* If nig_mask is not set, no need to call the update
3387 			 * function.
3388 			 */
3389 			if (nig_mask) {
3390 				REG_WR(bp, nig_int_mask_addr, 0);
3391 
3392 				bnx2x_link_attn(bp);
3393 			}
3394 
3395 			/* handle unicore attn? */
3396 		}
3397 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3398 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3399 
3400 		if (asserted & GPIO_2_FUNC)
3401 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3402 
3403 		if (asserted & GPIO_3_FUNC)
3404 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3405 
3406 		if (asserted & GPIO_4_FUNC)
3407 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3408 
3409 		if (port == 0) {
3410 			if (asserted & ATTN_GENERAL_ATTN_1) {
3411 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3412 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3413 			}
3414 			if (asserted & ATTN_GENERAL_ATTN_2) {
3415 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3416 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3417 			}
3418 			if (asserted & ATTN_GENERAL_ATTN_3) {
3419 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3420 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3421 			}
3422 		} else {
3423 			if (asserted & ATTN_GENERAL_ATTN_4) {
3424 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3425 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3426 			}
3427 			if (asserted & ATTN_GENERAL_ATTN_5) {
3428 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3429 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3430 			}
3431 			if (asserted & ATTN_GENERAL_ATTN_6) {
3432 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3433 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3434 			}
3435 		}
3436 
3437 	} /* if hardwired */
3438 
3439 	if (bp->common.int_block == INT_BLOCK_HC)
3440 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3441 			    COMMAND_REG_ATTN_BITS_SET);
3442 	else
3443 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3444 
3445 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3446 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3447 	REG_WR(bp, reg_addr, asserted);
3448 
3449 	/* now set back the mask */
3450 	if (asserted & ATTN_NIG_FOR_FUNC) {
3451 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3452 		bnx2x_release_phy_lock(bp);
3453 	}
3454 }
3455 
3456 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3457 {
3458 	int port = BP_PORT(bp);
3459 	u32 ext_phy_config;
3460 	/* mark the failure */
3461 	ext_phy_config =
3462 		SHMEM_RD(bp,
3463 			 dev_info.port_hw_config[port].external_phy_config);
3464 
3465 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3466 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3467 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3468 		 ext_phy_config);
3469 
3470 	/* log the failure */
3471 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3472 	       " the driver to shutdown the card to prevent permanent"
3473 	       " damage.  Please contact OEM Support for assistance\n");
3474 
3475 	/*
3476 	 * Scheudle device reset (unload)
3477 	 * This is due to some boards consuming sufficient power when driver is
3478 	 * up to overheat if fan fails.
3479 	 */
3480 	smp_mb__before_clear_bit();
3481 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3482 	smp_mb__after_clear_bit();
3483 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3484 
3485 }
3486 
3487 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3488 {
3489 	int port = BP_PORT(bp);
3490 	int reg_offset;
3491 	u32 val;
3492 
3493 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3494 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3495 
3496 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3497 
3498 		val = REG_RD(bp, reg_offset);
3499 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3500 		REG_WR(bp, reg_offset, val);
3501 
3502 		BNX2X_ERR("SPIO5 hw attention\n");
3503 
3504 		/* Fan failure attention */
3505 		bnx2x_hw_reset_phy(&bp->link_params);
3506 		bnx2x_fan_failure(bp);
3507 	}
3508 
3509 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3510 		bnx2x_acquire_phy_lock(bp);
3511 		bnx2x_handle_module_detect_int(&bp->link_params);
3512 		bnx2x_release_phy_lock(bp);
3513 	}
3514 
3515 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3516 
3517 		val = REG_RD(bp, reg_offset);
3518 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3519 		REG_WR(bp, reg_offset, val);
3520 
3521 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3522 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3523 		bnx2x_panic();
3524 	}
3525 }
3526 
3527 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3528 {
3529 	u32 val;
3530 
3531 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3532 
3533 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3534 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3535 		/* DORQ discard attention */
3536 		if (val & 0x2)
3537 			BNX2X_ERR("FATAL error from DORQ\n");
3538 	}
3539 
3540 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3541 
3542 		int port = BP_PORT(bp);
3543 		int reg_offset;
3544 
3545 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3546 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3547 
3548 		val = REG_RD(bp, reg_offset);
3549 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3550 		REG_WR(bp, reg_offset, val);
3551 
3552 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3553 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3554 		bnx2x_panic();
3555 	}
3556 }
3557 
3558 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3559 {
3560 	u32 val;
3561 
3562 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3563 
3564 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3565 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3566 		/* CFC error attention */
3567 		if (val & 0x2)
3568 			BNX2X_ERR("FATAL error from CFC\n");
3569 	}
3570 
3571 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3572 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3573 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3574 		/* RQ_USDMDP_FIFO_OVERFLOW */
3575 		if (val & 0x18000)
3576 			BNX2X_ERR("FATAL error from PXP\n");
3577 
3578 		if (!CHIP_IS_E1x(bp)) {
3579 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3580 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3581 		}
3582 	}
3583 
3584 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3585 
3586 		int port = BP_PORT(bp);
3587 		int reg_offset;
3588 
3589 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3590 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3591 
3592 		val = REG_RD(bp, reg_offset);
3593 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3594 		REG_WR(bp, reg_offset, val);
3595 
3596 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3597 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3598 		bnx2x_panic();
3599 	}
3600 }
3601 
3602 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3603 {
3604 	u32 val;
3605 
3606 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3607 
3608 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3609 			int func = BP_FUNC(bp);
3610 
3611 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3612 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3613 					func_mf_config[BP_ABS_FUNC(bp)].config);
3614 			val = SHMEM_RD(bp,
3615 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3616 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3617 				bnx2x_dcc_event(bp,
3618 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3619 
3620 			if (val & DRV_STATUS_SET_MF_BW)
3621 				bnx2x_set_mf_bw(bp);
3622 
3623 			if (val & DRV_STATUS_DRV_INFO_REQ)
3624 				bnx2x_handle_drv_info_req(bp);
3625 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3626 				bnx2x_pmf_update(bp);
3627 
3628 			if (bp->port.pmf &&
3629 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3630 				bp->dcbx_enabled > 0)
3631 				/* start dcbx state machine */
3632 				bnx2x_dcbx_set_params(bp,
3633 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3634 			if (bp->link_vars.periodic_flags &
3635 			    PERIODIC_FLAGS_LINK_EVENT) {
3636 				/*  sync with link */
3637 				bnx2x_acquire_phy_lock(bp);
3638 				bp->link_vars.periodic_flags &=
3639 					~PERIODIC_FLAGS_LINK_EVENT;
3640 				bnx2x_release_phy_lock(bp);
3641 				if (IS_MF(bp))
3642 					bnx2x_link_sync_notify(bp);
3643 				bnx2x_link_report(bp);
3644 			}
3645 			/* Always call it here: bnx2x_link_report() will
3646 			 * prevent the link indication duplication.
3647 			 */
3648 			bnx2x__link_status_update(bp);
3649 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3650 
3651 			BNX2X_ERR("MC assert!\n");
3652 			bnx2x_mc_assert(bp);
3653 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3654 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3655 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3656 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3657 			bnx2x_panic();
3658 
3659 		} else if (attn & BNX2X_MCP_ASSERT) {
3660 
3661 			BNX2X_ERR("MCP assert!\n");
3662 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3663 			bnx2x_fw_dump(bp);
3664 
3665 		} else
3666 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3667 	}
3668 
3669 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3670 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3671 		if (attn & BNX2X_GRC_TIMEOUT) {
3672 			val = CHIP_IS_E1(bp) ? 0 :
3673 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3674 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3675 		}
3676 		if (attn & BNX2X_GRC_RSV) {
3677 			val = CHIP_IS_E1(bp) ? 0 :
3678 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3679 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3680 		}
3681 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3682 	}
3683 }
3684 
3685 /*
3686  * Bits map:
3687  * 0-7   - Engine0 load counter.
3688  * 8-15  - Engine1 load counter.
3689  * 16    - Engine0 RESET_IN_PROGRESS bit.
3690  * 17    - Engine1 RESET_IN_PROGRESS bit.
3691  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3692  *         on the engine
3693  * 19    - Engine1 ONE_IS_LOADED.
3694  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3695  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3696  *         just the one belonging to its engine).
3697  *
3698  */
3699 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3700 
3701 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3702 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3703 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3704 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3705 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3706 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3707 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3708 
3709 /*
3710  * Set the GLOBAL_RESET bit.
3711  *
3712  * Should be run under rtnl lock
3713  */
3714 void bnx2x_set_reset_global(struct bnx2x *bp)
3715 {
3716 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3717 
3718 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3719 	barrier();
3720 	mmiowb();
3721 }
3722 
3723 /*
3724  * Clear the GLOBAL_RESET bit.
3725  *
3726  * Should be run under rtnl lock
3727  */
3728 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3729 {
3730 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3731 
3732 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3733 	barrier();
3734 	mmiowb();
3735 }
3736 
3737 /*
3738  * Checks the GLOBAL_RESET bit.
3739  *
3740  * should be run under rtnl lock
3741  */
3742 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3743 {
3744 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3745 
3746 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3747 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3748 }
3749 
3750 /*
3751  * Clear RESET_IN_PROGRESS bit for the current engine.
3752  *
3753  * Should be run under rtnl lock
3754  */
3755 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3756 {
3757 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3758 	u32 bit = BP_PATH(bp) ?
3759 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3760 
3761 	/* Clear the bit */
3762 	val &= ~bit;
3763 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3764 	barrier();
3765 	mmiowb();
3766 }
3767 
3768 /*
3769  * Set RESET_IN_PROGRESS for the current engine.
3770  *
3771  * should be run under rtnl lock
3772  */
3773 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3774 {
3775 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3776 	u32 bit = BP_PATH(bp) ?
3777 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3778 
3779 	/* Set the bit */
3780 	val |= bit;
3781 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3782 	barrier();
3783 	mmiowb();
3784 }
3785 
3786 /*
3787  * Checks the RESET_IN_PROGRESS bit for the given engine.
3788  * should be run under rtnl lock
3789  */
3790 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3791 {
3792 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3793 	u32 bit = engine ?
3794 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3795 
3796 	/* return false if bit is set */
3797 	return (val & bit) ? false : true;
3798 }
3799 
3800 /*
3801  * Increment the load counter for the current engine.
3802  *
3803  * should be run under rtnl lock
3804  */
3805 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3806 {
3807 	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3808 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3809 			     BNX2X_PATH0_LOAD_CNT_MASK;
3810 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3811 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3812 
3813 	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3814 
3815 	/* get the current counter value */
3816 	val1 = (val & mask) >> shift;
3817 
3818 	/* increment... */
3819 	val1++;
3820 
3821 	/* clear the old value */
3822 	val &= ~mask;
3823 
3824 	/* set the new one */
3825 	val |= ((val1 << shift) & mask);
3826 
3827 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3828 	barrier();
3829 	mmiowb();
3830 }
3831 
3832 /**
3833  * bnx2x_dec_load_cnt - decrement the load counter
3834  *
3835  * @bp:		driver handle
3836  *
3837  * Should be run under rtnl lock.
3838  * Decrements the load counter for the current engine. Returns
3839  * the new counter value.
3840  */
3841 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3842 {
3843 	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3844 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3845 			     BNX2X_PATH0_LOAD_CNT_MASK;
3846 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3847 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3848 
3849 	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3850 
3851 	/* get the current counter value */
3852 	val1 = (val & mask) >> shift;
3853 
3854 	/* decrement... */
3855 	val1--;
3856 
3857 	/* clear the old value */
3858 	val &= ~mask;
3859 
3860 	/* set the new one */
3861 	val |= ((val1 << shift) & mask);
3862 
3863 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3864 	barrier();
3865 	mmiowb();
3866 
3867 	return val1;
3868 }
3869 
3870 /*
3871  * Read the load counter for the current engine.
3872  *
3873  * should be run under rtnl lock
3874  */
3875 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3876 {
3877 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3878 			     BNX2X_PATH0_LOAD_CNT_MASK);
3879 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3880 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3881 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3882 
3883 	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3884 
3885 	val = (val & mask) >> shift;
3886 
3887 	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3888 
3889 	return val;
3890 }
3891 
3892 /*
3893  * Reset the load counter for the current engine.
3894  *
3895  * should be run under rtnl lock
3896  */
3897 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3898 {
3899 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3900 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3901 			     BNX2X_PATH0_LOAD_CNT_MASK);
3902 
3903 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3904 }
3905 
3906 static inline void _print_next_block(int idx, const char *blk)
3907 {
3908 	pr_cont("%s%s", idx ? ", " : "", blk);
3909 }
3910 
3911 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3912 						  bool print)
3913 {
3914 	int i = 0;
3915 	u32 cur_bit = 0;
3916 	for (i = 0; sig; i++) {
3917 		cur_bit = ((u32)0x1 << i);
3918 		if (sig & cur_bit) {
3919 			switch (cur_bit) {
3920 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3921 				if (print)
3922 					_print_next_block(par_num++, "BRB");
3923 				break;
3924 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3925 				if (print)
3926 					_print_next_block(par_num++, "PARSER");
3927 				break;
3928 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3929 				if (print)
3930 					_print_next_block(par_num++, "TSDM");
3931 				break;
3932 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3933 				if (print)
3934 					_print_next_block(par_num++,
3935 							  "SEARCHER");
3936 				break;
3937 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3938 				if (print)
3939 					_print_next_block(par_num++, "TCM");
3940 				break;
3941 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3942 				if (print)
3943 					_print_next_block(par_num++, "TSEMI");
3944 				break;
3945 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3946 				if (print)
3947 					_print_next_block(par_num++, "XPB");
3948 				break;
3949 			}
3950 
3951 			/* Clear the bit */
3952 			sig &= ~cur_bit;
3953 		}
3954 	}
3955 
3956 	return par_num;
3957 }
3958 
3959 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3960 						  bool *global, bool print)
3961 {
3962 	int i = 0;
3963 	u32 cur_bit = 0;
3964 	for (i = 0; sig; i++) {
3965 		cur_bit = ((u32)0x1 << i);
3966 		if (sig & cur_bit) {
3967 			switch (cur_bit) {
3968 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3969 				if (print)
3970 					_print_next_block(par_num++, "PBF");
3971 				break;
3972 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3973 				if (print)
3974 					_print_next_block(par_num++, "QM");
3975 				break;
3976 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3977 				if (print)
3978 					_print_next_block(par_num++, "TM");
3979 				break;
3980 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3981 				if (print)
3982 					_print_next_block(par_num++, "XSDM");
3983 				break;
3984 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3985 				if (print)
3986 					_print_next_block(par_num++, "XCM");
3987 				break;
3988 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3989 				if (print)
3990 					_print_next_block(par_num++, "XSEMI");
3991 				break;
3992 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3993 				if (print)
3994 					_print_next_block(par_num++,
3995 							  "DOORBELLQ");
3996 				break;
3997 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3998 				if (print)
3999 					_print_next_block(par_num++, "NIG");
4000 				break;
4001 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4002 				if (print)
4003 					_print_next_block(par_num++,
4004 							  "VAUX PCI CORE");
4005 				*global = true;
4006 				break;
4007 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4008 				if (print)
4009 					_print_next_block(par_num++, "DEBUG");
4010 				break;
4011 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4012 				if (print)
4013 					_print_next_block(par_num++, "USDM");
4014 				break;
4015 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4016 				if (print)
4017 					_print_next_block(par_num++, "UCM");
4018 				break;
4019 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4020 				if (print)
4021 					_print_next_block(par_num++, "USEMI");
4022 				break;
4023 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4024 				if (print)
4025 					_print_next_block(par_num++, "UPB");
4026 				break;
4027 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4028 				if (print)
4029 					_print_next_block(par_num++, "CSDM");
4030 				break;
4031 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4032 				if (print)
4033 					_print_next_block(par_num++, "CCM");
4034 				break;
4035 			}
4036 
4037 			/* Clear the bit */
4038 			sig &= ~cur_bit;
4039 		}
4040 	}
4041 
4042 	return par_num;
4043 }
4044 
4045 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4046 						  bool print)
4047 {
4048 	int i = 0;
4049 	u32 cur_bit = 0;
4050 	for (i = 0; sig; i++) {
4051 		cur_bit = ((u32)0x1 << i);
4052 		if (sig & cur_bit) {
4053 			switch (cur_bit) {
4054 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4055 				if (print)
4056 					_print_next_block(par_num++, "CSEMI");
4057 				break;
4058 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4059 				if (print)
4060 					_print_next_block(par_num++, "PXP");
4061 				break;
4062 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4063 				if (print)
4064 					_print_next_block(par_num++,
4065 					"PXPPCICLOCKCLIENT");
4066 				break;
4067 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4068 				if (print)
4069 					_print_next_block(par_num++, "CFC");
4070 				break;
4071 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4072 				if (print)
4073 					_print_next_block(par_num++, "CDU");
4074 				break;
4075 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4076 				if (print)
4077 					_print_next_block(par_num++, "DMAE");
4078 				break;
4079 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4080 				if (print)
4081 					_print_next_block(par_num++, "IGU");
4082 				break;
4083 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4084 				if (print)
4085 					_print_next_block(par_num++, "MISC");
4086 				break;
4087 			}
4088 
4089 			/* Clear the bit */
4090 			sig &= ~cur_bit;
4091 		}
4092 	}
4093 
4094 	return par_num;
4095 }
4096 
4097 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4098 						  bool *global, bool print)
4099 {
4100 	int i = 0;
4101 	u32 cur_bit = 0;
4102 	for (i = 0; sig; i++) {
4103 		cur_bit = ((u32)0x1 << i);
4104 		if (sig & cur_bit) {
4105 			switch (cur_bit) {
4106 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4107 				if (print)
4108 					_print_next_block(par_num++, "MCP ROM");
4109 				*global = true;
4110 				break;
4111 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4112 				if (print)
4113 					_print_next_block(par_num++,
4114 							  "MCP UMP RX");
4115 				*global = true;
4116 				break;
4117 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4118 				if (print)
4119 					_print_next_block(par_num++,
4120 							  "MCP UMP TX");
4121 				*global = true;
4122 				break;
4123 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4124 				if (print)
4125 					_print_next_block(par_num++,
4126 							  "MCP SCPAD");
4127 				*global = true;
4128 				break;
4129 			}
4130 
4131 			/* Clear the bit */
4132 			sig &= ~cur_bit;
4133 		}
4134 	}
4135 
4136 	return par_num;
4137 }
4138 
4139 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4140 						  bool print)
4141 {
4142 	int i = 0;
4143 	u32 cur_bit = 0;
4144 	for (i = 0; sig; i++) {
4145 		cur_bit = ((u32)0x1 << i);
4146 		if (sig & cur_bit) {
4147 			switch (cur_bit) {
4148 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4149 				if (print)
4150 					_print_next_block(par_num++, "PGLUE_B");
4151 				break;
4152 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4153 				if (print)
4154 					_print_next_block(par_num++, "ATC");
4155 				break;
4156 			}
4157 
4158 			/* Clear the bit */
4159 			sig &= ~cur_bit;
4160 		}
4161 	}
4162 
4163 	return par_num;
4164 }
4165 
4166 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4167 				     u32 *sig)
4168 {
4169 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4170 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4171 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4172 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4173 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4174 		int par_num = 0;
4175 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4176 			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4177 			"[4]:0x%08x\n",
4178 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4179 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4180 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4181 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4182 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4183 		if (print)
4184 			netdev_err(bp->dev,
4185 				   "Parity errors detected in blocks: ");
4186 		par_num = bnx2x_check_blocks_with_parity0(
4187 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4188 		par_num = bnx2x_check_blocks_with_parity1(
4189 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4190 		par_num = bnx2x_check_blocks_with_parity2(
4191 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4192 		par_num = bnx2x_check_blocks_with_parity3(
4193 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4194 		par_num = bnx2x_check_blocks_with_parity4(
4195 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4196 
4197 		if (print)
4198 			pr_cont("\n");
4199 
4200 		return true;
4201 	} else
4202 		return false;
4203 }
4204 
4205 /**
4206  * bnx2x_chk_parity_attn - checks for parity attentions.
4207  *
4208  * @bp:		driver handle
4209  * @global:	true if there was a global attention
4210  * @print:	show parity attention in syslog
4211  */
4212 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4213 {
4214 	struct attn_route attn = { {0} };
4215 	int port = BP_PORT(bp);
4216 
4217 	attn.sig[0] = REG_RD(bp,
4218 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4219 			     port*4);
4220 	attn.sig[1] = REG_RD(bp,
4221 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4222 			     port*4);
4223 	attn.sig[2] = REG_RD(bp,
4224 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4225 			     port*4);
4226 	attn.sig[3] = REG_RD(bp,
4227 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4228 			     port*4);
4229 
4230 	if (!CHIP_IS_E1x(bp))
4231 		attn.sig[4] = REG_RD(bp,
4232 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4233 				     port*4);
4234 
4235 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4236 }
4237 
4238 
4239 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4240 {
4241 	u32 val;
4242 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4243 
4244 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4245 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4246 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4247 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4248 				  "ADDRESS_ERROR\n");
4249 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4250 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4251 				  "INCORRECT_RCV_BEHAVIOR\n");
4252 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4253 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4254 				  "WAS_ERROR_ATTN\n");
4255 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4256 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4257 				  "VF_LENGTH_VIOLATION_ATTN\n");
4258 		if (val &
4259 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4260 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4261 				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4262 		if (val &
4263 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4264 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4265 				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4266 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4267 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4268 				  "TCPL_ERROR_ATTN\n");
4269 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4270 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4271 				  "TCPL_IN_TWO_RCBS_ATTN\n");
4272 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4273 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4274 				  "CSSNOOP_FIFO_OVERFLOW\n");
4275 	}
4276 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4277 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4278 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4279 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4280 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4281 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4282 			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4283 				  "_ATC_TCPL_TO_NOT_PEND\n");
4284 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4285 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4286 				  "ATC_GPA_MULTIPLE_HITS\n");
4287 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4288 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4289 				  "ATC_RCPL_TO_EMPTY_CNT\n");
4290 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4291 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4292 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4293 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4294 				  "ATC_IREQ_LESS_THAN_STU\n");
4295 	}
4296 
4297 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4298 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4299 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4300 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4301 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4302 	}
4303 
4304 }
4305 
4306 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4307 {
4308 	struct attn_route attn, *group_mask;
4309 	int port = BP_PORT(bp);
4310 	int index;
4311 	u32 reg_addr;
4312 	u32 val;
4313 	u32 aeu_mask;
4314 	bool global = false;
4315 
4316 	/* need to take HW lock because MCP or other port might also
4317 	   try to handle this event */
4318 	bnx2x_acquire_alr(bp);
4319 
4320 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4321 #ifndef BNX2X_STOP_ON_ERROR
4322 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4323 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4324 		/* Disable HW interrupts */
4325 		bnx2x_int_disable(bp);
4326 		/* In case of parity errors don't handle attentions so that
4327 		 * other function would "see" parity errors.
4328 		 */
4329 #else
4330 		bnx2x_panic();
4331 #endif
4332 		bnx2x_release_alr(bp);
4333 		return;
4334 	}
4335 
4336 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4337 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4338 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4339 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4340 	if (!CHIP_IS_E1x(bp))
4341 		attn.sig[4] =
4342 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4343 	else
4344 		attn.sig[4] = 0;
4345 
4346 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4347 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4348 
4349 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4350 		if (deasserted & (1 << index)) {
4351 			group_mask = &bp->attn_group[index];
4352 
4353 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4354 					 "%08x %08x %08x\n",
4355 			   index,
4356 			   group_mask->sig[0], group_mask->sig[1],
4357 			   group_mask->sig[2], group_mask->sig[3],
4358 			   group_mask->sig[4]);
4359 
4360 			bnx2x_attn_int_deasserted4(bp,
4361 					attn.sig[4] & group_mask->sig[4]);
4362 			bnx2x_attn_int_deasserted3(bp,
4363 					attn.sig[3] & group_mask->sig[3]);
4364 			bnx2x_attn_int_deasserted1(bp,
4365 					attn.sig[1] & group_mask->sig[1]);
4366 			bnx2x_attn_int_deasserted2(bp,
4367 					attn.sig[2] & group_mask->sig[2]);
4368 			bnx2x_attn_int_deasserted0(bp,
4369 					attn.sig[0] & group_mask->sig[0]);
4370 		}
4371 	}
4372 
4373 	bnx2x_release_alr(bp);
4374 
4375 	if (bp->common.int_block == INT_BLOCK_HC)
4376 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4377 			    COMMAND_REG_ATTN_BITS_CLR);
4378 	else
4379 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4380 
4381 	val = ~deasserted;
4382 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4383 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4384 	REG_WR(bp, reg_addr, val);
4385 
4386 	if (~bp->attn_state & deasserted)
4387 		BNX2X_ERR("IGU ERROR\n");
4388 
4389 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4390 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4391 
4392 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4393 	aeu_mask = REG_RD(bp, reg_addr);
4394 
4395 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4396 	   aeu_mask, deasserted);
4397 	aeu_mask |= (deasserted & 0x3ff);
4398 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4399 
4400 	REG_WR(bp, reg_addr, aeu_mask);
4401 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4402 
4403 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4404 	bp->attn_state &= ~deasserted;
4405 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4406 }
4407 
4408 static void bnx2x_attn_int(struct bnx2x *bp)
4409 {
4410 	/* read local copy of bits */
4411 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4412 								attn_bits);
4413 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4414 								attn_bits_ack);
4415 	u32 attn_state = bp->attn_state;
4416 
4417 	/* look for changed bits */
4418 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4419 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4420 
4421 	DP(NETIF_MSG_HW,
4422 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4423 	   attn_bits, attn_ack, asserted, deasserted);
4424 
4425 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4426 		BNX2X_ERR("BAD attention state\n");
4427 
4428 	/* handle bits that were raised */
4429 	if (asserted)
4430 		bnx2x_attn_int_asserted(bp, asserted);
4431 
4432 	if (deasserted)
4433 		bnx2x_attn_int_deasserted(bp, deasserted);
4434 }
4435 
4436 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4437 		      u16 index, u8 op, u8 update)
4438 {
4439 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4440 
4441 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4442 			     igu_addr);
4443 }
4444 
4445 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4446 {
4447 	/* No memory barriers */
4448 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4449 	mmiowb(); /* keep prod updates ordered */
4450 }
4451 
4452 #ifdef BCM_CNIC
4453 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4454 				      union event_ring_elem *elem)
4455 {
4456 	u8 err = elem->message.error;
4457 
4458 	if (!bp->cnic_eth_dev.starting_cid  ||
4459 	    (cid < bp->cnic_eth_dev.starting_cid &&
4460 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4461 		return 1;
4462 
4463 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4464 
4465 	if (unlikely(err)) {
4466 
4467 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4468 			  cid);
4469 		bnx2x_panic_dump(bp);
4470 	}
4471 	bnx2x_cnic_cfc_comp(bp, cid, err);
4472 	return 0;
4473 }
4474 #endif
4475 
4476 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4477 {
4478 	struct bnx2x_mcast_ramrod_params rparam;
4479 	int rc;
4480 
4481 	memset(&rparam, 0, sizeof(rparam));
4482 
4483 	rparam.mcast_obj = &bp->mcast_obj;
4484 
4485 	netif_addr_lock_bh(bp->dev);
4486 
4487 	/* Clear pending state for the last command */
4488 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4489 
4490 	/* If there are pending mcast commands - send them */
4491 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4492 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4493 		if (rc < 0)
4494 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4495 				  rc);
4496 	}
4497 
4498 	netif_addr_unlock_bh(bp->dev);
4499 }
4500 
4501 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4502 						   union event_ring_elem *elem)
4503 {
4504 	unsigned long ramrod_flags = 0;
4505 	int rc = 0;
4506 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4507 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4508 
4509 	/* Always push next commands out, don't wait here */
4510 	__set_bit(RAMROD_CONT, &ramrod_flags);
4511 
4512 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4513 	case BNX2X_FILTER_MAC_PENDING:
4514 #ifdef BCM_CNIC
4515 		if (cid == BNX2X_ISCSI_ETH_CID)
4516 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4517 		else
4518 #endif
4519 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4520 
4521 		break;
4522 	case BNX2X_FILTER_MCAST_PENDING:
4523 		/* This is only relevant for 57710 where multicast MACs are
4524 		 * configured as unicast MACs using the same ramrod.
4525 		 */
4526 		bnx2x_handle_mcast_eqe(bp);
4527 		return;
4528 	default:
4529 		BNX2X_ERR("Unsupported classification command: %d\n",
4530 			  elem->message.data.eth_event.echo);
4531 		return;
4532 	}
4533 
4534 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4535 
4536 	if (rc < 0)
4537 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4538 	else if (rc > 0)
4539 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4540 
4541 }
4542 
4543 #ifdef BCM_CNIC
4544 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4545 #endif
4546 
4547 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4548 {
4549 	netif_addr_lock_bh(bp->dev);
4550 
4551 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4552 
4553 	/* Send rx_mode command again if was requested */
4554 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4555 		bnx2x_set_storm_rx_mode(bp);
4556 #ifdef BCM_CNIC
4557 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4558 				    &bp->sp_state))
4559 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4560 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4561 				    &bp->sp_state))
4562 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4563 #endif
4564 
4565 	netif_addr_unlock_bh(bp->dev);
4566 }
4567 
4568 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4569 	struct bnx2x *bp, u32 cid)
4570 {
4571 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4572 #ifdef BCM_CNIC
4573 	if (cid == BNX2X_FCOE_ETH_CID)
4574 		return &bnx2x_fcoe(bp, q_obj);
4575 	else
4576 #endif
4577 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4578 }
4579 
4580 static void bnx2x_eq_int(struct bnx2x *bp)
4581 {
4582 	u16 hw_cons, sw_cons, sw_prod;
4583 	union event_ring_elem *elem;
4584 	u32 cid;
4585 	u8 opcode;
4586 	int spqe_cnt = 0;
4587 	struct bnx2x_queue_sp_obj *q_obj;
4588 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4589 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4590 
4591 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4592 
4593 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4594 	 * when we get the the next-page we nned to adjust so the loop
4595 	 * condition below will be met. The next element is the size of a
4596 	 * regular element and hence incrementing by 1
4597 	 */
4598 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4599 		hw_cons++;
4600 
4601 	/* This function may never run in parallel with itself for a
4602 	 * specific bp, thus there is no need in "paired" read memory
4603 	 * barrier here.
4604 	 */
4605 	sw_cons = bp->eq_cons;
4606 	sw_prod = bp->eq_prod;
4607 
4608 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4609 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4610 
4611 	for (; sw_cons != hw_cons;
4612 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4613 
4614 
4615 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4616 
4617 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4618 		opcode = elem->message.opcode;
4619 
4620 
4621 		/* handle eq element */
4622 		switch (opcode) {
4623 		case EVENT_RING_OPCODE_STAT_QUERY:
4624 			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4625 			   bp->stats_comp++);
4626 			/* nothing to do with stats comp */
4627 			goto next_spqe;
4628 
4629 		case EVENT_RING_OPCODE_CFC_DEL:
4630 			/* handle according to cid range */
4631 			/*
4632 			 * we may want to verify here that the bp state is
4633 			 * HALTING
4634 			 */
4635 			DP(BNX2X_MSG_SP,
4636 			   "got delete ramrod for MULTI[%d]\n", cid);
4637 #ifdef BCM_CNIC
4638 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4639 				goto next_spqe;
4640 #endif
4641 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4642 
4643 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4644 				break;
4645 
4646 
4647 
4648 			goto next_spqe;
4649 
4650 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4651 			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4652 			if (f_obj->complete_cmd(bp, f_obj,
4653 						BNX2X_F_CMD_TX_STOP))
4654 				break;
4655 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4656 			goto next_spqe;
4657 
4658 		case EVENT_RING_OPCODE_START_TRAFFIC:
4659 			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4660 			if (f_obj->complete_cmd(bp, f_obj,
4661 						BNX2X_F_CMD_TX_START))
4662 				break;
4663 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4664 			goto next_spqe;
4665 		case EVENT_RING_OPCODE_FUNCTION_START:
4666 			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4667 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4668 				break;
4669 
4670 			goto next_spqe;
4671 
4672 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4673 			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4674 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4675 				break;
4676 
4677 			goto next_spqe;
4678 		}
4679 
4680 		switch (opcode | bp->state) {
4681 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4682 		      BNX2X_STATE_OPEN):
4683 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4684 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4685 			cid = elem->message.data.eth_event.echo &
4686 				BNX2X_SWCID_MASK;
4687 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4688 			   cid);
4689 			rss_raw->clear_pending(rss_raw);
4690 			break;
4691 
4692 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4693 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4694 		case (EVENT_RING_OPCODE_SET_MAC |
4695 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4696 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4697 		      BNX2X_STATE_OPEN):
4698 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4699 		      BNX2X_STATE_DIAG):
4700 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4701 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4702 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4703 			bnx2x_handle_classification_eqe(bp, elem);
4704 			break;
4705 
4706 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4707 		      BNX2X_STATE_OPEN):
4708 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4709 		      BNX2X_STATE_DIAG):
4710 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4711 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4712 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4713 			bnx2x_handle_mcast_eqe(bp);
4714 			break;
4715 
4716 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4717 		      BNX2X_STATE_OPEN):
4718 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4719 		      BNX2X_STATE_DIAG):
4720 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4721 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4722 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4723 			bnx2x_handle_rx_mode_eqe(bp);
4724 			break;
4725 		default:
4726 			/* unknown event log error and continue */
4727 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4728 				  elem->message.opcode, bp->state);
4729 		}
4730 next_spqe:
4731 		spqe_cnt++;
4732 	} /* for */
4733 
4734 	smp_mb__before_atomic_inc();
4735 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4736 
4737 	bp->eq_cons = sw_cons;
4738 	bp->eq_prod = sw_prod;
4739 	/* Make sure that above mem writes were issued towards the memory */
4740 	smp_wmb();
4741 
4742 	/* update producer */
4743 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4744 }
4745 
4746 static void bnx2x_sp_task(struct work_struct *work)
4747 {
4748 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4749 	u16 status;
4750 
4751 	status = bnx2x_update_dsb_idx(bp);
4752 /*	if (status == 0)				     */
4753 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4754 
4755 	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4756 
4757 	/* HW attentions */
4758 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4759 		bnx2x_attn_int(bp);
4760 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4761 	}
4762 
4763 	/* SP events: STAT_QUERY and others */
4764 	if (status & BNX2X_DEF_SB_IDX) {
4765 #ifdef BCM_CNIC
4766 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4767 
4768 		if ((!NO_FCOE(bp)) &&
4769 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4770 			/*
4771 			 * Prevent local bottom-halves from running as
4772 			 * we are going to change the local NAPI list.
4773 			 */
4774 			local_bh_disable();
4775 			napi_schedule(&bnx2x_fcoe(bp, napi));
4776 			local_bh_enable();
4777 		}
4778 #endif
4779 		/* Handle EQ completions */
4780 		bnx2x_eq_int(bp);
4781 
4782 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4783 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4784 
4785 		status &= ~BNX2X_DEF_SB_IDX;
4786 	}
4787 
4788 	if (unlikely(status))
4789 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4790 		   status);
4791 
4792 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4793 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4794 }
4795 
4796 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4797 {
4798 	struct net_device *dev = dev_instance;
4799 	struct bnx2x *bp = netdev_priv(dev);
4800 
4801 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4802 		     IGU_INT_DISABLE, 0);
4803 
4804 #ifdef BNX2X_STOP_ON_ERROR
4805 	if (unlikely(bp->panic))
4806 		return IRQ_HANDLED;
4807 #endif
4808 
4809 #ifdef BCM_CNIC
4810 	{
4811 		struct cnic_ops *c_ops;
4812 
4813 		rcu_read_lock();
4814 		c_ops = rcu_dereference(bp->cnic_ops);
4815 		if (c_ops)
4816 			c_ops->cnic_handler(bp->cnic_data, NULL);
4817 		rcu_read_unlock();
4818 	}
4819 #endif
4820 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4821 
4822 	return IRQ_HANDLED;
4823 }
4824 
4825 /* end of slow path */
4826 
4827 
4828 void bnx2x_drv_pulse(struct bnx2x *bp)
4829 {
4830 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4831 		 bp->fw_drv_pulse_wr_seq);
4832 }
4833 
4834 
4835 static void bnx2x_timer(unsigned long data)
4836 {
4837 	u8 cos;
4838 	struct bnx2x *bp = (struct bnx2x *) data;
4839 
4840 	if (!netif_running(bp->dev))
4841 		return;
4842 
4843 	if (poll) {
4844 		struct bnx2x_fastpath *fp = &bp->fp[0];
4845 
4846 		for_each_cos_in_tx_queue(fp, cos)
4847 			bnx2x_tx_int(bp, &fp->txdata[cos]);
4848 		bnx2x_rx_int(fp, 1000);
4849 	}
4850 
4851 	if (!BP_NOMCP(bp)) {
4852 		int mb_idx = BP_FW_MB_IDX(bp);
4853 		u32 drv_pulse;
4854 		u32 mcp_pulse;
4855 
4856 		++bp->fw_drv_pulse_wr_seq;
4857 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4858 		/* TBD - add SYSTEM_TIME */
4859 		drv_pulse = bp->fw_drv_pulse_wr_seq;
4860 		bnx2x_drv_pulse(bp);
4861 
4862 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4863 			     MCP_PULSE_SEQ_MASK);
4864 		/* The delta between driver pulse and mcp response
4865 		 * should be 1 (before mcp response) or 0 (after mcp response)
4866 		 */
4867 		if ((drv_pulse != mcp_pulse) &&
4868 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4869 			/* someone lost a heartbeat... */
4870 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4871 				  drv_pulse, mcp_pulse);
4872 		}
4873 	}
4874 
4875 	if (bp->state == BNX2X_STATE_OPEN)
4876 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4877 
4878 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4879 }
4880 
4881 /* end of Statistics */
4882 
4883 /* nic init */
4884 
4885 /*
4886  * nic init service functions
4887  */
4888 
4889 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4890 {
4891 	u32 i;
4892 	if (!(len%4) && !(addr%4))
4893 		for (i = 0; i < len; i += 4)
4894 			REG_WR(bp, addr + i, fill);
4895 	else
4896 		for (i = 0; i < len; i++)
4897 			REG_WR8(bp, addr + i, fill);
4898 
4899 }
4900 
4901 /* helper: writes FP SP data to FW - data_size in dwords */
4902 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4903 				       int fw_sb_id,
4904 				       u32 *sb_data_p,
4905 				       u32 data_size)
4906 {
4907 	int index;
4908 	for (index = 0; index < data_size; index++)
4909 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4910 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4911 			sizeof(u32)*index,
4912 			*(sb_data_p + index));
4913 }
4914 
4915 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4916 {
4917 	u32 *sb_data_p;
4918 	u32 data_size = 0;
4919 	struct hc_status_block_data_e2 sb_data_e2;
4920 	struct hc_status_block_data_e1x sb_data_e1x;
4921 
4922 	/* disable the function first */
4923 	if (!CHIP_IS_E1x(bp)) {
4924 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4925 		sb_data_e2.common.state = SB_DISABLED;
4926 		sb_data_e2.common.p_func.vf_valid = false;
4927 		sb_data_p = (u32 *)&sb_data_e2;
4928 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4929 	} else {
4930 		memset(&sb_data_e1x, 0,
4931 		       sizeof(struct hc_status_block_data_e1x));
4932 		sb_data_e1x.common.state = SB_DISABLED;
4933 		sb_data_e1x.common.p_func.vf_valid = false;
4934 		sb_data_p = (u32 *)&sb_data_e1x;
4935 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4936 	}
4937 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4938 
4939 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4940 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4941 			CSTORM_STATUS_BLOCK_SIZE);
4942 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4943 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4944 			CSTORM_SYNC_BLOCK_SIZE);
4945 }
4946 
4947 /* helper:  writes SP SB data to FW */
4948 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4949 		struct hc_sp_status_block_data *sp_sb_data)
4950 {
4951 	int func = BP_FUNC(bp);
4952 	int i;
4953 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4954 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4955 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4956 			i*sizeof(u32),
4957 			*((u32 *)sp_sb_data + i));
4958 }
4959 
4960 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4961 {
4962 	int func = BP_FUNC(bp);
4963 	struct hc_sp_status_block_data sp_sb_data;
4964 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4965 
4966 	sp_sb_data.state = SB_DISABLED;
4967 	sp_sb_data.p_func.vf_valid = false;
4968 
4969 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4970 
4971 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4972 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4973 			CSTORM_SP_STATUS_BLOCK_SIZE);
4974 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4975 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4976 			CSTORM_SP_SYNC_BLOCK_SIZE);
4977 
4978 }
4979 
4980 
4981 static inline
4982 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4983 					   int igu_sb_id, int igu_seg_id)
4984 {
4985 	hc_sm->igu_sb_id = igu_sb_id;
4986 	hc_sm->igu_seg_id = igu_seg_id;
4987 	hc_sm->timer_value = 0xFF;
4988 	hc_sm->time_to_expire = 0xFFFFFFFF;
4989 }
4990 
4991 
4992 /* allocates state machine ids. */
4993 static inline
4994 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4995 {
4996 	/* zero out state machine indices */
4997 	/* rx indices */
4998 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4999 
5000 	/* tx indices */
5001 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5002 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5003 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5004 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5005 
5006 	/* map indices */
5007 	/* rx indices */
5008 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5009 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5010 
5011 	/* tx indices */
5012 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5013 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5014 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5015 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5016 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5017 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5018 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5019 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5020 }
5021 
5022 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5023 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5024 {
5025 	int igu_seg_id;
5026 
5027 	struct hc_status_block_data_e2 sb_data_e2;
5028 	struct hc_status_block_data_e1x sb_data_e1x;
5029 	struct hc_status_block_sm  *hc_sm_p;
5030 	int data_size;
5031 	u32 *sb_data_p;
5032 
5033 	if (CHIP_INT_MODE_IS_BC(bp))
5034 		igu_seg_id = HC_SEG_ACCESS_NORM;
5035 	else
5036 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5037 
5038 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5039 
5040 	if (!CHIP_IS_E1x(bp)) {
5041 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5042 		sb_data_e2.common.state = SB_ENABLED;
5043 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5044 		sb_data_e2.common.p_func.vf_id = vfid;
5045 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5046 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5047 		sb_data_e2.common.same_igu_sb_1b = true;
5048 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5049 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5050 		hc_sm_p = sb_data_e2.common.state_machine;
5051 		sb_data_p = (u32 *)&sb_data_e2;
5052 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5053 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5054 	} else {
5055 		memset(&sb_data_e1x, 0,
5056 		       sizeof(struct hc_status_block_data_e1x));
5057 		sb_data_e1x.common.state = SB_ENABLED;
5058 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5059 		sb_data_e1x.common.p_func.vf_id = 0xff;
5060 		sb_data_e1x.common.p_func.vf_valid = false;
5061 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5062 		sb_data_e1x.common.same_igu_sb_1b = true;
5063 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5064 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5065 		hc_sm_p = sb_data_e1x.common.state_machine;
5066 		sb_data_p = (u32 *)&sb_data_e1x;
5067 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5068 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5069 	}
5070 
5071 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5072 				       igu_sb_id, igu_seg_id);
5073 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5074 				       igu_sb_id, igu_seg_id);
5075 
5076 	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5077 
5078 	/* write indecies to HW */
5079 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5080 }
5081 
5082 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5083 				     u16 tx_usec, u16 rx_usec)
5084 {
5085 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5086 				    false, rx_usec);
5087 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5088 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5089 				       tx_usec);
5090 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5091 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5092 				       tx_usec);
5093 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5094 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5095 				       tx_usec);
5096 }
5097 
5098 static void bnx2x_init_def_sb(struct bnx2x *bp)
5099 {
5100 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5101 	dma_addr_t mapping = bp->def_status_blk_mapping;
5102 	int igu_sp_sb_index;
5103 	int igu_seg_id;
5104 	int port = BP_PORT(bp);
5105 	int func = BP_FUNC(bp);
5106 	int reg_offset, reg_offset_en5;
5107 	u64 section;
5108 	int index;
5109 	struct hc_sp_status_block_data sp_sb_data;
5110 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5111 
5112 	if (CHIP_INT_MODE_IS_BC(bp)) {
5113 		igu_sp_sb_index = DEF_SB_IGU_ID;
5114 		igu_seg_id = HC_SEG_ACCESS_DEF;
5115 	} else {
5116 		igu_sp_sb_index = bp->igu_dsb_id;
5117 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5118 	}
5119 
5120 	/* ATTN */
5121 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5122 					    atten_status_block);
5123 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5124 
5125 	bp->attn_state = 0;
5126 
5127 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5128 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5129 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5130 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5131 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5132 		int sindex;
5133 		/* take care of sig[0]..sig[4] */
5134 		for (sindex = 0; sindex < 4; sindex++)
5135 			bp->attn_group[index].sig[sindex] =
5136 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5137 
5138 		if (!CHIP_IS_E1x(bp))
5139 			/*
5140 			 * enable5 is separate from the rest of the registers,
5141 			 * and therefore the address skip is 4
5142 			 * and not 16 between the different groups
5143 			 */
5144 			bp->attn_group[index].sig[4] = REG_RD(bp,
5145 					reg_offset_en5 + 0x4*index);
5146 		else
5147 			bp->attn_group[index].sig[4] = 0;
5148 	}
5149 
5150 	if (bp->common.int_block == INT_BLOCK_HC) {
5151 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5152 				     HC_REG_ATTN_MSG0_ADDR_L);
5153 
5154 		REG_WR(bp, reg_offset, U64_LO(section));
5155 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5156 	} else if (!CHIP_IS_E1x(bp)) {
5157 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5158 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5159 	}
5160 
5161 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5162 					    sp_sb);
5163 
5164 	bnx2x_zero_sp_sb(bp);
5165 
5166 	sp_sb_data.state		= SB_ENABLED;
5167 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5168 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5169 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5170 	sp_sb_data.igu_seg_id		= igu_seg_id;
5171 	sp_sb_data.p_func.pf_id		= func;
5172 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5173 	sp_sb_data.p_func.vf_id		= 0xff;
5174 
5175 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5176 
5177 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5178 }
5179 
5180 void bnx2x_update_coalesce(struct bnx2x *bp)
5181 {
5182 	int i;
5183 
5184 	for_each_eth_queue(bp, i)
5185 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5186 					 bp->tx_ticks, bp->rx_ticks);
5187 }
5188 
5189 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5190 {
5191 	spin_lock_init(&bp->spq_lock);
5192 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5193 
5194 	bp->spq_prod_idx = 0;
5195 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5196 	bp->spq_prod_bd = bp->spq;
5197 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5198 }
5199 
5200 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5201 {
5202 	int i;
5203 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5204 		union event_ring_elem *elem =
5205 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5206 
5207 		elem->next_page.addr.hi =
5208 			cpu_to_le32(U64_HI(bp->eq_mapping +
5209 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5210 		elem->next_page.addr.lo =
5211 			cpu_to_le32(U64_LO(bp->eq_mapping +
5212 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5213 	}
5214 	bp->eq_cons = 0;
5215 	bp->eq_prod = NUM_EQ_DESC;
5216 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5217 	/* we want a warning message before it gets rought... */
5218 	atomic_set(&bp->eq_spq_left,
5219 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5220 }
5221 
5222 
5223 /* called with netif_addr_lock_bh() */
5224 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5225 			 unsigned long rx_mode_flags,
5226 			 unsigned long rx_accept_flags,
5227 			 unsigned long tx_accept_flags,
5228 			 unsigned long ramrod_flags)
5229 {
5230 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5231 	int rc;
5232 
5233 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5234 
5235 	/* Prepare ramrod parameters */
5236 	ramrod_param.cid = 0;
5237 	ramrod_param.cl_id = cl_id;
5238 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5239 	ramrod_param.func_id = BP_FUNC(bp);
5240 
5241 	ramrod_param.pstate = &bp->sp_state;
5242 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5243 
5244 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5245 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5246 
5247 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5248 
5249 	ramrod_param.ramrod_flags = ramrod_flags;
5250 	ramrod_param.rx_mode_flags = rx_mode_flags;
5251 
5252 	ramrod_param.rx_accept_flags = rx_accept_flags;
5253 	ramrod_param.tx_accept_flags = tx_accept_flags;
5254 
5255 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5256 	if (rc < 0) {
5257 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5258 		return;
5259 	}
5260 }
5261 
5262 /* called with netif_addr_lock_bh() */
5263 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5264 {
5265 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5266 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5267 
5268 #ifdef BCM_CNIC
5269 	if (!NO_FCOE(bp))
5270 
5271 		/* Configure rx_mode of FCoE Queue */
5272 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5273 #endif
5274 
5275 	switch (bp->rx_mode) {
5276 	case BNX2X_RX_MODE_NONE:
5277 		/*
5278 		 * 'drop all' supersedes any accept flags that may have been
5279 		 * passed to the function.
5280 		 */
5281 		break;
5282 	case BNX2X_RX_MODE_NORMAL:
5283 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5284 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5285 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5286 
5287 		/* internal switching mode */
5288 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5289 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5290 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5291 
5292 		break;
5293 	case BNX2X_RX_MODE_ALLMULTI:
5294 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5296 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297 
5298 		/* internal switching mode */
5299 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5300 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5301 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5302 
5303 		break;
5304 	case BNX2X_RX_MODE_PROMISC:
5305 		/* According to deffinition of SI mode, iface in promisc mode
5306 		 * should receive matched and unmatched (in resolution of port)
5307 		 * unicast packets.
5308 		 */
5309 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5310 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5311 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5312 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5313 
5314 		/* internal switching mode */
5315 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5316 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5317 
5318 		if (IS_MF_SI(bp))
5319 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5320 		else
5321 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5322 
5323 		break;
5324 	default:
5325 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5326 		return;
5327 	}
5328 
5329 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5330 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5331 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5332 	}
5333 
5334 	__set_bit(RAMROD_RX, &ramrod_flags);
5335 	__set_bit(RAMROD_TX, &ramrod_flags);
5336 
5337 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5338 			    tx_accept_flags, ramrod_flags);
5339 }
5340 
5341 static void bnx2x_init_internal_common(struct bnx2x *bp)
5342 {
5343 	int i;
5344 
5345 	if (IS_MF_SI(bp))
5346 		/*
5347 		 * In switch independent mode, the TSTORM needs to accept
5348 		 * packets that failed classification, since approximate match
5349 		 * mac addresses aren't written to NIG LLH
5350 		 */
5351 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5352 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5353 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5354 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5355 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5356 
5357 	/* Zero this manually as its initialization is
5358 	   currently missing in the initTool */
5359 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5360 		REG_WR(bp, BAR_USTRORM_INTMEM +
5361 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5362 	if (!CHIP_IS_E1x(bp)) {
5363 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5364 			CHIP_INT_MODE_IS_BC(bp) ?
5365 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5366 	}
5367 }
5368 
5369 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5370 {
5371 	switch (load_code) {
5372 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5373 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5374 		bnx2x_init_internal_common(bp);
5375 		/* no break */
5376 
5377 	case FW_MSG_CODE_DRV_LOAD_PORT:
5378 		/* nothing to do */
5379 		/* no break */
5380 
5381 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5382 		/* internal memory per function is
5383 		   initialized inside bnx2x_pf_init */
5384 		break;
5385 
5386 	default:
5387 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5388 		break;
5389 	}
5390 }
5391 
5392 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5393 {
5394 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5395 }
5396 
5397 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5398 {
5399 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5400 }
5401 
5402 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5403 {
5404 	if (CHIP_IS_E1x(fp->bp))
5405 		return BP_L_ID(fp->bp) + fp->index;
5406 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5407 		return bnx2x_fp_igu_sb_id(fp);
5408 }
5409 
5410 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5411 {
5412 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5413 	u8 cos;
5414 	unsigned long q_type = 0;
5415 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5416 	fp->rx_queue = fp_idx;
5417 	fp->cid = fp_idx;
5418 	fp->cl_id = bnx2x_fp_cl_id(fp);
5419 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5420 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5421 	/* qZone id equals to FW (per path) client id */
5422 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5423 
5424 	/* init shortcut */
5425 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5426 	/* Setup SB indicies */
5427 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5428 
5429 	/* Configure Queue State object */
5430 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5431 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5432 
5433 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5434 
5435 	/* init tx data */
5436 	for_each_cos_in_tx_queue(fp, cos) {
5437 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5438 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5439 				  FP_COS_TO_TXQ(fp, cos),
5440 				  BNX2X_TX_SB_INDEX_BASE + cos);
5441 		cids[cos] = fp->txdata[cos].cid;
5442 	}
5443 
5444 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5445 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5446 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5447 
5448 	/**
5449 	 * Configure classification DBs: Always enable Tx switching
5450 	 */
5451 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5452 
5453 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5454 				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5455 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5456 		   fp->igu_sb_id);
5457 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5458 		      fp->fw_sb_id, fp->igu_sb_id);
5459 
5460 	bnx2x_update_fpsb_idx(fp);
5461 }
5462 
5463 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5464 {
5465 	int i;
5466 
5467 	for_each_eth_queue(bp, i)
5468 		bnx2x_init_eth_fp(bp, i);
5469 #ifdef BCM_CNIC
5470 	if (!NO_FCOE(bp))
5471 		bnx2x_init_fcoe_fp(bp);
5472 
5473 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5474 		      BNX2X_VF_ID_INVALID, false,
5475 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5476 
5477 #endif
5478 
5479 	/* Initialize MOD_ABS interrupts */
5480 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5481 			       bp->common.shmem_base, bp->common.shmem2_base,
5482 			       BP_PORT(bp));
5483 	/* ensure status block indices were read */
5484 	rmb();
5485 
5486 	bnx2x_init_def_sb(bp);
5487 	bnx2x_update_dsb_idx(bp);
5488 	bnx2x_init_rx_rings(bp);
5489 	bnx2x_init_tx_rings(bp);
5490 	bnx2x_init_sp_ring(bp);
5491 	bnx2x_init_eq_ring(bp);
5492 	bnx2x_init_internal(bp, load_code);
5493 	bnx2x_pf_init(bp);
5494 	bnx2x_stats_init(bp);
5495 
5496 	/* flush all before enabling interrupts */
5497 	mb();
5498 	mmiowb();
5499 
5500 	bnx2x_int_enable(bp);
5501 
5502 	/* Check for SPIO5 */
5503 	bnx2x_attn_int_deasserted0(bp,
5504 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5505 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5506 }
5507 
5508 /* end of nic init */
5509 
5510 /*
5511  * gzip service functions
5512  */
5513 
5514 static int bnx2x_gunzip_init(struct bnx2x *bp)
5515 {
5516 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5517 					    &bp->gunzip_mapping, GFP_KERNEL);
5518 	if (bp->gunzip_buf  == NULL)
5519 		goto gunzip_nomem1;
5520 
5521 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5522 	if (bp->strm  == NULL)
5523 		goto gunzip_nomem2;
5524 
5525 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5526 	if (bp->strm->workspace == NULL)
5527 		goto gunzip_nomem3;
5528 
5529 	return 0;
5530 
5531 gunzip_nomem3:
5532 	kfree(bp->strm);
5533 	bp->strm = NULL;
5534 
5535 gunzip_nomem2:
5536 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5537 			  bp->gunzip_mapping);
5538 	bp->gunzip_buf = NULL;
5539 
5540 gunzip_nomem1:
5541 	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5542 	       " un-compression\n");
5543 	return -ENOMEM;
5544 }
5545 
5546 static void bnx2x_gunzip_end(struct bnx2x *bp)
5547 {
5548 	if (bp->strm) {
5549 		vfree(bp->strm->workspace);
5550 		kfree(bp->strm);
5551 		bp->strm = NULL;
5552 	}
5553 
5554 	if (bp->gunzip_buf) {
5555 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5556 				  bp->gunzip_mapping);
5557 		bp->gunzip_buf = NULL;
5558 	}
5559 }
5560 
5561 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5562 {
5563 	int n, rc;
5564 
5565 	/* check gzip header */
5566 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5567 		BNX2X_ERR("Bad gzip header\n");
5568 		return -EINVAL;
5569 	}
5570 
5571 	n = 10;
5572 
5573 #define FNAME				0x8
5574 
5575 	if (zbuf[3] & FNAME)
5576 		while ((zbuf[n++] != 0) && (n < len));
5577 
5578 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5579 	bp->strm->avail_in = len - n;
5580 	bp->strm->next_out = bp->gunzip_buf;
5581 	bp->strm->avail_out = FW_BUF_SIZE;
5582 
5583 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5584 	if (rc != Z_OK)
5585 		return rc;
5586 
5587 	rc = zlib_inflate(bp->strm, Z_FINISH);
5588 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5589 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5590 			   bp->strm->msg);
5591 
5592 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5593 	if (bp->gunzip_outlen & 0x3)
5594 		netdev_err(bp->dev, "Firmware decompression error:"
5595 				    " gunzip_outlen (%d) not aligned\n",
5596 				bp->gunzip_outlen);
5597 	bp->gunzip_outlen >>= 2;
5598 
5599 	zlib_inflateEnd(bp->strm);
5600 
5601 	if (rc == Z_STREAM_END)
5602 		return 0;
5603 
5604 	return rc;
5605 }
5606 
5607 /* nic load/unload */
5608 
5609 /*
5610  * General service functions
5611  */
5612 
5613 /* send a NIG loopback debug packet */
5614 static void bnx2x_lb_pckt(struct bnx2x *bp)
5615 {
5616 	u32 wb_write[3];
5617 
5618 	/* Ethernet source and destination addresses */
5619 	wb_write[0] = 0x55555555;
5620 	wb_write[1] = 0x55555555;
5621 	wb_write[2] = 0x20;		/* SOP */
5622 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5623 
5624 	/* NON-IP protocol */
5625 	wb_write[0] = 0x09000000;
5626 	wb_write[1] = 0x55555555;
5627 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5628 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5629 }
5630 
5631 /* some of the internal memories
5632  * are not directly readable from the driver
5633  * to test them we send debug packets
5634  */
5635 static int bnx2x_int_mem_test(struct bnx2x *bp)
5636 {
5637 	int factor;
5638 	int count, i;
5639 	u32 val = 0;
5640 
5641 	if (CHIP_REV_IS_FPGA(bp))
5642 		factor = 120;
5643 	else if (CHIP_REV_IS_EMUL(bp))
5644 		factor = 200;
5645 	else
5646 		factor = 1;
5647 
5648 	/* Disable inputs of parser neighbor blocks */
5649 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5650 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5651 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5652 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5653 
5654 	/*  Write 0 to parser credits for CFC search request */
5655 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5656 
5657 	/* send Ethernet packet */
5658 	bnx2x_lb_pckt(bp);
5659 
5660 	/* TODO do i reset NIG statistic? */
5661 	/* Wait until NIG register shows 1 packet of size 0x10 */
5662 	count = 1000 * factor;
5663 	while (count) {
5664 
5665 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5666 		val = *bnx2x_sp(bp, wb_data[0]);
5667 		if (val == 0x10)
5668 			break;
5669 
5670 		msleep(10);
5671 		count--;
5672 	}
5673 	if (val != 0x10) {
5674 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5675 		return -1;
5676 	}
5677 
5678 	/* Wait until PRS register shows 1 packet */
5679 	count = 1000 * factor;
5680 	while (count) {
5681 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5682 		if (val == 1)
5683 			break;
5684 
5685 		msleep(10);
5686 		count--;
5687 	}
5688 	if (val != 0x1) {
5689 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5690 		return -2;
5691 	}
5692 
5693 	/* Reset and init BRB, PRS */
5694 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5695 	msleep(50);
5696 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5697 	msleep(50);
5698 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5699 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5700 
5701 	DP(NETIF_MSG_HW, "part2\n");
5702 
5703 	/* Disable inputs of parser neighbor blocks */
5704 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5705 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5706 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5707 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5708 
5709 	/* Write 0 to parser credits for CFC search request */
5710 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5711 
5712 	/* send 10 Ethernet packets */
5713 	for (i = 0; i < 10; i++)
5714 		bnx2x_lb_pckt(bp);
5715 
5716 	/* Wait until NIG register shows 10 + 1
5717 	   packets of size 11*0x10 = 0xb0 */
5718 	count = 1000 * factor;
5719 	while (count) {
5720 
5721 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5722 		val = *bnx2x_sp(bp, wb_data[0]);
5723 		if (val == 0xb0)
5724 			break;
5725 
5726 		msleep(10);
5727 		count--;
5728 	}
5729 	if (val != 0xb0) {
5730 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5731 		return -3;
5732 	}
5733 
5734 	/* Wait until PRS register shows 2 packets */
5735 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5736 	if (val != 2)
5737 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5738 
5739 	/* Write 1 to parser credits for CFC search request */
5740 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5741 
5742 	/* Wait until PRS register shows 3 packets */
5743 	msleep(10 * factor);
5744 	/* Wait until NIG register shows 1 packet of size 0x10 */
5745 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5746 	if (val != 3)
5747 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5748 
5749 	/* clear NIG EOP FIFO */
5750 	for (i = 0; i < 11; i++)
5751 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5752 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5753 	if (val != 1) {
5754 		BNX2X_ERR("clear of NIG failed\n");
5755 		return -4;
5756 	}
5757 
5758 	/* Reset and init BRB, PRS, NIG */
5759 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5760 	msleep(50);
5761 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5762 	msleep(50);
5763 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5764 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5765 #ifndef BCM_CNIC
5766 	/* set NIC mode */
5767 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5768 #endif
5769 
5770 	/* Enable inputs of parser neighbor blocks */
5771 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5772 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5773 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5774 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5775 
5776 	DP(NETIF_MSG_HW, "done\n");
5777 
5778 	return 0; /* OK */
5779 }
5780 
5781 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5782 {
5783 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5784 	if (!CHIP_IS_E1x(bp))
5785 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5786 	else
5787 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5788 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5789 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5790 	/*
5791 	 * mask read length error interrupts in brb for parser
5792 	 * (parsing unit and 'checksum and crc' unit)
5793 	 * these errors are legal (PU reads fixed length and CAC can cause
5794 	 * read length error on truncated packets)
5795 	 */
5796 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5797 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5798 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5799 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5800 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5801 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5802 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5803 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5804 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5805 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5806 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5807 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5808 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5809 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5810 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5811 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5812 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5813 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5814 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5815 
5816 	if (CHIP_REV_IS_FPGA(bp))
5817 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5818 	else if (!CHIP_IS_E1x(bp))
5819 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5820 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5821 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5822 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5823 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5824 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5825 	else
5826 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5827 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5828 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5829 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5830 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5831 
5832 	if (!CHIP_IS_E1x(bp))
5833 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5834 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5835 
5836 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5837 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5838 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5839 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5840 }
5841 
5842 static void bnx2x_reset_common(struct bnx2x *bp)
5843 {
5844 	u32 val = 0x1400;
5845 
5846 	/* reset_common */
5847 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5848 	       0xd3ffff7f);
5849 
5850 	if (CHIP_IS_E3(bp)) {
5851 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5852 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5853 	}
5854 
5855 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5856 }
5857 
5858 static void bnx2x_setup_dmae(struct bnx2x *bp)
5859 {
5860 	bp->dmae_ready = 0;
5861 	spin_lock_init(&bp->dmae_lock);
5862 }
5863 
5864 static void bnx2x_init_pxp(struct bnx2x *bp)
5865 {
5866 	u16 devctl;
5867 	int r_order, w_order;
5868 
5869 	pci_read_config_word(bp->pdev,
5870 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5871 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5872 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5873 	if (bp->mrrs == -1)
5874 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5875 	else {
5876 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5877 		r_order = bp->mrrs;
5878 	}
5879 
5880 	bnx2x_init_pxp_arb(bp, r_order, w_order);
5881 }
5882 
5883 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5884 {
5885 	int is_required;
5886 	u32 val;
5887 	int port;
5888 
5889 	if (BP_NOMCP(bp))
5890 		return;
5891 
5892 	is_required = 0;
5893 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5894 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5895 
5896 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5897 		is_required = 1;
5898 
5899 	/*
5900 	 * The fan failure mechanism is usually related to the PHY type since
5901 	 * the power consumption of the board is affected by the PHY. Currently,
5902 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5903 	 */
5904 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5905 		for (port = PORT_0; port < PORT_MAX; port++) {
5906 			is_required |=
5907 				bnx2x_fan_failure_det_req(
5908 					bp,
5909 					bp->common.shmem_base,
5910 					bp->common.shmem2_base,
5911 					port);
5912 		}
5913 
5914 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5915 
5916 	if (is_required == 0)
5917 		return;
5918 
5919 	/* Fan failure is indicated by SPIO 5 */
5920 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5921 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5922 
5923 	/* set to active low mode */
5924 	val = REG_RD(bp, MISC_REG_SPIO_INT);
5925 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5926 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5927 	REG_WR(bp, MISC_REG_SPIO_INT, val);
5928 
5929 	/* enable interrupt to signal the IGU */
5930 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5931 	val |= (1 << MISC_REGISTERS_SPIO_5);
5932 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5933 }
5934 
5935 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5936 {
5937 	u32 offset = 0;
5938 
5939 	if (CHIP_IS_E1(bp))
5940 		return;
5941 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5942 		return;
5943 
5944 	switch (BP_ABS_FUNC(bp)) {
5945 	case 0:
5946 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5947 		break;
5948 	case 1:
5949 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5950 		break;
5951 	case 2:
5952 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5953 		break;
5954 	case 3:
5955 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5956 		break;
5957 	case 4:
5958 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5959 		break;
5960 	case 5:
5961 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5962 		break;
5963 	case 6:
5964 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5965 		break;
5966 	case 7:
5967 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5968 		break;
5969 	default:
5970 		return;
5971 	}
5972 
5973 	REG_WR(bp, offset, pretend_func_num);
5974 	REG_RD(bp, offset);
5975 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5976 }
5977 
5978 void bnx2x_pf_disable(struct bnx2x *bp)
5979 {
5980 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5981 	val &= ~IGU_PF_CONF_FUNC_EN;
5982 
5983 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5984 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5985 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5986 }
5987 
5988 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5989 {
5990 	u32 shmem_base[2], shmem2_base[2];
5991 	shmem_base[0] =  bp->common.shmem_base;
5992 	shmem2_base[0] = bp->common.shmem2_base;
5993 	if (!CHIP_IS_E1x(bp)) {
5994 		shmem_base[1] =
5995 			SHMEM2_RD(bp, other_shmem_base_addr);
5996 		shmem2_base[1] =
5997 			SHMEM2_RD(bp, other_shmem2_base_addr);
5998 	}
5999 	bnx2x_acquire_phy_lock(bp);
6000 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6001 			      bp->common.chip_id);
6002 	bnx2x_release_phy_lock(bp);
6003 }
6004 
6005 /**
6006  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6007  *
6008  * @bp:		driver handle
6009  */
6010 static int bnx2x_init_hw_common(struct bnx2x *bp)
6011 {
6012 	u32 val;
6013 
6014 	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6015 
6016 	/*
6017 	 * take the UNDI lock to protect undi_unload flow from accessing
6018 	 * registers while we're resetting the chip
6019 	 */
6020 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6021 
6022 	bnx2x_reset_common(bp);
6023 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6024 
6025 	val = 0xfffc;
6026 	if (CHIP_IS_E3(bp)) {
6027 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6028 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6029 	}
6030 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6031 
6032 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6033 
6034 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6035 
6036 	if (!CHIP_IS_E1x(bp)) {
6037 		u8 abs_func_id;
6038 
6039 		/**
6040 		 * 4-port mode or 2-port mode we need to turn of master-enable
6041 		 * for everyone, after that, turn it back on for self.
6042 		 * so, we disregard multi-function or not, and always disable
6043 		 * for all functions on the given path, this means 0,2,4,6 for
6044 		 * path 0 and 1,3,5,7 for path 1
6045 		 */
6046 		for (abs_func_id = BP_PATH(bp);
6047 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6048 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6049 				REG_WR(bp,
6050 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6051 				    1);
6052 				continue;
6053 			}
6054 
6055 			bnx2x_pretend_func(bp, abs_func_id);
6056 			/* clear pf enable */
6057 			bnx2x_pf_disable(bp);
6058 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6059 		}
6060 	}
6061 
6062 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6063 	if (CHIP_IS_E1(bp)) {
6064 		/* enable HW interrupt from PXP on USDM overflow
6065 		   bit 16 on INT_MASK_0 */
6066 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6067 	}
6068 
6069 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6070 	bnx2x_init_pxp(bp);
6071 
6072 #ifdef __BIG_ENDIAN
6073 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6074 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6075 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6076 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6077 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6078 	/* make sure this value is 0 */
6079 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6080 
6081 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6082 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6083 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6084 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6085 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6086 #endif
6087 
6088 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6089 
6090 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6091 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6092 
6093 	/* let the HW do it's magic ... */
6094 	msleep(100);
6095 	/* finish PXP init */
6096 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6097 	if (val != 1) {
6098 		BNX2X_ERR("PXP2 CFG failed\n");
6099 		return -EBUSY;
6100 	}
6101 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6102 	if (val != 1) {
6103 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6104 		return -EBUSY;
6105 	}
6106 
6107 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6108 	 * have entries with value "0" and valid bit on.
6109 	 * This needs to be done by the first PF that is loaded in a path
6110 	 * (i.e. common phase)
6111 	 */
6112 	if (!CHIP_IS_E1x(bp)) {
6113 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6114  * (i.e. vnic3) to start even if it is marked as "scan-off".
6115  * This occurs when a different function (func2,3) is being marked
6116  * as "scan-off". Real-life scenario for example: if a driver is being
6117  * load-unloaded while func6,7 are down. This will cause the timer to access
6118  * the ilt, translate to a logical address and send a request to read/write.
6119  * Since the ilt for the function that is down is not valid, this will cause
6120  * a translation error which is unrecoverable.
6121  * The Workaround is intended to make sure that when this happens nothing fatal
6122  * will occur. The workaround:
6123  *	1.  First PF driver which loads on a path will:
6124  *		a.  After taking the chip out of reset, by using pretend,
6125  *		    it will write "0" to the following registers of
6126  *		    the other vnics.
6127  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6128  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6129  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6130  *		    And for itself it will write '1' to
6131  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6132  *		    dmae-operations (writing to pram for example.)
6133  *		    note: can be done for only function 6,7 but cleaner this
6134  *			  way.
6135  *		b.  Write zero+valid to the entire ILT.
6136  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6137  *		    VNIC3 (of that port). The range allocated will be the
6138  *		    entire ILT. This is needed to prevent  ILT range error.
6139  *	2.  Any PF driver load flow:
6140  *		a.  ILT update with the physical addresses of the allocated
6141  *		    logical pages.
6142  *		b.  Wait 20msec. - note that this timeout is needed to make
6143  *		    sure there are no requests in one of the PXP internal
6144  *		    queues with "old" ILT addresses.
6145  *		c.  PF enable in the PGLC.
6146  *		d.  Clear the was_error of the PF in the PGLC. (could have
6147  *		    occured while driver was down)
6148  *		e.  PF enable in the CFC (WEAK + STRONG)
6149  *		f.  Timers scan enable
6150  *	3.  PF driver unload flow:
6151  *		a.  Clear the Timers scan_en.
6152  *		b.  Polling for scan_on=0 for that PF.
6153  *		c.  Clear the PF enable bit in the PXP.
6154  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6155  *		e.  Write zero+valid to all ILT entries (The valid bit must
6156  *		    stay set)
6157  *		f.  If this is VNIC 3 of a port then also init
6158  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6159  *		    to the last enrty in the ILT.
6160  *
6161  *	Notes:
6162  *	Currently the PF error in the PGLC is non recoverable.
6163  *	In the future the there will be a recovery routine for this error.
6164  *	Currently attention is masked.
6165  *	Having an MCP lock on the load/unload process does not guarantee that
6166  *	there is no Timer disable during Func6/7 enable. This is because the
6167  *	Timers scan is currently being cleared by the MCP on FLR.
6168  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6169  *	there is error before clearing it. But the flow above is simpler and
6170  *	more general.
6171  *	All ILT entries are written by zero+valid and not just PF6/7
6172  *	ILT entries since in the future the ILT entries allocation for
6173  *	PF-s might be dynamic.
6174  */
6175 		struct ilt_client_info ilt_cli;
6176 		struct bnx2x_ilt ilt;
6177 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6178 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6179 
6180 		/* initialize dummy TM client */
6181 		ilt_cli.start = 0;
6182 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6183 		ilt_cli.client_num = ILT_CLIENT_TM;
6184 
6185 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6186 		 * Step 2: set the timers first/last ilt entry to point
6187 		 * to the entire range to prevent ILT range error for 3rd/4th
6188 		 * vnic	(this code assumes existance of the vnic)
6189 		 *
6190 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6191 		 * with dummy TM client
6192 		 *
6193 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6194 		 * and his brother are split registers
6195 		 */
6196 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6197 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6198 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6199 
6200 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6201 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6202 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6203 	}
6204 
6205 
6206 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6207 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6208 
6209 	if (!CHIP_IS_E1x(bp)) {
6210 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6211 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6212 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6213 
6214 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6215 
6216 		/* let the HW do it's magic ... */
6217 		do {
6218 			msleep(200);
6219 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6220 		} while (factor-- && (val != 1));
6221 
6222 		if (val != 1) {
6223 			BNX2X_ERR("ATC_INIT failed\n");
6224 			return -EBUSY;
6225 		}
6226 	}
6227 
6228 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6229 
6230 	/* clean the DMAE memory */
6231 	bp->dmae_ready = 1;
6232 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6233 
6234 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6235 
6236 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6237 
6238 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6239 
6240 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6241 
6242 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6243 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6244 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6245 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6246 
6247 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6248 
6249 
6250 	/* QM queues pointers table */
6251 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6252 
6253 	/* soft reset pulse */
6254 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6255 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6256 
6257 #ifdef BCM_CNIC
6258 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6259 #endif
6260 
6261 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6262 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6263 	if (!CHIP_REV_IS_SLOW(bp))
6264 		/* enable hw interrupt from doorbell Q */
6265 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6266 
6267 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6268 
6269 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6270 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6271 
6272 	if (!CHIP_IS_E1(bp))
6273 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6274 
6275 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6276 		/* Bit-map indicating which L2 hdrs may appear
6277 		 * after the basic Ethernet header
6278 		 */
6279 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6280 		       bp->path_has_ovlan ? 7 : 6);
6281 
6282 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6283 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6284 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6285 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6286 
6287 	if (!CHIP_IS_E1x(bp)) {
6288 		/* reset VFC memories */
6289 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6290 			   VFC_MEMORIES_RST_REG_CAM_RST |
6291 			   VFC_MEMORIES_RST_REG_RAM_RST);
6292 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6293 			   VFC_MEMORIES_RST_REG_CAM_RST |
6294 			   VFC_MEMORIES_RST_REG_RAM_RST);
6295 
6296 		msleep(20);
6297 	}
6298 
6299 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6300 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6301 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6302 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6303 
6304 	/* sync semi rtc */
6305 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6306 	       0x80000000);
6307 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6308 	       0x80000000);
6309 
6310 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6311 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6312 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6313 
6314 	if (!CHIP_IS_E1x(bp))
6315 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6316 		       bp->path_has_ovlan ? 7 : 6);
6317 
6318 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6319 
6320 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6321 
6322 #ifdef BCM_CNIC
6323 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6324 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6325 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6326 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6327 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6328 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6329 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6330 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6331 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6332 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6333 #endif
6334 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6335 
6336 	if (sizeof(union cdu_context) != 1024)
6337 		/* we currently assume that a context is 1024 bytes */
6338 		dev_alert(&bp->pdev->dev, "please adjust the size "
6339 					  "of cdu_context(%ld)\n",
6340 			 (long)sizeof(union cdu_context));
6341 
6342 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6343 	val = (4 << 24) + (0 << 12) + 1024;
6344 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6345 
6346 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6347 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6348 	/* enable context validation interrupt from CFC */
6349 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6350 
6351 	/* set the thresholds to prevent CFC/CDU race */
6352 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6353 
6354 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6355 
6356 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6357 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6358 
6359 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6360 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6361 
6362 	/* Reset PCIE errors for debug */
6363 	REG_WR(bp, 0x2814, 0xffffffff);
6364 	REG_WR(bp, 0x3820, 0xffffffff);
6365 
6366 	if (!CHIP_IS_E1x(bp)) {
6367 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6368 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6369 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6370 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6371 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6372 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6373 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6374 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6375 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6376 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6377 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6378 	}
6379 
6380 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6381 	if (!CHIP_IS_E1(bp)) {
6382 		/* in E3 this done in per-port section */
6383 		if (!CHIP_IS_E3(bp))
6384 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6385 	}
6386 	if (CHIP_IS_E1H(bp))
6387 		/* not applicable for E2 (and above ...) */
6388 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6389 
6390 	if (CHIP_REV_IS_SLOW(bp))
6391 		msleep(200);
6392 
6393 	/* finish CFC init */
6394 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6395 	if (val != 1) {
6396 		BNX2X_ERR("CFC LL_INIT failed\n");
6397 		return -EBUSY;
6398 	}
6399 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6400 	if (val != 1) {
6401 		BNX2X_ERR("CFC AC_INIT failed\n");
6402 		return -EBUSY;
6403 	}
6404 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6405 	if (val != 1) {
6406 		BNX2X_ERR("CFC CAM_INIT failed\n");
6407 		return -EBUSY;
6408 	}
6409 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6410 
6411 	if (CHIP_IS_E1(bp)) {
6412 		/* read NIG statistic
6413 		   to see if this is our first up since powerup */
6414 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6415 		val = *bnx2x_sp(bp, wb_data[0]);
6416 
6417 		/* do internal memory self test */
6418 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6419 			BNX2X_ERR("internal mem self test failed\n");
6420 			return -EBUSY;
6421 		}
6422 	}
6423 
6424 	bnx2x_setup_fan_failure_detection(bp);
6425 
6426 	/* clear PXP2 attentions */
6427 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6428 
6429 	bnx2x_enable_blocks_attention(bp);
6430 	bnx2x_enable_blocks_parity(bp);
6431 
6432 	if (!BP_NOMCP(bp)) {
6433 		if (CHIP_IS_E1x(bp))
6434 			bnx2x__common_init_phy(bp);
6435 	} else
6436 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6437 
6438 	return 0;
6439 }
6440 
6441 /**
6442  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6443  *
6444  * @bp:		driver handle
6445  */
6446 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6447 {
6448 	int rc = bnx2x_init_hw_common(bp);
6449 
6450 	if (rc)
6451 		return rc;
6452 
6453 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6454 	if (!BP_NOMCP(bp))
6455 		bnx2x__common_init_phy(bp);
6456 
6457 	return 0;
6458 }
6459 
6460 static int bnx2x_init_hw_port(struct bnx2x *bp)
6461 {
6462 	int port = BP_PORT(bp);
6463 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6464 	u32 low, high;
6465 	u32 val;
6466 
6467 	bnx2x__link_reset(bp);
6468 
6469 	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6470 
6471 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6472 
6473 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6474 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6475 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6476 
6477 	/* Timers bug workaround: disables the pf_master bit in pglue at
6478 	 * common phase, we need to enable it here before any dmae access are
6479 	 * attempted. Therefore we manually added the enable-master to the
6480 	 * port phase (it also happens in the function phase)
6481 	 */
6482 	if (!CHIP_IS_E1x(bp))
6483 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6484 
6485 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6486 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6487 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6488 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6489 
6490 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6491 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6492 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6493 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6494 
6495 	/* QM cid (connection) count */
6496 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6497 
6498 #ifdef BCM_CNIC
6499 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6500 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6501 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6502 #endif
6503 
6504 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6505 
6506 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6507 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6508 
6509 		if (IS_MF(bp))
6510 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6511 		else if (bp->dev->mtu > 4096) {
6512 			if (bp->flags & ONE_PORT_FLAG)
6513 				low = 160;
6514 			else {
6515 				val = bp->dev->mtu;
6516 				/* (24*1024 + val*4)/256 */
6517 				low = 96 + (val/64) +
6518 						((val % 64) ? 1 : 0);
6519 			}
6520 		} else
6521 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6522 		high = low + 56;	/* 14*1024/256 */
6523 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6524 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6525 	}
6526 
6527 	if (CHIP_MODE_IS_4_PORT(bp))
6528 		REG_WR(bp, (BP_PORT(bp) ?
6529 			    BRB1_REG_MAC_GUARANTIED_1 :
6530 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6531 
6532 
6533 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6534 	if (CHIP_IS_E3B0(bp))
6535 		/* Ovlan exists only if we are in multi-function +
6536 		 * switch-dependent mode, in switch-independent there
6537 		 * is no ovlan headers
6538 		 */
6539 		REG_WR(bp, BP_PORT(bp) ?
6540 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6541 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6542 		       (bp->path_has_ovlan ? 7 : 6));
6543 
6544 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6545 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6546 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6547 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6548 
6549 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6550 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6551 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6552 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6553 
6554 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6555 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6556 
6557 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6558 
6559 	if (CHIP_IS_E1x(bp)) {
6560 		/* configure PBF to work without PAUSE mtu 9000 */
6561 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6562 
6563 		/* update threshold */
6564 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6565 		/* update init credit */
6566 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6567 
6568 		/* probe changes */
6569 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6570 		udelay(50);
6571 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6572 	}
6573 
6574 #ifdef BCM_CNIC
6575 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6576 #endif
6577 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6578 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6579 
6580 	if (CHIP_IS_E1(bp)) {
6581 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6582 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6583 	}
6584 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6585 
6586 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6587 
6588 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6589 	/* init aeu_mask_attn_func_0/1:
6590 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6591 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6592 	 *             bits 4-7 are used for "per vn group attention" */
6593 	val = IS_MF(bp) ? 0xF7 : 0x7;
6594 	/* Enable DCBX attention for all but E1 */
6595 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6596 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6597 
6598 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6599 
6600 	if (!CHIP_IS_E1x(bp)) {
6601 		/* Bit-map indicating which L2 hdrs may appear after the
6602 		 * basic Ethernet header
6603 		 */
6604 		REG_WR(bp, BP_PORT(bp) ?
6605 			   NIG_REG_P1_HDRS_AFTER_BASIC :
6606 			   NIG_REG_P0_HDRS_AFTER_BASIC,
6607 			   IS_MF_SD(bp) ? 7 : 6);
6608 
6609 		if (CHIP_IS_E3(bp))
6610 			REG_WR(bp, BP_PORT(bp) ?
6611 				   NIG_REG_LLH1_MF_MODE :
6612 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6613 	}
6614 	if (!CHIP_IS_E3(bp))
6615 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6616 
6617 	if (!CHIP_IS_E1(bp)) {
6618 		/* 0x2 disable mf_ov, 0x1 enable */
6619 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6620 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6621 
6622 		if (!CHIP_IS_E1x(bp)) {
6623 			val = 0;
6624 			switch (bp->mf_mode) {
6625 			case MULTI_FUNCTION_SD:
6626 				val = 1;
6627 				break;
6628 			case MULTI_FUNCTION_SI:
6629 				val = 2;
6630 				break;
6631 			}
6632 
6633 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6634 						  NIG_REG_LLH0_CLS_TYPE), val);
6635 		}
6636 		{
6637 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6638 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6639 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6640 		}
6641 	}
6642 
6643 
6644 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6645 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6646 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6647 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6648 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6649 		val = REG_RD(bp, reg_addr);
6650 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6651 		REG_WR(bp, reg_addr, val);
6652 	}
6653 
6654 	return 0;
6655 }
6656 
6657 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6658 {
6659 	int reg;
6660 
6661 	if (CHIP_IS_E1(bp))
6662 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6663 	else
6664 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6665 
6666 	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6667 }
6668 
6669 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6670 {
6671 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6672 }
6673 
6674 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6675 {
6676 	u32 i, base = FUNC_ILT_BASE(func);
6677 	for (i = base; i < base + ILT_PER_FUNC; i++)
6678 		bnx2x_ilt_wr(bp, i, 0);
6679 }
6680 
6681 static int bnx2x_init_hw_func(struct bnx2x *bp)
6682 {
6683 	int port = BP_PORT(bp);
6684 	int func = BP_FUNC(bp);
6685 	int init_phase = PHASE_PF0 + func;
6686 	struct bnx2x_ilt *ilt = BP_ILT(bp);
6687 	u16 cdu_ilt_start;
6688 	u32 addr, val;
6689 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6690 	int i, main_mem_width;
6691 
6692 	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6693 
6694 	/* FLR cleanup - hmmm */
6695 	if (!CHIP_IS_E1x(bp))
6696 		bnx2x_pf_flr_clnup(bp);
6697 
6698 	/* set MSI reconfigure capability */
6699 	if (bp->common.int_block == INT_BLOCK_HC) {
6700 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6701 		val = REG_RD(bp, addr);
6702 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6703 		REG_WR(bp, addr, val);
6704 	}
6705 
6706 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6707 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6708 
6709 	ilt = BP_ILT(bp);
6710 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6711 
6712 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6713 		ilt->lines[cdu_ilt_start + i].page =
6714 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6715 		ilt->lines[cdu_ilt_start + i].page_mapping =
6716 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6717 		/* cdu ilt pages are allocated manually so there's no need to
6718 		set the size */
6719 	}
6720 	bnx2x_ilt_init_op(bp, INITOP_SET);
6721 
6722 #ifdef BCM_CNIC
6723 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6724 
6725 	/* T1 hash bits value determines the T1 number of entries */
6726 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6727 #endif
6728 
6729 #ifndef BCM_CNIC
6730 	/* set NIC mode */
6731 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6732 #endif  /* BCM_CNIC */
6733 
6734 	if (!CHIP_IS_E1x(bp)) {
6735 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6736 
6737 		/* Turn on a single ISR mode in IGU if driver is going to use
6738 		 * INT#x or MSI
6739 		 */
6740 		if (!(bp->flags & USING_MSIX_FLAG))
6741 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6742 		/*
6743 		 * Timers workaround bug: function init part.
6744 		 * Need to wait 20msec after initializing ILT,
6745 		 * needed to make sure there are no requests in
6746 		 * one of the PXP internal queues with "old" ILT addresses
6747 		 */
6748 		msleep(20);
6749 		/*
6750 		 * Master enable - Due to WB DMAE writes performed before this
6751 		 * register is re-initialized as part of the regular function
6752 		 * init
6753 		 */
6754 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6755 		/* Enable the function in IGU */
6756 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6757 	}
6758 
6759 	bp->dmae_ready = 1;
6760 
6761 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6762 
6763 	if (!CHIP_IS_E1x(bp))
6764 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6765 
6766 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6767 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6768 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6769 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6770 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6771 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6772 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6773 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6774 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6775 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6776 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6777 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6778 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6779 
6780 	if (!CHIP_IS_E1x(bp))
6781 		REG_WR(bp, QM_REG_PF_EN, 1);
6782 
6783 	if (!CHIP_IS_E1x(bp)) {
6784 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6785 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6786 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6787 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6788 	}
6789 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6790 
6791 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6792 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6793 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6794 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6795 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6796 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6797 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6798 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6799 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6800 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6801 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6802 	if (!CHIP_IS_E1x(bp))
6803 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6804 
6805 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6806 
6807 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6808 
6809 	if (!CHIP_IS_E1x(bp))
6810 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6811 
6812 	if (IS_MF(bp)) {
6813 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6814 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6815 	}
6816 
6817 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6818 
6819 	/* HC init per function */
6820 	if (bp->common.int_block == INT_BLOCK_HC) {
6821 		if (CHIP_IS_E1H(bp)) {
6822 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6823 
6824 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6825 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6826 		}
6827 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6828 
6829 	} else {
6830 		int num_segs, sb_idx, prod_offset;
6831 
6832 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6833 
6834 		if (!CHIP_IS_E1x(bp)) {
6835 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6836 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6837 		}
6838 
6839 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6840 
6841 		if (!CHIP_IS_E1x(bp)) {
6842 			int dsb_idx = 0;
6843 			/**
6844 			 * Producer memory:
6845 			 * E2 mode: address 0-135 match to the mapping memory;
6846 			 * 136 - PF0 default prod; 137 - PF1 default prod;
6847 			 * 138 - PF2 default prod; 139 - PF3 default prod;
6848 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6849 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6850 			 * 144-147 reserved.
6851 			 *
6852 			 * E1.5 mode - In backward compatible mode;
6853 			 * for non default SB; each even line in the memory
6854 			 * holds the U producer and each odd line hold
6855 			 * the C producer. The first 128 producers are for
6856 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6857 			 * producers are for the DSB for each PF.
6858 			 * Each PF has five segments: (the order inside each
6859 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6860 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6861 			 * 144-147 attn prods;
6862 			 */
6863 			/* non-default-status-blocks */
6864 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6865 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6866 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6867 				prod_offset = (bp->igu_base_sb + sb_idx) *
6868 					num_segs;
6869 
6870 				for (i = 0; i < num_segs; i++) {
6871 					addr = IGU_REG_PROD_CONS_MEMORY +
6872 							(prod_offset + i) * 4;
6873 					REG_WR(bp, addr, 0);
6874 				}
6875 				/* send consumer update with value 0 */
6876 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6877 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6878 				bnx2x_igu_clear_sb(bp,
6879 						   bp->igu_base_sb + sb_idx);
6880 			}
6881 
6882 			/* default-status-blocks */
6883 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6884 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6885 
6886 			if (CHIP_MODE_IS_4_PORT(bp))
6887 				dsb_idx = BP_FUNC(bp);
6888 			else
6889 				dsb_idx = BP_VN(bp);
6890 
6891 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6892 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6893 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6894 
6895 			/*
6896 			 * igu prods come in chunks of E1HVN_MAX (4) -
6897 			 * does not matters what is the current chip mode
6898 			 */
6899 			for (i = 0; i < (num_segs * E1HVN_MAX);
6900 			     i += E1HVN_MAX) {
6901 				addr = IGU_REG_PROD_CONS_MEMORY +
6902 							(prod_offset + i)*4;
6903 				REG_WR(bp, addr, 0);
6904 			}
6905 			/* send consumer update with 0 */
6906 			if (CHIP_INT_MODE_IS_BC(bp)) {
6907 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6908 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6909 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6910 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6911 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6912 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6913 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6914 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6915 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6916 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6917 			} else {
6918 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6919 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6920 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6921 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6922 			}
6923 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6924 
6925 			/* !!! these should become driver const once
6926 			   rf-tool supports split-68 const */
6927 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6928 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6929 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6930 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6931 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6932 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6933 		}
6934 	}
6935 
6936 	/* Reset PCIE errors for debug */
6937 	REG_WR(bp, 0x2114, 0xffffffff);
6938 	REG_WR(bp, 0x2120, 0xffffffff);
6939 
6940 	if (CHIP_IS_E1x(bp)) {
6941 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6942 		main_mem_base = HC_REG_MAIN_MEMORY +
6943 				BP_PORT(bp) * (main_mem_size * 4);
6944 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6945 		main_mem_width = 8;
6946 
6947 		val = REG_RD(bp, main_mem_prty_clr);
6948 		if (val)
6949 			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6950 					  "block during "
6951 					  "function init (0x%x)!\n", val);
6952 
6953 		/* Clear "false" parity errors in MSI-X table */
6954 		for (i = main_mem_base;
6955 		     i < main_mem_base + main_mem_size * 4;
6956 		     i += main_mem_width) {
6957 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6958 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6959 					 i, main_mem_width / 4);
6960 		}
6961 		/* Clear HC parity attention */
6962 		REG_RD(bp, main_mem_prty_clr);
6963 	}
6964 
6965 #ifdef BNX2X_STOP_ON_ERROR
6966 	/* Enable STORMs SP logging */
6967 	REG_WR8(bp, BAR_USTRORM_INTMEM +
6968 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6969 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6970 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6971 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6972 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6973 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6974 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6975 #endif
6976 
6977 	bnx2x_phy_probe(&bp->link_params);
6978 
6979 	return 0;
6980 }
6981 
6982 
6983 void bnx2x_free_mem(struct bnx2x *bp)
6984 {
6985 	/* fastpath */
6986 	bnx2x_free_fp_mem(bp);
6987 	/* end of fastpath */
6988 
6989 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6990 		       sizeof(struct host_sp_status_block));
6991 
6992 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6993 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6994 
6995 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6996 		       sizeof(struct bnx2x_slowpath));
6997 
6998 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6999 		       bp->context.size);
7000 
7001 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7002 
7003 	BNX2X_FREE(bp->ilt->lines);
7004 
7005 #ifdef BCM_CNIC
7006 	if (!CHIP_IS_E1x(bp))
7007 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7008 			       sizeof(struct host_hc_status_block_e2));
7009 	else
7010 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7011 			       sizeof(struct host_hc_status_block_e1x));
7012 
7013 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7014 #endif
7015 
7016 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7017 
7018 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7019 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7020 }
7021 
7022 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7023 {
7024 	int num_groups;
7025 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7026 
7027 	/* number of queues for statistics is number of eth queues + FCoE */
7028 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7029 
7030 	/* Total number of FW statistics requests =
7031 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7032 	 * num of queues
7033 	 */
7034 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7035 
7036 
7037 	/* Request is built from stats_query_header and an array of
7038 	 * stats_query_cmd_group each of which contains
7039 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7040 	 * configured in the stats_query_header.
7041 	 */
7042 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7043 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7044 
7045 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7046 			num_groups * sizeof(struct stats_query_cmd_group);
7047 
7048 	/* Data for statistics requests + stats_conter
7049 	 *
7050 	 * stats_counter holds per-STORM counters that are incremented
7051 	 * when STORM has finished with the current request.
7052 	 *
7053 	 * memory for FCoE offloaded statistics are counted anyway,
7054 	 * even if they will not be sent.
7055 	 */
7056 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7057 		sizeof(struct per_pf_stats) +
7058 		sizeof(struct fcoe_statistics_params) +
7059 		sizeof(struct per_queue_stats) * num_queue_stats +
7060 		sizeof(struct stats_counter);
7061 
7062 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7063 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7064 
7065 	/* Set shortcuts */
7066 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7067 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7068 
7069 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7070 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7071 
7072 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7073 				   bp->fw_stats_req_sz;
7074 	return 0;
7075 
7076 alloc_mem_err:
7077 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7078 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7079 	return -ENOMEM;
7080 }
7081 
7082 
7083 int bnx2x_alloc_mem(struct bnx2x *bp)
7084 {
7085 #ifdef BCM_CNIC
7086 	if (!CHIP_IS_E1x(bp))
7087 		/* size = the status block + ramrod buffers */
7088 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7089 				sizeof(struct host_hc_status_block_e2));
7090 	else
7091 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7092 				sizeof(struct host_hc_status_block_e1x));
7093 
7094 	/* allocate searcher T2 table */
7095 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7096 #endif
7097 
7098 
7099 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7100 			sizeof(struct host_sp_status_block));
7101 
7102 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7103 			sizeof(struct bnx2x_slowpath));
7104 
7105 	/* Allocated memory for FW statistics  */
7106 	if (bnx2x_alloc_fw_stats_mem(bp))
7107 		goto alloc_mem_err;
7108 
7109 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7110 
7111 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7112 			bp->context.size);
7113 
7114 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7115 
7116 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7117 		goto alloc_mem_err;
7118 
7119 	/* Slow path ring */
7120 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7121 
7122 	/* EQ */
7123 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7124 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7125 
7126 
7127 	/* fastpath */
7128 	/* need to be done at the end, since it's self adjusting to amount
7129 	 * of memory available for RSS queues
7130 	 */
7131 	if (bnx2x_alloc_fp_mem(bp))
7132 		goto alloc_mem_err;
7133 	return 0;
7134 
7135 alloc_mem_err:
7136 	bnx2x_free_mem(bp);
7137 	return -ENOMEM;
7138 }
7139 
7140 /*
7141  * Init service functions
7142  */
7143 
7144 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7145 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7146 		      int mac_type, unsigned long *ramrod_flags)
7147 {
7148 	int rc;
7149 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7150 
7151 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7152 
7153 	/* Fill general parameters */
7154 	ramrod_param.vlan_mac_obj = obj;
7155 	ramrod_param.ramrod_flags = *ramrod_flags;
7156 
7157 	/* Fill a user request section if needed */
7158 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7159 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7160 
7161 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7162 
7163 		/* Set the command: ADD or DEL */
7164 		if (set)
7165 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7166 		else
7167 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7168 	}
7169 
7170 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7171 	if (rc < 0)
7172 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7173 	return rc;
7174 }
7175 
7176 int bnx2x_del_all_macs(struct bnx2x *bp,
7177 		       struct bnx2x_vlan_mac_obj *mac_obj,
7178 		       int mac_type, bool wait_for_comp)
7179 {
7180 	int rc;
7181 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7182 
7183 	/* Wait for completion of requested */
7184 	if (wait_for_comp)
7185 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7186 
7187 	/* Set the mac type of addresses we want to clear */
7188 	__set_bit(mac_type, &vlan_mac_flags);
7189 
7190 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7191 	if (rc < 0)
7192 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7193 
7194 	return rc;
7195 }
7196 
7197 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7198 {
7199 	unsigned long ramrod_flags = 0;
7200 
7201 #ifdef BCM_CNIC
7202 	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7203 		DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7204 		return 0;
7205 	}
7206 #endif
7207 
7208 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7209 
7210 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7211 	/* Eth MAC is set on RSS leading client (fp[0]) */
7212 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7213 				 BNX2X_ETH_MAC, &ramrod_flags);
7214 }
7215 
7216 int bnx2x_setup_leading(struct bnx2x *bp)
7217 {
7218 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7219 }
7220 
7221 /**
7222  * bnx2x_set_int_mode - configure interrupt mode
7223  *
7224  * @bp:		driver handle
7225  *
7226  * In case of MSI-X it will also try to enable MSI-X.
7227  */
7228 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7229 {
7230 	switch (int_mode) {
7231 	case INT_MODE_MSI:
7232 		bnx2x_enable_msi(bp);
7233 		/* falling through... */
7234 	case INT_MODE_INTx:
7235 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7236 		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7237 		break;
7238 	default:
7239 		/* Set number of queues according to bp->multi_mode value */
7240 		bnx2x_set_num_queues(bp);
7241 
7242 		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7243 		   bp->num_queues);
7244 
7245 		/* if we can't use MSI-X we only need one fp,
7246 		 * so try to enable MSI-X with the requested number of fp's
7247 		 * and fallback to MSI or legacy INTx with one fp
7248 		 */
7249 		if (bnx2x_enable_msix(bp)) {
7250 			/* failed to enable MSI-X */
7251 			if (bp->multi_mode)
7252 				DP(NETIF_MSG_IFUP,
7253 					  "Multi requested but failed to "
7254 					  "enable MSI-X (%d), "
7255 					  "set number of queues to %d\n",
7256 				   bp->num_queues,
7257 				   1 + NON_ETH_CONTEXT_USE);
7258 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7259 
7260 			/* Try to enable MSI */
7261 			if (!(bp->flags & DISABLE_MSI_FLAG))
7262 				bnx2x_enable_msi(bp);
7263 		}
7264 		break;
7265 	}
7266 }
7267 
7268 /* must be called prioir to any HW initializations */
7269 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7270 {
7271 	return L2_ILT_LINES(bp);
7272 }
7273 
7274 void bnx2x_ilt_set_info(struct bnx2x *bp)
7275 {
7276 	struct ilt_client_info *ilt_client;
7277 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7278 	u16 line = 0;
7279 
7280 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7281 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7282 
7283 	/* CDU */
7284 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7285 	ilt_client->client_num = ILT_CLIENT_CDU;
7286 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7287 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7288 	ilt_client->start = line;
7289 	line += bnx2x_cid_ilt_lines(bp);
7290 #ifdef BCM_CNIC
7291 	line += CNIC_ILT_LINES;
7292 #endif
7293 	ilt_client->end = line - 1;
7294 
7295 	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7296 					 "flags 0x%x, hw psz %d\n",
7297 	   ilt_client->start,
7298 	   ilt_client->end,
7299 	   ilt_client->page_size,
7300 	   ilt_client->flags,
7301 	   ilog2(ilt_client->page_size >> 12));
7302 
7303 	/* QM */
7304 	if (QM_INIT(bp->qm_cid_count)) {
7305 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7306 		ilt_client->client_num = ILT_CLIENT_QM;
7307 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7308 		ilt_client->flags = 0;
7309 		ilt_client->start = line;
7310 
7311 		/* 4 bytes for each cid */
7312 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7313 							 QM_ILT_PAGE_SZ);
7314 
7315 		ilt_client->end = line - 1;
7316 
7317 		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7318 						 "flags 0x%x, hw psz %d\n",
7319 		   ilt_client->start,
7320 		   ilt_client->end,
7321 		   ilt_client->page_size,
7322 		   ilt_client->flags,
7323 		   ilog2(ilt_client->page_size >> 12));
7324 
7325 	}
7326 	/* SRC */
7327 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7328 #ifdef BCM_CNIC
7329 	ilt_client->client_num = ILT_CLIENT_SRC;
7330 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7331 	ilt_client->flags = 0;
7332 	ilt_client->start = line;
7333 	line += SRC_ILT_LINES;
7334 	ilt_client->end = line - 1;
7335 
7336 	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7337 					 "flags 0x%x, hw psz %d\n",
7338 	   ilt_client->start,
7339 	   ilt_client->end,
7340 	   ilt_client->page_size,
7341 	   ilt_client->flags,
7342 	   ilog2(ilt_client->page_size >> 12));
7343 
7344 #else
7345 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7346 #endif
7347 
7348 	/* TM */
7349 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7350 #ifdef BCM_CNIC
7351 	ilt_client->client_num = ILT_CLIENT_TM;
7352 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7353 	ilt_client->flags = 0;
7354 	ilt_client->start = line;
7355 	line += TM_ILT_LINES;
7356 	ilt_client->end = line - 1;
7357 
7358 	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7359 					 "flags 0x%x, hw psz %d\n",
7360 	   ilt_client->start,
7361 	   ilt_client->end,
7362 	   ilt_client->page_size,
7363 	   ilt_client->flags,
7364 	   ilog2(ilt_client->page_size >> 12));
7365 
7366 #else
7367 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7368 #endif
7369 	BUG_ON(line > ILT_MAX_LINES);
7370 }
7371 
7372 /**
7373  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7374  *
7375  * @bp:			driver handle
7376  * @fp:			pointer to fastpath
7377  * @init_params:	pointer to parameters structure
7378  *
7379  * parameters configured:
7380  *      - HC configuration
7381  *      - Queue's CDU context
7382  */
7383 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7384 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7385 {
7386 
7387 	u8 cos;
7388 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7389 	if (!IS_FCOE_FP(fp)) {
7390 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7391 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7392 
7393 		/* If HC is supporterd, enable host coalescing in the transition
7394 		 * to INIT state.
7395 		 */
7396 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7397 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7398 
7399 		/* HC rate */
7400 		init_params->rx.hc_rate = bp->rx_ticks ?
7401 			(1000000 / bp->rx_ticks) : 0;
7402 		init_params->tx.hc_rate = bp->tx_ticks ?
7403 			(1000000 / bp->tx_ticks) : 0;
7404 
7405 		/* FW SB ID */
7406 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7407 			fp->fw_sb_id;
7408 
7409 		/*
7410 		 * CQ index among the SB indices: FCoE clients uses the default
7411 		 * SB, therefore it's different.
7412 		 */
7413 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7414 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7415 	}
7416 
7417 	/* set maximum number of COSs supported by this queue */
7418 	init_params->max_cos = fp->max_cos;
7419 
7420 	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7421 	    fp->index, init_params->max_cos);
7422 
7423 	/* set the context pointers queue object */
7424 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7425 		init_params->cxts[cos] =
7426 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7427 }
7428 
7429 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7430 			struct bnx2x_queue_state_params *q_params,
7431 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7432 			int tx_index, bool leading)
7433 {
7434 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7435 
7436 	/* Set the command */
7437 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7438 
7439 	/* Set tx-only QUEUE flags: don't zero statistics */
7440 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7441 
7442 	/* choose the index of the cid to send the slow path on */
7443 	tx_only_params->cid_index = tx_index;
7444 
7445 	/* Set general TX_ONLY_SETUP parameters */
7446 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7447 
7448 	/* Set Tx TX_ONLY_SETUP parameters */
7449 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7450 
7451 	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7452 			 "cos %d, primary cid %d, cid %d, "
7453 			 "client id %d, sp-client id %d, flags %lx\n",
7454 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7455 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7456 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7457 
7458 	/* send the ramrod */
7459 	return bnx2x_queue_state_change(bp, q_params);
7460 }
7461 
7462 
7463 /**
7464  * bnx2x_setup_queue - setup queue
7465  *
7466  * @bp:		driver handle
7467  * @fp:		pointer to fastpath
7468  * @leading:	is leading
7469  *
7470  * This function performs 2 steps in a Queue state machine
7471  *      actually: 1) RESET->INIT 2) INIT->SETUP
7472  */
7473 
7474 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7475 		       bool leading)
7476 {
7477 	struct bnx2x_queue_state_params q_params = {0};
7478 	struct bnx2x_queue_setup_params *setup_params =
7479 						&q_params.params.setup;
7480 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7481 						&q_params.params.tx_only;
7482 	int rc;
7483 	u8 tx_index;
7484 
7485 	DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7486 
7487 	/* reset IGU state skip FCoE L2 queue */
7488 	if (!IS_FCOE_FP(fp))
7489 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7490 			     IGU_INT_ENABLE, 0);
7491 
7492 	q_params.q_obj = &fp->q_obj;
7493 	/* We want to wait for completion in this context */
7494 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7495 
7496 	/* Prepare the INIT parameters */
7497 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7498 
7499 	/* Set the command */
7500 	q_params.cmd = BNX2X_Q_CMD_INIT;
7501 
7502 	/* Change the state to INIT */
7503 	rc = bnx2x_queue_state_change(bp, &q_params);
7504 	if (rc) {
7505 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7506 		return rc;
7507 	}
7508 
7509 	DP(BNX2X_MSG_SP, "init complete\n");
7510 
7511 
7512 	/* Now move the Queue to the SETUP state... */
7513 	memset(setup_params, 0, sizeof(*setup_params));
7514 
7515 	/* Set QUEUE flags */
7516 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7517 
7518 	/* Set general SETUP parameters */
7519 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7520 				FIRST_TX_COS_INDEX);
7521 
7522 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7523 			    &setup_params->rxq_params);
7524 
7525 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7526 			   FIRST_TX_COS_INDEX);
7527 
7528 	/* Set the command */
7529 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7530 
7531 	/* Change the state to SETUP */
7532 	rc = bnx2x_queue_state_change(bp, &q_params);
7533 	if (rc) {
7534 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7535 		return rc;
7536 	}
7537 
7538 	/* loop through the relevant tx-only indices */
7539 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7540 	      tx_index < fp->max_cos;
7541 	      tx_index++) {
7542 
7543 		/* prepare and send tx-only ramrod*/
7544 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7545 					  tx_only_params, tx_index, leading);
7546 		if (rc) {
7547 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7548 				  fp->index, tx_index);
7549 			return rc;
7550 		}
7551 	}
7552 
7553 	return rc;
7554 }
7555 
7556 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7557 {
7558 	struct bnx2x_fastpath *fp = &bp->fp[index];
7559 	struct bnx2x_fp_txdata *txdata;
7560 	struct bnx2x_queue_state_params q_params = {0};
7561 	int rc, tx_index;
7562 
7563 	DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7564 
7565 	q_params.q_obj = &fp->q_obj;
7566 	/* We want to wait for completion in this context */
7567 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7568 
7569 
7570 	/* close tx-only connections */
7571 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7572 	     tx_index < fp->max_cos;
7573 	     tx_index++){
7574 
7575 		/* ascertain this is a normal queue*/
7576 		txdata = &fp->txdata[tx_index];
7577 
7578 		DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7579 							txdata->txq_index);
7580 
7581 		/* send halt terminate on tx-only connection */
7582 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7583 		memset(&q_params.params.terminate, 0,
7584 		       sizeof(q_params.params.terminate));
7585 		q_params.params.terminate.cid_index = tx_index;
7586 
7587 		rc = bnx2x_queue_state_change(bp, &q_params);
7588 		if (rc)
7589 			return rc;
7590 
7591 		/* send halt terminate on tx-only connection */
7592 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7593 		memset(&q_params.params.cfc_del, 0,
7594 		       sizeof(q_params.params.cfc_del));
7595 		q_params.params.cfc_del.cid_index = tx_index;
7596 		rc = bnx2x_queue_state_change(bp, &q_params);
7597 		if (rc)
7598 			return rc;
7599 	}
7600 	/* Stop the primary connection: */
7601 	/* ...halt the connection */
7602 	q_params.cmd = BNX2X_Q_CMD_HALT;
7603 	rc = bnx2x_queue_state_change(bp, &q_params);
7604 	if (rc)
7605 		return rc;
7606 
7607 	/* ...terminate the connection */
7608 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7609 	memset(&q_params.params.terminate, 0,
7610 	       sizeof(q_params.params.terminate));
7611 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7612 	rc = bnx2x_queue_state_change(bp, &q_params);
7613 	if (rc)
7614 		return rc;
7615 	/* ...delete cfc entry */
7616 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7617 	memset(&q_params.params.cfc_del, 0,
7618 	       sizeof(q_params.params.cfc_del));
7619 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7620 	return bnx2x_queue_state_change(bp, &q_params);
7621 }
7622 
7623 
7624 static void bnx2x_reset_func(struct bnx2x *bp)
7625 {
7626 	int port = BP_PORT(bp);
7627 	int func = BP_FUNC(bp);
7628 	int i;
7629 
7630 	/* Disable the function in the FW */
7631 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7632 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7633 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7634 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7635 
7636 	/* FP SBs */
7637 	for_each_eth_queue(bp, i) {
7638 		struct bnx2x_fastpath *fp = &bp->fp[i];
7639 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7640 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7641 			   SB_DISABLED);
7642 	}
7643 
7644 #ifdef BCM_CNIC
7645 	/* CNIC SB */
7646 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7647 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7648 		SB_DISABLED);
7649 #endif
7650 	/* SP SB */
7651 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7652 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7653 		   SB_DISABLED);
7654 
7655 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7656 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7657 		       0);
7658 
7659 	/* Configure IGU */
7660 	if (bp->common.int_block == INT_BLOCK_HC) {
7661 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7662 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7663 	} else {
7664 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7665 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7666 	}
7667 
7668 #ifdef BCM_CNIC
7669 	/* Disable Timer scan */
7670 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7671 	/*
7672 	 * Wait for at least 10ms and up to 2 second for the timers scan to
7673 	 * complete
7674 	 */
7675 	for (i = 0; i < 200; i++) {
7676 		msleep(10);
7677 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7678 			break;
7679 	}
7680 #endif
7681 	/* Clear ILT */
7682 	bnx2x_clear_func_ilt(bp, func);
7683 
7684 	/* Timers workaround bug for E2: if this is vnic-3,
7685 	 * we need to set the entire ilt range for this timers.
7686 	 */
7687 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7688 		struct ilt_client_info ilt_cli;
7689 		/* use dummy TM client */
7690 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7691 		ilt_cli.start = 0;
7692 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7693 		ilt_cli.client_num = ILT_CLIENT_TM;
7694 
7695 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7696 	}
7697 
7698 	/* this assumes that reset_port() called before reset_func()*/
7699 	if (!CHIP_IS_E1x(bp))
7700 		bnx2x_pf_disable(bp);
7701 
7702 	bp->dmae_ready = 0;
7703 }
7704 
7705 static void bnx2x_reset_port(struct bnx2x *bp)
7706 {
7707 	int port = BP_PORT(bp);
7708 	u32 val;
7709 
7710 	/* Reset physical Link */
7711 	bnx2x__link_reset(bp);
7712 
7713 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7714 
7715 	/* Do not rcv packets to BRB */
7716 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7717 	/* Do not direct rcv packets that are not for MCP to the BRB */
7718 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7719 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7720 
7721 	/* Configure AEU */
7722 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7723 
7724 	msleep(100);
7725 	/* Check for BRB port occupancy */
7726 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7727 	if (val)
7728 		DP(NETIF_MSG_IFDOWN,
7729 		   "BRB1 is not empty  %d blocks are occupied\n", val);
7730 
7731 	/* TODO: Close Doorbell port? */
7732 }
7733 
7734 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7735 {
7736 	struct bnx2x_func_state_params func_params = {0};
7737 
7738 	/* Prepare parameters for function state transitions */
7739 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7740 
7741 	func_params.f_obj = &bp->func_obj;
7742 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7743 
7744 	func_params.params.hw_init.load_phase = load_code;
7745 
7746 	return bnx2x_func_state_change(bp, &func_params);
7747 }
7748 
7749 static inline int bnx2x_func_stop(struct bnx2x *bp)
7750 {
7751 	struct bnx2x_func_state_params func_params = {0};
7752 	int rc;
7753 
7754 	/* Prepare parameters for function state transitions */
7755 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7756 	func_params.f_obj = &bp->func_obj;
7757 	func_params.cmd = BNX2X_F_CMD_STOP;
7758 
7759 	/*
7760 	 * Try to stop the function the 'good way'. If fails (in case
7761 	 * of a parity error during bnx2x_chip_cleanup()) and we are
7762 	 * not in a debug mode, perform a state transaction in order to
7763 	 * enable further HW_RESET transaction.
7764 	 */
7765 	rc = bnx2x_func_state_change(bp, &func_params);
7766 	if (rc) {
7767 #ifdef BNX2X_STOP_ON_ERROR
7768 		return rc;
7769 #else
7770 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7771 			  "transaction\n");
7772 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7773 		return bnx2x_func_state_change(bp, &func_params);
7774 #endif
7775 	}
7776 
7777 	return 0;
7778 }
7779 
7780 /**
7781  * bnx2x_send_unload_req - request unload mode from the MCP.
7782  *
7783  * @bp:			driver handle
7784  * @unload_mode:	requested function's unload mode
7785  *
7786  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7787  */
7788 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7789 {
7790 	u32 reset_code = 0;
7791 	int port = BP_PORT(bp);
7792 
7793 	/* Select the UNLOAD request mode */
7794 	if (unload_mode == UNLOAD_NORMAL)
7795 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7796 
7797 	else if (bp->flags & NO_WOL_FLAG)
7798 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7799 
7800 	else if (bp->wol) {
7801 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7802 		u8 *mac_addr = bp->dev->dev_addr;
7803 		u32 val;
7804 		u16 pmc;
7805 
7806 		/* The mac address is written to entries 1-4 to
7807 		 * preserve entry 0 which is used by the PMF
7808 		 */
7809 		u8 entry = (BP_VN(bp) + 1)*8;
7810 
7811 		val = (mac_addr[0] << 8) | mac_addr[1];
7812 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7813 
7814 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7815 		      (mac_addr[4] << 8) | mac_addr[5];
7816 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7817 
7818 		/* Enable the PME and clear the status */
7819 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7820 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7821 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7822 
7823 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7824 
7825 	} else
7826 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7827 
7828 	/* Send the request to the MCP */
7829 	if (!BP_NOMCP(bp))
7830 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7831 	else {
7832 		int path = BP_PATH(bp);
7833 
7834 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7835 				     "%d, %d, %d\n",
7836 		   path, load_count[path][0], load_count[path][1],
7837 		   load_count[path][2]);
7838 		load_count[path][0]--;
7839 		load_count[path][1 + port]--;
7840 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7841 				     "%d, %d, %d\n",
7842 		   path, load_count[path][0], load_count[path][1],
7843 		   load_count[path][2]);
7844 		if (load_count[path][0] == 0)
7845 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7846 		else if (load_count[path][1 + port] == 0)
7847 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7848 		else
7849 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7850 	}
7851 
7852 	return reset_code;
7853 }
7854 
7855 /**
7856  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7857  *
7858  * @bp:		driver handle
7859  */
7860 void bnx2x_send_unload_done(struct bnx2x *bp)
7861 {
7862 	/* Report UNLOAD_DONE to MCP */
7863 	if (!BP_NOMCP(bp))
7864 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7865 }
7866 
7867 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7868 {
7869 	int tout = 50;
7870 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7871 
7872 	if (!bp->port.pmf)
7873 		return 0;
7874 
7875 	/*
7876 	 * (assumption: No Attention from MCP at this stage)
7877 	 * PMF probably in the middle of TXdisable/enable transaction
7878 	 * 1. Sync IRS for default SB
7879 	 * 2. Sync SP queue - this guarantes us that attention handling started
7880 	 * 3. Wait, that TXdisable/enable transaction completes
7881 	 *
7882 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7883 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7884 	 * received complettion for the transaction the state is TX_STOPPED.
7885 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7886 	 * transaction.
7887 	 */
7888 
7889 	/* make sure default SB ISR is done */
7890 	if (msix)
7891 		synchronize_irq(bp->msix_table[0].vector);
7892 	else
7893 		synchronize_irq(bp->pdev->irq);
7894 
7895 	flush_workqueue(bnx2x_wq);
7896 
7897 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7898 				BNX2X_F_STATE_STARTED && tout--)
7899 		msleep(20);
7900 
7901 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7902 						BNX2X_F_STATE_STARTED) {
7903 #ifdef BNX2X_STOP_ON_ERROR
7904 		return -EBUSY;
7905 #else
7906 		/*
7907 		 * Failed to complete the transaction in a "good way"
7908 		 * Force both transactions with CLR bit
7909 		 */
7910 		struct bnx2x_func_state_params func_params = {0};
7911 
7912 		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7913 			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7914 
7915 		func_params.f_obj = &bp->func_obj;
7916 		__set_bit(RAMROD_DRV_CLR_ONLY,
7917 					&func_params.ramrod_flags);
7918 
7919 		/* STARTED-->TX_ST0PPED */
7920 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7921 		bnx2x_func_state_change(bp, &func_params);
7922 
7923 		/* TX_ST0PPED-->STARTED */
7924 		func_params.cmd = BNX2X_F_CMD_TX_START;
7925 		return bnx2x_func_state_change(bp, &func_params);
7926 #endif
7927 	}
7928 
7929 	return 0;
7930 }
7931 
7932 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7933 {
7934 	int port = BP_PORT(bp);
7935 	int i, rc = 0;
7936 	u8 cos;
7937 	struct bnx2x_mcast_ramrod_params rparam = {0};
7938 	u32 reset_code;
7939 
7940 	/* Wait until tx fastpath tasks complete */
7941 	for_each_tx_queue(bp, i) {
7942 		struct bnx2x_fastpath *fp = &bp->fp[i];
7943 
7944 		for_each_cos_in_tx_queue(fp, cos)
7945 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7946 #ifdef BNX2X_STOP_ON_ERROR
7947 		if (rc)
7948 			return;
7949 #endif
7950 	}
7951 
7952 	/* Give HW time to discard old tx messages */
7953 	usleep_range(1000, 1000);
7954 
7955 	/* Clean all ETH MACs */
7956 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7957 	if (rc < 0)
7958 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7959 
7960 	/* Clean up UC list  */
7961 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7962 				true);
7963 	if (rc < 0)
7964 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7965 			  "%d\n", rc);
7966 
7967 	/* Disable LLH */
7968 	if (!CHIP_IS_E1(bp))
7969 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7970 
7971 	/* Set "drop all" (stop Rx).
7972 	 * We need to take a netif_addr_lock() here in order to prevent
7973 	 * a race between the completion code and this code.
7974 	 */
7975 	netif_addr_lock_bh(bp->dev);
7976 	/* Schedule the rx_mode command */
7977 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7978 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7979 	else
7980 		bnx2x_set_storm_rx_mode(bp);
7981 
7982 	/* Cleanup multicast configuration */
7983 	rparam.mcast_obj = &bp->mcast_obj;
7984 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7985 	if (rc < 0)
7986 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7987 
7988 	netif_addr_unlock_bh(bp->dev);
7989 
7990 
7991 
7992 	/*
7993 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7994 	 * this function should perform FUNC, PORT or COMMON HW
7995 	 * reset.
7996 	 */
7997 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7998 
7999 	/*
8000 	 * (assumption: No Attention from MCP at this stage)
8001 	 * PMF probably in the middle of TXdisable/enable transaction
8002 	 */
8003 	rc = bnx2x_func_wait_started(bp);
8004 	if (rc) {
8005 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8006 #ifdef BNX2X_STOP_ON_ERROR
8007 		return;
8008 #endif
8009 	}
8010 
8011 	/* Close multi and leading connections
8012 	 * Completions for ramrods are collected in a synchronous way
8013 	 */
8014 	for_each_queue(bp, i)
8015 		if (bnx2x_stop_queue(bp, i))
8016 #ifdef BNX2X_STOP_ON_ERROR
8017 			return;
8018 #else
8019 			goto unload_error;
8020 #endif
8021 	/* If SP settings didn't get completed so far - something
8022 	 * very wrong has happen.
8023 	 */
8024 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8025 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8026 
8027 #ifndef BNX2X_STOP_ON_ERROR
8028 unload_error:
8029 #endif
8030 	rc = bnx2x_func_stop(bp);
8031 	if (rc) {
8032 		BNX2X_ERR("Function stop failed!\n");
8033 #ifdef BNX2X_STOP_ON_ERROR
8034 		return;
8035 #endif
8036 	}
8037 
8038 	/* Disable HW interrupts, NAPI */
8039 	bnx2x_netif_stop(bp, 1);
8040 
8041 	/* Release IRQs */
8042 	bnx2x_free_irq(bp);
8043 
8044 	/* Reset the chip */
8045 	rc = bnx2x_reset_hw(bp, reset_code);
8046 	if (rc)
8047 		BNX2X_ERR("HW_RESET failed\n");
8048 
8049 
8050 	/* Report UNLOAD_DONE to MCP */
8051 	bnx2x_send_unload_done(bp);
8052 }
8053 
8054 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8055 {
8056 	u32 val;
8057 
8058 	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8059 
8060 	if (CHIP_IS_E1(bp)) {
8061 		int port = BP_PORT(bp);
8062 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8063 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8064 
8065 		val = REG_RD(bp, addr);
8066 		val &= ~(0x300);
8067 		REG_WR(bp, addr, val);
8068 	} else {
8069 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8070 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8071 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8072 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8073 	}
8074 }
8075 
8076 /* Close gates #2, #3 and #4: */
8077 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8078 {
8079 	u32 val;
8080 
8081 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8082 	if (!CHIP_IS_E1(bp)) {
8083 		/* #4 */
8084 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8085 		/* #2 */
8086 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8087 	}
8088 
8089 	/* #3 */
8090 	if (CHIP_IS_E1x(bp)) {
8091 		/* Prevent interrupts from HC on both ports */
8092 		val = REG_RD(bp, HC_REG_CONFIG_1);
8093 		REG_WR(bp, HC_REG_CONFIG_1,
8094 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8095 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8096 
8097 		val = REG_RD(bp, HC_REG_CONFIG_0);
8098 		REG_WR(bp, HC_REG_CONFIG_0,
8099 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8100 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8101 	} else {
8102 		/* Prevent incomming interrupts in IGU */
8103 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8104 
8105 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8106 		       (!close) ?
8107 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8108 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8109 	}
8110 
8111 	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8112 		close ? "closing" : "opening");
8113 	mmiowb();
8114 }
8115 
8116 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8117 
8118 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8119 {
8120 	/* Do some magic... */
8121 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8122 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8123 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8124 }
8125 
8126 /**
8127  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8128  *
8129  * @bp:		driver handle
8130  * @magic_val:	old value of the `magic' bit.
8131  */
8132 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8133 {
8134 	/* Restore the `magic' bit value... */
8135 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8136 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8137 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8138 }
8139 
8140 /**
8141  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8142  *
8143  * @bp:		driver handle
8144  * @magic_val:	old value of 'magic' bit.
8145  *
8146  * Takes care of CLP configurations.
8147  */
8148 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8149 {
8150 	u32 shmem;
8151 	u32 validity_offset;
8152 
8153 	DP(NETIF_MSG_HW, "Starting\n");
8154 
8155 	/* Set `magic' bit in order to save MF config */
8156 	if (!CHIP_IS_E1(bp))
8157 		bnx2x_clp_reset_prep(bp, magic_val);
8158 
8159 	/* Get shmem offset */
8160 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8161 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8162 
8163 	/* Clear validity map flags */
8164 	if (shmem > 0)
8165 		REG_WR(bp, shmem + validity_offset, 0);
8166 }
8167 
8168 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8169 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8170 
8171 /**
8172  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8173  *
8174  * @bp:	driver handle
8175  */
8176 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8177 {
8178 	/* special handling for emulation and FPGA,
8179 	   wait 10 times longer */
8180 	if (CHIP_REV_IS_SLOW(bp))
8181 		msleep(MCP_ONE_TIMEOUT*10);
8182 	else
8183 		msleep(MCP_ONE_TIMEOUT);
8184 }
8185 
8186 /*
8187  * initializes bp->common.shmem_base and waits for validity signature to appear
8188  */
8189 static int bnx2x_init_shmem(struct bnx2x *bp)
8190 {
8191 	int cnt = 0;
8192 	u32 val = 0;
8193 
8194 	do {
8195 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8196 		if (bp->common.shmem_base) {
8197 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8198 			if (val & SHR_MEM_VALIDITY_MB)
8199 				return 0;
8200 		}
8201 
8202 		bnx2x_mcp_wait_one(bp);
8203 
8204 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8205 
8206 	BNX2X_ERR("BAD MCP validity signature\n");
8207 
8208 	return -ENODEV;
8209 }
8210 
8211 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8212 {
8213 	int rc = bnx2x_init_shmem(bp);
8214 
8215 	/* Restore the `magic' bit value */
8216 	if (!CHIP_IS_E1(bp))
8217 		bnx2x_clp_reset_done(bp, magic_val);
8218 
8219 	return rc;
8220 }
8221 
8222 static void bnx2x_pxp_prep(struct bnx2x *bp)
8223 {
8224 	if (!CHIP_IS_E1(bp)) {
8225 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8226 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8227 		mmiowb();
8228 	}
8229 }
8230 
8231 /*
8232  * Reset the whole chip except for:
8233  *      - PCIE core
8234  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8235  *              one reset bit)
8236  *      - IGU
8237  *      - MISC (including AEU)
8238  *      - GRC
8239  *      - RBCN, RBCP
8240  */
8241 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8242 {
8243 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8244 	u32 global_bits2, stay_reset2;
8245 
8246 	/*
8247 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8248 	 * (per chip) blocks.
8249 	 */
8250 	global_bits2 =
8251 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8252 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8253 
8254 	/* Don't reset the following blocks */
8255 	not_reset_mask1 =
8256 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8257 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8258 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8259 
8260 	not_reset_mask2 =
8261 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8262 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8263 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8264 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8265 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8266 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8267 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8268 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8269 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8270 		MISC_REGISTERS_RESET_REG_2_PGLC;
8271 
8272 	/*
8273 	 * Keep the following blocks in reset:
8274 	 *  - all xxMACs are handled by the bnx2x_link code.
8275 	 */
8276 	stay_reset2 =
8277 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8278 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8279 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8280 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8281 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8282 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8283 		MISC_REGISTERS_RESET_REG_2_XMAC |
8284 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8285 
8286 	/* Full reset masks according to the chip */
8287 	reset_mask1 = 0xffffffff;
8288 
8289 	if (CHIP_IS_E1(bp))
8290 		reset_mask2 = 0xffff;
8291 	else if (CHIP_IS_E1H(bp))
8292 		reset_mask2 = 0x1ffff;
8293 	else if (CHIP_IS_E2(bp))
8294 		reset_mask2 = 0xfffff;
8295 	else /* CHIP_IS_E3 */
8296 		reset_mask2 = 0x3ffffff;
8297 
8298 	/* Don't reset global blocks unless we need to */
8299 	if (!global)
8300 		reset_mask2 &= ~global_bits2;
8301 
8302 	/*
8303 	 * In case of attention in the QM, we need to reset PXP
8304 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8305 	 * because otherwise QM reset would release 'close the gates' shortly
8306 	 * before resetting the PXP, then the PSWRQ would send a write
8307 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8308 	 * read the payload data from PSWWR, but PSWWR would not
8309 	 * respond. The write queue in PGLUE would stuck, dmae commands
8310 	 * would not return. Therefore it's important to reset the second
8311 	 * reset register (containing the
8312 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8313 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8314 	 * bit).
8315 	 */
8316 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8317 	       reset_mask2 & (~not_reset_mask2));
8318 
8319 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8320 	       reset_mask1 & (~not_reset_mask1));
8321 
8322 	barrier();
8323 	mmiowb();
8324 
8325 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8326 	       reset_mask2 & (~stay_reset2));
8327 
8328 	barrier();
8329 	mmiowb();
8330 
8331 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8332 	mmiowb();
8333 }
8334 
8335 /**
8336  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8337  * It should get cleared in no more than 1s.
8338  *
8339  * @bp:	driver handle
8340  *
8341  * It should get cleared in no more than 1s. Returns 0 if
8342  * pending writes bit gets cleared.
8343  */
8344 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8345 {
8346 	u32 cnt = 1000;
8347 	u32 pend_bits = 0;
8348 
8349 	do {
8350 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8351 
8352 		if (pend_bits == 0)
8353 			break;
8354 
8355 		usleep_range(1000, 1000);
8356 	} while (cnt-- > 0);
8357 
8358 	if (cnt <= 0) {
8359 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8360 			  pend_bits);
8361 		return -EBUSY;
8362 	}
8363 
8364 	return 0;
8365 }
8366 
8367 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8368 {
8369 	int cnt = 1000;
8370 	u32 val = 0;
8371 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8372 
8373 
8374 	/* Empty the Tetris buffer, wait for 1s */
8375 	do {
8376 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8377 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8378 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8379 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8380 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8381 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8382 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8383 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8384 		    (pgl_exp_rom2 == 0xffffffff))
8385 			break;
8386 		usleep_range(1000, 1000);
8387 	} while (cnt-- > 0);
8388 
8389 	if (cnt <= 0) {
8390 		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8391 			  " are still"
8392 			  " outstanding read requests after 1s!\n");
8393 		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8394 			  " port_is_idle_0=0x%08x,"
8395 			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8396 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8397 			  pgl_exp_rom2);
8398 		return -EAGAIN;
8399 	}
8400 
8401 	barrier();
8402 
8403 	/* Close gates #2, #3 and #4 */
8404 	bnx2x_set_234_gates(bp, true);
8405 
8406 	/* Poll for IGU VQs for 57712 and newer chips */
8407 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8408 		return -EAGAIN;
8409 
8410 
8411 	/* TBD: Indicate that "process kill" is in progress to MCP */
8412 
8413 	/* Clear "unprepared" bit */
8414 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8415 	barrier();
8416 
8417 	/* Make sure all is written to the chip before the reset */
8418 	mmiowb();
8419 
8420 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8421 	 * PSWHST, GRC and PSWRD Tetris buffer.
8422 	 */
8423 	usleep_range(1000, 1000);
8424 
8425 	/* Prepare to chip reset: */
8426 	/* MCP */
8427 	if (global)
8428 		bnx2x_reset_mcp_prep(bp, &val);
8429 
8430 	/* PXP */
8431 	bnx2x_pxp_prep(bp);
8432 	barrier();
8433 
8434 	/* reset the chip */
8435 	bnx2x_process_kill_chip_reset(bp, global);
8436 	barrier();
8437 
8438 	/* Recover after reset: */
8439 	/* MCP */
8440 	if (global && bnx2x_reset_mcp_comp(bp, val))
8441 		return -EAGAIN;
8442 
8443 	/* TBD: Add resetting the NO_MCP mode DB here */
8444 
8445 	/* PXP */
8446 	bnx2x_pxp_prep(bp);
8447 
8448 	/* Open the gates #2, #3 and #4 */
8449 	bnx2x_set_234_gates(bp, false);
8450 
8451 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8452 	 * reset state, re-enable attentions. */
8453 
8454 	return 0;
8455 }
8456 
8457 int bnx2x_leader_reset(struct bnx2x *bp)
8458 {
8459 	int rc = 0;
8460 	bool global = bnx2x_reset_is_global(bp);
8461 
8462 	/* Try to recover after the failure */
8463 	if (bnx2x_process_kill(bp, global)) {
8464 		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8465 				    "Aii!\n", BP_PATH(bp));
8466 		rc = -EAGAIN;
8467 		goto exit_leader_reset;
8468 	}
8469 
8470 	/*
8471 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8472 	 * state.
8473 	 */
8474 	bnx2x_set_reset_done(bp);
8475 	if (global)
8476 		bnx2x_clear_reset_global(bp);
8477 
8478 exit_leader_reset:
8479 	bp->is_leader = 0;
8480 	bnx2x_release_leader_lock(bp);
8481 	smp_mb();
8482 	return rc;
8483 }
8484 
8485 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8486 {
8487 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8488 
8489 	/* Disconnect this device */
8490 	netif_device_detach(bp->dev);
8491 
8492 	/*
8493 	 * Block ifup for all function on this engine until "process kill"
8494 	 * or power cycle.
8495 	 */
8496 	bnx2x_set_reset_in_progress(bp);
8497 
8498 	/* Shut down the power */
8499 	bnx2x_set_power_state(bp, PCI_D3hot);
8500 
8501 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8502 
8503 	smp_mb();
8504 }
8505 
8506 /*
8507  * Assumption: runs under rtnl lock. This together with the fact
8508  * that it's called only from bnx2x_sp_rtnl() ensure that it
8509  * will never be called when netif_running(bp->dev) is false.
8510  */
8511 static void bnx2x_parity_recover(struct bnx2x *bp)
8512 {
8513 	bool global = false;
8514 
8515 	DP(NETIF_MSG_HW, "Handling parity\n");
8516 	while (1) {
8517 		switch (bp->recovery_state) {
8518 		case BNX2X_RECOVERY_INIT:
8519 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8520 			bnx2x_chk_parity_attn(bp, &global, false);
8521 
8522 			/* Try to get a LEADER_LOCK HW lock */
8523 			if (bnx2x_trylock_leader_lock(bp)) {
8524 				bnx2x_set_reset_in_progress(bp);
8525 				/*
8526 				 * Check if there is a global attention and if
8527 				 * there was a global attention, set the global
8528 				 * reset bit.
8529 				 */
8530 
8531 				if (global)
8532 					bnx2x_set_reset_global(bp);
8533 
8534 				bp->is_leader = 1;
8535 			}
8536 
8537 			/* Stop the driver */
8538 			/* If interface has been removed - break */
8539 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8540 				return;
8541 
8542 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8543 
8544 			/*
8545 			 * Reset MCP command sequence number and MCP mail box
8546 			 * sequence as we are going to reset the MCP.
8547 			 */
8548 			if (global) {
8549 				bp->fw_seq = 0;
8550 				bp->fw_drv_pulse_wr_seq = 0;
8551 			}
8552 
8553 			/* Ensure "is_leader", MCP command sequence and
8554 			 * "recovery_state" update values are seen on other
8555 			 * CPUs.
8556 			 */
8557 			smp_mb();
8558 			break;
8559 
8560 		case BNX2X_RECOVERY_WAIT:
8561 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8562 			if (bp->is_leader) {
8563 				int other_engine = BP_PATH(bp) ? 0 : 1;
8564 				u32 other_load_counter =
8565 					bnx2x_get_load_cnt(bp, other_engine);
8566 				u32 load_counter =
8567 					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8568 				global = bnx2x_reset_is_global(bp);
8569 
8570 				/*
8571 				 * In case of a parity in a global block, let
8572 				 * the first leader that performs a
8573 				 * leader_reset() reset the global blocks in
8574 				 * order to clear global attentions. Otherwise
8575 				 * the the gates will remain closed for that
8576 				 * engine.
8577 				 */
8578 				if (load_counter ||
8579 				    (global && other_load_counter)) {
8580 					/* Wait until all other functions get
8581 					 * down.
8582 					 */
8583 					schedule_delayed_work(&bp->sp_rtnl_task,
8584 								HZ/10);
8585 					return;
8586 				} else {
8587 					/* If all other functions got down -
8588 					 * try to bring the chip back to
8589 					 * normal. In any case it's an exit
8590 					 * point for a leader.
8591 					 */
8592 					if (bnx2x_leader_reset(bp)) {
8593 						bnx2x_recovery_failed(bp);
8594 						return;
8595 					}
8596 
8597 					/* If we are here, means that the
8598 					 * leader has succeeded and doesn't
8599 					 * want to be a leader any more. Try
8600 					 * to continue as a none-leader.
8601 					 */
8602 					break;
8603 				}
8604 			} else { /* non-leader */
8605 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8606 					/* Try to get a LEADER_LOCK HW lock as
8607 					 * long as a former leader may have
8608 					 * been unloaded by the user or
8609 					 * released a leadership by another
8610 					 * reason.
8611 					 */
8612 					if (bnx2x_trylock_leader_lock(bp)) {
8613 						/* I'm a leader now! Restart a
8614 						 * switch case.
8615 						 */
8616 						bp->is_leader = 1;
8617 						break;
8618 					}
8619 
8620 					schedule_delayed_work(&bp->sp_rtnl_task,
8621 								HZ/10);
8622 					return;
8623 
8624 				} else {
8625 					/*
8626 					 * If there was a global attention, wait
8627 					 * for it to be cleared.
8628 					 */
8629 					if (bnx2x_reset_is_global(bp)) {
8630 						schedule_delayed_work(
8631 							&bp->sp_rtnl_task,
8632 							HZ/10);
8633 						return;
8634 					}
8635 
8636 					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8637 						bnx2x_recovery_failed(bp);
8638 					else {
8639 						bp->recovery_state =
8640 							BNX2X_RECOVERY_DONE;
8641 						smp_mb();
8642 					}
8643 
8644 					return;
8645 				}
8646 			}
8647 		default:
8648 			return;
8649 		}
8650 	}
8651 }
8652 
8653 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8654  * scheduled on a general queue in order to prevent a dead lock.
8655  */
8656 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8657 {
8658 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8659 
8660 	rtnl_lock();
8661 
8662 	if (!netif_running(bp->dev))
8663 		goto sp_rtnl_exit;
8664 
8665 	/* if stop on error is defined no recovery flows should be executed */
8666 #ifdef BNX2X_STOP_ON_ERROR
8667 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8668 		  "so reset not done to allow debug dump,\n"
8669 		  "you will need to reboot when done\n");
8670 	goto sp_rtnl_not_reset;
8671 #endif
8672 
8673 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8674 		/*
8675 		 * Clear all pending SP commands as we are going to reset the
8676 		 * function anyway.
8677 		 */
8678 		bp->sp_rtnl_state = 0;
8679 		smp_mb();
8680 
8681 		bnx2x_parity_recover(bp);
8682 
8683 		goto sp_rtnl_exit;
8684 	}
8685 
8686 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8687 		/*
8688 		 * Clear all pending SP commands as we are going to reset the
8689 		 * function anyway.
8690 		 */
8691 		bp->sp_rtnl_state = 0;
8692 		smp_mb();
8693 
8694 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8695 		bnx2x_nic_load(bp, LOAD_NORMAL);
8696 
8697 		goto sp_rtnl_exit;
8698 	}
8699 #ifdef BNX2X_STOP_ON_ERROR
8700 sp_rtnl_not_reset:
8701 #endif
8702 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8703 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8704 
8705 	/*
8706 	 * in case of fan failure we need to reset id if the "stop on error"
8707 	 * debug flag is set, since we trying to prevent permanent overheating
8708 	 * damage
8709 	 */
8710 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8711 		DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8712 		netif_device_detach(bp->dev);
8713 		bnx2x_close(bp->dev);
8714 	}
8715 
8716 sp_rtnl_exit:
8717 	rtnl_unlock();
8718 }
8719 
8720 /* end of nic load/unload */
8721 
8722 static void bnx2x_period_task(struct work_struct *work)
8723 {
8724 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8725 
8726 	if (!netif_running(bp->dev))
8727 		goto period_task_exit;
8728 
8729 	if (CHIP_REV_IS_SLOW(bp)) {
8730 		BNX2X_ERR("period task called on emulation, ignoring\n");
8731 		goto period_task_exit;
8732 	}
8733 
8734 	bnx2x_acquire_phy_lock(bp);
8735 	/*
8736 	 * The barrier is needed to ensure the ordering between the writing to
8737 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8738 	 * the reading here.
8739 	 */
8740 	smp_mb();
8741 	if (bp->port.pmf) {
8742 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8743 
8744 		/* Re-queue task in 1 sec */
8745 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8746 	}
8747 
8748 	bnx2x_release_phy_lock(bp);
8749 period_task_exit:
8750 	return;
8751 }
8752 
8753 /*
8754  * Init service functions
8755  */
8756 
8757 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8758 {
8759 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8760 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8761 	return base + (BP_ABS_FUNC(bp)) * stride;
8762 }
8763 
8764 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8765 {
8766 	u32 reg = bnx2x_get_pretend_reg(bp);
8767 
8768 	/* Flush all outstanding writes */
8769 	mmiowb();
8770 
8771 	/* Pretend to be function 0 */
8772 	REG_WR(bp, reg, 0);
8773 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8774 
8775 	/* From now we are in the "like-E1" mode */
8776 	bnx2x_int_disable(bp);
8777 
8778 	/* Flush all outstanding writes */
8779 	mmiowb();
8780 
8781 	/* Restore the original function */
8782 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8783 	REG_RD(bp, reg);
8784 }
8785 
8786 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8787 {
8788 	if (CHIP_IS_E1(bp))
8789 		bnx2x_int_disable(bp);
8790 	else
8791 		bnx2x_undi_int_disable_e1h(bp);
8792 }
8793 
8794 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8795 {
8796 	u32 val;
8797 
8798 	/* Check if there is any driver already loaded */
8799 	val = REG_RD(bp, MISC_REG_UNPREPARED);
8800 	if (val == 0x1) {
8801 
8802 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8803 		/*
8804 		 * Check if it is the UNDI driver
8805 		 * UNDI driver initializes CID offset for normal bell to 0x7
8806 		 */
8807 		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8808 		if (val == 0x7) {
8809 			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8810 			/* save our pf_num */
8811 			int orig_pf_num = bp->pf_num;
8812 			int port;
8813 			u32 swap_en, swap_val, value;
8814 
8815 			/* clear the UNDI indication */
8816 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8817 
8818 			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8819 
8820 			/* try unload UNDI on port 0 */
8821 			bp->pf_num = 0;
8822 			bp->fw_seq =
8823 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8824 				DRV_MSG_SEQ_NUMBER_MASK);
8825 			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8826 
8827 			/* if UNDI is loaded on the other port */
8828 			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8829 
8830 				/* send "DONE" for previous unload */
8831 				bnx2x_fw_command(bp,
8832 						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8833 
8834 				/* unload UNDI on port 1 */
8835 				bp->pf_num = 1;
8836 				bp->fw_seq =
8837 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8838 					DRV_MSG_SEQ_NUMBER_MASK);
8839 				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8840 
8841 				bnx2x_fw_command(bp, reset_code, 0);
8842 			}
8843 
8844 			bnx2x_undi_int_disable(bp);
8845 			port = BP_PORT(bp);
8846 
8847 			/* close input traffic and wait for it */
8848 			/* Do not rcv packets to BRB */
8849 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8850 					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8851 			/* Do not direct rcv packets that are not for MCP to
8852 			 * the BRB */
8853 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8854 					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8855 			/* clear AEU */
8856 			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8857 					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8858 			msleep(10);
8859 
8860 			/* save NIG port swap info */
8861 			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8862 			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8863 			/* reset device */
8864 			REG_WR(bp,
8865 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8866 			       0xd3ffffff);
8867 
8868 			value = 0x1400;
8869 			if (CHIP_IS_E3(bp)) {
8870 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8871 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8872 			}
8873 
8874 			REG_WR(bp,
8875 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8876 			       value);
8877 
8878 			/* take the NIG out of reset and restore swap values */
8879 			REG_WR(bp,
8880 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8881 			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8882 			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8883 			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8884 
8885 			/* send unload done to the MCP */
8886 			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8887 
8888 			/* restore our func and fw_seq */
8889 			bp->pf_num = orig_pf_num;
8890 			bp->fw_seq =
8891 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8892 				DRV_MSG_SEQ_NUMBER_MASK);
8893 		}
8894 
8895 		/* now it's safe to release the lock */
8896 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8897 	}
8898 }
8899 
8900 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8901 {
8902 	u32 val, val2, val3, val4, id, boot_mode;
8903 	u16 pmc;
8904 
8905 	/* Get the chip revision id and number. */
8906 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8907 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8908 	id = ((val & 0xffff) << 16);
8909 	val = REG_RD(bp, MISC_REG_CHIP_REV);
8910 	id |= ((val & 0xf) << 12);
8911 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8912 	id |= ((val & 0xff) << 4);
8913 	val = REG_RD(bp, MISC_REG_BOND_ID);
8914 	id |= (val & 0xf);
8915 	bp->common.chip_id = id;
8916 
8917 	/* Set doorbell size */
8918 	bp->db_size = (1 << BNX2X_DB_SHIFT);
8919 
8920 	if (!CHIP_IS_E1x(bp)) {
8921 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8922 		if ((val & 1) == 0)
8923 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8924 		else
8925 			val = (val >> 1) & 1;
8926 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8927 						       "2_PORT_MODE");
8928 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8929 						 CHIP_2_PORT_MODE;
8930 
8931 		if (CHIP_MODE_IS_4_PORT(bp))
8932 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8933 		else
8934 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8935 	} else {
8936 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8937 		bp->pfid = bp->pf_num;			/* 0..7 */
8938 	}
8939 
8940 	bp->link_params.chip_id = bp->common.chip_id;
8941 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8942 
8943 	val = (REG_RD(bp, 0x2874) & 0x55);
8944 	if ((bp->common.chip_id & 0x1) ||
8945 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8946 		bp->flags |= ONE_PORT_FLAG;
8947 		BNX2X_DEV_INFO("single port device\n");
8948 	}
8949 
8950 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8951 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8952 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8953 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8954 		       bp->common.flash_size, bp->common.flash_size);
8955 
8956 	bnx2x_init_shmem(bp);
8957 
8958 
8959 
8960 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8961 					MISC_REG_GENERIC_CR_1 :
8962 					MISC_REG_GENERIC_CR_0));
8963 
8964 	bp->link_params.shmem_base = bp->common.shmem_base;
8965 	bp->link_params.shmem2_base = bp->common.shmem2_base;
8966 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8967 		       bp->common.shmem_base, bp->common.shmem2_base);
8968 
8969 	if (!bp->common.shmem_base) {
8970 		BNX2X_DEV_INFO("MCP not active\n");
8971 		bp->flags |= NO_MCP_FLAG;
8972 		return;
8973 	}
8974 
8975 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8976 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8977 
8978 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8979 					SHARED_HW_CFG_LED_MODE_MASK) >>
8980 				       SHARED_HW_CFG_LED_MODE_SHIFT);
8981 
8982 	bp->link_params.feature_config_flags = 0;
8983 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8984 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8985 		bp->link_params.feature_config_flags |=
8986 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8987 	else
8988 		bp->link_params.feature_config_flags &=
8989 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8990 
8991 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8992 	bp->common.bc_ver = val;
8993 	BNX2X_DEV_INFO("bc_ver %X\n", val);
8994 	if (val < BNX2X_BC_VER) {
8995 		/* for now only warn
8996 		 * later we might need to enforce this */
8997 		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8998 			  "please upgrade BC\n", BNX2X_BC_VER, val);
8999 	}
9000 	bp->link_params.feature_config_flags |=
9001 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9002 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9003 
9004 	bp->link_params.feature_config_flags |=
9005 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9006 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9007 
9008 	bp->link_params.feature_config_flags |=
9009 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9010 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9011 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9012 			BC_SUPPORTS_PFC_STATS : 0;
9013 
9014 	boot_mode = SHMEM_RD(bp,
9015 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9016 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9017 	switch (boot_mode) {
9018 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9019 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9020 		break;
9021 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9022 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9023 		break;
9024 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9025 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9026 		break;
9027 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9028 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9029 		break;
9030 	}
9031 
9032 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9033 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9034 
9035 	BNX2X_DEV_INFO("%sWoL capable\n",
9036 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9037 
9038 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9039 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9040 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9041 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9042 
9043 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9044 		 val, val2, val3, val4);
9045 }
9046 
9047 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9048 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9049 
9050 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9051 {
9052 	int pfid = BP_FUNC(bp);
9053 	int igu_sb_id;
9054 	u32 val;
9055 	u8 fid, igu_sb_cnt = 0;
9056 
9057 	bp->igu_base_sb = 0xff;
9058 	if (CHIP_INT_MODE_IS_BC(bp)) {
9059 		int vn = BP_VN(bp);
9060 		igu_sb_cnt = bp->igu_sb_cnt;
9061 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9062 			FP_SB_MAX_E1x;
9063 
9064 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9065 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9066 
9067 		return;
9068 	}
9069 
9070 	/* IGU in normal mode - read CAM */
9071 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9072 	     igu_sb_id++) {
9073 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9074 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9075 			continue;
9076 		fid = IGU_FID(val);
9077 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9078 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9079 				continue;
9080 			if (IGU_VEC(val) == 0)
9081 				/* default status block */
9082 				bp->igu_dsb_id = igu_sb_id;
9083 			else {
9084 				if (bp->igu_base_sb == 0xff)
9085 					bp->igu_base_sb = igu_sb_id;
9086 				igu_sb_cnt++;
9087 			}
9088 		}
9089 	}
9090 
9091 #ifdef CONFIG_PCI_MSI
9092 	/*
9093 	 * It's expected that number of CAM entries for this functions is equal
9094 	 * to the number evaluated based on the MSI-X table size. We want a
9095 	 * harsh warning if these values are different!
9096 	 */
9097 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9098 #endif
9099 
9100 	if (igu_sb_cnt == 0)
9101 		BNX2X_ERR("CAM configuration error\n");
9102 }
9103 
9104 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9105 						    u32 switch_cfg)
9106 {
9107 	int cfg_size = 0, idx, port = BP_PORT(bp);
9108 
9109 	/* Aggregation of supported attributes of all external phys */
9110 	bp->port.supported[0] = 0;
9111 	bp->port.supported[1] = 0;
9112 	switch (bp->link_params.num_phys) {
9113 	case 1:
9114 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9115 		cfg_size = 1;
9116 		break;
9117 	case 2:
9118 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9119 		cfg_size = 1;
9120 		break;
9121 	case 3:
9122 		if (bp->link_params.multi_phy_config &
9123 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9124 			bp->port.supported[1] =
9125 				bp->link_params.phy[EXT_PHY1].supported;
9126 			bp->port.supported[0] =
9127 				bp->link_params.phy[EXT_PHY2].supported;
9128 		} else {
9129 			bp->port.supported[0] =
9130 				bp->link_params.phy[EXT_PHY1].supported;
9131 			bp->port.supported[1] =
9132 				bp->link_params.phy[EXT_PHY2].supported;
9133 		}
9134 		cfg_size = 2;
9135 		break;
9136 	}
9137 
9138 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9139 		BNX2X_ERR("NVRAM config error. BAD phy config."
9140 			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
9141 			   SHMEM_RD(bp,
9142 			   dev_info.port_hw_config[port].external_phy_config),
9143 			   SHMEM_RD(bp,
9144 			   dev_info.port_hw_config[port].external_phy_config2));
9145 			return;
9146 	}
9147 
9148 	if (CHIP_IS_E3(bp))
9149 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9150 	else {
9151 		switch (switch_cfg) {
9152 		case SWITCH_CFG_1G:
9153 			bp->port.phy_addr = REG_RD(
9154 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9155 			break;
9156 		case SWITCH_CFG_10G:
9157 			bp->port.phy_addr = REG_RD(
9158 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9159 			break;
9160 		default:
9161 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9162 				  bp->port.link_config[0]);
9163 			return;
9164 		}
9165 	}
9166 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9167 	/* mask what we support according to speed_cap_mask per configuration */
9168 	for (idx = 0; idx < cfg_size; idx++) {
9169 		if (!(bp->link_params.speed_cap_mask[idx] &
9170 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9171 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9172 
9173 		if (!(bp->link_params.speed_cap_mask[idx] &
9174 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9175 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9176 
9177 		if (!(bp->link_params.speed_cap_mask[idx] &
9178 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9179 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9180 
9181 		if (!(bp->link_params.speed_cap_mask[idx] &
9182 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9183 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9184 
9185 		if (!(bp->link_params.speed_cap_mask[idx] &
9186 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9187 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9188 						     SUPPORTED_1000baseT_Full);
9189 
9190 		if (!(bp->link_params.speed_cap_mask[idx] &
9191 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9192 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9193 
9194 		if (!(bp->link_params.speed_cap_mask[idx] &
9195 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9196 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9197 
9198 	}
9199 
9200 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9201 		       bp->port.supported[1]);
9202 }
9203 
9204 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9205 {
9206 	u32 link_config, idx, cfg_size = 0;
9207 	bp->port.advertising[0] = 0;
9208 	bp->port.advertising[1] = 0;
9209 	switch (bp->link_params.num_phys) {
9210 	case 1:
9211 	case 2:
9212 		cfg_size = 1;
9213 		break;
9214 	case 3:
9215 		cfg_size = 2;
9216 		break;
9217 	}
9218 	for (idx = 0; idx < cfg_size; idx++) {
9219 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9220 		link_config = bp->port.link_config[idx];
9221 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9222 		case PORT_FEATURE_LINK_SPEED_AUTO:
9223 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9224 				bp->link_params.req_line_speed[idx] =
9225 					SPEED_AUTO_NEG;
9226 				bp->port.advertising[idx] |=
9227 					bp->port.supported[idx];
9228 			} else {
9229 				/* force 10G, no AN */
9230 				bp->link_params.req_line_speed[idx] =
9231 					SPEED_10000;
9232 				bp->port.advertising[idx] |=
9233 					(ADVERTISED_10000baseT_Full |
9234 					 ADVERTISED_FIBRE);
9235 				continue;
9236 			}
9237 			break;
9238 
9239 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9240 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9241 				bp->link_params.req_line_speed[idx] =
9242 					SPEED_10;
9243 				bp->port.advertising[idx] |=
9244 					(ADVERTISED_10baseT_Full |
9245 					 ADVERTISED_TP);
9246 			} else {
9247 				BNX2X_ERR("NVRAM config error. "
9248 					    "Invalid link_config 0x%x"
9249 					    "  speed_cap_mask 0x%x\n",
9250 					    link_config,
9251 				    bp->link_params.speed_cap_mask[idx]);
9252 				return;
9253 			}
9254 			break;
9255 
9256 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9257 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9258 				bp->link_params.req_line_speed[idx] =
9259 					SPEED_10;
9260 				bp->link_params.req_duplex[idx] =
9261 					DUPLEX_HALF;
9262 				bp->port.advertising[idx] |=
9263 					(ADVERTISED_10baseT_Half |
9264 					 ADVERTISED_TP);
9265 			} else {
9266 				BNX2X_ERR("NVRAM config error. "
9267 					    "Invalid link_config 0x%x"
9268 					    "  speed_cap_mask 0x%x\n",
9269 					    link_config,
9270 					  bp->link_params.speed_cap_mask[idx]);
9271 				return;
9272 			}
9273 			break;
9274 
9275 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9276 			if (bp->port.supported[idx] &
9277 			    SUPPORTED_100baseT_Full) {
9278 				bp->link_params.req_line_speed[idx] =
9279 					SPEED_100;
9280 				bp->port.advertising[idx] |=
9281 					(ADVERTISED_100baseT_Full |
9282 					 ADVERTISED_TP);
9283 			} else {
9284 				BNX2X_ERR("NVRAM config error. "
9285 					    "Invalid link_config 0x%x"
9286 					    "  speed_cap_mask 0x%x\n",
9287 					    link_config,
9288 					  bp->link_params.speed_cap_mask[idx]);
9289 				return;
9290 			}
9291 			break;
9292 
9293 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9294 			if (bp->port.supported[idx] &
9295 			    SUPPORTED_100baseT_Half) {
9296 				bp->link_params.req_line_speed[idx] =
9297 								SPEED_100;
9298 				bp->link_params.req_duplex[idx] =
9299 								DUPLEX_HALF;
9300 				bp->port.advertising[idx] |=
9301 					(ADVERTISED_100baseT_Half |
9302 					 ADVERTISED_TP);
9303 			} else {
9304 				BNX2X_ERR("NVRAM config error. "
9305 				    "Invalid link_config 0x%x"
9306 				    "  speed_cap_mask 0x%x\n",
9307 				    link_config,
9308 				    bp->link_params.speed_cap_mask[idx]);
9309 				return;
9310 			}
9311 			break;
9312 
9313 		case PORT_FEATURE_LINK_SPEED_1G:
9314 			if (bp->port.supported[idx] &
9315 			    SUPPORTED_1000baseT_Full) {
9316 				bp->link_params.req_line_speed[idx] =
9317 					SPEED_1000;
9318 				bp->port.advertising[idx] |=
9319 					(ADVERTISED_1000baseT_Full |
9320 					 ADVERTISED_TP);
9321 			} else {
9322 				BNX2X_ERR("NVRAM config error. "
9323 				    "Invalid link_config 0x%x"
9324 				    "  speed_cap_mask 0x%x\n",
9325 				    link_config,
9326 				    bp->link_params.speed_cap_mask[idx]);
9327 				return;
9328 			}
9329 			break;
9330 
9331 		case PORT_FEATURE_LINK_SPEED_2_5G:
9332 			if (bp->port.supported[idx] &
9333 			    SUPPORTED_2500baseX_Full) {
9334 				bp->link_params.req_line_speed[idx] =
9335 					SPEED_2500;
9336 				bp->port.advertising[idx] |=
9337 					(ADVERTISED_2500baseX_Full |
9338 						ADVERTISED_TP);
9339 			} else {
9340 				BNX2X_ERR("NVRAM config error. "
9341 				    "Invalid link_config 0x%x"
9342 				    "  speed_cap_mask 0x%x\n",
9343 				    link_config,
9344 				    bp->link_params.speed_cap_mask[idx]);
9345 				return;
9346 			}
9347 			break;
9348 
9349 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9350 			if (bp->port.supported[idx] &
9351 			    SUPPORTED_10000baseT_Full) {
9352 				bp->link_params.req_line_speed[idx] =
9353 					SPEED_10000;
9354 				bp->port.advertising[idx] |=
9355 					(ADVERTISED_10000baseT_Full |
9356 						ADVERTISED_FIBRE);
9357 			} else {
9358 				BNX2X_ERR("NVRAM config error. "
9359 				    "Invalid link_config 0x%x"
9360 				    "  speed_cap_mask 0x%x\n",
9361 				    link_config,
9362 				    bp->link_params.speed_cap_mask[idx]);
9363 				return;
9364 			}
9365 			break;
9366 		case PORT_FEATURE_LINK_SPEED_20G:
9367 			bp->link_params.req_line_speed[idx] = SPEED_20000;
9368 
9369 			break;
9370 		default:
9371 			BNX2X_ERR("NVRAM config error. "
9372 				  "BAD link speed link_config 0x%x\n",
9373 				  link_config);
9374 				bp->link_params.req_line_speed[idx] =
9375 							SPEED_AUTO_NEG;
9376 				bp->port.advertising[idx] =
9377 						bp->port.supported[idx];
9378 			break;
9379 		}
9380 
9381 		bp->link_params.req_flow_ctrl[idx] = (link_config &
9382 					 PORT_FEATURE_FLOW_CONTROL_MASK);
9383 		if ((bp->link_params.req_flow_ctrl[idx] ==
9384 		     BNX2X_FLOW_CTRL_AUTO) &&
9385 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9386 			bp->link_params.req_flow_ctrl[idx] =
9387 				BNX2X_FLOW_CTRL_NONE;
9388 		}
9389 
9390 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9391 			       " 0x%x advertising 0x%x\n",
9392 			       bp->link_params.req_line_speed[idx],
9393 			       bp->link_params.req_duplex[idx],
9394 			       bp->link_params.req_flow_ctrl[idx],
9395 			       bp->port.advertising[idx]);
9396 	}
9397 }
9398 
9399 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9400 {
9401 	mac_hi = cpu_to_be16(mac_hi);
9402 	mac_lo = cpu_to_be32(mac_lo);
9403 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9404 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9405 }
9406 
9407 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9408 {
9409 	int port = BP_PORT(bp);
9410 	u32 config;
9411 	u32 ext_phy_type, ext_phy_config;
9412 
9413 	bp->link_params.bp = bp;
9414 	bp->link_params.port = port;
9415 
9416 	bp->link_params.lane_config =
9417 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9418 
9419 	bp->link_params.speed_cap_mask[0] =
9420 		SHMEM_RD(bp,
9421 			 dev_info.port_hw_config[port].speed_capability_mask);
9422 	bp->link_params.speed_cap_mask[1] =
9423 		SHMEM_RD(bp,
9424 			 dev_info.port_hw_config[port].speed_capability_mask2);
9425 	bp->port.link_config[0] =
9426 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9427 
9428 	bp->port.link_config[1] =
9429 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9430 
9431 	bp->link_params.multi_phy_config =
9432 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9433 	/* If the device is capable of WoL, set the default state according
9434 	 * to the HW
9435 	 */
9436 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9437 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9438 		   (config & PORT_FEATURE_WOL_ENABLED));
9439 
9440 	BNX2X_DEV_INFO("lane_config 0x%08x  "
9441 		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9442 		       bp->link_params.lane_config,
9443 		       bp->link_params.speed_cap_mask[0],
9444 		       bp->port.link_config[0]);
9445 
9446 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9447 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9448 	bnx2x_phy_probe(&bp->link_params);
9449 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9450 
9451 	bnx2x_link_settings_requested(bp);
9452 
9453 	/*
9454 	 * If connected directly, work with the internal PHY, otherwise, work
9455 	 * with the external PHY
9456 	 */
9457 	ext_phy_config =
9458 		SHMEM_RD(bp,
9459 			 dev_info.port_hw_config[port].external_phy_config);
9460 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9461 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9462 		bp->mdio.prtad = bp->port.phy_addr;
9463 
9464 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9465 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9466 		bp->mdio.prtad =
9467 			XGXS_EXT_PHY_ADDR(ext_phy_config);
9468 
9469 	/*
9470 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9471 	 * In MF mode, it is set to cover self test cases
9472 	 */
9473 	if (IS_MF(bp))
9474 		bp->port.need_hw_lock = 1;
9475 	else
9476 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9477 							bp->common.shmem_base,
9478 							bp->common.shmem2_base);
9479 }
9480 
9481 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9482 {
9483 #ifdef BCM_CNIC
9484 	int port = BP_PORT(bp);
9485 
9486 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9487 				drv_lic_key[port].max_iscsi_conn);
9488 
9489 	/* Get the number of maximum allowed iSCSI connections */
9490 	bp->cnic_eth_dev.max_iscsi_conn =
9491 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9492 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9493 
9494 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9495 		       bp->cnic_eth_dev.max_iscsi_conn);
9496 
9497 	/*
9498 	 * If maximum allowed number of connections is zero -
9499 	 * disable the feature.
9500 	 */
9501 	if (!bp->cnic_eth_dev.max_iscsi_conn)
9502 		bp->flags |= NO_ISCSI_FLAG;
9503 #else
9504 	bp->flags |= NO_ISCSI_FLAG;
9505 #endif
9506 }
9507 
9508 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9509 {
9510 #ifdef BCM_CNIC
9511 	int port = BP_PORT(bp);
9512 	int func = BP_ABS_FUNC(bp);
9513 
9514 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9515 				drv_lic_key[port].max_fcoe_conn);
9516 
9517 	/* Get the number of maximum allowed FCoE connections */
9518 	bp->cnic_eth_dev.max_fcoe_conn =
9519 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9520 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9521 
9522 	/* Read the WWN: */
9523 	if (!IS_MF(bp)) {
9524 		/* Port info */
9525 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9526 			SHMEM_RD(bp,
9527 				dev_info.port_hw_config[port].
9528 				 fcoe_wwn_port_name_upper);
9529 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9530 			SHMEM_RD(bp,
9531 				dev_info.port_hw_config[port].
9532 				 fcoe_wwn_port_name_lower);
9533 
9534 		/* Node info */
9535 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9536 			SHMEM_RD(bp,
9537 				dev_info.port_hw_config[port].
9538 				 fcoe_wwn_node_name_upper);
9539 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9540 			SHMEM_RD(bp,
9541 				dev_info.port_hw_config[port].
9542 				 fcoe_wwn_node_name_lower);
9543 	} else if (!IS_MF_SD(bp)) {
9544 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9545 
9546 		/*
9547 		 * Read the WWN info only if the FCoE feature is enabled for
9548 		 * this function.
9549 		 */
9550 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9551 			/* Port info */
9552 			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9553 				MF_CFG_RD(bp, func_ext_config[func].
9554 						fcoe_wwn_port_name_upper);
9555 			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9556 				MF_CFG_RD(bp, func_ext_config[func].
9557 						fcoe_wwn_port_name_lower);
9558 
9559 			/* Node info */
9560 			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9561 				MF_CFG_RD(bp, func_ext_config[func].
9562 						fcoe_wwn_node_name_upper);
9563 			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9564 				MF_CFG_RD(bp, func_ext_config[func].
9565 						fcoe_wwn_node_name_lower);
9566 		}
9567 	}
9568 
9569 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9570 
9571 	/*
9572 	 * If maximum allowed number of connections is zero -
9573 	 * disable the feature.
9574 	 */
9575 	if (!bp->cnic_eth_dev.max_fcoe_conn)
9576 		bp->flags |= NO_FCOE_FLAG;
9577 #else
9578 	bp->flags |= NO_FCOE_FLAG;
9579 #endif
9580 }
9581 
9582 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9583 {
9584 	/*
9585 	 * iSCSI may be dynamically disabled but reading
9586 	 * info here we will decrease memory usage by driver
9587 	 * if the feature is disabled for good
9588 	 */
9589 	bnx2x_get_iscsi_info(bp);
9590 	bnx2x_get_fcoe_info(bp);
9591 }
9592 
9593 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9594 {
9595 	u32 val, val2;
9596 	int func = BP_ABS_FUNC(bp);
9597 	int port = BP_PORT(bp);
9598 #ifdef BCM_CNIC
9599 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9600 	u8 *fip_mac = bp->fip_mac;
9601 #endif
9602 
9603 	/* Zero primary MAC configuration */
9604 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9605 
9606 	if (BP_NOMCP(bp)) {
9607 		BNX2X_ERROR("warning: random MAC workaround active\n");
9608 		random_ether_addr(bp->dev->dev_addr);
9609 	} else if (IS_MF(bp)) {
9610 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9611 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9612 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9613 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9614 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9615 
9616 #ifdef BCM_CNIC
9617 		/*
9618 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9619 		 * FCoE MAC then the appropriate feature should be disabled.
9620 		 */
9621 		if (IS_MF_SI(bp)) {
9622 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9623 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9624 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9625 						     iscsi_mac_addr_upper);
9626 				val = MF_CFG_RD(bp, func_ext_config[func].
9627 						    iscsi_mac_addr_lower);
9628 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9629 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9630 					       iscsi_mac);
9631 			} else
9632 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9633 
9634 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9635 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9636 						     fcoe_mac_addr_upper);
9637 				val = MF_CFG_RD(bp, func_ext_config[func].
9638 						    fcoe_mac_addr_lower);
9639 				bnx2x_set_mac_buf(fip_mac, val, val2);
9640 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9641 					       fip_mac);
9642 
9643 			} else
9644 				bp->flags |= NO_FCOE_FLAG;
9645 		} else { /* SD mode */
9646 			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9647 				/* use primary mac as iscsi mac */
9648 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9649 				/* Zero primary MAC configuration */
9650 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9651 
9652 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9653 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9654 					       iscsi_mac);
9655 			}
9656 		}
9657 #endif
9658 	} else {
9659 		/* in SF read MACs from port configuration */
9660 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9661 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9662 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9663 
9664 #ifdef BCM_CNIC
9665 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9666 				    iscsi_mac_upper);
9667 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9668 				   iscsi_mac_lower);
9669 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9670 
9671 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9672 				    fcoe_fip_mac_upper);
9673 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9674 				   fcoe_fip_mac_lower);
9675 		bnx2x_set_mac_buf(fip_mac, val, val2);
9676 #endif
9677 	}
9678 
9679 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9680 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9681 
9682 #ifdef BCM_CNIC
9683 	/* Set the FCoE MAC in MF_SD mode */
9684 	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9685 		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9686 
9687 	/* Disable iSCSI if MAC configuration is
9688 	 * invalid.
9689 	 */
9690 	if (!is_valid_ether_addr(iscsi_mac)) {
9691 		bp->flags |= NO_ISCSI_FLAG;
9692 		memset(iscsi_mac, 0, ETH_ALEN);
9693 	}
9694 
9695 	/* Disable FCoE if MAC configuration is
9696 	 * invalid.
9697 	 */
9698 	if (!is_valid_ether_addr(fip_mac)) {
9699 		bp->flags |= NO_FCOE_FLAG;
9700 		memset(bp->fip_mac, 0, ETH_ALEN);
9701 	}
9702 #endif
9703 
9704 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9705 		dev_err(&bp->pdev->dev,
9706 			"bad Ethernet MAC address configuration: "
9707 			"%pM, change it manually before bringing up "
9708 			"the appropriate network interface\n",
9709 			bp->dev->dev_addr);
9710 }
9711 
9712 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9713 {
9714 	int /*abs*/func = BP_ABS_FUNC(bp);
9715 	int vn;
9716 	u32 val = 0;
9717 	int rc = 0;
9718 
9719 	bnx2x_get_common_hwinfo(bp);
9720 
9721 	/*
9722 	 * initialize IGU parameters
9723 	 */
9724 	if (CHIP_IS_E1x(bp)) {
9725 		bp->common.int_block = INT_BLOCK_HC;
9726 
9727 		bp->igu_dsb_id = DEF_SB_IGU_ID;
9728 		bp->igu_base_sb = 0;
9729 	} else {
9730 		bp->common.int_block = INT_BLOCK_IGU;
9731 
9732 		/* do not allow device reset during IGU info preocessing */
9733 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9734 
9735 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9736 
9737 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9738 			int tout = 5000;
9739 
9740 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9741 
9742 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9743 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9744 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9745 
9746 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9747 				tout--;
9748 				usleep_range(1000, 1000);
9749 			}
9750 
9751 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9752 				dev_err(&bp->pdev->dev,
9753 					"FORCING Normal Mode failed!!!\n");
9754 				return -EPERM;
9755 			}
9756 		}
9757 
9758 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9759 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9760 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9761 		} else
9762 			BNX2X_DEV_INFO("IGU Normal Mode\n");
9763 
9764 		bnx2x_get_igu_cam_info(bp);
9765 
9766 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9767 	}
9768 
9769 	/*
9770 	 * set base FW non-default (fast path) status block id, this value is
9771 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9772 	 * determine the id used by the FW.
9773 	 */
9774 	if (CHIP_IS_E1x(bp))
9775 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9776 	else /*
9777 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9778 	      * the same queue are indicated on the same IGU SB). So we prefer
9779 	      * FW and IGU SBs to be the same value.
9780 	      */
9781 		bp->base_fw_ndsb = bp->igu_base_sb;
9782 
9783 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9784 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9785 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9786 
9787 	/*
9788 	 * Initialize MF configuration
9789 	 */
9790 
9791 	bp->mf_ov = 0;
9792 	bp->mf_mode = 0;
9793 	vn = BP_VN(bp);
9794 
9795 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9796 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9797 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9798 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9799 
9800 		if (SHMEM2_HAS(bp, mf_cfg_addr))
9801 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9802 		else
9803 			bp->common.mf_cfg_base = bp->common.shmem_base +
9804 				offsetof(struct shmem_region, func_mb) +
9805 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9806 		/*
9807 		 * get mf configuration:
9808 		 * 1. existence of MF configuration
9809 		 * 2. MAC address must be legal (check only upper bytes)
9810 		 *    for  Switch-Independent mode;
9811 		 *    OVLAN must be legal for Switch-Dependent mode
9812 		 * 3. SF_MODE configures specific MF mode
9813 		 */
9814 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9815 			/* get mf configuration */
9816 			val = SHMEM_RD(bp,
9817 				       dev_info.shared_feature_config.config);
9818 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9819 
9820 			switch (val) {
9821 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9822 				val = MF_CFG_RD(bp, func_mf_config[func].
9823 						mac_upper);
9824 				/* check for legal mac (upper bytes)*/
9825 				if (val != 0xffff) {
9826 					bp->mf_mode = MULTI_FUNCTION_SI;
9827 					bp->mf_config[vn] = MF_CFG_RD(bp,
9828 						   func_mf_config[func].config);
9829 				} else
9830 					BNX2X_DEV_INFO("illegal MAC address "
9831 						       "for SI\n");
9832 				break;
9833 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9834 				/* get OV configuration */
9835 				val = MF_CFG_RD(bp,
9836 					func_mf_config[FUNC_0].e1hov_tag);
9837 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9838 
9839 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9840 					bp->mf_mode = MULTI_FUNCTION_SD;
9841 					bp->mf_config[vn] = MF_CFG_RD(bp,
9842 						func_mf_config[func].config);
9843 				} else
9844 					BNX2X_DEV_INFO("illegal OV for SD\n");
9845 				break;
9846 			default:
9847 				/* Unknown configuration: reset mf_config */
9848 				bp->mf_config[vn] = 0;
9849 				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9850 			}
9851 		}
9852 
9853 		BNX2X_DEV_INFO("%s function mode\n",
9854 			       IS_MF(bp) ? "multi" : "single");
9855 
9856 		switch (bp->mf_mode) {
9857 		case MULTI_FUNCTION_SD:
9858 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9859 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9860 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9861 				bp->mf_ov = val;
9862 				bp->path_has_ovlan = true;
9863 
9864 				BNX2X_DEV_INFO("MF OV for func %d is %d "
9865 					       "(0x%04x)\n", func, bp->mf_ov,
9866 					       bp->mf_ov);
9867 			} else {
9868 				dev_err(&bp->pdev->dev,
9869 					"No valid MF OV for func %d, "
9870 					"aborting\n", func);
9871 				return -EPERM;
9872 			}
9873 			break;
9874 		case MULTI_FUNCTION_SI:
9875 			BNX2X_DEV_INFO("func %d is in MF "
9876 				       "switch-independent mode\n", func);
9877 			break;
9878 		default:
9879 			if (vn) {
9880 				dev_err(&bp->pdev->dev,
9881 					"VN %d is in a single function mode, "
9882 					"aborting\n", vn);
9883 				return -EPERM;
9884 			}
9885 			break;
9886 		}
9887 
9888 		/* check if other port on the path needs ovlan:
9889 		 * Since MF configuration is shared between ports
9890 		 * Possible mixed modes are only
9891 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9892 		 */
9893 		if (CHIP_MODE_IS_4_PORT(bp) &&
9894 		    !bp->path_has_ovlan &&
9895 		    !IS_MF(bp) &&
9896 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9897 			u8 other_port = !BP_PORT(bp);
9898 			u8 other_func = BP_PATH(bp) + 2*other_port;
9899 			val = MF_CFG_RD(bp,
9900 					func_mf_config[other_func].e1hov_tag);
9901 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9902 				bp->path_has_ovlan = true;
9903 		}
9904 	}
9905 
9906 	/* adjust igu_sb_cnt to MF for E1x */
9907 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9908 		bp->igu_sb_cnt /= E1HVN_MAX;
9909 
9910 	/* port info */
9911 	bnx2x_get_port_hwinfo(bp);
9912 
9913 	/* Get MAC addresses */
9914 	bnx2x_get_mac_hwinfo(bp);
9915 
9916 	bnx2x_get_cnic_info(bp);
9917 
9918 	/* Get current FW pulse sequence */
9919 	if (!BP_NOMCP(bp)) {
9920 		int mb_idx = BP_FW_MB_IDX(bp);
9921 
9922 		bp->fw_drv_pulse_wr_seq =
9923 				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9924 				 DRV_PULSE_SEQ_MASK);
9925 		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9926 	}
9927 
9928 	return rc;
9929 }
9930 
9931 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9932 {
9933 	int cnt, i, block_end, rodi;
9934 	char vpd_start[BNX2X_VPD_LEN+1];
9935 	char str_id_reg[VENDOR_ID_LEN+1];
9936 	char str_id_cap[VENDOR_ID_LEN+1];
9937 	char *vpd_data;
9938 	char *vpd_extended_data = NULL;
9939 	u8 len;
9940 
9941 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9942 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9943 
9944 	if (cnt < BNX2X_VPD_LEN)
9945 		goto out_not_found;
9946 
9947 	/* VPD RO tag should be first tag after identifier string, hence
9948 	 * we should be able to find it in first BNX2X_VPD_LEN chars
9949 	 */
9950 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9951 			     PCI_VPD_LRDT_RO_DATA);
9952 	if (i < 0)
9953 		goto out_not_found;
9954 
9955 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9956 		    pci_vpd_lrdt_size(&vpd_start[i]);
9957 
9958 	i += PCI_VPD_LRDT_TAG_SIZE;
9959 
9960 	if (block_end > BNX2X_VPD_LEN) {
9961 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9962 		if (vpd_extended_data  == NULL)
9963 			goto out_not_found;
9964 
9965 		/* read rest of vpd image into vpd_extended_data */
9966 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9967 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9968 				   block_end - BNX2X_VPD_LEN,
9969 				   vpd_extended_data + BNX2X_VPD_LEN);
9970 		if (cnt < (block_end - BNX2X_VPD_LEN))
9971 			goto out_not_found;
9972 		vpd_data = vpd_extended_data;
9973 	} else
9974 		vpd_data = vpd_start;
9975 
9976 	/* now vpd_data holds full vpd content in both cases */
9977 
9978 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9979 				   PCI_VPD_RO_KEYWORD_MFR_ID);
9980 	if (rodi < 0)
9981 		goto out_not_found;
9982 
9983 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9984 
9985 	if (len != VENDOR_ID_LEN)
9986 		goto out_not_found;
9987 
9988 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9989 
9990 	/* vendor specific info */
9991 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9992 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9993 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9994 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9995 
9996 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9997 						PCI_VPD_RO_KEYWORD_VENDOR0);
9998 		if (rodi >= 0) {
9999 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10000 
10001 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10002 
10003 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10004 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10005 				bp->fw_ver[len] = ' ';
10006 			}
10007 		}
10008 		kfree(vpd_extended_data);
10009 		return;
10010 	}
10011 out_not_found:
10012 	kfree(vpd_extended_data);
10013 	return;
10014 }
10015 
10016 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10017 {
10018 	u32 flags = 0;
10019 
10020 	if (CHIP_REV_IS_FPGA(bp))
10021 		SET_FLAGS(flags, MODE_FPGA);
10022 	else if (CHIP_REV_IS_EMUL(bp))
10023 		SET_FLAGS(flags, MODE_EMUL);
10024 	else
10025 		SET_FLAGS(flags, MODE_ASIC);
10026 
10027 	if (CHIP_MODE_IS_4_PORT(bp))
10028 		SET_FLAGS(flags, MODE_PORT4);
10029 	else
10030 		SET_FLAGS(flags, MODE_PORT2);
10031 
10032 	if (CHIP_IS_E2(bp))
10033 		SET_FLAGS(flags, MODE_E2);
10034 	else if (CHIP_IS_E3(bp)) {
10035 		SET_FLAGS(flags, MODE_E3);
10036 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10037 			SET_FLAGS(flags, MODE_E3_A0);
10038 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10039 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10040 	}
10041 
10042 	if (IS_MF(bp)) {
10043 		SET_FLAGS(flags, MODE_MF);
10044 		switch (bp->mf_mode) {
10045 		case MULTI_FUNCTION_SD:
10046 			SET_FLAGS(flags, MODE_MF_SD);
10047 			break;
10048 		case MULTI_FUNCTION_SI:
10049 			SET_FLAGS(flags, MODE_MF_SI);
10050 			break;
10051 		}
10052 	} else
10053 		SET_FLAGS(flags, MODE_SF);
10054 
10055 #if defined(__LITTLE_ENDIAN)
10056 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10057 #else /*(__BIG_ENDIAN)*/
10058 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10059 #endif
10060 	INIT_MODE_FLAGS(bp) = flags;
10061 }
10062 
10063 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10064 {
10065 	int func;
10066 	int timer_interval;
10067 	int rc;
10068 
10069 	mutex_init(&bp->port.phy_mutex);
10070 	mutex_init(&bp->fw_mb_mutex);
10071 	spin_lock_init(&bp->stats_lock);
10072 #ifdef BCM_CNIC
10073 	mutex_init(&bp->cnic_mutex);
10074 #endif
10075 
10076 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10077 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10078 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10079 	rc = bnx2x_get_hwinfo(bp);
10080 	if (rc)
10081 		return rc;
10082 
10083 	bnx2x_set_modes_bitmap(bp);
10084 
10085 	rc = bnx2x_alloc_mem_bp(bp);
10086 	if (rc)
10087 		return rc;
10088 
10089 	bnx2x_read_fwinfo(bp);
10090 
10091 	func = BP_FUNC(bp);
10092 
10093 	/* need to reset chip if undi was active */
10094 	if (!BP_NOMCP(bp))
10095 		bnx2x_undi_unload(bp);
10096 
10097 	/* init fw_seq after undi_unload! */
10098 	if (!BP_NOMCP(bp)) {
10099 		bp->fw_seq =
10100 			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10101 			 DRV_MSG_SEQ_NUMBER_MASK);
10102 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10103 	}
10104 
10105 	if (CHIP_REV_IS_FPGA(bp))
10106 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10107 
10108 	if (BP_NOMCP(bp) && (func == 0))
10109 		dev_err(&bp->pdev->dev, "MCP disabled, "
10110 					"must load devices in order!\n");
10111 
10112 	bp->multi_mode = multi_mode;
10113 
10114 	bp->disable_tpa = disable_tpa;
10115 
10116 #ifdef BCM_CNIC
10117 	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10118 #endif
10119 
10120 	/* Set TPA flags */
10121 	if (bp->disable_tpa) {
10122 		bp->flags &= ~TPA_ENABLE_FLAG;
10123 		bp->dev->features &= ~NETIF_F_LRO;
10124 	} else {
10125 		bp->flags |= TPA_ENABLE_FLAG;
10126 		bp->dev->features |= NETIF_F_LRO;
10127 	}
10128 
10129 	if (CHIP_IS_E1(bp))
10130 		bp->dropless_fc = 0;
10131 	else
10132 		bp->dropless_fc = dropless_fc;
10133 
10134 	bp->mrrs = mrrs;
10135 
10136 	bp->tx_ring_size = MAX_TX_AVAIL;
10137 
10138 	/* make sure that the numbers are in the right granularity */
10139 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10140 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10141 
10142 	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10143 	bp->current_interval = (poll ? poll : timer_interval);
10144 
10145 	init_timer(&bp->timer);
10146 	bp->timer.expires = jiffies + bp->current_interval;
10147 	bp->timer.data = (unsigned long) bp;
10148 	bp->timer.function = bnx2x_timer;
10149 
10150 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10151 	bnx2x_dcbx_init_params(bp);
10152 
10153 #ifdef BCM_CNIC
10154 	if (CHIP_IS_E1x(bp))
10155 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10156 	else
10157 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10158 #endif
10159 
10160 	/* multiple tx priority */
10161 	if (CHIP_IS_E1x(bp))
10162 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10163 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10164 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10165 	if (CHIP_IS_E3B0(bp))
10166 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10167 
10168 	return rc;
10169 }
10170 
10171 
10172 /****************************************************************************
10173 * General service functions
10174 ****************************************************************************/
10175 
10176 /*
10177  * net_device service functions
10178  */
10179 
10180 /* called with rtnl_lock */
10181 static int bnx2x_open(struct net_device *dev)
10182 {
10183 	struct bnx2x *bp = netdev_priv(dev);
10184 	bool global = false;
10185 	int other_engine = BP_PATH(bp) ? 0 : 1;
10186 	u32 other_load_counter, load_counter;
10187 
10188 	netif_carrier_off(dev);
10189 
10190 	bnx2x_set_power_state(bp, PCI_D0);
10191 
10192 	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10193 	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10194 
10195 	/*
10196 	 * If parity had happen during the unload, then attentions
10197 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10198 	 * want the first function loaded on the current engine to
10199 	 * complete the recovery.
10200 	 */
10201 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10202 	    bnx2x_chk_parity_attn(bp, &global, true))
10203 		do {
10204 			/*
10205 			 * If there are attentions and they are in a global
10206 			 * blocks, set the GLOBAL_RESET bit regardless whether
10207 			 * it will be this function that will complete the
10208 			 * recovery or not.
10209 			 */
10210 			if (global)
10211 				bnx2x_set_reset_global(bp);
10212 
10213 			/*
10214 			 * Only the first function on the current engine should
10215 			 * try to recover in open. In case of attentions in
10216 			 * global blocks only the first in the chip should try
10217 			 * to recover.
10218 			 */
10219 			if ((!load_counter &&
10220 			     (!global || !other_load_counter)) &&
10221 			    bnx2x_trylock_leader_lock(bp) &&
10222 			    !bnx2x_leader_reset(bp)) {
10223 				netdev_info(bp->dev, "Recovered in open\n");
10224 				break;
10225 			}
10226 
10227 			/* recovery has failed... */
10228 			bnx2x_set_power_state(bp, PCI_D3hot);
10229 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10230 
10231 			netdev_err(bp->dev, "Recovery flow hasn't been properly"
10232 			" completed yet. Try again later. If u still see this"
10233 			" message after a few retries then power cycle is"
10234 			" required.\n");
10235 
10236 			return -EAGAIN;
10237 		} while (0);
10238 
10239 	bp->recovery_state = BNX2X_RECOVERY_DONE;
10240 	return bnx2x_nic_load(bp, LOAD_OPEN);
10241 }
10242 
10243 /* called with rtnl_lock */
10244 int bnx2x_close(struct net_device *dev)
10245 {
10246 	struct bnx2x *bp = netdev_priv(dev);
10247 
10248 	/* Unload the driver, release IRQs */
10249 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10250 
10251 	/* Power off */
10252 	bnx2x_set_power_state(bp, PCI_D3hot);
10253 
10254 	return 0;
10255 }
10256 
10257 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10258 					 struct bnx2x_mcast_ramrod_params *p)
10259 {
10260 	int mc_count = netdev_mc_count(bp->dev);
10261 	struct bnx2x_mcast_list_elem *mc_mac =
10262 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10263 	struct netdev_hw_addr *ha;
10264 
10265 	if (!mc_mac)
10266 		return -ENOMEM;
10267 
10268 	INIT_LIST_HEAD(&p->mcast_list);
10269 
10270 	netdev_for_each_mc_addr(ha, bp->dev) {
10271 		mc_mac->mac = bnx2x_mc_addr(ha);
10272 		list_add_tail(&mc_mac->link, &p->mcast_list);
10273 		mc_mac++;
10274 	}
10275 
10276 	p->mcast_list_len = mc_count;
10277 
10278 	return 0;
10279 }
10280 
10281 static inline void bnx2x_free_mcast_macs_list(
10282 	struct bnx2x_mcast_ramrod_params *p)
10283 {
10284 	struct bnx2x_mcast_list_elem *mc_mac =
10285 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10286 				 link);
10287 
10288 	WARN_ON(!mc_mac);
10289 	kfree(mc_mac);
10290 }
10291 
10292 /**
10293  * bnx2x_set_uc_list - configure a new unicast MACs list.
10294  *
10295  * @bp: driver handle
10296  *
10297  * We will use zero (0) as a MAC type for these MACs.
10298  */
10299 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10300 {
10301 	int rc;
10302 	struct net_device *dev = bp->dev;
10303 	struct netdev_hw_addr *ha;
10304 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10305 	unsigned long ramrod_flags = 0;
10306 
10307 	/* First schedule a cleanup up of old configuration */
10308 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10309 	if (rc < 0) {
10310 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10311 		return rc;
10312 	}
10313 
10314 	netdev_for_each_uc_addr(ha, dev) {
10315 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10316 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10317 		if (rc < 0) {
10318 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10319 				  rc);
10320 			return rc;
10321 		}
10322 	}
10323 
10324 	/* Execute the pending commands */
10325 	__set_bit(RAMROD_CONT, &ramrod_flags);
10326 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10327 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10328 }
10329 
10330 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10331 {
10332 	struct net_device *dev = bp->dev;
10333 	struct bnx2x_mcast_ramrod_params rparam = {0};
10334 	int rc = 0;
10335 
10336 	rparam.mcast_obj = &bp->mcast_obj;
10337 
10338 	/* first, clear all configured multicast MACs */
10339 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10340 	if (rc < 0) {
10341 		BNX2X_ERR("Failed to clear multicast "
10342 			  "configuration: %d\n", rc);
10343 		return rc;
10344 	}
10345 
10346 	/* then, configure a new MACs list */
10347 	if (netdev_mc_count(dev)) {
10348 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10349 		if (rc) {
10350 			BNX2X_ERR("Failed to create multicast MACs "
10351 				  "list: %d\n", rc);
10352 			return rc;
10353 		}
10354 
10355 		/* Now add the new MACs */
10356 		rc = bnx2x_config_mcast(bp, &rparam,
10357 					BNX2X_MCAST_CMD_ADD);
10358 		if (rc < 0)
10359 			BNX2X_ERR("Failed to set a new multicast "
10360 				  "configuration: %d\n", rc);
10361 
10362 		bnx2x_free_mcast_macs_list(&rparam);
10363 	}
10364 
10365 	return rc;
10366 }
10367 
10368 
10369 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10370 void bnx2x_set_rx_mode(struct net_device *dev)
10371 {
10372 	struct bnx2x *bp = netdev_priv(dev);
10373 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10374 
10375 	if (bp->state != BNX2X_STATE_OPEN) {
10376 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10377 		return;
10378 	}
10379 
10380 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10381 
10382 	if (dev->flags & IFF_PROMISC)
10383 		rx_mode = BNX2X_RX_MODE_PROMISC;
10384 	else if ((dev->flags & IFF_ALLMULTI) ||
10385 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10386 		  CHIP_IS_E1(bp)))
10387 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10388 	else {
10389 		/* some multicasts */
10390 		if (bnx2x_set_mc_list(bp) < 0)
10391 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10392 
10393 		if (bnx2x_set_uc_list(bp) < 0)
10394 			rx_mode = BNX2X_RX_MODE_PROMISC;
10395 	}
10396 
10397 	bp->rx_mode = rx_mode;
10398 #ifdef BCM_CNIC
10399 	/* handle ISCSI SD mode */
10400 	if (IS_MF_ISCSI_SD(bp))
10401 		bp->rx_mode = BNX2X_RX_MODE_NONE;
10402 #endif
10403 
10404 	/* Schedule the rx_mode command */
10405 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10406 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10407 		return;
10408 	}
10409 
10410 	bnx2x_set_storm_rx_mode(bp);
10411 }
10412 
10413 /* called with rtnl_lock */
10414 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10415 			   int devad, u16 addr)
10416 {
10417 	struct bnx2x *bp = netdev_priv(netdev);
10418 	u16 value;
10419 	int rc;
10420 
10421 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10422 	   prtad, devad, addr);
10423 
10424 	/* The HW expects different devad if CL22 is used */
10425 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10426 
10427 	bnx2x_acquire_phy_lock(bp);
10428 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10429 	bnx2x_release_phy_lock(bp);
10430 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10431 
10432 	if (!rc)
10433 		rc = value;
10434 	return rc;
10435 }
10436 
10437 /* called with rtnl_lock */
10438 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10439 			    u16 addr, u16 value)
10440 {
10441 	struct bnx2x *bp = netdev_priv(netdev);
10442 	int rc;
10443 
10444 	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10445 			   " value 0x%x\n", prtad, devad, addr, value);
10446 
10447 	/* The HW expects different devad if CL22 is used */
10448 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10449 
10450 	bnx2x_acquire_phy_lock(bp);
10451 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10452 	bnx2x_release_phy_lock(bp);
10453 	return rc;
10454 }
10455 
10456 /* called with rtnl_lock */
10457 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10458 {
10459 	struct bnx2x *bp = netdev_priv(dev);
10460 	struct mii_ioctl_data *mdio = if_mii(ifr);
10461 
10462 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10463 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10464 
10465 	if (!netif_running(dev))
10466 		return -EAGAIN;
10467 
10468 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10469 }
10470 
10471 #ifdef CONFIG_NET_POLL_CONTROLLER
10472 static void poll_bnx2x(struct net_device *dev)
10473 {
10474 	struct bnx2x *bp = netdev_priv(dev);
10475 
10476 	disable_irq(bp->pdev->irq);
10477 	bnx2x_interrupt(bp->pdev->irq, dev);
10478 	enable_irq(bp->pdev->irq);
10479 }
10480 #endif
10481 
10482 static int bnx2x_validate_addr(struct net_device *dev)
10483 {
10484 	struct bnx2x *bp = netdev_priv(dev);
10485 
10486 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10487 		return -EADDRNOTAVAIL;
10488 	return 0;
10489 }
10490 
10491 static const struct net_device_ops bnx2x_netdev_ops = {
10492 	.ndo_open		= bnx2x_open,
10493 	.ndo_stop		= bnx2x_close,
10494 	.ndo_start_xmit		= bnx2x_start_xmit,
10495 	.ndo_select_queue	= bnx2x_select_queue,
10496 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10497 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10498 	.ndo_validate_addr	= bnx2x_validate_addr,
10499 	.ndo_do_ioctl		= bnx2x_ioctl,
10500 	.ndo_change_mtu		= bnx2x_change_mtu,
10501 	.ndo_fix_features	= bnx2x_fix_features,
10502 	.ndo_set_features	= bnx2x_set_features,
10503 	.ndo_tx_timeout		= bnx2x_tx_timeout,
10504 #ifdef CONFIG_NET_POLL_CONTROLLER
10505 	.ndo_poll_controller	= poll_bnx2x,
10506 #endif
10507 	.ndo_setup_tc		= bnx2x_setup_tc,
10508 
10509 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10510 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10511 #endif
10512 };
10513 
10514 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10515 {
10516 	struct device *dev = &bp->pdev->dev;
10517 
10518 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10519 		bp->flags |= USING_DAC_FLAG;
10520 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10521 			dev_err(dev, "dma_set_coherent_mask failed, "
10522 				     "aborting\n");
10523 			return -EIO;
10524 		}
10525 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10526 		dev_err(dev, "System does not support DMA, aborting\n");
10527 		return -EIO;
10528 	}
10529 
10530 	return 0;
10531 }
10532 
10533 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10534 				    struct net_device *dev,
10535 				    unsigned long board_type)
10536 {
10537 	struct bnx2x *bp;
10538 	int rc;
10539 
10540 	SET_NETDEV_DEV(dev, &pdev->dev);
10541 	bp = netdev_priv(dev);
10542 
10543 	bp->dev = dev;
10544 	bp->pdev = pdev;
10545 	bp->flags = 0;
10546 	bp->pf_num = PCI_FUNC(pdev->devfn);
10547 
10548 	rc = pci_enable_device(pdev);
10549 	if (rc) {
10550 		dev_err(&bp->pdev->dev,
10551 			"Cannot enable PCI device, aborting\n");
10552 		goto err_out;
10553 	}
10554 
10555 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10556 		dev_err(&bp->pdev->dev,
10557 			"Cannot find PCI device base address, aborting\n");
10558 		rc = -ENODEV;
10559 		goto err_out_disable;
10560 	}
10561 
10562 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10563 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10564 		       " base address, aborting\n");
10565 		rc = -ENODEV;
10566 		goto err_out_disable;
10567 	}
10568 
10569 	if (atomic_read(&pdev->enable_cnt) == 1) {
10570 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10571 		if (rc) {
10572 			dev_err(&bp->pdev->dev,
10573 				"Cannot obtain PCI resources, aborting\n");
10574 			goto err_out_disable;
10575 		}
10576 
10577 		pci_set_master(pdev);
10578 		pci_save_state(pdev);
10579 	}
10580 
10581 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10582 	if (bp->pm_cap == 0) {
10583 		dev_err(&bp->pdev->dev,
10584 			"Cannot find power management capability, aborting\n");
10585 		rc = -EIO;
10586 		goto err_out_release;
10587 	}
10588 
10589 	if (!pci_is_pcie(pdev)) {
10590 		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10591 		rc = -EIO;
10592 		goto err_out_release;
10593 	}
10594 
10595 	rc = bnx2x_set_coherency_mask(bp);
10596 	if (rc)
10597 		goto err_out_release;
10598 
10599 	dev->mem_start = pci_resource_start(pdev, 0);
10600 	dev->base_addr = dev->mem_start;
10601 	dev->mem_end = pci_resource_end(pdev, 0);
10602 
10603 	dev->irq = pdev->irq;
10604 
10605 	bp->regview = pci_ioremap_bar(pdev, 0);
10606 	if (!bp->regview) {
10607 		dev_err(&bp->pdev->dev,
10608 			"Cannot map register space, aborting\n");
10609 		rc = -ENOMEM;
10610 		goto err_out_release;
10611 	}
10612 
10613 	bnx2x_set_power_state(bp, PCI_D0);
10614 
10615 	/* clean indirect addresses */
10616 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10617 			       PCICFG_VENDOR_ID_OFFSET);
10618 	/*
10619 	 * Clean the following indirect addresses for all functions since it
10620 	 * is not used by the driver.
10621 	 */
10622 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10623 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10624 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10625 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10626 
10627 	if (CHIP_IS_E1x(bp)) {
10628 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10629 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10630 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10631 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10632 	}
10633 
10634 	/*
10635 	 * Enable internal target-read (in case we are probed after PF FLR).
10636 	 * Must be done prior to any BAR read access. Only for 57712 and up
10637 	 */
10638 	if (board_type != BCM57710 &&
10639 	    board_type != BCM57711 &&
10640 	    board_type != BCM57711E)
10641 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10642 
10643 	/* Reset the load counter */
10644 	bnx2x_clear_load_cnt(bp);
10645 
10646 	dev->watchdog_timeo = TX_TIMEOUT;
10647 
10648 	dev->netdev_ops = &bnx2x_netdev_ops;
10649 	bnx2x_set_ethtool_ops(dev);
10650 
10651 	dev->priv_flags |= IFF_UNICAST_FLT;
10652 
10653 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10654 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10655 		NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10656 
10657 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10658 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10659 
10660 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10661 	if (bp->flags & USING_DAC_FLAG)
10662 		dev->features |= NETIF_F_HIGHDMA;
10663 
10664 	/* Add Loopback capability to the device */
10665 	dev->hw_features |= NETIF_F_LOOPBACK;
10666 
10667 #ifdef BCM_DCBNL
10668 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10669 #endif
10670 
10671 	/* get_port_hwinfo() will set prtad and mmds properly */
10672 	bp->mdio.prtad = MDIO_PRTAD_NONE;
10673 	bp->mdio.mmds = 0;
10674 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10675 	bp->mdio.dev = dev;
10676 	bp->mdio.mdio_read = bnx2x_mdio_read;
10677 	bp->mdio.mdio_write = bnx2x_mdio_write;
10678 
10679 	return 0;
10680 
10681 err_out_release:
10682 	if (atomic_read(&pdev->enable_cnt) == 1)
10683 		pci_release_regions(pdev);
10684 
10685 err_out_disable:
10686 	pci_disable_device(pdev);
10687 	pci_set_drvdata(pdev, NULL);
10688 
10689 err_out:
10690 	return rc;
10691 }
10692 
10693 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10694 						 int *width, int *speed)
10695 {
10696 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10697 
10698 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10699 
10700 	/* return value of 1=2.5GHz 2=5GHz */
10701 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10702 }
10703 
10704 static int bnx2x_check_firmware(struct bnx2x *bp)
10705 {
10706 	const struct firmware *firmware = bp->firmware;
10707 	struct bnx2x_fw_file_hdr *fw_hdr;
10708 	struct bnx2x_fw_file_section *sections;
10709 	u32 offset, len, num_ops;
10710 	u16 *ops_offsets;
10711 	int i;
10712 	const u8 *fw_ver;
10713 
10714 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10715 		return -EINVAL;
10716 
10717 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10718 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10719 
10720 	/* Make sure none of the offsets and sizes make us read beyond
10721 	 * the end of the firmware data */
10722 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10723 		offset = be32_to_cpu(sections[i].offset);
10724 		len = be32_to_cpu(sections[i].len);
10725 		if (offset + len > firmware->size) {
10726 			dev_err(&bp->pdev->dev,
10727 				"Section %d length is out of bounds\n", i);
10728 			return -EINVAL;
10729 		}
10730 	}
10731 
10732 	/* Likewise for the init_ops offsets */
10733 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10734 	ops_offsets = (u16 *)(firmware->data + offset);
10735 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10736 
10737 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10738 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10739 			dev_err(&bp->pdev->dev,
10740 				"Section offset %d is out of bounds\n", i);
10741 			return -EINVAL;
10742 		}
10743 	}
10744 
10745 	/* Check FW version */
10746 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10747 	fw_ver = firmware->data + offset;
10748 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10749 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10750 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10751 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10752 		dev_err(&bp->pdev->dev,
10753 			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10754 		       fw_ver[0], fw_ver[1], fw_ver[2],
10755 		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10756 		       BCM_5710_FW_MINOR_VERSION,
10757 		       BCM_5710_FW_REVISION_VERSION,
10758 		       BCM_5710_FW_ENGINEERING_VERSION);
10759 		return -EINVAL;
10760 	}
10761 
10762 	return 0;
10763 }
10764 
10765 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10766 {
10767 	const __be32 *source = (const __be32 *)_source;
10768 	u32 *target = (u32 *)_target;
10769 	u32 i;
10770 
10771 	for (i = 0; i < n/4; i++)
10772 		target[i] = be32_to_cpu(source[i]);
10773 }
10774 
10775 /*
10776    Ops array is stored in the following format:
10777    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10778  */
10779 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10780 {
10781 	const __be32 *source = (const __be32 *)_source;
10782 	struct raw_op *target = (struct raw_op *)_target;
10783 	u32 i, j, tmp;
10784 
10785 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10786 		tmp = be32_to_cpu(source[j]);
10787 		target[i].op = (tmp >> 24) & 0xff;
10788 		target[i].offset = tmp & 0xffffff;
10789 		target[i].raw_data = be32_to_cpu(source[j + 1]);
10790 	}
10791 }
10792 
10793 /**
10794  * IRO array is stored in the following format:
10795  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10796  */
10797 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10798 {
10799 	const __be32 *source = (const __be32 *)_source;
10800 	struct iro *target = (struct iro *)_target;
10801 	u32 i, j, tmp;
10802 
10803 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10804 		target[i].base = be32_to_cpu(source[j]);
10805 		j++;
10806 		tmp = be32_to_cpu(source[j]);
10807 		target[i].m1 = (tmp >> 16) & 0xffff;
10808 		target[i].m2 = tmp & 0xffff;
10809 		j++;
10810 		tmp = be32_to_cpu(source[j]);
10811 		target[i].m3 = (tmp >> 16) & 0xffff;
10812 		target[i].size = tmp & 0xffff;
10813 		j++;
10814 	}
10815 }
10816 
10817 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10818 {
10819 	const __be16 *source = (const __be16 *)_source;
10820 	u16 *target = (u16 *)_target;
10821 	u32 i;
10822 
10823 	for (i = 0; i < n/2; i++)
10824 		target[i] = be16_to_cpu(source[i]);
10825 }
10826 
10827 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10828 do {									\
10829 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10830 	bp->arr = kmalloc(len, GFP_KERNEL);				\
10831 	if (!bp->arr) {							\
10832 		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10833 		goto lbl;						\
10834 	}								\
10835 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10836 	     (u8 *)bp->arr, len);					\
10837 } while (0)
10838 
10839 int bnx2x_init_firmware(struct bnx2x *bp)
10840 {
10841 	struct bnx2x_fw_file_hdr *fw_hdr;
10842 	int rc;
10843 
10844 
10845 	if (!bp->firmware) {
10846 		const char *fw_file_name;
10847 
10848 		if (CHIP_IS_E1(bp))
10849 			fw_file_name = FW_FILE_NAME_E1;
10850 		else if (CHIP_IS_E1H(bp))
10851 			fw_file_name = FW_FILE_NAME_E1H;
10852 		else if (!CHIP_IS_E1x(bp))
10853 			fw_file_name = FW_FILE_NAME_E2;
10854 		else {
10855 			BNX2X_ERR("Unsupported chip revision\n");
10856 			return -EINVAL;
10857 		}
10858 		BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10859 
10860 		rc = request_firmware(&bp->firmware, fw_file_name,
10861 				      &bp->pdev->dev);
10862 		if (rc) {
10863 			BNX2X_ERR("Can't load firmware file %s\n",
10864 				  fw_file_name);
10865 			goto request_firmware_exit;
10866 		}
10867 
10868 		rc = bnx2x_check_firmware(bp);
10869 		if (rc) {
10870 			BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10871 			goto request_firmware_exit;
10872 		}
10873 	}
10874 
10875 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10876 
10877 	/* Initialize the pointers to the init arrays */
10878 	/* Blob */
10879 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10880 
10881 	/* Opcodes */
10882 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10883 
10884 	/* Offsets */
10885 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10886 			    be16_to_cpu_n);
10887 
10888 	/* STORMs firmware */
10889 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10890 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10891 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10892 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10893 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10894 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10895 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10896 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10897 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10898 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10899 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10900 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10901 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10902 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10903 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10904 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10905 	/* IRO */
10906 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10907 
10908 	return 0;
10909 
10910 iro_alloc_err:
10911 	kfree(bp->init_ops_offsets);
10912 init_offsets_alloc_err:
10913 	kfree(bp->init_ops);
10914 init_ops_alloc_err:
10915 	kfree(bp->init_data);
10916 request_firmware_exit:
10917 	release_firmware(bp->firmware);
10918 
10919 	return rc;
10920 }
10921 
10922 static void bnx2x_release_firmware(struct bnx2x *bp)
10923 {
10924 	kfree(bp->init_ops_offsets);
10925 	kfree(bp->init_ops);
10926 	kfree(bp->init_data);
10927 	release_firmware(bp->firmware);
10928 	bp->firmware = NULL;
10929 }
10930 
10931 
10932 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10933 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10934 	.init_hw_cmn      = bnx2x_init_hw_common,
10935 	.init_hw_port     = bnx2x_init_hw_port,
10936 	.init_hw_func     = bnx2x_init_hw_func,
10937 
10938 	.reset_hw_cmn     = bnx2x_reset_common,
10939 	.reset_hw_port    = bnx2x_reset_port,
10940 	.reset_hw_func    = bnx2x_reset_func,
10941 
10942 	.gunzip_init      = bnx2x_gunzip_init,
10943 	.gunzip_end       = bnx2x_gunzip_end,
10944 
10945 	.init_fw          = bnx2x_init_firmware,
10946 	.release_fw       = bnx2x_release_firmware,
10947 };
10948 
10949 void bnx2x__init_func_obj(struct bnx2x *bp)
10950 {
10951 	/* Prepare DMAE related driver resources */
10952 	bnx2x_setup_dmae(bp);
10953 
10954 	bnx2x_init_func_obj(bp, &bp->func_obj,
10955 			    bnx2x_sp(bp, func_rdata),
10956 			    bnx2x_sp_mapping(bp, func_rdata),
10957 			    &bnx2x_func_sp_drv);
10958 }
10959 
10960 /* must be called after sriov-enable */
10961 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10962 {
10963 	int cid_count = BNX2X_L2_CID_COUNT(bp);
10964 
10965 #ifdef BCM_CNIC
10966 	cid_count += CNIC_CID_MAX;
10967 #endif
10968 	return roundup(cid_count, QM_CID_ROUND);
10969 }
10970 
10971 /**
10972  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10973  *
10974  * @dev:	pci device
10975  *
10976  */
10977 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10978 {
10979 	int pos;
10980 	u16 control;
10981 
10982 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10983 
10984 	/*
10985 	 * If MSI-X is not supported - return number of SBs needed to support
10986 	 * one fast path queue: one FP queue + SB for CNIC
10987 	 */
10988 	if (!pos)
10989 		return 1 + CNIC_PRESENT;
10990 
10991 	/*
10992 	 * The value in the PCI configuration space is the index of the last
10993 	 * entry, namely one less than the actual size of the table, which is
10994 	 * exactly what we want to return from this function: number of all SBs
10995 	 * without the default SB.
10996 	 */
10997 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10998 	return control & PCI_MSIX_FLAGS_QSIZE;
10999 }
11000 
11001 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11002 				    const struct pci_device_id *ent)
11003 {
11004 	struct net_device *dev = NULL;
11005 	struct bnx2x *bp;
11006 	int pcie_width, pcie_speed;
11007 	int rc, max_non_def_sbs;
11008 	int rx_count, tx_count, rss_count;
11009 	/*
11010 	 * An estimated maximum supported CoS number according to the chip
11011 	 * version.
11012 	 * We will try to roughly estimate the maximum number of CoSes this chip
11013 	 * may support in order to minimize the memory allocated for Tx
11014 	 * netdev_queue's. This number will be accurately calculated during the
11015 	 * initialization of bp->max_cos based on the chip versions AND chip
11016 	 * revision in the bnx2x_init_bp().
11017 	 */
11018 	u8 max_cos_est = 0;
11019 
11020 	switch (ent->driver_data) {
11021 	case BCM57710:
11022 	case BCM57711:
11023 	case BCM57711E:
11024 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11025 		break;
11026 
11027 	case BCM57712:
11028 	case BCM57712_MF:
11029 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11030 		break;
11031 
11032 	case BCM57800:
11033 	case BCM57800_MF:
11034 	case BCM57810:
11035 	case BCM57810_MF:
11036 	case BCM57840:
11037 	case BCM57840_MF:
11038 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11039 		break;
11040 
11041 	default:
11042 		pr_err("Unknown board_type (%ld), aborting\n",
11043 			   ent->driver_data);
11044 		return -ENODEV;
11045 	}
11046 
11047 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11048 
11049 	/* !!! FIXME !!!
11050 	 * Do not allow the maximum SB count to grow above 16
11051 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11052 	 * We will use the FP_SB_MAX_E1x macro for this matter.
11053 	 */
11054 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11055 
11056 	WARN_ON(!max_non_def_sbs);
11057 
11058 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11059 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11060 
11061 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11062 	rx_count = rss_count + FCOE_PRESENT;
11063 
11064 	/*
11065 	 * Maximum number of netdev Tx queues:
11066 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11067 	 */
11068 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11069 
11070 	/* dev zeroed in init_etherdev */
11071 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11072 	if (!dev) {
11073 		dev_err(&pdev->dev, "Cannot allocate net device\n");
11074 		return -ENOMEM;
11075 	}
11076 
11077 	bp = netdev_priv(dev);
11078 
11079 	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11080 			  tx_count, rx_count);
11081 
11082 	bp->igu_sb_cnt = max_non_def_sbs;
11083 	bp->msg_enable = debug;
11084 	pci_set_drvdata(pdev, dev);
11085 
11086 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11087 	if (rc < 0) {
11088 		free_netdev(dev);
11089 		return rc;
11090 	}
11091 
11092 	DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11093 
11094 	rc = bnx2x_init_bp(bp);
11095 	if (rc)
11096 		goto init_one_exit;
11097 
11098 	/*
11099 	 * Map doorbels here as we need the real value of bp->max_cos which
11100 	 * is initialized in bnx2x_init_bp().
11101 	 */
11102 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11103 					min_t(u64, BNX2X_DB_SIZE(bp),
11104 					      pci_resource_len(pdev, 2)));
11105 	if (!bp->doorbells) {
11106 		dev_err(&bp->pdev->dev,
11107 			"Cannot map doorbell space, aborting\n");
11108 		rc = -ENOMEM;
11109 		goto init_one_exit;
11110 	}
11111 
11112 	/* calc qm_cid_count */
11113 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11114 
11115 #ifdef BCM_CNIC
11116 	/* disable FCOE L2 queue for E1x */
11117 	if (CHIP_IS_E1x(bp))
11118 		bp->flags |= NO_FCOE_FLAG;
11119 
11120 #endif
11121 
11122 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11123 	 * needed, set bp->num_queues appropriately.
11124 	 */
11125 	bnx2x_set_int_mode(bp);
11126 
11127 	/* Add all NAPI objects */
11128 	bnx2x_add_all_napi(bp);
11129 
11130 	rc = register_netdev(dev);
11131 	if (rc) {
11132 		dev_err(&pdev->dev, "Cannot register net device\n");
11133 		goto init_one_exit;
11134 	}
11135 
11136 #ifdef BCM_CNIC
11137 	if (!NO_FCOE(bp)) {
11138 		/* Add storage MAC address */
11139 		rtnl_lock();
11140 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11141 		rtnl_unlock();
11142 	}
11143 #endif
11144 
11145 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11146 
11147 	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11148 		    board_info[ent->driver_data].name,
11149 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11150 		    pcie_width,
11151 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11152 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11153 		    "5GHz (Gen2)" : "2.5GHz",
11154 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11155 
11156 	return 0;
11157 
11158 init_one_exit:
11159 	if (bp->regview)
11160 		iounmap(bp->regview);
11161 
11162 	if (bp->doorbells)
11163 		iounmap(bp->doorbells);
11164 
11165 	free_netdev(dev);
11166 
11167 	if (atomic_read(&pdev->enable_cnt) == 1)
11168 		pci_release_regions(pdev);
11169 
11170 	pci_disable_device(pdev);
11171 	pci_set_drvdata(pdev, NULL);
11172 
11173 	return rc;
11174 }
11175 
11176 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11177 {
11178 	struct net_device *dev = pci_get_drvdata(pdev);
11179 	struct bnx2x *bp;
11180 
11181 	if (!dev) {
11182 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11183 		return;
11184 	}
11185 	bp = netdev_priv(dev);
11186 
11187 #ifdef BCM_CNIC
11188 	/* Delete storage MAC address */
11189 	if (!NO_FCOE(bp)) {
11190 		rtnl_lock();
11191 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11192 		rtnl_unlock();
11193 	}
11194 #endif
11195 
11196 #ifdef BCM_DCBNL
11197 	/* Delete app tlvs from dcbnl */
11198 	bnx2x_dcbnl_update_applist(bp, true);
11199 #endif
11200 
11201 	unregister_netdev(dev);
11202 
11203 	/* Delete all NAPI objects */
11204 	bnx2x_del_all_napi(bp);
11205 
11206 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11207 	bnx2x_set_power_state(bp, PCI_D0);
11208 
11209 	/* Disable MSI/MSI-X */
11210 	bnx2x_disable_msi(bp);
11211 
11212 	/* Power off */
11213 	bnx2x_set_power_state(bp, PCI_D3hot);
11214 
11215 	/* Make sure RESET task is not scheduled before continuing */
11216 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11217 
11218 	if (bp->regview)
11219 		iounmap(bp->regview);
11220 
11221 	if (bp->doorbells)
11222 		iounmap(bp->doorbells);
11223 
11224 	bnx2x_release_firmware(bp);
11225 
11226 	bnx2x_free_mem_bp(bp);
11227 
11228 	free_netdev(dev);
11229 
11230 	if (atomic_read(&pdev->enable_cnt) == 1)
11231 		pci_release_regions(pdev);
11232 
11233 	pci_disable_device(pdev);
11234 	pci_set_drvdata(pdev, NULL);
11235 }
11236 
11237 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11238 {
11239 	int i;
11240 
11241 	bp->state = BNX2X_STATE_ERROR;
11242 
11243 	bp->rx_mode = BNX2X_RX_MODE_NONE;
11244 
11245 #ifdef BCM_CNIC
11246 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11247 #endif
11248 	/* Stop Tx */
11249 	bnx2x_tx_disable(bp);
11250 
11251 	bnx2x_netif_stop(bp, 0);
11252 
11253 	del_timer_sync(&bp->timer);
11254 
11255 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11256 
11257 	/* Release IRQs */
11258 	bnx2x_free_irq(bp);
11259 
11260 	/* Free SKBs, SGEs, TPA pool and driver internals */
11261 	bnx2x_free_skbs(bp);
11262 
11263 	for_each_rx_queue(bp, i)
11264 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11265 
11266 	bnx2x_free_mem(bp);
11267 
11268 	bp->state = BNX2X_STATE_CLOSED;
11269 
11270 	netif_carrier_off(bp->dev);
11271 
11272 	return 0;
11273 }
11274 
11275 static void bnx2x_eeh_recover(struct bnx2x *bp)
11276 {
11277 	u32 val;
11278 
11279 	mutex_init(&bp->port.phy_mutex);
11280 
11281 	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11282 	bp->link_params.shmem_base = bp->common.shmem_base;
11283 	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11284 
11285 	if (!bp->common.shmem_base ||
11286 	    (bp->common.shmem_base < 0xA0000) ||
11287 	    (bp->common.shmem_base >= 0xC0000)) {
11288 		BNX2X_DEV_INFO("MCP not active\n");
11289 		bp->flags |= NO_MCP_FLAG;
11290 		return;
11291 	}
11292 
11293 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11294 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11295 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11296 		BNX2X_ERR("BAD MCP validity signature\n");
11297 
11298 	if (!BP_NOMCP(bp)) {
11299 		bp->fw_seq =
11300 		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11301 		    DRV_MSG_SEQ_NUMBER_MASK);
11302 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11303 	}
11304 }
11305 
11306 /**
11307  * bnx2x_io_error_detected - called when PCI error is detected
11308  * @pdev: Pointer to PCI device
11309  * @state: The current pci connection state
11310  *
11311  * This function is called after a PCI bus error affecting
11312  * this device has been detected.
11313  */
11314 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11315 						pci_channel_state_t state)
11316 {
11317 	struct net_device *dev = pci_get_drvdata(pdev);
11318 	struct bnx2x *bp = netdev_priv(dev);
11319 
11320 	rtnl_lock();
11321 
11322 	netif_device_detach(dev);
11323 
11324 	if (state == pci_channel_io_perm_failure) {
11325 		rtnl_unlock();
11326 		return PCI_ERS_RESULT_DISCONNECT;
11327 	}
11328 
11329 	if (netif_running(dev))
11330 		bnx2x_eeh_nic_unload(bp);
11331 
11332 	pci_disable_device(pdev);
11333 
11334 	rtnl_unlock();
11335 
11336 	/* Request a slot reset */
11337 	return PCI_ERS_RESULT_NEED_RESET;
11338 }
11339 
11340 /**
11341  * bnx2x_io_slot_reset - called after the PCI bus has been reset
11342  * @pdev: Pointer to PCI device
11343  *
11344  * Restart the card from scratch, as if from a cold-boot.
11345  */
11346 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11347 {
11348 	struct net_device *dev = pci_get_drvdata(pdev);
11349 	struct bnx2x *bp = netdev_priv(dev);
11350 
11351 	rtnl_lock();
11352 
11353 	if (pci_enable_device(pdev)) {
11354 		dev_err(&pdev->dev,
11355 			"Cannot re-enable PCI device after reset\n");
11356 		rtnl_unlock();
11357 		return PCI_ERS_RESULT_DISCONNECT;
11358 	}
11359 
11360 	pci_set_master(pdev);
11361 	pci_restore_state(pdev);
11362 
11363 	if (netif_running(dev))
11364 		bnx2x_set_power_state(bp, PCI_D0);
11365 
11366 	rtnl_unlock();
11367 
11368 	return PCI_ERS_RESULT_RECOVERED;
11369 }
11370 
11371 /**
11372  * bnx2x_io_resume - called when traffic can start flowing again
11373  * @pdev: Pointer to PCI device
11374  *
11375  * This callback is called when the error recovery driver tells us that
11376  * its OK to resume normal operation.
11377  */
11378 static void bnx2x_io_resume(struct pci_dev *pdev)
11379 {
11380 	struct net_device *dev = pci_get_drvdata(pdev);
11381 	struct bnx2x *bp = netdev_priv(dev);
11382 
11383 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11384 		netdev_err(bp->dev, "Handling parity error recovery. "
11385 				    "Try again later\n");
11386 		return;
11387 	}
11388 
11389 	rtnl_lock();
11390 
11391 	bnx2x_eeh_recover(bp);
11392 
11393 	if (netif_running(dev))
11394 		bnx2x_nic_load(bp, LOAD_NORMAL);
11395 
11396 	netif_device_attach(dev);
11397 
11398 	rtnl_unlock();
11399 }
11400 
11401 static struct pci_error_handlers bnx2x_err_handler = {
11402 	.error_detected = bnx2x_io_error_detected,
11403 	.slot_reset     = bnx2x_io_slot_reset,
11404 	.resume         = bnx2x_io_resume,
11405 };
11406 
11407 static struct pci_driver bnx2x_pci_driver = {
11408 	.name        = DRV_MODULE_NAME,
11409 	.id_table    = bnx2x_pci_tbl,
11410 	.probe       = bnx2x_init_one,
11411 	.remove      = __devexit_p(bnx2x_remove_one),
11412 	.suspend     = bnx2x_suspend,
11413 	.resume      = bnx2x_resume,
11414 	.err_handler = &bnx2x_err_handler,
11415 };
11416 
11417 static int __init bnx2x_init(void)
11418 {
11419 	int ret;
11420 
11421 	pr_info("%s", version);
11422 
11423 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11424 	if (bnx2x_wq == NULL) {
11425 		pr_err("Cannot create workqueue\n");
11426 		return -ENOMEM;
11427 	}
11428 
11429 	ret = pci_register_driver(&bnx2x_pci_driver);
11430 	if (ret) {
11431 		pr_err("Cannot register driver\n");
11432 		destroy_workqueue(bnx2x_wq);
11433 	}
11434 	return ret;
11435 }
11436 
11437 static void __exit bnx2x_cleanup(void)
11438 {
11439 	pci_unregister_driver(&bnx2x_pci_driver);
11440 
11441 	destroy_workqueue(bnx2x_wq);
11442 }
11443 
11444 void bnx2x_notify_link_changed(struct bnx2x *bp)
11445 {
11446 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11447 }
11448 
11449 module_init(bnx2x_init);
11450 module_exit(bnx2x_cleanup);
11451 
11452 #ifdef BCM_CNIC
11453 /**
11454  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11455  *
11456  * @bp:		driver handle
11457  * @set:	set or clear the CAM entry
11458  *
11459  * This function will wait until the ramdord completion returns.
11460  * Return 0 if success, -ENODEV if ramrod doesn't return.
11461  */
11462 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11463 {
11464 	unsigned long ramrod_flags = 0;
11465 
11466 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11467 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11468 				 &bp->iscsi_l2_mac_obj, true,
11469 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11470 }
11471 
11472 /* count denotes the number of new completions we have seen */
11473 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11474 {
11475 	struct eth_spe *spe;
11476 
11477 #ifdef BNX2X_STOP_ON_ERROR
11478 	if (unlikely(bp->panic))
11479 		return;
11480 #endif
11481 
11482 	spin_lock_bh(&bp->spq_lock);
11483 	BUG_ON(bp->cnic_spq_pending < count);
11484 	bp->cnic_spq_pending -= count;
11485 
11486 
11487 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11488 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11489 				& SPE_HDR_CONN_TYPE) >>
11490 				SPE_HDR_CONN_TYPE_SHIFT;
11491 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11492 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11493 
11494 		/* Set validation for iSCSI L2 client before sending SETUP
11495 		 *  ramrod
11496 		 */
11497 		if (type == ETH_CONNECTION_TYPE) {
11498 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11499 				bnx2x_set_ctx_validation(bp, &bp->context.
11500 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11501 					BNX2X_ISCSI_ETH_CID);
11502 		}
11503 
11504 		/*
11505 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11506 		 * and in the air. We also check that number of outstanding
11507 		 * COMMON ramrods is not more than the EQ and SPQ can
11508 		 * accommodate.
11509 		 */
11510 		if (type == ETH_CONNECTION_TYPE) {
11511 			if (!atomic_read(&bp->cq_spq_left))
11512 				break;
11513 			else
11514 				atomic_dec(&bp->cq_spq_left);
11515 		} else if (type == NONE_CONNECTION_TYPE) {
11516 			if (!atomic_read(&bp->eq_spq_left))
11517 				break;
11518 			else
11519 				atomic_dec(&bp->eq_spq_left);
11520 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11521 			   (type == FCOE_CONNECTION_TYPE)) {
11522 			if (bp->cnic_spq_pending >=
11523 			    bp->cnic_eth_dev.max_kwqe_pending)
11524 				break;
11525 			else
11526 				bp->cnic_spq_pending++;
11527 		} else {
11528 			BNX2X_ERR("Unknown SPE type: %d\n", type);
11529 			bnx2x_panic();
11530 			break;
11531 		}
11532 
11533 		spe = bnx2x_sp_get_next(bp);
11534 		*spe = *bp->cnic_kwq_cons;
11535 
11536 		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11537 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11538 
11539 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11540 			bp->cnic_kwq_cons = bp->cnic_kwq;
11541 		else
11542 			bp->cnic_kwq_cons++;
11543 	}
11544 	bnx2x_sp_prod_update(bp);
11545 	spin_unlock_bh(&bp->spq_lock);
11546 }
11547 
11548 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11549 			       struct kwqe_16 *kwqes[], u32 count)
11550 {
11551 	struct bnx2x *bp = netdev_priv(dev);
11552 	int i;
11553 
11554 #ifdef BNX2X_STOP_ON_ERROR
11555 	if (unlikely(bp->panic))
11556 		return -EIO;
11557 #endif
11558 
11559 	spin_lock_bh(&bp->spq_lock);
11560 
11561 	for (i = 0; i < count; i++) {
11562 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11563 
11564 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11565 			break;
11566 
11567 		*bp->cnic_kwq_prod = *spe;
11568 
11569 		bp->cnic_kwq_pending++;
11570 
11571 		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11572 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11573 		   spe->data.update_data_addr.hi,
11574 		   spe->data.update_data_addr.lo,
11575 		   bp->cnic_kwq_pending);
11576 
11577 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11578 			bp->cnic_kwq_prod = bp->cnic_kwq;
11579 		else
11580 			bp->cnic_kwq_prod++;
11581 	}
11582 
11583 	spin_unlock_bh(&bp->spq_lock);
11584 
11585 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11586 		bnx2x_cnic_sp_post(bp, 0);
11587 
11588 	return i;
11589 }
11590 
11591 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11592 {
11593 	struct cnic_ops *c_ops;
11594 	int rc = 0;
11595 
11596 	mutex_lock(&bp->cnic_mutex);
11597 	c_ops = rcu_dereference_protected(bp->cnic_ops,
11598 					  lockdep_is_held(&bp->cnic_mutex));
11599 	if (c_ops)
11600 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11601 	mutex_unlock(&bp->cnic_mutex);
11602 
11603 	return rc;
11604 }
11605 
11606 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11607 {
11608 	struct cnic_ops *c_ops;
11609 	int rc = 0;
11610 
11611 	rcu_read_lock();
11612 	c_ops = rcu_dereference(bp->cnic_ops);
11613 	if (c_ops)
11614 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11615 	rcu_read_unlock();
11616 
11617 	return rc;
11618 }
11619 
11620 /*
11621  * for commands that have no data
11622  */
11623 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11624 {
11625 	struct cnic_ctl_info ctl = {0};
11626 
11627 	ctl.cmd = cmd;
11628 
11629 	return bnx2x_cnic_ctl_send(bp, &ctl);
11630 }
11631 
11632 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11633 {
11634 	struct cnic_ctl_info ctl = {0};
11635 
11636 	/* first we tell CNIC and only then we count this as a completion */
11637 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11638 	ctl.data.comp.cid = cid;
11639 	ctl.data.comp.error = err;
11640 
11641 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11642 	bnx2x_cnic_sp_post(bp, 0);
11643 }
11644 
11645 
11646 /* Called with netif_addr_lock_bh() taken.
11647  * Sets an rx_mode config for an iSCSI ETH client.
11648  * Doesn't block.
11649  * Completion should be checked outside.
11650  */
11651 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11652 {
11653 	unsigned long accept_flags = 0, ramrod_flags = 0;
11654 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11655 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11656 
11657 	if (start) {
11658 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11659 		 * because it's the only way for UIO Queue to accept
11660 		 * multicasts (in non-promiscuous mode only one Queue per
11661 		 * function will receive multicast packets (leading in our
11662 		 * case).
11663 		 */
11664 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11665 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11666 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11667 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11668 
11669 		/* Clear STOP_PENDING bit if START is requested */
11670 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11671 
11672 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11673 	} else
11674 		/* Clear START_PENDING bit if STOP is requested */
11675 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11676 
11677 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11678 		set_bit(sched_state, &bp->sp_state);
11679 	else {
11680 		__set_bit(RAMROD_RX, &ramrod_flags);
11681 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11682 				    ramrod_flags);
11683 	}
11684 }
11685 
11686 
11687 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11688 {
11689 	struct bnx2x *bp = netdev_priv(dev);
11690 	int rc = 0;
11691 
11692 	switch (ctl->cmd) {
11693 	case DRV_CTL_CTXTBL_WR_CMD: {
11694 		u32 index = ctl->data.io.offset;
11695 		dma_addr_t addr = ctl->data.io.dma_addr;
11696 
11697 		bnx2x_ilt_wr(bp, index, addr);
11698 		break;
11699 	}
11700 
11701 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11702 		int count = ctl->data.credit.credit_count;
11703 
11704 		bnx2x_cnic_sp_post(bp, count);
11705 		break;
11706 	}
11707 
11708 	/* rtnl_lock is held.  */
11709 	case DRV_CTL_START_L2_CMD: {
11710 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11711 		unsigned long sp_bits = 0;
11712 
11713 		/* Configure the iSCSI classification object */
11714 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11715 				   cp->iscsi_l2_client_id,
11716 				   cp->iscsi_l2_cid, BP_FUNC(bp),
11717 				   bnx2x_sp(bp, mac_rdata),
11718 				   bnx2x_sp_mapping(bp, mac_rdata),
11719 				   BNX2X_FILTER_MAC_PENDING,
11720 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11721 				   &bp->macs_pool);
11722 
11723 		/* Set iSCSI MAC address */
11724 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11725 		if (rc)
11726 			break;
11727 
11728 		mmiowb();
11729 		barrier();
11730 
11731 		/* Start accepting on iSCSI L2 ring */
11732 
11733 		netif_addr_lock_bh(dev);
11734 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11735 		netif_addr_unlock_bh(dev);
11736 
11737 		/* bits to wait on */
11738 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11739 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11740 
11741 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11742 			BNX2X_ERR("rx_mode completion timed out!\n");
11743 
11744 		break;
11745 	}
11746 
11747 	/* rtnl_lock is held.  */
11748 	case DRV_CTL_STOP_L2_CMD: {
11749 		unsigned long sp_bits = 0;
11750 
11751 		/* Stop accepting on iSCSI L2 ring */
11752 		netif_addr_lock_bh(dev);
11753 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11754 		netif_addr_unlock_bh(dev);
11755 
11756 		/* bits to wait on */
11757 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11758 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11759 
11760 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11761 			BNX2X_ERR("rx_mode completion timed out!\n");
11762 
11763 		mmiowb();
11764 		barrier();
11765 
11766 		/* Unset iSCSI L2 MAC */
11767 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11768 					BNX2X_ISCSI_ETH_MAC, true);
11769 		break;
11770 	}
11771 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11772 		int count = ctl->data.credit.credit_count;
11773 
11774 		smp_mb__before_atomic_inc();
11775 		atomic_add(count, &bp->cq_spq_left);
11776 		smp_mb__after_atomic_inc();
11777 		break;
11778 	}
11779 	case DRV_CTL_ULP_REGISTER_CMD: {
11780 		int ulp_type = ctl->data.ulp_type;
11781 
11782 		if (CHIP_IS_E3(bp)) {
11783 			int idx = BP_FW_MB_IDX(bp);
11784 			u32 cap;
11785 
11786 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11787 			if (ulp_type == CNIC_ULP_ISCSI)
11788 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11789 			else if (ulp_type == CNIC_ULP_FCOE)
11790 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11791 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11792 		}
11793 		break;
11794 	}
11795 	case DRV_CTL_ULP_UNREGISTER_CMD: {
11796 		int ulp_type = ctl->data.ulp_type;
11797 
11798 		if (CHIP_IS_E3(bp)) {
11799 			int idx = BP_FW_MB_IDX(bp);
11800 			u32 cap;
11801 
11802 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11803 			if (ulp_type == CNIC_ULP_ISCSI)
11804 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11805 			else if (ulp_type == CNIC_ULP_FCOE)
11806 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11807 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11808 		}
11809 		break;
11810 	}
11811 
11812 	default:
11813 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11814 		rc = -EINVAL;
11815 	}
11816 
11817 	return rc;
11818 }
11819 
11820 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11821 {
11822 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11823 
11824 	if (bp->flags & USING_MSIX_FLAG) {
11825 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11826 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11827 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11828 	} else {
11829 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11830 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11831 	}
11832 	if (!CHIP_IS_E1x(bp))
11833 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11834 	else
11835 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11836 
11837 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11838 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11839 	cp->irq_arr[1].status_blk = bp->def_status_blk;
11840 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11841 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11842 
11843 	cp->num_irq = 2;
11844 }
11845 
11846 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11847 			       void *data)
11848 {
11849 	struct bnx2x *bp = netdev_priv(dev);
11850 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11851 
11852 	if (ops == NULL)
11853 		return -EINVAL;
11854 
11855 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11856 	if (!bp->cnic_kwq)
11857 		return -ENOMEM;
11858 
11859 	bp->cnic_kwq_cons = bp->cnic_kwq;
11860 	bp->cnic_kwq_prod = bp->cnic_kwq;
11861 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11862 
11863 	bp->cnic_spq_pending = 0;
11864 	bp->cnic_kwq_pending = 0;
11865 
11866 	bp->cnic_data = data;
11867 
11868 	cp->num_irq = 0;
11869 	cp->drv_state |= CNIC_DRV_STATE_REGD;
11870 	cp->iro_arr = bp->iro_arr;
11871 
11872 	bnx2x_setup_cnic_irq_info(bp);
11873 
11874 	rcu_assign_pointer(bp->cnic_ops, ops);
11875 
11876 	return 0;
11877 }
11878 
11879 static int bnx2x_unregister_cnic(struct net_device *dev)
11880 {
11881 	struct bnx2x *bp = netdev_priv(dev);
11882 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11883 
11884 	mutex_lock(&bp->cnic_mutex);
11885 	cp->drv_state = 0;
11886 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11887 	mutex_unlock(&bp->cnic_mutex);
11888 	synchronize_rcu();
11889 	kfree(bp->cnic_kwq);
11890 	bp->cnic_kwq = NULL;
11891 
11892 	return 0;
11893 }
11894 
11895 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11896 {
11897 	struct bnx2x *bp = netdev_priv(dev);
11898 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11899 
11900 	/* If both iSCSI and FCoE are disabled - return NULL in
11901 	 * order to indicate CNIC that it should not try to work
11902 	 * with this device.
11903 	 */
11904 	if (NO_ISCSI(bp) && NO_FCOE(bp))
11905 		return NULL;
11906 
11907 	cp->drv_owner = THIS_MODULE;
11908 	cp->chip_id = CHIP_ID(bp);
11909 	cp->pdev = bp->pdev;
11910 	cp->io_base = bp->regview;
11911 	cp->io_base2 = bp->doorbells;
11912 	cp->max_kwqe_pending = 8;
11913 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11914 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11915 			     bnx2x_cid_ilt_lines(bp);
11916 	cp->ctx_tbl_len = CNIC_ILT_LINES;
11917 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11918 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11919 	cp->drv_ctl = bnx2x_drv_ctl;
11920 	cp->drv_register_cnic = bnx2x_register_cnic;
11921 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11922 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11923 	cp->iscsi_l2_client_id =
11924 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11925 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11926 
11927 	if (NO_ISCSI_OOO(bp))
11928 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11929 
11930 	if (NO_ISCSI(bp))
11931 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11932 
11933 	if (NO_FCOE(bp))
11934 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11935 
11936 	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11937 			 "starting cid %d\n",
11938 	   cp->ctx_blk_size,
11939 	   cp->ctx_tbl_offset,
11940 	   cp->ctx_tbl_len,
11941 	   cp->starting_cid);
11942 	return cp;
11943 }
11944 EXPORT_SYMBOL(bnx2x_cnic_probe);
11945 
11946 #endif /* BCM_CNIC */
11947 
11948